```
INSTALLATION INSTRUCTIONS
for the
IBM 7040 and 7044
DATA PROCESSING SMSHE
```

Prepared by
IBM CE Installation Publications
Dept. B97
Data Systems Division
Poughkeepsie, New York
Revised: November 1964

This publication is intended to serve as a guide for installing an IBM 7040/44 Data Processing System. This publication contains mechanical data and preliminary test procedures for making the equipment operational in the customer's office.

Information on the following machine units and systems is included in this manual:

129	Magnetic Tape Unit	1414	Tape Adapter Unit
1009	Data Transmission Unit	1622	Card Read Punch
1014	Remote Inquiry Unit	$7106 / 07$	Processing Unit
1301	Disk Storage Unit	7320	Drum Storage Unit :
1302	Disk Storage Unit	7330	Magnetic Tape Unit.
1401	Data Processing System	7631	File Control Unit
1402	Card Read Punch	7740	Communication Control System
1403	Printer	7750	Programmed Transmission Control Unit
1414	I/O Synchronizer	7904	Data Channel

For detailed maintenance and test procedures, refer to the IBM 7040/44 CE Maintenance Manual

All IBM Customer Engineers are thoroughly indoctrinated in IBM safety procedures during the early phases of their training. This training should now be a part of routine practice, however, personal safety cannot be over-emphasized. Here are a few reminders of general safety when installing a system:

1. At least two men should be working on the system when power is $O N$.
2. Wear your safety glasses when soldering or performing other operations which may endanger your eyes.
3. If it is necessary to work near live power connectors or convenience outlets disconnect power cables or turn OFF wall circuit breakers.
4. Discharge capacitors before working on DC power supplies.
5. Always turn power OFF before replacing a fuse.
6. Replace safety covers that have been removed before proceeding to another operation.
7. Know the location of fire extinguishers, emergency exit doors, master power switch and emergency phone numbers.
Chapter Title Page
1 INTRODUCTION 1-1
8. General Contents of Manual 1-1
9. Preliminary Preparation 1-2
10. Unloading and Unpacking Units 1-3
11. General Cabling Information 1-4
4.1 External (Floor) Cables l-4
4.2 Interframe Cables 1-4
4.3 Cable Identification 1-5
2 MECHANICAL ASSEMBLY 2-1
12. 7106/07 Processing Unit 2-1
1.l Frame Assembly 2-1
1.2 Operator's Console 710.6/07 2-2
1.3 Covers and Air Filters 2-2
1.4 Interframe Ground Jumpers 2-6
l. 5 CPU Use Meter 2-6
13. 7904 Data Channel 2-6
14. 1414 I/O Synchronizer 2-6
15. 1414 TAU (Frame D) 2-6
16. 729/7330 Magnetic Tape Units 2-7
17. 1403 Printer 2-7
18. 1402 Card Read Punch 2-8
19. 1301/1302/7320-7631 Units 2-9
20. 7740 Communication Control System 2-9
3
CABLE INSTALLATION 3-1
21. System Cable Routing 3-1
22. External Cable Connections 3-1
23. 1 7106/07 Processing Unit 3-1
2.27904 Data Channel 3-1
24. 31414 I/O Synchronizer 3-20
2.4 729/7330 Magnetic Tape Units 3-20
2.5 1402 Card Read Punch 3-26
2.6 1403 Printer 3-26
25. 71014 Remote Inquiry Unit 3-26
2.81009 Data Transmission Unit 3-29
2.9 1301/1302/7320-7631 Units 3-29
26. 107740 Communication Control System 3-29

Page

3

4

5

CABLE INSTALLATION (continued)
3. Internal Cabling - 7106/07

3-30
3.1 Interpanel Jumper Cables 3-30
3.2 Power Distribution vable $5235317 \quad 3-30$
3.3 Signal Cables 5235677, 5235678, 5235679 3-35
3.4 Memory Cables 5235656 and 5236513 3-35
3.5 Array Thermistor Cables 523.6606 and 5236607 3-35
3.6 PDU Cables 5236461 and 5236462 3-40
3.7 Connectors to Tailgate - Cable $5236457 \quad 3-40$
3.8 CPU Use Meter - Cable $5237060 \quad 3-40$
3.9 7106 Memory Array Connections 3-41
3.10 Laminar Bus Jumper Cable - D to E Frame 3-41
3. Il Panel to Tailgate - Cable 5236454 3-41
3. 12 Address Interrogation Device Cables 3-4la
4. Internal Cabling - 1414 I/O Synchronizer 3-42
4.1 Laminar Bus Cable - $730301 \quad 3-42$
4.2 Cable 760744 3-42
4.3 Power Cable - $761394 \quad 3$-42
4.4 Power Distribution - Cable 761396 3-43
4.5 Thermal Sense - Cable 762460 3-43
4.6 Cable 763341 3-43
4.7 Cable $762723 \quad 3-43$

4 I/O Synchronizer Feature Cables 3-44
4.9 Use Meter Tamper-proofing - $1414 \quad 3-44$

FIELD TRANSFERS AND CONVERSIONS 4-1

1. General Information $4-1$
2. Field Conversions - Processing Unit 4-1
2.1 Disassembly of $7106 / 07$ Processing Unit 4-1
2.2 Disassembly of Console and Typewriter 4-3
2.3 Preparation for Shipment - 7106/7107.4-5

SYSTEM TESTING 5-1

1. General 5-1
2. Power Checks 5-1
2.1 Phase Orientation Check 5-1
3. 2 Preliminary Steps 5-1
2.3 Power Controls Check 5-2
2.4 Power Off Checks 5-4
2.5 DC Power for Peripheral Equipment 5-5
4. Voltage Checks, Frames C, D, E, and 7904 5-6
5. Single Shot and Variable Delay Line Timing 5-6
Chapter TitleSYSTEM TESTING (continued)
6. Console Operation Check 5-8
5.1 Reset 5-8
5.2 Clear 5-8
5.3 Automatic 5-8
5.4 Start 5-9
5.5 Load 5-9
5.6 Step Mode, Single Step 5-10
5.7 Multiple Step 5-10
5.8 Enter Instruction 5-10
5.9 Enter Storage 5-10
7. 10 Display Storage 5-11
8. 11 Input-Output Interlock Control 5-11
5.12 Continuous Enter-Instruction 5-11
5.13 Sense Switches 1-6 5-11
5.14 Entry Keys 5-11
5.15 Storage Clock 5-12
5.16 Tape Density Switch 5-12
5.17 Index Registers A, B, C 5-12
5.18 Instruction Counter, Address Register 5-13
5.19 Instruction Register 5-13
9. 20 Shift Counter 5-13
10. 21 Storage Register, Accumulator, MQ 5-13
5.22 Clock Pulses (A0-A5) 5-13
5.23 Program Stop, Master Stop 5-14
5.24 9 Overflow 5-14
5.25 Ready 5-14
11. Memory Unit Checks 5-15
6.1 Service Voltages - 7106 5-15
6.2 Standard Power Supplies - 7107 5-15
12. 3 Special Power Supplies - 7107 5-15
6.4 Marginal Checking Requirements 5-15
6.5 Temperature and Blower Checks 5-16
13. 7904 Tape Interface Feature Tests 5-16
14. 1 Single Shot Timing 5-16
15. 2 Indicator Checks 5-16
7.3 Program Check 5-18
16. 7904 Corporate Interface Feature Test 5-18
8.1 Single Shot Timing 5-18
8.2 Indicator Checks 5-18
8.3 Program Test 5-20
Chapter Title Page
SYSTEM TESTING (continued)
17. 7904 Direct Data Feature Test 5-20
9.1 Single Shot Timing 5-20
9.2 Indicator Checks 5-20
9.3 Program Test 5-21
18. CE Panel Tests 5-21
10.1 Remote Start/Reset Switch 5-21
10.2 Storage Test Switch 5-21
19. 3 Stop-On-Storage-Test-Parity Switch 5-22
l1. TAU Manual Checks 5-22
11.1 Check Write Compare Circuit 5-22
11.2 Test R-W VRC Trigger 5-23
11.3 Test Gating of Skew Reg B to R-W Reg 5-23
20. 4 Test Echo Check Circuit 5-24
11.5 Test Skew Error Circuits 5-24
11.6 Test LRCR Error Gating Error Trigger 5-25
21. Diagnostic Programs 5-25
12.1 Program Requirements 5-25
12.2 Diagnostic and Utility Program Index 5-26
22. 3 Program Operating Procedures 5-28
12.4 Marginal Checking 5-28
23. Peripheral Unit Check Out Procedures 5-32
13.1 1414 I/O Synchronizer 5-32
13.2 1402 Card Read Punch 5-33
13.3 1403 Printer 5-33
13.4 1014 Remote Inquiry Unit 5-35
13.51009 Data Transmission Unit 5-38
13.6 Magnetic Tape Units 5-43
24. Use Meter Testing 5-45
14.1 1414 I/O Synchronizer 5-45
14.21414 Tape Adapter Unit 5-47
14.3 7106/07 Processing Unit 5-48
14.4 7904 Data Channel 5-49
14.5729 Magnetic Tape Unit 5-51
14.6 7330 Magnetic Tape Unit 5-51
APPENDIX A - Tamper-proofing Devices A-1
APPENDIX B - Direct Couple Feature B-1

LIST OF TABLES

Table	Title	Page
3-1	7040/44 External Cable Plugging Chart	3-7
3-2	Jumper Cable Connections - 7106	3-31
3-3	Jumper Cable Connections - 7107	3-33
3-4	Signal Cable Terminations	3-37
3-5	Memory Cables - B Frame Terminations	3-39
3-6	1414 (4) Cabling for 1014 Unit	3-45
3-7	$1414(5,6)$ Cabling for 1014 Unit	3-46
3-8	1414 (4) Cabling for 1009 Unit	3-47
3-9	$1414(5,6)$ Cabling for 1009 Unit	3-48
3-10	1414 (4) Cables for Column Binary	3-49
4-1	7106/7107 Cable Disconnect Chart	4-4
5-1	Voltage Requirements, Frames C, D, E and 7904 Units	5-7
5-2	Diagnostic Programs Operating Procedures	5-29
5-3	Diagnostic Programs - Marginal Check	5-31
B-1	External Cable Routing - Direct Couple	B-4

LIST OF ILLUSTRATIONS

Figure	Title	Page
2-1	Operator's Console - 7106/07	2-3
2-2	Placement of Covers (Old Style)	2-4
2-3	Placement of Covers (New Style)	2-5
3-1	External Cable Routing 7040/44	3-2
3-2	External Cable Routing $1414(1,2,7)$	3-3
3-3	External Cable Routing 1414 (3, 4, 5, 6, 8)	3-4
3-4	External Cable Routing 1301/1302/7320--7631	3-5
3-5	External Cable Routing 7750	3-6
3-6	Connector Panels, 7106/7107	3-18
3-7	Connector Panel, 7904	3-19
3-8	1414 Frame Configurations	3-21
3-9	1414 Connector Panels	3-22
3-10	Cable 760754 Terminations	3-23
3-11	Cable 760741 (Key 505b) Terminations	3-24
3-12	Tape Unit Connector Panels	3-25
3-13	Conn. Locations and Cable Routing - 1402	3-27
3-14	1014 External Cabling	3-28
3-15	Cable 5235317 - Routing and Terminations	3-34
3-16	Signal Cable Routing	3-36
3-17	Memory and Array Thermistor Cable Routing	3-38
3-18	Cable 760684 for 1414 (4) and 1011	3-50
3-19	Cable 760684 for $1414(5,6)$ and 1011	3-51
3-20	IBM 1414 Cables for Teletype	3-52
A-1	Tamper-proofing Paddle Cards	A-4
A-2	Tamper-proofing Panel Wiring Pins	A-5
A-3	Tamper-proofing Terminal Blocks	A-5

1. GENERAL CONTENTS OF MANUAL

This manual provides the necessary instructions for installing a maximum 7040 or 7044 Data Processing System. The main objective of the manual is to guide Customer Engineers through a safe, efficient installation of the equipment.

The outline of the manual follows closely the actual installation sequence. The installation sequence consists of preliminary machine room checks, unloading and unpacking of units, mechanical assembly of units, complete cable installation of both sub-floor and interframe cables and a final check-out procedure for the system. After this has been accomplished, the system is ready for customer use.

The CE should be aware of special features ordered for the system to be installed, as information on items such as this may require special instructions that have not been specifically covered in this manual. By becoming familiar with the system configuration, the CE can take exception to information provided in the manual which is not applicable to his installation.

Cabling and testing of the Direct Couple Feature (7040/44 to 7090/94) is explained in Appendix B. You will also need the applicable 7090 or 7094 installation manual to complete the connections for the Direct Couple Feature.

Read the manual and study the diagrams before supplies or equipment are received, so you have a full understanding of the information and the sequence of installation procedures.

2. PRELIMINARY PREPARATION

Be sure you have a copy of the 7040/44 Physical Planning Manual (Form No. J22-6658) and a copy of the floor plan for your installation. Installation time can be kept to a minimum if all preliminary preparation has been completed before the system arrives. The following items should be checked:
A. Floor Area

1. The floor should be marked to show the location of all units.
2. The sub-floor should be checked to insure that all floor openings are located properly.
3. If external cables are not to be routed in a sub-floor, be certain provision has been made to route the cables through the step cover area. Special end covers and floor ramps are available for above-floor installation.
B. Power Facilities
4. Test the wall circuit breakers for proper operation.
5. Check for proper grounding at receptacle case and the building.
6. Check that the correct voltage is supplied for the system.
7. Check the three phase AC power receptacles for correct phase orientation (See system testing, Chapter 5).

2. PRELIMINARY PREPARATION (continued)
 C. Tools

1. Special tools are not required to install a $7040 / 44$ system.
2. Be sure that all the standard $C E$ tools are available, including oscilloscopes and meters.
3. A step ladder will be required to route cables across the tops of the frames and a carpenter's level should be used to level the frames prior to bolting or butting them together.
4. UNLOADING AND UNPACKING UNITS

The units are moved into the Machine Room under Customer Engineering supervision. Exercise caution when moving units. Avoid rolling into floor openings or striking cables protruding from the sub-floor. All units should be moved on hardboard or plywood to prevent floor damage,

Inspect for damage as the units are brought in. Move frames as close to their assigned floor positions as practical and remove all packing material. Make a thorough check for damage after all packing material has been removed. Avoid using the units as workbenches during installation. The top surfaces can be easily damaged. This applies particularly to the console.

Obtain a copy of the manifest from carrier and check for receipt of all units, boxes, and pieces. This is for IBM information; you are cautioned not to sign for, or accept, shipments for the customer.
4.

GENERAL CABLING INFORMATION
4.1 External (Floor) Cables

The external (floor) cables interconnect the $7106 / 07$ processing unit with the 7904 Data Channel and I/O units. These cables should arrive in advance of the system (usually 2 weeks) so that they may be placed in their proper locations under the sub-floor. Keep the ends of the cables below floor level to prevent damage to the cables as the units are moved into position. When the units are placed in their final positions, cables may be terminated. Clamp mounting bars, located in front of the tailgate connector panels, may be fitted with cable clamps to secure the cables coming from the sub-floor.

The external cables required depend upon a particular configuration previously selected by the Customer. All figures and tables showing cable terminations are for maximum configurations, so you may disregard any equipment which does not apply to your installation.

4. 2 Interframe Cables

Interframe cables are the cables interconnecting the various modules (A, B, C, D, and E) in the $7106 / 07$ processing unit and the cables interconnecting the 1414 modules. These cables are shipped with the units and are only disconnected at points where it was necessary to disassemble and ship the frames separately.
A. Labels are attached to each end of external floor cables. These labels contain a 'key" (reference) number, cable part number, and "From - To" designation. Cables are identified as follows:

1. A RED label indicates the "from" end.
2. A WHITE label indicațes the "to" end.
B. Interframe cables are identified by labels similar to those on the external cables. The label includes the cable part number.
C. Interframe cable wires are idertified by small labels, referred to as "Quick labels". These labels are used to identify the wire number or the terminating position of the wire.
D. Some external cables with two paddle card connectors on one end may be labeled "A" and "B", instead of the actual plugging location. This represents the plugging sequence as listed in Table 3-1 on page 3-7. For example: key no. 103e has plugging locations L37 and L38; the paddle connectors may be labeled "A" (L37) and "B" (L38).
3. 7106/07 PROCESSING UNIT

1.1 Frame Assembly

A. Remove all packing material from each frame. Untape all cables and remove protective coverings from paddle connectors.
B. Remove all top, front and rear covers, before proceeding.
C. Place the frames in their assigned positions and remove the mounting hardware located at the top and bottom of the frames.
D. Locate the disconnected ends of all cables, and using the routing diagrams in Chapter 3, pull the cables through to their assigned frames. Straighten the jumper cables so that the frames can be butted. Be sure all cables are now easily reached and not caught between frames.
E. Install the four leveling pads in each frame, but do not adjust them.
F. With all the frames in their assigned positions, bolt the frames together; but do not tighten. Use the longer bolts for the top portion of the frames.
G. Lower the leveling pads until the casters are off the floor and all frames are level.
H. Tighten all mounting bolts.

1.2 Operator's Console 7106, 7107

Refer to Figure 2-1 on page 2-3 and assemble the console as follows:
A. Remove packing material from reading boards, legs, paper rack, support cover, and typewriter.
B. Bolt the paper rack to the table legs.
C. Attach legs to table and secure table to the right support arm.
D. Remove typewriter shipping wing bolts and install circular feet. Install bottom cover and place typewriter in cutout provided.
E. Run typewriter cables through trough and over the left support arm. Terminate cable. Secure reading board to the left support arm.
F. Bolt plate 5237153 in place.
G. Slide connector cover 5235146 in position and bolt in place.
H. Assemble connectors under console table (Fig. 2-1).

Covers and Air Filters
A. End covers, step covers, and air filters are packaged separately along with the necessary mounting hardware for installation. Figure 2-2 shows the old style cover and air filter parts and Figure 2-3 shows the newer style. Appearance of both after installation is identical. Install the end covers first, to insure a proper fit with the mating step cover.
B. Top covers, front and rear covers, and electronic panel doors on the card side of the frames should be removed until cabling of the 7106/07 has been completed.

FIGURE 2-2 PLACEMENT OF COVERS AND AIR FILTERS (Old Style)

XIGWHSS甘 IVDINVHDGW 2
1.4 Interframe Ground Jumpers

Install the ground jumpers located on the wiring side at the base of the frames. These are green wires with ring type terminals.

1. 5 CPU Use Meter

The meter, mounted on top fo the console panel, must be sealed before the system is turned over to the customer. Complete the cabling as shown on page 3-40. Before tamper-proofing the meter with seal (P/N 740489), meter operation should be checked in accordance with instructions on page 5-47.
2. 7904 DATA CHANNEL

If more than on 7904 is used, they are bolted together in the same manner as the 7106/07. Data Channels may also be butted and bolted with similar rack and panel units, such as a 1414 I/O Synchronizer.

3. $1414 \mathrm{I} / \mathrm{O}$ SYNCHRONIZ.ER

Position the first frame and level it using the leveling pads. If a second frame is used, level and bolt the frames together in the same manner as the $7106 / 07$.
4. 1414 TAU (FRAME D)

Position the D frame and level it, using the leveling pads. If two D frames are used, butt them together. These units may be bolted together.
5. $729 / 7330$ MAGNETIC TAPE UNITS
A. Remove all packing material and position the units in their assigned locations.
B. During the unpacking and physical placement of the units a visual check of cables and connections should be made for broken pins and loose connections.
C. If more than one unit is used, connect them in series; 729's and 7330's cannot be connected in the same line. Be sure terminator is installed before power is applied. See page 3-20 for further cable information.
D. Clean the entire tape transport and chamber, filter chamber, and the top of the door screen. See applicable CE reference manual.
E. Certain checks should be made on all tape units during installation. See page 5-43.
6. 1403 PRINTER
A. Make a quick visual check for parts broken in transit.
B. Check knobs, levers and covers for correct operation.
C. Check for fluid in hydraulic reservoir (l gallon $P / N 477567$).
D. Check for oil in the reservoir (IBM 6) in the right end of the T-casting.
E. Check for oil in the plastic reservoir (IBM 9) under the rear of the T-casting. Oiler must lightly contact idler gear.
F. Be sure that the summary punch connectors are not interchanged. The connector with the gold-plated pins should be in the front receptacle.
A. Remove shipping braces, tape, and blocks under feed shock mounts.
B. Install the upper magazine of the file feed.
C. Remove front and rear covers over the sides of hopper casting.
D. Just above the file feed drive shaft is a split shaft held by a set screw; slip both halves of the shaft to the center so they are inside the casting.
E. Put upper magazine in position and slip both halves of the split shaft from the center so they will hold the magazine in place. The ends of the split shaft should be flush with the end of the magazine holes.
F. Turn split shafts so the setscrew bites both halves and tighten the setscrew.
G. Replace the two covers.
H. Check operation of file feed. Adjust hopper delay potentiometer so approximately $1 / 2^{\prime \prime}$ to $2^{\prime \prime}$ of cards enter the hopper before feeding begins.
I. Examine all relays (without removing) for displaced armatures.
J. Trip the clutches and turn machine by hand, checking for any binding conditions in the feeds or card transport.
K. Check covers for proper fit and appearance.
L. Tighten the screws in all CB contact stacks.
8. 1301/1302/7320-7631 UNITS
A. Extreme care cannot be overemphasized in the unpacking of units and in the handling of the disk receiver, drawer assemblies, and heads during the mechanical preparation of the units.
B. The complete installation procedure for these units as well as a final check-out procedure with the system, is in a separate manual, 1301/1302/7320-7631 Preliminary Installation Instructions.
C. The 1301 CE Maintenance Manual may also be useful during installation for adjustments, cleaning and servicing procedures.
9. 7740 COMMUNICATION CONTROL SYSTEM

A copy of the'IBM 7740 Preliminary Installation Instructions' is packed with every 7740. Some cabling information for the 7740 is included in chapter 3, in this manual.

1. SYSTEM CABLE ROUTING

Plug the external cables for the system using Table 3-1 on page 3-2. This Table can also be used to lay the cables in the sub-floor prior to the system arrival, since connections for both ends of each cable are listed. Figure 3-1 shows pictorially how the cables run between units. Additional information about external cables and specific units will be found in the following paragraphs.
2. EXTERNAL CABLE CONNECTIONS
2.1 7106/07 Processing Unit

Figure 3-6 shows the connector panel layout for the $7106 / 07$ frames. All external cables going to the $7106 / 07$ terminate at these panels. They are located at the bottom of each frame on the wiring side. On the A frame tailgate connector panel, cables are terminated at positions 1 through 6 and 9 with Burndy Connectors. After aligning the connector so that it may be inserted into the receptacle, position the hood (attached to the cable) so that the flat portion is at the top of the connector parallel to a horizontal frame member.
 are required. They are plugged in connector panel locations U33 through U41. See Figure 3-7.
3. CABLE INSTALLATION

FIGURE 3-1 EXTERNAL CABLE ROUTING DIAGRAM 7040/44 SYSTEM

POWER CABLE ROUTING

NOTE:
729 tape units are models $2,4,5$ or 7 .
Each key no. is prefixed with the customer assigned channel no. on each cable label.
Channel assignments in Table 3-1 are for reference only.

FIGURE 3-2 EXTERNAL CABLE ROUTING 1414 (1, 2, 7)

FRAME CONTICURATIONS	
MODEL	FRAMES
3	A
4	A+C
5	B+C
6	B+C
8	A

FIGURE 3-3 EXTERNAL CABLE ROUTING - 1414 I/O SYNCHRONIZER

When second system is not used, insert dummy plug ($\mathrm{P} / \mathrm{N} 553298$)

See Table 3-1 for further details.

FIGURE 3-4 1301/1302/7320-7631 EXTEFNAL CABLE ROUTING

See Table 3- for further details

FIGURE 3.5 EXTERNAL CABLE ROUTING DIAGRAM - IBM 7750

1/1/64
TABLE 3-1 7040/44 EXTERNAL CABLE PLUGGING CHART

Key \#	Cable \#	From (Red Tag)		To (White Tag)	Channel	Notes
2/2d	535098	729/7330		729/7330		See $\text { Fig. } 3.2$
2a/2e	535098	729/7330		729/7330		$\begin{aligned} & \text { See } \\ & \text { Fig. } 3-2 \\ & \hline \end{aligned}$
2b/2f	535098	729/7330		729/7330		See Fig. 3-2
$2 \mathrm{c} / 2 \mathrm{~g}$	535098	729/7330		729/7330		$\begin{array}{\|l\|} \hline \text { See } \\ \text { Fig. } 3-2 \\ \hline \end{array}$
35	535099	729/7330		729/7330		See Fig. 3-2
35a	535099	729/7330		729/7330		$\begin{array}{\|l\|l\|} \hline \text { See } \\ \text { Fig. } & \\ \hline \end{array}$
35 b	535099	729/7330		729/7330		$\begin{array}{\|l\|l\|} \hline \text { See } \\ \text { Fig. } & \\ \hline \end{array}$
35c	535099	729/7330		729/7330		$\begin{array}{\|ll\|} \hline \text { See } & \\ \text { Fig. } & 3-2 \\ \hline \end{array}$
35d	535099	729/7330		729/7330		See Fig. 3-2
35 e	535099	729/7330		729/7330		See Fig. 3-2
$35 f$	535099	$729 / 7330$		729/7330		See Fig. 3-2
35 g	535099	729/7330		729/7330		See Fig. 3-2
36	761354	$v_{1414 \mathrm{D}}$	$\begin{aligned} & \mathrm{L} 01,02,03,04 \\ & \mathrm{U} 01,02,03,04 \\ & \hline \end{aligned}$	729	1/2	See Fig. 3-2
37	761354	1414D	$\begin{aligned} & \mathrm{L} 07,08,09,10 \\ & \mathrm{U} 07,08,09,10 \end{aligned}$	7330	1/2	See Fig. 3-2

Key \#	Cable \#	From (Red Tag)	To (White Tag)	Channel	Notes
55 *	352464	729/7330	Other Controls or Systems		See Fig. 3-2
101	553343	1622 AYA	Ul0 (Blk) 7106/07E Ull (yel)	A	See Fig. 3-1
101a	553343	1622 AZA	$\begin{array}{\|r\|} \hline \text { L10 (Blk) } \\ 7106 / 07 \mathrm{E} \\ \mathrm{Lll} \\ \hline \end{array}$	A	$\begin{aligned} & \hline \text { See } \\ & \text { Fig. 3-1 } \\ & \hline \end{aligned}$
102	5235334	7904A U17,18	$7106 / 07 \mathrm{D} \text { L01, } 02$	$18 t$	$\begin{array}{ll} \hline \text { See } \\ \text { Fig. 3-1 } \\ \hline \end{array}$
102a	5235334	7904A U19,20	7106/07D L03, 04	1st	$\begin{aligned} & \text { See } \\ & \text { Fig. 3-1 } \\ & \hline \end{aligned}$
102b	5235334	7904A U21, 22	7106/07D L05, 06	1 st	$\begin{array}{\|l\|l\|} \hline \text { See } \\ \text { Fig. 3-1 } \\ \hline \end{array}$
103	5235334	7904A U11, 12	7106/07C L01.02	1st	See Fig. 3-1
103a	5235334	7904A U13,14	7106/07C L03, 04	1 st	See Fig. 3-1
103b	5235334	$7904 \mathrm{~A} \text { U28, } 27$	7106/07C L05, 06 -	1 st	Note Change in Sequence
103c	5235334	7904A U26, 25	7106/07C L07, 08	1 st	Note Change in Sequence
103d	5235334	7904A U24, 23 L	7106/07C L09, 10	1 st	Note Change In Sequence
103e	5235334	$\text { 7904A U15, } 16$	$7106 / 07 \mathrm{C} \text { L37, } 38$	1 st	See Fig. 3-1
103 f	5235334	7904A U09, 10 L	7106/07C **	1st	See Fig. 3-1
103 g	5235334	7904A U43, 44	7106/07C **	2nd	$\begin{aligned} & \hline \text { See } \\ & \text { Fig. 3-1 } \\ & \hline \end{aligned}$

* Used for manual tape switching; use special terminator
(continued)
TABLE 3-1 7040/44 EXTERNAL CABLE PLUGGING CHART (continued)
** Connections vary; see page 3-17

TABLE 3-1 7040/44 EXTERNAL CABLE PLUGGING CHART (continued)

Key \#	Cable \#	From (Red Tag)	To (White Tag)	Channel	Notes
104	5235334	7904B Ul1, 12	7904A U33, 34	3rd	See Fig. 3-1
104a	5235334	7904B Ul3, 14	7904A U35, 36	3 rd	See Fig. 3-1
104b	5235334	7904B U15, 16	7904A U37, 38	3 rd	See Fig. 3-1
104c	5235334	7904B U17, 18	7904A U 39,40	3 rd	See $\text { Fig. } 3-1$
104d	5235334	7904B U19, 20	7904A U41, 42	3 rd	$\begin{aligned} & \text { See } \\ & \text { Fig. 3-1 } \end{aligned}$
105	5235334	7904B U21, 22	7106/07D L07, 08	3 rd	$\begin{aligned} & \text { See } \\ & \text { Fig. 3-1 } \\ & \hline \end{aligned}$
106	5235334	7904B U28, 27	7106/07C L11,12	3 rd	Note Change in Sequence
106a	5235334	7904B U26, 25	7106/07C L13, 14	3 rd	Note Change in Sequence
106b	5235334	7904B U24, 23	7106/07C L15, 16	3rd	Note Change in Sequence
106 c	5235334	7904B U09, 10	7106/07C*	3rd	See Fig. 3-1
106d	5235334	7904 BU 43.44	7106/07C*	4th	$\begin{aligned} & \text { See } \\ & \text { Fig. 3-1 } \end{aligned}$
107	624073	1622 Pwr	7106/07A 23 Pwr	A	See Fig. 3-1
108	5235357	7904A Conn 1 P P_{wr}	7106/07A 12	1 and 2	See Fig. 3-1
108a	5235357		7106/07A $13 \sim$ Pwr	3 and 4	See Fig. 3-1

[^0](continued)

TABLE 3-1 7040/44 EXTERNAL CABLE PLUGGING CHART (continued)

Key \#	Cable \#	From (Red Tag)		To (White Tag)		Channel	Notes
108b	5235358	7904A C	Conn. 2 Pwr.	7106/07A	14 Pwr.	1 and 2	Fig. 3-1
108c	5235358	7904B C	Conn. 2 Pwr.	7106/07A	15 Pwr.	3 and 4	Fig. 3-1
109	5236410	1401 2	200 Pos. Conn.	7106/07E	$\begin{array}{lll} \mathrm{L} 12, & 13, & 14 \\ \mathrm{U} 12, & 13, & 14 \\ \hline \end{array}$	A	Fig. 3-1
110	5235334	7904 L	$\begin{aligned} & \text { L09, L10 } \\ & \text { L33, L34 } \\ & \hline \end{aligned}$	Direct Data	$\begin{array}{ll} \mathrm{L} 13, & \mathrm{~L} 14 \\ \mathrm{~L} 37, & \mathrm{~L} 38 \\ \hline \end{array}$	1 st and 3 rd 2nd and 4th	Fig. 3-1
110a	5235334	7904 L	$\begin{aligned} & \mathrm{L} 11, \mathrm{~L} 12 \\ & \mathrm{~L} 35, \mathrm{~L} 36 \\ & \hline \end{aligned}$	Direct Data	$\begin{aligned} & \mathrm{L} 15, \mathrm{~L} 16 \\ & \mathrm{~L} 39, \mathrm{~L} 40 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \text { st and } 3 \mathrm{rd} \\ 2 \text { nd and } 4 \mathrm{th} \\ \hline \end{array}$	Fig. 3-1
110b	5235334	$7904 \quad$ L	$\begin{array}{ll} \mathrm{L} 13, & \mathrm{~L} 14 \\ \text { L37, } \mathrm{L} 38 \\ \hline \end{array}$	Direct Data	$\begin{array}{ll} \text { L09, L10 } \\ \text { L33, } & \text { L34 } \end{array}$	1 st and 3 rd 2nd and 4th	Fig. 3-1
110c	5235334	7904 L	$\begin{array}{ll} \mathrm{L} 15, \mathrm{~L} 16 \\ \mathrm{~L} 39, & \mathrm{~L} 40 \\ \hline \end{array}$	Direct Data	$\begin{array}{ll} \text { L11, L12 } \\ \text { L35, L36 } \\ \hline \end{array}$	1 st and 3 rd 2nd and 4th	Fig. 3-1
110d	5235334	7904 L	$\begin{array}{ll} \mathrm{L} 17, & \mathrm{~L} 18 \\ \mathrm{~L} 41, & \mathrm{~L} 42 \\ \hline \end{array}$	Direct Data	$\begin{array}{ll} \mathrm{L} 19, & \mathrm{~L} 20 \\ \mathrm{~L} 43, & \mathrm{~L} 44 \\ \hline \end{array}$	1 st and 3 rd 2nd and 4th	Fig. 3-1
110 e	5235334	7904 L	$\begin{array}{ll} \mathrm{L} 19, & \mathrm{~L} 20 \\ \mathrm{~L} 43, & \mathrm{~L} 44 \\ \hline \end{array}$	Direct Data	$\begin{aligned} & \text { L17, L18 } \\ & \text { L41, L42 } \end{aligned}$	$\begin{array}{\|l\|} 1 \text { st and } 3 \mathrm{rd} \\ 2 \mathrm{nd} \text { and } 4 \mathrm{th} \end{array}$	Fig. 3-1
199b	352303	7106A		7741 A			
199c	352303	7107A		7741A			
201a	587330	7904A	$\begin{aligned} & \mathrm{L} 05 \\ & \mathrm{~L} 49 \\ & \hline \end{aligned}$	7741B	L49	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	
201 b	587330	7904A	$\begin{aligned} & \mathrm{L} 01 \\ & \mathrm{~L} 45 \end{aligned}$	7741B	U49	$\frac{1}{2}$	
395	760739	7106/07A	Conn. 2	1414D		A	Fig. 3-2
395a	760739	7106/07A	Conn. 3	1414D		1st	Fig. 3-2
395b	760739	7106/07A	Conn. 4	1414D		2nd	Fig. 3-2
395 c	760739	7106/07A	Conn. 5	1414D		3 rd	Fig. 3-2
395d	760739	7106/07A	Conn. 6	1414D		4th	Fig. 3-2

TABLE 3-1 7040/44 EXTERNAL CABLE PLUGGING CHART (continued)

Key \#	Cable \#	From (Red Tag)	To (White Tag)	Channel	Notes
396	5235359	7904 Conn 3	729/7330	1 st	See Fig. 3-2
396a	5235359	7904 Conn 4	729/7330	1 st	$\begin{aligned} & \hline \text { See } \\ & \text { Fig. } 3-2 \\ & \hline \end{aligned}$
396b	5235359	7904 Conn 5	729/7330	2nd	See Fig. 3-2
396 c	5235359	7904 Conn 6	729/7330	2nd	$\begin{aligned} & \text { See } \\ & \text { Fig. } 3-2 \end{aligned}$
396d	5235359	7904 Conn 3	729/7330	3rd	$\begin{aligned} & \text { See } \\ & \text { Fig. } 3-2 \\ & \hline \end{aligned}$
396e	5235359	7904 Conn 4	729/7330	3rd	See Fig. 3-2
3965	5235359	7904 Conn 5	729/7330	4th	$\begin{aligned} & \text { See } \\ & \text { Fig. 3-2 } \end{aligned}$
396 g	5235359	7904 Conn 6	729/7330	4th	$\begin{aligned} & \hline \text { See } \\ & \text { Fig. } 3-2 \\ & \hline \end{aligned}$
396 h	5235359	7106/07A Conn 16	729/7330	A	See Fig. 3-2
396j	5235359	7106/07A Conn 17	729/7330	A	$\begin{aligned} & \hline \text { See } \\ & \text { Fig. 3-2 } \\ & \hline \end{aligned}$
397	5235682	$\text { 7904A U45, } 46$	1414D L12,13	2nd \& 4th	See Fig. 3-2
$397 a$	5235682	7904A U47, 48	$\text { 1414D L14, } 15$	2nd \& 4th	$\begin{aligned} & \text { See } \\ & \text { Fig. } 3-2 \\ & \hline \end{aligned}$
397b	5235682	$7904 \mathrm{~A} \text { U49,50 }$	$1414 \mathrm{DL16,17}$	2nd \& 4th	$\begin{aligned} & \text { See } \\ & \text { Fig. } 3-2 \end{aligned}$
397 c	5235682	$\text { 7904A U51, } 52$	$14140 \angle 18,1$	2nd \& 4th	$\begin{aligned} & \text { See } \\ & \text { Fig. } 3-2 \end{aligned}$

TABLE 3-1 7040/44 EXTERNAL CABLE PLUGGING CHART (continued)

Key \#	Cable \#	From (Red Tag)	To (White Tag)		Channel	Notes
398	5235682	$\text { 7904A U01,02 } V$	1414D L12, 13		1 st \& 3rd	$\begin{aligned} & \hline \text { See } \\ & \text { Fig. 3-2 } \\ & \hline \end{aligned}$
398a	5235682	7904A U03,04	1414D L14, 15		1st \& 3rd	$\begin{aligned} & \text { See } \\ & \text { Fig. 3-2 } \end{aligned}$
398b	5235682	$\text { 7904A U05, } 06$	1414D L16, 17		1st \& 3rd	See Fig. 3-2
398c	5235682	7904A U07,08	1414D L18, 11		1st \& 3rd	See Fig. 3-2
399	5235682	7106/07E U15, L15	1414D L17, 18		A	See Fig. 3-2
399a	5235682	7106/07E U16, L16	1414D L15, 16		A	See Fig. 3-2
399b	5235682	7106/07E U17, L17	1414D Ll3, 14		A	$\begin{aligned} & \hline \text { See } \\ & \text { Fig. 3-2 } \\ & \hline \end{aligned}$
399\%	5235682	7106/07E U18, L18	1414D Ll1, 12		A	See Fig. 3-2
400	553379	7631 U01	$\begin{aligned} & 1302 \\ & 130105 \mathrm{D} \end{aligned}$	7320 D11		See Fig. 3-4
400a	553379	7631 L 01	$\begin{aligned} & 1302 \\ & 130109 \mathrm{D} \end{aligned}$	7320 D13		$\begin{aligned} & \hline \text { See } \\ & \text { Fig. } 3-4 \\ & \hline \end{aligned}$
400b	553379	$7631 \mathrm{~L} 03$	$\begin{aligned} & 1302 \\ & 130107 \mathrm{D} \\ & \hline \end{aligned}$	7320 D09		See Fig. 3-4
401	587387	7631 U03 \%	$\begin{gathered} 1302 \\ 1 \text { st } 130111 \mathrm{D} \end{gathered}$	7320 D15		See Fig. 3-4
401a	587387	7631 L05	$\begin{aligned} & 1302 \\ & \text { 2nd } 1301110 \end{aligned}$	7320 D15		See Fig. 3-4
401b	587387	7631 U05	$\begin{array}{r} 1302 \\ 3 \mathrm{rd} 130111 \mathrm{D} \\ \hline \end{array}$	7320 D15		See Fig. 3-4

Key \#	Cable \#	From (Red Tag)		To (White Tag)		Channel	Notes
401 c	587387	7631 L07		$\begin{array}{r} 1302 \\ 4 \text { th } 130111 \mathrm{D} \end{array}$	7320 D15		$\begin{aligned} & \hline \text { See } \\ & \text { Fig 3-4 } \\ & \hline \end{aligned}$
401d	587387	7631 U07		$\begin{gathered} 1302 \\ 5 \text { th } 130111 \mathrm{D} \end{gathered}$	7320 D15		See $\text { Fig. } 3-4$
406	352303	7631 EPO C-3		Other S.I. C. U.			See Fig. 3-4
$411 \mathrm{a}, \mathrm{b}, \mathrm{c}$	553379	$\begin{aligned} & 1302 \\ & 130105 \mathrm{~A} \\ & \hline \end{aligned}$	7320 D05	$\begin{aligned} & 1302 \\ & 130105 \mathrm{D} \end{aligned}$	7320 Dll		$\begin{aligned} & \text { See } \\ & \text { Fig. } 3-4 \end{aligned}$
412a, b, c	553379	$\begin{aligned} & 1302 \\ & 130109 \mathrm{~A} \end{aligned}$	7320 D07	$\begin{aligned} & 1302 \\ & 130109 \mathrm{D} \end{aligned}$	7320 D13		See Fig. 3-4
$413 \mathrm{a}, \mathrm{b}, \mathrm{c}$	553379	$\begin{aligned} & 1302 \\ & 130107 \mathrm{~A} \\ & \hline \end{aligned}$	7320 D03	$\begin{aligned} & 1302 \\ & 130107 \mathrm{D} \\ & \hline \end{aligned}$	7320 D09		$\begin{aligned} & \hline \text { See } \\ & \text { Fig. } 3-4 \\ & \hline \end{aligned}$
414	587330	$7631 \mathrm{L09}$		7904	$\begin{aligned} & 02 \mathrm{~A} \text { L01 } \\ & 02 \mathrm{~A} \mathrm{~L} 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \text { and } 3 \\ & 2 \text { and } 4 \end{aligned}$	See Fig. 3-4
414a	587330	7631 U09		7904	$\begin{aligned} & 02 \mathrm{~A} \text { L05 } \\ & 02 \mathrm{~A} \text { L49 } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \text { and } 3 \\ & 2 \text { and } 4 \\ & \hline \end{aligned}$	See Fig. 3-4
415	352303	7631	R	$7106 / 07 \mathrm{D}-\mathrm{H}$			$\begin{aligned} & \text { See } \\ & \text { Fig. } 3-4 \\ & \hline \end{aligned}$
412*	5342370	7631		1st 1301 orl 302			See Fig. 3-4
419a*	5342370	1st 1301 or 1302		2nd 1301 or 1302			See Fig. 3-4
$419 b *$	5342370	2nd 1301or 1302		3rd 1301 or 1302			$\begin{aligned} & \text { See } \\ & \text { Fig. } 3-4 \end{aligned}$
419c*	5342370	3 rd 1301 or 1302		4th 1301 or 1302			See Fig. 3-4
419d*	5342370	4th 1301 or 1302		5 th 1301 or 1302			$\begin{aligned} & \hline \text { See } \\ & \text { Fig. } 3-4 \\ & \hline \end{aligned}$

* Key numbers 419 through 419d are required with 7631 serial numbers 12,000 and above only.

TABLE 3－1 7040／44 EXTERNAL CABLE PLUGGING CHART（continued）

＊See page 3－23 for further information．＊＊＊＊See page 3－17 for connections．
＊＊See page 3－24 for further information．
＊＊＊See page 3－27 for further information．

Key \#	Cable \#	From (Red Tag)	To (White Tag)	Channel	Notes
511 a	5235682	1414B L33, 34	7106/07E *		Basic M 5
511b	5235682	1414B U33, 34	7106/07E*		Basic M 5
511c	5235682	1414B L32, U30	7106/07E*		Basic \& Prior
511 d	5235682	1414B L30, 31	7106/07E *		M 5
511 f	763337	7106/07*	1414B CC6		M 5
513a	587330	1414B CAl	 7904 02A L01 02A L45	$\begin{array}{\|l\|} \hline 1 \text { and } 3 \\ 2 \text { and } 4 \\ \hline \end{array}$	CIF, M 6
513b	587330	1414B CA2	02A L05 7904 02A L49	$\begin{array}{\|l\|} \hline 1 \text { and } 3 \\ 2 \text { and } 4 \\ \hline \end{array}$	CIF, M 6
519	352303	1414B El	7106/07A D-H		EPO, M6
530	762735	1414C Al, Bl	TTY 1 Send/Rec		Signal
531	762735	1414C A2, B2	TTY 2 Send/Tec		Signal
532	762733	1414C A2	TTY 21 st Send		Signal
532a	762733	$1414 \mathrm{C} \mathrm{B2}$	TTY 2 2nd Send		Signal
533	762732	1414C A2	TTY 21 st Rec		Signal
533a	762732	1414C B2	TTY 2 2nd Rec		Signal

[^1]TABLE 3-1 7040/44 EXTERNAL CABLE PLUGGING CHART (continued)

Key \#	Cable \#	From (Red Tag)	To (White Tag)	Channel	Notes
534	760683	1414C Ll, 3	1011 Paper Tape		Signal
535*	763345	1414C L12,14,17,18,20	1009 Data Trans. *		Signal
536**	761289	1414C L30, 31	101422 Pos. Term Box		Signal
536a**	761289	1414C L33, 34	101422 Pos. Term Box		Signal
537 **	761289	1414C L36, 37	101422 Pos. Term Box		Signal
537a**	761289	1414C L39, 40	101422 Pos. Term Box		Signal
$538 * *$	761290	10144 Pos. Term Box	1014 Station	1st	Signal
539**	761290	10144 Pos. Term Box	1014 Station	2nd	Signal
555a	587330	$7904\left(\begin{array}{ll} 02 \mathrm{~A} & \mathrm{LO1}(\mathrm{~B} \& \mathrm{C} C h) \\ 02 \mathrm{~A} & \mathrm{~L} 45(\mathrm{~B} \& \mathrm{D} \mathrm{Ch}) \end{array}\right.$	$7750 \mathrm{B45L}$		$\begin{aligned} & \text { See } \\ & \text { Fig. } 3-5 \end{aligned}$
555b	587330	790402 A L05(B \& C Ch)	7750 B49L		$\begin{aligned} & \hline \text { See } \\ & \text { Fig. 3-5 } \end{aligned}$
560	352303	7106 A D-H	7750 K Frame		See Fig. 3-5
561	352303	7107A D-H	7750 K Frame		$\begin{aligned} & \text { See } \\ & \text { Fig. } 3-5 \\ & \hline \end{aligned}$

* See page 3-29 for further details.
** See page 3-28 for further details.

TABLE 3-1 7040/44 EXTERNAL CABLE PLUGGING CHART (continued)

7106/07 Connections for Key Nos. 103f, 103g, 106c, 106d					
7904	Key \#	Channel Selection			
		E	D	C	c B
1st Channel	U103f ${ }^{\prime} \beta^{\prime \prime}$	L45, L46	L47, L48	L49, L50	L51, L52
2nd Channel	103 g " C^{\prime}	L45, L46	L47, L48	L49, L50	L5 1, L5 2
3rd Channel	106 c	L45, L46	L47, L48	L49, L50	L5 1, L52
4 th Channel	1068	L45, L46	L47, L48	L49, L50	L5 1, L5 2

For "other end" connections see pages 3-8, 3-9, 3-14, 3-15.

C FRAME

D FRAME

E FRAME

FIGURE 3-6 CONNECTOR PANELS, 7106/7107

Typical pin location for all connectors.

DQT card terminators ($\mathrm{P} / \mathrm{N} 372148$) are required on the last 7904 Data Channel. Thye are plugged in locations U33 through U41.
2.3 1414 I/O Synchronizer
A. Following the plugging sequence in Table 3-1 plug power cables 760754 and 760741 to terminal boards TB A1, A2, A3 and A4 in the 1414 "A" frame. Figure 3-8 shows the location of these terminal blocks.
B. Refer to the following illustrations for additional external cabling information:

Figure 3-8 1414 Frame Configurations
Figure 3-9 1414 Connector Panels
Figure 3-10 Cable 760754 Terminations
Figure 3-11 Cable 760741 Terminations

2. 4 729/7330 Magnetic Tape Units

A. All external cable connections to the $729 / 7330$ units are to the rear of the units. See Figure 3-12.
B. Attach dummy shoe (terminator) to the last tape unit in a series. The 729 and 7330 terminators are interchangeable physically, but not electrically. The terminators should be properly labeled to identify the correct tape unit.

CAUTION
Serious machine damage can be caused by application of power without terminator shoe installed.

A FRAME (MODELS 3, 4 and 8) PANEL 7

| \prod | | |
| :--- | :--- | :--- | :--- |
| 52 | UPPER (U) | |
| | LOWER (L) | $(\mathrm{CC2}$ |

B FRAME (MODELS 5 and 6) PANEL 7 *

C FRAME (MODELS 4, 5 and 6) PANEL 7

* TAU (D frame) connector panel is similar to the B frame connector panel.

FIGURE $\quad 3-9 \quad 1414$ CONNECTOR PANELS

FIGURE 3-10 CABLE 760754 TERMINATIONS

FIGURE 3-11 CABLE 760741 (Key 505b) TERMINATIONS

7330 CONNECTORS

FIGURE 3-12 TAPE UNIT CONNECTOR PANELS
2.5

1402 Card Read Punch
A. External cable connections for the 1402 are to the rear of the unit. See Figure 3-13. Also see Figure 3-11 for a layout of power distribution cable 760741. After installing the cables, check that the cable clamp is securely fastened (Figure 3-13).
B. To avoid the possibility of blowing hammer driver fuses, and/or hammer drive coils, make the following continuity check before applying power:

Between 1402 DC4-1 and 1414-3 TBA4-2*
Between 1402 DC4-2 and 1414-3 TBA4-1*
2. $6 \quad 1403$ Printer
A. Connect the following cables:

Key $507 \quad 760754$
508a 760674
508b 760673
B. Check continuity between TBA4-2 and TBA3-12. This is the -60V DC return for the printer.
2.7 1014 Remote Inquiry Unit

The detailed installation cabling for the 1014 Remote Inquiry Unit is illustrated in Figure 3-14. Connections are listed in Table 3-1. If the 1414 I/O Synchronizer is operational, the 1014 unit(s) can be tested as soon as installation is completed. Step by step instructions are given in Chapter 5.

* To prevent a false reading through the power supply, disconnect both ends of these wires before checking continuity.

1402 REAR VIEW

FIGURE 3-1 3 CONNECTOR LOCATIONS AND CABLE ROUTING - 1402

2. $8 \quad 1009$ Data Transmission Unit

Only one external cable is needed to connect the 1009 to the 1414

I/O Synchronizer. This cable is connected as follows:

KEY NO.	PART NO.	RED TAG-FROM	WHITE TAG - TO
535	763345	$1414 C 7$	1009 C and D

Data sub-set (DSS)
when used, plugs into
'A" connector

Connector positions of the 1009 unit

If plugs at the 1009 end of cable 763345 are not labeled, connector "C" can be distinguished by the 34 active connections; " D " has 38 wires connected to it.
2.9 1301/1302/7320-7631 Units

Use Table 3-1 to connect the external cables. Figure 3-4
illustrates the cables and their connections. The same cables are used for the 1301/1302 Disk Storage and the 7320 Drum Storage Units
2. $10 \quad 7740$ Communication Control System

Connections to the $7040 / 44$ are from the 7741 main frame to a 7904
data channel. For the complete installation instructions for installing a 7740 system, refer to the "IBM 7740 Preliminary Installation Instructions".

The following cables are required (see table 3-1):

Cable 587330 Key nos. 201a, 201b
Cable 352303 Key nos. 199b, 199c

INTERNAL CABLING - 7106/7107
Cables interconnecting the six frames of the 7106/7107 are terminated after the frames are assembled. Certain ends of each cable are disconnected to facilitate shipment of the 7106/7107 as individual frames.

For easier cable routing and installation, particularly jumper cables, remove the outer doors and the electronic panel (inner) doors on the card side of the frames. Replace the doors after internal cabling has been complated.

3.1 Interpanel Jumper Cables

These are short paddle connector cables, $\mathrm{P} / \mathrm{N} 539494$, and are all connected on the card side of the frames. The paddle connectors are marked with the plugging locations or tables 3-2 and 3-3 can be used to connect the 7106 and 7107 respectively. Briefly, all jumpers connect columns l-28 and 2-27, except between frames B and C of the 7107 , where columns $1-16$ and 2-15 are utilized.
$\sqrt{3.2}$ Power Distribution Cable 5235317 Not Conotectex mneme Mos er
This cable is disconnected completely and packaged separately for shipment. Cable connectors are labeled by terminating position. Use caution when installing the cable. Panel and connector pins are easily bent. Unlatch the tailgate panels to install the cable, and connect it as shown in Figure 3-15 page 3-34. For 50 cycle systems the cable P / N is 5236722.

Install this cable before cables 5235677, 5235678 and 5235679 are installed.

TABLE 3-2 JUMPER CABLE CONNECTIOAS - 7106

FROM		TO		FROM		TO		
Panel	Term	Panel	Term	Panel	Term	Panel	Term	
B4	B27	C 3	B02	C2	F27	D1	F02	
B4	C27	C3	CO 2	C2	F28	D1	FOl	
B4	C28	C3	COl	C2	G27	D1	G02	
B4	D27	C3	D02	C2	G28	D1	G01	
B4	D28	C3	D01	C 2	H27	D1	H02	
B4	E27	C 3	E02	C 2	H28	D1	HOl	4
B4	E28	C3	EOl	C 2	J27	D1	J02	
B4	F27	C3	F02	C 2	J28	D1	J01	
B4	F28	C3	FOl	C2	K27	D1	K02	
B4	G27	C3	G02	C 2	K28	D1	KO1	
B4	G28	C3	GO1	C 4	A27	D3	A02	
B4	H27	C3	H 02	C4	A28	D3	A01	
B4	H28	C3	HO 1	C4	B27	D3	B02	
C 2	A28	D1	A01	C4	B28	D3	B01	
C 2	B28	D1	B01	C4	C27	D3	CO 2	
C 2	C28	D1	COL	C4	C28	D3	CO 1	
C2	D27	D1	D02	C4	D27	D3	D02	
C 2	D28	D1	D01			D3	D01	
C 2	E27	D1	E02	C4	E27	D3	E02	
C 2	E28	D1	E01	C4	E28	D3	E01	

(Continued)

TABLE 3-2 JUMPER CABLE CONNECTIONS - 7106 (continued)

FROM		TO		FROM		TO	
Panel	Term	Panel	Term	Panel	Term	Panel	Term
C4	F27	D3	F02	D2	G28	E1	G01
C4	F28	D3	FOl	D2	H27	E1	H02
C4	G27	D3	G02	D2	H28	El	HOl
C4	G28	D3	G01	D2	J28	El	J01
C4	H27	D3	H02	D2	K28	El	K01
C4	H28	D3	HOL	D4	A28	E3	A0l
C4	J28	D3	JOl	D4	B27	E3	B02
C4	K27	D3	K02	D4	B28	E3	B01
C4	K28	D3	K01	D4	C27	E3	C 02
D2	A27	E1	A02	D4	C28	E3	C01
D2	A28	El	A01	D4	D27	E3	D02
D2	B28	El	B01	D4	D28	E3	D01
D2	C27	El	C 02	D4	E27	E3	E02
D2	C28	E1	COl	D4	E28	E3	EOl
D2	D27	E1	D02	D4	F27	E3	F02
D2	D28	E1	D01	D4	F28	E3	FOl
D2	E27	El	E02	D4	G27	E3	G02
D2	E28	E1	E01	D4	G28	E3	G0 1
D2	F27	El	F02	D4	H27	E3	H02
D2	F28	E1	FOl	D4	H28	E3	HOl

TABLE 3-3 JUMPER CABLE CONNECTIONS - 7107

WIRING SIDE

7106/07

* Cable lead has longest breakout to AAl. Plug to outside Burndy Conn.
** Cable lead to Conn. A in B frame is 24 inches; Frames C, D and E, 2 inches. *** Unlatch connector panels to route and connect cable.

Signal Cables 5235677, 5235678, 5235679
These cables consist of ribbon cables with paddle connectors on one end. The paddle connectors are labeled by terminating position. Figure 3-16 page 3-36 shows the routing of the cables and Table 3-4 lists the connections for both ends. The frame routing of the cables is as follows:

	Frame A to C, D and E	(Install First)
Me 5235677	Frame A to D	(Install Second)
Memory Cables 5235656 and 5236513	(Install Last)	

These cables provide DC power to the memory frames. The cable is routed across the top of the frames from A to B. Cable 5235656 is a 7106 cable and terminates at the Laminar Bus terminal block in the B frame. Cable 5236513 is a 7107 cable and terminates at Laminar Bus TBl and TB2. Figure 3-17 shows the routing of the cables and Table 3-5 lists the terminations for the B frame end of the cables.
И3. 5 Array Thermistor Cables 5236606 and 5236607
These cables are two wire, black and yellow twisted pairs. Cable 5236606 is used on the 7106 and cable 5236607 is used on the 7107 . Route the cable adjacent to the memory cable on top of the frames, from A to B.

Terminations are as follows: (see Figure 3-17)

Cable	A Frame	B Frame
5236606	P.S. 1 TB3	BlA01
5236607	P.S. 1 TB3	Array Thermistor

CAUTION
If these cables are not plugged, the $\mathrm{X}-\mathrm{Y}$ supply will operate without thermistor control (approximately 80 volts) and may damage driver cards even though the over-voltage device takes power down.

3 CABLE INSTALLATION

TABLE 3-4 SIGNAL CABLE TERMINATIONS

Cable Assembly 5235667			Cable Assembly 5235678		
Cable \#.	From	To	Cable \#	From	To
5236466	A8 B20	Cl Y 01, 02	5236487	A8 A14	D U08
5236467	A8 Bl9	C1 Y 03, 04	5236486	A8 A15	D U09
5236468	A8 B18	C1 Y 05, 06	5236485	A8 A17	D U28
5236469	A8 B17	C1 Y 07, 08	5236484	A8 A18	D U29
5236470	A8 Bl6	C1 Y 09, 10	5236483	A8 A19	D U30
5236471	A8 B14	Cl Y 17, 18	5236482	A8 A20	D U31
5236472	A8 Bl3	Cl Y 19, 20	Cable Assembly 5235679		
5236473	A8 B12	C1 Y 21, 22	5236501	A8 A01	C U01
5236474	A8 B10	C1 Y 23, 24	5236499	A8 A02	C U02
5236475	A8 809	C2 Y 05, 06	5236498	A8 A03	C U03
5236476	A8 B08	C2 Y 07, 08	5236497	A8 A04	C U04
5236477	A8 B07	Dl Y 15, 16	5236496	A8 A05	C U05
5236478	A8 B06	D1 Y 19, 20	5236495	A8 A06	C U07
5236479	A8 B05	D2 Y 03, 04	5236494	A8 A07	C U08
5236480	A8 B04	P2 Y 05, 06	5236493	A8 A08	C U45
5236481	A8 B03	E1 Y 25, 26	5236492	A8 A09	C U46
			5236491	A8 A10	C U47
	stall cable		5236490	A8 Al1	C U48
			5236489	A8 A12	C U49
			5236488	A8 A13	C U50

TABLE 3-5 MEMORY CABLES - B FRAME TERMINATIONS

Cable 5235656 (7106)		
Laminar Bus Term. Block		
Wire \#	Color Coding	Position
2,7	Black	1
8	Blue	2
3	Orange	3
4,6	Purple	4
5	Grey	5
6	Purple	6
9	White	7
10	White/Red	8

Cable 5236513 (7107)					
Laminar Bus T. B. 1			Laminar Bus T. B. 2		
Wire \#	Color	Position	Wire \#	Color	Position
11	Black	1	1	Black	1
2	Orange	2	2	Orange	2
13	Orange	2	3	Purple	3
4	Purple	3	18	Grey	4
19	Grey	4	5	Wh/Purple	5
5	Wh/Purple	5	7	Wh/Red	7
14	Wh/Purple	5	12	Wh/Red	8
8	Wh/Red	7	9	Black	9
			10	Wh/Red	10
Sw. and Jack TB					
17	Aqua	1			
20	Aqua	2			

Wires may be labeled by wire no. or terminating position no. Follow the color coding; cable and laminar bus color codings must agree.

3. 6 PDU Cables 5236461 and 5236462

For shipment, these cables are secured to the console table top supports on the A frame. Route the cables under the floor, adjacent to the A Frame tailgate connector panel, and connect to the customer's power source. 3.7 Connectors to Tailgate - Cable 5236457

This cable connects the A frame with the connectors under the console table. Three paddle cards, labeled positions 28,30 and 32 are plugged to the three connectors under the console table. The typewriter cable paddle cards plug to the other side of the connectors. Mate the connections, 28 to 28 , 30 to 30 , and 32 to 32 (see Figure 2-1 page 2-3).

CPU Use Meter - Cable 5237060
The cable is connected and coiled in the D frame. To complete the connections, run the cable across the top of the frames and terminate as follows:

Wire No.	Color	Termination		Location
3	Black/Yellow	TB-2 Pos. 1	Console	
1	Green	Bond Screw	Meter	
2	Yellow	TB Pos. 5	Meter	
2	Black	TB Pos. 6	Meter	
3	Yellow	TB Pos. 7	Meter	
3	Black	TB Pos. 8	Meter	

All cable wires are labeled by terminating position. Replace meter cover and seal with part number 740489 after cable is installed.

Connect 11 wires to corresponding laminar bus $T B$ positions in the D frame. Wire no. 11 is connected to position 10 in the D frame and also position 10 in the C frame. Wires are not labeled, but color coding is as follows:

Wire \#	Color
5,6	Grey
1,2	Orange
$3,4,7,8$,	Black
10,11	Violet
9	Aqua

This cable is a D frame cable. Two yellow wires go to the E frame connector panel and are connected as follows:

Wire No. 22 to E Ul8K

Wire No. 23 to E Ul8M

3.12 Address Interrogation Device Cables

C-3.12.1 Cable 5237278 (for 7106 and 7107).
curt
This is a 5 -wire cable connecting A and C frame. The cable is connected to the Address Stop and Step Mode switches in A frame. All leads are labeled by wire number. The C frame connections are:

Wire No. 1	
Wire No. 2	C1Y13B
Wire No. 3	C1Y13C
Wire No. 4	ClY13D
	C1Y13E

aunt
Cable 5237279 (for 7107 only) and Cable 5237280 (for 7106 only).

These cables connect B and C frames in the 7106 and 7107 . The cables are connected in the B frame for shipment. All leads are labeled by wire number. The C frame connections, identical for both the 7106 and 7107 , are:
Wire No.
4. INTERNAL CABLING - 1414 I/O SYNCHRONIZER
4. 1 Laminar Bus Cable - 730301

This cable connects the Laminar Bus TB3 and 4 with Laminar Bus TB C3 and C4, respectively.
4. 2 Cable 760744

This is a 1414 A Frame Cable. For Emergency Off, Paper Tape Printer and 1009 Unit, four wires of this cable are routed to the C frame to complete the following connections in order to tie-off:
$\left.\begin{array}{ll}\text { A Frame } & \text { C Frame } \\ \left.\begin{array}{ll}\text { CC6W } & 07 \mathrm{L01Q} \\ \text { CC6X } & 07 \mathrm{L01R}\end{array}\right\} \text { 1st tie-off } \\ \text { CC6L } & 07 \mathrm{LL} 4 \mathrm{Q} \\ \text { CC6Sb } & 07 \mathrm{LL4R}\end{array}\right\}$ 2nd tie-off (last 2 wires)

4. 3 Power Cable - 761394

This is a five-wire cable connecting the A frame power supply with TB-1 in the C frame power supply. Connect the cable as follows in the order of wire tie-off:

1st wire	$\ldots--$	Term. \#1
2nd wire	$-\ldots-$	Term. \#2
3rd wire	$-\ldots$	Term. \#3
4th wire	$-\ldots$	Term. \#4
Green wire	---	Term. \#8

4.4 Power Distribution Cable - 761396

This cable connects to the C frame Laminar Bus. Connect the cable as follows in the order of wire tie-off;

1st wire		Term. \#10
2nd wire	-----	Term. \# 9
3rd wire	-----	Term. \# 8
4th wire	----	Term. \# 7
5th wire		Term. \# 6
6th wire	-----	Term. \# 5

4.5 Thermal Sense Cable - 762460

This connects to the Thermal Sense switch connector.
4. 6 Cable 753341

This is a 1414 B frame cable. With respect to Emergency Off, Paper Tape Printer, and 1009 Unit, it performs the same function as cable 760744. The C frame connections are the same.
4.7 Cable 762723

This is a frame C cable. Connect one wire in the A frame as follows:
For 1414 Mod. 4 - TBA-3 Terminal \#l0
For 1414 Mod. 5 - TD Relay N/O B side

4.8 I/O Synchronizer Feature Cables

Frame configurations (different models of the 1414) have different combinations of frames as shown in Figure 4-1. Optional features available also lead to different frame configurations as shown in Figure 3-8 page 3-2l. Cabling instructions for various sets of conditions are indexed in the following table:

Feature	Model	Frames	$\underline{\text { Shown In }}$	On Page
1014 Remote Inquiry	4	A \& C	Table 3-6	3-45
1014 Remote Inquiry	5/6	B \& C	Table 3-7	3-46
1009 Data Trans.	4	A \& C	Table 3-8	3-47
1009 Data Trans.	5/6	B \& C	Table 3-9	3-48
Column Binary	4	A \& C	Table 3-10	3-49
1011 Paper Tape	4	A \& C	Fig. 3-18	3-50
1011 Paper Tape	5/6	B \& C	Fig. 3-19	3-51
Teletype	4, 5, 6	A \& C	Fig. 3-20	3-52

4.9 Use Meter Tamper-proofing - 1414

A. Many connections in the system relating to use meters have been tamper-proofed at the factory. Some connections which are made during installation must also be tamper-proofed. Appendix A explains the use of various tamper-proofing devices. Seal the following components with the device indicated:

Model	Device			Component
			See Appendix A	
$3 \& 4$	362915 Stamp		TB Blower AC	Fig. A-3
$5 \& 6$	362915 Stamp	TB B2	Fig. A-3	
8	362915 Stamp	TB A2	Fig. A-3	
$1,2,7$	362610 Lock	D7 U03, U04, L18	Fig. A-1	
$1,2,7$	362915 Stamp	TB Blower AC	Fig. A-3	

B. Check operation of use meters per instructions in Chapter 5.

TABLE 3-6 1414 (4) CABLING FOR 1014 UNIT

TABLE 3-7 $1414(5,6)$ CABLING FOR 1014 UNIT

CHASSIS 14C1 CABLES		
$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	FROM	TO
762792	14C1C26	CE Panel
762771	14C1A01	14B2F27
762772	14ClB01	14B4B27
	14C1B02	14B4A28
	14 ClCOl	14B4A27
Note	14C1C02	14B4A27
763215	14C1 D26	14C2Row F
Note	14C1D26	14C2 Row G
763214	14C2 Row F	14C7L30
		14C7L31
		14C7L33
		14C7L34
Note	14C2 Row G	14C7L36
		14C7L37
		14C7L39
		14C7L40

CHASSIS 14C6 CABLES		
PART NO.	FROM	TO
762729	14 C 6 C 26	CE Panel
762255	14 C 6 A 01	14 B 2 G 28
762731	14 C 6 B 01	14 B 4 F 27
	14 C 6 B 02	14 B 4 E 28
	14 C 6 C 01	14 B 4 E 27
Note	14 C 6 C 02	14 B 4 E 27
763336	14 C 6 D 26	14 C 2 Row F
Note	14 C 6 D 26	14 C 2 Row G
763214	14 C 2 Row F	14 C 7 L 30
		14 C 7 L 31
		14 C 7 L 33
		14 C 7 L 34
Note	14 C 2 Row	14 C 7 L 36
		14 C 7 L 37
		14 C 7 L 39
		14 C 7 L 40

TABLE 3-8 1414 (4) CABLING FOR 1009 UNIT

CHASSES 14Cl		
PART NO.	FROM	TO
762792	14C1C26	CE Panel
762771	14C1A01	14A2F27
762771	$14 \mathrm{Cl} 1 \mathrm{~A}^{2}$	14A2E28
762772	14C1B01	14 A 4 B 27
	14C1B02	14A4A28
	14C1C01	14A4A27
763344	$14 \mathrm{ClDO1}$	14C7L12
	14C1E01	14C7L14
	14C1E02	14C7L17
	14C1F01	14C7L18
	14C1F02	14C7L20
763345	14 C 7	1009

CHASSIS 14C6		
762729	14C6C26	CE Panel
762255	14C6A01	14A2G28
762255	$14 \mathrm{C6A02}$	14A2E28
762731	14C6B01	14A4F27
	14C6B02	14A4E28
	$14 \mathrm{C6C01}$	14A4E27
763342	14C6D26	14 C 7L2
	14C6E26	14C7L14
	14C6E25	14C7L17
	14C6F26	14C7L18
	$14 \mathrm{C6F} 25$	14 C 7 L 20
763345	$14 \mathrm{C7}$	1009

CHASSIS 14C4		
762728	14C4C26	CE Panel
762771	14 CAO 1	14A2H28
762771	$14 \mathrm{C4A02}$	14A2E28
762730	$14 \mathrm{C4B01}$	$14 \mathrm{~A} \mathrm{~S}^{\text {D }} 27$
	$14 \mathrm{C4B02}$	14A4C28
	14C4C01	14A4C27
763343	14C4D26	14C7L12
	14C4E26	14C7L14
	14C4E25	14C7L17
	14C4F26	14C7L18
	14C4F25	14C7L20
763345	$14 \mathrm{C7}$	1009

TABLE 3-9 $1414(5,6)$ CABLING FOR 1009 UNIT

CHASSIS 14 Cl		
PART NO.	FROM	TO
762792	14C1C26	CE Panel
762771	14C1A01	14B2F27
762771	14C1A02	14B2E28
762772	14C1B01	14B4B27
	14C1B02	14B4A28
	14C1C01	14B4A27
763344	14C1D01	14C7L12
	14ClE01	14C7L14
	14C1E02	14C7L17
	14C1F01	14C7L18
	14C1F02	14C7L20
763345	14C7	1009
CHASSIS 14C6		
762729	14 C 6 C 26	CE Pancl
762255	14C6A01	14B2G28
762255	14C6A02	14B2E28
762731	$14 \mathrm{C6B01}$	14B4F27
	14C6B02	14B4E28
	14C6C01	14B4E27
763342	14C6D26	14C7L12
	14C6E26	14C7L14
	14C6E25	14C7L17
	14C6F26	14C7L18
	14 C 6 F 25	14C7L20
763345	14 C 7	1009
CHASSIS 14C4		
762728	14C4C 26	CE Panel
762771	$14 \mathrm{C4A01}$	14B2H28
762771	$14 \mathrm{C4A02}$	14B2E28
762730	$14 \mathrm{C} 4 \mathrm{B01}$	14B4D27
	$14 \mathrm{C4B02}$	14B4C28
	$14 \mathrm{C4C} 01$	$14 \mathrm{B4C} 27$
763343	14C4D26	14C7L12
	$14 \mathrm{C4E} 26$	14C7L14
	14 C 4 E 25	14C7L17
	$14 \mathrm{C4F} 26$	14C7L18
	14C4F25	14C7L20
763345	14C7	1009

TABLE 3-10 1414 (4) CABLES FOR COLUMN BINARY
(Column Binary available in Mod 4, only)

CHASSIS 14C5 CABLE				
$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	FROM	TO		
		OPTS 1\&4	OPTS 2\& 3	OPTS 5\& 6
761114	$14 \mathrm{C} 5 \mathrm{B01}$	14A2 J27	14A2 J27	14 A 2 J 27
761113	$14 C 5$ B02	14 A 4 B27	14A4 F27	14A4 D27
761115	14C5 B03	14 A 2 F 27	14A2 G28	$14 \mathrm{A2}$ H28
760247	14C5C01	14A4 G26	14A4 G26	14A4 G26
761114	14C5 C02	$14 \mathrm{A4}$ A28	$14 \mathrm{A4}$ E28	14A4 C28
761304	14 C 5 C 03	14 A 8 CE	14 A 8 CE	14 A 8 CE
760247	14C5 D02	14 A 4 H 27	1.4 A 4 H 27	14 A 4 H 27
761113	14 C 5 D 03	14 A 4 H26	14A4 H26	14A4 H26
760248	14A2 K01	14 A 4 A 01	$14 \mathrm{A4}$ A01	$14 \mathrm{A4}$ A01
760247	14C5 D01	$14 \mathrm{A4}$ H28	$14 \mathrm{A4} \mathrm{H28}$	14A4 H28
761304	14 C 5 C 03	14 A 4 A27	14A4 E27	14A4 C27

$\begin{aligned} \text { OPTION } 2 \text { - } & \text { TTY BASIC (CNLY), OR } \\ & \text { TTY BASIC AND TTY SECOND FEATURE INSTALLED. } \\ \text { OPTION } 4 \text { - } & \text { TTY BASIC FEATURE, } \\ & \text { TTY SECOND FEATURE, AND } \\ & \text { TTY THIRD FEATURE INSTALLLED. } \\ \text { OPTION } 5 \text { - } & \text { TTY NOT INSTALLED. }\end{aligned}$

FIGURE 3-18 CABLE 760684 FOR 1414 (4) AND 1011 PAPER TAPE READER

FIGURE 3-19 CABLE 760684 FOR $1414(5,6)$ AND 1011 PAPER TAPE READER

—_ BASIC AT AND T AND W. U. - ELECTROMECHANICAL
= OPTION AT and TAND W. U. - ELECTROMECHANICAL (2ND CHASSIS)

* (NOTE THAT CONNECTIONS ARE TO A FRAME FOR MOD IV, AND TO B FRAME FOR MOD V OR VI. PANEL ETC. DESIGNATIONS ARE IDENTICAL FOR EITHER FRAME.)

FIGURE 3-20 1414 CABLES FOR TELETYPE

1. GENERAL INFORMATION

A. Equipment to be disassembled and shipped from a customer's office to another location must be dismantled and packed with the same care given factory shipments. The information presented here is intended to serve as a guide for the disassembling of equipment and as an aid for installing new equipment.
B. Customer Engineering memorandums and local CE policy concerning conversions and transfer of equipment will supercede any information given here.

2. FIELD CONVERSIONS - PROCESSING UNIT

Conversion of a 7040 to a 7044 processing system requires the complete removal of all frames, A through E, including the console table and typewriter. To speed conversion time, provided space is available, a processing unit to be installed may be assembled and cabled internally off-location while the existing equipment is being disassembled. The processing unit may then be rolled into location as one unit. This, of course, depends upon space and manpower available. Retain the plastic covers from the new units. They can be used on equipment being transferred.
2.1 Disassembly of 7106/07 Processing Unit

The following procedure is a relative sequence, but it can be accomplished by more than one man starting at any point in the procedure:

2. 1 Disassembly of 7106/07 Processing Unit (continued)

A. Disconnect PDU cables 5236461 and 5236462 from customer's power source.
B. Remove all top-covers and doors from both wiring and card sides. This will facilitate cable disassembly.
\&. Disconnect upper ribbon cable assembly, 5235677, per Table 4-1, page 4-4.
2. Disconnect interframe power jumpers 5236561/5236513, $5236606 / 5236607$, and 5236651 per Table 4-1.
\&. Secure top covers in place.
疋. Disconnect cable 5236457. Remove the console table; disassemble and package. See paragraph 2.2 for this procedure.
Q. Wind the PDU cables (Step A) around the table support arms on frame A and secure with tape.
K. Remove and package step and lower end covers.

桼 Disconnect lower ribbon cable assemblies 5235678 and 5235679 per Table 4-1.
X. Disconnect power cable 5235317, completely, and pack in separate carton.
(. Disconnect signal jumpers, 539494, per Table 4-1.
L. Remove external cable connections. Be sure all connectors are plainly and correctly labeled for the new processing unit
2.1 Disassembly of 7106/07 Processing Unit (continued)
M. Remove interframe ground jumpers. Disconnect the jumper between frames A and B at B and leave in frame A.
W. Center and secure roller gates in frames C and D. Secure snap lock with reinforced tape.
Q. Remove wires to EUl8K and M in cable 5230454.
$?$ P. Disconnect use meter cable, 523706́0, per Table 4-1.
区. Loosen all bolts between frames and remove all leveling pads.
R. Remove all mounting bolts.
S. Units may now be rolled off-location and then prepared for shipment per paragraph 2.3.
2.2 Disassembly of Console and Typewriter
2. Refer to Figure 2-1 page 2-3 and remove or disconnect the following parts:

1. Connector Cover 5235146.
2. Plate 5237153.
3. Cable 5236457.
4. Typewriter Cable
5. Bottom Cover (Black)

4 FIELD CONVERSIONS AND TRANSFERS

TABLE 4-1 7106/07 CABLE DISCONNECT CHART

2.2 Disassembly of Console and Typewriter (continued)
B. Remove the typewriter from the table cutout and remove the following typewriter parts:

1. Covers
2. Platen
3. Guide Rollers
4. End Knobs and Platen
C. Pack typewriter and parts into carton.
D. Remove connectors and brackets from under Table top.
E. Remove legs and paper rack.
F. Remove table from support arms and wrap carefully with padded paper.
G. Pack all other parts into cartons; tape secure.
5. 3 Preparation for Shipment - 7106/7107

A shipping material package may be available from the plant; however, existing materials can be used such as tape, cardboard and padded paper.
A. Be sure all cables are coiled back into their respective frames and taped securely.
B. Where cables are stored against back panel pins, use cardboard between the cables and pins for protection.
C. Cover all cable paddle connectors with cloth bags.
D. Replace all covers and be sure the cover clip is used on the top hinge of front and rear covers.
E. Be sure all inner electronic panel doors are fastened securely.
F. Tape up all front and rear doors with reinforced tape.
G. Place plastic covers over frames.

1. GENERAL

This chapter contains instructions for checking and determining the proper operation of the IBM $7040 / 44$ system. The information is arranged in the basic sequence for the various operations from an overall systems standpoint, with special instructions provided for specific units.

2. POWER CHECKS

When all cables have been terminated and clamped, the system input power cables can be connected to the customer's outlets.

Phase Orientation Check

Check the three phase AC power receptacles for correct phase orientation. If a phase meter is unavailable, a scope can be used to check phasing. Connect the Sync lead to phase land adjust the scope for one wave form. Phase 2 should occur 120° later than phase 1 . Phase 3 should occur 240° later than phase 1. Phase orientation can also be checked at Contactor K2l in frame A.
2.2 Preliminary Steps

Power Controls Check

Correct functioning of the operator's station power controls should be checked in accordance with the following descriptions of control operation:

2.3.1 Master Power Connect button

Check that the emergency interlock jumper circuitry is complete. i. e. connectors A, B and C on the power distribution
frame must have jumpers and frame E connector, 14 upper,
must have jumper card inserted.
Depress the Master Connect pushbutton; it should light.
 contactor panels.
D. Determine that the 48 volt supply, and the 24 volt and convenience transformers are energized.

R73 must be energized.

2.3.2 Normal Power On button

Depressing the Normal Power On button must initiate DC power and blower sequence, namely: C, D and E frames, memory standard and special voltages.

2. Power On indicators on the CE panel should light in the following sequence: E D C, B/A

2. 3.2 Normal Power On button (continued)

Depress Normal Power Off (put machine in Master Connect status). Then pull Emergency Power Off button. Activating Emergency Power Off must immediately remove all primary power by dropping main power contactor $\mathrm{K} 21 \%$. Line power must be confined to the following enclosed and labeled components: circuit breaker panelsand primary side of 24 volt transformers.

NOTE
Line power can be confined to the $C B$ panels by turning Master Control switch to OFF.

Reset the EMO switch by opening the console door and manually retracting the leaf spring while depressing the EMO switch.
*Phase orientation can be checked at contactor K2l in Frame A.

(2.3.4 Normal Power Off button

With power available at all frames, depressing the Normal Power Off button must remove power from frames B, C, D and E. All power must be confined to frame A, except for convenience outlets, -48 VDC , and 24 VAC .
A. Depress Normal Power Off button. Normal Power On indicator C will go off.
B. Check that the following relays and contractors open:
R31, 32 Ferro Time
K3
C, D, and E frame power

R33 Power On Start
K5
A/B frame power

R1 Memory Sequence $K 6$ A/B frame power Start
13. Main power contactor, K21, must open, removing all primary power from the system.
C. Emergency Off relays, R7l and R72, must remain picked.
2.4

Power Off Checks
If any over-temperature thermal opens, or if a circuit breaker associated with a DC power supply in any frame, trips, a normal power off must be initiated. The corresponding CB or Thermal indicator on the CE panel must light, indicating the frame where the Thermal or $C B$ is located.

Test for normal power off by momentarily and individually turning a power $C B$ off in each module and check the appropriate
2.5 De Power for Peripheral Equipment

Remote-Local, DC on and DC off swithches are located on the CE Panels of peripheral equipment attached to the main frame. By setting the Remote-Local switch in the REMOTE position, power for the unit is controlled from the console switches; in LOCAL position, DC power is controlled by the DC ON and DC OFF switches on the unit.

The 1622 does not have a Remote-Local switch and is therefore under control of the console switches. If a power or thermal failure occurs, remove the power cable before attempting to investigate the trouble. When the unit has been repaired, the main frame must be given a normal power-off and a normal power-on sequence to bring the 1622 back on line.
3. VOLTAGE CHECKS - FRAMES C, D, E AND 7904 UNIT

Voltage for each level must be set while reading on the Gate Laminar
Bus as indicated in Table 5-1. Power supplies for Frame E are physically located in Frame D. A compromise voltage reading must be used between Frames D and E to allow for voltage drops.

CAUTION

The Line Filter on the 7904 is grounded to the building service equipment or main line ground, and not to machine ground. A grounding current of 5.0 ma may be conducting through the line filter ground. A potential may therefore exist between this main line ground and the machine ground.
4. SINGLE SHOT AND VARIABLE DELAY LINE TIMING

All single shot timings and variable delays shall be set to the values specified on Systems Reference Page 00.00.02.0.

VTABLE 5-1 VOLTAGE REQUIREMENTS, FRAMES C, D, E AND 7904

Frame C and 7904 Power Supply $* * *$	Voltage $* *$	Read at Laminar Bus Location
1	-12 V	Center of LB on Position 9
2	+12 V	Center of Upper Panels l and 2 on LB position 5 on C frame and position 6 on 7904
3	+6 V	Center of Lower Panels 3 and 4 on LB position 2
$4 *$	+12 V	Center of Lower Panels 3 and 4 on LB position 6 on C frame and position 5 on 7904
5	+6 V	Center of Upper Panels 1 and 2 on LB position 1

* EC 703749 removes P.S. 4 on 7904 only.

At this level adjust P.S. 2 for best average reading on TB positions 5 and 6.
** All voltages must be set within 4%.
*** Power supplies for frames D and E are physically located in Frame D. Voltages must be measured and adjusted per table. A compromise in voltage between frames D and E must be used to allow for voltage drop.

5. CONSOLE OPERATION CHECK

The tests described in this section check the reliability of operating controls and indicators on the $7106 / 7107$ main frames. Tests performed at the console check machine function as well as control reliability.

N. Reset

This key should be tested in both Automatic and Manual modes for resetting $S R, A C, M Q$, index registers, accumulator overflow, divide check and I/O check. (See sections 3.00.01 and 4.00.00. A.l for definitions of channel reset). All channels should be reset and the typewriter should carriage return. Core storage should not be affected by this switch. 5.2 Clear

This switch should be active in Automatic Mode only. Test for same function as 'reset" plus setting all core storage locations to zero.

2.3 Automatic

With this switch off (light off), test to see if the computer stops after the completion of the instruction being processed unless a channel is in use. In this case, the computer waits for all channels to be disconnected and then reverts to true manual status. "Single Step", "Multiple Step", "Enter Instruction", "Enter Storage", and "Display Storage" are inactive in Automatic Mode (light on). In Automatic Mode; the CPU should continue to execute instructions until an HPR instruction is executed.
2.4 Start

In Manual Mode, Program Stop, if ON, is turned OFF. In Automatic Mode, resets Master Program Stop and Program Stop causing program continuation at the address specified in the instruction counter.

The Start Key should allow continuation of operation at high speed if the computer has stopped at the program stop, or if the CPU has been returned to automatic after having been in manual status. If switching from automatic to manual status takes place at a program stop, depressing the Start Key should allow action from keys normally active in manual status.

Load
In Manual Mode, this key will allow 30 milliseconds for completion of the instruction being executed and then resets address register, program register, position register, tag register, program stop, parity inhibit, trap inhibit, channel trap control and memory protect.

In Automatic Mode, with a read select instruction in the entry keys addressing a tape unit, a card reader, or an on-line 1401 , the same reset occurs and then the first record is read into core storage with the first word in address 00100. When the channel in use indicator is turned off, the computer will transfer to location 00101 and continue to execute instructions.

In true Manual Mode, test to see if "Single Step" causes the CPU to execute a Single Instruction, Cycle, or Pulse in the respective switch setting. Cycle and Pulse Modes are inactive with the "Interval Timer" on. If tape on a channel is selected tape movement begins and if the RCHX does not follow immediately tape will appear to "run away". If the RCHX follows immediately the CPU should operate in the Automatic mode until the unit is disconnected and then revert to the Manual mode. Any device othe r than tape, if selected, will operate in Manual Mode until execution of the RCHX at which time the CPU will operate in Automatic Mode until the unit is disconnected and then revert to the Manual Mode.

Same as "Single Step" except the operation continues as long as the button is held depressed.

Test for operation in Manual Mode only; during which the computer should execute the instruction in the word bank of the entry keys.

Test for operation in Manual status only. In this mode depressing the "Enter Storage" key should cause the contents of the word bank of the "Entry" keys to be stored in the address specified in the location bank of the "Entry" keys.
5. 10 Display Storage

Test for operation in Manual Mode only. Depressing this key should display, in the Storage Register Indicators, the contents of the address specified by the location bank of the "Entry" keys.
5. 11 Input-Output Interlock Control

Test in Manual Status with this switch on (lighted) for execution of the specified select instruction and remaining in Manual Status. With this switch off (light off), the CPU reverts to Automatic Status for the completion of the I/O instruction. Test for no effect in Automatic mode.

Continuous Enter-Instruction
In Automatic mode, turning this switch on (Light on) and depressing "Start" forces the CPU to continuously execute the instruction in the word - bank of the "Entry" keys.

Test all switches in both Automatic and Manual Modes to see if the SWT instruction works correctly.

Entry Keys
A. Word bank - In manual mode, test the word bank by entering storage with patterns of all zeros, ones, twos, threes, fours, fives, sixes, and sevens while observing the storage register.

5.14 Entry Keys (continued)

Location switches - After clearing memory store the following program in memory:

77772	002000077773	TRA
77773	062100077774	STA
$* 77774$	002100077774	STA
77775	040000077777	ADD
77776	002000077772	TRA
77777	000000000001	
*Address portion of this instruction is changed by program.		

5.15 Storage Clock

Test by turning the switch on and observing stepping of storage register.
A more detailed test is conducted by running the interval timer diagnostic
(4M59).
5.16 Tape Density Switch

Test all switches by running the Tape Diagnostic 4 T 52 referring to the
Service Aids in the write-up.
5.17 Index Registers A, B, C

Using the AXT instruction test each register with patterns of all
zero-ones.

Instruction Counter, Address Register
In Manual Mode, TRA to location 52525 and check for IC and AR indicators containing a one-zero pattern, then transfer to 25252 and check for a zero-one pattern.

L5.19 Instruction Register

In Manual Mode, place the instruction +0525 in the entry keys and
"Enter Instruction". A zero-one pattern should be observed in the Instruction Register Indicators.

Similarly, enter -0252 and observe a one-zero pattern.
Shift Counter
In Manual Mode, enter an I/O select instruction to unit 00125 and check for a zero-one pattern in the shift counter indicators, then reset and enter Unit Address 00252 and check for a one-zero pattern.
5.21 Storage Register, Accumulator, MQ

In Manual Mode enter storage location 00100 with a 252525252525 pattern. Check the Storage Register for a zero/one pattern. CLA and LDQ location 00100 and check the Accumulator and $M Q$ for a zero/one pattern. Repeat the above sequence using a - 125252525252 pattern and check the Storage, Accumulator and $M Q$ regs. for a one/zero pattern. AC bits Q and P remain clear during the tests in this section.

22 Clock Pulses (A0-A5)
In pulse Mode single pulse an instruction and check for turn-on and turn-off of appropriate indicators.
5. 23 Program Stop, Master Stop

In Automatic Mode run some loop containing a $H P R$ instruction.

Both Program Stop and Master Stop should be turned-on when the HPR is processed and turned-off when Start is depressed unless the next instruction is a HPR. In Manual mode, depressing Start turns off Program Stop only.
5. 24 9 Overflow

Stored the following program in memory:

00100	000400000000	K
00101	050000000100	CLA
00102	076700000001	ALS
00103	002000000101	TRA

TRA to 00101, start and while multiple-stepping in pulse mode, observe the turn-on of the above indicator.

In Automatic Mode this indicator should turn-on when POWER is up and turn off with a Normal Power off.

6. MEMORY UNIT CHECKS
 Service Voltages - 7106

Under dynamic conditions, with all service voltages present $(+6,-6,+12,-12)$, check that output voltages are within 2%. These are measured at the Laminar Bus terminal blocks, on top of the frames.
6.2 Standard Power Supplies - 7107

When all standard power supplies are turned on, the $+6,+12$ and -12 VDC supplies must be $\pm 2 \%$ of their nominal value.

The -20 VDC supply must be within $\pm 8 \%$.
6.3 Special Power Supplies - 7107

The X and Y driver supplies and the Z driver supplies must be continuously variable between +42 VDC and $+62 \mathrm{VDC} \pm 2 \%$.

Special supplies must not cycle up until the standard supplies are operating when normal power-on is initiated.
6.4 Marginal Checking Requirements - 7107
A. With any program in process, the memory must operate without error while the $\mathrm{X}-\mathrm{Y}$ and Z driver voltages are individually varied $\pm 5 \%$ from their nominal operating points.

NOTE
The operating point depends upon array temperature.
6.4 Marginal Checking Requirements - 7107 (continued)
B. With any program in process the memory must operate without
error while the -12 m voltage is varied $\pm 3 \mathrm{~V}$ from its nominal value.
6.5. Temperature and Blower Checks - 7107
A. The operating ambient temperature must be between $60^{\circ} \mathrm{F}$ and $90^{\circ} \mathrm{F}$ with relative humidity between 10% and 80%.
B. The Main Blower and the Z Resistor Blower must rotate ccw and cw when viewed from panel 1 and 3 end of the frame.
7. 7904 TAPE INTERFACE FEATURE TESTS
7. 1 Single Shot Timing

Adjust the following single-shots to the indicated time duration.

Name	$\underline{\text { Systems }}$	Nominal Duration	Acceptance Duration
Tape Indicators	06.15 .00 .1	1.0 us	.09-1.1us
Redundancy Checks	06.15 .02 .1	800 ns	$700-900 \mathrm{~ns}$
$7.2 \quad$ Indicator Checks			

A. Execute a Write Select (WRS) instruction using a BCD tape address from the CPU, with computer in Continuous Enter Instruction status. The following indicators should be on:

7. 2 Indicator Checks

A. (continued)

Name
Chan RDS
lst Binary

Systems
06.20.00.1
06.20.27.1

Location
02A1B21-9
02A1B01-9
C. Execute a Sense Select (SEN) instruction, using a binary tape address with computer in Continuous Enter Instruction status. The Cntl Sense indicator (06.40.02.1), at a location 02A1B20-9, should to on.
7.2 Indicator Checks (continued)
D. To test the Char Cntr indicator, place the following instructions in core storage and execute the loop in Manual Mode Multiple step:

LDL	Y
TRA	$*-1$

Each LDL instruction should step the Char Cntr indicator once.
It should step from 000 to 111 and then be set to 000 .

7.3 Program Check

A. Run program 4 CHl without error.
B. With a 1414 Model I or VII attached to the tape interface, run program 9T51 without error.
8. 7904 CORPORATE INTERFACE FEATURE TEST
8. 1 Single Shot Timing

Adjust the Operational Out single shot (logic page 06.40.01.1), to
10 us ± 1 us.
8.2 Indicator Checks
A. Execute a Write Select (WRS) instruction, using a BCD standard interface address from the CPU. With machine in

Continuous Enter Instruction status, the following indicators should be on:

8. 2 Indicator Checks

A. (continued)

Name
Chan WRS
SI Select
Chan Busy
Char Cntr 1
BCD Mode
WC Zero
RD Par Gen

Systems
06.20.00.1
05.40.02.1
06.20.02.1
06.17.00.1
06.20.02.1
06.12.15.1
06.18.01.1

Location
1B22-9
1B26-9
1B16-9
1H11-9
1B19-9
1B12-9
3B04-9

Depressing Reset button should turn off all indicators, except WC Zero, Char Cntr 1 and RD Par Gen.
B. Repeating the procedure in Paragraph A, execute a Read Select (RDS) instruction, using a binary standard interface address. The indicators listed in Paragraph A should go on, except BCD Mode and Chan WRS. The Chan RDS indicator, located at 1B21, should turn on. (Systems 06.20.00.1).
C. Execute a Sense Select (SEN) instruction using a binary standard interface address. Cntl Sense indicator, located at 02A1B20, should go on. (Systems 06.40.02.1).
D. To test the Char Cntr indicator, place the following instructions in core storage and execute the loop in Manual mode, Multiple step:

LDL	Y
TRA	$*-1$

Each LDL instruction will step the Char Cntr indicator once. It should step from 000 to 111 and then be set at 000 .

8. 3 Program Test

A. Run program 4 CHl without error.
B. With a SCI device attached to the channel, run an appropriate diagnostic. For example, run program 4FOl for the 1301 Disk Storage Unit.
9. 7904 DIRECT DATA FEATURE TEST
9.1 Single Shot Timing

Adjust the single shots in accordance with systems page 00.00.02.0.
9.2 Indicator Checks
A. Execute a Write Select (WRS) instruction using a BCD direct data address from the CPU. With computer in Continuous Enter Instruction status, the following indicators should be on:

Name
Chan WRS
DD Select
Chan Busy
BCD Mode WC Zero

Systems	Location
06.20 .00 .1	$1 \mathrm{~B} 22-9$
06.51 .02 .1	1B25-9
06.20 .02 .1	1B16-9
06.20 .02 .1	1B19-9
06.12 .15 .1	1B12-9

Depressing Reset button should turn off all indicators except WC Zero.
B. Using the same procedure as in Paragraph A, execute a Read Select (RDS) instruction, using a binary direct data address. The same indicators, as in Paragraph A, should be on except BCD Mode, and Chan WRS. The Chan RDS indicator, located at 02A1B21, should be on. (Systems 06.20.00.1).

9.3 Program Test

A. Run program 4 CHl without error.
B. With either a DD device or a DD simulator attached to the channel, run an appropriate diagnostic.
10. CE PANEL TESTS
10.1 Remote Start/Reset Switch
A. Plug the Remote Start/Reset plug in the socket located in the Remote Control panel at the operator's station. This should allow remote Start/Reset action but should disable the Enter Instruction, Start, Reset, Continuous Enter Instruction, Load, Multiple Step and Single Step switches at the operator's station.
B. Unplug the Remote Start/Reset cable; plug in Dummy Remote

Plug. Normal control is now returned in the operator's station.
Storage Test Switch
A. Go into manual mode.
B. Put all "ones' in keys.
C. Turn on Storage Test switch.
D. Push Enter Storage key on console.
E. Flashing lights in SR indicates "ones" being put into memory.
F. Reset Computer.
G. Push Display Storage key on console.
10.2 Storage Test Switch (continued)
H. Flashing lights in SR indicates "ones" being read out of memory.
J. Turn off Storage Test switch.
10.3 Stop-On-Storage-Test-Parity Switch
A. Perform steps A through F in section 10. 2.
B. Place a jumper between 01C3E07D and 01C3E07J to tie down one input to the parity tree but not to the SR.
C. Turn on Stop-on-Storage-Test-Parity switch.
D. Push Display Storage key on console.
E. Parity error will halt the read operation and the Parity Check light will come on.
F. Turn off both the switches (Storage Test and Stop-on-StorageTest Parity).
G. Remove Jumper.
11. TAU MANUAL CHECKS
11.1 Check Write Compare Circuit
A. Write a continuous record of all ones from the CE panel in manual off-lines status.

11.1 Check Write Compare Circuit (continued)

B. While writing, remove and replace the following cards one at a time:

14 D6D05	14 D6D13
14D6D07	14 D6D15
14D6D09	14 D6D17
14D6D11	

C. The compare check circuits should turn on the compare check latch and its corresponding indicator on the CE panel.

NOTE
Skew, A-Reg and Error indicators will also come on since cards designated are the final amp hi clip outputs, System Page 90.40.10.1.
11.2 Test R-W VRC Trigger
A. Write any length record of all ones with odd redundancy from the CE panel in manual off-line status.
B. Reset and rewind the selected tape unit.
C. Change the odd redundancy switch to the opposite mode and read the same record, which was just written.
D. The $R-W$ VRC trigger, A-Reg Error trigger, Error trigger and their corresponding indicators should be turned ON.
11.3 Test Gating of Skew Reg B to R-W Reg (When a Reg is Redundant)
A. Follow same procedure as in 11.1.

Test Gating of Skew Reg B to R-W Reg (continued)

B. Same indicators should be turned on as in Write compare circuit test 11.1. Absence of the $R-W$ VRC indicator and presence of A-Reg Error indicator show that the B-Reg was gated to the R-W Reg. (System Page 90.40.20.1).

Test Echo Check Circuit

A. Write a record or record in which a character is all seroes (including the "C" Bit) from the CE panel in manual off-line status with Even Redundancy switch ON.
B. The Echo Error Trigger and indicator should come on when each or any character written is all zeroes.

11.5 Test Skew Error Circuits

A. Write any length record of all ones from the CE panel in manual off-line status.
B. Rewind and turn on the Early Sample switch on the CE panel.
C. Read the same record just written from the CE panel.
D. Place Jumper between ground and pin 6D22A.
E. The Skew Error Trigger and indicator should be turned on.
F. Remove Jumper.

11.6 Test LRCR Error Gating Error Trigger

A. Write a record of any length and composition from the CE panel in manual off-line status.
B. While writing, place a jumper from ground to the following pins (inputs to LRCR) one at a time:

14 D 6 C 20 A	14 D 6 D 25 A
14 D 6 C 20 B	14 D 6 D 25 B
14 D 6 C 20 C	14 D 6 D 25 C
14 D 6 C 20 H	Logic Pages $90.50 .40 .1,41.1$

C. Push Reset button after each test.
D. Only the Error indicator on the CE panel should come on as each test is made.
E. Remove jumper from panel.
12. DIAGNOSTIC PROGRAMS

This section lists the diagnostic programs to be run to assure the quality and reliability of a $7040 / 44$ system. The following sections will list the programs to be run and the requirements for these programs.

Program Requirements
A. The programs must operate error free for the specified time with all power supply voltages at normal.

12.1 Program Requirements (continued)

B. Sense switches will have the following definitions for all diagnostic programs listed:

Sense Switch	Position	Definition
1	Off	Proceed
1	On	Loop in Routine
2	Off	Print or Halt on Error
2	On	Bypass Error Indications
3	Off	Proceed, Bypass error halt
3	On	Halt on Error
4	Off	Long Print on error. Do Normal Prints
4	On	Bypass Long Error Prints. Bypass Normal Prints
5	Off	Proceed
5	On	Gate Service-aid halt or end
6	Off	Next Program
6	On	Loop in Program

12. 2 Diagnostic and Utility Program Index

12.2.1 Diagnostic Programs

4M5l Basic CPU Operations
4M52 Basic CPU Operations
4M53 Basic CPU Operations
4M54 Basic CPU Operations
4M55 Basic CPU Operations
4M56 Extended performance operations and traps
4 M 58 Memory protect option and traps
4M59 Interval Timer option and traps
4M61 Single precision floating point instructions and traps
4M63 Double precision floating point instructions and traps
4S5l 2. 5us - 8K - storage - high order addresses
4S52 2. 5us - 8K - storage - low order addresses
4S53 2. 5us - 16K - storage - high order addresses
4S54 2. 5us - lóK - storage - low order addresses
4S55 2. 5us - 32K - storage - high order addresses
4S56 2. 5us - 32K - storage - low order addresses
4S81 8. Ous - 4K - storage - high order addresses
4S82 8. Ous - 4K - storage - low order addresses

12.2.1 Diagnostic Programs (continued)

4 S 83 8. 0us - 8K - storage - high order addresses
4S84 8. Ous - 8K - storage - low order addresses
4S85 8. 0us - 16K - storage - high order addresses
4 S 86 8. 0us - 16K - storage - low order addresses
4 S 878.0 us - 32 K - storage - high order addresses
4 S 88 8. Ous - 32 K - storage - low order addresses
4TYl Typewriter and common area, channel A
4C5l l401 option 7040/44 master program
4C52 1401 option 1401 slave program
4C55 Direct Data, chan. B-E, 7040/44-7040/44
4CHl Overlap (B-E) channels without I/O usage
4F01 1301-7631 file, channel B-E
4F09 1301 utility program
4F10 1301 surface analysis
4RP2 1402 reader punch on 1414 III, IV (Channel A)
4RP6 1622 reader punch (Channel A)
4PTl 1011 paper tape reader on 1414 IV, V (Channel A)
4MQ1 1014 manual inquiry on 1414 IV, V (Channel A)
4C56 1009 data transmission unit on 1414 IV, V (Channel A)
4T5l Tapes on channels A-E l
4T52 Tapes on channels A-E II
4 T55 Inter-record gap test, 729 tapes - channels A-E
4T57 Tapes compatibility test Channels A-E
4SYl System test for $16 \mathrm{~K} / 32 \mathrm{~K}$ and extended performance
4 SY 3 System test for $4 \mathrm{~K} / 8 \mathrm{~K}$ and no extended performance I
4 SY4 System test for $4 \mathrm{~K} / 8 \mathrm{~K}$ and no extended performance II
4C70 7040/44-7740 Interface Diagnostic
12.2.2 Utility Programs

4DCl Binary card load and control
4 DC 2 BCD card load and control
4DC 3 Dump tape load and control
4UTl Generate dump tape from binary cards

12.3 Program Operating Procedures

Table 5-2 lists the tests performed and reliability runs with Sense and Density switch settings.
12.4 Marginal Checking

Table 5-3 lists, by module, the programs to be run while applying $a \pm 3$ volt margin to that module. Only one module is to be checked at a time, Refer to section 12.2 for program titles. Margins impressed on Module D are simultaneously impressed on Module E.

TABLE 5-2 DIAGNOSTIC PROGRAM OPERATING PROCEDURES

Program	Reliability Run	Sense Switch \#	Test Performed
4 M 56	5 min	6 on	All extended performance instructions
4 M 58	15	64	Memory protect feature
4M59	10	6	Interval timer feature
4 S 55	60	6	$32 \mathrm{~K}, 2.5 \mathrm{usec}$ memory
4S56	60	6	$32 \mathrm{~K}, 2.5 \mathrm{usec}$ memory
4S85	60	6	$16 \mathrm{~K}, 8.0$ usec memory
4S86	60	6	16K, 8.0 usec memory
4S87	60	6	$32 \mathrm{~K}, 8.0 \mathrm{usec}$ memory
4S88	60 min	6	$32 \mathrm{~K}, 8.0$ usec memory
4 TY 1	10 passes	6	Typewriter and channel A common logic
4 CHI	$10 \mathrm{~min} / \mathrm{ch}$.	61	Overlap channels (B-E) w/o the use of I/O devices
4 FOl	10 min	6 on	7631, FCU, 1301 disk file and channel traps
4 Fl 10	2 passes	--	Performs surface analysis of 1301
4PR3	5 passes	6 on	1403 I or 1403 II data transfer and control logic
4RP2	4 passes	6 off	1402 data transfer and control logic

TABLE 5-2 DIAGNOSTIC PROGRAM OPERATING PROCEDURES (continued)

Program	Reliability Run	Sense Switch \#	Test Performed
$4 R P 6$	3 passes	6 on	1622 data transfer and control logic
4 T 51	$20 \mathrm{p} / \mathrm{dr}$		Tape unit logic and information flow-all channels
4 T 52	$*$		Extension of 4 T 5 l . Also contains an option to test the Console Bit Density switches *
4 SYl	$*$		System test - varies per configuration
4 C 70	$2 \mathrm{hrs}$.	Loads JRR5 program into the 7740 and conducts an interface test by running both programs concurrently	

$* 4 T 52$	Reliability run - 20 complete passes on each drive. Density switches - complete 2 passes on each drive per Density switch setting.
4 SYl \quadReliability run - all applicable routines and devices for 8 hours with Sense switch 6 ON. Do not exceed the allowable tape errors.	

TABLE 5-3 DIAGNOSTIC PROGRAMS - MARGINAL CHECK

Program	Applicable Module					Program	Applicable Module					Program	Applicable Module				
	B^{*}	C	D	E	7904		B^{*}	C	D	E	7904		B^{*}	C	D	E	7904
4M51		X				4S54	X					4C56			X	X	
4M52		X				4S55	X					4T51			X	X	X
4M53		X				4S56	X					4T52			X	X	X
4M54		X				4TYl			X	X		4T55			X	X	X
4M55		X				4C55					X	4T57			X	X	X
4M56		X				4 CHl					X	4SY1	X	X	X	X	X
4M58		X				4F01					X	4SY 3	X	X	X	X	X
4M59		X				4F10					X	4SY4	X	X	X	X	X
4M61			X	X		4RP2			X	X							
4M63			X	X		4RP6			X	X							
4S51	X					4PR3			X	X							
4S52	X					4PT1			X	X							
4S53	X					4MQ1			X	X							

* Module B - 7107 only

7904 - Run appropriate program for existing channel devices

13. PERIPHERAL UNIT CHECK-OUT PROCEDURES

13.1 1414 I/O Synchronizer
13.1.1 $1414(3,4,5$, ó, 8) Voltage Checks

Measure all I/O logic supply voltages as shown below; adjust as
required. Repeat for 1414 Channel 2 when applicable.

Power Supply		Voltage		Test Point	
		-6 V	$\pm .24 \mathrm{~V}$	1414	A2D15K
2	+6 V	$\pm .24 \mathrm{~V}$	1414	A2D15L	
3	-12 V	$\pm .48 \mathrm{~V}$	1414 C Frame only		
1402	-12 V	$\pm .48 \mathrm{~V}$	1414	A2D15M	
1402	$+12 \mathrm{VM} \pm .48 \mathrm{~V}$	1414	A2E15N		
1402	-20 V	$\pm .80 \mathrm{~V}$	1414	A2A28Q	
1402	-60 V	$\pm 2.40 \mathrm{~V}$	TBA 4-1		

13.1.2 $1414(1,2,7)$ TAU Voltage Checks

Measure the TAU logic supply voltages as shown below; adjust
as required.

Power Supply	Voltage	Test Point	
1	$+12 \mathrm{VM} \pm .48 \mathrm{~V}$	1414	B4A26N
2	- 6 V +. 24 V	1414	B4A26K
3	-12 V +.48V	1414	B4A26M

13.2 1402 Card Read Punch
13.2.1 Continuity Check, Cable 760741

To avoid the possibility of blowing hammer driver fuses, and/or hammer drive coils, make the following continuity checks before applying power:

1402 DC4-1 and 1414-III TBA4-2. *

1402 DC4-2 and 1414-III TBA4-1. *
13.2.2 Voltage Checks

Check the power supply voltages at the CE service panel.
13.2.3 Test Run

Run test decks to verify correct machine operation. For any required adjustments, refer to the CE Instruction - Reference Manual.
13.3 1403 Printer
13.3.1 Three Phase Motor Rotation
A. When the system is ready, bring up system power.
B. Check carriage motor rotation by observing rotation of forms stacker rolls. Correct rotation would cause paper to be stacked properly.
C. Check direction of rotation of type array drive motor. The motor rotation is correct if the chain moves counter-clockwise when viewed from the top.

* To prevent a false reading through the power supply, disconnect both ends of these wires before checking continuity.

13.3.1 Three Phase Motor Rotation (continued)

D. Check that the hammer unit blower is blowing air normally into the hammer unit. Some air flow will be felt even if the blower is turning in the wrong direction.
E. Turn off system power. Do not use the main line switch on the 1403 (toggle switch inside rear cover). This switch should be used only if system power is off.
F. If all three-phase motors are rotating in the correct direction, proceed to step H. If one motor is rotating incorrectly, go to step G. If all motors are rotating incorrectly, proceed as follows:

1. Turn off the system power.
2. Turn off the power to the wall receptacle.
3. Reverse any two leads at the wall plug.
4. Bring up the system power and recheck the motor direction.
G. . If one of the three-phase motors is turning in a direction of rotation that is incorrect:
5. Check that the system power is off.
6. Interchange any two of the three leads of the motor.
7. Recheck motor rotation.
H. If three-phase motors are turning in the correct direction of rotation, proceed to Unit Check-Out, paragraph 13.3.3.

13.3.2 Continuity Check

Check continuity between TBA4-2 and TBA3-12. This is the -60 v DC return for the printer.

13.3.3 Unit Check-Out

A. Check or correct the operation of all printer interlocks.
B. Give the printer a complete operational test.
C. For any required adjustments, refer to the CE Reference Manual.

13.4 1014 Remote Inquiry Unit

13.4.1 Common Carrier Polarity

As a routine check, or if testing the 1014 reveals trouble, the polarity of the incoming cables (supplied by the common carrier) can be checked with an oscilloscope. This may be necessary to insure that the lines have not been reversed somewhere between the processor location and the Remote Inquiry Unit.
A. Connections to the scope should be floating, with the scope ground connected to the 1014 communications line common.
B. When polling, the request sample pulse appears on the data line as a 20 Ms negative pulse.
C. If terminal has request, it sends an a.c. ripple on the sync line consisting of 8 pulses, the first of which is negative.

13.4.1 Common Carrier Polarity (continued)

As an alternate method, the lines could be continuity checked with an ohmmeter. This would require telephone communication between the two locations, and a man at each end.
A. Disconnect both ends of the four wires.
B. Connect an ohmmeter to the green and yellow wires at one end. Ask that the green and yellow wires be shorted at the other end.
C. Connect the ohmmeter to black and red at one end. Have black and red shorted at the other end.
D. Continuity (3400 ohms, max.) in both instances shows that the lines are o.k. Lack of continuity either or both times indicates reversed wires, or open circuit in the common carrier lines.

13.4.2 Testing Procedure

A. For the off-line reply operation the buffer may be loaded with any type of data to be sent to the station continuously or a record at a time.
B. Select the option switch setting required according to the following list.

Chassis 14Cl - Opt 4
Chassis 14C4-Opt 5
Chassis 14C6-Opt 2

13.4.2 Testing Procedure (continued)
C. With the switch on single operation, depress the start once to clear the buffer.
D. Each successive depression of the start button will load a new character into the output buffer. (These characters are determined by the bit switch settings on the CE Panel). A maximum of eighty (80) characters may be loaded in this manner. The first character loaded must be the station number and the last character must be a group mark.
E. With the switch on Ctin Operation, depress the start button once more with a valid character set on the bit switches. This should initiate the reply to the station and continuously transmit the message previously loaded in the buffer. Depressing the stop button should terminate the operation. Depressing the start button will again repeat the above operation. The off-line request operation may be accomplished in the following manner. (Input data is not transmitted to the 7040/44 system, and therefore a reply is not sent back to the station.)
F. Set the buffer switch to selected, and the option switch according to the following list.

Chassis 14Cl - Opt 1
Chassis 14C4-Opt 6
Chassis 14C6-Opt 3
13.4.2 Testing Procedure (continued)
G. Depressing the start button will allow any request operation to be initiated at the station, including release and cancel. A check should be made to see that there are no buffer errors while making successive requests, releases, cancels, etc. The 'Stop on Error" switch may be used for this check.
H. For a complete check, perform the remote inquiry diagnostic function test number MOlO.

13.5 1009 Data Transmission Unit

The 1009 Data Transmission Unit can be tested in accordance with the following procedure as soon as installation is complete, provided the IBM 1414 I/O Synchronizer is operational.

With the 1414 off-line, there are two modes of operation with the 1009. The jumper card (CBZ-) located in position A25 on the 1009 Adapter Chassis will control the mode of operation. If this jumper card is plugged into position A26 the 1009 must be in a diagnostic loop and will automatically be operating in full duplex (same 1009 receiving and sending to the processor). Location A26 is an unwired position and is plugged only to prevent loss of the jumper card. If the jumper card is plugged into position A25 the 1009 must be in a normal point to point operation. With each of these off line conditions either transmit or receive status may be used depending on the option switch setting of the CE Panel buffer select switch. The option switch settings are as follows:
13.5 1009 Data Transmission Unit (continued)

Chassis Location	Status	Buffer Select Switch Setting
14 Cl	Transmit	Option 1
14 Cl	Receive	Option 4
14 C 4	Transmit	Option 6
14 C 4	Receive	Option 5
14 C 6	Transmit	Option 3
14 C 6		Receive

The transmit test procedure may be set up as follows after 1009-1414 power is brought up:
A. Place the 1009 in a test tie-back condition or if used with a data set place the 1009 in an operate condition with the data set in a data condition.
B. On the 1009 operator's panel the switches should be:

Binary - BCD in Binary
Test - Normal to Normal

Transmit - Receive in Transmit
Speed Select at 1200
C. The CE Panel switches should be:

Data Entry - Off-Send EOTR in Off
Operate - Diag. Test in Diag. Test
Operate - Manual Test in Operate
Stop Select in Normal
Half-Duplex - Full Duplex in Half Duplex

13.5 1009 Data Transmission Unit (continued)

D. The 1414 should be operated off line. Remove the jumper card located in the 1009. Adapter Chassis, position A25 and plug it into A26.
E. To initialize data transmission to the 1009 the following steps must be done in the sequence in which they are given.
F. On the 1414 CE Panel the switches should be:

Check Stop On - Off in Off

Single Oper - Ctin Oper in Single Oper
Off-Line Mode Switch in Selected Buffer
Buffer Select Switch in the Transmit

Option (See Page 5-39)
G. Depress the 1009 start button and wait for an accepted record and ready for data condition to show on the 1009 operator's panel.
H. Depress the 1414 reset and then start. This initializes (fills) the 1414 A and B buffers with lower Y's (LY). Notice that the 1009 has now gone into a data condition.
I. Place the valid bit configuration in the 1414 CE Panel bit switches. (e.g., BA8, bit code for H).
13.5 1009 Data Transmission Unit (continued)
J. Now depress the 1414 start button (do not depress reset). Each depression of the start button loads one character into the A buffer. If the start button is depressed 10 times, buffer positions 00 through 09 will be loaded.

After loading the message (maximum length of message is 158 characters), load two pound (\#) signs (8, 2 and 1 bits) into the buffer. This is the coding for an end of message.
K. Place the single operation - Ctin Operation switch in Ctin Oper.: Turn off all bit switches except the C bit (Blank) and depress the start button. This loads the rest of the 160 positions in the A and B buffers with blanks. Transmission of the loaded message now takes place as can be seen by the alternating data lights on the 1009.
L. To stop the message depress the stop button. To restart it, depress start. If for any reason the 1414 reset button is depressed (after step H) the loaded message is lost and the procedure starting at step H must be done again.
M. Let the transmit test run for approximately five minutes.

The receive test procedure may be set up as follows:
N. Depress the 1414 stop button and end the transmit program.
O. Depress the POR (Power On Reset) button on the 1009 CE Panel, and set the transmit - receive switch on the 1009 operators panel to receive.
13.5 1009 Data Transmission Unit (continued)
P. Set the buffer select switch on the 1414 CE Panel in the receive option
Q. Place a valid bit configuration in the 1414 CE Panel bit switches. (e. g., BA8, bit code for H).
R. Depress the 1009 start button.
S. Depress the 1414 start. The 1009 will now go into a data condition.
T. The lights on the 1009 operator's panel will be on solid as there is no end of message (two pound signs) being sent to the 1009. The 1009 is receiving the character set up on the 1414 CE Panel bit switches and then transmitting them back into the 1414 A and B buffers.
U. The fact that data is flowing into the 1414 buffers may be verified by scoping the serial scan advance trigger (DllA) and the transfer scan advance trigger (DllL) on the 1009 Adapter Chassis. With the 1009 speed select switch set at 1200 these trigger outputs will be going positive and negative at about a 500 ms . rate. These triggers are selecting the 1414 buffer (A or B) to be loaded with the information being received from the 1009.
13.5

1009 Data Transmission Unit (continued)
If there is remote equipment connected to the 1009 the following procedure may be used:
V. Place the jumper card into position A25. The 1009 may then be operated in the normal manner using either the transmit or receive mode, depending on the option settings. The transmit condition is operated the same as the diagnostic mode except that you now transmit to a remote location instead of using a 1009 loop. In the receive condition you need only to select the correct option and depress the start button. When the 1009 is ready to receive, the buffers will start filling.

For further off-line testing CE Manual Data Transmission Unit attachment to the 1414-4 and 5 (R23-2557) may be used.

On line tests should be performed using the diagnostic function test number M009.
13.6 Magnetic Tape Units

Detailed adjustment, and servicing procedures are beyond the scope of this manual. However, certain checks should be made during every tape unit installation. Use the applicable CE reference manual and CE memorandums for details on the following adjustments.
13.6.1 729 Magnetic Tape Units

Check the following items during installation of any new 729 tape unit:
A. Remove the rubber shipping stops on the capstan motor
B. Check the adjustment of the capstan In-Out Sensing switches
C. Check line voltage, DC supply voltages, and prolay neutral drive currents
D. Check High Speed Rewind, Load and Unload operations
E. Scope and adjust, if necessary, the prolay Start-Stop
F. Run Inter-record Gap test diagnostic
G. Check and adjust, if necessary, Preamplifier output, Skew and Asymmetry (Model 5 \& 6)
H. Run tape unit reliability diagnostics
13.6.2 7330 Magnetic Tape Units

Check the following items during installation of any new 7330 tape unit:
A. Check the High Speed Rewind operation
B. Check and adjust, if necessary, Preamplifier output and Skew
C. Run Inter-record Gap test diagnostic
D. Run tape unit reliability diagnostics
14. USE METER TESTING
14.1 1414 I/O Synchronizer
14.1.1 Preparation
A. Record 1414, 1402 and 1403 clock reading to nearest $1 / 500$ hour.
B. Load typical CPU diagnostic. Note that "Meter Check Program" is not satisfactory due to times programmed halts.
14.1.2 On-Line Operation Check, 1414, 1402 and 1403 Clocks
A. Enable 1414 synchronizer
B. Load card equipment.
C. Set 1414 sync to off-line mode.
D. Select Rdr-Pch option and cycle at least once to condition 1402 clock.
E. Select Rdr-Pri option and cycle at least once to condition 1403 clock.
F. Return select switch to normal position.
G. Press restore key on 1403 printer. Verify that 1403 clock does not run.
H. Repeat steps E and F above. Adjust 6-8 line clutch on 1403 to alternate position. Verify that 1403 clock does not run.
I. Repeat steps E and F above.
J. Start CPU program. Verify that 1414,1402 and 1403 clocks run.
K. With program running, place Enable switch in disable position. Verify that 1414,1402 and 1403 clocks continue to run.
L. With program running, run out cards from reader and punch, and manually space printer. Verify that 1402 and 1403 meters do not run.
M. Stop and restart program. Verify that 1414 clock does not run.
N. With program running, place 1414 Sync Enable switch in enable position. Verify that 1414 clock does not run.
O. Stop and restart program. Verify that 1414 clock runs.
14.1.3 On-Line, Off-Line Simultaneous Operation Check, 1414
A. Enable 1414 Sync.
B. Load a CPU diagnostic. Start program.
C. Load and ready reader and punch.
D. Place 1414 sync in off-line mode.
E. Load punch buffer if necessary and then select punch option.
F. Press 1414 CE start and cycle at least once to condition punch.

Verify that 1402 meter does not run.
G. Load reader buffer if necessary and then select reader option.
H. Press 1414 CE start and cycle at least on ce to condition reader. Verify that 1402 meter does not run.
14.1.4 Off-Line Operation Check, 1414 and Card Equipment Clocks
A. Assure "Process Time" signal is not active throughout this test.
B. Enable 1414 synchronizer.
C. Load and ready reader, punch and printer.
D. Place 1414 in off-line mode and select Rdr-Pch option.
E. Press 1414 CE start. Verify that 1414 and 1402 clocks run during extent of this operation.
F. Select Rdr-Prt option.
G. Press 1414 CE start. Verify that 1414,1402 and 1403 clocks run during extent of this operation.
H. Place Enable switch in disable position.
I. Repeat steps C thru F. Verify that no operation can be performed and that the clocks do not run.
14.1.5 Service Aids
A. The CE can scope the unused, unsealed outputs of logic cards to determine cause of trouble.
B. "I/O Process Time" can be scoped in unsealed I/O units to help determine defective circuit.
C. Isolate problem to card or cards and replace same by cutting card seals.
D. If defect cannot be isolated by above methods, the pin seals can be removed and normal trouble-shooting methods applied.
14.2 1414 Tape Adapter Unit
14.2.1 Preparation
A. Record 1414 TAU and tape drive clock readings to nearest $1 / 500$ hour.
B. Load typical CPU diagnostic. Note that "Meter Check Program" is unsatisfactory due to timed programmed halts.
14.2.2 On-Line Operation Check, TAU and Tape Unit Clocks
A. Enable 1414 TAU unit.
B. Load tape drives and move tape away from load point using TAU CE panel to condition tape drive clocks. Return TAU to on-line.
C. Start program. Verify that TAU and tape drive clocks run.
D. With program running, place Enable switch in disable position. Verify that TAU and tape drive clocks continue to run.
E. With program running, rewind all drives to load point. Verify that tape drive clocks do not run at Load Point.
F. Stop and then restart program. Verify that TAU clock does not run.
G. With program running, place TAU Enable switch in enable position. Verify that TAU clock does not run.
H. Stop and restart program. Verify that TAU clock runs.
14.2.3 Service Aids
A. The CE can scope the unused, unsealed outputs of logic cards to determine cause of trouble.
B. "I/O Process Time" can be scoped in unsealed I/O units to help determine circuit.
C. Isolate problem to card or cards and replace same by cutting card seals.
D. If defect cannot be isolated by above methods, the pin seals can be removed and normal trouble-shooting methods applied.
14.3 7106/07 Processing Unit
14.3.1 CPU in Automatic Mode (Not CE Mode)
A. Clear storage. After storage is cleared, neither the CPU nor the CE meter should record.
B. Start. CPU meter should record time. CE meter should not record time.
C. Switch to CE mode, CE meter should record time. CPU meter should not record time.
D. Clear storage, put CPU in Manual mode, not CE mode. Enter a typewriter select (076604001000) in location 00000. Enter HPR (042000000000) in location 00001. Put CPU in Automatic mode and start.

Master Stop TGR, should be on. Channel A should be in use, CPU meter should be recording and CE meter should not be recording.
14.3.2 Channel A Test
A. CPU in Automatic mode, not CE mode. Using scope, note -C for a nominal 400 msec at the following pins when Clear button is depressed.

01E3J09W	or	01 EL 08 B
01E3J09Q	or	01 EL 15 R
01E3J094	or	$01 \mathrm{EL29B}$
01E3J097	or	01 EL 24 B

B. Switch to CE mode. 01 E 3 J 097 or 01 EL 24 B should remain at $+C$ level when Clear button is depressed.
C. Manual keys check. CPU in Pulse mode, not CE mode. A -C level should be observed at 0lE3J097 or 0lEL24B for a nominal 400 msec during the following conditions:

Single Step depressed
Multiple Step depressed (-C for at least 400 msec)
Enter Storage depressed
Display Storage depressed
Enter Instruction depressed

14.3.3 Program Test

The following instructions are to be keyed in starting at location zero:

Location	Instruction		Symbol	
00000	077400	2 XXXXX	AXT	$* *, 2$
0001	077400	177777	AXT	77777,1
0002	200001	100002	TIX	$*, 1,1$
0003	200001	200001	TIX	$*-2,2,1$
0004	042000	000000	HPR	
0005	002000	000000	TRA	0

The constant that goes in (AXT **, 2) location zero is explained as follows:
A. Use (AXT AA, 2) in location zero. Reset, CPU in Automatic mode, not $C E$ mode. Note meter setting. Depress start. Do this five times with a delay of 10 to 30 seconds between starts. At the completion of Five starts the I/O position of the meter should be increased by 1 .
B. Use (AXT BB, 2) to test increment of $1 / 100$ position by 1.
C. Use (AXT CC, 2) to test increment of $1 / 10$ position by 1.
D.

7040

422 666

BB $211 \quad 333$

CC 2532
4216
14.4 7904 Data Channel
A. Put channel use meter in Available mode and CPU use meter in Process mode and reset CPU. Use meters should not record.
B. Clear storage and push Start. Use meters should record.
C. Put CPU in CE mode. Use meters should not record.
14.4 7904 Data Channel (continued)
D. Put CPU in Process mode and then channel in Not Available mode. Use meters should record.
E. Push Automatic button twice. Channel use meter should stop when CPU goes into Manual mode and remain stopped when CPU return to Automatic mode.
F. When channel use meter is recording the process time lines at 02A 3 F 25 C and M should be at +B . When channel use meter is not recording these lines should be at -B . These lines are to the TI and SI interfaces.
G. Execute step A. Test channel for normal operation. (See following example for tapes on channel Bl) Channel use meter should record.

00100	076600 (WRS)	02221
00101	-05400 (RCHB)	00103
00102	002000 (TRA)	00100
00103	000100 (IORD)	01000

H. Put channel use meter in Not Available mode and reset CPU. Channel use meter should not record. The example in step G. should hang the CPU in L-time with the channel not selected.
I. With channel still not available, test for Not Ready condition. (See following example for tapes on channel B1).

00100	076210 (SEN)	02221
00101	$-05400(\mathrm{RCHB})$	00105
00102	006100 (TCOB)	00102
00103	050000 (CLA)	01000
00104	042000 (HPR)	00000
00105	000001 (IORD)	01000

There should be a "l" in the sign bit only of the accumulator. The CPU should not hang on a Sense instruction.
14.5 729 Magnetic Tape Unit
14.5.1 Model 2, 4, 5 and 6 Relay Unit
A. Insure the meter runs under the following three conditions:

1. -N process (M) line active
2. Not at load point
3. Not unloaded

NOTE: Off Line - to simulate -N process line, use $910 \Omega \mathrm{l} / 2 \mathrm{w}$ resistor P / N 528486, from pin A04E to -6 volts.
B. Meter should not run when any one of these three conditions is missing.
C. With meter operating properly, install in the power pac the tamper-proof plug supplied with power pac.
14.5.2 Model A2, A4, 5, 6 NOR Unit
A. Insure the meter runs under the following three conditions:

1. $-N$ process (M) line active
2. Not at load point
3. Not unloaded

NOTE: Off Line - to simulate -N process line, use $100 \Omega 1 / 2 \mathrm{w}$ resistor P/N 213536 from pin Jl8C to -6 volts.
B. Meter should not run when any one of these three conditions is missing.
C. With meter operating properly, install in the power pac the tamper-proof plug supplied with power pac.
14.6 7330 Magnetic Tape Unit

The meter should run whenver the tape unit is not unloaded status and not at load point and the process line is active. Check this by initiating a low speed rewind to load point, forward motion, then a high speed rewind to load point. To simulate process line active, tie 6EOlR to ground.

1. GENERAL INFORMATION

This section explains the use and installation of devices for tamperproofing use meters and accompanying circuits. Tamper-proofing may be required at the time of installation on any of the following:
A. Paddle cards
B. Panel pins
C. Terminal blocks
2. APPLICATION

The following tamper-proofing devices are used for the components indicated:

P/N	Device	Application
362522	Cap	Panel pins
362610	Lock	Paddle card
262915	Paper stamp	Terminal blocks

3. INSTALLATION

3.1 Paddle Cards

Refer to figure A and proceed as follows:
A. Remove card to be locked, and insert card lock into two center positions of card socket. Work from right to left when locking cards.
B. Insert card. Some paddle cards are shorter than standard; they should not be inserted completely to the bottom of socket until step "D".
3.1 Paddle Cards (continued)
C. Pull strap to test locking action.
D. Place pin portion of locking strap into card hole and use soldering iron to form locking bead.

Cards can be removed by cutting off pin portion of locking straps with cutting pliers. To lock card again, use a new lock.
3.2 Panel Wiring Pins

To cover pins, use P/N 362522 (figure A-2) as follows:
A. Prepare area around pin by pushing wires away from pin to be covered.
B. If pin contains a wire wrap connection, no special preparation is required; proceed to step " D ". .
C. If pin contains slip-on terminal, check that wire from this terminal exits from end closest to the panel. If slip-on terminal is on pin without any wire wraps, add wire wrap to pin above slip-on terminal and cut off excess wire.
D. Slip cap over pin, completely covering pin and all connections to the pin.
E. Prepare Ungar soldering iron by installing $231 / 2$ watt heating element, $P / N 461393$ and special soldering iron tip $P / N 461394$.

3.2 Panel Wiring Pins (continued)

CAUTION

Do not use pliers, or the equivalent, on hollow portion of tip when tightening tip on the heating element.
F. When the soldering tip has reached full heat, slip tip over cap as far as possible but do not force against wires under end of tip. Keep tip over the cap approximately 15 to 20 seconds. Remove tip and let the cap cool.
G. When cap is cool, pull it with the tip of fingers to check security. If cap is not secure and you can push cap back into position do so, and reapply heat until cap is secure.
H. To remove a cap, reheat with same soldering tools. While cap is in heated, soft state pull it off with pliers. Use a new cap to reseal pin.
3.3 Terminal Blocks

The paper stamp (P / N 362915) is used to seal terminal block safety shield, screws and clips. Refer to figure A-3 for the use of this device.

FIGURE A-2 TAMPER-PROOFING PANEL WIRING PINS
 cut stamp to fit.

FIGUREA-3 TAMPER-PROOFING TERMINAL BLOCKS

1. SYSTEM CONFIGURATIONS

Four system configurations are possible:

| | $7040--7090$ |
| :--- | :--- | :--- | :--- |
| $704 X$ | $7040--7094$ |
| $7044--7$ | |
| | $7094--7094-2$ |

A copy of the 709 X installation manual should be available for additional ${ }^{*}$ cabling information. cabling information.
2. CABLE INSTALLATION
2.1 Multiplexor Cable 5215679

This cable is stored in the $7106 / 07 \mathrm{C}$ frame. Route the cable and the attached 20 position connectors to the D frame tailgate connector panel and install the connector blocks. Install per labeling in positions L29, 33, 37, $41,45,49$ and U33, 37, 41, 45, 49.

2.2 Cable 52115680

The cable is stored in the D frame with "bullet" terminals attached. Route the twisted pair to the 20 position connectors installed with cable 5215679 and connect per the labeling.

2.3 External Cables

The external cables are 709X system cables. Plug the cables using table B-1, selecting only the key numbers that apply to your particular installation. Table B-1 is a duplicate on systems page 00.00.13.0 (7090, 7094, 7094 Mod. 2).

2.4 Cable Terminators

If the system configuration is "stand-along" with no channels, or if the $7106 / 07$ is on the end of a 7607 Data Channels, terminating resistor assemblies must be plugged into the 7106/07 tailgate connector panel. Terminators are of the type used on 709X channels. One terminator (01DL29) is shipped with the 704 X system. The remaining terminators should be available at the existing 709 X installation or shipped with the 709X. Plug the terminators into the 7106/07 connector panel as follows:

DIRECT COUPLE FEATURE

7607 EQUIVALENT 7040/44 CONNECTIONS				$\begin{aligned} & 7040 / 44 \\ & \text { TERMINATORS } \\ & \text { REQUIRED P/N } \end{aligned}$
$\begin{aligned} & \text { CHAN IN } \\ & \text { CONN } \end{aligned}$	EQV. 7040/44 IN CONN,*	CHAN OUT CONN.	EQV. 7040/44 OUT CONN. *	
E 050	C U09	E 05C	D U33	NOT AVAILABLE
E 17D	C Ul3	E 13D	D U37	532131
E 210	C. U17	E 09D	D U41	532131
E 13F	C U21	E 13E	D U45	NOT AVAILABLE
E 17F	C U25	E 17E	D U49	NOT AVAILABLE
E 21 C	C U29	E 09C	D L33	532133*
E 17C	C L2 1	E 13C	D L49	532132
F 41 F	C U33	F 41 C	D L37	532134
F 33C	C U37	F 33E	D L41	533700
F 37F	C U41	F 37C	D L45	532135
7040/44 ONLY NO 709X EQUIVALENT			D L29	532133
* 7040/44 ONLY REMOVE PIN \#6			D L33	NOT AVAILABLE
* For further signal routing in $7040 / 44$ see $7040 / 44$ ref. page 02.00.90.0				

The above information is also on systems page 00.00 .06 .0 (7090, 7094, 7094 mod. 2).

3. DIAGNOSTIC TESTING

Run the following programs as indicated:
4MP1
Purpose: To check the operation of the Direct Connection feature.
Reliability Run: Run, using all routines, for 10 minutes.
Marginal Check: 7040-1 minute at each voltage limit
Vary voltages on 7106 C and 7106 D
-12M -15V Low -9V High
7090/94-1 minute at each voltage limit Vary voltages on 7109, 7108 or 7110,7302 and 7606 simultaneously

+6 M	5 V Low	7 V High
-12 M	-13 Low	-11 V High

4SY2
Purpose: To system test the 7040/44 with D. C. feature. Reliability Run: Run all applicable routines and devices for 15 minutes with sense switch 6 on. Do not exceed the allowable tape errors.

Marginal Check: 7040-1 minute at each voltage limit Vary voltages on 7106 C and 7106 D -12M -15V Low -9V High

$$
\begin{array}{rl}
7090 / 94-1 \text { minute at each voltage limit } \\
\text { Vary voltages on } 7109,7108 \text {, or } 7110 \\
7302 \text { and } 7606 \text { simultaneously } \\
+6 \mathrm{M} & 5 \mathrm{~V} \text { Low } \\
-12 \mathrm{M} & -13 \text { Low }
\end{array}
$$

49C4
Purpose: Diagnostic Control Program used when running 7090/94/94-2 diagnostic programs, and 7040/44 is required for maintenance control.

TABLE B-1 EXTERNAL CABLE ROUTING- DIRECT COUPLE

$\left\lvert\, \begin{aligned} & \text { CABLE } \\ & \text { GROUP } \end{aligned}\right.$	$\begin{aligned} & \text { KEY } \\ & \text { NO. } \end{aligned}$	NAME द FRAME NO.		FROM		TO		Y	z	CABLE PART NO.
				$\begin{array}{\|c} \text { FRAME } \\ \xi \text { GATE } \end{array}$	CABLE	$\begin{aligned} & \text { FRAME } \\ & \xi G A T E \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { CABLE } \\ & \text { CONN } \end{aligned}\right.$			
		FROM	TO							
A62	62	7606	$7106 \mathrm{~N}^{\prime}$	O3E	$29 F$	OIC	009	60	24	587314
		1	7106 N	O3E	29G					1
	$62 a$		$7106 N^{\prime}$	O3E	33F	OIC	U13	62	24	
			7106 N	O3E	33G					
	62 b		$7106 \mathrm{~N}^{\prime}$	O3E	37F	OIC	417	64	24	
			7106 N	O3E	37G					
	62 c		$7106 N^{\prime}$	O3F	210	OIC	U21	22	24	
			7106 N	O3F	21 E					
	62d		$7106 N^{\prime}$	O3F	25D	OIC	$\cup 25$	24	24	
			7106 N	O3F	25E					
	$62 e$		$7106 \mathrm{~N}^{\prime}$	O3F	290	OIC	029	26	24	
			7106 N	O3F	2 F					
	$62+$		7106 N	O3F	33D	OIC	L21	28	24	
			7106 N	03F	33E					
	629		$7106 N^{\prime}$	03F	37D	OIC	U33	30	24	
			7106 N	O3F	37F					
	62h		$7106 N^{1}$	O3F	45D	OIC	U41	32	24	1
			7106 N	03F	$41 F$					587314
A63	63	1	7106 N	O3F	410	OIC	U37	32	24	531641
		7606	7106 N	O3F	4 IE					
A66	66	7606 A	7106	03 F	53D	OIC	L17	38	24	587314
	$66 a$, B	I	1	53 E	T	1	1	T	1
		C			53 F					
	66 c	W D			53G					
	66d	-			490					
	66 e	$2 \cdot \frac{F}{F}$			49E					
	66_{f}	$\sqrt{6}$	1	1	49F	1	1	\downarrow	1	1
	669	7606H	7106	O3F	49G	OIC	L17	38	24	587314
A67	67	7607	7106	O6E	05C	OIC	U09	48	24	1
	67 a	1	1	O6E	O9C	OLC	$\cup 29$	50	T	
	67 b			O6E	O9D	OIC	417	50		
	67 c			O6E	$13 C$	OIC	L21	52		
	67 d			O6E	13D	OIC	U13	52		
	$67 e$			06 E	13E	OLC	U21	52		
	67_{f}			O6E	17 E	OLC	425	54		
	678			06 F	$37 C$	OIC	441	30		γ
	67h	1	\downarrow	06 F	41 C	OLC	$\cup 33$	32	1	587314
A68	68	7607	7106	O6F	33 E	OIC	$U 37$	28	24	531641

(CONTINUED)

TABLE B-1 EXTERNAL CABLE ROUTING - DIRECT COUPLE (COUNTINUED)

$\begin{aligned} & \text { CABLE } \\ & \text { GROUP } \end{aligned}$	$\begin{aligned} & \text { KEY } \\ & \text { NO. } \end{aligned}$	NAME द FRAME NO.		FROM		TO*		Y	z	CABLE PART NO.
				$\begin{aligned} & \text { FRAME } \\ & \text { G GATE } \end{aligned}$	$\left\|\begin{array}{l} \text { CABLE } \\ \text { CONN } \end{array}\right\|$	FRAME ξ GATE	$\begin{aligned} & \text { CABLE } \\ & \text { CONN } \end{aligned}$			
		FROM	TO							
A69	69	7106	7607	OID	U33	O6E	O5D	24	48	587314
	$69 a$	4	1	OID	$L 33$	O6E	2.1C	1	56	T
	69 b			OID	$\cup 41$	O6E	21D		56	
	69 c			OID	$\llcorner 49$	O6E	17C		54	
	69d			OID	$\cup 37$	O6E	17D		54	
	69 e			OID	$\cup 45$	O6E	13 F		52	
	69 f			OID	$\cup 49$	O6E	17F		54	
	698			OID	$\llcorner 45$	O6F	37F		30	1
	$69 n$	1	1	OID	L37	O6F	41F	\%	32	587314
A70	70	7106	7607	OID	L41	O6F	33 C	24	28	531641
A71	71	7106	7909	OID	$L 37$	05A	L09	24	24	587314
	$71 a$	1	1	OID	$L 45$	1	L21	1	1	1
	71 b			OID	$L 33$		$L 25$			
	71 c			OID	$\cup 45$		L29			
	710			OID	$\cup 49$		$\llcorner 33$			
	$71 e$			OID	$\cup 41$		L37			
	71 f			OID	$\cup 37$		L41			
	718			OID	L49		$\llcorner 45$			$\underline{1}$
	71 h	ψ	1	OID	$\cup 33$	1	L49	1	\pm	587314
A72	72	7106	7909	O1D	$\cup 41$	O5A	L13	24	24	531641
A 73	73	7909	7106	O5A	L09	OIC	433	24	24	587314
	$73 a$	1	1	1	U21	01 C	441	1	1	1
	73 b				U25	OIC	U29			
	73 c				U29	O1C	$\cup 21$			
	73d				$\cup 33$	OIC	$\cup 25$			
	73 e				$\cup 37$	O1C	$\cup 17$			
	73f				$\cup 41$	OIC	U13			
	738				U45	OIC	L21			1
	73n	1	1	1	U49	OIC	U09	1	1	587314
A 75	75	7909	7106	O5A	$\cup 13$	OIC	U37	24	24	531641
A74	74	7109	7106	O2E	290	015	L25	60	24	587314
A76	76	7618	7106	EMERGENCY		OFF	INTLK	24	24	381492

[^0]: * Connections vary; see page 3-17

[^1]: * See page 3-17 for connections

