704 # electronic data-processing machine manual of operation # MINOR REVISION This edition, Form 24-6661-2, is a minor revision of the preceding edition but does not obsolete Form 24-6661-1. Principal changes in this edition are: | | 3 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1 | |--------------------|--| | PAGE | subject | | | Addenda of 24-6661-1 incorporated into text | | 34 | Addition to specification for simultaneous tape writing | | 6, 7, 10 | Reference to new 32,768-word memory | | 19 | Change in specification of ACL operation | | 22, 26, 29, 92 | Change in speed of UFA and SXD operation | | 27, 29, 32, 36, 91 | New ETT operation | | 32, 36 | Physical end of tape | | 34 | New specification for incomplete words on tape | | 5 <i>7</i> | Additional information on 716 timing | | 63 | Spacing on 716 | | 66 | Additional information on CRT recording unit | | 84, 87 | Octal-decimal integer conversion table extended to five octal digits | Copyright 1954, 1955 by International Business Machines Corporation 590 Madison Avenue, New York 22, N. Y. Printed in U. S. A. Form 24-6661-2 # CONTENTS | | Page | | Page | |--|----------|--|------| | Introduction | 5 | COMPONENTS | | | Storage and Input-Output Units | 6 | Magnetic Tape Units | 30 | | Access Time | 6 | Magnetic Drums | | | Address System | 6 | Punched Cards | | | Magnetic Core Storage | 6 | Card Reader | | | Magnetic Drum Storage | 6 | Card Punch (Recorder) Type 721 | | | Magnetic Tapes | 6 | Printer, Type 716 | | | Flow of Information | <i>7</i> | Cathode Ray Tube Output Recorder | | | Words | 7 | | 0,5 | | Instructions | <i>7</i> | PERIPHERAL EQUIPMENT | | | Numbers | 8 | CARD-TO-TAPE CONVERTER | 68 | | Central Processing Unit | 9 | Tape-to-Card Converter | 69 | | Storage Register (SR) | 9 | Tape-Controlled Printer | | | Arithmetic Element | 9 | | | | Control Element | 10 | SYMBOLIC PROGRAMMING | | | Special Indicators and Sense Devices | 11 | N-Way Branch of Control | 73 | | Instruction Types | 12 | Normalizing an Unnormalized Floating-Point | | | Type A Instructions | 12 | Number | | | Type B Instructions | 12 | Floating a Fixed-Point Number | | | Manual Operation | | Fixing a Floating-Point Number | | | Panel Lights | 13 | Double-Precision Floating-Point Division | | | Panel Keys and Switches | | Drum Copy Loop | | | Central Processing Diagram | | Example of Loop Writing | | | Instructions | 17 | Subroutines | 77 | | Fixed-Point Arithmetic Operations | | APPENDIX | | | Logical Operations | | | | | Shifting Operations | | A. Binary and Octal Number Systems | | | Floating-Point Arithmetic Operations | | B. Table of Powers of 2 | | | Determination of Overflow and Underflow. | | C. Octal-Decimal Integer Conversion Table | | | Control Operations | 23 | D. Octal-Decimal Fraction Conversion Table | | | Indexing Operations | | E. Operations by Alphabetic Code | 91 | | Input-Output Operations | 26 | INDEX | | | Instruction Timing | 28 | Listing | 93 | # IBM 704 ELECTRONIC DATA-PROCESSING MACHINES # 704 ELECTRONIC DATA-PROCESSING MACHINE THE IBM 704 Electronic Data-Processing Machine is a large-scale, high-speed electronic calculator controlled by an internally stored program with instructions of the single address type. This machine is designed for higher speeds and larger capacities required by problems of increasing complexity and size which confront business, industry, government and science. These problems include engineering development, scientific research, production scheduling and control, econometrics, logistics, procurement and supply, and many others. In order to achieve maximum versatility, every function of the machine is under control of the stored program. This versatility allows the machine to execute instructions at the rate of about 40,000 per second on most problems. Also, the functions of getting data in and out of the calculator are controlled by the stored program, and hence, under the complete control of the operator. The great advantage of this system lies in the fact that a customer may build up a library of programs which will perform his special applications at peak machine efficiency. To achieve greater computing efficiency, the 704 works internally in the binary number system. The input and output, however, may be accomplished directly on standard IBM cards in the familiar decimal number system by programming which does not interfere with maximum reading, punching, and printing speeds. Or the information on cards may be put on a tape on peripheral equipment and the tape will then be the primary input. Similarly, the results of a computation may be put on a tape and, at some later time, punched on cards or printed by peripheral equipment. The internal high-speed storage on the 704 is magnetic core storage. When the amount of storage available in magnetic core storage is not large enough, magnetic drums are used to store and supply large blocks of information for ready access at frequent intervals. When the amount of storage needed is in excess of the capacities of both core storage and magnetic drums, then magnetic tapes are used. Also, information may be stored on tapes and the tapes may then be removed from the calculator. In this way, large amounts of information can be filed for future reference in a very compact and convenient form. Magnetic tape is a storage and input-output medium that allows rapid reading and writing and can be reused many times. The stored programs may be written and introduced into the calculator in many ways. Usually the instructions are key punched on cards in their original form and read into the machine. If the program is to be preserved for future use, it can be punched on cards in the binary number system for compactness or recorded on tape and filed away. To prepare the machine for calculation the appropriate magnetic tapes are inserted in the tape units, cards are placed in the punch hopper, if necessary, and the cards containing the instructions and data of the problem are placed in the hopper of the card reader. By pressing one key the calculator may be made to store the program and data of the problem and start computing. From then on operation of the calculator is fully automatic, with all the components being under the complete control of the program, although it is possible for the operator to interrupt the calculation manually at any time. All of the real work is done in the central processing unit; that is, all additions, subtractions, multiplications, etc. are done in the special registers of the central processing unit. In addition to standard arithmetic, the 704 has instructions which will perform logical arithmetic for increased flexibility in doing complex problems. Also in the central processing unit are three index registers for automatic counting and effective address modification. An important feature on the 704 is a complete set of instructions which will perform floating-point arithmetic. This manual includes a complete description of floating-point numbers and the special floating-point instructions (such as floating add, subtract, multiply, divide or halt, and divide or proceed) needed to manipulate data in this form. # STORAGE AND INPUT-OUTPUT UNITS ### Access Time The fundamental machine cycle of the 704 is 12 microseconds. One cycle is the core storage access time, that is, the time required by the central processing unit to transmit or receive a word of information to or from core storage. The time required to transmit information between core storage and any of the input-output units is given in the description of the unit. ## Address System Individual locations (or registers) in magnetic core storage, together with magnetic drums, magnetic tapes, and all input-output units are identified by a system of numerical addresses. By means of a number contained in the *address* part of an instruction, it is possible to refer to the information contained in any register in magnetic core storage or any component of the machine. # Magnetic Core Storage Information is stored in the primary storage unit by the use of magnetic cores. Each core is a ring of ferromagnetic material. The cores can retain information indefinitely, and recall it in a few millionths of a second. When a wire is inserted through the hollow center of a core, a current passed along the wire sets up a magnetic field around the wire. This magnetizes the core. When the current is removed, the core remains magnetized. If the current is sent along the wire in the opposite direction, the magnetic field set up around the wire is reversed. If the current is again removed, the core will again remain magnetized but its magnetic state will be opposite to that which remained after the first current was removed (Figure 1). If the first magnetic state can be called positive, the second can be called negative. The positive state can be used to represent a 1; the negative, zero. A group of 36 cores constitutes one register in storage. Magnetic core storage units are available with capacities of either 4,096 or 32,768 core storage registers; or two magnetic core storage units, each with a capacity of 4,096 core storage registers, may be used. Thus, magnetic core storage units are available to give the calculator a capacity of 4,096, 8,192 or 32,768 core storage registers. FIGURE 1 The principal advantage of magnetic core storage over other types is the very small time necessary to extract information from any given location and send it to the central processing unit. Also the program has random access to any core storage location. Information is not retained when the power is off. # Magnetic Drum Storage Additional storage capacity is provided by eight magnetic drums in two drum units. These drums are rotating cylinders surfaced with a material that can be magnetized locally.
Binary digits are stored on a drum through the presence or absence of small magnetized areas at cerain locations on the surface of the drum. Each drum has a storage capacity of 2048 words. The location of a word on a drum is identified by a system of addresses analogous to the system used for core storage. Any part of the information on a drum can be selectively altered at any time. Because access to individual words on a drum is slow in relation to core storage access, it is more efficient to use the drums for storing large blocks of information. After the first word of such a block has been located, the remaining words are transmitted at the rate of 10,000 words per second. Magnetic drums will retain information when the power is turned off. ### Magnetic Tapes For greater internal working storage as well as their input-output function, ten magnetic tape units are available on the 704. Each unit contains one reel of tape which may be 2400 feet long. The tape itself is a plastic, oxide-coated band one-half inch wide. Binary information is recorded on a tape by means of magnetized spots. A block of words recorded consecutively on a tape is called a record. The amount of information contained on each tape depends on the lengths of the individual records since there is a certain amount of space between each record to allow for starting and stopping the tape. It is possible to store as many as 900,000 words on each tape. After the tape is in motion, information can be transmitted at the rate of 2500 words per second. ### Flow of Information The magnetic core storage is always connected to the central processing unit; also, it is the site of the stored program which controls the entire calculator. The auxiliary storage media and the input-output devices, on the other hand, are normally disconnected; they become connected only by the execution of certain stored program instructions. The contents of these units may control the calculator only after being copied into core storage. Thus, information flows between input-output components and magnetic core storage through the central processing unit (Figure 2). ### **WORDS** IN THE 704 the word, or basic unit of information, consists of 36 binary digits (36 bits). Words may be stored in 4,096 distinct word locations in each of the smaller magnetic core storage units, in 32,768 distinct word locations in the larger magnetic core storage unit, on magnetic drums (8,192 words per drum unit), on magnetic tapes (33½ words per inch of tape), or on punched cards (24 words per card). A word may be an instruction, a fixed-point num- ber, a floating-point number, or any pattern of 36 bits desired by the programmer for any reason. The 36 positions of a word are shown schematically in Figure 3. S refers to the sign position, 1 refers to bit position 1, 2 refers to bit position 2, and so on. When a word is interpreted as numerical data, the zero position acts as the sign (position S in the diagram) of the word. If the sign position contains a 0, the word is positive; if it contains a 1, the word is negative. When a logical operation is performed on a word, the word is interpreted as a 36-bit signless number. As an algebraic (signed) binary number, a word can represent all ten-digit algebraic decimal numbers, and eleven-digit decimal numbers which are less than 34,359,738,368. Three binary digits are exactly equal to one octal digit, and, therefore, a signless word consists of twelve octal digits. When alphabetic or alphamerical information is being processed with the binary-coded decimal representation shown in Table III, page 35, a word may contain six characters. ### Instructions The two principal classes of instructions are referred to as Types A and B. Figure 4 shows the form FIGURE 2 ### TYPE A INSTRUCTION of a Type A instruction. Type A instructions use two 15-bit fields (decrement and address) containing numbers in the octal range 00000 to 77777. The prefix contains the operation part while the contents of the tag field select the index register used by the instruction. Positions 1 and 2 of Type A instructions are not both zero. Bits 21-35 are called the *address* part of an instruction because their principal function is to indicate the storage address of the operand used by the instruction. Bits 3-17 are called the *decrement* part of an instruction because they may represent a number subtracted from the contents of an index register. Figure 5 shows the form of a Type B instruction. Positions S, $1, 2, \ldots 11$, contain the operation part of Type B instructions, with the exception of the sensetype instructions. These are defined by the code ± 0760 , and the address part, since they do not refer to a location in storage. Positions 1 and 2 of all Type B instructions are both zero. # **Numbers** Numbers are often referred to as data. Fixed Point. Fixed-point numbers have a sign bit and a magnitude of 35 bits, as illustrated in Figure 6. (Example: The octal fixed-point number + 001367457632 appears in storage as 0 00 000 001 011 110 111 100 101 111 110 011 010.) Theoretically, assume the binary point to be to the right of position 35. However, by proper scale-factoring, the binary point may be placed anywhere in the TYPE B INSTRUCTION (not sense-type) number. For example, 0 00 000 ... 000 010 is equivalent to $1 \times 2^{+1}$. Floating Point. A floating-point decimal number X may be expressed as a signed proper fraction N times some integral power of 10, or $N \times 10^n$. In the normalized case, the power of ten is chosen so that the decimal point is positioned to the left of the most significant digit of N. Examples: | 土 | \boldsymbol{X} | = | 土 | N | \times | $10^{\pm n}$ | |---|------------------|---|---|-----|----------|------------------| | | .010 | = | | .10 | X | 10-1 | | + | .140 | = | + | .14 | \times | 10^{0} | | + | 4.600 | = | + | .46 | \times | 10 ⁺¹ | | | 88.000 | = | | .88 | \times | 10^{+2} | Similarly, a floating-point binary number X may be expressed as a signed proper fraction B times 2^b where b is an integer. In the normalized case the binary point is positioned to the left of the most significant digit of B. Examples: | 土 | \boldsymbol{X} | = | 土 | В | \times | 2 [±] | |---|------------------|---|---|------|----------|-----------------| | _ | .001 | = | | .100 | × | 2-2 | | + | .100 | = | + | .100 | \times | 20 | | | 1.100 | = | _ | .110 | \times | 2 ⁺¹ | | + | 110.000 | = | + | .110 | \times | 2 ⁺³ | In the 704, a floating-point binary number is stored in a register as shown in Figure 7. - 1. The magnitude of B is in bit positions 9-35. A floating-point binary number having a 1 in position 9 is said to be normalized, (i.e., $1/2 \le |B| < 1$). - 2. The sign of B is in the S position of the word. - 3. Since the sign bit indicates the algebraic sign of the fraction and since signed exponents are desirable, the characteristic, C, of the number, instead of the exponent, is stored in positions 1-8. The characteristic of the fraction is formed FIGURE 7 by adding +128 to the exponent. Thus, the range of the exponent is $-128 \le b \le 127$, while the range of the characteristic is $0 \le C \le 255$. (Examples: An exponent of -32 would be represented by a characteristic of -32 + 128 = +96. An exponent of +100 would be represented by a characteristic of +100 + 128 = +228). ### CENTRAL PROCESSING UNIT THE CENTRAL processing unit accomplishes all arithmetic and control functions. For any given instruction, the time used by the central processing unit to interpret the operation part of the instruction is called the *interpretation* time. The time required to execute an instruction is called the execution time. There is some time-sharing between consecutive intructions; that is, while one instruction is being executed, the next instruction is being interpreted, but this rarely concerns the programmer. # Storage Register (SR) One special register, which will be referred to as the SR, is used for both arithmetic and control functions. Its operation is entirely automatic and will rarely concern the programmer. The SR has a capacity of 36 bits (one word) and serves as a buffer between core storage and the central processing unit. Some of the interpretation of an instruction is performed in the SR. It is also used in the execution of floating-point instructions. ### Arithmetic Element Accumulator (AC). The accumulator is a register with a capacity of 37 bits and a sign. See Figure 8. Nearly every arithmetic operation involves the accumulator. In some operations (for instance, addition, shifting left) it is possible that the contents of the accumulator will overflow positions 1-35. When an overflow occurs, with the exception of overflow caused by the ACL instruction, the AC OVERFLOW indicator is turned on. Certain instructions permit the program to sense the condition of the overflow indicator while the program is being performed. The programmer may preserve some of the overflow information if he wishes. For this purpose, two extra bit positions, or overflow positions, are provided. These are designated the P and Q positions. When two numbers having different signs but the same magnitude are added algebraically in the AC, it is important to know if the result is +0 or -0, since +0 is considered larger than -0. In this case, the sign of the result is identical to the sign of the number in the AC before the addition took place. Examples: $$+6 - (+6) = +0$$. $-6 + (+6) = -0$. Multiplier-Quotient Register (MQ). The MQ is a register with a capacity of 35 bits plus sign. It has five major uses: - During the execution of every CPY instruction, the MQ is used as a buffer between core storage and any of the other storage media or inputouput devices. - 2. The multiplier must be placed in the MQ before the execution of a multiplication instruction. - 3. After a division instruction is executed, the quotient appears in the MQ (the remainder
appears in the AC). In fixed point division, the MQ contains the least significant half of the dividend. - 4. After a multiplication instruction is executed, the MQ contains the less significant half of the product. In this connection, the MQ may be regarded as the right-hand extension of the AC; see Figure 9. - 5. The least significant 35 bits of the results of FAD, UFA, FSB, and UFS instructions are in the MO. ### Control Element Instruction Location Counter. This register, with a capacity of 12, 13, or 15 bits (for 4,096, 8,192, or 32,768 words of core storage), determines the location in core storage from which the central processing unit takes its next instruction. After each instruction has been executed, the contents of the instruction location counter are changed. After most instructions, the contents are increased by 1, so that the calculator will go to the next sequential location in storage for its next instruction. However, during the execution of a skip type of instruction, the contents may be increased by 1, 2, or 3, and during the execution of a transfer type, the contents may be changed to any number in the address range. When the instruction location counter contains the largest possible location in storage (all 1's), then the next sequential instruction is the lowest possible (all 0's). When operating the 704 and a stop occurs, it is necessary to know the instruction to which the instruction location counter is referring. In all cases except halt and transfer, the instruction location counter contains an address one higher than the address of the last instruction executed. (The last instruction is also the instruction appearing in the instruction register.) In the case of an HTR instruction, the calculator stops with the address of the HTR in the instruction location counter. Instruction Register. When the central processing unit is ready to accept another instruction, the word in the core storage location specified by the instruction location counter is brought into the sr. In the sr, positions 1 and 2 are tested to determine whether the instruction is Type A or Type B. Depending upon the outcome, the 18 bit positions of the instruction register are filled with the required portions of the instruction word for further interpretation and execution. The instruction register then contains the operation part of the instruction being executed, while the rest of the instruction, i.e., address, tag, and decrement parts, are interpreted in the sr. With Type A instructions, positions S, 8, 9 of the instruction register contain the contents of positions S, 1, 2 of the instruction. The prefix is the entire operation part of Type A instructions. The remaining positions of the instruction register contain zeros. With Type B instructions, positions S, 1-9 of the instruction register contain the contents of positions S, 3-11 of the instruction. The remaining positions of the instruction register contain ones with the exception of input-output, shifting and sense instructions. The contents of positions 28-35 of these instructions are placed in positions 10-17 of the instruction register where they are interpreted as part of the operation part of the instruction. Index Registers. There are three registers, each with a capacity of 12, 13, or 15 bits (for 4,096, 8,192, or 32,768 words of core storage), called index registers A, B, and C. These registers make possible the automatic counting and address modification features of the 704. With respect to the index registers, the 704 instructions fall into two classes, non-indexable and indexable. The non-indexable instructions are the five Type A instructions TIX, TNX, TXH, TXL, TXI and seven of the Type B instructions, namely, TSX, LXA, LXD, SXD, PXD, PAX, and PDX. (Notice that these are the only instructions with an X in the operation code.) Instructions of this class are used to test and manipulate the contents of the index register specified in their tag field. All other instructions are indexable instructions in their normal form. They are recognizable by the fact that position 8 or 9, or both, contain a zero. If an indexable instruction specifies an index register (that is, one of the three bits in its tag field is a 1), it is executed as if its address field had contained its stated address minus the contents of the specified index register. Suppose, for example, that index register B contains 01178 and that the instruction CLA B 21178, contained in location 1000, is executed. After the execution, the accumulator will contain the contents of core storage location 20008. However, the contents of location 1000 are still CLA B 21178. This is called effective address modification; that is, the address of the instruction is modified in the control unit for execution purposes but is unaltered in storage. If an instruction specifies no index register (all three bits in its tag field are zeros), it is executed as if the index registers did not exist. Thus CLA 21178 will place the contents of core storage location 21178 in the accumulator, regardless of the contents of the index registers. Note that in the case of the fourteen sensetype instructions, effective address modification may actually cause operation modification, because the last eight bits of these instructions are part of their operations. For example, if index register A contains 0001₈, then ssp is executed as ssp, but ssp A is executed as CHS. (See instructions for octal code of ssp and CHS.) An instruction may refer to more than one index register by placing multiple 1's in the tag field, such as 011 (when programming, this number must be written in octal form). An instruction (except a fixed instruction) with this tag is executed as if there were a single index register, equivalent to index registers A and B connected in logical or fashion. For example, if index registers A and B contain 3204_8 and 3631_8 , respectively, the instruction CLA 36521_8 is executed with an effective address $6521_8 - 3635_8 = 2664_8$. Similarly, the instruction LXD 31641_8 causes the contents of both index registers A and B to be replaced by the contents of the decrement part of core storage location 1641_8 . The tag field specifies one or more of the three index registers or no index register as follows: | Tag
Binary | FIELD
OCTAL | Index Register (s) Specified | |---------------|----------------|------------------------------| | 000 | 0 | None | | 001 | 1 | Α | | 010 | 2 | В | | 100 | 4 | С | | 011 | 3 | A or B | | 101 | 5 | A or C | | 110 | 6 | B or C | | 111 | 7 | A or B or C | | | | | A non-indexable instruction with a zero tag is executed as if there were an imaginary index register always containing zeros. For example, PXD with a tag of zero clears the entire AC; SXD with a tag of zero clears the decrement field of the storage location to which it refers. # Special Indicators and Sense Devices All special indicators are either on or off. The condition of a particular indicator is tested by means of a test instruction peculiar to that indicator. If an indicator is on when tested, it is turned off by the test. All indicators have a corresponding light on the console for visual checking. The sense lights appearing on the console function in a similar manner. All of these indicators are turned off by manually pressing either the reset or the clear key on the console. Accumulator Overflow Indicator. This indicator is turned on whenever a 1 passes into or through position P from position 1 of the AC as a result of the execution of an instruction (for example, a carry resulting from algebraic addition). There is no indicator between positions P and Q, however. Either of the instructions TOV or TNO tests the condition of the AC overflow indicator. The subsequent program is selected according to the outcome of the test. NOTE: A carry resulting from the instruction ACL does not turn on this indicator. Multiplier-Quotient Overflow Indicator. This indicator is turned on when a floating-point operation attempts to produce a result with a characteristic C outside the range 000 — 255, inclusive. At any later time, it may be tested and turned off by the TQO instruction. Divide-Check Indicator. In fixed-point division, this indicator is turned on if the magnitude of the number in the AC (the dividend) is greater than or equal to the magnitude of the number in storage (the divisor). In floating-point division, a divide-check can occur only when the divisor is unnormalized or zero. The divide-check indicator may be tested and turned off by the DCT instruction. It is also turned off by pressing the reset or clear key on the console if the calculator has stopped on a divide check. Tape Check Indicator. When the calculator or peripheral equipment writes on magnetic tapes, both lateral and longitudinal check (redundancy) bits are automatically written with each unit record. When the tapes are read, the redundancy information is automatically recalculated and compared with the redundancy information stored on the tape. A discrepancy turns on the tape-check indicator. The tape check indicator may be tested and turned off by the RTT instruction. Trapping Mode Indicator. The 704 can be operated in either of two modes, normal or trapping. Entrance into the trapping mode is made by executing the instruction ETM. Exit from the trapping mode is made by executing the instruction LTM or by manually pressing either the clear or reset key on the console. When the machine is in the trapping mode, the location of each transfer instruction met replaces the address part of location 0000. Unconditional transfers, and conditional transfers for which the condition is met, are not executed; instead, control is transferred to location 0001₈. One transfer instruction only, TTR, is immune to the trapping mode. The major use of the trapping mode is in program testing, where it permits observation of the flow of control. Sense Switches. On the
console are six switches, which the operator can set either ON or OFF. The condition of any switch may be tested by the PSE instruction with the appropriate address, and the subsequent program selected according to the outcome of the test. Sense Lights. Also on the console are four sense lights which are turned on by the PSE instruction with the appropriate address. (All four lights are turned off by PSE 1408). Any sense light can be tested and turned off by the MSE instruction with the appropriate address. The subsequent program can be selected according to the outcome of the test. ### INSTRUCTION TYPES Instructions are divided into two types, A and B, such that only Type A instructions use the decrement field for storing constants within the instruction. # Type A Instructions There are five Type A instructions in all, namely, TIX, TNX, TXH, TXL, TXI. In the Type A instructions, the 36 bits of the word are divided into four fields—prefix, decrement, tag, and address—as shown in Figure 10. The prefix is the operation part of the Type A instruction. Type A instructions are distinguished from all others by the fact that bits 1 and 2 are not both zero. The tag denotes the index register(s) to be used in connection with the instruction. See "Central Processing Unit—Index Registers." The decrement field contains a number to be used in connection with the index register specified by the tag. See explanations of individual Type A instructions in "Instructions." The address field refers to a location in core storage. Example: | | PREFIX | ζ. | DEC | REME | NT | | TAG | | A | DDRE | SS | | |--|--------|-----|-----|------|-----|-----|-----|-----|-----|------|-----|-----| | Actual bi-
nary wor
in calcu-
lator | | 000 | 100 | 011 | 111 | 101 | 010 | 000 | 110 | 101 | 111 | 001 | | Equivalent | 110 | 000 | 100 | 011 | 111 | 101 | 010 | 000 | 110 | 101 | 111 | 001 | | in octal | -2 | 0 | 4 | 3 | 7 | 5 | 2 | 0 | 6 | 5 | 7 | 1 | | Form used
in coding
(deci- | • | | | | | | | | | | | | | mal) | TNX | | | 023 | 01 | | В | | | 0344 | 19 | | | | | | | | | | | | | | | | # Type B Instructions In Type B instructions, the 36 bits of the word are divided as shown in Figure 11. All Type B instructions have zeros in bits 1 and 2. The sign position and the decrement field contain the operation code. The tag and address fields have the same meaning as in Type A instructions. Example: | OPERATION | | NOT USED TAG | | ADDRESS | | | | | | | |-----------|-------|--------------|---------------|---------|-----|-----|-----|-----|-----|---------------| | | | | $\overline{}$ | | | | | | | $\overline{}$ | | Binary 00 | 0 110 | 000 | 010 | XXX XXX | 100 | 000 | 101 | 001 | 010 | 100 | | Octal +0 | 6 | 0 | 2 | | 4 | 0 | 5 | 1 | 2 | 4 | | Coding | | | | | | | | | | | | (decimal |) | SLW | | | С | | 2 | 6 | 4 | 4 | With certain instructions (the shift instructions LLS, LRS, ALS, ARS, LGL, RQL, and the instructions RDS, WRS, BST, WEF, and REW, which are concerned with the input-output units), positions 21-27 of the address field are not interpreted, thus reducing the address field to the last eight bits. For this reason, the address of any of these instructions is interpreted modulo $400_8 = \text{modulo } 256_{10}$. Example: | | OPERATION | | | NOT | NOT USED TAG | | | ADDRESS | | | | | | |------------------|-----------|-----|-----|---------------|--------------|---------------|---------------|---------|-----|---|----|-----|-----| | | | | | $\overline{}$ | | $\overline{}$ | $\overline{}$ | | | | | | _ | | Binary | 000 | 111 | 110 | 111 | xxx | xxx | 000 | xxx | xxx | x | 01 | 101 | 100 | | Octal | + 0 | 7 | 6 | 7 | | | 0 | | | | 1 | 5 | 4 | | Coding
(decim | al) | A | LS | | | | | | | | 1 | 0 | 8 | The instructions PSE, MSE, CLM, LBT, PBT, CHS, SSP, SSM, COM, ETM, LTM, RND, DCT, and RTT form a special class of Type B instructions, referred to as Figure 11 sense-type instructions. The contents of position S, 1-11 of these instructions are always ± 0760 , which together with the contents of positions 28-35 form the operation part. The contents of positions 21-27 are not interpreted when executing these instructions. Examples: | | OPERATION | | | OPERATION NOT USED TAG | | | | TAG | ADDRESS | | | | | |------------------|-----------|-------|-------------|------------------------|-------------------|---------------|---------------|-------------|---------|-----|-----|--|--| | | | | | | $\overline{}$ | $\overline{}$ | $\overline{}$ | | | | | | | | Binary | 100 | 111 | 110 | 000 | xxx xxx | 000 | xxx | xxx x | 01 | 100 | 011 | | | | Octal | 0 | 7 | 6 | 0 | | 0 | | | 1 | 4 | 3 | | | | Coding
(decim | nal) | м | SE | | | | | | 0 | 9 | 9 | OPER. | ATIOI | N | NOT USED | TAG | | AD | DRES | s | | | | | | | OPER. | ATIO | 4 | NOT USED | TAG | | AD | DRES | s | | | | | Binary | | | 110 | _ | NOT USED XXX XXX | TAG
000 | xxx | AD
XXX X | | | 011 | | | | Binary
Octal | | | | _ | | | xxx | | | | 011 | | | # MANUAL OPERATION FIGURE 12 shows the operator's console which includes indicating lights and operating keys. # **Panel Lights** Internal Register Display. The contents of the internal registers (instruction location counter, instruction register, SR, AC, MQ) are displayed directly on the 704 operator's console by neon glow tubes, one for each bit position (a light on represents a 1; a light off represents a 0). Index Register Display. A row of 15 lights can display the contents of any one of three index registers, depending on which one of a set of three panel keys is pressed. See "Panel Keys." Trap Indicator Light. The trap indicator light goes on when the calculator is operating in the trapping mode. Sense Lights. There are four sense lights which may be turned on and off by the program. They are explained under plus sense and minus sense instructions. Program Stop Light. The program stop light is turned on when the calculator executes a halt instruction and stops. Accumulator Overflow Light. The accumulator overflow light is on or off when the accumulator overflow indicator is on or off. MQ Overflow Light. The MQ overflow light is on or off when the MQ overflow indicator is on or off. Divide-Check Light. The divide-check light turns on or off when the divide-check indicator is turned on or off. Read-Write Select Light. The read-write select light goes on when one of the input-output units has been selected for reading or writing. The light goes off when the input-output unit is disconnected and no other input-output unit is selected. Read-Write Check Light. The read-write check light goes on and the calculator halts when a copy and skip instruction is given at an inadmissible time. See "Instructions." Tape-Check Light. The tape-check light is on or off when the tape check indicator is on or off. Ready and Power Lights. The ready and power lights are on when the calculator is ready to begin operating. Automatic Light. The automatic light is on when the calculator is executing instructions in the automatic mode of operation (as distinct from the manual mode). ### Panel Keys and Switches Automatic-Manual Switch. Pressing the automatic-manual switch stops the calculator after it has completed the execution of the instruction then being processed, unless an input-output unit is connected to the logical unit. In this case, the calculator stops after the input-ouput unit in use has been disconnected. The automatic light goes out and all of the switches and the following keys become effective: enter MQ, enter instruction, display storage, display effective address, display A, display B, display C, multiple step, and single step. The clear key becomes ineffective. Single Step and Multiple Step Keys. These keys enable the operator, when the calculator is on MANUAL, to proceed with his program either one step at a time or at a very low rate of speed. If an instruction is executed to cause an input-output unit to be connected to the calculator, the calculator operates in the automatic mode until the input-output unit is disconnected. When this occurs, the calculator returns to the manual mode. Sense Switches. Six sense switches give the operator manual control over the program while it is being executed by the calculator at high speed. At various FIGURE 12 points in the program, giving sense instructions (explained under "Instructions") with the addresses of the sense switches causes the calculator to follow one of two courses, depending on which sense switches are depressed. The sense switches are also effective while the calculator is on MANUAL. Panel Input Switches. There are 36 panel input switches, enabling the operator to insert a word of information into various registers of the calculator while it is on MANUAL. When a panel input switch is down, it represents a 1; when up, it represents a 0. Index Display Keys. The three index display keys let the operator display the contents of any of the index registers, while the calculator is on MANUAL, by pressing the key marked with the letter corresponding to the index register in question. For example, to display the contents of index register A, the operator presses the key marked DISPLAY A; the contents of index register A then appears in the index lights. The index registers are automatically displayed until the calculator is returned to automatic operation. More than one index register can be manually displayed in sequence by pressing the Display A, Display B, and Display C keys, in that order. No return to the automatic mode is necessary. Load Keys. The load keys let the operator initiate the loading of a self-loading program stored on binary cards, a drum, or on a tape. If a self-loading program is stored on the tape whose logical identification is 145, pressing the load-tape key causes the calculator to perform the following sequence of four instructions after resetting the read-write
check light. | Read Select | 145 | (decimal) | |---------------|-----|-----------| | Copy and skip | 0 | , | | Copy and skip | 1 | | | Transfer | 0 | | See "Instructions" for an explanation of these operations. This sequence of instructions starts the loading of a self-loading program stored on tape 145. Pressing the load-card key causes the same sequence of instructions to be executed, except that the address in the first instruction is 209, selecting the card reader. A similar situation holds for the drum, with an address of 193. When the loading is initiated, it is essential that the particular input unit from which information is to be loaded into storage be in a ready status (indicated by a light on the input unit). Reset Key. Pressing the reset key resets all registers and indicators in the logical section of the machine. That is, the SR, AC, MQ, instruction location counter, instruction register, and index registers are set to zero and all indicators are turned off. The panel lights are all turned off with the exception of those marked POWER and READY. Core storage is not affected by the reset key. Clear Key. If the calculator is on AUTOMATIC, pressing the clear key resets all the registers in core storage. The entire logical section is reset, just as if the reset key had been depressed also. The clear key is ineffective when the calculator is on MANUAL. Start Key. Pressing the start key continues calculation at high speed if the calculator has halted at a program stop, a read-write check, or if it has been returned to automatic operation after having been on MANUAL. This turns off the read-write check light and starts calculation, starting with the operation then in the instruction register. Enter MQ Key. If the operator manually keys a given word of information into the panel input switches and if the enter MQ key is pressed while the calculator is on MANUAL, then the keyed-in word replaces the contents of the MQ. The contents of the SR are destroyed by this operation. Enter Instruction Key. If the operator presses the enter instruction key under the same conditions as above, then the operation part of the keyed-in word goes into the instruction register, the full word is placed in the sR, and the instruction is executed. Display Storage Key. If, while the calculator is on MANUAL, the operator keys the location into the address part of the panel input switches, and presses the display storage key, the contents of the keyed-in location go into the SR where they may be read from the SR lights. Display Effective Address Key. Assume the calculator is on Manual and the display effective address key is pressed. The difference between the contents of the address field of the instruction in the SR and those of the index register tagged in that instruction (if one is tagged) will appear in the address field of the SR where it may be read from the SR lights. If any index registers have been displayed prior to displaying effective address, put the automatic-manual switch on AUTOMATIC and then back on MANUAL before pressing the display effective address key. The circuitry for displaying the effective address does not distinguish between instruction types; hence even the address of type A instructions will appear as an "effective address." Power-on, Normal-off, DC-on and DC-off Keys. These keys assist the maintenance engineers servicing the calculator and have no programming significance. ### CENTRAL PROCESSING DIAGRAM THE BLOCK diagram (Figure 13) describes the flow of information within the central processing unit. Many registers in this diagram are not mentioned in the preceding or succeeding sections because they do not concern the programmer directly. They are included here to help those who wish to better understand the operation of the 704. The connecting lines betwen registers indicate the flow of information between these registers. The numbers associated with the lines indicate the bit positions of the registers from which the information is obtained. The bar over the numbers indicates that the complement of the number in the initial register is transmitted to the receiving register. The contents of positions S, 1-5 of the instruction register are called the *primary operation* part while the contents of positions 6-9 of the instruction register are called the *secondary operation* part. The class and unit selector matrices are used with input-output instructions. The class refers to drum, tape, printer, and so on. The unit selector matrix selects which drum or tape is to be used. ### INSTRUCTIONS THIS SECTION states in the heading for each instruction the title, the number of fundamental cycles required for the execution of the instruction, the threeletter alphabetic code for the instruction, and the numerical code for the instruction. The number of fundamental cycles required may be modified if followed by a Roman numeral, I, II, III, or IV; see "Timing." If the instruction has an address part associated with it in normal operation, this section uses the letter Y to denote that address part. Y may be an address in storage, the length of a shift, or the address of an input-output unit. The numerical code is given in the octal number system because this can be visually converted to binary for reference to the various bit patterns which the calculator interprets. The sign and four octal digits correspond to positions S, 1-11 of all instructions. For the sense instructions with a fixed address part (e.g. the operation round), the three octal digits corresponding to positions 28-35 of the address part are separated from the operation part by three dots (e.g., +0760...010). Note the following definitions: - 1. C(Y) denotes the contents of location Y, when Y refers to some location in storage. C(SR) denotes the contents of the storage register. Similarly, C(AC) denotes the contents of the accumulator. In addition, subscripts refer to the individual bit positions of a register; i.e., C(MQ)_{S,1-17} is read "the contents of positions S, 1, 2, ..., 17 of the MQ." When subscripts are not used with this notation, the entire register is implied; i.e., C(AC) implies positions S, Q, P, 1-35 inclusive. - 2. Instructions which have a decrement part are indicated in the explanations. All instructions are indexable unless the explanation specifically states that the instruction is non-indexable. - All non-indexable instructions have an X in their alphabetic code. - 3. When a register or part of a register is cleared, the cleared part is reset to 0's just as storage is reset to 0's when the clear key on the console is depressed. - 4. The negative of a number is the number with its sign reversed. - 5. The magnitude of a number is the number with its sign made positive (a 0 in position S corresponds to a positive sign). - 6. The complement of a binary number is defined as the number derived by replacing all 1's with 0's and all 0's with 1's. Therefore, all binary bits are inverted to produce the complement of a number. - 7. The 2's complement of a binary number is 1 plus the complement of the number. - 8. When the words "store" or "load" are used in the title of an instruction, magnetic core storage is always one of the agents; for example, "store address." - 9. When the word "place" is used in the title of an instruction, the AC is always one of the agents; for example, "place address in index." - 10. In the three-letter operation code: - a. The letter Q designates the MQ register. - b. The letter X designates an index register. - c. The first letter of all transfer instructions is a T. - d. The last letter of all test instructions is a T. # Fixed-Point Arithmetic Operations The following instructions refer to arithmetic operations using fixed-point data. ### Clear and Add 2 CLA Y +0500 The C(Y) replace the $C(AC)_{S,1-35}$. Positions Q and P of the AC are cleared. The C(Y) are unchanged. # Add 2 ADD Y +0400 This instruction algebraically adds the C(Y) to the C(AC) and replaces the C(AC) with this sum. The C(Y) are unchanged. Ac overflow is possible. ### Add Magnitude 2 ADM Y +0401 This instruction algebraically adds the magnitude of the C(Y) to the C(AC) and replaces the C(AC) with this sum. The C(Y) are unchanged. Ac overflow is possible. # Clear and Subtract 2 CLS Y +0502 The negative of the C(Y) replaces the $C(AC)_{S,1-35}$. Positions Q and P of the AC are cleared. The C(Y) are unchanged. # Subtract 2 SUB Y +0402 This instruction algebraically subtracts the C(Y) from the C(AC) and replaces the C(AC) with this difference. The C(Y) are unchanged. Ac overflow is possible. ### Subtract Magnitude 2 SBM Y —0400 This instruction algebraically subtracts the magnitude of the C(Y) from the C(AC) and replaces the C(AC) with this difference. The C(Y) are unchanged. Ac overflow is possible. # Multiply 20 MPY Y +0200 This instruction multiplies the C(Y) by the C(MQ). The 35 most significant bits of the 70-bit product replace the $C(AC)_{1-35}$ and the 35 least significant bits replace the $C(MQ)_{1-35}$. The Q and P bits are cleared. The sign of the AC is the algebraic sign of the product. The sign of the MQ agrees with the sign of the AC. Placing of the binary point in the factors is completely arbitrary. A simple familiar rule to remember with regard to placing the binary point in the resulting product follows. RULE: Add the number of binary bits to the right of the binary point in the first factor to the number of binary bits to the right of the binary point in the second factor. This sum is the number of bits appearing to the right of the binary point in the product. ### Multiply and Round 20 MPR Y —0200 This instruction executes a multiply followed by a round. (The latter operation is defined below.) AC overflow is not possible. # Round 2 RND +0760...010 If position 1 of the MQ contains a 1, the magnitude of the C(AC) is increased by a 1 in position 35. If position 1 of the MQ contains a zero, the C(AC) remain unchanged.
In either case, the C(MQ) are unchanged. Ac overflow is possible. # Divide or Halt 20 DVH Y +0220 This instruction treats the $C(AC)_{S,Q,P,1-85}$ and the $C(MQ)_{1-35}$ as a 72-bit dividend plus sign, and the C(Y) as the divisor. If |C(Y)| > |C(AC)|, division takes place, a 35-bit quotient plus sign replaces the C(MQ) and the remainder replaces the $C(AC)_{S,1-35}$. The sign of the remainder always agrees with the sign of the dividend. If $|c(x)| \le |c(AC)|$, division does not take place and the calculator stops with the divide-check indicator and light on. Consequently, if position Q or P of the AC contains a 1, division does not take place since |c(x)| < |c(AC)|. The dividend remains unchanged in the AC. The binary point is placed as follows: "Standard" Case: Assume that the binary point of the dividend is located between position 35 of the AC and the first position of the MQ. Also assume that the divisor has its binary point to the right of position 35. Then the quotient will have the binary point located to the left of position 1 of the MQ. The remainder has its binary point located between positions P and 1 of the AC. Variations of the standard case are: Rule 1: A change in the binary point in the dividend results in a change equal in magnitude and in the same direction in the binary points of both the quotient and the remainder. Rule 2: A change in the binary point of the divisor results in a corresponding change in the opposite direction of the binary point in the quotient. The binary point of the remainder is unchanged. # Divide or Proceed 20 DVP Y +0221 This instruction executes a division (as defined above) if |c(y)| > |c(Ac)|. If $|c(y)| \le |c(Ac)|$, division does not take place, the divide-check indicator and light are turned on, and the calculator pro- ceeds to the next instruction. The dividend remains unchanged in the Ac. ### Load MQ 2 LDQ Y +0560 The C(Y) replace the C(MQ). The C(Y) are unchanged. ### Store MQ 2 STQ Y —0600 The C(MQ) replace the C(Y). The C(MQ) are unchanged. # Store Left-Half MQ 2 SLQ Y —0620 The $C(MQ)_{S,1-17}$ replace the $C(Y)_{S,1-17}$. The $C(Y)_{18-35}$ and the C(MQ) are unchanged. # Store 2 STO Y +0601 The $C(AC)_{8,1-35}$ replace the $C(Y)_{8,1-35}$. The C(AC) are unchanged. ### Store Prefix 2 STP Y +0630 The $C(AC)_{P,1,2}$ replace the $C(Y)_{S,1,2}$. The $C(Y)_{3-35}$ and the C(AC) are unchanged. # Store Decrement 2 STD Y +0622 The $C(AC)_{3\cdot17}$ replace the $C(Y)_{3\cdot17}$. The $C(Y)_{8,1,2,18\cdot35}$ and the C(AC) are unchanged. # Store Address 2 STA Y +0621 The $C(AC)_{21-35}$ replace the $C(Y)_{21-35}$. The $C(Y)_{8,1-20}$ and the C(AC) are unchanged. # Clear Magnitude 2 CLM +0760...000 The $C(AC)_{Q,P,1-35}$ are cleared. The AC sign is unchanged. If the AC sign bit is negative, it is made positive, and vice versa. A positive sign replaces the C(AC)s. A negative sign replaces the C(AC)s. # **Logical Operations** ### Clear and Add Logical Word 2 CAL Y —0500 This instruction replaces the $C(AC)_{P,1-35}$ with the C(Y). Thus the sign of the C(Y) appears in position P of the AC, and the S and Q bits are cleared. The C(Y) are unchanged. # Add and Carry Logical Word 2 ACL Y +0361 This instruction adds the $C(Y)_{S,1-35}$ to the $C(AC)_{P,1-35}$, respectively, and replaces the $C(AC)_{P,1-35}$ with this sum (position S of register Y is treated as a numerical bit, and the sign of the AC is ignored). A carry out of the P bit adds into position 35 of the AC, but does not add into Q. Q is not changed. The C(Y) are unchanged. No overflow is possible. See Figure 14. # Store Logical Word 2 SLW Y +0602 The $C(AC)_{P,1\cdot35}$ replace the $C(Y)_{S,1\cdot35}$. The C(AC) are unchanged. # AND to Accumulator 3 ANA Y --0320 Each bit of the $C(AC)_{P,1-35}$ is matched with the corresponding bit of the $C(Y)_{S,1-35}$, the $C(AC)_P$ being FIGURE 14 matched with the $c(Y)_s$. When the corresponding bit of both the AC and location Y is a one, a one replaces the contents of that position in the AC. When the corresponding bit of either the AC or location Y is a zero, a zero replaces the contents of that position in the AC. The $c(AC)_{s,Q}$ are cleared. The c(Y) are unchanged. ### AND to Storage 4 ANS Y +0320 Each bit of the $C(AC)_{P,1-35}$ is matched with the corresponding bit of the $C(Y)_{S,1-35}$. The $C(AC)_P$ being matched with the $C(Y)_S$. When the corresponding bit of both the AC and location Y is a one, a one replaces the contents of that position in location Y. When the corresponding bit of either the AC or location Y is a zero, a zero replaces the contents of that position in location Y. The C(AC) are unchanged. # OR to Accumulator 2 ORA Y ---0501 Each bit of the $C(AC)_{P,1-35}$ is matched with the corresponding bit of the $C(Y)_{S,1-35}$, the $C(AC)_P$ being matched with the $C(Y)_S$. When the corresponding bit of either the AC or location Y is a one, a one replaces the contents of that position in the AC. When the corresponding bit of both the AC and location Y is a zero, a zero replaces the contents of that position in the AC. The C(Y) and the $C(AC)_{S,Q}$ are unchanged. ### OR to Storage 2 ORS Y —0602 Each bit of the $C(AC)_{P,1-35}$ is matched with the corresponding bit of the $C(Y)_{S,1-35}$, the $C(AC)_P$ being matched with the $C(Y)_S$. When the corresponding bit of either the AC or location Y is a one, a one replaces the contents of that position in location Y. When the corresponding bit of both the AC and location Y is a zero, a zero replaces the contents of that position in location Y. The C(AC) are unchanged. # Complement Magnitude 2 COM +0760...006 All ones are replaced by zeros and all zeros are replaced by ones in the $C(AC)_{Q,P,1-35}$. The AC sign is unchanged. # **Shifting Operations** Shift instructions are used to move the bits in a word to the right or left of their original positions in the AC or MQ register or both. With the exception of the RQL instruction, zeros are automatically introduced in the vacated positions of a register. Thus, a shift larger than the bit capacities of the registers involved in the shifting will have no significance after the capacities of the registers are exceeded. When an instruction is interpreted as a shift instruction, the extent of the shift is determined by the least significant eight bits of the address of the instruction. Since the maximum possible shift is 255, a number larger than 255 in the address part of a shift instruction is interpreted modulo 256. Example 1: 583 modulo 256 = 71[because 583 = 2(256) + 71] Example 2: 256 modulo 256 = 0Example 3: 15 modulo 256 = 15 Shifting a number in a register is equivalent to multiplying that number by a power of 2 (as long as none of the significant bits are lost). Example 1: Shifting a binary number three places to the left is equivalent to multiplying it by 2³. Example 2: Shifting a binary number five places to the right is equivalent to multiplying it by 2^{-5} . # Accumulator Left Shift 2-I ALS Y +0767 The C(AC)_{Q,P,1-35} are shifted left Y modulo 256 places. If a non-zero bit is shifted into or through position P, the AC overflow indicator and light are turned on. Bits shifted past position Q are lost. Positions made vacant are filled in with zeros. # Accumulator Right Shift 2-I ARS Y +0771 The C(AC)_{Q,P,1-35} are shifted right Y modulo 256 places. Bits shifted past position 35 of the AC are lost. Positions made vacant are filled in with zeros. ### Long Left Shift 2-I LLS Y +0763 The $C(AC)_{Q,P,1-35}$ and the $C(MQ)_{1-35}$ are shifted left Y modulo 256 places. Bits enter position 35 of the AC from position 1 of the MQ. If a non-zero bit is shifted into or through position P, the AC overflow indicator and light are turned on. Bits shifted past position Q are lost. Positions made vacant are filled in with zeros. The sign of the AC is replaced by the same sign as that of the MQ. See Figure 15. # Long Right Shift 2-I LRS Y +0765 The $C(AC)_{Q,P,1-35}$ and the $C(MQ)_{1-35}$ are shifted right Y modulo 256 places. Bits enter position 1 of the MQ from position 35 of the AC. Bits shifted past position 35 of the MQ are lost. Positions made vacant are filled in with zeros. The sign of the MQ is replaced by the same sign as that of the AC. ### Logical Left 2-I LGL Y —0763 The C(AC)_{Q,P,1-35} and the C(MQ)_{S,1-35} are shifted left Y modulo 256 places. Bits enter position S of the MQ from position 1 of the MQ, and enter position 35 of the AC from position S of the MQ. If a non-zero bit is shifted into or through position P of the AC, the AC overflow indicator and light are turned on. Bits shifted past position Q are lost. Positions made vacant are filled in with zeros. The sign of the AC is unchanged. See Figure 16. ### Rotate MQ Left 2-I RQL Y —0773 The $C(MQ)_{S,1-35}$ are rotated left Y modulo 256 places. The bits rotate from position 1 to position S of the MQ, and from position S to position 35 of the MQ. See Figure 17. FIGURE 17 # Floating-Point Arithmetic Operations Floating Add 7-II FAD Y +0300 The c(y) are algebraically added to the c(AC), and this sum replaces the c(AC) and the c(MQ). The c(y) are unchanged. Floating-point addition takes place in the following way: - 1. The MQ is cleared. - 2. The c(Y) are placed in the SR. - 3. If the characteristic in the SR is less than the characteristic in the AC, the C(SR) and the C(AC) interchange automatically because the number with the smaller characteristic must appear in the AC before addition can take place. (Positions Q and P of the AC are considered as part of the characteristic. Consequently, a 1 in either of these positions makes the characteristic in the AC larger than that in the SR, but the 1's would be lost during the interchange and an incorrect answer will result.) - 4. The MQ is given the same sign as the AC. - 5. The fraction in the AC is shifted right the number of positions equal to the magnitude of the difference in the characteristics. Bits shifted out of the AC enter
position 9 of the MQ. Bits shifted out of position 35 of the MQ are lost. - 6. The characteristic in the SR replaces the $C(AC)_{1-8}$. - 7. The fraction in the SR is algebraically added to the fraction in the AC and this sum replaces the $C(AC)_{8.9-35}$. - 8. If the magnitude of the sum is greater than or equal to 1, there is a carry from position 9 to position 8 of the AC (thus increasing the characteristic by 1).* In this event, the $C(AC)_{9.35}$ and the $C(MQ)_{9.35}$ are shifted right one position and 1 is inserted in position 9 of the AC. 9a. If the resulting fraction in the AC is zero, the AC is cleared, yielding a normal zero. The sign of the AC is the sign of the number that has the smaller characteristic. If both characteristics are equal, then the sign of the AC is the sign of the number in the AC. 9b. If the magnitude of the resulting fraction in the AC is not in normal form (i.e. less than $\frac{1}{2}$ but not zero), and the signs of the MQ and AC are the same, the $C(AC)_{9-35}$ and the $C(MQ)_{9-35}$ are shifted left until a 1 is in position 9 of the AC. Bits enter position 35 of the AC from position 9 of the MQ. The characteristic in the AC is reduced by 1 for each position shifted.* If the signs of the MQ and AC are different, the magnitude of the fraction in the AC is reduced by 1 before the shifting is begun. Each bit entering position 35 of the AC from position 9 of the MQ is inverted. - 10. The MQ is given a characteristic which is 27 less than the characteristic in the AC, unless the AC contains a normal zero, in which case zeros are placed in positions 1-8 of the MQ.* - 11. If the signs of the MQ and AC are different, the magnitude of the fraction in the AC is increased by 1. If a carry occurs between positions 8 and 9, the $C(AC)_{9.35}$ are shifted right one place and a one is inserted in $C(AC)_{9}$. If the carry from 9 to 8 occurs, the characteristic of the AC is increased by 1. *During execution of a floating-point addition, the AC or MQ overflow indicator and the corresponding light on the operator's console are turned on by too large a characteristic (overflow-characteristic greater than 255) or too small a characteristic (underflow-characteristic negative) in the AC or the MQ, respectively. # Unnormalized Floating Add 6-II UFA Y —0300 Same as floating add except steps 9a, 9b and 11 are omitted. No test is made for a normal zero in step 10. # Floating Subtract 7-II FSB Y +0302 Same as floating add except that step 2 is replaced by the following: the negative of the C(Y) is placed in the storage register. # Unnormalized Floating Subtract 7-II UFS Y —0302 Same as floating subtract except that steps 9a, 9b and 11 are omitted. No test is made for a normal zero in step 10. # Floating Multiply 17 FMP Y +0260 The C(Y) are multiplied by the C(MQ). The most significant part of the product appears in the AC and the least significant part appears in the MQ. The product of two floating-point numbers is in normalized form if the multiplier and multiplicand are in this form. If either the multiplier or multiplicand is not in normalized form, the product is in normalized form only if the shift of one place in step 4b is sufficient to normalize it. Floating-point multiplication takes place as follows: - 1. The C(Y) are placed in the storage register and the AC is cleared. - 2. The sum of the characteristics in the SR and in the MQ minus 128 is placed in positions 1-8 of the AC.* - 3. The $C(SR)_{S,9-35}$ are algebraically multiplied by the $C(MQ)_{S,9-35}$. The most significant 27 bits plus sign of the product replace the $C(AC)_{S,9-35}$ and the least significant 27 bits replace the $C(MQ)_{9-35}$. - 4a. If the fraction in the AC is zero, the $C(AC)_{Q,P,1-35}$ are cleared, yielding a normal zero. The sign of the AC is the algebraic sign of the product. - 4b. If position 9 of the AC contains a zero but the fraction in the AC is not zero, the $C(AC)_{9-35}$ and the $C(MQ)_{9-35}$ are shifted left one position and the characteristic in the AC is reduced by 1.* The bit in position 9 of the MQ enters position 35 of the AC. - 5a. If the AC contains a normal zero, positions 1-8 of the MQ are cleared. - 5b. If the AC does not contain a normal zero, the C(MQ)₁₋₈ are replaced by a characteristic which is 27 less than the characteristic in the AC.* - 6. The sign of the MQ is replaced by the same sign as that of the AC. *During execution of floating-point multiplication, too large or too small a characteristic in the AC or the MQ, respectively, turns on the AC or the MQ overflow indicator and the corresponding light on the operator's console. ### Unnormalized Floating Multiply 17 UFM Y —0260 This operation is the same as floating multiply except that steps 4a, 4b and 5a are omitted. ### Floating Divide or Halt 18-IV FDH Y +0240 The c(Ac) are divided by the c(Y), the quotient appears in the MQ and the remainder appears in the AC. The MQ is cleared before actual division takes place. If positions Q or P of the AC are not zero, division may take place and either or both of the AC and/or MQ overflow indicators may be turned on. When division by zero is attempted, the divide-check INSTRUCTIONS indicator and light are turned on and the calculator stops, leaving the dividend in the AC unchanged. The quotient is in normalized form if both divisor and dividend are in that form. If divisor or dividend or both are not in normalized form, the quotient is in normalized form if $$2 | C(Y)_{9-35} | > | C(AC)_{9-35} | \ge \frac{1}{2} | C(Y)_{9-35} |$$ Floating-point division takes place as follows: - 1. The C(Y) are placed in the storage register. - 2. If the magnitude of the fraction in the AC is greater than (or equal to) twice the magnitude of the fraction in the SR, the divide-check indicator and light are turned on, the calculator stops, and the dividend is left unchanged in the AC. - 3. If the fraction in the AC is zero, the $C(MQ)_{1.35}$ and $C(AC)_{Q,P,1.35}$ are cleared and the remaining steps are skipped. The sign of the MQ is the algebraic sign of the quotient. The sign of the AC is the sign of the dividend. - 4. If the magnitude of the fraction in the AC is greater than or equal to the magnitude of the fraction in the SR (but less than twice the magnitude of this fraction), the fraction in the AC is shifted right one position and the characteristic in the AC is increased by 1.* The bit in position 35 of the AC enters position 9 of the MQ. - 5. The characteristic of the AC minus the characteristic of the SR plus 128 is placed in positions 1-8 of the MO.* - 6. The fractional part of the dividend, which consists of the $C(AC)_{S,9-35}$ (and the $C(MQ)_9$ if the condition of step 4 is met), algebraically divided by the fraction in the SR replaces the $C(MQ)_{S,9-35}$. - 7. The 27-bit remainder resulting from the division in step 6 replaces the $C(AC)_{9.35}$. The sign of the AC is unchanged (i.e., the sign of the remainder agrees with the sign of the dividend.) - 8. The characteristic in the AC is reduced by 27.* *During execution of a floating-point division, the AC or MQ overflow indicator and the corresponding light on the operator's console are turned on for too large or too small a characteristic in the AC or MQ, respectively. # Floating Divide or Proceed 18-IV FDP Y +024I This operation is the same as floating divide or halt except for division by zero and step 2. When division by zero is attempted, the dividecheck indicator and light are turned on, division does not take place and the calculator proceeds to the next instruction. If the magnitude of the fraction in the AC is greater than (or equal to) twice the magnitude of the fraction in the SR, the divide-check indicator and light are turned on, division does not take place and the calculator proceeds to the next instruction. The dividend in the AC is unchanged. ### Determination of Overflow and Underflow For the instructions FAD, FSB, UFA, UFS, FMP*, UFM the conditions are as follows: | Ov (ac) | Ov (MQ) | $C(AC)_{\Omega}$ | \mathbf{Ac} | $M_{\mathbf{Q}}$ | |---------|---------|------------------|---------------|------------------| | On | Off | ~ | Overflow | OK | | Off | On | | OK | Underflow | | On** | On | 0 | Overflow | Overflow | | On*** | On | 1 | Underflow | Underflow | ^{*}The AC and MQ overflow indicators are not turned on if the result is a normal zero. For the floating point divide instructions FDP*, FDH, the conditions are: | Ov (AC) | Ov(MQ) | $C(MQ)_{1-8}$ | \mathbf{Ac} | MQ | |---------|--------|---------------|---------------|-----------| | On | Off | | Underflow | OK | | On | On | | Underflow | Underflow | | Off | On | 129-255 | OK | Underflow | | Off | On | 0-128 | OK | Overflow | | | | | | | *The AC and MQ overflow indicators are not turned on if the result is a normal zero. # **Control Operations** No Operation 2 NOP +0761 The calculator takes the next instruction in sequence. # Halt and Proceed 2 HPR +0420 This instruction causes the calculator to stop. If the start key on the operator's console is depressed, the calculator proceeds to the next instruction in sequence. # Enter Trapping Mode 2 ETM +0760...007 This instruction turns on the trapping indicator and also the trap light on the operator's console. The ^{**}Impossible with FAD, UFA, FSB, UFS. ^{***}Impossible with UFA, UFS. calculator operates in the trapping mode until a leave trapping mode operation is executed or until either the clear or reset key is pressed on the console. ### Leave Trapping Mode 2 LTM --0760...007 This instruction turns off the trapping indicator and the trap light on the operator's console. The calculator will not operate in the trapping mode until another enter trapping mode operation is executed. Note: When the calculator is operating in the trapping mode, the location of every transfer instruction (except trap transfer instructions) replaces the address part of location 0000, whether or not the conditions for transfer of control are
met. If the condition is met, the calculator takes the next instruction from location 0001 and proceeds from that point. The location of each transfer instruction replaces the address part of location 0000. # Halt and Transfer 2 HTR Y +0000 This instruction stops the calculator. When the start key on the operator's console is depressed, the calculator starts again, taking the next instruction from location Y and proceeding from there. When the calculator stops, the effective address of the HTR instruction is placed in the instruction location counter before executing any instruction. If TSX is manually executed, the 2's complement of this effective address is placed in the specified index register, and the transfer is executed. # Transfer 2 TRA Y →0020 This instruction causes the calculator to take its next instruction from location Y, and to proceed from there. # Transfer on Zero 2 TZE Y +0100 If the C(AC)_{Q,P,1-35} are zero, the calculator takes its next instruction from location Y and proceeds from there. If they are not zero, the calculator proceeds to the next instruction in sequence. ### Transfer on No Zero 2 TNZ Y —0100 If the $C(AC)_{Q,P,1-35}$ are not zero, the calculator takes its next instruction from location Y and proceeds from there. If they are zero, the calculator proceeds to the next instruction in sequence. # Transfer on Plus 2 TPL Y +0120 If the sign bit of the AC is positive, the calculator takes the next instruction from location Y and proceeds from there. If the sign bit of the AC is negative, the calculator proceeds to the next instruction in sequence. ### Transfer on Minus 2 TMI Y —0120 In the sign bit of the AC is negative, the calculator takes the next instruction from location Y and proceeds from there. If the sign bit of the AC is positive, the calculator proceeds to the next instruction in sequence. # Transfer on Overflow 2 TOV Y +0140 If the AC overflow indicator and light are on as the result of a previous operation, the indicator and light are turned off and the calculator takes the next instruction from location Y and proceeds from there. If the indicator and light are off, the calculator proceeds to the next instruction in sequence. # Transfer on No Overflow 2 TNO Y —0140 If the AC overflow indicator and light are off, the calculator takes the next instruction from location Y and proceeds from there. If the indicator and light are on, the calculator proceeds to the next instruction in sequence after turning off the indicator and light. # Transfer on MQ Plus 2 TQP Y +0162 If the sign bit of the MQ is positive, the calculator takes the next instruction from location Y and proceeds from there. If the sign bit of the MQ is negative, the calculator proceeds to the next instruction in sequence. # Transfer on MQ Overflow 2 TQO Y +0161 If the MQ overflow indicator and light have been turned on by an overflow or underflow in the MQ INSTRUCTIONS characteristic during a previous floating-point operation, the indicator and light are turned off, the calculator takes the next instruction from location Y and proceeds from there. If the indicator and light are not on, the calculator proceeds to the next instruction in sequence. # Transfer on Low MQ 2 TLQ Y +0040 If the C(MQ) are algebraically less than the C(AC), the calculator takes the next instruction from location Y and proceeds from there. If the C(MQ) are algebraically greater than or equal to the C(AC), the calculator proceeds to the next instruction in sequence. # Transfer and Set Index 2 TSX Y +0074 Not indexable. This instruction places the 2's complement of the location of this instruction in the specified index register. The calculator takes the next instruction from location Y and proceeds from there. The 2's complement is used in this instruction because indexing is a subtractive process on the 704 and subtracting the 2's complement of a number is equivalent to adding the number. # Transfer with Index Incremented 2 TXI Y +1000 Not indexable. Contains a decrement part. This instruction adds the decrement to the number in the specified index register and replaces the number in the index register with this sum. The calculator takes the next instruction from location Y and proceeds from there. # Transfer on Index High 2 TXH Y +3000 Not indexable. Contains a decrement part. If the number in the specified index register is greater than the decrement, the calculator takes the next instruction from location Y and proceeds from there. If the number in the specified index register is less than or equal to the decrement, the calculator proceeds to the next instruction in sequence. # Transfer on Index Low or Equal 2 TXL Y —3000 Not indexable. Contains a decrement part. If the number in the specified index register is less than or equal to the decrement, the calculator takes the next instruction from location Y and proceeds from there. If the number in the specified index register is greater than the decrement, the calculator proceeds to the next instruction in sequence. # Transfer on Index 2 TIX Y +2000 Not indexable. Contains a decrement part. If the number in the specified index register is greater than the decrement, the number in the index register is reduced by the amount of the decrement and the calculator takes the next instruction from location Y and proceeds from there. If the number in the specified index register is equal to or less than the decrement, the number in the index register is unchanged and the calculator proceeds to the next instruction in sequence. # Transfer on No Index 2 TNX Y —2000 Not indexable. Contains a decrement part. If the number in the specified index register is equal to or less than the decrement, the number in the index register is unchanged, the calculator takes the next instruction from location Y and proceeds from there. If the number in the specified index register is greater than the decrement, the number in the index register is reduced by the amount of the decrement and the calculator proceeds to the next instruction in sequence. # Trap Transfer 2 TTR Y +0021 This instruction causes the calculator to take its next instruction from location Y and to proceed from there whether in the trapping mode or not. This makes it possible to have an ordinary transfer even when in the trapping mode. If the $C(AC)_P$ is a one, the calculator skips the next instruction and proceeds from there. If position P contains a zero, the calculator takes the next instruction in sequence. # Low Order Bit Test 2 LBT +0760...001 If the $C(AC)_{35}$ is a one, the calculator skips the next instruction and proceeds from there. If position 35 contains a zero, the calculator takes the next instruction in sequence. # Divide Check Test 2 DCT +0760...012 If the divide-check indicator and light are on, the indicator and light are turned off, and the calculator takes the next instruction in sequence. If the indicator and light are off, the calculator skips the next instruction and proceeds from there. # Redundancy Tape Test 2 RTT —0760...012 If the tape-check indicator and light are on, the indicator and light are turned off and the calculator takes the next instruction in sequence. If the indicator and light are off, the calculator skips the next instruction and proceeds from there. # Compare Accumulator with Storage 3 CAS Y +0340 If the c(Y) are algebraically less than the c(AC), the calculator takes the next instruction in sequence. If the c(Y) are algebraically equal to the c(AC), the calculator skips the next instruction and proceeds from there. If the c(Y) are algebraically greater than the c(AC), the calculator skips the next two instructions and proceeds from there. Two numbers are algebraically equal when the magnitude of the numbers and the sign are both equal. A plus zero is algebraically larger than a minus zero. # **Indexing Operations** # Load Index from Address 2 LXA Y +0534 Not indexable. The address part of the C(Y) replaces the number in the specified index register. The C(Y) are unchanged. # Load Index from Decrement 2 LXD Y —0534 Not indexable. The decrement part of the C(Y) replaces the number in the specified index register. The C(Y) are unchanged. # Store Index in Decrement 2 SXD Y —0634 Not indexable. The $C(Y)_{3-17}$ are cleared and the number in the specified index register replaces the decrement part of the C(Y). The $C(Y)_{8,1,2,18-35}$ are unchanged. The contents of the index register are unchanged if one index register is specified. If a multiple tag is specified, the "logical or" of the contents of these index registers will replace the $C(Y)_{3-17}$ and will also replace the contents of the specified index registers. # Place Address in Index 2 PAX +0734 Not indexable. The address part of the C(AC) replaces the number in the specified index register. The C(AC) are unchanged. # Place Decrement in Index 2 PDX —0734 Not indexable. The decrement part of the C(AC) replaces the number in the specified index register. The C(AC) are unchanged. # Place Index in Decrement 2 PXD —0754 Not indexable. The AC is cleared and the number in the specified index register is placed in the decrement part of the AC. The contents of the index register are unchanged if one index register is specified. If a multiple tag is specified, the "logical or" of the contents of these index registers will replace the $C(AC)_{3-17}$ and will also replace the contents of the specified index registers. ### Input-Output Operations The identifying numbers for the various inputoutput components appear in the address part of an instruction whenever the programmer wants to operate one of these units. Whether the address part of an instruction refers to a storage location or to one of the components depends on the operation part of the instruction. Some operations make no sense if the address is interpreted as a location in storage; other operations make no sense if the address is interpreted as a component identification. Thus, an address is
automatically interpreted by the calculator in the light of what it is asked to do by the operation part of the instruction. The addresses of the input-output units are given below. | COMPONENT | OCTAL | DECIMAL | |----------------------|---------|---------| | CRT | 030 | 024 | | Tapes | | | | Binary Coded Decimal | 201-212 | 129-138 | | Binary | 221-232 | 145-154 | | Drum | 301-310 | 193-200 | | Card Reader | 321 | 209 | | Card Punch | 341 | 225 | | Printer | 361 | 241 | ### Read Select 2-III RDS Y +0762 This instruction causes the calculator to prepare to read one record of information from the component specified by Y. If Y specifies a tape unit, the MQ is cleared by this instruction. ### Write Select 2-III WRS Y +0766 This instruction causes the calculator to prepare to write one record of information on the component specified by Y. WRS 3338 is used to *delay* the execution of any instruction until the MQ is available for computing after reading information from a tape. ### Backspace Tape 2-III BST Y +0764 This instruction causes the tape designated by Y to space one record in a backward direction. If the tapes designated by Y is positioned at the load point, the BST Y instruction is interpreted as no operation. This instruction causes the tape unit designated by Y to leave an end-of-file space, an end-of-file mark and a redundancy character on its tape. # Rewind 40ms-III REW Y +0772 This instruction causes the tape unit designated by Y to rewind its tape to the load point. This instruction must be given while the tape unit is selected (i.e., after a WRS, RDS, or WEF instruction and before the tape disconnects; no more than 744 μsec after the last CPY if WRS instruction; no more than 420 μsec after reading the last word, if RDS; and anytime up to 40 ms, if WEF). Failure to program this instruction may cause the tape to be pulled from its reel. If the tape indicator and the tape indicator light are off, the calculator skips the instruction immediately following the ETT and proceeds from that point. If the tape indicator and the tape indicator light are on, they will be turned off and the calculator will take the next instruction in sequence (no skip). If tape instructions are given to a tape while the tape indicator is on, they will operate normally. # Locate Drum Address 2 LDA Y +0460 This instruction follows a read select or write select instruction referring to a drum unit and the address part of the C(Y) specifies the first location of the record to be read from or written on the drum. Not giving this instruction is equivalent to giving the instruction with the address part of the C(Y) equal to zero. This instruction is used following an RDS, WRS, or another CPY instruction to transfer a word of information between location Y in storage and an input-output component specified by the address part of the preceding RDS or WRS instruction. When this instruction is executed, the 36-bit word is formed in the MQ and then transmitted to storage or to the component. If the CPY instructions are not given within specific time ranges (found in the descriptions of these components), the calculator stops and a read-write check light on the operator's console is turned on. If an additional CPY instruction is given after the last word of a unit record has been copied from a card or a record of tape, the CPY is not executed and the calculator skips the two instructions immediately following the CPY and proceeds from there. If an additional RDS instruction is given for which there is no corresponding record, the calculator sets up an end-of-file condition. The first CPY instruction given after this RDS is not executed; instead, the calculator skips the instruction immediately following the CPY and proceeds from there. ### Plus Sense 2 PSE Y +0760 This instruction provides a means of testing the status of sense switches (and of turning on or off the sense lights on the operator's console), thus providing the programmer with flexible means of altering the sequence of instructions being executed. This instruction also permits the transmission of an impulse to or from the exit or entry hubs on the printer or card punch. The address part of this instruction determines whether a light, switch, printer, or card punch is being sensed, and it further determines which light, switch, or hub is being sensed. The octal addresses for the different sense instructions are: - Turn off all sense lights on the operator's console. - 141-144 Turn on sense light 1, 2, 3, or 4, respectively, on the operator's console. - 161-166 If the corresponding sense switch on the operator's console is down (on), the calculator skips the next instruction and proceeds from there. If the sense switch is up (off), the calculator takes the next instruction in sequence. - 341-342 The calculator causes an impulse to appear at the specified exit hub of the punch control panel. - 360 If an impulse is present on the entry hub of the printer control panel, the calculator skips the next instruction and proceeds from there. If there is no impulse, the calculator takes the next instruction in sequence. - 361-372 The calculator causes an impulse to appear at the specified exit hub of the printer control panel. ### Minus Sense 2 MSE Y ---0760 This instruction provides a means of testing the status of sense lights on the operator's console. The addresses of the four sense lights are: 141-144 If the corresponding sense light is on, the light is turned off, the calculator skips the next instruction and proceeds from there. If the light is off, the calculator takes the next instruction in sequence. ### INSTRUCTION TIMING ### **Timing** The time required for the execution of any instruction is an integral multiple of the fundamental Most operations require a fixed number of cycles. The four types of exceptions are denoted by this fixed number supplemented by a Roman numeral I, II, III or IV, in the section "Instructions" and in Table I. The four types of exceptions are as follows: Type I: The instruction will be executed in two cycles if the extent of shift is nine places or less. Each additional 12 places of shift, or portion thereof, requires another cycle. Type II: The instruction will be executed in seven cycles if the extent of shift is ten places or less in step 5 of FAD, UFA, FSB, and UFS and, also, if the extent of shift is four places or less in step 9b of FAD and FSB. In step 5, each additional twelve places of shift, or portion thereof, requires another cycle. In step 9b, each additional four places of shift, or portion thereof, requires another cycle. Type III: The execution of this instruction may be delayed an indefinite length of time after its interpretation, depending on the status of the input-output components. For example, if two RDs instructions are given in succession for the same tape, the execution of the second RDs instruction will be delayed until the first record has been passed over. When a CPY instruction is given, the electronic and mechanical equipment must be synchronized and short delays may result while this synchronization takes place. In general, any execution delays of this type are of varying lengths depending on the programming. Type IV: The execution of a floating divide instruction requires only three cycles if the fraction of the dividend is zero. | OPERATION | CYCLES | ALPHA
CODE O | CTAL CODE | OPERATION | | ALPHA
CODE | OCTAL CODE | |---------------------------------------|--------|-----------------|-----------|---|---------|---------------|-----------------------| | Halt and Transfer | 2 | HTR - | ± 0000 | Store | 2 | STO | + 0601 | | Transfer | _ | | + 0020 | Store Logical Word | 2 | SLW | $+0601 \\ +0602$ | | Trap Transfer | | TTR - | ; | 9 | | ORS | | | Transfer on Low MQ | | | + 0040 | OR to Storage | | | | | Transfer and Set Index* | | | + 0074 | Store Left Half MQ | | SLQ
STA | -0620 + 0621 | | Transfer on Zero | | | + 0100 | Store Address | | | | | Transfer on No Zero | | TNZ - | | Store Decrement | | STD | + 0622 | | Transfer on Plus | | | + 0120 | Store Prefix | | STP | +0630 | | Transfer on Minus | | | ' | Store Index in Decrement* | | SXD | 0634 | | Transfer on Overflow | | TMI -
TOV - | 0120 | Copy and Skip | | CPY | + 0700 | | Transfer on No Overflow | | | | Place Address in Index* | 2 | PAX | 十 0734 | | | | TNO - | | Place Decrement in Index* | 2 | PDX | 0734 | | Transfer on MQ Overflow | | TQO - | | Place Index in Decrement* | 2 | PXD | 0754 | | Transfer on MQ Plus | | TQP - | 1 | Plus Sense | 2 | PSE | +0760 | | Multiply | | MPY - | | Minus Sense | | MSE | 0760 | | Multiply and Round | | MPR - | | Clear Magnitude | | | + 076000 | | Divide or Halt | | DVH - | 1 1 | Low Order Bit Test | | LBT | + 076000 | | Divide or Proceed | | | + 0221 | P Bit Test | | PBT | - 076000 | | Floating Divide or Halt | | | + 0240 | Change Sign | | CHS | + 076000 | | Floating Divide or Proceed | | | + 0241 | Set Sign Plus | 2 | SSP | + 076000 | | Floating Multiply | | FMP - | + 0260 | Set Sign Minus | 2 | SSM | 076000 | | Unnormalized Floating Multiply | | UFM - | | Complement Magnitude | 2 | COM | + 076000 | | Floating Add | | FAD - | + 0300 | Enter Trapping Mode | 2 | ETM | + 076000 | | Unnormalized Floating Add | 6 II | UFA - | - 0300 | Leave Trapping Mode | 2 | LTM | 076000 | | Floating Subtract | | FSB - | + 0302 | Round | 2 | RND | + 076001 | | Unnormalized Floating Subtract | 7 II | UFS - | - 0302 | End of Tape Test | 2 | ETT | - 076001 | | AND to Storage | 4 | ANS - | + 0320 | Divide Check Test | 2 | DCT | + 076001 | | AND to Accumulator | 3 | ANA - | - 0320 | Redundancy Tape Test | 2 | RTT | — 076001 | | Compare Accumulator with Storage | 3 | CAS - | | No Operation | 2 | NOP | +0761 | | Add and Carry Logical Word | 2 | ACL - | → 0361 | Read Select | 2 III | RDS | +0762 | | Add | 2 | ADD - | | Backspace Tape | | BST | + 0764 | | Subtract
Magnitude | | SBM - | | Write Select | 2 III | WRS | + 0766 | | Add Magnitude | 2 | ADM - | + 0401 | Write End of File | 2 III | WEF | + 0770 | | Subtract | | | 0402 | Rewind40 n | ıs— III | REW | + 0772 | | Halt and Proceed | | HPR - | | Long Left Shift | | LLS | +0763 | | Locate Drum Address | | LDA - | | Logical Left | | LGL | - 0763 | | Clear and Add | | CLA - | | Long Right Shift | | LRS | +0765 | | Clear and Add Logical Word | | CAL - | ' 1 | Accumulator Left Shift | | ALS | + 0767 | | OR to Accumulator | | ORA - | | Accumulator Right Shift | | ARS | +0771 | | Clear and Subtract | | | + 0502 | Rotate MQ Left | 2 I | ROL | | | Load Index from Address* | | LXA - | : 1 | Transfer with Index Incremented** | 2 | TXI | $\frac{-0}{1000}$ | | Load Index from Decrement* | | LXD - | | Transfer on Index** | 2 | TIX | +2000 | | Load MQ | | LDQ - | | Transfer on No Index** | 2 | | | | Store MO | | STO - | | Transfer on Index High** | 2 | | $\frac{-2000}{+3000}$ | | 2222 222 | - | J1Q - | 0000 | Transfer on Index 1 Ingli Transfer on Index Low or Equal** | _ | TXL | | | * Not indexable. | | | | Transfer on fluck Low of Equal. | 4 | 1 AL | 3000 | | ** Not indexable but contains a decre | mont n | | ı | | | | | TABLE I # COMPONENTS A DETAILED description of each of the Type 704 components will be found in this section. ### MAGNETIC TAPE UNITS IN ADDITION to magnetic core and magnetic drum storage, ten Type 727 tape units with an associated control unit are available on the 704. These tape units are compatible with the tape units used on the Types 702 and 705 EDPM. Each tape unit may contain a half-inch-wide oxide-coated plastic tape up to 2400 feet long on which information is stored as bits in the form of magnetized spots. The mechanism (read-write head) that reads or writes information on the tape is preceded by an 'erase head which erases the tape prior to writing, but not while reading. Hence, the same tape may be reused many times by writing new information on it. The reading, writing, and backspacing speed of the tapes is 75 inches per second. The longitudinal density of the tapes is 200 bits per inch. Reading or writing is done at the rate of 2500 words per second after the tapes are placed in motion. Tapes are read or written in a forward direction only; but the same tape may be written, backspaced, read, backspaced and written again in that order. Thus a record may be written and then read for checking purposes before writing the succeeding record. The normal rewinding speed of the tapes is 75 inches per second if the length of tape to be rewound does not exceed 450 feet. The tape unit automatically measures the length of tape to be rewound. The time for a high-speed rewind of a reel of tape of any length from 450 to 2400 feet is nearly constant (about 1.2 minutes, allowing for acceleration and deceleration time). Reflective spots on the tape, made of adhesive aluminum stripping, are photo-electrically sensed to indicate the load point and the physical end of the tape, as indicated in Figure 18. # **Operating Modes** Peripheral equipment (card-to-tape, tape-to-card, and tape-to-printer) requires information to be stored as binary-coded decimal (BCD) characters. Therefore, the 704 operates in two distinct modes, depending on the address used to select the tape unit: | MODE | OCTAL ADDRESS | DECIMAL ADDRESS | |--------|---------------|-----------------| | BCD | 201-212 | 129-138 | | Binary | 221-232 | 145-154 | When operating in the binary mode, the calculator reads or writes words without altering the bit pattern during transmission. When reading or writing in the BCD mode, the calculator alters the form of some of the BCD characters during transmission from or to Load Point Physical End the tape. See "Character Alteration in BCD Mode." Six bits make up one BCD character. Hence six BCD characters, comprising 36 bits, are transmitted with one copy and skip (CPY) instruction. # Physical Arrangement of Information on Tape A ³/₄-inch blank space on the tape defines the *end* of a record of information. A 3.75-inch blank space, a tape mark followed by its redundancy character, and an end-of-record gap define the *end-of-file* of information (Figure 19). A tape may contain more than one file, and a file may contain any number of records. Each record contains an arbitrary number of words. During a write operation, six bits and a redundancy check bit are recorded laterally across the tape. The lateral redundancy check bits are automatically placed on the tape to cause an even or odd number of binary 1's in each lateral row of tape for the BCD or binary mode, respectively. Also, at the end of each record written, a longitudinal redundancy check bit is placed automatically in each of the seven channels to cause an even number of binary 1's in each channel of that particular record. The longitudinal check is always an even check. If information stored on a tape in the BCD mode is read in the binary mode, the tape-check indicator and corresponding light on the operator's console go on (because the lateral check bits are different), and the information is transmitted to storage in unaltered form. If a binary tape is read in the BCD mode, the tape-check indicator and light turn on, and the information is transmitted to storage in altered form. In Figure 19, the tape is moving in the direction indicated by the arrows. Each y corresponds to the redundant bit for each six bits (x's) stored laterally, and each z corresponds to the redundant bit for each FIGURE 19 channel of the preceding record. The tape mark in the end-of-file gap has its own longitudinal check bits .020 inch beyond the tape mark. These check bits are identical to the tape mark—the special character 0001111₂. ### Writing The programming needed to write a record is write select (WRS) Y (Y denotes the tape unit and mode of checking), followed by a CPY instruction, to be repeated as many times as there are words in the record. This iterative procedure is known as a copy loop. After interpreting the first CPY, the calculator automatically delays its execution if the tape is not yet positioned to transmit the first word. The WRS Y instruction starts in motion the tape designated by Y and selects the checking mode. If the copy loop is terminated, i.e., the calculator fails to receive a CPY within 336 microseconds (µs) of the preceding CPY, the calculator writes the longitudinal check bits and end-of-record gap and disconnects the tape unit. If another CPY is given after the tape is disconnected, the calculator will stop with the readwrite check light turned on. When a tape is written, the MQ cannot be used for computing between successive CPY instructions, or for 500 μ s after the final CPY execution. The delay instruction, WRS 3338 delays any instruction execution until the MQ is free. # Write End of File The write end of file (WEF) causes the tape to erase an end-of-file gap and write a tape mark plus the corresponding longitudinal check bits. The calculator disconnects the tape immediately upon interpretation of the WEF instruction; hence, the MQ is free for computing while this instruction is executed. No tape instruction may be executed for 50 milliseconds following a WEF instruction. To write more than one file of information, it is only necessary to write an end of file after writing the first file of information. At any later time, the first record of the second file of information can be written. When a file, other than the last file, on a multi-file tape is rewritten, all succeeding files on the tape must be rewritten if they are to be read. # Reading The execution of an RDS instruction starts the tape in motion, selects the checking mode, and clears the MQ. If the MQ is used for computing between the RDS and the first CPY, it must be cleared by the program before the first CPY instruction is given. After a CPY Y, during the reading loop, the word read into location Y in core storage is immediately available to the program. If a CPY is not given within 288 µs of the preceding CPY, the calculator disconnects the tape, which continues in motion until it reaches the endof-record gap. Any input-output component other than a tape may be selected as soon as the calculator disconnects the tape. A select instruction, referring to tape, is not executed until the previously selected tape unit has been disconnected from the calculator. A CPY given after the calculator has disconnected the tape (with no other input-output unit selected) causes the calculator to stop with the read-write check light turned on. If there are n words in a record being read, where n is unknown, the programmer may give CPY instructions until the calculator senses the end-of-record gap on the tape. CPY instruction n+1 will not be executed; instead the calculator will skip two instructions following the CPY instruction and proceed from there. If an end-of-file gap is met, an RDS instruction must be executed to move the tape over the end-of-file gap and set up an end-of-file condition. The first CPY instruction given after the RDS is not executed; instead the calculator skips one instruction following the CPY and proceeds from there. It is possible to bypass records (forward spacing) by executing RDS Y instructions without giving any CPY instructions. Because the lateral redundancy check is always effective on the first word of the record, whether it is transmitted to storage or not, the logical address of the tape unit must indicate the correct mode during tape spacing to avoid a tapecheck indication. Each time a tape is selected by the RDS instruction and read or spaced over, the longitudinal redundancy information is automatically recalculated and compared with the redundancy information stored at the end of the record. If there is a discrepancy, the tape-check indicator and light go on and the on or off condition of seven neon lights on the tape control unit
indicate the tape channels in error. If Y indicates a tape unit, another RDS Y instruction turns off the seven lights on the tape control unit, but the RDS does not turn off the tape check indicator. It is possible to read the first n words in an N-word record where $n \le N$. When n < N, the nth word will be stored by the nth CPY, and the 704 will be disconnected after the n+1 word appears in the MQ. The MQ may not be used between successive CPY instructions nor may it be used for 500 μ s following the nth CPY. # Physical End of Tape When the reflective spot, indicating the physical end of the tape, is reached during a write operation, the tape indicator and tape indicator light are turned on. There is no interruption to either the writing operation or subsequent calculator operations unless the program ignores the indication of the physical end of the tape and writing is continued, detaching the tape from the reel. The ETT instruction provides a means for the program to test the status of the tape indicator and to transfer to those instructions needed to terminate the file and rewind the tape reel. Because the ETT instruction turns off the tape indicator, the program should not attempt further writing on this tape because there will be no second indication that the end of the tape has been reached. ### Backspacing A backspace tape (BST) Y instruction spaces the tape one record backward. (Y can indicate either mode because no checking occurs when tape is backspaced.) When a BST Y is given where Y designates a tape in a rewound position, the calculator immediately disconnects the tape. The BST acts as a no operation instruction in this case. If the BST Y is given, where Y designates a tape that is positioned to read the first record of a second file, the tape is moved so that the read-write head is positioned 3/8" in front of the tape mark. When the next operation on tape unit Y is a read instruction, the execution of a read in BCD mode differs from the execution of a read in the binary mode. In the BCD mode, the tape mark and its check character are recognized as an end-offile and on the first CPY instruction the calculator skips one instruction and proceeds from there. In the binary mode, the tape mark, without the gap, is read as a record of one character and no end-of-file indication is given. Executing another BST backspaces the tape over the last record in the first file. The MQ may be used for computing while the BST instruction is being executed. The maximum number of times that BST followed by a write instruction is given is ten. Any number greater than ten may cause an end-of-file gap to be recorded. # Rewinding The rewind (REW) Y instruction causes the tape designated by Y to return to its load point. If a REW is given while the tape is being read, the tape moves to the end of the record before the REW becomes effective. After the REW becomes effective, any input-output unit may be selected. # **Testing Redundancy Information** The redundancy tape test (RTT) instruction tests the status of the tape-check indicator during tape reading or after information is read from a tape. After the last character of a record has been copied into storage, 275 μ s are required for the longitudinal redundancy check character to be interrogated in the tape control unit. Allowing for a 25 μ s margin of safety, the RTT instruction tests both lateral and longitudinal information for the entire record if it is given 300 μ s after the last word of the record is copied into storage. If the *delay* instruction, was 333₈, is given after the CPY is executed for the last complete word in the record and before the RTT is given, the calculator is allowed to complete the longitudinal tape checking before executing the RTT. When not all of the words in a record are copied into storage and the remainder of the record is spaced over, the delay instruction will not effect the necessary delay for the longitudinal redundancy check to be completed, because the calculator disconnects the tape immediately when it fails to receive a CPY within the specified time requirement. The delay instruction requires ony 24 μ s execution time after the tape is disconnected. To obtain a longitudinal check, therefore, the record spacing time must be used in computing before the RTT is given. ### **Timing** When an RDS or WRS is given, several milliseconds are required to start the tape in motion and position it to read or write the first word of the record. After its interpretation, the first CPY execution is automatically delayed an amount of time that is the difference between the time the CPY is given and the time the CPY is executed. See Table II. | Current
Instruction | Subsequent
to | First CI
Be Given | | | CUT | CPY
ED WI | THIN | |------------------------|------------------|----------------------|----|----|-----|--------------|------| | WRS | REW | 40 | ms | 50 | ms | 60 | ms | | WRS | WRS | 7 | ms | 10 | ms | 12 | ms* | | WRS | RDS | 7 | ms | 10 | ms | 12 | ms | | WRS | BST | 7 | ms | 10 | ms | 12 | ms | | RDS | REW | 20 | ms | 50 | ms | 60 | ms | | RDS | WRS | 3 | ms | 10 | ms | 12 | ms | | RDS | RDS | 3 | ms | 10 | ms | 12 | ms* | | RDS | BST | 3 | ms | 10 | ms | 12 | ms | "Some delay time may be used for computing if the tape is selected for reading or writing the next record before the tape stops moving. Thus, if t is the time between the last CPY of the preceding record and the WRS and if $t \le 3$ ms, then 10 - t ms can safely be used for computing before giving the first CPY of the next record. If t is the time between the last CPY of the preceding record and the RDS and if $t \le 2.5$ ms, then 8.5 - t ms can safely be used for computing before giving the first CPY of the next record. The calculator will execute all instructions other than input-output instructions 24 μ s after the BST is executed. Thirty-six μ s after the BST is executed, the calculator will execute all instructions other than tape input-output instructions. The total time required to backspace the tape one record is computed by adding (1) the time required to start the tape moving in a backward direction, (2) the time required to space over the n words in the record, and (3) the time needed to stop and reposition the tape. The timing is given below. | CURRENT | SUBSEQUENT | TOTAL | TIME | IN MS | | |-------------|------------|--------|------|--------|----| | INSTRUCTION | то | START | МО | VE STO | Р | | BST | WRS | 43 ± | 8.6 | .4n | 25 | | BST | RDS | 30.5 ± | 6.1 | .4n | 25 | | BST | BST | 34.5 ± | 6.9 | .4n | 25 | If the tape is moving when the BST is given, the execution of the BST is delayed until the tape has stopped. This delay is 3 ms if the BST is given immediately after copying the last word of a record. The WEF execution time is 50 ms. Any inputoutput unit other than tape may be used while the WEF is being executed. ### Simultaneous Tape Writing The following procedure can be used to write simultaneously on two or three tapes with logically distinct addresses if *all* tapes involved are rewound or if *all* tapes are not rewound. Writing simultaneously on two tapes X_1 and X_2 (octal addresses): Let X_2 equal 1, 2, ... 12₈, specifying any one of the ten tapes. Let X_2 equal 1, 2, ... 12₈, specifying any one of the ten tapes. | BCD MODE WRS $320 + X_1$ WRS $200 + X_2$ | BINARY MODE WRS 320 $+ X_1$ WRS 220 $+ X_2$ | | | |--|--|--|--| | 7 ms or less computation | 7 ms or less computation | | | | Copy loop | Copy loop | | | Writing simultaneously on three tapes X_1 , X_2 , X_3 (octal addresses): Let X_1 equal 1, 2, ... 12₈, specifying any one of the ten tapes. Let X_2 equal 1, 2, ... 12₈, specifying any one of the ten tapes. Let X_3 equal 1, 2, ... 12₈, specifying any one of the ten tapes. | BCD MODE | BINARY MODE | |-------------------|-----------------| | wrs 320 $+ X_1$ | wrs 320 + X_1 | | wrs 320 $+$ X_2 | wrs 320 $+ X_2$ | | wrs 200 $+$ X_3 | wrs 220 $+ X_3$ | | | | | 7 ms or less | 7 ms or less | | computation | computation | | | | | Copy loop | Copy loop | As many as three tapes can be written simultaneously by manually setting the rotary selector switches on the tape units to the same number and addressing the WRS to that number. Thus, if the number is 1, then WRS 201 writes information simultaneously in the BCD mode on the tapes whose selector switches are set to 1. ### Incomplete Word on Tape When a tape prepared by the 702 or 705 EDPM's or on the card-to-tape peripheral equipment is read, it is possible that some records do not have an integral multiple of six BCD characters. Note that a 36-bit word is transmitted from the MQ to core storage only when six groups of six bits each (six bits correspond to one character) are transmitted from the tape to the MQ. When reading occurs in the BCD mode, the following procedure occurs automatically during the execution of a CPY: - 1. If there are no more characters on the tape, the end-of-record skip takes place. - 2. The altered character from the tape replaces the $C(MQ)_{S,1-5}$. - 3. The C(MQ) are rotated left six places. - 4. Step 1 (and possibly steps 2 and 3) is repeated until there are six characters in the MQ. - 5. The C(MQ) are stored and the MQ is cleared. The calculator then proceeds to the next sequential instruction following the CPY instruction. If less than six characters comprise the last word on tape, a CPY instruction cannot transmit them to storage. A CPY instruction given for the incomplete word causes an end-of-record skip, leaving the incomplete word in the MQ. The tape check indicator will not be turned on because an incomplete word has entered the MQ. (Note: This will not decrease tape-checking when binary tapes are being read, because detectable incomplete binary words will be detected by the redundancy check.) If a CPY instruction is
not given for the incomplete word, the extra characters are automatically brought into the MQ (because word n + 1 of a record is always transmitted to the MQ after n CPY's). A tape check occurs only if the computed lateral or longitudinal bits do not compare with those on the tape. Use the delay instruction, was 3338 to delay the execution of any instruction until the MQ is available. After the delay instruction has been given, the store MQ (STQ) instruction may be used to store the contents of the MQ in core storage. When an incomplete word is brought into the MQ from tape, the unused portion of the MQ contains zeros. ### Character Alteration in BCD Mode Altering characters when reading or writing in the BCD mode on the 704 changes the zones of some of the characters and the numerical code of the character representing zero. The zones differ from the 702 code because the 704 requires this zone change to help fast sorting procedures. Because redundancy checking is an even parity check on peripheral equipment (and in the BCD mode on the 704), the pure zero would not have a non-zero bit. Several pure zeros would correspond to an end-of-record gap. Thus, the zero character is changed to 00 1010 in the BCD mode. The zone alterations follow: | CLASS | in 704 | ON TAPE | |-----------|--------|---------| | Numerical | 00 | 00 | | A to I | 01 | 11 | | J to R | 10 | 10 | | S to Z | 11 | 01 | Table III shows the automatic alteration of all characters during transmission in the BCD mode. | CHARACTER | IN STORAGE | ON TAPE | CHARACTER | IN STORAGE | ON TAPE | |----------------|------------|---------|----------------|------------|---------| | 0 | 00 0000 | 00 1010 | A | 01 0001 | 11 0001 | | 1 | 00 0001 | 00 0001 | В | 01 0010 | 11 0010 | | 2 | 00 0010 | 00 0010 | С | 01 0011 | 11 001 | | 3 | 00 0011 | 00 0011 | D | 01 0100 | 11 0100 | | 4 | 00 0100 | 00 0100 | E | 01 0101 | 11 010 | | 5 | 00 0101 | 00 0101 | F | 01 0110 | 11 0110 | | 6 | 00 0110 | 00 0110 | G | 01 0111 | 11 0111 | | 7 | 00 0111 | 00 0111 | Н | 01 1000 | 11 1000 | | 8 | 00 1000 | 00 1000 | I | 01 1001 | 11 100 | | 9 | 00 1001 | 00 1001 | + 0 | 01 1010 | 11 1010 | | # | 00 1011 | 00 1011 | • | 01 1011 | 11 101 | | @ | 00 1100 | 00 1100 | 口 | 01 1100 | 11 1100 | | | 10 0000 | 10 0000 | Blank | 11 0000 | 01 0000 | | J . | 10 0001 | 10 0001 | / | 11 0001 | 01 000 | | K | 10 0010 | 10 0010 | S | 11 0010 | 01 0010 | | L | 10 0011 | 10 0011 | T | 11 0011 | 01 001 | | M | 10 0100 | 10 0100 | U | 11 0100 | 01 0100 | | N | 10 0101 | 10 0101 | V | 11 0101 | 01 010 | | O | 10 0110 | 10 0110 | W | 11 0110 | 01 011 | | P | 10 0111 | 10 0111 | X | 11 0111 | 01 011 | | Q | 10 1000 | 10 1000 | Y | 11 1000 | 01 100 | | R | 10 1001 | 10 1001 | Z | 11 1001 | 01 100 | | $\overline{0}$ | 10 1010 | 10 1010 | ‡ | 11 1010 | 01 101 | | \$ | 10 1011 | 10 1011 | , | 11 1011 | 01 101 | | * | 10 1100 | 10 1100 | % | 11 1100 | 01 110 | | & | 01 0000 | 11 0000 | | | | TABLE III # Manual Operation of the Tape Units On each tape unit, manual operations are performed by using the keys and lights appearing in Figure 20. The rotary selector switch on a tape unit determines which one of the ten tape addresses may select this unit. If the switch is set to 1, the unit may be addressed by 201₈ in the BCD mode or 221₈ in the binary mode. Zero corresponds to the tenth tape unit. The select light is turned on only when the calculator selects the tape unit. The tape unit is in ready status (the ready light is on), provided the tape is loaded into the columns, the reel door interlock is closed, and the tape unit is not in the process of finding the load point (rewind or load operation). Manual control is indicated when the ready light is off, provided the tape unit is not rewinding or loading and the reel door is closed. Pressing the start key places the tape unit under control of the tape control unit (and, indirectly, the calculator) and causes the ready light to be turned on, provided the tape unit is in ready status. Pressing the reset key removes the tape unit from the calculator's control. It turns off the ready light, and resets all controls to their normal positions. It also stops any tape operation which has been initiated (except high-speed rewind, which will revert to low-speed rewind). After the tape is loaded into the vacuum columns and low-speed rewind is in progress, the reset key may be pressed again to stop the low-speed rewind. When the door is open, the reel door interlock prevents operation of the reel drive motors. If the reel door is closed and the ready light is off, pressing the load-rewind key causes a fast rewind at the end of which the tape is loaded into the vacuum columns and searched in a backward direction for the load point. Pressing the unload key causes the tape unit to remove the tape from the vacuum columns and raise the head cover, regardless of the distribution of the tape on the two reels. If the tape is not at the load point when the operator wishes to change it, he starts a load point search by pressing the load-rewind key. The tape indicator and the tape indicator light in a tape unit are turned on when the tape breaks or when the physical end of tape is reached during a write operation. The ETT may be used in a program to interrogate the status of the tape indicator in a selected tape unit. If the program selects the tape unit for reading or writing after the tape indicator is turned on, there will be no interruption to normal calculator operation. The tape indicator and the tape indicator light may be turned off by pressing the reset key on the tape unit and then pressing the unload key on the tape unit. Execution of the ETT will turn off the tape indicator and the tape indicator light in a selected tape unit. The plastic tape reels are $10\frac{1}{2}$ inches in diameter. They are designed so that the front and back sides of the reel are different (Figure 21). In normal operation, a special ring is inserted in a groove in the back side of the reel to depress a pin which is then under spring tension. If the special ring is removed from the reel, the pin rides freely in this groove and FIGURE 20 a writing interlock is automatically set. Also, the file protection light is turned on to inform the program that it is impossible for the program to write on the tape. However, this tape may be read, backspaced, or rewound freely when the file protection light is on. #### MAGNETIC DRUMS In Addition to magnetic core and magnetic tape storage, two Type 733 magnetic drum units are available for the 704. Each magnetic drum unit has a storage capacity of 8192 words, each word consisting of 36 bits. A drum unit contains two distinct physical drums, each with a storage capacity of 4096 words. Each physical drum consists of two logical drums whose octal addresses are indicated in Figure 22. Each logical drum has a storage capacity of 2048 words. A logical drum is selected by giving the appropriate address 193-200 or 301-310 octal. ## Physical Arrangement of Words on Drum The 2048 locations on each logical drum can be individually addressed by integers in the range 0000-2047 decimal (0000-3777 octal). A record (block) of words is normally stored on a drum in sequentially numbered locations. The programmer must indicate the drum address where the first word of the core storage record is to be written on or read from the drum. The number of CPY instructions executed in the copy loop determines the number of words in the record. Figure 23 illustrates the physical arrangement of words on a logical drum. The addresses are numbered octally. Observe that, when reading or writing a continuous record, the calculator refers to every eighth word of the drum for consecutive addresses. Each logical drum has 256 sectors. Therefore, it FIGURE 22 must make eight complete revolutions for all 2048 words to be read or written as a continuous record. Note: Drum sectors are numbered from 000 to 255 (000 to 377 octal). The eight least significant binary positions of the drum address of a word determine the number of a drum sector where a word is stored. ## Reading and Writing Because 96 μ s are needed to read or write one word, successive words are written on or read from the drum at the rate of 10,000 words per second. A drum read select (RDS) Y or write select (WRS) Y selects one of the eight logical drums indicated by the address Y and connects it to the calculator. The drum then remains indefinitely selected waiting for a locate drum address (LDA) instruction. (If an LDA is not given, then the drum remains selected waiting for the first CPY. The 11 least significant bits of the address part of the C(Y) in the LDA Y instruction specify the initial drum location of the record. If an LDA Y is not given, the first CPY refers to the drum address 0000. The automatic address counter for the drum has only 11 binary positions. Hence, if a 38-word record begins at 2040, the last word of the record is found at location 0029. Following an LDA, the first CPY must be given within 36 μ s (three cycles); otherwise, the drum may disconnect. The LDA is an indexable instruction. When information is written on a drum, the execution of a CPY Y instruction causes the word at location Y in core storage to be loaded into the MQ from which it is transmitted to the drum. During a reading operation, the execution of a CPY Y instruction causes the word from the drum to be loaded into the MQ from which it is transmitted to location Y in core storage. The MQ cannot be used for computing during the copy loop. Between successive CPY's, three cycles (36 μ s) are available for programming (excluding the CPY itself). When a CPY is not given within three cycles of the preceding CPY, the drum disconnects. If a CPY is given after the drum has disconnected, the calculator stops with the read-write check light on. Table IV shows the minimum time T between the execution of the RDS or WRS and the LDA (or first
CPY if no LDA is given). During this entire time T, the calculator is available for computing. However, if any portion of time T is not used for calculating, the calculator delays the amount of time which is the difference between T and the time used for calculating during this period. #### **Drum Motion Time** The minimum time between the execution of the last copy of record x and the execution of the first CPY of record x+1 is A, D, or \overline{A} (Table IV). The average access time A is 12.29 ms, although it may be as high as 24 ms. To compute D, subtract the final drum address in the preceding record from the initial drum address in the current record. If the result is negative, add 2048 to the result. Divide the result by 256; the quotient Q and the remainder R appear in the formula: D=.012Q+.096R. (This formula is used in computing the rotation time when the physical drum selected is the same as the last one used.) To compute \overline{A} , divide the initial drum address by 256; the quotient Q' and remainder R' appear in the formula D' = .012Q' + .096R'. (This formula is used in computing the rotation time when the physical drum selected is different from the last one used.) The computed rotation time is valid only when A, D, or $\overline{A} > T + .12$ ms. ## Multiple Record Because one drum revolution requires 24 ms, it is possible to read multiple records during a single revolution if the words to be read are stored on one physical drum in an optimal way. If the last CPY of the first record is followed immediately (within three cycles) by an RDS selecting the same physical drum, the LDA may be given for a drum address that is at least eight sectors beyond the drum address of the last word in the preceding record. Six sectors are passed over during execution of RDS and one sector is passed over during execution of LDA. An additional sector must be added for each 84 μ s, or portion thereof, beyond the allowable 500 μ s of programming between the RDS and the LDA instructions. For an example, assume that a record is written on a drum where the last word of the record is stored in location 0200₁₀. We wish to know the earliest sector in which to place the first word of the next record so that both records can be read during the same drum | PREVIOUS INSTR. | CURRENT INSTR. | T (in ms) | rotation time (in ms) | |-----------------|----------------|-----------|--------------------------------| | RDS 301 or 302 | RDS 301 or 302 | 0.5 | D (or A if insufficient infor- | | RDS 301 or 302 | wrs 301 or 302 | 15.0 | mation is available to use the | | wrs 301 or 302 | RDS 301 or 302 | 15.0 | formula for D) | | wrs 301 or 302 | wrs 301 or 302 | 15.0 | | | RDS 301 or 302 | RDS 303-310 | 0.5 | $\overline{A} = A + D'$ | | RDS 301 or 302 | WRS 303-310 | 15.0 | $\overline{A} = A + D'$ | | wrs 301 or 302 | RDS 303-310 | 15.0 | $\overline{A} = A + D'$ | | wrs 301 or 302 | WRS 303-310 | 15.0 | $\overline{A} = A + D'$ | TABLE IV COMPONENTS 39 revolution when there are (a) $700 \mu s$ of programming between records, (b) $840 \mu s$, (c) $500 \mu s$ or less. (a) $700 \div 84 = 8 +$ = 9 sectors for computing $\frac{1}{10} \text{ sectors to execute LDA}$ $\frac{1}{10} \text{ sectors to be skipped}$ Next record can begin at 0211_{10} . (b) $840 \div 84 = 10 \text{ sectors for computing}$ $\frac{1}{11} \text{ sectors to execute LDA}$ $\frac{1}{11} \text{ sectors to be skipped}$ Next record can begin at 0212_{10} . (c) The minimum sector allowance is seven sectors ## PUNCHED CARDS (this includes the sector necessary for the LDA). Next record can begin at 020810. In most applications magnetic tape is used as the principal input medium. It may be desirable to use IBM cards as an input medium in some situations, where the volume of input is sufficiently small to permit an economical operation. In either case, IBM cards are used as the medium for initially recording data because of their great flexibility and because of the availability of apparatus for key punching, verifying, and duplicating. Errors are easily detected and corrected, input data may be readily prepared on several key-punches simultaneously, and the cards may be collected before entry into the computer. Cards are particularly desirable when one wants to have manual access to a file. They can be easily separated. Their contents may be printed on them. It should be emphasized that the punched card input and output may represent any alphabetic character or special symbol, provided only that a program exists to recognize the IBM code for this information. A program may also provide for quantities to be represented in any number system and read or punched accordingly. Entering a program on cards may be done in such a way that instructions are punched, one to a card, in the form most desirable to the programmer (e.g., in decimal notation). The computer can then be supplied with a standard program to assemble the instructions in the desired order. Then, if errors are detected or if changes must be made, the wrong cards are removed, the correct ones (not necessarily the same number of cards) are added, and the computer prepares the new program. Note that there is no need to repunch any but the cards in question. The card-feeding mechanism in the card reader is similar to that in the Type 402 Accounting Machine and includes two sets of 80 reading brushes. Correspondingly, there are 80 punching magnets and 80 punching brushes in the card punch. Only 72 columns of the standard IBM card, however, can be read into core storage, and only 72 columns can be punched from core storage (unless split-column wiring is used). Any 72 columns of the card can be selected through control panel wiring. For simplicity in the following discussion, assume that columns 1 to 72 of the card are used for both reading and punching. Binary information is represented on a card as follows: each of the 12 rows of the card is split into two parts, the left half consisting of columns 1 to 36 and the right half of columns 37 to 72; each half row can be treated as a 36-bit word and read into a location in core storage. Figure 24 shows how the card is divided. In this particular example, the first 72 columns of the card are used. Each of the rows is split into half-rows of 36 columns each. Thus, the half-row identified by the circled 9 is named the 5-row left. Similarly, the row identified by the circled 10 is named the 5-row right. Thus, there are 24 half-rows in the card. One full word of binary information can be punched in any half-row (including sign). The machine regards any punched hole as a binary 1. "No punch" indicates a binary 0. Thus, an 8-punch in column 36 of the card is regarded by the machine as a binary 1 in the least significant position of the binary word punched in the 8-row left. The leftmost position of each half-row is reserved for the sign bit of the word. A binary 1 represents a negative sign, while a binary 0 represents a positive sign. Note: The exact position of a word that each column represents is completely arbitrary according to how the particular control panel is wired. Observe that this card representation of 24 binary words does not mean that the cards must always be punched with true binary information. The holes in the card can just as well be numerical punching in the standard decimal card code, alphabetic punching, or control punching. It is necessary only to provide a suitable program for the computer to translate between the binary code in which it operates and the | Left Half | Right Half | Unused
Columns | |---|--|-------------------| | | 29 | 12-Row | | <u></u> | 22 | 11-Row | | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 00000000 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | 1 1 1 1 1 1 1 1 1 | | 2 | 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 | 2 2 2 2 2 2 2 2 | | 3 | 3 | 3 3 3 3 3 3 3 3 | | 4 | 4 | 4444444 | | 555555555555555555555555555555555555555 | 5 | 5 5 5 5 5 5 5 5 | | 666666666666666666666666666666666666666 | 666666666666666666666666666666666666666 | 66666666 | | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | 11111111 | | 888888888888888888888888888888888888888 | | | | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | the state of s | | FIGURE 24 particular code used on the card. The translation to and from the decimal numerical code, for instance, can proceed simultaneously with reading and punching so that the over-all card-handling speed is not reduced below the standard rates of 150 or 250 cards per minute for reading and 100 cards per minute for punching. Feed cards face down, 9's edge first, in both the card reader and card punch. The internal card circuits are arranged so that the 24 half-rows of the card are read or punched in the sequence indicated by the circled numbers in Figure 24. The sequence of reading or punching full words is then as follows: 9-row left, 9-row right, 8-row left, 8-row right, and so on to 12-row left, 12-row right. For reading and punching cards, a unit record is defined as the information contained in *one* card. A file consists of any number of unit records. It takes the form of a deck of cards. Note that definitions of unit records and files are usually different, depending on the particular input or output component being discussed. #### CARD READER EITHER one of the two Type 711 card readers, model 1 or model 2, can be used on the 704. The model 1 reads cards at the rate of 150 cards per min- ute, the model 2 reads cards at the rate of 250 cards a minute. The principal difference is found in the timing section. For a program to cause the calculator to read all of the information punched on a card into core storage, it is necessary to give an RDS instruction with an address of 209 (card-reader identification) followed by 24 CPY instructions. The RDS instruction causes the card-feeding mechanism to start in motion. The program then is free to continue any operations until the 9-row of the card appears under the reading brushes. At this time, the program must provide a CPY Y which causes the word punched in the 9-row left to be read and stored in core storage location Y. The program can then resume until the calculator is prepared to read information punched in the 9-row right. The program now must supply another CPY instruction to read this word into core storage. This procedure continues until all 24 half-rows have been read. Because of their functions, these CPY instructions are called 9 left CPY, 9 right CPY, and so on. Another RDS must be given to read another unit record (card). The RDS instruction can be given, followed immediately by the 24 CPY instructions in succession, without any other operations being done between instructions. In such a case the calculator waits automatic- COMPONENTS 41 ally until a half-row is in position to be read before executing the CPY instruction. The intervals of time between these instructions which may be used for useful calculating are definitely limited and are completely specified below. If a CPY is given after the card reader is in position to read a given half-row, the machine stops, and the read-write check light turns on at the operator's console. The amount of calculating time available between the last CPY instruction for a given card and the RDS instruction that initiates the reading of a succeeding card is unlimited. But if an RDs instruction does not occur within a definite time limit, the card reader stops. It will start up only after the new RDS instruction has been received. To keep the card reader in continuous motion and operating at its full speed of 150 or 250 cards per minute, the time limits discussed below must be observed. Calculator operation is such that during execution of a CPY, the word read from a half-row of the card first enters the MQ before being sent to core storage. This, of course, destroys any information previously stored in the MQ. If a 25th CPY instruction is given after an RDS instruction, the card reader will already have set up an end-of-record condition (denoting that all 24 half-rows of the card have been read). Under this condition, the 25th CPY is not executed, and the program skips to the *third* instruction after the CPY. In this way the program may transfer control to a section that will cause the succeeding card to be read. When the hopper of the card reader becomes empty, the calculator stops. Depress the start key on the card reader to allow the cards remaining ahead of the reading station to be read under control of the program. After the last card has been read in this way, and if another RDs instruction followed by a CPY is given, the card reader sets up an end-of-file condition. Under this condition the CPY instruction is not executed, and the program skips to the second instruction following the CPY. In this way, for example, control may be transferred to a particular section of the program that continues a calculation interrupted by the card-reading procedure. The contents of the 24 locations of core storage, into which the 24 half-rows have been read, is known as the *card image*. By a program that suitably manip- ulates this card image, decimal information punched in standard IBM code may be converted to binary information. In reading cards it is not always necessary to follow an RDs by 24 CPY instructions. The card reader normally reads half-rows for every following CPY up to 24. If, however, after a few CPY instructions, another RDS is given, the card reader automatically ignores any succeeding half-rows that have not been read and starts reading a new card. Thus, for instance, it is possible to read the first five words of a card and ignore the rest. It is not possible, however, to read the first five words, skip the sixth and seventh words, and continue on reading the card. A CPY instruction designed to accomplish any reading of this type always results in a machine stop and a read-write check light. If successive RDs instructions are given with no intervening CPY instructions, the net result is the feeding of cards through the machine with no words being read into storage. #### Timing for Model 1 Cards are read at the rate of 150 per minute. In continuous card reading, 292 ms of the card cycle of 400 ms are available for useful calculating. The difference, 108 ms, is required for the execution of the CPY and RDS instructions and appropriate timemargins for safe synchronization of mechanical and electronic components. The maximum safe times available for computing between executions of CPY instructions are indicated in Figure 25. For example, after execution of the 9-left CPY, 540 µs are available before the 9-right CPY must be given; and after execution of the 9-right CPY, 15 ms are available before the 8-left CPY execution. The RDS must be given in the hatched portion for continuous operation of the card reader. After the 12-right CPY execution of a card, however, it takes 20 ms before the machine can execute an RDS for the next card. If the RDs then, is given t ms after the 12-right CPY, and if t is less than 20, the machine will compute (i.e., it will proceed with any intervening programs) for these t ms. Upon receiving the RDS, however, the program will be delayed until 20 ms (from the 12-right CPY) have elapsed. If the RDs is given after the interval of 20 ms, the program will not be delayed. So to be able to compute for all of the available time between cards, and to keep the card reader in continuous motion, it is necessary to give the RDs between 20 and 50 ms after the 12-right CPY. If the card reader is not in motion and an RDS is given, the average elapsed time between the RDS execution and the first 9-left CPY execution will be 270 ms. However, only 50 ms are available for calculation after the RDS is given. #### Timing for Model 2 Cards are read at the rate of 250 per minute. In continuous card reading, 180 ms of the card cycle of 240 ms are available for computing. The difference, 60 ms, is required for the execution of the CPY and RDS instructions and appropriate time-margins for safe synchronization of mechanical and electronic components. The maximum safe times available for computing between executions of CPY instructions are indicated in Figure 26. As in the Model 1 card reader, 540 μ s are available for computing between the left and right CPY instructions. However, there are only 8 ms available for computing between the right and left CPY instructions. The RDS must be given in the hatched portion for continuous operation of the card reader. After the 12-right CPY, it takes 12 ms for the calculator to disconnect the card reader. No input- output instructions can be executed until the card reader has disconnected. If the RDs, then, is given t ms after the 12-right CPY, and if t is less than 12, the calculator will compute for these t ms. Upon receiving the RDs, however, the program will be delayed until 12 ms (from the 12-right CPY) have elapsed. If the RDs is given after the 12 ms interval, the program will not be delayed. So to be able to compute for all of the available time between cards, and to keep the card reader in continuous motion, it is necessary to give the RDs between 12 and 30 ms after the 12-right CPY. If the RDs is given between 30 ms and 90 ms after the 12-right CPY, the card reader will stop and start again with a loss of only 60 ms. If the card reader is not in motion and an RDS is given, the average elapsed time between the RDS and the 9-left CPY execution will be 110 ms. However, only 55 ms are available for computing after the
RDS is given. #### Manual Operation To prepare the card reader for control by the calculator, once the control panel is in place, it is necessary only to fill the hopper with cards and hold the start key until the ready light goes on. Figure 27 shows the card path through the card reader, and indicates the relative locations of the card levers, con- FIGURE 26 Figure 27 tacts, and reading brushes as cards move through the reader under control of the stored program. After the card reader has been prepared for calculator control and the ready light is on, there are two cards in the reader, and all three card contacts (upper-card lever, lower-card lever, and hopper contact) are closed. #### KEYS AND LIGHTS Start Key. Serves to run in cards initially and to turn control of the card reader over to the calculator. The key is operative only if the power is on, no fuses are blown, there is no card-feed failure, the stacker is not full, the control panel is in place, and the control panel calculator switch is wired ON. If there is no card waiting ahead of the read brushes, press the start key to operate the card feed for one or more card cycles until the key is released or until the card enters the station just ahead of the read brushes. When the first card reaches the station ahead of these brushes, the start key causes control to be turned over to the calculator and the ready light to go on. If there is a card waiting ahead of the read brushes, pressing the start key merely turns control over to the calculator, and the ready light is turned on. If there are no cards in the hopper or in the card feed ahead of the read brushes, pressing the start key turns on the running light and allows the calculator to set up an end-of-file condition. While the ready light is on, the start key cannot be used to feed cards. Stop Key. Causes the calculator to lose control over the card reader, and turns off the ready light. If a card is being read at the time the stop key is pressed, the action is delayed, and the card reader does not stop until the end of the current card cycle. The calculator then holds up on the next CPY that refers to the card reader. Feed Key. Permits cards to be run out of the card feed manually when the card reader is not under control of the calculator. If the power is on, no fuses are blown, the stacker is not full, and the ready light is off (indicating that the calculator does not have control), pressing the feed key causes the card feed to operate for one or more card cycles until the key is released. While the ready light is on, the feed key is inoperative. The stop key may be used to turn off the ready light in order to operate the feed key. Ready Light. Indicates that the card reader is under control of the calculator. The ready light is turned on by the start key. It is turned off as follows: - 1. By the stop key. - When the lower card lever is open at the end of a card cycle. - 3. When the hopper contact opens at the end of a card cycle (after which it may be turned on again by means of the start key). - 4. When there is a card-feed failure. - 5. When a fuse is blown. - 6. When the power goes off. - 7. When the control panel is removed. - 8. When the stacker is full. The hopper contact opens when the hopper runs out of cards. This turns off the ready light and stops the card reader. The card reader can be started again by pressing the start key, regardless of whether more cards meanwhile were placed in the hopper. Select Light. Goes on when the calculator gives an RDS instruction for this card reader. The light goes off when the card cycle called for by the RDS instruction has been executed. Card-Feed Stop Light. Is on whenever there is a card-feeding failure. Power-on Light. Indicates that the DC power is on in the card reader. Fuse Light. Indicates a blown fuse, if the main power is still on. #### CARD-FEED FAILURE When a card-feed failure occurs, the card-feed stop light is turned on. The start key is inoperative until the following procedure is accomplished. - 1. Remove all cards from the hopper. (Note that this opens the hopper contact and turns off the ready light.) - 2. Run out the cards in the feed by using the feed key. - 3. Press the stop key. The last card in the stacker will not have been read. The stop key will not reset the card-feed stop light if there are still cards in the hopper or in the feed ahead of the read brushes. #### END-OF-CARDS PROCEDURE When the last card in the hopper is fed, the hopper contact opens, the calculator stops, and the ready light is turned off. If, at this point, there are more cards for the card reader to read, it is necessary only to reload the hopper and press the start key. The calculator will then read the cards in the hopper as if they were a continuation of the previous sequence of cards. If, on the other hand, the card hopper is left empty when the start key is pressed, it is an indication that the end of the card file has been reached. In this case, pressing the start key will again return control to the calculator, but as the last of the remaining cards passes the read brushes, the calculator sets up and end-of-file condition; this provides a means of control by the stored program. ## **Timing Chart** Figure 28 is a simplified timing chart of the Type 711 Card Reader. Each machine cycle of both the model 1 and the model 2 card readers requires a certain number of milliseconds to perform a series of operations relating to reading a card. The total number of milliseconds required to complete a machine cycle is split into 20 units called cycle points. Because the card reader cycle is further divided into 360°, each of the 20 cycle points is 18° of a card reader cycle. The card reader has an index, as shown in Figure 28, which rotates in synchronism with mechanical units in the machine. An asterisk at 330° indicates the starting time in relation to the complete cycle. Card Cycles. Each cycle that the card feed mechanism is set in motion, a 2° to 218° impulse is emitted from the card cycles hubs. Digit Impulses. Each cycle that a card is read under control of the calculator, the digit impulses are available at the digit impulse hubs. Control Brushes and Reading Brushes. Control brush and read brush pulses are available at these brush hubs as cards are read at the brush stations. Split Column Control. These pulses are available between the normal read impulse times during each feed cycle. Pilot Selector. The pilot selector transfer relays may be energized by an 11 or 12 impulse or a digit FIGURE 28 impulse (9 through 12). The selector transfers at 240° of the cycle. It remains transferred until 225° of the next card feed cycle. For immediate transfer of the pilot selector, the immediate hubs should be impulsed. These hubs are receptive from 280° of a card feed cycle until 230° of the following card feed cycle. Pilot Selector—Coupling Exit. Whenever an 11-12 PU or 9-12 PU hub is used to energize a pilot selector control relay, a pulse is available at the corresponding coupling exit hub the following cycle from 340° until 016°. The coupling exit impulse usually controls coselectors. The transfer time of a co-selector can be from 252° of one card feed cycle until 225° of the following card feed cycle. # Control Panel Wiring The card reader is a modification of the IBM Type 402. The following descriptions take advantage of similarities to the standard machine. All new functions and features are described in detail. Questions on how standard features operate can be answered by referring to the appropriate principles of operation manual. Note that a given CPY can read only 36 columns of a given card row, because a CPY can handle no more than 36 bits. The control panel for the reader is supplied with 72 entries to the calculator, corresponding to two words in core storage or two halfrows on the card. Pulses from the reader synchronized with the passage of the card rows under the read brushes, cause first the left 36 entries and then the right 36 entries to be activated for each card row as the row passes under the read brushes. The card columns can be wired to the calculator entry hubs in any order. This section assumes that the first 72 columns of the card are used and that the entries from the calculator are used in a normal left to right order. Figure 29 shows the hubs on the control panel of the card reader and the wiring necessary to provide for a direct transfer of information from cards in the card reader to the calculator when the proper set of instructions is provided by programming. Hubs not described in the standard manuals or hubs with different names are described here. Control Brushes. Equivalent to the second reading brushes of the Type 402. Read Brushes. Equivalent to the third reading brushes of the Type 402. Calc Entry Left and Calc Entry Right. Entry hubs for pulses entering core storage from rows of the card. Successive CPY instructions are associated alternately (by internal circuits) with first the left hubs then the right hubs, and so on. Thus, with the wiring shown in Figure 29 it is seen that successive CPY instructions will cause half-rows of the card to be read in sequence (i.e., 9-row left, 9-row right, and so on). The S hub for each of these groups accepts a pulse to determine the sign of the word being entered, while the remaining hubs numbered 1-35 correspond to the other 35 bits of the word. On. These hubs must be connected for the card FIGURE 29 reader to operate as a component of the 704. Conditional transfer of information is possible through the use of selectors. The pilot selectors (which work in the same way as the Type 402 pilot selectors) have three sets of pickup hubs: immediate pickup (equivalent to the *pickup* function of the immediate pickup and coupling exit of the 402); 11-12 pickup (equivalent to the X pickup of the 402); and the 9-12 pickup (digit pickup in the 402). The pickups can be activated directly from
punching in the card by wiring from control brushes to the appropriate pickup, as described in detail in the *Principles of Operation* manual for the Type 402 under the heading "Pilot Selectors." In addition, each type of pickup can be activated by an impulse from a given set of the hubs described below. In most cases, whether a given pickup will be activated by a given hub can be decided on the basis of whether the equivalent 402 pickup would be activated. Cases that cannot be decided in this way are described in detail under the appropriate heading. By wiring the pilot selector coupling exits (similar to the coupling function of the immediate pickup and coupling exits of the 402) to appropriate co-selector pickups, one or more co-selectors can be picked up in unison with the pilot selector when the pilot selector is picked up with either the 9-12 pickup or the 11-12 pickup. In this case, the co-selector, once picked up, will hold through the next cycle in the same manner as the pilot selector. The hubs that can activate the pickup hubs of the selectors are, as on the 402, digit selector, split column control, and card cycles. These hubs emit pulses in exactly the same manner as the Type 402. # CARD PUNCH (RECORDER) TYPE 721 THE OPERATION of punching information on a card is very similar to that of card reading. To make use of these similarities, it is necessary to understand programming for card reading before studying the following procedure. Punching a card requires a WRS having an address of 225 (card-punch identification) to set the card-feeding mechanism of the punch in motion. A succession of CPY instructions follows wrs. The address parts of the instructions give the locations in core storage for the words to be punched in the half-rows of the card. To punch a full card, 24 CPY instructions must be given. These CPY instructions are called, as in card reading, 9-left CPY, 9-right CPY, and so on. A separate wrs must be given for each card to be punched. Corresponding to card reading, a certain amount of computing can be carried out between wrs and the first CPY and between successive CPY instructions. For example, binary to decimal conversion can be completed while a card is being punched. Each CPY however, must have been given by the time the corresponding half-row appears at the punching station. These time limits are specified below. If time limits are exceeded, the machine stops, and the read-write check light on the operator's console signals the error. To keep the punch running at its full speed of 100 cards per minute (and if more than one card is to be punched) give succeeding was instructions within a certain time interval. Otherwise, if a was instruction is delayed too long, the punch will stop and will not start again until the WRS is actually given. If these was and CPY instructions are given in succession, the calculator delays until a half-row is actually in position to be punched. If fewer than 24 CPY instructions are given, the remaining half-rows on the card, for which there were no CPY instructions, are left blank. Again, remember that the MQ serves as an intermediate storage during a CPY instruction. Since the word to be punched first enters the MQ before being sent to the card punch, any previous information in the MQ is destroyed. There are no end-of-record or end-of-file conditions in punching cards. ## **Timing** Cards are punched at the rate of 100 cards per minute. In continuous card punching 442 ms of the card cycle of 600 ms are available for computing. The difference, 158 ms, is required for the execution of the CPY and WRS instructions and appropriate timemargins for safe synchronization of mechanical and electronic components. The maximum safe times available for useful calculating between executions of CPY instructions are indicated in Figure 30. For example, after execution of the 9-left CPY, 540 µs are available before the 9- right CPY must be given; and after execution of the 9-right CPY, 31 ms are available before the 8-left CPY execution. The was must be given in the hatched portion for continuous operation of the punch. After the 12-right CPY execution of a card, however, it takes 25 ms before the machine can execute a WRS for the next card. If the was, then, is given t ms after the 12-right CPY, and if t is less than 25, the calculator will compute for these t ms. Upon receiving the wrs, however, the program will be delayed until 25 ms (from the 12-right CPY) have elapsed. If the was is given after the 25 ms interval, the program will not be delayed on this account, but the punch will already have disconnected, and a delay results. Thus, to be able to compute for all of the available time between cards, and to keep the punch running at full speed, it is necessary to give the WRS at exactly 25 ms after the 12-right CPY. If the card punch is not in motion, and a WRS is given, the average elapsed time between the WRS execution and the first 9-left CPY execution will be 400 ms. However, only 70 ms are available for calculation after the WRS execution. If more than 24 CPY instructions are given per card cycle, the calculator will turn on the read-write check light on the operator's console, and stop. ## Manual Operations Keys and lights on the punch are similar to the corresponding controls on the card reader. Consequently, the discussion of punch controls is of a general nature. Details peculiar to the punch, however, are explicitly discussed. Note particularly that there is no end-of-file condition on the punch. To turn control of the card punch over to the calculator (once the control panel is in place with the calculator hubs connected) the hopper is filled with cards, and the start key is held until the ready light goes on. There will now be one card in the punch; the hopper contact and the die-card-lever contact will be closed. When an appropriate program is executed by the calculator, the first card that was in the hopper will be punched with information from core storage. The path of the cards through the punch is shown in Figure 31 along with the relative locations of the card levers, brushes, and punches. If, for any reason, one of the card contacts is not closed, the ready light FIGURE 30 FIGURE 31 will be turned off. The ready light is also turned off by any of the following conditions in the card punch: power off, blown fuse, full stacker, control panel not inserted, gang-punch switch wired, or a double punch or blank column if the panel is so wired. If the control panel has been so wired, the double punch or blank column in any of the columns being checked will turn on the double-punch blank-column light and turn off the ready light. To reset the doublepunch blank-column light, press the stop key. To return control to the calculator, press the start key. If the gang-punch (GP) switch on the control panel is wired, the ready light cannot be turned on, so the calculator has no control over the card punch. The punch can now be used as a gang punch in the usual way. If the control panel has been wired for gang punching with the calculator switch on the control panel wired, the operation depends upon the condition of the ready light. If the ready light is on, then each card fed under calculator control will be gang punched in accordance with the panel wiring. (The feed key under this condition is inoperative.) If the ready light is off, then gang punching takes place as long as the feed key is depressed; the feed key must be held down, for as soon as it is released, the punch stops at the end of the next card cycle. Should the card punch run out of cards, the hopper contact opens, and the ready light is turned off. ## **Timing Chart** Figure 32 is a simplified timing chart of the Type 721 Card Recorder. Each machine cycle of the card punch requires 600 ms to perform a series of operations relating to punching a card. The 600 ms are split into 14 cycle points. The punch cycle is further *PUNCH MECHANISM LATCHES HERE FIGURE 32 divided into tenths of a cycle point. The index of the card punch begins at 13.5 or D time. Note that the index is marked off as though the cards are fed 12-edge first. It is necessary to convert 12 time to 9 time, 11 time to 8 time, and so on when thinking of the position of a card row in relation to the index. Card Cycles. Each cycle that the feed mechanism is set in motion, a pulse is available at these hubs. Digit Impulse. These impulses are available each cycle that the feed mechanism is set in motion. Punch Brushes. Pulses of the duration shown are made available at the punch brush hubs while a card is being read at this station. Control Brushes. Control punches in the 8-row of a card are sensed at 13.1 to 13.5 of a punch cycle. Selector Hold. Selectors are held transferred until 9.5 of a punch cycle after being picked up by any punch brush pulse or digit impulse. An impulse from a control brush may also transfer a selector. This means that the selector points transfer at the end of a punch cycle and are held transferred until 9.5 of the succeeding punch cycle. Punch Delay Out. An impulse is available one punch cycle following the sensing of a control punch (punch control brush wired to punch control in). Column Split. The column split acts as an internally wired selector that transfers from the 9-0 side to the 11-12 side after 0 impulse time (7.4 on the machine index). The contacts return to their normal positions at 13.4 time. Sense Exits 1 and 2. The cam that controls the sense exits is made from 14.9 until 14.2 of the following feed cycle as shown in the chart. To be certain that a PSE having a punch address is effective, the PSE should be programmed immediately following the WRS or sometime after the first CPY. Usually an impulse from a sense exit hub controls selectors. It is usually desirable to have the selectors transferred at the beginning of the punch cycle. In general, the PSE follows the WRS. If so, the impulse available
at the sense exit hub lasts until 14.2 of the punch cycle. By this time, the selector relays have established their hold circuits. Whenever selectors are to be energized during a cycle, remember that at least six milliseconds are required to transfer the selector points. If a PSE is programmed after a WRS and the punch is not ready, the pulse is available at the sense exit hub until 14.2 of the first calculator controlled punch cycle. Caution note: If a PSE is programmed after a CPY and the sense exit pulse is used to control a selector, the selector transfers for the remainder of the current cycle. Because the sense exit pulse is available until 14.2 of the next punch cycle, the selector is held transferred an additional cycle. ## Control Panel Wiring The Card Punch for the Type 704 is similar to the IBM Type 521, and only new panel functions are described here. Figure 33 shows the hubs on the card punch control panel and the wiring required for punching information directly from the calculator into a card, when the proper sets of instructions are executed by the program. The example provides that information from the calculator be punched in columns 1-72 of the card; but, as in the card reader, it is possible to punch any arrangement of not more than 72 columns by using appropriate wiring. The hubs involved in wiring this panel are explained below. Punch Magnets. These hubs have the same function as the corresponding hubs on the Type 521. Calc Exit Left and Calc Exit Right. These are exit hubs for information being transmitted from core storage to the punch magnets. In relation to programming, the word specified by the first CPY following the WRS is available at the CALC EXIT LEFT hubs. The word specified by the second CPY is available at the CALC EXIT RIGHT hubs. The left and right hubs then alternate for the following CPY instructions. Because cards are fed 9's edge first, it is evident from the wiring in Figure 33 that the halfrows of the card are punched in sequence (i.e., 9-row left, 9-row right, and so on). CA (calculate). These hubs must be wired to enable the punch to operate as a component of the 704. The four selectors (two standard) of 10 positions each are picked up by means of the corresponding selector pickups, 1-4. Activation of the pickups directly from the control brushes will be discussed later, using gang punching for illustration purposes. The selectors can also be picked up by electrical im- pulses available at the two sense output hubs in the upper-right section of the control panel. Sense Output. Wiring a sense output hub to a selector pickup allows a programmed PSE with the proper address to transfer a selector. A PSE given at any time after the first CPY of a given cycle, and at least 32 ms before the first CPY of the next cycle, causes the selector to be transferred shortly after the instruction is given (between 15 and 30 ms later). The selector then stays transferred until 20 ms after the last CPY of that next cycle. In normal usage, the PSE is given soon after the WRS that initiates the cycle in which the selector is to be picked up. When all rows of a card are not being punched after a WRS any gang punching or emission of digits directed FIGURE 33 through selectors, which in turn are controlled by sense exits, requires special precautions to insure that the selector is transferred *only* during the cycles desired. The address of sense output hub number 1 is 225, while number 2 is 226. All other hubs on the panel operate in the same manner as on the standard Type 521. The card punch can be used for gang punching cards under calculator control as well as independently of it. Figure 34 shows the wiring necessary for gang punching with interspersed master cards under calculator control. (For this example the information to be gang punched is assumed to be in columns 75-80 of the card.) The control panel wiring as shown in Figure 34 is: - 1. Hubs S-35 of the calculator exit left followed by hubs S-35 of the calculator exit right are wired to hubs 1-72 of the punch magnets. - 2. Columns 75-80 of the punch brushes are wired to five consecutive common hubs of selector 2. The corresponding normal hubs are wired to columns 75-80 of the punch magnets. - 3. The hub for control brush 1 (positioned at the column in which the control punch will be) is wired to selector pickup 2. - 4. The CA hubs are connected. To gang punch cards independently of the calculator, the GP (gang punch) hubs should be connected instead of the CA hubs. If the program should call for the card punch to operate with the GP hubs wired, the calculator will stop, because no control by the program is possible with these hubs wired. Offset gang punching can be done in the normal way by wiring the appropriate control brush to the PC (punch control) hub and wiring the PD (punch delay) hub to the selector pickup. To prevent punching in the master cards when offset gang punching, two selectors are necessary: one wired as above to provide for offsetting, the other wired to prevent punching the master card. #### PRINTER, TYPE 716 THE PRINTER, a modification of the printing unit on the IBM Type 407 Accounting Machine, is equipped with 120 rotary type-wheels. Each wheel has 48 characters, including numerals, alphabetic symbols, and special characters. Use of the proper program enables the machine to print decimal numbers, binary numbers, or numbers to any other base. Titles and headings are also possible, because alphabetic characters and special symbols are provided on the type-wheels. As in the standard Type 407, the type-wheels are positioned for printing by electrical pulses timed according to the print cycle itself. Remember that if a print-wheel receives an electrical impulse during that part of the print cycle designated as 9-time, the print-wheel is positioned to print a 9. Also, if the print-wheel receives an impulse at 1-time and an impulse at 12-time, the machine interprets this as the letter A (according to the standard IBM code) and positions the type-wheel to print A. It is impor- tant to understand this timing principle of accounting machines. Refer to the Type 407 Accounting Machine Principles of Operation Manual. The simple example below shows how a series of nines might be printed in 72 positions of a line. Example: A WRS with an address of 241 (printer identification) is programmed, causing the printer to start a print cycle. The print cycle, as it progresses, goes through points in the cycle known as 9-time, 8-time, 7-time, and so on to 11-time and 12-time. These times are analogous to the times designated for the standard Type 407, which operates in conjunction with a card-reading mechanism. In the standard Type 407, the above times coincide exactly with the time the 9-row is under the reading brushes, and so on. As soon as the 704 printer reaches 9-time in its cycle, the program must furnish a CPY to read a word from a core storage location. By using control panel wiring this full word is directed to 36 type-wheels (one for each bit of information) of the printer. A second CPY then follows causing another word in core storage to be directed to 36 other typewheels. These two CPY instructions are given close enough together (with respect to time) for the printer to still be essentially at 9-time of its cycle. A binary digit of 1 in the full word causes an electrical pulse to enter the printer and to impulse the associated type-wheel. This impulse causes the typewheel to be positioned for printing a 9, because the impulse arrived at 9-time of the print cycle. If now we assume that both full words described with the above two CPY instructions consist of a negative sign and 35 binary ones, the result will be 72 nines printing across the page. This assumes that any subsequent CPY instructions corresponding to 8-time, 7-time, and so on do not cause an additional impulse to a type-wheel and thus cause the wheel to be positioned differently. A positive sign or a binary zero does not start a pulse to the type-wheels. The general procedure in printing a line is to set up in core storage a card image similar in nature to the card image produced when a card is read by the card reader. A was then is followed by 12 pairs of CPY instructions; these cause the card image to send impulses to the type-wheels. The first pair of CPY instructions causes 9-time impulses to be sent to the type-wheels as explained in the example above. The second pair causes 8-time impulses to be sent to the type-wheels. This procedure continues until the 12 pairs of instructions are executed in accordance with the 12 distinct times of the print cycle. Subsequent WRS and CPY instructions produce a new print cycle and a new printed line. The word impulses, brought about by execution of the *first* CPY of a pair, are available at the CALC EXIT LEFT hubs on the printer control panel and may be directed to the selected type wheels by wiring. The impulses produced by the *second* CPY of a pair are available at the CALC EXIT RIGHT hubs. The 24 CPY instructions are called 9-left CPY, 9-right CPY, 8-left CPY, 8-right CPY, and so on to the 12-right CPY. As in the card reader and card punch, it is possible to do useful calculating between the actual printing instructions. For example, the time required for the print cycle to start, and move to 9-time of its cycle, may be used for other calculations. Once the cycle has reached 9-time, however, the program must provide, in succession, the pair of CPY instructions for impulsing the type-wheels. Useful calculating can also be performed between pairs of CPY instructions and even between individual instructions of a pair. As before, there are definite time limits to be observed. These are precisely specified below. If a CPY arrives too late in the cycle, the calculator stops and the read-write check light indicates the error. For the calculator to print at its full rate of 150 lines per minute, the was instructions
for each print cycle must be given in the interval of time explained below. If was instructions do not follow each other within this time limit, the printer stops and will start again only on recepit of the next wrs. If we do not want to do computing between these input-output instructions, we can program these instructions in immediate sequence. Under these conditions, the calculator automatically waits until the printer reaches the proper point of its cycle before executing the instructions. Also, it is not always necessary to give a full set of 24 CPY instructions for each line of print. If a full set is not given, the action is similar to the card reader; namely, the print cycle continues without any more impulses to the typewheels, and a following was starts a new cycle. Again, the MQ is used as an intermediate storage for a word passing from core storage to the printer; so the execution of any CPY destroys information previously standing in the MQ. ## Printing with Checking The previous paragraphs give the procedure for printing without checking. Checking is possible because the printer is capable not only of receiving print pulses from the calculator to set up the type-wheels for printing, but also of sending to the calculator "echo pulses" generated by the type-wheels depending on what character the wheels are in position to print. Printing with checking requires a somewhat more complicated program, but it can be done without reducing printing speed. The timing for this combination is roughly as follows: The first half of the print cycle is used to position the type-wheels by using words in core storage. The second half is used for reading the "echo pulses" generated by the type-wheels and for placing them in core storage for verification via a programmed check. When we wish to check, the echo pulses are read in such a way as to form a card image when received by the calculator. Thus, the calculator can both write the original card image for printing and read a corresponding card image, at a later time in the same print cycle, from the echo pulses. If the two card images do not agree exactly, as determined by a suitable program, then an error has occurred. Only numerical information can be checked in this way. Program the printing with checking as follows. First give an RDS (note this difference), with the address of the printer followed by 46 CPY instructions in a specified sequence. Twenty-four of these CPY instructions refer to printing, and cause words to be sent from core storage to the printer. The other 22 CPY instructions refer to checking. They require words to be read from the printer into core storage. During part of the print cycle, the two kinds of CPY instructions must alternate in pairs. Note, then, that the RDS causes both writing information from storage to printer, and reading the echo impulses into storage. Exact sequence of the 46 CPY instructions for printing with checking is described below. There are two sets of codes for plus and minus signs, as follows: with one set, used for printing without checking, 12 is the code for plus, and 11 for minus; with the other set, used for printing with checking, the combination of 8 and 3 is the code for plus, and 8 and 4 the code for minus. The first 18 CPY instructions are to supply impulses to the printer from the left and right halves of rows 9 through 1 of the card image. The 19th and 20th CPY instructions are for storing the echo impulses received from the minus sign (code 8, 4). The 21st and 22nd CPY instructions send impulses to the printer from the zero row of the card. The 23rd and 24th CPY instructions store echo impulses received from the plus sign (code 8, 3). The 25th and 26th send the 11-row of the card image to the printer. The 27th and 28th are for checking the 9-row. The 29th and 30th send the 12-row of the card image to the printer. Finally the 31st through 46th CPY instructions form the check images of the 8-row through the 1-row. The fact that no checking is provided for the 0, 11, and 12 rows explains the two separate codes for plus-and-minus signs. The exact sequence of instructions and the allowable time between them are fully explained below. Through use of selectors or column splits on the printer control panel, core storage can activate more than 72 type-wheels. For example, seven 10-digit numbers with signs can be printed. Additional characters can also be printed by impulses emitted on the control panel. On the other hand, the control panel can be wired so that up to 120 characters originating from core storage can be printed on each line at the rate of 75 lines per minute, two cycles being required for each line of printing. The printer has an IBM tape-controlled carriage, details of which are described in the section on tape-to-printer operation. Functions of the carriage (such as changing or suppressing line spacing, selecting the channel on the punched tape to control skipping, or sensing sheet overflow) may be controlled through sense output or input hubs on the control panel; these hubs are activated by appropriate PSE instructions in the stored program. ## Timing without Echo Checking Information is printed at the rate of 150 lines per minute. In continuous printing, 322 ms of the print cycle of 400 ms are available for computing. The difference, 78 ms, is required for the execution of the CPY and WRS instructions and for appropriate timemargins for safe synchronization of mechanical and electronic components. Maximum safe times available for useful calculating between executions of CPY instructions are indicated in Figure 35. For example, after execution of the 9-left CPY, 540 μ s are available before the 9-right CPY must be given; and after execution of the 9-right CPY, 13 ms are available before the 8-left CPY. The WRS must be given in the hatched portion for con- COMPONENTS 55 tinuous operation of the printer. After the 12-right CPY execution of a print cycle, however, it takes 16 ms before the machine can execute a wrs for the next cycle. If the wrs, then, is given t ms after the 12-right CPY, and if t is less than 16, the calculator computes for these t ms. Upon receiving the wrs, however, the program is delayed until 16 ms (from the 12-right CPY) have elapsed. If the wrs is given after the 16 ms interval, the program is not delayed. So to compute for all of the available time between print cycles, and to keep the printer running at full speed, it is necessary to give the wrs between 16 and 115 ms after the 12-right CPY. If the printer is not in motion, and if a printer WRS is given, the average elapsed time between the WRS execution and the first 9-left CPY execution is 280 ms. However, only 58 ms are available for calculation after the WRS execution. #### Timing with Echo Checking In continuous printing with checking, 313 ms are available for computing. Appropriate times are given in Figure 36. The RDS must be given in the hatched portion for continuous operation of the printer after the 1-right echo CPY execution of a print cycle; however, it takes 12 ms before the machine can execute an RDs for the next cycle. If the RDs, then, is given t ms after the 1-right echo CPY, and if t is less than 12, the machine can compute for these t ms. Upon receiving an RDs, however, the program will be delayed until 12 ms (from the 1-right echo CPY) have elapsed. If the RDs is given after the 12 ms interval, the program will not be delayed on this account; but the printer will already have disconnected, resulting in a delay. So to compute for all of the available time between print cycles, and to keep the printer running at full speed, give the RDs at exactly 12 ms after the 1-right echo CPY. If the printer is not in motion and if a printer RDS is given, the average elapsed time between the RDS and the first 9-left CPY execution is 280 ms. However, only 58 ms are available for calculation after the RDS execution. #### Manual Operation Keys and lights on the printer are similar to those on the card reader, with the following exceptions: - 1. The feed key is replaced by a print-cycle key. - 2. The card-feed stop light is replaced by a formstop light. - 3. The stop-before-printing, test, and form-stop switches are added. The following is a general discussion of printer controls with special emphasis on the differing features. To prepare the printer for control by the calculator—once the control panel is in place—it is necessary only to hold the start key until the ready light goes on. The ready light is turned off by any of the following conditions: test switch on; a form stop, indicated by the form-stop light, when the form-stop switch is on; depressed stop key on the carriage; depressed stop key on the printer; power off; blown fuse. (The test switch is discussed below.) If the form-stop switch is on, the form-stop light goes on when the printer runs out of paper. Other carriage controls are similar to controls on the Type 407 carriage. As in the card reader and card punch, the printer stop key gives the operator a means of holding up printing whenever he so desires. The carriage stop key has an equivalent effect. Turning the test switch on causes the ready light to go off. The print cycle key starts a print cycle only under the following conditions: - 1. When the ready light is off (as when the test switch is on). - 2. When the ready light is on, the stop-beforeprinting switch is on, and the program supplies an RDS or WRS instruction for the printer. With the test switch on, the ready light is off. Depressing the print cycles key causes the printer to go through print cycles until the key is released. To switch control back to the calculator, turn off the test switch and press the printer start key. With the stop-before-printing switch on, the printer, after being selected by an RDS or WRS instruction in the program, is held up at the first CPY instruction. Depressing the print cycles key causes the printer to
print one line and the calculator to proceed with the program until the next group of output instructions for the printer is ready to be executed. ## **Timing Chart** Figure 37 is a simplified timing chart of the Type 716 Alphabetic Printer. Each machine cycle of the *CARD FEED CAM CLUTCH LATCHES FIGURE 37 printer requires 400 ms to perform a series of operations relating to printing a line of information. The 400 ms are divided into 24 cycle points. Thus each cycle point is 15° of a printer cycle. The starting point of the printer index is 345°. Carriage Skip. Because skipping is an afterprint operation, the carriage skip hubs are not receptive until any before-print spacing operation has been initiated. To be effective, an impulse to the carriage skip hubs must occur between 230° and 310° of a print cycle. Space Suppress. An impulse directed into these hubs between 320° and 110° of a print cycle suppresses before-printing spacing. Extra Space. An impulse directed into this hub after 5° and before 320° of a print cycle provides an extra-space-after-printing operation according to the printer control panel wiring. Overflow. An impulse is available from the overflow hubs during the before-print-space operation that precedes printing of the last line on the form. If the overflow operation is not delayed, the impulse lasts until 320° of the current print cycle. Otherwise the pulse is available until 320° of the print cycle during which the overflow operation starts. Short Skip. An impulse directed to a short skip hub before 300° of a print cycle during which a skipping operation is starting or taking place releases the interlock normally causing the printer to lose at least one machine cycle for each skipping operation. Non-Print. An impulse directed to this hub before 110° of a print cycle prevents printing, spacing before printing, and ribbon spacing. Split Column Control Emitter. These hubs emit impulses between normal digit impulses, i.e., the 9 hub emits an impulse between the normal 9 and 8 times of the master CB pulses. Alterations. When the corresponding alteration switch on the switch panel is on, the alteration hub emits a 0° to 30° impulse each print cycle. Print Cycles. These hubs emit pulses during each print cycle from 355° to 285°. Co-Selector Pickup. A co-selector is held transferred the remainder of a print cycle if it is pulsed sometime after 350°. Pilot Selector. A pilot selector control relay can be energized any time between 5° and 310° of a print cycle. The points of the pilot selector relay are held transferred from 315° of a print cycle until 286° of the following print cycle. Coupling Exit. A pulse is available at a pilot selector coupling exit from 330° of the print cycle that a pilot selector control relay is energized until 195° of the following print cycle. Sense Entry. The sense entry hub is receptive at all times. Sense Exit. Usually the sense exit hubs are conditioned so that pulses can be emitted from these hubs between 240° and 350° of a print cycle. The sense exit pulse is available only until 340° of a cycle during which a carriage skip operation is started. The PSE can be programmed before 240° but the pulse is not emitted until 240°. Ordinarily a PSE follows immediately after the WRS or RDS. Extra-space, space-suppress, and non-print operations may be controlled directly from sense exits. ## 716 Timing Each machine cycle of the printer requires 400 ms to print a line of information. These 400 ms are divided into 24 cycle points of 15° per point. The dividing line between machine cycles is 345° when the card feed cam clutches are latched up. These clutches control all emitter impulses except the three special symbol emitters (comma, dollar sign and decimal). These three symbols are controlled by cams termed "continuously running." After a printing operation, the card feed cams have a forced drop-out at 345° while the continuously running cams are permitted to coast to a stop. The continuously running cams will drop out between 50° and 250° on the printer index. If a print cycle is initiated when the printer is not in motion, synchronization of the 704 and 716 may take up to 400 ms and averages 280 ms. The actual selection of the printer will occur between 322° and 345°. When the print cycle is initiated after another print cycle, selection comes before 295°, no synchronization is needed, and the actual selection of the printer will occur between 300° and 345°. Note: Care must be taken if the special symbol emitters are used to control printer operations. On a printer reselect, these emitters are operative before the card feed cam clutches are latched up. This can cause a function to occur at point in the printer cycle when the select follows a non-print cycle, and occur at a different point when the select follows a print cycle. Normal spacing in the print cycle occurs between 120° and 135°. If this spacing causes a punch in channel 12 of the control tape to pass the control tape reading brush, an overflow pulse is emitted starting at 155° and extending through 320°. This pulse may be used at the end of the print cycle, or, if the printer is kept selected, immediately following the print select instruction. *Note:* If the printer motion is halted, the pulse will not be available when the printer is reselected. The overflow hubs should be wired to carriage skip 1 hub if the overflow is to be controlled only by the 716, or to the sense entry hub if the overflow is to be controlled by a sense instruction. If the sense entry is used with the overflow hub, it is recommended that the PSE 240 be given at the end of the current print cycle, rather than after the next select instruction. #### Printer Disconnect If 24 CPY instructions accompany a WRS printer instruction, the printer disconnects between 180° and 195°. If fewer than 24 CPY instructions are given, the printer disconnects during any 15° time that two CPY instructions are not given. If 46 CPY instructions accompany a RDS printer instruction, the printer disconnects between 285° and 300°. If fewer than 46 CPY instructions are given, two CPY instructions must be given during any 15° time to prevent printer disconnect, except during 120° to 180° when four CPY instructions must be given during each 15° time to prevent printer disconnect. #### Control Panel Wiring The printer is used to print information contained in core storage. Note that this printed material can be any combination of several characters. Some characters that can be printed by impulses from core storage are decimal digits, letters of the alphabet, punctuation marks, and dollar signs. Table V gives the IBM code for printing these characters. For example, a dollar sign (\$) may be printed by arranging impulses (from core storage) to arrive at a print wheel at 11-time, 8-time and 3-time of the print cycle. | Digit | No (N)
Zone | 12 (Y)
Zone | 11 (X)
Zone | 0
Zone | |------------|----------------|----------------|----------------|-----------| | No Digit * | | + | | 0 | | 1 | 1 | A | J | / | | 2 | 2 | В | K | S | | 3 | 3 | С | L | T | | 4 | 4 | D | M | U | | 5 | 5 | E | N | V | | 6 | 6 | F | O | W | | 7 | 7 | G | P | X | | 8 | 8 | Н | Q | Y | | 9 | 9 | I | Ř | Z | | 8-3 | + | | \$ | , | | 8-4 | _ | | 25- | % | TABLE V Figure 38 shows the control panel wiring for the printer, with the wiring for an example to be explained later. The hubs used for this example will now be explained in general terms. Calc Exit Left and Calc Exit Right. These hubs are exits for words being sent from core storage to the printer by CPY instructions. These two sets of hubs alternate with the CPY instructions in the same way as similar hubs on the card punch. Print Entry. These are entry hubs for impulses to the individual type-wheels from core storage. Print Echo Exit. These hubs are exits for the echo pulses generated by the type-wheel according to the character they are positioned to print. Calc Echo Entry Left and Calc Echo Entry Right. These are hubs that can accept the echo impulses generated by the type-wheels. The CPY instructions in the stored program then direct these impulses to core storage locations in preparation for a programmed check. The left and right hubs alternate as in the card reader. PR, On. These hubs must be connected if the printer is to be used as a component of the 704. ZC. If these hubs are wired together, the zero print control function behaves exactly as in the 407. If these hubs are not wired, the type-wheels print only if impulsed through the print entry hubs. #### **Printing Control** As an example, the control wiring in Figure 38 provides for printing any digit (including zero), FIGURE 38 letter, or special character that has been coded in the card image being copied. The wiring also provides for echo checking of the digits 9 through 1 in all positions except 11 and 64. In positions 11 and 64, provision is made for checking the special codes corresponding to the plus and minus signs (8-3 and 8-4). Although this wiring is valid for printing any character, assume that binary numbers will be printed here. In the specific example, characters being printed are separated into groups of three each to help translation from the binary to the octal system. Any other arrangement could be made. The control panel wiring shown in Figure 38 is as follows: 1. The calculator exit hubs (two sets of hubs labeled S, 1-35; the left half-row and the right half-row, respectively) are wired to the print entry hubs in this order: DRINT ENTRY | | CALC EAT | THIN LIVIN | |---------------|------------|------------| | Left half-row | S | 11 | | | 1, 2 | 14, 15 | | | 3, 4, 5 | 17, 18, 19 | | | 6, 7, 8 | 21, 22, 23 | | | • | • | | | • | • | | | • | • | | | 33, 34, 35 | 57, 58, 59 | - 2. The wiring from the calculator echo entry hubs (two sets of hubs labeled in the same way as the calculator exit hubs) to the print echo exit is the same as that described
in paragraph 1 above, if the words "calculator echo entry" and "print echo exit" are substituted for "calculator exit" and "print entry," respectively. Use of echo pulses is explained below. - 3. The zc hubs are wired. This allows the zero print control to operate in the same way as on the 407. Note that *all* of the zero print control wiring, described in the next paragraph, could be eliminated if the zc hubs were not wired. The zero print control is brought into play here only to illustrate appropriate wiring. - 4. The pairs of zero print control hubs (described below) are numbered to correspond to the print entry hubs. All pairs of zero print control hubs corresponding to the print entry positions enumerated in paragraph 1 are connected (i.e., the upper hub at a position is wired to the lower hub at the same position) except the pairs that are at the first of a subgroup (the hubs corresponding to positions 11, 14, 17, 21, ... 57, 64, 67, 70, ... 110). The lower hubs at positions 14 and 67 will be wired to the zero entry. A further exception to the system described above occurs because the zero print control hubs should not be wired in groups of greater than 10 pairs of hubs. To separate the zero print control wiring into independent groups of appropriate size, the lower hubs of some positions are wired to zero entry. The remainder of the zero print control hubs at the first of a group are connected diagonally from the lower hub of the pair to the upper hub immediately at the left (corresponding to a blank position in the printing). - 5. The PR and ON hubs are coupled. - 6. The space hub is wired to 1 to provide single spacing between lines of print. To check the printing of a number and its sign, wire the print echo exits, corresponding to the print wheels that printed the number, to the calculator echo entries corresponding to the calculator exits from which the information was originally taken. It is then possible, by programming, to read these impulses into core storage and to perform a programmed check on the original information. In general the program for this checking relies upon the fact that the echo pulses occur in a given order: 8-4, 8-3, 9, 8, 7, 6, 5, 4, 3, 2, 1. Each print wheel emits an echo pulse timed to indicate the sector within which it was set up to print. Since no provision is made for checking the zones within these sectors, the checking is restricted to numerical printing. For example, at 8-echo time, the print echo exits, corresponding to the print wheels set up to print in the 8 sector, emit a pulse. The program copies these pulses into core storage in the form of a binary word to be compared with the word in the card image corresponding to the 8-row. Zero Print Control. With the zero print control hubs on its control panel, the 704 printer can provide any one of a number of responses to zeros or any symbol not having a digit pulse. Each pair of zero print control hubs corresponds to a print entry position; the manner in which the pair of hubs is wired to its neighbors controls the printer's response. Zero print control functions only during zone (0, 11, 12) time and N (no-zone) time and can have no effect upon the printing in a position that has received a digit impulse (1 through 9) during a given print cycle. Thus, the only special characters that can be controlled are those consisting only of zone pulses (the zero, check-protecting asterisk, plus sign, and minus sign) or those emitted from special hubs on the control panel (the dollar sign, period, and comma). The specially emitted symbols provide for setting the print wheel to the proper sector without use of the usual combination digit punching (as an 8 and a 3 in the case of the dollar sign, period and decimal point, and comma). The dollar sign, period, and comma can be printed with the usual combination punching, of course, but in this case the symbol cannot be controlled by means of zero print control. Note that zero print control hubs cannot operate correctly when used in groups of more than ten at a time. Groups larger than this should be split and wired independently. Examples and applications of zero print control are given under the heading "Zero, Comma, Decimal and Dollar Symbol Control" in the Type 407 Prin- ciples of Operation manual, Form 22-5765. Filter in-out. These hubs permit the passage of an impulse in only one direction—into the IN hub and out of the OUT hub. Do not wire the OUT hub of one filter to the IN hub of another filter, either directly or indirectly. The printer has ten pilot selectors, each of which is picked up by an associated one of the pilot selector pickups. (These pickups are similar to the IMMEDIATE-PU hubs on the Type 407.) In addition, there are 20 co-selectors, each with two identical co-selector pickups. Pick up the co-selectors in unison with given pilot selectors by wiring the appropriate pilot selector coupling exits to the co-selector pickups; or pick up the co-selector independently by direct wiring from other hubs. The pilot selectors and co-selectors are similar, in action, to the pilot selectors and co-selectors of the card reader. The following hubs provide pulses to activate the selectors through their pickups. Alteration Switches. These switches function the same as the 407 alteration switches, by emitting a pulse every machine cycle when the corresponding toggle switch on the printer is turned on. These pulses are used to pick up either pilot selectors or co-selectors. Split-Column Control. These hubs perform the same function as the 407 split column control. The numbers on either side of a given hub of the split column control refer to the corresponding print times. A selector pickup wired from a given one of these hubs (the hub between numbers 8 and 7) causes the selector to be transferred between the corresponding print times. (The selector would be transferred after 8-time and before 7-time.) Print Cycles. These hubs are similar in use to card cycles of the Type 407. A pulse is emitted from these hubs during every machine cycle of the printer. Sense Exits. Exits 1 through 10 are addressed by the numbers 241 through 250, respectively. By programming a PSE instruction with one of these addresses, an impulse is made available at the corresponding exit hub. This pulse can then be used to pick up pilot selectors. If the exit is wired in this way, the normal use is as follows: If the PSE instruction is given during the hatched portion of the card cycle, the pilot selector is transferred for the duration of the cycle initiated by the WRS instruction that also is given for the same cycle. PsE instructions given at times in the card cycle other than those specified above may have no effect. (Additional uses of sense exits are discussed below under "Carriage Controls.") ## Carriage Control A punched paper tape (the control tape) used in combination with the ten sense exit hubs usually controls the carriage of the printer. (For some simple applications, such as line-by-line printing, the carriage can be directly controlled without the use of the control tape.) In brief, the control tape is used as follows: The tape is cut to the length of the form to be used (and later glued into a loop to provide for repetitive operation); thus punched holes in the tape correspond to positions on the form. When the carriage is in operation, the tape advances in synchronism with the form. An impulse to a given carriage skip hub (number 4) causes the form to skip until the control tape—and consequently the form—reaches the position where there is a punched hole in the channel (column) corresponding to the impulsed hub (channel 4). For a detailed description of the above points and for a further description of the carriage manual controls (restore key, space key, and so on), see the Type 407 Principles of Operation manual. The hubs listed below, when impulsed from the carriage control hubs, activate the various carriage skips and spacings. Remember, while reading the descriptions of these hub functions, that an automatic space is *initiated*, but *not* automatically terminated, before each line of printing, except before printing the first line immediately after skipping. Before the first line of printing or in the cycle immediately after a skip, no normal spacing takes place. Carriage Skips. These hubs are similar to the D hubs of the Type 407 carriage skips. For example, a pulse to carriage-skips hub 1 begins a form skip that stops when the first punch in channel 1 passes under the control-tape read brushes. In general, a hole punched in a given channel of the tape stops the form at a predetermined position after a pulse to the corresponding carriage-skips hub has started a form skip. The ten channels in the tape (with the ten corresponding carriage skips) provide for an almost unlimited number of combinations of such skips. Because tape length and form length are equal, it is easy to make the punches in the tape correspond to the predetermined positions on the form. By wiring sense exits to carriage skips and by punching the various channels in the tape to correspond to various sequences of printing on the forms, it becomes possible for stored programs to maintain a flexible control over the printed output. Short Skip. These hubs resemble the short-skip hubs of the Type 407. The short-skip hubs provide for skipping with no interruption of printing. The hubs can be used whenever an overflow of less than one inch or a regular skip of less than two inches occurs. Any impulse used to initiate a short skip (e.g., a sense-exit impulse to cause a skip of less than two inches) should be wired first to a short-skip hub and from there to its ultimate destination (a carriage-skip hub). As a result of such wiring, printing continues at the normal rate of 150 lines per minute during short skips. Space-Sel (selective space). These hubs are similar to the selective space hubs of the Type 407. When connected,
the two selective space hubs allow spacing of less than seven lines to be selectively controlled by punches in channel 11 of the control tape. The action is such that, before each line of printing, spacing is automatically started; a punch in channel 11 then stops the spacing. For spacing of less than three lines it is necessary only to connect the selective space hubs and punch the desired positions in the control tape. For spacing of more than three lines (but less than seven lines), it is also necessary to impulse the space suppress and extra space hubs from print cycles. (Space suppress and extra space are discussed below.) Extra (extra space). These hubs are similar to the extra-space hubs on the Type 407. Usually these hubs are used with the space 1 or the space 2 hubs. When space 1 is wired and an extra-space hub is impulsed (by a print cycles pulse, for instance), an extra single space results. With space 2 wired, an extra double space results. SUP. This hub resembles the space suppress hubs of the Type 407. If one of these hubs is impulsed (by a print cycles, for instance), all normal spacing is suppressed during the cycle in which the hub was impulsed. NP. This hub is similar to the non-print hubs of the Type 407. The NP hubs suppress both printing and spacing, regardless of other control panel wiring, for the cycles in which they are impulsed by a print cycles pulse. The three types of hubs to be described below may be used to control the carriage. Note that impulses available from these hubs may be directed through various selectors to provide controlled variations in form spacing from print cycle to print cycle. Sense Exits. A given one of these hubs emits a pulse when a PSE instruction, with the appropriate address, is executed. (See the previous discussion of sense exits in this section.) These hubs can be wired to carriage-skips hubs, thus enabling the stored program in the calculator to control form spacing. When the sense exits are to be used for this purpose, give the corresponding PSE instruction *immediately* after the WRS instruction that starts the print cycle. OVFL. This hub is similar to the Type 407 over-flow hub. It emits a pulse whenever a punch in channel 12 of the control tape passes the control tape reading brushes. The pulse emitted by this hub lasts through the hatched portion of the cycle, after the cycle during which overflow has occurred. (This fact will be of use in discussion of the sense-entry hub below.) The overflow hub is often wired to a carriage-skips hub, thus providing a skip from the position at which channel 12 was punched to the position of the first punch encountered in the channel corresponding to the carriage-skips hub. Usually such wiring is used to overflow to another form after it reaches the bottom of a given form. SE (sense entry). The sense-entry hub is an input hub on the printer control panel. It can be sensed by a PSE instruction with address 240. If, during the execution of this PSE instruction, the sense-entry hub is being impulsed, the PSE instruction skips over the next instruction in the stored program. If the hub is not being impulsed when the PSE instruction is executed, the stored program continues without skipping. The sense entry is intended primarily to be used with the overflow hub to inform the stored program of a form overflow. To do this, the overflow hub is connected to the sense entry hub and a PSE instruction is given sometime within the portion of the print cycle in which the overflow hub is emitting a signal. (See above paragraph.) ## Spacing Single, double and selective spacing before printing is carried out by jackplugging the proper space control hubs and, in the case of selective spacing, punching the paper tape for the spacing desired. When irregular spacing is required, the selective space control hubs are used and the 11 channel of the tape is punched. An extra single, double or selective space may be obtained after printing by impulsing the extra space hub after 5°. Spacing before printing can be suppressed by impulsing the space suppression hub. For single, double or triple line spacing, it is usual to start carriage spacing before printing. However, if the distance to be spaced exceeds three line spaces, there is not sufficient time to complete the spacing before printing. To have the maximum time between start of spacing and printing time, spacing is changed to an afterprinting operation by wiring print cycles to both extra space and space suppress. Wiring the space suppress only would suppress all before-print spacing. Wiring the extra space causes spacing after printing. A maximum of six lines can safely be spaced after printing without interlocking the 716. Note: There is no provision made to interlock the machine and carriage during a spacing operation. #### CATHODE RAY TUBE OUTPUT RECORDER THE TYPE 740 CRT Output Recorder permits the display of output information in the form of spots on the face of two cathode ray tubes. (CRT Display Unit and CRT Recording Unit). Digital information in core storage is automatically converted to analog information which is displayed in the form of intensified spots on the CRT's. The stored program controls the CRT unit. A camera may be attached to the smaller of the two tubes, so that a permanent film recording may be made of whatever appears on the face of that CRT. The larger CRT permits immediate visual observation. Both CRT's contain the same display. The conversion from digital to analog data, the display of spots on the face of the tubes, and the operation of the camera are all done at electronic speeds under control of the calculator. #### Uses Curve Displays. A curve (or curves) may be generated as a display of successive spots on the faces of the CRT's. Each spot is represented in core storage by a pair of rectangular coordinates. Definition: An $m \times n$ raster means that it is possible to display as many as n horizontal and m vertical lines on the face of the CRT. Thus it is possible to display mn spots on the face of the CRT. An example is the sine curve shown in Figure 39. Assuming the binary point of the coordinates to be immediately to the right of the last binary digit, the ranges of the coordinates of a point are, respectively, $$0 \le X \le 1023$$ $$0 \le Y \le 1023$$ Thus the upper bound of points plotted on the CRT is 1023 and the origin is in the lower left-hand corner. There is a maximum of 1024 positions in the X and Y direction, giving a raster size of 1024×1024 and a minimum increment of 1 between successive points in the X or Y direction. After a curve has been displayed, and perhaps recorded by the camera, the programmer may immediately display another curve. This second curve may also be recorded by the camera, and so on. Alphamerical Characters. These characters may be displayed very rapidly on the faces of the CRT's. See "Plotting Alphamerical Characters." FIGURE 39 Real-Time Problem. "Real time" means the processing of data in synchronism with a physical operation which is actually taking place while the data are being processed. The results of the data processing are used to control the physical operation itself. Examples of this are tracking aircraft and air traffic control. Simulation Problems. In this type of problem, a physical model and the conditions to which this model may be subjected are all represented by mathematical formulation. An example of this is simulating aircraft performance under structural variations, which makes it possible to test the performance of newly designed aircraft without constructing them. ## Coordinate Display Ten binary digits representing the horizontal coordinate (abscissa) of a point are stored in a word of core storage along with ten binary digits representing the vertical coordinate (ordinate) of that point. The display instructions cause the conversion of these digital coordinates to proportional voltages which position the electron beam at the proper point on the cathode ray tubes. As many points as desired may be plotted, one at a time, keeping in mind that the upper bound of the display is 1023. The instruction wrs 0024 selects the CRT unit in preparation for a display. The display equipment remains selected until some other input-output component (tape, drum, printer, punch, card reader) is selected. The wrs instruction execution takes 24 μ s. It need be executed only once in a program unless the CRT unit has been disconnected because of the selection of another input-output component. After the CRT unit has been selected by the WRS instruction, execution of the CPY instruction causes a spot to be displayed on the face of the two CRT'S. (The CPY instruction may be executed *immediately* after the WRS instruction.) The address part of the CPY instruction is the address of the location of a word containing the X and Y coordinates of a point to be displayed. The X coordinate occupies bit positions 8-17, and the Y coordinate occupies bit positions 26-35. See Figure 40. The instructions shown in Figure 40 would display the point (512, 512) on both CRT's at the center of the area covered by the raster. The coordinates of the FIGURE 40 point may be seen more clearly by inspecting the binary equivalent of the octal integer in storage location 1300. Bits 8-17 (X coordinate) and 26-35 (Y coordinate) are treated as unsigned numbers. Thus, only the first quadrant of the finite Cartesian plane may be plotted unless the axes are translated. See "Translation of Axes." There is a minimum delay of 140 μ s between the execution of successive CPY instructions. During this time the calculator is free to execute any desired instructions except input-output instructions which disconnect the CRT unit. There is no maximum delay between the execution of successive CPY instructions. The CPY execution takes 48 μ s. NOTE: In the example above, the copy loop would exclude the WRS instruction, since this need
be given only once in a program unless the CRT unit becomes disconnected. Execution of the CPY instruction causes deflection information to be transferred from core storage to the CRT unit buffer registers through the MQ. ## Film Recording The instruction PSE 0024 advances the film in the camera attached to the smaller CRT. Advancing the film exposes a new frame. The frame previous to this new one contains everything that appeared on the face of the CRT since the last PSE 0024 was executed (provided the camera is being operated in a normal fashion). Advancing the film does not affect the shutter; the shutter always remains open. If a display is attempted while the film is being advanced, the display will be delayed until the film is completely advanced. There is a delay of about 500 ms between a PSE 0024 and a CPY instruction; however, during this time any other instructions may be executed. The PSE instruction execution takes $24 \mu s$. ## Spot Intensity A spot may be programmed on the CRT used for photographic purposes with either one of two intensities, depending upon the contents of position S of the word containing the coordinates of that point. A 1 in the sign position yields a greater intensity than a 0. This gives the programmer an easy method for distinguishing some points (every fifth point, for example) from others. #### **Axes Generation** A 1 in position 1 of a word containing the coordinates of a point causes a horizontal line to be traced from the selected point to the right edge of the raster. A 0 inhibits the generation of this line. A 1 in position 2 of a word containing the coordinates of a point causes a vertical line to be traced from the selected point to the upper edge of the raster. A 0 will inhibit the generation of this line. A 1 in both positions 1 and 2 causes a diagonal line to be generated at about a 45° angle. #### **Data Manipulation** The instruction STP Y may be used to store the contents of positions P, 1, 2 of the accumulator in positions S, 1, 2 (intensity and axes bit positions) of a word that contains the coordinates of a point to be displayed. The instruction STD Y may be used to replace the X-coordinate in register Y by the X-coordinate in the accumulator, and the instruction STA Y may be used to replace the Y-coordinate in register Y by the Y-coordinate in the accumulator. #### Translation of Axes The nominal axes may be translated so that their intersection (origin) may be moved from the lower left-hand corner to any other position on the face of the CRT by means of simple translation formulas. EXAMPLE: To translate the axes so that the origin is at the center of the area covered by the raster, use the translation formulas. $$X_n = 2X_0 - 1024$$ $$Y_n = 2Y_0 - 1024$$ where (X_n, Y_n) are coordinates of a point with respect to the new position of the axes and (X_0, Y_0) are coordinates of that point with respect to the original position of the axes. ## Floating-Point Numbers If the CRT's are to be used for plotting points whose coordinates are floating-point numbers, the characteristics of these numbers should be equalized before an attempt is made to plot their fractional part. It may be that in exceptional cases this will not be necessary. However, ordinarily it will be necessary to equalize so that the coordinates of the plotted points will have the same "weight." Example: | | CHARACTERISTICS | |-----------------------|-----------------------| | ORIGINALLY | EQUALIZED | | $X_1 = .5 \times 2^6$ | $X_1 = .5 \times 2^6$ | | $Y_1 = .4 \times 2^6$ | $Y_1 = .4 \times 2^6$ | | $X_2 = .2 \times 2^7$ | $X_2 = .4 \times 2^6$ | | $Y_2 = .3 \times 2^7$ | $Y_2 = .6 \times 2^6$ | # Plotting Successive Distinct Points in the X or Y Direction In order to plot successive distinct points in the X or Y direction, one must take into account the spot size diameter. The spot size diameter is such that if two spots are about externally tangent, their centers must be 4 units apart. Thus, even though the raster size is 1024×1024 , one can get only 256 distinct spots on a line which is horizontal or vertical. A very smooth line may be plotted by selecting an increment of 1 instead of 4. # Plotting Alphamerical Characters An alphabetic or numerical character can be plotted point by point using a suitable program. The size of the character is determined by the type of pattern selected. See Figure 41. The distance X between successive spots is left to the discretion of the programmer. (Refer to *distinct* spot separation discussed previously.) If the 35 spot positions of the character "4" of Example 2 are made to correspond to 35 binary places of a word in core storage, then a character may be represented by that word at a predetermined location in storage (table look-up). The sign bit of that word may be considered to be positive. The remaining bits signify a display or no display of a spot, depending on whether the bit is a 1 or a 0, respectively. The first column of the character is represented by the first group of 7 bits (following the sign bit), the second column by the second group of 7 bits, the third column by the third group of 7 bits, and so on. The first bit of each group may correspond to the lowest position of each column, and succeeding bits will move up the column, one bit at a time. The character "4" is represented in the table by the binary word and appears on the CRT as the "4" outlined in Figure 42. # Principal Components and Their Operation DISPLAY UNIT The display unit provides an immediate display for visual purposes on a 21-inch CRT. The persistency on the face of this tube ranges from two seconds in a brightly lit room to 20 seconds in a dimly lit room, so that a generated curve may be seen in its entirety. The accuracy of this CRT is 1%; that is, if a point with the same coordinates were to be displayed twice, the successive spots would lack coincidence by no more than 1% of full scale. #### RECORDING UNIT The recording unit provides an immediate display on a 7-inch CRT for photographic purposes. The persistence is only a few microseconds, or long enough to be recorded on film by the camera attached to the 7-inch CRT. The position stability of this tube is better than 0.1% and it has a maximum error of 0.5% positional accuracy. The buffer registers in the recording unit make it possible to minimize the amount of calculator time required for displays. The calculator time consumed is only that time necessary for information to be transferred from the calculator to the recording unit buffer registers. The calculator is then free to continue while the information within these buffer registers is automatically converted to analog data and displayed as a spot. #### CAMERA AND ITS ASSOCIATED EQUIPMENT A 35 mm. pulse-operated camera is provided with the recording unit to photograph the display on the 7-inch CRT. Associated equipment permits the camera to function in conjunction with the recording unit under the control of the calculator. Film of exposure index ASA 200 should be used. The film is wound, emulsion-side in, on a wooden core 1½ inches in diameter with a 7/16 inch center hole. The camera film magazine has a capacity of 100 feet of perforated or unperforated film. Users should practice loading the magazine in daylight with 3 to 5 feet of film which may be cut from the regular film. One method of loading the film is described below: - 1. Place the magazine on a soft cloth on the loading room table with the motor down, cover facing up and the aperture plate forward. Remove the film-securing clip from the take-up hub, 1 in Figure 43, and place it on the cover. Withdraw the dark slide about $\frac{3}{4}$ of the way. You are now ready to load film. - 2. Pick up the roll of film in the right hand in such a manner that the film being unwound is on the 9 o'clock side. Unroll about 12" of film and place the rest of the roll on the film slide post 2. Keep the 12" leader in the left hand and with the right hand start at the roll and pass the film back of the guide roller 3, between the pressure plate and the magazine plate, then around the metering roller 4 and back to the take-up hub at 1. Be sure that the film comes around the take-up hub on the right-hand, or 3 o'clock side. Now place the fingers in the film aperture and press in and down. This seats the film on the bottom of the magazine. Check to see that the film edges are even over the tops of both rollers 3 and 4, and down as far as it will go on the bottom of the magazine. Take the film-securing clip from the top of the cover and snap it around the film take-up hub at 1. The cover may now be placed on the magazine (be sure that the front edge fits properly in the slot on the aperture plate) and the screw tightened. Also, return the dark slide to a normal position. - 3. Do not pass the film around the cover support stud. The entire operation will approach 30 seconds, but the operation should not be hurried. - 4. When the magazine is first placed on the camera, the motor will run for a short time to set the - metering roll. Be sure to remove the dark slide before taking pictures. The magazine motor and related parts should be serviced and oiled with the finest watch oil once a year or at 100,000 pictures, whichever occurs first. - 5. To remove a short length of film, cut the film between rollers 3 and 4, with scissors, and rethread the camera with another take-up spool. FIGURE 43 # PERIPHERAL EQUIPMENT THIS section of the manual describes available peripheral equipment using standard 704 input-output units. Tape units can be connected to card punches, card readers, and printers to provide independent machines that can perform many operations not requiring the logical ability of the 704. The Type 719 or Type 730 Printer with a Type 760 Printer Control Unit and a Type 727 Tape Unit may be used for peripheral printing. This operation is described in a preliminary edition of the manual of operation for the
719 and 730 printers. #### CARD-TO-TAPE CONVERTER THE TYPE 714 card reader and its Type 759 control unit may be connected by cables to a tape unit to record on magnetic tape data from IBM cards. By control panel wiring it is possible to transcribe the entire card on tape or to select any combination or arrangement of fields. The sensing of the record storage mark causes an inter-record gap on the tape. Unpunched card columns preceding the record storage mark are written as blank characters on tape. Characters may also be emitted from the control panel or the grouping feature may be used to convert two card records to a single tape record. #### Operation To accomplish a card-to-tape conversion, a tape unit is connected by cable to a card reader and the card reader control unit. The tape is properly loaded in the tape unit and the door is closed. Depressing the tape unit load-rewind key feeds the tape into the vacuum columns to be taken to the load point. Depressing the start key then turns on the ready light. When the ready status has been established in the tape unit, the card reader may be operated. Place cards in the hopper and press the start key once to run in the cards. A second depression of the start key causes the card-to-tape conversion to begin. When the end of the tape is reached, the operation stops. Remove the cards from the hopper and press the start key to record the last two cards in the feed on tape. A tape mark is automatically recorded after the last card. Rewind the tape by pressing the load rewind key. Remove the tape from the columns by pressing the unload key and taking off the reel. Repeat the normal starting procedure to resume the operation. When the end of the card file is reached, end the operation by pressing the start key and recording the last two cards in the feed. A tape mark is automatically recorded after the last record. If desired, an additional file of information can be written by loading additional cards without rewinding the tape. ## Recording All standard punched card characters are recorded on tape as indicated by the character code chart (Figure 44). The following card punches are recorded as indicated: | CARD | TAPE | |----------------------------|-------------| | Zone 11, numerical 0 | 0 | | Zone 12, numerical 0 | 0 | | Zone 0, numerical 2 and 8 | Record Mark | | Zone 12, numerical 5 and 8 | Group Mark | #### Checking During a card-to-tape operation, checking consists of the following: - 1. The cards are read at two brush stations. At the first brush reading, the number of holes in each horizontal row of the card is determined to be odd or even. This information is stored in twelve binary triggers. The reading of the card at the second set of brushes reads the card into record storage. When data are read out of record storage, the number of holes in each horizontal row of the card is again checked for odd or even number. This number is stored in another set of twelve binary triggers. These two sets of triggers are compared to insure correct card reading. - 2. After the card record has been recorded on tape, the tape is backspaced and read for a lateral check for each character and longitudinal row check for each record. Whenever the control panel is wired to control information going into record storage, it is also necessary to wire it into the check entry. | | | | - | | _ | _ | | | | | | | | _ | | | | |------------|-------------|-----------|---|------|----------|---------|----|------|-------|---|----|------|-----|---|----|----------------|-------------| | 1 | CHAR. | | | | CHAR. | | | | CHAR. | l | | | | | | | | | L | & | 0 1 | 1 | 0000 | - | 1 | 10 | 0000 | Blank | 1 | 01 | 0000 | İ | | | | | | 1. | Α | 1 1 | 1 | 0001 | J | 0 | 10 | 0001 | / | 0 | 01 | 0001 | 1 | 1 | 00 | 0001 | | | 1. | В | 1 1 | 1 | 0010 | К | 0 | 10 | 0010 | S | 0 | 01 | 0010 | 2 | 1 | 00 | 0010 | _ | | L . | С | 0 1 | 1 | 0011 | L | 1 | 10 | 0011 | T | 1 | 01 | 0011 | 3 | 0 | 00 | 0011 | _ | | ETIC | D | 1 1 | 1 | 0100 | м | 0 | 10 | 0100 | υ | 0 | 01 | 0100 | 4 | 1 | 00 | 0100 | -
-
- | | HAB | Е | 0 1 | 1 | 0101 | N | 1 | 10 | 0101 | ٧ | 1 | 01 | 0101 | 5 | 0 | 00 | 0101 | | | ALP | F | 0 1 | 1 | 0110 | 0 | 1 | 10 | 0110 | W | 1 | 01 | 0110 | 6 | 0 | 00 | 0110 | N UM ERIC | | ١. | G | 1 1 | 1 | 0111 | Р | 0 | 10 | 0111 | X | 0 | 01 | 0111 | 7 | 1 | 00 | 0111 | ž | | ١. | Н | 1 1 | 1 | 1000 | Q | 0 | 10 | 1000 | Υ | 0 | 01 | 1000 | 8 | 1 | 00 | 1000 | - | | L | 1 | 0 1 | 1 | 1001 | R | 1 | 10 | 1001 | Z | 1 | 01 | 1001 | 9 | 0 | 00 | 1001 | - | | L | Plu
0 | Zer
01 | _ | 1010 | Mir
0 | us
1 | | 1010 | Reco | | | 1010 | Z o | | | l Zero
1010 | - | | Ι¥ | A | 1 1 | 1 | 1011 | \$ | 0 | 10 | 1011 | , | 0 | 01 | 1011 | # | 1 | 00 | 1011 | | | SPEC | CHAR
- | 0 1 | 1 | 1100 | * | 1 | 10 | 1100 | % | 1 | 01 | 1100 | @ | 0 | 00 | 1100 | - | | | roup
ark | 1 1 | 1 | 1101 | | | | | | | | | | | | Nark
1111 | | FIGURE 44 ## Grouping This feature permits the grouping of two card records into one tape record with the following restrictions: - 1. The maximum tape record is 92 characters, the size of the record storage unit. - 2. No more than 46 characters from a single card. - 3. The same card columns must be used from the two card records. #### **Controls** The tape unit controls are described in the section on magnetic tape units. The Type 714 card reader controls include those described in the section on the Type 711 card reader and, in addition, further controls for the card-to-tape operation are described below. The start, stop, and feed keys and the ready, select, and feed check (card feed stop) lights operate identically to the corresponding keys and lights on the Type 711 card reader. Backspace Key. The backspace key, when depressed, backspaces the tape one record for each depression. It permits rewriting of records that have been recorded incorrectly. Reset Key. Depressing the reset key resets the check circuits and allows normal operation. Read-Check Light. The read-check light goes on when a card reading error is detected. Write-Check Light. The write-check light is turned on when a writing circuit error is detected. #### TAPE-TO-CARD CONVERTER THE TYPE 722 card punch and the Type 758 control unit may be attached directly by cables to a tape unit to transcribe magnetic tape records written in the BCD mode to IBM punched cards. As many files as desired may be recorded from each tape. Records of 78 characters or less may be punched at a speed of 100 cards per minute. Records longer than 78 characters may cause an error indication and should not be used. Information is punched in the cards in the same order that it is read from tape. #### Operation Prepare the tape unit for operation by properly loading a reel of tape on the tape unit and closing the door. Pressing the load-rewind key brings the tape automatically to the starting point. Subsequently pressing the tape unit start key turns on the ready light. When the ready status has been established in the tape unit, place the cards in the card punch hopper and press the start key twice to begin the operation. When a tape mark is sensed, the operation is stopped. Punch the next file by pressing the start key, or rewind the reel at this time by pressing the load-rewind key. Press the unload key to remove the tape from the vacuum columns. The reel may then be removed from the unit. Load another reel onto the unit and feed it to the starting point by pressing the load-rewind key. Press the tape unit start key and then press the card punch start key twice to resume operation. After the last reel of tape has been recorded, pressing the feed key on the card punch removes the cards from the card punch hopper and runs the remaining cards out of the feed. #### Checking of Reading Information read from tape is given a characterby-character code check. In addition, a longitudinal check for an even number of ones in each of the seven tape channels is made for each record to determine whether a single one has been changed in any channel in reading a record. A failure detected by either of these two methods stops the machine before it punches the erroneous record. It also turns on the read-check light on the control unit. To reread the record in question after detecting a reading error, press the backspace key on the card punch to backspace the tape one record. Pressing the restart key on the card punch turns off the error indication and causes the card punch to execute a clearing cycle. On the clearing cycle a card is fed but not punched and record storage is cleared. The operation is then automatically resumed with the same tape record being reread into record storage. If, upon detecting a reading error, the record is not to be reread, press the restart key to turn off the error indication and resume operation. In this event no clearing cycle occurs and the record in record storage is punched. ## Checking of Punching The punched cards are checked at a brush station one card cycle after being punched. The check is an odd-even horizontal row count of the holes in the card matched against a similar row count of the tape record sent to record storage. A discrepancy in a card is indicated by the punchcheck light which turns on after the following card has already been punched and the second record following has already been read into record storage. Therefore, to reread the record in error, press the backspace key on the card punch three times to backspace the tape the necessary three records. Pressing the restart key on the card punch then causes the error indication to be turned off, a card to be fed but not punched, the record storage to clear, and the operation to resume. Therefore, a blank card is fed and two cards are repunched. Remove the blank card and the two cards preceding it. #### Punching The numerical, alphabetic and special characters are punched in the standard IBM card code. The following characters are
punched as indicated. | TAPE CHARACTER | CARD PUNCHING | |----------------------|----------------------------| | <u></u> | Zone 11, numerical 0 | | Ó | Zone 12, numerical 0 | | Record Mark | Zone 0, numerical 2 and 8 | | Character Code Error | Not punched | | Group Mark | Zone 12, numerical 5 and 8 | #### Controls The tape unit controls are described in the section on magnetic tape units. The Type 722 card punch controls include those described in the section on the Type 721 card punch and, in addition, further controls for the tape-to-card operation are described below. The start, stop, and feed keys and the ready, select, and feed check lights operate identically to the corresponding keys and lights on the Type 721 card punch. Backspace Key. This key, when pressed, backspaces the tape one record for each depression. Records that have been read erroneously may be backspaced and reread. Punch-Check Light. This light is turned on when a discrepancy is revealed by the check performed on punching. Read-Check Light. This light is turned on when a character code error is detected in reading a tape record. Restart Key. Pressing the restart key resets the error indication and resumes the punching operation after an error has been detected and the error indication has been turned off. If the tape has been backspaced to reread the records in question, pressing the restart key causes the card punch to execute a clearing cycle, after which the operation is automatically resumed. # TAPE-CONTROLLED PRINTER THE TYPE 717 printer and the Type 757 control unit may be connected by cable to a tape unit to provide a method of direct printing of information from magnetic tape. Information is printed in the same order in which it is read from tape at a speed of 150 lines per minute. As many files as desired may be printed from each tape. Records of 120 characters or less may be printed. Records of 120 characters may be read with carriage control switch at PROGRAM where the first character is not printed. Tape records in excess of 120 characters may cause a machine stop or an error indication and therefore should not be used. ### Carriage Control Switch The carriage control switch on the tape-controlled carriage may be set to single space, double space, or program. When the switch is set to single space, form spacing is six lines to the inch. When the switch is set to double space, spacing is three lines to the inch. Under either setting, print-wheel one prints the first character in the record, while each successive character is printed by wheel two, three, and so on. The carriage tape controls the ejection and spacing of the form. Channel 1 is the restore or home position of the form and channel 12 is the overflow or eject position. When channel 12 is sensed while printing a line, the form is automatically ejected to channel 1. Controlled skipping to other positions of the form is not possible unless the carriage switch is set to PROGRAM. With the switch set to PROGRAM, the skipping of the form is under the control of the first character in the record and ejection is not automatic. This character is the carriage control character and is not printed. Print-wheel one prints the second character in the record, and successive characters are printed by print-wheel two, three, and so on. The following characters may be used to control skipping: | Suppress space | & (ampersand) | |----------------------------|---------------| | Single space | b (blank) | | Double space | 0 | | Skip to channels 1-9 | 1-9 | | Short skip to channels 1-9 | J-R | When preparing a tape for peripheral tape-toprinter operation with the carriage control switch set to PROGRAM, the printing lines must be counted to simulate carriage overflow. The proper control character is inserted as the first character of the tape record. ## Operation The tape unit is prepared for operation first by putting in the proper reel and closing the cover. Depressing the tape load-rewind key brings the tape automatically to the starting point. Depressing the tape unit start key then turns on the ready light on the tape unit. The printer is made ready by inserting the proper paper form, by inserting a carriage tape if any is required, by restoring the carriage to channel 1, and by setting the carriage control switch. Pressing the printer start key once causes a clearing cycle. A second depression starts the printing operation. When a tape mark is sensed, the operation is stopped. Print the next file by pressing the start key or rewind the reel at this time by pressing the load-rewind key. Press the unload key to remove the tape from the vacuum columns. The reel may then be removed from the unit. ## Checking of Reading Information read from tape is given a character-by-character, even-count, character code check. In addition, a longitudinal check for an even number of bits is made for each of the seven tape channels for each record. This determines whether a single bit has been changed in any channel in reading a record. A failure detected by either of these two methods stops the machine before it prints the erroneous record. It also turns on the read-check light on the printer. To reread a record found to be in error, press the backspace key on the printer to backspace the tape one record. Pressing the restart key on the printer resets the error condition and causes the printer to go through a clearing cycle. On the clearing cycle, the erroneous record is removed from record storage and no printing or carriage spacing occurs. The operation is then automatically resumed with the same tape record being reread into record storage. If it is not necessary to reread the record when a reading error is detected, press the restart key to resume operation. In this event, no clearing cycle occurs and the record in record storage is printed. ## Checking of Printing The printing of information is checked by comparing the print-wheel echo impulse count against the information sent to the printer record storage. This is a row count check of the numerical portions of all characters. A discrepancy revealed by this check stops the machine after it prints the record in error. It also turns on the printer check light. Should a printing error be detected, the erroneous record will have been printed and the next record will be in record storage at the time the machine stops. Therefore, to reprint the erroneous record, the tape must be backspaced two records by two depressions of the backspace key. Pressing the restart key resets the error indication and causes a clearing cycle after which the two tape records will be reread and normal operation will be resumed. If the record in error is not to be reprinted, pressing the restart key resumes operation. #### Printing All the characters in the character code chart (Figure 44) are printed as indicated except for the following: | CHARACTER | PRINTED | |-----------------------|---------| | 0 | & | | 0 | | | Record mark | Blank | | Character code errors | Blank | | Group Mark | 口 | #### Controls The tape unit controls are described in the section on magnetic tape units. The Type 717 printer controls include those described in the section on the Type 716 printer and, in addition, further controls for the tape-to-printer operation as described below. The start and stop keys, ready, select, and form stop lights, and the platen clutch, restore, stop, and space keys on the carriage operate identically to the corresponding controls on the Type 716 printer. Carriage Control Switch. Automatic single or double spacing will occur when this switch is set to single or double space. If the switch is set to program, spacing is controlled by the first character in each record. This character is not printed. Form Control Key. The printer does not stop when the form stop contact closes. After the form stop has closed and channel 1 on the carriage tape is sensed, the printer stops before printing on the next form and the form stop light is turned on. This indicates that the carriage has moved from one form to another. The operator now has two options governed by the form control key. - 1. Manually feed new forms of paper into the carriage, thereby opening the form stop contact. Pressing the form control key then turns off the form stop light and allows the operation to continue. - 2. Press the form control key to turn off the form stop light and allow the printer to continue until the closed form stop contact and channel 1 condition again stops the printer. Thus one or more forms may be printed before finally stopping the printer and inserting additional paper. Backspace Key. Pressing the backspace key causes the tape involved in the tape-controlled printer operation to be backspaced one unit record. Successive depressions of this key will cause the tape to be backspaced one record for each depression. Restart Key. Pressing the restart key resets the error indication and resumes the printing operation after an error has been detected. If the tape has been backspaced to reread the record in question, depression of the restart key causes a printer clearing cycle, after which operation will be continued. Write-Check Light. If a discrepancy is detected by the printer echo check, the machine stops after printing the record and the write check light turns on. Read-Check Light. If a character code error is detected in reading a tape record, the machine stops after reading that entire record and the read check light turns on. #### SYMBOLIC PROGRAMMING THE 704 can execute a program only if it is an absolute program; that is, if all words, whether instructions or data, have been assigned definite locations in storage, and all quantities in the program depending upon the allocation of storage have been assigned definite numerical values accordingly. But it is usually difficult to write a program in this form, because an intelligent assignment of storage space cannot be made until after the
program is written and the demands for space are known. Therefore, some non-absolute system of program writing is usually used. The programming system recommended for the Type 704 is called symbolic programming. The program is written in terms of symbols denoting the storage locations (as yet unknown) of all the words to which the program must make reference. When this symbolic program is completed, the programmer can decide how he wishes the program to be fitted into storage. The symbols now take on their definite numerical values, and the symbolic program becomes absolute. These final steps, of assigning values to the symbols in accordance with the programmer's wishes, and replacing the symbols throughout the program by their values to produce the absolute program, are carried out by the symbolic assembly program NY AP 1. This assembly program accepts the symbolic program in the form of standard IBM cards, key-punched from the programming sheets, together with additional cards specifying the programmer's wishes about storage allocation; it produces the absolute program in the form of binary punched cards suitable for subsequent loading into the computer, together with a printed listing of the program in both symbolic and absolute form. For details, consult the NY AP 1 write-up. The following points are of special interest to the programmer. 1. It is not necessary to assign a symbol to a location until you find that you must refer to that location. In practice, you never refer to the majority of the words in a program. Consequently, in the finished symbolic program only a small fraction of the locations are given symbols. - 2. When you must invent a symbol to assign to a location, it may be any six of the 47 characters expressible in the IBM code (e.g., H, 3, or \$). Thus, symbols of high mnemonic value may be used; for example, TRY A, B and X SUB 2 might be assigned to the locations of any instruction and a word of data. - 3. Use NY AP 1 to refer to the second, third, or the nth location before or after a location which has already received a symbol. Notice that on the programming form both the address and decrement fields are divided into a symbolic and an absolute part. Suppose that the symbolic part of the address of an instruction is ALPHA and the absolute part is 4. Then in the final absolute program, if ALPHA has become, say, 1000, the address of this instruction will be 1004. This provision is particularly convenient in connection with a block of data, since a single symbol will serve for references to any of the words in the block. - 4. Moreover, if the symbolic part of the address had been left blank (instead of containing ALPHA), the address in the absolute program would have become 4 (instead of 1004). Therefore, if the absolute value of an address or decrement is known, it should be written in the absolute part and the symbolic part left blank. The following programming examples appear in symbolic programming form, exactly as they would be written for assembly by NY AP 1. #### N-Way Branch of Control In Figure 45, suppose that some quantity P may have any of the values 1, 2, or 3 and that control is to be transferred to the location P is 1, P is 2, or P is 3. Notice that in the program P does not mean the quantity P, but the symbol for the storage location where P is to be found. Until it is well understood, this identification of symbol with quantity can cause difficulty, but, once understood, its use is a major advantage of symbolic programming. This principle may be extended to an n-way branching. | | | | | - u x | NUM | ABER | | | EXPONENT | BINARY PLACE | CODER DATE | PAGE | |---------|------------|----------|------|-------|----------|----------|--------|-----------|----------|--------------|------------------------------|------| | | c C | | | | ADDRESS | | т | 1 | DECRE | MENT | | | | IDENTI- | R A
D S | LOCATION | CODE | CLAS | SYMBOLIC | ABSOLUTE | A
G | 0 1 4 5 5 | SYMBOLIC | ABSOLUTE | COMMENTS | | | | | | LXA | | Р | | Α | | | | Load index register A with P | | | | | BRN | TRA | | BRN | 4 | Α | L | | | TRA to appropriate TRA below | | | | | | TRA | | P IS 3 | | L | L | | | Transfer | | | | | | TRA | | P IS 2 | | | | | | to the | | | | | | TRA | | P IS 1 | | | | | | correct location | | FIGURE 45 #### Normalizing an Unnormalized Floating-Point Number Normalize unnormalized floating-point numbers as shown in Figure 46. #### Floating a Fixed-Point Number A fixed-point number, whose binary point is Q places to the left of its right-hand end, is to be converted into normalized floating-point form. No assumptions are to be made about the number of leading zeros in the fixed-point word, and no binary digits are to be discarded unnecessarily. See Figure 47. The program proceeds as follows: - 1. If the fixed-point number does not have room for the characteristic (does not possess at least eight leading zeros), it is shifted until there is room. The number of places shifted, S, is counted in an index register. - 2. The characteristic, which equals 128 + S (Q 27) = 155 + S Q, is computed and a floating-point number is formed. - 3. If no shifting was done earlier (S=0), the number may be unnormalized. In this case, use the normalizing procedure of the preceding example. The only requirement upon S and Q is that $0 \le 155 + S - Q < 256$. A test could be built into the program to cause a HALT if this condition is violated. #### Fixing a Floating-Point Number A floating-point number is to be converted into fixed-point form with the binary point Q places to the left of the right-hand end (Figure 48). The "fixer" is a floating-point number, with fractional part zero and characteristic C=163-Q. This program assumes that Q is known at the time of writing, and 163-Q may, therefore, be entered in the fixer at that time. (If Q is not known in advance, a minor routine to compute the fixer could precede the present program.) The FXD (fixed decimal) in the operation field of fixer instructs NY AP 1 to convert 139 from decimal to binary and place it in the word with its binary point 27 places to the left of the right-hand end, that is, in the characteristic field for a floating-point number. Suppose that the floating-point number to be fixed has a characteristic C. Examination of the program shows that everything will be accomplished correctly, provided Q and C satisfy $163 - Q \ge C$. If, however, Q and C do not satisfy this relation, probably the programmer has made an error; for this combination demands that leading non-zero bits be lost. The present program does not cause them to be lost, but instead produces the fixed-point number with a Q less than the desired Q. A test for 163 - Q < C could easily be incorporated to give warning that this condition has occurred. | | | | | S
I
G
N | NUR | 4BER |]_ | | EXPONENT | BINARY PLACE | CODER | DATE | PAGE | |----------|------------|----------|-----------|------------------|----------|----------|--------|-----------|----------|--------------|----------------|-----------|------| | IDENTI- | c C | | OPERATION | Ĺ., | ADDRI | ESS | т | | DECRE | MENT | | | | | FICATION | R A
D S | LOCATION | CODE | C A S S | SYMBOLIC | ABSOLUTE | A
G | C L A S S | SYMBOLIC | ABSOLUTE | | COMMENTS | | | | | | CLM | | | | | | | | Clear AC | | | | | | | FAD | | UNNOR | | | | | | Normalize by u | se of FAD | | | | | | STO | | NORM | | L | | | | Store result | | | Figure 46 | | | | 5
5 | NUN | BER | ٦ | Ī | EXPONENT | BINARY PLACE | CODER DATE PAGE | |-------------|----------|-----------|-------------|----------|----------|-----|-------|----------|--------------|--------------------------------| | 6.5 | | | | ADDRI | ESS | J. | | DECRE | MENT | | | FIGATION RS | LOCATION | OPERATION | C
L
8 | SYMBOLIC | ABSOLUTE | G G | CLASS | SYMBOLIC | ABSOLUTE | COMMENTS | | | | LXD | | TXH | | A | | | | Prepare | | | | CLM | | | | | | | | for program | | | | LDQ | . | FIXED | | | | | | Bring fixed-point word into MQ | | | | LLS | | | 8 | | | | | Is there room | | | TZE | TZE | | PXD | | | | | | for characteristic | | | | LRS | | | 1 | | | | | If not, shift, add 1 to S, | | 1 | | TXI | | TZE | | Α | | | 1 | and ask again | | | PXD | PXD | | | | Α | | | | Form characteristic | | | | SUB | | Q | | | | | | and store | | | | ALS | П | | 9 | T | | | | for later | | 1 | | STO | | ERASB | | | | | | normalizing | | | | ARS | | | 27 | | | | | Compose | | | | LLS | | | 27 | | | | | floating-point word | | | TXH | TXH | | STO | | A | | | 155 | Is normalizing necessary | | | | FAD | | ERASB | | | | | | Normalize | | | STO | STO | | FLOTG | | | | | | Store | | | | | | | | | | | | | | | | | П | | | | | | | | | | Q | | | | | | | | Q | | FIGURE 47 #### **Double-Precision Floating-Point Division** As a final example of programming associated with floating-point numbers, suppose that the quotient A/B is to be formed, where A and B are each stated in double-precision floating-point form; A, for example, is expressed as $A_1 + A_2$, where A_1 and A_2 are floating-point numbers, A_1 is normalized, and A_2 has a characteristic 27 less than that of A_1 . The quotient Q = A/B is to be produced in the same form (Figure 49). The program rests upon the fact that, since B_2 is very much smaller than B_1 , $$\frac{A}{B_1+B_2}=\frac{A}{B_1}-\frac{A}{B_1}\times\frac{B_2}{B_1}.$$ It evaluates this formula in straightforward fashion: - 1. A_1 is divided by B_1 to form the most significant part of A/B_1 . - 2. A_2 is added to the remainder and the result is divided by B_1 to form the least significant part of A/B_1 . | | | 6 | NUM | BER | | | EXPONENT | BINARY PLACE | CODER DATE PAGE | |----------------------|------|------------------|----------|----------|---|---|----------|--------------|--------------------------------------| | [c. c | T | | ADDRI | SS | T | | DECRE | MENT | | | FICATION RA LOCATION | CODE | C
A
S
S | SYMBOLIC | ABSOLUTE | Ğ | 0 | SYMBOLIC |
ABSOLUTE | COMMENTS | | | CLA | | FIXER | | | | | | Do UFA of floating number | | | UFA | | FLOTG | | | Ш | | | and fixer | | | RQL | | | 9 | | | | | Discard characteristic in MQ | | | LGL | | | 8 | | | | | Recover least significant digits | | | STO | | FIXED | | - | | | | Store | | | | | | | | | | | | | FIXER | FXD | П | | 139 | 1 | | 27 | | This is for case Q=24. 163-24 is 139 | FIGURE 48 | | | | | : | NUB | (BER | 1 | | EXPONEN | T BINARY PLACE | CODER DATE PAGE | |----------|-----|----------|-----------|---|----------|----------|---|---------|---------|----------------|---------------------------| | IDENTI- | 320 | LOCATION | OPERATION | | ADDRE | ESS | т | | DE | REMENT | | | FICATION | D'S | LOCATION | CODE | 1 | SYMBOLIC | ABSOLUTE | Ĝ | C L 4 8 | SYMBOLI | ABSOLUTE | COMMENTS | | | | | CLA | Ш | A1 | | L | | | | Form most significant | | | Ш | | FDH | | B1 | | _ | _ | | | part of A/B1 | | | Ш | | STQ | | A/B1 1 | | L | _ | | | and store | | | | | FAD | | A2 | | L | L | | | Form least significant | | | | | FDH | | B1 | | L | L | | | part of A/B1 | | | | | STQ | | A/B1 2 | | | | | | and store | | | | | CLA | Ш | B2 | | L | | | | Form | | | | | FDH | Ш | B1 | | L | | | | Minus | | | Ш | | FMP | Ш | A/B1 1 | | | | | | B2/B1 times the most | | | Ш | | CHS | | | | 1 | | | | significant part of A/B1, | | | Ц | | FAD | | A/B1 2 | | L | | | | Add | | | | | FAD | | A/B1 1 | | 1 | | | | A/B1, | | | | | STQ | | Ql | | L | | | | And | | | | | STQ | Ц | Q2 | | | | | | Store | FIGURE 49 - 3. B_2 is divided by B_1 and the result multiplied by the most significant part of A/B_1 (multiplication by the least significant part of A/B_1 is not necessary because of the order of magnitude of the numbers involved) and the sign is changed. - 4. Finally, A/B_1 is added in two stages. #### Drum Copy Loop The 100 consecutive words beginning with location 1000 on drum 301_8 are to be read into the 100 consecutive storage locations beginning with 1sTWD (Figure 50). The O in the address class column of the RDS instruction indicates to NY AP 1 that the absolute part of the address has been stated in octal. The arrangement LXA, ..., ..., TIX is the simplest and most common form of loop. It is very easy to write; if the instructions in the loop are to be executed n times, load the index register with n and make the address of each instruction tagged with that index register equal to the address it should have on its first execution plus n. This loop also has the property that it "moves" upward through storage; that is, the effective addresses of the tagged instructions increase as the program is executed. #### Example of Loop Writing An array of 100 quantities C_{ij} is to be computed according to the expression $$\begin{array}{ccc} C_{ij} = A_i - B_j & \text{for } i > j \\ = A_i + B_j & \text{for } i \leq j & (i, j = 1, 2, ..., 10). \end{array}$$ The program is shown in Figure 51. Notice that this type of loop, using TXI to change | | | | | M = G 2 | NU | ABER | 7 | | E | EXPONENT | BINARY PLACE | CODER DATE PAGE | |----------|------------|----------|-----------|------------------|----------|----------|--------|-----|-----|----------|--------------|-----------------| | IDENTI- | c C | | OPERATION | L, | ADDR | ESS | т | I | | DECRE | MENT | | | FICATION | R S
D S | LOCATION | CODE | C
A
S
S | SYMBOLIC | ABSOLUTE | A
G | A S | C S | SYMBOLIC | ABSOLUTE | COMMENTS | | | | | RDS | a | | 301 | | | | | | | | | | | LDA | | 1000 | | | | | | | | | | | | LXA | | 100 | | A | | | | | | | | | CPY | CPY | | 1 STWD | 100 | Α | | | | | | | | Li | | TIX | | CPY | | Α | | | | 1 | | | | П | | | | | | L | | | | | | | | Ш | | | | | | L | L | | | | | | | | 1000 | | _ | | 1000 | | | | | | | | L | | 100 | | | | 100 | | | | | | | FIGURE 50 | | | | S
1
G
N | NUI | MBER | 7 | | EXPONENT | BINARY PLACE | CODER DATE PAGE | |------------|-----------------|-----------|------------------|----------|----------|--------|-----------------|----------|--------------|------------------------------------| | IDENTI- A | C L | OPERATION | L | ADDR | ESS | | | DECRE | MENT | TAGE TAGE | | FICATION R | A LOCATION
S | CODE | C
A
S
S | SYMBOLIC | ABSOLUTE | A
G | C
4.5
5.5 | SYMBOLIC | ABSOLUTE | COMMENTS | | | - | LXD | | INC J | | 7 | | | | Initialize (make I, J, IJ EQUAL 1) | | | STOR J | SXD | | COM IJ | | В | | | | Store J for comparison with I | | | | CLA | | B1 | 1 | В | | | | CLA B SUB J | | | COM 11 | TXL | | ADD | | Α | | () | | Is I less than or equal to J | | | | CHS | | | | | | | | If not change sign of B SUB J | | | ADD | ADD | | A1 | 11 | Α | | | | Add A SUBI | | | | STO | | Cll | 1 | Ç | | | | Store answer in C SUB IJ | | | INC J | TXI | | INCIJ | | В | | | 1 | Increase J by 1 | | | INC IJ | TXI | | TEST J | | С | | | 1 | Increase IJ by 1 | | | TEST J | TNX | | STOR J | | В | | | 10 | Test J and go back or reset J | | | 1 | TXI | | TEST 1 | | Α | | | 11 | Increase I by 1 | | | TEST I | TNX | | STOR J | | Α | | | 10 | Test I and go back or go on | FIGURE 51 the index quantities "moves" backward through storage. Hence the A's, for example must be stored in the order A_{10} , A_{9} , ..., A_{1} , and the C's are stored in the order $C_{10,10}$, $C_{10,9}$, $C_{10,8}$, ..., $C_{1,3}$, $C_{1,2}$, $C_{1,1}$. #### **Subroutines** Many routines, such as decimal-to-binary conversion, binary-to-decimal conversion, sine, exponential, and so on, can be used repeatedly since they perform basic functions reappearing several times within a single program or in different programs. These are called subroutines because they are subordinate to the main program in which they are used. In general, each large program uses several subroutines in addition to the special logic peculiar to the problem involved. The set of all subroutines used in a computing installation is called a library. Open Subroutine. An open subroutine is a set of instructions to be integrated into the logical flow of the main program. In using an open subroutine in more than one place in the main program, insert it in each place. In general, the data needed by the open subroutine is placed in the specified locations in the subroutine by the main program. Then the flow of control goes directly into the subroutine from the main program without a transfer of control; control exits from the subroutine directly into the main program again. Hence the open subroutine is sandwiched directly into a program as though it were part of the original coding of the program. In the following example, the subroutine converts 12 words (72 characters) of BCD information to a card image and prints the line of information on the alphabetic printer. To use this open subroutine, the main program must select the printer and put the first six words to be printed in the storage locations D through D+5. The last six words to be printed must be stored in D+32 through D+37, where D is the symbolic origin for the data. The subroutine transfers control back to the main program which resumes at D+55. Program constants for the subroutine are stored in D+23 through D+29. D+30, 31 are unused; hence, they may be used for any kind of storage by the main program. This subroutine uses all three index registers (Figure 52). Closed Subroutine. A closed subroutine may occur several times within one main program, but the set of instructions comprising the subroutine need appear only once in the main program. The transfer of control from the main program to the subroutine takes place from a calling sequence (basic linkage). Specify the calling sequence to be used in the subroutine. It varies according to the data needed by each subroutine. For example, if a subroutine for computing the sine of x requires one word of data, the calling sequence is shown in Figure 53. The subroutine can compute the exit address that takes it back to the main program by using the fact that index C contains the 2's complement of the address of the TSX instruction. Thus the sine program would be as shown in Figure 54. | | l c l | | | į | ADDRE | | 1 | l i | EXPONENT | BINARY PLACE | CODER DATE PAGE | |--------|----------|--------------|-------------------|----------|----------|----------|-------------|-------------|---------------------------------------|--------------|------------------------------| | DENTI- | CARS | LOCATION | OPERATION
CODE | C L A | SYMBOLIC | ABSOLUTE | 7
A
G | 0.4 | SYMBOLIC | ABSOLUTE | COMMENTS | | | Ħ | BCD | LXA | Ė | D | 26 | A | 5 | | | Choose left card image | | | | | LXD | | D | 26 | В | - | | | Clear | | | П | | CLM | | | | 10 | | *** | | D + 6 | | | | Α. | SLW | | D | 87 | 3 | | | | thru | | | | | TIX | | BCD | 3 | В | 1 | | 1 | D + 22 | | | H | | CAL | | D | 23 | 1 | | | <u> </u> | Refresh | | | H | | SLW | Н | D | 27 | ╁ | | | | column indicator | | | П | | LXA | | D | 24 | В | Н | | | Beginning | | | Н | _> | LDQ | Н | D | 70 | 3 | | · · · · · · · · · · · · · · · · · · · | | of preliminary | | | | | SXD | | D | 29 | В | | | | card image | | | | - | CLM | | | | - | | | | formation | | | Н | | LGL | | | | \dagger | | | | | | • | Н | | | Н | | 2 | t | Н | | | Place zone part | | | Н | | PAX | Н | | | В | Н | | | in index B | | | H | | CLM | \vdash | | | ╁ | | | | Clear accumulator | | | H | | LGL | Н | | 4 | ╁ | Н | | | Place numerical part | | | Н | 1 | PAX | Н | | | ∦C | | | | in index C | | | Н | | CAL | Н | D. | 27 | + | H | | | Form present | | | | | ORS | Н | D | 86 | 3 | | | | column of | | | Н | | ORS | Н | D | 82 | 5 | H | | | card image | | | Н | | ARS | \vdash | | 1 | ┢ | | | | Move to | | | H | | SLW | Н | D | 27 | + | | | | next column | | | \vdash | +++ | ANA | H | D | 28 | 1 | | | | Close loop if word | | | H | | TNZ | Н | BCD | 10 | + | | | | is not finished | | | Н | - | LXD | Н | D | 29 | В | 1 | | | Move to next word and | | | Н | <u>-</u> | TIX | Н | BCD | 8 | В | | | 11 | test end of half image | | | |
ABCD | LXD | Н | D | 24 | В | | | | Or | | | Н | | CAL | Н | D | 72 | 3 | Н | | | 8-4 word | | | Н | - | ORS | Н | D | 74 | A | \vdash | ···· | | and 8–3 word | | | H | - | ORS | Н | D | 80 | 3 | Н | | | into | | | | | TIX | - | ABCD | | В | H | | 1 | 8, 4, and 3 words | | | Н | | CAL | \vdash | D | 82 | A | Н | | | Obtain | | | | | COM | H | | | 1 | | | | the | | | | | ANS | | D | 83 | Α | Ш | | | 0's row | | | Ш | | CAL | Ц | D | 82 | Α | | | | of | | | | | ANA | | D | 86 | Α | | | | the | | | | | ORA | \sqcup | D | 83 | Α | | | | card | | | Н | | SLW | - | D | 82 | A | Ш | | | image | | | | ļ | CAL | Н | D | 84 | Α | Н | | | Obtain | | | Н | | SLW | Н | D | 83 | A | \parallel | | | × | | | | _ | CAL | Ш | D | 85 | Α | \sqcup | | | and y | | | Н | - | SLW | \sqcup | D | 84 | Α | | | | rows | | | Ц | <u></u> | TIX | | BCD | 1 | A | \sqcup | | 32 | Go back for right half image | | | Ш | | LXA | | D | 25 | Α | \sqcup | | | Сору | | | Щ | COPY | CPY | | D | 21 | A | Щ | | | Гоор | | | | | CPY | | D | 53 | A | Ш | , | | for | | | | | TIX | \sqcup | COPY | | Α | Ш | | 1 | printing | | | | | TRA | | D | 55 | 1 | | | | Final exit | | | Ш | D | | | | | | Ш | | | Storage location | | | | D+1 | | | | | 1 | Ш | ~~~~ | | of six | | | Ш | D + 2 | | | | | | Ш | | | words of bod | | | | D + 3 | | | | | 1 | | | | characters | | | L | | | | | | L | | | | for left half | | | | | | ΙĪ | | | - | l I | | | of card image | FIGURE 52a | | | | | \$ - G # | NUM | | _ | | EXPONENT | BINARY PLACE | CODER DATE PAGE | |----------|--------------|-----------|---------------------|-----------|-----------|----------|--------|-------------|----------|--------------|---| | NTI- | Γ | | OPERATION | | ADDRE | SS | - 7 | | DECRE | MENŢ | COMMENTS | | TION R A | | LOCATION | CODE | C L 4 8 9 | SYMBOLIC | ABSOLUTE | A
G | | SYMBOLIC | ABSOLUTE | COMMENTS | | | | D + 6 | | | | | | | | | Numerical 8-4 | | | | | | | | | | | | | 8-3 | | | T | | | | | | | | | | 8-2 | | | T | | | | | | | | | | 9 9 | | | T | | | | | | П | | | | 8 8 | | | T | | | П | | | | | | | 7 7 | | | t | | | | | | | | | | 6 6 | | | 1 | | | | | | | П | | | 5 5 | | | | | | | | | П | П | | | 4 4 | | | ╁ | | | П | | | | | | | 3 3 | | | t | | | Г | | | П | | | | 2 2 | | | t | | | П | | | T | | | | 1 1 | | | ╁ | D + 18 | | Г | | | ╁ | | | | 0 0 | | | ╁ | D . 10 | | | | | \top | Г | | 1 | zone 11 x | | _ | 1 | | | T | | | | - | | | 10 y | | | ╫ | | | \vdash | | | 1 | - | | | 01 | | - | - | D + 22 | | \vdash | | | \top | - | | | | | | ╁ | | OCT | L | | | 1 | - | | | | | _ | 1 | | | Ī | 2 | 000006 | + | - | | | | | | ╫ | | | 1- | | | \top | | | | | | | ╁ | | | ╁ | 21 | | ╁ | T | | | | | | † | | - 001 | \vdash | | 000100 | 1 | | | | | | | t | | OCT | L | 373737 | 373737 | ╫ | | | | | | _ | ╫ | D + 20 | OCI | F | 3/3/3/ | 3/3/3/ | 1 | T | | | | | | 1 | | | t | | | T | | | | _ | | | ╫ | | | \vdash | | | 1 | 1 | | | locations | | | + | D + 32 | | H | | | \top | H | | | Storage location | | | $^{+}$ | D 1 32 | | \vdash | | | 1 | r | | | | | - | 1 | | | ╁ | | | t | | | | | | | ╁ | | | - | | | ╫ | H | | | | | | + | | | + | | | 1 | - | | | | | | - | | - | + | | | - | 1 | | | | | | - - | D + 30 | - | + | | | - - | \parallel | | | | | | + | | - | + | | - | 1 | + | | | | | | ╫ | • • • • • | | + | | | - | 1 | | | | | | - - | •••• | | + | | | ╫ | - | | - | | | | + | • • • • • | - | + | | | - | 1 | | | | | l l | | | | | | | | 11 | | | | | | | | OCT OCT FXD OCT OCT | | 21 373737 | 12 | | | | | 00 Loc. of minus zero Loc. of 2 and 6 Loc. of 12 Loc. of 17 and 64 Column indicator storage Mask Storage for index B Unused locations Storage location of six words of bcd characters for right half of card image Right half of the card image is formed and stored exactly as left half | #### FIGURE 52b | | | | | 5
6
N | NUM | IBER | | | EXPONENT | BINARY PLACE | CODER DATE PAGE | |---------|--------|----------|-----------|------------------|----------|----------|--------|---|----------|--------------|----------------------------------| | l c | c | | | Г | ADDR | SS | T | | DECRE | MENT | | | IDENTI- | s
s | LOCATION | OPERATION | C
L
A
S | SYMBOLIC | ABSOLUTE | A
G | C | SYMBOLIC | ABSOLUTE | COMMENTS | | | | C. SEQ | SXD | | СВОХ | | c | | | | Save contents of C | | | 1 | | TSX | | SINX | | С | | | | Transfer to SIN X | | | - | | | | | | | | | | Storage for X | | | 4 | | LXD | - | CBOX | | c | | | | Restore contents of C | | | 4 | | | - | | | - | | | | | | | Ų. | CBOX | | | | | _!! | | | | Erasable storage in main program | ### FIGURE 53 | | | | S
I
G | NUI | MBER | | | EXPONENT | BINARY PLACE | CONFR DATE PAG | GE | |---------|----------|-----------|------------------|-----------|--------------|-----|------------------|----------|--------------|-----------------------------|----| | | c c | | Ť | ADDR | ESS | TT | | DECRE | MENT | | | | IDENTI- | LOCATION | OPERATION | C
L
S
S | SYMBOLIC | ABSOLUTE | G | C
A
S
S | SYMBOLIC | ABSOLUTE | COMMENTS | | | | SINX | CLA | | | 11 | Ç | | | | Place X in AC | | | | | STO | | SINX | + i | | | | | Store X | | | | | SXD | | | | c | | | | Save index C | | | | | | - | - | - - | - _ | | | | Computation for sin x | | | | BOXC | | | | | 11 | | | | Storage for C in subroutine | | | | | | - | : | | - | <u> </u> | | - | | | | | | LXD | | | | c | | | | Restore C | | | | li | TRA | | | 2 | c | | | | Exit to main program | | FIGURE 54 #### APPENDIX A ## BINARY AND OCTAL NUMBER SYSTEMS In the familiar decimal system of representing numbers, a number is expressed by a sum of terms. Each individual term consists of a product of a power of *ten* and some integer in the set 0, 1, ..., 9. For example, $$123 = (1 \times 10^{2}) + (2 \times 10^{1}) + (3 \times 10^{0}).$$ $$28.875 = (2 \times 10^{1}) + (8 \times 10^{0}) + (8 \times 10^{-1})$$ $$+ (7 \times 10^{-2}) + (5 \times 10^{-3})$$ Ten is said to be the base of this system because of the role that the powers of ten and the integers up to ten play in the above expansions. If two is chosen as the base, numbers are said to be represented in the binary system. For example, the decimal number $$123 = 64 + 32 + 16 + 8 + 2 + 1$$ $$= (1 \times 2^{6}) + (1 \times 2^{5}) + (1 \times 2^{4})$$ $$+ (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1})$$ $$+ (1 \times 2^{0})$$ If only the coefficients of the powers of two are written, the binary representation of 123 becomes 1111011. This is exactly how the form of a decimal number is created. Because the binary representation of a number requires only the two digits 0 and 1, the binary system lends itself naturally to the use of core storage, magnetic drums and tapes, trigger circuits, and so on. These devices can be used to greater advantage and efficiency with the binary system than with the decimal. Observe that the number systems used in this appendix are subject to the familiar commutative, distributive, and associative laws of arithmetic. Although binary numbers in general have more terms than their decimal counterparts (on an average, about 3.3 times as many), computation in the binary system is quite simple. The rules for adding binary digits are: $$0 + 0 = 0$$ $1 + 0 = 1$ $1 + 1 = 10$ (0 with 1 carried) For example, 1111011 may be added to itself as follows: The rules for subtracting binary digits are equally simple: $$0-0=0$$ $1-1=0$ $1-0=1$ $0-1=1$ (with 1 borrowed) For example, 1111011 may be subtracted from 11110110 as follows: The multiplication table for binary digits is given by $$\begin{array}{l} 0\times 0=0 \\ 1\times 0=0 \\ 1\times 1=1 \end{array}$$ The rules for carrying out mulitiplication and division in longhand are entirely similar to those used with the decimal system. For example, the multiplication of 111 by 101 is done as follows: The problem of converting a number represented in decimal to the same number as represented in binary is quite simple. The binary representation of an integer can be obtained from its decimal representation through calcu- APPENDIX 81 lations carried out in either the decimal or binary system. Calculations in the decimal system will be discussed in this case since it is of most interest. The method consists of successive divisions by two as follows: Consider the number 123, which may be represented as: $$123 = 2 \times 61 + 1 = 2 (32 + 16 + 8 + 4 + 1) + 1$$ Thus, dividing 123 by 2 gives the quotient 61 and remainder 1; this remainder is the coefficient of 2° in the binary representation of 123. The coefficient of 2¹ in the binary representation of 123 is equal to the remainder obtained from dividing 61 (the previous quotient) by 2. $$61 = 2 \times 30 + 1 = 2 (16 + 8 + 4 + 2) + 1$$ Similarly, 30 divided by 2 gives the remainder zero, corresponding to the fact that the coefficient of 2² is 0 in the binary representation of 123. The complete calculation for the conversion of 123 to the binary notation is: $$123 \div 2 = 61 + \text{remainder of 1}$$ $61 \div 2 = 30 + \text{remainder of 1}$ $30 \div 2 = 15 + \text{remainder of 0}$ $15 \div 2 = 7 + \text{remainder of 1}$ $7 \div 2 = 3 + \text{remainder of 1}$ $3 \div 2 = 1 + \text{remainder of 1}$ $1 \div 2 = 0 + \text{remainder of 1}$ The highest power of 2 appearing in the binary representation of 123 is 2⁶ and the coefficient of 2⁶ is the quotient 1 obtained in the last step above. The binary representation of 123 therefore consists of seven binary digits and is obtained by writing down, in succession from *right* to *left*, the above six remainders in the order in which they were calculated. Thus, $$(123)_{10} = (1111011)_2$$ Conversely, to convert a binary integer to decimal form through calculation
in the binary system, simply divide successively by ten until a quotient of zero is obtained. The remainders, expressed in decimal notation and written in succession from right to left, give the desired decimal representation. The procedure is very similar to the procedure carried out in the decimal system for converting $(1111011)_2 = (123)_{10}$ and is as follows: $$1111011 \div 1010 = 1100 + \text{remainder of } 11$$ $1100 \div 1010 = 1 + \text{remainder of } 10$ $1 \div 1010 = 0 + \text{remainder of } 1$ The decimal representation then consists of the integers 1, 10, and 11 in that order from left to right. When converted to decimal, these binary integers give 1, 2, and 3, respectively. Consequently the decimal representation of 1111011 is 123. The binary representation of a proper decimal fraction may be generated digit by digit through successive multiplication by two in the decimal system. The procedure is somewhat like the integer conversion procedure described above. For example, consider the decimal fraction .625. In order to illustrate the technique, assume that the answer is already known. Thus, .625 = $$(1 \times 2^{-1}) + (0 \times 2^{-2}) + 1 \times 2^{-3}$$ = 0.101 (in binary) A multiplication by two gives: $$1.25 = 1.01$$ (in binary) The integral parts of each number are equal to one and thus represent the first binary bit to the right of the point. Now, using the fractional parts of the two numbers above, we have by a multiplication of two: $$2 \times .25 = 0.5$$ $10 \times .01 = 0.1$ (in binary) The integral parts of the result equal zero; this is the second binary bit to the right of the point. Similarly, the third binary bit is calculated by $$2 \times .5 = 1.0$$ $10 \times .1 = 1.0$ and the third binary bit to the right of the point is seen to be 1. Of course, further multiplications with the remaining fractional parts would result in zeros. So the conversion is complete, and $$.625 = .101$$ (in binary) Not all terminating decimal fractions, however, can be represented as termining binary fractions. The following calculations follow the pattern as outlined above for converting 0.35 to binary. A position with an x indicates that this position has not yet been determined. | Calculation | BINARY REPRESENTATION | |-----------------------|-----------------------| | 0.35 | 0.xxxxxxxxxxxx | | $2 \times 0.35 = 0.7$ | 0.0xxxxxxxxxxxxx | | $2 \times .7 = 1.4$ | 0.01xxxxxxxxxxxxx | | $2 \times .4 = 0.8$ | 0.010xxxxxxxxxx | | $2 \times .8 = 1.6$ | 0.0101xxxxxxxxxx | | $2 \times .6 = 1.2$ | 0.01011xxxxxxxxx | | $2 \times .2 = 0.4$ | 0.010110xxxxxxxx | | $2 \times .4 = 0.8$ | 0.0101100xxxxxxx | | $2 \times .8 = 1.6$ | 0.01011001xxxxxx | | $2 \times .6 = 1.2$ | 0.010110011xxxxx | | $2 \times .2 = 0.4$ | 0.0101100110xxxx | | $2 \times .4 = 0.8$ | 0.01011001100xxx | | | | It is evident that this procedure will repeat indefinitely. Thus, the terminating decimal fraction 0.35 equals the non-terminating recurring binary fraction. An approximate representation of 0.35 as a terminating binary fraction may be obtained by rounding. For instance, rounding to eight binary places may be done by adding one-half in the eighth place, which in the binary system is equivalent to adding 1 in the ninth place, as follows: The approximate eight-place binary representation of 0.35 is therefore #### 0.01011010 Improper decimal fractions may be converted to binary by converting the integral and fractional parts separately or by scaling the number so that it becomes an integer or a proper fraction. For example, $$(28.875)_{10} = (11100.111)_2$$ Or, to convert the decimal number 15.625, first write it as a proper fraction times a scale factor: $$15.625 = 0.15625 \times 10^{2}$$ Then, converting each factor separately gives: $$(15.625)_{10} = (0.00101)_2 \times (1100100)_2$$ $$= (1111.101)_2$$ If the base 8 is chosen for representing numbers, the representation is said to be in the octal system. For example: $$(123)_{10} = 1 \times 8^2 + 7 \times 8^1 + 3 \times 8^0 = (173)_8$$ The decimal-to-octal conversion of an integer can be effected by dividing successively by 8 (in the decimal system) until a quotient of zero is obtained. The octal representation then consists of the successive remainders written in order from right to left. Octal-to-binary conversion is particularly simple. Because 8 equals 2³, the conversion is carried out merely by replacing the octal digits with their binary equivalents expressed as three-digit binary numbers. For example, to convert the octal number 173, simply replace 3 with 011, 7 with 111, and 1 with 001, and obtain 1111011, omitting the zeros on the extreme left. Conversely, to pass from binary to octal, simply arrange the binary digits in groups of three, beginning at the binary point and proceeding to the left and to the right. Fill out with zeros at the extreme right or left if necessary. Then replace each group of three binary digits with its octal equivalent. For example: $$(11100.111)_2 = (011,100.111)_2 = (34.7)_8$$ Thus, the octal notation furnishes a convenient shorthand for the binary notation, especially for handling large numbers. The integer whose binary representation consists of thirty-five 1's is the largest integer that can be represented by thirty-five binary digits. In decimal notation this integer, which equals $2^{35} - 1$, requires eleven digits: Its octal representation requires twelve digits: Hence, in this case the octal system is only a little less economical of notation than the decimal system but is considerably more economical than the binary system. #### APPENDIX B #### TABLE OF POWERS OF 2 ``` 2^n 2^{-n} n 1 0 1.0 2 1 0.5 4 2 0.25 8 3 0.125 4 16 0.062 5 32 5 0.031 25 64 6 0.015 625 7 0.007 812 5 128 256 8 0.003 906 25 512 9 0.001 953 125 1 024 0.000 976 562 5 10 2 048 11 0.000 488 281 25 4 096 12 0.000 244 140 625 8 192 13 0.000 122 070 312 5 16 384 0.000 061 035 156 25 14 32 768 15 0.000 030 517 578 125 65 536 16 0.000 015 258 789 062 5 131 072 17 0.000 007 629 394 531 25 262 144 18 0.000 003 814 697 265 625 524 288 19 0.000 001 907 348 632 812 5 1 048 576 20 0.000 000 953 674 316 406 25 2 097 152 0.000 000 476 837 158 203 125 21 4 194 304 22 0.000 000 238 418 579 101 562 5 8 388 608 23 0.000 000 119 209 289 550 781 25 16 777 216 24 0.000 000 059 604 644 775 390 625 33 554 432 25 0.000 000 029 802 322 387 695 312 5 67 108 864 26 0.000 000 014 901 161 193 847 656 25 134 217 728 27 0.000 000 007 450 580 596 923 828 125 268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 536 870 912 0,000 000 001 862 645 149 230 957 031 25 29 1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 2 147 483 648 0.000 000 000 465 661 287 307 739 257 812 5 4 294 967 296 32 0,000 000 000 232 830 643 653 869 628 906 25 8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125 17 179 869 184 0.000 000 000 058 207 660 913 467 407 226 562 5 34 34 359 738 368 0,000 000 000 029 103 830 456 733 703 613 281 25 35 68 719 476 736 36 0,000 000 000 014 551 915 228 366 851 806 640 625 137 438 953 472 37 0,000 000 000 007 275 957 614 183 425 903 320 312 5 274 877 906 944 38 0,000 000 000 003 637 978 807 091 712 951 660 156 25 549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 ``` # APPENDIX C. OCTAL-DECIMAL INTEGER CONVERSION TABLE 0000 | 0000 to to 0777 | 0511 (Octal) | (Decimal) | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |------|------|------|------|------|------|------|------|------| | 0000 | 0000 | 0001 | 0002 | 0003 | 0004 | 0005 | 0006 | 0007 | | 0010 | 8000 | 0009 | 0010 | 0011 | 0012 | 0013 | 0014 | 0015 | | 0020 | 0016 | 0017 | 0018 | 0019 | 0020 | 0021 | 0022 | 0023 | | 0030 | 0024 | 0025 | 0026 | 0027 | 0028 | 0029 | 0030 | 0031 | | 0040 | 0032 | 0033 | 0034 | 0035 | 0036 | 0037 | 0038 | 0039 | | 0050 | 0040 | 0041 | 0042 | 0043 | 0044 | 0045 | 0046 | 0047 | | 0060 | 0048 | 0049 | 0050 | 0051 | 0052 | 0053 | 0054 | 0055 | | 0070 | 0056 | 0057 | 0058 | 0059 | 0060 | 0061 | 0062 | 0063 | | 0100 | 0064 | 0065 | 0066 | 0067 | 0068 | 0069 | 0070 | 0071 | | 0110 | 0072 | 0073 | 0074 | 0075 | 0076 | 0077 | 0078 | 0079 | | 0120 | 0080 | 0081 | 0082 | 0083 | 0084 | 0085 | 0086 | 0087 | | 0130 | 8800 | 0089 | 0090 | 0091 | 0092 | 0093 | 0094 | 0095 | | 0140 | 0096 | 0097 | 0098 | 0099 | 0100 | 0101 | 0102 | 0103 | | 0150 | 0104 | 0105 | 0106 | 0107 | 0108 | 0109 | 0110 | 0111 | | 0160 | 0112 | 0113 | 0114 | 0115 | 0116 | 0117 | 0118 | 0119 | | 0170 | 0120 | 0121 | 0122 | 0123 | 0124 | 0125 | 0126 | 0127 | | 0200 | 0128 | 0129 | 0130 | 0131 | 0132 | 0133 | 0134 | 0135 | | 0210 | 0136 | 0137 | 0138 | 0139 | 0140 | 0141 | 0142 | 0143 | | 0220 | 0144 | 0145 | 0146 | 0147 | 0148 | 0149 | 0150 | 0151 | | 0230 | 0152 | 0153 | 0154 | 0155 | 0156 | 0157 | 0158 | 0159 | | 0240 | 0160 | 0161 | 0162 | 0163 | 0164 | 0165 | 0166 | 0167 | | 0250 | 0168 | 0169 | 0170 | 0171 | 0172 | 0173 | 0174 | 0175 | | 0260 | 0176 | 0177 | 0178 | 0179 | 0180 | 0181 | 0182 | 0183 | | 0270 | 0184 | 0185 | 0186 | 0187 | 0188 | 0189 | 0190 | 0191 | | 0300 | 0192 | 0193 | 0194 | 0195 | 0196 | 0197 | 0198 | 0199 | | 0310 | 0200 | 0201 | 0202 | 0203 | 0204 | 0205 | 0206 | 0207 | | 0310 | 0200 | 0201 | 0202 | 0203 | 0212 | 0213 | 0214 | 0215 | | 0320 | 0206 | 0209 | 0210 | 0211 | 0212 | 0213 | 0222 | 0213 | | 0340 | 0210 | 0225 | 0216 | 0213 | 0228 | 0229 | 0230 | 0231 | | 0350 | 0232 | 0233 | 0234 | 0235 | 0236 | 0237 | 0238 | 0239 | | 0360 | 0240 | 0241 | 0242 | 0243 | 0244 | 0245 | 0246 | 0247 | | 0370 | 0248 | 0249 | 0250 | 0251 | 0252 | 0253 | 0254 | 0255 | | 55.0 | | | | | | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |------|------|------|------|------|------|------|------|------| | 0400 | 0256 | 0257 | 0258 | 0259 | 0260 | 0261 | 0262 | 0263 | | 0410 | 0264 | 0265 | 0266 | 0267 | 0268 | 0269 | 0270 | 0271 | | 0420 | 0272 | 0273 | 0274 | 0275 | 0276 | 0277 | 0278 | 0279 | | 0430 | 0280 | 0281 | 0282 | 0283 | 0284 | 0285 | 0286 | 0287 | | 0440 | 0288 | 0289 | 0290 | 0291 | 0292 | 0293 | 0294 | 0295 | | 0450
| 0296 | 0297 | 0298 | 0299 | 0300 | 0301 | 0302 | 0303 | | 0460 | 0304 | 0305 | 0306 | 0307 | 0308 | 0309 | 0310 | 0311 | | 0470 | 0312 | 0313 | 0314 | 0315 | 0316 | 0317 | 0318 | 0319 | | | | | | | | | | | | 0500 | 0320 | 0321 | 0322 | 0323 | 0324 | 0325 | 0326 | 0327 | | 0510 | 0328 | 0329 | 0330 | 0331 | 0332 | 0333 | 0334 | 0335 | | 0520 | 0336 | 0337 | 0338 | 0339 | 0340 | 0341 | 0342 | 0343 | | 0530 | 0344 | 0345 | 0346 | 0347 | 0348 | 0349 | 0350 | 0351 | | 0540 | 0352 | 0353 | 0354 | 0355 | 0356 | 0357 | 0358 | 0359 | | 0550 | 0360 | 0361 | 0362 | 0363 | 0364 | 0365 | 0366 | 0367 | | 0560 | 0368 | 0369 | 0370 | 0371 | 0372 | 0373 | 0374 | 0375 | | 0570 | 0376 | 0377 | 0378 | 0379 | 0380 | 0381 | 0382 | 0383 | | | | | | | | | | - | | 0600 | 0384 | 0385 | 0386 | 0387 | 0388 | 0389 | 0390 | 0391 | | 0610 | 0392 | 0393 | 0394 | 0395 | 0396 | 0397 | 0398 | 0399 | | 0620 | 0400 | 0401 | 0402 | 0403 | 0404 | 0405 | 0406 | 0407 | | 0630 | 0408 | 0409 | 0410 | 0411 | 0412 | 0413 | 0414 | 0415 | | 0640 | 0416 | 0417 | 0418 | 0419 | 0420 | 0421 | 0422 | 0423 | | 0650 | 0424 | 0425 | 0426 | 0427 | 0428 | 0429 | 0430 | 0431 | | 0660 | 0432 | 0433 | 0434 | 0435 | 0436 | 0437 | 0438 | 0439 | | 0670 | 0440 | 0441 | 0442 | 0443 | 0444 | 0445 | 0446 | 0447 | | | | | | | | | | | | 0700 | 0448 | 0449 | 0450 | 0451 | 0452 | 0453 | 0454 | 0455 | | 0710 | 0456 | 0457 | 0458 | 0459 | 0460 | 0461 | 0462 | 0463 | | 0720 | 0464 | 0465 | 0466 | 0467 | 0468 | 0469 | 0470 | 0471 | | 0730 | 0472 | 0473 | 0474 | 0475 | 0476 | 0477 | 0478 | 0479 | | 0740 | 0480 | 0481 | 0482 | 0483 | 0484 | 0485 | 0486 | 0487 | | 0750 | 0488 | 0489 | 0490 | 0491 | 0492 | 0493 | 0494 | 0495 | | 0760 | 0496 | 0497 | 0498 | 0499 | 0500 | 0501 | 0502 | 0503 | | 0770 | 0504 | 0505 | 0506 | 0507 | 0508 | 0509 | 0510 | 0511 | 1000 | 0512 to to 1777 | 1023 (Octal) (Decimal) | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |------|------|------|------|-------|------|------|------|------| | 1000 | 0512 | 0513 | 0514 | 0515 | 0516 | 0517 | 0518 | 0519 | | 1010 | 0520 | 0521 | 0522 | 0523 | 0524 | 0525 | 0526 | 0527 | | 1020 | 0528 | 0529 | 0530 | .0531 | 0532 | 0533 | 0534 | 0535 | | 1030 | 0536 | 0537 | 0538 | 0539 | 0540 | 0541 | 0542 | 0543 | | 1040 | 0544 | 0545 | 0546 | 0547 | 0548 | 0549 | 0550 | 0551 | | 1050 | 0552 | 0553 | 0554 | 0555 | 0556 | 0557 | 0558 | 0559 | | 1060 | 0560 | 0561 | 0562 | 0563 | 0564 | 0565 | 0566 | 0567 | | 1070 | 0568 | 0569 | 0570 | 0571 | 0572 | 0573 | 0574 | 0575 | | 1100 | 0576 | 0577 | 0578 | 0579 | 0580 | 0581 | 0582 | 0583 | | 1110 | 0584 | 0585 | 0586 | 0587 | 0588 | 0589 | 0590 | 0591 | | 1120 | 0592 | 0593 | 0594 | 0595 | 0596 | 0597 | 0598 | 0599 | | 1130 | 0600 | 0601 | 0602 | 0603 | 0604 | 0605 | 0606 | 0607 | | 1140 | 0608 | 0609 | 0610 | 0611 | 0612 | 0613 | 0614 | 0615 | | 1150 | 0616 | 0617 | 0618 | 0619 | 0620 | 0621 | 0622 | 0623 | | 1160 | 0624 | 0625 | 0626 | 0627 | 0628 | 0629 | 0630 | 0631 | | 1170 | 0632 | 0633 | 0634 | 0635 | 0636 | 0637 | 0638 | 0639 | | 1200 | 0640 | 0641 | 0642 | 0643 | 0644 | 0645 | 0646 | 0647 | | 1210 | 0648 | 0649 | 0650 | 0651 | 0652 | 0653 | 0654 | 0655 | | 1220 | 0656 | 0657 | 0658 | 0659 | 0660 | 0661 | 0662 | 0663 | | 1230 | 0664 | 0665 | 0666 | 0667 | 0668 | 0669 | 0670 | 0671 | | 1240 | 0672 | 0673 | 0674 | 0675 | 0676 | 0677 | 0678 | 0679 | | 1250 | 0680 | 0681 | 0682 | 0683 | 0684 | 0685 | 0686 | 0687 | | 1260 | 0688 | 0689 | 0690 | 0691 | 0692 | 0693 | 0694 | 0695 | | 1270 | 0696 | 0697 | 0698 | 0699 | 0700 | 0701 | 0702 | 0703 | | 1300 | 0704 | 0705 | 0706 | 0707 | 0708 | 0709 | 0710 | 0711 | | 1310 | 0712 | 0713 | 0714 | 0715 | 0716 | 0717 | 0718 | 0719 | | 1320 | 0720 | 0721 | 0722 | 0723 | 0724 | 0725 | 0726 | 0727 | | 1330 | 0728 | 0729 | 0730 | 0731 | 0732 | 0733 | 0734 | 0735 | | 1340 | 0736 | 0737 | 0738 | 0739 | 0740 | 0741 | 0742 | 0743 | | 1350 | 0744 | 0745 | 0746 | 0747 | 0748 | 0749 | 0750 | 0751 | | 1360 | 0752 | 0753 | 0754 | 0755 | 0756 | 0757 | 0758 | 0759 | | 1370 | 0760 | 0761 | 0762 | 0763 | 0764 | 0765 | 0766 | 0767 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |------|------|------|------|------|------|------|--------------|--------------| | 1400 | 0768 | 0769 | 0770 | 0771 | 0772 | 0773 | 0774 | 0775 | | 1410 | 0776 | 0777 | 0778 | 0779 | 0780 | 0781 | 0782 | 0783 | | 1420 | 0784 | 0785 | 0786 | 0787 | 0788 | 0789 | 0790 | 0791 | | 1430 | 0792 | 0793 | 0794 | 0795 | 0796 | 0797 | 0798 | 0799 | | 1440 | 0800 | 0801 | 0802 | 0803 | 0804 | 0805 | 0806 | 0807 | | 1450 | 0808 | 0809 | 0810 | 0811 | 0812 | 0813 | 0814 | 0815 | | 1460 | 0816 | 0817 | 0818 | 0819 | 0820 | 0821 | 0822 | 0823 | | 1470 | 0824 | 0825 | 0826 | 0827 | 0828 | 0829 | 0830 | 0831 | | | | | 0004 | 0005 | 0000 | 0007 | 0000 | 0839 | | 1500 | 0832 | 0833 | 0834 | 0835 | 0836 | 0837 | 0838 | 0847 | | 1510 | 0840 | 0841 | 0842 | 0843 | 0844 | 0845 | 0846 | 0855 | | 1520 | 0848 | 0849 | 0850 | 0851 | 0852 | 0853 | 0854
0862 | 0863 | | 1530 | 0856 | 0857 | 0858 | 0859 | 0860 | 0861 | | | | 1540 | 0864 | 0865 | 0866 | 0867 | 0868 | 0869 | 0870 | 0871
0879 | | 1550 | 0872 | 0873 | 0874 | 0875 | 0876 | 0877 | 0878
0886 | 0879 | | 1560 | 0880 | 0881 | 0882 | 0883 | 0884 | 0885 | | | | 1570 | 0888 | 0889 | 0890 | 0891 | 0892 | 0893 | 0894 | 0895 | | 1600 | 0896 | 0897 | 8630 | 0899 | 0900 | 0901 | 0902 | 0903 | | 1610 | 0904 | 0905 | 0906 | 0907 | 0908 | 0909 | 0910 | 0911 | | 1620 | 0912 | 0913 | 0914 | 0915 | 0916 | 0917 | 0918 | 0919 | | 1630 | 0920 | 0921 | 0922 | 0923 | 0924 | 0925 | 0926 | 0927 | | 1640 | 0928 | 0929 | 0930 | 0931 | 0932 | 0933 | 0934 | 0935 | | 1650 | 0936 | 0937 | 0938 | 0939 | 0940 | 0941 | 0942 | 0943 | | 1660 | 0944 | 0945 | 0946 | 0947 | 0948 | 0949 | 0950 | 0951 | | 1670 | 0952 | 0953 | 0954 | 0955 | 0956 | 0957 | 0958 | 0959 | | 1700 | 0960 | 0961 | 0962 | 0963 | 0964 | 0965 | 0966 | 0967 | | 1710 | 0968 | 0969 | 0902 | 0903 | 0904 | 0903 | 0974 | 0975 | | 1720 | 0976 | 0909 | 0978 | 0971 | 0980 | 0973 | 0982 | 0983 | | 1730 | 0984 | 0985 | 0986 | 0987 | 0988 | 0989 | 0990 | 0991 | | 1740 | 0992 | 0993 | 0994 | 0995 | 0996 | 0909 | 0998 | 0999 | | 1750 | 1000 | 1001 | 1002 | 1003 | 1004 | 1005 | 1006 | 1007 | | 1760 | 1008 | 1001 | 1010 | 1011 | 1012 | 1013 | 1014 | 1015 | | 1770 | 1016 | 1017 | 1018 | 1019 | 1020 | 1021 | 1022 | 1023 | | 1110 | 1010 | 1011 | 1010 | 1019 | 1020 | 1021 | 1022 | 1023 | ## OCTAL-DECIMAL INTEGER CONVERSION TABLE | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |------|------|------|------|------|------|------|------|------| | 2000 | 1024 | 1025 | 1026 | 1027 | 1028 | 1029 | 1030 | 1031 | | 2010 | 1032 | 1033 | 1034 | 1035 | 1036 | 1037 | 1038 | 1039 | | 2020 | 1040 | 1041 | 1042 | 1043 | 1044 | 1045 | 1046 | 1047 | | 2030 | 1048 | 1049 | 1050 | 1051 | 1052 | 1053 | 1054 | 1055 | | 2040 | 1056 | 1057 | 1058 | 1059 | 1060 | 1061 | 1062 | 1063 | | 2050 | 1064 | 1065 | 1066 | 1067 | 1068 | 1069 | 1070 | 1071 | | 2060 | 1072 | 1073 | 1074 | 1075 | 1076 | 1077 | 1078 | 1079 | | 2070 | 1080 | 1081 | 1082 | 1083 | 1084 | 1085 | 1086 | 1087 | | 2100 | 1088 | 1089 | 1090 | 1091 | 1092 | 1093 | 1094 | 1095 | | 2110 | 1096 | 1097 | 1098 | 1099 | 1100 | 1101 | 1102 | 1103 | | 2120 | 1104 | 1105 | 1106 | 1107 | 1108 | 1109 | 1110 | 1111 | | 2130 | 1112 | 1113 | 1114 | 1115 | 1116 | 1117 | 1118 | 1119 | | 2140 | 1120 | 1121 | 1122 | 1123 | 1124 | 1125 | 1126 | 1127 | | 2150 | 1128 | 1129 | 1130 | 1131 | 1132 | 1133 | 1134 | 1135 | | 2160 | 1136 | 1137 | 1138 | 1139 | 1140 | 1141 | 1142 | 1143 | | 2170 | 1144 | 1145 | 1146 | 1147 | 1148 | 1149 | 1150 | 1151 | | 2200 | 1152 | 1153 | 1154 | 1155 | 1156 | 1157 | 1158 | 1159 | | 2210 | 1160 | 1161 | 1162 | 1163 | 1164 | 1165 | 1166 | 1167 | | 2220 | 1168 | 1169 | 1170 | 1171 | 1172 | 1173 | 1174 | 1175 | | 2230 | 1176 | 1177 | 1178 | 1179 | 1180 | 1181 | 1182 | 1183 | | 2240 | 1184 | 1185 | 1186 | 1187 | 1188 | 1189 | 1190 | 1191 | | 2250 | 1192 | 1193 | 1194 | 1195 | 1196 | 1197 | 1198 | 1199 | | 2260 | 1200 | 1201 | 1202 | 1203 | 1204 | 1205 | 1206 | 1207 | | 2270 | 1208 | 1209 | 1210 | 1211 | 1212 | 1213 | 1214 | 1215 | | 2300 | 1216 | 1217 | 1218 | 1219 | 1220 | 1221 | 1222 | 1223 | | 2310 | 1224 | 1225 | 1226 | 1227 | 1228 | 1229 | 1230 | 1231 | | 2320 | 1232 | 1233 | 1234 | 1235 | 1236 | 1237 | 1238 | 1239 | | 2330 | 1240 | 1241 | 1242 | 1243 | 1244 | 1245 | 1246 | 1247 | | 2340 | 1248 | 1249 | 1250 | 1251 | 1252 | 1253 | 1254 | 1255 | | 2350 | 1256 | 1257 | 1258 | 1259 | 1260 | 1261 | 1262 | 1263 | | 2360 | 1264 | 1265 | 1266 | 1267 | 1268 | 1269 | 1270 | 1271 | | 2370 | 1272 | 1273 | 1274 | 1275 | 1276 | 1277 | 1278 | 1279 | | | | | | | | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |------|------|------|------|---------------|------|------|------|------| | 2400 | 1280 | 1281 | 1282 | 1283 | 1284 | 1285 | 1286 | 1287 | | 2410 | 1288 | 1289 | 1290 | 1291 | 1292 | 1293 | 1294 | 1295 | | 2420 | 1296 | 1297 | 1298 | 1299 | 1300 | 1301 | 1302 | 1303 | | 2430 | 1304 | 1305 | 1306 | 1307 | 1308 | 1309 | 1310 | 1311 | | 2440 | 1312 | 1313 | 1314 | 1315 | 1316 | 1317 | 1318 | 1319 | | 2450 | 1320 | 1321 | 1322 | 1323 | 1324 | 1325 | 1326 | 1327 | | 2460 | 1328 | 1329 | 1330 | 1331 | 1332 | 1333 | 1334 | 1335 | | 2470 | 1336 | 1337 | 1338 | 1339 | 1340 | 1341 | 1342 | 1343 | | 2500 | 1344 | 1345 | 1346 | 1347 | 1348 | 1349 | 1350 | 1351 | | 2510 | 1352 | 1353 | 1354 | 1355 | 1356 | 1357 | 1358 | 1359 | | 2520 | 1360 | 1361 | 1362 | 1363 | 1364 | 1365 | 1366 | 1367 | | 2530 | 1368 | 1369 | 1370 | 1371 | 1372 | 1373 | 1374 | 1375 | | 2540 | 1376 | 1377 | 1378 | 1379 | 1380 | 1381 | 1382 | 1383 | | 2550 | 1384 | 1385 | 1386 | 1387 | 1388 | 1389 | 1390 | 1391 | | 2560 | 1392 | 1393 | 1394 | 1395 | 1396 | 1397 | 1398 | 1399 | | 2570 | 1400 | 1401 | 1402 | 1403 | 1404 | 1405 | 1406 | 1407 | | 2600 | 1408 | 1409 | 1410 | 1411 | 1412 | 1413 | 1414 | 1415 | | 2610 | 1416 | 1417 | 1418 | 1419 | 1420 | 1421 | 1422 | 1423 | | 2620 | 1424 | 1425 | 1426 | 1427 | 1428 | 1429 | 1430 | 1431 | | 2630 | 1432 | 1433 | 1434 | 1435 | 1436 | 1437 |
1438 | 1439 | | 2640 | 1440 | 1441 | 1442 | 1443 | 1444 | 1445 | 1446 | 1447 | | 2650 | 1448 | 1449 | 1450 | 1451 | 1452 | 1453 | 1454 | 1455 | | 2660 | 1456 | 1457 | 1458 | 1459 | 1460 | 1461 | 1462 | 1463 | | 2670 | 1464 | 1465 | 1466 | 1467 | 1468 | 1469 | 1470 | 1471 | | 2700 | 1472 | 1473 | 1474 | 1 4 75 | 1476 | 1477 | 1478 | 1479 | | 2710 | 1480 | 1481 | 1482 | 1483 | 1484 | 1485 | 1486 | 1487 | | 2720 | 1488 | 1489 | 1490 | 1491 | 1492 | 1493 | 1494 | 1495 | | 2730 | 1496 | 1497 | 1498 | 1499 | 1500 | 1501 | 1502 | 1503 | | 2740 | 1504 | 1505 | 1506 | 1507 | 1508 | 1509 | 1510 | 1511 | | 2750 | 1512 | 1513 | 1514 | 1515 | 1516 | 1517 | 1518 | 1519 | | 2760 | 1520 | 1521 | 1522 | 1523 | 1524 | 1525 | 1526 | 1527 | | 2770 | 1528 | 1529 | 1530 | 1531 | 1532 | 1533 | 1534 | 1535 | | 2000 | 1024 | |---------|-----------| | to | to | | 2777 | 1535 | | (Octal) | (Decimal) | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |---|------|------|------|------|------|------|------|------|------| | | 3000 | 1536 | 1537 | 1538 | 1539 | 1540 | 1541 | 1542 | 1543 | | | 3010 | 1544 | 1545 | 1546 | 1547 | 1548 | 1549 | 1550 | 1551 | | | 3020 | 1552 | 1553 | 1554 | 1555 | 1556 | 1557 | 1558 | 1559 | | 1 | 3030 | 1560 | 1561 | 1562 | 1563 | 1564 | 1565 | 1566 | 1567 | | ı | 3040 | 1568 | 1569 | 1570 | 1571 | 1572 | 1573 | 1574 | 1575 | | 1 | 3050 | 1576 | 1577 | 1578 | 1579 | 1580 | 1581 | 1582 | 1583 | | ļ | 3060 | 1584 | 1585 | 1586 | 1587 | 1588 | 1589 | 1590 | 1591 | | | 3070 | 1592 | 1593 | 1594 | 1595 | 1596 | 1597 | 1598 | 1599 | | | 3100 | 1600 | 1601 | 1602 | 1603 | 1604 | 1605 | 1606 | 1607 | | i | 3110 | 1608 | 1609 | 1610 | 1611 | 1612 | 1613 | 1614 | 1615 | | 1 | 3120 | 1616 | 1617 | 1618 | 1619 | 1620 | 1621 | 1622 | 1623 | | ١ | 3130 | 1624 | 1625 | 1626 | 1627 | 1628 | 1629 | 1630 | 1631 | | ١ | 3140 | 1632 | 1633 | 1634 | 1635 | 1636 | 1637 | 1638 | 1639 | | | 3150 | 1640 | 1641 | 1642 | 1643 | 1644 | 1645 | 1646 | 1647 | | | 3160 | 1648 | 1649 | 1650 | 1651 | 1652 | 1653 | 1654 | 1655 | | | 3170 | 1656 | 1657 | 1658 | 1659 | 1660 | 1661 | 1662 | 1663 | | | 3200 | 1664 | 1665 | 1666 | 1667 | 1668 | 1669 | 1670 | 1671 | | İ | 3210 | 1672 | 1673 | 1674 | 1675 | 1676 | 1677 | 1678 | 1679 | | ١ | 3220 | 1680 | 1681 | 1682 | 1683 | 1684 | 1685 | 1686 | 1687 | | ۱ | 3230 | 1688 | 1689 | 1690 | 1691 | 1692 | 1693 | 1694 | 1695 | | 1 | 3240 | 1696 | 1697 | 1698 | 1699 | 1700 | 1701 | 1702 | 1703 | | ı | 3250 | 1704 | 1705 | 1706 | 1707 | 1708 | 1709 | 1710 | 1711 | | ı | 3260 | 1712 | 1713 | 1714 | 1715 | 1716 | 1717 | 1718 | 1719 | | | 3270 | 1720 | 1721 | 1722 | 1723 | 1724 | 1725 | 1726 | 1727 | | 1 | 3300 | 1728 | 1729 | 1730 | 1731 | 1732 | 1733 | 1734 | 1735 | | | 3310 | 1736 | 1737 | 1738 | 1739 | 1740 | 1741 | 1742 | 1743 | | | 3320 | 1744 | 1745 | 1746 | 1747 | 1748 | 1749 | 1750 | 1751 | | | 3330 | 1752 | 1753 | 1754 | 1755 | 1756 | 1757 | 1758 | 1759 | | 1 | 3340 | 1760 | 1761 | 1762 | 1763 | 1764 | 1765 | 1766 | 1767 | | | 3350 | 1768 | 1769 | 1770 | 1771 | 1772 | 1773 | 1774 | 1775 | | | 3360 | 1776 | 1777 | 1778 | 1779 | 1780 | 1781 | 1782 | 1783 | | | 3370 | 1784 | 1785 | 1786 | 1787 | 1788 | 1789 | 1790 | 1791 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |------|------|------|------|------|------|------|------|------| | 3400 | 1792 | 1793 | 1794 | 1795 | 1796 | 1797 | 1798 | 1799 | | 3410 | 1800 | | 1802 | 1803 | 1804 | | 1806 | 1807 | | 3420 | | | 1810 | 1811 | 1812 | | 1814 | 1815 | | 3430 | | | 1818 | 1819 | 1820 | | 1822 | 1823 | | 3440 | | 1825 | 1826 | 1827 | 1828 | 1829 | 1830 | 1831 | | 3450 | 1832 | 1833 | 1834 | 1835 | 1836 | | 1838 | 1839 | | 3460 | 1840 | 1841 | 1842 | 1843 | 1844 | 1845 | 1846 | 1847 | | 3470 | 1848 | 1849 | 1850 | 1851 | 1852 | 1853 | 1854 | 1855 | | | | | 2000 | 1001 | 1002 | 1000 | 1004 | 1000 | | 3500 | 1856 | 1857 | 1858 | 1859 | 1860 | 1861 | 1862 | 1863 | | 3510 | 1864 | 1865 | 1866 | 1867 | 1868 | 1869 | 1870 | 1871 | | 3520 | 1872 | 1873 | 1874 | 1875 | 1876 | 1877 | 1878 | 1879 | | 3530 | 1880 | 1881 | 1882 | 1883 | 1884 | 1885 | 1886 | 1887 | | 3540 | 1888 | 1889 | 1890 | 1891 | 1892 | 1893 | 1894 | 1895 | | 3550 | 1896 | 1897 | 1898 | 1899 | 1900 | 1901 | 1902 | 1903 | | 3560 | 1904 | 1905 | 1906 | 1907 | 1908 | 1909 | 1910 | 1911 | | 3570 | 1912 | 1913 | 1914 | 1915 | 1916 | 1917 | 1918 | 1919 | | | | | | | | | | | | 3600 | 1920 | 1921 | 1922 | 1923 | 1924 | 1925 | 1926 | 1927 | | 3610 | 1928 | 1929 | 1930 | 1931 | 1932 | 1933 | 1934 | 1935 | | 3620 | 1936 | 1937 | 1938 | 1939 | 1940 | 1941 | 1942 | 1943 | | 3630 | 1944 | 1945 | 1946 | 1947 | 1948 | 1949 | 1950 | 1951 | | 3640 | 1952 | 1953 | 1954 | 1955 | 1956 | 1957 | 1958 | 1959 | | 3650 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | | 3660 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | | 3670 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | | | | | | | | | | | | 3700 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | | 3710 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | | 3720 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | | 3730 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | | 3740 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | | 3750 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | | 3760 | 2032 | 2033 | 2034 | 2035 | 2036 | 2037 | 2038 | 2039 | | 3770 | 2040 | 2041 | 2042 | 2043 | 2044 | 2045 | 2046 | 2047 | 3000 | 1536 to to 3777 | 2047 'Octal) (Decimal) # OCTAL-DECIMAL INTEGER CONVERSION TABLE | 4000 | 2048 | |---------|-----------| | to | to | | 4777 | 2559 | | | | | (Octal) | (Decimal) | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |-------|--------------|------|--------------|------|------|------|------|------| | 4000 | 2048 | 2049 | 2050 | 2051 | 2052 | 2053 | 2054 | 2055 | | 4010 | | 2057 | 2058 | 2059 | 2060 | 2061 | 2062 | 2063 | | 4020 | | 2065 | 2066 | 2067 | 2068 | 2069 | 2070 | 2071 | | 4030 | 1 | 2073 | 2074 | 2075 | 2076 | 2077 | 2078 | 2079 | | 4040 | 2080 | 2081 | 2082 | 2083 | 2084 | 2085 | 2086 | 2087 | | 4050 | | 2089 | 2090 | 2091 | 2092 | 2093 | 2094 | 2095 | | 4060 | | 2097 | 2098 | 2099 | 2100 | 2101 | 2102 | 2103 | | 4070 | 2104 | 2105 | 2106 | 2107 | 2108 | 2109 | 2110 | 2111 | | 4100 | | 2113 | 2114 | 2115 | 2116 | 2117 | 2118 | 2119 | | 4110 | 1 | 2121 | 2122 | 2123 | 2124 | 2125 | 2126 | 2127 | | 4120 | 2128 | 2129 | 2130 | 2131 | 2132 | 2133 | 2134 | 2135 | | 4130 | 2136 | 2137 | 2138 | 2139 | 2140 | 2141 | 2142 | 2143 | | 4140 | 2144 | 2145 | 2146 | 2147 | 2148 | 2149 | 2150 | 2151 | | 4150 | 2152 | 2153 | 2154 | 2155 | 2156 | 2157 | 2158 | 2159 | | 4160 | 2160 | 2161 | 2162 | 2163 | 2164 | 2165 | 2166 | 2167 | | 4170 | 2168 | 2169 | 2170 | 2171 | 2172 | 2173 | 2174 | 2175 | | | | | | | | | | | | 4200 | 2176 | 2177 | 2178 | 2179 | 2180 | 2181 | 2182 | 2183 | | 4210 | 2184 | 2185 | 2186 | 2187 | 2188 | 2189 | 2190 | 2191 | | 4220 | 2192 | 2193 | 2194 | 2195 | 2196 | 2197 | 2198 | 2199 | | 4230 | 2200 | 2201 | 2202 | 2203 | 2204 | 2205 | 2206 | 2207 | | 4240 | 2208 | 2209 | 2210 | 2211 | 2212 | 2213 | 2214 | 2215 | | 4250 | 2216 | 2217 | 2218 | 2219 | 2220 | 2221 | 2222 | 2223 | | 4260 | 2224 | 2225 | 2226 | 2227 | 2228 | 2229 | 2230 | 2231 | | 42/70 | 2232 | 2233 | 2234 | 2235 | 2236 | 2237 | 2238 | 2239 | | 4300 | 2240 | 2241 | 2242 | 2243 | 2244 | 2245 | 2246 | 2247 | | 4310 | 2248 | 2249 | 22 50 | 2251 | 2252 | 2253 | 2254 | 2255 | | 4320 | 2256 | 2257 | 22 58 | 2259 | 2260 | 2261 | 2262 | 2263 | | 4330 | 2264 | 2265 | 2266 | 2267 | 2268 | 2269 | 2270 | 2271 | | 4340 | 2272 | 2273 | 2274 | 2275 | 2276 | 2277 | 2278 | 2279 | | 4350 | 2280 | 2281 | 2282 | 2283 | 2284 | 2285 | 2286 | 2287 | | 4360 | 22 88 | 2289 | 22 90 | 2291 | 2292 | 2293 | 2294 | 2295 | | 4370 | 2296 | 2297 | 2298 | 2299 | 2300 | 2301 | 2302 | 2303 | | | | | | | | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |------|------|------|--------------|------|--------------|--------------|--------------|------| | 4400 | 2304 | 2305 | 2306 | 2307 | 2308 | 2309 | 2310 | 2311 | | 4410 | 2312 | 2313 | 2314 | 2315 | 2316 | 2317 | 2318 | 2319 | | 4420 | 2320 | 2321 | 2322 | 2323 | 2324 | 2325 | 2326 | 2327 | | 4430 | | 2329 | 2330 | 2331 | 2332 | 2333 | 2334 | 2335 | | 4440 | | 2337 | 2338 | 2339 | 2340 | 2341 | 2342 | 2343 | | 4450 | 1 | 2345 | 2346 | 2347 | 2348 | 2349 | 2350 | 2351 | | 4460 | , | 2353 | 2354 | 2355 | 2356 | 2357 | 2358 | 2359 | | 4470 | 2360 | 2361 | 2362 | 2363 | 2364 | 2365 | 2366 | 2367 | | 4500 | | 2369 | 2370 | 2371 | 2372 | 2373 | 2374 | 2375 | | 4510 | | 2377 | 2378 | 2379 | 2380 | 2381 | 2382 | 2383 | | 4520 | 2384 | 2385 | 2386 | 2387 | 2388 | 2389 | 2390 | 2391 | | 4530 | 2392 | 2393 | 2394 | 2395 | 2396 | 2397 | 2398 | 2399 | | 4540 | 2400 | 2401 | 2402 | 2403 | 2404 | 24 05 | 2406 | 2407 | | 4550 | 2408 | 2409 | 2410 | 2411 | 2412 | 2413 | 2414 | 2415 | | 4560 | 2416 | 2417 | 2418 | 2419 | 2420 | 2421 | 2422 | 2423 | | 4570 | 2424 | 2425 | 2426 | 2427 | 2428 | 2429 | 2430 | 2431 | | 4600 | 2432 | 2433 | 2434 | 2435 | 2436 | 2437 | 2438 | 2439 | | 4610 | 2440 | 2441 | 2442 | 2443 | 2444 | 2445 | 2446 | 2447 | | 4620 | 2448 | 2449 | 24 50 | 2451 | 2452 | 2453 | 2454 | 2455 | | 4630 | 2456 | 2457 | 24 58 | 2459 | 2460 | 2461 | 2462 | 2463 | | 4640 | 2464 | 2465 | 2466 | 2467 | 2468 | 2469 | 2470 | 2471 | | 4650 | 2472 | 2473 | 2474 | 2475 | 2476 | 2477 | 2478 | 2479 | | 4660 | 2480 | 2481 | 2482 | 2483 | 2484 | 24 85 | 2486 | 2487 | | 4670 | 2488 | 2489 | 2490 | 2491 | 2492 | 2493 | 2494 | 2495 | | 4700 | 2496 | 2497 | 2498 | 2499 | 2 500 | 2501 | 2502 | 2503 | | 4710 | 2504 | 2505 | 2506 | 2507 | 2 508 | 2509 | 2510 | 2511 | | 4720 | 2512 | 2513 | 2514 | 2515 | 2516 | 2517 | 2518 | 2519 | | 4730 | 2520 | 2521 | 2522 | 2523 | 2524 | 2525 | 2526 | 2527 | | 4740 | 2528 | 2529 | 2 530 | 2531 | 2532 | 2 533 | 2534 | 2535 | | 4750 | 2536 | 2537 | 2538 | 2539 | 2 540 | 2541 | 2542 | 2543 | | 4760 | 2544 | 2545 | 2546 | 2547 | 2548 |
2549 | 2550 | 2551 | | 4770 | 2552 | 2553 | 2554 | 2555 | 2556 | 2557 | 2 558 | 2559 | | | | | | | | | | | 5000 | 2560 to to 5777 | 3071 (Octal) (Decimal) | | , | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |---|---------------|------|--------------|--------------|--------------|--------------|--------------|--------------|------| | | 5000 | | | 2562 | 2563 | 2564 | 2565 | 2566 | 2567 | | | 5010 | 1 | | 2570 | 2571 | 2572 | 2573 | 2574 | 2575 | | | 5020 | | 2577 | 2578 | 2579 | 2 580 | 2581 | 2582 | 2583 | | | 5030 | | 2 585 | 2586 | 2587 | 2588 | 2589 | 2590 | 2591 | | | 5040 | | 2593 | 2594 | 2595 | 2596 | 2597 | 2598 | 2599 | | 1 | 5050 | | 2601 | 2602 | 2603 | 2604 | 2605 | 2606 | 2607 | | 1 | 5060 | | 2609 | 2610 | 2611 | 2612 | 2613 | 2614 | 2615 | | | 5070 | 2616 | 2617 | 2618 | 2619 | 2620 | 2 621 | 2622 | 2623 | | | 5100 | 2624 | 2625 | 2626 | 2627 | 2628 | 2629 | 2630 | 2631 | | 1 | 5110 | 2632 | 2633 | 2634 | 2635 | 2636 | 2637 | 2638 | 2639 | | 1 | 5120 | 2640 | 2641 | 2642 | 2643 | 2644 | 2645 | 2646 | 2647 | | 1 | 5130 | 2648 | 2649 | 26 50 | 2651 | 2652 | 2653 | 2654 | 2655 | | | 5140 | 2656 | 2657 | 2658 | 2 659 | 2660 | 2661 | 2662 | 2663 | | | 5150 | 2664 | 266 5 | 2666 | 2667 | 2668 | 2669 | 2670 | 2671 | | | 5160 | 2672 | 2673 | 2674 | 2675 | 2676 | 2677 | 2678 | 2679 | | l | 5170 | 2680 | 2681 | 2682 | 2683 | 2684 | 26 85 | 2686 | 2687 | | | 5 2 00 | 2688 | 2689 | 2690 | 2691 | 2692 | 2693 | 2694 | 2695 | | | 5210 | 2696 | 2697 | 2698 | 2699 | 2700 | 2701 | 2702 | 2703 | | | 5220 | 2704 | 2705 | 2706 | 2707 | 2708 | 2709 | 2710 | 2711 | | | 5 23 0 | 2712 | 2713 | 2714 | 2715 | 2716 | 2717 | 2718 | 2719 | | | 5240 | 2720 | 2721 | 2722 | 2723 | 2724 | 2725 | 2726 | 2727 | | | 5250 | 2728 | 2729 | 2730 | 2731 | 2732 | 2733 | 2734 | 2735 | | | 5260 | 2736 | 2737 | 2738 | 2739 | 2740 | 2741 | 2742 | 2743 | | | 5270 | 2744 | 274 5 | 2746 | 2747 | 2748 | 2749 | 2750 | 2751 | | | 5300 | 2752 | 2753 | 2754 | 2755 | 2756 | 2757 | 2 758 | 2759 | | | 5310 | 2760 | 2761 | 2762 | 2763 | 2764 | 2765 | 2766 | 2767 | | | 5320 | 2768 | 2769 | 2770 | 2771 | 2772 | 2773 | 2774 | 2775 | | | 330 | 2776 | 2777 | 2778 | 2779 | 2780 | 2781 | 2782 | 2783 | | | 340 | 2784 | 2785 | 2786 | 2787 | 2788 | 2789 | 2790 | 2791 | | | 350 | 2792 | 2793 | 2794 | 2795 | 2796 | 2797 | 2798 | 2799 | | | 360 | 2800 | 2801 | 2802 | 2803 | 2804 | 2 805 | 2806 | 2807 | | 5 | 370 | 2808 | 2 809 | 2810 | 2811 | 2812 | 2813 | 2814 | 2815 | | | | | | | | | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |------|------|------|------|------|------|------|------|------| | 5400 | 2816 | 2817 | 2818 | 2819 | 2820 | 2821 | 2822 | 2823 | | 5410 | 2824 | | 2826 | | 2828 | 2829 | 2830 | 2831 | | 5420 | 2832 | 2833 | 2834 | | 2836 | 2837 | 2838 | 2839 | | 5430 | 2840 | 2841 | 2842 | 2843 | 2844 | 2845 | 2846 | 2847 | | 5440 | 2848 | 2849 | 2850 | 2851 | 2852 | 2853 | 2854 | 2855 | | 5450 | 2856 | 2857 | 2858 | 2859 | 2860 | 2861 | 2862 | 2863 | | 5460 | 2864 | 2865 | 2866 | 2867 | 2868 | 2869 | 2870 | 2871 | | 5470 | 2872 | 2873 | 2874 | 2875 | 2876 | 2877 | 2878 | 2879 | | 5500 | 2880 | 2881 | 2882 | 2883 | 2884 | 2885 | 2886 | 2887 | | 5510 | | 2889 | 2890 | 2891 | 2892 | 2893 | 2894 | 2895 | | 5520 | 2896 | 2897 | 2898 | 2899 | 2900 | 2901 | 2902 | 2903 | | 5530 | 2904 | 2905 | 2906 | 2907 | 2908 | 2909 | 2910 | 2911 | | 5540 | 2912 | 2913 | 2914 | 2915 | 2916 | 2917 | 2918 | 2919 | | 5550 | 2920 | 2921 | 2922 | 2923 | 2924 | 2925 | 2926 | 2927 | | 5560 | 2928 | 2929 | 2930 | 2931 | 2932 | 2933 | 2934 | 2935 | | 5570 | 2936 | 2937 | 2938 | 2939 | 2940 | 2941 | 2942 | 2943 | | | | | | | | | -012 | 2010 | | 5600 | 2944 | 2945 | 2946 | 2947 | 2948 | 2949 | 2950 | 2951 | | 5610 | 2952 | 2953 | 2954 | 2955 | 2956 | 2957 | 2958 | 2959 | | 5620 | 2960 | 2961 | 2962 | 2963 | 2964 | 2965 | 2966 | 2967 | | 5630 | 2968 | 2969 | 2970 | 2971 | 2972 | 2973 | 2974 | 2975 | | 5640 | 2976 | 2977 | 2978 | 2979 | 2980 | 2981 | 2982 | 2983 | | 5650 | 2984 | 2985 | 2986 | 2987 | 2988 | 2989 | 2990 | 2991 | | 5660 | 2992 | 2993 | 2994 | 2995 | 2996 | 2997 | 2998 | 2999 | | 5670 | 3000 | 3001 | 3002 | 3003 | 3004 | 3005 | 3006 | 3007 | | 5700 | 3008 | 3009 | 3010 | 3011 | 3012 | 3013 | 3014 | 3015 | | 5710 | 3016 | 3017 | 3018 | 3019 | 3020 | 3021 | 3022 | 3023 | | 5720 | 3024 | 3025 | 3026 | 3027 | 3028 | 3029 | 3030 | 3031 | | 5730 | 3032 | 3033 | 3034 | 3035 | 3036 | 3037 | 3038 | 3039 | | 5740 | 3040 | 3041 | 3042 | 3043 | 3044 | 3045 | 3046 | 3047 | | 5750 | 3048 | 3049 | 3050 | 3051 | 3052 | 3053 | 3054 | 3055 | | 5760 | 3056 | 3057 | 3058 | 3059 | 3060 | 3061 | 3062 | 3063 | | 5770 | 3064 | 3065 | 3066 | 3067 | 3068 | 3069 | 3070 | 3071 | # OCTAL-DECIMAL INTEGER CONVERSION TABLE | | 0 | 1 | 2 | 3 | 4 - | 5 | 6 | 7 | |------|--------------|------|------|--------------|--------------|--------------|-------|------| | 6000 | | | | | | | | 3079 | | 6010 | | | 3082 | | 3084 | 3085 | 3086 | 3087 | | 6020 | 3088 | 3089 | 3090 | 3091 | 3092 | 3093 | 3094 | 3095 | | 6030 | | 3097 | 3098 | 3099 | 3100 | 3101 | 3102 | 3103 | | 6040 | | | 3106 | | 3108 | 3109 | 3110 | 3111 | | 6050 | | | 3114 | 3115 | 3116 | 3117 | 3118 | 3119 | | 6060 | 3120 | | 3122 | 3123 | 3124 | 3125 | 3126 | 3127 | | 6070 | 3128 | 3129 | 3130 | 3131 | 3132 | 3133 | 3134 | 3135 | | 6100 | 3136 | 3137 | 3138 | 3139 | 21.40 | 0141 | 04.40 | | | 6110 | 3144 | 3145 | 3146 | 3139 | 3140 | 3141 | 3142 | 3143 | | 6120 | 3152 | 3153 | 3154 | | 3148 | 3149 | 3150 | 3151 | | 6130 | 3160 | 3161 | 3162 | 3155
3163 | 3156 | 3157 | 3158 | 3159 | | 6140 | 3168 | 3169 | 3170 | 3171 | 3164 | 3165 | 3166 | 3167 | | 6150 | 3176 | 3177 | 3178 | | 3172 | 3173 | 3174 | 3175 | | 6160 | 3184 | 3185 | 3186 | 3179
3187 | 3180 | 3181 | 3182 | 3183 | | 6170 | 3192 | 3193 | | | 3188 | 3189 | 3190 | 3191 | | 0170 | 3192 | 3193 | 3194 | 3195 | 3196 | 3197 | 3198 | 3199 | | 6200 | 3200 | 3201 | 3202 | 3203 | 3204 | 3205 | 3206 | 3207 | | 6210 | 3208 | 3209 | 3210 | 3211 | 3212 | 3213 | 3214 | 3215 | | 6220 | 3216 | 3217 | 3218 | 3219 | 3220 | 3221 | 3222 | 3223 | | 6230 | 3224 | 3225 | 3226 | 3227 | 3228 | 3229 | 3230 | 3231 | | 6240 | 3232 | 3233 | 3234 | 3235 | 3236 | 3237 | 3238 | 3239 | | 6250 | 3240 | 3241 | 3242 | 3243 | 3244 | 3245 | 3246 | 3247 | | 6260 | 3248 | 3249 | 3250 | 3251 | 3252 | 3253 | 3254 | 3255 | | 6270 | 3256 | 3257 | 3258 | 3259 | 3260 | 3261 | 3262 | 3263 | | 6300 | 3264 | 3265 | 3266 | 3267 | 0000 | 2000 | 0050 | 0051 | | 6310 | 3272 | 3273 | 3274 | 3275 | 3268
3276 | 3269
3277 | 3270 | 3271 | | 6320 | 3280 | 3281 | | | | | 3278 | 3279 | | 6330 | | | 3282 | 3283 | 3284 | 3285 | 3286 | 3287 | | 6340 | 3288
3296 | 3289 | 3290 | 3291 | 3292 | 3293 | 3294 | 3295 | | 6350 | | 3297 | 3298 | 3299 | 3300 | 3301 | 3302 | 3303 | | 6360 | 3304
3312 | 3305 | 3306 | 3307 | 3308 | 3309 | 3310 | 3311 | | | | 3313 | 3314 | 3315 | 3316 | 3317 | 3318 | 3319 | | 6370 | 3320 | 3321 | 3322 | 3323 | 3324 | 3325 | 3326 | 3327 | | | | | | | | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |------|--------------|--------------|-------|-------|------|------|------|------| | 6400 | 3328 | 3329 | 3330 | 3331 | 3332 | 3333 | 3334 | 3335 | | 6410 | 3336 | 3337 | 3338 | 3339 | 3340 | 3341 | 3342 | 3343 | | 6420 | 3344 | 3345 | 3346 | 3347 | 3348 | 3349 | 3350 | 3351 | | 6430 | 3352 | 3353 | 3354 | 3355 | 3356 | 3357 | 3358 | 3359 | | 6440 | 3360 | 3361 | 3362 | 3363 | 3364 | 3365 | 3366 | 3367 | | 6450 | 3368 | 3369 | 3370 | 3371 | 3372 | 3373 | 3374 | 3375 | | 6460 | 3376 | 3377 | 3378 | 3379 | 3380 | 3381 | 3382 | 3383 | | 6470 | 3384 | 3385 | 3386 | 3387 | 3388 | 3389 | 3390 | 3391 | | | | | | | | | | | | 6500 | 3392 | 3393 | 3394 | 3395 | 3396 | 3397 | 3398 | 3399 | | 6510 | 3400 | 3401 | 3402 | 3403 | 3404 | 3405 | 3406 | 3407 | | 6520 | 3408 | 3409 | 3410 | 3411 | 3412 | 3413 | 3414 | 3415 | | 6530 | 3416 | 3417 | 3418 | 3419 | 3420 | 3421 | 3422 | 3423 | | 6540 | 3424 | 3425 | 3426 | 3427 | 3428 | 3429 | 3430 | 3431 | | 6550 | 3432 | 3433 | 3434 | 3435 | 3436 | 3437 | 3438 | 3439 | | 6560 | 3440 | 3441 | 3442 | 3443 | 3444 | 3445 | 3446 | 3447 | | 6570 | 3448 | 3449 | 3450 | 3451 | 3452 | 3453 | 3454 | 3455 | | ccoo | 0450 | 0.455 | 0.450 | 0.450 | | | | | | 6600 | 3456 | 3457 | 3458 | 3459 | 3460 | 3461 | 3462 | 3463 | | 6610 | 3464 | 3465 | 3466 | 3467 | 3468 | 3469 | 3470 | 3471 | | 6620 | 3472 | 3473 | 3474 | 3475 | 3476 | 3477 | 3478 | 3479 | | 6630 | 3480 | 3481 | 3482 | 3483 | 3484 | 3485 | 3486 | 3487 | | 6650 | 3488
3496 | 3489 | 3490 | 3491 | 3492 | 3493 | 3494 | 3495 | | 6660 | 3504 | 3497 | 3498 | 3499 | 3500 | 3501 | 3502 | 3503 | | 6670 | 3512 | 3505
3513 | 3506 | 3507 | 3508 | 3509 | 3510 | 3511 | | 0010 | 3312 | 3513 | 3514 | 3515 | 3516 | 3517 | 3518 | 3519 | | 6700 | 3520 | 3521 | 3522 | 3523 | 3524 | 3525 | 3526 | 3527 | | 1 | 3528 | 3529 | 3530 | 3531 | 3532 | 3533 | 3534 | 3535 | | 1 | 3536 | 3537 | 3538 | 3539 | 3540 | 3541 | 3542 | 3543 | | | 3544 | 3545 | 3546 | 3547 | 3548 | 3549 | 3550 | 3551 | | | 3552 | 3553 | 3554 | 3555 | 3556 | 3557 | 3558 | 3559 | | | 3560 | 3561 | 3562 | 3563 | 3564 | 3565 | 3566 | 3567 | | | 3568 | 3569 | 3570 | 3571 | 3572 | 3573 | 3574 | 3575 | | | 3576 | 3577 | 3578 | 3579 | 3580 | 3581 | 3582 | 3583 | | -110 | | | 50.0 | 2010 | | 0001 | 0002 | 0000 | | 6000 | 3072 | |---------|-----------| | to | to | | 6777 | 3583 | | (Octal) | (Decimal) | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |---|------|------|------|------|------|------|------|------|------| | | 7000 | 3584 | 3585 | 3586 | 3587 | 3588 | 3589 | 3590 | 3591 | | į | 7010 | 3592 | 3593 | 3594 | 3595 | 3596 | 3597 | 3598 | 3599 | | | 7020 | 3600 | 3601 | 3602 | 3603 | 3604 | 3605 | 3606 | 3607 | | | 7030 | 3608 | 3609 | 3610 | 3611 | 3612 | 3613 | 3614 | 3615 | | | 7040 | 3616 | 3617 | 3618 | 3619 | 3620 | 3621 | 3622 | 3623 | | | 7050 | 3624 | 3625 | 3626 | 3627 | 3628 | 3629 | 3630 | 3631 | | | 7060 | 3632 | 3633 |
3634 | 3635 | 3636 | 3637 | 3638 | 3639 | | | 7070 | 3640 | 3641 | 3642 | 3643 | 3644 | 3645 | 3646 | 3647 | | | 7100 | 3648 | 3649 | 3650 | 3651 | 3652 | 3653 | 3654 | 3655 | | | 7110 | 3656 | 3657 | 3658 | 3659 | 3660 | 3661 | 3662 | 3663 | | | 7120 | 3664 | 3665 | 3666 | 3667 | 3668 | 3669 | 3670 | 3671 | | | 7130 | 3672 | 3673 | 3674 | 3675 | 3676 | 3677 | 3678 | 3679 | | | 7140 | 3680 | 3681 | 3682 | 3683 | 3684 | 3685 | 3686 | 3687 | | | 7150 | 3688 | 3689 | 3690 | 3691 | 3692 | 3693 | 3694 | 3695 | | | 7160 | 3696 | 3697 | 3698 | 3699 | 3700 | 3701 | 3702 | 3703 | | | 7170 | 3704 | 3705 | 3706 | 3707 | 3708 | 3709 | 3710 | 3711 | | | 7200 | 3712 | 3713 | 3714 | 3715 | 3716 | 3717 | 3718 | 3719 | | ı | 7210 | 3720 | 3721 | 3722 | 3723 | 3724 | 3725 | 3726 | 3727 | | Į | 7220 | 3728 | 3729 | 3730 | 3731 | 3732 | 3733 | 3734 | 3735 | | ١ | 7230 | 3736 | 3737 | 3738 | 3739 | 3740 | 3741 | 3742 | 3743 | | ۱ | 7240 | 3744 | 3745 | 3746 | 3747 | 3748 | 3749 | 3750 | 3751 | | ١ | 7250 | 3752 | 3753 | 3754 | 3755 | 3756 | 3757 | 3758 | 3759 | | ı | 7260 | 3760 | 3761 | 3762 | 3763 | 3764 | 3765 | 3766 | 3767 | | ١ | 7270 | 3768 | 3769 | 3770 | 3771 | 3772 | 3773 | 3774 | 3775 | | I | 7300 | 3776 | 3777 | 3778 | 3779 | 3780 | 3781 | 3782 | 3783 | | ١ | 7310 | 3784 | 3785 | 3786 | 3787 | 3788 | 3789 | 3790 | 3791 | | I | 7320 | 3792 | 3793 | 3794 | 3795 | 3796 | 3797 | 3798 | 3799 | | ١ | 7330 | 3800 | 3801 | 3802 | 3803 | 3804 | 3805 | 3806 | 3807 | | I | 7340 | 3808 | 3809 | 3810 | 3811 | 3812 | 3813 | 3814 | 3815 | | ١ | 7350 | 3816 | 3817 | 3818 | 3819 | 3820 | 3821 | 3822 | 3823 | | ١ | 7360 | 3824 | 3825 | 3826 | 3827 | 3828 | 3829 | 3830 | 3831 | | l | 7370 | 3832 | 3833 | 3834 | 3835 | 3836 | 3837 | 3838 | 3839 | | | | | | | | | | | | | 7400 3840 3841 3842 3843 3844 3845 3846 3847 7410 3848 3849 3850 3851 3852 3853 3854 3855 7420 3856 3857 3858 3859 3860 3861 3862 3863 7430 3864 3865 3865 3867 3868 3869 3870 3871 7440 3872 3873 3874 3875 3876 3877 3878 3879 7450 3880 3881 3882 3883 3884 3885 3886 3887 7460 3886 3889 3890 3900 3901 3902 3903 7500 3904 3905 3906 3907 3908 3909 3910 3911 7510 3912 3913 3914 3915 3915 3917 3918 3919 7520 3920 3921 3923 3923 | | | | | | | | | | |---|------|------|------|------|------|------|------|------|------| | 7410 3848 3849 3850 3851 3852 3853 3854 3855 7420 3856 3857 3858 3859 3860 3861 3862 3863 7430 3864 3865 3866 3867 3868 3869 3870 3871 7440 3872 3873 3874 3875 3876 3877 3878 3878 7460 3888 3889 3890 3891 3892 3893 3894 3895 7500 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 7500 3920 3921 3922 3923 3924 3925 3926 3927 7500 3920 3921 3922 3923 3924 3925 3926 3927 7500 3928 39293 3930 3931 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 7420 3856 3857 3858 3859 3860 3861 3862 3863 7430 3864 3865 3866 3867 3868 3869 3870 3871 7440 3872 3873 3874 3873 3874 3875 3877 3878 3879 3873 3874 3875 3877 3878 3879 3881 3889 3881 3882 3883 3884 3885 3886 3887 7400 3896 3897 3898 3899 3900 3901 3902 3903 7500 3904 3905 3906 3907 3908 3909 3910 3911 7510 3912 3913 3914 3915 3916 3917 3918 3919 7520 3920 3921 3922 3923 3924 3925 3926 3927 7530 3928 3929 3930 3931 3932 3933 <t< td=""><td>7400</td><td>3840</td><td>3841</td><td>3842</td><td>3843</td><td>3844</td><td>3845</td><td>3846</td><td>3847</td></t<> | 7400 | 3840 | 3841 | 3842 | 3843 | 3844 | 3845 | 3846 | 3847 | | 7430 3864 3865 3866 3867 3868 3869 3870 3871 7440 3872 3873 3874 3875 3876 3877 3878 3879 7450 3888 3889 3890 3891 3882 3883 3884 3889 3893 3891 3892 3893 3894 3895 3894 3895 3894 3895 3894 3895 3894 3895 3890 3901 3902 3903 3901 3902 3903 3901 3902 3903 3901 3902 3903 3911 3911 3911 3911 3911 3912 3913 3914 3915 3916 3917 3918 3919 3911< | 7410 | 3848 | 3849 | 3850 | 3851 | 3852 | 3853 | 3854 | 3855 | | 7440 3872 3873 3874 3875 3876 3877 3878 3879 7450 3880 3881 3882 3883 3884 3885 3886 3887 7460 3888 3889 3890 3891 3892 3893 3894 3895 7470 3896 3897 3898 3899 3900 3901 3902 3903 7500 3904 3905 3906 3907 3908 3909 3910 3911 7510 3912 3913 3914 3915 3916 3917 3918 3919 7520 3920 3921 3922 3923 3924 3925 3926 3927 7530 3928 3927 3938 3939 3940 3941 3942 3943 7550 3944 3945 3946 3947 3948 3949 3950 3951 7500 3960 3961 3962 | 7420 | 3856 | 3857 | 3858 | 3859 | 3860 | 3861 | 3862 | 3863 | | 7450 3880 3881 3882 3883 3884 3885 3886 3887 7460 3888 3889 3890 3891 3892 3893 3894 3895 7470 3896 3897 3898 3899 3900 3901 3902 3903 7500 3904 3905 3906 3907 3908 3909 3910 3911 7510 3912 3913 3914 3915 3916 3917 3918 3919 7520 3920 3921 3922 3923 3924 3925 3926 3927 7530 3928 3929 3930 3931 3931 3933 3934 3945 3946 3947 3948 3949 3950 3951 7560 3952 3953 3954 3955 3956 3957 3958 3959 7600 3968 3969 3970 3971 3972 3973 3 | 7430 | 3864 | 3865 | 3866 | 3867 | 3868 | 3869 | 3870 | 3871 | | 7460 3888 3889 3890 3891 3892 3893 3894 3895 7470 3896 3897 3898 3899 3900 3901 3902 3903 7500 3904 3905 3906 3907 3908 3909 3910 3911 7510 3912 3913 3914 3915 3916 3917 3918 3919 7520 3920 3921 3922 3923 3924 3925 3926 3927 7540 3936 3937 3938 3939 3940 3941 3943 3959 3953 3953 3953 3953 3956 3957 3958 3959 | 7440 | 3872 | 3873 | 3874 | 3875 | 3876 | 3877 | 3878 | 3879 | | 7470 3896 3897 3898 3899 3900 3901 3902 3903 7500 3904 3905 3906 3907 3908 3909 3910 3911 7510 3912 3913 3914 3915 3916 3917 3918 3919 7520 3920 3921 3922 3923 3924 3925 3926 3927 7530 3928 3929 3930 3931 3932 3933 3934 3935 7540 3936 3945 3946 3947 3948 3949 3950 3951 3953 3951 3953 3953 3954 3946 3942 3943 3951 3953 3954 3955 3956 3957 3958 3957 3958 3957 3958 3967 3968 3967 3968 3967 3973 3973 3973 3973 3973 3973 3973 3973 3973 3973 | 7450 | 3880 | 3881 | 3882 | 3883 | 3884 | 3885 | 3886 | 3887 | | 7500 3904 3905 3906 3907 3908 3909 3910 3911 7510 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 7530 3928 3929 3930 3931 3932 3933 3934 3935 7540 3936 3937 3938 3939 3940 3941 3942 3943 7550 3944 3945 3946 3947 3948 3949 3950 3951 7560 3952 3953 3954 3955 3956 3957 3958 3959 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3950 3951 3960 3961 3962 3963 3964 3965 3966 3967 3960 3961 3962 3963 3964 3965 3966 3967 3960 3961 3962 3963 3964 3965 3966 3967 3960 3961 3962 3963 3964 3965 3966 3967 3960 3961 3962 3963 3964 3965 3966 3967 3963 3964 3965 3966 3967 3960 3961 3962 3963 3964 3965 3966 3967 3968 3967 3976 3977 3978 3979 3980 3981 3982 3983 3999 3991 3963 3994 3995 3996 3997 3998 3999 3991 3995 3996 3997 3998 3999 3991 3995 3996 3997 3998 3999 3991 3996 3997 3998 3999 3991 3996 3997 3998 3999 3991 3996 3997 3998 3999 3991 3996 3997 3998 3999 3991 3996 3997 3998 3999 3991 3996 3997 3998 3999 3991 3996 3997 3998 3999 3991 3998 3999 3999 | 7460 | 3888 | 3889 | 3890 | 3891 | 3892 | 3893 | 3894 | 3895 | | 7510 3912 3913 3914 3915 3916 3917 3918 3919 7520 3920 3921 3922 3923 3924 3925 3926 3927 7530 3928 3929 3930 3931 3932 3933 3934 3935 7540 3936 3937 3938 3939 3940 3941 3942 3943 7550 3944 3945 3946 3947 3948 3949 3950 3951 7560 3952 3953 3954 3955 3956 3957 3958 3959 7600 3968 3969 3970 3971 3972 3973 3974 3975 7610 3976 3977 3978 3979 3980 3981 3982 3983 7620 3984 3985 3984 3987 3988 3989 3990 3991 7630 3992 3993 3994 | 7470 | 3896 | 3897 | 3898 | 3899 | 3900 | 3901 | 3902 | 3903 | | 7520 3920 3921 3922 3923 3924 3925 3926 3927 7530 3928 3929 3930 3931 3932 3933 3934 3935 7540 3936 3937 3938 3939 3941 3942 3943 3943 3933 3934 3934 3935 3943 3943 3943 3943 3943 3943 3943 3943 3943 3943 3943 3943 3943 3943 3943 3943 3943 3943 3943 3955 3956 3957 3958 3955 3956 3957 3958 3958 3955 3956 3967 3968 3967 3973 3974 3975 3960 3961 3962 3963 3964 3965 3966 3967 7600 3968 3969 3977 3973 3974 3975 3963 3981 3982 3983 3989 3993 3991 3961 <td></td> <td></td> <td></td> <td></td> <td>3907</td> <td>3908</td> <td>3909</td> <td>3910</td> <td>3911</td> | | | | | 3907 | 3908 | 3909 | 3910 | 3911 | | 7530 3928 3929 3930 3931 3932
3933 3934 3935 7540 3944 3945 3946 3947 3948 3949 3940 3941 3942 3943 7560 3952 3953 3954 3955 3955 3955 3957 3958 3959 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 7600 3968 3969 3970 3971 3972 3973 3974 3975 7610 3976 3977 3978 3979 3980 3981 3982 3983 7620 3984 3985 3986 3987 3988 3989 3999 7640 4000 4001 4002 4003 4004 4005 4006 4007 7670 4024 4025 4026 4027 4028 4029 4030 4031 7 | | | | | | | 3917 | 3918 | 3919 | | 7540 3936 3937 3938 3939 3940 3941 3942 3943 7550 3944 3945 3946 3947 3948 3949 3950 3951 7570 3960 3961 3962 3963 3964 3965 3965 3967 7600 3968 3969 3970 3971 3972 3973 3974 3975 7610 3976 3977 3978 3979 3980 3981 3982 3983 7620 3984 3985 3986 3987 3988 3989 3990 3991 7630 3993 3994 3995 3996 3997 3998 3999 3999 7640 4000 4001 4002 4003 4004 4005 4006 4007 7650 4084 4009 4010 4011 4012 4013 4014 4015 7660 4016 4017 4018 | | | | | | 3924 | 3925 | 3926 | | | 7550 3944 3945 3946 3947 3948 3949 3950 3951 7560 3952 3953 3954 3955 3956 3957 3958 3959 7670 3960 3961 3962 3963 3964 3965 3966 3967 7600 3968 3969 3970 3971 3972 3973 3974 3975 7610 3976 3977 3978 3979 3980 3981 3982 3983 7620 3984 3985 3986 3987 3988 3999 3991 7630 3992 3993 3994 3995 3997 3998 3997 3998 3999 3991 7660 4008 4009 4010 4011 4012 4013 4014 4015 7670 4024 4025 4026 4027 4028 4029 4030 4031 7700 4032 4033 | | | | | | | 3933 | 3934 | 3935 | | 7560 3952 3953 3954 3955 3956 3957 3958 3959 7570 3960 3961 3962 3963 3964 3965 3966 3967 7600 3968 3969 3970 3971 3972 3973 3974 3975 7610 3976 3977 3978 3979 3980 3981 3982 3983 7620 3984 3985 3986 3987 3988 3989 3990 3991 7630 3992 3993 3994 3995 3996 3997 3998 3999 3991 7640 4004 4001 4002 4004 4005 4007 4007 4005 4007 4013 4014 4015 4013 4014 4015 4013 4014 4012 4023 4024 4021 4022 4023 7670 4016 4017 4018 4019 4020 4021 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | 7570 3960 3961 3962 3963 3964 3965 3966 3967 7600 3968 3969 3970 3971 3972 3973 3974 3975 7610 3976 3977 3978 3979 3980 3981 3982 3983 7620 3984 3985 3986 3987 3988 3989 3990 3991 7630 3992 3993 3994 3995 3996 3997 3998 3999 7660 4000 4001 4002 4003 4004 4015 4015 7660 4016 4017 4018 4019 4020 4021 4022 4023 7670 4024 4025 4026 4027 4028 4029 4030 4031 7700 4032 4033 4034 4034 4044 4045 4046 4047 7720 4048 4049 4050 4051 | | | | | | 3948 | 3949 | 3950 | 3951 | | 7600 3968 3969 3970 3971 3972 3973 3974 3975 7610 3976 3977 3978 3979 3980 3981 3982 3983 7620 3984 3985 3986 3987 3988 3989 3991 3991 7630 3992 3993 3994 3995 3996 3997 3998 3999 7640 4000 4001 4002 4003 4004 4005 4006 4007 7650 4008 4009 4010 4011 4012 4013 4014 4015 7660 4016 4017 4018 4019 4020 4021 4022 4023 7670 4024 4025 4026 4027 4028 4029 4030 4031 77700 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 77720 4048 4049 4050 4051 4052 4053 4054 4055 77730 4056 4057 4058 4059 4060 4061 4062 4063 77740 4064 4065 4066 4067 4068 4069 4070 4071 7750 4072 4073 4074 4075 4076 4077 4078 4079 7760 4080 4081 4082 4083 4084 4085 4086 4087 | | | | | | | | 3958 | 3959 | | 7610 3976 3977 3978 3979 3980 3981 3982 3983 7620 3984 3985 3986 3987 3988 3989 3990 3991 7630 3992 3993 3994 3995 3996 3997 3998 3999 3991 7640 4000 4001 4002 4003 4004 4005 4006 4007 7650 4008 4009 4010 4011 4012 4013 4014 4015 7660 4016 4017 4018 4019 4020 4021 4022 4023 7670 4024 4025 4026 4027 4028 4029 4030 4031 77700 4032 4033 4034 4035 4036 4037 4038 4039 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 7670 4024 4025 4026 4027 4028 4029 4030 4031 4040 4041 4042 4043 4044 4045 4046 4047 7720 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 7740 4064 4065 4066 4067 4068 4069 4070 4071 7750 4072 4073 4074 4075 4076 4077 4078 4079 7760 4080 4081 4082 4083 4084 4085 4086 4087 | 7570 | 3960 | 3961 | 3962 | 3963 | 3964 | 3965 | 3966 | 3967 | | 7620 3984 3985 3986 3987 3988 3989 3990 3991 7630 3992 3993 3994 3995 3996 3997 3998 3999 7660 4004 4001 4002 4003 4004 4005 4006 4007 4011 4012 4013 4014 4015 7660 4016 4017 4018 4019 4020 4021 4022 4023 7670 4024 4025 4026 4027 4028 4029 4030 4031 7700 4032 4033 4034 4035 4036 4037 4038 4039 7710 4040 4041 4042 4043 4044 4045 4046 4047 7720 4048 4049 4050 4051 4052 4053 4054 4055 7730 4056 4057 4058 4059 4060 4061 4062 4 | | | | | | | | | | | 7630 3992 3993 3994 3995 3996 3997 3998 3999 7640 4000 4001 4002 4003 4004 4005 4006 4007 7650 4008 4009 4010 4011 4012 4013 4014 4015 7660 4016 4017 4018 4019 4020 4021 4022 4023 7670 4024 4025 4026 4027 4028 4029 4030 4031 77700 4032 4033 4034 4035 4036 4037 4038 4039 77110 4040 4041 4042 4043 4044 4045 4046 4047 7720 4048 4049 4050 4051 4052 4053 4054 4055 7730 4056 4057 4058 4059 4060 4061 4062 4063 7740 4064 4065 4066 4067 4068 4069 4070 4071 7750 4072 4073 4074 4075 4076 4077 4078 4079 7760 4080 4081 4082 4083 4084 4085 4086 4087 | | | | | | | | | | | 7640 4000 4001 4002 4003 4004 4005 4006 4007 7650 4008 4009 4010 4011 4012 4013 4014 4015 7660 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 7710 4040 4041 4042 4043 4044 4045 4046 4047 7720 4048 4049 4050 4051 4052 4053 4054 4055 7730 4056 4057 4058 4059 4060 4061 4062 4063 7740 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 7760 4080 4081 4082 4083 4084 4085 4086 4087 | | | | | | | | | | | 7650 4008 4009 4010 4011 4012 4013 4014 4015 7660 4016 4017 4018 4019 4020 4021 4022 4023 7670 4024 4025 4026 4027 4028 4029 4030 4031 7700 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 7720 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 7740 4064 4065 4066 4067 4068 4069 4070 4071 7750 4072 4073 4074 4075 4076 4077 4078 4079 7760 4080 4081 4082 4083 4084 4085 4086 4087 | | | | | | | | | | | 7660 4016 4017 4018 4019 4020 4021 4022 4023 7670 4024 4025 4026 4027 4028 4029 4030 4031 7700 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 7720 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 7740 4064 4065 4066 4067 4068 4069 4070 4071 7750 4072 4073 4074 4075 4076 4077 4078 4079 7760 4080 4081 4082 4083 4084 4085 4086 4087 | | | | | | | | | 1 | | 7670 4024 4025 4026 4027 4028 4029 4030 4031
7700 4032 4033 4034 4035 4036 4037 4038 4039
7710 4040 4041 4042 4043 4044 4045 4046 4047
7720 4048 4049 4050 4051 4052 4053 4054 4055
7730 4056 4057 4058 4059 4060 4061 4062 4063
7740 4064 4065 4066 4067 4068 4069 4070 4071
7750 4072 4073 4074 4075 4076 4077 4078 4079
7760 4080 4081 4082 4083 4084 4085 4086 4087 | | | | | | | | | | | 7700 4032 4033 4034 4035 4036 4037 4038 4039 7710 4040 4041 4042 4043 4044 4045 4046 4057 7720 4048 4049 4050 4051 4052 4053 4054 4055 4057 4058 4059 4060 4061 4062 4063 7740 4064 4065 4066 4067 4068 4069 4070 4071 7750 4072 4073 4074 4075 4076 4077 4078 4079 7760 4080 4081 4082 4083 4084 4085 4086 4087 | | | | | | | | | | | 7710 4040 4041 4042 4043 4044 4045 4046 4047 7720 4048 4049 4050 4051 4052 4053 4054 4065 4057 4058 4059 4060 4061 4062 4063 4064 4064 4065 4066 4067 4068 4069 4070 4071 7750 4072 4073 4074 4075 4076 4077 4078 4079 7760 4080 4081 4082 4083 4084 4085 4086 4087 | 7670 | 4024 | 4025 | 4026 | 4027 | 4028 | 4029 | 4030 | 4031 | | 7720 4048 4049 4050 4051 4052 4053 4054 4055
7730 4056 4057 4058 4059 4060 4061 4062 4063
7740 4064 4065 4066 4067 4068 4069 4070 4071
7750 4072 4073 4074 4075 4076 4077 4078 4079
4080 4081 4082 4083 4084 4085 4086 4087 | | | | | | | | | | | 7730 4056 4057 4058 4059 4060 4061 4062 4063
7740 4064 4065 4066 4067 4068 4069 4070 4071
7750 4072 4073 4074 4075 4076 4077 4078 4079
7760 4080 4081 4082 4083 4084 4085 4086 4087 | | | | | | | | | | | 7740 4064 4065 4066 4067 4068 4069 4070 4071
7750 4072 4073 4074 4075 4076 4077 4078 4079
7760 4080 4081 4082 4083 4084 4085 4086 4087 | | | | | | | | | 4055 | | 7750 4072 4073 4074 4075 4076 4077 4078 4079
7760 4080 4081 4082 4083 4084 4085 4086 4087 | | | | | | | | 4062 | 4063 | | 7760 4080 4081 4082 4083 4084 4085 4086 4087 | | | | | | | | | 4071 | | | | | | | | | | | 4079 | | 7770 4088 4089 4090 4091 4092 4093 4094 4095 | | | | | | | | | | | | 7770 | 4088 | 4089 | 4090 | 4091 | 4092 | 4093 | 4094 | 4095 | 7000 | 3584 to to 7777 | 4095 (Octal) (Decimal) # APPENDIX D. OCTAL-DECIMAL FRACTION CONVERSION TABLE | OCTAL | DEC. | OCTAL | DEC. | OCTAL | DEC. | OCTAL | DEC. | |-------|----------|-------|----------|-------|----------|-------|----------| | .000 | .000000 | . 100 | .125000 | . 200 | . 250000 | .300 | .375000 | | .001 | .001953 | .101 | .126953 | .201 | .251953 | .301 | .376953 | | .002 | .003906 | .102 | .128906 | .202 | . 253906 | .302 | .378906 | | .003 | .005859 | . 103 | . 130859 | . 203 | . 255859 | .303 | .380859 | | .004 | .007812 | .104 | .132812 | .204 | .257812 | .304 | .382812 | | .005 | .009765 | . 105 | . 134765 | .205 | . 259765 | .305 | .384765 | | .006 | .011718 | . 106 | . 136718 | .206 | .261718 | .306 | .386718 | | .007 | .013671 | . 107 | .138671 | .207 | .263671 | .307 | .388671 | | .010 | .015625 | .110 | . 140625 | .210 | | 1 | | | .011 | .017578 | .111 | . 142578 | l l | . 265625 | .310 | .390625 | | .012 | .019531 | | . 144531 | .211 | . 267578 | .311 | .392578 | | | | .112 | | .212 | . 269531 | .312 | .394531 | | .013 | .021484 | .113 | . 146484 | .213 | . 271484 | .313 | .396484 | | .014 | .023437 | .114 | . 148437 | .214 | . 273437 | .314 | .398437 | | .015 | .025390 | .115 | . 150390 | .215 | . 275390 | .315 | .400390 | | .016 | .027343 | .116 | . 152343 | .216 | . 277343 | .316 | .402343 | | .017 | .029296 | .117 | . 154296 | .217 | . 279296 | .317 | .404296 | | .020 | .031250 | .120 | .156250 | .220 | .281250 | .320 | .406250 | | .021 | .033203 | . 121 | .158203 | .221 | .283203 | .321 | .408203 | | .022 | .035156 | . 122 | .160156 | . 222 | . 285156 | . 322 | .410156 | | .023 | .037109 | . 123 | .162109 | .223 | .287109 | .323 | .412109 | | .024
 .039062 | . 124 | . 164062 | .224 | . 289062 | .324 | .414062 | | .025 | .041015 | . 125 | . 166015 | .225 | .291015 | .325 | .416015 | | .026 | .042968 | .126 | .167968 | .226 | .292968 | .326 | .417968 | | .027 | .044921 | .127 | .169921 | .227 | .294921 | .327 | .417900 | | .030 | .046875 | .130 | | | | l l | | | .030 | .048828 | | . 171875 | . 230 | . 296875 | .330. | .421875 | | | | . 131 | .173828 | .231 | .298828 | .331 | . 423828 | | .032 | .050781 | . 132 | . 175781 | . 232 | .300781 | . 332 | . 425781 | | .033 | .052734 | . 133 | . 177734 | . 233 | .302734 | .333 | . 427734 | | .034 | .054687 | . 134 | .179687 | . 234 | .304687 | .334 | .429687 | | .035 | .056640 | . 135 | . 181640 | . 235 | .306640 | .335 | .431640 | | .036 | .058593 | . 136 | . 183593 | . 236 | .308593 | .336 | . 433593 | | .037 | .060546 | . 137 | . 185546 | . 237 | .310546 | .337 | . 435546 | | .040 | .062500 | . 140 | .187500 | . 240 | .312500 | .340 | .437500 | | .041 | .064453 | . 141 | . 189453 | . 241 | .314453 | .341 | .439453 | | .042 | .066406 | . 142 | . 191406 | . 242 | .316406 | .342 | .441406 | | .043 | .068359 | . 143 | . 193359 | .243 | .318359 | .343 | .443359 | | .044 | .070312 | . 144 | . 195312 | . 244 | .320312 | .344 | .445312 | | .045 | .072265 | . 145 | . 197265 | . 245 | . 322265 | .345 | .447265 | | .046 | .074218 | . 146 | . 199218 | .246 | .324218 | .346 | .449218 | | .047 | .076171 | . 147 | . 201171 | .247 | .326171 | .347 | .451171 | | .050 | .078125 | .150 | | | | | | | | | t . | . 203125 | .250 | .328125 | .350 | .453125 | | .051 | .080078 | . 151 | . 205078 | . 251 | .330078 | .351 | .455078 | | .052 | .082031 | .152 | .207031 | . 252 | .332031 | . 352 | .457031 | | .053 | .083984 | . 153 | .208984 | . 253 | . 333984 | . 353 | . 458984 | | .054 | .085937 | . 154 | .210937 | . 254 | . 335937 | .354 | .460937 | | .055 | .087890 | . 155 | .212890 | .255 | .337890 | .355 | .462890 | | . 056 | .089843 | . 156 | . 214843 | .256 | .339843 | .356 | .464843 | | .057 | .091796 | . 157 | .216796 | . 257 | .341796 | .357 | .466796 | | .060 | .093750 | .160 | .218750 | .260 | .343750 | .360 | .468750 | | .061 | .095703 | .161 | .220703 | . 261 | .345703 | .361 | . 470703 | | .062 | .097656 | . 162 | . 222656 | . 262 | .347656 | .362 | .472656 | | .063 | .099609 | . 163 | .224609 | .263 | .349609 | .363 | .474609 | | .064 | .101562 | .164 | .226562 | .264 | .351562 | .364 | .476562 | | .065 | . 103515 | . 165 | .228515 | .265 | .353515 | .365 | .478515 | | .066 | .105468 | .166 | .230468 | .266 | .355468 | .366 | .480468 | | .067 | .107421 | .167 | .232421 | .267 | .357421 | . 367 | .482421 | | .070 | .109375 | • | . 234375 | | | | | | | | .170 | | . 270 | . 359375 | .370 | .484375 | | .071 | .111328 | . 171 | .236328 | . 271 | .361328 | .371 | .486328 | | .072 | .113281 | .172 | . 238281 | . 272 | .363281 | .372 | .488281 | | .073 | .115234 | . 173 | . 240234 | . 273 | . 365234 | . 373 | .490234 | | .074 | .117187 | . 174 | . 242187 | . 274 | .367187 | . 374 | .492187 | | .075 | .119140 | . 175 | . 244140 | . 275 | .369140 | . 375 | .494140 | | .076 | . 121093 | . 176 | .246093 | . 276 | .37-1093 | .376 | .496093 | | | | | | | | | | | .077 | . 123046 | .177 | .248046 | . 277 | .373046 | .377 | .498046 | ## OCTAL-DECIMAL FRACTION CONVERSION TABLE | OCTAL | DEC. | OCTAL | DEC. | OCTAL | DEC. | OCTAL | DEC. | |---------|---------|---------|---------|---------|----------|---------|---------| | .000000 | .000000 | .000100 | .000244 | .000200 | .000488 | .000300 | .000732 | | .000001 | .000003 | .000101 | .000247 | .000201 | .000492 | .000301 | .000736 | | .000002 | .000007 | .000102 | 000251 | .000202 | .000495, | .000302 | .000740 | | .000003 | .000011 | .000103 | .000255 | .000203 | .000499 | .000303 | .000743 | | .000004 | .000015 | .000104 | .000259 | .000204 | .000503 | .000304 | .000747 | | .000005 | .000019 | .000105 | .000263 | .000205 | .000507 | .000305 | .000751 | | .000006 | .000022 | .000106 | .000267 | .000206 | .000511 | .000306 | .000755 | | .000007 | .000026 | .000107 | .000270 | .000207 | .000514 | .000307 | .000759 | | | | .000110 | .000274 | .000210 | .000518 | .000310 | .000762 | | .000010 | .000030 | .000111 | .000274 | .000211 | .000522 | .000311 | .000766 | | .000011 | .000034 | | .000282 | .000211 | .000526 | .000312 | .000770 | | .000012 | .000038 | .000112 | .000282 | .000212 | .000520 | .000313 | .000774 | | .000013 | .000041 | .000113 | | 1 | .000534 | .000313 | .000778 | | 000014 | .000045 | .000114 | .000289 | .000214 | | .000314 | .000718 | | ,000015 | .000049 | .000115 | .000293 | .000215 | .000537 | | | | 000016 | .000053 | .000116 | .000297 | .000216 | .000541 | .000316 | .000785 | | 000017 | .000057 | .000117 | .000301 | .000217 | .000545 | .000317 | .000789 | | 000020 | .000061 | .000120 | .000305 | .000220 | .000549 | .000320 | .000793 | | .000021 | .000064 | .000121 | .000308 | .000221 | .000553 | .000321 | .000797 | | .000022 | .000068 | .000122 | .000312 | .000222 | .000556 | .000322 | .000801 | | 000023 | .000072 | .000123 | .000316 | .000223 | .000560 | .000323 | .000805 | | 000024 | .000076 | .000124 | .000320 | .000224 | .000564 | .000324 | .000808 | | 000025 | .000080 | .000125 | .000324 | .000225 | .000568 | .000325 | .000812 | | 000026 | .000083 | .000126 | .000328 | .000226 | .000572 | .000326 | .000816 | | 000027 | .000087 | .000127 | .000331 | .000227 | .000576 | .000327 | .000820 | | | .000091 | .000130 | .000335 | .000230 | .000579 | .000330 | .000823 | | 000030 | • | .000130 | .000339 | .000231 | .000583 | .000331 | .000827 | | 000031 | .000095 | 1 | | .000231 | .000587 | .000332 | .000831 | | 000032 | .000099 | .000132 | .000343 | .000232 | .000591 | .000333 | .000835 | | 000033 | .000102 | .000133 | .000347 | 1 | | .000333 | .000839 | | 000034 | .000106 | .000134 | .000350 | .000234 | .000595 | 1 | | | 000035 | .000110 | .000135 | .000354 | .000235 | .000598 | .000335 | .000843 | | ,000036 | .000114 | .000136 | .000358 | .000236 | .000602 | .000336 | .000846 | | .000037 | .000118 | .000137 | .000362 | .000237 | .000606 | .000337 | .000850 | | .000040 | .000122 | .000140 | .000366 | .000240 | .000610 | .000340 | .000854 | | .000041 | .000125 | .000141 | .000370 | .000241 | .000614 | .000341 | .000858 | | .000042 | .000129 | .000142 | .000373 | .000242 | .000617 | .000342 | .000862 | | .000043 | .000133 | .000143 | .000377 | .000243 | .000621 | .000343 | .000865 | | .000044 | .000137 | .000144 | .000381 | .000244 | .000625 | .000344 | .000869 | | .000045 | .000141 | .000145 | .000385 | .000245 | .000629 | .000345 | .000873 | | .000046 | .000144 | .000146 | .000389 | .000246 | .000633 | .000346 | .000877 | | .000047 | .000148 | .000147 | .000392 | .000247 | .000637 | .000347 | .000881 | | .000050 | .000152 | .000150 | .000396 | .000250 | .000640 | .000350 | .000885 | | .000050 | .000152 | .000151 | .000400 | .000251 | .000644 | .000351 | .000888 | | | .000160 | .000152 | .000404 | .000252 | .000648 | .000352 | .000892 | | .000052 | | .000152 | .000404 | .000252 | .000652 | .000353 | .000896 | | .000053 | .000164 | | .000408 | .000253 | .000656 | .000354 | .000900 | | .000054 | .000167 | .000154 | .000411 | .000254 | .000659 | .000355 | .000904 | | 000055 | .000171 | .000155 | .000415 | .000256 | .000663 | .000356 | .000907 | | ,000056 | .000175 | .000156 | | | .000667 | .000357 | .000901 | | 000057 | .000179 | .000157 | .000423 | .000257 | | | | | ,000060 | .000183 | .000160 | .000427 | .000260 | ,000671 | .000360 | .000915 | | ,000061 | .000186 | .000161 | .000431 | .000261 | .000675 | .000361 | .000919 | | .000062 | .000190 | .000162 | .000434 | .000262 | .000679 | .000362 | .000923 | | .000063 | .000194 | .000163 | .000438 | .000263 | .000682 | .000363 | .000926 | | .000064 | .000198 | .000164 | .000442 | .000264 | .000686 | .000364 | .000930 | | 000065 | .000202 | .000165 | .000446 | .000265 | .000690 | .000365 | .000934 | | ,000066 | .000205 | .000166 | .000450 | .000266 | .000694 | .000366 | .000938 | | .000067 | .000209 | .000167 | .000453 | .000267 | .000698 | .000367 | .000942 | | .000070 | .000213 | .000170 | .000457 | .000270 | .000701 | .000370 | .000946 | | .000071 | .000217 | .000171 | .000461 | .000271 | .000705 | .000371 | .000949 | | .000072 | .000221 | .000172 | .000465 | .000272 | .000709 | .000372 | .000953 | | .000073 | .000221 | .000173 | .000469 | .000273 | .000713 | .000373 | .000957 | | .000074 | .000228 | .000174 | .000473 | .000274 | .000717 | .000374 | .000961 | | .000074 | .000223 | .000175 | .000476 | .000275 | .000720 | .000375 | .000965 | | .000076 | .000232 | .000176 | .000410 | .000276 | .000724 | .000376 | .000968 | | | .000230 | .000177 | .000484 | .000277 | .000728 | .000377 | .000972 | | .000077 | | | | | | | | # OCTAL-DECIMAL FRACTION CONVERSION TABLE | OCTAL | DEC. | OCTAL | DEC. | OCTAL | DEC. | OCTAL | DEC. | |----------|---------|--------------------|---------|--------------------|----------|--------------------|--------------------| | .000400 | .000976 | .000500 | .001220 | .000600 | .001464 | .000700 | .001708 | | .000401 | .000980 | .000501 | .001224 | .000601 | .001468 | t | | | .000402 | .000984 | .000502 | .001228 | .000602 | | .000701 | .001712 | | .000403 | .000988 | .000502 | | | .001472 | .000702 | .001716 | | | | | .001232 | .000603 | .001476 | .000703 | .001720 | | .000404 | .000991 | .000504 | .001235 | .000604 | .001480 | .000704 | .001724 | | .000405 | .000995 | .000505 | .001239 | .000605 | .001483 | .000705 | .001728 | | .000406 | .000999 | .000506 | .001243 | .000606 | .001487 | .000706 | .001731 | | .000407 | .001003 | .000507 | .001247 | .000607 | .001491 | .000707 | .001735 | | .000410 | .001007 | .000510 | .001251 | .000610 | .001495 | .000710 | .001739 | | .000411 | .001010 | .000511 | .001255 | .000611 | .001499 | 1 | | | .000412 | .001014 | .000512 | .001258 | 1 | | .000711 | .001743 | | .000413 | .001011 | .000512 | | .000612 | .001502 | .000712 | .001747 | | .000413 | | | .001262 | .000613 |
.001506 | .000713 | .001750 | | | .001022 | .000514 | .001266 | .000614 | .001510 | .000714 | .001754 | | .000415 | .001026 | .000515 | .001270 | .000615 | .001514 | .000715 | .001758 | | .000416 | .001029 | .000516 | .001274 | .000616 | .001518 | .000716 | .001762 | | .000417 | .001033 | .000517 | .001277 | .000617 | .001522 | .000717 | .001766 | | .000420 | .001037 | .000520 | .001281 | | | 1 | | | .000420 | .001037 | | | .000620 | .001525 | .000720 | .001770 | | | | .000521 | .001285 | .000621 | .001529 | .000721 | .001773 | | .000422 | .001045 | .000522 | .001289 | .000622 | .001533 | .000722 | .001777 | | .000423 | .001049 | .000523 | .001293 | .000623 | .001537 | .000723 | .001781 | | .000424 | .001052 | .000524 | .001296 | .000624 | .001541 | .000724 | .001785 | | .000425 | .001056 | .000525 | .001300 | .000625 | .001544 | .000725 | .001789 | | .000426 | .001060 | .000526 | .001304 | .000626 | .001548 | .000726 | .001783 | | .000427 | .001064 | .000527 | .001308 | .000627 | .001552 | .000727 | | | .000430 | .001068 | .000530 | .001312 | | | 1 | .001796 | | .000431 | .001003 | i | | .000630 | .001556 | .000730 | .001800 | | .000431 | | .000531 | .001316 | .000631 | .001560 | .000731 | .001804 | | | .001075 | .000532 | .001319 | .000632 | .001564 | .000732 | .001808 | | .000433 | .001079 | .000533 | .001323 | .000633 | .001567 | .000733 | .001811 | | .000434 | .001083 | .000534 | .001327 | .000634 | .001571 | .000734 | .001815 | | .000435 | .001087 | .000535 | .001331 | .000635 | .001575 | .000735 | .001819 | | .000436 | .001091 | .000536 | .001335 | .000636 | .001579 | .000736 | .001823 | | .000437 | .001094 | .000537 | .001338 | .000637 | .001583 | .000737 | .001827 | | .000440 | .001098 | .000540 | .001342 | | | i | | | .000440 | .001038 | i | | .000640 | .001586 | .000740 | .001831 | | | | .000541 | .001346 | .000641 | .001590 | .000741 | .001834 | | .000442 | .001106 | .000542 | .001350 | .000642 | .001594 | .000742 | .001838 | | .000443 | .001110 | .000543 | .001354 | .000643 | .001598 | .000743 | .001842 | | .000444• | .001113 | .000544 | .001358 | .000644 | .001602 | .000744 | .001846 | | .000445 | .001117 | .000545 | .001361 | .000645 | .001605 | .000745 | .001850 | | .000446 | .001121 | .000546 | .001365 | .000646 | .001609 | .000746 | .001853 | | .000447 | .001125 | .000547 | .001369 | .000647 | .001613 | .000747 | .001857 | | .000450 | .001129 | .000550 | .001373 | i | | | | | .000451 | .001132 | | | .000650 | .001617 | .000750 | .001861 | | | | .000551 | .001377 | .000651 | .001621 | .000751 | .001865 | | .000452 | .001136 | .000552 | .001380 | .000652 | .001625 | .000752 | .001869 | | .000453 | .001140 | .000553 | .001384 | .000653 | .001628 | .000753 | .001873 | | .000454 | .001144 | .000554 | .001388 | .000654 | .001632 | .000754 | .001876 | | .000455 | .001148 | .000555 | .001392 | .000655 | .001636 | .000755 | .001880 | | .000456 | .001152 | .000556 | .001396 | .000656 | .001640 | .000756 | .001884 | | .000457 | .001155 | .000557 | .001399 | .000657 | .001644 | .000757 | .001888 | | .000460 | .001159 | .000560 | | į. | | | | | .000461 | .001163 | | .001403 | .000660 | .001647 | .000760 | .001892 | | | | .000561 | .001407 | .000661 | .001651 | .000761 | .001895 | | .000462 | .001167 | .000562 | .001411 | .000662 | .001655 | .000762 | .001899 | | .000463 | .001171 | .000563 | .001415 | .000663 | .001659 | .000763 | .001903 | | .000464 | .001174 | .000564 | .001419 | .000664 | .001663 | .000764 | .001907 | | .000465 | .001178 | .000565 | .001422 | .000665 | .001667 | .000765 | .001911 | | .000466 | .001182 | .000566 | .001426 | .000666 | .001670 | 000766 | .001914 | | .000467 | .001186 | .000567 | .001430 | .000667 | .001674 | - | .001914 | | .000470 | .001190 | .000570 | | ł | i | .000767 | | | | | | .001434 | .000670 | .001678 | .000770 | .001922 | | .000471 | .001194 | .000571 | .001438 | .000671 | .001682 | .000771 | .001926 | | .000472 | .001197 | .000572 | .001441 | .000672 | .001686 | .000772 | .001930 | | .000473 | .001201 | .000573 | .001445 | .000673 | .001689 | .000773 | .001934 | | .000474 | .001205 | .000574 | .001449 | .000674 | .001693 | .000774 | .001937 | | .000475 | .001209 | .000575 | .001453 | .000675 | .001697 | .000775 | .001941 | | | | | | ľ | 1 | | | | .000476 | .001213 | .000576 | .001457 | . 000676 | . 001701 | . 000776 | 001945 | | | .001213 | .000576
.000577 | .001457 | .000676
.000677 | .001701 | .000776
.000777 | .001945
.001949 | # APPENDIX E. OPERATIONS BY ALPHABETIC CODE | Alpha Code | Octal Code | Cycles | Operation | Page | |------------|-------------------|------------|---------------------------------|------| | ACL | +0361 | 2 | Add and Carry Logical Word | 19 | | ADD | + 0400 | 2 | Add | 17 | | ADM | + 0401 | 2 | Add Magnitude | 18 | | ALS | + 0767 | 2 I | Accumulator Left Shift | 20 | | ANA | — 0320 | 3 | AND to Accumulator | 19 | | ANS | + 0320 | 4 | AND to Storage | 20 | | ARS | +0771 | 2 I | Accumulator Right Shift | 20 | | BST | ÷ 0764 | 2 III | Backspace Tape | 26 | | CAL | — 0500 | 2 | Clear and Add Logical Word | | | CAS | +0340 | _ 3 | Compare Accumulator with Change | 19 | | CHS | + 0760002 | 2 | Change Sign | 25 | | CLA | +0500 | 2 | Change Sign | 19 | | CLM | +0760000 | | Clear and Add | 17 | | CLS | +0502 | 2 | Clear Magnitude | 19 | | COM | | 2 | Clear and Subtract | 18 | | | +0760006 | 2 | Complement Magnitude | 20 | | CPY | +0700 | – III | Copy and Skip | 27 | | DCT | + 0760012 | 2 | Divide Check Test | 25 | | DVH | + 0220 | 20 | Divide or Halt | 18 | | DVP | + 0221 | 20 | Divide or Proceed | 18 | | ETM | + 0760007 | 2 | Enter Trapping Mode | 23 | | ETT | — 0760 011 | 2 | End of Tape Test | 27 | | FAD | +0300 | 7 II | Floating Add | 21 | | FDH | + 0240 | 18 IV | Floating Divide or Halt | 22 | | FDP | + 0241 | 18 IV | Floating Divide or Proceed | 23 | | FMP | + 0260 | 1 <i>7</i> | Floating Multiply | 22 | | FSB | + 0302 | 7 II | Floating Subtract | 22 | | HPR | + 0420 | 2 | Halt and Proceed | | | HTR | + 0000 | 2 | Halt and Transfer | 23 | | LBT | + 0760001 | 2 | Low Order Bit Test | 24 | | LDA | +0460 | 2 | Locate Drum Address | 25 | | LDQ | +0560 | 2 | Lord MO | 27 | | LGL | — 0763 | 2 I | Load MQ | 19 | | LLS | -0763 | 2 I | Logical Left | 21 | | LRS | i . | 2 I
2 I | Long Left Shift | 20 | | LTM | +0765 | | Long Right Shift | 21 | | LXA | — 0760007 | . 2 | Leave Trapping Mode | 23 | | LXA | +0534 | 2 | Load Index from Address* | 26 | | MPR | 0534 | 2 | Load Index from Decrement* | 26 | | | — 0200 | 20 | Multiply and Round | 18 | | MPY | +0200 | 20 | Multiply | 18 | | MSE | — 0760 | 2 | Minus Sense | 27 | | NOP | +0761 | 2 | No Operation | 23 | | ORA | 0501 | 2 | OR to Accumulator | 20 | | ORS | — 0602 | 2 | OR to Storage | 20 | | PAX | + 0734 | 2 | Place Address in Index* | 26 | | PBT | 0760 001 | 2 | P Bit Test | 25 | | PDX | 0734 | 2 | Place Decrement in Index* | 26 | | PSE | + 0760 | 2 | Plus Sense | 27 | | PXD | - 0754 | 2 | Place Index in Decrement* | 26 | | RDS | + 0762 | 2 III | Read Select | 26 | | REW | + 0772 | 40 ms III | Rewind | 27 | | RND | +0760010 | 2 | Round | 18 | | RQL | 0773 | 2 I | Rotate MQ Left | | | RTT | 0760012 | 2 | Redundancy Tape Test | 21 | | SBM | - 0400
0400 | 2 | Subtract Magnitude | 25 | | SLQ | 0620 | 2 | Subtract Magnitude | 18 | | SLW | +0602 | 2 | Store Left-Half MQ | 19 | | SSM | -0760003 | 2 | Store Logical Word | 19 | | 30111 | 0/00003 | 4 | Set Sign Minus | 19 | # OPERATIONS BY ALPHABETIC CODE | Alpha Code | Octal Code | Cycles | Operation | Pag | |------------|---------------|------------|-----------------------------------|-----| | SSP | + 0760003 | 2 | Set Sign Plus | . 1 | | STA | +0621 | 2 | Store Address | . 1 | | STD | +0622 | 2 | Store Decrement | | | STO | + 0601 | 2 | Store | | | STP | +0630 | 2 | Store Prefix | | | STQ | — 0600 | 2 | Store MQ | . 1 | | SUB | + 0402 | 2 | Subtract | . 1 | | SXD | — 0634 | 2 | Store Index in Decrement* | | | TIX | + 2000 | 2 | Transfer on Index** | . 2 | | TLQ | + 0040 | 2 | Transfer on Low MQ | 2 | | TMI | — 0120 | 2 | Transfer on Minus | | | TNO | — 0140 | 2 | Transfer on No Overflow | | | TNX | — 2000 | 2 | Transfer on No Index** | 2 | | TNZ | 0100 | 2 | Transfer on No Zero | 2 | | TOV | + 0140 | 2 | Transfer on Overflow | 2 | | TPL | + 0120 | 2 | Transfer on Plus | 2 | | TQO | + 0161 | 2 | Transfer on MQ Overflow | | | TQP | + 0162 | 2 | Transfer on MQ Plus | | | TRA | + 0020 | 2 | Transfer | 2 | | TSX | + 0074 | 2 | Transfer and Set Index* | 2 | | TTR | + 0021 | 2 | Trap Transfer | 2 | | TXH | + 3000 | 2 | Transfer on Index High** | 2 | | TXI | + 1000 | 2 | Transfer with Index Incremented** | 2 | | TXL | — 3000 | 2 | Transfer on Index Low or Equal** | | | TZE | + 0100 | 2 | Transfer on Zero | 2 | | UFA | 0300 | 6 II | Unnormalized Floating Add | | | UFM | — 0260 | 1 <i>7</i> | Unnormalized Floating Multiply | 2 | | UFS | 0302 | 6 II | Unnormalized Floating Subtract | 2 | | WEF | + 0770 | 2 III | Write End of File | 26 | | WRS | + 0766 | 2 III | Write Select | | ^{*} Not indexable. ** Not indexable but contains a decrement part. ## INDEX | | Page | | Page | |--|----------|--|-----------------| | Access Time | 6 | Conversion Table, Octal-Decimal Fractions | | | Accumulator | | Copy Loop | 31 | | Accumulator Overflow Indicator | | CRT Output Recorder | 63 | | Accumulator Overflow Light | | | | | Accumulator Position P | | Dc-on and Dc-off Keys | | | Accumulator Position Q | | Decimal-Octal Fraction Conversion Table | | | Address 6, | 8, 12 | Decimal-Octal Integer Conversion Table | 84 | | Address Modification | | Decrement8, 1 | 2, 17 | | Alphabetic Codes for Operations | 91 | Delay Instruction | 31 | | Arithmetic Element | 9 | Display Effective Address Key | 15 | | Automatic Light | 13 | Display Storage Key | 15 |
| Automatic Manual Switch | 13 | Display Unit Output Recorder | 66 | | | | Divide-Check Indicator | 11 | | Backspacing Magnetic Tape | 32 | Divide Check Light | 13 | | Binary and Octal Number Systems | | Division, Fixed Point | 11 | | Binary-Coded Decimal | | Division Floating Point | | | Binary-Coded Decimal Mode 30, 3 | | Double-Precision Floating-Point Division | | | Binary Mode | | Drum Copy Loop | | | Block Diagram | | Drum Motion Time | 38 | | Branch of Control | | Drum Sectors | | | | | | | | Camera, Loading Film | 66 | Echo Checking | 53 | | Card-Feed Failure | | Effective Address | | | Card Punch | | End-Of-Cards Procedure, Card Reader | | | Card-Punch, Control Panel | | End-Of-File Gap | 31 | | Card-Punch Manual Operation | | End-Of-Record Gap | | | Card Punch Timing | | End of Tape | | | Card-Punch Timing Chart | | End of Tape, Reflective Spot | | | Card Reader | | Enter Instruction Key | 15 | | Card Reader, Control Panel | | Enter MQ Key | | | Card Reader Keys and Lights | | Execution Time | | | Card Reader, Manual Operation | TT | 2 | | | Card Reader Timing | 72
41 | File Protection Light, Tape Unit | 37 | | Cards | | Film Recording | 64 | | Card-To-Tape Converter | | Fixed Point Numbers | | | Carriage Control | | Fixing a Floating-Point Number | 74 | | Cathode-Ray-Tube Output Recorder | | Floating a Fixed-Point Number | 74 | | Central Processing Diagram | | Floating Point Numbers | | | Central Processing Unit | | Fraction Part of Floating Point Number | | | Character Alteration in BCD Mode30, 3 | | Truction I will of From 1 to | • | | Characteristic | | Incomplete Word on Tape | 34 | | Check Bits on Magnetic Tape | | Indexable Instructions1 | | | Check Indicators | | Index Display Keys | | | Checking of Printing | | Index of Operations | | | | | Index Register Display | | | Clear Key Closed Subroutine | | Index Registers | | | | | Indicators | | | Console | | Instruction Location Counter | | | Console | | Instruction Register | | | | | Instruction Register 7, 1 | | | Control Panel, Card Panel | | Instruction Timing | .2, 1/
20 | | Control Panel, Card Reader | | | | | Control Panel, Printer | | Internal Register Display | 1 <i>)</i>
0 | | Conversion Table, Decimal-Octal Integers | 84 | Interpretation Time | <i>j</i> | | | Page | | Page | |---|--------|---------------------------------------|-------------| | Keys and Lights, Card Reader | 44 | Power-On Key | 15 | | Keys and Lights, Console | | Powers of 2 | | | , , | | Prefix | 8, 10, 12 | | Lateral Check of Tape | 11, 31 | Primary Operation Part, Instruction | Register 17 | | Load Keys | | Printer | 51 | | Load-Rewind Key, Tape Unit | 36 | Printer, Control Panel | | | Load Point | 30 | Printer Disconnect | | | Logical Drums | | Printer, Manual Operation | | | Logical Operation | | Printer Timing | 57 | | Longitudinal Check of Tape | | Printer, Timing Chart | | | Loop Writing | | Printing with Checking | 53 | | Loop writing | / 6 | Program Stop Light | | | 14 | _ | Punched Cards | | | Magnetic Core Storage | 6 | Tunched Cards | | | Magnetic Drums, Multiple Records | | | | | Magnetic Drum Storage | | Reading Magnetic Drum | | | Magnetic Tape Characteristics | | Reading Magnetic Tape | 32 | | Magnetic Tapes | | Read-Write Check Light | | | Magnetic Tape Units | | Read-Write Select Light | | | Manual Operation | | Ready and Power Lights | | | Manual Operation, Card Punch | 48 | Ready Light, Tape Unit | 36 | | Manual Operation, Card Reader | 42 | Record on Tape | 6 | | Manual Operation of the Tape Units | 36 | Redundancy Check | | | Manual Operation, Printer | | Redundancy Check Bit | | | Modification Types, Instruction Timing | | Reset Key | | | M-Q Overflow Indicator | 11 | Reset Key, Tape Unit | 36 | | M-Q Overflow Light | | Rewinding Magnetic Tape | 30 33 | | Multiple Records, Magnetic Drums | 3.8 | Ter many magnetic rupe | | | Multiple Step Key | 13 | | 70 | | Multiplier-Quotient Register | | Secondary Operation Part, Instruction | Register 1/ | | Multiplier-Quotient Register | | Sectors, Magnetic Drum | | | NY 1 NO 1 | | Select Light, Tape Unit | | | Normal Mode | | Selector Knob, Tape Unit | | | Numbers | 8 | Sense Devices | | | | | Sense Lights | 13 | | Octal | | Sense Switches | 13 | | Octal and Binary Number Systems | 80 | Sense Type Instructions | 10, 13, 17 | | Octal Code for Operations | 91 | Simultaneous Tape Writing | | | Octal-Decimal Fraction Conversion Table | 88 | Single-Step Key | 13 | | Octal-Decimal Integer Conversion Table | 84 | Spacing on Printer | 63 | | Open Subroutine | | Start Key | | | Operating Modes, Magnetic Tape | | Start Key, Tape Unit | 36 | | Operations (See Appendix E.) | | Storage | | | Output Recorder | | Storage Register | | | | | Subroutines | | | Non-Indexable Instructions | 10 17 | Symbolic Programming | | | Normalizing an Unnormalized Floating-Poi | int | | | | Number | | Table of Powers of 2 | | | Normal-Off Key | 1) | Tag Field | | | | | Tape-Check Indicator | 11, 31 | | Panel Input Switches | 14 | Tape-Check Light | 13, 31 | | Panel Keys and Switches | | Tape-Controlled Printer | 70 | | Panel Lights | | Tape Indicator Light, Tape Unit | | | Peripheral Equipment | | Tape Mark | | | Physical Arrangement of Information on Ta | | Tape-to-Card Converter | 60 | | Physical Arrangement of Words on Drum | | Tape to Print | | | Physical End-of-Tape30, | 32 36 | Tape Units | | | Physical End-of-Tape (See ETT Instruction. | | Testing Redundancy Information | | | Invoical Linu-of-Tape (See Eff Histruction. | 1 41 | reseming recommending information | | | P | age | P | age | |--------------------------------------|------------|------------------------------------|-----| | Timing, Card Punch | 4 7 | Trapping | 11 | | Timing, Card Reader | 41 | Trapping Mode Indicator | 11 | | Timing Chart, Card Punch | 49 | Type A Instruction | | | Timing Chart, Card Reader | | Type B Instruction | 12 | | Timing Chart, Printer | 56 | , , | | | Timing, Magnetic Drums | 38 | Unload Key, Tape Unit | 36 | | Timing of Magnetic Tape Instructions | 33 | ,, 1 | | | Timing of Operations | 91 | Words | 7 | | Timing, Printer | 54 | Write End of File on Magnetic Tape | 31 | | Timing with Echo Checking | 55 | Write Loop | | | Timing without Echo Checking | 51 | Writing on Magnetic Drums | 37 | | Trap Indicator Light | 13 | Writing on Magnetic Tape | | # **IBM**