

7030 Data Processing System
Manual 04
7101 Central Processor Unit

SECTION 1
 INTRODUCTION AND SAFETY

PURPOSE AND SCOPE OF MANUAL

This manual provides IBM Customer Engineers with information necessary to perform preventive and corrective maintenance on the 7101 Central Processor Unit. In addition, the manual contains reference material which will help the Customer Engineer to analyze malfunctions within this unit.

MANUAL CONTENT

The material in this manual is grouped into six sections. The content of each section is briefly described below:

Section 1 Introduction and Safety - This section defines the purpose, scope, content, and format of the manual. In addition, the section contains a brief analysis of the maintenance plan as illustrated by the frontispiece, a brief listing of general safety practices, procedures for performing artificial respiration, and a summary of the personnel safety practices that must be observed when working on the subject unit.

Section 2 Check Procedures - This section contains the step-by step procedures that are required to accomplish preventive maintenance tasks. These procedures (referenced in Index 2-1) are used to execute physical maintenance and/or to test the performance of the subject unit to determine and ensure its satisfactory operation. This section also contains additional procedures which are referenced in the Diagnostic Data section to help and isolate equipment malfunctions. The material in this section is preceded by four indexes which cross-reference preventive maintenance tasks with their associated check procedures and which list the procedures, illustrations, and tables contained in this section.

Section 3 Diagnostic Data - This section contains reference material which is intended to assist the Customer Engineer in isolating equipment malfunctions. The reference material is grouped into categories such as: physical description; flow, block, and simplified logic diagrams; timing and sequence charts; lists of indications, switches, and applicable maintenance programs; and error analysis. The material in this section is preceded by three indexes which list the information categories, illustrations, and tables contained in this section.

Section 4 Corrective Procedures - This section contains the step-by-step procedures that should be used to accomplish electrical and/or mechanical adjustments and to perform complex removal and replacement operations. The material in this section is preceded by three indexes which list the information categories, illustrations, and tables contained in this section.

> Section 5 Customer Engineering Memo's (CEM's) - This section is reserved for filing Customer Engineering Memo's that relate to the subject unit.

> Section 6 Miscellaneous - This section is reserved for miscellaneous notes, etc., that the Customer Engineer considers pertinent for maintenance of the subject unit.

MANUAL FORMAT

The page, figure, table, and index coding scheme used in this manual was devised so that new and revised material can be inserted at any point without destroying the existing structure of the manual. Since Customer Engineering memo's and notes are filed in sequential order in Sections 5 and 6, the coding scheme described below will pertain only to Sections 1 through 4.

Page Coding

The upper-inner corner of each page in Sections 1 through 4 contains an alphanumeric code ($\mathrm{M} 3-\mathrm{XX}-\mathrm{X}$) which denotes the following:

Code M3 - specifies the 7030 series of CE reference manuals.
Code XX - specifies the manual number within the series.
Code X - specifies the section within the manual.

The lower-outer corner of each page (except the indexes) in Sections 1 through 4 is reserved for the page number. In Section 1, this corner contains a 1 -digit number to specify the consecutive page numbers within this section. In Sections 2, 3, and 4, this corner contains a hyphenated 2-digit code which denotes the following:

1st digit - specifies the procedure or category number as per Index 2-2, 3-1, or 4-1.

2nd digit - specifies page number within the procedure or category.

The upper-outer corner of each page (except the indexes) in Sections 1 through 4 is reserved for subject identification. In Section 1, this corner contains the section title. In the body of Sections 2, 3, and 4, this corner contains the procedure or category title as per Index 2-2, 3-1, or 4-1. In the index pages of Sections 2, 3, and 4, this corner contains the section number and section title.

The lower-inner corner of each page in Sections 1 through 4 contains the page release date which is used for revision control purposes.

Figure and Table Coding

The figures and tables contained in Sections 2, 3, and 4 are identified by a 3-digit code (Figure/Table X. X. X) which denotes the following:

1st digit - specifies the section in which the figure or table is contained.
2nd digit - specifies the associated procedure or category within the section.

3rd digit - specifies the figure or table number within the procedure or category.

Index Coding
Each index in Sections 2, 3, and 4 is identified by a hyphenated 2-digit code (Index $\mathrm{X}-\mathrm{X}$) which denotes the following:

1st digit - specifies the section within the manual.
2nd digit - specifies the index number within the section.

MAINTENANCE PLAN ANALYSIS

The approach to preventive and unscheduled maintenance of the 7030 Data Processing System is shown and explained graphically in the frontispiece, entitled MAINTENANCE PLAN. The procedures to be followed in performing each type of maintenance are briefly described below:

Preventive Maintenance - All scheduled preventive maintenance operations to be performed on the 7030 Data Processing System are controlled, scheduled, and assigned by preventive maintenance (PM) Task Assignment Cards. When a preventive maintenance task is scheduled for execution, the CE manager will give the associated PM Task Assignment Card to one of his men. This card identifies the PM task by a 2 -digit number and specifies which manual of the 7030 series of Customer Engineering Reference manuals is related to this task. Index 2-1 of the referenced manual identifies which check procedures are to be executed to accomplish this PM task.

If all of the check procedures associated with a PM task can be performed satisfactorily, the task is completed when the CE enters all pertinent information on the Task Assignment Card and returns it to his manager. However, if a malfunction is detected during the execution of a check procedure the CE must perform the following:

1. Make a tentative diagnosis of the malfunction. This diagnosis can be based on past experience or on an analysis of scanner information, interrupt data, indicators, printouts, etc., and on the diagnostic data in Section 3 of the associated 7030 CE reference manual.
2. Either take corrective action and check the results by executing an applicable check procedure or execute an appropriate check procedure to further isolate the malfunction.
3. Repeat steps 1 and 2 , above, until the cause of the malfunction has been analyzed, corrected, and checked.
4. Check the equipment under conditions which initally detected the malfunction. If the equipment still does not operate properly, repeat steps 1 through 4, above.
5. Record all pertinent information, such as failure indications, programs, and check procedures used for error isolation, defective component type and location, start-stop time, total man-hours, etc., on a Maintenance Activity Form. If additional space is required for the report, supplement the above with a Comments Form. In addition, if components have been replaced, complete a Failed Parts Return Form which will be sent with the defective part to the manufacturing plant.
6. Continue execution of the PM task. If another malfunction is detected, repeat steps I through 5, above.
7. After the PM task has been satisfactorily completed, enter all pertinent information on the PM Task Assignment Card and return the card to the CE manager.

Unscheduled Maintenance

Unscheduled maintenance is generally performed on-line to correct malfunctions that render the system inoperative for customer use. Whenever an operational malfunction is detected, the CE should perform the following:

1. Enter pertinent information concerning the incident in the Operations Log and record the error information on a Maintenance Activity Form. Detailed instructions for completing these forms are contained in the 7030 Data Reporting Procedures manual.
2. Make a tentative diagnosis of the malfunction. This diagnosis can be based on past experience, on an analysis of scanner information, interrupt data, indicators, printouts, etc., and/or on an analysis of the diagnostic data contained in Section 3 of the associated 7030 CE reference manual.
3. Determine whether temporary repairs will make the system operational for customer use. That is, if the system can be made operational by bypassing the malfunctioning section of the equipment (e.g., Lookahead level) or by replacing a faulty unit or section of the equipment (e.g., tape drive, exchange channel, etc.), then only temporary repairs should be made and the malfunction should be corrected either on an off-line basis or during the subsequent scheduled maintenance period. If temporary repairs are feasible, perform them and proceed to step 6. If temporary repairs are not possible, proceed to step 4.
4. Take corrective action and check the results by executing an applicable check procedure or execute an appropriate check procedure to further isolate the malfunction.
5. Repeat steps 2 through 4 , above, until the cause of the malfunction has been analyzed, corrected, and checked.
6. To ensure that the temporary or permanent repairs are satisfactory, check the equipment under conditions which initially detected the malfunction. If the equipment still does not operate properly, repeat steps 2 through 5 , above.
7. Return the system to customer use, and record all pertinent information in the Operations Log. If temporary repairs were performed, the incident should not be "closed out" on the Maintenance Activity Form until the malfunction has been corrected.
8. After the maintenance activity is terminated (on-line, off-line, or during scheduled maintenance time), record all pertinent information, such as: failure indications, programs and check procedures used for error isolation, corrective action taken, defective component type and location, start-stop time, total man-hours, etc., on the Maintenance Activity Form. If additional space is required for the report, supplement the above with a Comments Form. If any components have been replaced, complete a Failed Parts Return Form which will be sent with the defective part to the manufacturing plant.

SAFETY

Safety cannot be overemphasized. To ensure persinal safety and the safety of co-workers, each CE should make it an everyday practice to observe safety precautions at all times. All CE's should become familiar with the general safety practices and procedures for performing artificial respiration that are outlined in IBM Form 124-0002. For convenience, this form is duplicated below.

CE SAFETY PRACTICES

All Customer Engineers are expected to take every safety precaution possible and observe the following safety practices while maintaining $1 B M$ Equipment:

1. Do not work alone under hazardous conditions or around equipment with dangerous voltage. Always advise your Manager if you MUST work alone.
2. Remove all power $A C \& D C$ when removing or assembling major components, working in immediate area of power supplies, performing mechanical inspection of power supplies and installing changes in machine circuitry
3. Wall box power switch when turned off should be locked in of position.
4. When it is absolutely necessary to work on equipment having exposed live electrical circuitry anywhere in the machine, the following precautions must be followed:
a. Another person familiar with power off controls must be in the immediate vicinity.
b. Rings, wrist watches, chains and bracelets shall not be worn.
c. Sateiy glasses shall be worn.
d. Only insulated pliers or screwdrivers shall be used.
e. Keep one hand in pocket.
f. When using test instruments be certain controls are set correctly and proper capacity, insulated probes are used g. Avoid contacting ground potential (metal floor strips, machine frames, etc.)
5. Safety glasses must be worn when working on live equip ment, soldering, drilling, driving pins and all other conditions that may be hazardous to the eyes.
6. Special safety instructions for handling Cathode Ray Tubes and extreme high voltages must be followed as outlined in CEM's.
7. Do not use solvents, cheanizuis, greases or oils that hove not been approved by IBM.
8. Avoid using tools or test equipment that have not been approved by IBM.
Replace worn or broken tools and test equipment.
9. Do not lift machines or devices weighing in excess of 60 lbs
10. All safety changes must be ordered and installed in the prescribed manner.
11. All safety devices such as guards, shields, signs, etc. shall be restored after maintenance.
12. Each Customer Engineer is responsible to be certain that no action on his part renders product unsafe or exposes hazards to customer personnel.
13. All machine covers must be in place before machine is returned to customer
14. Maintain good housekeeping in orea of machines while performing and after completing maintenance.
15. Avoid wearing loose clothing that may be caught in moving machinery.

KNOWING SAFETY RULES IS NOT ENOUGH OBSERVE THEM - FOLLOW THEM USE GOOD JUDGMENT

WORK SAFELY
THINK SAFETY
FORM \ddagger 24-0002-

POWER DOWN ON SIGMA ONLY

1. Turn off AC and DC switches on front of SIGMA maintenance console (frame 31).
2. Turn off AC and DC switches on front of PDF labeled SIGMA.
3. Turn off CB5 and CB10 on front of PDF.
4. Turn off CB26 and CB30 located (right side facing unit) on PDF. CB26 de-energizes cube blowers, and CB30 de-energizes all service outlets. If CB30 is left on, bus 14 will be energized in frame 31.

CAUTION

-48 vdc will be present on emergency-off (EMO) switches in frames 31 and 28.
5. Tag AC and DC switches turned off on PDF with appropriate Warning Tags.

INDEX 2-1. PREVENTIVE MAINTENANCE (PM) TASKS

PM TASK NUMBER	PM TASK TITLE	CHECK PROCEDURES TO BE EXECUTED
01	SEVA Reliability	(Refer to program writeup)
02	I-Box	(Refer to program writeup)
03	SAU Test Program	(Refer to program writeup)
04	PaU Test Program	(Refer to program writeup)
05	I Chkr Program	(Refer to program writeup)
06	KC BA1 Memory 1	(Refer to program writeup)
07	Memory 2	(Refer to program writeup)
08	I Box Program with Bias	(Refer to program writeup)
09	K Prime	(Refer to program writeup)
10	Lookahead	(Refer to program writeup)
11	A-Checker	(Refer to program writeup)
12	Interrupt	(Refer to program writeup)
13	SAU Program with Bias	(Refer to program writeup)
14	PAU Program with Bias	(Refer to program writeup)
15	I Chkr Program with Bias	(Refer to program writeup)
16	Memory 1 with Bias	(Refer to program writeup)
17	Memory 2 with Bias	(Refer to program writeup)
18	Deleted	

INDEX 2-1. PREVENTIVE MAINTENANCE (PM) TASKS (cont'd)

| PM TASK | CHECK PROCEDURES |
| :--- | :---: | :---: |
| NUMBER | PM TASK TITLE BE EXECUTED |

19

Filter Check FR 11-16

Filter Check FR 17-22
Filter Check FR 23-28 2
22 Gate Fan Check 3
23
Check Hardware 4
24 Power Supply Check No. 2 of Manual 02
25Sample Pulse Alignment Check1
26 Check Clamp Supply Voltage 9
27Word Driver Tuning, Turn-on Time7Index Tunnel Diode Storage Tuning Program6
29Chk Turn Latitude 15 SA-BD6Chk Word Driver Outputs Top and Bottom7Check Strobe and Latch Drivers8Check Data In9Error Trigger Check11

INDEX 2-2. CHECK PROCEDURES

PROCEDURE NUMBER	PROCEDURE TITLE	$\begin{aligned} & \text { ISSUE } \\ & \text { DATE } \end{aligned}$
1	Sample Pulse Alignment Check	2/1/62
2	Filter Check	7/1/61
3	Gate Fan Check	12/1/61
4	Gate Latch and Slide Check	12/1/61
5	Index Core Storage Check (for CPU 7101, Serial Nos. $30,000-30,005$ and 30,007 only)	1/1/63
6	Index Tunnel Diode Storage Tuning Program (for CPU 7101, Serial Nos. 30,006 and 30,008)	1/1/63
7	Word Driver Tuning Turn-On Time	1/1/63
8	Latch and Strobe Drivers	1/1/63
9	Clamp Supply Voltage	1/1/63
10	Data-In Pulse	1/1/63
11	Error Trigger Check	1/1/63

INDEX 2-3. LIST OF ILLUSTRATIONS

FIGURE NUMBER	FIGURE TITLE	$\begin{aligned} & \hline \text { ISSUE } \\ & \text { DATE } \end{aligned}$
2.5.1	Dropped Bits, Flow Chart	12/1/61
2.5.2	Picked Bits, Flow Chart	12/1/61
2.5.3	Index Core Storage, Simplified Logic	12/1/61
2.5.4	Index Core Storage, Waveforms (1)	12/1/61
2.5.5	Index Core Storage, Waveforms (2)	12/1/61
2.7.1	Word Driver Output Waveshape	1/1/63
2.8.1	Example of Fetch Timing for Index Tunnel Diode Storage	1/1/63
2.10.1	Example of Store Timing for Index Tunnel Diode Storage	1/1/63
2.10.2	Tunnel Diode Array Card Inputs	1/1/63

INDEX 2-4. LIST OF TABLES

TABLE NUMBER	TABLE TITLE	$\begin{aligned} & \text { ISSUE } \\ & \text { DATE } \end{aligned}$
2.1.1	CPU Sample Test Points	2/1/62
2.5.1	SA Groups	12/1/61
2.5.2	Index Core Storage Array Test Points	12/1/61
2.7.1	Word Driver, Test Points	1/1/63
2.8.1	Latch Drivers, Test Points	1/1/63
2.8.2	Strobe Drivers, Test Points	1/1/63
2.10 .1	Bit Driver, Test Points	1/1/63
2.11.1	Sigma Errors	1/1/63

DESCRIPTION

This procedure is used to check the alignment of the clock sample pulses in the 7101 Central Processor Unit (CPU) of the 7030 Data Processing System (DPS), Serial No. 30, 004 and higher. Basically, the test compares various CPU sample pulses for coincidence with a delayed clock reference pulse. The output of the master oscillator is sent through a fixed-value delay line into a 40foot cable which terminates in a portable terminator box. The output of this box is displayed on the lower beam of a dual-beam oscilloscope, and the sample pulse to be tested (table 2.1.1) is displayed on the upper beam of this oscilloscope. All sample pulses throughout the CPU should be coincident with the delayed clock reference pulse (+ or - 10 nanoseconds) except as noted in table 2.1.1。

EQUIPMENT

Oscilloscope - Tektronix type 551 dual-beam, with type $53 / 54 \mathrm{~L}$, fastrise, calibrated preamplifiers

Sample Pulse Alignment Tool (P/N 5230780)

PROC EDURAL STEPS

1. Allow warmup period of 30 minutes for CPU and oscilloscope.
2. Set up CPU timing test on 7101 CE console:
a. Set Load Index (LX) instruction into both half-words of PANEL KEYS.
b. Set MAINT MOD level switch to DOWN position.
c. Set RPT INST level switch to DOWN position.
d. Set TIME CLOCK level switch to DOWN position.
e. Set IRPT level switch to DOWN position.
f. Set INH SCAN level switch to DOWN position.
g. Depress MASTER (Reset) pushbutton.
h. Depress START (Clock) pushbutton.
i. Depress START (Program) pushbutton.
3. During latter part of warmup period, check sample pulses at their measurement points for rise time, shape, and voltage level. Open cables and bad card or card socket contacts may affect timing on lines other than those directly involved.
4. After warmup period, compensate oscilloscope probes, using internal oscilloscope calibrator.
5. Remove jumper between pins A and J of card socket 12A1C03, and insert alignment tool drape cable paddle into card socket 12 A 1 C 23.
6. Connect lower-beam oscilloscope probe to output of alignment tool. This signal, obtained from a raw clock pulse delayed by a fixed-value delay line (contained in location 12A1C03) and 40 feet of cable, represents the clock reference pulse.
7. Connect upper-beam oscilloscope probe to sample test point to be checked (table 2.1.1). All sample pulses throughout the CPU should be coincident with clock reference pulse (+ or - 10 nanoseconds) except as noted in table 2.1.1.
8. If sample pulse being checked does not coincide with clock reference pulse, change tap point of delay line on load point delay card to correct this condition (table 2.1.1). If sample pulse is not delayed at load point, change tap point of delay line on clock delay card (table 2.1.1).
9. After all points indicated in table 2.1.1 have been checked and corrected, remove reference pulse drape cable paddle from test socket, and replace jumper wire between pins A and J of card socket 12A1C03A.

Date: October 16, 1962
DP Customer Engineering 900-4
Poughkeepsie, Extension 4242-M
Sample Pulse Alignment Tool (P/N 5230780)
Reference:
to: Mr. S. J. Murray
Customer Engineering
Oakland, California

There is no "standard fixed value" delay because each Stretch machine varies slightly in timing.

You can find this exact delay by measuring the difference between the raw clock output and the driven sample pulses. A standard VB (P/N 371782) capped to this value can then be used with the sample pulse alignment tool for checking pulses.

If we can be of further assistance, please advise.

Technical Operations Manager
MKM:jjm

TABLE 2.1.1. CPU SAMPLE TEST POINTS

Sample Test Point		Type Line	Type Pulse	Load Point Delay Card		Clock Delay Card	
Location	Logic			Location	Logic	Location	Logic
11A2F26C	11.12.02.1	-P	$\begin{aligned} & \text { ABAB } \\ & -180 \end{aligned}$	11A2E28	11.12.01.1		
11A2K24F	11.12.02.1	+N	ABAB			12A1C05	11.07.02.1
11A2H21F	11.12.02.1	-P	ABAB	11A2F24	$\begin{aligned} & 11.12 .02 .1 \\ & 11.12 .02 .1 \end{aligned}$	12A1C05	11.07.02.1
-11A2J21B	11.12.02.1	+N	ABAB			12A1C05	11.07.02.1
11A2F27F	11.12.02.1	+N	$\begin{aligned} & \text { ABAB } \\ & -180 \end{aligned}$	11A2E28	11.12.01.1		
11A2G22F	11.12.02.1	+N	ABAB	11A2G26	11.12.02.1		
12A4D24B	11.12.03.1	+N	SABR			12A1C06	11.07.02.1
13A4A09B	27.09.07.1	-P	SAR	16A4H03	28.46.13.1	12A1B11	11.07.02.1
13B3A27B	21.50.01.1	-P	SAC	16A4G11	28.46.12.1	12A1B20	11.07.04.1
13A4E05G	27.09.07.1	+P	$\begin{aligned} & \text { DLY'D } \\ & \text { SAC } \end{aligned}$	17B4G28	28.68.91.1		
14A1J25B	22.09.01.1	-P	SAC	16A3D27	28.46.12.1	12A1B20	11.07.04.1
14A1J27G	22.09.01.1	-P	SABR	16A4G03	28.46.11.1	12A1B07	11.07.02.1
14B1G27B	24.00.07.1	+P	SBC	16A4H08	28.46.14.1	12A1B25	11.07.04.1
14B1H05B	22.09.01.1	-P	SAC	16A3E27	28.46.12.1	12A1B20	11.07.04.1
14B1H03G	22.09.01.1	-P	SABR	16A4G04	28.46.11.1	12A1B07	11.07.02.1
15A3B18C	28.20.25.1	+N	SABR	15B3D22	28.27.71.1	12A1B08	11.07.02.1
15A3A20C	28.20.26.1	+N	SABR	15B3B08	28.27.71.1	12A1B08	11.07.02.1
15A3A21B	28.20.25.1	+N	SAR	15B3B12	28.27.70.1	12A1B12	11.07.02.1
15A3B22B	28.20.26.1	+N	SABR	15B3B11	28.27.70.1	12A1B08	11.07.02.1
15A3A25B	28.20.25.1	+N	SAC	15B3B21	28.27.70.1	12A1B19	11.07.04.1
15A3A16B	28.20.27.1	+N	SBC	15B3B06	28.27.71.1	12A1B24	11.07.04.
15B3A27B	28.27.70.1	+N	SAC	15B3B24	28.27.70.1	12A1B19	11.07.04.
15B3A25B	28.27.70.1	+N	SAC	15B3A23	28.27.70.1	12A1B19	11.07.04.1

6/15/62

TABLE 2.1.1. CPU SAMPLE TEST POINTS (cont'd)

Sample Test Point		Type Line	Type Pulse	Load Point Delay Card		Clock Delay Card	
Location	Logic			Location	Logic	Location	Logic
15B3C21B	28.27.71.1	+N	SBC	15B3B18	28.27.71.1	12A1B24	11.07.04.1
15B3C24B	28.27.71.1	+N	SBC	15B3C18	28.27.71.1	12A1B24	11.07.04.1
15B3D27B	28.27.71.1	+N	SABR	15B3C26	28.27.71.1	12A1B08	11.07.02.1
15B3D25C	28.27.70.1	+N	SABR	15B3B25	28.27.70.1	12A1B08	11.07.02.1
15B3A21H	28.27.70.1	+N	$\begin{aligned} & \text { SAC } \\ & +30 \end{aligned}$	15B3D21	28.27.70.1	12A1B19	11.07.04.1
16A3C21B	28.46.12.1	+N	SAC	16A3B27	28.46.12.1	12A1B20	11.07.04.1
16A4D02B	28.46.11.1	+N	SABR	16A4G06	28.46.11.1	12A1B07	11.07.02.1
16A4D04B	28.46.13.1	+N	SAR	16A4G10	28.46.13.1	12A1B11	11.07.02.1
16A4D09B	28.46.15.1	+N	SBR	16A4H10	28.46.15.1	12A1C11	11.07.02.1
16A4D06B	28.46.14.1	+N	SBC	16A4H06	28.46.14.1	12A1B25	11.07.04.1
16A4E03B	28.46.13.1	+N	SAR	16A4H02	28.46.13.1	12A1B11	11.07.02.1
16A4E06B	28.46.14.1	+N	SBC	16A4H07	28.46.14.1	12A1B25	11.07.04.1
16A4E09B	28.46.14.1	+N	SBC	16A4H05	28.46.14.1	12A1B25	11.07.04.1
16A4F11B	28.46.11.1	+N	SAR	16A4G07	28.46.11.1	12A1B07	11.07.02.1
16B4C11F	28.51.21.1	+N	SAR	16A4G08	28.46.13.1	12A1B11	11.07.02.1
16B4C18B	28.51.22.1	$+\mathrm{N}$	SAC	16A3B26	28.46.12.1	12A1B20	11.07.04.1
16B4C17B	28.51.22.1	+N	SBC	16A4H04	28.46.14.1	12A1B25	11.07.04.1
16B4F18F	28.51.24.1	+N	SAR	16A4G09	28.46.13.1	12A1B11	11.07.02.1
17A3B21B	28.68.12.1	+N	SAR	17B4A17	28.68.12.1	12 A 1 C 07	11.07.02.1
17A3B19B	28.68.13.1	+N	SBC	17B4A18	28.68.13.1	12A1B27	11.07.04.1
17A3C18B	28.68.15.1	+N	SABR	17B4A25	28.68.15.1	12A1B09	11.07.02.1
17A3C16C	28.68.14.1	+N	SBC	17B4A24	28.68.14.1	12A1B27	11.07.04.1
17A3C21B	28.68.11.1	+N	SAC	17B4A14	28.68.91.1	12A1C 21	11.07.04.1
17A3C25B	28.68.11.1	+N	SAC	17B4A13	28.68.91.1	12A1C 21	11.07.04.1
17A3D27B	28.68.19.1	+N	SABR	17B4A27	28.68 .19 .1	12A1B09	11.07.02.1
17B2K08B	28.68.15.1	+N	SABR	17B2K27	28.68 .15 .1	12A1B09	11.07.02.1
17B2K07B	28.68.12.1	+N	SAR	17B2K19	28.68.12.1	12A1C07	11.07.02.1

TABLE 2.1.1. CPU SAMPLE TEST POINTS (cont'd)

Sample Test Point		Type Line	Type Pulse	Load Point Delay Card		Clock Delay Card	
Location	Logic			Location	Logic	Location	Logic
17B2K03B	28.68.91.1	+N	SAC	17B2K15	28.68.91.1	12 A 1 C 21	11.07.04.1
17B2K05B	28.68.91.1	$+\mathrm{N}$	SAC	17B2K16	28.68.91.1	12 AlC 21	11.07.04.1
17B4A08B	28.68.19.1	+N	SABR	17B4A28	28.68.19.1	12A1B09	11.07.02.1
17B4A07B	28.68.14.1	+N	SBC	17B4A22	28.68.14.1	12A1B27	11.07.04.1
17B4A05B	28.68.13.1	+N	SBC	17B4A21	28.68.13.1	12A1B27	11.07.04.1
18A3H05B	38.71.05.1	+N	SABC	19B3B10	38.71.01.1	12A1B16	11.07.03.1
18A3G26B	38.71.06.1	+N	SABR	19B3D08	38.71.04.1	12 A 1 B 10	11.07.02.1
18A3H03B	38.71.05.1	-P	SABC	19B3A06	38.71.01.1	12A1B16	11.07.03.1
18B1K26B	38.71.08.1	+N	SABC	19B3E05	38.71.01.1	12A1B16	11.07.03.1
18A4E22B	38.71.06.1	-P	SABR	19B3D07	38.71.04.1	12A1B10	11.07.02.1
18B4A02B	38.71.07.1	+N	SABC	19B3E04	38.71.01.1	12A1B16	11.07.03.1
18B4A08B	38.71.13.1	+N	SBC	18B4B07	38.71.13.1	12A1C14	11.07.04.1
18B4A12B	38.71.11.1	+N	SABR	19B3A08	38.71.04.1	12A1B10	11.07.02.1
18B4A15B	38.71.11.1	+N	SAC	19B4B09	38.71.11.1	12A1C 22	11.07.04.1
18B4A18B	38.71.09.1	+N	SABC	19B3A07	38.71.03.1	12A1B16	11.07.03.1
18B2G08B	38.71.10.1	+N	SABC	19B3B09	38.71.01.1	12A1B16	11.07.03.1
18B4C04C	38.71.10.1	+N	SABC	19B3F04	38.71.02.1	12A1B16	11.07.03.1
19A2D03B	31.30.03.1	-P	SABR	19B3A12	38.71.04.1	12A1B10	11.07.02.1
19A2F08B	31.30.02.1	-P	SABC	19B3B07	38.71.01.1	12A1B16	11.07.03.1
19B1J22B	38.71.02.1	+N	SABC	19B3B15	38.71.02.1	12A1B16	11.07.03.1
19B1K03B	38.71.02.1	+N	SABC	19B3D03	38.71.02.1	12A1B16	11.07.03.1
19B1D13C	38.71.13.1	$+\mathrm{N}$	SABR	19B1D14	38.71.13.1	12A1B10	11.07.02.1
19B2F17B	38.71.02.1	+N	SABC	19B3B14	38.71.02.1	12A1B16	11.07.03.1
19B2J22H	38.71.13.1	+N	SAC	18B4A07	38.71.11.1	12A1C 22	11.07.04.1
19B2K04B	38.71.04.1	$+\mathrm{N}$	SABR	19B3A15	38.71.04.1	12A1B10	11.07.02.1
19B4A08C	38.71.03.1	+N	SABR	19B3B12	38.71.03.1	12A1B16	11.07.03.1
19B4A26C	38.71.03.1	+N	SABC	19B3B11	38.71.03.1	12A1B16	11.07.03.1
19B4C23H	38.71.13.1	+N	SBR			12A1B26	11.07 .04 .1

TABLE 2.1.1. CPU SAMPLE TEST POINTS (cont'd)

Sample Test Point		Type Line	Type Pulse	Load Point Delay Card		Clock Delay Card	
Location	Logic			Location	Logic	Location	Logic
20A2E17C	34.08.02.1	+N	SABC	19B3B06	38.71.01.1	12A1B16	11.07.03.1
20B2G25B	31.30.01.1	-P	StABC	19B3B08	38.71.01.1	12A1B16	11.07.03.1
20B2G25G	31.30.01.1	-P	SABR	19B3A13	38.71.04.1	12A1B10	11.07.02.1
21B2J12G	53.06.40.1	-P	A-A-A	21B2H12	53.06.40.1	12A1C10	11.07.04.1
21B2E13H	53.06.40.1	-P	A-A-A	21B2J07	53.06.40.1	12A1C10	11.07.04.1
21B2F05G	53.06.40.1	+N	A-A-A	21B2J08	53.06.40.1	12A1C10	11.07.04.1
21B4J08B	53.06.40.1	-P	A-A-A	21B4J10	53.06.40.1	12A1C10	11.07.04.1
21B2J12A	54.48.02.1	-P	ABAB			12A1C 19	11.07.03.1
22A4C07H	56.60.01.1	-N	EARLY A			12A1B22	11.07.04.1
22A2J16B	56.61.01.1	+N	$\begin{aligned} & \text { B-A } \\ & \text { TIME } \end{aligned}$			12A1C27	11.07.04.1
22A4A08B	56.62.01.1	+N	A-A-A			12A1C 22	11.07.04.1
22B4F22B	54.26.01.1	-P	ABAB	25B1C27	61.04.90.1	12A1B18	11.07.03.1
23A2K04A	51.02.01.1	+P	ABAB			12A1C18	11.07.03.1
23B1J09B	51.52.03.1	+N	ABAB	23B1J06	51.55.10.1	12A1B17	11.07.03.1
23B2K13B	51.52.01.1	+N	ABAB	23B2J12	51.55.10.1	12A1B17	11.07.03.1
23B2J02B	51.55.01.1	+N	ABAB	23B2J03	51.55.10.1	12A1B17	11.07.03.1
23A4D05H	51.56.20.1	-P	A-A-A			12A1C 15	11.07.04.1
23A2K09B	59.95.01.1	+N	ABAB	23A2K11	59.95.01.1	12A1C18	11.07.03.1
23A4E27F	59.95.01.1	+N	ABAB	23A4G16	59.95.01.1	12A1E10	11.07.02.1
24A2F04C	59.11.01.1	-P	ABAB	25B1B14	61.04.88.1	12A1B18	11.07.03.1
24A4B20F	48.10.03.1	+N	ABAB	24A1F22	48.10.03.1	12A1B18	11.07.03.1
24A1E25B	48.10.05.1	+N	ABAB	24A1E23	48.10.05.1	12A1B18	11.07.03.1
24A1F25B	48.10.05.1	+N	ABAB	24A1F23	48.10.05.1	12A1B18	11.07.03.1
24A1B13C	48.10.05.1	-N	ABAB	24A1B14	48.10.05.1	12A1B18	11.07.03.1

TABLE 2.1.1. CPU SAMPLE TEST POINTS (cont'd)

Sample Test Point		Type Line	Type Pulse	Load Point Delay Card		Clock Delay Card	
Location	Logic			Location	Logic	Location	Logic
25A4C15B	61.04.04.1	+N	ABAB	25B1C19	61.04.91.1	12A1B18	11.07.03.1
25A2G12B	61.04.02.1	+N	ABAB	25B1C21	61.04.91.1	12A1B18	11.07.03.1
25A3G15B	61.04.03.1	+N	ABAB	25B1C20	61.04.91.1	12A1B18	11.07.03.1
25A3J04C	61.02.73.1	+N	ABAB	25B1D21	61.04.88.1	12A1B18	11.07.03.1
25B1J13B	61.04.05.1	+N	ABAB	25B1D20	61.04.88.1	12A1B18	11.07.03.1
25B1K13B	61.04.05.1	+N	ABAB	25B1D27	61.04.91.1	12A1B18	11.07.03.1
25B3B21F	37.81.02.1	-P	ABAB	25B3B18	37.81.02.1	12A1F08	11.07.02.1
25A1J13B	61.04.01.1	+N	ABAB	25B1C22	61.04.91.1	12A1B18	11.07.03.1
25A3J15G	61.01.78.1	+N	$\begin{gathered} \text { EARLY } \\ \text { SAMPLE } \\ (60) \end{gathered}$	25B1D26	61.04.91.1	12A1B18	11.07.03.1
25A3J25H	61.02.50.1	+P	$\begin{aligned} & \text { NOT } \\ & \text { CLOCK } \end{aligned}$	25B1B24	61.04.91.1	12A1B18	11.07.03.1
26A1J26D	61.90.11.1	+N	ABAB	25B1B25	61.04.90.1	12A1B18	11.07.03.1
26A3J27D	61.90.11.1	+N	ABAB	25B1C25	61.04.90.1	12A1B18	11.07.03.1
26B1J26D	61.90.12.1	+N	ABAB	25B1C24	61.04 .90 .1	12A1B18	11.07.03.1
26B4F22D	61.90.12.1	+N	ABAB	25B1C23	61.04.90.1	12A1B18	11.07.03.1
27A4B17B	61.91.21.1	+N	ABAB	25B1C26	61.04.90.1	12A1B18	11.07.03.1
27B1D20C	61.81.66.1	+N	ABAB	25B1B26	61.04.90.1	12A1B18	11.07.03.1
28B1G23D	66.21.01.1	+N	$\begin{aligned} & \text { MPY } \\ & \text { AB } \end{aligned}$	25B1D25	61.04.91.1	12A1B18	11.07.03.1
28B3D23D	66.21.01.1	+N	$\begin{aligned} & \text { MPY } \\ & \text { AB } \end{aligned}$	25B1D24	61.04.91.1	12A1B18	11.07.03.1
28A4J17B	68.11.01.1	+N	$\begin{aligned} & \text { MPY } \\ & \text { AB } \end{aligned}$	25B1B27	61.04.90.1	12A1B18	11.07.03.1
28B2D07B	28.64.05.1	+N	SAC	17B2K21	28.68.91.1	12A1C 21	11.07.04.1
28B2D06F	28.64.04.1	+N	SBC	17B2K24	28.68.13.1	12A1B27	11.07.04.1
28B2F04F	28.64.05.1	+N	SAR	17B2K18	28.68.12.1	12A1C07	11.07.02.1

Note: This table is for CPU 7101, Serial No。30,004 and higher.

DESCRIPTION

This procedure is performed to check the air filters in the specified CPU frames for dust, dirt, and damage.

PROCEDURAL STEPS

1. Visually check air filters in the CPU frames specified by the PM Task Card.
2. Remove dirty or damaged filters by unscrewing five filter retaining plate screws on the blower assembly. Vacuumclean salvageable filters, and replace damaged filters ($\mathrm{P} / \mathrm{N} 5203249$).
3. Install filters, with the arrow on filter pointing toward blower assembly. Replace filter retaining plate and screws.

DESCRIPTION

This procedure is performed to check the fans in gates B2 through B8 and A7 of the 7101 CE console.

PROCEDURAL STEPS

1. Open gates and visually check that fans are operating.
2. Check that the screen covering the fan is not pushed in toward the fan blades. If it is, straighten it so that fan blades have maximum clearance.
3. If a fan does not operate properly, turn off power to fan.
a. If assembly is old type (fan mounted inside plenum) proceed to step 4.
b. If assembly is new type (fan mounted outside of plenum) proceed to step 7.
4. Disconnect power plug to fan.
5. Remove two bolts holding assembly to frame.
6. Install new assembly (P/N597152). Secure with two bolts to frame. Proceed to step 12.
7. Disconnect power plug to fan.
8. Remove four screws holding fan to assembly.
9. Remove fan guard assembly from old fan by removing four bolts holding guard to fan.
10. Install fan guard assembly on new fan ($\mathrm{P} / \mathrm{N} 597300$) with four bolts.
11. Secure fan to assembly with four screws.
12. Connect power plug and turn on power to fan.

DESCRIPTION

This procedure is performed to check the adjustment and condition of the gate latches and slides and to lubricate the gate slides.

PROCEDURAL STEPS

1. Check that the gates slide without binding or sticking. Check that the gate casters do not touch the floor when the gates are travelling on the tower caster.
2. Lubricate the slides with IBM \# 6 oil. Use the oil sparingly.
3. Check that the latches operate properly.
4. Check the unit for overall cleanliness.
5. For mechanical adjustments refer to General Reference Manual (01), page 7-21, mechanical adjustments of a 20 -inch frame.

DESCRIPTION

This procedure checks the ability of the index core storage section to write and read 1 's and 0 's in all bit positions from the Sigma console.

PROCEDURAL STEPS

1. Initial Setup
a. Maintenance mode active.
b. Time clock disabled.
c. All other switches off or neutral.
2. Write 1 's in all indexes in all bits.
a. Address keys $=20_{8}$.
b. Panel key set 01 and 10 to UP.
c. Master Reset.
d. Start Clock.
e. Store. NOTE: W register should now equal 208 .
f. Consecutive Store 15 times. NOTE: W register should step from 20_{8} to 37_{8}.
3. Read 1's from all indexes.
a. Address keys $=20_{8}$.
b. Master Reset.
c. Start Clock.
d. Display.

Note
The W register should now $=208$. Index Register 0 is now displayed in both the X register and 1 Y register. All bits should be 1's. Record failures.
e. Consecutive Display 15 times.

Note
The W register should step from 20_{8} to 378 . The index registers are displayed in both the X register and $1 Y$ register. The $2 Y$ register contains the previous display. All bits should be 1's. Record the failures.
f. If any errors occur refer to the flow chart, Figure 2.5.1, and Step 8 for isolation of the error.
4. Write 0's (data) in all indexes, the same as write 1's (Step 2) except that:

Step $2 \mathrm{~b}=$ Panel key set 01 and 10 DOWN.
5. Read 0's (data) in all indexes, the same as read 1's (Step 3) except that:
a. All data bits should be 0 ' s .
b. For Step 3f refer instead to the flow chart, Figure 2.5.2, and Step 8 for isolation of the error.
6. Write 0 parities in all indexes, the same as write 1's (Step 2) except that:
a. Step 2b for Panel key set 01 and $10=$ NEUTRAL.
b. Step 2b for Panel keys 17, 23, 27, 31, 49, 55, 59, 63, = SET.
7. Read 0 parities from all indexes, the same as read 1's (Step 3) except that:
a. All parity bits should be 0 .
b. For Step 3f refer instead to Figure 2.5.2 and Step 8 for errors.

IF no errors have occurred above in Steps 1 through 7, proceed to Step 9. The following Step 8 is used in conjunction with the flow charts for scoping the index core storage circuits.
8. Cycling on single index for scoping.
a. Perform the initial setup as in Step 1.
b. Set the panel key set 01 and 10 UP or DOWN when scoping for dropped or picked bits respectively.

Note

If a picked parity bit is being scoped, set the panel key set 01 and 10 to the neutral position and enter the pattern in the panel keys as in Step 6.
c. Set the address keys to 408 .
d. Store (Master reset, start clock and store, W register = 20).
e. Set the panel key set 01 and 10 to the neutral position and set the panel keys to:

0-31 LX \$X? Bits 12 and 27 SET, 19-22 = IX
32-63 SX \$X? 41 Bits 44, 49, 55, and 59 SET
Bits 51-54 = IX
f. Set repeat instruction active.
g. Master reset.
h. Start clock.
i. Enter the instruction.
j. Program start.

Note
The "run" indicator should now be on and the "inactive" indicator off. Scope the circuits indicated as failing in the flow charts. Scope points are listed in Table 2.5.2. The oscilloscope setup, waveforms, and timing are shown in Figures 2.5.3 and 2.5.4.
9. Time clock check
a. Set the maintenance mode active.
b. Set the time clock disable inactive.
c. Set the time clock test active.
d. Master reset.
e. Start clock.

Note

The interval timer and time clock should now be visible in the X register. If errors occur, look for erratic stepping of the X register. Read, write, and clear oscilloscope points are on Table 2.5.2.

TABLE 2.5.1. SA GROUPS

Bit	14B4A07 \& A08		Bit	14B4A07 \& A09		Bit	14B4A06 \& C10	
	Group 3	Group 4		$\begin{gathered} \text { Group } \\ 5 \end{gathered}$	$\begin{aligned} & \text { Group } \\ & 6 \end{aligned}$		Group 1	Group 2
0	X		24	X		46	X	
1	X		25	X		47	X	
2	X		26		X	48		X
3	X		27		X	49		X
4		X	P24-27	X		P32-49	X	
5		X	28	X		P46-49		X
6	X		29		X	50	X	
7	X		30		X	51		X
8		X	31	X		52		X
9		X	P28-31	X		53	X	
10	X		32		X	54	X	
11	X		33		X	55		X
12		X	34	X		P50-55		X
13		X	35	X		56	X	
14	X		36		X	57	X	
15	X		37		X	58		X
16		X	38	X		59		X
17		X	39	X		P56-59	X	
P0-17	X		40		X	60	X	
18	X		41		X	61		X
19		X	42	X		62		X
20		X	43	X		63	X	
21	X		44		X	P60-63	X	
22	X		45		X			
23		X						
P18-23		X						

TABLE 2.5.2. INDEX CORE STORAGE ARRAY TEST POINTS

TABLE 2.5.2. INDEX CORE STORAGE ARRAY TEST POINTS (cont'd)

Bit	Inhibit Output at H	Sense	Bit	Inhibit Output at H	Sense	Inputs for Timing
29	$" \mathrm{~F} 13$	" C18Y	62	$" \mathrm{D} 26$	$" \mathrm{C} 27 \mathrm{~V}$	
30	" D14	" C18V	63	" E26	" A28Y	
31	" E14	"A19Y	$60-63$	" F26	"A28V	
$28-31$	" F14	"A19V	$46-49$	$" \mathrm{~F} 27$	$" \mathrm{C} 28 \mathrm{Y}$	
32	$" \mathrm{D} 15$	"C19Y				

- See step z for oscilloscope procedure when exiting.

NOTE; - TABLE 2.5.1 LISTS THE BITS IN EACH SA STROBE GRCUP.
NOTE 2 - F:GURE 2.5.3 CONTAINS THE SIMPLIFIED LOGIC FOR THIS AREA.
NOTE 3 - TASLEE 2.5.2 LISTS THE OSCILLOSCOPE POINTS FOR THESE BOXES.
FIGURE 2.5.1. DROPPED BITS, FLOW CHART

*SEE STEP A FOR OSCILLOSCOPE PROCEDURE WHEN EXITING.
NOTE $I-$ LHW $=1481 E 26,7 \quad$ RHW $=1481 E 26,527$
NOTE 2 - FIGURE 2.5.3 CONTAINS THE SIMPLIFIED LOGIC FOR THIS AREA.
NOTE 3 - TABLE 2.5.2 LISTS THE OSCILLOSCOPE POINTS FOR THESE BLOCKS.

FIGURE 2.5.2. PICKED BITS, FLOW CHART

FIGURE 2.5.3 INDEX CORE STORAGE, SIMPLIFIED LOGIC

FIGURE 2.5.4. INDEX CORE STORAGE, WAVEFORMS

operation	fux
Clear	$44 \geq \pm 1$
INH1/it	not Applicable
WRITE	$16 \square 14$
read	$11 \leq \cdots$
READ	

FIGURE 2.5.5 INDEX CORE STORAGE, WAVEFORMS

DESCRIPTION

The Index Tunnel Diode Storage Tuning program is executed to check the reliability of the index tunnel diode storage registers. This program applies to systems with serial numbers of 30,006 and 30,008 .

REQUIREMENTS

Index Tunnel Diode Tuning Tape (Two Programs, XTDT1 and XTDT2)
Index Tunnel Diode Storage Unit, 7101 Instruction Unit IBM CEIM, Form R23-9916.

PROCEDURAL STEPS

1. Load XTDT1 tuning tape to obtain a typewriter printout:
a. Make tape ready.
b. Execute IPL (initial program load) and channel signal.
2. With XTDT1 loaded, proceed as follows to load XTDT2:
a. Set maintenance key 31 for program operating procedure printout on the printer.
b. Execute IPL and channel signal.
3. Follow instructions printed on printer, and execute program with all options and all tests.
4. If this program picks or drops a bit in the tested index register, refer to the Corrective Procedures section of this manual.

DESCRIPTION

This procedure describes the tuning of the turn-on time for the word drivers.

REQUIREMENTS

Vacuum Tube Voltmeter ($\mathrm{P} / \mathrm{N} 5231703$)
Oscilloscope, Tektronix 555 ($\mathrm{P} / \mathrm{N} 523004$)
Preamplifier Oscilloscope, Sampling Tektronix type N (P/N 5231736)
Probe, Oscilloscope, Tektronix P6025 (P/N 5231737)
Preamplifier Type B ($\mathrm{P} / \mathrm{N} 460998$)
Preamplifier Type CA (P/N 460999)

PROCEDURAL STEPS

1. Turn off d-c power before removing cards. Remove word driver cards from panel before adjusting their potentiometers.
2. Two potentiometers are on the card. The 100 -ohm potentiometer, for the amplitude adjustment, should notbe disturbed. The 1 K potentiometer adjusts the turn-on time for the word driver and should be adjusted.
3. Maintain following timing relationships:
a. Word-driver pulse sync on 14B1G17A.
b. Use $2-\mathrm{nsec} / \mathrm{cm}$ time base and $10 \mathrm{v} / \mathrm{cm}$ for scoping turn-on time. Establish ground reference by scoping a ground pin, and measure turn-on time as stated below.
c. Load Store Index instruction f or word to be checked.
d. Scope at output pin of word driver to be checked (table 2.7.1).
e. Word pulse $180-$ nsec duration +20 nsec measured at 50 percent point of the output voltage of the word driver. Top and bottom word-driver timing pulses should be skewed by 50 nsec. (See fig. 2.8.1, timings 3,4 , and 5 .)
4. Word pulse as described in $3, \mathrm{e}$, should have an operational turn-on time of $10.5 \mathrm{nsec} \pm 10.0 \mathrm{nsec}$ from +26 v level to ground level with clamp voltage set at -3.2 v . Tune word driver to a tolerance of $\pm 0.25 \mathrm{nsec}$ (i.e., $10.5 \pm$ 0.25 nsec). (See fig. 2.7.1.)

TABLE 2.7.1. WORD DRIVER, TEST POINTS

Word Driver Input				Word Driver Output	
Word	Sample Word Driver	Address Sel	Clamp Voltage	Array Card 1 Bits 0-32	Array Card 2 Bits 33-P46-49
XTC	14B2C11C	14B2C11E	14B2C11G	14B2C11H	14B2C11Z
0	C12D	C12E	C12G	$\uparrow \mathrm{C} 12 \mathrm{H}$	$\mathrm{C} 12 \mathrm{Z}$
1	C13C	C13E	C13G	C13H	C13Z
2	C14D	C14E	C14G	C14H	C14Z
3	C15C	C15E	C15G	C15H	C15Z
4	C16D	C16E	C16G	C16H	C16Z
5	C17C	C17E	C17G	C17H	C17Z
6	C18D	C18E	C18G	C18H	C18Z
7	C19C	C19E	C19G	C19H	C19Z
8	C20D	C20E	C20G	C 20 H	C20Z
9	C21C	C21E	C21G	C21H	C21Z
10	C22D	C22E	C22G	C22H	C22Z
11	C23C	C23E	C23G	C23H	C23Z
12	C24D	C24E	C24G	C24H	C24Z
13	C25C	C25E	C25G	C25H	C25Z
14	14B2 C26D	14B2C26E	14B2C26G	14 B 2 C 26 H	14B2C26Z
15	14B2C27C	14B2C27E	14B2C27G	14B2C27H	14B2C27Z

*The clamp circuit test point output voltage is found at test point output 14B2C28A.

FIGURE 2.7.1. WORD DRIVER OUTPUT WAVESHAPE

DESCRIPTION

This procedure checks the latch and strobe driver timings.

REQUIREMENTS

Oscilloscope, Tektronix Type 555 ($\mathrm{P} / \mathrm{N} 523004$)
Preamplifier type B (P/N 460998)
Preamplifier type CA (P/N 460999)

PROCEDURAL STEPS

1. For latch or strobe pulse, sync on 14 B 1 B 14 H .
2. Scope at pin E, F, or G of latch or strobe cards. See table 2.8.1 or 2.8.2 for pin locations.
3. Maintain following timing relationships:
a. Word pulse $180-\mathrm{nsec}$ duration $\pm 20 \mathrm{nsec}$ measured at 50 percent point of word-driver output voltage.
b. Latch-driver pulse must be at the -1 v level or more negative 80 nsec minimum prior to turn-off of latest word pulse as described in 3, a, and must extend 20 nsec or more beyond the +30 v level of rise of latest word pulse turn-off (fig. 2.8.1, timing 7).
c. Strobe pulse must be at -1 v level or more negative at 50 percent point of turn-on of word pulse and must remain at this level or more negative for at least 5 nsec after latch timing pulse has reached -1 v or more negative level (fig. 2.8.1, timings 3 and 6).

TABLE 2.8.1. LATCH DRIVERS, TEST POINTS

Latch Sample No.	Input	-	Location
	Location	Latch No.	
(1)	14B2F13A	1	14B2F13E
		2	F13F
		3	F13G
(2)	14B2H13A	4	14B2H13E
		5	H13F
		6	H13G
(3)	14B2K13A	7	14B2K13E
		8	K13F
		9	K13G
(4)	14B2K25A	10	14B2K25E
		11	K25F
		12	K25G
(5)	14B2H25A	13	14B2H25E
		14	H25F
		15	H25G
(6)	14B2F25A	16	14B2F25E
		17	F25F
		18	F25G

*The clamp circuit test point output voltage is found at test point output 14B2C28A.

TABLE 2.8.2. STROBE DRIVERS, TEST POINTS

TABLE 2.8.2. STROBE DRIVERS TEST POINTS (cont'd)

Input		Output	
Strobe No.	Location	Strobe Group No.	Location
(3)	14B2J13A	7	14B2J13E
		8	J13F
		9	J13G
(4)	14B2J25A	10	14B2J25E
		11	J25F
		12	J25G
(5)	14B2G25A	13	14B2G25E
		14	G25F
		15	G25G
(6)	14B2E25A	16	14B2E25E
		17	E25F
		18	E25G

FIGURE 2.8.1. EXAMPLE OF FETCH TIMING FOR INDEX TUNNEL DIODE STORAGE

DESCRIPTION

This check is performed to determine whether the supply voltage clamp is functioning.

REQUIREMENTS

Vacuum tube voltmeter ($\mathrm{P} / \mathrm{N} 5231703$)

PROCEDURAL STEPS

Using a vacuum tube voltmeter ($\mathrm{P} / \mathrm{N} 5231703$), check output voltage at card location 14B2C28A. The clamp-difference voltage is determined with respect to -12 vdc (i.e., if the output of the clamp card is -8.8 vdc with respect to ground, then the clamp-difference voltage with respect to -12 vdc is -3.2 vdc).

DESCRIPTION

This procedure checks the timing of the data-in pulse of the index tunnel diode storage register.

REQUIREMENTS

Oscilloscope, Tektronix Type 555

PROCEDURAL STEPS

1. Using scope, check data-in bit driver output (table 2.10.1). The data-in bit driver should turn on within 30 nsec of the latch output pulse and remain on for the duration of the latch output pulse (fig. 2.10.1, timings 17 and 18).
2. Location of array card inputs.(fig. 2.10.2).

TABLE 2.10.1. BIT DRIVER, TEST POINTS

TABLE 2.10.1. BIT DRIVER, TEST POINTS (cont'd)

Bits	Bit Line Output or Input to SA-BD	Bits	Bit Line Output or Input to $\mathrm{SA}-\mathrm{BD}$
P24-27	14B2J12A	47	14B2G22S
28	J12S	48	G23A
29	J14A	49	G23S
30	J14S	P32-49	G24A
31	J15A	50	G24S
P28-31	J15S	51	G26A
32	J16A	52	G26S
33	J16S	53	G27A
34	J22A	54	G27S
35	J22S	55	G28A
36	J23A	P50-55	G28S
37	J23S	56	E22A
38	J24A	57	E22S
39	J24S	58	E23A
40	J26A	59	E23S
41	J26S	P56-59	E24A
42	J27A	60	E24S
43	J27S	61	E26A
44	J28A	62	E26S
45	J28S	63	E27A
46	14B2G22A	P60-63	E27S
		P46-49	14B2E28A

FIGURE 2.10.1. EXAMPLE OF STORE TIMING FOR INDEX TUNNEL DIODE STORAGE

DESCRIPTION

Most of the errors which can occur on Sigma are not programmable and therefore cannot be checked in this manner. This procedure pinpoints appropriate SMS cards to remove which will generate these errors and also checks for a correct error scan.

PROCEDURAL STEPS

1. Set maintenance mode switch to ON .
2. Set scan inhibit switch to OFF.
3. Set stop-on-single-error switch to ON.
4. Cycle Sigma routines of SEVA program (or other program which exercises area being checked).
5. With program running, pull SMS card indicated in table 2.11.1.
6. Computer should stop with the appropriate error indicator on. If not, investigate cause, starting with logic shown.
7. A scan should have occurred.
8. Unload punch, and check scan card indicated (table 2.11.1) for correct error punch. No other error punches should be present.
9. Reload punch, and restart program for next error. (It is not necessary to clear the write check on the punch at this time.)
10. When all errors have been checked, restore console and punch to normal.

TABLE 2.11.1. SIGMA ERRORS

Error	SMS Card	Type	Logic	Loc	$\left\lvert\, \begin{aligned} & \text { Scan } \\ & \text { Card } \end{aligned}\right.$	Col	Row	Remarks
ICLOC	13B4J26	DBZZ	21.04.06.1	1 A \& C	$\Sigma 1$	46	6	
ICAIC	13B3A 24	DDZX	21.04.03.1	3I	$\Sigma 1$	46	5	
ICAC	13B3E14	UWRE	21.04.05.1	3A	$\Sigma 1$	46	4	
IABC	13A4A 28	DDZY	27.04.03.1	3F	$\Sigma 1$	46	3	
IAIC	13A4J28	DK--	27.10.02.1	4E	$\Sigma 1$	46	2	
IAC1	13A4C11	DBZW	27.11.01.1	5A \& C	$\Sigma 1$	46	1	
IAC2	13A4C10	DBZW	27.11.02.1	5A \& C	$\Sigma 1$	46	0	
IAC3	13AffC09	DBZW	27.11.03.1	5A \& C	$\Sigma 1$	46	11	
IAC4	13A3C20	DBZW	27.11.04.1	5A \& C	$\Sigma 1$	46	12	
IAC5	13A3C19	DBZW	27.11.05.1	5A \& C	$\Sigma 1$	45	9	
IAC6	13A3C18	DBZW	27.11.06.1	5A \& C	$\Sigma 1$	45	8	
XAC	14B3E21	DEZJ	24.00.01.1	913H	$\Sigma 1$	46	8	
LA-APR mrt	4141410							mixum_mblytm
+A-PAR								WVOnommmand
RES COMP	$21 \mathrm{B4J} 23$	DBZU	59.06.03.1	2D \& E	$\Sigma 3$	61	5	
LU COMP	21 A 1 E 27	DBZX	$\begin{array}{r} 53.56 .01 .1 \\ 02.1 \end{array}$	1D	$\Sigma 3$	61	6	
AOTATE								(rionimupmonly)
CD PAR	$24 \mathrm{~A} 2 \% 02$	DBZS	59.51.01.1	1G	$\Sigma 3$	61	8	
WI PAR	21A2E13	DFYZ	52.80.05.1	3 C	$\Sigma 3$	61	9	
BND REG PAR	12A4C10	DK--	16.04.01.1	$5 B \& D$	$\Sigma 4$	55	4	
I PARITY	20A1E24	DFYY	34.08.41.1	4A	5.4	35*	12*	*34-9 for $\mathrm{X} 1, \mathrm{X} 2, \& \mathrm{~K} 1$
LA PARITY	20A1E2	DEYY	34.08.41.1	4 E	$\Sigma 4$	34	9*	*Row 8 for X1, X2, \& K1
UNCOR ECC	20A 2D06	DBZZ	34.08.61.1	5D	$\Sigma 4$	35	1L*	*Row 12 for X1, X2, \& K1
ECC PERM	20A3E08	DBZZ	34.01.52.1	1 B \& H	$\Sigma 4$	34	7*	*Row 6 for X1, X2, \& K1
A CKR PAR	24A4A09	SV--	41.03.01.1	5I	$\Sigma 4$	13	12	
A CKR RES	24A4J18	DBZZ	45.02.02.1	4E	こ 4	12	9	
LA ADR ERR	HATEH8	ZABK	15.02.04.1	$4 C$	г 4*	55	12	* (X1, X2, \& K1 only)
RA PAR	$11 \mathrm{B1E} 24$	DEYY	14.03.01.1	3J	$\Sigma 4^{*}$	64	3	*(X1, X2, \& K1 only)
AB PAR	24A2C02*	DBZS	59.01.01.1	1G	$\Sigma 3$	61	7	*(X1, X2, \& K1 only)

INDEX 3-1. DIAGNOSTIC DATA CATEGORIES

CATEGORY NUMBER	CATEGORY TITLE
1	I Unit Flow Diagrams
2	LA Flow Diagrams
3	PAU Flow Diagrams and Tables
4	Indicators
5	Switches
6	Maintenance Programs
7	Error Analysis
8	PAU Timing Charts
9	Sigma Errors That Cause a Scan
10	Test Equipment, Tools, and Maintenance Supplies Required to Test Tunnel Diode Array
11	SAU Flow Diagrams

INDEX 3-2. LIST OF ILLUSTRATIONS

FIGURE NUMBER	FIGURE TITLE	$\begin{aligned} & \text { ISSUE } \\ & \text { DATE } \end{aligned}$
3.1.1	IF 1Y Sequencer	1/1/63
3.1.2	IC 1Y Triggers and IWC1 Sequencer	1/1/63
3.1.3	IF 2Y Sequencer	1/1/63
3.1.4	IC 2Y Triggers and IWC2 Sequencer	1/1/63
3.1.5	IC Adv Sequencer and ICOR Sequencer	1/1/63
3.1.6	Y-Z Start Trigger and YR-ZL Transfer Sequencer	1/1/63
3.1.7	YL-ZR Transfer Sequencer	1/1/63
3.1.8	YL-ZL Transfer Sequencer	1/1/63
3.1.9	YR-ZR Transfer Sequencer	1/1/63
3.1.10	ZR Mod Req Trigger and Mod ZR Sequencer	1/1/63
3.1 .11	ZR Block and Suspend Triggers	1/1/63
3.1 .12	ZR FP 1 Trigger	1/1/63
3.1 .13	ZR FP Triggers 2, 3, 4, and 6 (Three Sheets)	1/1/63
3.1 .14	ZR IHW Trigger, IHW Rdy Trigger, and IHW EX ZR Trigger	1/1/63
3.1 .15	ZL Mod Reg Trigger and Mod ZL Sequencer	1/1/63

INDEX 3-2. LIST OF ILLUSTRATIONS (cont'd)

FIGURE NUMBER	FIGURE TITLE	$\begin{aligned} & \text { ISSUE } \\ & \text { DATE } \end{aligned}$
3.1.16	ZL Block and Suspend Triggers	1/1/63
3.1.17	ZL Dec Trigger ON	1/1/63
3.1 .18	ZL FL PT Trigger and ZL FP 1 Trigger	1/1/63
3.1 .19	ZL FP 2 Trigger	1/1/63
3.1 .20	ZL FP 3 Trigger	1/1/63
3.1 .21	ZL FP 4 Trigger and ZL FP6 Trigger	1/1/63
3.1 .22	ZL IHW Trigger, ZR WAS IHW Trigger, 1 BIT Mod Trigger, and FP Z ALT Trigger	1/1/63
3.1 .23	$\mathrm{WBC}+\mathrm{DEC}$ Sequencer and XF + DEC Sequencer	1/1/63
3.1.24	WBC Trigger	1/1/63
3.1 .25	FW Not S Trigger	1/1/63
3.1 .26	FWS Trigger	1/1/63
3.1 .27	FW Trigger	1/1/63
3.1 .28	ZL DEC Trigger OFF	1/1/63
3.2.1	IAUC Load Enable and Advance Conditions	1/1/63
3.2.2	Lookahead Load Pulses (Two Sheets)	1/1/63
3.2.3	Operand Check and Correct Phase of Instruction Preparation	1/1/63

INDEX 3-2. LIST OF ILLUSTRATIONS (cont'd)

FIGURE NUMBER	FIGURE TITLE	$\begin{aligned} & \text { ISSUE } \\ & \text { DATE } \\ & \hline \end{aligned}$
3.2.4	Basic TBC Advance Conditions	1/1/63
3.2.5	TBC Single Advance Condition	1/1/63
3.2 .6	TBC Multiple Advance Condition	1/1/63
3.2.7	TBC I/O Instructions - OP 20 and OP 24	1/1/63
3.2.8	First Level of SAU Instructions	1/1/63
3.2 .9	VFL Operands LAOP 03, 05, and 07	1/1/63
3.2.10	VFL Special Operand LAOP 15	1/1/63
3.2.11	FP Instruction Level OPX2	1/1/63
3.2.12	TBC Store Gate Control	1/1/63
3.2.13	I Box Store to Internal Address, LAOP 33	1/1/63
3.2.14	ABC Advance	1/1/63
3.2.15	Setting MAR Mode	2/1/62
3.2.16	FP ABC Actions-Transfer Indicator Timer	1/1/63
3.2.17	VFL ABC Actions-Transfer Indicator Timer	1/1/63
3.2.18	Branch ABC Actions-Transfer Indicator Timer	1/1/63

INDEX 3-2. LIST OF ILLUSTRATIONS (cont'd)

FIGURE NUMBER	FIGURE TITLE	$\begin{aligned} & \text { ISSUE } \\ & \text { DATE } \end{aligned}$
3.2.19	I Box and I/O ABC Actions-Transfer Indicator Timer	1/1/63
3.2.20	Internal Fetch ABC Actions-Arithmetic Bus Timer	1/1/63
3.2.21	Store ABC Actions-Arithmetic Bus Timer	1/1/63
3.2.22	LA Houseclean Timer	1/1/63
3.2.23	LA Houseclean Over Timer	1/1/63
3.2.24	ABC Action on BAC (LAOP 11)	1/1/63
3.2.25	SCC Advance	1/1/63
3.2 .26	SCC Actions	1/1/63
3.2.27	SCC Stores to I Box	1/1/63
3.3.1	Normalization Loop, To-Accumulator Operation	2/1/62
3.3.2	Normalization Loop, To-Memory Operation	2/1/62
3.3.3	Floating Point - Load (L), Load with Flag (LWF), Load Double (DL), or Load Double with Flag (DLWF)	2/1/62
3.3.4	Floating Point - Add (+), Add Magnitude (+ MG), Add Double (D+), Add Magnitude Double (D+MG),	2/1/62
3.3 .5	Floating Point - Add (+), Add Magnitude (+ MG) , Add Double (D+), Add Magnitude Double (D+MG)	2/1/62
3.3.6	Floating Point - Add to Memory (M+), Add Magnitude to Memory (M+MG)	2/1/62
3.3.7	Compare (K), Compare for Range (KR), Compare Magnitude (KMG), Compare Magnitude for Range (KMGR) (Three Sheets)	2/1/62

INDEX 3-2. LIST OF ILLUSTRATIONS (cont'd)

FIGURE NUMBER	FIGURE TITLE	$\begin{aligned} & \text { ISSUE } \\ & \text { DATE } \end{aligned}$
3.3.8	Floating Point - Add to Fraction (FT)	2/1/62
3.3.9	Floating Point - Shift Fraction (SHF)	2/1/62
3.3.10	Floating Point - Store (ST)	2/1/62
3.3.11	Floating Point - Store Rounded (SRD)	2/1/62
3.3.12	Floating Point - Store Low Order (SLO)	2/1/62
3.3.13	Floating Point - Store Root (SRT) (Three Sheets)	2/1/62
3.3.14	Floating Point - Add to Exponent (E+), Add Immediate to Exponent ($\mathrm{E}+\mathrm{I}$)	2/1/62
3.3.15	Floating Point - Load Multiplier Register (LMR)	1/1/63
3.3 .16	Floating Point - Multiply (*), Multiply Double (D*) (Two Sheets)	1/1/63
3.3.17	Multiply and Add (*+)	2/1/62
3.3.18	Floating-Point Divide (/), Divisor Prenormalization	2/1/62
3.3.19	Floating-Point Divide (/), Dividend Prenormalization	2/1/62
3.3.20	Floating-Point Divide (/), Trial Reduction Cycle	2/1/62
3.3.21	Floating Point Divide (/), Quotient Exponent Determination and Normal Reduction Cycles	2/1/62

INDEX 3-2. LIST OF ILLUSTRATIONS (cont'd)

FIGURE	FIGURE TITLE	ISSUE
NUMBER	DATE	

3.3.22
Floating Point Divide (/), Final Reduction Cycle
2/1/62
3.3.23
Divide Double, Determination of Intermediate Remainder
2/1/62 Exponent

3.3.24

Divide Double, Development of 49th Quotient Bit and Re-

$2 / 1 / 62$
mainder Normalization

3.4.1

CPU Scan Card Image - Card 1

2/1/62

3.4.2

CPU Scan Card Image - Card 2

1/1/63
3.4.3 CPU Scan Card Image - Card 3 2/1/62
3.4.4 CPU Scan Card Image - Card 4 $1 / 1 / 63$
3.6.1 Floating-Point Load (Timing) 2/1/62
3.8.2 Floating-Point Add (Timing) $1 / 1 / 63$
3.8.3 Floating-Point Add to Magnitude (Timing) $1 / 1 / 63$
3.8.4 Floating-Point Compare (Timing) $1 / 1 / 63$
3.8.5 Floating-Point Add to Fraction (Timing) $1 / 1 / 63$
3.8.6 Floating-Point Shift Fraction (Timing) $1 / 1 / 63$
3.8.7 Floating-Point Store (Timing) $1 / 1 / 63$

INDEX 3-2. LIST OF ILLUSTRATIONS (cont'd)

FIGURE NUMBER	FIGURE TITLE	ISSUE DATE
3.8.8	Floating-Point Store Rounded (Timing)	1/1/63
3.8.9	Floating-Point Store Low Order (Timing)	1/1/63
3.8.10	Floating-Point Store Root (Timing) (Two Sheets)	2/1/62
3.8.11	Floating-Point Multiply (Timing)	2/1/62
3.8.12	Floating-Point Load Multiplier Register (Timing)	2/1/62
3.8.13	Floating-Point Multiply and Add (Timing)	1/1/63
3.8.14	Floating -Point Dtore Multiplier Register (Timing)	2/1/62
3.8.15	Floating-Point Divide (Timing) (Three Sheets)	2/1/62
3.8.16	Floating-Point Divide Double (Timing)	2/1/62
3.8.17	Floating-Point Add to Exponent (Timing)	2/1/62
3.8.18	SAU Multiply and Multiply and Add, PAU Section (Timing)	1/1/63
3.8.19	SAU Divide (Timing)	1/1/63
3.8.20	Floating Point Reciprocal Divide Timing	1/1/63
3.9.1	IC Error	2/1/62
3.9.2	XAC Error	2/1/62
3.9.3	IAU Error	2/1/62
3.9.4	LA Address Error	2/1/62

INDEX 3-2. LIST OF ILLUSTRATIONS (cont'd)

FIGURE NUMBER	FIGURE TITLE	$\begin{aligned} & \text { ISSUE } \\ & \text { DATE } \end{aligned}$
3.9.5	Boundary Register Error	2/1/62
3.9.6	RA Parity Error	2/1/62
3.9.7	A-Checker Error	2/1/62
3.9.8	I-Checker Error	2/1/62
3.9.9	SAU Error	2/1/62
3.11 .1	Binary Multiply	1/1/63
3.11 .2	VFL Add 1 to Memory	1/1/63
3.11 .3	VFL Load Transit and Set, Decimal Multiply, Decimal Multiply and Add, Decimal Divide, or Load Factor	1/1/63
3.11.4	VFL Load Converted Decimal to Binary	1/1/63
3.11.5	VFL Load Transit Converted Binary to Decimal	1/1/63
3.11.6	VFL Load Transit Converted Decimal to Binary	1/1/63
3.11.7	VFL Load Converted Binary to Decimal	1/1/63
3.11.8	Binary Divide	1/1/63
3.11 .9	VFL Add, Add to Magnitude, Load, or Load with Flags	1/1/63
3.11 .10	Binary Multiply and Add	1/1/63
3.11 .11	VFL Add to Memory, Add Magnitude to Memory, Store or Store Rounded	1/1/63
3.11 .12	VFL Compare Instructions	1/1/63

INDEX 3-2. LIST OF ILLUSTRATIONS (cont'd)

$\left.$| FIGURE
 NUMBER | FIGURE TITLE |
| :--- | ---: | :--- |\quad| ISSUE |
| :--- |
| DATE | \right\rvert\,

INDEX 3-3. LIST OF TABLES

TABLE NUMBER	TABLE TITLE	$\begin{aligned} & \text { ISSUE } \\ & \text { DATE } \end{aligned}$
3.3.1	Triggers and ALD Locations for PAU	1/1/63
3.3.2	Control Logic Areas and ALD Locations	1/1/63
3.3.3	Floating Point Indicators	1/1/63
3.3.4	PAU Data Flow Control Gates	1/1/63
3.4.1	7101 CE Console Indicators	2/1/62
3.6 .1	Marginal Check Frame Selection Chart	2/1/62
3.7.1	Index Adder Error Conditions That Set NIDC Trigger	2/1/62
3.7 .2	Uncorrectable I Unit Error Conditions That Set NIDC Trigger	2/1/62
3.7.3	I Unit Parity Error Conditions That Set NIDC Trigger	2/1/62
3.7.4	Memory Check Conditions That Set NIDC Trigger	2/1/62
3.7.5	1Y and 2Y Memory Check Conditions That Set IDC or NIDC Trigger	2/1/62
3.7 .6	I Unit Parity Error Conditions That Set IDC Trigger	2/1/62
3.7 .7	Uncorrectable I Unit Error Conditions That Set IDC Trigger	2/1/62
3.7.8	Index Adder Error Conditions That Set IDC Trigger	2/1/62
3.7 .9	1Y and 2Y Error Conditions That Set IDC Trigger	2/1/62
3.7.10	Index Storage Address Check Contitions That Set IDC Trigger	2/1/62

INDEX 3-3. LIST OF TABLES (cont'd)

TABLE NUMBER	TABLE TITLE	$\begin{aligned} & \text { ISSUE } \\ & \text { DATE } \end{aligned}$
3.7.11	VFL, FP, and I/O Conditions That Set OP Trigger	2/1/62
3.7.12	I Unit Conditions That Set OP Trigger	2/1/62
3.7.13	VFL, FP, and I/O Conditions That Set AD Trigger in Lookahead	2/1/62
3.7.14	I Unit Error Conditions That Set AD Trigger in Lookahead	2/1/62
3.7 .15	Conditions for Setting ZDS Trigger in I Unit	2/1/62
3.7.16	Conditions for Setting ZDF Trigger in I Unit	2/1/62

FIGURE 3.1.3. IF 2Y SEQUENCER

FIGURE 3.1.9. YR-ZR TRANSFER

FIGURE 3.1.13. ZR FP TRIGGERS 2, 3, 4, AND 6 (SHEET 2 OF 3)

FIGURE 3.2.1. IAUC LOAD ENABLE AND ADVANCE CONDITIONS

FIGURE 3.2.2. LOOKAHEAD LOAD PULSES (SHEET 1 OE?

FIGURE 3.2.2. LOOKAHEAD LOAD PULSES (SHEET 2 OF 2)

FIGURE 3.2.3. OPERAND CHECK AND CORRECT PHASE OF INSTRUCTION PREPARATION

FIGURE 3.2.4. BASIC TBC ADVANCE CONDITIONS

FIGURE 3.2.5. TBC SINGLE ADVANCE CONDITION

FIGURE 3.2 6. TBC MULTIPLE ADVANCE CONDITION

FIGURE 3.2.7. TBC I/O INSTRUCTIONS - OP 20 AND OP 24

FIGURE 3.2.8. FIRST LEVEL OF SAU INSTRUCTIONS

FIGURE 3.2.9. VFL OPERANDS LAOP 03, 05, AND 07

FIGURE 3.2.10. VFL SPECIAL OPERAND LAOP 15

FIGURE 3.2.11. FP INSTRUCTION LEVEL OPX2

FIGURE 3.2.12. TBC STORE GATE CONTROL.

FIGURE 3.2.13. I BOX STORE TO INTERNAL ADDRESS, LAOP 33

FIGURE 3.2.14. ABC ADVANCE

FIGURE 3.2.15. SETTING MAR MODE

FIGURE 3.2.17. VFL ABC ACTIONS-TRANSFER INDICATOR TIMER

TRANSFER INDICATOR TIMER

FIGURE 3.2.20. INTERNAL FETCH ABC ACTIONS-ARITHMETIC BUS TIMER

FIGURE 3.2.22. LA HOUSECLEAN TIMER

LA FLOW DIAGRAMS

FIGURE 3.2.23. LA HOUSECLEAN OVER TIMER

FIGURE 3.2.24. ABC ACTION ON BAC (LAOP 11)

FIGURE 3.2.25. SCC ADVANCE

FIGURE 3.2.26. SCC ACTIONS

LA FLOW DIAGRAMS

FIGURE 3.2.27. SCC STORES TO I BOX

FIGURE 3.3.1. NORMALIZATION LOOP, TO-ACCUMULATOR OPERATION

FIGURE 3.3.2. NORMALIZATION LOOP, TO-MEMORY OPERATION

FIGURE 3.3.3. FLOATING POINT - LOAD (L), LOAD WITH FLAG (LWF), LOAD DOUBLE (DL), OR LOAD DOUBLE WITH FLAG (DLWF)

FIGURE 3.3.4. FLOATING POINT-ADD (+), ADD MAGNITUDE (+MG), ADD DOUBLE ($\mathrm{D}+$), ADD MAGNITUDE DOUBLE ($\mathrm{D}+\mathrm{MG}$)

FIGURE 3.3.5. FLOATING POINT - ADD (+), ADD MAGNITUDE (+MG), ADD DOUBLE ($\mathrm{D}+$), ADD MAGNITUDE DOUBLE ($\mathrm{D}+\mathrm{MG}$)

FIGURE 3.3.6. FLOATING POINT - ADD TO MEMORY (M+), ADD MAGNITUDE TO MEMORY ($\mathrm{M}+\mathrm{MG}$)

FIGURE 3.3.7. COMPARE (K), COMPARE FOR RANGE (KR), COMPARE MAGNITUDE (KMG), COMPARE MAGNTTUDE FOR RANGE (KMGR) (SHEET 1 OF 3)

FIGURE 3.3.7. COMPARE (K), COMPARE FOR RANGE (KR), COMPARE MAGNITUDE (KMG), COMPARE MAGNITUDE FOR RANGE (KMGR) (SHEET 2 OF 3)

FIGURE 3.3.7. COMPARE (K), COMPARE FOR RANGE (KR), COMPARE MAGNITUDE (KMG), COMPARE MAGNITUDE FOR RANGE (KMGR) (SHEET 3 OF 3)

FIGURE 3.3.8. FLOATING POINT - ADD TO FRACTION (FT)

FIGURE 3.3.9. FLOATING POINT - SHIFT FRACTION (SHF)

FIGURE 3.3.10. FLOATING POINT - STORE (ST)

FIGURE 3.3.11. FLOATING POINT - STORE ROUNDED (SRD)

FIGURE 3.3.12. FLOATING POINT - STORE LOW ORDER (SLO)

FIGURE 3.3.13. FLOATING POINT - STORE ROOT (SRT) (SHEET 1 OF 3)

FIGURE 3.3.13. FLOATING POINT -STORE ROOT (SRT) (SHEET 2OF 3)

FIGURE 3.3.13. FLOATING POINT-STORE ROOT (SRT) (SHEET 3 OF 3)

FIGURE 3.3.14. FLOATING POINT - ADD TO EXPONENT (E+), ADD IMMEDIATE TO EXPONENT (E+I)

FIGURE 3.3.15. FLOATING POINT - LOAD MULTIPLIER REGISTER (LMR)

			Set	
*indicators	0	1	0 or 1 depending on conditions	1 if condition arises Never set to 0
TF, UF, VF			x	
RLZ, RZ, RGZ, RN			X	
MOP	x			
XPFP, XPO, XPH, XPL, XPU				X
ZM				x
Refer to indicator section in Appendix for more detail.				

FIGURE 3.3.16. FLOATING POINT - MULTIPLY (*), MULTIPLY DOUBLE (D*) (SHEET 1 OF 2)

FIGURE 3.3.16. FLOATING POINT-MULTIPLY (*), MULTIPLY DOUBLE (D*) (SHEET 2 OF 2)

FIGURE 3.3.17. MULTIPLY AND ADD (* +)

FIGURE 3.3.18. FLOATING-POINT DIVIDE (/), DIVISOR PRENORMALIZATION

FIGURE 3.3.19. FLOATING-POINT DIVIDE (/), DIVIDEND PRENORMALIZATION

FIGURE 3.3.20. FLOATING-POINT DIVIDE (/), TRIAL REDUCTION CYCLE

FIGURE 3.3.21. FLOATING-POINT DIVIDE (/), QUOTIENT EXPONENT DETERMINATION AND NORMAL REDUCTION CYCLES

FIGURE 3.3.22. FLOATING-POINT DIVIDE ($/$), FINAL REDUCTION CYCLE

FIGURE 3.3.23. DIVIDE DOUBLE, DETERMINATION OF INTERMEDIATE REMAINDER EXPONENT

FIGURE 3.3.24, DIVIDE DOUBLE, DEVELOPMENT OF 49TH QUOTIENT BIT AND REMAINDER NORMALIZATION

TABLE 3.3.1. TRIGGERS AND ALD LOCATIONS FOR PAU

Sequencing Circuit	Trigger	Systems Page
Ring Triggers	T0	61.02.50.1
	T ${ }_{1}$	61.02.51.1
	T 2	61.02.52.1
	T3	61.02.53.1
	T4	61.02.54.1
	$\mathrm{T}_{\text {B }}$	61.02.65.1
	T_{C}	61.02.57.1
	M_{C}	61.03.45.1
	MR1	61.03.51.1
	MR2	61.03.52.1
	MR3	61.03.53.1
	D_{3}	61.03.75.1
		61.03.76.1
	D_{4}	61.03.77.1
General Purpose Control Triggers	First Cycle Trigger	61.01.50.1
	Exponent Parity Handling	61.01.55.1
	Wait Trigger	61.01.56.1
	Interrupt End Operation	61.01.57.1
	Exponent and Indicator Latch	61.01.78.1
	Propagated Exponent Flag	61.02.36.1
	Phase Sample Tests Complete	61.02.70.1
	Not Phase Sample Tests Complete	61.02.71.1
	Interrupt Trigger	61.02.73
	Exponent Sample	61.02.78.1
	End Operation	61.02.99.1
	Test 1 Complete	61.04.20.1
	Test 2 Complete	61.04.20.1
	Test 3 Complete	61.04.20.1
	Test 4 Complete	61.04.20.1
	Master Test Complete	61.04.21.1

TABLE 3.3.1. TRIGGERS AND ALD LOCATIONS FOR PAU (cont'd)

Sequencing Circuit	Trigger	Systems Page
Exponent Control Triggers	Exponent Parity Handling	61.01.55.1
	Exponent and Indicator Latch	61.01.78.1
	Propagated Exponent Flag	61.02.36.1
	Exponent Routing Control (TP6)	61.02.76.1
	Bit Address $=64$	61.02.82.1
	Write Exponent A	61.02.93.1
	Write Exponent C	61.02.94.1
	Write Exponent D	61.02.95.1
Special Purpose Triggers (not Multiply or Divide)	Pre-shift and Add	61.02.60.1
	Normalize Exponent	61.02.63.1
	Normalize Mantissa	61.02.64.1
	TX	81.02.65.1
	Signal SSQ to VFL	61.02.66.1
	Perform Augment	61.02.67.1
	Mantissa Routing Control	61.02.75.1
Multiply Control Triggers	Multiply	61.03.54.1
	Shift Right Twelve	61.03.55.1
	One X Multiplicand	61.03.56.1
	Gate S \& T to PAU Adder ($41,42,46$)	81.03.57.1
	Cumulative Multiply	61.03.58.1
	Cumulative Multiply Exponent Adjust	61.03.59.1
	Cumulative Multiply Pre-Shift Exponent	61.03.60.1
	Lookahead Continue (Mpy \& Add)	61.04.25.1
	Lookahead Reject (Mpy \& Add)	61.04.25.1
Divide Control Triggers	Divide Normalize Exponent	61.03.63.1
	Divisor	61.03.64.1
	Dividend	61.03.65.1
	Dividend	61.03.66.1
	One X Complement	61.03.67.1
	Second Divide Cycle	61.03.69.1
	Divide Counter	61.03.70.1
	Final Divide	61.03.71.1
	Zero Dividend	61.03.72.1
	Interchange Reciprocal Divide	61.03.73.1

TABLE 3.3.1. TRIGGERS AND ALD LOCATIONS FOR PAU (cont'd)

Sequencing Circuit	Trigger	Systems Page
SAU Control Triggers (Floating Point Control)	SAU Divide Control	61.03.68.1
	VFL Divisor	61.03.80.1
Data Storage Control Triggers	Partial Field or Perform Aug. Remembered	61.01.79.1
	Overflow	61.02.68.1
	True/Complement	61.02.68.1
	Sign Buffer	61.02.69.1
	Shift >96	61.02.77.1
	Shift >48	61.02.77.1
	Shift Remembered A	61.03.02.1
	Shift Remembered B	61.03.02.1
Gate Control Triggers	Gate 21 (High Order True Shifter to Adder)	61.80.56.1
	Gate 22 (Low Order True Shifter to Adder)	61.80.57.1
	Gate 23 (Complement Shifter to Adder)	61.80.58.1
	Gate 61-63 (Adder to F Register)	61.81.66.1

TABLE 3.3.2. CONTROL LOGIC AREAS AND ALD LOCATIONS

Logic Area	Systems Page
Execute Register	$61.01 .06 .1-$
	61.01 .10 .1
Operation Decoding	$61.01 .13 .1-$
	61.01 .21 .1
Start Control	$61.01 .53 .1-$
	61.01 .57 .1
Sign Mixing	$61.01 .65 .1-$
	61.01 .70 .1
Indicators Result Setting	$61.01 .71 .1-$
	61.01 .79 .1
Zero Fraction Test	61.01 .90 .1
Exponent Flag Logic	$61.02 .30 .1-$
Ring Triggers (General)	61.02 .38 .1
	$61.02 .50 .1-$
Add Type and Normalization Control	61.02 .57 .1
Triggers	$61.02 .60 .1-$
Sampling and Latching Conditions	61.02 .68 .1
	$61.02 .74 .1-$
Exponent Routing Through WI Switch Matrix	61.02 .82 .1
Noisy Mode Control	$61.02 .93 .1-$
Arithmetic Checker Signals	61.02 .95 .1
Shift Control (A, B, C)	61.03 .01 .1
Multiply Logic	61.03 .02 .1
Divide Logic	61.03 .10 .1
	$61.03 .30 .1-$
	61.03 .60 .1
	$61.03 .63 .1-$
	61.03 .80 .1

TABLE 3.3.2. CONTROL LOGIC AREAS AND ALD LOCATIONS (cont'd)

Logic Area	Systems Page
Clock Powering (Frame 25)	$61.04 .01 .1-$
	61.04 .05 .1
-N Reset Powering (Frame 25)	$61.04 .11 .1-$
	61.04 .15 .1
Interrupt Logic	$61.04 .20 .1-$
	61.04 .26 .1
F Register SCR, Counter Register Latch	$61.71 .80 .1-$
and Sample	61.71 .83 .1
Frame 26 Gate Control and Powering	$61.80 .10 .1-$
	61.80 .95 .1
Frame 27 Gate Control and Powering	$61.81 .01 .1-$
	61.81 .67 .1
SAU Gating in Store Root and Converts	61.85 .01 .1
Frame 26 Clock Gating and Powering	$61.90 .11 .1-$
(F Register)	61.90 .20 .1
Frame 27 Clock Gating and Powering	61.91 .21 .1

TABLE 3.3.3. FLOATING POINT INDICATORS

TABLE 3.3.3. FLOATING POINT INDICATORS (cont'd)

Indicator			Indication
Bit	Code	Name	
27	($>$ PSH)	Preparatory Shift Greater than 48	Set to 1 for Add, Add to Memory, Add Magnitude, Add Magnitude to Memory, Add Double, Add Magnitude Double, Compare, Compare Magnitude, Compare for Range, and Compare Magnitude for Range if the exponent difference is greater than 48, except when the result exponent has a propagated flag.
28	(XPFP)	Exponent Flag Propagated	Set to 1 if the result exponent of a floating point operation has a propagated flag of 1 .
29	XPO	Exponent Overflow	Set to 1 if the result exponent of a floating point operation has a generated flag of 1 and a sign of 0 .
30	XPH	Exponent Range High	Set to 1 if the result exponent of a floating point operation has a flag of 0 , a high point order magnitude bit of 1 , and a sign of 0 .
31	XPL	Exponent Range Low	Set to 1 if the result exponent of a floating point operation has a flag of 0 , a high order magnitude bit of 0 , a 1 in position 2, 3, or 4, and a sign of 0 .
32	XPU	Exponent Underflow	Set to 1 if the result of a floating point operation has a generated flag of 1 and a sign of 1 .
33	ZM	Zero Multiply	Set to 1 if the final result of a floating point multiply operation is an order of magnitude 0 with the exponent net in the XFO range.

TABLE 3.3.3. FLOATING POINT INDICATORS (cont'd)

Indicator			Indication
Bit	Code	Name	
34	RU	Remainder Underflow	Set to 1 for divide double if the remainder exponent has a generated flag of 1 and a sign of 1.
35	TF	Data Flags*	Set in accordance with the C
36	UF		register (storage) data flags bits
37	VF		at the end of each operation; not affected by Store, Store Rounded, Store Low Order, and Store Square Root.
55	MOP	To Memory Operations*	Set to 1 for all floating-point-to-memory operations. Set to 0 for all other floating point operations.
56	RLZ	Result Less than Zero*	Set to 1 if the fraction result of the floating point operation was non-zero negative (except compares). Set to 0 for any other case (except compares).
57	RZ	Result Zero*	Set to 1 if the ifraction result of the floating point operation was 0 (except compares). Set to 0 for any other case (except compares).
58	RGZ	Result Greater than Zero*	Set to 1 if the fraction result of the floating point operation was non-zero positive (except compares). Set to 0 for any other case (except compares).
59	RN	Result Negative *	Set to 1 if the fraction result of a floating point operation is negative whether 0 or not (except compares). Set to 0 for any other case (except compares).

TABLF 3.3.3. FLOATING POINT INDICATORS (cont'd)

Indicator			Indication
Bit	Code	Name	
60	AL	Accumulator Low*	Set to 1 if the result of the floating point compare just executed was that the accumulator contents were less than the storage operand. Set to 0 by compare whose result was not low. Cannot be set by Compare Range instructions.
61	AE	Accumulator Equal*	Set to 1 if the result of the floating point compare just executed was that the accumulator contents were equal (within range on range instructions) to the storage operand. Set to 0 for other cases. Set in range instructions only if AH is already on.
62	AH	Accumulator High*	Set to 1 if the result of the floating point compare just executed was that the accumulator contents were greater than the storage operand. Set to 0 by any compare whose range is not high.

*Temporary indicators

The numbering of the various control gates in PAU was developed in the early design stages of PAU and, as modifications were made, some of the numbering was dropped in the ALD's. Some of the gates are now identified in the ALD's by a brief description of their function instead of by number. The number reference, however, is still highly useful.

TABLE 3.3.4. PAU DATA FLOW CONTROL GATES

Gate	Function	ALD Page
1	Gates AB register positions 12-59 to F register positions 2-49.	61.80.11
2	Gates AB register positions 60-107 to F register positions 50-97.	61.80 .11
3	Gates C register positions 12-59 to F register positions 2-49.	61.80 .12
11	Gates shifter positions 2-49 to ACIB positions 12-59 (second level).	61.80 .70
12	Gates shifter positions 50-97 to ACIB positions 60-63 and 0-43, respectively (first level).	61.80 .70
13	Gates shifter positions 2-49 to ACIB positions 60-63 and 0-43, respectively (first level) (called crossover gate).	61.80 .71
14	Gates shifter positions 51-98 to ACIB positions 12-59 (second level) (called crossover gate).	61.80.71
17	Gates shifter positions $98-101$ to spill residue generator.	61.80.95
21-PAU	Gates shifter positions $0-51$ to main adder positions 0-51 (true).	61.80.56
21-VFL	Gates shifter positions $0-49$ to main adder positions 0-49 (true).	61.80 .60
22	Gates shifter positions 52-99 to main adder positions 52-99 (true).	61.80 .57
23	Gates shifter positions $0-97$ to main adder positions 0-97 (complement).	61.80.58
25	Gates shifter positions 2-48 to main adder positions 51-97 (complement); also sets main adder inputs 98 and 99A and 50B to 1 . Used in Store Square Root.	61.80 .90
31	Gates AB register positions 12-59 to main adder positions 2-49 (true).	61.81 .20

TABLE 3.3.4. PAU DATA FLOW CONTROL GATES (cont'd)

Gate	Function	ALD Page
32	Gates AB register positions 60-107 to main adder positions 50-97 (true).	61.81.20
33	Gates C register positions 12-59 to main adder positions 2-49 (true).	61.81 .21
34	Gates D register positions 12-59 to main adder positions 2-49 (true).	61.81.31.1
35	Gates C register positions $12-59$ to main adder positions 2-49 (complement).	65.04 .92
36	Gates C register positions $12-59$ to main adder positions 54-100 and 55-102 (true). Multiply and divide multiple generation.	61.81 .04
37	Gates D register to multiple generation circuits.	61.81.31.1
41 and 42	Gates S and Tregister positions 2-61 to main adder positions 2-61 (multiply).	61.03.57
43	Gates S register positions 50-61 to F register positions 1-12; activated by gate 47 (multiply).	68.12.01
44	Gates T register positions 50-61 to F register positions 62-73; activated by gate 47 (multiply).	68.12.01
46	Gates F register positions $1-36$ to main adder positions 62-97 (multiply).	61.81.02
47	Gates F register positions $1-37$ and $62-85$ to F register positions 13-49 and 74-97, respectively. Shift right 12 gate (multiply).	61.03.55
51	Gates main adder positions 53-102 to main adder positions 1-50 (true) (divide $3 / 2$ multiple).	65.04 .63
52	Gates main adder positions 53-102 to main adder positions 1-50 (complement) (divide $3 / 2$ multiple).	65.04 .63
53	Gates main adder positions 53-102 to main adder positions 2-51 (true) (divide $3 / 4$ multiple).	65.04 .62
54	Gates main adder positions 53-102 to main adder positions 2-51 (complement) (divide $3 / 4$ multiple).	65.04 .62
61	Gates main adder positions $0-51$ to F register positions 0-51.	61.81 .67

TABLE 3.3.4. PAU DATA FLOW CONTROL GATES (cont'd)

Gate	Function	ALD Page
62	Suppresses positions 50 and 51 of gate 61 or 63.	61.81 .67
63	Gates main adder positions 49-99 to F register positions 49-99.	61.81 .67
71	Gates shifter positions $0-49$ to F register positions 0-49 (preshift gate).	61.80.80
72	Gates shifter positions $50-97$ to F register positions 50-97 (preshift gate).	61.80.80
73	Suppresses bits 98 and 99 of gate 72. Used in divide. It is actually a NQ Divide line and is not labeled 73.	61.80 .80
81	Effectively gates F register positions 2-97 offset to main adder positions $2-96$ as double inputs and F register positions 98-101 to special adder input positions $95-98$. For example, F97 goes to adder 96 and 94, F96 goes to adder 95 and 93, etc. (VFL dec - bin convert).	61.80 .30
82	Gates adjust decoder output to main adder positions 3, 7, 11---- 87, 91, 95 (VFL bin - dec convert).	61.80.55
91	Gates SAU-AB switch matrix positions 1-8 to F register positions 2-9 (VFL).	61.80.40
92	Gates SAU-CD switch matrix positions 1-8 to F register positions 2-9 (VFL).	61.80 .40
93	Gates SAU-CD switch matrix 1-8 to F register positions 50-57 (VFL multiply).	61.80.40
94	Gates SAU-AB switch matrix positions 1-4 to F register positions 98-101 (VFL).	61.80.50
95	Gates SAU-CD switch matrix positions 1-4 to F register positions 98-101 (VFL).	61.80 .50
97	Gates F register positions $90-97$ to SAU-CD second level true/complement positions 1-8 (VFL).	61.80.50

Note: Gates 81 through 97 are serial arithmetic gates activated by SAU to control VFL operations that utilize PAU circuits. No 90 -series gates are labeled as such in the ALD's.

DESCRIPTION

This category contains a list of all 7101 CE console indicators and a copy of the CPU Scan Card formats. These two items fully identify each CE console indicator and cross-reference each console indicator location with its associated CPU Scan Card punch location, for machine type 7101, Serial No. 30,004 and higher.

The console indicators are listed in table 3.4.1 in sequential console co-ordinate notation. To shorten the length of the table, only the first and last indicators of any register, counter, etc., are identified. The intervening indicators are associated with similarly positioned bits of the register or counter and with similarly positioned punch positions on the CPU Scan Card.

The indicator locations noted in table 3.4.1 and in figures 3.4.1 through 3.4.4 do not include the common CPU frame and panel (frame 31, panel A) designations.

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS

INDICATOR LOCATION	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	SCAN CARD NO.	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	CARD ROW (TTOB)
1A031 THROUGH	47.01.01.1	ACIB PARITY ERROR FOR POSITIONS 00-07, 08-11,12-15, 16-23, 24-31, 32-39, 40-47, 48-55, 56-59 AND 60-63	4	12	11-8
1 AO 0			4	11	12
1 A 043	48.02.01.1	ADD TYPE CHECK	4	11	11
1A044	48.02.01.1	COMPARE TYPE CHECK	4	11	0
1 A 045	48.02.01.1	LOAD OR STORE TYPE CHECK	4	11	1
1A046	48.02.01.1	MULTIPLY TYPE CHECK	4	11	2
1A047	48.02.01.1	DIVIDE TYPE CHECK	4	11	3
1A048	48.02.01.1	STORE ROOT CHECK	4	11	4
1 A 049	48.03.01.1	DOUBLE PRECISION CHECK	4	11	5
1A050	48.03.01.1	TO MEMORY TYPE CHECK	4	11	6
1A051	48.03.01.1	SERIAL ARITHMETIC UNIT OP CHK	4	11	7
1A052	48.03.01.1	UNNORMALIZED MODE	4	11	8
1 A 053	48.02.01.1	STORE MULTIPLIER TYPE CHK	4	11	9
1A054	48.02.01.1	LOAD MULTIPLIER TYPE CHK	4	12	12
1A055	48.02 .01 .1	EXTERNAL STORE INDICATUR	4	12	9
1 A 058	47.04.01.1	RESIDUE ERROR HAS OCCURRED	4	13	12
$1 A 059$ $1 A 066$	47.04.01.1	PARITY ERROR AT FIRST LEVEL LATCH BEING HELD	4	4	6
1A066	48.04.42.1	DATA AT FIRST LEVEL LAT FIRST SECOND LATCH BEING HELD	4	4	7
1A067 1A068	48.04.42.1		4	4	8
1A068	48.04.45.1	EXPONENT BEING HELD ON A-BUS	4	4	9
1 A 069	48.04.45.1	GENERATE RESIDUE BEING HELD	4	5	12
1A070 1 A 071	48.04.41.1	DATA BEING GATED OUT OF A	4	5	11
1A071 1A072	48.04.41.1	DATA BEING GATED DATA BEING PASSED FROM FIRST TO SECOND LEVEL	4	5	0
$1 A 072$ $1 A 073$	48.04.41.1	DATA BEING PAS CEI	4	5	1
$1 A 073$ $1 A 074$	48.04.11.1	DATA FROM CD PREISION TRANSFER NO CHECK	4	5	2
$1 A 074$ 14075	48.04.43.1	DINARY MULTIPLY CUMULATIVE OPERATION	4	5	3
14075 1 A077	48.04.43.1	BUSAR RESIDUE SENT TO INITIAL RESIDUE REGISTER	4	5	4
1 A 077	48.04.44.1	ENABLE FULL WORD PARITY ERROR	4	5	5
1A078	48.04.44.1	ENABLE FULL WORD PARITY ERROR	3	63	6
1B001	56.21 .21 .1	COMPLEMENT BYTE FROM AB	3	63	7
$1 \mathrm{B002}$	56.21.11.1	CUT OFF BYTE FROM CD	3	63	8
$1 \mathrm{B003}$	56.21.31.1	CLOSE CD TRUE-COMP TO BYIE SIZE PARTLAL BYTE TRIGGER	3	63	9
1 B 004	56.21.32.1	PARTLAL BYTE TRIGGER	3	64	12
1 B 005	56.21.21.1	COMPLEMENT BYTE FROM CD CUTOFF BYTE FROM CD	3	64	11
1B006	56.21 .21 .1	CUTOFF BYTE FROM CD	3	64	0
1B007	56.51 .02 .1	BINARY END OF A 1 TRIGGER	3	64	1
1 B 008	56.15.01.1	LIKE SIGNS TRIGGER	3	64	2
1B009	56.23.03.1	MAIN VFL CARRY TRIGGER	3	64	4
1B011	56.52.01.1	AB LESS THAN CD	3	64	5
1 B 012	56.52.01.1	AB GREATER THAN OR EQUAL TO CD	3	64	6
1 B 013	56.52.01.1	AB GREATER THAN CD	3	65	3-8
1B022	56.12.10.1	DIVIDE TYPE CYCLE 1 TO 6	3		
THROUGH					
$1 \mathrm{B027}$			4	1	12-7
$1 \mathrm{B031}$	41.03.01.1	ACIB PARITY FOR POSITIONS 00-07, 08-11, $12-15$,			
THROUGH	THROUGH	16-23, 24-31, 32-39, 40-47, 48-55, 56-53, and 60-63			
1 B 040	41.03 .06 .1		4	1	8
1 B 043	42.01 .08 .1	GENERATED RESIDUE FIRST LEVEL 0-43 (2) GENERATED RESIDUE FIRST LEVEL 0-43 (1)	4	1	9
1B044	42.01 .08 .1	GENERATED RESIDUE FIRST LED RESIDUE SECOND LEVEL 12-59 (2)	4	2	12
1 B 045	42.02 .08 .1	GENERATED RESIDUE SECOND LEVEL 12-59 (2)	4	2	11
1B046	42.02.08.1	GENERATED RESIDUE SECOND LEVEL 12-59 (1)	4	2	0
1 B 047	45.02.02.1		4	2	1
18048	45.02.02.1	PREDIC TED RESIDUE EQUALS 1	4	2	2
1B049	45.02.02.1	DIVISOR RESIDUE EQUALS 2	4	2	3
1 B 050	45.02 .02 .1	DIVISOR RESIDUE EQUALS 1	4	2	4
1 B 051	45.02.03.1	SPILL RESIDUE EQUALS 2	4	2	5
1B052	45.02 .03 .1	SPILL RESIDUE EQUALS 1	4	2	6
1 B 053	48.04.21.1	PARITY ON AB 44-47 108-111 EQUALS ONE	4	2	7
18054	48.03.01.1	DIVIDE OVERFLOW	4	2	8
18055	48.03.01.1	NOT NOISY MODE	4	2	9
1B056	48.03.01.1	NORMALIZATION SHIFT WAS EVEN	4	3	12
1B057	48.03 .01 .1	SUM SIGN IS NEGATIVE	4	3	11
1B058	48.03.01.1	LOST CARRY			

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICATOR LOCATION	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	SCAN CARD NO.	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	CARD ROW (T TOB)
$1 \mathrm{B059}$	48.03.01.1	RESULT EQUALS ZERO	4	3	0
1B060	48.03.01.1	SPILL SIGN IS POSITIVE	4	3	1
1B066	48.04.11.1	CHECK CYCLE TIME 1	4	3	4
18067	48.04.11.1	CHECK CYCLE TIME 2	4	3	6
1 B 068	48.04.11.1	CHECK CYCLE TIME 3	4	3	8
1B070	48.04.21.1	UPDATING TIME 1	4	3	9
$1 \mathrm{B071}$	48.04.21.1	UPDATING TIME 2	4	4	1
1 B 075	48.04 .31 .1 48.04 .31 .1	ERROR INTERLOCK TIME 1 ERROR INTERLOCK TIME 2	4	4	2
1B076	48.04 .31 .1 48.04 .31 .1	ERROR INTERLOCK TIME 2 CHECK COMPLETE	4	4	4
1 B 078 1 B 087	48.04 .31 .1 53.51 .12 .1	CHECK COMP LATCH 2, BITS 01-16 TO CONTROL	3	58	4-9
1B087 THROUGH	THROUGH				
1B102	53.51.15.1		3	59	12-7
	53.51.01.1				
	THROUGH				
	$\begin{aligned} & 53.51 .09 .1 \\ & \text { AND } \end{aligned}$				
	53.51.16.1		3	36	11
1 C 033	55.10.01.1	WBC EXECUTION REGISTER POS 00	3	36	0
1 C 034	55.10.01.1	BOB EXECUTION REGISTER POS 01	3	36	0
$1 \mathrm{C035}$	55.10 .01 .1	1B EXECUTION REGISTER POS 02	3	36	2-9
1C036	55.10.01.1	SAU EXECUTION EEGISTER POS 03-24	3	36	12-9
THROUGH	55.10.07.1		3	38	12-11
1-058	55.10.07.1	INV BIT EXECUTION REGISTER POS 25	3	38	0
1 C 059	55.10.07.1	ZERO BIT EXECUTION REGISTER POS 26	3	38	1
1 C 060	55.10.07.1	BR IF ON EXECUTION REGISTER POS 27	3	38	3
1 C 061	55.10.08.1	UNS EXECUTION REGISTER POS 28	3	38	3
1 C 062	55.10 .08 .1	INV EXECUTION REGISTER POS 29	3	38	$\frac{7}{5}$
1 C 063	55.10 .08 .1	DEC EXECUTION REGISTER POS 30	3	38	-
1 C 064	55.10.08.1	OP A EXECUTION REGISTER POS 31	3	38	7
1 C 065	55.10 .09 .1	OP B EXECUTION REGISTER POS 32	3	38 38	8
1 C 066	55.10.09.1	OP C EXECUTION REGISTER POS 33	3	38	9
$1 \mathrm{C067}$	55.10.09.1	OP D EXECUTION REGISTER POS 34	3	39	12
1 C 068	55.10 .09 .1 55.10 .10 .1	OP E EXECUTION REGISTER POS 35	3	39	11
1 C 069 1 C 080	55.10 .10 .1	IRPT EXECUTION REGISTER POS ${ }^{\text {SAU }}$ RESIDUE ERROR TRIGGER	3	61	5
1 C 080	59.06 .04 .1 59.06 .04 .1	SAU RESIDUE ERROR TRIGGER	3	61	6
1 C 081	59.06 .04 .1 59.06 .04 .1	SAU LOGICAL AB READOUT PARITY ERROR TRIGGER	3	61	7
1 C 082 1 C 083	59.06.04.1 59.06.04.1	SAU CD READOUT PARITY ERROR TRIGGER	3	61	8
1 C 083	59.06.04.1 59.06 .04 .1	SAU SWITCH MA TRIX IN PARITY ERROR TRIGGER	3	61	9
$1 \mathrm{C084}$	59.06.04.1 53.01 .12 .1	PRE IATCH 1, BITS 01-16 TO CONTROL	3	57	0.9
$1 \mathrm{C087}$	53.01.12.1				
THROUGH 10102	THROUGH		3	58	$12-3$
1 Cl 102	53.01.15.1 53.06 .01 .1				
	53.06.01.1				
	THROUGH				
	${ }_{53}$ AND				
	53.06 .16 .1		2	68	2
$1 \mathrm{D001}$	56.16.00.1	HOUSE KEEPING	2	68	3
1D002	56.11 .00 .1	ROUND SET UP	2	68	4
iD003	56.11 .00 .1	ROUND CYCLE	3	59	8
1D004	56.14.10.1	TEST BIT	3	60	12
1 D 006	56.11 .10 .1	SET UP FOR RECOMPLEMENT	?	60	11
10007	56.11 .10 .1	RECOMPLEMENT	3	60	0
1D008	56.11 .10 .1	ZERO AB	3	62	0
17 mb	56.14 .00 .1	SET UP FOR STORE SQUARE ROOT	3	62	1
1001:	56.14 .00 .1	STORE SQUARE ROOT SEQ TRIG	3	62	2
12012	56.14.00.1	PAU DO STORE SQUARE ROOT	3	62	2

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICATOR LOCAIION	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	$\begin{aligned} & \text { SCAN } \\ & \text { CARD } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	CARD ROW (T TOB)
1D014	56.51.30.1	ZERO DIVIDE TRIGGER	3	62	4
1D015	56.51.20.1	PARTLAL FIELD ADD TRIGGER	3	62	5
1 D 016	56.51.02.1	PARTIAL FIELD CONNECT TRIGGER	3	62	7
1 D 017	56.15.05.1	NON ZERO RESULT TRIGGER	3	62	9
1D019	56.12.00.1	MULTIPLY TYPE CYCLES 1, 2, \& 3			
THROUGH			3	63	12-11
1D021 1D023	56.12.05.1	CUMULATIVE MULTIPLY TYPE CYCLES 1, 2, 3, 4, \& 5	3	63	1-5
THROUGH 1D027			2	61	12-5
1DU31	51.70.01.1	D REGISTER POS 00-07 TO INDICATORS D064 - D071 RESPECTIVELY	2	61	12-5
$\begin{aligned} & \text { THROUGH } \\ & \text { in038 } \end{aligned}$	51.70.02.1				
1 D 039	59.51.20.1	PARITY FOR D REGISTER POS 00-07	2	66	6-9
1 1D040 THROUGH	51.70.03.1	D REGISTER POS 08-11 TO INDICATORS D072- D075 RESPECTIVELY			
1D043			2	66	3
1D044 1D045	59.51.20.1 51.70 .04 .1	D REGISTER POS 12-15 TO INDICATORS D076 - D079			
THROUGH	51.70.04.1	RESPECTIVELY	2	62	12-1
1D048		PARITY FOR D REGISTER POS 12-15	2	66	4
1D049	59.51.20.1	PARITY FOR D REGISTER PIS	2	62	2-9
1 D 050	51.70.05.1	D REGISTER POS 16-23 TO INDICATORS D080-D087			
THROUGH	AND	RESPECTIVELY			
1 D 057	51.70 .06 .1		2	66	5
$1 D 058$ $1 D 059$	59.51 .20 .1	D REGISTER POS 24-31 TO INDICATORS D088 - D095	2	63	12-5
1D059 THROUGH	51.70 .07 .1 AND	RESPECTIVELY			
1D066	51.70.08.1		2	66	6
1D067	59.51 .21 .1	PARITY FOR D REGISTER POS 24-31 096 - D103	2	63	6-9
1D068	51.70.09.1	D REGISTER 32-39 TO INDICATORS D096-D103	2		
THROUGH		RESPECTIVELY	2	64	12-1
$1 \mathrm{LD075}$		PARITY FOR D REGISTER POS 32-39	2	66	7
1D076 1D077	59.51 .21 .1 51.70 .11 .1	D REGISTER POS 40-47 TO INDICATORS D104-D 111	2	64	2-9
1D077 THROUGH	$\begin{gathered} 51.70 .11 .1 \\ \text { AND } \end{gathered}$	RESPECTIVELY			
1D084	51.70.12.1				
1 D 085	59.51 .21 .1	PARITY FOR D REGISTER POS 40-47	2	65	12-5
1 D086	51.70.13.1	D REGISTER POS 48-55 TO INDICATORS D112-D119	2	65	12-5
THROUGH	AND	RESPECTIVELY			
1 D 093	51.70.14.1		2	66	9
1 D 094	59.51 .21 .1 51.70 .15 .1	D REGISTER POS 56-59 TO INDICATORS D120-D123	2	65	6-9
1D095 THROUGH	51.70.15.1	RESPECTIVELY			
1D098			2	67	12
1D099	59.51 .22 .1	PARITY FOR D REGISTER POS 60-63 TO INDICATORS D124-D127	2	66	12-1
1D100 THROUGH	51.70.16.1	D REGISTER POS 60-63 TO INDICATORS D124-D127 RESPECTIVELY	2	66	
1D103					
1D104	59.51.22.1	PARITY FOR D REGISTER POS 60-63	2	51	$12-5$
1E031	51.60.01.1	C REGISTER POS 00-07	2	51	
THROUGH	AND				
1E038	51.60.02.1		2	56	2
1E039	59.51 .10 .1	PARITY FOR C REGISTER POS 00-07 C REGISTER POS 08-11	2	51	6-9
1E040	51.60 .03 .1	C REGISTER POS 08-11	2		-
THROCGH					
1 E 043		PARITY FOR C REGISTER POS 08-11	2	56	
$1 E 044$ $1 E 045$	$\begin{aligned} & 59.51 .10 .1 \\ & 51.60 .04 .1 \end{aligned}$	C REGISTER POS 12-15	2	52	12-1
$\begin{gathered} \text { THROUGH } \\ 1 \text { E048 } \end{gathered}$					

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICATOR LOCATOR	$\begin{aligned} & \text { TRIGGER } \\ & \text { LOCATION } \\ & \text { (ALD PAGE) } \end{aligned}$	DESCRIPTIVE TITLE	SCAN CARD NO.	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \\ & \hline \end{aligned}$
1E049	59.51.10.1	PARITY FOR C REGISTER POS 12-15	2	56	4
1E050	51.60.05.1	C REGISTER POS 16-23	2	52	2-9
THROUGH	AND				
1E057	51.60 .06 .1		2	56	5
1E058	59.51 .10 .1	PARITY FOR C REGISTER POS 16-23	2	53	12-5
1E059	51.60.07.1	C REGISTER POS 24-31	2	53	12-5
THROUGH	AND				
1E066	51.60.08.1		2	56	6
1E067	59.51 .11 .1	PARITY FOR C REGISTER POS 24-31	2	56 53	$6-9$
1 E068	51.60 .09 .1	C REGISTER POS 32-39	2	53	
THROUGH	AND		2	54	12-1
1E075	51.60.10.1		2	56	
1E076	59.51 .11 .1	PARITY FOR C REGISTER POS 32-39 C REGISTER POS 40-47	2	54	2-9
1 E 077	51.60.11.1	C REGISTER POS 40-47			
THROUGH	${ }_{51.60 .12 .1}$				
1E084	51.60.12.1	PARITY FOR C REGISTER POS 40-47	2	56	8
1E085	59.51 .11 .1 51.60 .13 .1	C REGISTER POS 48-55	2	55	12-5
THROUGH	AND				
1E093	51.60.14.1		2	56	
1E094	59.51.11.1	PARITY FOR C REGISTER POS 48-55	2	55	$6-9$
1E095	51.60.15.1	C REGISTER POS 56-59	2		6-9
THROUGH					
1E098		PARITY FOR C REGISTER POS 56-59	2	57	12
1E099	59.51.12.1	PARITY FOR C REGISTER POS 56-59 C REGISTER POS 60-63	2	56	12-1
1E100	51.60.16.1	C Register pos 60-63			
THROUGH					
1E103	59.51 .12 .1	PARITY FOR C REGISTER POS 60-63	2	57	11
1E104	59.51.12.1	VFL OPERATION	2	59	1
1 F 001	56.16 .00 .1 56.11 .00 .1	HANDLE SIGN BYTE	2	59	2
1 F003	56.11.06.1	PIPE LINE 1	2	59	3
1 F004	56.11.06.1	PIPELINE 2	2	59	4
1 F005	54.38.03.1	END OF C 1	2	59	5
1 F 006	54.38 .031	END OF C 2	2	59	6
1 F 007	54.38 .01 .1	RFL CARRY TRIGGER	2	59	7
1 F 008	54.18 .01 .1	END OF A 2	2	59	8
1 F 009	54.19.04.1	END OF HIGH ORDER MARK 2	2	59	9
1 F010	56.11.06.1	SET INDICATORS AND RESET	2	60	12
1 F012	56.14.00.1	RESET ONLY	2	60	0
1 F 014	56.13.10.1	SET UP FOR AB TO F HIGH	2	67	0
1 F 015	56.13.10.1	TRANSFER AB TO F HIGH ORDER FIRST	2	67	1
1 F016	56.13.10.1	SET UP FOR CD TO F HIGH	2	67	2
1 F 017	56.13.10.1	TRANSFER CD TO F HIGH ORDER FIRST	2	67	3
1 F 018	56.13.00.1	SET UP FOR CD TO F LOW	2	67	4
1 F019	56.13.00.1	TRANSFER CD TO F LOW ORDER FIRST	2	67	5
1 F 020	56.13.05.1	SET UP FOR F TO CD	2	67	6
1 F021	56.13 .05 .1	SIGN OF C TO D POS 127	2	67	7
1 F022	56.13.05.1	TRANSFER F TO CD BYTE BY BYTE	2	67	8
1 F023	56.13.15.1	SET UP FOR F TO AB AT OFFSET	2	67	9
1 F024	56.13.15.1	TRANSFER F TO AB STARTING AT OFFSET	2	68	12
1 F 025	56.13.20.1	PARALLEL XFR F TO AB FIRST CYCLE	2	68	11
1 F026	56.13.20.1	PARALLEL XFR F TO AB SECOND CYCLE	2	68	0
1 F 027	56.13.20.1	PARALLEL XFR F TO CD POS 12-59	2	68	1
1 F045	54.60 .06 .1	SIGN OF CD REGISTER POS 00(S).01(T).02(U). AND 03(V)	2	57	0-3
$\begin{aligned} & \text { THROUGH } \\ & \text { 1F048 } \\ & \text { 1F055 } \end{aligned}$	54.26.01.1	READ OUT BIT ADDRESS CD POS 64, 32, 16. 8, 4, 2. \& 1	2	57	4-9
$\begin{aligned} & \text { THROUGH } \\ & 1 \text { F061 } \end{aligned}$				58	12

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICA TOR LOCATION	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	$\begin{aligned} & \text { SCAN } \\ & \text { CARD } \end{aligned}$ NO。	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
1 F064	54.26.02.1	WRITE IN BIT ADDRESS CD POS $64,32,16,8,4,2, \& 1$	2	58	11-5
$\begin{aligned} & \text { THROUGH } \\ & 1 \text { F070 } \\ & 1 \text { F073 } \end{aligned}$		RESIDUAL FIELD LENGTH REGISTER POS 64, 32, 16, 8, 4,	2	49	7-9
$1 F 073$ THROUGH	54.36.02.1	$2 \& 1$			
1F079				50 13	$12-1$ 11
1 F093	45.01.02.1	RESIDUE 2 - VFL MD	4	13	11
1 F094	45.01 .02 .1	RESIDUE 1 - VFL MD	4	13	6
1 F095	45.01.02.1	RESIDUE OF C REGISTER BITS 12-59 EQUALS 2	2	58	7
1 F096	45.01.02.1	RESIDUE OF C REGISTER BITS 12-59 EQUALS 1	2	58	8
1 F097	45.01 .02 .1	RESIDUE OF CUM MCD BITS 12-59 EQUALS 2	2	58	8
1 F098	45.01 .02 .1	RESIDUE OF CUM MCD BITS 12-59 EQUALS 1	2	59	12
1 F101	59.56 .03 .1	CD RESIDUE REGISTER POS 2	2	59	11
1 F102	59.56.03.1	CD RESIDUE REGISTER POS 1	2	59	11
1F103	59.56 .03 .1	CD RESIDUE REGISTER POS 0	3	51	12-5
1G031	$51.30 .01 .1$	B REGISTER POS 00-07 IO INDICATORS B064-B071 RESPECTIVELY			
THROUGH 1 G 038	$\begin{gathered} \text { AND } \\ 51.30 .02 .1 \end{gathered}$	RESPECTIVELY			
1 GC39	59.01.50.1	PARITY FOR B REGISTER POS 00-07	3	56	2
1 G040	51.30.03.1	B REGISTER POS 08-11 TO INDICATORS B 072-B 075	3	51	9
$\begin{gathered} \text { THROUGH } \\ 1 \text { G043 } \end{gathered}$		RESPECTIVELY		56	
1 G044	59.01.20.1	PARITY FOR B REGISTER POS 08-11	3	32	$12-1$
1 G 045	51.30 .04 .1	B REGISTER POS 12-15 TO INDICATORS B076-B079		\bigcirc	
THROUGH		RESPECTIVELY			
1 G 048	59.01 .20 .1	PARITY FOR B REGSTER POS 12-15	3	56	4
$1 G 049$ $1 G 050$	59.01.20.1	B REGISTER POS 16-23 TO INDICATORS B080-B087	3	52	2-9
THROUGH	AND	RESPECTIVELY			
1G057	51.30 .06 .1			56	5
1 G 058	59.01 .20 .1	PARITY FOR B REGISTER POS 16-23	3	53	12-5
1G059	51.30.07.1	B REGISTER POS 24-31 TO INDICATORS B088-B095	3	5	
THROUGH	AND	RESPECTIVELY			
1 G066	51.30.08.1		3	56	6
1 G067	59.01 .21 .1	PARITY FOR B REGISTER POS 24-31	3	56	
1 G068	51.30 .09 .1	B REGISTER POS 32-39 TO INDICATORS B096-B103	3	53	6-9
THROUGH	AND	RESPECTIVELY			
1G075	51.30.10.1		3	54	12-1
1 G076	59.01.21.1	PARITY FOR B REGISTER POS 32-39		56	2
1 G077	51.30.11.1	B REGISTER POS 40-47 TO INDICATORS B 104-B111	3	54	2-9
THROUGH	AND	RESPECTIVELY			
1G084	51.30.12.1				
1 G 085	59.01.21.1	PARITY FOR B REGISTER POS 40-47	3	56	
1 G 086	51.30.13.1	B REGISTER POS 48-55 TO INDICATORS B112-B119	3	55	12-5
THROUGH	AND	RESPECTIVELY			
$1 \mathrm{G093}$	51.30.14.1				
1 G094	59.01 .21 .1	PARITY FOR B REGISTER POS 48-55	3	56	6-9
1 G095	51.30.15.1	B REGISTER POS 56-59 TO INDICATORS B120-B123	3	55	6-9
THROUGH		RESPECTIVELY			
1 G 098				57	12
1 G 099	59.01 .22 .1	PARITY FOR B REGISTER POS 56-59	3	56	12-1
$1 \mathrm{G100}$	51.30 .16 .1	B REGISTER POS 60-63 TO INDICATORS B124-B127	3	56	12-1
THROUGH		RESPECTIVELY			
1G103	59.01 .22 .1	PARITY FOR B REGISTER POS 60-63	3	57	11
1 H 023	61.02.75.1	MANTISSA ROUTING CONTROL	4	35	4
1 H 025	65.03.39.1	COUNTER EQUAL ZERO	3	62	12
1H027	65.03.39.1	COUNT TO ZERO	3	62	11
1H031	51.20 .01 .1	A REGISTER POS 00-07	3	41	12-5
THROUGH	AND				
1 H 038	51.20 .02 .1			46	2
1H039	59.01 .10 .1	PARITY FOR A REGISTER POS 00-07	3	46	2

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS

INDICATOR LOCATION	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	SCAN CARD NO.	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
1 H 040	51.20.03.1	A REGISTER POS 08-11	3	41	6-9
THROUGH 1H043					
1 H044	59.01.10.1	PARITY FOR A REGISTER POS 08-11	3	46	3
1H045	51.20.04.1	A REGISTER POS 12-15	3	42	12-1
$\begin{aligned} & \text { THROUGH } \\ & 1 \mathrm{H} 048 \end{aligned}$					
1H049	59.01.10.1	PARITY FOR A REGISTER POS 12-15	3	46	4
1H050	51.20.05.1	A REGISTER POS 16-23	3	42	2-9
THROUGH	AND				
1H057	51.20.06.1				
1H058	59.01.10.1	PARITY FOR A REGISTER POS 16-23	3	46	5
1H059	51.20.07.1	A REGISTER POS 24-31	3	43	12-5
THROUGH	AND				
1H066	51.20.08.1				
1 H 067	59.01.11.1	PARITY FOR A REGISTER POS 24-31	3	46	6
1H068	51.02.09.1	A REGISTER POS 32-39	3	43	6-9
THROUGH	AND				
1H075	51.20.10.1		3	44	12-1
1 H 076	59.01.11.1	PARITY FOR A REGISTER POS 32-39	3	46	7
1H077	51.20 .11 .1	A REGISTER POS 40-47	3	44	2-9
THROUGH	AND				
1H084	51.20.12.1				
1 H 085	59.01.11.1	PARITY FOR A REGISTER POS 40-47	3	46	8
1H086	51.20.13.1	A REGISTER POS 48-55		45	12-5
THROUGH	AND				
1H093	51.20.14.1				
1H094	59.01.11.1	PARITY FOR A REGISTER POS 48-55	3	46	9
1H095	51.20 .15 .1	A REGISTER POS 56-50	3	45	6-9
$\begin{aligned} & \text { THROUGH } \\ & \text { 1H098 } \end{aligned}$					
1H099	59.01.12.1	PARITY FOR A REGISTER POS 56-59	3	47	12
1H100	51.20 .16 .1	A REGISTER POS 60-63	3	46	12-1
THROUGH					
1 H 103					
1H104	59.01.12.1	PARITY FOR A REGISTER POS 60-63	3	47	11
1 J 045	54.60.03.1	SIGN OF AB REGISTER POS 00, 01, 02, 03	3	47	0-3
$\begin{aligned} & \text { THROUGH } \\ & 1.5048 \end{aligned}$					
1 J 049	54.60.04.1	SIGN OF AB REGISTER POS $04(\mathrm{~S})$, 05(T), 06(U), AND 07(V)	3	47	4-7
$\begin{aligned} & \text { THROUGH } \\ & \text { 1.J052 } \end{aligned}$					
1 J 055	54.16.01.1	READ OUT BIT ADDRESS AB POS $64,32,16,08,04$,	3	47	8-9
THROUGH		02 \& 01			
1 J 061			3	48	12-2
$\begin{aligned} & \text { 1J064 } \\ & \text { THROUGH } \end{aligned}$	54.16.02.1	WRITE IN BIT ADDRESS AB POS 64, 32, 16, 08, 04, 02 \& 01	3	48	3-9
$\begin{aligned} & \text { THROUGH } \\ & \text { 1J070 } \end{aligned}$		02 \& 01			
1 J 073	54.45.01.1	Left zeros count register pos 01-07 To	3	49	7-0
THROUGH		INDICATORS 64, 32, 16, 08, 04, 02 \& 01			
1J079			3	50	12-1
1J082	54.45.01.1	ALL ONES COUNT REGISTER POS 01-07 TO INDICATORS	3	61	12-4
$\begin{aligned} & \text { THROUGH } \\ & \text { 1J088 } \end{aligned}$		$64,32,16,08,04,02, \text { AND } 01 .$			
1 J093	45.01.01.1	RESIDUE OF AB REGISTER POS 12-59 EQUALS 2	3	40	12
1 J 094	45.01 .01 .1	RESIDUE OF AB REGISTER POS 12-59 EQUALS 1	3	49	11
1 J 095	45.01 .01 .1	RESIDUE OF AB REGISTER POS 60-63 EQUALS 2	3	40	0
1 J 098	45.01 .01 .1	RESIDUE OF AB REGISTER POS 60-63 EQUALS 1	3	49	1
1 J 097	45.01 .01 .1	RESIDUE OF AB REGISTER POS 64-107 EQUALS 2	3	49	2
1 J 098	45.01.01.1	RESIDUE OF AB REGISTER POS 64-107 EQUALS 1	3	49	3
1 J 101	59.06.03.1	AB RESIDUE REGISTER POS 2	3	49	4
1 J 102	59.06.03.1	AB RESIDUE REGISTER POS 1	3	49	5
1 J 103	59.06.03.1	AB RESIDUE REGISTER POS 0	3	49	6
$1 \mathrm{K016}$	38.22.16.1	NEXT SEL (U 4	2	60	1

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICATOR LOCATOR	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	SCAN CARD NO.	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
1 K 017	38.22.16.1	E BOX NEXT STORE 1	3	69	00
1 K 018	38.22.16.1	E BOX NEXT STORE 2	3	69	08
$1 \mathrm{K019}$	38.22.16.1	I BOX NEXT STORE 1	3	39	7
1 K 020	38.22.16.1	I BOX NEXT STORE 2	3	39	9
1 K 021	59.91.02.1	E BOX STORE	3	40	12
1 K 022	59.91 .01 .1	STORE REG NOT BUSY	3	64	3
1 K 023	59.91 .01 .1	STORE TIME 1	3	64	7
1 K 024	59.91 .01 .1	STORE REGISTER MEMORY REQUEST	3	64	8
1 K 025	59.91.02.1	WORD BOUNDARY CROSSOVER STORE	3	64	9
1 K 026	59.91 .02 .1	I BOX STORE	3	65	12
1 K 027	55.91 .03 .1	Store C REG EXTERNAL	3	65	11
1 K 028	59.91.03.1	STORE D REG EXTERNAL	3	65	00
1 K 029	59.91 .03 .1	STORE C TIME TGR	3	65	1
1 K 030	59.91.02.1	ZERO DIVISOR	3	65	2
1 K 033	59.90.01.1	STORE REGISTER POSITIONS	4	41	12-9
THROUGH	THROUGH	0-55	4	42	12-9
1 K 088	59.90.14.1		4	43	12-9
			4	44	12-9
			4	45	12-5
1 K 089	59.90.15.1	STOHE REGISTER POSITIONS 56-63	4	51	12-5
THROUGH	THROUGH				
1 K 096	59.90.16.1				
1K097	59.90.17.1	STORE REGISTER ECC BITS C0, C1, C2, C4, C8, C16,	4	51	6-9
THROUGH	THROUGH	C32, AND CT	4	52	12-1
$1 \mathrm{~K} 104$	59.90.18.1				
1 L 001	65.04.62.1	. 75 TRUE DIVISOR MULTIPLE	3	66	
1 L002	65.04.62.1	. 75 COMPLEMENT DIVISOR MULTIPLE	3	66	9
1 L 003	65.04.63.1	1.5 TRUE DIVISOR MULTIPLE	3	67	12
1 L004	65.04.63.1	1.5 COMPLEMENT DIVISOR MULTIPLE	3	67	11
1 L 005	65.04.92.1	1 TIMES TRUE DIVISOR MULTIPLE	3	67	0
1 L006	65.04.92.1	1 TIMES COMPLEMENT DIVISOR MULTIPLE	3	67	1
1 L 007	61.03.63.1	DIVIDE NORM-EXPONENT	3	67	2
1 L 008	61.03.64.1	DIVISOR STATUS TRIGGER	3	67	3
1 L 009	61.03.65.1	DIVIDEND STATUS TRIGGER	3	67	4
1 L 010	61.03.66.1	DIVIDE STATUS TRIGGER	3	67	5
1 L 011	61.03.67.1	ONE TIMES COMPLEMENT STATUS	3	67	6
1L012	61.03.69.1	SECOND DIVIDE CYCLE	3	67	
1 L013	61.03.70.1	DIVIDE COUNTER	3	67	8
1 L 014	61.03.71.1	FINAL DIVIDE	3	67	9
1 L 015	61.03.72.1	ZERO DIVIDEND	3	68	12
1 L 016	61.03.73.1	INTERCHANGE DIVIDE	3	68	11
1L017	61.03.75.1	DIVIDE RING D3CA	3	68	0
1 L 018	61.03.76.1	DIVIDE RING D3CB	3	68	1
1L019	61.03.77.1	DIVIDE RING D4	3	68	2
1 L020	61.03.45.1	MULTIPLY RING MC	3	68	3
1 L 021	61.03.51.1	MULTIPLY RING 1	3	68	4
1 L 022	61.03.52.1	MULTIPLY RING 2	3	68	
1 L 023	61.03.53.1	MULTIPLY RING 3	3	68	6
1 L 024	61.03.54.1	MULTIPLY STATUS	3	68	7
1 L 025	61.03.56.1	ONE TIMES MULTIPLICAND	3	68	8
1 L026	61.03.55.1	SHIFT RIGHT 12	3	68	9
1 L 027	61.03.57.1	GATE S AND T REGISTER TO PAU ADDER		69	12
1 L 028	61.03.58.1	CUMULATIVE MULTIPLY		69	11
1 L 030	61.03.60.1	CUMULATIVE MULTIPLY PRESHYT EXPONENT	3	69	1
1L031	61.81.66.1	GATE 61-63 TRIGGER * EX	3	69	2
1 L032	61.80.56.1	HIGH ORDER SHIFTER TRUE TO ADDRESS 0-49	3	69	3
1 L 033	61.80.57.1	LOW ORDER SHIFTER TRUE TO ADDRESS 50-97		69	4
1L034	61.80.58.1	COMPLEMENT SHIFTER TO ADDER		69	5
1 L 035	62.29.05.1	F REGISTER FRACTION IS ZERO	3	69	6
1L036	61.02.60.1	PRESHIFT \& ADD		69	7
1 L 038	61.02.76.1	EXPONENT ROUTING CONTROL		69	9
1 L039	61.02.78.1	EXPONENT SAMPLE	3	70	12
1 L 040	61.02.63.1	NORM EXPONENT	3	70	11
1 L041	61.02.64.1	NORM MANTISSA		70	0
1 L042	61.02.67.1	PERFORM AUGMENT		70	1
1 L 045	65.04.91.1	INCREMENTS EXPONENTS C, 4, 2, AND 1	3	0	4-7
$\begin{aligned} & \text { THROUGH } \\ & 1 \text { L048 } \end{aligned}$					
1 L 051	65.03.30.1	SHIFT COUNTER POS S, 64, 32, 16, 8, 4, 2, AND 1		19	6-9
THROUGH	65.03.17.1			20	12-1
1L058	65.03 .16 .1 65.05 .01 .1			26	11-4
1L061 THROUGH	65.05.01.1 THROUGH	LEFT SHIFT 6, 5, 4, 3, 2, AND 1 INDICATORS		26	$11-4$
1 L 066	65.05.06.1				
1 L 067	65.05.07.1	ZERO SHIFT INDICATOR		26	
1 L 068	65.05,08.1	RIGHT SHIFT 1, 2, 3, 4, AND 8 INDICATORS		26	6-9
THROUGH	AND				
1 L 072	65.05.12.1			27	
1 L 075	61.01 .07 .1	EXECUTE REGISTER POS 18	3 3	27	11
1 L 076	61.01.08.1	EXECUTE REGISTER POS 19	3	27	0

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICATOR LOCATION	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	$\begin{aligned} & \text { SCAN } \\ & \text { CARD } \end{aligned}$ NO。	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
1 L 077	61.01.08.1	EXECUTE REGISTER POS 20	3 3	27	$\begin{aligned} & 1 \\ & 2-6 \end{aligned}$
1 L078	61.01.08.1	EXECUTE REGISTER POS 21-25			
THROUGH	THROUGH				
1 L082	61.01 .10 .1		3	27	7
1 L085	66.30.17.1	COMPLEMENT GROUP 4	3	27	8-9
1 L086	66.20.01.1	8, 6, 4, OR 2 TIMES MPCND - GROUP 4	3	28	12-11
THROUGH 1L089			3	28	0
1 L 090	66.30.19.1	COMPLEMENT GROUP 3	3	28	1-4
1 L 091	66.20.02.1	8, 6, 4, OR 2 TIMES MPCND - GROUP			
THROUGH					
1 L 094			3	28	5
1 L095	66.30.21.1	COMP LEMENT GRO 2 TIMES MPCND - GROUP 2	3	28	6-9
1 L096	66.20.03.1	8, 6, 4, OR 2 TMMES MPCND - GROUP 2			
THROUGH					
1 L 099 1 L 100	66.30 .23 .1	COMPLEMENT GROUP 1	3	29	12
1 L 100 1 L 101	66.30 .23 .1 66.20 .04 .1	8, 6, 4, OR 2 TIMES MPCND - GROUP 1	3	29	11-2
THROUGH					
$1 \mathrm{L104}$		WRITE EXPONENT INTO A	3	9	8
1 M 001 1 M 002	61.02.93.1 61.02 .93 .1	WRITE EXPONENT INTO A	3	9	9
1 M 002 1 M 003	61.02 .93 .1 61.02 .94 .1	WRITE EXPONENT INTO C	3	10	12
1 M 004	61.02 .95 .1	WRITE EXPONENT INTO D	3	10	11
1 M 005	61.02.36.1	PROPAGATE FLAG	3	10	1
1 M 006	61.02 .65 .1	TX	3	29	3
1 M 007	61.02.66.1	SSQ SIGNAL TO VFL	3	29	4
1 M 008	61.03 .80 .1	VFL DIVISOR	3	29	5
1 M 009	61.02 .71 .1	NOT PHASE SAMPLE TEST COMPLETE	3	29	6
$1 \mathrm{M010}$	61.02 .73 .1	INTERRUPT	3	29	7
$1 \mathrm{M011}$	61.02 .68 .1	OVERFLOW	3	29	8
1 M 012	61.02 .68 .1	COMPLEMENT RESULT	3	29	9
1 M 013	61.02.82.1	BIT ADDRESS CD 64 IS ON	3	30	12
1 M 014	61.02.77.1	SHIFT EQUAL OR GREATER THAN 96	3	30	11
1 M 015	61.02 .77 .1	SHIFT GREATER THAN 48	3	30	0
1 M 016	61.01 .55 .1	EXPONENT PARITY	3	30	1
1 M 017	61.01 .79 .1	AUGMENT ON PARTIAL FIELD BUFFER SIGN	3	39	0
1 M 018	61.02.69.1	BUFFER SIGN	3	39	1
1 M 019	61.03 .02 .1	SHIFT REMEMBERED A	3	39	2
1 M 020	61.03 .02 .1	SHIFT REMEMBERED B	3	39	3
1 M 021	65.04.95.1	QUOTIENT CONTROL	3	39	4
1 M 022	61.04 .20 .1	TEST COMPLETE-EXECUTE TEST	3	- 39	5
$1 \mathrm{M023}$	61.04 .20 .1	TEST COMPLETE-LOOK AHEAD TEST	3	39	6
1 M 024	61.04 .20 .1	TEST COMPLETE-BUS TEST	3	39	8
1 M 026	61.04 .21 .1	MASTER TEST COMPLETE FP EXTERNAL STORE	3	40	11
$1 \mathrm{M029}$	61.01.55.1	FP EXTERNAL STORE	3	40	0
1M030	61.01 .50 .1	FIRST CYCLE TRIGGER	3	40	1
1 M 031	61.01.56.1	FLOATING POINT WAIT	3	65	9
1 M 032	61.01 .57 .1	INTERRUPT END OPERATION END OPERATION	3	66	12
$1 \mathrm{M033}$	61.02 .99 .1	END OPERATION	3	66	11
1 M 034	61.01 .78 .1	INDICATOR LATCH	3	66	0
1M035	61.01 .78 .1	INDICATOR EXPONENT LATCH T0.T1.T2.T3,T4.TB. AND TC RLNG TRIGGERS	3	66	1-7
1 M 036	61.02.50.1	T0.T1.T2.T3,T4.TB. AND TC RLNG TRIGGERS	3	66	
THROUGH	THROUGH				
1 M 042	61.02.57.1		3	31	12-9
$1 \mathrm{M044}$	68.10.03.1	CARRY REGISTER POS 01-61	3	32	12-9
THROUGH	THROUGH		3	33	12-9
1 M 104	68.10.61.1		3	34	12-9
			3	35	12-9
			3	36	12

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'a)

INDICATOR LOCATOR	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	$\begin{aligned} & \text { SCAN } \\ & \text { CARD } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
	68.10.01.1	SUM REGISTER POS 01-61	3	21	12-9
1N044	68.10.01.1	SUM REGISIER POS 01-61	3	22	12-9
THROUGH	THROUGH		3	23	12-9
1N104			3	24	12-9
			3	25	12-9
			3	26	12
1 P 001	64.51.05.1	ADDER OUTPUT POS P	3	11	12
1 P 002	61.02.68.1	ADDER OUTPUT POSITION 00	3	11	11
1 P 003	64.56.03.1	ADDER OUTPUT POSITION 01	3	11	0
1 P 004	64.56.03.1	ADDER OUTPUT POSITION 02	3	11	1
1 P 005	65.04.25.1	ADDER OUTPUT POS 03-06	3	11	2-5
THROUGH	65.04 .24 .1		3		
1 P 008	65.04.23.1		3	11	6-9
1 P 009	64.56.02.1	ADDER OUTPUT POS 07-18	3	12	12-5
THROUGH	AND ${ }^{\text {64.56.01.1 }}$		3		
1 P 021	64.46.03.1	ADDER OUTPUT POS 19-38	3	12	6-9
THROUGH	64.46.02.1		3	13	12-9
1 P 040	64.46.01.1		3	14	12-1
1 P 041	64.36.04.1	ADDER OUTPUT POS 39-58	3	14	2-9
THROUGH	THROUGH		3	15	12-9
1 P 060	64.36.01.1	ADDER OUTPUT POS 59-78	3	16	12-5
1 P 061	64.26.04.1	ADDER OUTPUT POS 59-78	3	17	12-5
THROUGH 1 P 080	THROUGH		3		
1 P 081	64.16.05.1	ADDER OUTPUT POS 79-98	3	17	6-9
THROUGH	TH ROUGH		3	18	$12-9$ $12-1$
1 P 100	64.16 .01 .1	ADCER OUTPUT POS 99-102	3	19	2-5
1P101	64.66.01.1	ADEER OUTPUT POS 99-102	3		
THROUGH			3		
1Q002	62.20.01.1	F REGISTER POS 00-101	3	1	12-9
THROUGH	THROUGH		3	2	12-9
1Q103	62.20.99.1		3	3	12-9
			3	5	12-9
			3	6	12-9
			3	7	12-9
			3	ε	12-9
			3	9	12-3
2 A 005	11.03,02.1	INITLAL RESET TGR	4	45	1 i
2 A 008	11.04 .01 .1	1 CLOCK PULSE	4	45	2
2 A 009	11.04 .01 .1	2 CLOCK PULSES	4	45	3
2 A 010	11.04 .01 .1	3 CLOCK PULSES	4	45	$\stackrel{4}{4}$
2 A011	11.04 .01 .1	START SYNC A TGR	4	45	$\stackrel{\sim}{2}$
2 A012	11.04.01.1	START SYNC B IGR		64	4
2A013	11.04.02.1	STOP SYNC A TGR	4	64	5
2.4014	11.04.02.1	STOP SYNC B TGR	4	64	6
2A016	11.04.02.1	AXXB MODE CLOCK CONTROLS	4	64	8
2A017	11.03.01.1	ALLOW MEM BUS CLOCK CTL TGR	4	64	12
2 A 018	11.03 .01 .1	INHIBIT DELAYED A-B CLOCK CTL TGR	4	65	11
2A019	11.03.01.1	INHIBIT ABAB CLOCK CTL TGR	4	65	0
2 AO 20	11.03.01.1	B NEXT CLOCK CTL TGR	1	1	12-9
2A029	23.11.01.1	X REGISTER POS 00-17	1	2	12-3
THROCGH	TH ROUGH				
2 A 046	23.11 .09 .1		1	6	2
2 A 047	23.11 .10 .1	X REGISTER PARITY X REGISTER POS 18-23	1	2	4-9
THROL ${ }^{\text {a }}$ (${ }^{\text {a }}$	THROUGH				
2 A 053	23.11.13.1				

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICATOR LOCATOR	$\begin{aligned} & \text { TRIGGER } \\ & \text { LOCATION } \\ & \text { (ALD PAGE) } \end{aligned}$	DESCRIPTIVE TITLE	SCAN CARD NO.	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
2A054	23.11.13.1	X REGISTER PARITY 18-23	1	6	3
2A055	23.11.14.1	X REGISTER POS 24-27	1	3	12-1
THROUGH	AND				
2A058	23.11.15.1				
2A059	23.11.16.1	X REGISTER PARITY 24-27	1	6	4
2A060	23.11.17.1	X REGISTER POS 28-31	1	3	2-5
THROUGH	AND				
2A063	23.11.18.1				
2A064	23.11.18.1	X REGISTER PARITY 28-31	1	6	5
2A065	23.11.01.1	X REGISTER POS 32-49	1	3	6-9
THROUGH	THROUGH		1	4	12-9
2 A 082	23.11.09.1		1	5	12-11
2A083	23.11.10.1	X REGISTER PARITY 32-49	1	6	6
2A084	23.11.19.1	X REGISTER PARITY 46-49	1	6	7
2A085	23.11.10.1	X REGISTER POS 50-55	1	5	0-5
THROUGH	THROUGH				
2A090	23.11.13.1				
2A091	23.11.13.1	X REGISTER PARITY 50-55	1	6	8
2A092	23.11.14.1	X REGISTER POS 56-59	1	5	6-9
THROUGH	AND				
2 A 095	23.11.15.1				
2 A096	23.11.16.1	X REGISTER PARITY 56-58	1	6	9
2 A 097	23.11.16.1	X REGISTER POS 60-63	1	6	12-1
THROUGH	THROUGH				
2A100	23.11.18.1				
2A101	23.11.18.1	X REGISTER PARITY 60-63	1	7	12
2B001	13.05.01.1	MEMORY A 0 BUSY TGR	4	42	5
2B002	13.05.02.1	MEMORY A 1 BUSY TGR	4	42	6
2B005	13.05.01.1	MEMORY B 0 BUSY TGR	4	42	9
2B006	13.05.01.1	MEMORY B 1 BUSY TGR	4	43	12
2B007	13.05.02.1	MEMORY B 2 BUSY TGR	4	43	11
2B008	13.05.02.1	MEMORY B 3 BUSY TGR	4	43	0
2B028	25.01.01.1	Z REGISTER POS 00-17	1	31	12-9
THROUGH	THROUGH		1	32	12-3
2B045	25.01.05.1				
2B046	25.01.05.1	Z REGLSTER PARITY 00-17	1	36	2
2B047	25.01.05.1	2 REGISTER POS 18	1	32	4
2B048	25.01.04.1	Z REGISTER PARITY 12-18	1	36	3
2B049	25.01.05.1	Z REGISTER POS 19-23		32	5-9
THROUGH	AND				
2B053	25.01.06.1				
2B054	25.01.07.1	Z REGISTER PARITY 19-23	1	36	4
2B055	25.01.07.1	Z REGISTER POS 24-27	1	33	12-1
THROUGH					
2B058					
2 B 059	25.01.09.1	Z REGISTER PARITY 24-27	1	33	2-5
2B060	25.01.07.1	Z REGISTER POS 28-31	1	33	2-5
THROUGH	AND				
$2 \mathrm{B063}$	25.01.08.1				
2B064	25.01.08.1	Z REGISTER PARITY 28-31	1	36	6
2B065	25.01.08.1	Z REGISTER POS 32-40	1	33	6-9
THROUGH	THROUGH		1	34	12-2
2B073	25.01.10.1				
2B074	25.01.10.1	Z REGISTER PARITY 35-40	1	36	7
2B075	25.01.11.1	Z REGISTER POS 41-49	1	34	3-9
THROUGH	AND		I	35	12-11
2B083	25.01.12.1				
2B084	25.01.12.1	Z REGISTER PARITY 32-49	1	36	8
2B085	25.01.13.1	Z REGISTER POS 50-55	1	35	0-5
THROUGH	AND				
2B090	25.01.14.1				

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICATOR LOCATION	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	SCAN CARD NO.	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
2B091	25.01.14.1	Z REGISTER PARITY 50-55	1	36 35	$\begin{aligned} & \theta \\ & 6-\theta \end{aligned}$
2B092	25.01.14.1	Z REGISTER POS 56-59			
THROUGH	AND				
2B095	25.01.15.1		1	37	12
2B096	25.01 .15 .1 25.01 .15 .1	Z REGISTER PARITY 56-59 Z REGISTER POS 60-63	1	36	12-1
2B097	25.01.15.1				
THROUGH 2B100			1	37	11
2B101	25.01.15.1	Z REGISTER PARITY 60-63	1	37	0-2
2B102	25.01.16.1	PROGRESSIV E INDEXING REGISTER PO8 00-02			
THROUGH					
2 C 001	12.09.01.1	BX MEMORY REQUEST TGR	1	59	9
2 C 002	12.09.01.1	HX MEMORY REQUEST TGR	1	60	12
$2 \mathrm{C003}$	12.09.01.1	LA STORE MEMORY REQUEST TGR	1	60	11
2C004	12.09.01.1	I FETCH MEMORY REQUEST TGR	1	60	0
2C009	16.04.01.1	BOUNDARY REGISTER COMPARE ERR	4	55	4
2 C 011	17.08.01.1	RETURN ADDRESS PARITY ERR	1	62	7
2 C 014	14.02.01.1	BX STORE ADDRESS ERR	1	54	8
2 C 015	14.02.01.1	HX STORE ADDRESS ERR	1	54	9
2C016	14.02.01.1	LA STORE ADDRESS ERR	1	55	12
2C018	15.01.03.1	GATE 1 TGR	1	55	11
2C019	15.01.03.1	GATE NEXT TGR	1	55	0
2 C 020	15.01.03.1	GATE 2 TGR	1	55	1
2C021	15.01.03.1	STAR BUSY TGR	1	42	7-9
2C028	21.05.01.1	INSTR UCTION COUNTER ADDER OURPUT POS 00-16	1	43	12-8
THROUGH	AND		1	44	12-11
2 C 044	21.05 .02 .1	INSTR COUNTER ADDER OUTPUT PARITY 00-16	1	44	0
2 C 045	21.04 .08 .1	INSTR COUNTER ADEISTER CONTROL BIT 57	4	62	7
$2 \mathrm{CO53}$	31.01 .58 .1 31.0159 .1	U/L BOUNDARY REGISTER ERROR INJECT BIT 58	4	62	8
2 C 054	31.01 .59 .1 31.02 .09 .1	U/L BOUNDARY REGGISTER PARITY ON BIT 57	4	62	9
2 C 055	31.02 .09 .1	LOWER BOUNDARY REGISTER POS 32-39	4	61	12-6
2C057	31.01.33.1	LOWER BOUNDARY REGISTER POS 32-39			
THROUGH	THROUGH				
2C064	31.01.40.1	LOWER BOUNDARY REGISTER PARITY 32-39	4	62	4
2C065	31.03 .06 .1	LOWER BOUNDARY REGISTER POS 40-47	4	61	6-8
2C066	31.01.41.1	LOWER BOUNDARY REGISTER POS			
THROUGH	THROUGH		4	62	12-1
2 C 073	31.01.48.1	LOWER BOUNDARY REGISTER PARITY 40-47	4	62	5
$2 C 074$ 2 C 075	31.02 .07 .1 31.01 .49 .1	LOWER BOUNDARY REGISTER POS 48	4	62	2
$2 C 075$ $2 C 076$	31.01 .49 .1 31.01 .50 .1	LOWER BOUNDARY REGISTER POS 49	4	62	3
2C076	31.01 .50 .1	LOWER BOUNDARY REGISTER PARITY 48-40	4	62	6
2C077	31.02 .08 .1	W REGISTER POS 00-17	1	44	1-9
2C085	26.01.01.1	W Register Pos 00-17			
THROUGH	THROUGH		1	45	12-6
2 C 102	26.01.05.1	W REGISTER PARITY 00-17	1	45	7
2 C 103	26.01.05.1	LOOKAHEAD ADDRESS REGISTER 2	4	53	9
2D001	15.02.01.1	LOOKAHEAD ADD $0-18$	4	54	12-9
THROUGH	THROUGH	POSITIONS 0-16	4	55	12-3
2D019	15.02.05.1		1	41	12-9
2D028	21.01.01.1	INSTRUCTION COUNTER REGISTER POS 00-10			
THROUGH	THROUGH		1	42	12-
2 D 044	21.01.05.1	INSTRUCTION COUNTER REGISTER PARITY 00-16	1	42	5
2 D 045	21.01.05.1	INSTRUCTION COUNTER REGISTER POS 17	1	42	3
2D046	21.01.06.1	INSTRUCTION COUNTER REGISTER POS 18	1	42	4
2D047	21.01.06.1	INSTRUCTION COUNTTER REGISTER PARITY 17-18	1	42	6
2D048	21.01.06.1	UNIT ADDRESS REGISTER PARITY 12-15	4	34	1
2 D 054	37.52.15.1	UNIT ADDRESS REGISTER PARITY 16-23	4	34	2
2 D 055	37.52 .23 .1 31.01 .01 .1	UPPER BOUNDARY REGISTER POS 00-07	4	63	12-5
2D057	31.01.01.1	UPPER BOUNDARY REGISTER POS 00-01			
THROUGH	THROUGH				
2D064	31.01 .08 .1		4	64	4
2 D 065	31.02 .01 .1	UPPER BOUNDARY REGISTER PAR	4	63	6-8
2D066	31.01.09.1	UPPER BOUNDARY REGISIER POS 08-11			
THROUGH	THROUGH	Serial Numbers 30,003-30,005			
2D069	31.01.12.1	- Serial Numbers 30,03-30,00			

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICATOR LOCATION	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	$\begin{aligned} & \text { SCAN } \\ & \text { CARD } \end{aligned}$ NO.	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
2D070	31.02.02.1	UPPER BOUNDARY REGISTER PARITY 08-11	4	64	5
2D071	31.01.13.1	UPPER BOUNDARY REGISTER POS 12-15	4	64	
THROUGH	THROUGH				
2 D 074	31.01 .16 .1		4	64	6
2 D 075	31.02 .03 .1	UPPER BOUNDARY REGISTER PARITY 12-15 UPPER BOUNDARY REGISTER POS 16	4	64	2
2D076	31.01 .17 .1 31.01 .18 .1	UPPER BOUNDARY REGISTER POS 16 UPPER BOUNDARY REGISTER POS 17	4	64	3
2D078	31.02.04.1	UPPER BOUNDARY REGISTER PARITY 16-17	4	64	7
2 D 085	27.11.07.1	INDEX ADDER BLOCK 6 ERROR POS 03-00, EAC, 23	1	45	8
2D086	27.11.07.1	INDEX ADDER BLOCK 5 ERROR POS 07-03	1	45	9
2D087	27.11.07.1	INDEX ADDER BLOCK 4 ERROR POS 11-07	1	46	12
2D088	27.11.07.1	INDEX ADDER BLOCK 3 ERROR POS 15-11	1	46	11
2D089	27.11.07.1	INDEX ADDER BLOCK 2 ERROR POS 15-19	1	46	0
2D090	27.11.07.1	INDEX ADDER BLOCK 1 ERROR POS 19-23	1	46	1
2D091	27.11.07.1	INSTRUCTION COUNTER ADDER ERROR	1	46	2
2 D 092	27.04.03.1	INDEX ADDER BYPASS ERROR	1	46	3
2D093	21.04.07.1	INSTRUCTION COUNTER SUM OR GATING ERROR	1	46	4
2D094	21.04.07.1	INSTRUCTION COUNTER 0-16 CARRY ERROR	1	46	6
2D095	21.04.07.1	INSTRUCTION COUNTER 17-18 ERROR	1	46	6 8
2 D 097	24.00.03.1	INDEX ADDRESS CHECK		46	
2D100	26.04.05.1	LOAD GEOMETRIC ADDRESS REGISTER POS 00-03	1	46	9
THROUGH 2 D103				47	12-0
2D104	20.04 .05 .1	LOAD GEOMETRIC ADDRESS REGISTER PARITY 00-03	1	47	1
2E001	15.02.01.1	LOOKAHEAD ADDRESS REGISTER 1	4	53	2-9
THROUGH	THROUGH	POSITIONS 0-18	4	53	12-8
2D019	15.02 .05 .1		4	33	6-9
2E049	37.52.12.1	UNIT ADDRESS REGISTER POS 12-18	4		
THROUGH	THROUGH		4	34	12-0
2 E 055	37.52 .18 .1		1	65	
$\xrightarrow[\text { 2F001 }]{\text { THROUGH }}$	34.03.51.1	$08-11,12-15,16-23,24-31,32-39,40-47,48-55,56-59 \text {, }$	1	66	12-6
$2 \mathrm{F010}$	34.03.52.1	AND 60-63.	1	66	7-9
$2 \mathrm{F011}$	34.03.52.1	GENERATED PARITY (NOT INPUT PARITY) POS 00-17,	1	67	12-0
$\begin{aligned} & \text { THROUGH } \\ & 2 \text { F016 } \end{aligned}$		18-23, 24-27, 28-31, 32-49, AND 50-55.	4	15	12-5
2 F 018	34.03.41.1	GENERATED ECC (NOT INPUT ECC) POS C0, C1, C2, C4,	4	15	12-5
THROUGH	THROUGH	C8, C16, C32 AND CT			
2 F 025	34.03.44.1			68	7-9
2 F 028	15.02.01.1	STORAGE ADDRESS REGISTER	1	69	12-9
THROUGH	THROUGH	POSITIONS 0-18	1	70	12-1
2 F 046	15.02.05.1		4	33.	2
2 F 049	37.22.20.1	MASK REGISTER PARITY 20-23	4	33	2
2 F 050	37.22.24.1	MASK REGISTER PARITY 24-31	4	33	4
2 F 051	37.22 .32 .1	MASK REGISTER PARITY 30-39	4	33	5
$2 \mathrm{F052}$	37.22 .40 .1 37.22 .20 .1	MASK REGISTER POS 20-47	4	31	12-9
THROUGH	37.22.24.1	MASK REGISTER POS 20-47	4	32	12-9
2 F080	37.22.32.1		4	33	12-1
	37.22.40.1		2	68	
2 F 083	32.01.01.1	INSTRUCTION COUNTER BUFFER POS 00-16	2	69	12-9
THROUGH	THROCGH				
2 F 099	32.01 .17 .1 32.0120 .1	INSTRUCTION COUNTER BUFF PARITY POS 00-16	2	70	0
2F100	32.01.20.1				

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICATOR IOCATOR	TRIGGER LOCATION AID PAGE)	DESCRIPTIVE TITIE	$\begin{aligned} & \text { SCAN } \\ & \text { CARD } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	CARD ROW (T TOB)
		INSTRUCTION COUNTER BUFFER POS 17	2	70	12
2 F 101	32.01.18.1	INSTRUCTION COUNTER BUFFER POS 18	2	70	11
${ }_{2}{ }^{2 F 102}$	32.01 .19 .1 32.01 .21 .1	INSTRUCTION COUNTER BUFF PARITY POS 17-18	2	70	1
$2 \mathrm{GOO1}$	34.01 .51 .1	I CHECKER ${ }^{\text {IN-BUS POS 64-73 }}$	4	24 25	6-9 $12-3$
THROLGH	THROUGH				
$2 \mathrm{GO10}$	34.01 .53 .1		4	25	4
2 GO 12	34.07.53.1	I CHECKER GENERATED RESSIDE EQUALS 1	4	25	5
2 CO 13	34.07 .53 .1 34.08 .51 .1	I CHECKER GENERANENT ECC ERROR TRIGGER	4	34	6
$2 G 015$ 20016	34.08.51.1	I CHECKER TEMPORARY ECC ERROR TRIGGER	4	34	7
2 GO 17	34.08.51.1	I CHECKER PERMANENT LA PARITY ERROR TRIGGER	4	34	8
20018	34.08.51.1	I CHECKER PERMANENT I PARITY ERROR TRIGGER	4	35	12
2 G 019	34.08.51.1	I CHECKER UNCORRECTABLE ECC ERROR TRIGGER	4	35	11
$2 \mathrm{GO21}$	34.08 .21 .1	I CHECKER CHECK ECC TRIGGER	4	35	0
20022	34.08.21.1	I CHECKER CHECKER CHECK I PARITY TRIGGER	4	35	1
2G023	34.08 .21 .1 34.08 .31 .1	1 I CHECKER CHER GENERATE PARITY TRIGGER	4	35	2
2G024	34.08 .31 .1 37.12 .00 .1	IND REG POS $00-\mathrm{MK}$ MACHINE CHECK	4	13	2
2 CO 04	37.12 .00 .1 37.12 .00 .1	IND REG POS 01 -IK INSTRUCTION CHECK	4	13	3
2 G 035	37.12.02.1	IND REG POS 02-IJ INSTRUCTION REJECT	4	13	4
2 G036	37.12.02.1	IND REG POS 03-EK EXCHANGE CNTRL CHK			6
2 CO 37	37.12.04.1	IND REG POS 04-TS TIME SIGNAL	4	! 3	7
2 G 038	37.12.04.1	IND REG POS 05-CPUS CPU SIGNAL	4	13	8
2 G 039	37.12.06.1	IND REG POS 06-EKJ EX UNIANGE N REG POS 07 -UNRJ UNIT NOT READY REJECT		13	9
2G040	37.12 .06 .1 37.12 .08 .1	IND REG POS 08-CBJ CHANNEL BUSY REJECT	4	14	12
2 G 041	37.12 .08 .1 37.12 .08 .1	IND REG POS 09-EPGK EXCHANGE PROGRAM CHECK	4	14	11
2 GO 043	37.12.10.1	IND REG POS 10-UK UNIT CEECK	4	14	0
2G044	37.12.10.1	IND REG POS 11-EE END EXCEPTION	4	14	1
26045	37.12.12.1	IND REG POS 12-EOP END OF OPERATION		4	3
2 GC 46	37.12.12.1	IND REG POS 13-CS CHANNEL SIGNAL		14	4
$2 \mathrm{G}, 47$	37.12.14.1	IND REG POS 14 RESERVED ${ }^{\text {IND REG POS } 15-O P \text { OPERATION CODE INV }}$		14	5
2 GO 48	37.12.15.1	IND REG POS 15-OP OPERATIONVADE INVALID	4	14	6
$2 \mathrm{CO49}$	37.12.15.1	IND REG POS 16-AD ADDRESED SEQ OF ADDRESSES	4	14	7
2 GO 51	37.12.17.1 37.12 .17 .1	IND REG POS 18-EXE EXECUTE EXCEPTION	4	14	8
$2 \mathrm{GO52}$	37.12.19.1	IND REG POS 19-DS DATA STORE	4	14	9
2 G 053	37.12 .19 .1	IND REG POS 20-DF DATA FETCH		21	11
26054	37.12.21.1	IND REG POS 21-IF INSTRUCTION FETCH		21	0
2 G 055	37.12 .21 .1	IND REG POS 22-LC LOST CARRY	4	21	1
2G056	37.12.23.1	IND REG POS 23-PF PARTLALIVOL	4	21	2
$2 \mathrm{GO57}$	37.12 .23 .1 37.12 .25 .1	IND REG POS INS 25 -IR IMAGINARY ROOT	4	21	3
$2 \mathrm{CO58}$	37.12.25.1	IND REG POS 26-LS LOST SIGNIFICANCE	4	21	4
$2 \mathrm{GO59}$	37.12 .25 .1 37.12 .27 .1	IND REG POS 27-PSH PREP SHIFT MORE THAN 48	4	21	5
$2 \mathrm{CO61}$	37.12.27.1	EXPONENT FLAG	4	21	6
2 G 062	37.12.27.1	EXPONENT OVERFLOW	4	21	8
2GO63	37.12.30.1	EXPONENT HIGH	4	21	9
2 G 064	37.12.30.1	EXPONENT LOW	4	22	12
2 G 065	37.12.30.1	EXPONENT UNDERFLOW	4	22	11
$2 \mathrm{CO66}$	37.12.30.1	ZERO MEG POS 34-RU REMAINDER UNDERFLOW	4	22	0
2 G 067	37.12.34.1	IND REG POS 35-TF DATA FLAG T	4	22	1
2 CO 09	37.12.36.1	IND REG POS 36-UF DATA FLAG U	4	22	2
2 G 070	37.12.36.1	IND REG POS 37-VF DATA FLAG V	4	22	3
2 G 071	37.12.38.1	IND REG POS 38-XF INDEX FIAG	4	22	5
2 G 072	37.12.38.1	IND REG POS 39-BTR BINARY TRANSIT	4	22	6
2 O 073	37.12 .40 .1 37.12 .40 .1	IND REG POS 40-DTR DECIMAL TRANIT IND REG POS 41-PG0 PROGRAM NDICATOR 0	4	22	7
2G074	37.12.40.1	IND REG POS 42-PG1 PROGRAM INDICATOR 1	4	22	8

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICATOR LOCATION	$\begin{aligned} & \text { TRIGGER } \\ & \text { LOCATION } \\ & \text { (ALD PAGE) } \end{aligned}$	DESCRIPTIVE TITLE	$\begin{aligned} & \text { SCAN } \\ & \text { CARD } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
2G076	37.12.40.1	IND REG POS 43-PG2 PROGRAM INDICATOR 2	4	22	9
2 G 077	37.12.44.1	IND REG POS 44-PG3 PROGRAM INDICATOR 3	4	23	12
2 G 078	37.12.44.1	IND REG POS 45-PG4 PROGRAM INDICATOR 4	4	23	11
$2 \mathrm{GO79}$	37.12.44.1	IND REG POS 46-PG5 PROGRAM INDICATOR 5	4	23 23	1
2G080	37.12.44.1	IND REG POS 47-PG6 PROGRAM INDICATOR 6	4	23	2
2G081	37.12.48.1	IND REG POS 48-XCZ INDEX COUNT ZERO	4	23	3
2 G 082	37.12.48.1	IND REG POS 49-XVLZ INDEX VALUE LESS THAN 0 IND REG POS 50-XVZ INDEX VALUE ZERO	4	23	4
2G083	37.12.48.1	IND REG POS seg 51-XVGZ INDEX VALUE MORE THAN 0	4	23	5
2G084	37.12.51.1	IND REG POS 52-XL INDEX LOW	4	23	6
2G086	37.12.53.1	IND REG POS 53-XE INDEX EQUAL	4	23	7
2G087	37.12.53.1	IND REG POS 54-XH INDEX HIGH	4	23	8
2G088	37.12.55.1	IND REG POS 55-MOP TO MEMORY OPERATION	4	24	12
2G089	37.12.55.1	IND REG POS 56-RLZ RESULT LESS THAN ZERO	4	24	11
2G090	37.12.57.1	IND REG POS 57-RZ RESULT ZERO	4	24	0
2G091	37.12.57.1	IND REG POS 58-RGZ RESULT MORE THAN ZERO	4	24	1
2G092	37.12 .59 .1 37.12 .59 .1	IND REEG POS 60-AL ACCUMULATOR LOW	4	24	2
2G093	37.12.61.1	IND REG POS 61-AE ACCUMULATOR EQUAL	4	24	3
2G095	37.12.62.1	IND REG POS 62-AH ACCUMULATOR HIGH	4	24	4
2G096	37.12.62.1	IND REG POS 63-NM NOISY MODE	4	24	5
2H029	31.01.01.1	LA LEVEL 4 OPERAND FIELD POS 00-75	2	31	12-9
THROUGH	THROUGH		2	32	12-9
2H104	31.01.64.1		2	34	12-9
	31.02.01.1		2	35	12-9
	IHROUGH		2	36	12-9
	31.29 .01 .1		2	37	12-1
	AND				
	31.29.02.1				
2 J 009	38.23.05.1	SAU START TRIGGER	1	67	2
2 J 010	38.23.04.1	SAU GO TRIGGER	1	67	3
2 J 011	38.23.04.1	SAU INSTRUCTION REJECT TRIGGER	1	67	3
2 J 012	38.34.02.1	SAU ENABLED MEMORY TRIGGER	1	67	5
2 J 013	38.35.06.1	EXECUTION UNIT IND TEST E TGR TO PAU	1	67	5
2 J 014	38.39.05.1	INSTRUCTION UNIT HOUSECLEAN REQUEST TRIGGER	1	67	9
2 J 017	38.24.01.1	EXECUTION UNIT FIRST CYCLE MEMORY TRIGGER	1	67	9
2 J 018	38.24.03.1	SAU WAIT FOR MCND TGR SAU MPYC	1	68	12
25019	38.24.02,1	EXECUTION UNIT LAST CYCLE STORE TRIGGER	1	68	11
2 J 021	38.39.04.1	EXECUTION UNITS IDLE TRIGGER	1	68	1
2 J 022	38.24.03.1	BR TEST RESULT IX TGR - BR UNSUCC - NOPD	1	68	2
2 J 023	38.24.03.1	BR TEST RESULT X1 TGR - BR SUCC	1	68	3
2J024	38.25.03.1	EXCHANGE UNIT REACTION STORAGE TRIGGER	1	68	4
2 J 025	38.25.03.1	EXCHANGE RESPONSE BUFFER TRIGGER	1	$\checkmark 68$	5
2 J 026	38.25 .03 .1	EXCHANGE RESPONSE TRIGGER	1	68	6
2 J 032	38.01.05.1	IAUC COUNTER POS 4 TRIGGER	2	38	11
2 J 033	38.11.05.1	OCC COUNTER POS 4 TRIGGER	2	38	0
2J034	38.21.02.1	TBC COUNTER POS 4 TRIGGER	2	38	1
2 J 035	38.31.02.1	ABC COUNTER POS 4 TRIGGER	2	38	2
2 J 036	38.51.02.1	SCC COUNTER POS 4 TRIGGER	2	38 38	3
2 J 037	36.16.02.1	FROM BIT 1 - LEVEL 4	4	34	6
2 J 038	36.13 .03 .1	FROM BIT 2 - LEVEL 4	2	43	7-9
2 J 040	36.09.03.1	LA LEVEL 4 OP CODE FIELD POS 00-09	2	44	12-5
$\begin{aligned} & \text { THROUGH } \\ & \text { 2J049 } \end{aligned}$	$\begin{aligned} & \text { THROUGH } \\ & 36.09 .12 .1 \end{aligned}$				

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

indicator LOCATION	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	SCAN CARD NO.	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	CARD ROW (T TO B)
2.1050	36.09.13.1	PAR ON OP CODE POS 1-4 FOR PS J ADDR ONLY	2	44	5
2 J 053	36.08.02.1	DISCONNECT TAG BIT LEVEL 4	2	37	3
2 J 054	36.07.06.1	NOOP TAG BIT LEVEL 4	2	37	4
2 J 055	36.06.01.1	WORD BOUNDARY CROSSOVER TAG BIT LEVEL 4	2	37	5
2 J 056	36.05.01.1	LOOKAHEAD OPERATION CODE TAG BIT LEVEL 4	2	37 37	6
2 J 057	36.04.01.1	INSTR UCTION COUNTER VALID TAB BIT LEVEL 4	2	37 37	8
2 J 058	36.03.02.1	INTERNAL FETCH TAG BIT LEVEL 4	2	37 37	8
2 J 059	36.02.03.1	LEVEL CHECKED TAG BIT LEVEL 4	2	38	12
$2 J 060$ $2 J 061$	36.01 .04 .1 36.09 .19 .1	LEVEL FILLED M TAG BIT LEVEL 4 INDEX STORE TAG - LEVEL 4	2	37	2
2J061	36.09 .19 .1 36.09 .14 .1	EXTERNAL STORE TAG - LEVEL 4	4	4	1
2 T 063	36.09.15.1	INTERNAL STORE TAG - LEVEL 4	4	4	5
$2 J 066$	33.01.01.1	LA LEVEL 4 CONDITIONAL MACH CHK INDICATOR	2	48	3
2 J 067	33.01.19.1	LA LEVEL 4 INSTRUCTION REJECT INDICATOR	2	48	4
2 J 068	33.01.04.1	LA LEVEL 4 OPERATION CODE INVALID INDICAIOR	2	48	
2J069	33.01.05.1	LA LEVEL 4 ADDRESS INVALID INDICATOR	2	48	6
2 J 070	33.01.03.1	LA LEVEL 4 DATA STORE INDICATOR	2	48	8
2 J 071	33.01.02.1	LA LEVEL 4 DATA FETCH INDICATOR	2	48	8
2 J 072	33.01 .06 .1	LA LEVEL 4 INSTRUCTION FETCH INDICATOR	2	48	12
2 J 073	33.01 .07 .1	LA LEVEL 4 INDEX FLAG INDICATOR	2	49	11
2 J 074	33.01 .08 .1	LA LEVEL 4 INDEX COUNT EEROW 4 INDEX VALUE BELOW ZERO INDICATOR	2	49	0
$2 J 075$ $2 J 076$	33.01 .09 .1	LA LEVVEL 4 INDEX VALUE ZERO INDICATOR	2	49	1
$2 J 076$ $2 J 077$	33.01 .1 i .1	LA LEVEL 4 INDEX VALUE ABOVE ZERO INDICATOR	2	x9	2
2 J 078	33.01 .12 .1	LA LEVEL 4 INDEX LOW INDICATOR	2	49	3
2 J 079	33.01.13.1	LA LEVEL 4 INDEX EQUAL INDICATOR	2	49	4
2 J 080	33.01.14.1	LA LEVEL 4 INDEX HIGH INDICATOR	2	49	5
2 J 083	32.01.01.1	LA LEVEL 4 IC FIELD POS 00-16	2	38	5-9
THROUGH	THROUGH		2	39	12-9
2 J 099	32.01 .17 .1		2	40	0
2 J 100	32.01.20.1	LA LEVEL 4 IC FIELD PARITY FOR BITS 00-16	2	40	12
2 J 101	32.01.18.1	LA LEVEL 4 IC FIELD POS 17	2	40	11
2 J 102	32.01.19.1	LA LEVEL 4 IC FIELD POS 18 Le 4 IC FIELD PARITY FOR BITS $17-18$	2	40	1
2 J 103	32.01 .21 .1	LA LEVEL 4 IC FIELD PARITY FOR BITS $17-18$	2	21	12-9
2KR029	31.01 .01 .1		2	22	12-9
2K104	31.01 .64 .1		2	23	12-9
	31.02 .01 .1		2	24	12-9
	THROUGH		2	25	12-9
	31.02.10.1		2	26	12-9
	31.29.01.1		2	27	12-1
	AND				
	31.29.02.1		1	64	3
2L001	38.51 .03 .1 38.52 .07 .1	SCC ADVANCE ENABLES	1	64	4
2L002	38.52 .07 .1	SCC LATE DECODE ENABLE TRIGGER	1	64	9
2L006,	38.62 .02 .1 38.53 .04 .1	STORE DATA TIMER E TRIGGER	1	65	12
2L008	38.53.04.1	STORE DATA TIMER M TRIGGER	1	65	11
2L013	35.06.01.1	LA TO INST UNIT TIMER E TGR - LA-I E TGR-	1	65	0
2L014	35.06.02.1	LA TO I INDEX XFER M TGR - LA -I XS/F M TGR-	1	65	1
2L015	35.06.02.1	LA TO NO INDEX XFER M TGR - LA-I M-NX TGR-	1	65	2
2L016	35.33.01.1	CLEAR INDEX TIMER E TRIGGER	1	65	3
2L017	35.33.01.1	CLEAR INDEX TIMER M TRIGGER	1	65	4
2L018	35.33.01.1	WRITE INDEX TIMER E TRIGGER	1	65	6
2L019	35.33.01.1	IVRITE INDEX TIMER M TRIGGER	1	65	6
2L025	38.53 .01 .1	LAAR 1 BUSY TGR	1	65	8
2L026	38.53.01.1	LAAR 2 BUSY TGR	2	28	11
2L032	38.01 .04 .1	IAUC COUNTER POS 3 TRIGGER	2	28	0
2L033	38.11 .04 .1	OCC COUNTER POS 3 TRIGGER	2	28	1
2L034 2L035	38.21 .02 .1 38.31 .02 .1	ABC COUNTER POS CO I 3 TRIGGER	2	28	2

INDICATOR LOCATION	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	SCAN CARD NO.	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
	38.51.02.1	SCC COUNTER POS 3 TRIGGER	2	28	3
2L036	38.51 .02 .1 36.16 .02 .1	FROM BIT 1 - LEVEL 3	2	28	4
2L037	36.13.03.1	FROM BIT 2 - LEVEL 3	4	34	5
2L040	36.09.03.1	LA LEVEL 3 OP CODE FIELD 2OS 00-09	2	42	12-5
THROUGH	THROUGH				
2L049	36.09.12.1	PAR ON OP CODE POS 1-4 FOR PS J ADDR ONLY	2	43	6
2L050	36.09.13.1	PAR ON OP CODE POS 1-4 FOR PS J ADDR ONLY DISCONNECT TAG BIT LEVEL 3	2	27	3
2L053	36.08 .02 .1 36.07 .05 .1	NOOP TAG BIT LEVEL 3	2	27	4
2L054	36.07.05.1	WORD BOUNDARY CROSSOVER TAG BIT LEVEL 3	2	27	5
2L055	36.06 .01 .1	LOOKAHEAD OPERATION CODE TAG BIT LEVEL 3	2	27	6
2L056	36.05 .01 .1	INSTRUCTION COUNTER VALID TAG BIT LEVEL 3	2	27	7
2 L 057	36.04 .01 .1 36.03 .02 .1	INTERNAL FETCH TAG BIT LEVEL 3	2	27	8
2L058	36.03 .02 .1 36.02 .03 .1	LEVEL CHECKED TAG BIT LEVEL 3	2	27	9
2L059	36.02 .03 .1 36.01 .03 .1	LEVEL FILLED M TAG BIT LEVEL 3	2	28	12
2L060	36.01 .03 .1 38.09 .19 .1	INDEX STORE TAG - LEVEL 3	2	27	2
2L061	38.09.19.1 36.09 .14 .1	EXTERNAL STORE TAG - LEVEL 3	4	4	0
2L062	36.09 .14 .1 36.09 .15 .1	INTERNAL STORE TAG - LEVEL 3	4	4	4
2L063	36.09 .15 .1 33.01 .01 .1	LA LEVEL 3 CONDITIONAL MACH CHK INDICATOR	2	47	0
2L066	33.01 .01 .1 33.01 .18 .1	LA LEVEI 3 INSTRUCTION REJECT INDICATOR	2	47	1
2L067	33.01 .18 .1 33.01 .04 .1	LA LEVEL 3 OPERATION CODE INVALID INDICATOR	2	47	2
2L068	33.01 .04 .1 33.01 .05 .1		2	47	3
2L069	33.01 .05 .1 33.01 .03 .1	LA LEVEL 3 DATA STORE INDICATOR	2	47	4
2 L070	33.01 .03 .1 33.01 .02 .1		2	47	5
2L071	33.01 .02 .1	LA LEVEL 3 INSTRUCTION FETCH INDICATOR	2	47	6
2L072	33.01 .06 .1		2	47	7
2L073	32.01 .07 .1	LA LEVEL 3 INDEX COUNT ZERO INDICATOR	2	47	8
2L074	33.01 .08 .1 33.01 .09 .1	LA LEVEL 3 INDEX VALUE BELOW ZERO INDICATOR	2	47	9
2L075	33.01 .09 .1		2	48	12
2L076	33.01 .10 .1	LA LEVEL 3 INDEX VALUE ABOVE ZERO INDICATOR	2	48	11
2L077	33.01 .11 .1	LA LEVEL 3 INDEX LOW INDICATOR	2	48	0
2L078	33.01.12.1	LA LEVEL 3 INDEX EQUAL INDICATOR	2	48	1
2L079	33.01.13.1	LA LEVEL 3 INDEX EQINDEX HIGH TNDICATOR	2	48	2
2L080	33.01 .14 .1	LA LEVEL 3 INDEX High NIEATOR	2	28	5-9
2L083	32.01.01.1	LA LEVEL 3 IC FIELD POS 00	2	29	12-9
THROUGH	THROUGH				
2L099	32.01 .17 .1		2	30	0
2L100	32.01.20.1	LA LEVEL 3 IC FIELD PARITY FOR BITS 00-16	2	30	12
2L101	32.01 .18 .1	LA LEVEL 3 IC FIELD POSITION 17	2	30	11
2L102	32.01.19.1	LA LEVEL 3 IC FIELD POSITION 18 BITS 17-18	2	30	1
2L103	32.01 .21 .1	LA LEVEL 3 IC FIELD PARITY FOR BIT $17-18$	2	11	12-9
2M029	31.01.01.1	LA LEVEL 2 OPERAND FIELDS POS 00-75	2	12	12-9
THROUGH	THROUGH		2	13	12-9
2M104	31.01 .64 .1		2	14	12-9
	31.02.01.1		2	15	12-9
	THROUGH		2	16	12-9
	31.02 .10 .1		2	17	12-1
	31.29.01.1				
	AND				
	31.29 .02 .1		1	62	1
2N001	38.31.03.1	ABC ADVANCE ENABLES SEQUENCE TRIGGER	1	62	2
2N002	38.38 .01 .1	TRANSFER INDICATOR TIMER E TRIGGER	1	62	3
2N003	38.38.02.1	TRANSFER INDICATOR TIMER M TRIGGER	1	62	4
2N004	38.33.01.1	ARITHMETIC BUS TIMER EE TRIGGER	1	62	5
2N005	38.33.02.1	ARITHMETIC BUS TIMER E TRIGGER	1	62	6
2N006	38.33.03.1	ARITHMETIC BUS TIMER M TRIGGER	1	62	7
2N007	35.26.01.1	INDICATOR REGISTER TIMER E TRIGGER	1	62	7
2N008	35.26.01.1	INDICATOR REGISTER TIMER M TRIGGER	1	62	9
2N009	38.39.02.1	HOUSECLEAN TIMER E TRIGGER	1	63	12
2N010	38.39.02.1	HOUSECLEAN TIMER M TRIGGER	1	63	11
2N011	38.39.01.1	LA HOUSECLEAN OVER TIMER E TRIGGER	1	63	0
2N012	38.39.01.1	LA HOUSECLEAN OVER TIMER M TRIGGER	1	63	2
2N014	38.35.04.1	ALLOW MAR FOR NEXT INSTRUCTION TRIGGER	1	63	3
2N015	38.35.04.1	MODIFY ADDRESSABLE REGISTER MODE TRIGGER	1	63	3
2N016	38.34.01.1	NOOP MODE TRIGGER	1	63	4

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICATOR LOCATION	$\begin{aligned} & \text { TRIGGER } \\ & \text { LOCATION } \\ & \text { (ALD PAGE) } \end{aligned}$	DESCRIPTIVE TITLE	$\begin{aligned} & \text { SCAN } \\ & \text { CARD } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
2N017	38.39.04.1	LA HOUSECLEAN MODE TRIGGER	1	63	5
2N018	38.35.05.1	INTERRUPT NEXT INSTRUCTION TRIGGER	1	63	6
2N019	38.39.05.1	LA DISABLE INTERRUPT LINE TRIGGER	1	63	7
2NO2O	38.23.04.1	SAU INSTRUCTION INTERRUPT BUFFER TRIGGER	1	63	8
2N021	38.38.03.1	LA INDICATOR TEST TIMER E TRIGGER	1	63	12
2N022	38.35.01.1	LA NORMAL INDICATOR TEST TIMER M TRIGGER	1	64	11
2NO23	38.35.01.1	EXECUTION UNIT INDICATOR TEST M TRIGGER	1	64	0
2N024	38.35 .01 .1	ARITHMETIC CHECKER INDICATOR TEST TRIGGE	1	64	2
2N026	38.35 .03 .1	LA NOOP INDICATOR TEST TIMER M TRIGGER	2	18	11
2 NO 32	38.01 .03 .1	IAUC COUNTER POSITION 2 TRIGGER	2	18	0
2N033	38.11 .03 .1 38.21 .01 .1	TBC COUNTER POSITION 2 TRIGGER	2	18	1
2N034	38.21 .01 .1 38.31 .01 .1	ABC COUNTER POSITION 2 TRIGGER	2	18	2
2NO35	38.51.01.1	SCC COUNTER POSITION 2 TRIGGER	2	18	3
2N036 2N037	36.16 .02 .1	FROM BIT 1 - LEVEL 2	2	18	4
2N038	36.13.03.1	FROM BIT 2 - LEVEL 2	4	34	4
2N040	36.09.03.1	LA LEVEL 2 OP CODE FIELD POS 00-09	2	41	9-6
THROUGH	THROUGH		2		
2N049	36.09 .12 .1		2	42	7
2N050	36.09.13.1	PAR ON OP CODE POS $1-4$ FOR PS J ADDR ONLY	2	17	3
2N053	36.08.01.1	DISCONNECT TAG BIT LEVEL 2	2	17	4
2N054	36.07 .04 .1	NOOP TAG BIT LEVEL 2	2	17	5
2N05 5	36.06.01.1	WORD BOUNDARY CROSSOVER TAG BIT LEVEL 29	2	17	6
2N056	36.05.01.1		2	17	7
2N057	36.04.01.1	INSTRUCTION COUNTER VAIID TAG BIT LEVEL 2	2	17	8
2N058	36.03.02.1	INTERNAL FETCH TAG BIT LEVEL 29	2	17	9
2N059	36.02.03.1	LEVEL CHECKED TAG BIT LEVEL 29	2	18	12
2N060	36.01.02.1	LEVEL FILLED M TAG BIT LEVEL 2 INDEX STORE TAG - LEVEL 2	2	17	2
2N061	36.09.19.1	INDEX STORE TAG - LEVEL ${ }^{\text {EXTERNAL STORE TAG - LEVEL } 2}$	4	4	11
2N062	36.09.14.1	EXTERNAL STORE TAG - LEVEL 2	4	4	3
2N063	36.09.15.1	INT LEVEEI 2 CONDITIONAL MACH CHK INDICATOR	2	45	9
2N066	33.01 .01 .1	LA LEVEL 2 CONDITIONAL MACH CHK INDICATOR	2	46	12
2N067	33.01.17.1	LA LEVEL 2 INSTRUCTION CODE INVALID INDICATOR	2	46	11
2N068	33.01 .04 .1		2	46	0
2N069	33.01 .05 .1	LA LEVEL 2 ADATA STORE INDICATOR	2	46	1
2N070	33.01 .03 .1		2	46	2
2N071	33.01.02.1	LA LEVEL 2 DATA FETCH 2 INSTRUCTION FETCH INDICATOR	2	46	3
2N072	33.01 .06 .1		2	46	4
2N073	33.01 .07 .1	LA LEVEL 2 INDEX COUNT ZERO INDICATOR	2	46	5
2N074	33.01 .08 .1		2	46	6
2N075	33.01.09.1	LA LEVEL 2 INDEX VALUE BELOW 2 INDEX VALUE ZERO INDICATOR	2	46	7
2N076	33.01 .10 .1	LA LEVEL 2 INDEX VALUE ZERO INDICATOR	2	46	8
2N077	33.01.11.1	LA LEVEL 2 INDEX VALUE ABOVE ZERO INDICATOR	2	46	9
2N078	33.01.12.1	LA LEVEL 2 INDEX LOW INDICATOR	2	47	12
2N079	33.01.13.1	LA LEVEL 2 INDEX EQUAL INDICATOR	2	47	11
2N080	33.01.14.1	LA LEVEL 2 INDEX HIGH INDICATOR	2	18	5-9
2N083	32.01.01.1	LA LEVEL 2 IC FIELD POS 00-16	2	19	12-9
THROUGH	THROUGH				
2N099	32.01 .17 .1		2	20	0
2N100	32.01 .20 .1	LA LEVEL 2 IC FIELD PARITY FOR BITS 00-16	2	20	12
2N101	32.01 .18 .1	LA LEVEL 2 IC FIELD POS 17	2	20	11
2N102	32.01 .19 .1	LA LEVEL 2 IC FIE FIELD PARITY FOR BITS 17-18	2	20	1
2N103	32.01 .21 .1	LA LEVEL 1 OPERAND FIELD POS 00-75	2	1	12-9
2 P 029	31.01 .01 .1	LA LEVEL 1 OPERAND FIELD POS 00-70	2	2	12-9
THROUGH	THROUGH		2	3	12-9
2P104	$31.01 .64 .1$		2	4	12-9
	THROUGH		2	5	12-9
	31.02.10.1		2	6	12-9
	31.29.01.1		2	7	12-1
	AND				
	31.29.02.1			59	3
2Q001	38.01 .06 .1	1AUC ADVANCE ENABLES SEQUENCE TRIGGER	1	59	4
2Q002	38.01.10.1	LOAD PULSE MEMORY TRIGGER	1		

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICATOR LOCATION	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	$\begin{aligned} & \text { SCAN } \\ & \text { CARD } \end{aligned}$ NO.	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
	38.39.03.1	INTERRUPT INHIBITS LOAD TRIGGER	1	59	6
2Q004	38.39.03.1	PSEUDO-INTERRUPT INHIBITS LOAD TRIGGER	1	59	7
2Q006	38.39.03.1	BRANCH RECOVERY INHIBITS LOAD TRIGGER	1	59	8
2Q011	38.11.06.1	OCC ADVANCE ENABLES SEQUENCE TRIGGER	1	50	12
2Q012	35.05.01.1	OPERAND CHECK TIMER E TRIGGER	1	61	11
2Q013	35.05.01.1	OPERAND CHECK TIMER M TRIGGER	1	61	0
2Q014	35.05.02.1	OPERAND CORRECT TIMER E TRIGGER	1	61	1
2Q015	35.05.02.1	OPERAND CORRECT TIMER M	1	61	8
2Q021	38.21 .03 .1 38.22 .15 .1	TBC ADVANCE ENABLES SEQUENCE TRIGGER	1	61	9
2Q023	38.22 .15 .1 38.25 .01 .1	TBC LATE DECODE ENABLE TIMER E TRIGGER	1	62	12
2Q024 2Q025	38.25.01.1	TRANSFER BUS TIMER M TRIGGER	1	62	11
2Q032	38.01.02.1	IAUC COUNTER POSITION 1 TRIGGER	2	8	11
2Q033	38.11.02.1	OCC COUNTER POSITION 1 TRIGGER	2	8	0
2Q034	38.21.01.1	TBC COUNTER POSITION 1 TRIGGER	2	8	2
2Q035	38.31.01.1	ABC COUNTER POSITION 1 TRIGGER	2	8	3
2Q036	38.51.01.1	SCC COUNTER POSITION 1 TRIGGEF	2	8	4
2Q037	36.16.02.1	FROM BIT 1 - LEVEL 1	4	34	3
2Q038	36.13.03.1	FROM BIT 2 - LEVEL 1	2	41	12-7
2Q040	36.09.03.1	LA LEVEL 1 OP CODE FIELD POS 00-09		41	
THROU GH	THROUGH				
2Q049	36.09.12.1		2.	41	8
2Q050	36.09.13.1	PAR ON OP CODE POS 1-4 FOR PS J Addr OnLY	2	7	3
2Q053	36.08 .01 .1	DISCONNECT TAG BIT LEVEL 1	2	7	4
2Q054	36.07 .03 .1 36.06 .01 .1	WORD BOUNDARY CROSSOVER TAG BIT LEVEL 1	2	7	5
2Q055	36.05.01.1	LOOKAHEAD OPERATION CODE TAG BIT LEVEL 1	2	7	6
2Q057	36.04.01.1	INSTRUCTION COUNTER VALID TAG BIT LEVEL 1	2	7	7
2Q058	36.03.02.1	INTERNAL FETCH TAG BIT LEVEL 1	2	7	8
2Q059	36.02.03.1	LEVEL CHECKED TAG BIT LEVEL 1	2	7	9
2Q060	36.01.01.1	LEVEL FILLED M TAG BIT LEVEL 1	2	8	12
2Q 061	36.09.19.1	INDEX STORE TAG - LEVEL 1	2	4	12
2Q062	36.09.14.1	EXTERNAL STORE TAG - LEVEL 1	4	4	2
2Q063	36.09.15.1	INTERNAL STORE TAG - LEVEL 1 CHK INDICATOR	2	44	6
2Q 066	33.01 .01 .1	LA LEVEL 1 CONDITIONAL MACH CHK INDICATOR	2	44	7
2Q067	33.01.16.1	LA LEVEL 1 INSTRUCTION REJECT INDICATOR	2	44	8
2Q068	33.01 .04 .1	LA LEVEL 1 OPERATION CODE INVALID INDICATOR	2	44	9
2Q069	33.01.05.1	LA LEVEL 1 ADDRESS INVALD INDICATOR	2	45	12
2Q070	33.01 .03 .1	LA LEVEL 1 DATA STORE INDICATOR	2	45	11
2Q071	33.01 .02 .1	LA LEVEL 1 INSTRUCTION FETCH INDICATOR	2	45	0
2Q072 2Q073	33.01 .06 .1 33.01 .07 .1	LA LEVEL 1 INSTRUCTION FETCH 1 INDEX FLAG INDICATOR	2	45	1
$2 Q 073$ $2 Q 074$	33.01 .07 .1 33.01 .08 .1	LA LEVEL 1 INDEX FEL 1 INDEX COUNT ZERO INDICATOR	2	45	2
2Q074 2Q075	33.01 .08 .1 33.01 .09 .1	LA LEVEL 1 INDEX VALUE BELOW ZERO INDICATOR	2	45	3
2Q076	33.01 .10 .1	LA LEVEL 1 INDEX VALUE ZERO INDICATOR	2	45	4
2 Q077	33.01.11.1	LA LEVEL 1 INDEX VALUE ABOVE ZERO INDICATOR	2	45	5
2Q078	33.01.12.1	LA LEVEL 1 INDEX LOW INDICATOR	2	45	6
2Q079	33.01.13.1	LA LEVEL 1 INDEX EQUAL INDICATOR	2	45	7
2Q080	33.01.14.1	LA LEVEL 1 INDEX HIGH INDICATOR	2	8	8 -9
2Q083	32.01.01.1	LA LEVEL 1 IC FIELD POS 00-16	2	8	5-9
THROUGH	THROUGH		2	9	12-9
2Q099	32.01 .17 .1	IA LEVEL 1. IC FIELD PARITY FOR BITS 00-16	2	10	0
2Q100	32.01 .20 .1	LA LEVEL 1. IC FIELD PARITY FOR BITS 00-16	2	10	12
2Q101	32.01 .18 .1 32.01 .19 .1	LA LEVEL 1 IC Fict 1 IC FIEL POS 18	2	10	11
2Q1102	32.01.21.1	LA LEVEL 1 IC FIELD PARITY FOR BITS 17-18	2	10	1
3F001	28.10.11.1	FLOATING POINT LOADER FPDD M TGR	1	57	12
3 F 002	28.13.21.1	FLOATING POINT LEFT LOADER 2 ME MORY TGR	1	57	11
3 FO 03	28.13.31.1	FLOATING POINT LEFT LOADER 3 MEMORY TGR	1	57	0
3 F 004	28.13.41.1	FLOATING POINT LEFT LOADER 4 MEMORY TGR	1	57	1

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

nNDICATOR LOCATION	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	$\begin{aligned} & \text { SCAN } \\ & \text { CARD } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
3 F006	28.14.21.1	FLOATING POINT RIGHT LOADER 2 MEMORY TGR	1	57	3
3 F 007	28.14.31.1	FLOATING POINT RIGHT LOADER 3 MEMORY TGR	1	57	4
3 F 008	28.14.41.1	FLOATING POINT RIGHT LOADER 4 MEMORY TGR	1	57	5
3 F 010	28.42.55.1	HALT REQUTRED	1	57	7
3 F 011	28.42.55.1	PROGRAM HALT	1	57	8
3 F 012	28.43.11.1	PROGRAM START REO	1	57	9
3 F 013	28.43.12.1	PROGRAM SINGLE OPERATION	1	58	12
3 F 014	28.43.18.1	PROGRAM MANUAL OPERATION GO	1	58	11
3 F 015	28.43.14.1	PROGRAM SINGLE DISPLAY OP	1	58	0
3 F 016	28.43.15.1	PROGRAM CONSECUTIVE DISPLAY	1	58	1
3 F 017	28.43.16.1	PROGRAM SINGLE STORE	1	58	2
3 F 018	28.43.17.1	PROGRAM CONSECUTIVE STORE	1	58	3
3 F 019	28.43.13.1	PROGRAM ENTER INSTRUCTION OP	1	58	4
3 F 020	28.43.13.1	PROGRAM ENTER INSTRUCTION MODE	1	58	5
3 F021	28.43.21.1	PROGRAM REPEAT INSTRUCTION	1	58	6
3 F 022	28.60.27.1	INDEX STORAGE READ TEST	1	58	7
$3 F 023$	28.60.27.1	INDEX STORAGE WRITE TEST	1	58	8
3 FO 24	28.60.27.1	INDEX STORAGE TEST ADDRESS ADVANCE	1	58	9
3 F 025	28.60.27.1	INDEX STORAGE TEST ERROR STOP	1	59	12
3 F 026	28.42.54.1	TIME CLOCK OPERATION TEST	1	59	11
3 FO 28	28.70.84.1	MANUAL DISABLE INTERRUPT ENABLE	1	59	1
3 F 029	28.42.54.1	MANUAL DISABLE TIME CLOCK	1	59	2
3G001	28.13.12.1	FLOATING POINT LOADER FPDD E TGR	1	55	5
3G002	28.13.21.1	FLOATING POINT LEFT LOADER 2 EXECUTE TGR	1	55	6
3G003	28.13.32.1	FLOATING POINT LEFT LOADER 3 EXECUTE TGR	1	55	7
3G004	28.13.41.1	FLOATING POINT LEFT LOADER 4 EXECUTE TGR	1	55	8
3G006	28.14.21.1	FLOATING POINT RIGHT LOADER 2 EXECUTE TGR	1	56	12
3G007	28.14.32.1	FLOATING POINT RIGHT LOADER 3 EXECUTE TGR	1	56	11
3G008	28.14.41.1	FLOATING POINT RIGHT LOADER 4 EXECUTE TGR	1	56	0
3G009	28.26.50.1	Z RIGHT FLOATING POINT CLASS 1, 2, 3, 4 AND 6	1	56	1-3
THROUGH	AND	IndICATORS	1	54	1
3G013	28.26.51.1		1	56	5
3G015	28.52.02.1	UPDATED INDEX REGISTER N51 INDEX COUNT 0	1	56	6
3G016	28.52.03.1	UPDATED INDEX REGISTER N52 INDEX VALUE LT 0	1	56	7
3G017	28.52.03.1	UPDATED INDEX REGISTER N53 INDEX VALUE 0	1	56	8
3G018.	28.52.04.1	UPDATED INDEX REGISTER N54 INDEX VALUE GT 0	1	56	9
3H001	28.11.11.1	VFL LOADER 1 MEMORY TGR	1	53	2
3H002	28.11.21.1	VFL LOADER 2 MEMORY TGR	1	53	3
3H003	28.11.31.1	VFL LOADER 3 MEMORY TGR	1	53	4
3H004	28.11.41.1	VFL LOADER 4 MEMORY TGR	1	53	5
3H005	28.11.53.1	VFL LOADER 5 MEMORY TGR	1	53	6
\%H006	28.12.11.1	INDEX OPERAND FETCH 1 MEMORY TGR	1	53	7
3H008	28.22.02.1	FULL WORD TRIGGER	1	53	9
3H009	28.26.52.1	Z LEFT FLOATING POINT CLASS 1	1	54	12
3H010	28.26.53.1	Z LEFT FLOATING POINT CLASS 2	1	54	11
3H011	28.26.53.1	Z LEFT FLOATING POINT CLASS 3	1	54	0
3H012	28.26.53.1	Z LEFT FLOATING POINT CLASS 4	1	54	4
3H013	28.26.53.1	Z LEft Floating point Class 6	1	54	2
3H015	28.52.02.1	UPDATED INDEX REGISTER N38 INDEX FLAG	1	54	3
3H016	28.52.04.1	UPDATED INDEX REGISTER N48 INDEX LOW	1	54	4
3H017	28.52.05.1	UPDATED INDEX REGSTER N49 INDEX EQUAL	1	54	5
3H018	28.52.05.1	UPDATED INDEX REGISTER N50 INDEX HIGH	1	54	
$3 \mathrm{HO27}$	28.42.83.1	RUNNING INDICATCR	1	55	2
3H028	21.02.02.1	INACTIVE INDICATOR	1	55	3
3H029	28.43.21.1	MAINTENANCE MODE INDICATOR	1	55	
3 H 033	22.11.01.1	2Y REGISTER POS 32-63	1	23	6-9
THROUGH	THROUGH		1	24	12-9
3H064	22.11.35.1		1	25	12-9
	22.11.19.1	2 Y REGISTER PARITY 32-49 OR C08	1	26 26	${ }_{6}^{12-1}$
3H066	22.11 .26 .1	2YREGISTER PARITY 50-55 OR C16	1	26	7
3H067	22.11.31.1	2YREGISTER PARITY 56-59 OR C32	1	26	8
3H068	22.11.36.1	2YREGISTER PARITY 60-63 OR CT	1	26	9

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICATOR LOCATION	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	$\begin{aligned} & \text { SCAN } \\ & \text { CARD } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
3 J 001	28.11.11.1	VFL LOADER 1 EXECUTE TGR	1	51	3
3 J 002	28.11.22.1	VFL LOADER 2 EXECUTE TGR	1	51	4
3 J 003	28.11.32.1	VFL LOADER 3 EXECUTE TGR	1	51	5
3 J 004	28.11.42.1	VFL LOADER 4 EXECUTE TGR	1	51	6
3 J 005	28.11.51.1	VFL LOADER 5 EXECUTE TGR	1	51	7
3J006	28.12.11.1	INDEX OPERAND FETCH 1 EXECUTE TGR	1	51	8
3 J 008	28.22.02.1	WORD BOUNDARY CROSSOVER TRIGGER	1	52	12
3 J 009	28.27.32.1	FLOATING POINT Z ALTERNATOR	1	52	11
3 J 010	28.42.53.1	FLOATING POINT INCOMPLETE WAIT	1	52	0
3 J 013	28.15.80.1	WORD BOUNDARY CROSSOVER OR DECODE MEM TGR	1	52	1
3J018	27.14.02.1	Z REG RIGHT ADDRESS 8	1	52	2
3J019	27.14.02.1	Z REG LEFT ADDRESS 8	1	52	3
3 J 021	28.86.44.1	XCL 4 M TGR	1	52	5
3J022	28.86.54.1	XST 4 M TGR	1	52	6
3J023	28.87.14.1	LDX 5 M TGR	1	52	7
3J024	28.88.14.1	LOP 2 M TGR	1	52	8
3J025	28.88.24.1	LOP 3 M TGR	1	52	9
35026	28.88.34.1	LOP 4 M TGR	1	53	12
3 J 027	28.88.44.1	LOP 5 M TGR	1	53	11
3J028	28.89.14.1	FINIS 1 RESET 1-EX CONTROLS	1	53	0
3 J 029	28.89.24.1	FINIS 2 RESET F-EX CONTROLS	1	53	1
3K010	28.26.11.1	PREPARE TO START	1	49	11
3 K 011	28.27.30.1	CONDITION Z DECODE EXECUTE TGR RST ZL DEC	1	49	0
3 K 012	28.26.10.1	CONDITION HALF Y	1	49	1
3K013	28.15.80.1	WORD BOUNDARY CROSSOVER OR DECODE EX TGR	1	49	2
3K014	28.42.72.1	I-UNIT RECOVERY REQUIRED	1	49	3
3 K 015	28.78.14.1	TC HAS STEPPED ONCE DURING LVE \& EX \& EXIC	1	49	4
3 K 016	28.70.84.1	INTERRUPT MECHANISM ENABLED	1	49	5
3 K 017	22.11.37.1	1 Y REGISTER MEMORY CHECK	1	49	6
3 K 018	22.11.37.1	2Y REGISTER MEMORY CHECK	1	49	7
3 K 019	28.51.11.1	NON IDENTIFIABLE CHECK ERROR	1	49	8
3 K 020	28.83.14.1	LST 3 M TGR	1	49	9
3 K 021	28.83.24.1	LDX 3 M TGR	1	50	12
3 K 023	28.83.44.1	XS STORE 1ST STORE TMT-SWP	1	50	0
3K024	28.84.14.1	INSTRUCTION COUNTER LOAD 1 IC LA	1	50	1
3 K 025	28.85.14.1	RIGHT ADDRESS MODIFICATION STEP UP OR DOWN	1	51	12
3K026	28.86.14.1	LST 4 M TGR	1	51	11
3 K 027	28.86.24.1	LDX 6 M TGR	1	51	0
3 K 028	28.86.34.1	LDX 4 M TGR	1	51	1
3L001	28.42.41.1	Z LEFT INST EXE BLOK INST FETCH TO 1Y	1	39	5
3L002	28.42.41.1	Z RIGHT INST EXE BLOK INST FETCH TO 1Y	1	39	6
3L003	28.42.41.1	Z LEFT INST EXE BLOK INST FETCH TO 2Y	1	39	7
3L004	28.42.41.1	Z RIGHT INST EXE BLOK INST FETCH TO 2Y	1	39	8
3L005	28.42.42.1	Z LEFT INST EXE SUSPEND INST FETCH TO 1Y	1	39	9
3L006	28.42.42.1	Z RIGHT INST EXE SUSPEND INST FETCH TO 1Y	1	40	12
31.007	28.42.43.1	Z LEFT INST EXE SUSPEND INST FETCH TO 1 Y	1	40	11
3L008	28.42.43.1	Z RIGHT INST EXE SUSPEND INST FETCH TO $1 Y$	1	40	0
3L010	28.26.11.1	I HALF WORD EXECUTION Z RIGHT	1	47	2
3L011	28.27.30.1	CONDITION 2 DECODE MEMORY TGR DEC ZL	1	47	3
3 L 012	28.26.10.1	CONDITION 2Y TO ZL	1	47	4
3L013	28.15.50.1	INDEX FETCH OR DECODE Z LEFT MEMORY TGR	1	47	5
3L014	28.42.54.1	TIME CLOCK OP	1	47	6
3L015	28.42.56.1	EXECUTE WAIT	1	47	7
3L016	28.41.12.1	RESET 2 MEMORY TGR	1	47	8
3L017	28.51.03.1	Z LEFT IDENTIFIABLE CHECK ERROR	1	47	9
3L018	28.51.02.1	Z RIGHT IDENTIFIABLE CHECK ERROR	1	48	12
3L019	28.78.14.1	UNENDED SEQUENCE OF LVE \& EX \& EXIC	1	48	11
3L020	28.80 .54 .1	1ST OPERAND FETCH TMT-SWP COMPLETED	1	48	0
3L021	28.81 .54 .1	1ST OPERAND FETCH TMT-SWP COMPLETED	1	48	1
3L022	28.81.14.1	LEFT ADDRESS MODIFICATION STEP UP OR DOWN	1	48	2
3 L 023	28.82.14.1	2ND FETCH SWP EXT MEM	1	48	3
3L024	28.82.14.1	2ND FETCH SWP EXT MEMORY	1	48	4

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICATOR LOCATION	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	$\begin{aligned} & \text { SCAN } \\ & \text { CARD } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
3L025	28.82.24.1	XS FETCH 2 ND FETCH SWP	1	48	5
3 L 026	28.82.34.1	2ND FETCH SWP INTERNAL REG	1	48	6
3L027	28.82.44.1	CHECKER CYCLE FOLLOWING XSF5	1	48	7
3M001	28.42.61.1	Z LEFT EMPTY TGR	1	30	11
3M002	28.42.61.1	Z RIGHT EMPTY TGR	1	30	0
3M003	28.42.62.1	Z LEFT EMPTY CONDITION ON ACCEPT	1	30	1
3M004	28.42.62.1	Z RIGHT EMPTY CONDITION ON ACCEPT	1	37	3
3M005	28.42.44.1	SUSPEND INTERLOCK TRIGGER	1	37	4
3M006	28.42.32.1	2Y INST FETCE BOUNDARY ALARM	1	37	5
3M007	28.42.33.1	2Y IDENTIFIABLE CHECK ERROR	1	37	6
3M008	28.42.32.1	2 Y ADDRESS INVALID	1	37	7
3M009	28.26.23.1	1 BIT MODIFICATION	1	37	8
3M010	28.26.11.1	1 HALF WORD READY	1	37	9
3M012	28.26.10.1	CONDITION 2Y TO ZR	1	38	11
3M013	28.15.50.1	INDEX FETCH OR DECODE Z Left EXECUTE TGR	1	38	0
3M014	28.42.54.1	TIME CLOCK ADVANCE REQUIRED	1	38	1
3M015	28.87.44.1	EXECUTE MODE	1	38	2
3M016	28.41.12.1	RESET 2 EXECUTE TGR	1	38	3
3M017	28.51.04.1	Z LEFT ADDRESS INVALID	1	38	4
3M018	28.51.04.1	Z RIGHT ADDRESSINVALID	1	38	5
3M019	28.51.06.1	Z DATA FETCH OUT OF BOUNDS	1	38	6
3M020	28.79.14.1	TEST BRANCH ADR FOR OUT OF BOUNDS	1	38	7
3M021	28.79.22.1	PROGRAM OPERAND LEVEL LA LOAD	1	38	8
3M022	28.79.32.1	PROGRAM FETCH LEVEL LA LOAD	1	38	9
3M023	28.79.42.1	PROGRAM STORE LEVEL LA LOAD	1	39	12
3M024	28.79.52.1	PROGRAM RECOVERY LEVEL LA LOAD	1	39	11
3M025	28.80.14.1	1ST FETCH TMT-SWP EXT MEMORY	1	39	0
3M026	28.80.14.1	1ST FETCH TMT-SWP EXT MEMORY	1	39	1
3M027	28.80.24.1	XS FETCH 1ST FETCH TMT-SWP	1	39	2
3M028	28.80.34.1	1ST FETCH TMT-SWP INTERNAL REGISTER	1	39	3
3M029	28.80.44.1	CHECKER CYCLE FOLLOWING XSF4	1	33	
3M033	22.11.01.1	1 Y REGISTER POS 32-63	1	13	6-9
THROUGH	THROUGH			THRU	12-9
3M064				16	12-1
3M065.	22.11.19.1	1Y REGISTER PARITY 32-49 OR C08	1	16	6
3M066	22.11.26.1	1Y REGISTER PARITY 50-55 OR C16	1	16	7
3M067	22.11.31.1	1 Y REGISTER PARITY 56-59 OR C 32	1	16	8
3M068	22.11.36.1	1 T REGISTER PARITY 60-63 OR C T	1	16	
3N001	28.42.11.1	1Y EMPTY TRIGGER	1	27	6
3N002	28.42.11.1	2Y EMPTY TRIGGER	1	27	7
3N003	28.42.21.1	EVEN BRANCH TRIGGER	1	27	8
3N004	28.42.21.1	ODD BRANCH TRIGGER	1	27	9
3N005	28.42.21.1	RECOVERY GATE	1	28	12
3N006	28.42.31.1	1 Y INST FETCH BOUNDARY ALARM	1	28	11
3N007	28.42.33.1	$1 Y$ IDENTIFIABLE CHECK ERROR	1	28	0
3N008	28.42.31.1	1 Y ADDRESS INVALID	1	28	1
3N009	28.26.21.1	Z RIGHT MODIFY REQUIRED	1	28	2
3N010	28.26.62.1	Z RIGHT FLOATING POINT TGR	1	28	3
3N011	28.26.61.1	Z RIGHT I HALF WORD	1	28	4
3N012	28.26.60.1	FULL WORD NOT STRAIGHT	1	28	5
3N013	28.15.60.1	Y RIGHT TO Z RIGHT MEMORY TGR	1	28	6
3N014	28.42.52.1	PROGRESSIVE INDEXING OP	1	28	7
3N016	28.42.82.1	BRANCH RECOVERY OP	1	28	9
3N017	28.51.05.1	Z LEFT INSTRUCTION FETCH	1	29	12
3N018	28.51.05.1	Z RIGHT INSTRUCTION FETCH	1	29	11
3N019	28.51.06.1	Z DATA STORE	1	29	0
3N020	28.75.84.1	BRANCH	1	29	1
3N021	28.75.84.1	BRANCH	1	29	2
3N022	28.76.14.1	BRANCH	1	29	3
3N023	28.77.14.1	LOAD STORE 1 INTO LA	1	29	4

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

INDICATOR LOCATION	$\begin{aligned} & \text { TRIGGER } \\ & \text { LOCATION } \\ & \text { (ALD PAGE) } \end{aligned}$	DESCRIPTIVE TITLE	SCAN CARD NO.	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & \text { (T TO B) } \end{aligned}$
3N024	28.78.24.1	GEOME TRIC LOAD FIRST TIME TGR.	1	29	5
3N025	28.77.24.1	INDEX CLEAR 1 M2 DX 1ST STORE	1	29	6
3N026	28.77.34.1	INDEX STORE 1 DX 1ST STORE	1	29	8
3N027	28.77.44.1	LOAD OP CODE TO LA 1 M TGR	1	29	8
3N028	28.78.14.1	ALLOW TIME CLOCK BREAK IN	1	29	12
3N029	28.78.34.1	PX ROUTINE USE YL TGR	1	21	12-9
3N033	22.11.01.1	2Y REGISTER POS 00-31	1	22	12-9
THROUGH	THROUGH		1	23	12-5
3N064 3N065	22.11.35.1	2Y REGISTER PARITY 00-17 OR C00	1	26	2
3N066	22.11.26.1	2Y REGISTER PARITY 18-23 OR C01	1	26	3
3N067	22.11.31.1	2Y Register Parity 24-27 OR C02	1	26	4
3N068	22.11.36.1	2Y REGISTER PARITY 28-31 OR C04	1	26	5
3 P 001	28.41.23.1	INSTRUCTION COUNTER CLOCK CHECK 1 Y	1	18	5
3 P 002	28.41.23.1	INSTRUCTION COUNTER FETCH OUTSTANDING 1 Y	1	18	6
3 P 003	28.41.33.1	INSTRUCTION COUNTER BLOCK CHECK 2Y	1	18	7
3 P 004	28.41.33.1	INSTRUCTION COUNTER FETCH OUTSTANDING $2 Y$	1	18	8
3 P 006	28.41.50.1	INSTRUCTION WORD CHECK ALTERNATOR	1	19	12
3 P 007	28.41.23.1	INSTRUCTION COUNTER RETURN TO 1Y	1	19	11
3 P 008	28.41.33.1	INSTRUCTION COUNTER RETURN TO $2 Y$	1	19	0
3 P 009	28.26.23.1	Z LEFT MODIFY REQUIRED	1	19	1
3 P 010	28.26.62.1	Z LEFT FLOATING POINT TGR	1	19	2
3 P 011	28.26.61.1	I HALF WORD - Z LEFT	1	19	3
3 P 012	28.26.60.1	FULL-WORD STRAIGHT	1	19	4
3 P 013	28.15.61.1	Y RIGHT TO Z RIGHT EXECUTE TGR	1	19	5
3 P 014	28.42.52.1	PROGRESSIVE INDEXING ROUTINE REQUIRED	1	19	6
3 P 016	28.87.64.1	INSTRUCTION EXECUTE IN PROGRESS	1	19	8
3 P 017	28.51.09.1	W SPECLAL ADDRESS 00-15	1	19	9
3 P 018	28.51.09.1	W INDEX ADDRESS 16-31	1	20	12
3P019	28.51.09.1	W NON EXISTENT ADDRESS	1	20	11
3 P 020	28.73.14.1	CHECKER CYCLE FOR EXTERNAL DX FETCH	1	20	0
3 P 021	28.74.14.1	CORRECT CYCLE TIMER FOR ALL ECC CHECKER CY	1	20	1
3 P 022	28.75.14.1	MISCELLANEOUS DELAY CYCLE	1	27	12
3 P 023	28.75.24.1	LOAD X VIA CHECKER	1	27	11
3 P 024	28.75.34.1	COUNT 1 M COUNT W OR X DOWN	1	27	0
3 P 025	28.75.44.1	LOAD X VIA ADDER.	1	27	2
3 P 026	28.75.54.1	DX LOGIC CYCLE	1	27	2
3 P 027	28.75.64.1	IX LOGIC CYCLE	1	27	3
3 P 028	28.75.74.1	X FIELD TRANSFER TO X OR W	1	27	4
3 P 029	28.75.74.1	X FIELD TRANSFER TO X OR W	1	27	5
3Q001	28.41.11.1	RESET 1 MEMORY TGR	1	9	4
3Q002	28.41.21.1	INSTRUCTION FETCH TO 1Y MEMORY TGR	1	9	5
3Q003	28.41.31.1	INSTRUCTION FETCH TO 2Y MEMORY TGR 1	1	9	6
3Q004	28.41.31.1	INSTRUCTION FETCH TO 2Y MEMORY TGR 2	1	9	8
3Q005	28.41.41.1	INSTRUCTION COUNT ER ADVANCE MEMORY TGR	1	9	8
3Q006	28.41.51.1	INSTRUCTION WORD CHECK 1Y MEMORY TGR	1	9	12
3Q007	28.41 .61 .1	INSTRUCTION WORD CHECK 2Y MEMORY TGR	1	10	12
3Q008	28.41.71.1	INSTRUCTION CORRECT MEMORY TGR	1	10	0
3Q009	28.15.10.1	Y LEFT TO Z RIGHT ME MORY TGR	1	10	0
3Q010	28.15.30.1	Y RIGHT TO 2 LEFT MEMORY TGR	1	17	12
3Q011	28.15.40.1	MODIFIED Z LEFT MEMORY TGR	1	17	12
3Q012	28.15.20.1	MODIFIED Z RIGHT MEMORY TGR	1	17	11
3Q013	28.15.70.1	Y LEFT TO Z LEFT MEMORY TGR	1	17	0
3Q014	28.42.71.1	PREPARE FOR I-UNIT RECOVERY	1	17 17	2
3 Q 015	28.42 .83 .1	INITIAL PROGRAM LOAD	1	17	3
3Q016	28.42.82.1	INTERRUPT OPERATION Z RIGHT SPECIAL ADDRESS 00-15	1	17	4
3Q017 3Q018	28.51.07.1	2 RIGHT INDEX ADDRESS 16-31	1	17	5
3Q019	28.51.07.1	Z RIGHT NON EXISTENT ADDRESS	1	17	6
3Q020	28.71.14.1	INDEX STORAGE FETCH 3 DX J FETCH	1	17	7
3Q021	28.71.24.1	CHECKER CYCLE WITH XSF3	1	17	8
3Q022	28.71.34.1	COUNT ZERO REFILL M	1	17	9

TABLE 3.4.1. 7101 CE CONSOLE INDICATORS (cont'd)

IndICATOR LOCATION	TRIGGER LOCATION (ALD PAGE)	DESCRIPTIVE TITLE	SCAN CARD NO.	$\begin{aligned} & \text { CARD } \\ & \text { COL. } \end{aligned}$	$\begin{aligned} & \text { CARD } \\ & \text { ROW } \\ & (\mathrm{T} \text { TO B) } \end{aligned}$
3Q023	28.71.40.1	PROGRAM BRANCH OK	1	18	12
3Q024	28.72.24.1.	BLOCK CHECK 1Y M	1	18	11
3Q025	28.72.34.1	BLOCK CHECK $2 Y \mathrm{M}$	1	18	0
3Q026	28.72.44.1	RETURNED TO 1Y DX	1	18	1
3Q027	28.72.54.1	RETURNED TO 2Y DX	1	18	2
3Q028	28.72.64.1	RETURNED TO Y	1	18	3
3R001	28.41.11.1	RESET 1 EXECUTE TRIGGER	1	7	11
3R002	28.41.21.1	INSTRUCTION FETCH TO 1Y EXECUTE TGR	1	7	0
3R003	28.41.31.1	INSTRUCTION FETCH TO 2Y EXECUTE TGR	1	7	1
3R004	28.41.41.1	INSTRUCTION COUNTER ADVANCE EXEC TGR 1	1	7	2
3R005	28.41.41.1	INSTRUCTION COUNTER ADVANCE EXEC TGR 2	1	7	3
3R006	28.41.51.1	INSTRUCTION WORD CHECK $1 Y$ EXECUTE TGR	1	7	4
3R007	28.41.61.1	INSTRUCTION WORD CHECK $2 Y$ EXECUTE TGR	1	7	5
3R008	28.41.71.1	INSTRUCTION CORRECT EXECUTE TGR	1	7	6
3R009	28.15.11.1	Y LEFT TO Z RIGHT EXECUTE TGR	1	7	7
3R010	28.15.30.1	Y RIGHT TO Z LEFT EXECUTE TGR	1	7	8
3R011	28.15.40.1	MODIFIED Z LEFT EXECUTE TGR	1	7	9
3R012	28.15.20.1	MODIFIED Z RIGHT EXECUTE TGR	1	8	12
3R013	28.15.70.1	Y LEFT TO Z LEFT EXECUTE TGR	1	8	11
3R014	28.42.51.1	STORE WAIT LA TO 16-31 OR 11812	1	8	0
3R015	28.42.84.1	INITLAL PROGRAM LOAD FROM EXCHANGE	1	8	1
3R016	28.42.81.1	LOOKAHEAD RECOVERY MODE	1	8	2
3R017	28.51.08.1	Z LEFT SPECIAL ADDRESS 00-15	1	8	3
3R018	28.51.08.1	Z LEFT INDEX ADDRESS 16-31	1	8	4
3R019	28.51.08.1	Z LEFT NON EXISTENT ADDRESSS	1	8	5
3R020	28.70.14.1	BRANCH DEC 3 M	1	8	6
3R021	28.70.24.1	BRANCH EMF 5 M1	1	8	7
3R022	28.70.24.1	BRANCH EMF 5 M2	1	8	8
3R023	28.70.24.1	BRANCH EMF5 M3	1	8	9
3R024	28.70.34.1	EXTERNAL MEMORY FETCH 1 M1	1	9	12
3R025	28.70.34.1	EXTERNAL MEMORY FETCH 1 M2	1	9	11
3R026	28.70.44.1	INDEX STORAGE FETCH 1 DX 1ST FETCH	1	9	0
3R027	28.70.54.1	INTERNAL REGISTER FETCH 1 M	1	9	1
3R028	28.70.64.1	CHECKER CYCLE WITH XSF1	1	9	2
3R029	28.70.74.1	EXTERNAL MEMORY FETCH 6 M	1	9	3
3S033	22.11.01.1	1 Y REGISTER POS 00-31	1	11	12-9
THROUGH	THROUGH		1	12	12-9
3S064	22.11.35.1		1	13	12-4
3S065	22.11.19.1	1 T REGISTER PARITY 00-17 OR C00	1	16	2
3S066	22.11.26.1	1 Y REGISTER PARITY 18-23 OR C01	1	16	3
3S067	22.11.31.1	1 Y REGISTER PARITY 24-27 OR C02	1	16	4
3S068	22.11.36.1	$1 Y$ REGISTER PARITY 28-31 OR C04	1	16	5

思

予

FIGURE 3.4.4. CPU SCAN CARD

DESCRIPTION

This category contains a brief functional description of each CPU control switch on the 7101 CE console. These switches are listed under the following headings:
a. 7101 CE Console Level Switches
b. 7101 CE Console Pulse Switches
c. 7101 CE Console Marginal Check Controls

7101 CE CONSOLE LEVEL SWITCHES

The level switches on the 7101 CE console are shown in block diagram form on systems page 73.03.01.1. These switches are listed according to sequential console co-ordinates.

A3B29-A3B60 and A3D29-A3D60 PANEL KEYS - These 64 2-position switches are used as a data source when executing a single-store or a consecutive-store operation, as an instruction source when executing an enter-instruction operation, and as a data source when in the maintenance mode and executing a fetch-type instruction that selects address 4.

The output of the PANEL KEYS (a 0 bit if the switch is in the normal position and a 1 bit if it is in the down position) can be modified by the setting of the 3 -position (normal, up, and down) PANEL KEY SET 10 and PANEL KEY SET 01 switches. If both of these switches are in the up position, the output of the PANEL KEYS will be all 0's regardless of the PANEL KEYS setting. If both of these switches are in the down position, the output of the PANEL KEYS will be all 1's regardless of the PANEL KEYS setting. If the PANEL KEY SET 01 switch is in the down position and the PANEL KEY SET 10 switch is in either the normal or up position, the PANEL KEYS data will be OR'ed with a $010101---01$ pattern. If the PANEL KEY SET 10 switch is in the down position and the PANEL KEY SET 01 switch is in either the normal or up position, the PANEL KEYS data will be OR'ed with a $101010---10$ pattern. If both of these switches are in the normal position, the PANEL KEYS data will not be modified.

A3F31-A3F48, ADDRESS KEYS 0-17 - The contents of these 2-position switches are gated (a 0 bit if the switch is in the normal position and a 1 bit if it is in the down position) into the W register when the DISPLAY or STORE pushbutton is depressed. The W register is then used to
select the storage address from which data will be fetched for display in the X and Y registers or into which data will be stored from the PANEL KEYS.

A3F49 MAINT MODE - When set (down), this switch places the CPU in the maintenance mode to condition the Allow Error Inject (ALLOW ER INJ) level switch and the console pushbutton switches for maintenance operations. In addition, when this switch is set, all references to storage address 4 are interpreted as a fetch of the information from the PANEL KEYS.

A3F50, TIME CLK (DISABLE) - When set (down), this switch inhibits the stepping of the time clock and interval timer.

A3F51 IRPT (DISABLE) - When set (down), this switch inhibits the execution of all interrupts that normally result from the setting of indicator register bits. This switch also inhibits the interrupt that is initated by the Force Enable on Execute instructions.

A3F52-A3F55, LA 1, 2, 3, 4 - When set (down), these switches set the disconnect tag for the associated level of lookahead. When this tag is set, the associated level of lookahead is bypassed for all lookahead loading operations.

A3F56, RPT INST - When set (down), this switch enables the CPU to alternately gate the contents of the PANEL KEYS into the 1Y and 2Y registers. Execution of the repeat-instruction operation, which can be performed only in the maintenance mode, is initiated by depressing the START (Program) pushbutton (A3D24). When depressed, this pushbutton, instead of processing the sequential instructions of the stored program, causes the CPU to continually execute the full- or half-word instructions that were preset into the PANEL KEYS. If a branch instruction was preset into the PANEL KEYS, the instruction or instructions contained in the branch location will be executed before the instruction in the PANEL KEYS is repeated.

A3F57, TC TEST - When set (down), this switch allows the time clock and the interval timer to be stepped normally when the CPU is stopped. This switch is operative only if the TIME CLK switch is in the cleared (normal) position.

A3A58, MULTI OP - When set (down), this switch has the same effect as depressing the SINGLE OP pushbutton (A3B26) at a $10-\mathrm{cps}$ rate. This switch is operative only in the maintenance mode.

A3F59, INH SCAN AND A3F60, ERR STOP - These two 3-position (normal, up, down) switches function together to determine what action will be taken when a CPU error occurs. The effect of the switch settings on CPU operation is noted below:

Condition	INH SCAN	ERR STOP	Effect
1.	Normal	Normal	When an error occurs, the CPU clock is stopped and a scan operation is performed. After the scan operation is completed, the CPU clock is automatically restarted to reinitiate normal CPU operation.
2.	Down	Normal	Scanning is suppressed and the CPU clock is not stopped on error.
3.	Up	Normal	Same as condition 1 except that single ECC errors are ignored.
4.	Normal	Down	Same as condition 1 except that CPU operation is not resumed after the scan.
5.	Down	Down	CPU operation stops on any error; scanning does not occur.
6.	Up	Down	On all errors except single ECC errors, the CPU clock is stopped and a scan operation is performed. CPU operation is not resumed after the scan.
7.	Normal	Up	Same as condition 6.
8.	Down	Up	CPU stops on all errors but single ECC errors; scanning does not occur.
9.	Up	Up	Same as condition 6.

A3F61, READ (INDEX STG TEST) - When set (down), this switch conditions CPU circuits so that a continuous read test can be performed on the selected index storage register or registers. Execution of this test, which can be performed only in the maintenance mode, is initiated by the START XS TEST (A3A16) pushbutton. When depressed, this pushbutton causes the CPU to generate a continuous series of index storage read test cycles.

The index storage register to be tested is selected by the W register which was initially preset from the ADDRESS KE YS upon the execution of a display or store operation. If the Address Advance (ADR ADV) switch is set, the contents of the W register will be increased by 1 at the end of each index storage read test cycle so that consecutive index storage registers can be tested sequentially.

The information read out of the selected index storage register is paritychecked by the I checker. If an error is detected, the error signal will set the index storage error trigger. In addition, if the Error Stop (ERR STOP) switch is set, the error signal will terminate the read test.

A3F62, WRITE (INDEX STG TEST) - When set (down), this switch conditions $\overline{C P U}$ circuits so that a continuous read, clear, and write test can be performed on the selected index storage register or registers: Execution of this test, which can be performed only in the maintenance mode, is initiated by the START XS TEST (A3A16) pushbutton. When depressed, this pushbutton causes the CPU to generate a continuous series of index storage read, clear, and write test cycles. These test cycles respectively read out the information in the selected storage index and rewrite the original information (read out into the X register) into the selected index storage register. The index storage register to be tested is selected by the W register which was initially preset from the ADDRESS KEYS upon the execution of a display or store operation. If the Address Advance (ADR ADV) switch is set, the contents of the W register will be increased by 1 at the end of each index storage read; clear, and write test cycle sequence so that consecutive index storage registers can be tested sequentially.

The information read out of the selected index storage register is paritychecked by the I checker. If an error is detected, the error signal will set the index storage error trigger. In addition, if the Error Stop (ERR STOP) switch is set, the error signal will terminate the test.

A3F63, ADR ADV (INDEX STG TEST) - When set (down), this switch causes a 1 to be added to the W register at the end of each test sequence when either the index storage read or index storage write test is executed.

A 3F64, ERR STOP (INDEX STG TEST) - When set (down), this switch routes the index storage read or index storage write parity error signal to terminate the test. The test can be reinitiated by resetting the index storage error trigger and depressing the START XS TEST (A3A16) pushbutton.

A3F65, PANEL KEY SET 01; and A3F66, PANEL KEY SET 10 - These two 3 -position (normal, up, down) switches function together to modify the output of the PANEL KEYS during the execution of single-store, consecutivestore, and enter-instruction operations and during the maintenance mode execution of fetch-type instructions that select address 4. If both of these
switches are in the up position, the output of the PANEL KEYS will be all 0 's regardless of the PANEL KEY setting. If both of these switches are in the down position, the output of the PANEL KEYS will be all 1's regardless of the PANEL KEY setting. If the PANEL KEY SET 01 switch is in the down position and the PANEL KEY SET 10 switch is in either the normal or up position, the PANEL KEYS data will be OR'ed with a 010101---01 pattern. If the PANEL KEY SET 10 switch is in the down position and the PANEL KEY SET 01 switch is in either the normal or up position, the PANEL KEYS data will be OR'ed with a $101010---10$ pattern. If both of these switches are in the normal position, the PANEL KEYS data will not be modified.

A3F67, SCAN TEST - When set (down), this switch enables the maintenance mode operation of the SCAN TEST RING RESET (A3B14) and SCAN TEST STEP (A3B16) pushbuttons. These pushbuttons are used to control the stepping and resetting of the CPU scanner circuitry during test operations.

A3F68, COMP (PLS MODE) - When set (down), this switch causes a computer reset operation to be automatically performed approximately every millisecond. Following the reset, the CPU clock is automatically restarted, and enterinstruction and program-start operations are initiated.

A3F69, MSTR (PLS MODE) - This switch is used only in conjunction with switch A3F68 (COMP, PLS MODE). When both of these switches are set (down), a master reset operation is automatically performed approximately every millisecond. Following the reset, the CPU clock is automatically restarted, and enter-instruction and program-start operations are initiated.

A3F70, ALLOW ER INJ - When set (down), this switch enables the maintenance mode operation of the ERR INJECT ON (A3B20) and ERR INJECT OFF (A3B22) pushbuttons.

7101 CE CONSOLE PULSE SWITCHES

The pulse switches contained on the 7101 CE Console are shown in block diagram form on systems page 73.04.01.1. These switches are listed according to sequential console co-ordinates.

A3A14, INIT PROG LOAD - This pushbutton, which duplicates the function of the INITIAL PROGRAM LOAD pushbutton on the 7152 console and the INITIAL LOAD pushbutton on the Exchange CE console, is used in conjunction with the CHANNEL SIGNAL pushbuttons on various I/O devices to initially load a program into the system without executing a programmed Read instruction. The program to be loaded must start with a control word that specifies the number of words to be read and the core storage address into which the first program instruction is to be stored. After the program has been stored, the CPU automatically starts the execution of the new program.

When initially setting up the manual controls for an initial program load operation, the operator must first depress the CHANNEL SIGNAL pushbutton on the I/O device that is to be subsequently used for this purpose. Since a tape drive unit will generate a channel signal at the end of a rewind operation, the operator must ensure that such an operation is not in process unless the tape drive unit being rewound is to be used as the program source. After the desired channel signal has been generated, the operator can initiate the initial program load operation by depressing the INITIAL PROGRAM LOAD pushbutton.

When depressed, the INITIAL PROGRAM LOAD pushbutton will cause the following sequence:
a. A program halt operation will be executed to terminate the execution of the stored program.
b. A master reset operation will be executed to reset all of the control and error triggers in the CPU.
c. A start clock operation will be executed to reinitiate the generation of controlled clock pulses.
d. An initial program-load-start pulse will be sent to the Exchange. This pulse will:

1. Reset the Exchange circuits to terminate all I/O operations.
2. Reset all control words in the Exchange to zero.
3. Reset all I/O devices to an initial power-on status.
4. Set the Exchange circuits so that the channel signal will be interpreted in a special way.

After the INITIAL PROGRAM LOAD pushbutton is depressed, the selected channel signal will cause the following sequence :
a. The Exchange circuits will store a simulated control word into the associated control word location. This control word will contain the following:

1. Data word address $=4$
2. Chain flag $=1$
3. Multiple flag $=0$
4. Skip flag $=0$
5. Count $=1$
6. Refill address $=4$

Note
Data word address 4 refers to a special core storage location which is used only during initial program load operations.
b. The Exchange circuits will execute a simulated read instruction on the selected channel to initiate the loading of the desired program.
c. The first word read from the selected I/O device will be stored in the special core storage location (address 4). Since the simulated control word is then exhausted, its refill address will cause the next control word to be fetched from location 4 which was just loaded with the first word of the desired program. This new control word will specify the address at which the first program instruction is to be stored and the number of program words that are to be stored. After the new control word is stored into the associated control word location, reading will continue as in normal operation.
d. After the read operation is completed, the Exchange circuits will send an initial-start signal to the CPU.
e. Upon receipt of the initial-start signal, the CPU circuits will fetch and execute the instruction contained in the location specified by the data word address field of the control word that was initially stored into address 4 . In order to continue the execution of the newly stored program, this instruction, which is the first instruction of the stored program, must be a Branch Disabled instruction to the address of the second instruction. As a result of this requirement, the second instruction of the newly stored programi is actually the first instruction of the desired program.

A3A16, START XS TEST - When depressed, this pushbutton initiates a series of index storage read or index storage read, clear, and write test cycles. The type of test cycles that are generated and the type of test control this is exercised is determined by the status of the INDEX STORAGE TEST level switches (A3F61-A3F64). The index storage test can be terminated by a stop-on-error condition or by setting the applicable level switch (A3F61 or A3F62) to the NORMAL position.

A3A18, DISPLAY - When depressed, this pushbutton causes the contents of the X register to be transferred into the 2 Y register and the contents of the ADDRESS KEYS selected storage register (except locations 1, 3, and 5 through 12) to be transferred into the X and $1 Y$ registers for display purposes. This pushbutton will also cause the contents of the ADDRESS KEYS to be transferred into the W register to preset this register for consecutive-display (CONS DISPLAY) operations.

A3020, CONS DISPLAY - When depressed, this pushbutton causes:
a. The contents of the X register to be transferred into the $2 Y$ register.
b. The contents of the W register to be increased by 1 .
c. The contents of the selected storage register to be transferred into the X and 1 Y registers for display purposes. The storage register contents selected for display are addressed by the contents of the modified W register.

A3A22, STORE - When depressed, this pushbutton causes the contents of the PANEL KEYS (modified by the PANEL KEY SET UP switches) to be transferred into the X and $1 Y$ registers. The contents of the X register are subsequently stored into the storage register (except storage register 1) specified by the contents of the ADDRESS KEYS. This pushbutton will also cause the contents of the ADDRESS KEYS to be transferred into the W register to preset this register for consecutive-store (CONS STORE) operations.

A3A24, CONS STORE - When depressed, this pushbutton causes:
a. The contents of the PANEL KEYS (modified by the PANEL KEY SET UP switches) to be transferred into the X and $1 Y$ registers.
b. The contents of the W register to be increased by 1 .
c. The contents of the X register to be transferred into the storage register (except storage register 1) specified by the modified contents of the W register.

A3A26, ENTER INST - When depressed, this pushbutton causes the contents of the PANEL KEYS (modified by the PANEL KEY SET UP switches) to be transferred into the 1 Y register. If the PROGRAM START or SINGLE OP pushbutton is then depressed, the half-word (1Y0-31) or full-word (1Y0-63) instruction in the $1 Y$ register will be executed prior to resuming the normal execution of the program.

A3B14, RING RESET (SCAN TEST) - When depressed, this pushbutton resets the CPU scan rings. This pushbutton is operative only if the SCAN TEST and MAINT MODE switches are set.

A3B16, RING STEP (SCAN TEST) - When depressed, this pushbutton advances the CPU scan rings by one position. This pushbutton is operative only if the SCAN TEST and MAINT MODE switches are set.

A3B18, SCAN - When depressed, this pushbutton initiates a scan operation which produces the same result as an error detected during normal operation. This pushbutton is operative only if the clock is stopped, the MAINT MODE switch is set, and the INHIBIT SCAN switch is clear.

A3B20, ON (ERR INJECT) - When depressed, this pushbutton sets bit 58 of the upper boundary register to inhibit the generation of boundary alarms and to enable bits 0 through 8 of this register to be used to inject errors into the I checker output lines. This pushbutton is operative only if the MAINT MODE and ALLOW ER INJ switches are set.

A3B22, OFF (ERR INJECT) - When depressed, this pushbutton clears bit 58 of the upper boundary register. This pushbutton is operative only if the MAINT MODE and ALLOW ER INJ switches are set.

A3B26, SINGLE OP - When depressed, this pushbutton causes one instruction to be loaded into lookahead from the I unit. The lookahead instruction will then be executed, and a new instruction will be transferred into the I unit if either the 1 Y or the 2 Y register is empty. This operation is similar to a program start, followed immediately by a program halt.

A3C18, AXXB - When depressed, this pushbutton causes controlled clock pulses to be distributed at one-third of the normal clock frequency. The frequency of free-running clock pulses is not affected by this pushbutton.

A3C20, 1 PULSE - When depressed, this pushbutton permits one controlled clock pulse (either an A or a B pulse, depending upon the status of the clock) to be distributed to the CPU. The clock must be stopped for this control to be operative.

A3C22, 2 PULSE - When depressed, this pushbutton permits two controlled clock pulses (either A and B or B and A , depending upon the status of the clock) to be distributed to the CPU. The clock must be stopped for this control to be operative.

A3C24, 3 PULSE - When depressed, this pushbutton permits three controlled clock pulses (either ABA or BAB, depending upon the status of the clock) to be distributed to the CPU. The clock must be stopped for this control to be operative.

A3D14, MASTER (RESET) - When depressed, this pushbutton resets the indicator register and all control and error triggers within the CPU. This pushbutton will also set the Program Halt Required, Program Halt, and I Recovery Required triggers to prepare the CPU for subsequent manual operations.

A3D16, ERR TGR (RESET) - When depressed, this pushbutton resets all of the error triggers within the CPU.

A3D18, COMPUTER (RESET) - When depressed, this pushbutton resets the indicator register and all of the control triggers within the CPU. This pushbutton will also set the Program Halt Required, Program Halt, and I Recovery Required triggers to prepare the CPU for subsequent manual operations.

A3D20, START (CLOCK) - When depressed, this pushbutton reinitiates the distribution of controlled clock pulses to the CPU. This pushbutton is effective only if the clock had been previously stopped by means of the STOP pushbutton.

A3D22, STOP (CLOCK) - When depressed, this pushbutton terminates the distribution of controlled clock pulses to the CPU after the next SBC pulse. Free-running pulses are not affected by this pushbutton. Control of the clock pulses is assumed by the 1 PULSE, 2 PULSE, or 3 PULSE pushbuttons.

A3D24, START (PROGRAM) - When depressed, this pushbutton causes the I unit to resume loading instructions into the lookahead unit. If the information that was previously loaded into the I unit has been destroyed because of manual operations, this pushbutton will initiate an I unit recovery operation prior to resuming lookahead loading. However, if the information that was previously loaded into the I unit is still valid, lookahead loading will be resumed from the point at which it was previously stopped.

A3D26, HALT (PROGRAM) - When depressed, this pushbutton causes a Program Halt to be set, thereby trigger-suppressing lookahead loading and allowing the instruction unit to fill up and wait for lookahead. Normally, this pushbutton is used to stop the execution of the program to permit manual intervention.

7101 CE CONSOLE MARGINAL CHECK CONTROLS

The marginal check controls contained on the 7101 CE console are shown in block diagram form on systems page 02.04.00.1. These controls are listed according to sequential console co-ordinates.

A3F075, RESET - This momentary contact toggle switch is used to deselect the marginal check selection circuits that were previously set by one of the MARGINAL CHECK SELECTION toggle switches. This switch, which is actuated by setting it to either the UP or DOWN position, is operative only if the CPU is in the maintenance mode and if the +6 MAR and -12 MAR Variacs are in the neutral or 0 position.

A3F076-A3F093, MARGINAL CHECK SELECTION - These 18 momentary contact toggle switches are associated with the 18 frames of the CPU and are used to select the CPU frame or frames which will be subsequently marginal checked. The MARGINAL CHECK SELECTION switches associated with the CPU frame or frames to be tested must be momentarily set to either the UP or DOWN position prior to the application of a marginal check voltage excursion. If the switch is momentarily set to the UP position, the associated CPU frame will be conditioned for a marginal check excursion on its +6 v supply line. If the switch is momentarily set to the DOWN position, the associated CPU frame will be conditioned for a marginal check excursion on its -12 v supply line. These switches are operative only if the CPU is in the maintenance mode and if the +6 MAR and -12 MAR Variacs are in the neutral or 0 position.

A3J097, FRAME SELECTOR - This 20 -position rotary switch, which can be set to select any one of the 19 CPU frames, is used to select a particular CPU frame for voltage-monitoring purposes. The nine output lines of this switch, which represent the various voltage supply lines within the selected CPU frame, are connected as input lines to the METER RANGE SELECTOR switch.

A3N097, METER RANGE SELECTOR - This 10-position rotary switch is used to connect the 7101 CE console marginal check voltmeter to any voltage supply line of the selected CPU frame.
+6 MAR Variac - This Variac is used to apply both positive and negative voltage excursions to the +6 v supply line of the selected CPU frames. This Variac is operative only if the CPU is in the maintenance mode.

- 12 MAR Variac - This Variac is used to apply both positive and negative voltage excursions to the -12 v supply line of the selected CPU frames. This Variac is operative only if the CPU is in the maintenance mode.

MEM DRVS Variac - This Variac is used to apply both positive and negative voltage excursions to the +60 v supply line which is permanently connected to the index core storage driver circuits that are contained in CPU frame 14.

DESCRIPTION

This category contains:
a. An analysis of the file number coding scheme used for program identification.
b. A brief description of the applicable CPU maintenance programs.
c. The general procedure to be followed when marginal checking individual frames of the CPU.

FILE NUMBER PROGRAM IDENTIFICATION CODE

All maintenance programs used with the 7030 DPS are identified by a mnemonic code and a file number code. The file number assigned to each program is a 7-character alphanumeric code which signifies the following:
a. 1st character- Specifies the Data Processing System。

Example: The letters J and K are used to designate the 7030 DPS.
b. 2nd character- Specifies the type of program control.

Examples: A designates self-control. B designates SSIP control. C designates DCP control.
c. 3rd character- Blank
d. 4th character- Specifies a major area of the system. Examples: A designates the CPU. B designates the CSU. C designates the Tape System. E designates the Exchange. F designates the FIX program. N designates peripheral units. S designates the systems test. T designates the Disk System. U designates a utility program。
e. 5th character- Specifies a detailed area of the system, using letters A through Z .
f. 6th character- Specifies the program number, using numbers 1 through 9.
g. 7th character- Specifies revision level, using letters A through Z.

MAINTENANCE PROGRAM ABSTRACTS

The following list briefly describes the current 7101 CPU maintenance programs. The program listing and the associated detailed writeup for each program are available in the program library.

I-BOX 1: The I-BOX 1 program (File No. JA AX1) is a go/no-go type of reliability program which tests the following I-unit instructions:
a. Unconditional Branch
b. Direct Index Arithmetic except RNX, LVE, and SVA
c. Immediate Index Arithmetic except LVS
d. Index Branching

e. Store Instruction Counter If

If no errors exist, this program will cycle indefinitely. If an error is detected, the program will branch to a specified address and hang up. This program should be run before any other CPU maintenance program.

SENSE SWITCH INTERROGATION PROGRAM (SSIP). This maintenance control program (File No. JA UA1) controls the execution of all CPU maintenance programs except the SMFI-1 program. This program contains eight options which are selected by sense switches (PANEL KEYS) as follows:

PANEL KEYS Position	Option
$32-$	Suppress error printout
$33-$	Stop on error
$34-$	Repeat each test 100 times, and print number of errors
$35-$	Repeat current test indefinitely
$36-$	Print out section identity
$37-$	Repeat block of tests
$38-$	Start each test enabled
$39-$	Spare

An option is selected when the associated PANEL KEYS switch on the 7101 CE console is placed in the DOWN position. In addition to these options, this program contains four print formats: identity print, single error print, total error count, and indicator printout as a result of an interrupt.

I-BOX 2: The I-BOX 2 program (File No. JB AX2) checks the CPU for proper execution of the Store Zero, Compare Value, and Compare Count instructions and for proper selection of an index storage register. This program, which operates under control of the SSIP program, should normally be executed after the I-BOX 1 program.

I-BOX 3: The I-BOX 3 program (File No. JB AX3) checks the CPU for proper loading and storing of index registers. This program, which operates under control of the SSIP program, should normally be run after the I-BOX 2 program.

I-BOX 4: The I-BOX 4 program (File No. JB AX4) checks the CPU for proper execution of the Transmit and Swap instructions and varied instructions in the direct index, immediate index, index branch, and miscellaneous classes. This program, which operates under control of the SSIP program, should normally be run after the I-BOX 3 program.

I-BOX 5: The I-BOX 5 program (File No. JB AX5) exercises the programming features of the CPU such as the time clock, the interrupt system, and boundary control. This program, which operates under control of the SSIP program, should normally be run after the I-BOX 4 program.

VFL INSTRUCTION (VFL INSTRUCT): The VFL INSTRUCT program (File No. JB AV1) checks the execution of all VFL instructions and the associated SAU control circuits. This program, which operates under control of the SSIP program, should normally be run after the I-BOX 5 program.

FLOATING POINT INSTRUCTION (FLO PNT INST): The FLO PNT INST program (File No. JB AF1) checks the execution of all floating point instructions and associated control circuits. This program, which operates under control of the SSIP program, should normally be executed after the VFL INSTRUCT program.

I-BOX, I-CHKR: The I-BOX, I-CHKR program (File No. JB AC1) checks the reliability of the I checker. This program, which operates under control of the SSIP program, should be used after the I-unit programs are executed or when the I checker is suspected of being faulty.

MEMORY 1: The MEMORY 1 program (File No. KC BA1) uses a number of tests to check the operation of all core storage units. Error injection is used to check the err or correction bits and to isolate single bit failures. The program operates under self-control.

SYSTEMS EVALUATION (SEVA): The SEVA program (File No. KA SS1) is an overall test of the central processor unit and all available I/O devices. Random numbers are used in algebraic problems, using VFL and floating point arithmetic. Solutions are obtained and checked for accuracy. Random numbers are also used in information transfers to I/O devices to check these units. The program is completely self-controlled.

GENERAL PROCEDURE FOR MARGINAL CHECKING INDIVIDUAL FRAMES OF CPU

1. Refer to table 3.6.1 to determine which program(s) should be executed to exercise circuits within CPU frame(s) to be checked.
2. Refer to applicable program writeup for specific loading and operating procedures.
3. Load and execute program to ensure reliability of CPU under non-marginal check conditions. If an error is detected, correct system operation before continuing to step 4.
4. Stop program.
5. Set FRAME SELECTION switch for frame to be tested. Set this momentary contact toggle switch to UP position if +6 v line is to be varied or to DOWN position if -12 v line is to be varied.
6. Set METER RANGE SELECTOR rotary switch to voltage line that is to be varied.
7. Set FRAME SELECTOR rotary switch to frame that is to be voltagemonitored.
8. Start program.
9. Turn knob on applicable Variac to obtain excursion specified in table 3.6.1.
10. Allow program to make several passes with margin applied, and then perform following:
a. If program runs successfully, either check CPU circuits with an excursion of the opposite polarity as in step 9 or proceed to step 11.
b. If program does not run satisfactorily, repair system and repeat steps 4 through 10.
11. Stop program, and reset Variac to its 0 position (red light will go out). Deselect CPU frame selection control circuits by setting marginal check RESET switch (momentary contact toggle switch) to either UP or DOWN position.
12. Repeat steps 2 through 10 for other marginal check voltage.
13. Repeat steps 1 through 11 to check circuits within other CPU frames.

DESCRIPTION

This category contains a brief discussion of the I unit conditions under which particular bits of the indicator register will be set for CPU 7101, Serial No. 30,004 and higher.
MACHINE CHECK INDICATOR
The machine check (MK) indicator (bit 0 of the indicator register) is set directly from the nonidentifiable check (NIDC) trigger in the I unit. The NIDC trigger can be set under any of the following conditions:
a. A conditional index adder error (refer to table 3.7.1).
b. A conditional uncorrectable error (refer to table 3.7.2).
c. Any error that occurs during the advancing of the instruction counter.
d. A conditional I unit parity error (refer to table 3.7.3).
e. An index storage address check which does not condition the identification check (IDC) trigger in the I unit.
f. A conditional memory check (refer to table 3.7.4).

Note: The conditions for gating the 1 Y and 2 Y MC triggers to the IDC or NIDC triggers are shown in table 3.7.5.
g. A store address, return address, or boundary register parity error that is detected by the storage bus control circuits.

INSTRUCTION REJECT INDICATOR

The instruction reject (IJ) indicator (bit 2 of the indicator register) is set from the identifiable check (IDC) trigger in lookahead, which in turn is set from the Z right or Z left identifiable check (ZRIDC or ZLIDC) trigger in the I unit. The ZRIDC and ZLIDC triggers can be set under any of the following conditions:
a. A conditional I unit parity error when using ZR or ZL controls (refer to table 3.7.6).
b. A conditional uncorrectable error when using ZR or ZL controls (refer to table 3.7.7).
c. A conditional index adder error when the NIDC trigger is not conditioned (refer to table 3.7.8).
d. The 1 Y or 2 Y IDC trigger is set and the corresponding Y to Z transfer trigger is also set (refer to table 3.7.9).
e. A lookahead parity error when using ZR or ZL controls.
f. A conditional index storage address check when using ZR or ZL controls (refer to table 3.7.10).
g. A memory check if the NIDC trigger is not conditioned.

OPERATION CODE INVALID INDICATOR

The operation code invalid (OP) indicator (bit 15 of the indicator register) is set if an undefined operation code is detected or if one of four special conditions exists. Invalid operation codes associated with VFL, I/O, and FP instructions are noted in table 3.7.11, and invalid operation codes associated with I unit instructions are noted in table 3.7.12.

The special conditions under which the OP indicator is set are noted below:
a. VFL store instruction specifies immediate addressing.
b. Progressive indexing (PX) is specified and the I-field is zero.
c. The Z register contains the left half word of two full-word instructions.
d. A miscellaneous instruction is decoded while the full-word (FW) trigger is on.

ADDRESS INVALID INDICA TOR
The address invalid (AD) indicator (bit 16 of the indicator register) is set from the AD trigger in lookahead, which in turn is set from the Z left or Z right address invalid (ZLAD or ZRAD) trigger in the I unit or the AD trigger in the SAU or PAU unit.

The AD indicator will be set under any of the following conditions:
a. An out-of-bounds address is detected by the storage bus control circuits during the execution of an instruction fetch operation. The above error condition, which includes the free instruction fetch for IRPT OP, IPL OP, EX OP, and EXID OP conditions, will set the appropriate trigger only if the repeat instruction level switch (located on the 7101 CE console) is in the NORMAL position.
b. A data store or data fetch boundary alarm is detected during the execution of VFL, IO, and FP instructions (refer to table 3.7.13).
c. A data store or data fetch boundary alarm is detected during the execution of I unit instructions (refer to table 3.7.14).

UNENDED SEQUENCE OF ADDRESSES INDICATOR

The unended sequence of addresses (USA) indicator (bit 17 of the indicator register) is set directly from the USA trigger in the I unit. The USA trigger is set if more than 1 ms passes during the execution of an EX, EXID, or LVE instruction. The elapsed time is detected by use of a PUSA (prepare for a USA condition) trigger, which is set when a time clock break in pulse occurs during the execution of these instructions and reset at the completion of these instructions. When set, the PUSA trigger will gate the next time clock advance pulse (1 ms later) to set the USA trigger.

EXECUTE EXCEPTION INDICATOR

The execute exception (EXE) indicator (bit 18 of the indicator register) is set by:
a. The LOP3 sequencer if a successful branch condition is detected during EX mode operation.
b. The LOP4 sequencer if a branch disabled (BD) or store instruction counter on branch disabled (SIC-BD) instruction is decoded during EX mode operation.

DATA STORE INDICATOR

The data store (DS) indicator (bit 19 of the indicator register) is set from the DS trigger in lookahead, which in turn is set (except during the execution of a SIC-BI instruction) from the ZDS trigger in the I unit. The ZDS trigger is set on boundary alarms according to the conditions noted in table 3.7.15. This indicator will also be set if a VFL or FP instruction attempts to store data into storage location 2 or 3 .

DATA FETCH INDICATOR

The data fetch (DF) indicator (bit 20 of the indicator register) is set from the DF trigger in lookahead, which in turn is set from the ZDF trigger in the I unit. The ZDF trigger is set on boundary alarms according to the conditions noted in table 3.7.16. This indicator will also be set if a VFL or FP instruction attempts to fetch the data from storage location 1,2 , or 3 .

INSTRUCTION FETCH INDICATOR

The instruction fetch (IF) indicator (bit 21 of the indicator register) is set from the IF trigger in lookahead, which in turn is set from the Z right or Z left instruction fetch (ZRIF or ZLIF) trigger in the I unit. The ZRIF or ZLIF trigger is set if an out of bounds address is detected by the storage bus control circuits during the execution of an instruction fetch operation. The above error condition, which includes the free instruction fetch for IPL OP, EX OP, and EXID OP conditions, will set the appropriate IF trigger only if the repeat instruction level switch (located on the 7101 CE console) is in the NORMAL position.

If the above operation fetches a branch instruction, the ZRIF or ZLIF trigger will be set only if a boundary alarm is generated, the branch condition is successful, and the branch address is valid. If the above operation fetches a BB or BI instruction, then the appropriate IF trigger will be set directly on a boundary alarm. Under this condition, however, the ZRIF and ZLIF triggers are not gated to the IF trigger in lookahead.

TABLE 3.7.1. INDEX ADDER ERROR CONDITIONS THAT SET NIDC TRIGGER

TMTD + TMTI + SWPD + SWPI	A	A				A				
BRANCH			A							
TIME CLOCK OP				A	A					
IRPT OP + IPL OP							A			
IRPT OP								A		
E-BOX SIC - BI + SIC - CB + SIC - CBR									A	A
TMTD + SWPD + SDOP + CDOP + SSOP + CSOP + XSWT + XSRT										
RAM1 E										
LAM1 E										
CNT1 E	A		A							A
CNT1 EM		A								
ADD1 E										
ADD1 EM				A						
ADD3 E						A				
ADD5 E					A			A		
IAU ERROR							A			

Legend: A - AND

Note: The NIDC (nonidentifiable check) trigger is subsequently sampled to set the MK (machine check) indicator (bit 0 of the indicator register).

TABLE 3.7.2. UNCORRECTABLE I UNIT ERROR CONDITIONS THAT SET NIDC TRIGGER

TMTD + TMTI + SWPD + SWPI	A					
RENAME		A				
SWPD + SWPI			A			
E - BOX SIC - BI + SIC - CB - SIC - CBR				A		
LDX3 E	A					
LDX4 E		A	A			
LDX5 E				A		
EMF3 M	A				A	
EMF4 M			A			A
LST3 E					A	
LST4 E						A
UNCORR ERROR	A	A	A	A	A	A

Legend: A - AND
Note: The NIDC (nonidentifiable check) trigger is subsequently sampled to set the MK (machine check) indicator (bit 0 of the indicator register).

TABLE 3.7.3. I UNIT PARITY ERROR CONDITIONS THAT SET NIDC TRIGGER

TMTD + TMTI + SWPD + SWPI	A					A				
SWPD + SWPI		A						A		
RENAME			A							
ANY SIC - BRANCH						A				
CHK4 E	A									
CHK5 E		A								
LST1 E			A							
LST3 E				A						
LST4 E				A						
LOP3 E					A					
LDX3 E							A			
LDX4 E								A		
EMF3 NM				A			A			
EMF4 NM					A			A		
Z-XA						\bar{A}				
I-BOX PARITY ERROR						\bar{A}				
NO-OP						A				
BROK	A A A	A	A	A	A	A				

Legends: A - AND

$$
\bar{A}-\text { NOT AND }
$$

Note: The NIDC (nonidentifiable check) trigger is subsequently sampled to set the MK (machine check) indicator (bit 0 of the indicator register).

TABLE 3.7.4. MEMORY CHECK CONDITIONS THAT SET NIDC TRIGGER

| TMTD + TMTI + SWPD + SWPI | A | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |$|$| SWPD + SWPI | |
| :--- | :--- |
| A | |
| | |
| RENAME | |
| | A |
| | |
| LDX3 E | A |
| | |
| | |
| LDX4 E | |
| A | A |
| | |
| LST3 E | |
| | |
| AST4 E | |
| | |
| MEMORY CHK | A |
| A | A |
| A | A |

Legend: A - AND
Note: The NIDC (nonidentifiable check) trigger is subsequently sampled to set the MK (machine check) indicator (bit 0 of the indicator register).

TABLE 3.7.5. 1Y AND 2Y MEMORY CHECK CONDITIONS THAT SET IDC OR NIDC TRIGGERS

EXID + LX + SX + RN + SV + SC + SR + SAD		A							A				
SWPD + SWPI + EXOP + EXID OP										A			
R + RCZ + ICR - I + ICRN - I + ICR + RN + PX + SDOP + CDOP + SSOP + CSOP													
CHK1 E	A							A					
LDX1 E		A							A				
LDX3 E			A										
LDX4 E				A						A	A		
LDX5 E					A							A	
LDX6 E						A							A
LST3 E							A						
LST4 E													
USE 1Y	A	A		A									
USE 2Y								A	A		A		
OA17					A	A						\bar{A}	\bar{A}

Legends: A - AND

$\bar{A}-N O T$ AND

Note: The NIDC (nonidentifiable check) trigger is subsequently sampled to set the MK (machine check) indicator (bit 0 of the indicator register). The IDC (identifiable check) trigger in lookahead is subsequently sampled to set the IJ (instruction reject) indicator (bit 2 of the indicator register).

TABLE 3.7.6. I UNIT PARITY ERROR CONDITIONS THAT SET IDC TRIGGER

EXID + LX + SX + RN + SV + SC + SR + SAD	A						
EXOP + EXID OP		A					
EXOP			A				
R + RCZ + ICR-I + ICRN-I + LID + ICR + EXOP + EXID OP + PX							
R + RCZ					A		
LG + DX AND NOT RN						A	
LDX1 E	A						
LDX4 E		A					
CHK5 E				A			
CHK6 E					A	A	
EMF4 M		A					
CHK4 E			A				
MOD ZL E + MOD ZR E							A
PX IN Y							A
FW NOT ST							A
XF + DEC ZL + DEC ZR							A

Legends: A - AND

$$
\stackrel{\rightharpoonup}{A}-N O T \text { AND }
$$

Note: The IDC (identifiable check) trigger in lookahead is subsequently sampled to set the IJ (instruction reject) indicator (bit 2 of the indicator register).

TABLE 3.7.7. UNCORRECTABLE I UNIT ERROR CONDITIONS THAT SET IDC TRIGGER

EXID + DXRN	A					
R + RCZ		A				
EXOP + EXID OP			A			A
R + RCZ + ICR-I + ICRN-I + ICR + PX				A		
SIC-CBR-CB + E-BOX SIC-BI					\bar{A}	
CHK1 E	A	A				
LDX3 E			A			
LDX4 E				A		A
LDX5 E					A	
EMF4 M						A

Legends: A - AND

$$
\bar{A}-\text { NOT AND }
$$

Note: The IDC (identifiable check) trigger in lookahead is subsequently sampled to set the IJ (instruction reject) indicator (bit 2 of the indicator register).

TABLE 3.7.8. INDEX ADDER ERROR CONDITIONS THAT SET IDC TRIGGER

CNT1 E	A														
RAM1 E		A													
LAM1 E			A												
ADD1 E			A												
ADD2 E					A										
ADD3 E						A									
ADD4 E							A								
ADD5 E								A							
YL-ZR E									A						
YL-ZL E										A					
YR-ZR E											A				
YR-ZL E												A			
MOD ZR E													A		
MOD ZL E														A	
WBC TEST E															A
USE ZR + ZL	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
IAU ERROR	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A

Legend: A - AND
Note: The IDC (identifiable check) trigger in lookahead is subsequently sampled to set the IJ (instruction reject) indicator (bit 2 of the indicator register).

TABLE 3.7.9. 1Y AND $2 Y$ ERROR CONDITIONS THAT SET IDC TRIGGER

1YMC	A				
2YMC			A		
UNCOR ERR		A		A	
IWC1 E LTH	A	A			
IWC2 E LTH			A	A	
ICOR E		A		A	
SET 1Y IDCSET 2Y IDC					

Legend: A - AND
Note: The IDC (identifiable check) trigger in lookahead is subsequently sampled to set the IJ (instruction reject) indicator (bit 2 of the indicator register).

TABLE 3.7.10. INDEX STORAGE ADDRESS CHECK CONDITIONS THAT SET IDC TRIGGER

LG	A	O			
KV + KC		O			
DX NOT BLOCKED AND NOT (SX + SR + SV + SC + SAD + RN)		O			
SV + SC + SR + SX + SAD			A		
EX OP				A	
R + RCZ + ICR-I + ICRN-I + LID + EXOP + EXID OP + PX					A
XSF1 E	A	A			
XSF3 E			A		
XSF4 E				A	
XSF5 E					A

Legends: A - AND O-OR

Note: The IDC (identifiable check) trigger in lookahead is subsequently sampled to set the IJ (instruction reject) indicator (bit 2 of the indicator register).

TABLE 3.7.11. VFL, FP, AND I/O CONDITIONS THAT SET OP TRIGGER

Z51	A	A					
Z52		A					
Z53	A	$\overline{\mathrm{A}}$				A	A
Z54		$\overline{\mathrm{A}}$		A		A	A
Z55	A	A	A	$\overline{\mathrm{A}}$		A	
Z56	$\overline{\mathrm{A}}$	$\overline{\mathrm{A}}$	A	A		A	A
Z57	$\overline{\mathrm{A}}$	$\overline{\text { A }}$	A	A			$\overline{\mathrm{A}}$
Z58	$\overline{\mathrm{A}}$	$\overline{\mathrm{A}}$	A	$\overline{\text { A }}$			
Z59	$\overline{\mathrm{A}}$	$\overline{\mathrm{A}}$	A	A	A		
ZFW	A	A		A			
I-FIELD $=0$					A		
PX01 + PX02					A		
IMMEDIATE				A			
GT FP IND-LA						A	A
GT VFL IND-LA	A	A	A	A	A		

Legends: A - AND

$$
\bar{A}-\text { NOT AND }
$$

Note: The OP (operation code invalid) trigger is subsequently sampled to set the OP indicator (bit 15 of the indicator register).

TABLE 3.7.12. I UNIT CONDITIONS THAT SET OP TRIGGER

ZEDEC 19	A	A	A	A	A		
ZEDEC 20	$\overline{\mathrm{A}}$	A	A	$\overline{\mathrm{A}}$	A		
ZEDEC 21	A	$\overline{\mathrm{A}}$	A	A	A		
ZEDEC 22	A	A	A	$\overline{\mathrm{A}}$	$\overline{\mathrm{A}}$		A
ZEDEC 23	$\overline{\mathrm{A}}$	$\overline{\mathrm{A}}$	$\overline{\mathrm{A}}$	$\overline{\mathrm{A}}$	$\overline{\mathrm{A}}$		$\overline{\mathrm{A}}$
ZEDEC 24	$\overline{\mathrm{A}}$	$\overline{\mathrm{A}}$	$\overline{\mathrm{A}}$	$\overline{\mathrm{A}}$	$\overline{\mathrm{A}}$	A	$\overline{\mathrm{A}}$
ZEDEC 25	$\overline{\mathrm{A}}$						
ZEDEC 26	$\overline{\mathrm{A}}$						
ZEDEC 27	$\overline{\mathrm{A}}$						
FULL WORD					$\overline{\mathrm{A}}$	A	A
GI IEI-LA	A	A	A	A	A	A	A

Legends: $\frac{A}{A}$ - AND

$$
\bar{A}-\text { NOT AND }
$$

Note: The OP (operation code invalid) trigger is subsequently sampled to set the OP indicator (bit 15 of the indicator register).

TABLE 3.7.13. VFL, FP, AND I/O CONDITIONS THAT SET AD TRIGGER IN LOOKAHEAD

VFL					A						
VFL CL 2			A								
VFL CL 5					\bar{A}						
RD + WR + CCW				A							
FPL CL 2					\bar{A}						
FPL CL 3 + 4						A					
FPR CL 2									A		
FPR CL 3 + 4										A	
ZL EQ1 + WEQ1-WBC			A								
ZR EQ 0-31 + NA				A							
WBC WNA + ZOAL NA					A						
ZL EQ1							A				
ZOAL NA						A					
ZR EQ1										A	
ZOAR NA									A		
IMMEDIATE					A						
ZLAD*	A							A			
ZRAD*	A	A									A
GT VFL IND TO LA	A		A	A	A						
GT FPL IND TO LA		A				A	A	A			
GT FPR IND TO LA									A	A	A

Legends: A - AND

$$
\bar{A}-\text { NOT AND }
$$

Note: The AD (address invalid) trigger is subsequently sampled to set the AD indicator (bit 16 of the indicator register).
*The ZLAD and ZRAD triggers can be set for VFL or FP instructions only if the address of the instruction itself is nonexistent.

TABLE 3.7.14. I UNIT ERROR CONDITIONS THAT SET AD TRIGGER IN LOOKAHEAD

EXID	\| A																	A
R - RCZ + ICR-I + ICRN-I + ICR + PX + SDOP + CDOP		A																
			$\overline{\mathrm{A}}$						A									
SV - SC + SR - SAD				A														
BB								A										
RN							A						A					
SX											A							
SZ												A						
TMTD - TMTI														0	0			
SWPD - SWPI														0	0			
EMF1E	A															A	A	
EMF3 E															A			
EMF4E		A																
EMF5 E			A															
EMF6E					A													
EMF7 E						A												
XSF1E				A														
XSF3 E											A							
DEC1 E							A			A		A						
DEC 4 E								A										
CNT1E									A					A				
ADD4 E													A					
LAMIE																		A
ZSA	A																	
RF ADR INV		A				A												
BR ADR INV			A				A		A									
SIC ADR INV					A					A								
ZOA $=$ IRH				A														
BB BT ADR INVALD								A										
ZOAL $=$ EEM																		A
EROK									A	A								
ZOA 1-NA											A	A		A				
ZOAL 1 + NA															A			
ZOAL NA																		
ZLNA USE ZL																A		
ZRNA USE ZR																	A	

LEGENDS: A - AND
\bar{A} - NOT AND
O-OR
Note: The $A D$ (address invalid) trigger is subsequently sampled to set the $A D$ indicator (bit 16 of the indicator register).

TABLE 3.7.15. CONDITIONS FOR SETTING ZDS TRIGGER IN I UNIT

EXID + SC + SV + SR + SX + SAD + RN + R + RCZ		A													
RN						A									
SV + SC + SR + SAD							A		A					A	
R + RCZ + SX								A							
SZ										A					
BB											A				
SX															A
EMF 1		A					A	A							
EMF 6	A														
IRF 1									A						
XSF 1														A	
XSF 3															A
DEC 1										A					
DEC 3			A												
DEC 4											A				
LST 3				A								A			
LST 4					A								A		
ADD 4						A									
SIC ADR VALID	A		A												
ZOA = EEM		A													
ZOAR = EEM				A											
ZOAL = EEM					A										
ZLXA			\bar{A}												
ZOA $=$ ILH														A	
ZOA $=2$							A								
ZOA $=3$									A						
ZOA $=1+2+3$								A		A					A
ZOAR $=1-2+3$												A			
$\mathrm{ZOAL}=1+2+3$													A		
ZOA $=2-3$ CHANGE BIT											A				
BOUNDARY ALARM	A	A	A	A	A	A									
INTERRUPT ENABLED	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A

Legends: A - AND
$\bar{A}-N O T A N D$
Note: The ZDS (Z register data store error) trigger is sampled to set the DS trigger in lookahead. This DS trigger is subsequently sampled to set the DS indicator (bit 19 of the indicator register).

TABLE 3.7.16. CONDITIONS FOR SETTING ZDF TRIGGER IN I UNIT

$\mathrm{KV}+\mathrm{KC}+\mathrm{LG}+\mathrm{DX}(\mathrm{SX}+\mathrm{SV}+\mathrm{SC}+\mathrm{SR}+\mathrm{SAD}+\mathrm{RN})$	A						A							
TMTD + TMTI + SWPD + SWPI		A						A		A			A	
SWPD + SWPI				A					A		A			A
R - RCZ + ICR-I + ICRN-I + ICR + PX			A											
RN						A								
BB												A		
EMF 1	A						A							
EMF 3		A						A						
EMF 4			A	A					A					
EMF 7					A									
IRF 3										A				
IRF 4											A			
XSF 4													A	
XSF 5														A
DEC 1						A								
DEC 4												A		
$\mathrm{ZOA}=\mathrm{NOT} \mathrm{NA}+\mathrm{XA}+\mathrm{SA}$	A													
ZOAL $=$ EEM		A												
ZOAR = EEM				A										
$\mathrm{W}=\mathrm{EEM}$			A											
REFILL ADR VALID					A									
$\mathrm{ZOA}=1+2+3$							A							
$\mathrm{ZOAL}=1+2+3$								A		A			A	
ZOAR $=+2+3$									A		A			A
$\mathrm{ZI}=+2+3$ NO CHANGE ON BIT												A		
BOUNDARY ALARM	A	A	A	A	A	A								
INTERRUPT ENABLED	A	A	A	A	A	A	A	A	A	A	A	A	A	A

Legend: A - AND
Note: The ZDF (Z register data fetch error) trigger is sampled to set the DS trigger in lookahead. This DS trigger is subsequently sampled to set the DF indicator (bit 20 of the indicator register).

FIGURE 3.8.1. FLOATING-POINT LOAD (TIMING)

FIGURE 3.8.2. FLOATING-POINT ADD (TIMING)

FIGURE 3.8.3. FLOATING POINT-ADD TO MAGNITUDE (TIMING)

FIGURE 3.8.4. FLOATING-POINT COMPARE (TIMING)

FIGURE 3.8.5. FLOATING-PGINT ADD TO FRACTION (TIMING)

FIGURE 3.8.6. FLOATING-POINT SHIFT FRACTION (TIMING)

FIGURE 3.8.9. FLOATING-POINT STORE LOW ORDER (TIMING)

FIGURE 3.8.10. FLOATING-POINT STORE ROOT (TIMING) (SHEET 1 OF 2)

FIGURE 3.8.10. FLOA TING-POINT STORE ROOT (TIMING) (SHEET 2 OF 2)

FIGURE 3.8.11. FLOATING-POINT MULTIPLY (TIMING)

FIGURE 3.8.12. FLOATING-POINT LOAD MULTIPLER REGISTER (TIMING)

FIGURE 3.8.13. FLOATING-POINT MULTIPLY
AND ADD (TIMING)

FIGURE 3.8.14. FLOATING-POINT STORE MULTIPLIER REGISTER (TIMING)

FIGURE 3.8.15. FLOATING-POINT DIVIDE (TIMING) (SHEET 3 OF 3)

FIGURE 3.8.17. FLOATING-POINT ADD TO EXPONENT (TIMING)

FIGURE 3.8.18. SAU MULTIPLY AND MULTIPLY AND ADD, PAU SECTION(TIMING)

FIGURE 3.8.16. FLOATING-POINT DIVIDE DOUBLE (TIMING)

FIGURE 3.9.1. IC ERROR

FIGURE 3.9.8. I-CHECKER ERROR

Test Equipment
Vacuum Tube Voltmeter 5231703Part No.
Preamplifier, Oscilloscope, Sampling 5231736
Tektronix Type N
Probe, Oscilloscope, Tektronix P6025 5231737
Test Set, Transistor Curve Tracer
Tektronix Type 575 5231792
Oscilloscope, Tektronix Type 555 523004
Preamplifier Type B 460998
Preamplifier Type CA 460999
Tools
Tweezer 801908
Soldering Iron (1/8-inch tip) 5230119
Brush, Acid 2108025
Pliers, Chain Nose, 5-inch 450786
Pliers, Diagonal Cutting, 4-inch 5230009
Loupe, 5-power 450785
Jig Assembly, Card Holding 5230007
Needle, Ground off Hypodermic Local Purchase
Safety Can
Toothpicks, RoundLocal PurchaseLocal Purchase
Screwdriver, Jeweler 0.007-inch Blade 2108286
Maintenance Supplies
Fuse, 1/20 ampere 361575
Solder 2102023
Wire 22 PVC Yellow, Bulk 556332
Flux 5230037
Adhesive Epoxy 5230042
Wire 26 523283
Wire 28 595036

Maintenance Supplies (cont'd)

Board Assembly, Tunnel Diode Memory 361572
Segment, Wire Wound Line 361574
Board, Connector 361555
Diode, Tunnel 361564
Cell, Memory (Field Replacement) 361575
Flux 5230037*SolventAs furnished
*Sleeving 177285
*Finished Bar Stock 0.050-inch hex 5246694

[^0]

FIGURE 3.11.2. VFL ADD 1 TO MEMORY
$1 / 1 / 63$

FIGURE 3.11.3. VFL LOAD TRANSIT
AND SET, DECIMAL MULTIPLY,
DECIMAL MULTIPLY AND ADD,
DECIMAL DIVIDE OR LOAD FACTOR
/1/63

FIGURE 3.11.8. BINARY DIVIDE

FIGURE 3.11.10. BINARY MULTIPLY

FIGURE 3.11.13. BINARY CONVERT AND BINARY CONVERT DOUBLE

INDEX 4-1. CORRECTIVE PROCEDURES

PROCEDURE NUMBER	PROCEDURE TITLE	ISSUE DATE
1	Adjustment of Storage Bus Control and Core Storage Timing	2/1/62
2	+12VDC Power Supply Voltage Adjustment	1/1/63
3	XTD Tunnel Diode Replacement	1/1/63
4	XTD Memory Cell Replacement	1/1/63
5	Word Driver Tuning, New Word- Driver Card	1/1/63
6	XTD Fuse or Resistor Replacement	1/1/63
7	Index Tunnel Diode Storage Tuning Procedure	1/1/63

INDEX 4-2. LIST OF ILLUSTRATIONS

FIGURE NUMBER	FIGURE TITLE	$\begin{aligned} & \text { ISSUE } \\ & \text { DATE } \\ & \hline \end{aligned}$
4.1.1	Data-Out Gate Timing	2/1/62
4.1.2	Select 1Y Pulse Timing	2/1/62
4.1 .3	Select 2Y Pulse Timing	2/1/62
4.1.4	MEM SEL LA Pulse Timing	2/1/62
4.2.1	+12VDC Power Supply and Adjustment Chart	1/1/63
4.3.1	Tunnel Diode Array Card	1/1/63
4.3.2	Tunnel Diode Storage Panel	1/1/63
4.3.3	Memory Cell Assembly	1/1/63
4.3.4	Tunnel Diode	1/1/63
4.4.1	Memory Cell	1/1/63
4.4.2	Soldering of Tunnel Diode to Array Card	1/1/63
4.6.1	XTD Fuse Replacement	1/1/63

INDEX 4-3. LIST OF TABLES

TABLE NUMBER	TABLE TITLE	ISSUE DATE
4.1.1	Memory Select Pulse Delay Line Card Locations	2/1/62
4.1.2	Memory Select LA Level Pulse Delay Line Locations	2/1/62
4.7 .1	Octal Bit Designation	1/1/63

This procedure describes how to check and adjust the timing between core storage units (CSU's) and the storage bus control of the 7101 Central Processor Unit, Serial No. 30,004 and higher. The procedure sets test conditions for each CSU by executing store and fetch operations from the CPU, exchange, and disk synchronizer CE consoles and then checking and adjusting the fixed and/or tapped delays of the intercommunication lines between the core storage and storage bus control units.

The storage bus control and CSU timing relationship must be checked and adjusted whenever the CPU clock frequency is changed or CPU clock sample pulses are realigned.

EQUIPMENT

Oscilloscope - Tektronix type 551 dual-beam, with type 53/54L,fastrise, calibrated preamplifiers.

PROCEDURAL STEPS

A. Preparation

1. Allow warmup period of 30 minutes for CSU's, CPU, exchange, disk synchronizer, and oscilloscope.
2. During latter part of warmup period, check transfer and execution of instructions from 7101 CE console to ensure that associated CPU controls, registers, and timing sequencers are functioning properly. This test is accomplished as follows:
a. Set Load Index (LX)instruction into both half-words of 7101 CE console PANEL KEYS.
b. Set MAINT MOD level switch to DOWN position.
c. Set RPT INST level switch to DOWN position.
d. Set TIME CLOCK level switch to DOWN position.
e. Set IRPT level switch to DOWN position.
f. Set INH SCAN level switch to DOWN position.
g. Depress MASTER (Reset) pushbutton.
h. Depress START (Clock) pushbutton.
i. Depress START (Program) pushbutton.
3. If instruction transfer between PANEL KEYS and 1Y and $2 Y$ registers is not satisfactorily timed, temporarily adjust PANEL KEYS timing delay line on card 11A2H16 (logic 18.05.01.1)
4. Repeat step 2, using Store Index (SX) instruction.
5. After warmup period, compensate oscilloscope probes, using internal oscilloscope calibrator.
6. Execute Sample Pulse Alignment Check procedure (Check Procedure 1 of this manual) to ensure accuracy of clock sample pulse adjustments.
B. Timing of Store Operations
7. Set CPU store test routine on 7101 CE console:
a. Set Store Index (SX) instruction to CSU A0 into both halfwords of PANEL KEYS.
b. Depress MASTER (Reset) pushbutton.
c. Depress START (Clock) pushbutton.
d. Depress START (Program) pushbutton.
8. Adjust SM memory-select timing pulse (measured at card socket pin 11A2H21F, logic 11.12.02.1) so it is 200 nanosec wide and occurs 150 nanosec after leading edge of an SP pulse (measured at card socket pin 11A2K24F, logic 11.12.02.1). The delay lines for these adjustments are on cards 11A2F24 and 11A2F23 (logic 11.12.02.1).
9. Adjust MEM SEL pulse delay so changing memory address bus (MAB) information will be properly sampled into memory address register (MAR) of CSU A0 (logics 01.02.00.1 through 01.02.04.1). The delay line for this adjustment is on card 11 A 3 J 27 (logic 13.06.01.1).
10. Adjust MEM RD out pulse delay line (contained on card 11B1E21, logic 14.01 .01 .1) so MEM RD out pulse will arrive at readout trigger of CSU A0 (measured at pin 3 of card socket 01 C 1 C 13 , logic 01.02.04.1) at same time that MAB information arrives at MAR (logics 01.02.00.1 through 01.02.04.1).
11. Adjust Busy trigger reset delay line so that Busy trigger (logic 13.05.01) is on for 1800 nanosec. The delay line for this adjustment is on card 01B1B22 (logic 01.12.00.1) of the selected CSU.
12. Change address portion of Store Index (SX) instruction in 7101 CE console PANEL KEYS to specify next sequential CSU. Repeat steps 1 through 5 to adjust delay lines associated with MEM SEL pulse, MEM RD out pulse, and Busy trigger reset pulse for CSU's A1, B0, B1, B2, and B3. The location of the MEM SEL delay line card for each of these CSU's is shown in table 4.1.1.

TABLE 4.1.1. MEMORY SELECT PULSE DELAY LINE CARD LOCATIONS

Core Storage Unit	Delay Line Card Location	Logic Page
A1	11A3J24	13.06 .02 .1
B0	11A3J26	13.06 .01 .1
B1	11A3J25	13.06 .01 .1
B2	11A3J23	13.06 .02 .1
B3	11A3J22	13.06 .02 .1

7. After above operations, adjust data-in-gate pulse delay lines (contained on CSU cards 01B1B18 and 01B1B16, logic 01.12.02.1) to sample selected index register data into memory data register (MDR) of each CSU (logics 01.18.04.1 through 01.18.07.1).

C. Timing of Fetch Operations

1. Set CPU fetch test routine on 7101 CE console:
a. Set Load Index (LX) instruction to CSU A0 in both half-words of PANEL KEYS.
b. Depress MASTER (Reset) pushbutton.
c. Depress START (Clock) pushbutton.
d. Depress START (Program) pushbutton.
2. Adjust RA DCR STROBE pulse (measured at pin E of card socket 12B1J21, logic 17.05.02.1) so it samples RA parity bit (measured at pin E of card socket 12B1J22, logic 17.05.02.1). The delay line for this adjustment is on card 12B1K19 (logic 17.04.06.1).
3. Adjust data-out-gate pulse (measured at pin A of CSU card 01B1B10, logic 01.12.03.1) so it is 290 nanosec wide by varying delay line on card 01B1C13 (logic 01.12.03.1). Check data-out-gate pulse (measured at card socket pin 01 A 1 H 24 B , logic 01.13.00.1) to ensure that it does not occur earlier than 1050 nanosec after select-memory pulse (measured at card socket pin 01B1C06D, logic 01.12.00.1). If time difference is too short, increase delay by adjusting delay line on card 01B1C19 (logic 01.12.00.1). Simultaneously, check read/write trigger (measured at card socket pin 01D2J06B, logic 01.08.00.1) to ensure that it is changing state between X - or Y read/write timing pulses (measured at card socket pins 01D2K09B and 01D2K04G, logic 01.12.02.1). The delay line for adjusting the setting of this trigger is also on card 01B1C19 (logic 01.12.00.1).

The IMOB data pulses measured at the 1Y register (logic 22.11.01.1) through 22.11.37.1) and at lookahead level 4 (logic 31.01.01.1 through 31.02 .10 .1) should bracket (overlap) the sixth SP pulse (measured at card socket pin 11A3B20F, logic 12.10.04.1) that is generated after the SP pulse which initiated the gate I pulse (measured at card socket pin 11A3B20G; refer to step 3). If above condition does not exist, adjust data-out-gate pulse timing by varying delay line on card 01A1F26 (logic 01.13.00.1). Adjust accurately even though pulse may have to be realigned after select pulses have been adjusted. (See fig. 4.1.1.)
4. Check timing of SEL 1Y pulse (measured at card socket pin $17 \mathrm{~A} 2 \mathrm{C} 25 \mathrm{U}, \log$ ic 28.72 .41 .1) to ensure that pulse brackets (overlaps) fifth and sixth SP pulses (measured at card socket pin 17A2C25-3) that occur after SP pulse which initiated gate I pulse (measured at card socket pin 11A3B20G; refer to step 3). If above condition does not exist, adjust SEL 1 Y pulse timing by varying delay line on card 12B1K15 (logic 17.06.01.1). (See fig. 4.1.2.)
5. Check timing of SELECT 2Y pulse (measured at card socket pin 17A2C21U, logic 28.72 .51 .1) to ensure that pulse brackets (overlaps) fifth and sixth SP pulses (measured at card socket pin 17A2C21-3) that occur after SP pulse which initiated gate I pulse (measured at card socket pin 11A3B20G; refer to step 3). If above condition does not exist, adjust SEL 2 Y pulse timing by varying delay line on card 12B1K16, logic 17.06.01.1. (See fig. 4.1.3.)
6. Set CPU to test timing of the four MEM SEL LA pulses at 7101 CE console:
a. Set a Load instruction (from CSU A0) into both half-words of PANEL KEYS.
b. Depress MASTER (Reset) pushbutton.
c. Depress START (Clock) pushbutton.
d. Depress START (Program) pushbutton.
7. Check and adjust timing of the four MEM SEL LA level pulses by using signal measuring points and delay line location information listed in table 4.1.2. When checking one of these pulses, bypass other lookahead levels by means of LA disable switches on 7101 CE console. Adjust each MEM SEL LA pulse so it brackets (overlaps) fifth SP pulse that occurs after SP pulse which initiated gate I pulse (measured at card socket pin 11 A 3 C 13 G ; refer to step 3). (See fig. 4.1.4.)

TABLE 4.1.2. MEMORY SELECT LA LEVEL PULSE DELAY LINE LOCATIONS

Test Pulse	Signal Measuring Points		Delay Line		
	LA Pulse	SP Pulse	Logic Page	Location	Logic Page
MEM SEL LA 1	18A3A21B	18A3A21C	36.01 .05 .1	12B1K18	17.06 .01 .1
MEM SEL LA 2	18A3A21-6	18A3A21-5	36.01 .06 .1	12B1K10	17.06 .02 .1
MEM SEL LA 3	18A3C21B	18A3C21C	36.01 .07 .1	12B1K12	17.06 .02 .1
MEM SEL LA 4	18A3C21-6	18A3C21-5	36.01 .08 .1	12B1K13	17.06 .02 .1

8. Use Load Index instruction test routine (refer to step 1) to check time at which data-in-gate pulse samples IMOB data into $1 Y$ register. Next, use Load instruction test routine (refer to step 5) to check time at which data-ingate pulse samples IMOB data into lookahead level 4 (LA 4). If IMOB data is not being correctly sampled into 1 Y register and/or. LA level 4, refer to step 3 and vary timing of data-out-gate pulse so that both transfers are made correctly.
9. Repeat step 3 for each of the other CSU's to ensure that IMOB data at 1 Y and LA 4 registers is identical in width and relative position for all CSU's. Also, repeat step 7 for each of the other CSU's to ensure that IMOB data will be correctly transferred into 1 Y and LA4 registers from all CSU's.
10. Set up Load Index instruction test routine (refer to step 1) to check timing of data transfer from PANEL KEYS. Using RA-decoder-strobe pulse (measured at card socket pin 12B1J25F, logic 17.05 .01 .1) as a sync point, check time relationship between a pulse on a data line from CSU A0 and a pulse on a data line from PANEL KEYS. If these two pulses do not coincide, adjust PANEL KEYS delay line on card 11A2H16 (logic 18.05.01.1) so that the two data pulses coincide.
11. Set up exchange CE console controls to execute a data fetch operation from CSU A0:
a. Depress SIM WR switch.
b. Set a valid A0 address in WORD ADDRESS switches.
c. Set a DATA WORD XFER switch to select a channel.
d. Set selected channel address in EXCHANGE MEM ADR switches.
e. Store address in control word by depressing EX MEM TEST switch, setting LOAD MEM switch down, depress ing SINGLE CYCLE PB twice, and clearing LOAD MEM switch.
f. Depress MN MEM (Main Memory) TEST switch.
g. Depress MACHINE RESET.
h. Set BLK CW MOD switch down.
i. Depress START pushbutton.
12. Adjust SET BX-BFR pulse by varying delay line on card 12B1J13 (logic 17.06.03.1) so BUS SET BR pulse samples data on BX MOB to BX buffer register.
13. Set disk synchronizer CE console controls to execute a data fetch operation from CSU A0:
a. Store a control word containing an A0 memory address into memory by means of PANEL KEYS on 7101 CE console.
b. On disk sync console, set TEST switch to DS to SIGMA position.
c. Set following switches down:
(1) BLOCK WCO
(2) SUP + 1 SWC
(3) WR STA
(4) SUP + 1 MOD
d. Depress WR pushbutton.
e. Set control word address into CONTROL WORD ADDRESS switches.
f. Depress following pushbuttons in order:
(1) GEN RESET
(2) CW TC
(3) WORD CYCLE
(4) SEL DS MEM (depress twice)
g. Depress RD/WRT START pushbutton.
14. Adjust SEL HX pulse by varying delay line on card 12B1J12 (logic 17.06.03.1) so HX MOB-to-WDR pulse samples data on HX MOB into word register.

FIGURE 4.1.1. DATA-OUT GATE TIMING

FIGURE 4.1.2. SELECT 1Y PULSE TIMING

FIGURE 4.1.3. SELECT 2Y PULSE TIMING

FIGURE 4.1.4. MEM SEL LA PULSE TIMING

DESCRIPTION

This procedure is used to adjust the +12 vdc power supply ($\mathrm{P} / \mathrm{N} 5246540$).

PROCEDURAL STEPS

DANGER

Make sure that all power to the power supply is off before attempting power supply adjustments. Use a voltmeter to determine whether voltages are present. Make certain that the voltage adjustment procedure is understood before attempting any adjustments.

For adjustments of the supply, first determine the present adjustment of the supply. If the adjustment is at the center position (table in fig. 4.2.1), then to increase or decrease the voltage, move those wires required for that particular increase or decrease as shown in the table. For example, for an increase of 0.12 v , move following wires and read output voltage to see that change has been made correctly.

Wire	From Pin	To Pin
	Gray	
Orange	4	3
Yellow	8	7
	12	11

A. Power Supply Schematic

VOLTAGE ADJUSIMENT CHART ON TB-1

B. Adjustment Chart

FIGURE 4. 2.1. +12VDC POWER SUPPLY AND ADJUSTMENT CHART

DESCRIPTION

This procedure is used to replace tunnel diodes.

EQUIPMENT
Jig Assembly ($\mathrm{P} / \mathrm{N} 523007$)
Soldering Iron ($\mathrm{P} / \mathrm{N} 5230119$)
Connector Board (P/N 361555)
Field Replacement Memory Cell (P/N 361569)
Tunnel Diode (P/N 361564)
Flux ($\mathrm{P} / \mathrm{N} 5230037$)
Chain Nose Pliers ($\mathrm{P} / \mathrm{N} 450786$)

PROCEDURAL STEPS

1. Remove array card (fig. 4.3.1) from panel (fig. 4.3.2) by alternately applying a steady at first pull the top and then the bottom of the card.
2. Place array card in jig assembly.
3. Using soldering iron, apply heat to lead on connector board, which comes from memory cell (fig. 4.3.3). Apply pressure to connector board with chain nose pliers, toward memory cell This will loosen joint so that tunnel diode negative leads can be straightened. Apply minimum amount of heat. When tunnel diode negative leads are straight (one lead is for the tunnel diode to be replaced; the other is for the adjacent cell), remove the tunnel diode and connector board as a unit.
4. Curve-trace the new tunnel diode before it is used as a replacment.
5. Place new tunnel diode (fig. 4.3.4) on a new connector board as shown in figure 4.3.3. Pull tunnel diode up to connector board and bend and trim wires. Pull connector board down so that tunnel diode cap rests on standoff block of memory cell.
$B=S A-B D$ (SENSE AMD - BIT DRIVER) AWD
$W=$ WD (WORD DRIVER) AWE
WORD DRIVERS IN ROW.C ARE FOR ARRAY* I
WORD DRIVERS IN ROW D ARE FOR ARRAY*2
CLAMP AUV
ARRAY CARD IIII

FIGURE 4.3.3. MEMORY CELL ASSEMBLY
6. Clean lands on the connector board with a rubber eraser. Scrape the tunnel diode lands tightly with tweezers or a pocket knife.
7. Using rosin-core solder, solder wires to connector board, using minimum heat.

CAUTION

Do not damage connector board.
8. Curve-trace all affected diodes before replacing array card in panel.

FIGURE 4.3.4. TUNNEL DIODE

DESCRIPTION

This procedure is used to replace the memory cell.

EQUIPMENT

Jig Assembly ($\mathrm{P} / \mathrm{N} 5230007$)
Soldering Iron (P / N 5230119)
Memory Cell (P/N 361575)
Segment Wire (P/N 361574)
Epoxy (P/N 5230042)

PROCEDURAL STEPS

1. Place array card in jig assembly.
2. To remove the connector board of the memory cell to be replaced, unsolder wires, i.e., tunnel diode negative leads that overlap adjacent connector boards.
3. To remove memory cell, apply soldering iron to word line leads of memory cells to be changed, lift wires from land, using round toothpick, and cut wires (fig. 4.4.1). Continue applying heat to word line leads extracting memory cell.
4. Check new memory cell to see if the segment wire is bonded in memory cell slot; if not, apply epoxy to slot, and let it cure undisturbed for 24 hours.
5. Place new memory cell (fig. 4.4.2) on array card with segment wire. Put each end of segment wire through holes in array card, bend wires to land, apply flux and solder; trim off excess wire.

FIGURE 4.4.1, MEMORY CELL

FIGURE 4.4.2. SOLDERING OF TUNNEL DIODE TO ARRAY CARD

DESCRIPTION

This procedure describes the tuning of a word-driver card that replaces the old card in the index tunnel diode register.

REQUIREMENTS

Vacuum Tube Voltmeter ($\mathrm{P} / \mathrm{N} 5231703$)

PROCEDURAL STEPS

Amplitude potentiometer will be set to 0 ohm at the factory and must remain at 0 ohm.

1. Set turn-on-time potentiometer (1 K) to 500 ohms, using VTVM meter.
2. Turn off d-c power, and replace card in panel.
3. Turn on power.
4. Measure word-driver output, test point table 2.7.1 (Sect. 2).
5. To set turn-on-time potentiometer, see Check Procedure 7.

DESCRIPTION

This procedure is used to replace the fuse or resistor within the index tunnel diode register circuitry.

EQUIPMENT
Jig Assembly P/N 5230007
Soldering Iron P/N 5230119
Chain Nose Pliers P/N 450786
Fuse P/N 361570
Resistor P/N 550051
VTVM P/N 5231703

PROCEDURAL STEPS

1. Place array card in jig assembly.
2. Apply solder ing iron to fuse lead on land side of card, and apply pressure with chain nose pliers on fuse side of array card so that bent portion of lead is pushed away from land. Straighten bent lead, and remove fuse.

CAUTION

Use minimum heat to avoid land damage (fig. 4.6.1.)
3. Place new fuse on array card ; bend and trim leads.
4. Apply flux and solder, using minimum heat. If circuit land pulls away from card, the wires should be soldered together directly, and epoxy should be used to cement the wires and land to the card for mechanical strength.
5. Use same procedure when changing resistor.

CAUTION

Check fuse after this replacement. Using a VTVM, set scale for RX 1 and check for 10 to 25 ohms across fuse on top of card

FIGURE 4.6.1. XTD FUSE REPLACEMENT

DESCRIPTION

This procedure is performed if the Index Tunnel Diode Storage Tuning program reveals the picking or dropping of bits by the tunnel diode storage register.

REQUIREMENTS

Index Tunnel Diode Tuning Tape (Two programs, XTDT1 and XTDT2)
Index Tunnel Diode Storage Unit, 7101 Instruction Unit IBM CEIM, Form R23-9916.

GENERAL INFORMATION

1. Tuning memory properly requires two persons: one at the maintenance console and one at frame 14. Since the two must work closely together, a telephone is used to facilitate communications.
2. The front panel on gate 14 B must be covered completely throughout the tuning operation. Cardboard inserts may be used to good advantage here, for they are easy to move as tuning progresses from bit to bit.
3. The basic tuning philosophy is as follows:
a. The bit to be tuned is called the bit in question (BIQ).
b. The limits of operation for a BIQ are established by varying the discriminating potentiometers on each of the sense amplifier-bit driver (SA-BD) cards for the BIQ to each extreme (i.e., to the points of failure). There are two potentiometers per card, and each card contains circuits. The optimum tuning point for the BIQ is realized by setting the potentiometer to the mid-point of the range defined by the two failing points.
c. The mid-point of operation is established by counting the number of full turns applied to the tuning slug of the SA-BD potentiometer while adjusting it from one failing point to the other. This range of operation is called the 'turns latitude'"; it will average approximately 15 turns latitude from one failing point to the other. Some BIQ's will have as little as 5 turns latitude, which is probably the lowest acceptable number of turns for good performance. Some BIQ's may have turns latitude of over 20, which means that these bits have an excellent range of operation. Some BIQ's will appear to have no failing point at one end of the turns latitude (mainly the "drops" end). In this condition the failing point is considered at the end of potentiometer (EOP).
4. The XTDT Tuning Tape program is used as follows:

The coarse tuning procedure permits use of the XTDT Tuning Tape program to tune the memory to error-free operation. The XTDT tuning tape contains two programs: XTDT1 and XTDT2. The greatest difference between them is that XTDT2 makes use of the printer and XTDT1 does not. The printer's dependence on the diagnostic control program (DCP) requires that the index tunnel diode storage be error-free in operation to prevent losing program control and usually permits memory to be tuned to accept XTDT2. A significant feature of XTDT2 is the initial printout on the printer, which, together with these instructions, furnishes all rules of operation. The XTDT2 is also used as a diagnostic program for troubleshooting this memory. XTDT2's use of DCP allows a more thorough diagnostic check of memory and a printout of error conditions. This feature and the initial printout are the only advantages of XTDT2 over XTDT1. For all normal tuning the XTDT2 portion of XTDT Tuning Tape should be used.

PROCEDURAL STEPS

Using the XTDT2 program, proceed as follows:

1. Set octal designation for BIQ, maintenance keys 0 through 6. (See table 2.6.1 for octal bit designation for each BIQ.)
2. Set maintenance key 31. This switch is set to cause the program to run in the tuning mode. Read program into machine.

Note

Since maintenance key 31 is set before the initial program load (IPL), a printout on the printer will indicate all program options available to the customer engineer. Use of these options is determined by the operation from this printout.
3. Set maintenance key 32. Setting this bit causes the error printouts to come out on the typewriter (unless switch 48 is set).
4. Set maintenance key 45. This allows the program to loop on specified bit option available to tests 3 through 7.
5. Set maintenance key 46. This allows the program to loop on selected test option available to all tests.
6. Set maintenance key 48 to display errors.
7. Set maintenance key 59. This bit must be set to prevent a wipeout by DCP should it gain control.
8. Set maintenance key 61. This bit will bypass all attempts to print through DCP and should be set in connection with switches 48 and 32. (See printout on printer.)
9. For data bits, set key 38 to select test 6 .

For parity bits, set key 36 to select test 4 .
10. Reverse key 63. Program should be cycling in proper test and on proper bit.
11. Turn timing slug clockwise until \$ULB 49 lights (fig. 4.3.2).
12. Set Maintenance key 13 and reverse key 63. Setting this key causes bit 49 of the $\$$ ULB register to be reset to a zero.
13. Turn timing slug counterclockwise until \$ULB goes out.
14. Stop computer.

Note

Steps 15 through 18 are for data bits only.
15. Set maintenance key 40 , and turn off key 38 .
16. Start computer .
17. Set maintenance key 11 , and look for test to change in indicators 32 through 41 of lower boundary register; then turn off key 11.
18. If bit 49 of $\$ \mathrm{ULB}$ goes on, reset 49 to zero, then turn tuning slug counterclockwise until bit 49 no longer comes on. Then adjust clockwise to failure. This is the drop fail point.
19. Stop computer. Turn off key 40, and set key 37. Start computer. Turn slug counterclockwise.
20. Count number of turns counterclockwise from drop failing point. Turn until 49 of \$ULB lights; this is the pick fail point.
21. Set SA BD potentiometer halfway between failing points.
22. Proceed to tune next bit, following steps 9 through 21.

TABLE 2.6.1. OCTAL BIT DESIGNATION

Bit	Octal								
0	000	16	020	32	040	48	060	P0-17	100
1	001	17	021	33	041	49	061	P18-23	101
2	002	18	022	34	042	50	062	P24-27	102
3	003	19	023	35	043	51	063	P28-31	103
4	004	20	024	36	044	52	064	P32-49	104
5	005	21	025	37	045	53	065	P50-55	105
6	006	22	026	38	046	54	066	P56-59	106
7	007	23	027	39	047	55	067	P60-63	107
8	010	24	030	40	050	56	070	P46-49	110
9	011	25	031	41	051	57	071		
10	012	26	032	42	052	58	072		
11	013	27	033	43	053	59	073		
12	014	28	034	44	054	60	074		
13	015	29	035	45	055	61	075		
14	016	30	036	46	056	62	076		
15	017	31	037	47	057	63	077		

T®M

[^0]: *A tuning tool should be made from the finished bar stock. Using about six inches of the bar stock, slip a 6 -inch piece of sleeving which has been expanded in the solvent over the bar stock so that a minimum of $1 / 4$ inch of the bar stock is exposed and about $1 / 8$ inch of the sleeving extended over the other end of the bar stock; then let sleeving dry. If a larger handle is required, a radio knob with a setscrew may be applied to the insulated portion of the bar stock. Note: Mark the sleeving or radio knob so that a precise count may be made of the number of turns while turning.

 This tool is absolutely necessary for tuning.

