Design and Performance Goals of the STRETCH Computer Instruction
Unit / R. T. Blosk / TR 00.722

INBIIY]

May 18, 1960 TR 00. 722

DESIGN AND PERFORMANCE GOALS OF THE
STRETCH COMPUTER INSTRUCTION UNIT

R. T. Blosk

ABSTRACT

The Instruction unit is a large, complex, high speed computer unit, designed
and built to provide the major functional ability and control for the STRETCH
computer. The size is determined by the instruction buffering, the fast
access index registers, the extensive overlapping and simultaneity of oper-
ations, and the innumerable combinations and variations of instructions

that have to be controlled. The performance is achieved by a synchronous
clock-controlled network of variable sequence execution control triggers.
This performance is shown for a few typical and particularly important
operations.

IBM
CONFIDENTIAL

This document contains information of a proprietary nature. ALL INFOR-
MATION CONTAINED HEREIN SHALL BE KEPT IN CONFIDENCE, None
of this information shall be divulged to persons other than: IBM employees
authorized by the nature of their duties to receive such information, or in-
dividuals or organizations authorized by the Data Systems Division in ac-
cordance with existing policy regarding release of company information.

IBM

Product Development Laboratory, Data Systems Division
International Business Machines Corporation, Poughkeepsie, New York

TABLE OF CONTENTS
INTRODUCTION .
FUNCTIONS .

DATA PATHS ORGANIZATION .

Instruction Counter Register (ICR), 7
Instruction and Data Buffer Registers (1Y and 2Y), 10
Index Storage (XS and XR), 11
Preparation-Execution Register (ZR), 13
Working Register (WR), 14

Index Adder Unit (IAU), 14

I Checker, 15

Interrupt Mechanism, 16

Updated Indicator Register, 17

Indicator and Address Tag Triggers, 18
Memory Addressing, 19

Memory Address Monitoring, 20
Program Store Compare, 21

CONTROL PHILOSOPHY .

CONTROL ORGANIZATION .

IC Controls, 25

Preparation Controls, 25
Lookahead Load Controls, 26
Instruction-Execution Controls, 26
Miscellaneous Controls, 27

PERFORMANCE CHARACTERISTICS . . .

FP Instruction Preparation, 28
VFL Instruction Preparation, 30
Count and Branch Execution, 33
Transmit Execution, 35
Conditional Branch Operation, 37

ACKNOWLEDGMENTS
REFERENCES .

APPENDICES

A. Instruction Format Diagram, 42

B. I Unit Instruction List, 43
C. Memory Address Assignments, 47

.21

.23

. &7

40

. 41

. 42

I6K WORDS - 2 MICROSECOND MEMORIES
4 INTERLEAVED

2 INTERLEAVED

INST. INST. OPND. OPND. OPND. OPND.
MEM. MEM. MEM. MEM. MEM. MEM.
1 y ‘ l i { '
MEM. BUS CNTL.UNIT
l] T !
DISK BASIC
H.S. I70 CENTRAL COMPUTER
EXCHANGE EXCHANGE
ADAPT. ADAPT. ADAPT. ADAPT. ADAPT.| | ADAPT. ADAPT.
PARALLEL CONSOLE]| |CD. RDR.| |CD.PUN| |PRINTER TAPES TAPES
DISK
FILE FIGURE 1. STRETCH COMPUTER SYSTEM 729 1Y

MULTIPLE MEMORIES

[T

SERIAL ARITHMETIC
UNIT

ARITHMETIC REGS,,
BUS,AND CHECKERS

PARALLEL ARITHMETIC
UNIT
(FP)

BASIC
EXCHANGE}‘ * MEMORY BUS
DISK CONTROL UNIT
EXCHANGE ™ ONTROL U
FETCHES STORES
INDEX LOAD
REGs. | NSTRUCTION UNIT L of LOOKAHEAD
4—| 1,
I I
STORE
—
INDS/CNTL |INDS/CNTL
¥ Y
INDS/CNTL

INTERRUPT MECHANISM |

FIGURE 2.

STRETCH COMPUTER

1. It had to handle a large diversified instruction set in a wide variety
of word formats. 2 (See Appendix A.)

2. It had to prepare half-word instructions, full-word instructions, and
full-word instructions across memory word boundaries.

3. In order to achieve the desired performance, it had to process
several internal instructions simultaneously.

4. It had to be completely interruptable and recoverable on every
instruction. 3

5. It had to test for many exception conditions, set corresponding
indicators, and be capable of no-opping (not execute) the associated
instruction if necessary.

6. It had to differentiate between three types of memory (external
memory EM, index storage XS, or internal register IR) on all
fetches and stores.

7. It had to update the time clocks every millisecond.
8. It had to be a reliable and thoroughly checked unit.
9. It had to be virtually instantaneously stoppable to provide meaningful

automatic error scans.
10. It had to be constructed with standard circuits, panels, and frames.

As a result of these requirements, plus the many assigned program func-
tions, the instruction unit was designed and built to occupy five full 20 inch
standard frames and parts of three others. It fills 46 standard panels, uses
approximately 1275 standard circuit double cards and 6385 standard circuit
single cards, and requires about 53, 680 transistors.

FUNCTIONS

The instruction unit has as one of its two primary functions the fetching

and preparation of every instruction executed by the computer. The fetching
carries with it the responsibility for checking and possibly correcting the
word after it is received from memory. The preparation involves the
indexing4 (address modification) of the instruction, if required, the partial
decoding to determine unit destination within the computer for execution,

plus the actual operand fetch and loading of the instruction into lookahead.

It also requires various tests of the instruction for indicator setting and
possible no-opping and/or interrupt. Some indicators require that the
instruction not be executed (no-opped), while others permit the full execution

4

of the instruction but may cause an automatic interrupt at the completion

of the instruction. The actual point of execution and interrupt testing is not
until some time after the I unit processed the instructions. In order to know
the memory address of every instruction as it is interrupttested, the I unit
loads the instruction counter value into lookahead with each instruction. If
later an interrupt is detected, the program can store the IC value of the
instruction following the one being interrupted. This enables the program
to know where to return to the main program after the interrupt.

Two types of indexing can be specified: normal and progressive. The
normal mode modifies the operand address by the value of the index word;
whereas the progressive mode modifies the index value (+ or -) by the
operand, addressing and replacing the operand address in the instruction
with the original index value. This mode can also specify a stepping of the
index count field and may or may not call for an automatic refill operation
if the count goes to zero. All instructions to be executed by the floating
point (FP) unit, the variable field length (VFL) unit, or the exchange unit
are loaded into lookahead to await operand return and subsequent execution.
As the instruction is loaded, an operand, if required, is fetched; and any
indicators set by the particular instruction accompany it into the lookahead.

The second primary function of the I unit is the execution of a large number
of the instructions in the STRETCH instruction set. These instructions
include all the direct and immediate index arithmetic, branch type and

word transmission type, plus some miscellaneous instructions. The miscel-
laneous include indirect addressing, geometric addressing, and execution

of direct and indirect subject instructions. A complete list of the instruc-
tion set executed by the I unit is located in Appendix B.

Another function assigned to the I unit is the monitoring of all memory
addresses for an out-of -bounds condition. All memory fetches for the
computer are initiated by the unit and each memory address is compared
with an upper and lower boundary register. Depending upon the state of an
outside-inside control trigger, appropriate indicators are set corresponding
to the type of fetch (instruction or data). All stores are performed by the
lookahead. However, before loading lookahead with a store operation the

I unit must test the address and set a store indicator, if out of bounds.
These indicators are later tested for interrupt and may cause an automatic
branch to a corrective routine.

Another function of the I unit is the interrupt system. At the completion of
‘every instruction execution, a test must be made on the indicators to
determine if an automatic program interrupt is called Hr or not. If not,
then normal program operation is continued. If an interrupt is called for,
then the mechanism initiates a recovery operation in both the lookahead and
the I unit. The I unit must then determine the indicator causing the inter-
rupt, reset the indicator, and locate the 'free instruction'' associated with

that particular indicator. It then fetches the instruction, prepares it, and
either executes it or loads it into lookahead. If it is not a successful
branch instruction, then the I unit returns to the original program and
continues normal operation; hence, the term ''free instruction.' However,
if it is a successful branch, then the I unit branches to the new program
routine and proceeds normally until a new branch instruction returns it to
the original program.

Time-clock operation is another function assigned to the I unit. Every 1024
cycles per second, the interval timer and the real time clock must be
stepped. If the interval timer goes to zero, a corresponding indicator is
set. There is no indicator associated with the real time clock, and both
timers wrap around.

The last important function of the I unit is the providing of manual controls
for direct intervention by the operator console and the customer engineering
maintenance console. Since the I unit has complete control over all oper-
ations to be performed by the computer, it was found to be the logical place
for the majority of the manual controls. These controls provide the ability
to:

1. Start or halt the machine

2. Load new programs

3. Display or store memory

4. Single step the program; an operation or a cycle at a time
5. Enter a particular instruction into the machine

6. Put the machine in a repeat instruction mode

Repeat instruction mode causes the machine to continually repeat the
fetching, preparation, and execution of one particular instruction word.
Also included in the manual controls is a set of controls for continuous
read-write testing of the index storage.

DATA PATHS ORGANIZATION

The organization of the I unit was arrived at after a great deal of study
and evaluation of various alternative schemes. The primary objective of
the design was to achieve the correct balance of three major factors.
These factors are performance, cost and reliability.

The first step was to design a system with a minimum of hardware that
accomplished all the functions assigned to the unit. The next step was to

determine the amount of time-sharing that was possible, and the amount of
parallelism and simultaneous operations required to achieve the high per-
formance goals desired; always trying to keep the cost to a minimum.
Finally, after having arrived at a satisfactory compromise of the first two
points, the system was carefully studied and checking-correcting ciucuitry
added to obtain the high degree of reliability desired.

The result was a machine organization as shown in Figures 3 and 4.

Figure 3 is a block diagram of the data paths for the principal part of the

I unit, and Figure 4 is a block diagram of the interrupt mechanism. The
basic I unit organization consists mainly of six transistor registers, two
adder units with checking, six data paths, two address busses, and one
checker-corrector unit. In addition to these, there are indicator and tag
storage positions, a boundary compare unit, a program store compare
unit, lookahead load data transfer busses, and a special purpose, left-most
one, detector-encoder for the geometric load (load value effective) instruc-
tion. The interrupt mechanism consists of two transistor data registers,
one unit address register, and a left-most one detect-encode mechanism.
These data paths account for approximately 40 percent of the hardware.
The remaining 60 percent is taken up by extensive control logic (with its
associated timing) and decoder circuitry.

The six main registers in the I unit are the instruction counter register
(ICR), the instruction-data word buffer registers (1Y and 2Y), the index
register (XR), the preparation and execution register (ZR), and the multi-
purpose working register (WR).

Instruction Counter Register (ICR)

The IC system was designed to provide the actual memory address of the
instruction currently being executed or prepared for lookahead in the Z
register, and at the same time fetch succeeding instructions into the Y
registers. Since a number (6) of instructions may be located in the Y and
Z registers simultaneously, some means had to be developed to keep track
of the instruction addresses as the instructions proceed through the I unit.
It was found that we could eliminate the multiple IC registers by using the
ICR to keep track of the instruction being processed in the ZR. Output
combinations of the unit's position inverter and the IC adder could be used
to fetch following instructions.

The ICR contains 21 bit positims, two of which are parity bits. The low
order two bits are separated from the high order seventeen bits. They
have their own individual advancing mechanism in order to provide the
flexibility needed for advancing by half and full words and fetching suc-
ceeding instructions. The high order seventeen (0-16) bits feed a plus-one,
parallel, carry lookahead adder, which actually provides the ICR quantity
plus-two (+ 2) address. The seventeenth bit position is available in true

MEMORY OUT BUS (64)

TO LOOKAHEAD

) == # —
. FROM LOOKAHEAD 'NDEX
’ X ’IREGs.(ue)
I i I CHECKER OUT BUS TO LOOK
ADDER OUT BUS
W} r 9 Y y]
IC. Iy 2Y X z w INDEX 1
REG.(19)|[f [REG(64)| |REG.(64)] |REG.(64)| |REG.(64)| |REG.(18)| | ADDER | |CHECKER
{INDEX |ADR|BUS (24-32) | (64)
4 b) \
IC
ADV(I9)
| I ApDER $BUS| A
| IADDER BUS| B
s MEM. ADR. BUS ! Y TO MBCU
I CHECKER IN {BUS FROM LOOK
= ={

Y
OPERATION INSTRUCTION PREP.
DECODER EXEC. CONTROLS

FIGURE 3. INSTRUCTION UNIT

‘EXCHANGE UNIT ADDRESS

Y

&IDIVIDUAL INDICATOR SETS

7/

LARITHMETIC CHECKER OUT BUS

L
L4

Y Y Y Y

OTHER CPU INDICATOR MASK UNIT
REG.(I9) REG. (64) REG. (20) ADR.(7)
s
ARITHMETIC CHECKER IN BUS
Y
INTERRUPT TEST
AND
LEFT DETECT- ENCODE

INTERRUPT BIT ADDRESS

fe

FIGURE 4. INTERRUPT MECHANISM

and complement form. By selecting combinations of ICR and adder outputs,
we can obtain four addresses: n, n+l, n+2, and n+3, where n is the ICR
address. This provides all the lookahead addresses needed for pre-acces-
sing instructions into the Y register instruction buffers.

The ICR has a set of in-gates (21) from the lookahead IC buffer for use in
recovery operations. It also has a set of in-gates from the index adder out
bus for branch operations. Finally, there is a set of in-gates for setting
the IC adder output into the register for a full advance of the IC system.

The ICR positions 0 and 16, both true and complement outputs of position

17, and the IC adder output positions 0 and 16 can all be gated out to the
memory address bus for instruction fetching. The ICR also can be gated

to the index adder in bus A (ABA) for store instruction counter and branch
operations. The ICR has a complete set of d-c output lines to the lookahead
IC input gates. These output lines are for loading the associated IC address,
along with the instructions, into lookahead and for program store testing.

It has a set of d-c output lines to the IC adder and several special d-c lines
to the control area. A full set of d-c lines go to the maintenance console
for indicating the contents of the ICR and the IC adder output.

Instruction and Data Buffer Registers (1Y and 2Y)

In order to achieve high speed instruction preparation, particularly floating
point instructions, it was necessary to provide two instruction buffer
registers. These two registers are identical and are used alternately for
receiving instruction words fetched from memory by the IC. They are also
used for data operands required for the execution of instructions performed
in the I unit. They each contain 73 positions; 64 data bits, 8 check bits,

and 1 memory check bit. The 8 check bit positions may contain error
correcting code (ECC) bits or parity bits. All words in memory contain
error correcting code bits, but during the checking-and-correcting operation
in the I unit the ECC bits are replaced with parity bits for checking internal
operations. The memory check bit indicates whether or not an error
occurred during the memory access and, therefore, whether the word received
is valid or not.

The Y registers have two complete sets of input gates; one from the mem-
ory out bus (IMOB) for memory fetch returns, and one from the checker
out bus (ICOB) for check-correct operations and internal word transfers.

Each Y register has a full set of out-gates to the checker in-bus (ICIB),
again for checking-correcting or internal word transferring. Each register
also has two sets of half-word (36 bit) gates to the adder in-bus B (ABB)

for direct transfer or logical operation through the index adder. Four sets
of out-gates permit addressing index storage (XAB) from the two I fields of
each register.

10

Both registers have 73 d-c lines to the maintenance console for indication,
plus a number of d-c lines to the control areas for instruction pre-decoding
and special memory addresses.

The parity fields are split up across the Y registers in the following manner:

Py (0 - 17) Py (32 - 49)
P (18 - 23) Ps (50 - 55)
P, (24 - 27) Pg (56 - 59)
P (28 - 31) P, (60 - 63)

These fields were found to be the best combination for effectively handling
all the different word formats encountered in the system.

Index Storage (XS and XR)

The specifications for the STRETCH computer called for 16 index words
located in high speed storage. The first approach was to use 16 transistor
registers, but this was soon found to be undesirable for several reasons.
One was that it was extremely expensive, particularly if each register was
to be capable of directly operating with the index adder to perform all
instruction indexing and all index arithmetic operations. Another reason
was that the large amount of hardware presented a packaging problem and
detracted from the anticipated high performance. It was apparent that a
buffer register would be required, which alone would have all the necessary
logical capabilities. Each of the 16 index registers could be transferred
into it prior to execution. This still presented a large and expensive piece
of hardware. The ideal solution was found by providing a compact, high-
speed, l16-word, non-destructive-read, core memory for the index words.
It has one data register (XR) to read into, store out of, and perform all
the logical operations required.

The index storage (XS) was actually designed with 17 words of 73 bits each.
The seventeenth word contains the interval timer and the elapsed time clock
for rapid access and for advancing of these values. Itis a two dimensional
array (17 x 73) and has a read-out time of approximately 200 mpus. Total
access time including address gating, transmission, and decoding takes up
one machine cycle of approximately 500 mus. To store the contents of the
XR into XS requires two cycles. The first one destructively reads the
selected word, thereby resetting it to zeros; the second cycle writes the
XR contents into the selected row of cores. The index address is checked
prior to decoding. The XR is checked during the following logical operation
for which the index word was fetched.

11

The index register was designed with two principal objectives in mind.

One was to provide the function of a data register for fetching and storing
to/from index storage. The second was to provide the ability to perform
all the full-word, half-word, field transfer, shift, and logical operations
required to execute all the I unit instructions. The result was that the

XR has five sets of in-gates and out-gates with extensive splitting of control
fields.

This register contains 73 bit positions including 64 data and nine parity
check bits. Eight of the check bits correspond to the eight in the Y registers.
The ninth is the parity on bits 46 to 49 to provide means of obtaining a

parity check on the index count field.

The primary input to the XR is directly from the sense amplifiers of the
index storage during an index fetch operation. A full set of gates (73)
allow gating from the checker out bus straight into XR for checking and
full-word transfer operations. Four sets of gates allow gating from the
adder out bus into four different fields of the XR. These fields are: The
left half of XR beginning at position 0, the right half of XR beginning at
position 32, the count field beginning at position 28, and the refill field
beginning at position 46. These gates are all used in the execution of
various types of index instructions. In addition to these inputs there is a
direct reset of all 73 positions for setting the XR to zero prior to a read-out
of index storage.

The XR has a full set of out-gates (73) to the checker in bus for checking
and full-word transfer operations. It has three sets of partial gates to the
adder in bus "A.'" These provide the ability of gating the value field, the
count field, and the refill field to the adder for logical operation or transfer
through this unit. One set of gates (24-27) in bus B provide the ability to
check the sign of the value field during operations in the adder.

There are three d-c detector circuits connected to the XR. These circuits
_ _provide the following indications:

X value less 0 X count equal 1
X value equal 0 X count equal 0
X value greater 0 X refill equal all 1's

These are used to set indicators or modify execution controls for various
operations. In addition, there are a number of special d-c outputs of the
XR which feed adder true/complement controls, execution controls, and
parity adjust logic in the parity checker/generators. A full set of d-c
outputs go to the maintenance console for indicator purposes.

12

Preparation - Execution Register (ZR)

This register is the basic operating register of the I unit. Every instruc-
tion is placed in this register from the Y registers for indexing, decoding,
execution, and lookahead loading. It is full-word in width to accommodate
full-word instructions and to speed up floating point half-word instructions.
All full-word instructions appear straight, left to right in the register,
regardless as to how they were received from memory and placed in the Y
registers. There are a large number of output gates on the register because
of the many special functions it performs. These include indexing (normal
and progressive), executing I unit instructions, fetching of operands, and
loading of the instructions into lookahead.

The ZR contains 74 bit positions, including 64 data, and ten parity bits.
Eight of the ten parity bits correspond to the standard eight in the Y and X
registers. The other two are for parity on the channel address field

(12 - 18) for I/O instructions, and the length field (35 - 40) of VFL instruc-
tions. Associated with the ZR is a small three bit P register which is used
solely for retaining the progressive indexing code (bits 32 - 34) during an
index modification of the right half of a VFL instruction.

The only in-gates provided on the ZR are for gating the adder out-businto
various positions of the ZR. There are two sets of these gates, one for the
left half of Z and the other for the right half. These gates have split control
to provide for partial gating. This takes care of all the in-gating required
by instruction transfers from Y to Z, plus all arithmetic result gating into Z.

The out-gating of the ZR is more extensive and complicated. There are
two sets of out-gates for gating the left half or the right half of Z to the
adder in bus B for arithmetic operations on the left or right operand addresses.
There is a separate gate for gating the length field (35 - 40) to the adder
in-bus A for word boundary cross-over test. Another gate sends the imme-
diate count field (50 - 55) in transmit instructions to the W register for
counting purposes. There are two sets of out-gates provided for gating the
left (0 - 17) or right (32 -- 49) operand address to the memory address bus
for operand fetches. There are five sets of gates for: gating the left or
right operand address, the left or right J field (index operand in index
instructions), and the leftI field (index address for index modification) to
the index address bus. These permit fetching of index word operands and
the index fetch for the delayed modification of the left half of Z.

There is also a set of ten out-gates to the checker in bus for rearranging
the fields for loading instructions into lookahead. These also have split

control for selecting the width of the fields.

In addition to the in and out-gates, the ZR has 41 positions line driven to
the control area for operation and memory area decoding. As in the case

13

of all the registers, all positions of the ZR have a d-c line to the mainten-
ance console for indicator purposes.

Working Register (WR)

This register is only 19 positions long (including one parity) and is used
primarily for operand address storage, and secondarily, as the counting
register for transmission type instructions. It is used for storing the
second operand address for VFL instructions which cross memory word
boundaries, for geometric address decoding, and automatic refill and
interrupt address operations. In transmit operations the direct or imme-
diate count field is placed in the W register for counting purposes. The
from and to operand address remains in Z for fetching, storing, and step-
ping operations.

The WR has three in-gates: one from the adder out-bus for transfer and
arithmetic operations; one from the maintenance console keys for manual
insertion of an address; and one from the interrupt bit address encoder
for automatic interrupt operations.

The WR has three out-gates; one to the adder in-bus A for arithmetic
operations such as counting; one to the memory address bus for word
boundary cross-over and refill fetches; and one to the index address bus for
index fetches.

The d-c outputs of the WR feed a left-most one detect logical unit for geo-
metric address decoding. The output of the detect circuit feeds an address
encoder, the output of which is set into a five bit register called the geo-
metric load address register (GLAR). The detect and encoder logic is
checked.

The d-c outputs of the WR also feed various decoder circuits for determin-
ing special address and contents equal to one condition. The output of the
left-most one detector feeds the adder in bus B. This resets the current
geometric address bit by a subtract operation through the index adder. The
output of the GLAR feeds the index address bus for index fetching during
goemetric load execution. All 19 positions of the WR and five positions of the
GLAR go to the maintenance console for indicator purposes.

Index Adder Unit (IAU)

The specifications for the I unit called for arithmetic operations on fields up
to 24 positions wide. High performance required a parallel adder of advanced
design with a minimum of logical levels. In order to guarantee complete
reliability it had to be thoroughly checked. Since the many operations of

the I unit required that all the registers be capable of feeding the adder, it
was found that the transfer and adder paths could be combined and time-

14

shared to provide the most economical and yet completely checked system.
This was accomplished by providing an eight bit bypass path around the 24
bit adder to permit half-word (32 bit) transfers. A further study indicated
that the best performance could be gained by providing a controlled comple-
menter on one input, with automatic recomplementing ability on the output.
The basic 24 bit parallel adder was broken up into six four bit blocks with
parallel carry lookahead and carry propagate detect logic for each. Carries
from block to block and end around carries are detected early and propagated
through. The 24 bit adder consists of five logical levels. Input checking is
accomplished by comparing input parities with the half-sum parity. The
rest of the adder is checked by a carry prediction checking method.

Standard I unit parity is generated on the output in parallel with special
memory address decoding. The bypass eight positions are parity checked
and transferred to the output bus. The output is completely latched at
sample time to prevent race conditions along the d-c paths when gating the
result back into one of the input registers.

The adder in-bus A (ABA) has a complementer on the input and is accom-
plished in the same logical level as the ORing. The inputs to ABA are the
IC, WR, XR, and ZR. The ABB is not complemented and the inputs come
from the YR's and the ZR. In addition there are numerous lines to control
the complementing, recomplementing, and parity adjustments for various
fields and operations. The adder out-bus (IAOB) has 32 data bit positions
plus 11 parity bit positions for selection, depending upon the fields involved.
The IAOB feeds the left and right halves of the ZR, the left and right halves
count, and refill fields of the XR, the WR, and the ICR.

The I Checker

One of the earliest requirements of the STRETCH system was the automatic
error correction of memory words. The method adopted was that of using
the Hamming5 error correcting code (ECC) which required eight ECC bits
with a 64 bit data word. It was necessary to be able to check and correct
memory words (instructions and operands) in the I unit and to convert them
to the unit's parity system. It was also necessary to provide a full-word
transfer-bus for high speed transfer operations in executing many of the I
unit instructions. It was found that these two operations could share equip-
ment by combining the transfer-bus with the full-word ECC checking-cor-
recting and parity checking-generating logic. It was also found that the
ECC checking-correcting operation on instructions could overlap with the
initial pre-decoding required on the new instructions when they are received
in the Y registers.

Lookahead had a similar problem with ECC checking-correcting and parity

checking -generating on operands, fetched to lookahead by the I unit, and
with storing result operands to memory. A study of the two units showed

15

that one I checker unit could be time-shared between the I unit and look-
ahead, provided a fast priority system could be designed to guarantee little
loss in performance. This was done, and the result is a single I checker
with separate in-busses from the I unit and lookahead, OR'd at the input
to the checker. The checker out-bus (ICOB) is a 64 bit data-bus, plus 29
parity and ECC lines. These are to enable the controlling unit to select
the proper parityor ECC bits for the receiving register. This bus feeds
the four lookahead levels first and then the XR and the 2Y registers. The
output of the checker is completely latched at sample time to prevent race
conditions along the d-c paths while gating the result into the receiving
register.

The I checker is located in the lookahead unit and was not a part of -- but
coordinated with -- the I unit design.

Interrupt Mechanism

Figure 4 showedablockdiagram of the interrupt mechanism which was
designed by the I unit group and packaged in the lookahead area. It consists
largely of a 64 position indicator register (IR), a 28 position mask register,
and a left-most one detect and encoder circuit.

The indicator register has two inputs: one is from the arithmetic checker
out-bus (ACOB), and the other is the individual turn on-line from each
position's particular logical area. These logical areas include the I unit,
the VFL and FP execution units, lookahead, exchange, and memory. There
is no parity on the contents of this register because it is continually chang-
ing, due to the many asynchronous inputs. The only out-gate on the IR is

to the arithmetic checker in«bus (ACIB) and is used for transferring the
contents of the register to another location. Similarly, the input gate from
ACOB is for bringing in a new word to the IR. Certain d-c outputs from a
portion of the register feed the updated indicator register in the I unit for
recovery purposes. A full set of d-c outputs feed the left-most one detector
and the maintenance console.

The mask register has its only input from the ACOB for bringing in a new
mask word. It can also be gated to the ACIB for storing purposes, and has
d-c outputs to the left-most one detector and the maintenance console. Logi-
cally, the first 20 positions (0 - 19) of the mask register are always one,

and the last 16 positions (48 - 63) are always zero. They are fixed and can -
not be programmed. There are four parity bits associated with the mask
register positions 21 - 47, conforming to the parity fields of the arithmetic
bus and checker.

The left-most one detect circuit has two functions: first to test rapidly for

any match between an indicator positon and its associated mask bit, and
second, to determine, in the case of multiple matches, which one has a

16

higher priority. Priority is established from left to right (0 - 63) and the
match with highest priority blocks the remaining ones from being effective.
The test for any match is done in only a few levels by ORing all the 'com-
pare and'' circuits, and signalling an interrupt if the mechanism is enabled.
The enabling/disabling is controlled by a single trigger which is set on/off
by programming. Once an interrupt is signalled, the left-most one detect
logic is allowed time to establish priority. It encodes the matching pair

of indicator and mask bits into the register bit address of the particular
indicator; then transfers them into the WR. The bit address contains a

six bit address plus one parity bit.

Included in this logical area is a seven bit channel address register which
holds the address of the 1/O unit which last set I1/0O status bits into the
indicator register. The register may be set by either the basic or the high
speed exchanges and includestwo parity bits. It can be gated to the ACIB
(positions 12 - 18) for transfer purposes.

Also designed for this area but not packaged was the other CPU register.
This register of 19 positions is used for systems involving more than one
computer. It can be gated out to the ACIB and gated in from the ICOB for
transfer purposes. There are four parity bits associated with the 19 bit

field to conform with the arithmetic bus and checker requirements.

Updated Indicator Register

There are eight triggers in the I unit which contain the status of the index
register value, count, and refill fields up to the last instruction executed
by the I unit. These indicators differ from the status of the corresponding
main indicator register triggers by the effect of the instructions which were

processed by the I unit and which are still in lookahead, awaiting to be pro-
cessed by the VFL or FP units. Hence, the term updated indicators. This
UIR is used to test for conditional branches on these indicators.

A listing of the indicators contained in the updated indicator register is as
follows:

Index low - XL

Index equal - XE

Index high - XH

Index count zero - XCZ

Index value less than zero - XVLZ
Index value zero - XVZ

Index value greater than zero - XVGZ
Index flag - XF

0 =~ O~ U1 b Wy

17

Indicator and Address Tag Triggers

Due to the multiplicity of instructions that are contained and processed
simultaneously in the I unit, it is necessary to tag (store with the particular
instruction) each instruction with information regarding certain conditions
which may arise during their processing. Examples of these are memory
and ECC checks on new instructions, parity checks on instruction transfers
from Y to Z, and special memory addresses decoded during the transfer
through the index adder. These triggers are mostly located in the control
area so that they can immediately condition the control trigger outputs for
the following cycle. There are some 26 triggers of this nature in the control
area of the I unit. These include the following:

A. Y Register Tags
1. 1Y instruction fetch indicator 1YIF
2. 2Y instruction fetch indicator 2YIF
3. 1Y operand address invalid 1YAD
4. 2Y operand address invalid 2YAD
5. 1Y identifiable check 1YIDC
6. 2Y identifiable check 2YIDC
7. 1Y memory check 1YMC
8. 2Y memory check 2YMC
B. Z Register Tags
1. Z left operand address-special (0-15) ZLSA
2. Z left operand address-index (16-31) ZLXA
3. Z left operand address-non-existent ZLNA
4. Z right operand address-special (0-15) ZRSA
5. Z right operand address-index (16-31) ZRXA
6. Z right operand address-non-existent ZRNA
7. Z left instruction fetch indicator ZLIF
8. Z right instruction fetch indicator ZRIF
9. Z left operand address invalid ZLAD
10. Z right operand address invalid ZRAD
11. Z left contains identifiable check ZLIDC
12. Z right contains identifiable check ZRIDC
13. Z contains data store condition ZDS
14. Z contains data fetch condition ZDF
C. W Register Tags
1. W operand address-special (0-15) WSA
2. W operand address-index (16-31) WXA
3. W operand address-non-existent WNA

18

D. General
1. I unit contains non-identifiable check NIDC

Memory Addressing

Every memory address has to be decoded as to the type of memory involved
before any fetch or store operation can be completed. There are three types
of memory that may be referred to: internal transistor registers, index
storage words, and large external core memory. The first thirty-two words
of addressable memory are reserved for special purposes and have per-
manently assigned addresses. (See Appendix C.) These addresses may

be located in any of the three types of memory.

In the majority of cases, the memory address is pre-decoded in the index
adder and tagged as to the type of memory referred to. Subsequent fetches
or stores with the address are conditioned by the tag triggers to refer to

the proper type of memory. In some cases where there was insufficient
time to decode, notably in rapid FP instruction preparation, a ''guess''is
made that the operand address refers to external memory and the required
fetch initiated. The memory area decoding is completed before the fetch

is actually executed. This operation can either permit the fetch to be com-
pleted or cancel it. If cancelled, the proper fetch is initiated to the correct
memory area on the following cycle. Since most operand addresses refer
to external memory, this ''guess'' should save a decode cycle in the majority
of cases. In the cases where the ''guess'' is incorrect, no time is lost since
the decode time was required anyway.

All external memory fetches are executed by the I unit and involve sending
an 18 bit word address and a three bit return address to the bus control
unit. The return address indicates which Y register in this I unit, or which
of the four lookahead levels is to receive the word on return. All stores to
external memory are done by lookahead. The I unitloads the store address
into the lookahead address register and a store type operation code into the
op code field, The operand may be loaded at the same time, in case of an
I unit instruction, or may be loaded later as a result of a VFL or FP arith-
metic operation. As the store memory address is transferred to lookahead
via the memory address-bus, it is tested for a data store boundary alarm
(DS). If "out of bounds, ' the lookahead may cancel (no-op) the actual store
operation.

All index word fetches are done by the I unit whether for I unit operations

or for VFL and FP operands. The fetch is made by gating a four bit address
to the index address-bus, and controlling the read-out of the index storage
and the reset of the index register. Index stores can be made by either the

I unit or the lookahead unit. The operation is similar to the fetch except
that two cycles are required, one for resetting, and the other for writing

the contents of the XR into the selected row of cores. In the case of VFL

19

and FL stores to index storage, the I unit loads the store type instruction
into lookahead; then waits until the entire operation is completed, including
the resultant store back to index storage.

Internal transistor register fetches and stores are made by lookahead on the
arithmetic checker bus. The fetches and stores are set up by the I unit in
loading a lookahead level with the address and properly coding the operation
code field. If the fetch is for the I unit, lookahead will first transfer the
contents of the register to the lookahead level on the arithmetic checker bus,
and then relay it on to one of the Y registers via the I checker bus. If itis

a VFL or an FP operand fetch, it is left in the lookahead level for later
transfer to arithmetic operand register. The I unit stores o internal regi-
sters by loading the word into the lookahead level along with the address and
operation code.

Memory Address Monitoring

The specifications called for a comparison of every address with upper and
lower boundary registers sent to memory. These 18 bit registers are

located in the lookahead area. The compare logic, however, was designed
by the I unit and located on the memory address-bus in the bus control unit.

The I unit does all memory address monitoring by comparing each fetch
address as the fetch is being made and all store addresses while
loading lookahead with the store instruction. The logic consists of two
separate units, each comparing the memory address-bus against the upper
boundary in one case and the lower boundary in the other case. The com-
parison is made 18 bits parallel in five logical levels and indicates whether
the contents of MAB is inside the bounds or outside. Inside bounds means
equal to or greater than the lower boundary and less than the higher boundary
A programmable control trigger determines whether an alarm should occur
for the inside or the outside bounds condition. The compare has to be
executed rapidly to insure that the proper indication and action can be taken
during the same cycle that the fetch or store transfer to lookahead is occur-
ring, and the particular memory address is on the MAB.

The alarm signal can cause one of three different indications to occur.
These indications are stored in tag triggers associated with the instruction
either in one of the Y registers, the Z register, or the lookahead level that
the instruction is being loaded into. They are later transferred directly
into the main indicator register and tested for an interrupt. If an instruc-
tion fetch is in progress, the IF tag trigger of 1Y, 2Y, ZL, or ZR may be
set. If an operand fetch is being made, the DF tag trigger of ZL or ZR, or
the lookahead level being loaded may be set. If an operand store is to be
made, then the DS indicator in the lookahead level may be set during the
actual lookahead load cycle.

20

Program Store Compare

Certain problems are encountered in a system which preaccesses instruc-
tions. A store type instruction, for example, presently being executed, can
store into the address of an instruction which has already been fetched,

In order to detect this condition and be able to correct it, it was necessary
to design two logical units for comparing the memory address-bus with

the IC register and the IC adder output. Whenever a store is loaded into
lookahead this comparison is made. If an equal condition results it indi-
cates that the contents of that location have been fetched already and loaded
into the I unit. A recovery is always made under these conditions.

This does not solve the problem entirely. Since lookahead has four levels,
all subsequent fetches have to be compared against the store address, once
it is loaded into lookahead. If an instruction fetch or an I unit operand fetch
compares equal, the fetch is held up until the store is completed. If anl
unitoperand fetch for lookahead compares equal with the store address,
appropriate controls are effected. These initiate a "forwarding' operation
of the store operand to the designated fetch level, without first requiring

a store to memory. This comparison is done in another compare circuit
between the memory address-bus and the store address register in look-
ahead. None of these comparisons cause recoveries of the I unit.

CONTROL PHILOSOPHY

One of the earliest studies made in the project was on the relative merits

of synchronous and asynchronous control methods. Several asynchronous
control techniques were proposed and evaluated both on paper and in data
flow models. At the same time, work was done on developing a synchronous
control system which would best suit the size, complexity, and speeds of
the STRETCH computer. Initially asynchronous control looked attractive,
because it was thought to be inherently faster, more reliable, and more
adaptable to changes in circuit components. Added to this was a general
apprehension that synchronous control of such a large, high-speed system
was impractical . It was found very difficult, however, to achieve these
advantages at a reasonable cost. The additional logic required to determine
operation completion and sequence interlocking was such, that it not only
added greatly to the cost of the system, but detracted from the anticipated
speed and reliability. The major objection to the synchronous approach

was removed by proposing a system which would operate asynchronously
between units, but synchronously within the units. The clock distribution
skew could be minimized by delay line techniques, and by distributing a
minimum number of master clock lines to the main units of the system where
they could then be powered up and distributed internally. Since a satisfactory
asynchronous system could not be found, and the feasibility of synchronous
control was established, the decision was made to implement the latter type
in the STRETCH computer.

21

The next step was to define a basic system of synchronous control for the I
unit. Several factors greatly affected the final form of this control. These
included the type of circuits used, the amount of overlapped simultaneous
operation, the degree of asynchronism and interlocking between control
areas, the basic operating cycle time desired, and the overall packaging
aspects of the data paths and controls.

High speed, direct coupled, drifttransistor current mode circuits were used
throughout the design with an estimated delay of 10 to 20 millimicroseconds
per logic block. To achieve fast execution times, all the paths were designed
in parallel with a minimum number of serial logic levels. This gave rise
to the problem of ''race' conditions along successive d-c paths, whenever
data or control logic was advanced. Several methods of avoiding this were
developed and used in different areas. One method (used in the stepping of
the control stages) was to split the clock pulses into A and B pulses, and
thus alternate the control sequencing. Another method (used in data paths)
was to provide a latch circuit ineach path. During clock sample time, this
stored the state of the line until the clock pulse disappeared. The third
solution proposed was the use of delay lines and short clock pulses, which
would keep the logic from advancing more than one step during any one
sample time. This was never adopted because of the time-dependent nature
of the solution and the individual 'custom tailoring' implied.

The controls for the I unit were split up into five major areas: instruction
preparation, lookahead loading, IC controls, instruction execution, and
miscellaneous. The controls were designed separately in each area but
closely coordinated between areas to provide a maximum sharing of com-
mon equipment, accurate and efficient interlocking, and overall continuity
of control design.

The execution of each operation was broken up into individual logical steps.
Each step or cycle required a control trigger to condition and select the
data paths associated with the particular logical operation, and to condition
the turn-off of the previous--and the turn-on of the next -- control stage.
Because of the variety of operations in the I unit, it was found that no fixed
sequence of steps could reasonably be specified. Instead, a very flexible
system of control was defined, where the stepping could proceed from any
one control stage to any other. As the sequence for executing each function
was detailed, the requirements for the control triggers became evident.

In many cases the stepping of the controls is interlocked with a condition
from another control area. In this case, a memory trigger must be asso-
ciated with the control stage to remember that the operation has been com-
pleted and the next step is desired. This fact, combined with the ''race"
conditions previously described, made it desirable to supply each control
stage with two triggers (sometimes more, depending on the branching factor),

and to use the A-B clocking method. This eliminated the need for numerous
latches in control stepping.

22

The two triggers are called the E (execution) and the M (memory) triggers,
since one controls primarily the data paths for the present operation while
the other controls the selection and advancing to the following cycle (either
immediately following or some time later). A typical control stage is
shown in Figure 5. The E trigger is turned on by an A clock pulse. Its
outputs control the output gating of the data paths, the turn-off of the pre-
vious M stage and -- at the next B pulse -- the turn-on of its own. When
the M trigger comes on, it causes the turn-off of the E trigger, and the
turn-on of the next E trigger at the following A pulse. The entire cycle,
then, is defined as the time from the rise of the A pulse, which turns it on,
to its completion which turns it off. This is twice the period of the clock,
since A and B pulses arrive alternately from the master clock in a sym-
metrical sequence. The register in-gates are sampled by continuous A
and B pulses. The select condition from the control stage is formed by
ANDing the E and M outputs, always selecting the in-gate at A time. In-
gate controls are latched to prevent race conditions at M turn-on and E
turn-off times. Control overlap is accomplished by selecting and turning
on control stages simultaneously with the result in-gating of the previous
cycle. This means that all conditions arising out of the logical operation
of any cycle must be available early enough to travel to and condition the
input logic of the following control stage.

The control paths and data paths were all designed for a maximum of twenty-
four logical levels. This included the cabling between frames, which was
estimated at 15 feet of coax equivalent to the delay through one logic block.

Assuming a maximum delay of 20 mpu s per block means that a control cycle
should take approximately 500 mp s, allowing 20 mp s for clock distribution
skew. This means further that the master clock should operate at a fre-
quency of four Mc and supply a symmetrical waveform, 125 mus up and
125 mp s down, with a period of 250 mps. The precise operating times
will not be established until the system is completely assembled and tested.

CONTROL ORGANIZATION

The remaining hardware in the I unit is taken up by this extensive and com-
plex control system which regulates the flow of instructions and operands,

in many different combinations of simultaneous and asynchronous operations,
in the data paths previously described. The system consists primarily of
many control triggers, commonly referred to as control stages or sequencers,
plus their input and output switching logic and ORing of control lines to the
data paths. Also adding to the hardware is the extensive decoder logic
required to determine which operation and variation is called for in instruc-
tion preparation and execution. Extensive powering is required for the
distribution of the clock pulses associated with the controls. The control
hardware amounts to approximately 60% of the total I unit.

23

44

CONTROLS

DATA PATHS

SEL Ry
| A
SEL R
N
MA A SEL R
X ———a]
oA E, TOF M
Y
—1a
T
g ATONM M, SEL E., TON |
L N
Ep TOF My [TOFI 1%~ "2
TIMING
SAB
S e 1
%8 i N —
E;-Go | 1
M1 |
Gy
1

FIGURE 5. GENERAL CONTROL STAGE AND TIMING

The controls are divided logically into the following categories:

Instruction counter
Instruction preparation
Lookahead loading
Instruction execution
Miscellaneous

b W=

IC Controls

The instruction counter controls consist of eight control stages for sequen-
cing the fetching of instructions totheY registers, checking-correcting them
through the I checker, and advancing the IC register. There are thirteen
supervisory control storage triggers to condition the sequences as to whether
a fetch is in progress (outstanding), 1Yor2Y is empty, ZL or ZR is empty,

a branch to 1Y or 2Y is required, or a recovery is required. Six tag triggers
indicate whether there are any checks, instruction fetch alarms, or invalid
addresses associated with the instructions in the Y registers. There are
eight block-and-suspend triggers for instantaneously interrupting the normal
IC operation to allow the I unit instruction execution controls use of the Y
registers.

These controls attempt to keep the Y registers filled with new and checked
instructions. They signal the preparation controls whenever a Y register

is ready for transfer to Z. In branch and recovery operations the IC controls
are designed for rapid resetting and restarting at the new address in order

to minimize the time required to refill the Y registers.

These controls time-share the I checker and the memory address-bus with
other controls, but operate simultaneously with the preparation and look-
ahead load controls as long as no interlock occurs. The latter may indicate
that no YR is empty; that an I unit instruction requires execution; or that
an interrupt is required.

Preparation Controls

The preparation controls consist of eight control sequencers which regulate
the preparation of all instructions to the computer. This preparation involves
the transfer of instructions from the YR's to the ZR; the index fetching and
address modification, if required; and the word boundary crossover test

for VFL instructions. In addition to the sequencers, there are six super-
visory type control triggers which condition the selection of the right or

left half of the current YR and the corresponding half of the ZR. Instruction
pre-decoding as to type of instruction and indexing requirements is stored

in eleven supervisory control triggers. There are eight additional tag triggers
associated with the two halves of the ZR to indicate the class of floating

point instruction in Z. This permits the lookahead load controls to take over
rapidly and load without a delay for decoding.

25

Preparation controls signal the IC controls when a YR is empty, and the
lookahead load controls or I unit execution controls when the ZR has a pre-
pared instruction. These controls are a completely independent set of
hardware and operate simultaneously with the IC and lookahead load controls.
Their function is basically to empty the YR's,and to prepare and fill the ZR
as rapidly as possible in order to insure a high rate of instruction flow

through the computer.

Lookahead Load Controls

The lookahead load controls consist of fourteen sequencers which regulate
the loading of all I/O, VFL, and FP instructions into lookahead.

Five of these deal solely with the loading of VFL instructions and are in the
form of a five stage execution timer. Every VFL load begins with the first
stage and may then step to any one of the remaining four, so that every VFL
instruction requires anywhere from two to five steps. Each sequencer loads
a different lookahead level so that a VFL instruction may occupy two to five
levels, If an operand address refers to an index address, the sequence is
broken in order to fetch the index from a common index fetch sequencer, and
control is returned to the VFL load sequencers,

There are two complete sets of four FP load sequencers for each half of the
ZR. This was necessary to guarantee the fast switching and loading from
the two halves of Z. Each set of four FP sequencers control the loading of
one level and two level FP instructions, depending upon whether one or two
operands are involved, as well as the actual fetching of the operands from
either external memory, index storage, or internal register,

The prime consideration in the design of these controls was to achieve a high
rate of transfer for FP instructions. It was necessary to ''guess'' that the
operand address referred to main memory, and begin the fetch immediately.
If the guess is wrong, then the fetch is blocked and the next cycle is controlled
by another sequencer which fetches the operand from the correct memory.
The majority of FP instructions will require only one control step where

the operand is fetched from main memory at the same time that the instruc-
tion is loaded into the single lookahead level.

During loading, the IC and the preparation controls may be operating simul-
taneously to maintain the instruction rate. The lookahead load controls sig-
nal the preparation controls when an instruction is completely loaded, and the
instruction in the ZR can be replaced with a new one.

Instruction-Execution Controls

To execute the large number of I unit instructions and all their variations re-
quired the design of a large control system. The instructions were cate-

26

gorized by type, then divided into logical operations and analyzed for maxi-
mum sharing of common controls. Circuit limitations and packaging rules
often prevented sharing as much as was desired. As the control logic grew,
it became necessary to package it in two frames instead of one which, in
turn, created a communication problem in critically timed areas. In order
to keep the number of logical levels to a minimum, it was necessary to de-
sign a large amount of parallel logic into and out of each control stage.

The instruction set was divided into four categories: index arithmetic,
branch, transmit, and miscellaneous operations. Each group was worked
on separately, and the control sequences and logic required was designed.
These controls were then compared for similarities, and wherever possible,
common control logic was combined. The result was that sixty-one control
sequencers and nine supervisory triggers, plus an operation decoder were
required to execute the instructions in satisfactory performance times. This
hardware occupied twelve standard panels and was packaged in two frames.
These controls provide for fetching and checking operands from memory
(main memory, index storage, or internal registers), and regulate index
adder logical operations; partial and full word transfer, shift, and checking
operations; as well as the loading of lookahead with a large variety of instruc-
tion formats and control tags. Most of these operations have a large number
of input and output conditions whose combinations can cause each step to be
performed in a wide variety of ways. Other requirements of these controls
included the ability to stop immediately on errors, to be recoverable in case
of no-opping and interrwpt conditions, and to be able to step manually a cycle
at a time. Every control stage has a line to the maintenance console for in-

dication.

Miscellaneous Controls

These controls are used primarily in manual operations and special recovery
routines. They consist mostly of supervisory control triggers (approximately
35) which initiate, condition, and terminate control sequences. The actual
operation within the sequences are controlled by sequencers, which are shared
for this purpose in the instruction execution area. For this reason the exe-
cution decoder must be blocked so as not to affect the stepping of the sequences
for these special operations. Some special control functions are also handled
in this area, such as store wait control, when lookahead contains a store to
XS, IR, or MR; time clock operation triggers; I unit recovery because of pro-
gram store test; and others. Some of these are very critically timed since
they must block normal operation immediately, otherwise unrecoverable da-
mage may be done. These controls are packaged in the IC control area so as
to minimize the communication delay of the interlocks.

PERFORMANCE CHARACTERISTICS

The STRETCH computer was originally contracted for the Los Alamos Atomic

27

Energy Commission, and as such had certain performance goals which were
particularly important to the customer. Of primary importance was the com-~
plete Floating Point operation, including the instruction fetching, preparation,
operand fetching, and actual execution. The variable field length operation
was desirable and attractive, but its performance need not be, nor could it

be economically as high as FP. The index arithmetic instructions were all
very important to the program indexing plans of the customer, and particular
emphasis was placed on the execution of the count and branch instructions.
Heavy reliance was to be placed on this type of instruction for controlling the
many iterative program loops characteristic of scientific computing. Another
general purpose type of instruction in which the customer showed special in-
terest was transmit. This instruction would be used extensively in data and
program manipulation, particularly in multi-programming operations. Con-
ditional branch instructions were of particular interest since a decision had
to be made as to which way the I unit should ''guess' that the branch would go.
This was required because the conditional data is not generally available at
the time the I unit prepares the instruction. A study and program simulation
was made to determine whether to assume the branch or not. The results

did not clearly indicate an advantage either way, and depended largely upon
how the program was written. It was decided to assume that the branch would
not be successful, and if the assumption proves to be incorrect, then a re-

covery is made.

How the computer achieves the desired performance goals in these areas will
follow. These examples are chosen because of the customer's special interest
in them; and it does not mean to infer that all the other remaining operations
were considered unimportant or are not of a comparable performance level,
The high overall general purpose performance goals of the STRETCH com-
puter6 required that all the operations be executed in a much more powerful
manner than on previous machines. To show how all the operations are
performed, and the execution times, is not within the scope of this report.

Floating Point Instruction Preparation

A timing diagram showing the preparation of continuous FP instructions is
shown in Figure 6. The preparation includes the fetching of instruction words
from 2 us memory, the ECC checking/correcting of the instruction, the Y to
7 transfer and index fetch, the address modification, and finally the operand
fetch and lookahead load, It can be seen how successive instruction fetches,
preparations, and lookahead loads are overlapped to achieve a performance
goal of one FP instruction every two cycles (one microsecond). Each instruc-
tion is assumed to require indexing. Otherwise instantaneous rates would
achieve one FP instruction every half microsecond; the average rate, how-
ever, would still remain at one per microsecond. This is because the maxi-
mum rate of instruction fetches is balanced with the maximum indexing rate

and the lookahead rates,

Figure 6 starts out by assuming a start-up operation (either program start
or recovery operation) where two rapid successive fetches are made by the IC

28

62

IF 1Y IF+»2Y

— 1~
~
~

MAB

I CHKR

1AV

) &1

LALD

La ¥

LA ¥2

LA %3

LA ¥4

LA-»E

EXEC.

ASSUMPTION |
EACH FP INST. INDEXED

%

IF 1Y OF »LAOF»LA, IF+2Y OF »LA3OF LA, IF > 1Y
- b —~_ ' ' —~ ;
~ _ IY» 1y 2vw2y ~< T~
- ~— S~ Wy S~ 2y=s2y
~ —_ 4 ~— —_—
CHK+ CHK+
DEC _ DEC
IYL*=ZR MOD ZR IYR-~ZL MOD ZL2YL*+ZRMOD ZL2YR*ZLMOD ZLIYL+ZRMOD ZRIYR+>ZL
XF /1YL XF/IYR XF/2YL XF/2YR XF/IYL XF/IYR
t i t 4 r — — - — - -
ZR+>LA ZL>LA ZR>LA ZL¥LA ZR-»>LA
| |
| 1 — ‘
| . e, |
FP |
. 3 | —
¥ l J
FP
! , 4
M ’
LA*E
| —
[
4 FP INSTUCTIONS / 4.0 iL.S.
- 8 CYCLES »
FP RATE=1/10 iS
FIGURE 6. FP INSTRUCTION PREPARATION

to the Y registers. When the words are received from memory they are
immediately checked, and here we are assuming no errors so an extra cor-
rect cycle is not required. During the check cycle the ECC is converted to
parity and the preparation controls pre-decode the type of instruction. In

this case each word contains two FP instructions. The next cycle is the
transfer from the left half of 1Y to the right half of Z. The criss-crossing

of half word locations was adopted as the simplest way of handling all the
different combinations that occur. During this transfer, any addressed in-
dex word is fetched into the XR. Assuming that each instruction is to be
indexed, the next cycle is the actual address modification. Here the index
value in X is added through the index adder to the operand address in ZR.
These last two cycles tied up the IAU so the next instruction in 1YR waited.
The first instruction is now ready for loading into lookahead and fetching the
operand. Since the IAU is not busy, we can also transfer the next instruction
to Z and fetch its index word. So both operations are attempted. Since the

1Y register is now being emptied, the IC will try to fetch the next instruction
word (IC + 3) into it. This conflicts with the operand fetch of the lookahead
load cycle. Since IC controls have priority, the IC fetch is made simultaneous-
ly with the 1YR transfer to Z and the index fetch. The lookahead load cycle
holds up its fetch during this cycle and completes it with the load operation on
the following cycle, overlapped with the modification of the second instruction.
This early instruction fetch guarantees that the 1Y register will be filled and
checked by the time the 2Y register is emptied. In this manner the flow of
instructions can be maintained. The degree of simultaneity in the I unit is
best illustrated by the asterisked cycle which shows an instruction fetch to

2Y, a check cycle on 1Y,a 2 YR transfer to Z, an index fetch, and an attempted

lookahead load, all occurring at the same time.

The degree of overlap in the computer is best shown by the last cycle, which
shows the execution of the first instruction El, three of the four lookahead
levels filled with instructions 2 and 3, instruction 4 being loaded into look-
ahead and its operand being fetched, and instruction 5 being transferred

from Y to Z and its index being fetched. This is but one variation of FP prep-
aration. Other variations cevelop when the operand address refers to index
storage or internal register; when a second operand is implied, as in multiply
cumulative and load cumulative multiplicand; and in the many combinations of
different types of instructions that may be intermingled with the FP instruc-

tions.
The diagram not only indicates how one performance goal is achieved, but
shows also the control complexity required to interlock and execute efficiently

the I unit instruction preparation function. It illustrates further how complete
overlap of instruction fetching, indexing, and lookahead loading is achieved.

VFL Instruction Preparation

The preparation of a variable field length instruction is shown in the timing

30

diagram of Figure 7. Starting at the same point as Figure 6, it shows the
sequence when the second instruction is a full-word VFL instruction located
across memory word boundaries. In this case the left half of the first instruc-
tion word fetched is an FP instruction, and the right half is the left half of
theVFL instruction. The left half of the second instruction word fetched con~
tains the right half of the VFL instruction, while the right half of this word
contains another FP instruction.

The first instruction is processed exactly as in the previous example. No-
tice that this time when we transfer the right half of 1Y to Z left we provide
for the eventual correct alignment of the full-word instruction in Z. Again,
any index word addressed by the hali-word in 1YR is fetched into the XR. Be-
fore proceeding into the modification cycle, however, we must determine
whether normal or progressive indexing is called for. This information is
contained in the right half of the instruction, and is not available until the 2Y
register has been filled, checked, and pre-decoded. In Figure 7, this is
completed by the end of the 1YR to ZL transfer, so no wait is required. As-
suming normal indexing, the next cycle is the modification cycle for the left
half. If progressive indexing (PX) had been specified, a much different se-
quence would be required, completing the operation in two steps. The first
one would replace the left half operand address with the value field of the in-
dex word, and the instruction preparation would continue on, and be loaded
into, lookahead. Following the lookahead loading, a control sequence would
be entered where the increment, count, and refill operations, if called for,
would be executed. The results would then be loaded into lookahead as the

second step of PX operations.

After normal modification of the left half, the right half is transferred from
2YL to ZR and its index fetch executed. The next cycle then modifies the
right half of the instruction. The indexing and instruction operation codes
are preserved during the modification. The next step is to determine if one
or two memory words are required to obtain the operand field. The operand
field could start at any bit position in a memory word and extend into the next,
as long as the total field length is 64 bits or less. The word boundary cross-
over test (WBC) is done by adding, in the index adder, the length field to the
full 24 bit operand address field. If a carry into position 17 of the operand
address field occurs, then the instruction operand does, in fact, cross mem-
ory word boundaries. The first 18 bits of the result are gated into the WR,
and this is actually the operand address for the second memory word.

This completes the preparation, and all that is left is to load the instruction
into lookahead and fetch the operands. In this case three cycles are required.
The first loads the instruction into one lookahead level. Since the data field

is used for part of the instruction, no operand fetch can accompany this level.
The next two cycles are for fetching the two operands of the instruction into
two more levels of lookahead. The number of cycles required to load VFL
type instructions varies from two to five, depending on whether the instruction

31

(43

IF>IY IF +2Y IF > 1Y OF > LA, OF »LA_OF »LA, IF 2V
MAB ; , — , —) 3 4
~ ~ ~
S~ T~ _iYiy 2va2y S~
L CHKR S~ ~_ 1YY
~ -~ ~
CHK* ' CHK +
OEC DEC

av IYL> ZR MOD ZR IYR*ZL MOD ZL 2YL>ZRMOD ZR WBC 2YR>ZL

I ¥ + + + —t - | e |
XF/IVL XF/IYR XF/2YL XF/2YR
Xs '] — 4 —_— —_
ZR-+LA LALD, LALD; LALD,
LALD —_— ey
| e l
La * | ' !
F
La ¥z | ' Ml i —
La #s VFL,
|
VFL
LA ¥a —
LA,—E
LA +E —_—
E‘
EXEC. —_
8 CYCLES :!
ASSUMPTIONS ;

VFL

INST. ACROSS MEM. WO. BOUNDS

2. NORMAL INDEX BOTH HALVES.
3. TWO OPNDS. REQD.

FIGURE 7. VFL INSTRUCTION PREPARATION

requires one or two operands, whether it is a fetch or a store to memory
instruction, and whether any special registers are implied in addition to the

operand address.

Having successfully loaded the instruction, the next half=word FP instruction
can be transferred from 2YR to ZL and the normal FP preparation continued.

It can be seen from Figure 7 that the VFL instruction in this case took eight
cycles or 4.0 microseconds to prepare and load lookahead, as compared to
two cycles or 1.0 microsecond for a normal FP. If the instruction had no
indexing specified and only one operand memory word was required, the
operation would have taken only five cycles or 2.5 microseconds. Again,
there are many variations of these instructions, depending on the type of in-
dexing required; whether the instruction arrives straight or across memory
words; whether the operands are in XS, EM, or IR; and whether it is a store

to memory operation or not.

Count and Branch Execution

The execution sequence for a count and branch (CB) instruction is shown in
Figure 8. Assuming a continuation of the FP preparation of Figure 6, the
fifth instruction is defined as a CB instruction. In the example, it is assumed
that the instruction requires indexing, and therefore it is possible to overlap
the operation decoding with the modification cycle. Otherwise it would have
been necessary to take a separate decode cycle. Once decoded, the operation
enters an execution sequence controlled by the decoder outputs and by condi-
tions arising out of the individual operations. The first cycle is a fetch of the
index word whose count field will determine whether the branch is successful
or not. In the next cycle, the fetch of the branch address instruction is ini-
tiated, and at the same time the count field of the index word in the XR is de-
coded for a XC =1 condition. If this condition for branching exists, the fetch
is completed; if the condition does not exist, the fetch is blocked. This per-
mits as rapid a fetch of the next instruction as possible in order to begin
filling up the Y registers with the new sequence of instructions. The instruc-
tion fetchis overlappad with the loading of the index word, before modification,
into lookahead., This is referred to as a pseudo-store level, and is only used
in recovery operations where the index registers have to restore to some
previous level as a result of an interrupt or no-op condition, The next cycle
then is the actual counting down through the index adder of the count field of
the index word in the XR. After this, the value field can be advanced or
diminished by one or one-half, if called for by the instruction. This is also
effected through the index adder. At the same time, the advanced IC value
(address of the instructions following the CB) is loaded into the same lookahead
level as the pseudo-store. This is done because the next cycle destroys the
IC contents by transferring into it the branch address from Z. If a no-op of
this instruction is required, the I unit can continue or inthe program. After the
advance or diminish cycle, the updated index word is returned to XS. This is

33

143

OF+ LA 1IF/Z>Y IF »2Y IF —=»|Y

MAB ————t)-———l\\ —_— —
~
~ - ~ -~ -
~- 1Y =1y ~ 2Y—+> 2y
I CHKR S~ —_ \‘o—-l
Ia IYL>ZR MOD ZR COUNT ADV/DIM Z+ICR IYL->ZR MOD ZR IYR+>ZL MOD ZL
U ' t ' ' 4 ' ‘ ' 4 + R "
XF/IYL XF/Z, CL/Z, ST/Z; XFAYL XF/IYR
xs | e | | e s | [, + + - i
ZL~>LA X~ LA IC* LA ZR>LA
LALD ' . ey [—_—— —— e
INDS*LA
wisc. OEC |
6 CYCLES :Jl

FIGURE 8. COUNT AND BRANCH EXECUTION

done by a clear cycle for resetting the word during the same cycle that trans-
fers the branch address into the IC. It is followed by a store cycle which
sets the contents of the XR into the previously reset word in the array. To
complete the operation, all indicators associated with this instruction and the
new IC value are loaded into lookahead to be tested later in proper instruction
sequence for an interrupt. If a condition occurred which would no-op the in-
struction, then the new IC field is not loaded, only the indicators and a no-

op tag. This would cause any branching already done to be cancelled by a re-
covery operation later.

Since the branch instruction was fetched early in the operation, the new instruc-
tion word has arrived and has been checked by the time the CB instruction is
completely executed. The normal instruction preparation is restarted imme-
diately and, in this case, the next FP instruction is loaded into lookahead four

cycles later,

The entire execution of the instruction took six cycles equal to 3.0 microsec-
onds, and is overlapped with the operand fetch and execution of instruction 1.
Another way of saying this is that it took ten cycles or 5.0 microseconds
from the completion of one instruction in the program to branch to another
program location, and to prepare and load the first new FP instruction into

lookahead.

Variations of this instruction execution sequence occur with respect to the
branch condition 0 or 1; the advance or diminish modifiers; and the setting of
indicators that may occur and cause a no-op or interrupt. In addition, there
are other instructions in the same category which are more complicated and
time consuming. These include the store instruction counter if count and
branch (STICI-CB); and the count, branch, and refill (CBR) as well as the
STICI-CBR variations.,

Transmit Execution

An execution sequence diagram for the Transmit Direct instruction is shown
in Figure 9. The instruction is a full word with each half being indexable. The
"from' and the'to''address arelocated in the left and right halves respectively.
The count of the number of words to be transmitted is contained in the count
field of the index word, addressed by the J field of the instruction. The oper-
ation code can specify stepping the addresses forward or backward.

In the example the instruction is assumed to be contained entirely in the 1Y
register, without crossing word boundaries. The left and right halves are
then transferred to the ZR, and any indexing specified is done in the normal
manner. As in the case of the count and hranch instruction, the operation de-
coding is done in parallel with the indexing of the right half of the instruction,
if called for. After decoding, the first cycle fetches the index word that con-
tains the count of the number of words to be transmitted. Then the count field

35

9¢

MAB

I CHKR

IAvu

XS

LALD

MISC.

F/ZOAL ZOAR*LA F/ZOAL

ZOAR~LA
—_— —_— —
\\
-~
“~ L Y*CHKR Y+CHKR
= pe——y —
IYL*ZL MOD ZL IYR*ZR MOD ZR XG> WR ZOAL® | W-—| ZOARXTIZOALYI W-—)
XF/IYL XF/IYR XF/Z,
. . i .
| Y- LA Y—=>LA
— —_—
I OP->LA oP—LA
DEC TEST TEST
—y —— ey
I w=0 wW=0
|
SET UP WORD 1 WORD 2
2 CYCLES »f¢——— § CYCLES ———

FIGURE 9. TRANSMIT EXECUTION

is transferred through the index adder from the XR to the WR, where the
counting and the test for W = O is performed. The instruction is now set up
for successive executions of individual word transmissions. In this case the
from and to addresses are assumed to refer to external memory. The left
operand address (from) is used to fetch the first word into a Y register. Then,
the from address is stepped (+1 or -1) through the index adder. The next

cycle subtracts one from the count field in the WR and puts it back in W. A
d-c detect circuit indicates in the following cycle whether the count went to
zero. By then the fetched word has been received in the Y register and is
immediately loaded into lookahead through the I checker, completing the ECC
check. The ECC code is left with the word instead of converting it to parity,
since lookahead will immediately attempt to store it to memory. When load-
ing the word into lookahead, the ''to' operand address in the ZR is gated to

the memory address-bus (MAB). This, in turn, goes to the "effective address
register for storing' in lookahead. So by the end of the cycle the level con-
tains the word to be transmitted, the store memory address, as well as suf-
ficient operation and indicator tags to tell lookahead what to do with them.

If an error or a data store indicator appears, the entire operation will be
terminated at that point., Neither recovery nor no-opping of the instruction
can be effected, since irrecoverable damage could have been done.

After loading the store level, the 'to' address in ZR is stepped (4l or -1)
and the operation is repeated for the next word. The loop continues until
the count goes to zero. When this happens, the instruction execution is com-
plete and a final lookahead level is loaded with the advanced IC value and any

final indicators.

It can be seen, from this example, that the rate of transmission is one word
per five cycles or 2.5 microseconds. The initial set-up time took two cycles
or 1.0 microseconds. This is only one of nine different variations of this in-
struction which can occur due to the combinations of the three different types
of memory addresses in each of the two addresses. They all require a dif-
ferent sequence for execution, and therefore their transmission rates vary.
In addition, there is the transmit immediate instruction which contains the
count field within the instruction itself instead of in an index word. Corres~
ponding to these two transmit instructions, there are the two swap instruc-
tions. These are similar except that the two operand address refers to two
words in memory, which have to exchange locations. This is done by fetch-
ing both addresses and then reversing the addresses when storing. The count-
ing and address stepping is done in the same manner as transmit.

Conditional Branch Operation

An example of a conditional branch operation where we ''guess' that it will be
unsuccessful is shown in Figure 10, The instruction is a branch on indicator,
where the indicator specified is not an index result indicator. If it were, we
would not have to guess but could test for the branch in the I unit's updated

37

OF =~LA
MAB (—
| CHKR
IYL—ZR MOD ZR
I AU - . ,
XF/IYL
Xs e
A ZL+LA
LA LD,
DEC
MISC. .
BIN
FIGURE 10.

Zoa™MAB

TEST
Z-+>LA

-

IF = |Y
—

ZOA"" LA
—_—

IYR*=ZLMOD ZL2YL*ZR

L T t |

XF/IYR
—

38

OP +LAF~» LA ST*LA BR+LA ZL*LA

+ — —_—

BRANCH ON INDICATOR EXECUTION

indicator register. However, in this case the test cannot be made until all
preceding instructions in lookahead have been executed and their indicators
set. Rather than wait the I unit tests the instruction for certain indicator
conditions and then loads it into lookahead. This enables the VFL unit to
select, test, and modify the specified indicator. The I unit continues in the
program, assuming that in the majority of cases the branch is unsuccessful.

The diagram (Figure 10), begins as a continuation of the F'P preparation in
Figure 5, and FP instruction four (I4) is prepared in the normal manner.
Instruction five is the half-word branch on indicator instruction, and it is
prepared and decoded in the identical manner as count and branch in Figure

8. Once decoded, the actual execution sequence begins with a test fetch

cycle. This is not an actual fetch, it merely places the branch address on

the MAB for boundary compare purposes and the setting of possible indicators.
Having determined whether the branch address is legitimate or not, the in-
struction is then loaded into lookahead.

The loading is done in four steps and occupies four levels. The first is the
instruction level with the operation codes and indicator address field, which
tell the VFL unit what operation is required. The second cycle is the fetch
level for fetching the indicator register to the lookahead level as the operand.
The third level is a store to memory operand level with the store address of
the indicator register. This notifies the VFL unit that after selecting, test-
ing, and possibly modifying the indicator bit, the contents of the indicator
register must be returned. The fourth and final level is the recovery level
which contains the branch address, the IC value, and various operation and
indicator tags. This is in case the branch test proves successful and a
branch recovery operation is required. If that happens, the branch address
is returned to the IC andal intervening operations are cancelled.

In the example, the branch is assumed unsuccessful and the I unit continues
with the preparation of the following instruction (Ig). It can be seen that the
actual execution of the instruction took five cycles or 2.5 microseconds.
Again there are considerable variations to this type of instruction. It could
have been a STICI-branch, where the instruction occupies a full-word and
the left half contains the store instruction counter data. The branch could
be conditional upon the indicator being on or off, and could specify resetting
the indicator or leaving it alone. Another very similar instruction which
can test any bit of memory for a branch condition is the branch on bit.

This instruction is executed very similarly to the branch on indicator.

39

ACKNOWLEDGMENTS

To give individual credit to the many people who have contributed to the de-
sign of the instruction unit would be impossible. However, major design
contributions were made by the following individuals: Mr. S.F. Anderson

for the index adder and branch instruction execution controls; Mr. L. L.
Headrick for the interrupt mechanism, index arithmetic, and transmit instruc-
tion execution controls; Mr. C. R. Holleran for the IC system and lookahead
load controls; Mr. S. L. Lindauer for a portion of the data paths and the in-
struction preparation controls; and Mr. L. F. Winter for his assistance in

the design of the data paths.

The overall engineering effort was under the supervision of Messrs. E.
Bloch and R. E. Merwin.

40

REFERENCES

1"

Erich Bloch, '"The Engineering Design of the STRETCH Computer,
Eastern Joint Computer Conference Proceedings, December, 1959,

W. Buchholz, ''Selection of an Instruction Language, ' Western Joint
Computer Conference Proceedings, May, 1958, p. 128.

F. P. Brooks, Jr., "A Program-Controlled Program Interruption
System, ' Eastern Joint Computer Conference Proceedings,
December, 1957, p. 128.

G. A. Blaauw, ''Indexing and Control-Word Techniques, " IBM
Journal of Research and Development, July, 1959.

R. W. Hamming, "Error Correcting and Error Detecting Codes, "
Bell System Technical Journal, 1950, pp. 29, 147.

S. W. Dunwell, "Design Objectives for the IBM STRETCH Computer, "
Eastern Joint Computer Conference Proceedings, December, 1956,

p. 20.

4]

VFL

l/0

TRANSMIT

SIC -BR

BR ON BIT

INDEX

FP

DIRECT INDEX

IMMED. INDEX

COUNT & BR

IND.

MISC.

APPENDIX A

Instruction and Index Word Formats.

[3Y]

42

OA : Ba [1000| I | P |LENGTH | BS | OFFSET oP 1
0 718 23 28 3132 35 40 44 50 60 6
CHANNEL :ADR : 1000| T ADDRESS op 1
FROM ADR : 1000| I TO ADDRESS J | op | T
]
SIC ADR : 1000| I BR ADR oP
0A BA [i000| I BR ADR op 1
VALUE s COUNT REFILL
0 23 28 45 46 63
oA oP I
o 17 28 3l
32 49 60 63
oA J | op I
DATA J op | op
BR ADR J op
BR ADR IND oP
0A oP I

APPENDIX B

I Unit Instruction List

A. Direct Index Arithmetic

1. Load index .
2. Load value.
3. Load count.

4, Load refill.

5, Store index.
6. Store value.
7. Store count.

8. Store refill,

9. Add to value.

10, Add to value and count.

11. Compare value.

12. Compare count.

13. Rename.

14. Load value effective.
15, Store value in address.

B. Immediate Index Arithmetic

1. Load value immediate.
2. Load count immediate.
3. Load refill immediate.
4. Load value negative immediate.

43

5. Add immediate to value.

6. Add immediate to value and count.

7. Add immediate to value, count, and refill,

8. Subtract immediate from value,

9. Subtract immediate from value and count.
10. Subtract imm ediate from value, count, and refill.
11. Add immediate to count.

12, Subtract immediate from count.

13. Compare value immediate.

14. Compare value negative immediate.
15. Compare count immediate.

16. Load value with sum.

C. Unconditional Branching

1. Branch.
2. Branch relative.
3. Branch enabled.

4, Branch disabled.
5. Branch enabled and wait.
6. No operation
D. Indicator Branching
1. Branch on Indicator.
Modifiers:

a) Leave indicator.

b) Set indicator to zero.

h if off,
g Braneh if on.

44

F.

[

Bit Branching

1. Branch on bit

Modifiers:

Index Branching

!
b
c

) Leave bit.

) Invert bit.

) Set bit to zero.
d)

e)

Branch if off.
Branch if on.

1. Count and branch
S 2. Count, branch, and refill.
Modifiers:

Store Instruction Counter If

Transmit Operations

1. Transmit.

2. Swap.

a) Branch if count non-zero.
b) Branch if count zero.

c) Leave value unchanged.
d} Add half to value,

e) Add one to value.

f) Subtract one from value.

Modifiers:

Miscellaneous Operations

L. Refill,

a) Forward

b) Backward

c) Direct count

d) Immediate count

2. Refill on count zero.

45

3. Execute.

4, Execute indirect and count

5. Store zero.

46

Location

16-31
32-k

XS
EM
MC

APPENDIX C

Memory Address Assignments

Name

Zero

Interval timer

Time clock

Interruption address
Upper boundary

Lower boundary ‘
Boundary control bit
Maintenance bits

Channel address

Other CPU

Left zeros count

All ones count

Left half of accumulator
Right half of accumulator
Accumulator sign byte
Indicators

Mask

Remainder

Factor

Transit

Index registers XO - X15
Normal external memory

Length Bit Address
64 0 - 63
19 0-18
36 28 - 63
18 0 -17
18 0 - 17
18 32 - 49

1 57

64 0 - 63
7 12 - 18
19 0 -18
7 17 - 23
7 44 - 50
64 0 - 63
64 0 - 63
8 0-7

64 0 - 63
64 0 - 63
64 0 - 63
64 0 - 63
64 0 - 63
64 0 - 63
64 0 - 63

Permanently protected area of memory.

Type

EM
XS
XS
EM
IR

IR

IR

EM/MC

IR

IR

IR
IR
IR
IR
IR
IR
EM
EM
EM
XS
EM

Read-only except for STORE VALUE, STORE COUNT, STORE
REFILL, and STORE ADDRESS.

Read-only.

Bit positions 0 - 19 are read-only.

Bit positions 0 - 19 are always ones, and bit positions 48 - 63

are always zeros.

Last word address in a particular memory configuration.

Internal Register

Index Storage
External Memory

Maintenance Console

47

IBM Prepared by Laboratory Communications, Data Systems Division, Product Development Laboratory
- International Business Machines Corporation, Poughkeepsie, New York Printed in U. S. A. 1959

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	xBack

