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PREFACE 

The System described in this pamphlet was developed at 
the Watson Scientific Computing Laboratory to enable 
classes and research groups in Columbia University to use 
the equipment of the Laboratory for solving problems in 
mathematics, science, and technology. 

Large numbers of students and research worke~s are 
eager to obtain first-hand experience in applying machines 
to their problems, but they feel that they can not afford the 
time for a professional courSe in machine methods. The in
struction presented here meets the needs of these people 
with a minimum expenditure of time; it consists of the pres
entation of the System and the solution of a problem chosen 
from the field of specialization of the group. Three one-hour 
sessions of formal discussion, each preceded by one or two 
hours of home preparation, are considered sufficient for the 
student to learn the System and to be ready to undertake a 
problem of moderate complexity. His familiarity with the 
problem is a great asset to the student since a major part of 
the total effort in solving a problem by machines involves 
his thinking through the method of solution in detail and 
stating exactly the necessary steps for the solution. 

At the conclusion of the instruction the student should 
have precise knowledge of all the factors that were involved 
in obtaining a machine solution. His concrete 'experienCE! 
with one machine enables him to solve simple problems on 
it and to cooperate effectively with professional computers 
in the solution of more complicated problems on any machine. 

Important contributions to the project were made by 
J. Jeenel, H. Smith, and E. Hankam. 
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I. Introduction 

1. THE SYSTEM 

One of the most exciting achievements of our generation 
is the development of the electronic automatic digital calcu
lator. Although any schoolboy can perform any operation 
done by the calculator, the speed and economy with which 
the calculator does them are so great that automatic calcu
lation is revolutionizing large areas of science, engineering, 
business, industry, and defense. A single giant calculator can 
do more arithmetic than the entire population of the United 
States could do with pencil and paper. * 

The calculator described here (the IBM 650) is one of 
medium speed, i.e. it will perform in two or three minutes 
calculations that would require a week on a desk calculator. 
A very important feature of the calculator is the fact that 
simple written instructions control its operation. This pam
phlet in conjunction with several lectures aims to train the 
novice to write these instructions for the machine solution 
of moderately complex problems. 

In order that the machine be used effectively on the solu
tion of such problems by a large number of people, simple 
uniform procedures should be followed. This uniformity will 
help the novice avoid many of the common time-consuming 
errors made by beginners and will enable the professional 
computing staff to render effective assistance when needed. 
It will also permit standardized sets of instructions pre
viously prepared for other purposes to be incorporated in a 
new problem. This pamphlet therefore describes not only 
the machine but a "System" for its use. The beginner is re
quested to follow this System until he has successfully com
pleted several problems. During this initial period he should 
concentrate on understanding this System rather than dis-

*Eckert, W. J. and Jones, R., Faster, Faster, McGraw-Hill, New York, 
1955, Introduction. 
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cussing other systems (of which there are many). 
The System described here is direct and simple. It will 

handle efficiently problems of moderate size and complexity, 
and it will give to the student a good introduction to more 
advanced methods suitable for the solution of larger and 
more complicated problems. After he has gained experience 
on small problems, he can undertake somewhat more com
plicated ones with the guidance of the professional comput
ing staff. Those who wish to undertake the solution of large 
complicated problems, however, would be well advised to 
seek more formal instruction. * It should be remembered that 
time on this calculator is worth more than a dollar a minute 
and problems requiring hours of machine time should be 
prepared in a manner that will avoid waste of machine time 
due to inadequate numerical analysis, inefficient planning 
of machine operations, and erroneous machine instructions. 
Of perhaps greater importance than wasted machine time 
is the loss of time of the person writing instructions in an 
unsystematic manner. The urge to be independent is com
mendable, but it should be remembered that thousands of 
people including some of the world's greatest mathemati
cians have worked on these procedures for the past ten years 
and the beginner should profit by all of their early mistakes. 

2. THE MACHINE 

The calculator consists of an input-output device, a mem
ory, an arithmetical unit, and a control unit. Numbers are 

Input-Output 

Memory 

Arithmetic Control 

*Columbia University Bulletin of Information, Announcement of the 
Watson Scientific Computing Laboratory. 
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read from punched cards by the input-output device and 
stored in the memory. Numbers are taken from the memory 
to the arithmetical unit where they are added, subtracted, 
mul,tiplied, or divided, and the results are returned to the 
memory. Certain other logical operations to be described 
later are also performed in the arithmetical unit. Numbers 
stored in the memory may be recorded in punched cards for 
later use by the machine or for producing a printed record 
by means of a separate printing machine. 

3. THE MEMORY 

The 650 memory will store as many as 2000 "words", 
where a "word" consists of ten digits and algebraic sign. The 
2000 storage locations, each capable of holding a word, are 
numbered consecutively from 0000 to 1999; these location 
numbers are called addresses. In order to put a "word" into 
one of these locations or to remove a word from one, it is 
necessary to specify the address of the memory location or 
"cell". For this System, locations 0000-0499 and locations 
1700-1999 have been reserved for special purposes so that 
only locations 0500-1699 can be used for problems. 

A word in a memory cell is retained until a new word is 
placed in the cell; before the new word is accepted by the 
cell the old word is erased automatically. 

4. THE ARITHMETICAL UNIT 

The arithmetical unit consists essentially of a 10-digit 
accumulator with sign, called the upper accumulator; there 
is also a 10-position extension, called the lower accumulator, 
that is used in mUltiplication and division. 

Unlike the storage cells, the contents of the accumulator 
are not erased unless the accumulator is deliberately reset 
to zero. To add a number from the memory into the accumu
lator, we instruct the machine to "reset add upper" (that is, 
first reset the accumulator to zero and then add the word 
into the upper accumulator) and we give the address of the 
word to be added. For example, to add the word from cell 
0562 into the accumulator, we write: 

reset add upper (RAU) 0562 

Similarly, to subtract the same number, we write: 

reset subtract upper (RSU) 0562 

We can also instruct the machine to add or subtract with
out first resetting; in this way we accumulate a sum. For 
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example, if we have three numbers A, B, C, stored in 
locations 0901, 0902, 0903, respectively, we can form 
(S = A + B - C) with the following sequence of commands: 

reset add upper 
add upper 
subtract upper 

(RAU) 0901 
(AU) 0902 
(SU) 0903 

These commands and others will be described in detail in 
Chapter II. 

5. THE CONTROL UNIT AND INSTRUCTIONS 

All commands are given to the machine as numerically 
coded instructions, which are in the form of the standard 
word, 10 digits and sign. Since the instructions are entirely 
numerical,othey can be read from cards and stored in mem
ory as data. Each instruction has its own address. Since in
structions are indistinguishable from data in the memory, 
the 650 is called a "stored-program calculator". 

If an instruction is entered into the arithmetical unit, it 
will be treated as a data word. Only when it is entered into 
the control unit will it be treated as an instruction; for it is 
in the control unit that the instruction is interpreted and 
executed. The digits of an instruction word have the follow
ing meaning: 

xx 
Operation 

code 

xxx x 
Data 

address 

xxx x 
Instruction 

address 

The operation code is the numerical equivalent of the opera
tion we wish the machine to perform; for example, the op
eration code for "reset add upper" is 60. The data address 
locates in memory the data word on which the operation is 
to be performed. 

With some operation codes the data address has different 
meanings that will be explained in the discussion of specific 
operation codes. 

After an instruction has been executed, the control unit 
goes to memory for the next instruction. The instruction 
address of the instruction just executed tells the control unit 
where in memory the next instruction is stored. For example, 

60 0632 0502 

is interpreted as, "Reset add upper the word in 0632 and get 
the next instruction from 0502". The coder generally writes 
on his worksheet the location of the instruction and the 
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alphabetic abbreviation of the operation to be performed, 
in addition to the instruction: 

0501 I RAU 60 0632 0502 

The alphabetic abbreviation is just for his convenience, but 
the location of the instruction (0501) is a necessity since he 
must know where each instruction is stored. However, only 
the 10-digit instruction word, 60 0632 0502, appears in 
the machine. 

We can see now that the machine needs only the location 
of the. first instruction; it will then execute automatically a 
whole series of instructions in the proper order. Such a 
series of instructions is called a program. 

6. THE SOLUTION OF A PROBLEM 

The solution of a problem on an automatic calculator in-
volves the following steps: 

Stating the problem 
Establishing the numerical procedures 
Planning the machine solution 
Programming 
Writing detailed machine instructions 
Testing the instructions 
Running the problem on the machine. 

The problem is generally stated in the form of mathe
matical equations; in the second step these equations are 
replaced by a set of numerical procedures including the nec
essary problem data. 

The numerical procedures are then analyzed to determine 
how they may be arranged to the best advantage for machine 
solution. This analysis and the general outline of the machine 
solution is called "problem planning" . We refer to the de
velopment from this general plan to a detailed plan for all 
of the operations and the order in which they are to be per
formed as "programming". 

When the program is complete, we translate it into coded 
form by expressing each operation in terms of specific ma
chine codes; we refer to this process as "coding". Generally, 
the clerical part of large-scale coding is done automatically 
by machines. 

The order of the steps given above is that in which a 
problem is solved; it is not the best order for exposition. In 
this pamphlet we discuss coding first, then programming, 
scaling and, finally, testing; machine operation is not dis
cussed. 
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II. Coding 

1. ARITHMETICAL OPERATIONS 

There are six arithmetical and two associated operations, 
the first two of which have already been discussed: 

RAU 60 
RSU 61 

reset add upper 
reset subtract upper 

The entire (upper and lower) accumulator is first reset to 
zero, and then the contents of the cell specified by the data 
address are added or subtracted into the upper accumulator. 

To store in memory a word that is in the upper accumu
lator, we have the operation code 21 : 

STU 21 store upper 

The word is stored in the cell indicated by the data address 
of the instruction, and the accumulator remains unchanged. 

A store upper (STU) instruction can be combined with 
a reset add (RAU) instruction to perform a simple word 
transfer (moving a word from one memory location to an
other). To transfer a word from 0800 to 0900, we write: 

0600 I RA U 60 0800 0601 
0601 STU 21 0900 0602 

Note that we have arbitrarily put these instructions in loca
tions 0600 and 0601. 

The next two operation codes enable us to add and sub
tract into the upper accumulator without first resetting the 
accumulator to zero: 

AU 10 
SU 11 

add upper 
subtract upper 

For example, if we have four numbers A, B, C, D, stored in, 
say, cells 0801 to 0804, respectively, and we wish to form 

E=A+B-C+D 
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and to store E in cell 0805, we write the following instruc
tions: 

0500 
0501 
0502 
0503 
0504 

RAU 
AU 
SU 
AU 
STU 

60 
10 
11 
10 
21 

0801 
0802 
0803 
0804 
0805 

0501 
0502 
0503 
0504 
0505 

Again the instructions are arbitrarily stored in locations 
0500 to 0504. 

Two 10-digit numbers can be multiplied to give the 20-
digit product (with sign) : 

MPY 19 multiply 

Two steps are involved: the first step clears the upper and 
lower accumulator and places the multiplier in the upper 
accumulator by the RAU operation just described; the next 
step, an instruction containing the operation code 19, initi
ates the multiplication. The data address locates the multi
plicand. For example, if we wish to multiply the number in 
cell 0850 by the one in cell 0851, we write: 

0500 I RA U 60 0850 
0501 MPY 19 0851 

0501 
0502 

The product appears in the accumulator with the 10 digits 
in the highest-order positions in the upper accumulator and 
the 10 lowest-order digits in the lower accumulator: 

N umber in 0850 

Number in 0851 

111000000121+ 

113000000141-

Product in accumulator 1 0 1 4 3 0 0 0 0 0 311 0 0 0 0 0 0 1 6 81-

If the lower accumulator is not clear when a multiply 
operation is called for, the result will be completely incor
rect. For this reason, in successive multiplications the inter
mediate products must be stored between successive multi
plication steps. For example, the following instructions are 
necessary to compute xi! when x is stored in 0600 : 
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0500 
0501 
0502 
0503 
0504 

RAU 
MPY 
STU 
RAU 
MPY 

60 
19 
21 
60 
19 

0600 
0600 
0601 
0601 
0600 

0501 
0502 
0503 
0504 
0505 

Note that location 0601 is used for temporary storage of the 
intermediate product, x 2

• The final product is now in the 
accumulator and can be stored in any desired location. 

Two 10-digit numbers can be divided to give a 10-digit 
quotient: 

DIVR 64 divide 

The dividend is placed in the upper accumulator with a RA U 
instruction, and the data address of the divide instruction 
locates the divisor. The 10-digit quotient appears in the lower 
accumulator, and the upper accumulator resets to zero. 

To store in the memory a word that is in the lower ac
cumulator, we have the operation code 20 : 

S TL 20 store lower 

Since the quotient appears in the lower accumUlator, we need 
an operation analogous to "store upper" in order to put the 
quotient in memory; operation code 20 instructs the machine 
to store the contents of the lower accumulator. 

There is one restriction on the size of the numbers in 
division. The absolute value of the dividend must be less than 
the absolute value of the divisor. If this restriction is not 
observed, the machine will want to develop more than 10 
quotient digits and stop. The subject of scaling is discussed 
further in Chapter IV. 

Note: All arithmetical operations are algebraic. 

2. SHIFT OPERATIONS 

The contents of the entire accumulator may be shifted to 
the right or left any number of positions from 0 to 9: 

SHRT 30 shift right 
SHLT 35 shift left 

The number of positions to be shifted is indicated by the data 
address of the shift instruction. Shift right and shift left 
3 positions are written: 

SHRT 
SHLT 

30 
35 

0003 
0003 

8 

xxxx 
xxxx 

(shift right) 
(shift left) 



The digits shifted out at either end of the accumulator are 
lost, as illustrated below: 

Accumulator before shifting 112 34567898176543212341-

Accumulator after shift right of 3 1 0 0 0 1 2 3 4 5 6 71 8 9 8 7 6 5 4 3 2 1 1 -

Followed by shift left of 3 11234567898176543210001-

3. BRANCH OPERATIONS 

A very important property of a calculator is its ability to 
choose one of two alternative programs depending on the 
contents of the accumulator. We have two of these condi
tional operations; in the first, the machine branches on non
zero in the upper accumulator: 

BRNZU 44 branch on non-zero in upper 

In this operation the choice depends on a zero or non-zero 
condition in the upper accumulator. If the upper accumula
tor is zero, the next instruction is taken from the instruction 
address as usual. If the upper accumulator is non-zero, the 
machine branches and takes the next instruction from the 
data address: 

0500 BRNZU 44 0501 
go here 
if acc. 
~O 

0502 
go here 
if acc. 
=0 

In the second branch operation, the choice of program de
pends on the sign of the accumulator: 

BR- 46 branch on minus 

If the sign of the accumulator is positive, the next instruc
tion is taken from the instruction address; if the sign is 
negative, the machine branches and takes the next instruc
tion from the data address. The accumulator is unchanged 
by a branch operation. 

Operation code 01 is provided to stop the machine: 

STOP 01 stop 

For various purposes it is desirable to have the machine stop 
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when it reaches a designated point in the calculations or 
under other specified conditions. 

4. SPECIAL OPERATIONS 

There are standard programs for performing sequences 
of operations that are used frequently, such as data trans
fers, and computation of functions, such as sin, cos, ex
ponential, and square root. To eliminate the necessity of 
writing these programs over and over again, we have written 
them permanently in such a way that they can be incor
porated easily in a larger program. We sometimes refer to 
such standard programs as "library" programs, since you 
can take them off of the shelf and use them when you need 
them. A library program is also known as one type of sub
routine; other types of subroutines will be discussed later. 

Since the same subroutine may be used in several places 
in the program, it is necessary in each case to tell the ma
chine where to take up the main program again when the 
subroutine is completed. A subroutine is called for by the 
operation code: 

Spor 69 special operation 

The data address of code 69 is the address of the instruction 
that follows the subroutine; the instruction address is the 
code number of the desired special operation. For example, 

SPoP 69 1103 0061 

means, "Perform subroutine 0061 and go to location 1103 
for the next instruction". 

If the subroutine is the computation of a function, we 
must specify the argument of the function to be computed 
by entering the argument into the accumulator just before 
giving the SPOP command. For convenience of notation we 
use a as the argument and L (a) as the location of a in the 
memory. 

The instructions to compute sine a are, therefore: 

0701

1 0702 
RAU 
SPOP 

60 
69 

L(a) 
0703 

0702 
0071 

where 0703 is the location of the next instruction. At the 
completion of a subroutine, the function being computed 
always appears in the upper accumulator, and the lower 
accumulator resets to zero so that a mUltiplication can be 
performed directly. 
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The following list of special functions is a preliminary 
one; other functions can be added: 

0070 
0071 
0072 
0073 

va 
sin ex 
cos a 
ea 

0074 
0075 
0076 

loge ex 
arctan ex 
arcsin a 

These functions are described more fully in Appendix I. 
The special operations that are used most frequently con

cern the rounding of numbers in the accumulator and the 
transfer of blocks of numbers from cards to the memory, 
from one part of the memory to another, and from the mem
ory into cards. 

Rounding is accomplished by a shift of the number in 
the accumulator and the addition of 5 into the highest-order 
position of the lower accumulator. This combined operation 
is controlled by the special operation codes 0050 to 0059, 
where the units digit of the code number designates the 
number of positions to be shifted. For example, 

69 080] 0053 

means, "Shift right 3 places and round; take next instruc
tion from 0801". 

Accumulator before rounding I 0 1 2 3 4 5 6 7 8 9 18 7 6 5 4 3 2 1 0 0 1-
Accumulator after rounding / 0 0 0 0 1 2 3 4 5 7/ 0 0 0 0 0 0 0 0 0 0 I -

The lower accumulator contains zeros at the end of the 
rounding special operation. ' 

Subroutines for the block transfer of data are: 

Memory to memory 
0060 from one set of memory locations to another 

Memory to cards 
0061 from a set of memory locations to cards 

Cards to memory 
0062 from cards to a set of memory locations 

The subroutines for block transfers of data are initiated in 
much the same way as the subroutines for evaluating func
tions. Again we must tell the machine where to take up the 
main program after the subroutine is completed, and we 
must also specify how many words to transfer, the memory 
locations involved, etc. This information concerning the 
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blocks of data to be transferred is contained in a code word 
that we construct and enter into the upper accumulator just 
before the subroutine is called for. This code word is called 
a, just as the argument of the function is called a. 

In the memory to memory subroutine 0060, a is con
structed as follows: 

Ol = xx 
N 

where 

xxxx 
a 

xxxx 
b 

N the total number of words to be transferred 
a the first address of original set of locations 
b the first address of new set of locations 

For example, "a = 20 0800 0950" indicates that we wish 
to transfer 20 words from locations 0800-0819 to locations 
0950-0969, respectively. 

Subroutine 0061 will punch a block of numbers into a 
group of cards. a is constructed as follows: 

a = xx 
N 

where 

xxx x 
a 

x xxx 
n b 

N the total number of words to be punched 
a the location of the first word in the block 
n the number of words to be punched per card 
b the block number (for identification) 

For example, 

a = 30 1501 5 182 

indicates that we wish to punch the 30 words in locations 
1501-1530 into (6) 5-word cards, each card containing the 
block number 182. Each card will contain, therefore, the 
5 words and a code word that differs from a in that the loca
tion of the first word in the block is replaced by consecutive 
numbers for identification of each card within a group. Let 
us call this punched-out code word a'. 

A card has 80 columns numbered from left to right. It 
will hold 8 words of 10 digits each, since the sign of each 
word is contained in the same column as the units digit. We 
shall always use the 8th word for identification, leaving a 
maximum of 7 words per card. In subroutine 0061 just de
scribed, a' is the identification word which appears as "word 
8". 
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Subroutine 0062 will read a block of data from a group 
of cards into consecutive memory locations. a is constructed 
as follows: 

xx 
N 

where 

xxxx 
a 

x xxx 
n b 

N the number of words in the block 
a the location where the first word is to be stored 
n the number of words to be read from each card 
b the block number 

The cards that are read in by subroutine 0062 must also 
contain an 01.' for identification. 

Note: When subroutines 0061 and 0062 are used, it is 
important that the total number of words in the block be an 
integral multiple of the number of words per card; if this 
condition is not fulfilled, extra words can be read in or 
punched out. 

We can now put individual instructions together to form 
a complete program. For an example of a program, let us 
write the following instructions that will: read four numbers 
A, B, C, D, from a card into locations 1200, 1201, 1202, 1203, 

respectively; compute ~ + C sin D = E; store E in 1204; 

and punch out A, B, C, D, E. Let us store our instructions in 
consecutive locations starting at 0500. Since it will be nec
essary to use certain constants, which we call program con
stants, for the SPOP operations, we shall store them in loca
tions starting at 0600. For a temporary storage location, let 
us use 0700. 
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0500 RAU 60 0600 0501 Read in 
0501 SPOP 69 0502 0062 A,B,C,D 

0502 RAU 60 1200 0503 
Compute A/B and 0503 DIVR 64 1201 0504 

0504 STL 20 0700 0505 store temporarily in 0700 

0505 RAU 60 1203 0506 Compute sine D 0506 SPOP 69 0507 0071 

0507 MPY 19 1202 0508 
Compute (~ + C sin D) 0508 AU 10 0700 0509 

0509 STU 21 1204 0510 and store in 1204 

0510 RAU 60 0601 0511 
Punch A, B, C, D, E 0511 SPOP 69 0512 0061 

0512 STOP 01 0000 0000 and stop 

0600 04 1200 4001 
Constants 0601 05 1200 5002 

To read four numbers from a card and store them in loca
tions 1200-1203 requires the code word, a = 04 1200 4001, 
which is stored as the first constant in location 0600 where 
it is available when called for by the instruction in 0500. In 
instruction 0507 you will notice that mUltiplication can be 
performed immediately because the lower accumulator resets 
to zero after the completion of subroutine 0071. 

After the instructions and constants have been punched 
into cards, the operator enters the program deck into the 
machine by means of a loading procedure which is initiated 
by the manual controls on the console. The loading procedure 
places the program in memory so that the first instruction 
is stored in 0500, the next instruction in 0501, and so on. 
The starting address 0500 (the address of the first instruc
tion to be performed) is set up on switches, and the depres
sion of a button transfers this address into the control sec
tion of the machine. Then the calculator is started by the 
depression of the start button. 

Exercise 1: 

Write the instructions that will: 
Read five numbers A, B, C, D, E from a card into 

locations 1401, 1402, ... , 1405, respectively; 

ComputeAVB + C + ~ = F; 

Store F in 1406 ; 
Punch A, B, C, D, E, F into a card. 
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",. Programming 

1. INTRODUCTION 

In Chapter II we learned the language that our machine 
understands; now we must learn how to translate a problem 
from its mathematical symbols into this machine language. 
In translating directly from the detailed language of a spe
cific problem to the detailed language of a specific machine, 
you must keep in mind all of the details of the problem and 
of the machine at the same time. Just as many problems have 
general similarities yet differ greatly in terminology, so 
modern computing machines conform to the same general 
pattern, but they differ in their detailed languages. It is 
advantageous, therefore, to have an intermediate language 
between the wide variety of problems and the numerous 
types of machines. With such a language available, we can 
begin by analyzing the problem, keeping in mind only gen
eral properties of the machine, and then forget the ter
minology of the problem and concentrate on the details of 
the machine. The intermediate language to be described in 
this chapter consists of simple diagrams that indicate the 
logical structure of the problem. The diagrams, which we 
call "flow charts", are graphic representations of the various 
phases of a problem. 

2. THE PROGRAM LOOP 

Let us consider again the problem for which the instruc-
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tions were written on page 14. We can represent the pro
gram coded there by the flow chart on the preceding page. 
For convenience in the following discussion, we shall copy 
here a portion of that program. 

0500 RAU 60 0600 0501 Read in 
0501 SPOP 69 0502 0062 A,B,C,D 

Compute E and 
0509 STU 21 1204 0510 store in 1204 

0510 RAU 60 0601 0511 Punch 
0511 SPOP 69 0512 0061 A,B,C,D,E 
0512 STOP 01 0000 0000 Stop 

If we delete the last instruction and change the preceding 
one to read: 

05111 SPOP 69 0500 0061, 

the machine will follow the punching of the card by reading 
another card. Once started on this routine, the machine will 
continue the process. In other words, the program will flow 
back on itself in a loop: 

Once this program is initiated, it will continue to run until 
the cards run out. 

Program loops are very common and they can be termi
nated in many ways in addition to the one used above. 
Usually we use a branch operation to terminate a loop. For 
example, in the program used above we may instruct the 
machine to examine E each time it is computed and to ter
minate the process when the value of E becomes negative, 
as shown in the following flow chart: 
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Stop 

Terminate 

if E<O 

In order to make this change in the program, we insert one 
instruction before the STU operation: 

0509 
0510 
0511 
0512 
0513 

BR- 46 
STU 21 
RAU 60 
SPOP 69 
STOP 01 

0513 
1204 
0601 
0500 
0000 

0510 
0511 
0512 
0061 
0000 

As another example of terminating a loop, we can in
struct the machine to go through the loop ten times and stop. 

Terminate 

if (n-l) = 0 

Stop 
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We assume that the instructions and the constants, 10 and 1, 
are in the machine and we instruct the machine to subtract 
1 from 10 each time it goes around the loop. After ten times 
around, there will be a zero in the location that contained 
the digit 10. We then branch on zero to terminate the loop, 
as shown in the flow chart. The program on page 14 will per
form this example if we change the instruction in location 
0512 and add four more instructions: 

0511 SPOP 69 0512 0061 
0512 RAU 60 0602 0513 
0513 SU 11 0603 0514 
0514 STU 21 0602 0515 
0515 BRNZU 44 0500 0516 
0516 STOP 01 0000 0000 

0602 00 0010 0000 Constant 
0603 00 0001 0000 Constant 

3. MACHINE COMPUTATION OF INSTRUCTIONS 

An important concept of a stored-program calculator is 
the machine's ability to compute its own instructions. This 
procedure as well as the principles of looping and terminat
ing are illustrated in the following discussion of the accumu
lation of 100 numbers: 

100 

S = ~i=l ai = al + a2 + a 3 + ... + a100• 

In the drawing of a memory layout for the problem, we 
show that the a/s will occupy locations 1201-1300 and that 
the sum will be stored in location 1500: 

0000 

a1 

a2 

a 100 

S 

0999 

1000 

1201 

1300 

1500 

1999 

There follows the most straightforward program we can 
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write for this problem: 

0500 RAU 60 1201 0501 Reset add a l into accumulator 
0501 AU 10 1202 0502 Add a2 into accumulator 
0502 AU 10 1203 0503 Add ag into accumulator 

0599 AU 10 1300 0600 Add alOO into accumulator 
0600 STU 21 1500 Exit Store ~ai in 1500 

Although this program is simple and straightforward, 
we find that it is costly in terms of its storage requirement of 
101 locations (0500-0600). To alleviate this storage problem, 
we resort to the machine's ability to compute its own in
structions. You will note that 99 of the instructions have the 
same operation code and that their data addresses form a 
sequence of integers from 1202 through 1300. Moreover, the 
first instruction at 0500 could be made to conform to this 
pattern if we could assume that the accumulator was reset 
to zero before the program started, i.e. the operation code 
(AU) 10 would be used instead of code (RAU) 60. Since 
the instructions conform to a simple pattern, it is not nec
essary to write them out and to store them in memory. As 
a part of the program, we can instruct the machine to com
pute detailed instructions as they are needed. The machine 
will execute the instruction that adds a term to the partial 
sum, and from this instruction it will compute the next in
struction, which adds the next term to the partial sum, and 
so on. This process involves the program loop, and we repre
sent the chronological execution of this loop by means of the 
following flow chart: 

Enter 

• ~ 
Compute 

~i-l + ai = ~i 

~ 
Compute new 

instruction 

I 

Since the accumulator is used to compute the new in
struction, we must store the partial sum while the next in
struction is being computed and restore it to the accumula
tor before adding in the next term. We shall use location 
1500 for storing the partial sum. Each time around the pro-
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gram loop we are adding the partial sum of (i - 1) terms to 
the ith term, i.e. ~i = ~i-l + ai; the instructions for this pro
gram loop read as follows: 

0500 RAU 60 1500 0501 Compute 
0501 AU [10 1201 0502] ~i-l + ai = ~i 
0502 STU 21 1500 0503 and store ~i in 1500 

0503 RAU 60 0501 0504 Compute 0504 AU 10 0600 0505 
0505 STU 21 0501 0500 new instruction 

0600 00 0001 0000 Program constant 

We shall assume that the contents of location 1500, the 
summation cell, are zero initially, Le. ~o = 0, so that 
~l = ~o + a l = al. 

The instruction in 0500 enters the partial sum into the 
accumulator, and the instruction in 0501 adds a term ai to 
this partial sum. Initially, the instruction in 0501 reads 
(10 1201 0502) so that a l will be added to the partial sum 
to form: ~1 = ~o + al. Instruction 0502 stores ~l back in 
1500, the summation cell. 

In order to add a2 to the partial sum the next time 
through the loop, we change the instruction in 0501 by enter-_ 
ing it into the accumulator and adding (00 0001 0000). In 
this manner the machine computes the new instruction: 

10 1201 0502 
+ 00 0001 0000 

10 1202 0502 

We refer to this method of converting 'one instruction into 
the following one as "stepping". The instruction in 0505 
stores the new instruction in location 0501 an4 closes the 
program loop by going to 0500 for the next instruction. 

Again we enter the partial sum, ~1' into the accumulator, 
and we perform the instruction in 0501, which now adds 
a2 to the partial. sum (the data address is 1202 instead of 
1201). This operation gives a new partial sum, ~2 = ~1 + a2 , 

which we store back in 1500. 
The brackets enclosing the instruction in 0501 indicate 

that the instruction varies each time around the loop. 
When 100 numbers have been accumulated, Le. after a lOO 

in cell 1300 has been added to the partial sum, we must ter
minate the loop. With the terminating box added to our flow 
chart, we have: 

20 



Enter 

+ 
Compute 

~i-1 + ai = ~i 

Terminate 

if ai = alOO 

Yes I No 

I ! 
lit 

Compute new 

instruction Ex 
(Step i) 

We could terminate the loop by setting up a counter as we 
did on page 18; however, the following alternative method 
is generally preferable. We note that the instruction in cell 
0501 is changed each time a term is added, and when the 
100th term has been added the instruction will read (10 
1300 0502). This instruction itself is used as a criterion for 
termination rather than the setting-up and stepping of a 
special counter for the purpose. Each time around the loop 
we subtract from the instruction its terminal value (10 1300 
0502) and test for zero. The instructions now include the 
termination procedure: 

0500 RAU 60 1500 0501 
Compute 0501 AU [10 1201 0502] 

0502 STU 21 1500 0503 $i-l + ai = $i 

0503 RAU 60 0501 0504 
Terminate if 0504 SU 11 0601 0505 

0505 BRNZU 44 0506 Exit ai = a100 

0506 RAU 60 0501 0507 Compute 
0507 AU 10 0600 0508 new instruction 
0508 STU 21 0501 0500 (step i) 

0600 00 0001 0000 Stepping constant 
0601 10 1300 0502 Terminating constant 

The instruction in 0503 enters the variable instruction 
in 0501 into the accumulator, and we subtract the terminal 
value of the variable instruction which is stored in 0601. If 
the result is zero, we know that the last term has just been 
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added to the sum and we can terminate the loop. On the 
other hand, if the result is not zero, we must continue to add 
terms to the sum. We use a "branch on non-zero in the 
upper" instruction to test for a zero condition. Finally, when 
the variable instruction becomes (10 13000502) the BRNZU 
test will cause the next instruction to be taken from the loca
tion that we have designated "exit", which terminates the 
loop. 

Generally we draw our flow chart in the following form: 

~ 
Compute new 

instruction 
Enter (Step i) 

l t t 

Compute 

~i-l + ai = ~i 

+ 
Terminate 

if ai = a 100 

t I 
Yes I No 

xit I I E 

The coding and the order of execution are exactly the same 
as before; only the relative positions of the boxes in the flow 
chart differ from those in the preceding flow chart. 

The conventions about flow charts that we establish here 
serve several purposes. One of the aims is to attach as much 
significance as possible to the relative position of the boxes 
on the two-dimensional chart and to reduce the significance 
of lines and arrow heads to a minimum. 

4. "SETTING" THE INITIAL CONDITIONS 
FOR THE PROGRAM LOOP 

We assumed that the summation cell, 1500, contained 
zero and that the variable instruction in 0501 was (10 1201 
0502) at the beginning of the program. To make sure that 
these conditions are satisfied, we must add an "initializing" 
or "setting" box to our flow chart and write instructions 
that will enter zeros into 1500 and enter (10 1201 0502) 
into 0501. Now we have the following flow chart: 
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En!"r ~ 
Compute new 

Set variable instruction 

instruction; (Step i) 

set ~o = 0 t ! 
I Compute 

~i-l + ai = ~i 

~ 
Terminate 

if ai = a lOO 

~. Yes I No 

EXIt I I 
We must add the following instructions: 

0509 RAU 60 0602 0510 Set variable 
0510 STU 21 0501 0511 instruction 

0511 RAU 60 0603 0512 
Set ~o = 0 0512 STU 21 1500 0500 

0602 10 1201 0502 
Constants 0603 00 0000 0000 

At the beginning of the program we transfer the initial 
value of the variable instruction, which we have stored in 
0602 as a program constant, into 0501 with RAU and STU 
instructions (0509 and 0510). Next we transfer zeros, which 
have been stored in 0603, into 1500, the summation cell. Now 
that we are ready to begin the accumulation, we go to the 
instruction in 0500. The final flow chart and a complete list
ing of the instructions for the accumulation problem are 
given below. In the flow chart we speak of the level on the 
left as the "open" level because it is not a loop, or the "prob
lem" level because it is executed once per problem. Note that 
the number above the left-hand corner of a box in the flow 
chart indicates the location of the first of the group of in
structions corresponding to that box. 

100 

Accumulation example: S = ~i=l ai 
a l in 1201, az in 1202, ... ,alOO in 1300; Sin 1500 
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Enter 

0509 ! 0506 ~ 
Set variable Step i 

instruction ai = al L (ai) ~ L (ai+1) 

0511 t 0500 ~ ! 
Set ~o = 0 Compute 

I ~i-l + ai = ~i 

0503 ! 
Terminate 

if ai = a lOO 

E!it 
Yes I No 

I I 
0500 RAU 60 1500 0501 Compute 0501 AU [10 1201 0502] 
0502 STU 21 1500 0503 ~i-l + ai = ~i 

0503 RAU 60 0501 0504 
Terminate 0504 SU 11 0600 0505 

0505 BRNZU 44 0506 0513 if a'i = alOO 

0506 RAU 60 0501 0507 Step ai to ai+l 
0507 AU 10 0601 0508 (compute new 
0508 STU 21 0501 0500 instruction) 

0509 RAU 60 0602 0510 Set variable 
0510 STU 21 0501 0511 instruction ai= al 

0511 RAU 60 0603 0512 
Set ~o = 0 0512 STU 21 1500 0500 

0600 10 1300 0502 Terminating constant 
0601 00 0001 0000 Stepping constant 
0602 10 1201 0502 Setting constant 
0603 00 0000 0000 Zero setting constant 

5. THE BASIC FORM 

The preceding flow chart is drawn as a "basic form". It 
has two vertical levels. The right-hand level is called the 
"term level" or the "i level". We go through this level once 
for each term, ai, that we wish to accumulate. The left-hand 
level is called the problem level, and the instructions on this 
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level are executed once for each solution of the problem. The 
"frequency of execution" is 100 for the i level and one for 
the problem level. 

Generally a basic form consists of a number of levels 
arranged from right to left by decreasing frequency: 

Exit 

The execution of a level proceeds from top to bottom. The 
loop on a level is closed by a line running upward on the right 
of the level. Boxes are entered at the top; lines emerging 
from a box leave at the bottom of the box. 

We can see that in the accumulation program the setting 
box of the level on the left "controls" the level to the right in 
the following sense. The setting of the variable instruction 
in 0501 to (10 1201 0502) causes the "term level" to accumu
late 100 terms. If, on the other hand, the variable instruction 
had been set to (10 1220 0502), only 81 terms, a20 - ~OO' 
would be included in the sum. Similarly, if a number N had 
been transferred to the summation cell instead of zero prior 
to the accumulation, the term level would produce the sum 
(S' = N + ~ai). The term level, on the other hand, is not 
capable of affecting the level to its left in a similar manner. 

The coding of a basic form is begun in the middle of the 
rightmost level (box 0500 in the accumulation problem), 
which represents the logical core of the problem. The sym
bolic expression for accumulation (~i-l + ai = ~d is the 
fundamental concept in the statement of the problem. The 
rightmost level is completed by the coding of the terminat
ing and stepping boxes (0503 and 0506). Finally, in the 
level on the left one codes the setting boxes (0509 and 0511) 
for the level on the right. 
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This procedure covers the two-level basic form of the 
accumulation program. For a larger basic form one repeats 
this procedure for additional levels, one level at a time, pro
ceeding from right to left. 

6. EXAMPLE OF A THREE-LEVEL BASIC FORM 

Let us program and code the following problem as an 
example of a three-level basic form. 

Problem: Compute values of the function ([ (x, y) = x . y) 
for all combinations of the variables, 
x = Xh x 2 , ••• , xlO and Y = Yl, Y2, ••• ,YIO. 

Let us assign the following memory locations for the 
variables: 

Xl in 1201 
X 2 in 1202 

YI in 1301 
Y2 in 1302 

XiYI in 1401 
XiY2 in 1402 

XIO in 1210 YIO in 1310 XiYIO in 1410 

There will be 100 values of the product and we shall com
pute them in the following order: 

Xl (YI, Y2, ••• , YIO) 
X2 (Yl, Y2, • •. ,YIO) 

XIO (Yh Y2, ... , YIO)' 

As the products in the first line (XIYh XIY2, •.• , X1YIO) are 
computed, they will be stored in the memory and they will 
be punched out when the line is completed; similarly, the 
second line will be computed, stored, and punched out, and 
so on for all 10 lines. 

The most frequently repeated operations will be the form
ing and storing of a product; this operation will be done 
10 times for each line. As each product is computed and 
stored, it is necessary to go to a new storage location for Y 
and to a new one for storing (x . Y), i.e. L (y) and L (x . y) 
must be stepped. It is also necessary to look at the subscript 
of Y each time a product is computed in order to determine 
whether or not the end of the line (YIO) has been reached. 
The rightmost level of the flow chart consists of the follow
ing three boxes: 

1. Compute (x· y) and store in L (x· y) 
2. Terminate if Y = YIO 
3. Step L (y) and step L (x· y) 
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The three boxes are drawn as follows: 

• Step L (y) 
3 

StepL(x·y) 

~ 
Compute (x· y) 

1 
and store in L (x· y) 

t 
Terminate 

2 if y = YlO 

Yes I No 

I 
When 10 products have been computed, we want to punch 

them out and proceed to the next line of the problem, i.e. 
take the next value of x and compute 10 more products as 
before. The starting of the next line involves stepping L (x) 
and setting y back to its initial value, Yl. Here, again, before 
we step L (x), we must look at the subscript of x to see if 
we have finished the last line of the computation. We can 
now add the four boxes of the second level from the right of 
the flow chart in the following order: 

l 
3 Step L (x) 1 

~ 
Set L (y) 

4 
Set L (x' y) ---, t 

I 

~ 
1 Punch 10 products • ~ 

Terminate 

2 if x = X 10 I 
Yes I No I I 

I 
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1. Punch 10 products 
2. Terminate if x = XlO 
3. StepL(x) 
4. Set L (y) , set L (x . y) 

The third level consists of starting the problem by setting 
x at Xl, and of stopping when the last or xlO line of the com
putation has been completed. 

Problem 
level 

once per 
problem = 1 

Set L(x· y) 

Terminate 

if x = X 10 

x level 
once per x = 10 

Step L (y) 

Step L(x· y) 

Compute (x . y) 

J 
L (x· y) 

Terminate 

y level or 
product level 

once per 
product = 100 

We can now see how the program is executed chronologi
cally. The computation starts on the problem level with the 
setting of x = Xl; it proceeds to the X level where y is set to 
Yl and L (x . y) is set to L (Xl· YI) ; it then goes to the y level 
where X1Yl is computed and stored. When 10 products have 
been produced, the procedure goes to the left for punching 
and for testing to see if the problem is fin'ished; if it is not 
finished, L (x) is stepped and L (y) and L (x . y) are set for 
the next 10 products. When 100 products have been com
puted and punched, the program returns to the problem level 
and stops. 

The coding proceeds as follows: 

0500 
0501 
0502 

RAU 
MPY 
STU 

[60 
[19 
[21 

1201 
1301 
1401 
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0501] 
0502] 
0503] 

Compute 
(x·y) 



0503 RAU 60 0501 0504 Terminate 0504 SU 11 0600 0505 
0505 BRNZU 44 0506 0512 if Y = Y10 

0506 RAU 60 0501 0507 
0507 AU 10 0601 0508 Step L(y) 
0508 STU 21 0501 0509 

0509 RAU 60 0502 0510 
0510 AU 10 0601 0511 Step L(x· y) 
0511 STU 21 0502 0500 

0512 RAU 60 0602 0513 Punch 
0513 SPOP 69 0514 0061 10 products 

0514 RAU 60 0500 0515 Terminate 0515 SU 11 0603 0516 
0516 BRNZU 44 0517 0531 if x = X 10 

0517 RAU 60 0500 0518 
0518 AU 10 0601 0519 Step L (x) 
0519 STU 21 0500 0520 

0520 RAU 60 0602 0521 Step 0521 AU 10 0604 0522 
0522 STU 21 0602 0523 x identification 

0523 RAU 60 0605 0524 Set L (y) 0524 STU 21 0501 0525 

0525 RAU 60 0606 0526 Set L(x· y) 0526 STU 21 0502 0500 

0527 RAU 60 0607 0528 Set x 0528 STU 21 0500 0529 

0529 RAU 60 0608 0530 Set 
0530 STU 21 0602 0523 x identification 

0531 01 0000 0000 Stop 

0600 19 1310 0502 
0601 00 0001 0000 
0602 [10 1401 5001] 
0603 60 1210 0501 
0604 00 0000 0001 
0605 19 1301 0502 
0606 21 1401 0503 
0607 60 1201 0501 
0608 10 1401 5001 
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The order of the coding is the same as that in which it is 
written. The compute box is represented by instructions 
0500-0502, which enter x into the accumulator, multiply x by 
y, and store the product. Since these three instructions are 
all variable, they are enclosed in brackets; their initial val
ues are written within the brackets on the coding sheet. 

The instruction in 0501, which selects y for each product, 
will be involved in three other boxes in the flow chart: "ter
minate when y = Y10", "step L (y)", and "set L (y)". Instruc
tions 0503-0504 for the terminate box compare the current 
value of the variable instruction 0501 with its final value 
(19 1310 0502) which is stored in 0600; if y 1- Y10, the 
BRNZU instruction directs the program to the "step L (y) " 
box which begins at 0506. In the "step L (y)" box the current 
value of the instruction in 0501 is stepped by the addition of 
(00 0001 0000) from location 0601. Similarly, L (x . y) is 
stepped by the addition of (00 0001 0000) to the current 
value of the STU instruction in 0502. 

The punching of the 10 products starts with the instruc
tion in 0512, the address to which the branch instruction in 
0505 sends us when y = Yl0. The first part of a for the punch
out instruction is (10 1401 5) since there are 10 products in 
locations starting at 1401 to be punched five to a card. The 
last three digits of a are used for identification; for this 
identification we shall use the sUbscript of x that is involved 
in the products being punched. The initial value of a, there
fore, is (10 1401 5001) which is stored in 0602. Since the 
value of a varies with x, it will be stepped when x is stepped 
and set when x is set. 

The termination on x and the stepping on x are coded in 
an analogous manner to those on y. The initial instruction 
to be changed is in 0500 and the final one for termination is 
in 0603. The stepping constant is the same as for y (0601). 

The stepping of the x identification involves a from 0602 
and its stepping constant in 0604. 

To set L (y) we transfer the initial value of the y-instruc
tion from 0605 to 0501; to set L (x· y) we transfer the initial 
store instruction from 0606 to 0502 ; to set L (x) we transfer 
the initial location of x from 0607 to 0500; and to set x 
identification we transfer the initial value of a from 0608 
to 0602. 

To stop the program when the last line of the computa
tions is finished, we fill in the address of the stop instruction 
(0531) as the instruction address of 0516. 

As we code the instructions, we also draw a final detailed 
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flow chart. This final flow chart, which is drawn below, is 
very useful in testing and in locating errors in the program. 

Xl in 1201 
X 2 in 1202 

X IO in 1210 

Problem level 
Frequency of 
execution = 1 

YI in 1301 
Y2 in 1302 

YIO in 1310 

Terminate 

if x = X 10 

x level 
Frequency of 

execution = 10 

7. SQUARE-ROOT PROBLEM 

XiYI in 1401 
XiY2 in 1402 

Compute (x· y) 

l 
L(x. y) 

0503 

Terminate 

y level 
Frequency of 

execution = 100 

The determination of the square root of a number illus
trates a useful method of terminating a loop. In this example 
we shall terminate on the accuracy of a number. We have 
already discussed other methods of terminating in this 
chapter. 

If we are given a number, X, and we want to determine y 
where y = yx, we use Newton's iteration formula: 
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Yi+l = .~ (Yi + : ). 

The desired accuracy is obtained when the difference between 
two successive iterations is less than a predetermined toler
ance, t, i.e. terminate if 

1 Yi+l - Yi 1- t < o. 
The basic form for the solution of this problem is the 

following: 

Enter 

Exit 

0513 
Step 

Yi+l ~ L(Yi) 

Terminate if 

I Yi+l - Yi I - t < 0 

The symbols, Yi+1 ~ L (Yi), which indicate the stepping pro-
cedure, mean, "Transfer the new approximation, Yi+h into 
the location of the old value of y/'. 

The program for this problem is the following: 

0500 RAU 60 0600 0501 
0501 DIVR 64 0601 0502 
0502 STL 20 0602 0503 Compute 
0503 RAU 60 0602 0504 

Yi+l = Y2 (Yi + :i ) 0504 AU 10 0601 0505 
0505 MPY 19 0603 0506 
0506 STU 21 0604 0507 

0507 SU 11 0601 0508 
0508 BR- 46 0509 0511 
0509 STU 21 0602 0510 Terminate on 
0510 RSU 61 0602 0511 1 Y'i+l - Yi 1 < t 
0511 SU 11 0605 0512 
0512 BR- 46 Exit 0513 
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0513 RAU 
0514 STU 

0515 RAU 
0516 STU 

0600 
0601 
0602 
0603 
0604 
0605 
0606 

[ 
[ 
[ 

[ 
[ 
[ 

60 
21 

60 
21 

50 

0604 
0601 

0606 
0601 

0000 

0514 Store 
0500 Yi+l in L (Yd 

0516 Set 
0500 Yi = Yo 

] x 
] Yi 
] Temporary storage cell 

0000 Constant 
] Y'i+1 
] t 
] Yo 

At the outset of the problem the radicand (x), the toler
ance (t), and the first approximation (Yo) are located in 
0600, 0605, and 0606, respectively. The program constant 
(50 0000 0000) is located in 0603. The locations 0601, 0602, 
and 0604 are used as work cells in the course of the problem. 
A word transfer of the first approximation (Yo) to L (Yd 
takes place when Yo is used in the first evaluation of the 
formula (0515). On succeeding iterations Yi+h the result of 
the formula evaluation is used as the approximation in the 
next formula evaluation. Finally, the loop is terminated when 
the difference between Yi+1 and Yi is less than the tolerance, t. 
The word transfer, Yi+1 to L (Yi), occurs at the top of the 
loop (0513). 

Note that a branch operation was required in order to 
obtain an absolute value. The procedure to be followed to 
find the absolute value of a number, a, can be illustrated in 
the following way: 

Test sign of a 

+ 

The instructions that represent this illustration are found 
in locations 0508-0510 of the square-root program. 
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The problem of finding the absolute value of a number is 
a simple example of the use of a branch operation for some 
process other than terminating. It often happens that a single 
branch operation or a network of branch operations is an 
integral part of the solution of a problem. For example, it 
might be necessary to choose one of four different computa
tional procedures, A, B, C, D, depending on certain condi
tions; in this case a network of branch operations similar to 
the following one, might be used: 

8. PROGRAMMING AND CODING 

The preceding sections of this chapter have been devoted 
to problems that essentially consist of one phase. That is, 
we had data in memory; we performed certain simple arith
metical operations on these data; and we produced new data. 
The basic form was used to represent this transformation 
of data. 

Most computational problems will consist of more than 
one phase. One of the aspects of programming in this System 
as outlined in the Introduction involves connecting the dif
ferent phases of a problem. We then have a whole picture of 
the computational problem. In order to fix our ideas, let us 
consider a particular problem: 

Solve the set of equations: 

all Xl + a12 X 2 + ... + a ln Xn = Yl 

an Xl + a22 X2 + . . . + a 2n Xn = Y2 
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where the coefficients ai j are functions of known quantities 
U;, v j, i.e. 

Weare required to substitute the unknowns back in the 
equations to determine the residuals. 

If we assume that the computational method is estab
lished and memory locations are assigned, we can proceed 
with the programming of the problem. There are three dis
tinct phases in the solution of this problem, and we can rep
resent the phases by boxes in a flow chart: 

Enter 

~ 
Compute 

coefficients, aij 

~ 
Compute 

unknowns, Xi 

~ 
Compute 

residuals 

l 
Exit 

We investigate the first box and quickly determine that 
it can be represented by a basic form of three levels (see 
Section 6). A rough flow chart of the first phase is now 
drawn. The predetermined memory locations for the output 
of the first phase will contain the input for the second phase. 

The second is represented by one or two distinct basic 
forms depending on the computational method selected. The 
third phase, in which the residuals are computed, is also rep
resented by a basic form. 

It should be noted that a phase of a problem may be rep
resented by a network of branch operations. 

The coding begins with the set of rough flow charts. We 
take one flow chart at a time and write the corresponding in
structions. In conjunction with writing the instructions, we 
draw the final detailed flow charts. 
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9. TIMING 

In planning problems it is important to estimate with 
reasonable accuracy the running time that the machine will 
require for a particular computation. Such estimates are 
helpful in the choice of possible alternative solutions of a 
problem, in the decision of whether or not a problem is worth 
the necessary machine time, and in effective scheduling of 
machine use. 

The time required for the execution of an instruction can 
be divided into two parts: the time required to actually per
form the operation specified by the operation code, and the 
time to secure the data and the next instruction from mem
ory. 

The time required to perform an operation depends on 
the particular operation. Each of the operations RAU, RSU, 
AU, SU, STU, STL, BRNZU, BR -, and STOP requires ap
proximately 0.4 millisecond (0.0004 second) ; on the average, 
multiplications require 10 ms, divisions require 15 ms, and 
shift operations require 2.5 ms. The execution times for 
special operations are listed in Appendix I. 

To secure a data word or an instruction word can take 
from 0 ms to 5.0 ms, i.e. the average time is 2.5 ms. This time 
can be reduced to a minimum by a method called "optimum 
coding" (see Chapter VI). 

For programs that do not use optimum coding and that 
do not contain an unusually large number of multiplications 
and divisions, we can obtain a fairly accurate (within 10 per 
cent) time estimate by allowing 5 milliseconds for the execu
tion of each instruction. This estimate will be good· enough 
for programs that are expected to run less than an hour; 
however, a longer program will require a more careful inves
tigation since 10 per cent of the running time will amount 
to a considerable length of time. 

Exercise 2. 

Draw a flow chart, and write instructions that will com
pute: 

Xi + Yi = Zi, where i = 1, 2, ... , 50 

Read the data into the following memory cells: 

Xl in 1201 Y1 in 1301 
X 2 in 1202 Y2 in 1302 

X 50 in 1250 Y50 in 1350 
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Assume that the Xi'S are punched in 10 cards, 5 words 
per card, and that the y/s are punched in 10 cards, 5 words 
per card. 

Store the z/s in the following locations: 

Zl in 1401 
Z2 in 1402 

Z50 in 1450 

After all of the z/s have been computed, punch them into 
10 cards, 5 words per card. 
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IV. Precision and Scaling 

1. ACCUMULATION OF ERRORS 

Most calculating problems are first stated as a set of 
mathematical equations and the method of solution is indi
cated in the same form. An "equivalent" numerical procedure 
is then evolved in which certain of the variables are repre
sented by numerical values and the relations between :!lese 
values are represented by arithmetical operations. Because 
of the nature of the initial numbers in the calculation and of 
the arithmetical processes, the mathematical equations and 
the numerical procedure cannot be assumed to be exactly 
equivalent. In planning a problem, it is necessary to justify 
not only the validity of the mathematical equations but the 
extent to which the numerical process is equivalent to the 
mathematical equations. 

To illustrate, let us consider a simple physical measure
ment. The length and width of a rectangle are each measured 
to the nearest millimeter, and the following results are 
recorded: 

l = 292mm. w = 103mm. 

At the time of measurement the observer had difficulty in 
deciding whether to record 103 or 104; he recorded 103. 
From these recorded measurements, it is required to com
pute the area of the rectangle. The mathematical expression 
is 

A = l X w. 

The numerical equivalent is 

A = 292 X 103 = 30076 sq. mm. 

Here the mathematical expression is exact and the arith
metic is without error, but we should not conclude that the 
area of the rectangle is 30076 square millimeters. Had the 
observer written 104 for the width, the computed area would 
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have been 30368, which differs from the above result by 292 
square millimeters. The last two digits of the computed area 
really tell us nothing about the area of the rectangle except 
the position of the decimal point. In the theory of measure
ment and in numerical analysis, a distinction is made be
tween digits that locate the decimal point and those that have 
additional significance; we use the term "significant" digits 
for the latter. A number, A, is written in the form 

A = a X lOa 

where a contains the significant digits and the integer ex 
specifies the location of the decimal. The number of digits in 
a is the precision of A. The exponent ex specifies the magni
tude of A. In the above example we would write for the area 

A = 301 X 102 sq. mm. 

The true value may differ by a unit or two from this value, 
but the "I" has significance. The value of (x, of course, de
pends upon the units that are employed. For example, we 
can express the above measurements in centimeters or 
meters: 

l = 292 X 10° mm. = 292 X 10-1 cm. = 292 X 10-3 m. 
A = 301 X 102 sq. mm. = 301 X 10° sq. cm. 

= 301 X 10-4 sq. m. 

In numerical analysis it is convenient to associate with 
each number, x, an error, E (x), where E (x) is the amount 
by which the number differs from the true value of the 
quantity that it represents. For example, when the quantity, 
7r, is rounded to a given number of places, 

7r = 3.14 + E(7r), 

E (7r) = .00159 .... In this case we know the value of E (7r), 
but in many cases we can only give limits to E. When a 
number is rounded, we know that the error is less than half 
a unit in the last place. 

In planning a calculation, one should consider where each 
initial number came from and assign to it an E. When an 
arithmetical operation is performed on two such numbers, 
it is possible to evaluate the E of the result from the follow
ing relations: 

a+b=c 
a-b=c 
aXb=c 
a+b=c 

E(c) = E(a) + E(b) 
E(c) = E(a) - E(b) 
E(c) = a· E(b) + b· E(a) 
E·(c) = [b·E(a) -a·E(b)]/b 2 
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In the above example, 

l = 292, w = 103 
A = l X w = 30076 

E(l) = E(w) = 1 
E(A) = l· E(w) + w·E(l) = 395 

i.e. if the error in each measurement can be as great as 1 
mm., the error in the computed area can be as large as 395 
sq. mm. In deriving the error equations, we assumed that 
E (a) and E (b) are small compared with a and b, respec
tively. 

Starting with the assigned errors of the initial numbers 
and using the error equations, we could trace the precision in 
each operation to the final results and give an estimate of 
their reliability. This process is not generally carried out in 
practice, but by keeping the method in mind we can form 
some estimate of what is happening and avoid some of the 
worst pitfalls in planning a problem. We note, for example, 
that in addition and subtraction the error, E (c), is never 
greater than the sum of errors [E (a) + E (b)]. However, 
when two nearly equal numbers are subtracted, several digits 
on the left will disappear and the number of significant fig
ures will be reduced. The problem of small divisors is also 
serious since the error varies inversely as the square of the 
divisor. A single-digit divisor can give a large quotient whose 
first digit at most will be significant, and, of course, division 
by zero is excluded. Thus it is possible to prescribe a sequence 
of arithmetical operations that will lose all of the precision 
of the initial data and give results that are completely ficti
tious, because the problem itself is not capable of solution, 
e.g. trying to solve a set of linear equations with a zero (or 
very small) determinant. Again, the problem may be soluble, 
but care must be exercised in the general layout of the calcu
lation to prevent undue loss of precision.' It is not the pur
pose of this memorandum to examine these questions, except 
to point out their existence and to emphasize that, by keep
ing track of the expected errors of each stage of the calcula
tion, the computer can recognize unsatisfactory conditions 
in the problem. 

To guard against unnecessary loss of precision in the in
dividual arithmetical operations, the manner in which the 
numbers are entered into the accumulator must be consid
ered. It should be remembered that: 

1) Numbers to be added into the accumulator must have 
the decimal points aligned. 

2) When numbers are added into the left-hand position 
of the accumulator, the "carry" may "spill" over. 
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3) The divisor must be greater than the dividend; if not, 
the machine will stop in division. 

4) When the multiplicand and multiplier are too far to 
the right, we lose precision because all of the signifi
cant figures of the product will not appear in the 
upper accumulator. For example: 

Multiplicand 10001 1111111 

Multiplier 100022222221 

Product I 0 0 0 0 0 0 0 2 4 6 1913 . . . . . .. I 

The general rule should therefore be to keep all numbers 
as far to the left as possible without causing an overflow. 

The process of shifting input data and intermediate re
sults to yield final results with the desired precision is called 
"scaling". This shifting may be planned by the coder and 
written into the machine instructions ("fixed-point calcula
tion") or it may be done automatically by the machine 
("floating-point calculation"). 

2. FIXED-POINT CALCULATIONS 

Whenever we perform arithmetical equations on num
bers, we keep the numbers as far to the left as possible to 
preserve maximum precision. The relative position of num
bers in memory cells is under the control of the program, 
and, when there is uniformity in the range of numbers, we 
can write a program that is consistent with all of the num
bers. For example, if the numbers in a problem are the fol
lowing angles, 0, ranging from zero to 27T, we would say that 
their range is uniform: 

0.2504 .... . 
0.5269 .... . 
0.7324 .... . 
0.9887 .... . 
1.2784 .... . 

6.2837 ..... 
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A program that is written to operate on these numbers would 
generally consist of arithmetical and shifting operations in 
the computing box of a loop. Each time the machine pro
gresses through the loop, an angle, (j, is chosen and f ((j) is 
computed. The arithmetical and shift operations must be 
consistent with all of the angles, the smallest as well as the 
largest. That is, the program must be written so that, for 
each angle, there is no overflow in addition, a dividend and 
divisor must satisfy the conditions necessary for division, 
etc. 

In general, when the machine performs the "arithmetical 
and shifting operations, there will be a loss of precision 
which is considered as an error and must be kept within tol
erable limits. In fixed-point calculations we can compute the 
error since we know all of the operations in the program and 
the range of the numbers. Our convention for keeping track 
of the necessary shifts on the coding sheets is explained in 
Section 5 of this chapter. 

3. FLOATING-POINT CALCULATIONS 

Problems do occur, however, in which the range of data 
is not uniform. For example, let us suppose that we have the 
following data: 

48916.278 
1678.3214 
207.43098 

37.003290 
1.4365026 
.61986543 
.094217899 

The data range from (5 X 104
) to (9 X 10-2

), but the relative 
precision or significance is the same in each case, i.e. each 
number contains eight significant digits. It would be impos
sible to perform repeated fixed-point calculations on this 
block of data, since a 14-digit memory cell (five digits to the 
left of the decimal point and nine to the right) would be 
required to store each number with the decimal point fixed 
in the same relative position. In order to accommodate these 
data in memory, they must be stored in the following form: 
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48916.278 
1678.3214 
207.43098 
37.003290 
1.4365026 
.61986543 

.094217899 

N ow the position of the decimal point is different for each 
number in the block. The arithmetic used on these shifted 
data is called "floating point". The necessary shifts are dif
ferent for each number in the block and they are performed 
automatically. 

Each number in a floating-point operation must also have 
a tag called an exponent that will determine what shifts are 
to be performed. The numbers are written in the form 
(A = a X lOa), with the convention that (0.1 ~ a < 1.0). 
For example, 

76.345039 = .76345039 X 102 

.00076345039 = .76345039 X 10-3 

The number, a, and the exponent, Ol., are stored in memory 
as a word. To avoid negative exponents when the word is in 
memory, we arbitrarily add 50 to each exponent. We also 
write the adjusted exponent to the right of the number: 

7634503952 
7634503947 

The machine looks at the exponent, performs shifts depend
ing on the arithmetical operation called for, performs the 
arithmetic, and gives the result in the same form. 

In some calculators floating-point operations are built 
into the machine and in others they are performed by means 
of subroutines. Such subroutines are included in the System, 
and directions for their use are contained in Appendix II. 

Floating-point operation preserves maximum precision 
in each arithmetical operation without any attention on the 
part of the coder. The method has, however, the following 
disadvantages: 

1. Since two digits of each number are used for decimal 
indication, there remain only eight significant figures 
instead of ten. 

2. Running time on the machine is increased by a factor 
of three. 

3. Since the coder is una ware of the shifts made by the 
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machine, there could be serious loss of precision with
out his being aware of it (see p. 40). 

If the coder does not know for a priori reasons that the 
arithmetical process is legitimate, a detailed examination of 
the process is necessary. 

4. DOUBLE-PRECISION ARITHMETIC 

When the range of data is uniform and the preCISIOn 
exceeds the word size of a memory cell, more than one cell 
can be used for each number. If the precision of the data is 
not more than 20 digits, two memory cells can store each 
number and 20-digit, or double-precision, arithmetic can be 
used. If there is a considerable loss in precision (e.g. from 
subtracting two nearly equal numbers), the use of double
precision arithmetic sometimes will overcome the difficulty. 
Double-precision operations can be handled by subroutines 
in which each 20-digit number is contained in two memory 
cells. Such subroutines are included in the System and they 
are described in Appendix II. Double-precision fixed-decimal 
operation obviously permits the storage of only half as many 
numbers as single-precision work, and it increases the run
ning time by a factor of about 2.5. The procedure can be 
extended, of course, to triple or higher precision. 

When both high precision and automatic scaling are nec
essary, it is possible to perform mUltiple-precision floating
point arithmetic; this type has not been included in the 
System. 

It is not essential that an entire calculation be executed 
in fixed-point, floating-point, or in double-precision arithme
tic if proper provisions are made for the junctions of the 
systems. For example, if both floating point and fixed point 
are used in the same problem, it will be necessary to use a 
conversion subroutine to change floating-point to fixed-point 
numbers. The necessary conversion subroutines are de
scribed in Appendix II. It should be emphasized that one 
would seldom use floating-point arithmetic for red-tape in
structions, i.e. stepping, setting, terminating. 

s. NOTATION FOR FIXED-POINT SCALING 

As mentioned in a previous paragraph, the general rule 
of scaling is to keep the numbers as far to the left as possible 
in the accumulator and still avoid overflow. Moreover, we 
wish to use the same scaling for an entire block of numbers, 
especially in coding a loop. 
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In fixed-decimal computation we think of each number in 
the form (A = a X lOa); only a is actually stored in the 
memory. To keep track of the shifting, we write on our cod
ing sheet the scale factor, n, where 

A X Ion = a, i.e. n =-(X 

and the left-hand side of the equation is abbreviated as A @ . 
For consistency and ease of notation, we think of each mem
ory cell and the accumulator as having a decimal point on 
the left. The decimal point remains fixed. 

Suppose now that we want to perform the following 
computation: 

where 

A = 44.9876 
B = 5.6321 

or, according to the convention we have established, 

A @ = .4498760000 
B @ = .5632100000 

Our problem is to code the computation and include the 
proper scaling. On our coding sheet we would write the fol
lowing information and instructions. The information on the 
left indicates what the instruction on the right has accom
plished. 

1~.A@= (A2) G 
0700 RAU 60 L(A) 0701 .44987.60000 
0701 MPY 19 L(A) 0702 .2023884153 (1i G ~L(A') 0702 STU 21 L(A2) 0703 

1 .B@=(AB)@ 
0703 RAU 60 L(A) 0704 .4498760000 
0704 MPY 19 L(B) 0705 .2533746619 

(AB) G 0705 SHRT 30 0001 0706 .0253374661 
(A2 + A B) @ 0706 AU 10 L(A2) 0707 .2277258814 

The sum standing in the accumulator, .2277258814, should 
read 2277.258814, according to the scale factor @. 

To locate the decimal point after a multiplication or a 
division, we follow the usual laws of exponents, i.e. the ex
ponents are added in multiplication and subtracted in divi
sion. When we add or subtract two numbers, we must be 
sure that their exponents are the same, i.e. that their decimal 
points are aligned. If they are not the same, we must shift 
accordingly and adjust the exponents. 

Since we could easily foresee in the above example the 
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size of the numbers generated (A 2 and AB), we knew that 
no overflow would result when they were added together. In 
general the formula (A 2 + AB) would be evaluated for 
many values of A and B, and the data must be examined to 
determine whether or not the above coding would be correct 
for all cases. If the coding is not correct for all cases, it must 
be changed to fit all values of A and B. 

An analysis of the size of the numbers generated during 
a computation must be made prior to coding. The coder then 
knows the "worst" possible case and can take care of it in 
his coding. Although this analysis is an added chore for the 
coder, it is this analysis that tells him the reliability of his 
results. 

Exercise 3. 

for 

Write instructions to compute: 

lr3x where r2 = x2 + y2 
r 

x in the range 5 ~ x ~ 10 
y in the range 5 ~ y ~ 10 
k =.9 

Assume x, y, k are stored in the following locations: xJ in 1501 
y 2 in 1502 
k 0 in 1503 

Use the notation for scaling explained on pages 44-46. 
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v. Testing 

1. INTRODUCTION 

Testing a program for errors in coding is an essential 
phase in the solution of a problem. The results that we want 
are not necessarily what we instruct the machine to give us. 
We must make sure that the instructions as written will 
produce intended results insofar as coding errors, such as 
forming (x . y ) instead of (x· z), are concerned. The objec
tive of this chapter is to present methods for detecting such 
errors in a program. 

The detection of coding errors can sometimes be labor
ious and costly. In order to eliminate as many mistakes as 
possible before testing a program, one should write carefully 
all flow charts and programs and check them meticulously 
with particular emphasis on scaling mistakes. 

Errors, such as rounding, truncation, etc., that are in
herent in a computational method will also affect results, 
but we assume that a complete error analysis has been made 
to determine these errors. 

A distinction is made between testing and checking. 
Checking refers to the proper functioning of the machine, 
which is the responsibility of the operator. 

2. TRACING 

Tracing a program for mistakes is the simple and 
straightforward process of writing the result of the execu
tion of each instruction adjacent to the instruction itself; by 
studying all of the details of the trace, we can detect any 
mistakes that appear in the program. Rather than calculate 
the results by hand, we instruct the machine to perform the 
tracing automatically. 

Automatic tracing techniques require that one card be 
punched for every instruction executed. Indiscriminate use 
of automatic tracing results in the punching of many cards 
which is costly in terms of the time required for punching as 
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well as for studying a great deal of information. In order to 
reduce the number of instructions that we trace, we shall 
follow two rules for automatic tracing: 

1. Begin the tracing at the logical core of the program, 
which is the right-hand level, and test it completely before 
testing the next level to the left. 

2. Shrink the program, i.e. do not trace through a loop 
many times when a few times will suffice. For example, in 
the problem in Chapter III that involved the computation of 
100 products, we would trace the formation of only nine 
products for first, last, and middle values of x and y. If the 
program operates for three values, we can assume that it 
will operate for ten values. We shrink the program by chang
ing the terminating constants on page 29 as follows: 

For 100 products For 9 products 
0600119 1310 0502 06001 19 1303 0502 
0603 60 1210 0501 0603 60 1203 0501 

You must make sure that there is not a mistake in either of 
the two terminating constants. 

3. AUTOMATIC TRACERS 

One tracer in the System is an auxiliary subroutine that 
causes the machine to execute instructions of a program, one 
at a time, and to record the contents of the entire accumu
lator. The tracing can begin at any instruction in a program 
and, after each instruction is executed, a card will be punched 
out with the following information: 

xxxx xxxx xx xxxx xxxx xx xxxx xxxx xx xxxx xxxx xx xxxx xxx x 
No. L (Inst.) Instruction Upper Lower Distributor 

Column 1 
Column 2 
Columns 4-6 

Consecutive number of instruction 
Location of instruction 
Contents of upper accumulator, lower accu
mUlator, and distributor before execution of 
instruction 

The distributor is a register intermediate between the ac
cumulator and memory. All information passing from mem
ory to the accumulator and from the accumulator to memory 
passes through the distributor. The information in the cards 
that are punched out by the tracing subroutine can be printed 
on paper and examined away from the machine. 

As an example of the use of the tracer, let us consider 
the program for the problem on page 13. The operator feeds 
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into the machine the program on page 14, the data card, and 
the tracer. If the numbers in the data card are the following: 

A Q) = .01 2345 6789 C @ = .369121 5182 
B ® = .13 5790 2468 D @ = .070710 6781, 

the sample calculations should be: 

(A/B) @ = .0909172727 (C sin D) Q) = .0239794972 
(sin D) ED = .06 4963 6937 E @ = .11 4896 7699 

and the information in the cards that are punched out by the 
tracer is printed as follows: 

No. L (Inst.) Instruction Upper Lower Distributor 

1 0500 60 0600 0501 xx xxxx xxxx xx xxxx xxxx xx xxxx xxxx 
2 0501 69 0502 0062 04 1200 4001 00 0000 0000 04 1200 4001 

65 0204 60 1200 0503 04 1200 4001 00 0000 0000 04 1200 4001 
66 0503 64 1201 0504 01 2345 6789 00 0000 0000 01 2345 6789 
67 0504 20 0700 0505 00 0000 0000 09 0917 2727 13 5790 2468 
68 0505 60 1203 0506 00 0000 0000 09 0917 2727 09 0917 2727 
69 0506 69 0507 0071 07 0710 6781 00 0000 0000 07 0710 6781 

113 0301 19 1202 0508 06 4963 6937 00 0000 0000 06 4963 6937 
114 0508 10 0700 0509 02 3979 4972 46 4237 7534 36 9121 5182 
115 0509 21 1204 0510 11 4896 7699 46 4237 7534 09 0917 2727 
116 0510 60 0601 0511 11 4896 7699 46 4237 7534 11 4896 7699 
117 0511 69 0512 0061 05 1200 5002 QO 0000 0000 05 1200 5002 

123~5 6789 13 5790 2468 36 9121 5182 07 0710 6781 11 4896 7699 
18~ 1759 01 0000 0000 05 1200 5002 00 0000 0000 05 1200 5002 

Each line listed above contains the information that is 
punched in one tracer-output card. The "L (lnst.)" and "In
struction" columns are identical with the corresponding col
umns on page 14 with the following exceptions: The loca
tions that immediately follow the SPOP instructions are 
fictitious; and the next to the last line contains the data that 
were punched out by the memory-to-card subroutine, i.e. the 
values of A, B, C, D, and E, properly scaled. 

Examination of the consecutive numbers in column 1 
shows that the first SPOP (read in) instruction involved 63 
instructions, the second one involved 44 instructions, and 
the last one involved 67 instructions. 

The last three columns of the tracer show the contents 
of the accumulator and distributor. The data associated with 

" an operation are printed on the line following the instruc
tion. The x's on the first line indicate that this information 
does not, in general, relate to the problem since these data 
were present before the first instruction was executed. 
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A comparison of the numbers in the subsequent lines with 
the values of A, B, C, etc. in our example facilitates the 
identification of each quantity. In the following table we 
have listed the quantities as they appear in the tracer and 
opposite them we have listed from page 14 the operation 
being performed. This comparison shows not only that each 
operation uses the correct factor, but also that the scaling 
is correct. 

Read in A, B, C, D (a = 0412004001) 
a 0 a 
a 0 a 

A 0 A 
Compute AlB; store in 0700 0 AlB B 

0 AlB AlB 

Compute sin D 
D 0 D 

sinD 0 sin D 

Compute AlB + C sin D ; store in 1204 
C sin D - C 

E AlB (Note: C sin D extends into lower) E E 

a 0 a 
Punch A, B, C, D (a = 0512005002) C D E 

a 0 a 

By studying this printed record of the tracer, we can in
vestigate all of the arithmetical details of the program away 
from the machine. We call this type of tracing subroutine an 
arithmetical tracer since it is used primarily to trace arith
metical operations. 

When we suspect that mistakes are caused by faulty ter
minating procedures, we use another type of tracing sub
routine, called the logical tracer, which traces only branch 
instructions. In order to use the logical tracer effectively, we 
must examine the standard terminating procedure. In the 
example of a three-level basic form (Section 6 of Chapter 
III), there are three instructions corresponding to the ter
minate box in the right-hand level with termination on YIn: 

0503 RAU 60 0501 0504 
0504 SU 11 0600 0505 
0505 BRNZU 44 0506 0512 

0501 MPY [19 1301 0502] Variable instruction 

0600 19 1310 0502 Constant 

The machine determines whether or not the "variable in-
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struction minus the constant" is non-zero. If the branch in
struction is traced, the following information will be punched 
out: 

1 0505 44 0506 0512 00 0009 0000- 00 0000 0000 19 1310 0502 

The contents of the upper accumulator (0000090000-) in
dicates that one product has been formed, and the constant 
(19 13100502) appears in the distributor. 

Since it is the data address in the variable instruction 
that we frequently need to trace, the program for the ter
minate box is changed to compute "minus constant plus 
variable instruction" followed by the BRNZU instruction: 

0503 RSU 61 0600 0504 
0504 AU 10 0501 0505 
0505 BRNZU 44 0506 0512 

0501 MPY [19 1301 0502] Variable instruction 

0600 19 1310 0502 Constant 

The results of these instructions for the terminate box will 
be exactly the same as before, but the logical tracer will dis
play the variable instruction instead of the constant. 

1 0505 44 0506 0512 00 0009 0000- 00 0000 0000 19 1301 0502 

Let us combine two of the testing methods discussed 
above in order to shorten the testing phase of the products 
problem. First, we shrink the program from 100 to 9 prod
ucts by changing the terminating constants as indicated in 
Section 2 and, secondly, using the new terminating pro
cedure, we form the following logical trace of the entire 
products problem: 

1 0505 44 0506 0512 00 0002 0000- 00 0000 0000 19 1301 0502 
2 0505 44 0506 0512 00 0001 0000- 00 0000 0000 19 1302 0502 
a 0505 44 0506 0512 00 0000 0000 00 0000 0000 19 1303 0502 

4 0516 44 0517 0531 00 0002 0000- 00 0000 0000 60 1201 0501 

5 '0505 44 0506 0512 00 0002 0000- 00 0000 0000 19 1301 0502 
6 0505 44 0506 0512 00 0001 0000- 00 0000 0000 19 1302 0502 
7 0505 44 0506 0512 00 0000 0000 00 0000 0000 19 1303 0502 

8 0516 44 0517 0531 00 0001 0000- 00 0000 0000 60 1202 0501 

9 0505 44 0506 0512 00 0002 0000- 00 0000 0000 19 1301 0502 
10 0505 44 0506 0512 00 0001 0000- 00 0000 0000 19 1302 0502 
11 0505 44 0506 0512 00 0000 0000 00 0000 0000 19 1303 0502 

12 0516 44 0517 0531 00 0000 0000 00 0000 0000 60 1203 0501 
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4. AUXILIARY PUNCH-OUT ROUTINE 

During the testing phase in the solution of a problem, 
we try to anticipate the information that we might wish to 
examine if mistakes should occur. We can say, in general, 
that it is always useful to be able to examine intermediate 
results and the contents of the various work cells that are 
used. Other useful information will depend on the nature of 
the particular program. In the technique described in this 
section we obtain a picture of memory cells at a particular 
point in the program by means of the memory-to-cards spe
cial operation (SPOP code 0061). 

After deciding which locations are to be examined, the 
coder writes the instructions that call in the special opera
tion 0061. An operator can insert these instructions into the 
main program by using the manual controls on the console. 
If the program were running on the machine, it must be 
stopped and the instruction address of one of its instructions 
must be changed so that the main program will include the 
auxiliary one, e.g. 

Terminate 

In general, a coder can use the memory-to-cards special 
operation any number of times during the testing phase of a 
program since there can be any number of parts in a pro
gram that will yield significant information. 

5. CONSOLE ERROR DETECTION 

The facilities of the machine include the automatic stop
ping of the machine under certain circumstances accom
panied by the appearance of corresponding indicator lights 
on the console. The reasons for the automatic stopping of 
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the machine can be divided into two categories: machine 
errors and coding errors. 

It is possible that the machine will make an occasional 
random error, which it detects by means of a "validity" 
check; if the check does not hold, the machine will stop and 
an indicator light will appear on the operator's console. The 
validity check is based on the manner in which the individual 
digits are indicated in the machine. Each digit is broken 
into two parts, the first of which is 0 or 5 and the second is 
0, 1, 2, 3, or 4. Thus, 

o = 0 and 0 
1=0 " 1 
2=0 " 2 
3=0 " 3 
4=0 " 4 

5 = 5 and 0 
6=5" 1 
7 = 5 " 2 
8 = 5 " 3 
9 = 5 " 4 

In this so-called bi-quinary system of indication, the 0- or 5-
indicator is the binary part and the 0-, 1-, 2-, 3-, or 4-indi
cator is the quinary part. Whenever a number is transferred 
into the control unit, the accumulators, or the distributor, 
the machine checks each digit to verify that it has one and 
only one binary indication and one and only oile quinary 
indication. If an indication is lost or gained, the machine will 
stop and lights will indicate the register in which the error 
occurred. The chance that two errors, losing one indication 
and gaining another, will compensate each other and thereby 
remain undetected is extremely small. As far as we know, 
the machine at the Watson Laboratory has never made an 
undetected error. 

Various types of coding and punching errors will cause 
the machine to stop automatically: 

1. Control unit: an invalid address, such as one greater 
than 1999, in an instruction, or an operation code 
tha t is not meaningful to the machine. 

2. Overflow: numbers that are not scaled properly. More 
digits will be developed in the accumulator than it can 
hold and the "overflow" indicator will light up. 

3. Card punching errors: a missing digit (blank col
umn). A column with more than one digit punched in 
it or a word without a sign will be picked up as a 
validity check error. 

These errors will be detected by the machine. However, 
there are many types of coding errors that the machine will 
not recognize as errors, e.g. an incorrect but valid address, 
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a scaling error that does not result in an overflow but does 
result in an incorrect answer, an incorrect terminating con
stant, etc. Careful checking of the program and coding can 
minimize these errors, but, for those that are not uncovered 
by checking, a testing procedure must be used. For example, 
if there should be a machine stop that is not caused by a 
machine error, it is often advisable to perform an auxiliary 
memory punch-out at that point and to restart the problem, 
tracing the segment of the program that precedes the stop. 
The combined information from the punch-out routine and 
the trace should give a clear picture of the nature of the 
error. 

A program should be organized in such a way that it 
will be possible to "back up" if, for example, there is a ma
chine error. The basic form lends itself to a restarting or 
"backing up" procedure; usually it is possible to back up to 
the set box in one of the levels to the left of the level in which 
the error occurred. It is advisable to back up far enough to 
obtain some overlapping results that will check the restart
ing procedure, especially when it is necessary to interrupt a 
program and to restart it the next day. 

The auxiliary punch-out routine, which is used for the 
initial testing of a program, can also be used to punch out 
intermediate results during the running of a long problem 
that is not producing expected partial results. If, during 
programming, the routine is written to punch out intermedi
ate results, it can be inserted to give you the extra informa
tion needed to determine whether or not the questionable 
partial results are correct. 

6. MEMORANDA 

Testing a program is one of the most difficult phases in 
the solution of a problem and requires that you thoroughly 
understand your program. To assist you in the preparations 
for testing your program, we have listed the information 
that should be readily available to you: 

1. A neat set of final detailed flow charts and instruc-
tions. 

2. A set of precomputed results, both partial and final. 
3. A clear picture of memory assignments. 
4. A list of stops that have been included in the program. 
5. Points in the program where it can be restarted. 
6. Points in the program where a trace or an auxiliary 

memory punch-out would be useful. 
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7. Auxiliary punch-out routines that have been written 
to punch out intermediate results, variable instruc
tions, or contents of work cells, and where to insert 
them in the program. These routines are written 
when the main program is written, punched into 
cards, and entered into the machine when the main 
program is entered into the machine. 
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VI. Conclusion 

This pamphlet is intended to give to the reader a basic 
understa'nding of the operations involved in the solution of 
computational problems on an automatic calculator; it should 
also enable him to solve problems of moderate size and com
plexity on the 650 and to cooperate with professional com
puting groups in solving large problems on any calculator. 

In order to solve large and intricate problems with the 
necessary efficiency, the reader will require additional knowl
edge about the machine, coding. programming, and probably 
about numerical analysis. At this stage he will have no dif
ficulty in obtaining more information about the 650 from 
the operator's "Manual of Operation". Three features of the 
machine will contribute to the efficiency of its operation: 

First, we have mentioned only 13 basic machine instruc
tions whereas there are actually 44 instructions on the 
standard machine. The use of these additional instructions 
will facilitate the machine work for many problems. 

A second feature of the machine is a pluggable control 
panel that controls the reading and punching of the cards. 
In the System we have used a single, general purpose panel 
and a standardized arrangement of the data in a card. How
ever, the use of a panel that is wired especially for a nroblem 
with considerable input and output may add greatly to the 
machine's efficiency. 

Finally, the memory of the 650 is on the surface of a ro
tating magnetic drum, and each cell of the memory is avail
able for access once each revolution of the drum. In general. 
there is some waiting for a particular cell to become avail
able to the machine, but this waiting time can be reduced if 
the words are placed on the drum according to the sequence 
of instructions to be performed. The process of placing words 
on the drum where they will be ready for access when called 
for is known as "optimizing" the program. To produce the 
"optimum" program for a given problem is intricate and 
laborious, but a good approximation can be obtained with 
little effort. A program can be optimized by the coder with 
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the aid of the timing charts in the "Manual" or it may be 
done automatically by the machine as described in a follow
ing paragraph. As would be expected, the special operations 
used in the System have been optimized carefully. 

In optimizing a program by hand, the coder would devote 
most of his attention to the coding of the loops in the right
most levels of the flow chart since these are the ones that are 
repeated most frequently. 

We have seen that, once the flow charts have been con
structed, the coding, though tedious, is fairly straight
forward. Machine methods for coding have been devised, 
and the most comprehensive one for the 650 is known as 
"SOAP"*. This system will convert rather general instruc
tions into an optimized program for the machine; it is widely 
used and includes a large assortment of library programs. 

Some models of the 650 are equipped with magnetic tapes, 
large auxiliary storage devices, and printers. This additional 
equipment offers the necessary capacity for large problems. 

A comprehensive treatment of programming as used in 
the System will be contained in a forthcoming book by 
J. Jeenel. As an exam"ple of increased efficiency through im
proved programming we might mention the relation be
tween operating time and storage space. It frequently hap
pens that in a particular part of the program we have the 
choice of saving storage space at the expense of increased 
operating time or vice versa. In Section 3 of Chapter III we 
saw that in the summation problem we could save snace by 
using the technique of looping; however, the resulting pro
gram involved many more instructions than the one written 
out in full. The flow chart, which shows the relative fre
quency of execution of the various levels, serves as a guide 
in balancing time and space considerations. The general rule 
is to save time in the levels to the right of the diagram and to 
save space in the levels on the left. 

In conclusion one cannot refrain from commenting on 
the widespread activity in machine computation. Soon there 
will be in operation more than a thousand 650's in addition 
to other machines of the same general scope, and machines 
of greater speed and capacity than the 650 will soon number 
in the hundreds. Most universities now give formal instruc
tion in numerical and machine methods. The professional 
people who are engaged in machine computation are num
bered in the thousands. 

*650 Programming Bulletin No.1, International Business Machines 
Corporation, New York, 1956. 
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Appendix I. Summary 
01 Operation8 

BASIC OPERATIONS AND THEIR AVERAGE 
EXECUTION TIMES IN MILLISECONDS 

ms 
RAU 60 reset add upper 0.4 
RSU 61 reset subtract upper 0.4 
AU 10 add upper 0.4 
SU 11 subtract upper 0.4 
STU 21 store upper 0.4 
MPY 19 mUltiply 10. 
DIVR 64 divide 15. 
STL 20 store lower 0.4 
SHRT 30 shift right 2.5 
SHL T 35 shift left 2.5 
BRNZU 44 branch on non-zero in upper 0.4 
BR - 46 branch on minus 0.4 
STOP 01 stop 0.4 

SPECIAL OPERATIONS, THEIR MEMORY ASSIGNMENTS, 
AND THEIR AVERAGE EXECUTION TIMES IN MILLISECONDS 

1. ROUNDING 
005x shift right and round 

(0050-0059, 0266-0269) 20ms 
2. BLOCK TRANSFERS 

0060 memory to memory 
(0060,0398-0440) (40 + 10n*) ms 

0061 memory to cards 
(0061,0100-0159) 600 ms/card 

0062 cards to memory 
(0062,0200~0265) 300 ms/card 
*n = number of words to be transferred 

3. FUNCTIONS 
0070 va (0070,0160-0199) 125 ms 
0071 sin a (0071, 0298-0397) 124ms 
0072 cos a (0072,0298-0397) 124ms 
0073 ea (0073,0441-0499) 280ms 
0074 loge a (0074,1744-1811) 190ms 
0075 arctan a (0075, 1700-1742) 130ms 
0076 arcsin a (0076, 1812-1880) 150ms 
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We recall that each number in the machine is in the form, 
0: ® = .xxxxxxxxxx, where n is the scale factor on the cod
ing sheet. Before using an argument, a, in a subroutine for 
the computation of a function, we must adjust n to the 
standard value listed in column 4 of the following function 
table. 

SPOP Standard n Maximum 
Code Function Range of 0: fora error in f (0:) 
0070 va even* 4 X 10-10 

0071 sin a -271" ~ 0: ~ 271" -1 3 X 10-9 

0072 cos a -3.271" ~ 0: ~ 2.571" -1 3 X 10-9 

0073 ea -1 < 0: < 1 0 8 X 10-9 

0074 loge a 1 ~ 0: < 10 -1 4 X 10-9 

0075 arctan 0: -1 ~ 0: ~ 1 -1 4 X 10-8 

0076 arcsin 0: 0~a~1 -1 2 X 10-8 

* If the scale factor, n, is odd, shift the argument one place 
to the right, or mUltiply the square root of a by the square 
root of 10. 

The computed functions will all have a scale factor of 
-1, (n = -1), except for the square root of a. 

The arctangent of a for 0: in the range, 0 ~ 0: ~ 00, can 
be computed from the following expression: 

arctan 0: = 71"/4 + arctan ( a -1 ) 
0:+1 

The subroutines for the seven functions were written by 
G. R. Trimble, Jr., and they are contained in the IBM Tech
nical Newsletter No.9. 
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A.ppendix II. Floating Point 
and Double Precision 

FLOATING-POINT OPE RATIONS 

The following operation codes can be used in floating-
point as well as in fixed-point operations: 

RAU 60 reset add upper 
RSU 61 reset subtract upper 
AU 10 add upper 
SU 11 subtract upper 
STU 21 store upper 
STL 20 store lower 
MPL 19 multiply 
DIVR 64 divide 
BRNZU 44 branch on non-zero in the upper 
BR - 46 branch on minus ' 

All of the coding rules that apply to these operations in fixed 
point are applicable in floating point. 

Since the operation codes are the same for both fixed
and floating-point operations, we use SPOP instructions to 
tell the machine to start floating-point and to return to fixed
point operation. The special operation code 0081 means, 
"Start floating-point operation" ; special operation code 0080 
means, "Return to fixed-point operation". For example, if 
the instructions in 0500-0525 had been executed in fixed 
point and the next calculation in the program required the 
floating-point mode of operation, we would write the follow
ing SPOP instruction to cause the series of instructions be
ginning in 0527 to be executed as floating-point instructions: 

0526/ SPOP 69 0527 0081 

In order to return to the fixed-point mode for the instructions 
beginning in 0641, we would write another SPOP instruc
tion: 

0640 I SPOP 69 0641 0080 

The first instruction after entering or leaving the floating
point mode must be a reset instruction, i.e. RAU 60 or RSU 
61. 

All input, output, and red-tape (setting, stepping, and, 
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in general, terminating) instructions must be executed in 
fixed-point operation. Since rounding is automatic in float
ing-point operations, the special operation for rounding is 
not used in the floating-point mode. Block transfers can be 
executed only in the fixed-point mode. Provisions have been 
made for including in the floating-point mode the subrou
tines that compute functions. 

Floating-point operations can be traced; their trace sheet 
contains the same information as the trace sheet for fixed
point operation. 

The average execution time for a floating-point operation 
is 31/2 times the duration of the corresponding optimized 
fixed-point operation. 

Since the adjusted exponent of a floating-point number 
(see p. 43) occupies only two digit positions in memory, an 
exponent greater than 99 will cause the machine to stop. A 
number with an adjusted exponent less than 01 will be rep
resented automatically as: 00 0000 0000. 

As an example of a floating-point calculation, let us com
pute in floating point: (Ai + B i ) -7- C i = Di for 50 values of 
A, B, and C, with 

At in 1301 
A2 in 1302 

Bl in 1401 
B2 in 1402 

Ar.o in 1350 Bao in 1450 

The flow chart follows: 

Enter 

61 

C1 in 1501 
C2 in 1502 

CM in 1550 

Dl in 1601 
D2 in 1602 

Dao in 1650 

Terminate 

if i = 50 



The program is coded as follows: 

0500 SPOP 69 0501 0081 S tart fl. pt. 

0501 RAU [60 1301 0502] 
0502 AU [10 1401 0503] Compute 
0503 DIVR [64 1501 0504] (A + B) -=- C = D 
0504 STL [20 1601 0505] 

0505 SPOP 69 0506 0080 Return to fixed pt. 

0506 RAU 60 0501 0507 
0507 SU 11 0600 0508 Terminate 
0508 BRNZU 44 0509 0529 

0509 RAU 60 0501 0510 
0510 AU 10 0601 0511 
0511 STU 21 0501 0512 

0512 RAU 60 0502 0513 
0513 AU 10 0601 0514 
0514 STU 21 0502 0515 

0515 RAU 60 0503 0516 
Step i 

0516 AU 10 0601 0517 
0517 STU 21 0503 0518 

0518 RAU 60 0504 0519 
0519 AU 10 0601 0520 
0520 STU 21 0504 0500 

0521 RAU 60 0602 
0522 STU 21 0501 

0523 RAU 60 0603 0524 
0524 STU 21 0502 0525 

Set i 
0525 RAU 60 0604 0526 
0526 STU 21 0503 0527 

0527 RAU 60 0605 0528 
0528 STU 21 0504 0500 

0529 STOP 01 0000 0000 

0600 60 1350 0502 
0601 00 0001 0000 
0602 60 1301 0502 
0603 10 1401 0503 
0504 64 1501 0504 
0605 20 1601 0505 
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CONVERSION SUBROUTINES 

Special operation 0063 converts a block of fixed-point 
data to floating-point data; special operation 0064 converts 
a block of floating-point data to fixed-point data. The code 
word, ex, is constructed as follows: 

ex = xx xxxx xxxx 
Nab 

where N = total number of consecutive words to be con
verted 

a = location of first word in the block to be converted 
b (with 0063) = 50 minus the scale factor for the 

block 
b (with 0064) = the largest adjusted exponent in the 

block; the machine will stop if an 
adjusted exponent is greater than b. 

As an example of the use of a conversion subroutine, let 
us convert from fixed-point to floating-point form the follow
ing block of 36 words, Xi, stored in locations 0801-0836, 

.4891627831 

.0167832146 

.0020743098 

.0003700329 

.0000143650 

with the scale factor, X @) , on the coding sheet. The code 
word, ex, is constructed as follows: 

ex = 36 0801 0053 

To make the conversion, we write the following instructions: 

06001 RAU 
0601 SPOP 

60 L(a) 
69 0602 

0601 
0063 

When the subroutine is completed, the block of 36 words be
ginning in location 0801 will appear in memory as follows: 

.4891627853 

.1678321452 

.2074309851 

.3700329050 

.1436500049 

If we wished to convert this floating-point block of data 
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to fixed-point form, we would use the same a as the one 
above, and we would write the same instructions as those 
above except that the SPOP code would be 0064 instead of 
0063. The converted data would duplicate the original fixed
point array, except that, at most, only eight digits of each 
word would be retained. 

DOUBLE-PRECISION SUBROUTINES 

All of the basic operations that are used in floating-point 
can also be used in the double-precision mode. The special 
operation code 0082 means, "Start double-precision opera
tion", and special operation code 0080 again means, "Return 
to fixed-point operation". 

Since 20-digit numbers are used in double-precision 
arithmetic, two cells are required for each number. If we 
write the following instruction in double-precision operation, 

05341 RAU 60 0843 0535 

the high-order part of the number is in location 0843, and 
the low-order part is in 0844. 
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Appendix III. Additiona' 
Programming Techniques 

SUMS OF PRODUCTS 

Let us consider the following program for computing 

sums of products, i.e. ~:=1 akbk' 
10 

Example 1. S = ~k=l akbk 

a1 in 1200, a2 in 1201, ... ,a10 in 1209; 

b1 in 1300, b2 in 1301, ... , blO in 1309; S in 1400. 

Ent 

0513 
1 er 

0507 l 
Set k Step k 

ak = a1 ak ~ ak+1 

bk = b1 bk ~ bk+1 

0517 1 0500 ~ 1 
Set ~o = 0 Compute 

I 
akbk + ~k-l = ~k 

0504 1 
Terminate 

0519 ! if k = 10 

Stop Yes I No 

I I 
Sum Level k level 

once per sum = 1 once per k = 10 

0500 RAU [60 1200 0501] 
Compute 0501 MPY [19 1300 0502] 

0502 AU 10 1400 0503 (akbk + ~k-l) 
0503 STU 21 1400 0504 = ~k 

0504 RAU 60 0500 0505 
Terminate 0505 SU 11 0600 0506 

0506 BRNZU 44 0507 0519 if k = 10 
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0507 RAU 60 0500 0508 
Step ak 0508 AU 10 0601 0509 

0509 STU 21 0500 0510 ak ~ bk+1 

0510 RAU 60 0501 0511 Step bk 0511 AU 10 0601 0512 
0512 STU 21 0501 0500 bk ~ bk+1 

0513 RAU 60 0602 0514 Set 
0514 STU 21 0500 0515 ak = a 1 

0515 RAU 60 0603 0516 Set 
0516 STU 21 0501 0517 bk = b1 

0517 RAU 60 0604 0518 Set 
0518 STU 21 1400 0500 !o = 0 

0519 STOP 01 0000 0000 

0600 60 1209 0501 
0601 00 0001 0000 
0602 60 1200 0501 
0603 19 1300 0502 
0604 00 0000 0000 

This problem is similar in form to the simple accumula-
tion problem in Chapter III. Both programs are two-level 
basic forms, and the "red-tape" boxes (terminating, step-
ping, and setting boxes) are the same except that in this 
problem there are two variable instructions to be set and 
stepped instead of one. In the compute box there are now a 
mUltiplication and an addition. 

This example can also be thought of as a "vector times a 
vector" multiplication. The rightmost or k level is the term 
level, i.e. we go through it once for each term of the result-
ing element. The sum level is the element level, which we go 
through once for a "vector by vector" mUltiplication. 

"MATRIX TIMES VECTOR" MULTIPLICATION 

The above program can be expanded to perform a 
"matrix times a vector" mUltiplication by the addition of 
another level to the left. The added level represents another 
dimension that has been added to the "vector by vector" 
mUltiplication problem. The program and coding for a 
"matrix times vector" multiplication with the matrix stored 
by columns are given below. 

Example 2. "Matrix Times Vector" multiplication with 
5 X 10 matrix stored by columns and a col
umn vector of 10 elements. 
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all a12 ••• a1 , 10 

a21 a22 ••• az, 10 

all in 1200 
a:!l in 1201 

alZ in 1205 

ar.. 10 in 1249 

Enter 

0530 ~ 
Set i = 1 

aik = alk 

Cil = Cll 

I 

0534 ~ 
Stop 

Vector level 

or i level 

0500 RAU 
0501 MPY 
0502 AU 
0503 STU 
0504 RAU 
0505 SU 

bll in 1300 
bZl in 1301 

b10 • 1 in 1309 

0524 t 
Step i 

ail ~ ai+1,l 

Cil ~ Ci+1,l 

~ 1 
Set k = 1 

b kl = bu , aik = ail 

~O = 0 

I 

0519 + 
Store ~ in L (cid 

0521 1 
Terminate 

if i = 5, Cil = C5l 

Yes I No 

~ L-
Element level 

or i level 

[60 1200 
[19 1300 
10 1299 
21 1299 

60 0501 
11 0600 

0506 BRNZU 44 0507 
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C5 , 10 

Cll in 1400 
CZl in 1401 

Sin 1299 

C5l in 1404 

0507 

Step k 

aik ~ ai,k+1 

b kl ~ b k+1, 1 

0500 1 
Compute 

aikbkl + ~k-l = ~k 

0504 

Terminate 

if k = 10, bkl = b lO , 1 

Yes ., No' 

I L 

Term level 

or k level 

0501] Compute 0502] 
0503 (aik bk1 + ~k-1) 
0504 = ~k 

0505 Terminate 0506 
0519 if bk1 = b10 , 1 



0507 RAU 60 0500 0508 
Step aik 0508 AU 10 0609 0509 

0509 STU 21 0500 0510 aik = ai, k+l 

0510 RAU 60 0501 0511 
Step bkl 0511 AU 10 0601 0512 

0512 STU 21 0501 0500 bkl = bk+1,l 

0513 RAU 60 0602 0514 Set 
0514 STU 21 0501 0515 bk1 = b ll 

0515 RAU 60 0603 0516 Set 
0516 STU 21 0500 0517 a'ik = ail 

0517 RAU 60 0604 0518 Set 
0518 STU 21 1299 0500 ~o = 0 

0519 RAU 60 1299 0520 Store C 0520 STU [21 1400 0521] 

0521 RAU 60 0520 0522 
Terminate 0522 SU 11 0605 0523 

0523 BRNZU 44 0524 0534 if Cil = en 

0524 RAU 60 0603 0525 
Step ail 0525 AU 10 0601 0526 

0526 STU 21 0603 0527 ail ~ ai+l, 1 

0527 RAU 60 0520 0528 
Step Cil 0528 AU 10 0601 0529 

0529 STU 21 0520 0513 C'il ~ Ci+l, 1 

0530 RAU 60 0607 0531 Set 
0531 STU 21 0603 0532 aile = alle 

0532 RAU 60 0608 0533 Set 
0533 STU 21 0520 0513 Cil = Cll 

0534 STOP 01 0000 0000 

0600 19 1309 0502 Terminating constant, k level 
0601 00 0001 0000 Stepping constant 
0602 19 1300 0502 Setting constant, bkl 

0603 [60 1200 0501] Variable setting constant, aile 

0604 00 0000 0000 Zero setting constant 
0605 21 1404 0521 Terminating constant, i level 

0607 60 1200 0501 Setting constant, aik 

0608 21 1400 0521 Setting constant, Cil 

0609 00 0005 0000 Stepping constant 

The rightmost or term level can also be called the k level; on 
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this level the loop is terminated on k and k is stepped. To the 
left of the k level is the element or i level where we set or 
initialize those instructions that vary with k; on this level 
we also terminate on and step i. 

You will note that the stepping constant in 0603 is itself 
variable. The set box on the i level always starts a column 
with k = 1, but i must also be stepped for each row. Instruc
tions 0524-0526 step the setting constant from the first ele
ment of one row to the first element of the next row. Here, 
the stepping constant must be 1 because of the order in 
which the elements are stored. The frequencies of the levels 
are as follows: 

Term level Once per term or once per k = 50 
Element level Once per result element or once per i = 5 
Vector level Once per result vector or once per j = 1 

The order in which the variables are stored often affects 
the program. For example, if the elements of the matrix 
were stored by rows instead of columns, the flow chart would 
appear as follows: 

! 
Enter Step i ~ ! Cil ~ Ci+1.l Step k 

Set i i ! bkt ~ bk+1, 1 

L(aid = L(a11 ) -1 Set k , l 
Ci1 = Cll bkl = bll Step L (ail) by 1 

I ~o = 0 ~ 
I Compute 

t a ikbk1 + ~k-1 = ~k 

Store ~ in L(Cil) ~ 
t ! Terminate 

Stop Terminate if k = 10, bk1 = bk , 10 

if i = 5, Cil = C51 Yes I No 

Yes I No I l 
LJ L 

When the matrix elements are stored by rows, it is not nec
essary to set or step a'i1~ on the i level. However, since aik is 
always stepped on the k level, we must allow for this step
ping by undersetting aik in the leftmost level. 
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MATRIX. ADDITION 

There are cases where the order in which the data are 
stored is of importance. For example, let us consider the fol
lowing problem: lij + Uij = hij, where i and j = 1, 2, ... , 10. 
Both I and U are two-dimensional arrays of numbers, and we 
must add an element of I to the corresponding element of u. 
If both sets of numbers are stored in the same order, the 
problem reduces to: Ii + Ui = hi where i = 1, 2, 3, ... , 100. 
This is a one-dimensional problem and can be programmed 
and coded in the following way. 

Example 3. Sum of Planes 
lij + Uij = h ij with i and j = 1, 2, ... , 10, 
where I and U are stored in the same order. 

In in 1200 
112 in 1201 

110,10 in 1299 

Enter 

0515 l 
Set i 

Ii = 11' Ui = Ul 

0521 

0500 
0501 
0502 

hi = h1 

I 

~ 
Stop 

RAU 
AU 
STU 

[60 
[10 
[21 

Un in 1300 hn in 1400 
U12 in 1301 h12 in 1401 

U10, 10 in 1399 h10 , 10 in 1499 

0506 

Step i 

Ii ~ li+h Ui ~ UiH 

hi ~ hiH 

0500 t 

1200 
1300 
1400 

70 

Compute 

Ii + Ui = hi 

0503 

Terminate 

if i = 100 

Yes I No 

I 

0501] 
0502] 
0503] 

l 

Compute 
Ii + Ui = hi 



0503 RAU 60 0500 0504 Terminate 0504 SU 11 0600 0505 
0505 BRNZU 44 0506 0521 iii = 100 

0506 RAU 60 0500 0507 Step Ii 0507 AU 10 0601 0508 
0508 STU 21 0500 0509 Ii ~ li+1 

0509 RAU 60 0501 0510 Step Ui 0510 AU 10 0601 0511 
0511 STU 21 0501 0512 Ui ~ Ui+l 

0512 RAU 60 0502 0513 Step hi 0513 AU 10 0601 0514 
0514 STU 21 0502 0500 hi ~ hi+1 

0515 RAU 60 0602 0516 Set 
0516 STU 21 0500 0517 li = 11 

0517 RAU 60 0603 0518 Set 
0518 STU 21 0501 0519 Ui = U1 

0519 RAU 60 0604 0520 Set 
0520 STU 21 0502 0500 hi = hl 

0521 STOP 01 0000 0000 

0600 60 1299 0501 
0601 00 0001 0000 
0602 60 1200 0501 
0603 10 1300 0502 
0604 21 1400 0503 

The problem becomes more complex if the two sets of 
numbers are stored differently. If I is stored by rows and U 
is stored by columns, we have a two-dimensional problem and 
another level must be added to the flow chart. 

Example 4. Sum of Planes 
lij + Uij = hij, where I andu are stored in 
different orders. 

111 in 1200 gl1 in 1300 hll in 1400 
112 in 1201 g21 in 1301 h21 in 1401 

11,10 in 1209 g10. 1 in 1309 h10. 1 in 1409 
121 in 1210 g12 in 1310 h12 in 1410 
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Enter 0506 1 
0526 ~ 0517 Stepi 

Set lij = 111 Step the set of Iii ~ li+l, j 

L(gii) =L(gll)-1 Iii ~ Ii, j+1 

1 L (hi;) = L (hll ) - 1 Step i term. const. 0509 ! 
Set i term. const. gij ~ gi+1, f 

I 0515 ! h ij ~ hi+1, f 

1 Setlif = 11j 0500 

Compute 

/ij + gij = hi} 

L 0534 0523 

T Stop Terminate 0503 

if j = 10, g10, j = g1O, 10 Terminate 

Yes I No if i = 10, gij = glO, J 

f l Yes I No 

I l-. 
0500 RAU [60 1200 0501] Compute 
0501 AU [10 1300 0502] 
0502 STU [21 1400 0503] fij + Yij = h ij 

0503 RAU 60 0501 0504 Terminate if 
0504 AU 11 0600 0505 i = 10 
0505 BRNZU 44 0506 0523 Yij = g10, j 

0506 RAU 60 0500 0507 
Stepfij 0507 AU 10 0601 0508 

0508 STU 21 0500 0509 fij ~ fi+1, j 

0509 RAU 60 0501 0510 Step Uij 0510 AU 10 0602 0511 
0511 STU 21 0501 0512 Yij ~ Ui+1, j 

0512 RAU 60 0502 0513 Step h ij 0513 AU 10 0602 0514 
0514 STU 21 0502 0500 h ij ~ hi+l, j 

0515 RAU 60 0603 0516- Set 
0516 STU 21 0500 0509 fij = f1j 

0517 RAU 60 0603 0518 Step (set) 0518 AU 10 0602 0519 
0519 STU 21 0603 0520 f1j ~ f1, j+1 
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0520 RAU 60 0600 0521 Step 
0521 AU 10 0601 0522 term. const. 
0522 STU 21 0600 0515 on i level 

0523 RAU 60 0501 0524 
Terminate 0524 SU 11 0604 0525 

0525 BRNZU 44 0517 0534 if Y10, j = Y10, 10 

0526 RAU 60 0605 0527 Set 
0527 STU 21 0501 0528 L (Yij) = L (g11) -1 

0528 RAU 60 0606 0529 Set 
0529 STU 21 0502 0530 L(hij ) =L(hll)-l 

0530 RAU 60 0607 0531 Set 
0531 STU 21 0603 0532 Ilj = 111 

0532 RAU 60 0608 0533 Set i-level 
0533 STU 21 0600 0515 term. const. 

0534 STOP 01 0000 0000 

0600 [10 1309 0502] i-level term. const. 
0601 00 0010 0000 Step. const. for Iij 
0602 00 0001 0000 Step. const. for Yij and h ij 

0603 [60 1200 0501] Set. const. for lij = 11j 
0604 10 1399 0502 j-Ievel term. con st. 
0605 10 1299 0502 Set.const. for Yij 
0606 21 1399 0503 Set. const. for h ij 
0607 60 1200 0501 Set. const. for lij = 111 
0608 10 1309 0502 Set for i-level term. const. 

The locations of the Y and h elements are continuously 
stepped by one, while the location of the I elements must be 
stepped by 10 on the i level and reset to the first element of a 
column on the j level. Compare this example with the "matrix 
times vector" mUltiplication where the matrix is stored by 
rows. 

GROUP STEPPING 

The variable instructions in the previous examples have 
been individually set and stepped. In all of the examples in 
this chapter the difference between any two of the variable 
instructions is always a constant. For instance, in Example 3 
the difference between the instruction in 0501 and the in
struction in 0500 is always (49 9899 9999 - ), and the dif
ference between the instruction in 0502 and the instruction 
in 0501 is always (11 0100 0001). This constant difference 
permits the second two variable instructions --to be "gener-
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ated" or "constructed" from the first. Generating an in
struction, which is equivalent to stepping, is called "group 
stepping", and the instruction from which the other variable 
instructions are generated is called the "key instruction". 
The problem in Example 3 has been reprogrammed to use 
the group stepping in the following example. 

Example 5. Sum of Planes 
lij + Uij = h ij with i and j = 1, 2, ... , 10 
I and U are stored in the same order, and 
group stepping is used. 

111 in 1200 
112 in 1201 

110, 10 in 1299 

Enter 

0513 ~ 
Set 

key instruction 

0500 
0501 
0502 

0514 

RAU 
AU 
STU 

I 

l 
Stop 

[60 
[10 
[21 

Ull in 1300 
U12 in 1301 

U10, 10 in 1399 

0506 l 
Step i, step 

key instruction 

0508 l 1 
Store 

key instruction 

0509 ! 
Generate other 

var. instructions 

0500 l 
Compute 

Ii + Ui = hi 

0503 1 
Terminate 

ifi = 100 

Yes I No 

I I 

hll in·1400 
h12 in 1401 

hlO, 10 in 1499 

1200 
1300 
1400 

0501] 
0502] > ~1 Compute 
0503] > ~2 Ii +U'i = hi 
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0503 RAU 60 0500 0504 
Terminate 0504 SU 11 0600 0505 

0505 BRNZU 44 0506 0514 if i= 100 

0506 RAU 60 0500 0507 Step L(fd 
0507 AU 10 0601 0508 L (f i) ~ L (f i+l) 

0508 STU 21 0500 0509 Store L(fi) 

0509 AU 10 0602 0510 Generate 
0510 STU 21 0501 0511 L(gi) 

0511 AU 10 0603 0512 Generate 
0512 STU 21 0502 0500 L(h·i ) 

0513 RAU 60 0604 0508 Set li = /1 
0514 STOP 01 0000 0000 

0600 60 1299 0501 
0601 00 0001 0000 
0602 49 9899 9999- ~1 

0603 11 0100 0001 ~:l 

0604 60 1200 0501 

Note that by saving two instructions on the i level, group 
stepping has saved two storage locations; with many vari-
able instructions and a high frequency of execution of the 
level, the saving in time can be worthwhile. 

By using the same "store" instruction (0508) for both 
setting and stepping the key instruction, we can save an-
other storage location, but no time is saved. Obviously, this 
trick is not essential in the "group stepping" procedure. 

TRIANGULAR ARRAYS 

Another interesting problem is one that involves a tri
angular array of numbers, which can be represented by a 
three-level basic form. Let us assume that we have a tri
angular array of numbers in the following locations: 

1200 1201 
1206 

1202 
1207 
1211 

1203 
1208 
1212 
1215 

1204 
1209 
1213 
1216 
1218 

1205 
1210 
1214 
1217 
1219 
1220 

Let us operate on these numbers, a row at a time, in the 
compute box on the rightmost level. For instance, we may 
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use the instruction, 60 1200 xxxx. If this level is to be ter
minated at the end of· every row, the terminating constant 
must first read, "60 1205 xxxx", then "60 1210 xxxx", etc. 
At the end of the first row th~ terminating constant must 
be stepped by 5, at the end of the second row by 4, and so 
on. In order to step the terminating constant, the stepping 
constant itself must be stepped and set. The following flow 
chart represents this procedure. 

j 
Enter Step 

1 t ~ 
Set stepping Subtract 1 from 

Step 
constant; set stepping constant; 

• ! terminating step terminating 

constant constant 

I t I 
Compute 

Set I 
I Terminate 

l + if end of row 

Stop Terminate Yes I No 

if last row ~ I 
Yes J No 

I L-
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