
. T S'T'~""V" Te • \ .• I
• . • J, L ~ .. \J

A Simplified System

FOR THE USE OF AN

Automatic Calculator

Watson Scientific Computing Laboratory

612 West 116th Street

New York, N. Y.

A Simplified System

FOR THE USE OF AN

Automatic Calculator

By DAVID MACE and JOYCE ALSOP

Watson Scientific Computing Laboratory
Columbia University

International Business Machines Corporation

1957

Copyright 1957 by International Business Machines Corporation
Manufactured in the United States of America

PREFACE

The System described in this pamphlet was developed at
the Watson Scientific Computing Laboratory to enable
classes and research groups in Columbia University to use
the equipment of the Laboratory for solving problems in
mathematics, science, and technology.

Large numbers of students and research worke~s are
eager to obtain first-hand experience in applying machines
to their problems, but they feel that they can not afford the
time for a professional courSe in machine methods. The in
struction presented here meets the needs of these people
with a minimum expenditure of time; it consists of the pres
entation of the System and the solution of a problem chosen
from the field of specialization of the group. Three one-hour
sessions of formal discussion, each preceded by one or two
hours of home preparation, are considered sufficient for the
student to learn the System and to be ready to undertake a
problem of moderate complexity. His familiarity with the
problem is a great asset to the student since a major part of
the total effort in solving a problem by machines involves
his thinking through the method of solution in detail and
stating exactly the necessary steps for the solution.

At the conclusion of the instruction the student should
have precise knowledge of all the factors that were involved
in obtaining a machine solution. His concrete 'experienCE!
with one machine enables him to solve simple problems on
it and to cooperate effectively with professional computers
in the solution of more complicated problems on any machine.

Important contributions to the project were made by
J. Jeenel, H. Smith, and E. Hankam.

CONTENTS

I. INTRODUCTION

II. CODING

III. PROGRAMMING

IV. PRECISION AND
SCALING

1. The System, 1

2. The Machine, 2
3. The Memory, 3

4. The Arithmetical Unit, 3
5. The Control Unit and Instructions, 4

6. The Solution of a Problem, 5

1. Arithmetical Operations, 6

2. Shift Operations, 8
3. Branch Operations, 9
4. Special Operations, 10

1. Introduction, 15

2. The Program Loop, 15

3. Machine Computation of Instructions, 18

4. "Setting" the Initial Conditions for the
Program Loop, 22

5. The Basic Form, 24
6. Example of a Three-Level Basic Form, 26
7. Square-Root Problem, 31
8. Programming and Coding, 34
9. Timing, 36

1. Accumulation of Errors, 38
2. Fixed-Point Calculations, 41
3. Floating-Point Calculations, 42
4. Double-Precision Arithmetic, 44
5. Notation for Fixed-Point Sealing, 44

V. TESTING

VI. CONCLUSION

1. Introduction, 47
2. Tracing, 47
3. Automatic Tracers, 48
4. Auxiliary Punch-Out Routine, 52
5. Console Error Detection, 52
6. Memoranda, 54

Conclusion, 56

Appendix I. Summary of Operations, 58
Appendix II. Floating Point and Double

Precision, 60
Appendix III. Additional Programming

Techniques, 65

I. Introduction

1. THE SYSTEM

One of the most exciting achievements of our generation
is the development of the electronic automatic digital calcu
lator. Although any schoolboy can perform any operation
done by the calculator, the speed and economy with which
the calculator does them are so great that automatic calcu
lation is revolutionizing large areas of science, engineering,
business, industry, and defense. A single giant calculator can
do more arithmetic than the entire population of the United
States could do with pencil and paper. *

The calculator described here (the IBM 650) is one of
medium speed, i.e. it will perform in two or three minutes
calculations that would require a week on a desk calculator.
A very important feature of the calculator is the fact that
simple written instructions control its operation. This pam
phlet in conjunction with several lectures aims to train the
novice to write these instructions for the machine solution
of moderately complex problems.

In order that the machine be used effectively on the solu
tion of such problems by a large number of people, simple
uniform procedures should be followed. This uniformity will
help the novice avoid many of the common time-consuming
errors made by beginners and will enable the professional
computing staff to render effective assistance when needed.
It will also permit standardized sets of instructions pre
viously prepared for other purposes to be incorporated in a
new problem. This pamphlet therefore describes not only
the machine but a "System" for its use. The beginner is re
quested to follow this System until he has successfully com
pleted several problems. During this initial period he should
concentrate on understanding this System rather than dis-

*Eckert, W. J. and Jones, R., Faster, Faster, McGraw-Hill, New York,
1955, Introduction.

1

cussing other systems (of which there are many).
The System described here is direct and simple. It will

handle efficiently problems of moderate size and complexity,
and it will give to the student a good introduction to more
advanced methods suitable for the solution of larger and
more complicated problems. After he has gained experience
on small problems, he can undertake somewhat more com
plicated ones with the guidance of the professional comput
ing staff. Those who wish to undertake the solution of large
complicated problems, however, would be well advised to
seek more formal instruction. * It should be remembered that
time on this calculator is worth more than a dollar a minute
and problems requiring hours of machine time should be
prepared in a manner that will avoid waste of machine time
due to inadequate numerical analysis, inefficient planning
of machine operations, and erroneous machine instructions.
Of perhaps greater importance than wasted machine time
is the loss of time of the person writing instructions in an
unsystematic manner. The urge to be independent is com
mendable, but it should be remembered that thousands of
people including some of the world's greatest mathemati
cians have worked on these procedures for the past ten years
and the beginner should profit by all of their early mistakes.

2. THE MACHINE

The calculator consists of an input-output device, a mem
ory, an arithmetical unit, and a control unit. Numbers are

Input-Output

Memory

Arithmetic Control

*Columbia University Bulletin of Information, Announcement of the
Watson Scientific Computing Laboratory.

2

read from punched cards by the input-output device and
stored in the memory. Numbers are taken from the memory
to the arithmetical unit where they are added, subtracted,
mul,tiplied, or divided, and the results are returned to the
memory. Certain other logical operations to be described
later are also performed in the arithmetical unit. Numbers
stored in the memory may be recorded in punched cards for
later use by the machine or for producing a printed record
by means of a separate printing machine.

3. THE MEMORY

The 650 memory will store as many as 2000 "words",
where a "word" consists of ten digits and algebraic sign. The
2000 storage locations, each capable of holding a word, are
numbered consecutively from 0000 to 1999; these location
numbers are called addresses. In order to put a "word" into
one of these locations or to remove a word from one, it is
necessary to specify the address of the memory location or
"cell". For this System, locations 0000-0499 and locations
1700-1999 have been reserved for special purposes so that
only locations 0500-1699 can be used for problems.

A word in a memory cell is retained until a new word is
placed in the cell; before the new word is accepted by the
cell the old word is erased automatically.

4. THE ARITHMETICAL UNIT

The arithmetical unit consists essentially of a 10-digit
accumulator with sign, called the upper accumulator; there
is also a 10-position extension, called the lower accumulator,
that is used in mUltiplication and division.

Unlike the storage cells, the contents of the accumulator
are not erased unless the accumulator is deliberately reset
to zero. To add a number from the memory into the accumu
lator, we instruct the machine to "reset add upper" (that is,
first reset the accumulator to zero and then add the word
into the upper accumulator) and we give the address of the
word to be added. For example, to add the word from cell
0562 into the accumulator, we write:

reset add upper (RAU) 0562

Similarly, to subtract the same number, we write:

reset subtract upper (RSU) 0562

We can also instruct the machine to add or subtract with
out first resetting; in this way we accumulate a sum. For

3

example, if we have three numbers A, B, C, stored in
locations 0901, 0902, 0903, respectively, we can form
(S = A + B - C) with the following sequence of commands:

reset add upper
add upper
subtract upper

(RAU) 0901
(AU) 0902
(SU) 0903

These commands and others will be described in detail in
Chapter II.

5. THE CONTROL UNIT AND INSTRUCTIONS

All commands are given to the machine as numerically
coded instructions, which are in the form of the standard
word, 10 digits and sign. Since the instructions are entirely
numerical,othey can be read from cards and stored in mem
ory as data. Each instruction has its own address. Since in
structions are indistinguishable from data in the memory,
the 650 is called a "stored-program calculator".

If an instruction is entered into the arithmetical unit, it
will be treated as a data word. Only when it is entered into
the control unit will it be treated as an instruction; for it is
in the control unit that the instruction is interpreted and
executed. The digits of an instruction word have the follow
ing meaning:

xx
Operation

code

xxx x
Data

address

xxx x
Instruction

address

The operation code is the numerical equivalent of the opera
tion we wish the machine to perform; for example, the op
eration code for "reset add upper" is 60. The data address
locates in memory the data word on which the operation is
to be performed.

With some operation codes the data address has different
meanings that will be explained in the discussion of specific
operation codes.

After an instruction has been executed, the control unit
goes to memory for the next instruction. The instruction
address of the instruction just executed tells the control unit
where in memory the next instruction is stored. For example,

60 0632 0502

is interpreted as, "Reset add upper the word in 0632 and get
the next instruction from 0502". The coder generally writes
on his worksheet the location of the instruction and the

4

alphabetic abbreviation of the operation to be performed,
in addition to the instruction:

0501 I RAU 60 0632 0502

The alphabetic abbreviation is just for his convenience, but
the location of the instruction (0501) is a necessity since he
must know where each instruction is stored. However, only
the 10-digit instruction word, 60 0632 0502, appears in
the machine.

We can see now that the machine needs only the location
of the. first instruction; it will then execute automatically a
whole series of instructions in the proper order. Such a
series of instructions is called a program.

6. THE SOLUTION OF A PROBLEM

The solution of a problem on an automatic calculator in-
volves the following steps:

Stating the problem
Establishing the numerical procedures
Planning the machine solution
Programming
Writing detailed machine instructions
Testing the instructions
Running the problem on the machine.

The problem is generally stated in the form of mathe
matical equations; in the second step these equations are
replaced by a set of numerical procedures including the nec
essary problem data.

The numerical procedures are then analyzed to determine
how they may be arranged to the best advantage for machine
solution. This analysis and the general outline of the machine
solution is called "problem planning" . We refer to the de
velopment from this general plan to a detailed plan for all
of the operations and the order in which they are to be per
formed as "programming".

When the program is complete, we translate it into coded
form by expressing each operation in terms of specific ma
chine codes; we refer to this process as "coding". Generally,
the clerical part of large-scale coding is done automatically
by machines.

The order of the steps given above is that in which a
problem is solved; it is not the best order for exposition. In
this pamphlet we discuss coding first, then programming,
scaling and, finally, testing; machine operation is not dis
cussed.

5

II. Coding

1. ARITHMETICAL OPERATIONS

There are six arithmetical and two associated operations,
the first two of which have already been discussed:

RAU 60
RSU 61

reset add upper
reset subtract upper

The entire (upper and lower) accumulator is first reset to
zero, and then the contents of the cell specified by the data
address are added or subtracted into the upper accumulator.

To store in memory a word that is in the upper accumu
lator, we have the operation code 21 :

STU 21 store upper

The word is stored in the cell indicated by the data address
of the instruction, and the accumulator remains unchanged.

A store upper (STU) instruction can be combined with
a reset add (RAU) instruction to perform a simple word
transfer (moving a word from one memory location to an
other). To transfer a word from 0800 to 0900, we write:

0600 I RA U 60 0800 0601
0601 STU 21 0900 0602

Note that we have arbitrarily put these instructions in loca
tions 0600 and 0601.

The next two operation codes enable us to add and sub
tract into the upper accumulator without first resetting the
accumulator to zero:

AU 10
SU 11

add upper
subtract upper

For example, if we have four numbers A, B, C, D, stored in,
say, cells 0801 to 0804, respectively, and we wish to form

E=A+B-C+D

6

and to store E in cell 0805, we write the following instruc
tions:

0500
0501
0502
0503
0504

RAU
AU
SU
AU
STU

60
10
11
10
21

0801
0802
0803
0804
0805

0501
0502
0503
0504
0505

Again the instructions are arbitrarily stored in locations
0500 to 0504.

Two 10-digit numbers can be multiplied to give the 20-
digit product (with sign) :

MPY 19 multiply

Two steps are involved: the first step clears the upper and
lower accumulator and places the multiplier in the upper
accumulator by the RAU operation just described; the next
step, an instruction containing the operation code 19, initi
ates the multiplication. The data address locates the multi
plicand. For example, if we wish to multiply the number in
cell 0850 by the one in cell 0851, we write:

0500 I RA U 60 0850
0501 MPY 19 0851

0501
0502

The product appears in the accumulator with the 10 digits
in the highest-order positions in the upper accumulator and
the 10 lowest-order digits in the lower accumulator:

N umber in 0850

Number in 0851

111000000121+

113000000141-

Product in accumulator 1 0 1 4 3 0 0 0 0 0 311 0 0 0 0 0 0 1 6 81-

If the lower accumulator is not clear when a multiply
operation is called for, the result will be completely incor
rect. For this reason, in successive multiplications the inter
mediate products must be stored between successive multi
plication steps. For example, the following instructions are
necessary to compute xi! when x is stored in 0600 :

7

0500
0501
0502
0503
0504

RAU
MPY
STU
RAU
MPY

60
19
21
60
19

0600
0600
0601
0601
0600

0501
0502
0503
0504
0505

Note that location 0601 is used for temporary storage of the
intermediate product, x 2

• The final product is now in the
accumulator and can be stored in any desired location.

Two 10-digit numbers can be divided to give a 10-digit
quotient:

DIVR 64 divide

The dividend is placed in the upper accumulator with a RA U
instruction, and the data address of the divide instruction
locates the divisor. The 10-digit quotient appears in the lower
accumulator, and the upper accumulator resets to zero.

To store in the memory a word that is in the lower ac
cumulator, we have the operation code 20 :

S TL 20 store lower

Since the quotient appears in the lower accumUlator, we need
an operation analogous to "store upper" in order to put the
quotient in memory; operation code 20 instructs the machine
to store the contents of the lower accumulator.

There is one restriction on the size of the numbers in
division. The absolute value of the dividend must be less than
the absolute value of the divisor. If this restriction is not
observed, the machine will want to develop more than 10
quotient digits and stop. The subject of scaling is discussed
further in Chapter IV.

Note: All arithmetical operations are algebraic.

2. SHIFT OPERATIONS

The contents of the entire accumulator may be shifted to
the right or left any number of positions from 0 to 9:

SHRT 30 shift right
SHLT 35 shift left

The number of positions to be shifted is indicated by the data
address of the shift instruction. Shift right and shift left
3 positions are written:

SHRT
SHLT

30
35

0003
0003

8

xxxx
xxxx

(shift right)
(shift left)

The digits shifted out at either end of the accumulator are
lost, as illustrated below:

Accumulator before shifting 112 34567898176543212341-

Accumulator after shift right of 3 1 0 0 0 1 2 3 4 5 6 71 8 9 8 7 6 5 4 3 2 1 1 -

Followed by shift left of 3 11234567898176543210001-

3. BRANCH OPERATIONS

A very important property of a calculator is its ability to
choose one of two alternative programs depending on the
contents of the accumulator. We have two of these condi
tional operations; in the first, the machine branches on non
zero in the upper accumulator:

BRNZU 44 branch on non-zero in upper

In this operation the choice depends on a zero or non-zero
condition in the upper accumulator. If the upper accumula
tor is zero, the next instruction is taken from the instruction
address as usual. If the upper accumulator is non-zero, the
machine branches and takes the next instruction from the
data address:

0500 BRNZU 44 0501
go here
if acc.
~O

0502
go here
if acc.
=0

In the second branch operation, the choice of program de
pends on the sign of the accumulator:

BR- 46 branch on minus

If the sign of the accumulator is positive, the next instruc
tion is taken from the instruction address; if the sign is
negative, the machine branches and takes the next instruc
tion from the data address. The accumulator is unchanged
by a branch operation.

Operation code 01 is provided to stop the machine:

STOP 01 stop

For various purposes it is desirable to have the machine stop

9

when it reaches a designated point in the calculations or
under other specified conditions.

4. SPECIAL OPERATIONS

There are standard programs for performing sequences
of operations that are used frequently, such as data trans
fers, and computation of functions, such as sin, cos, ex
ponential, and square root. To eliminate the necessity of
writing these programs over and over again, we have written
them permanently in such a way that they can be incor
porated easily in a larger program. We sometimes refer to
such standard programs as "library" programs, since you
can take them off of the shelf and use them when you need
them. A library program is also known as one type of sub
routine; other types of subroutines will be discussed later.

Since the same subroutine may be used in several places
in the program, it is necessary in each case to tell the ma
chine where to take up the main program again when the
subroutine is completed. A subroutine is called for by the
operation code:

Spor 69 special operation

The data address of code 69 is the address of the instruction
that follows the subroutine; the instruction address is the
code number of the desired special operation. For example,

SPoP 69 1103 0061

means, "Perform subroutine 0061 and go to location 1103
for the next instruction".

If the subroutine is the computation of a function, we
must specify the argument of the function to be computed
by entering the argument into the accumulator just before
giving the SPOP command. For convenience of notation we
use a as the argument and L (a) as the location of a in the
memory.

The instructions to compute sine a are, therefore:

0701

1 0702
RAU
SPOP

60
69

L(a)
0703

0702
0071

where 0703 is the location of the next instruction. At the
completion of a subroutine, the function being computed
always appears in the upper accumulator, and the lower
accumulator resets to zero so that a mUltiplication can be
performed directly.

10

The following list of special functions is a preliminary
one; other functions can be added:

0070
0071
0072
0073

va
sin ex
cos a
ea

0074
0075
0076

loge ex
arctan ex
arcsin a

These functions are described more fully in Appendix I.
The special operations that are used most frequently con

cern the rounding of numbers in the accumulator and the
transfer of blocks of numbers from cards to the memory,
from one part of the memory to another, and from the mem
ory into cards.

Rounding is accomplished by a shift of the number in
the accumulator and the addition of 5 into the highest-order
position of the lower accumulator. This combined operation
is controlled by the special operation codes 0050 to 0059,
where the units digit of the code number designates the
number of positions to be shifted. For example,

69 080] 0053

means, "Shift right 3 places and round; take next instruc
tion from 0801".

Accumulator before rounding I 0 1 2 3 4 5 6 7 8 9 18 7 6 5 4 3 2 1 0 0 1-
Accumulator after rounding / 0 0 0 0 1 2 3 4 5 7/ 0 0 0 0 0 0 0 0 0 0 I -

The lower accumulator contains zeros at the end of the
rounding special operation. '

Subroutines for the block transfer of data are:

Memory to memory
0060 from one set of memory locations to another

Memory to cards
0061 from a set of memory locations to cards

Cards to memory
0062 from cards to a set of memory locations

The subroutines for block transfers of data are initiated in
much the same way as the subroutines for evaluating func
tions. Again we must tell the machine where to take up the
main program after the subroutine is completed, and we
must also specify how many words to transfer, the memory
locations involved, etc. This information concerning the

11

blocks of data to be transferred is contained in a code word
that we construct and enter into the upper accumulator just
before the subroutine is called for. This code word is called
a, just as the argument of the function is called a.

In the memory to memory subroutine 0060, a is con
structed as follows:

Ol = xx
N

where

xxxx
a

xxxx
b

N the total number of words to be transferred
a the first address of original set of locations
b the first address of new set of locations

For example, "a = 20 0800 0950" indicates that we wish
to transfer 20 words from locations 0800-0819 to locations
0950-0969, respectively.

Subroutine 0061 will punch a block of numbers into a
group of cards. a is constructed as follows:

a = xx
N

where

xxx x
a

x xxx
n b

N the total number of words to be punched
a the location of the first word in the block
n the number of words to be punched per card
b the block number (for identification)

For example,

a = 30 1501 5 182

indicates that we wish to punch the 30 words in locations
1501-1530 into (6) 5-word cards, each card containing the
block number 182. Each card will contain, therefore, the
5 words and a code word that differs from a in that the loca
tion of the first word in the block is replaced by consecutive
numbers for identification of each card within a group. Let
us call this punched-out code word a'.

A card has 80 columns numbered from left to right. It
will hold 8 words of 10 digits each, since the sign of each
word is contained in the same column as the units digit. We
shall always use the 8th word for identification, leaving a
maximum of 7 words per card. In subroutine 0061 just de
scribed, a' is the identification word which appears as "word
8".

12

,{ 1. ... :,111 ., .. :0 21. .. 3: 131. .. 4~ 41. .. ~ 151. .. :0 61. .. 7: 171 ... 8:
word 1 word 2 word 3 word 4 worrl 5 worrl 6 word 7 01'

0000 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 000 0 ~:O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 010 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000
12 J .. 5 17' t 1011 1213141$.' n1t1t21 2122232-t 2$262121 293031 3 33:M3S:I631"3940414H34145"41""1!~49'i05152S3545$56S15151J150&I'263541S.17 •• JOJI72)314751$177171.

~ 111111111111111 ~ 11 I 11 111111111111111111111

~ 2222222222222222222222222222,22222222222222222222222 222222
N 123 .. 51 1. 911l11llt314IS1'nlaI92f12t22n2425l'62Jn~293!13131134153!i3J3I394C414243""45"41.495051S253~~5657515!.61~~E .. el65&66JU691'01IJ2J3141575nll7S8Il

:i 33333333333333 J 3 33 3 3 3 3 3 3 333333

~ 44444444 444 4~, 4 4 4 4 4 4 4 4 4 4 444 44 4444444 4 4 4 4 4 4 444 4 4 4 414 4 4 4 4 4 4 4 44444 4 4 4 4 4 4 4 44 444 ,,4 4 4 4 4 4
~ 1214 ~'7' '1011121l1~IS1&111'18102122232425~~28I29X1313233343S3637~3!l40414l"344~4li47421495G515253S45:i5615758"1G1I 626JE-4165 UI 61 Hln 7U1I nn14751til1n.".

~ 55

1

5555555 5 5 5 5 5 5 5 5 5 5 ~ 5 5,; 5 5 5 555555555555

12 J" 5" '11I1112I3T415I&IJIlI.a2122Zl242$·28Z12tZ93031J23334353G313113!1.414Z4.34!.~;464748U:i05152535455565158"IOI1t2f,J~5Sii'168II;91DlIn73147$. Jill ,,_I o 6 6SG 6 6 6 6 6 6 6 666 6 6 666 6 6 6 6 6 S • H 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 & 6 6'& F 6 6 6 6 6 6 6 6 6 & 6 6 6 6'6 6 6 6 && 6 & 6 & 6£

l
6 & 6 6

7777777777777777777777 71717171 711111171171711~ 7111711111111117111111111111117171711

88388888888 ! P. 8 8 8188 8888888888888888888888 R 8 8 8888888888888888 C,B 8 8 8,8 8 8 8 R 8 8 8 8 8 8 8 8 8 8 8
12 3 41~' 7. '1 1011 n!ll1415 16!11II 112021 22232425217JlIa.313211134»3I1138 J9fi:'1414Z4344 4i41 ... 4t50~I52535t~5I5151"5018161iJI41556&i7A~JOJln1JJ41S"nllr.l"'1
~; ~ ~ ; ~ ~ ~ ~ ,~,~ ~I~ ~~ 1~1~ ,~ ~!;.!;,; ~ ;~!!!;, !!; !iii!i!! !!! 9 !!!!;~ ~~!!!!!;!~ !!!I! !;,~ !!;, ~~! ~ ~ ~~!!I

Subroutine 0062 will read a block of data from a group
of cards into consecutive memory locations. a is constructed
as follows:

xx
N

where

xxxx
a

x xxx
n b

N the number of words in the block
a the location where the first word is to be stored
n the number of words to be read from each card
b the block number

The cards that are read in by subroutine 0062 must also
contain an 01.' for identification.

Note: When subroutines 0061 and 0062 are used, it is
important that the total number of words in the block be an
integral multiple of the number of words per card; if this
condition is not fulfilled, extra words can be read in or
punched out.

We can now put individual instructions together to form
a complete program. For an example of a program, let us
write the following instructions that will: read four numbers
A, B, C, D, from a card into locations 1200, 1201, 1202, 1203,

respectively; compute ~ + C sin D = E; store E in 1204;

and punch out A, B, C, D, E. Let us store our instructions in
consecutive locations starting at 0500. Since it will be nec
essary to use certain constants, which we call program con
stants, for the SPOP operations, we shall store them in loca
tions starting at 0600. For a temporary storage location, let
us use 0700.

13

0500 RAU 60 0600 0501 Read in
0501 SPOP 69 0502 0062 A,B,C,D

0502 RAU 60 1200 0503
Compute A/B and 0503 DIVR 64 1201 0504

0504 STL 20 0700 0505 store temporarily in 0700

0505 RAU 60 1203 0506 Compute sine D 0506 SPOP 69 0507 0071

0507 MPY 19 1202 0508
Compute (~ + C sin D) 0508 AU 10 0700 0509

0509 STU 21 1204 0510 and store in 1204

0510 RAU 60 0601 0511
Punch A, B, C, D, E 0511 SPOP 69 0512 0061

0512 STOP 01 0000 0000 and stop

0600 04 1200 4001
Constants 0601 05 1200 5002

To read four numbers from a card and store them in loca
tions 1200-1203 requires the code word, a = 04 1200 4001,
which is stored as the first constant in location 0600 where
it is available when called for by the instruction in 0500. In
instruction 0507 you will notice that mUltiplication can be
performed immediately because the lower accumulator resets
to zero after the completion of subroutine 0071.

After the instructions and constants have been punched
into cards, the operator enters the program deck into the
machine by means of a loading procedure which is initiated
by the manual controls on the console. The loading procedure
places the program in memory so that the first instruction
is stored in 0500, the next instruction in 0501, and so on.
The starting address 0500 (the address of the first instruc
tion to be performed) is set up on switches, and the depres
sion of a button transfers this address into the control sec
tion of the machine. Then the calculator is started by the
depression of the start button.

Exercise 1:

Write the instructions that will:
Read five numbers A, B, C, D, E from a card into

locations 1401, 1402, ... , 1405, respectively;

ComputeAVB + C + ~ = F;

Store F in 1406 ;
Punch A, B, C, D, E, F into a card.

14

",. Programming

1. INTRODUCTION

In Chapter II we learned the language that our machine
understands; now we must learn how to translate a problem
from its mathematical symbols into this machine language.
In translating directly from the detailed language of a spe
cific problem to the detailed language of a specific machine,
you must keep in mind all of the details of the problem and
of the machine at the same time. Just as many problems have
general similarities yet differ greatly in terminology, so
modern computing machines conform to the same general
pattern, but they differ in their detailed languages. It is
advantageous, therefore, to have an intermediate language
between the wide variety of problems and the numerous
types of machines. With such a language available, we can
begin by analyzing the problem, keeping in mind only gen
eral properties of the machine, and then forget the ter
minology of the problem and concentrate on the details of
the machine. The intermediate language to be described in
this chapter consists of simple diagrams that indicate the
logical structure of the problem. The diagrams, which we
call "flow charts", are graphic representations of the various
phases of a problem.

2. THE PROGRAM LOOP

Let us consider again the problem for which the instruc-

15

tions were written on page 14. We can represent the pro
gram coded there by the flow chart on the preceding page.
For convenience in the following discussion, we shall copy
here a portion of that program.

0500 RAU 60 0600 0501 Read in
0501 SPOP 69 0502 0062 A,B,C,D

Compute E and
0509 STU 21 1204 0510 store in 1204

0510 RAU 60 0601 0511 Punch
0511 SPOP 69 0512 0061 A,B,C,D,E
0512 STOP 01 0000 0000 Stop

If we delete the last instruction and change the preceding
one to read:

05111 SPOP 69 0500 0061,

the machine will follow the punching of the card by reading
another card. Once started on this routine, the machine will
continue the process. In other words, the program will flow
back on itself in a loop:

Once this program is initiated, it will continue to run until
the cards run out.

Program loops are very common and they can be termi
nated in many ways in addition to the one used above.
Usually we use a branch operation to terminate a loop. For
example, in the program used above we may instruct the
machine to examine E each time it is computed and to ter
minate the process when the value of E becomes negative,
as shown in the following flow chart:

16

Stop

Terminate

if E<O

In order to make this change in the program, we insert one
instruction before the STU operation:

0509
0510
0511
0512
0513

BR- 46
STU 21
RAU 60
SPOP 69
STOP 01

0513
1204
0601
0500
0000

0510
0511
0512
0061
0000

As another example of terminating a loop, we can in
struct the machine to go through the loop ten times and stop.

Terminate

if (n-l) = 0

Stop

17

We assume that the instructions and the constants, 10 and 1,
are in the machine and we instruct the machine to subtract
1 from 10 each time it goes around the loop. After ten times
around, there will be a zero in the location that contained
the digit 10. We then branch on zero to terminate the loop,
as shown in the flow chart. The program on page 14 will per
form this example if we change the instruction in location
0512 and add four more instructions:

0511 SPOP 69 0512 0061
0512 RAU 60 0602 0513
0513 SU 11 0603 0514
0514 STU 21 0602 0515
0515 BRNZU 44 0500 0516
0516 STOP 01 0000 0000

0602 00 0010 0000 Constant
0603 00 0001 0000 Constant

3. MACHINE COMPUTATION OF INSTRUCTIONS

An important concept of a stored-program calculator is
the machine's ability to compute its own instructions. This
procedure as well as the principles of looping and terminat
ing are illustrated in the following discussion of the accumu
lation of 100 numbers:

100

S = ~i=l ai = al + a2 + a 3 + ... + a100•

In the drawing of a memory layout for the problem, we
show that the a/s will occupy locations 1201-1300 and that
the sum will be stored in location 1500:

0000

a1

a2

a 100

S

0999

1000

1201

1300

1500

1999

There follows the most straightforward program we can

18

write for this problem:

0500 RAU 60 1201 0501 Reset add a l into accumulator
0501 AU 10 1202 0502 Add a2 into accumulator
0502 AU 10 1203 0503 Add ag into accumulator

0599 AU 10 1300 0600 Add alOO into accumulator
0600 STU 21 1500 Exit Store ~ai in 1500

Although this program is simple and straightforward,
we find that it is costly in terms of its storage requirement of
101 locations (0500-0600). To alleviate this storage problem,
we resort to the machine's ability to compute its own in
structions. You will note that 99 of the instructions have the
same operation code and that their data addresses form a
sequence of integers from 1202 through 1300. Moreover, the
first instruction at 0500 could be made to conform to this
pattern if we could assume that the accumulator was reset
to zero before the program started, i.e. the operation code
(AU) 10 would be used instead of code (RAU) 60. Since
the instructions conform to a simple pattern, it is not nec
essary to write them out and to store them in memory. As
a part of the program, we can instruct the machine to com
pute detailed instructions as they are needed. The machine
will execute the instruction that adds a term to the partial
sum, and from this instruction it will compute the next in
struction, which adds the next term to the partial sum, and
so on. This process involves the program loop, and we repre
sent the chronological execution of this loop by means of the
following flow chart:

Enter

• ~
Compute

~i-l + ai = ~i

~
Compute new

instruction

I

Since the accumulator is used to compute the new in
struction, we must store the partial sum while the next in
struction is being computed and restore it to the accumula
tor before adding in the next term. We shall use location
1500 for storing the partial sum. Each time around the pro-

19

gram loop we are adding the partial sum of (i - 1) terms to
the ith term, i.e. ~i = ~i-l + ai; the instructions for this pro
gram loop read as follows:

0500 RAU 60 1500 0501 Compute
0501 AU [10 1201 0502] ~i-l + ai = ~i
0502 STU 21 1500 0503 and store ~i in 1500

0503 RAU 60 0501 0504 Compute 0504 AU 10 0600 0505
0505 STU 21 0501 0500 new instruction

0600 00 0001 0000 Program constant

We shall assume that the contents of location 1500, the
summation cell, are zero initially, Le. ~o = 0, so that
~l = ~o + a l = al.

The instruction in 0500 enters the partial sum into the
accumulator, and the instruction in 0501 adds a term ai to
this partial sum. Initially, the instruction in 0501 reads
(10 1201 0502) so that a l will be added to the partial sum
to form: ~1 = ~o + al. Instruction 0502 stores ~l back in
1500, the summation cell.

In order to add a2 to the partial sum the next time
through the loop, we change the instruction in 0501 by enter-_
ing it into the accumulator and adding (00 0001 0000). In
this manner the machine computes the new instruction:

10 1201 0502
+ 00 0001 0000

10 1202 0502

We refer to this method of converting 'one instruction into
the following one as "stepping". The instruction in 0505
stores the new instruction in location 0501 an4 closes the
program loop by going to 0500 for the next instruction.

Again we enter the partial sum, ~1' into the accumulator,
and we perform the instruction in 0501, which now adds
a2 to the partial. sum (the data address is 1202 instead of
1201). This operation gives a new partial sum, ~2 = ~1 + a2 ,

which we store back in 1500.
The brackets enclosing the instruction in 0501 indicate

that the instruction varies each time around the loop.
When 100 numbers have been accumulated, Le. after a lOO

in cell 1300 has been added to the partial sum, we must ter
minate the loop. With the terminating box added to our flow
chart, we have:

20

Enter

+
Compute

~i-1 + ai = ~i

Terminate

if ai = alOO

Yes I No

I !
lit

Compute new

instruction Ex
(Step i)

We could terminate the loop by setting up a counter as we
did on page 18; however, the following alternative method
is generally preferable. We note that the instruction in cell
0501 is changed each time a term is added, and when the
100th term has been added the instruction will read (10
1300 0502). This instruction itself is used as a criterion for
termination rather than the setting-up and stepping of a
special counter for the purpose. Each time around the loop
we subtract from the instruction its terminal value (10 1300
0502) and test for zero. The instructions now include the
termination procedure:

0500 RAU 60 1500 0501
Compute 0501 AU [10 1201 0502]

0502 STU 21 1500 0503 $i-l + ai = $i

0503 RAU 60 0501 0504
Terminate if 0504 SU 11 0601 0505

0505 BRNZU 44 0506 Exit ai = a100

0506 RAU 60 0501 0507 Compute
0507 AU 10 0600 0508 new instruction
0508 STU 21 0501 0500 (step i)

0600 00 0001 0000 Stepping constant
0601 10 1300 0502 Terminating constant

The instruction in 0503 enters the variable instruction
in 0501 into the accumulator, and we subtract the terminal
value of the variable instruction which is stored in 0601. If
the result is zero, we know that the last term has just been

21

added to the sum and we can terminate the loop. On the
other hand, if the result is not zero, we must continue to add
terms to the sum. We use a "branch on non-zero in the
upper" instruction to test for a zero condition. Finally, when
the variable instruction becomes (10 13000502) the BRNZU
test will cause the next instruction to be taken from the loca
tion that we have designated "exit", which terminates the
loop.

Generally we draw our flow chart in the following form:

~
Compute new

instruction
Enter (Step i)

l t t

Compute

~i-l + ai = ~i

+
Terminate

if ai = a 100

t I
Yes I No

xit I I E

The coding and the order of execution are exactly the same
as before; only the relative positions of the boxes in the flow
chart differ from those in the preceding flow chart.

The conventions about flow charts that we establish here
serve several purposes. One of the aims is to attach as much
significance as possible to the relative position of the boxes
on the two-dimensional chart and to reduce the significance
of lines and arrow heads to a minimum.

4. "SETTING" THE INITIAL CONDITIONS
FOR THE PROGRAM LOOP

We assumed that the summation cell, 1500, contained
zero and that the variable instruction in 0501 was (10 1201
0502) at the beginning of the program. To make sure that
these conditions are satisfied, we must add an "initializing"
or "setting" box to our flow chart and write instructions
that will enter zeros into 1500 and enter (10 1201 0502)
into 0501. Now we have the following flow chart:

22

En!"r ~
Compute new

Set variable instruction

instruction; (Step i)

set ~o = 0 t !
I Compute

~i-l + ai = ~i

~
Terminate

if ai = a lOO

~. Yes I No

EXIt I I
We must add the following instructions:

0509 RAU 60 0602 0510 Set variable
0510 STU 21 0501 0511 instruction

0511 RAU 60 0603 0512
Set ~o = 0 0512 STU 21 1500 0500

0602 10 1201 0502
Constants 0603 00 0000 0000

At the beginning of the program we transfer the initial
value of the variable instruction, which we have stored in
0602 as a program constant, into 0501 with RAU and STU
instructions (0509 and 0510). Next we transfer zeros, which
have been stored in 0603, into 1500, the summation cell. Now
that we are ready to begin the accumulation, we go to the
instruction in 0500. The final flow chart and a complete list
ing of the instructions for the accumulation problem are
given below. In the flow chart we speak of the level on the
left as the "open" level because it is not a loop, or the "prob
lem" level because it is executed once per problem. Note that
the number above the left-hand corner of a box in the flow
chart indicates the location of the first of the group of in
structions corresponding to that box.

100

Accumulation example: S = ~i=l ai
a l in 1201, az in 1202, ... ,alOO in 1300; Sin 1500

23

Enter

0509 ! 0506 ~
Set variable Step i

instruction ai = al L (ai) ~ L (ai+1)

0511 t 0500 ~ !
Set ~o = 0 Compute

I ~i-l + ai = ~i

0503 !
Terminate

if ai = a lOO

E!it
Yes I No

I I
0500 RAU 60 1500 0501 Compute 0501 AU [10 1201 0502]
0502 STU 21 1500 0503 ~i-l + ai = ~i

0503 RAU 60 0501 0504
Terminate 0504 SU 11 0600 0505

0505 BRNZU 44 0506 0513 if a'i = alOO

0506 RAU 60 0501 0507 Step ai to ai+l
0507 AU 10 0601 0508 (compute new
0508 STU 21 0501 0500 instruction)

0509 RAU 60 0602 0510 Set variable
0510 STU 21 0501 0511 instruction ai= al

0511 RAU 60 0603 0512
Set ~o = 0 0512 STU 21 1500 0500

0600 10 1300 0502 Terminating constant
0601 00 0001 0000 Stepping constant
0602 10 1201 0502 Setting constant
0603 00 0000 0000 Zero setting constant

5. THE BASIC FORM

The preceding flow chart is drawn as a "basic form". It
has two vertical levels. The right-hand level is called the
"term level" or the "i level". We go through this level once
for each term, ai, that we wish to accumulate. The left-hand
level is called the problem level, and the instructions on this

24

level are executed once for each solution of the problem. The
"frequency of execution" is 100 for the i level and one for
the problem level.

Generally a basic form consists of a number of levels
arranged from right to left by decreasing frequency:

Exit

The execution of a level proceeds from top to bottom. The
loop on a level is closed by a line running upward on the right
of the level. Boxes are entered at the top; lines emerging
from a box leave at the bottom of the box.

We can see that in the accumulation program the setting
box of the level on the left "controls" the level to the right in
the following sense. The setting of the variable instruction
in 0501 to (10 1201 0502) causes the "term level" to accumu
late 100 terms. If, on the other hand, the variable instruction
had been set to (10 1220 0502), only 81 terms, a20 - ~OO'
would be included in the sum. Similarly, if a number N had
been transferred to the summation cell instead of zero prior
to the accumulation, the term level would produce the sum
(S' = N + ~ai). The term level, on the other hand, is not
capable of affecting the level to its left in a similar manner.

The coding of a basic form is begun in the middle of the
rightmost level (box 0500 in the accumulation problem),
which represents the logical core of the problem. The sym
bolic expression for accumulation (~i-l + ai = ~d is the
fundamental concept in the statement of the problem. The
rightmost level is completed by the coding of the terminat
ing and stepping boxes (0503 and 0506). Finally, in the
level on the left one codes the setting boxes (0509 and 0511)
for the level on the right.

25

This procedure covers the two-level basic form of the
accumulation program. For a larger basic form one repeats
this procedure for additional levels, one level at a time, pro
ceeding from right to left.

6. EXAMPLE OF A THREE-LEVEL BASIC FORM

Let us program and code the following problem as an
example of a three-level basic form.

Problem: Compute values of the function ([(x, y) = x . y)
for all combinations of the variables,
x = Xh x 2 , ••• , xlO and Y = Yl, Y2, ••• ,YIO.

Let us assign the following memory locations for the
variables:

Xl in 1201
X 2 in 1202

YI in 1301
Y2 in 1302

XiYI in 1401
XiY2 in 1402

XIO in 1210 YIO in 1310 XiYIO in 1410

There will be 100 values of the product and we shall com
pute them in the following order:

Xl (YI, Y2, ••• , YIO)
X2 (Yl, Y2, • •. ,YIO)

XIO (Yh Y2, ... , YIO)'

As the products in the first line (XIYh XIY2, •.• , X1YIO) are
computed, they will be stored in the memory and they will
be punched out when the line is completed; similarly, the
second line will be computed, stored, and punched out, and
so on for all 10 lines.

The most frequently repeated operations will be the form
ing and storing of a product; this operation will be done
10 times for each line. As each product is computed and
stored, it is necessary to go to a new storage location for Y
and to a new one for storing (x . Y), i.e. L (y) and L (x . y)
must be stepped. It is also necessary to look at the subscript
of Y each time a product is computed in order to determine
whether or not the end of the line (YIO) has been reached.
The rightmost level of the flow chart consists of the follow
ing three boxes:

1. Compute (x· y) and store in L (x· y)
2. Terminate if Y = YIO
3. Step L (y) and step L (x· y)

26

The three boxes are drawn as follows:

• Step L (y)
3

StepL(x·y)

~
Compute (x· y)

1
and store in L (x· y)

t
Terminate

2 if y = YlO

Yes I No

I
When 10 products have been computed, we want to punch

them out and proceed to the next line of the problem, i.e.
take the next value of x and compute 10 more products as
before. The starting of the next line involves stepping L (x)
and setting y back to its initial value, Yl. Here, again, before
we step L (x), we must look at the subscript of x to see if
we have finished the last line of the computation. We can
now add the four boxes of the second level from the right of
the flow chart in the following order:

l
3 Step L (x) 1

~
Set L (y)

4
Set L (x' y) ---, t

I

~
1 Punch 10 products • ~

Terminate

2 if x = X 10 I
Yes I No I I

I

27

1. Punch 10 products
2. Terminate if x = XlO
3. StepL(x)
4. Set L (y) , set L (x . y)

The third level consists of starting the problem by setting
x at Xl, and of stopping when the last or xlO line of the com
putation has been completed.

Problem
level

once per
problem = 1

Set L(x· y)

Terminate

if x = X 10

x level
once per x = 10

Step L (y)

Step L(x· y)

Compute (x . y)

J
L (x· y)

Terminate

y level or
product level

once per
product = 100

We can now see how the program is executed chronologi
cally. The computation starts on the problem level with the
setting of x = Xl; it proceeds to the X level where y is set to
Yl and L (x . y) is set to L (Xl· YI) ; it then goes to the y level
where X1Yl is computed and stored. When 10 products have
been produced, the procedure goes to the left for punching
and for testing to see if the problem is fin'ished; if it is not
finished, L (x) is stepped and L (y) and L (x . y) are set for
the next 10 products. When 100 products have been com
puted and punched, the program returns to the problem level
and stops.

The coding proceeds as follows:

0500
0501
0502

RAU
MPY
STU

[60
[19
[21

1201
1301
1401

28

0501]
0502]
0503]

Compute
(x·y)

0503 RAU 60 0501 0504 Terminate 0504 SU 11 0600 0505
0505 BRNZU 44 0506 0512 if Y = Y10

0506 RAU 60 0501 0507
0507 AU 10 0601 0508 Step L(y)
0508 STU 21 0501 0509

0509 RAU 60 0502 0510
0510 AU 10 0601 0511 Step L(x· y)
0511 STU 21 0502 0500

0512 RAU 60 0602 0513 Punch
0513 SPOP 69 0514 0061 10 products

0514 RAU 60 0500 0515 Terminate 0515 SU 11 0603 0516
0516 BRNZU 44 0517 0531 if x = X 10

0517 RAU 60 0500 0518
0518 AU 10 0601 0519 Step L (x)
0519 STU 21 0500 0520

0520 RAU 60 0602 0521 Step 0521 AU 10 0604 0522
0522 STU 21 0602 0523 x identification

0523 RAU 60 0605 0524 Set L (y) 0524 STU 21 0501 0525

0525 RAU 60 0606 0526 Set L(x· y) 0526 STU 21 0502 0500

0527 RAU 60 0607 0528 Set x 0528 STU 21 0500 0529

0529 RAU 60 0608 0530 Set
0530 STU 21 0602 0523 x identification

0531 01 0000 0000 Stop

0600 19 1310 0502
0601 00 0001 0000
0602 [10 1401 5001]
0603 60 1210 0501
0604 00 0000 0001
0605 19 1301 0502
0606 21 1401 0503
0607 60 1201 0501
0608 10 1401 5001

29

The order of the coding is the same as that in which it is
written. The compute box is represented by instructions
0500-0502, which enter x into the accumulator, multiply x by
y, and store the product. Since these three instructions are
all variable, they are enclosed in brackets; their initial val
ues are written within the brackets on the coding sheet.

The instruction in 0501, which selects y for each product,
will be involved in three other boxes in the flow chart: "ter
minate when y = Y10", "step L (y)", and "set L (y)". Instruc
tions 0503-0504 for the terminate box compare the current
value of the variable instruction 0501 with its final value
(19 1310 0502) which is stored in 0600; if y 1- Y10, the
BRNZU instruction directs the program to the "step L (y) "
box which begins at 0506. In the "step L (y)" box the current
value of the instruction in 0501 is stepped by the addition of
(00 0001 0000) from location 0601. Similarly, L (x . y) is
stepped by the addition of (00 0001 0000) to the current
value of the STU instruction in 0502.

The punching of the 10 products starts with the instruc
tion in 0512, the address to which the branch instruction in
0505 sends us when y = Yl0. The first part of a for the punch
out instruction is (10 1401 5) since there are 10 products in
locations starting at 1401 to be punched five to a card. The
last three digits of a are used for identification; for this
identification we shall use the sUbscript of x that is involved
in the products being punched. The initial value of a, there
fore, is (10 1401 5001) which is stored in 0602. Since the
value of a varies with x, it will be stepped when x is stepped
and set when x is set.

The termination on x and the stepping on x are coded in
an analogous manner to those on y. The initial instruction
to be changed is in 0500 and the final one for termination is
in 0603. The stepping constant is the same as for y (0601).

The stepping of the x identification involves a from 0602
and its stepping constant in 0604.

To set L (y) we transfer the initial value of the y-instruc
tion from 0605 to 0501; to set L (x· y) we transfer the initial
store instruction from 0606 to 0502 ; to set L (x) we transfer
the initial location of x from 0607 to 0500; and to set x
identification we transfer the initial value of a from 0608
to 0602.

To stop the program when the last line of the computa
tions is finished, we fill in the address of the stop instruction
(0531) as the instruction address of 0516.

As we code the instructions, we also draw a final detailed

30

flow chart. This final flow chart, which is drawn below, is
very useful in testing and in locating errors in the program.

Xl in 1201
X 2 in 1202

X IO in 1210

Problem level
Frequency of
execution = 1

YI in 1301
Y2 in 1302

YIO in 1310

Terminate

if x = X 10

x level
Frequency of

execution = 10

7. SQUARE-ROOT PROBLEM

XiYI in 1401
XiY2 in 1402

Compute (x· y)

l
L(x. y)

0503

Terminate

y level
Frequency of

execution = 100

The determination of the square root of a number illus
trates a useful method of terminating a loop. In this example
we shall terminate on the accuracy of a number. We have
already discussed other methods of terminating in this
chapter.

If we are given a number, X, and we want to determine y
where y = yx, we use Newton's iteration formula:

31

Yi+l = .~ (Yi + :).

The desired accuracy is obtained when the difference between
two successive iterations is less than a predetermined toler
ance, t, i.e. terminate if

1 Yi+l - Yi 1- t < o.
The basic form for the solution of this problem is the

following:

Enter

Exit

0513
Step

Yi+l ~ L(Yi)

Terminate if

I Yi+l - Yi I - t < 0

The symbols, Yi+1 ~ L (Yi), which indicate the stepping pro-
cedure, mean, "Transfer the new approximation, Yi+h into
the location of the old value of y/'.

The program for this problem is the following:

0500 RAU 60 0600 0501
0501 DIVR 64 0601 0502
0502 STL 20 0602 0503 Compute
0503 RAU 60 0602 0504

Yi+l = Y2 (Yi + :i) 0504 AU 10 0601 0505
0505 MPY 19 0603 0506
0506 STU 21 0604 0507

0507 SU 11 0601 0508
0508 BR- 46 0509 0511
0509 STU 21 0602 0510 Terminate on
0510 RSU 61 0602 0511 1 Y'i+l - Yi 1 < t
0511 SU 11 0605 0512
0512 BR- 46 Exit 0513

32

0513 RAU
0514 STU

0515 RAU
0516 STU

0600
0601
0602
0603
0604
0605
0606

[
[
[

[
[
[

60
21

60
21

50

0604
0601

0606
0601

0000

0514 Store
0500 Yi+l in L (Yd

0516 Set
0500 Yi = Yo

] x
] Yi
] Temporary storage cell

0000 Constant
] Y'i+1
] t
] Yo

At the outset of the problem the radicand (x), the toler
ance (t), and the first approximation (Yo) are located in
0600, 0605, and 0606, respectively. The program constant
(50 0000 0000) is located in 0603. The locations 0601, 0602,
and 0604 are used as work cells in the course of the problem.
A word transfer of the first approximation (Yo) to L (Yd
takes place when Yo is used in the first evaluation of the
formula (0515). On succeeding iterations Yi+h the result of
the formula evaluation is used as the approximation in the
next formula evaluation. Finally, the loop is terminated when
the difference between Yi+1 and Yi is less than the tolerance, t.
The word transfer, Yi+1 to L (Yi), occurs at the top of the
loop (0513).

Note that a branch operation was required in order to
obtain an absolute value. The procedure to be followed to
find the absolute value of a number, a, can be illustrated in
the following way:

Test sign of a

+

The instructions that represent this illustration are found
in locations 0508-0510 of the square-root program.

33

The problem of finding the absolute value of a number is
a simple example of the use of a branch operation for some
process other than terminating. It often happens that a single
branch operation or a network of branch operations is an
integral part of the solution of a problem. For example, it
might be necessary to choose one of four different computa
tional procedures, A, B, C, D, depending on certain condi
tions; in this case a network of branch operations similar to
the following one, might be used:

8. PROGRAMMING AND CODING

The preceding sections of this chapter have been devoted
to problems that essentially consist of one phase. That is,
we had data in memory; we performed certain simple arith
metical operations on these data; and we produced new data.
The basic form was used to represent this transformation
of data.

Most computational problems will consist of more than
one phase. One of the aspects of programming in this System
as outlined in the Introduction involves connecting the dif
ferent phases of a problem. We then have a whole picture of
the computational problem. In order to fix our ideas, let us
consider a particular problem:

Solve the set of equations:

all Xl + a12 X 2 + ... + a ln Xn = Yl

an Xl + a22 X2 + . . . + a 2n Xn = Y2

34

where the coefficients ai j are functions of known quantities
U;, v j, i.e.

Weare required to substitute the unknowns back in the
equations to determine the residuals.

If we assume that the computational method is estab
lished and memory locations are assigned, we can proceed
with the programming of the problem. There are three dis
tinct phases in the solution of this problem, and we can rep
resent the phases by boxes in a flow chart:

Enter

~
Compute

coefficients, aij

~
Compute

unknowns, Xi

~
Compute

residuals

l
Exit

We investigate the first box and quickly determine that
it can be represented by a basic form of three levels (see
Section 6). A rough flow chart of the first phase is now
drawn. The predetermined memory locations for the output
of the first phase will contain the input for the second phase.

The second is represented by one or two distinct basic
forms depending on the computational method selected. The
third phase, in which the residuals are computed, is also rep
resented by a basic form.

It should be noted that a phase of a problem may be rep
resented by a network of branch operations.

The coding begins with the set of rough flow charts. We
take one flow chart at a time and write the corresponding in
structions. In conjunction with writing the instructions, we
draw the final detailed flow charts.

35

9. TIMING

In planning problems it is important to estimate with
reasonable accuracy the running time that the machine will
require for a particular computation. Such estimates are
helpful in the choice of possible alternative solutions of a
problem, in the decision of whether or not a problem is worth
the necessary machine time, and in effective scheduling of
machine use.

The time required for the execution of an instruction can
be divided into two parts: the time required to actually per
form the operation specified by the operation code, and the
time to secure the data and the next instruction from mem
ory.

The time required to perform an operation depends on
the particular operation. Each of the operations RAU, RSU,
AU, SU, STU, STL, BRNZU, BR -, and STOP requires ap
proximately 0.4 millisecond (0.0004 second) ; on the average,
multiplications require 10 ms, divisions require 15 ms, and
shift operations require 2.5 ms. The execution times for
special operations are listed in Appendix I.

To secure a data word or an instruction word can take
from 0 ms to 5.0 ms, i.e. the average time is 2.5 ms. This time
can be reduced to a minimum by a method called "optimum
coding" (see Chapter VI).

For programs that do not use optimum coding and that
do not contain an unusually large number of multiplications
and divisions, we can obtain a fairly accurate (within 10 per
cent) time estimate by allowing 5 milliseconds for the execu
tion of each instruction. This estimate will be good· enough
for programs that are expected to run less than an hour;
however, a longer program will require a more careful inves
tigation since 10 per cent of the running time will amount
to a considerable length of time.

Exercise 2.

Draw a flow chart, and write instructions that will com
pute:

Xi + Yi = Zi, where i = 1, 2, ... , 50

Read the data into the following memory cells:

Xl in 1201 Y1 in 1301
X 2 in 1202 Y2 in 1302

X 50 in 1250 Y50 in 1350

36

Assume that the Xi'S are punched in 10 cards, 5 words
per card, and that the y/s are punched in 10 cards, 5 words
per card.

Store the z/s in the following locations:

Zl in 1401
Z2 in 1402

Z50 in 1450

After all of the z/s have been computed, punch them into
10 cards, 5 words per card.

37

IV. Precision and Scaling

1. ACCUMULATION OF ERRORS

Most calculating problems are first stated as a set of
mathematical equations and the method of solution is indi
cated in the same form. An "equivalent" numerical procedure
is then evolved in which certain of the variables are repre
sented by numerical values and the relations between :!lese
values are represented by arithmetical operations. Because
of the nature of the initial numbers in the calculation and of
the arithmetical processes, the mathematical equations and
the numerical procedure cannot be assumed to be exactly
equivalent. In planning a problem, it is necessary to justify
not only the validity of the mathematical equations but the
extent to which the numerical process is equivalent to the
mathematical equations.

To illustrate, let us consider a simple physical measure
ment. The length and width of a rectangle are each measured
to the nearest millimeter, and the following results are
recorded:

l = 292mm. w = 103mm.

At the time of measurement the observer had difficulty in
deciding whether to record 103 or 104; he recorded 103.
From these recorded measurements, it is required to com
pute the area of the rectangle. The mathematical expression
is

A = l X w.

The numerical equivalent is

A = 292 X 103 = 30076 sq. mm.

Here the mathematical expression is exact and the arith
metic is without error, but we should not conclude that the
area of the rectangle is 30076 square millimeters. Had the
observer written 104 for the width, the computed area would

38

have been 30368, which differs from the above result by 292
square millimeters. The last two digits of the computed area
really tell us nothing about the area of the rectangle except
the position of the decimal point. In the theory of measure
ment and in numerical analysis, a distinction is made be
tween digits that locate the decimal point and those that have
additional significance; we use the term "significant" digits
for the latter. A number, A, is written in the form

A = a X lOa

where a contains the significant digits and the integer ex
specifies the location of the decimal. The number of digits in
a is the precision of A. The exponent ex specifies the magni
tude of A. In the above example we would write for the area

A = 301 X 102 sq. mm.

The true value may differ by a unit or two from this value,
but the "I" has significance. The value of (x, of course, de
pends upon the units that are employed. For example, we
can express the above measurements in centimeters or
meters:

l = 292 X 10° mm. = 292 X 10-1 cm. = 292 X 10-3 m.
A = 301 X 102 sq. mm. = 301 X 10° sq. cm.

= 301 X 10-4 sq. m.

In numerical analysis it is convenient to associate with
each number, x, an error, E (x), where E (x) is the amount
by which the number differs from the true value of the
quantity that it represents. For example, when the quantity,
7r, is rounded to a given number of places,

7r = 3.14 + E(7r),

E (7r) = .00159 In this case we know the value of E (7r),
but in many cases we can only give limits to E. When a
number is rounded, we know that the error is less than half
a unit in the last place.

In planning a calculation, one should consider where each
initial number came from and assign to it an E. When an
arithmetical operation is performed on two such numbers,
it is possible to evaluate the E of the result from the follow
ing relations:

a+b=c
a-b=c
aXb=c
a+b=c

E(c) = E(a) + E(b)
E(c) = E(a) - E(b)
E(c) = a· E(b) + b· E(a)
E·(c) = [b·E(a) -a·E(b)]/b 2

39

In the above example,

l = 292, w = 103
A = l X w = 30076

E(l) = E(w) = 1
E(A) = l· E(w) + w·E(l) = 395

i.e. if the error in each measurement can be as great as 1
mm., the error in the computed area can be as large as 395
sq. mm. In deriving the error equations, we assumed that
E (a) and E (b) are small compared with a and b, respec
tively.

Starting with the assigned errors of the initial numbers
and using the error equations, we could trace the precision in
each operation to the final results and give an estimate of
their reliability. This process is not generally carried out in
practice, but by keeping the method in mind we can form
some estimate of what is happening and avoid some of the
worst pitfalls in planning a problem. We note, for example,
that in addition and subtraction the error, E (c), is never
greater than the sum of errors [E (a) + E (b)]. However,
when two nearly equal numbers are subtracted, several digits
on the left will disappear and the number of significant fig
ures will be reduced. The problem of small divisors is also
serious since the error varies inversely as the square of the
divisor. A single-digit divisor can give a large quotient whose
first digit at most will be significant, and, of course, division
by zero is excluded. Thus it is possible to prescribe a sequence
of arithmetical operations that will lose all of the precision
of the initial data and give results that are completely ficti
tious, because the problem itself is not capable of solution,
e.g. trying to solve a set of linear equations with a zero (or
very small) determinant. Again, the problem may be soluble,
but care must be exercised in the general layout of the calcu
lation to prevent undue loss of precision.' It is not the pur
pose of this memorandum to examine these questions, except
to point out their existence and to emphasize that, by keep
ing track of the expected errors of each stage of the calcula
tion, the computer can recognize unsatisfactory conditions
in the problem.

To guard against unnecessary loss of precision in the in
dividual arithmetical operations, the manner in which the
numbers are entered into the accumulator must be consid
ered. It should be remembered that:

1) Numbers to be added into the accumulator must have
the decimal points aligned.

2) When numbers are added into the left-hand position
of the accumulator, the "carry" may "spill" over.

40

3) The divisor must be greater than the dividend; if not,
the machine will stop in division.

4) When the multiplicand and multiplier are too far to
the right, we lose precision because all of the signifi
cant figures of the product will not appear in the
upper accumulator. For example:

Multiplicand 10001 1111111

Multiplier 100022222221

Product I 0 0 0 0 0 0 0 2 4 6 1913 I

The general rule should therefore be to keep all numbers
as far to the left as possible without causing an overflow.

The process of shifting input data and intermediate re
sults to yield final results with the desired precision is called
"scaling". This shifting may be planned by the coder and
written into the machine instructions ("fixed-point calcula
tion") or it may be done automatically by the machine
("floating-point calculation").

2. FIXED-POINT CALCULATIONS

Whenever we perform arithmetical equations on num
bers, we keep the numbers as far to the left as possible to
preserve maximum precision. The relative position of num
bers in memory cells is under the control of the program,
and, when there is uniformity in the range of numbers, we
can write a program that is consistent with all of the num
bers. For example, if the numbers in a problem are the fol
lowing angles, 0, ranging from zero to 27T, we would say that
their range is uniform:

0.2504
0.5269
0.7324
0.9887
1.2784

6.2837

41

A program that is written to operate on these numbers would
generally consist of arithmetical and shifting operations in
the computing box of a loop. Each time the machine pro
gresses through the loop, an angle, (j, is chosen and f ((j) is
computed. The arithmetical and shift operations must be
consistent with all of the angles, the smallest as well as the
largest. That is, the program must be written so that, for
each angle, there is no overflow in addition, a dividend and
divisor must satisfy the conditions necessary for division,
etc.

In general, when the machine performs the "arithmetical
and shifting operations, there will be a loss of precision
which is considered as an error and must be kept within tol
erable limits. In fixed-point calculations we can compute the
error since we know all of the operations in the program and
the range of the numbers. Our convention for keeping track
of the necessary shifts on the coding sheets is explained in
Section 5 of this chapter.

3. FLOATING-POINT CALCULATIONS

Problems do occur, however, in which the range of data
is not uniform. For example, let us suppose that we have the
following data:

48916.278
1678.3214
207.43098

37.003290
1.4365026
.61986543
.094217899

The data range from (5 X 104
) to (9 X 10-2

), but the relative
precision or significance is the same in each case, i.e. each
number contains eight significant digits. It would be impos
sible to perform repeated fixed-point calculations on this
block of data, since a 14-digit memory cell (five digits to the
left of the decimal point and nine to the right) would be
required to store each number with the decimal point fixed
in the same relative position. In order to accommodate these
data in memory, they must be stored in the following form:

42

48916.278
1678.3214
207.43098
37.003290
1.4365026
.61986543

.094217899

N ow the position of the decimal point is different for each
number in the block. The arithmetic used on these shifted
data is called "floating point". The necessary shifts are dif
ferent for each number in the block and they are performed
automatically.

Each number in a floating-point operation must also have
a tag called an exponent that will determine what shifts are
to be performed. The numbers are written in the form
(A = a X lOa), with the convention that (0.1 ~ a < 1.0).
For example,

76.345039 = .76345039 X 102

.00076345039 = .76345039 X 10-3

The number, a, and the exponent, Ol., are stored in memory
as a word. To avoid negative exponents when the word is in
memory, we arbitrarily add 50 to each exponent. We also
write the adjusted exponent to the right of the number:

7634503952
7634503947

The machine looks at the exponent, performs shifts depend
ing on the arithmetical operation called for, performs the
arithmetic, and gives the result in the same form.

In some calculators floating-point operations are built
into the machine and in others they are performed by means
of subroutines. Such subroutines are included in the System,
and directions for their use are contained in Appendix II.

Floating-point operation preserves maximum precision
in each arithmetical operation without any attention on the
part of the coder. The method has, however, the following
disadvantages:

1. Since two digits of each number are used for decimal
indication, there remain only eight significant figures
instead of ten.

2. Running time on the machine is increased by a factor
of three.

3. Since the coder is una ware of the shifts made by the

43

machine, there could be serious loss of precision with
out his being aware of it (see p. 40).

If the coder does not know for a priori reasons that the
arithmetical process is legitimate, a detailed examination of
the process is necessary.

4. DOUBLE-PRECISION ARITHMETIC

When the range of data is uniform and the preCISIOn
exceeds the word size of a memory cell, more than one cell
can be used for each number. If the precision of the data is
not more than 20 digits, two memory cells can store each
number and 20-digit, or double-precision, arithmetic can be
used. If there is a considerable loss in precision (e.g. from
subtracting two nearly equal numbers), the use of double
precision arithmetic sometimes will overcome the difficulty.
Double-precision operations can be handled by subroutines
in which each 20-digit number is contained in two memory
cells. Such subroutines are included in the System and they
are described in Appendix II. Double-precision fixed-decimal
operation obviously permits the storage of only half as many
numbers as single-precision work, and it increases the run
ning time by a factor of about 2.5. The procedure can be
extended, of course, to triple or higher precision.

When both high precision and automatic scaling are nec
essary, it is possible to perform mUltiple-precision floating
point arithmetic; this type has not been included in the
System.

It is not essential that an entire calculation be executed
in fixed-point, floating-point, or in double-precision arithme
tic if proper provisions are made for the junctions of the
systems. For example, if both floating point and fixed point
are used in the same problem, it will be necessary to use a
conversion subroutine to change floating-point to fixed-point
numbers. The necessary conversion subroutines are de
scribed in Appendix II. It should be emphasized that one
would seldom use floating-point arithmetic for red-tape in
structions, i.e. stepping, setting, terminating.

s. NOTATION FOR FIXED-POINT SCALING

As mentioned in a previous paragraph, the general rule
of scaling is to keep the numbers as far to the left as possible
in the accumulator and still avoid overflow. Moreover, we
wish to use the same scaling for an entire block of numbers,
especially in coding a loop.

44

In fixed-decimal computation we think of each number in
the form (A = a X lOa); only a is actually stored in the
memory. To keep track of the shifting, we write on our cod
ing sheet the scale factor, n, where

A X Ion = a, i.e. n =-(X

and the left-hand side of the equation is abbreviated as A @ .
For consistency and ease of notation, we think of each mem
ory cell and the accumulator as having a decimal point on
the left. The decimal point remains fixed.

Suppose now that we want to perform the following
computation:

where

A = 44.9876
B = 5.6321

or, according to the convention we have established,

A @ = .4498760000
B @ = .5632100000

Our problem is to code the computation and include the
proper scaling. On our coding sheet we would write the fol
lowing information and instructions. The information on the
left indicates what the instruction on the right has accom
plished.

1~.A@= (A2) G
0700 RAU 60 L(A) 0701 .44987.60000
0701 MPY 19 L(A) 0702 .2023884153 (1i G ~L(A') 0702 STU 21 L(A2) 0703

1 .B@=(AB)@
0703 RAU 60 L(A) 0704 .4498760000
0704 MPY 19 L(B) 0705 .2533746619

(AB) G 0705 SHRT 30 0001 0706 .0253374661
(A2 + A B) @ 0706 AU 10 L(A2) 0707 .2277258814

The sum standing in the accumulator, .2277258814, should
read 2277.258814, according to the scale factor @.

To locate the decimal point after a multiplication or a
division, we follow the usual laws of exponents, i.e. the ex
ponents are added in multiplication and subtracted in divi
sion. When we add or subtract two numbers, we must be
sure that their exponents are the same, i.e. that their decimal
points are aligned. If they are not the same, we must shift
accordingly and adjust the exponents.

Since we could easily foresee in the above example the

45

size of the numbers generated (A 2 and AB), we knew that
no overflow would result when they were added together. In
general the formula (A 2 + AB) would be evaluated for
many values of A and B, and the data must be examined to
determine whether or not the above coding would be correct
for all cases. If the coding is not correct for all cases, it must
be changed to fit all values of A and B.

An analysis of the size of the numbers generated during
a computation must be made prior to coding. The coder then
knows the "worst" possible case and can take care of it in
his coding. Although this analysis is an added chore for the
coder, it is this analysis that tells him the reliability of his
results.

Exercise 3.

for

Write instructions to compute:

lr3x where r2 = x2 + y2
r

x in the range 5 ~ x ~ 10
y in the range 5 ~ y ~ 10
k =.9

Assume x, y, k are stored in the following locations: xJ in 1501
y 2 in 1502
k 0 in 1503

Use the notation for scaling explained on pages 44-46.

46

v. Testing

1. INTRODUCTION

Testing a program for errors in coding is an essential
phase in the solution of a problem. The results that we want
are not necessarily what we instruct the machine to give us.
We must make sure that the instructions as written will
produce intended results insofar as coding errors, such as
forming (x . y) instead of (x· z), are concerned. The objec
tive of this chapter is to present methods for detecting such
errors in a program.

The detection of coding errors can sometimes be labor
ious and costly. In order to eliminate as many mistakes as
possible before testing a program, one should write carefully
all flow charts and programs and check them meticulously
with particular emphasis on scaling mistakes.

Errors, such as rounding, truncation, etc., that are in
herent in a computational method will also affect results,
but we assume that a complete error analysis has been made
to determine these errors.

A distinction is made between testing and checking.
Checking refers to the proper functioning of the machine,
which is the responsibility of the operator.

2. TRACING

Tracing a program for mistakes is the simple and
straightforward process of writing the result of the execu
tion of each instruction adjacent to the instruction itself; by
studying all of the details of the trace, we can detect any
mistakes that appear in the program. Rather than calculate
the results by hand, we instruct the machine to perform the
tracing automatically.

Automatic tracing techniques require that one card be
punched for every instruction executed. Indiscriminate use
of automatic tracing results in the punching of many cards
which is costly in terms of the time required for punching as

47

well as for studying a great deal of information. In order to
reduce the number of instructions that we trace, we shall
follow two rules for automatic tracing:

1. Begin the tracing at the logical core of the program,
which is the right-hand level, and test it completely before
testing the next level to the left.

2. Shrink the program, i.e. do not trace through a loop
many times when a few times will suffice. For example, in
the problem in Chapter III that involved the computation of
100 products, we would trace the formation of only nine
products for first, last, and middle values of x and y. If the
program operates for three values, we can assume that it
will operate for ten values. We shrink the program by chang
ing the terminating constants on page 29 as follows:

For 100 products For 9 products
0600119 1310 0502 06001 19 1303 0502
0603 60 1210 0501 0603 60 1203 0501

You must make sure that there is not a mistake in either of
the two terminating constants.

3. AUTOMATIC TRACERS

One tracer in the System is an auxiliary subroutine that
causes the machine to execute instructions of a program, one
at a time, and to record the contents of the entire accumu
lator. The tracing can begin at any instruction in a program
and, after each instruction is executed, a card will be punched
out with the following information:

xxxx xxxx xx xxxx xxxx xx xxxx xxxx xx xxxx xxxx xx xxxx xxx x
No. L (Inst.) Instruction Upper Lower Distributor

Column 1
Column 2
Columns 4-6

Consecutive number of instruction
Location of instruction
Contents of upper accumulator, lower accu
mUlator, and distributor before execution of
instruction

The distributor is a register intermediate between the ac
cumulator and memory. All information passing from mem
ory to the accumulator and from the accumulator to memory
passes through the distributor. The information in the cards
that are punched out by the tracing subroutine can be printed
on paper and examined away from the machine.

As an example of the use of the tracer, let us consider
the program for the problem on page 13. The operator feeds

48

into the machine the program on page 14, the data card, and
the tracer. If the numbers in the data card are the following:

A Q) = .01 2345 6789 C @ = .369121 5182
B ® = .13 5790 2468 D @ = .070710 6781,

the sample calculations should be:

(A/B) @ = .0909172727 (C sin D) Q) = .0239794972
(sin D) ED = .06 4963 6937 E @ = .11 4896 7699

and the information in the cards that are punched out by the
tracer is printed as follows:

No. L (Inst.) Instruction Upper Lower Distributor

1 0500 60 0600 0501 xx xxxx xxxx xx xxxx xxxx xx xxxx xxxx
2 0501 69 0502 0062 04 1200 4001 00 0000 0000 04 1200 4001

65 0204 60 1200 0503 04 1200 4001 00 0000 0000 04 1200 4001
66 0503 64 1201 0504 01 2345 6789 00 0000 0000 01 2345 6789
67 0504 20 0700 0505 00 0000 0000 09 0917 2727 13 5790 2468
68 0505 60 1203 0506 00 0000 0000 09 0917 2727 09 0917 2727
69 0506 69 0507 0071 07 0710 6781 00 0000 0000 07 0710 6781

113 0301 19 1202 0508 06 4963 6937 00 0000 0000 06 4963 6937
114 0508 10 0700 0509 02 3979 4972 46 4237 7534 36 9121 5182
115 0509 21 1204 0510 11 4896 7699 46 4237 7534 09 0917 2727
116 0510 60 0601 0511 11 4896 7699 46 4237 7534 11 4896 7699
117 0511 69 0512 0061 05 1200 5002 QO 0000 0000 05 1200 5002

123~5 6789 13 5790 2468 36 9121 5182 07 0710 6781 11 4896 7699
18~ 1759 01 0000 0000 05 1200 5002 00 0000 0000 05 1200 5002

Each line listed above contains the information that is
punched in one tracer-output card. The "L (lnst.)" and "In
struction" columns are identical with the corresponding col
umns on page 14 with the following exceptions: The loca
tions that immediately follow the SPOP instructions are
fictitious; and the next to the last line contains the data that
were punched out by the memory-to-card subroutine, i.e. the
values of A, B, C, D, and E, properly scaled.

Examination of the consecutive numbers in column 1
shows that the first SPOP (read in) instruction involved 63
instructions, the second one involved 44 instructions, and
the last one involved 67 instructions.

The last three columns of the tracer show the contents
of the accumulator and distributor. The data associated with

" an operation are printed on the line following the instruc
tion. The x's on the first line indicate that this information
does not, in general, relate to the problem since these data
were present before the first instruction was executed.

49

A comparison of the numbers in the subsequent lines with
the values of A, B, C, etc. in our example facilitates the
identification of each quantity. In the following table we
have listed the quantities as they appear in the tracer and
opposite them we have listed from page 14 the operation
being performed. This comparison shows not only that each
operation uses the correct factor, but also that the scaling
is correct.

Read in A, B, C, D (a = 0412004001)
a 0 a
a 0 a

A 0 A
Compute AlB; store in 0700 0 AlB B

0 AlB AlB

Compute sin D
D 0 D

sinD 0 sin D

Compute AlB + C sin D ; store in 1204
C sin D - C

E AlB (Note: C sin D extends into lower) E E

a 0 a
Punch A, B, C, D (a = 0512005002) C D E

a 0 a

By studying this printed record of the tracer, we can in
vestigate all of the arithmetical details of the program away
from the machine. We call this type of tracing subroutine an
arithmetical tracer since it is used primarily to trace arith
metical operations.

When we suspect that mistakes are caused by faulty ter
minating procedures, we use another type of tracing sub
routine, called the logical tracer, which traces only branch
instructions. In order to use the logical tracer effectively, we
must examine the standard terminating procedure. In the
example of a three-level basic form (Section 6 of Chapter
III), there are three instructions corresponding to the ter
minate box in the right-hand level with termination on YIn:

0503 RAU 60 0501 0504
0504 SU 11 0600 0505
0505 BRNZU 44 0506 0512

0501 MPY [19 1301 0502] Variable instruction

0600 19 1310 0502 Constant

The machine determines whether or not the "variable in-

50

struction minus the constant" is non-zero. If the branch in
struction is traced, the following information will be punched
out:

1 0505 44 0506 0512 00 0009 0000- 00 0000 0000 19 1310 0502

The contents of the upper accumulator (0000090000-) in
dicates that one product has been formed, and the constant
(19 13100502) appears in the distributor.

Since it is the data address in the variable instruction
that we frequently need to trace, the program for the ter
minate box is changed to compute "minus constant plus
variable instruction" followed by the BRNZU instruction:

0503 RSU 61 0600 0504
0504 AU 10 0501 0505
0505 BRNZU 44 0506 0512

0501 MPY [19 1301 0502] Variable instruction

0600 19 1310 0502 Constant

The results of these instructions for the terminate box will
be exactly the same as before, but the logical tracer will dis
play the variable instruction instead of the constant.

1 0505 44 0506 0512 00 0009 0000- 00 0000 0000 19 1301 0502

Let us combine two of the testing methods discussed
above in order to shorten the testing phase of the products
problem. First, we shrink the program from 100 to 9 prod
ucts by changing the terminating constants as indicated in
Section 2 and, secondly, using the new terminating pro
cedure, we form the following logical trace of the entire
products problem:

1 0505 44 0506 0512 00 0002 0000- 00 0000 0000 19 1301 0502
2 0505 44 0506 0512 00 0001 0000- 00 0000 0000 19 1302 0502
a 0505 44 0506 0512 00 0000 0000 00 0000 0000 19 1303 0502

4 0516 44 0517 0531 00 0002 0000- 00 0000 0000 60 1201 0501

5 '0505 44 0506 0512 00 0002 0000- 00 0000 0000 19 1301 0502
6 0505 44 0506 0512 00 0001 0000- 00 0000 0000 19 1302 0502
7 0505 44 0506 0512 00 0000 0000 00 0000 0000 19 1303 0502

8 0516 44 0517 0531 00 0001 0000- 00 0000 0000 60 1202 0501

9 0505 44 0506 0512 00 0002 0000- 00 0000 0000 19 1301 0502
10 0505 44 0506 0512 00 0001 0000- 00 0000 0000 19 1302 0502
11 0505 44 0506 0512 00 0000 0000 00 0000 0000 19 1303 0502

12 0516 44 0517 0531 00 0000 0000 00 0000 0000 60 1203 0501

51

4. AUXILIARY PUNCH-OUT ROUTINE

During the testing phase in the solution of a problem,
we try to anticipate the information that we might wish to
examine if mistakes should occur. We can say, in general,
that it is always useful to be able to examine intermediate
results and the contents of the various work cells that are
used. Other useful information will depend on the nature of
the particular program. In the technique described in this
section we obtain a picture of memory cells at a particular
point in the program by means of the memory-to-cards spe
cial operation (SPOP code 0061).

After deciding which locations are to be examined, the
coder writes the instructions that call in the special opera
tion 0061. An operator can insert these instructions into the
main program by using the manual controls on the console.
If the program were running on the machine, it must be
stopped and the instruction address of one of its instructions
must be changed so that the main program will include the
auxiliary one, e.g.

Terminate

In general, a coder can use the memory-to-cards special
operation any number of times during the testing phase of a
program since there can be any number of parts in a pro
gram that will yield significant information.

5. CONSOLE ERROR DETECTION

The facilities of the machine include the automatic stop
ping of the machine under certain circumstances accom
panied by the appearance of corresponding indicator lights
on the console. The reasons for the automatic stopping of

52

the machine can be divided into two categories: machine
errors and coding errors.

It is possible that the machine will make an occasional
random error, which it detects by means of a "validity"
check; if the check does not hold, the machine will stop and
an indicator light will appear on the operator's console. The
validity check is based on the manner in which the individual
digits are indicated in the machine. Each digit is broken
into two parts, the first of which is 0 or 5 and the second is
0, 1, 2, 3, or 4. Thus,

o = 0 and 0
1=0 " 1
2=0 " 2
3=0 " 3
4=0 " 4

5 = 5 and 0
6=5" 1
7 = 5 " 2
8 = 5 " 3
9 = 5 " 4

In this so-called bi-quinary system of indication, the 0- or 5-
indicator is the binary part and the 0-, 1-, 2-, 3-, or 4-indi
cator is the quinary part. Whenever a number is transferred
into the control unit, the accumulators, or the distributor,
the machine checks each digit to verify that it has one and
only one binary indication and one and only oile quinary
indication. If an indication is lost or gained, the machine will
stop and lights will indicate the register in which the error
occurred. The chance that two errors, losing one indication
and gaining another, will compensate each other and thereby
remain undetected is extremely small. As far as we know,
the machine at the Watson Laboratory has never made an
undetected error.

Various types of coding and punching errors will cause
the machine to stop automatically:

1. Control unit: an invalid address, such as one greater
than 1999, in an instruction, or an operation code
tha t is not meaningful to the machine.

2. Overflow: numbers that are not scaled properly. More
digits will be developed in the accumulator than it can
hold and the "overflow" indicator will light up.

3. Card punching errors: a missing digit (blank col
umn). A column with more than one digit punched in
it or a word without a sign will be picked up as a
validity check error.

These errors will be detected by the machine. However,
there are many types of coding errors that the machine will
not recognize as errors, e.g. an incorrect but valid address,

53

a scaling error that does not result in an overflow but does
result in an incorrect answer, an incorrect terminating con
stant, etc. Careful checking of the program and coding can
minimize these errors, but, for those that are not uncovered
by checking, a testing procedure must be used. For example,
if there should be a machine stop that is not caused by a
machine error, it is often advisable to perform an auxiliary
memory punch-out at that point and to restart the problem,
tracing the segment of the program that precedes the stop.
The combined information from the punch-out routine and
the trace should give a clear picture of the nature of the
error.

A program should be organized in such a way that it
will be possible to "back up" if, for example, there is a ma
chine error. The basic form lends itself to a restarting or
"backing up" procedure; usually it is possible to back up to
the set box in one of the levels to the left of the level in which
the error occurred. It is advisable to back up far enough to
obtain some overlapping results that will check the restart
ing procedure, especially when it is necessary to interrupt a
program and to restart it the next day.

The auxiliary punch-out routine, which is used for the
initial testing of a program, can also be used to punch out
intermediate results during the running of a long problem
that is not producing expected partial results. If, during
programming, the routine is written to punch out intermedi
ate results, it can be inserted to give you the extra informa
tion needed to determine whether or not the questionable
partial results are correct.

6. MEMORANDA

Testing a program is one of the most difficult phases in
the solution of a problem and requires that you thoroughly
understand your program. To assist you in the preparations
for testing your program, we have listed the information
that should be readily available to you:

1. A neat set of final detailed flow charts and instruc-
tions.

2. A set of precomputed results, both partial and final.
3. A clear picture of memory assignments.
4. A list of stops that have been included in the program.
5. Points in the program where it can be restarted.
6. Points in the program where a trace or an auxiliary

memory punch-out would be useful.

54

7. Auxiliary punch-out routines that have been written
to punch out intermediate results, variable instruc
tions, or contents of work cells, and where to insert
them in the program. These routines are written
when the main program is written, punched into
cards, and entered into the machine when the main
program is entered into the machine.

55

VI. Conclusion

This pamphlet is intended to give to the reader a basic
understa'nding of the operations involved in the solution of
computational problems on an automatic calculator; it should
also enable him to solve problems of moderate size and com
plexity on the 650 and to cooperate with professional com
puting groups in solving large problems on any calculator.

In order to solve large and intricate problems with the
necessary efficiency, the reader will require additional knowl
edge about the machine, coding. programming, and probably
about numerical analysis. At this stage he will have no dif
ficulty in obtaining more information about the 650 from
the operator's "Manual of Operation". Three features of the
machine will contribute to the efficiency of its operation:

First, we have mentioned only 13 basic machine instruc
tions whereas there are actually 44 instructions on the
standard machine. The use of these additional instructions
will facilitate the machine work for many problems.

A second feature of the machine is a pluggable control
panel that controls the reading and punching of the cards.
In the System we have used a single, general purpose panel
and a standardized arrangement of the data in a card. How
ever, the use of a panel that is wired especially for a nroblem
with considerable input and output may add greatly to the
machine's efficiency.

Finally, the memory of the 650 is on the surface of a ro
tating magnetic drum, and each cell of the memory is avail
able for access once each revolution of the drum. In general.
there is some waiting for a particular cell to become avail
able to the machine, but this waiting time can be reduced if
the words are placed on the drum according to the sequence
of instructions to be performed. The process of placing words
on the drum where they will be ready for access when called
for is known as "optimizing" the program. To produce the
"optimum" program for a given problem is intricate and
laborious, but a good approximation can be obtained with
little effort. A program can be optimized by the coder with

56

the aid of the timing charts in the "Manual" or it may be
done automatically by the machine as described in a follow
ing paragraph. As would be expected, the special operations
used in the System have been optimized carefully.

In optimizing a program by hand, the coder would devote
most of his attention to the coding of the loops in the right
most levels of the flow chart since these are the ones that are
repeated most frequently.

We have seen that, once the flow charts have been con
structed, the coding, though tedious, is fairly straight
forward. Machine methods for coding have been devised,
and the most comprehensive one for the 650 is known as
"SOAP"*. This system will convert rather general instruc
tions into an optimized program for the machine; it is widely
used and includes a large assortment of library programs.

Some models of the 650 are equipped with magnetic tapes,
large auxiliary storage devices, and printers. This additional
equipment offers the necessary capacity for large problems.

A comprehensive treatment of programming as used in
the System will be contained in a forthcoming book by
J. Jeenel. As an exam"ple of increased efficiency through im
proved programming we might mention the relation be
tween operating time and storage space. It frequently hap
pens that in a particular part of the program we have the
choice of saving storage space at the expense of increased
operating time or vice versa. In Section 3 of Chapter III we
saw that in the summation problem we could save snace by
using the technique of looping; however, the resulting pro
gram involved many more instructions than the one written
out in full. The flow chart, which shows the relative fre
quency of execution of the various levels, serves as a guide
in balancing time and space considerations. The general rule
is to save time in the levels to the right of the diagram and to
save space in the levels on the left.

In conclusion one cannot refrain from commenting on
the widespread activity in machine computation. Soon there
will be in operation more than a thousand 650's in addition
to other machines of the same general scope, and machines
of greater speed and capacity than the 650 will soon number
in the hundreds. Most universities now give formal instruc
tion in numerical and machine methods. The professional
people who are engaged in machine computation are num
bered in the thousands.

*650 Programming Bulletin No.1, International Business Machines
Corporation, New York, 1956.

57

Appendix I. Summary
01 Operation8

BASIC OPERATIONS AND THEIR AVERAGE
EXECUTION TIMES IN MILLISECONDS

ms
RAU 60 reset add upper 0.4
RSU 61 reset subtract upper 0.4
AU 10 add upper 0.4
SU 11 subtract upper 0.4
STU 21 store upper 0.4
MPY 19 mUltiply 10.
DIVR 64 divide 15.
STL 20 store lower 0.4
SHRT 30 shift right 2.5
SHL T 35 shift left 2.5
BRNZU 44 branch on non-zero in upper 0.4
BR - 46 branch on minus 0.4
STOP 01 stop 0.4

SPECIAL OPERATIONS, THEIR MEMORY ASSIGNMENTS,
AND THEIR AVERAGE EXECUTION TIMES IN MILLISECONDS

1. ROUNDING
005x shift right and round

(0050-0059, 0266-0269) 20ms
2. BLOCK TRANSFERS

0060 memory to memory
(0060,0398-0440) (40 + 10n*) ms

0061 memory to cards
(0061,0100-0159) 600 ms/card

0062 cards to memory
(0062,0200~0265) 300 ms/card
*n = number of words to be transferred

3. FUNCTIONS
0070 va (0070,0160-0199) 125 ms
0071 sin a (0071, 0298-0397) 124ms
0072 cos a (0072,0298-0397) 124ms
0073 ea (0073,0441-0499) 280ms
0074 loge a (0074,1744-1811) 190ms
0075 arctan a (0075, 1700-1742) 130ms
0076 arcsin a (0076, 1812-1880) 150ms

58

We recall that each number in the machine is in the form,
0: ® = .xxxxxxxxxx, where n is the scale factor on the cod
ing sheet. Before using an argument, a, in a subroutine for
the computation of a function, we must adjust n to the
standard value listed in column 4 of the following function
table.

SPOP Standard n Maximum
Code Function Range of 0: fora error in f (0:)
0070 va even* 4 X 10-10

0071 sin a -271" ~ 0: ~ 271" -1 3 X 10-9

0072 cos a -3.271" ~ 0: ~ 2.571" -1 3 X 10-9

0073 ea -1 < 0: < 1 0 8 X 10-9

0074 loge a 1 ~ 0: < 10 -1 4 X 10-9

0075 arctan 0: -1 ~ 0: ~ 1 -1 4 X 10-8

0076 arcsin 0: 0~a~1 -1 2 X 10-8

* If the scale factor, n, is odd, shift the argument one place
to the right, or mUltiply the square root of a by the square
root of 10.

The computed functions will all have a scale factor of
-1, (n = -1), except for the square root of a.

The arctangent of a for 0: in the range, 0 ~ 0: ~ 00, can
be computed from the following expression:

arctan 0: = 71"/4 + arctan (a -1)
0:+1

The subroutines for the seven functions were written by
G. R. Trimble, Jr., and they are contained in the IBM Tech
nical Newsletter No.9.

59

A.ppendix II. Floating Point
and Double Precision

FLOATING-POINT OPE RATIONS

The following operation codes can be used in floating-
point as well as in fixed-point operations:

RAU 60 reset add upper
RSU 61 reset subtract upper
AU 10 add upper
SU 11 subtract upper
STU 21 store upper
STL 20 store lower
MPL 19 multiply
DIVR 64 divide
BRNZU 44 branch on non-zero in the upper
BR - 46 branch on minus '

All of the coding rules that apply to these operations in fixed
point are applicable in floating point.

Since the operation codes are the same for both fixed
and floating-point operations, we use SPOP instructions to
tell the machine to start floating-point and to return to fixed
point operation. The special operation code 0081 means,
"Start floating-point operation" ; special operation code 0080
means, "Return to fixed-point operation". For example, if
the instructions in 0500-0525 had been executed in fixed
point and the next calculation in the program required the
floating-point mode of operation, we would write the follow
ing SPOP instruction to cause the series of instructions be
ginning in 0527 to be executed as floating-point instructions:

0526/ SPOP 69 0527 0081

In order to return to the fixed-point mode for the instructions
beginning in 0641, we would write another SPOP instruc
tion:

0640 I SPOP 69 0641 0080

The first instruction after entering or leaving the floating
point mode must be a reset instruction, i.e. RAU 60 or RSU
61.

All input, output, and red-tape (setting, stepping, and,

60

in general, terminating) instructions must be executed in
fixed-point operation. Since rounding is automatic in float
ing-point operations, the special operation for rounding is
not used in the floating-point mode. Block transfers can be
executed only in the fixed-point mode. Provisions have been
made for including in the floating-point mode the subrou
tines that compute functions.

Floating-point operations can be traced; their trace sheet
contains the same information as the trace sheet for fixed
point operation.

The average execution time for a floating-point operation
is 31/2 times the duration of the corresponding optimized
fixed-point operation.

Since the adjusted exponent of a floating-point number
(see p. 43) occupies only two digit positions in memory, an
exponent greater than 99 will cause the machine to stop. A
number with an adjusted exponent less than 01 will be rep
resented automatically as: 00 0000 0000.

As an example of a floating-point calculation, let us com
pute in floating point: (Ai + B i) -7- C i = Di for 50 values of
A, B, and C, with

At in 1301
A2 in 1302

Bl in 1401
B2 in 1402

Ar.o in 1350 Bao in 1450

The flow chart follows:

Enter

61

C1 in 1501
C2 in 1502

CM in 1550

Dl in 1601
D2 in 1602

Dao in 1650

Terminate

if i = 50

The program is coded as follows:

0500 SPOP 69 0501 0081 S tart fl. pt.

0501 RAU [60 1301 0502]
0502 AU [10 1401 0503] Compute
0503 DIVR [64 1501 0504] (A + B) -=- C = D
0504 STL [20 1601 0505]

0505 SPOP 69 0506 0080 Return to fixed pt.

0506 RAU 60 0501 0507
0507 SU 11 0600 0508 Terminate
0508 BRNZU 44 0509 0529

0509 RAU 60 0501 0510
0510 AU 10 0601 0511
0511 STU 21 0501 0512

0512 RAU 60 0502 0513
0513 AU 10 0601 0514
0514 STU 21 0502 0515

0515 RAU 60 0503 0516
Step i

0516 AU 10 0601 0517
0517 STU 21 0503 0518

0518 RAU 60 0504 0519
0519 AU 10 0601 0520
0520 STU 21 0504 0500

0521 RAU 60 0602
0522 STU 21 0501

0523 RAU 60 0603 0524
0524 STU 21 0502 0525

Set i
0525 RAU 60 0604 0526
0526 STU 21 0503 0527

0527 RAU 60 0605 0528
0528 STU 21 0504 0500

0529 STOP 01 0000 0000

0600 60 1350 0502
0601 00 0001 0000
0602 60 1301 0502
0603 10 1401 0503
0504 64 1501 0504
0605 20 1601 0505

62

CONVERSION SUBROUTINES

Special operation 0063 converts a block of fixed-point
data to floating-point data; special operation 0064 converts
a block of floating-point data to fixed-point data. The code
word, ex, is constructed as follows:

ex = xx xxxx xxxx
Nab

where N = total number of consecutive words to be con
verted

a = location of first word in the block to be converted
b (with 0063) = 50 minus the scale factor for the

block
b (with 0064) = the largest adjusted exponent in the

block; the machine will stop if an
adjusted exponent is greater than b.

As an example of the use of a conversion subroutine, let
us convert from fixed-point to floating-point form the follow
ing block of 36 words, Xi, stored in locations 0801-0836,

.4891627831

.0167832146

.0020743098

.0003700329

.0000143650

with the scale factor, X @) , on the coding sheet. The code
word, ex, is constructed as follows:

ex = 36 0801 0053

To make the conversion, we write the following instructions:

06001 RAU
0601 SPOP

60 L(a)
69 0602

0601
0063

When the subroutine is completed, the block of 36 words be
ginning in location 0801 will appear in memory as follows:

.4891627853

.1678321452

.2074309851

.3700329050

.1436500049

If we wished to convert this floating-point block of data

63

to fixed-point form, we would use the same a as the one
above, and we would write the same instructions as those
above except that the SPOP code would be 0064 instead of
0063. The converted data would duplicate the original fixed
point array, except that, at most, only eight digits of each
word would be retained.

DOUBLE-PRECISION SUBROUTINES

All of the basic operations that are used in floating-point
can also be used in the double-precision mode. The special
operation code 0082 means, "Start double-precision opera
tion", and special operation code 0080 again means, "Return
to fixed-point operation".

Since 20-digit numbers are used in double-precision
arithmetic, two cells are required for each number. If we
write the following instruction in double-precision operation,

05341 RAU 60 0843 0535

the high-order part of the number is in location 0843, and
the low-order part is in 0844.

64

Appendix III. Additiona'
Programming Techniques

SUMS OF PRODUCTS

Let us consider the following program for computing

sums of products, i.e. ~:=1 akbk'
10

Example 1. S = ~k=l akbk

a1 in 1200, a2 in 1201, ... ,a10 in 1209;

b1 in 1300, b2 in 1301, ... , blO in 1309; S in 1400.

Ent

0513
1 er

0507 l
Set k Step k

ak = a1 ak ~ ak+1

bk = b1 bk ~ bk+1

0517 1 0500 ~ 1
Set ~o = 0 Compute

I
akbk + ~k-l = ~k

0504 1
Terminate

0519 ! if k = 10

Stop Yes I No

I I
Sum Level k level

once per sum = 1 once per k = 10

0500 RAU [60 1200 0501]
Compute 0501 MPY [19 1300 0502]

0502 AU 10 1400 0503 (akbk + ~k-l)
0503 STU 21 1400 0504 = ~k

0504 RAU 60 0500 0505
Terminate 0505 SU 11 0600 0506

0506 BRNZU 44 0507 0519 if k = 10

65

0507 RAU 60 0500 0508
Step ak 0508 AU 10 0601 0509

0509 STU 21 0500 0510 ak ~ bk+1

0510 RAU 60 0501 0511 Step bk 0511 AU 10 0601 0512
0512 STU 21 0501 0500 bk ~ bk+1

0513 RAU 60 0602 0514 Set
0514 STU 21 0500 0515 ak = a 1

0515 RAU 60 0603 0516 Set
0516 STU 21 0501 0517 bk = b1

0517 RAU 60 0604 0518 Set
0518 STU 21 1400 0500 !o = 0

0519 STOP 01 0000 0000

0600 60 1209 0501
0601 00 0001 0000
0602 60 1200 0501
0603 19 1300 0502
0604 00 0000 0000

This problem is similar in form to the simple accumula-
tion problem in Chapter III. Both programs are two-level
basic forms, and the "red-tape" boxes (terminating, step-
ping, and setting boxes) are the same except that in this
problem there are two variable instructions to be set and
stepped instead of one. In the compute box there are now a
mUltiplication and an addition.

This example can also be thought of as a "vector times a
vector" multiplication. The rightmost or k level is the term
level, i.e. we go through it once for each term of the result-
ing element. The sum level is the element level, which we go
through once for a "vector by vector" mUltiplication.

"MATRIX TIMES VECTOR" MULTIPLICATION

The above program can be expanded to perform a
"matrix times a vector" mUltiplication by the addition of
another level to the left. The added level represents another
dimension that has been added to the "vector by vector"
mUltiplication problem. The program and coding for a
"matrix times vector" multiplication with the matrix stored
by columns are given below.

Example 2. "Matrix Times Vector" multiplication with
5 X 10 matrix stored by columns and a col
umn vector of 10 elements.

66

all a12 ••• a1 , 10

a21 a22 ••• az, 10

all in 1200
a:!l in 1201

alZ in 1205

ar.. 10 in 1249

Enter

0530 ~
Set i = 1

aik = alk

Cil = Cll

I

0534 ~
Stop

Vector level

or i level

0500 RAU
0501 MPY
0502 AU
0503 STU
0504 RAU
0505 SU

bll in 1300
bZl in 1301

b10 • 1 in 1309

0524 t
Step i

ail ~ ai+1,l

Cil ~ Ci+1,l

~ 1
Set k = 1

b kl = bu , aik = ail

~O = 0

I

0519 +
Store ~ in L (cid

0521 1
Terminate

if i = 5, Cil = C5l

Yes I No

~ L-
Element level

or i level

[60 1200
[19 1300
10 1299
21 1299

60 0501
11 0600

0506 BRNZU 44 0507

67

C5 , 10

Cll in 1400
CZl in 1401

Sin 1299

C5l in 1404

0507

Step k

aik ~ ai,k+1

b kl ~ b k+1, 1

0500 1
Compute

aikbkl + ~k-l = ~k

0504

Terminate

if k = 10, bkl = b lO , 1

Yes ., No'

I L

Term level

or k level

0501] Compute 0502]
0503 (aik bk1 + ~k-1)
0504 = ~k

0505 Terminate 0506
0519 if bk1 = b10 , 1

0507 RAU 60 0500 0508
Step aik 0508 AU 10 0609 0509

0509 STU 21 0500 0510 aik = ai, k+l

0510 RAU 60 0501 0511
Step bkl 0511 AU 10 0601 0512

0512 STU 21 0501 0500 bkl = bk+1,l

0513 RAU 60 0602 0514 Set
0514 STU 21 0501 0515 bk1 = b ll

0515 RAU 60 0603 0516 Set
0516 STU 21 0500 0517 a'ik = ail

0517 RAU 60 0604 0518 Set
0518 STU 21 1299 0500 ~o = 0

0519 RAU 60 1299 0520 Store C 0520 STU [21 1400 0521]

0521 RAU 60 0520 0522
Terminate 0522 SU 11 0605 0523

0523 BRNZU 44 0524 0534 if Cil = en

0524 RAU 60 0603 0525
Step ail 0525 AU 10 0601 0526

0526 STU 21 0603 0527 ail ~ ai+l, 1

0527 RAU 60 0520 0528
Step Cil 0528 AU 10 0601 0529

0529 STU 21 0520 0513 C'il ~ Ci+l, 1

0530 RAU 60 0607 0531 Set
0531 STU 21 0603 0532 aile = alle

0532 RAU 60 0608 0533 Set
0533 STU 21 0520 0513 Cil = Cll

0534 STOP 01 0000 0000

0600 19 1309 0502 Terminating constant, k level
0601 00 0001 0000 Stepping constant
0602 19 1300 0502 Setting constant, bkl

0603 [60 1200 0501] Variable setting constant, aile

0604 00 0000 0000 Zero setting constant
0605 21 1404 0521 Terminating constant, i level

0607 60 1200 0501 Setting constant, aik

0608 21 1400 0521 Setting constant, Cil

0609 00 0005 0000 Stepping constant

The rightmost or term level can also be called the k level; on

68

this level the loop is terminated on k and k is stepped. To the
left of the k level is the element or i level where we set or
initialize those instructions that vary with k; on this level
we also terminate on and step i.

You will note that the stepping constant in 0603 is itself
variable. The set box on the i level always starts a column
with k = 1, but i must also be stepped for each row. Instruc
tions 0524-0526 step the setting constant from the first ele
ment of one row to the first element of the next row. Here,
the stepping constant must be 1 because of the order in
which the elements are stored. The frequencies of the levels
are as follows:

Term level Once per term or once per k = 50
Element level Once per result element or once per i = 5
Vector level Once per result vector or once per j = 1

The order in which the variables are stored often affects
the program. For example, if the elements of the matrix
were stored by rows instead of columns, the flow chart would
appear as follows:

!
Enter Step i ~ ! Cil ~ Ci+1.l Step k

Set i i ! bkt ~ bk+1, 1

L(aid = L(a11) -1 Set k , l
Ci1 = Cll bkl = bll Step L (ail) by 1

I ~o = 0 ~
I Compute

t a ikbk1 + ~k-1 = ~k

Store ~ in L(Cil) ~
t ! Terminate

Stop Terminate if k = 10, bk1 = bk , 10

if i = 5, Cil = C51 Yes I No

Yes I No I l
LJ L

When the matrix elements are stored by rows, it is not nec
essary to set or step a'i1~ on the i level. However, since aik is
always stepped on the k level, we must allow for this step
ping by undersetting aik in the leftmost level.

69

MATRIX. ADDITION

There are cases where the order in which the data are
stored is of importance. For example, let us consider the fol
lowing problem: lij + Uij = hij, where i and j = 1, 2, ... , 10.
Both I and U are two-dimensional arrays of numbers, and we
must add an element of I to the corresponding element of u.
If both sets of numbers are stored in the same order, the
problem reduces to: Ii + Ui = hi where i = 1, 2, 3, ... , 100.
This is a one-dimensional problem and can be programmed
and coded in the following way.

Example 3. Sum of Planes
lij + Uij = h ij with i and j = 1, 2, ... , 10,
where I and U are stored in the same order.

In in 1200
112 in 1201

110,10 in 1299

Enter

0515 l
Set i

Ii = 11' Ui = Ul

0521

0500
0501
0502

hi = h1

I

~
Stop

RAU
AU
STU

[60
[10
[21

Un in 1300 hn in 1400
U12 in 1301 h12 in 1401

U10, 10 in 1399 h10 , 10 in 1499

0506

Step i

Ii ~ li+h Ui ~ UiH

hi ~ hiH

0500 t

1200
1300
1400

70

Compute

Ii + Ui = hi

0503

Terminate

if i = 100

Yes I No

I

0501]
0502]
0503]

l

Compute
Ii + Ui = hi

0503 RAU 60 0500 0504 Terminate 0504 SU 11 0600 0505
0505 BRNZU 44 0506 0521 iii = 100

0506 RAU 60 0500 0507 Step Ii 0507 AU 10 0601 0508
0508 STU 21 0500 0509 Ii ~ li+1

0509 RAU 60 0501 0510 Step Ui 0510 AU 10 0601 0511
0511 STU 21 0501 0512 Ui ~ Ui+l

0512 RAU 60 0502 0513 Step hi 0513 AU 10 0601 0514
0514 STU 21 0502 0500 hi ~ hi+1

0515 RAU 60 0602 0516 Set
0516 STU 21 0500 0517 li = 11

0517 RAU 60 0603 0518 Set
0518 STU 21 0501 0519 Ui = U1

0519 RAU 60 0604 0520 Set
0520 STU 21 0502 0500 hi = hl

0521 STOP 01 0000 0000

0600 60 1299 0501
0601 00 0001 0000
0602 60 1200 0501
0603 10 1300 0502
0604 21 1400 0503

The problem becomes more complex if the two sets of
numbers are stored differently. If I is stored by rows and U
is stored by columns, we have a two-dimensional problem and
another level must be added to the flow chart.

Example 4. Sum of Planes
lij + Uij = hij, where I andu are stored in
different orders.

111 in 1200 gl1 in 1300 hll in 1400
112 in 1201 g21 in 1301 h21 in 1401

11,10 in 1209 g10. 1 in 1309 h10. 1 in 1409
121 in 1210 g12 in 1310 h12 in 1410

71

Enter 0506 1
0526 ~ 0517 Stepi

Set lij = 111 Step the set of Iii ~ li+l, j

L(gii) =L(gll)-1 Iii ~ Ii, j+1

1 L (hi;) = L (hll) - 1 Step i term. const. 0509 !
Set i term. const. gij ~ gi+1, f

I 0515 ! h ij ~ hi+1, f

1 Setlif = 11j 0500

Compute

/ij + gij = hi}

L 0534 0523

T Stop Terminate 0503

if j = 10, g10, j = g1O, 10 Terminate

Yes I No if i = 10, gij = glO, J

f l Yes I No

I l-.
0500 RAU [60 1200 0501] Compute
0501 AU [10 1300 0502]
0502 STU [21 1400 0503] fij + Yij = h ij

0503 RAU 60 0501 0504 Terminate if
0504 AU 11 0600 0505 i = 10
0505 BRNZU 44 0506 0523 Yij = g10, j

0506 RAU 60 0500 0507
Stepfij 0507 AU 10 0601 0508

0508 STU 21 0500 0509 fij ~ fi+1, j

0509 RAU 60 0501 0510 Step Uij 0510 AU 10 0602 0511
0511 STU 21 0501 0512 Yij ~ Ui+1, j

0512 RAU 60 0502 0513 Step h ij 0513 AU 10 0602 0514
0514 STU 21 0502 0500 h ij ~ hi+l, j

0515 RAU 60 0603 0516- Set
0516 STU 21 0500 0509 fij = f1j

0517 RAU 60 0603 0518 Step (set) 0518 AU 10 0602 0519
0519 STU 21 0603 0520 f1j ~ f1, j+1

72

0520 RAU 60 0600 0521 Step
0521 AU 10 0601 0522 term. const.
0522 STU 21 0600 0515 on i level

0523 RAU 60 0501 0524
Terminate 0524 SU 11 0604 0525

0525 BRNZU 44 0517 0534 if Y10, j = Y10, 10

0526 RAU 60 0605 0527 Set
0527 STU 21 0501 0528 L (Yij) = L (g11) -1

0528 RAU 60 0606 0529 Set
0529 STU 21 0502 0530 L(hij) =L(hll)-l

0530 RAU 60 0607 0531 Set
0531 STU 21 0603 0532 Ilj = 111

0532 RAU 60 0608 0533 Set i-level
0533 STU 21 0600 0515 term. const.

0534 STOP 01 0000 0000

0600 [10 1309 0502] i-level term. const.
0601 00 0010 0000 Step. const. for Iij
0602 00 0001 0000 Step. const. for Yij and h ij

0603 [60 1200 0501] Set. const. for lij = 11j
0604 10 1399 0502 j-Ievel term. con st.
0605 10 1299 0502 Set.const. for Yij
0606 21 1399 0503 Set. const. for h ij
0607 60 1200 0501 Set. const. for lij = 111
0608 10 1309 0502 Set for i-level term. const.

The locations of the Y and h elements are continuously
stepped by one, while the location of the I elements must be
stepped by 10 on the i level and reset to the first element of a
column on the j level. Compare this example with the "matrix
times vector" mUltiplication where the matrix is stored by
rows.

GROUP STEPPING

The variable instructions in the previous examples have
been individually set and stepped. In all of the examples in
this chapter the difference between any two of the variable
instructions is always a constant. For instance, in Example 3
the difference between the instruction in 0501 and the in
struction in 0500 is always (49 9899 9999 -), and the dif
ference between the instruction in 0502 and the instruction
in 0501 is always (11 0100 0001). This constant difference
permits the second two variable instructions --to be "gener-

73

ated" or "constructed" from the first. Generating an in
struction, which is equivalent to stepping, is called "group
stepping", and the instruction from which the other variable
instructions are generated is called the "key instruction".
The problem in Example 3 has been reprogrammed to use
the group stepping in the following example.

Example 5. Sum of Planes
lij + Uij = h ij with i and j = 1, 2, ... , 10
I and U are stored in the same order, and
group stepping is used.

111 in 1200
112 in 1201

110, 10 in 1299

Enter

0513 ~
Set

key instruction

0500
0501
0502

0514

RAU
AU
STU

I

l
Stop

[60
[10
[21

Ull in 1300
U12 in 1301

U10, 10 in 1399

0506 l
Step i, step

key instruction

0508 l 1
Store

key instruction

0509 !
Generate other

var. instructions

0500 l
Compute

Ii + Ui = hi

0503 1
Terminate

ifi = 100

Yes I No

I I

hll in·1400
h12 in 1401

hlO, 10 in 1499

1200
1300
1400

0501]
0502] > ~1 Compute
0503] > ~2 Ii +U'i = hi

74

0503 RAU 60 0500 0504
Terminate 0504 SU 11 0600 0505

0505 BRNZU 44 0506 0514 if i= 100

0506 RAU 60 0500 0507 Step L(fd
0507 AU 10 0601 0508 L (f i) ~ L (f i+l)

0508 STU 21 0500 0509 Store L(fi)

0509 AU 10 0602 0510 Generate
0510 STU 21 0501 0511 L(gi)

0511 AU 10 0603 0512 Generate
0512 STU 21 0502 0500 L(h·i)

0513 RAU 60 0604 0508 Set li = /1
0514 STOP 01 0000 0000

0600 60 1299 0501
0601 00 0001 0000
0602 49 9899 9999- ~1

0603 11 0100 0001 ~:l

0604 60 1200 0501

Note that by saving two instructions on the i level, group
stepping has saved two storage locations; with many vari-
able instructions and a high frequency of execution of the
level, the saving in time can be worthwhile.

By using the same "store" instruction (0508) for both
setting and stepping the key instruction, we can save an-
other storage location, but no time is saved. Obviously, this
trick is not essential in the "group stepping" procedure.

TRIANGULAR ARRAYS

Another interesting problem is one that involves a tri
angular array of numbers, which can be represented by a
three-level basic form. Let us assume that we have a tri
angular array of numbers in the following locations:

1200 1201
1206

1202
1207
1211

1203
1208
1212
1215

1204
1209
1213
1216
1218

1205
1210
1214
1217
1219
1220

Let us operate on these numbers, a row at a time, in the
compute box on the rightmost level. For instance, we may

75

use the instruction, 60 1200 xxxx. If this level is to be ter
minated at the end of· every row, the terminating constant
must first read, "60 1205 xxxx", then "60 1210 xxxx", etc.
At the end of the first row th~ terminating constant must
be stepped by 5, at the end of the second row by 4, and so
on. In order to step the terminating constant, the stepping
constant itself must be stepped and set. The following flow
chart represents this procedure.

j
Enter Step

1 t ~
Set stepping Subtract 1 from

Step
constant; set stepping constant;

• ! terminating step terminating

constant constant

I t I
Compute

Set I
I Terminate

l + if end of row

Stop Terminate Yes I No

if last row ~ I
Yes J No

I L-

76

