echnical Newsletter

APPLIED SCIENCE DIVISION

A COMPLETE FLOATING-DECIMAL INTERPRETIVE SYSTEM

FOR THE IBM 650 MAGNETIC DRUM CALCULATOR

V. M. Wolontis
Bell Telephone Laboratories, Inc.
Murray Hill, New Jersey

ABSTRACT

This report describes an interpretive system which transforms the 650 into
a three-address, floating-decimal, general-purpose computer, primarily suited
for scientific and engineering calculations. The system is complete in the sense
that all mathematical, logical and input-output operations normally called for in
such calculations can be performed within the system, i.e., without reference to
the basic operation codes of the 650. The guiding principles in designing the sys-
tem have been ease of use, as defined in the introduction, high speed of arith-
metic and frequently used logical operations and full accuracy and range for the
elementary transcendental functions.

The report serves a dual purpose. It presents the external characteristics
of the interpretive system to the potential user by means of detailed explanations
accompanied by illustrative examples, assuming no previous familiarity with
internally programmed machines. It also describes the internal structure of the
system to the professional designer of such systems, enabling him to modify it
to suit his particular needs or to borrow ideas or building blocks he may find
useful.

The system is available in punched card form to anyone who requests it.

CONTENTS

Note: The material of immediate concern to those who wish to learn how to
program problems in the interpretive system is contained in sections II-X. Sec-
tion I is devoted to general considerations and may be bypassed. Section XI deals
with the internal structure of the system, primarily for the benefit of those inter-
ested in the design of interpretive systems, but the discussion of possible mod-
ifications in Sec. XI.l. and the contents of Sec. XI.2. and XI. 3. should be of wider
interest and do not require familiarity with the basic language of the 650.

The experienced programmer may absorb the essentials of the system by
reading the definitions of the operations. Page references to them are given in
the summary of operation codes.

Page
I. INTRODUCTION 4
I. 1. General Design Considerations 4
I. 2. Changes and Additions 6
II. GENERAL INFORMATION 7
II. 1. The 650 - 7
II. 2. The Interpretive System:
Storage; Data and Instruction Form 7
III. MATHEMATICAL OPERATIONS 10
II1. 1. Arithmetic Operations 7 10
I1I1. 2. Special Functions 10
III. 3. MOVE 000 11
I11. 4. An Example 12
IV. LOGICAL OPERATIONS 13
Iv. 1. Transfer Operations 13
Iv. 2. Loop Operations 15
Iv. 3. Address Change Operations 18
1V. 4. MOVE : 23
V. INPUT-OUTPUT OPERATIONS 25
V.1, Card Form 25

VI.

VII.

VIII.

IX.

XI.

V. 2.
V. 3.
V. 4.

CONTENTS (continued)

Punching
Loading
Reading

PROGRAM TESTING

VI. 1.
VI. 2.
VI. 3.

Memory Print-Out
Tracing
Console Testing

SUMMARY OF OPERATION CODES

STOPS

EXECUTION TIMES

X. 1.
X. 2.

X.

3.

. SPECIAL TOPICS IN PROGRAMMING

Subroutines; Translation

Unnormalized Input; Transition Between
Floating - and Fixed-Decimal Form
Examples

INTERNAL STRUCTURE OF THE SYSTEM

XI.
XI.
XI.
XI.
XI.
XI.
XI.

N ONOt W

Detailed Design Considerations

Related Systems

Numerical Methods

Control Panel Wiring for the Read-Punch Unit
Control Panel Wiring for the Tabulator
System L.oading

Programs

Page

25
27
29

31
31
32
34
36
37
40
43

43

44
44

50

50
55
55
57
58
61
63

I INTRODUCTION

1.1, GENERAL DESIGN CONSIDERATIONS

The use of most existing computing devices whose degree of automatic per-
formance substantially exceeds that of a desk calculator entails certain problems
not encountered in desk computing. To cope with these problems, one may incor-
porate additional circuitry into the machine--this, indeed, appears to be the trend
in recently announced commercially available machines--or, alternatively, one
may program, in terms of the basic language of the machine, a system or super-
language in terms of which the general user will program his problems. The user
may consider the machine and the super-language as one entity, and no knowledge
of the basic machine language is required of him. Before actual calculation, the
programmer's instructions are translated by the machine into the basic language.

If this translation or interpretation takes place each time an instruction is to be
executed, rather than once for all at the beginning of a problem, the super-language
is referred to as an interpretive language or system. Limitations in storage capac-
ity may necessitate the choice of an interpretive system rather than a system of

the once-for-all type in the case of most small or medium-sized computers.

The designers of an interpretive system are faced with a very large number
of decisions. To provide a basis of motivation for these decisions, it is convenient
to list here, in somewhat arbitrary order, some of the above-mentioned problems
which the present interpretive system proposes to solve. All of them may funda-
mentally be measured in terms of total time spent by a programmer in learning to
use the machine and in using it on a specific problem. In this sense, the ''ease of
use'' referred to in the abstract above is implicitly defined by the list that follows.
The price paid for the saving of programmer time is, of course, to be found in
substantially reduced speed of operation.

A. Scaling

The storage medium--paper--normally used in desk computing places no
practical restriction on the size of numbers or on the location of decimal points.
In using a computer that automatically stores intermediate results in registers
of fixed length and with the position of the decimal point fixed in advance, a great
deal of time must in most cases be spent on estimating the range of all intermediate
results to prevent errors due to overflow. The well-known way of avoiding this
at the expense of a very substantial increase in the internal complexity of the arith-
metic operations is to represent each non-zero number in floating-decimal form,
i.e., as a signed quantity whose absolute value lies in a fixed range, accompanied
by an exponent of 10 or decimal point indicator.

B. Length and Complexity of the Program

Floating decimal arithmetic and frequently needed special functions could

be incorporated into a program written in the basic machine language in the form
of a set of subroutines reached by a two-way transfer of control, (''calling se-
quence'' or '"basic linkage'') and there are indeed problems for which this is the
best choice. In many cases--particularly in the case of relatively short prob-
lems where the results are needed quickly--a further reduction of the program-
ming effort is desirable. This may be achieved by combining under single oper-
ation codes, in an interpretive language, groups of steps in the basic language
needed for performing frequently occurring tasks. For example, a single instruc-
tion in which three locations are specified may be used for adding two arbitrarily
located numbers and storing the result or a block of information of any length
may be punched on cards as a result of a single instruction. In particular, the
task of repeating a calculation a specified number of times, each time with appro-
priate modifications, must be made easy, and the interpretive system desc ribed
in this report goes as far as is believed possible in this direction by providing an
order ("LOOP!') with which simple cases of this task can be handled by a single
instruction.

To preserve the simplicity gained by introducing an interpretive system, the
system must be made complete or self contained so that' most problems can be
conveniently programmed without reference to two different systems of operation
codes, although, of course, leaving and re-entering the interpretive system should
be made possible in order to provide the experienced programmer with complete
flexibility.

C. Restrictions

In desk computing, one cannot fail to notice if the argument for which a func-
tion value is to be found in a table falls outside the range covered by the table or
if in transcribing a set of numbers from one area on a piece of paper to another,
overlapping area, some of the numbers to be transcribed are erased before tran-
scription. A machine will avoid or detect such blunders only if programmed to do
so, and as much as possible of this programming should be included in the inter-
pretive system. For example, it is desirable that all mathematical functions in-
cluded in the system be available for the full range of argument consistent with their
definition and with the limitations imposed by the machine itself and that they are
computed to the full accuracy of the number system used. Error stops indicating
violations of unavoidable restrictions should be included to the fullest extent that
space limitations permit.

D. Program Testing

The usefulness of a general-purpose computer or interpretive system depends
decisively on the methods provided for testing (*debugging'') new programs--for
definitions and details, see Sec. VI. In the case of an interpretive system whose
operating speed*is only one order of magnitude above the speed of card punching,
testing by means of a tracing routine included in the system compares favorably to

console testing, at least in the case of programmers whose familiarity with the
machine is limited. Either of these methods is thought of as a tool normally used
only when memory print-outs have been found insufficient. To facilitate testing

by any of the methods mentioned and to keep programming as concrete as possible,
the system described in this report assumes that the actual machine location of

each instruction and stored number is assigned by the programmer. The system
may, of course, be used in conjunction with regional or symbolic assembly programs.

I.2. CHANGES AND ADDITIONS

Numerous minor changes suggest themselves when the system is viewed in
the light of the experience gained in designing it; some of them are discussed in
detail at the end of the report., Corrections of errors not yet revealed must be ex-
pected. External changes and additions will undoubtedly be proposed after a period
of use. The present system should, therefore, be considered primarily as a first
version which each user may consider changing to better suit his needs. Comments
and suggestions on both internal and external aspects of the system will be greatly
appreciated. '

II GENERAL INFORMATION

II.1. THE 650

The IBM 650 is an electronic computer whose basic storage consists of
a magnetic drum capable of holding 2000 words (numbers) of ten decimal digits
and sign. The machine is internally programmed, 'i. e., the program of instruc-
tions which the machine is expected to follow is kept on the drum, and the ma---
chine automatically reads one instruction at a time from the drum, executes it,
reads another instruction, and so on. Initially, the program is loaded onto the
drum from punched cards but each instruction is loaded only once, although the
machine may be expected to execute it many times in the course of a problem.
Special orders are inserted into the program to cause repetition of prescribed
sections the desired number of times. In many cases, the instructions exec-
uted by the machine are changed or modified under control of the program between
successive executions. This ability to modify its own instructions is one of the
distinguishing characteristics of an internally programmed machine.

In the basic model of the 650, all answers are punched by the machine into
cards, which may be printed on a separate tabulator.

The 650 is a general-purpose, fixed-decimal machine and any programmer
may, with the aid of a detailed manual published by IBM, learn to use it as such.
There are many large problems and many problems of a data processing nature
for which fixed-decimal operation is definitely indicated, and the programmer is
asked to give serious consideration to this alternative for all but the very smallest
problems, since the gain in machine time over floating-decimal operation (ex-
plained below) may be as high as 10:1. The machine-language programmer may
relieve himself of many tasks by using the interpretive system for loading, punch-
ing, calculation of special functions, etc., provided 1000 storage locations suffice
for his problem. (See TR OUT, Sec. IV.1)

This report describes a system which enables the programmer to use the
650 as a floating-decimal machine, without being familiar with the fixed-decimal
mode of operation. Beginning with the next section, all statements will concern
the system rather than the 650 itself, but it should be borne in mind that if any-
thing in the system appears restrictive from the viewpoint of a particular appli-
cation, --storage capacity, speed, card form, word length, etc.--total or partial
use of basic 650 coding may be the answer.

I1I.2. THE INTERPRETIVE SYSTEM: STORAGE; DATA AND INSTRUCTION FORM
When the interpretive system is in use 999 ten-digit storage locations,
numbered 001-999, are unrestrictedly available to the programmer for storing

instructions and data. The location 000 has a special use (''previous result'')
which will be discussed below.

T

Throughout the system, numbers upon which mathematical operations are
performed are stored and used in so-called (normalized) floating-decimal form,
which will be defined as follows: The number zero is written as ten zeros with a
plus sign (''machine zero'). Any number A other than zero is expressed as

A=t a . 107
where 1€ A; £ 10 and -50€a;£ 49. In the machine, A is written as the pair
* (A, a), wherea=aj+ 50 and A] is an eight-digit number with seven decimal
places. The "machine exponent' a is a two-digit (positive) integer located at the
right end of the number. Non-zero numbers A not in the range 10-50 £ | &1<1050
cannot be correctly used in the machine, and some of the mathematical operations
will give an error stop if the result would fall outside this range (see STOPS). Num-
bers loaded into the machine must also be in the form prescribed above, unless
special precautions are taken (see Sec. X 2).

The system instructions are signed ten-digit numbers of the following
form:

i 0, AorOz B C

Here, 0; is a one-digit operation code and B and C are three-digit addresses. The
three-digit quantity "A or 02” is interpreted as an address A if 04 # 0 and as an
operation code 0p if 01 = 0. The sign of the instruction is used in connection with
the LOOP order (see LOOP OPERATIONS). The only difference between the mu-
tually exclusive 01 and 0p operations is that all operations which require three
addresses have been designated 01, all others, 02.

An example will illustrate how the addresses are used in a program: To add
the number stored in register 200 to the number stored in register 201 and store
the result in 500, the operation code 01 = 1 (ADD) is used and the instruction reads:
1 200 201 500. To take the square root of the number in 200 and store the result
in 500, the 02~operation 02 = 300 (SQRT) is used: 0 300 200 500. As will be shown
in later sections, it is also possible to call out an instruction stored in memory
and operate upon it, e.g., increase one of the addresses in it. In storage, no dis-
tinction is made between instructions and data so that the programmer is free to
use any memory location for storing an instruction or a number as he sees fit.

To facilitate explanations, the following notation will be used: The ten-digit
quantity whose storage location has the address A_will be denoted by A; anal-
ogously, B will denote the contents of location B. C denotes the result of a calcula-
tion about to be stored in location C. —

In addition to being stored at C, the result C of any mathematical operation
(i. e., arithmetic operations or special functions) and of MOVE 000 and CONS
(see READING) is automatically stored in the special location 000. If this result
is needed .on the next step, (or, more generally, before it has been replaced by
the result of a subsequent mathematical operation or MOVE 000 or CONS) calling
it out by using 000 as an A-address will reduce the execution time in the case of

-8-

the arithmetic operations. Also, time will be saved in any mathematical operation
by using 000 as a C-address when C will be needed only on the next step. Execu-
tion times are discussed in detail in a later section, but it should be emphasized
that timing considerations only affect the running time of a problem, never the
correctness of results. All locations are accessible at any time.

Special addresses for obtaining frequently needed numbers, such as, 0 and
1, are not provided by the system. The programmer should load such numbers
into locations of his own choosing.

III MATHEMATICAL OPERATIONS

III.1. ARITHMETIC OPERATIONS

The operations will be introduced in an order chosen to facilitate the learn-
ing process. Later, a concise summary of all operation codes will be given.
Alphabetic operation codes are listed in addition to the numerical ones merely to
facilitate programming; they are not introduced into the 650 and need not be used
at-all. '

The result of each arithmetic operation is rounded. If the result is zero,
a machine zero is given, i.e., the machine exponent will be 00. An error stop
occurs if the result of a multiplication or division would fall outside the range of
the floating-decimal number representation; another error stop detects attempts
to divide by zero (see STOPS).

A list of the arithmetic operations follows:

Numer, Alpha.
code code Function
0; =1 ADD Add (in floating-decimal form) the num-
' ber A stored at A to the number B
stored at B, store the result C at C
i and 000. Abbreviated:
A+B =C
0; = 2 SUB Subtract: A -B = C
0, = 3 * MPY Multiply: A . B = C
0 = 4 DIV Divide: A/B=C
0, =5 NGMPY Multiply negatively: -A . B = G

III. 2. SPECIAL FUNCTIONS

The system is intended to give eight-digit accuracy (i.e., an error less than
1 in the eighth digit) in computing the special functions included whenever the input
makes this accuracy possible. For trigonometric functions of an argument exceed-
ing one revolution and for logarithms of numbers near 1, loss of accuracy follows
from the mathematical properties of the respective functions and stops (which may
be bypassed by the setting of a console switch) are provided when this loss exceeds
two digits. For small values of the argument, where an eight-digit, fixed-decimal
representation 'of the sine or arc tangent would contain leading zeros, the floating-
decimal representation would normally introduce meaningless digits at the right

-10-

end. To reduce this nuisance to a tolerable level and also make possible trig-
onometric calculations with extremely small arguments, the formulas sin x = x
and arc tan x = x are used for 1 x\{ .0025 and |x{< .00l, respectively. Those
interested will find the methods of computing the special functions described in
Section XI. 3.

Aside from the limitations imposed by the above mentioned inherent loss
of accuracy and by the floating -decimal representation of the result, no restric-
tions apply to the natural range of the argument for the special functions. Error
stops will prevent attempts to take the square root of a negative number or the
logarithm of a non-positive number.

The special functions {(or, more precisely, elementary transcendental
functions) are:

Numer. Alpha. , Function

0, = 300 SQRT VE=¢C

0, = 301 EXP E B =C

0, = 302 LOG E log, B = C

0, = 303 SIN R sin B = C, B in radians

0, = 304 COS R cos B = C, B in radians

0, = 305 ART R arc tan B = G, C in radians, |CIK /2
0, = 350 ABS Bl = T

0, = 351 EXP 10 10B = G

0, = 352 LOG 10 logjgB = C

02 = 353 SIN D | sinB = G, B in degrees

0, = 354 COS D cos B = C, Bin degrees

02 = 355 ART D arc tan B = G, C in degrees, {cl< 90

Subdivisions of a degree are expressed decimally, not in minutes and sec-
onds.

I11. 3. MOVE 000

In many cases (particularly in connection with the use of subroutines) it may

-11-

be convenient to be able to call out a number B from B and deposit it in C, as
well as in 000, without the time-consuming use of a floating-decimal arithmetic
operation. This is accomplished by the logical operation 0. = 9 ("MOVE") with
A= 000. The normal use of MOVE with A # 000 is described in Sec. IV.4.

111. 4. AN EXAMPLE

For the benefit of anyone with no previous computer experience, a simple
example illustrating the use of the mathematical operations will be inserted here.
Suppose that, as a part of a program which is assumed to be already on the drum,
it is desired to evaluate the function

f(x) = sin X

J 1+ e“X3

Here, x in radians is assumed to be in storage register 500 and the constant 1 in
600. The quantity e-X3 is to be stored in 501, and f(x) in 502. A program might
look as follows:

Alpha. 01 A or 02 B C Comments

MPY 3 500 500 000 x2

NGMPY 5 000 500 000 =3

EXP E 0 301 , 000 501 e'x3, store in 501

ADD 1 000 600 000 14 e"x3

SQRT 0 300 000 400 /14 e"X>, store
temporarily

SIN R 0 303 500 000 sin x

DIV 4 000 400 502 f(x), store in 502

The extensive use of the ''previous result" address, 000, is worth noting.

-12-

IV LOGICAL OPERATIONS

IV.1l. TRANSFER OPERATIONS

Suppose the machine has been instructed (see LOADING) to begin a program
by executing the instruction stored in, say, location 10l1. When this execution is
completed, the machine will automatically execute instruction 102, then 103, etc.,
until told by the program to do otherwise. Operations whose primary function is
to influence either the order in which instructions are executed by the machine or
the selection of stored data upon which the instructions make the machine operate
will be called logical operations. A simple example of such an operation is 0; =
203, "Transfer Control'. If in the sequence 101, 102, 103 above, instruction 103
should read "TR 0 203 000 080", the next instruction executed by the machine would
be 080 instead of 104. This may be expressed by saying that "control was trans-
ferred to 080", The B-address was ignored in this case. The transfer of control
may be made to depend on the result of calculations (mathematical or logical) in
which case a ''conditional transfer' is said to occur. Logical operations--con-
ditional or unconditional--are needed whenever several blocks of instructions,
located on various parts of the drum, are to be tied together to form a program,
whenever it is desired to repeat a calculation several times, etc.

For simplicity in grouping, the following list of transfer operations includes
two (UNC STOP and NOOP) whose transfer function is of a degenerate nature. In
a first reading, it may be advantageous to omit the TR SUBR and TR OUT operations.

Numer. Alpha. Function

0, = 000 UNC STOP Stop unconditionally. The machine
stops regardless of the setting of
console switches (see CONSOLE)
and displays 9999 on the address
lights and B on the display lights.
This operation should be used only
where it is intended to discontinue
the execution of the program, since
a continuation of the program cannot
be effected by a simple depression
of the PROGRAM START key (see
STOPS). The C-address is ignored
but should be filled, e.g., with zeros
(see LOADING).

0, = 200 COND STOP Stop conditionally and transfer. The
machine stops if the PROGRAMMED
STOP switch on the console is in
the STOP position. The number
1120 is displayed on the address

-13-

Numer. Alpha. Function

lights and B on the display lights.
When the PROGRAM START key

is depressed, control is trans-
ferred to C. If the PROGRAMMED
STOP switch is in the RUN position,
control is transferred to C with-
out stopping.

Caution: If the PROGRAMMED
STOP switch is on RUN, the stops
for loss of accuracy in sine, co-
sine and logarithm and the stop in
the CONS operation will not occur.

This operation may be used for stopping at check points in the early running
stages of a problem, with the option of avoiding the stops during later runs.

0, = 201 TR SGN Transfer on sign. Control is trans-
ferred to C if the result of the last
mathematical operation or MOVE
000 or CONS is negative, to B if
it is non-negative. (i.e., zero is
regarded as having a plus sign).

0, = 202 TR EXP Transfer on exponent. The exponent,
' c, of the result of the last mathe-
matical operation or MOVE 000 or
CONS is compared to B (the leading
digit of B should be 0). Control is
transferredto Cif ¢) B, If c< B,
control proceeds to the next instruc-
tion.

This operation is particularly suited for the summation of series where terms
are to be added until they have a prescribed number (50 - B) of leading zeros. For
example, in order to return to instruction 080 only as long as the absolute value of
the previous result is . 0001 or greater, one would write "TR EXP 0 202 046 080",
This saves a time-consuming floating subtraction preceding the test. The TR EXP
operation is also intended to take the place of the TR ZERO operation found in most
systems. Due to the accumulation of small errors during a calculation, it is unwise
in most cases to expect a result to be exactly zero to eight figures; here a TR EXP
with a suitably chosen B may prevent a never-ending repetition of a part of a program.

02 = 203 TR Transfer. Control is transferred to
C, i.e., the next instruction exe-

-14-

Numer. Alpha. Function

cut_eci will be the one stored at C.
The B address is ignored but
should be filled, e.g., with zeros.

0, = 204 TR SUBR Transfer to subroutine. The C-
address of the instruction located
at C is set equal to B, whereupon
control is transferred to C. The
sign of the instruction at C is made
positive. (For an elucidation and
applications see SUBROUTINES.)

0, = 205 TR OUT Transfer out. Control is transferred
to C and the instruction stored there
is executed in the basic language of
the machine (i. e., outside the inter-
pretive system). When an instruc-
tion address 1095 is given in the
basic language, control is returned
to the interpretive system beginning
at the instruction following the TR
OUT. The B-address of the TR OUT
instruction is ignored but should be
filled, e.g., with zeros. The pro-
grammer in basic language must be
careful not to use locations above 999,
which are occupied by the interpretive
system.

0, = 454 NOOP - No operation. Control proceeds to
the next instruction. The B- and
C-addresses are ignored but should
be filled, e.g., with zeros.

This operation is likely to occur in connection with tracing (see TRACING,
particularly the ST TR ERAS operation) or when a superfluous instruction has
been deleted from a program.

Iv. 2. LOOP OPERATIONS

A highly repetitive character is required of any problem to be economically
handled on an automatic computer. In certain instances, such as Newton's iteration
procedure for the solution of equations, a repetitive process or 'loop' is con-
veniently programmed, merely using conditional transfer operations. In many cases,
however, some of the instructions to be repeated must be slightly modified in a

-15-

systematic way before each new repetition. For example, in the evaluation of a
linear expression'y a; x; with the a;j and the x; stored in blocks of consecutive
i=1
locations, the addresses of a; and x; must be increased by 1 each time a new term
is to be computed. To facilitate programming of this kind, the system provides
two methods of so-called address modification. The simpler--but less general--
of these methods employs a special counter called the loop box, which is stored
in a location normally inaccessible to the programmer. If an instruction carries
a minus sign, the current contents of the loop box will be added to the instruction
(in fixed-decimal arithmetic and without regard to the sign) before it is executed.
If, for example, the instruction - L 531 600 901 is given and the loop box contains
+ 0 009 000 009, the instruction actually executed by the machine would read 1 540
600 910. The original instruction remains unchanged in its storage location. At
the end of a calculation, an 0, instruction called LOOP enables the programmer
to increase the contents of the loop box by 1 in one or several address positions and
to transfer control back to the beginning of the calculation. Hence, the calculation
may be carried out repeatedly, each time with different addresses used in the exe-
cution of instructions with minus signs. A test provision included in the LOOP order
stops the repetition after a specified number of executions and resets the loop box
to zero for future use. An example will be given after the following list of LOOP
operations.

Numer. Alpha. Function

0, = 100 LOOP A Loop on A. The contents of the
loop box are increased by 0 001
000 000. In other words, the A-
segment of the loop box is in-
creased by 1. After the increase,
the A-segment of the loop box is
compared to the B-address of the
LOOP instruction. If the A-seg-
ment is less than B, control is
transferred to C. If the A-seg-
ment is equal to B, (or greater,
which will never be the case in
normal use) the loop box is reset
to zero and control proceeds to
the next instruction.

0, = 010 LOOP B Loop on B. Analogous to LOOP A,
with the B-segment of the loop

box now being increased and com-
pared to the B-address of the LOOP
instruction.

0‘2 = 001 LOOP C Loop on C. Analogous to LOOP
A, with the C-segment of the
loop box being increased and
compared to B.

-16-

Numer. Alpha. Function

0, = 110 LOOP AB Loop on A and B. Analogous to
LOOP A. The A- and B-segments
of the loop box are increased by
1 and the A-segment is compared

to B,

0, = 101 LOOP AC Loop on A and C. Analogous.

0, = 011 LOOP BC Loop on B and C. Analogous. The
B-segment is used for the com-
parison.

0, = 111 LOOP ABC Loop on A, B and C. Analogous.
The A-segment is used for the
comparison.

To illustrate the use of a LOOP order, consider the evaluation of the linear

expression L(x)= %) a; x;, where the a, and the x; are stored in memory. In
i=1

choosing storage locations for numbers, it is wise to plan in advance how they are
to be used in the program. In this case, since the a; and the x, are to be reached
using the LOOP operation, it is advantageous to store them in blocks of consecutive
locations, say the a; in 800+ i and the x; in 900+ i, (i = 1,2, ..., 20). Suppose
L(x) is to be stored in 700. For simplicity, assume that register 700 contains zero
at the beginning of the calculation and that the loop box has been reset. The entire
program for this calculation might be written as follows:

Instr. No. Alpha. Sign. 0y A or 02 B C
101 MPY — 3 801 901 000
102 ADD + 1 000 700 700
103 LOOP AB -+ 0 110 020 101
104 Next instruction in the problem.

Note that the B-address of the LOOP order simply indicates the number of times
the arithmetic calculation is to be performed, including the first time when the
addresses are actually unmodified (modified by adding zero). The practice of
starting the instruction numbering at, e.g., 101, rather than 001 facilitates later
additions to the beginning of a program.

The loop box is automatically reset at the beginning of a new problem (see
LOADING), and whenever a transfer out of a loop is effected by a loop order (as
stated in the definitions above). Hence, the resetting of the loop box need not
concern the programmer under normal conditions.. If the need for resetting the
loop box should arise, however, this is easily done by giving, e.g., the order
LOOP A with the B-address 000. According to the definition of LOOP A, this will
cause control to proceed to the next instruction with a resetting of the loop box.

-17-

The C-address is irrelevant in this case. This situation would arise if control
were transferred out of a loop in the middle of it by one of the conditional transfer
operations.

It is worth observing that a LOOP operation may be advantageously used in
some cases where address modification is not involved, simply to repeat a sequence
of steps a prescribed number of times, e.g., each time adding a fixed increment to
a parameter. In such a case, any one of the loop orders could be chosen, (see
EXECUTION TIMES, however) and no negative instructions would occur.

The advantages of the loop-box method are its simplicity and high speed and
the fact that the original instructions remain unchanged in memory. It is limited
by the fact that there is only one loop box and hence, all instructions to be modified
are modified in the same way. To handle situations more complicated than this,
the system provides a set of operations described in the next section.

1V. 3. ADDRESS CHANGE OPERATIONS

Many problems can be completely programmed without the use of address
change operations, and for someone approaching the field of internal programming
for the first time, it might be advantageous to ignore this section until the need
for more general logical operations arises.

The functions of the address change operations are: (a) To increase or
decrease a designated address of an instruction in storage by any given amount;
(b) To set such an address to a given value (without reference to its previous value);
and (c) To transfer control as a result of comparing such an address to a given num-
ber.

There are nine 02-operations among the address change operations. In each
of these, the B-address gives the location of the instruction (B) to be changed and
the C-address is the amount of change. For example, suppose the instruction 0
600 750 005 (using the operation 0, = 600, ADD A) is given and suppose location
750 contains the instruction 1 320 400 000. Then the A-address, 320, of this in-
struction will be increased by 005 and the resulting instruction 1 325 400 000 stored
back in 750. Similarly, if 0 050 750 333 were given, (using 0, = 050, SET B) the
instruction in 750 would be changed to read 1 320 333 000. In brief:

Numer. Alpha. Function

0, = 500 SET A — . Set the A-address.__ The A-address
of the instruction (B) specified

by B is set equal to C.

2

02 = 050 SET B Set the B-address. The B-address
of the instruction (B) specified by
B is set equal to C.

02 = 005 SET C Set the C-address. The C-address
of the instruction (B) specified by
B is set equal to C.

-1R.

Numer. Alpha. Function

0z = 600 ADD A Add to the A-address. The A-
address of the instruction (B)
specified by B is increased by
C.

0, = 060 ADD B Add to the B-address. The B-
address of the instruction (B)

specified by B is increased by
C.

02 = 006 ADD C Add to the C-address. The C-
address of the instruction (B)

specified by B is increased by
C.

02 = 700 SUB A Subtract from the A-address.
-0 -~ The A-address of the instruction
(B) specified by B is decreased
by C.

o
i

2 070 SUB B v Subtract from the B-address.
. Analogous to SUB A.

02 = 007 SUB C Subtract from the C-address.
Analogous to SUB A.

The sign of the instruction being modified remains unchanged and does not affect

the outcome of the modification. Attempts to increase an address beyond 999 or

decrease it below 0 will result in erroneous operation not prevented by error stops.
Three 0p-operations, TR A, TR B and TR C, complete the set of address

change operations. In each of them,. the A-address specifies the instruction (A)

to be called out and the B-address is the constant to which a specified address is

to be compared. In case of inequality, control is transferred to C. For example,

if the instruction 6 750 325 200 (using 0; = 6, TR A) is givén, control will be trans-

ferred to 200 if the instruction in 750 reads 1 320 400 000 but control will proceed

ahead if 750 contains 1 325 400 000. Summarizing:

0, = 6 TR A Transfer on the A-address. The
A-address of the instruction (A)
specified by A is compared to B.
Control is transferred to C if
they are unequal but proceeds to
the next instruction if they are
equal.

-19-

Numer. Alpha. Function

0, = 7 TR B Transfer on the B-address. The
B-address of the instruction (A)
specified by A is compared to B.
Control is transferred to C if
they are unequal but proceeds to
the next instruction if they are
equal.

0, = 8 TR C Transfer on the C-address. The
C-address of the instruction (K)
specified by A is compared to B.
Control is transferred to C if
they are unequal but proceeds to
the next instruction if they are
equal.

As an introductory example, the summation in the section on LOOP OPERA-
TIONS will be programmed again using address change methods. This would be
“an inefficient choice in an actual problem, but it will best illustrate the difference,
as well as the analogy between the two methods. It is again assumed that register
700 contains zero at the start, but the steps analogous to the resetting of the loop
box will be included.

Inst. Alpha. Sign 0, A or 02 B C
101 SET A + 0 500 103 801
102 SET B + 0 050 103 901
103 MPY + 3 [] L] 000
104 ADD +, 1 000 700 700
105 - ADD A + 0 600 103 001
106 ADD B + 0 - 060 103 001
107 TR A + 6 103 821 103
108 Next instruction in the problem.

- The brackets in the A- and B-addresses of instruction 103 are used to indicate that
these addresses are variable and will be supplied by the program before the instruc-
tion is executed, hence what is written there when the program is loaded into the
machine is irrelevant. At the end of the program when instruction 108 is reached,
memory location 103 will contain + 3 821 921 000. It is assumed that the summation
just programmed is part of a larger problem in which it is used repeatedly. This

is the reason for the SET A and SET B instructions. If 801 and 901 were simply
loaded into their respective positions in instruction 103 initially, the summation
would be performed correctly the first time it is used, but the next time when the
summation is called for, instruction 103 would read + 3 821 921 000 and erroneous
calculations would result. The SET instructions could, of course, have been in-
serted after the completion of the summation, restoring instruction 103 to its proper

-20-

Instr.
101
102
103
104
105
106

107

108
109

110

111

value for the next application, but this procedure is not recommended because it
makes it more difficult to restart the problem from the beginning without reload-
ing the program in case of an interruption (e.g., error stop) during the loop.

A more realistic example of the use of address change methods would be a
calculation involving more than one summation index or parameter. Then, one
of the fast and convenient LOOP orders would normally be used in the "inner loop',
i.e., the loop occurring most frequently, with address change operations con-
trolling the ''outer loop' or loops. Suppose, for-example, that it is desired to
calculate S5 = 10 5. .x. for j=1, 2, ...5, where the a,, are stored in 800+ 10 + i
¥ o J

i=1
(i. e., aq ig'in 811, aro in 812, etc.; a,, in 821, a_, in 822, and so forth), the

x; in 900 + i, and the S, are to be storedzg'n 700+ j. th will be assumed that register
500 contains zero. For completeness, the setting of all variable addresses to their

initial values for repeated use of the summation program will be included.

Alpha. Sign O1 A or 02 B C Comments

SET A + 0 500 104 811 Set variable
addresses to their

SET C + 0 005 107 701 initial values

MOVE + 9 000 500 400 Set register 400
to zero

MPY - 3 C] 901 000 "Inner loop"

ADD + 1 000 400 400 i.e., summation

LOOP AB + 0 110 010 104 on i

MOVE + 9 000 400 c3 Store the result

ADD A + 0 600 104 010 Increase addresses

ADD C + 0 006 107 001 for next repetition
in the outer loop
(j-loop)

TR C + 8 107 706 103 Test for end of
j-loop

Next instruction in the problem.

A superficial examination of this program might suggest that only 1/5 of the
program is devoted to actual arithmetic calculation (!), but it should be observed
that in terms of the number of instructions executed by the machine when one
complete summation is performed, the arithmetic ones are still in the majority,
and in terms of execution time they comprise about 3/4 of the program.

-21-

In programming problems involving several loops, it may be helpful to
consider the structure of a loop in terms of four phases:

1. Initialization. Where addresses in the loop are set to their ini-
tial values, registers used for summation are set to zero, etc..
The automatic resetting of the loop box and the fact that ad-
dresses remain unchanged in memory tend to reduce the ini-
tialization when the loop is controlled by a LOOP operation.

In the summation problem above, steps 101 and 102 constitute
the initialization for the outer loop, step 103 is the initialization
for the inner loop. Notice that step 103 is repeated as a part of
the outer loop.

2. Execution. Comprising the mathematical operations of the loop,
as well as any logical operations associated with a loop inside
the one being executed. Above, the execution of the inner loop
consists of steps 104 and 105 and the execution of the outer
loop consists of 103-107.

3. Modification. Where addresses, parameter values, etc., are in-
creased or decreased. The modification of the inner loop above
is included in the LOOP instruction. The modification of the
outer loop consists of steps 108 and 109. The position of the
modification in the program in relation to the execution and test
is frequently subject to choice.

4. Test. Determining whether the loop is completed or further rep-
etition is required. The LOOP instruction includes the test for
the inner loop and step 110 is the test for the outer loop.

Note: It is important to write loops in such a way that all ini-
tializations are performed by the program, not by loading. If

this rule is not followed, it will not be feasible to restart the pro-
gram during testing or after a machine stop without reloading.
For example, if a register is used for summation, it should be
reset before being used in the summation loop by moving zero into
it from another location, not by loading zero into it from a card.

Many programmers find it helpful in programming a large problem to draw
a block diagram or flow chart with one box representing each phase of each loop
and arrows connecting the boxes showing the flow of control.

The address change operations, particularly the SET operations, are fre-
quently useful in non-repetitive situations as well. An example of this will be

found in the section on SUBROUTINES.

If a program appears to require a large amount of address modification
and particularly, if this occurs because a quantity whose address is subject to

-22-

change is needed in many places in the execution of a loop, it may be advantageous
to write the execution largely in terms of fixed addresses and perform the mod-
ifications by moving data. Instruction 107, in the example above, illustrates this

in a simple way: If the registers 700+ j themselves had been used in the summation
process, (step 105) both the B- and C-addresses of step 105 would have required
modification in the outer loop, as well as the C-address of instruction 103, For
cases where several numbers are to be moved at the same time, a more general
MOVE operation than the MOVE 000 used so far is available and will be described
in the next section.

IVv.4. MOVE
The MOVE operation is defined as follows:
Numer. Alpha. Function

0, = 9 MOVE ' Move. If A # 000, the block of
: A consecutive words beginning at

B is moved into the set of A con-
secutive locations beginning at
C. The words in the original
locations are not destroyed,
except where the two regions
overlap. The number in location
000 ('"'previous result') is not
affected when C # 000. Both
C)B and C { B are permissible.
An error stop occurs if C+ A—
121000. If A= 000, the word
(B) specified by the B -address is
moved into location C and into 000.
It also remains in location B.

-~

MOVE with A = 000 differs from MOVE with A = 001 only in that the execution time
with A= 000 is shorter and that the previous result location is affected.

Note: If a number is to be moved from location B into 000 for use in a TR
SGN or TR EXP operation on the next step, MOVE 9 001 B 000 must not be used,
since these transfer operations work strictly according to their definitions (see
Sec. IV.1l.). The correct instruction would be MOVE 9 000 B 000. (Internally,
these transfer operations inspect a duplicate '"'previous result' location rather than
000!)

As an example, suppose xj is in 701, x, in 702, ..., x5 in 705 and the instruc-
tion MOVE 9 005 701 703 is given. Then x| will be found in 703, x, in 704, ...,

X5 in 707, after execution.

In conclusion, it should be pointed out that the use of the logical operations

-23-

is by no means restricted to the straightforward functions for which they are
primarily intended. The programmer will find innumerable ways of increasing
the efficiency and elegance of his programs by unusual applications, particularly
of the address change operations. As a weird example, suppose it is desired

to multiply the numbers located in registers 1, 4, 9, 16, 25, 36, ..., 400 (!)
by a constant located in 600 and store the results in 501, 502, 503, ..., 520:

Instr. Alpha. Sign 0y A or 0, B C
898 SET A + 0 500 900 001
899 SET C + 0 005 901 003
900 MPY - 3 [] 600 501
901 ADD A -+ 0 600 900 []
902 - ADD C + 0 006 901 002
903 LOOP C + 0 001 020 900
904 Next instruction in the problem.

-24-

V INPUT-OUTPUT OPERATIONS

V.1l. CARD FORM

By a card form is meant a specific assignment of card columns to form fields
for data, instructions, identification, etc., in connection with a given program or
interpretive system. In the 650, information is transmitted to and from cards

—through a control panel, and anyone whose needs call for a special card form can
adapt it for use in connection with the interpretive system merely by simple control-
panel wiring. For most needs, the following card form, associated with the inter-
pretive system, is likely to be found adequate. At this point, only brief definitions
of the card fields will be given for reference in subsequent sectlons where their
use will be explained in detail:

Columns Definition
1-4 Card number
5-6 Deck number
7-9 Location
10 Word count
11 Sign of word 1
12-21 Word 1
22 Sign of word 2 -
23-32 Word 2
33 Sign of word 3
34-43 Word 3
44 Sign of word 4
45-54 Word 4
55 , Sign of word 5
56-65 ’ Word 5
66 Sign of word 6
67-76 Woktd 6
77-79 Problem number
80 Tracing identification

The same card form is used in all input-output operations, as well as in trac-
ing. Both instructions and data are signed ten-digit words and are entirely indistin-
guishable in connection with input-output operations.

V.2. PUNCHING

At any point in the problem, the machine may be ordered to punch into cards
the contents of any set of memory locations, together with appropriate identification.
In some problems, it may be desirable to punch out answers one at a time, perhaps
together with the values of relevant parameters; in others it may be preferable to
punch out a large amount of information at less frequent intervals. There are also
cases where it is advantageous to punch out instructions: In connection with testing

-25-

(see PROGRAM TESTING) in order to examine a program interrupted at a chosen
point, and in connection with loading,(see LOADING) in order to reduce the size of
a deck of cards. All of these ends are served by the following instruction:

02 = 410 PCH Punch cards. The block of consecutive
words beginning at B and ending at C
(inclusive) is punched into cards. Five
words and a word count of 5 are punched
into each card but the last, whose word
count will be the remainder when C-B+
1 is divided by 5. On each card, the
location from which word 1 was punched
is punched into columns 7-9. The
words in storage are not destroyed. A
cumulative count of the number of cards
punched during the problem (i.e., since
LOADING) is punched into columns 1-4.
The problem number (see LOADING) is
punched into columns 77-79 and zero is

" punched into columns 6 and 80. An error
stop occurs if B) C.

If it is desired to punch six words to a card, this may be done by adding a
special card behind the puhching deck (see LOADING). This card should have an
x-punch in column 5, 1969 in columns 6-9, 1 in column 10, a 12 punch in column
11, and 00 0006 0000 in column 12-21. -

The punched cards are likely to be used for one {or both) of two purposes (in
addition to possible processing on other equipment): The information on them may
be printed on a tabulator or they may be loaded (or READ) into the 650 at a later
time. Details of the printing will not be given here, since they depend on the char-
acteristics of the tabulator, but the printing form may be assumed to be roughly
identical with the card form with proper spacing between words. (Suggestions on
tabulator wiring are given in Sec. XI.5.) It is assumed that the suppression of the
superfluous words punched into the last card, if its word count is not 5, will be
performed on the tabulator control panel. If this is not feasible, it may be done in
the 650 by adding three cards to the punching deck. For details, see Sec. XI. 1.

Selective spacing between lines in printing may be accomplished in several
ways, even though no operation in the 650 is provided for this purpose. A brief
discussion will be given here, _since spacing considerations may affect the use of
the PCH operation in programming. ‘Through the setting of switches on the tab-
ulator, a choice of any of the following spacing alternatives may be provided:

(a) Single or double spacing.

-26-

2

(b) Spacing between every n lines (with n chosen by wiring, nor-
mally, e.g., n=10).

(c)Spacing after any line whose word count is less than the word
count of the preceding line.

(d) Spacing before any line whose location number has a units digit
smaller than the units digit of the location number of the pre-
ceding line.

Alternative (c) is suited for the printing of information punched from fairly
large blocks of locations by one PCH order. Spacing will occur after each block,
unless the block length is a multiple of 5, which can be avoided by programming.
Alternative (d) is intended for information punched repeatedly from the same set
of locations and provides the option of spacing when the loop is interrupted, e.g.,
for changing a parameter value,

V.3. LOADING

When a program has been written, and careful inspection reveals no further
errors, it is key punched into cards following the card form given in Sec. V.1l. To
reduce to a minimum the number of errors to be found with the aid of the 650, the
cards should be run through a verifier operated by another person or, alternatively,
key punched independently by two operators and compared on a reproducer. The
programmer has the option of specifying the number of words to be punched to a
card: Punching 5 or 6 to a card will keep the program deck small from the outset
and eliminate the need for condensing the deck on the 650 later. Punching one word
to a card is felt by some programmers to facilitate changes. Each card must have
in columns 7-9 the location into which word 1 is to be loaded, and in column 10 the
number of words to be loaded from the card into consecutive locations. Columns
1-6 and 77-80 are not read by the 650 (except that the problem number is read from
the last card, see below) and may be used by the programmer as he deems best.
Each column of each field to be used by the machine must contain one and only one
punch and an error stop is provided to enforce this rule. A 12-punch is used for
plus, an 11- or x-punch for minus and a 0-punch--not a blank column--for zero. If
the word count is less than 6, unused word fields and sign columns may be left
blank. No distinction is made between data and instructions in key punching and load-
ing.

LOADING is the process of feeding data and instructions into the machine at
the beginning of a problem. If the previous user of the 650 was not using the inter-
pretive system or if there is any reason to doubt that the system is correctly
stored on the drum, the program deck should be preceded in loading by a deck which
loads the interpretive system (in 51. 9 seconds) into the memory locations above 999.
Before the program deck, the programmer may also place a Reset Memory Card,
which will (in 6. 3 seconds) reset each of the memory locations 001-999 to minus
zero. (This is useful in connection with the punching out of sections of memory in

-27-

testing.) Immediately behind the program deck--no blank cards are used in the
card reader in connection with this interpretive system--the programmer places
one of two nine-card decks to inform the machine whether he wants normal opera-
tion or TRACING described in a later section. (If he knows that he wants the
same mode of operation as the previous user, he can omit these cards but the
gain is only 2.7 seconds.) Last, he must place a so-called transfer card with a
zero punched in column 10, the problem number in 77-79 and the location of the
instruction at which the program begins in columns 7-9. The word fields on this
card may be left blank.

The loading program automatically resets the loop box, the card counter
(see PUNCHING) and location 000 to zero.

The order in which the program cards are loaded is irrelevant, unless the
same location is loaded into from more than one card, in which case the last such
card, of course, determines the contents of the location.. This may occur in
connection with changes of a temporary nature, which may be placed at the end of
the deck and later removed, leaving the program in its original form. In the deck
which loads the interpretive system, the order of the cards must be preserved,
and an error stop is provided to insure this, thereby ascertaining that no part of
the system is missing. ‘

In summary, a complete deck to be loaded must contain:

System deck (173 cards)

Reset Memory card (optional)
Program deck
Mode-of-operation deck (9 cards)
Transfer card

The control console of the 650 need be of almost no concern to the user of
the interpretive system under normal conditions. He must only make sure that
all switches on the console are set in a fixed manner required by the system, and
these settings will now be listed without any description of the function of the
switches. Certain ways of using the console are described in the sections on READ-
ING and PROGRAM TESTING.

Switches Settings

Storage entry 70 1951 1333 +
Programmed stop Stop (see COND STOP)
Half cycle " Run

Address selection 1338 (see STOPS)
Control Run

Display Upper Accumulator
Overflow Stop

Error Stop

To start a problem, the deck to be loaded is placed in the card reader, and

-28-

the following keys are depressed in order:

(1) COMPUTER RESET (on the console)
(2) PROGRAM START (on the console)
(3)START {on the card reader)

When the last card leaves the hopper, the machine stops and the key labelled
(4) END OF FILE (on the card reader)

is depressed. If the deck has been correctly put together, the execution of the pro-
gram will then start automatically.

The program deck may be run out at any time after loading by depressing the
START key, unless a READ instruction is contained in the program. Blank cards
should be inserted into the PUNCH hopper and the START key on the punch side
depressed.

To make the 650 produce a condensed program deck in case the program was
originally key punched one instruction to a card, a PCH instruction should be given
at the very beginning of the program. This instruction may be bypassed during
subsequent executions of the program merely by changing the location number on
the transfer card.

V.4. READING -

In some problems, particularly in applications of a data processing nature,
it may be desirable to read information into the machine during the execution of
the program without manual interference. This is accomplished by the READ
operation:

02 = 400 READ Read cards. The block of consec-

~ utive storage locations beginning
at B and ending at C (inclusive)
is read into from cards. The ad-
dress B must appear in the location
field on the first card, as well as
in the READ instruction, and the
location field on each card follow-
ing must contain the sum of the
word count and location on the
previous card. The sum of the
word counts of all cards to be
read must be C-B+ 1. Violations
of these requirements, which have
been included for the programmer's
protection, will result in error
stops.

-29-

The cards to be read should be placed in the hopper of the card reader imme-
diately following the transfer card (no blank cards).

The decisions made with the aid of conditional transfers and other logical
operations are normally based on criteria predetermined by the programmer and
incorporated into the program. If the programmer wishes to influence the pro-
gram during its execution, e.g., on the basis of a result displayed on the console
in connection with a COND STOP instruction, he may do so using the CONS opera-
tion:

0, = 401 CONS Read console. The machine stops
if the PROGRAMMED STOP switch
is on STOP. Zero is displayed on
the display lights and 1131 on the
address lights. When the PROGRAM
START key is depressed, the num-
ber entered on the STORAGE
ENTRY SWITCHES is stored in
location C and in 000 (the '"previous
result'' location). If the PRO-
GRAMMED STOP switch is on
RUN, the storing takes place with-
out a stop preceding. The B-ad-
dress is ignored but should be
filled, e.g., with zeros.

An example of an application of CONS might be the feeding in of an "educated
guess'' for a starting value in connection with the solution of algebraic equations.
Another application, involving only the storage entry SIGN switch, might be to
continue a program until another user is ready to take the machine, at which time
a change in the SIGN switch setting, interpreted by a TRSGN operation, causes the
program to punch out intermediate results for later restart.

-30-

VI PROGRAM TESTING

VI.l. MEMORY PRINT-OUT

The choice of methods for testing (''debugging'') a program by comparing
results of machine calculation to known quantities or to results of independent
calculations by other means is governed by the relative availability of machine
time and programmer time. If machine time is freely available, testing with the
aid of the control console is highly efficient, as well as instructive and enjoyable,
as soon as a certain facility for operating the console has been acquired. Par-
ticularly in the case of small problems, the method of tracing--where a card is
punched for each instruction executed, showing all numerical and logical quantities
associated with the execution--may be the most desirable in that it gives an almost
certain clue to the difficulty within a predictable, if not very short, period of
machine time and allows the programmer to study the material at his leisure.

The method most economical of machine time and yet frequently sufficiently
illuminating is that of memory print-out. It might be suggested that on most prob-
blems in a busy but not heavily over-loaded installation, the methods be used in
the order reverse to that in which they were mentioned here. Some directions

for their use will now be given.

The memory print-out method simply consists of inserting temporarily into
the program at one or several suitably chosen points PCH orders (see PUNCHING)
calling for the punching of blocks of information--data or instructions--which, when
printed on the tabulator, will give a picture of the progress of the program. Since
1000 words may be punched 5 to a card in two minutes, it is not out of the question
to punch out the contents of every register used in a problem--including all the
instructions--several times. To get the most benefit from this method, the pro-
grammer should, in any problem that does not threaten to fill the entire available
memory, avoid using the same storage location for storing different quantities at
different times whenever feasible, so that as many partial results as possible are
preserved for the memory print-outs. Whenever a test case of a problem is run,
even if memory print-out is not chosen as the primary testing method, it would
certainly be advisable to make the last instruction of the test deck punch out the
entire memory used. A flexible alternative would be to have scattered through the
program CONS--TR SGN combinations which transfer control to a PCH order if
the storage entry sign switch is turned to minus.

Temporary instructions may be inserted into a program in two ways: Either
they are included in the normal sequence of instructions when the program is
initially written and replaced either by NOOP instructions (see Sec. IV.1) or by
transfer to the next non-temporary instruction when no longer needed,or else one
of the regular instructions of the program is replaced by a TR to a vacant location
L, the regular instruction is placed in L, the temporary ones in L+ 1, L+ 2, etc.,
and at the end of this temporary sequence a TR back to the normal program is given.
In either case, the temporary instructions may (as suggested in LOADING) be kept

-31-

as a separate deck at the end of the program deck, eliminating any changes in the
main program deck and simplifying bookkeeping.

VI. 2. TRACING

If the tracing deck of nine cards is loaded with the program deck, (see LOAD-
ING) the machine will automatically start tracing from the beginning of the program,
as specified by the transfer card. Before the execution of each instruction, a card
with the following information will be punched:

Columns Definition

1-4 Card number (cumulative)

6 Zero
7-9 Location of the instruction
about to be executed.
10 Six
11-21 The instruction as stored in
v memory.

22-32 The instruction as modified
for execution (i.e., with the
loop box added if minus).

33-43 The contents of the loop box.

44-54 A if A # 000, zero if A= 000.

55-65 B

66-76 The contents of location 000

- (i. e., the result of the last
mathematical MOVE 000 or
CONS operation).

77-79 Problem number.

80 Eight (used by the tabulator

for automatic selection of a
different printing form for
trace cards).

The punching rate will be 100 cards per minute except in the case of very time-con-
suming operations, such as, the moving of a large block of information. The ad-
vantage of punching the trace card before execution is that information will be
punched for an instruction whose execution is interrupted by an error stop. In the
case of instructions (such as LOOI_?_ or TR EXP) whose B-address does not refer
to a memory location, the quantity B is irrelevant. Tabulator wiring to suppress
the printing of B in such cases can be provided if sufficient selection equipment is
available. The PCH operation is bypassed when the machine is operating in the
tracing mode, i.e., PCH is equivalent to NOOP.

If a program is too long to be traced in its entirety or if this is unnecessary,
selective tracing may be effected by using the following operations:

-32-

0, = 450 START TR Start tracing. If the nine-card
tracing deck has been loaded,
the machine will start tracing
from the next instruction. If it
is already tracing, it will con-
tinue to trace. The B and C
addresses are ignored. If the
deck for normal operation has

B been loaded, START TR will
be equivalent to NOOP.

0, = 451 STOP TR Stop tracing. If the machine is
tracing, it will discontinue trac-
ing immediately. If it is not
tracing, STOP TR will be equiv-
alent to NOOP. The B and C
addresses are ignored.

0, = 452 ST TR ERAS Start tracing and erase itself.
If the tracing deck has been
loaded, the machine will start
tracing from the next instruc-
tion. If it is already tracing,
it will continue to trace. If the
deck for normal operation has
been loaded, . tracing will not
begin. In all cases, the ST TR
ERAS instruction will be replaced
in memory by a NOOP (0, = 454)
during its first (and only!) execu-
tion. The B and C addresses are
ignored.

The bypassing of the PCH operation is in effect as long as the trace program is on
the drum and is not affected by the selective tracing orders. To make PCH opera-
tive, the nine-card deck for normal operation must be loaded.

The purpose of the ST TR ERAS operation is to make it possible to trace the
repetitive steps of a loop either once or twice and then stop tracing until the loop
is completed. To get the steps traced once, one may place the pair STOP TR, ST
TR ERAS at the beginning of the repeated portion of the loop; to get them traced
twice, one places this pair of instructions at the end immediately preceding the
test. As a specific example, suppose it is required to trace twice the steps of the
loop programmed in the section on LOOP OPERATIONS and suppose vacant loca-
tions are available from 900 up. Assume that the machine is tracing as it enters
the loop. The original program reads as follows:

-33-

101 MPY - 3 801 901 000

102 ADD + 1 000 700 700
103 LOOP AB -+ 0 110 020 101
104 Next instruction in the problem.

The following instructions could be added as a temporary deck at the end of the pro-
gram deck:

102 TR + 0 203 000 900
900 ADD + 1 000 700 700
901 STOP TR + 0 451 000 000
902 ST TR ERAS -+ 0 452 000 000
903 TR + 0 203 000 103

Notice that the TR instruction gets loaded into 102 after the regular program, replac-
ing the ADD instruction, as explained in LOADING. This example is, of course,
unrealistic in that selective tracing would hardly be needed for testing such a simple
loop. ‘

VI.3. CONSOLE TESTING

Testing with the aid of the control console requires some familiarity with the
internal structure of the interpretive system (see Sec. XI) and with the basic language
of the 650. Console testing is more attractive on the 650 than on most machines due
to the ADDRESS STOP feature: If the CONTROL switch is turned to the ADDRESS
STOP position, the execution of the program will proceed at electronic speed until
the address set up on the ADDRESS SELECTION switches is reached. At that point,
the machine stops, and the contents of various registers may be examined on the
display lights or the program may be continued manually one step at a time. Alter-
natively, the program may be punched out on cards at this point by merely feeding
in one card with a PCH instruction, going into any vacant location, followed by a
transfer card specifying this location. Console testing, in connection with the inter-
pretive system, is likely to be needed only in exceptional cases.

The ADDRESS STOP feature of the 650 may be used in conjunction with a spe-
cial address stop transfer card when it is desired to start tracing from a certain
instruction N in the middle of a program after running at full speed up to that point.
(This may, of course, alternatively be accomplished using the tracing operations
described in Sec. VI. 2, but then the value of N must be decided upon in advance
and the proper program changes key punched.) The procedure is as follows: Set
the ADDRESS SELECTION switches to N and turn the CONTROL switch to ADDRESS
STOP. Load as usual and run until the machine stops at the instruction N. (For
details on possible earlier stops see below.) Then set the CONTROL switch to
RUN and load the tracing deck followed by the address stop transfer card. Tracing
will begin immediately and the first instruction traced will be N.

In choosing N it must be remembered that the loop box and location 000 are
reset to zero when the tracing deck is loaded. If this restriction is inconvenient,

\

-34-

it can be circumvented by placing a special card in front of the tracing deck. The
card counter and the problem number are also reset to zero, unless the tracing
deck has been modified to prevent it.

If the CONTROL switch is kept in the ADDRESS STOP position when the pro-
gram deck is loaded, one stop will occur when location N is reset by the memory
reset card and another when the programmer's instruction is loaded into N. Also,
stops may occur before instruction N is reached in the program, if N is referred
to in an ADDRESS CHANGE or MOVE operation (but not if N is one address in a

-conditional transfer instruction and control is transferred to the other address).
After each stop, operation will resume when the PROGRAM START key is depressed.
1f the CONTROL switch is left in the ADDRESS STOP position during tracing, two
stops will occur each time N is referred to (and one if N is the B-address of a
transfer instruction).

The program can be continued at full speed (punching mode) after a period of
tracing by following the procedure described above with the punching deck in place
of the tracing deck.

The address stop transfer card has 69 1976 1952 24 1061 1098 in columns
1-20 and a 12-punch in each of columns 1, 10 and 20. The special card for by-
passing the resetting steps in loading has 69 1953 1952 24 1278 1953 70 1951 1344
in columns 1-30 and a 12-punch in each of columns 1, 10, 20 and 30. (See Deck 7,
Sec. XI1.7.)

If the value of N has been decided upon in time to get it key punched into a
regular transfer card, (Sec. V.3) this card may, of course, be used in place of
the address stop transfer card in the procedure described above.

A programmer familiar with the internal structure of the interpretive system

will be able to think of many other cases where special needs can be met using
maching language cards (''load cards'’).

~35-

0; OPERATIONS

Num.

(& I O S

~N o

Alpha.

GO to O2
ADD
SUB
MPY
DIV
NGMPY

TR A
TR B
TR C

MOVE

Page
Ref.

10
10
10
10
10

19
20
20

23

VII SUMMARY OF OPERATION CODES

Num.

000
200
201
202
203
204
205

100
010
001
110
101
011
111

500
050
005
600
060
006
700
070
007

02 OPERATIONS

-36-

Page
Alpha. Ref.
UNC STOP 13
COND STOP 13
TR SGN 14
TR EXP 14
TR 14
TR SUBR 15
TR OUT 15
LOOP A 16
LOOP B 16
LOOP C 16
LOOP AB 17
LOOP AC 17
LOOP BC 17
LOOP ABC 17
SET A 18
SET B 18
SET C 18
ADD A 19
ADD B 19
ADD C 19
SUB A 19
SUB B 19
SUB C 19

Num.

300
301
302
303
304
305
350
351
352
353
354
355

400
401
410

450
451
452

454

Alpha.

SQRT
EXP E -
LOG E

SINR

COS R

ARTR "~
11

ABS

EXP 10

LOG 10

SIND i

COS D
ART D

READ
CONS
PCH

START TR

STOP TR

Page
Ref.

11
11
11
11
11
11

11
11
11
11
11

29
30
26

33
33

ST TR ERAS 33

NOOP

VIII STOPS

Error circuits in the 650 will stop the machine on attempts to use invalid
information, such as, that represented by blank columns or double punches, as
well as on several kinds of machine malfunctioning, and will indicate on the control
console the nature of the error. If this occurs during the loading of a new deck,
the cards should be examined. In other cases, a note should be made of the indica-
tions on the console, and the procedure that led to the stop should, if possible, be
repeated exactly in order to determine whether the error is systematic in nature.

All stops, which are part of the interpretive system, will now be listed.
Conditional stops will occur only if the PROGRAMMED STOP switch is set to
STOP. On a conditional stop, the PROGRAM LIGHT in the OPERATING section
of the console will be on and no lights in the CHECKING section should be on. The
program will continue if the PROGRAM START key is depressed. On an uncon-
ditional stop, the STORAGE SELECTION light in the CHECKING section will be on.
Normally, operation should be discontinued after an unconditional stop and changes
made in the program in order to avoid the stop. Alternatively, the program may
be continued by having a transfer card (see LOADING) in the card reader, specifying
the instruction to which control should proceed when the COMPUTER RESET and
PROGRAM START keys are depressed.

The location of the 1nterpret1ve system instruction xxx on which the machine
has stopped, may be determined by displaying the contents of location 1098 on the
console. The display lights will show 60 Oxxx 1107. This process, called '"'monitor-
ing', may be performed as described in the 650 manual or, alternatively, by setting
the storage entry switches to 60 Oxxx 8000 and depressing the COMPUTER RESET,
PROGRAM START and PROGRAM STOP keys.

If, in an exceptional case, it would be advisable to proceed to the next instruc-
tion after an unexpected unconditional stop, this may be done manually as follows:

(1) Set the CONTROL switch to MANUAL,

(2) Check that the ADDRESS SELECTION switches are set to 1338,
(3) Depress the COMPUTER RESET key.

(4) Depress the TRANSFER key.

(5) Set the CONTROL switch to RUN.

(6) Depress the PROGRAM START key.

As a result of this procedure, zero will be stored at C and 000 before the next instruc-
tion is executed. If this is not desired, the ADDRESS SELECTION switches should

be set to 1095 in step (2). To repeat the same instruction (on which the stop occurred)
the switches are set to 1098.

There is an alternative manual procedure for restarting after an unconditional

stop which is simpler in the case of frequent use but is not recommended in general
because it requires changing the setting of the STORAGE ENTRY switches. They

-37-

are used in LOADING and must be set back to their normal positions for the next
user:

(1) Set the STORAGE ENTRY SWITCHES to 00 1951 1338+ (or
00 1951 1095+ if zero is not to be stored or 00 1951 1098 +
to repeat).

(2) Depress the COMPUTER RESET key.

(3) Depress the PROGRAM START key.

-38-

CONDITIONAL STOPS

Address Lights Normal Cause
1120 Programmed COND STOP. (Display lights show B.)
1131 CONS (Check STORAGE ENTRY switch setting.)
1715 Loss of accuracy in SIN (Exponent of B exceeds 52) -—-
or COS.
1835 Loss of two or more digits of accuracy in LOG.

UNCONDITIONAL STOPS
MOVE with C+ A ~ 1% 1000.
2222 PCH with B) C + 1.

READ with incorrect loc. or word count.

3333 DIV with B = 0.

4444 SQRT with B £ 0.

MPY with result out of range.

5555
DIV with result out of range.
EXP with result out of range.
LOG with B { 0.
6666
SIN with exp. of B exceeding 58.
COS with exp. of B exceeding 58.
7777 Cards missing or out of order in the system deck
being loaded.
9999 Programmed UNC STOP (Display lights show B).

-39-

IX EXECUTION TIMES

The execution times listed in this section are based on the standard 650 drum
speed of 12, 500 r.p. m. They represent approximate theoretical estimates derived,
in the case of the mathematical operations, from simple assumptions regarding the
distribution of the numbex_'_s to be "opegated upon. For example, the part A, of a
floating-decimal number A = Ay, 10 l is assumed to be uniformly distributed
between 1 and 10, although in physical problems there are reasons that favor a
logarithmic distribution; extremely small and extremely large exponents are con-
sidered very unlikely, etc. It is further assumed that the programmer has chosen
storage locations on the drum without regard to timing, ignoring the fact that in
the case of some operations the execution time will be a few milliseconds shorter
for numbers stored in certain sections of memory., Some, but not nearly all, of
the time estimates have been verified by tests.

It should be stressed that the estimates of execution times are needed only
for making comparisons or estimates of running time for problems or for choosing
efficient ways of programming and will never affect the result of an operation. In
comparing these estimates to estimates given for other interpretive systems or
subroutines, it is important to verify by sample calculations or machine tests that
the assumptions are realistic.

To minimize the size of the table, the execution times listed refer to a basic

case and corrections to be added in other cases are given at the beginning of the
table.

-40-

(a)

(b)

(d)

ADD
SUB
MPY
DIV
NGMPY

TR A
TR B
TR C

650 INTERPRETIVE SYSTEM

ESTIMATED AVERAGE EXECUTION TIMES IN MILLISECONDS

If A# 000, add 7.2 ms. for ADD and SUB, 6.3 ms. for MPY, NGMPY and

DIV *,

If C # 000, add 6.1 ms. for all mathematical operations, MOVE 000 and

CONS*.

If the instruction has a minus sign, add 4.8 ms. for all operations.

If, after a TR EXP or LOOP operation, control will proceed to the next

instruction rather than to C, add 4. 8 ms.

65.7
65.
67.
74.
67.

[NS RSN SIS |

37.3
37.
42.1

W

MOVE 00037.7

MOVE

40.8 +12A
(A = no. of
words.)

UNC STOP
COND STOP
TR SGN
TR EXP
TR

TR SUBR
TR OUT
LOOP A
LOOP B
LOOP C,
LOOP AB
LOOP AC
LOOP BC
LOOP ABC

SET A
SET B
SET C
ADD A
ADD B
ADD C
SUB A
SUB B
SUB C

*(See next page for footnote.)

28.8
29. 8
19. 2
24.0
19.2
44.4
26. 0

24.
28.
24.
24.
24.
28.
24.

© 0O O OO

55.3
55.
55.
44.
44.
44.
44.
44.
44,

jYe B Yo JENe IV« BN o NEVe BE CA RN OV)

-41-

SQRT
EXP E
LOG E
SIN R
COS R
ART R
ABS
EXP 10
LOG 10
SIN D
CcOS D

ART D

READ

CONS
PCH

START TR
STOP TR
ST TR ERAS
NOOP

TRACING

LOADING

206
197
202
192
187
238
33.2
187
207
240
235
271

One card:

1014 14n

(n= no. of words.)
Succeeding cards:
300 each.

28.8

One card:

163+ 12, 5n

(n = no. of words.)
Succeeding cards:
600 each.

28. 8
24. 0
38.9
24.0
600 per card.

300 per card.

A R e T e e S e e G v SR m me G e e e M W e MR e e e e N S M MM AR W e me e e e e e em e e e o e e e A A 4 e e e e e e e e e e b .

*Those who are particularly interested in time considerations may wish to know
the exact increments on which the weighted averages in (a) and (b) are based:

In ADD and SUB, 4.8 ms. if 17_<_Ai41 {(mod 50)
9.6 ms. if 1¢{ A 16 or 42¢ A{ 49 (mod 50)

In MPY, NGMPY and DIV, 4.8 ms. if A_)_ 17 or A= 1 (mod 50)
9.6 ms. if Z_SAS 16 (mod 50)

In all mathematical operations, MOVE 000 and CONS:
4.8 ms. if 7< C<£ 42 (mod 50)
9.6ms. if 1{ C{ 6 or 43 C< 49 (mod 50)

An easily remembered programming rule could be extracted from this in-

formation: If locations between 17 and 41 (mod 50) are used for storing numbers,
the increments given in (a) and (b) may be replaced by 4. 8 ms.

42

X SPECIAL TOPICS IN PROGRAMMING

X.1l. SUBROUTINES; TRANSLATION

A subroutine is a program expected to be of use as a part of the program in
several problems or in several sections of the same problem. The mathematical
operations in the interpretive system are indeed subroutines written in the basic
language of the machine and reached through their operation codes, and anyone
desirous of preparing an additional subroutine of this type may avail himself of a
vacant operation code (see Sec. XI) and write the program in a part of the memory
below 1000.

Subroutines written wholly or partly in the interpretive language may be
reached conveniently using the TR SUBR operation defined in Sec. IV.1. Suppose
the subroutine begins at 900 and ends at 935. Instruction 900 should read: SET
C 0 005 935L Jand instruction 935 should read: TR 0 203 000C J. Now suppose
the subroutine is needed at step 700 in a program, and when it has been used,
control is to be transferred to 680. Instruction 700 should read: TR SUBR 0 204
680 900. The TR SUBR operation will take the quantity ("'return address'') 680,
place it in the C-address of instruction 900 and then transfer control to 900. Instruc-
tion 900, in turn, places 680 in the C-address of 935, and when instruction 935 is
reached at the end of the subroutine, it transfers control to 680 as originally desired.
Hence, the programmer using the subroutine only needs to know the identifying
number 900; the transfer of control to and from the subroutine is handled by the
TR SUBR in conjunction with the two instructions 900 and 935 provided by the writer
of the subroutine. Subroutines needing only one input number and giving only one
result (such as, the evaluation of one Bessel function for a given value of the argu-
ment) will normally assume the input to be in 000 and will deliver the result there;
in the case of several numbers, specified locations normally within the block
occupied by the subroutine would be used for input and/or results. Subroutines may,
of course, be used inside other subroutines without restriction.

If the locations occupied by a subroutine are needed for another purpose, e.g.,
another subroutine in the same problem, the subroutine may be translated to a
different set of locations by a translating program developed by Miss D. C. Leagus.
When the subroutine is written entirely in the interpretive system, the programmer
is required only to separate data and constants from instructions, and the translating
program will automatically decide which addresses of each instruction are subject
to translation. Machine language instructions may also be used in a subroutine to
be translated, provided certain conditions specified by the translating program are
adhered to. ‘

Subroutines for the solution of cubic equations and of systems of linear
equations have been written at the Laboratories.

-43-

X.2. UNNORMALIZED INPUT; TRANSITION BETWEEN FLOATING- AND FIXED-
DECIMAL FORM

Nearly all of the mathematical operations in the system assume that the float-
ing decimal numbers to be operated upon are in the normalized form defined in
Sec. II. 2, i.e., that the leading digit is different from zero unless the entire num-
ber is zero. In processing empirical data, key punching is often facilitated by
permitting leading zeros and reproducing a constant exponent. Such unnormalized
data may be used in the interpretive system provided the first operation in which
it is used is ADD or SUB with operand exponents differing by less than 10.

A special case of unnormalized input is that of a zero with a non-zero machine
exponent. If such a zero is added to a non-zero number with a smaller exponent,
a number of digits equal to the difference between the exponents are lost. Con-
sequently, zero should be equipped with exponent 00 unless the programmer knows
in detail how the zero will be used in his program. Special provisions in the MPY
and DIV routines make it possible to use a zero with machine exponent 00 in them
without danger of exceeding the exponent range negatively.

The converse problem of producing unnormalized output, e.g., for the print-
ing of tables in fixed-decimal form or for calculations in machine language is easily
solved at the expense of one digit. Suppose for example that the numbers N. to be
"unnormalized' or 'fixed!" are known to be less than 10% and output in the form
XXXX. xxx is desired. Add the number 1000000054 (i.e., 10, 000. 000) to N, if
N; > 0, subtract it from N, if Ni< 0 (using TR SGN) and punch. The output "of the
form + (10, 000 + |Ni|) R is ready to be printed on the tabulator with the leading
1 and the constant exponent 54 suppressed by hammerlocks or wiring. If the num-
bers are to be used in machine language, the 1 and 54 are shifted out. Rounding
to a smaller number of digits is obtained by choosing the exponent of the additive
constant (1000000054) correspondingly larger.

X.3. EXAMPLES

In conclusion, two problems will be programmed in order to illustrate the use
of many of the operations and methods described.

First, suppose it is desired to evaluate the "error function',

X
- 2 -t2
M @y=E [et dt
V=R o
for a set of values x = a, ava, a+28,..., a+l0A4, using the RAND approximation

@ Q*(=1-(an+a,n*+an’+ a,n*+ asns) Q' (X)),

~-44-

where

(3) nN= I/CH-Px)) (p 1s a numerical constant),

and

(4 Q' (X) == evx

and to punch out the results as well as to store them for later use. The evaulation
of the polynomial in M will be faster if (2) is written in the form

5) Q@ O=I-(n(a+N@,+n @5+ M (2, + 1 &) @' (X)),

To make it possible to use the LOOP order in evaluating CQ*(x) this way, the
coefficients a; will be stored in consecutive locations in decreasing order. The
LOOP program will be given a form applicable to an arbitrary polynomial by
including a "dummy'" coefficient ao= 0. Storage locations will be chosen as
follows:

Location Contents

101-119 instructions (cards 1 - 4)
201 1
202 a constants
203 JaY (card 5)
204 P
221 X temporary
222 Q‘(x) storage
223 n (""erasable'")
301 a5
302 a4
303 ajs coefficients
304 a in @*(X)
305 aj : (card 6)
306 a = 0

401-410 Q'C) } | results

45

The program might be written as follows:

Card Loc. Alpha. Sign 01 A or 02 B C Comments
f101 SET C + 0 005 114 401 Set address of
first Q*)
4 102 MOVE ~+ 9 000 202 221 Firstxisx= a
1
103 NGMPY + 5 000 000 000 —x2
104 EXPE + 0 301 000 000 e-x2 —x%
! oo wm— g c
105 MPY + 3 000 200 222 Q'COTE=
106 MPY + 3 204 221 000 px
107 ADD + 1 000 201 000 1+ px
2 108 DIV + 4 201 000 223 n=1/CI+PX)
109 MOVE + 9 000 301 000 ag into 000 for LOOP
110 MPY + 3 000 223 000 prev. res..N
111 ADD - 1 000 302 000 add next coeff.
112 LOOP B + 0 010 005 110 loop in polynomial eval.
3 113 NGMPY + 5 000 222 000 polyn. "@/(x)
114 ADD + 1 000 201 [3 @)= 1+ prev. res.
115 ADD + 1 221 203 221 x+ 0= next x
116 ADDC + 0 006 114 001 next ®*(x) address
117 TR C -+ 8 114 412 103 test for end
4 118 PCH + 0 410 401 410 punch two cards
119 COND STOP + 0 200 221 500 end; stop, display last
- X, go to 500 on PRO-
GRAM START
500 Next instruction in the problem.

An important remark should be made: If there is no shortage of storage
locations and if the programmer does not mind writing a somewhat larger number
of instructions, the running time for many problems can be decreased and the
logic simplified by ""unwinding't the innermost loop, i.e., by writing out the
mathematical instructions in the loop in a straight sequence instead of using the
LOOP operation. In the present problem, a sequence containing five MPY and four
ADD instructions could replace the instructions 109-112 and also eliminate the use
of the dummy coefficient ay. The execution time for the polynomial loop would be
reduced by nearly 1/3 and the LOOP operation could be used to replace the ad-
dress change operations in the outer loop. The polynomial evaluation accounts for
about 1/2 of the total running time of this problem. In many large problems, the
innermost loop consumes an even larger fraction of the running time, making it
important to program the innermost loop efficiently even at the expense of apparent
inefficiencies elsewhere.

The second illustrative problem reads as follows: For a given set of numbers

Xyp v=1, 2,..., 50, not necessarily equally spaced, the values of the Chebyshev
polynomials Ty (xy), n=1, 2,..., 10, are to be computed using the recursion formula

46—

(6) Tn.” (Xv)= aQ Xy TT\ (X\;) ""T'n_~| (X\())

(T, (xv) =1, T; (x,)= x;,) and punched out in a compact form.

In addition, the sum

50 ¢ 2
(7) P [TIO (XV)] - X
V=l VT=Xy2 Ker™X0),

(X5, =1) is to be punched out and the operator is to be given the option of also
calling for the punching of partial sums of (7) at any time.

Storage locations will be assigned as follows:

Liocation Contents
050 0)
051 1) constants (card 7)
052 2)

095-120 instructions (cards 1 - 6)

199 The sum (7) and its partial sums)
200 Tolxy) = 1
201 Ty {x,) 2 %, output
202 Tplx,,)
300 2%, R
7 temporary
301 [Tlo(xvg 2 > storage
{(""erasable!'")
302 [Tlo(xv_i] 2/ 1 - xvz-

400 + v Xy input
451 1 (cards 8 - 18)
In addition, locations 1-8 will be used in connection with a trick in program-
ming the LOOP.

The program may be written in many ways. The following is not necessarily
the best:

-47-

Card Loc.

1

»

(S}

o

095
096
097
098

099

108

109
110
111
112
113
114

115

116
117
118

119
120

Alpha. - Sign

MOVE

MOVE
SET B

SET A
MOVE

MPY
MPY

SUB
LOOP BC
MPY
MPY

SUB

SQRT
DI1v

SUB
MPY
ADD
CONS
TRSGN
PCH

PCH

ADD B
ADD A
TR B

PCH
UNC STOP

T R St A S kb B I S SRR |

(] QOO W

oo Noo

A or oN

000
000
0650

500
000

000
300
000
011
600
201
051

300

301

Cl
000
000
401
201
410

410

060
600
099
410
000

051
050
099

109

C]

052+
201
200
009
000
201
000

000
000

201
302
199
000
115
199

201

099
109
451

199
201

-48-

200

199
401

402
201

300
000
202
101
301
000
000

000
302

000
000

199
000)

114)

201
210

001
001
099

199
000

Comments

Ho =1

(7) initially O
Set address of
first X,

Set address of
first x_ 4 4
Call out X, for
calculation

NM<
2x,, . _H_HANAL

.H.Hu +1= NN< .H.ﬁl HSL
S.N” Hu Na.... nw

T10

1Y 2

Vi-xg
amo\ﬁ — x5

Xv+l1— %y

Partial sum of (7)
Should partial

sum be punched?
Punch partial sum
with x (and T) —
Punch T = x T5,

v

-.+» Tqp
Increase v by 1
Is v=507?

Punch (7) unconditionally
End; Display x5y

Outer loop

initialization

Inner loop
init,

Inner loop
exec,

Inner mod.

Outer loop
exec.

Outer mod.
Outer test

End

& test

A number of remarks are called for, many of them of general applicability:

(a) The C-address of instruction 101 will, during execution, run through
the values 000-008, but the result of the instruction is always called out from 000
on step 102. This trick makes it possible to use the LOOP BC operation instead
of address change, which is normally required if different sets of addresses are to
be modified during a loop.

(b) The instruction numbering was arrived at by starting the preparation
of the program at instruction 101 with the intention of later adding an unknown
number of initialization steps preceding it. This speaks in favor of not starting
a program at 001.

(c) The stop which would normally occur each time the CONS instruction
is reached may be bypassed when found superfluous without any sacrifice by
turning the PROGRAMMED STOP switch to RUN, since no COND STOP, SIN or
LOG operations (the only other ones involving a conditional stop) are used. The
operator decision regarding punching of partial sums is made using only the sign
switch of the STORAGE ENTRY switches. This switch does not influence LOAD-
ING.

(d) The quantity x, is used so frequently that it was more economical to
MOVE it into a fixed location than to apply address modification. The converse
applies to x4 1, which is used only once.

(e) The constant 1 appears in three locations merely in order to simplify
bookkeeping and loading, as well as changing the number of points x, in a later
run.

() An invaluable aid in determining whether the results of a calculation
are correct is a mathematical identity which they must satisfy, and the programming
of such checks is strongly recommended whenever it is possible. In the present
problem, the identity

[Tlo(xz) 2
-1 \l 1—x2

is closely connected with the computation of (7) if the x,, are distributed over the
interval (-1, 1).

(iii)

dx="1"

2

(g) An alternative method of programming the outer loop, which would
eliminate the address change operations at the expense of somewhat increased
card preparation, would be to key punch the x,, one to a card and give a READ
order entering one x,, at a time into a fixed location during the execution of the
program. The difficulty arising from the need for x, +) on step 109 is not in-
surmountable.

-49-

X1 INTERNAL STRUCTURE OF THE SYSTEM

XI.1. DETAILED DESIGN CONSIDERATIONS

An expert examining the program at the end of this report will ask a number
of questions about apparent duplication, about tight optimization in one routine in
contrast to a lack of it in another, about the choice of operations and of methods
of implementing them, etc. This section will attempt to answer some of these
questions and also suggest a number of changes and additions that could be con-
sidered for a second version of the system. Additional questions and suggestions
from readers will be genuinely appreciated.

In the early stages of system design, the following requirements were among
those agreed upon, in addition to the general principles discussed in Sec. I.2:

(a) The arithmetic operations and those logical operations most likely to
occur in inner loops (LOOP and certain TRANSFER operations) must be as fast
as we know how to make them, regardless of the expense in storage.

(b) The system must occupy at most 1000 memory locations.

(c) The special functions must have full accuracy and unlimited range and
most of them should be as fast as these requirements and available storage permit.

(d) Optimum programming, (see the 650 Manual of June, 1955) in addition
to being necessary for the attainment of (a) and (c), should be used locally in any
program where the gain is significant but not at the expense of extensive rewriting
of previously completed programs.

(e) The programs must be so written that if the machine stops on any pro-
gram step in a subroutine and control is transferred elsewhere before restarting,
the subroutine, where the stop occurred, is left in a condition which assures correct
operation the next time that subroutine is used. This implies that if a subroutine
is used in more than one program, it must be initialized by each program rather
than having a normal form used in one program and temporarily being changed at
the beginning of other programs when needed there and then restored to normal at
the end.

() To facilitate changes, the individual programs (or ''decks', 1-20, see
Sec. XI.7) that make up the system should be as independent of one another as they
can be without excessive waste of storage. This requirement was not fully adhered
to near the end of the programming task.

As a result of these requirements and of some oversights in programming,

there are a number of storage registers which could be made available without any
loss in system performance and a number which could be freed at some sacrifice.

-50-

A brief guide for finding such registers will now be given followed by a number of
suggestions for their possible use in a revised version of the system.

The 6 vacant 0,-code locations and the 11 vacant registers listed in deck 5
are, of course, available. The only distinction between them is one of mnemonics
in connection with the choice of operation codes. In addition, it appears possible
to salvage 22 registers essentially without loss by the following substitutions, but
a careful check followed by machine testing is advisable:

Deck Card Loc. Replace by
20 113 1801 1848
16 48 1240 1138
18 103 1896 1138

6 70 1360 1160
16 6 1230 1338
18 77 1887 1137

2 32 1058 1955
12 60 1639 1289
16 30 1244 1245
19 103 1702 1103
17 63 1480 1980
10 36 1331 1358

8 32 1166 1241 -
12 56 1423 1674
17 22 1485 1285
18 97 1842 1504
17 29 1495 1297

5 11 1252 1952

5 12 1255 1955

5 13 1260 1960

5 21 1277 1977

5 23 1283 1983

It is, of course, necessary to determine, by sorting on instruction and data
address, all places where the locations listed are referred to.

Registers that may be freed at a price in speed include, above all, nearly
40 extra registers used in the arithematic routines in calling out A and B, splitting
them up and storing the parts. This is done separately in each of decks 12, 13
and 14 to accommodate minor differences that facilitate optimization. To combine
these steps without any loss of time is a task which, if possible, would require
re-optimization of a substantial part of the system. At the expense of one revolution,
they may be combined easily. Similarly, making the dissection of B common to
all 0,-routines would result in a substantial saving at the expense of lost time in
cases (such as LOOP and TREXP) where B is irrelevant. To make this dissection
common only to those routines where it is needed would be less profitable.

-51-

At some sacrifice in external characteristics, registers may, of course, be
freed in any number of ways. If, in tracing, the modified instruction (redundant
but convenient) is omitted, seven steps are eliminated. The MOVE operation for
A# 000 is easily programmed in terms of LOOP BC and MOVE 000 and could be
omitted, as could the special functions in degrees and to base 10 (or radians and
base e, respectively).

A number of suggestions for changes and additional operations will now be
listed. Suggestions (1) - (3) use only the vacant registers and operation codes
listed in deck 5 and can consequently be added to the system without difficulty at
the option of any installation or individual programmer. For temporary use, they
may be punched on separate cards and loaded after the system deck, in the case
of (1) and (2) and after the punching deck, in the case of (3). Such cards should
have an x-punch in column 5 and the four-digit location in columns 6 - 9.

(1) Add an 02—operation defined as follows:

0, = 453 SWITCH v Transfer on switch. Control is
transferred to C if the Storage
Entry Sign Switch is set to minus,
to B if it is set to plus.

This operation bypasses the stop that would occur if the same function were
programmed by a CONS and a TR SGN order. It might be particularly useful in
connection with tracing when it is desired to start tracing after a certain amount
of running time has elapsed or for following the progress of a calculation by
occasional punching of intermediate results at the discretion of the operator.

The coding for SWITCH consists of the instruction:

1453 10 8000 1015 Read console. Go to TR SGN
routine.

The execution time is 19.2 ms.

(2) Add an 0,-operation called COUNT having the same counting and testing
properties as the LOOP orders but using a counter independent of the loop box and
not capable of modifying instructions. Its function can be duplicated, e.g., by a
SET A, an ADD A and a TR A instruction. Its advantage lies in its speed and
simplicity. The execution time is 24. 0 ms. when control is transferred to C and
33. 6 the last time when control proceeds ahead and the counter is reset. A formal
definition follows:

O2 = 800 COUNT The number standing in the counter
is increased by 1. Its new value
is compared to B. If B is greater,
control is transferred to C. Other-

-52-

wise, the counter is reset to
zero and control proceeds to
the next instruction. The
counter is also reset in loading.

If COUNT is used extensively, an expansion of the tracing program to punch
out the contents of the counter, e.g., in place of the problem number, would seem
desirable. '

The coding for COUNT reads as follows: 7

Loc. Op. Data Instr. _ Remarks

1800 10 1356 1314 Call out and increase

1314 10 1317 1323 the contents, N, of the counter.

1323 11 8002 1381 Test N+ 1- B.

1381 46 1337 1391

1337 10 8001 1396 On -, store N+ 1 in the counter; go to C
1396 21 1356 1120 (in TR SGN program).

1391 16 8002 1066 On+ , reset the counter, go to General
1066 20 1356 1095 Interpretation.

1356 00 0000 0000 The Counter

1317 00 1000 0000 Constant

1194 20 0000 1378 Change in LOADING to reset

1378 24 1356 1178 the counter.

Note: If the COUNT program is loaded separately, the card loading
zero into 1356 (step 9 in the program) must be included.

(3) Include in the punching program (deck 9) a routine that prevents unwanted
numbers from being punched out when the word count is less than the normal max-
imum. This can be done on a tabulator with sufficient selector capacity (see Sec.
XI.5). In the 650, it requires five locations and increases the execution time of
the PCH order by 24. 0 ms.when the word count is less than the normal maximum.
The program, which may be punched on three cards, reads as follows:

1949 44 1306 1095
1306 20 1980 1307
1307 20 1981 1308
1308 20 1982 1309
1309 20 1983 1044
1044 20 1984 1973

(4) Make room for the tracing program to be on the drum in parallel with
the punch program, replacing the mode-of-operation deck (see LOADING) by an

-53-

x-punch on the transfer card or a setting of the storage entry sign switch. An ex-
pansion of the loading program (about 7 steps) or of general interpretation would
be needed, and the present overlap between tracing and punching is 34 registers.

(5) If MOVE is omitted, except for A = 000, make this an Oz-operation and
use the vacant 0;-code for NGDIV. Alternatively, add a fast Oz-operation, "NEG!'",
identical with MOVE 000 except that it changes the sign of B. If NEG were available,
however, it might be used in cases where, by slight reprogramming, a better pro-
gram using NGMPY could be written.

(6) Increase the number of logical operations,adding to the flexibility of the
system and to the confusion of the beginner: Have a register called the "address
counter'’, addressed, e.g., by 000 or by special operations and SET instructions
referring to the address counter (as in 701 Speedcoding) where the present SET
instructions refer to their own C-address. Have a set of TR A, TR B, TR C orders
which automatically increase the address referred to by 1. These would have to be
alternative to the address transfer orders in pPresent use unless vacant Ol-codes are
produced.

(7) Make use of addresses now ignored in some operations. For example,
in CONS, use the B-address to call out a number B for console display when the
machine stops. In TR OUT, make B a "return address' similar to that in TR SUBR.
In START TR, or a new tracing order supplementing it, let B {or C) designate the
number of steps to be traced before an automatic discontinuation of tracing.

(8) Make Program Loading reset the registers below 1000 to zeros, unless
told not to by an x-punch on the first card being loaded.

(9) Have a conditional stop, or an operation effecting such a stop, on loss
of accuracy in ADD and SUB, analogous to those in SIN and LOG. In many problems,
particularly in connection with tests, such loss is legitimate, however,and a stop
undesirable.

(10) Replace or supplement the present error stops by the punching of an
"error card",

.(11) Introduce an operation similar to ST TR ERAS, perhaps replacing it,
which will cause the machine to trace the first, second and last repetition in a
loop.

(12) Add another LD-STD pair (at no loss in time) to General Interpretation
(see cards 26 and 27) making ADD and SUB, as well as MPY and DIV available as
internal subroutines.

(13) Cut the execution time of several subroutines, such as, the arc tangent

program, by making minor rearrangements, usually involving the expenditure of
a few additional registers.

-54.-

14) Add an 0,-operation, SPACE, which causes an x-punch to appear on the
27°P
next card punched.

(15) Interchange the functions of registers 1002 and 1702, causing the machine
to stop sooner if a programmer accidentally attempts to continue upward from
instruction 999.

(16) Investigate whether a carry can ever occur on card 78, deck 18. If not,
put the registers used on cards 78-82 to better use.

(17) Replace or supplement the arc tan operation by an 0 -operation, ARG,
which gives the argument (angle) of the point whose coordinates are (A B).

XI.2. RELATED SYSTEMS

Several systems supplementing the present one suggest themselves: (a) A
system of symbolic or regional programming where the machine assigns absolute
addresses in connection with loading; (b) A system externally identical with the
present one, or very nearly so, operating on complex numbers, probably with real
and imaginary parts in 8-2 floating-decimal form; (c) A system externally identical
with the present one, or very nearly so, operating on double precision floating -
decimal numbers, e.g., 16-4; (d) A system of "formula translation' or '"automatic
coding'’ (such as, the IBM Fortran for the 704) putting on the machine as much as
possible of the burden of translation from a set of mathematical formulas to a
program, -

XI.3. NUMERICAL METHODS
The study of numerical methods for calculation of the special functions included
in the system was not nearly as exhaustive as would have been desirable and no

claim to an optimal choice is made.

The square root is computed by Newton's iteration method,

where 1 _(_ B, € 10, using the initial approximation
(2) xg=1l+.22B, .

The evaluation of the trigonometric and exponential functions is based on RAND
approximations (see Approximations for Digital Computers by Cecil Hastings, Jr.,
Princeton University Press) to sin n:X and 10¥ for O((1. Resembling the
approximations obtainable by expansmn in terms of orthogonal polynomials, these

-55-

approximations are in general somewhat more efficient than partial sums of Taylor
series for a prescribed interval and accuracy, but it is not obvious that a further
reduction of the argument followed by the use of a Taylor expansion could not have
been better in the present case. For small x, as stated previously, the formula sin
x = x (in radians) is used in order to retain significant figures.

The logarithm and arc tangent are evaluated from fixed-length partial sums
of power series after preliminary reductions of the argument, since eight-digit
RAND approximations were not available. For the logarithm of Bl’ 14 B, £ 10,
the substitutions

(3) u=%,vﬁ=é-) for B,< e,

- B
W WU=rg5 V=165, for B, > ¢,

c O

|

=1
+1)

(5) t =

foy

are followed by the evaluation of

t . y= t2 t!?
(6) iage BI= Ioge-%%{-}-\/“‘a‘t[l'l"a + i T]+v .

The constants, Ve and el: 65 were arbitrarily chosen within the intervals that would
lead to a minimal number of terms in (6). For x near 1, the logarithm is inherently
less accurate than x since :

m d log x=4% ~ dx

and log x 2 0 whereas xxx 1. No substitution comparable to sin x = x can alleviate
this difficulty. The use of a second Oz-operation for log {1+ B) was considered
but was rejected due to space limitations. This second logarithm could not be used
to replace the present one for all values of the argument, since if the logarithm of
a small number, say 10-10 is desired, the substitution,

8 |+B = |o7%°

forced upon the programmer, yields B= -1 exactly (in the eight-digit system used)
with all digits of the input lost.

-56-

_ For the arc tangent, the reduction (after the argument is restricted to 0(
B (1 by the obvious properties of the function) is based on the formula

(9) arc tan x= arc tan y + arc tan X=X

l+xy

which is merely the addition theorem for the tangent rewritten. With y=.6, the
use of (9) gives the desired accuracy-in

(10) arc tan z =Z[‘-§-z+-§-_‘}'— ".'-— -iz-"-o

with z = E(‘*;—g for x ».28 and z = x for x £.28. There is again some leeway in the

choice of these constants. For small x, the substitution arc tan x = x is used to
preserve significant digits.

XI.4. CONTROL PANEL WIRING FOR THE READ-PUNCH UNIT

The control panel for the 533 Read-Punch Unit associated with the 650 is
wired as follows:

Col. 1, 1st Reading, to LOAD.
R + Sign, jackplugged.
P+ Sign, jackplugged.

Col. 5, lst Reading, to Pilot Sel. 1 X PU.

Rd. Hold to PS1 Hold.

Read Card C, Col. 6, to PS1 T.

Read Impulse 0 to PS1 N.

PS1 C to Storage Entry C, Word 1, pos. 3 (from the left).

Read Card C, Col. to Storage Entry C.

7-9 Wd. 1, pos. 4-6
10 wWd. 2, pos. 6

11 Wd. 3, Sign
12-21 Wd. 3, pos. 1-10
22 Wd. 4, Sign
67-76 Wd. 8, pos. 1-10
77-79 Wd. 9, pos. 4-6

-57-

Read Impulse 12 Wds. 1, 2, 9, 10, Sign

wd. 1, pos. 7-10
Read Impulse 0 wd. 2, pos. 7-10
wd. 9, pos. 7-10

Word Size Emitter to Word Size Entry C
10 Wds. 3-8, 10
8 wd. 1
7 wd. 9
5 wd. 2
Storage Exit C to Punch Card C, Col.
wd. 10, pos. 3-6 1-4
Wd. 1, pos. 3-6 6-9
Wd. 2, pos. 6 10
wd. 3, Sign 11
Wd. 3, pos. 1-10 12-21
Wd. 4, Sign 22
Wd. 8, pos. 1-10 67-76
wWd. 9, pos. 4-6 77-79
wWd. 2, pos. 10 : 80

Double Punch and Blank Column Detection as available and desired.
XI.5. CONTROL PANEL WIRING FOR THE TABULATOR

The IBM accounting machine or tabulator used for printing from the cards
associated with the interpretive system may be expected to perform some or all

of the following tasks:

(1) Automatic selection of different printing forms (i.e., zero control and
spacing between items on a line) for data cards and trace cards.

(2) Selective spacing between lines.

(3) Suppression of unwanted words from cards with word count less than

Since there are many tabulator models, it is not feasible to provide a detailed
wiring diagram in this report. Instead, suggestions of general applicability will be

-58-

given.

Exact selector requirements depend on the characteristics of each machine.
As an example, requirements on a 416 will be given: The printing of signs requires
6 single-position selectors with X-pickup and 6 positions of 11-12 separation (either
special attachments or 6 positions of a selector transferred by an 11-1/2 impulse).
Task (1) requires a digit selector (which may be put to duplicate use in task (3)) and
34 selector positions with digit pickup (delayed pickup). Task (2) requires only
3 one-position selectors on-the 416. Task (3) requires 55 selector positions with
delayed pickup and some comparing units or a five~-position selector and a digit
emitter for control.

The problem in connection with task (1) is to get the desired zero control
and spacing in the two cases with the same setting of the hammersplit levers (also
called zero suppression levers) and hammerlocks, on machines where zero control
is not performed on the control panel. On a tabulator with 89 type bars, this may
be done as follows:

Type bar Direct Wiring Data Cards ' Trace Cards

Alpha. 1-4 Col. 1-4, II*,
5 o
6-8 Col. 7-9, II
9 —_
10 Col. 5, II. Col. 11, I,
11 . Col. 6, II Col. 12, II
12 _ Emit10.
13 - - Col. 13, I
14 - Col. 14, II.
15 Col. 11, I. Col. 15, II.
16 Emit10.
17 Col. 16, II.
18 Col. 17, II.
19 : _—— Col. 18, 1II.
20 Col. 12-21, II. Emit 10,
21 Col. 19, II.
22 Col. 20, II.
23 : Col. 21, II.
24 , Emit 10,
25 | Col. 23, II.
26 Emit10.
27 Col. 22, I. Col. 24, II.
28 Col. 25, II.
29 Col. 26, II.
30 Col. 23-29, II. Emit10.
31 Col. 27, II.

-59-

Type bar Direct Wiring Data Cards Trace Cards

32 Col. 28, II.
33 Col. 29, II.
34 Emit10.
35 Col. 30, II.
36 Col. 31, II.
37 Col. 32, II.
38 -——— Emit10.
39 Col. 33, 1. - Col. 35, II.
40 ‘ Col. 36, II.
41 Col. 37, II.
42 Emit 10,
43 Col. 34-40, II. Col. 38, II.
44 , Col. 39, 1I.
Num. 1 Col. 40, II.

2 Emit10.
3 Col. 41, 1I.
4 Col. 42, II.
5 Col. 43, II.
6 -—-—
7 Col. 44, 1.

8-17 Col. 45-54, II.
18 -
19 Col. 55, 1.

20-29 Col. 56~65, II. ~
30 - -
31 Col. 66, 1.

32-41 Col. 67-76, 1I.
42 -

43-45 Col. 77-79, II.

(*) The symbol '"II" denotes wiring from the second brushes {on some machines
called '"third reading') whereas 'I'' denotes wiring from the first brushes ('second
reading') through a selector that separates 11l's from 12's to the X-PU of an X-
distributor (''pilot selector') through the transfer point of which an emitted 10 goes
to the type bar in question.

The hammersplit (zero suppression) levers alpha. 4, 11, 25, 37 and num. 5,
17, 29, 41 and the long hammerlocks alpha. 12, 16, 20, 24, 26, 30, 34, 38, 42 and
num. 2 are raised. Left zero carry clips of width 3 are attached to hammersplit
levers alpha. 6-8 and num. 43-45.

Trace cards are distinguished by the presence of an 8 in column 80. This

impulse is wired through a digit selector to the digit pickup of a row of selectors
(*class selectors' or '"co-selectors with a controlling pilot selector'') with a total

-60-

of 34 sets of points and to the hammerlock control hub.

For performing task (2) in the manner specified in Sec. V. 2., four external
switches are needed. On a 416, the single-double spacing lever and the minor,
intermediate and major control switches can be used; on machines with four
pluggable switches there is no problem.

Spacing every 10 lines (alternative (b), Sec. V. 2.) may be accomplished by
adding 1 to a counter on card cycles and using the carry (which, on a 416, is
automatically available at the counter total exit) to initiate a minor cycle during
which spacing takes place and the counter is cleared.

Spacing alternatives (c) and (d) both involve inspecting a card column at two
reading stations and taking certain action when the digit at the first brushes is less
than the digit at the second brushes. This may be done by wiring from second
brushes to a comparing entry and from the corresponding comparing exit to the
immediate pickup (""ZFS P.U. '" on a 416) of a selector through the transfer point
of which the digit at first brushes is passed. In case (d), this digit is taken directly
to cause spacing; in case (c) it is wired to the digit pickup of a selector which
initiates spacing on the next cycle. '

Task (3) is easily accomplished if a sufficient number of selectors are avail-
able. Since the same task can be performed on the 650 at the expense of 5 locations,
(see Sec. XI.1.) the tabulator wiring will not be discussed here.

XI1.6. SYSTEM LOADING

The interpretive system deck, normally with 6 words to a card and an x-punch
in 5 to get the 1 in column 6 picked up as a leading digit of the address, is loaded by
a deck of six self-loading cards (12 in col. 1) with 7 words to a card and a card
number in the eighth word. The first card serves the sole purpose of making a
fixed console setting possible. The System Loading program on these cards operates
as follows:

8000 70 1951 1333

1951 70 0004 0152 Read in the loading pro-
0004 70 0053 0152 gram from six load

0053 70 0106 0152 cards (B into 0001, C+1
0106 70 0153 0152 into 0002).

0153 70 0204 0152

0204 70 0251 0056 Read a system card (non-load).
0056 60 0001 0055

0055 11 0251 0155 Go to stop if expected loc.
0155 44 0152 0102 B'$# loc. on card, L.
0102 60 0002 0007

-61-

0007
0205
0057
0051
0052
0103
0156
0206
0054
0203
8002
8003
0151
0201
0207
0101
0105
0107
0104
0157
0005
0003
0152

0001
0002
0006
0202
0154

11
11
46
21

- 60

10
15
10
21
11
69
24
15
10
11
44
10
60
44
60
10
21
69

00
00
24
69
00

0001
0252
0152
0080
0006
0251
0202
0252
0070
0252

[0253])

CL3J
0154
8001
0070
0105
0070
0080
0157
0001
0252
0001
7777

B
Cc 1
0000
0253
0001

0205
0057
0051
0052

0103
0156
0206
0054
ozoé}
8002
8003
0151
0201
0207
0101
0107
8002
0104
8000
0005
0003

0204
1333

0000
0000
0151
8003
0000

Go to stop if C+4 1
B'4 n,

Prepare accumulator for
move,

Store test constant.

Move one word.

Increase addresses by 1.
Test for end of moving.
Return to move another word.
If C+1l= BYn, end of load-
ing; go to console.

Increase location by word

count, go to read next card.

Error stop.

Constants

A similar program is used for punching out the system in condensed form in
case extensive changes, entered on self-loading, single-instruction cards, have

been made.

The Reset Memory Card, mentioned in Sec. V. 3., is a load card with eight
words. The program, essentially identical with one supplied by the IBM 650 Sales
Research Group at Endicott, runs as follows:

8000
1951
1953
1954
1955
1956
8003

=70

69
24
69
24
61
20

1951
8000
0000

1957

0999
1958

- [oooi]

-62 -

1333
1953
1954
1955
1956
8003
0999

11 1952 8003
0999 00 0000 0000

0000 70 1951 1333
1952 00 0001 0000
1957 11 1952 8003
1958 20 0001 0999

XI.7. PROGRAMS

The complete programs of the system are listed on the next 21 pages, (i) -

(xxi). In many cases, but not always, a constant used in two programs is listed
in both.

-63-

650 INTERPRETIVE SYSTEM.

1, GENERAL INTERPRETATION.

INSTR.

OP. DATA

LOC,

CARD

DECK

. e
5 :
g9 -
=73 H
O g =2 ~t o
—~ O ~ []
Qw0] =
L WO <] L)
I o
o~ M =1 =
~ N [=} © [o}
R s 3
- 2 | 1
OO0 + O L o
S¥% e 2 i
88 g S
em.lh . 3 N =i
%w.dt (&)] o o
[+¥] + 2])] m [+]
SO M 9 - +
238 8 38 o
-~ n 22] w |] nw
—t—,

TOFAEHOAOMNEOUL N O
HROOWVWHARAMITTOVUDDO®
OOHOCOOCOO-HOOOO
YO O

oxoMTaMmmMmMMLMASGOQ
aRoagdHoNoOOoOwTOoOOoO VRO
COOHN-HOOOSOCOOOOD
A e OO OO D

QOHOVUOOOOOOOTOO
OCri@OTMQOUNMNRON =0

DTN A EHOAOMN A DO NN
AHTOOVYHANTTOVCO
CO0COFHOOCO0OoQOmMOOO
MY O A e D

183456789012345
i

v e e v e e e e e

6 Add the loop box to the instr,

04
061 Remove the minus sign.

1
1

017
003

1
8

i~
O

a0
-
- o
~

O I~
v~

}~Constants

&~ O
o @O
~ OO

vl v

THw
OOt
ococo
—0 O

o 4w
O 0w

OTO I~
Qe
|=XeReNe)
i i

N
aEQEE

vt v o

25 1017

Loop box (initially 0O)

#’ 1/‘ o /’(’75;3 '.‘

(03=3) to normal-
g+ program makes

Restore the multiplieation

routine
(The tri

special use of it).

|

19}
02
9 6
20
59
oz
16
20

1735
10453

32
39

17
15

Q¢
O

aw
@9
e~
i

O~
RE

28 1732 35 0002 1445

1

2. TRANSFER OPERATIONS.

02000,

for console display

UNC STOP
B

Call out
Stop.

O Q-
O~

MO —O0
an __o
SO O
Q v Oy

QUaM
MeEOW

(o ReNarite]
CHOO
C-HQOO
™ v O

Qg

QN

COND STOP

gl

0z=200, C
Call

out B for console display
Stop; Go to C on PROGRAM START

QOO
™~ O i

M Q-
(@ \y
O i
O

OO
M -=H00

oo
oo~
Sielalel
™~ Oy

wor~-o

Qe

TR SGN

est the sign of prev. result
o to B if +,

} 02=201,
T
G

5
9
7
7
13 1202 60 1009 1013 0p=202

Am oot Ear]
QC QOO
™ vt

oM@
cCQNo
SO0
el

OWQOO
T \OW0

LRI ® o))
Q= QO
ROHO
vl vl

QRO
i

QM

TR EXP

2

—ii-

} Get the exp. of prev, result
Compare it to B; Go ahead
if exp. < B, to C if exp. > B.

OO RO
NRM—H®
OOOOr
v v v vl

QEHWOW
coowa
00000
O®O ™

o~ 0VY
LARTOR MR o Ay

M-EAON
L EVAVIAR o
COCO0
v v vl v vl

TWHON~O
el il

QM

i+l by C in
general interpretation,
02=204, TR SUBR

IR

Replace

02=203,

Set the C-address of the
?—instruction at C equal to B;

go to TR to C.

X

NOoOHHQWM®R O DM
AT WWOOMMATVO
HOHHOOHO OO
ot vt vl @ v e e

MY B LD QO = Q2 LD A

NOTNHHOOFTO
OO0OwHO+H ©COO0OOC
HOHHw "o O™

NOoOONNWLMSMOO W
VNV HOMO-INQ

SrEOAENRUMNAQOD
oSCMYTWLOWOMNGT
NHOHEHOOHOOO
el Ol i

NMNITOOUORRO N
e MmmMn

auuaaueEEEaaaaEa®

i O 3

N
QRO
oo
O

L
oM

0 oM
oMo
NHO
™ ©

<,
LAl Roa|

NOOP

Go to general interpretation.

O2=iok,

1095

36 1454

2

Wdo

258

0 Gl

= g 3 Q.

e} 1 00

= (&} ©

O] e~

< O~
MPhae

MtCh

B +

] e} Q oo

+3 S 80

m [W) L o M
2 ggPss

® Ol® oA 1

§ JNERS

[&] 3OMW1
& A N r A >]
M MNMNN~OW0 - M
OOCOHON o~-~-Mo
OO0 D00 O
™ v el v e vt v i
B+~ HD
OoO-OoOoM
OCOOO
O-HO O+
=000 OO QOO
VWNOOWw MO v
TN OO [E E BT
—HITNNYmMm OOV~ >-M
=H-EO-O QOOQC
v v v v v v v]
OO Hanmgwn

mmang g

QM mmnmmnmn

~ =
($) xm
58 23
QO W“
<+« 0 o ®
o -~ %
b Q,
o O e
D B @
Spﬁn P
R
) Q. D~
(=} [V 8
Aie O e R
= ©
mt, I8
qfy 3%
Ome. oo
mm1 []
O & %t O
OO - o0
‘l-)ll‘ll-}

HoQoMw
To Ty Rt N EFON
OHC HHO
ka bakakaky

QI H~-Q~
OO O
COO0OOCO
el Rl g Qs

OO 0O
wHEHRQEHEQ

N RN N
O N O
cooo
e e

O~-OMhQ
v~

mManammnmn

LOOP AC

02=101,

1OOP AB

0z=110,

-iii~

O ™
LY el
- O
L]

a
om
OO
® -~

QO
i 1

WO
Qm
Ol
i

O
aQQ

L&

2

» LOOP

L le=RIs]
OOy
~ O O
i BaRal o

el O
o oM
COO
1O O

OO0
O M el

- OWw
-~ 0
O
i

QaMnewn
Qe

MmmKmmmn

LOOP B

02=010,

LOOP BC

02=011,

}-Constantso

0001
0
0
0

0100
1
1

OH-OO
MMM
—HO OO v
vl vl vl

-aMTn
1a¥ia¥ oW ¥

mmmMmmnmn

. MOVE

L]
]
~Ho 3
] =]
ol
Q]
£ g &
[]
o8 =
$£0 N ©
=) o
Q [&
o) + E
- o] [o]
~]
¢ = o
- &t M
S - A
mt (o} =
sk 7 ¢ &
]
gy = S
* o o]
O 2 1 5 <+ <3
[R &) [« 2]
-1 O - O [15)
Qe [42] [| 5
P PN

QUG- oom
COrHNRDTANRMOGLN
OHMMEOMNHEO
e Lk a R albaba b k]

aoanenMmMin WD~
QOO0 NWOAHONT O
o-CcoNoOoOMOooMm
VA OO 1 Qi

NHoOYWOoOWNUINYT-HOW
OVOrMe NS Tl T

SO NOO
QAOOwWNROAQRNOO
COHMFMHON AHAHO
el il el e v

HAOQMTUOO~-ONO
et

NI FET T

}-Initialize for downward move,

uaro o~
QM T O
M MMM
i

aQamMmuUMQ
QO QWY
oo
VO i

QoOowVWw
M e

MO ®
- @
HMmmnmm e
ed v v e

aneTn\Q
v i vl

LA AR

%Initialize for upward move,

DOoOMROL~
QN0 O
LTl SR
v e

M QUMW E
Kovwoaw
CoOOoOM
YOO vt

CVOVHO HW
Ot

OO0
ouTor~-mM
MMM AN
i rivivd el

OO
el 2 R

TTITE TS

~~
®
[=9
%
=
H
] o
~ = 1 1
o] -0
*3 =3,
« d = B> W0 »
mz o O o
ot od Y e
» 4+ 0 5 Qe
n o © 0 @ 43
g ot ~ 0 @ =
o+ T g @oP>mo
Q ord A m ® O &
tm w o &m%g
[gL g
220205 IN.%
o 0 & emOo
O~ &0 [
- [» muNS
om > [7] o
+2 e} ® £ ©% O
n o = & O kb 2
ey P~

oMM HAM RN
~MOOOWMGND™O WD
HOOH-HOMEOOM
O O™~ D v

138 Y e R R R RTR
DDk xDVO RO TO
NN*fMooooo
Ao HOoHO O

HeOtTHTO OO
QA HORHETHHAHOM

OMNMARALCAHNON
A~OOoOoOUVUVOAN~TW
HEHOQH MM HAHO
™Y OO A e

MO~ O =N
e mManm

TEIETTTETT IV

-1y~

Error stop for MOVE, READ & PCH.

ol o R]

Fo N on ToV]
O q @

s]

Do g
~0 0

AV R RTY)
OO
Mom
™~ DO

AL P Ae]
My

}-Constants

aQaaw
ocow
O~
@ vt

YO
waQY

s XORTY)
Q0
MO
v v

o
MM

< <<

5. ERASABLE AND VACANT LOCATIONS.

Vacant Oa-codes

P,

0~ -0~
N
o
e N

S I
o~ o~
T S S S
S N N

S L
ol SE SN ST S

V~-OoOMNMO
oCCcCOoOOono
MMM o
el il

M ITNO

nuunwuwnuw

}-Interuaubroutine storage

nwnw
nnin
nwnw
nwnw

nwnwm
nunw
nwwn
mwumwn

nnw
nwuwn

oMo

oaw
ooco
e

o~

[2] —~ o~
S T T 7
M o = =
2 RT3
= =) ~ A
o H !
°g
=0
o= .N
[
£z 5o
2

-
H ¥ ox M

errasable

DODODDODDDLDDOODDDOD 0D
DORDOODOODDWMDONDOD0 0D
DODDVODUODO DO MDD D0 0D
DOODOODOOD DO MDOC 0D DD

DODODDODODVVODVDONODODD

esRvoReaRveResReaReofeoRuseses ol sooResNeoNeoResRe 1 XK1a]
(rofeefosqueNveRusRioRsReolceReoResNioRioNeoReoResNeoNesNee]
esReoRseRccRecRioReeioNeoRvol-s o fcs i RuodoslsoNeo N e Nee)

sefeeResNesNesReoReoRsoRvoleeeakisNeaNesNesResNooNesNeoRee]
(e lisNeoReoRes ResReoReoRoeJooReoRsoges ReoReeRerNeoReoNrol

OCNMULOTVFDOAQAITH-OMWDO N T~
DOV OOVOCON~-T-VDDOANRNN
e EeEEEELRREEEREaE
AR R R R R R R R K R R R e e R R R R R K]

Ol ITNOVFODACHANNTNOC~-DOC
iy e RQ QRN N

DUOLLLVOLLLVLOVDLDWYWNWDODILD

7Vacant registers

J
B DD D O Do D O B O O

S T
el o o e S e
S N e

N
e el Sl S S S
e S N O S S
e N e

N e
N S S

O tMOo A~ ~H0O 0 Y
VMO Y Y
MmMmMmMMMnNMnNo o
el e e

OOV DORO
MMM MM

NHLLLVWLYINLW

6. ADDRESS CHANGE OPERATIONS.

1 1087 69 1140

6

69 1341 1195

1088

-
2

-

3 1089 69 1342 1195

IR C

Common steps.

6

01=8

3
8 i
m -4
- 3
< &
m
& 5
L o~ P o
5B eh 5
£ 5 iy e
' .
..m od m
<3 5]
w Q e O =
m od <+
St . . [
8 $< g8 af
-~ 5 [« 3] = 0
£ -A8 CE 57
Q (3 Py [[}]
m hw am r.l
s E1 dg
2 58 &7 &
42} %l w0 CAW

MG Qao~-unQan
DEHOOOAEHQROAOG
CMMO-EMe-dedMHO
vYorded O v e

oM alannnnmn
QOO , FOOOO WO
HOOO rO0O00OOE
HOOH" =0 O DO

OOV~ UVOOYW
AOMEOM OO -

DMNEHAQROANDMAQO
O VO HQDO
HOMMO M H N
MO A~

TOOVFODAROHAQMITW
el e

sl el cilis R B0l Ris ls RTo Rt RVs]

} Constants

a0 @
(foRToRIs o)
MM
vl

e
loXeXe]
coC
e JoXo]

(IaNToRTo R
MmN Y

O -
< N~
Mo
R R R

O~-OOn
v

VWYY

02=005, SET C

20 1005 65 8B003 1163

6

02=050, SET B

21 1050 65 1103 1163

6

—— -

0,=500, SET A

22 1500 65 1104 1163

6

&)
=
- e » &
- m [[as] [+]
2 p@
i
...uo S&F\ [DW .mm.
- s o g o - =
o O & O = i o
Kt O 4 ot @ <%
o n 42 +2
[<R 4] +2] [=
Gt ,Bim = ~ %)
o ® . [] o] > o
0 P.MtB oy fe) =~
ot 0 o] '\ O© .
[1] + Toed O = - [o]
- m @ odoei @ © o n E~
» o eum.ed m V.% 1] t.mw
= m S 08¢0 O (%} <
=] P HPR @ | P o]] (S
a ~ L0 §
- P OO (o} [] Q, + O
© P o ® O + o | D -
[&) [45] 1 LS~ [7p] oo o < @0

—r e T e A e Ay
oYY oOoOaMNoNo AT OoooosvuNw

OO nOUMoODORNMNTAMMOANSOO
AN AT ORHTHO A HAAH QRO
Hremre e w0 A A e e

6409530731ﬁ533353335”3
HOOTOVYN [AV00O0HANRO Y o
HRONOOHRO @200010008%
HeA A A A o A 0O O O s

AR LOOANOOCOOCYOVUN LW
YRVAQAOVUMOUQR-EOMNAROVUMNOUTHAMNAMQ

MOANMYQRANMNTONTONRNANTTNOOWV XTI
VOO RATHDOFOODONNMNYOA-IMODNY
HREHETRM A AT O HHO A A QA
e AT A A C T A A A e A e

MO HAANMNITNOOAOH M
QuaEeeeMmMmMMMNMM MY N T T

vyovwvwgwoyvvovvyogwovwwowwvwowowygwewaow

}-Constants
50 1006 65 1023 10790@%,ch

~ow
VO™
QO
il

0003
0006

CoROR |
A

MOoao Y
O=HWOWO
el O
v v e

e~ ;
T Y

[folte RXaRle R o]

6

m————— vt

0,=007, SUB C

51 1007 66 1023 1079

o G0 O
HNOW W

o
O

a o
® =

\

OO OGO O O O O O O O

N ENEN IR OYORs RO RN N Ne R R s
MR O VN0 WNDEOW

N NSNS 9NN
N O AR O0V ONOUTAWOR

B R RppRRe

®D® O
AN R

Vi~
10709
1060
1070
1129
1600

W
o

0007 1004 Common to both

1023 1129 02=060, ADD B
1023 1129 02=070, SUB B
0004 1004 Common to both

O
O »n

W
o

1023 1189 0p=600, ADD A
1700
1189

1023 1189 022700, SUB A

W O O
o O U»
O
O
O
|

1004 Common to both

Common to all ADD & SUB gp.
Store shifted 1C;

Set address for storing
modified instr. at B

-

Get B

Add £C to |B|; store
(with original sign) at B,

VPP LUWOWUWRRWOO

SOy OO OHBONIRPUOTOONO
AN OO DO

Lt OO 0L IO WU O

WO Y000 VDOWJOVON
Tl i R = O

PR PDWOOD

Constants

RRR RRRRERORRBRRRBRR
OO WHRRERAMNFNOUWAN
OOK RROAOUIVDOVOUNO
RERERE RRRRaORR R
WDUWO OVDVWFUWOUWWWWO
OAO VOOOCHOIROVOON
VOO IO OW-I0OO

O W

7. PROGRAM LOADING.

3 Read the first program card,
} Set an instruction for return
from the READ routine
Reget 000 :
Reset the Loop box
Reset. the card counter
Test the word count,n. If # O,
go to READ to move n words

If n=0, put the problem no.
into the punch band,
decide if tracing is required,
(dep. on contents of 1976%),
store the address of the
first programmer instruction, #/ 2¢ pup<
| go to execute it (gen.int.)
1107 {30 0003 1019 if not tracing
21 1980 1386 if tracing
1951 1344 constant (return from READ)

8, READING OPERATIONS
11 Op=401, READ CONS
5r Stop. On start, read console

switches, go tc storing routine.
1 02=400, READ
Set return instructions, go to

RREBRRR BRER RRR
OWVOVWYY: WOWVLO WMWY
WU OA=NOO AUTOF bW
R HEOANO AV @R
PR RERRRE RpRapRaRR

|

DLW VR AVIY AANNODWO
NP OUWLIW WOWR R R
WO AOT ~NAAIIVDW
CO UG ~Npbhooha

B R RRPRRR RBRRARRRRED
W ® 600N VDAGOAAWO

NV O FProwuHUWUW OURREREPRRFPWO
N O PO AODVDVDVDVON
O O ocodVAY VORMNOMODOO

s N

R RR
RN

NC WO
NO RR
nY OR

WO O
N ;)
VW O
<R o
oo ©

-vii-

5 1486 69 1241 1168 Steps common with PCH

ko]

[A

Q o

S ¢

D e~

o .w [-
2 H 4% 4 5 m

[]

o £ M + O =] - C] ‘m m
@ O f O o 7] [N o =
- g~ W - b s x & D o
c g, § 5 B4 0% 29
= s MO et N g '] [} .WM o] + @
g o WX ¢ - o) -~ O © g ¢ £ oo

C O - M + ~ £ 7] = Qo 1]
a8 Afgm ~ ® @ oD &y »
S o.- - et QP © @ ~ o
Q Gt i 2 O o« - o d & > 4 « O

.imsimi Mm o KT O & o+ =]
E¥alT 8% 8 B ¢9%5 § 8 o .-
3 0O 2.0 00 [V 3O [=3 Q [] o
& O P O a2 (o] + 5 (34 Q4w O 5~ + o Q

D we nY~ d O + S =2 oa (o] = = K
ma ~ ® & .Mc [} O w4 3 & = +

oo 0 0w - @ 5 - = 0
udtfetws Ve O oT N o 3 m)
s3cusgkli 4% 5 EEf % 5 o =
RS T~~~ [SRFY] (&2 = L [[a=4 -~ << &0

A, A “ P e P G G — Py

665372200~466142305338 RONIT VWO
MOAVMINOTOAOVDINMNAOO RMNONNOOOD®OM
733733375360200033132030517
111111111111118811111811111

711512755841882“;34189156727
755195718.5856855L2063084757
AN AR oMo NNMNO @
111111111111111&[1811811111

FHOFAYTO AHCHOOOHU HANNOHYTOOTO O
A AT A A TRO A AR O R A =t OO =R

866537320046614230533980646
738634784968539002397379486
Ou77)3733375360200033133833,51
Tl A e e s A v o e v e e e © 0 v e e e

678901234567890123456789018
e SRR ERM M N

888888888888888888888888888

} Constants

MOWVOo
oomne
omMmN~-Mm
@ v v v

NI~

v~
(SN RRY,
™

QO H
WO

soleell o
2R B ey
MM
iR Ro bt

MY
MMM

seNeoReolce

9. PUNCHING.

1 1410 69 1964 1168 02=410

PCH

14

Prepare for testing
and initialization,

Common with READ

—A

QRO
OMO M-
oMM
vl v v e

QMM
Ao d
NoOOoocOoO®
vl O

TVOOoOWmo
QOVHEMN-HE

CHQHONN
QOMO N
O MM
e v e

anmgsnwo-

A

L]
5
o
-~]
D & o0
Gt i T P [}
Lal + &N o
PO & & B
—~ [e} 00 W
m tn/_am
(®] m.r) £ = o]
= 0o+ 03 m
Q O = 4ty 133
= O e~m > 0
Ofsrd [aNe] O
~—r .m.r«f + H S
m 0 - 3]
e fx %9 3%
]
[-'s P f.m (=}
o @ ~ O TN e Q@
£ + L e @ + A @
o0 LM 00 g O
=N ppst s BS
moZ 003 0w Lo
o m U 3 A boH e

AODUVUMORARAHDDOO

AN O~ORROCONIW
(OROBRRROTOT R Re NN Ne e,
o e e e e

MROUNDA OO AT MY
O VWOV~ 0WVS
SN e NOROT s RN N aY e e
HO AT HAA AT OO

HHOOHOHHO OO OW
QeEHTONROA AT OM

O ODLOCMORWOHDODO
OO0~ ORN VWO NI~
QAN
el A e e

COAOHRUNITIWO~DOOO
e e T Q2

LRGE TR YO N OR R R W) We

~riiie

N~ ¥ 4 , w; .v
D~ QN E I I~ N T I~ [~ 0 DO Oy 1D
DOOSDODLDD OO T 00T
900%99999999999990

A leeR o T B PN e g A e

[O 0V L0 ¥ S 10 = e O o 1
. -ORNEQRN NN OSSO~
COMANODOCOTIARRNNS O
oA e A s e e e o e e e o

LOoOOATOMLLVNO HHOOHO &
A OO v v = QO =Y

OH-AM=EANTVENSNN~YLWL O
DRVOOANOONVOTF O N
SRS R Rote Yo Ne Yo We e Wo W No o W N o N0
™ DO e v o]

HOMNMITOUONOAOHRNMTIN VNSO
RPN AN

SRS RS NG R N0 ¥e¥e N2 e We e o Wo Wo To NorNe |

This const, keeps trace orders
inoperative during non-tracing.

*
2 o w
v fo3
& 2 &
o S 398
T Po o utwm
W = g4 S w». 0 X o
O o ¥ C O e
e § 3% 4 ¢ As=gp
= =} (3 n 1] Q00O A
[e] o0 o S i H
, 0 w.n O 8 PP O
v » & © m o
5 5 5% £ 5 $5a.
s O s~ m =i U3 &4 o

().

will be 00 0000 1095
ng (PCH inoperative)

This const.
during traci
Constants

with program loading, this instr.

When the PCH progr. is loaded

will load into 1963

10, TRACING

}{
{

1
8

(o Ne

1
1

M~ © ©
oro >
oo o o
O-HO = o

O i
M

TO
Qo

ONOAOM YO
OV VND
9 ¥e Yo o W We WoN
v v

AOoHQMTW
M T T

NN Ne We We e

%)
g
S . 5
< 5 <
5 i 2 5
S B
13 oo o N
& = ® 38 &8 08
K 3 5 § 9
. 3
5z S P o S5 i
@ M + .m - W &y m
. -
355 s 5 § 387
gl £ o o
3] &4 & -] M = 5 .M
#m_—ﬁ - O 59 » - F”,,;.aw -m
oy << S °© - - - Y
88 2 ° “ £ 2 £ 7
g o m 3 J<¢ im A A A o
gle e P] ® L O o o
£ £ — & A (TR VR L
22 3 3 2 8 S 8 8. 87
_muaueu (7] o 0 0 w oa n ;] o)
6678901338672890122345.78908183

i
N HON -0 0
DHOAN B
aocoocoaan oo
o o e

OMMMMUMNOMUAMND 0N O —
8020040606009A8409 oo}
coococococorwoccon Taooa®a
HOHOOHOHOHOO ™ O

100000040450501505949494545945
23263262346316263162 VROVAQOUNHONQWY

166789012356728901227J457890212
684444566666606677077778889099
O39999999999909999099999999099
1111.11111111181111811111111811

1234567890123456789018 MmO~V
111111111122222222823

OOOOOOOOODOOOOQOOOOOOOOOOOOOOO
111111111111111111111111111111

a
i

bl

3 K

Return to normal gen, int,

I Store card no. for trace cards
Punch a trace card

9 4
95
196
05

9
9
9
1

™ v v

OO
RO O
OO\
v

WO O
-~ 0

Mo
OOy Oy
(o WO s, Wo
v

QMg
Y LW PV

QOO0
i v !

START TR

0
Modify’gen. int. to include

tracing expansion

L

Mo

STOP TR

Restore gen. int. to normal

Q2=451,

|

o0

[}
o .
E g
g £
o a,
Q +
ads §
Bs8 2s
2] =0
. O d
4 B] N~
o
i@w Sk
Lol
N Q
g9 a1
458 3:
S8 25
—Ay e ey
QN QW

MOAVMO O

MO-MNO O -

il O

O] OMN oty

~OONY o

COoOOoOH- L
vt e e

ATUVLOY
VRUVUHOE

QT
ol Ws MY Ve
Mo -no
! v v v = O

o=
MY TTT Y

OO0O000O0C
v e

i

Yy ,in g (

0 S
SE
(4]
P~) .
~ O a~
L =
255950
=8
mwwmo%
o] i
t OON &
> OEIQ
8038 &t
a o 2, o]
58002
&mmm m
I < £ 52~
@ ti%tml
+ mnﬂ 0 % e~
m Omeh .m
[3] L 0 T
.".M delnms
= X< O o4
(<] Q & «i c O
(& WMW%lt
~ =
tTONM ROOWLWWY ©
DO~ wHHOO® W
DO OO0O0OO0OM O
Ovrivd OviOmHe w '
O MY O«AAwW
© 0O movw
N oo ooo
n 00 wHOoOw
OCOOTVO - <
cowvvomm Q<

OO dMTOTOTO
OO -0 EW
AR HHEHHANOAOO O
A R R B R R R R IR i g

NONMNDODRO-AR NS W
AR R R T S o N To RToNTo R To)

COO0OO0O0OO0OO0OCOOO0
AnBaR R o R R R e e R R

11 math. routines)

Store C in 000 for prev. res, and

in 1009 for cond,

11. STORING THE RESULT
If C=000

transfer ops.

» 80 directly to gen. int.

o to gen. int,

Common to a

I
4

P S S W—

NSO~ QW
OO
N OTTOO
oyl e O

Mmoo mnmm
oMo
CQOTOw
vl O

™

[¢

HHOWLOoOWV O Y
RROUIETMHON

mwerr~oatE
O~ QAMNYTO
NN ETTO
Yl O

TN TNO~©

Tl vl v v v o
el v e o

1095 Constant

9 1443 24

11

12, ADDITION AND SUBTRACTION

01=1

ADD

4

Get B

P
RO~ Mm

AT WNHOD-
Yo w
il O

awmor
©OTO\Q0q
Noow

e O

NOLoWwo
QUM O

QO
COANWOo
oYY Yo
™ i~ O

Mg

Qe E
el

SUB

._
H

—Aee—y
Q- m
OO O~
RO Y

il O

2
Get -B

Mg r—
OO q
uoomMm

= O

oW
QOMN—H O

MO~
OITOO O
oW O
v~ ©

VOO
e

e
el vl el

If A=000, get R directly,

Common steps

M~
oo
AR
i

D AN
~0o >
Qe
inlula

0 W0
[AFRNOR

MMM
-0 O
AR
w1

— QM
e

Qa2
v

= Wwe

Q
o
L] L]
1 m - .
I o} © + 8 <
@
=1 ~ 5 £ M >,
o 2 ~ - B D e o _A_m eb
+2 (&] (] i D -Im. O 1o &) &
(8 , & i +* = o9 - . m
=] = “wl .-]] Q < ~— @
Ee] m] + - [o . [=9] 20
+ o+ 2] + — [3) (] [] | 20 ® O
ol o - (&) - o O o 1 9 + |]
o) ~ o] <g w«w O (@] =} 1 [*N -0 L] o A
-) + o %< ALY o8 4 = = R4
[.
or{ m - + O [e] - O [=3] o{
< o ad b o~ & AIQ -
s O « @ — ot N o Q (&) V se -] - - -
% @ L ke a + - &0 L m— < am
ot e -0 ,mu -~ — Ve o -