=== = sc217821

= = === $5280-28

IBM 5280
Distributed Data
System

DE/RPG Problem Determination Procedures
for the Programmer

Program Number 5708-DE 1

—_—— = SC21-7852-1

= o== S$5280-28

IBM 5280
Distributed Data
System

DE/RPG Problem Determination Procedures
for the Programmer

Program Number 5708-DE 1

Second Edition (June 1981)

This is a major revision of, and obsoletes, SC21-7852-0 and incorporates SN21-8196. Because
the changes and additions are extensive, this publication should be reviewed in its entirety.

This edition applies to release 3, version 1, modification 0 of the IBM 5280 System DE/RPG
(Program Product 5708-DE1) and to all subsequent versions and modifications. Changes are
periodically made to the information herein; these changes will be reported in technical news-
letters or in new editions of this publication.

Use this publication only for the purposes stated in the Preface.

It is possible that this material might contain reference to, or information about, programming,
or services that are not announced in your country. Such references or information must not
be construed to mean that 1BM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address below. Requests for copies of IBM publications
and for technical information about the system should be made to your iBM representative or
to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use the

Reader’s Comment Form at the back of this pubtication to make comments about this publica-
tion. If the form has been removed, address your comments to |BM Corporation, Product
Information Development, Department 997, Austin, Texas 78758. IBM may use and distribute
any of the information you supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the information you supply.

©Copyright International Business Machines Corporation 1980, 1981

This manual is intended to help the programmer and the
service representative identify and isolate compiler problems

or user program problems and to guide them to the appropri-

ate action once the problem is determined.
This manual is divided into three chapters:

Chapter 1. Problem Determination identifies conditions
that result in a compiler problem or a user program
problem. This section identifies the problem and guides the
service representative or programmer to the appropriate
action. Also included is a list of information to send to IBM
when a problem is reported.

Chapter 2. Debugging DE/RPG Programs describes the
functions of the compiler and the organization, content,
and logic flow of the object programs that are generated by
the compiler. This section is intended mainly for the service
representative, although the programmer can also use it to
circumvent or investigate compiler problems.

Chapter 3. Debugging Options describes what is available on
the system to aid in problem determination. Examples show
how to interpret and analyze dumps.

Preface

RELATED PUBLICATIONS
® /BM 5280 DE/RPG Reference Manual, SC21-7787
® /BM 5280 Message Manual, GA21-9354

® /BM 5280 Utilities Reference/Operation Manual,
SC21-7788

® /BM 5280 System Control Programming
Reference/Operation Manual, GC21-7824

® /BM 5280 Operator’s Guide, GA21-9364
® /BM 5280 Functions Reference Manual, GA21-9353

® /BM 5280 Data Areas and Diagnostic Aids Handbook,
SY31-0595

® /BM 5280 Communications Utilities Reference Manual,
SC34-0247

® [BM 5280-3270 Emulation Reference Manual, SC34-0384

Preface iii

PREFACE e e et et e R 111
Related Publications iii
CHAPTER 1. PROBLEM DETERMINATION 1
Identifying DE/RPG Problems 1
Reporting DE/RPG Problems 3
CHAPTER 2. DEBUGGING DE/RPG PROGRAMS5
Compiler e e e e e e e e e e 5
CompilerPhases0.00vv.u... 5
Compiler Communications Area (CCA) 7
SharedRoutines0...... 7
CompilerWork Files 8
CompilerErrorHandling 8
Compiler Module Descriptions 8
Object Program Organization 13
Literals/Prompts Table 17
Named Fields 17
Logical FileNameBlock 17
Dup/Store Tablecuvuuui... 17
Table Directory 17
UserDataTable 17
Screen Format Control String Table 18
Printer and Diskette Edit Format Control Strings
andTable, 18
Subroutines 18
Return-to-Program ExitCode 21
RecordLevelCode 22
Calculations Object Code 22
FormatControl Table 22
Z-Specification Driver 23
TerminationCode 23
InitializationCode 23
File Translation and Alternate Collating Sequence Tables . . . 24
LogicaiBuffers0.c...... 24
Physical Buffers 25
O DrVer . o . o e e e e e e 25

Contents

Data Areas
Register Save Area
Partition Control Block
Logical Record Buffers
Physical Buffers
Input Mask Buffer
Output Mask Buffer

Logical File Name Block
Partition Subroutine Stack

CHAPTER 3. DEBUGGING AIDS
Compiler Debug Functions

Invoking the Compiler Debug Functions
Running the Dump and Trace Programs

GLOSSARY

Contents

v

Chapter 1. Problem Determination

If you encounter a problem in compiling or executing a DE/RPG program, the
information in this section can help you circumvent or solve the problem. If it
does not and you decide to call your service representative to investigate the
problem, this section can help you gather the information your service representa-
tive needs to solve the problem.

This section includes an /dentifying DE/RPG Problems and a Reporting DE/RPG
Problems description. The first description helps identify the type of DE/RPG
problem that has occurred and what you can do to circumvent it, if possible. The
second description provides information about the DE/RPG problem that you
should gather before you call for service.

IDENTIFYING DE/RPG PROBLEMS

When a DE/RPG problem occurs, you can use the following series of questions to
identify the cause:

Has the user program previously been compiled or run successfully?
NO YES

Consider what has changed. For example, have operating procedures
changed, are new files being used, or have programs changed?

Is the current release of the DE/RPG compiler being used?
(The release number is printed on the first line of the source listing.)

YES NO

In addition to using the current release of the compiler, make sure the latest
utilities licensed program diskette (5708-UT1) that applies to the compiler
release, is used during system configuration. Add any PTFs (program
temporary fixes) and recompile the program.

Have all IBM-supplied programs on the utilities licensed program diskette
(5708-UT1) that apply to the current release of the compiler been used during
system configuration?

YES NO

Use the current programs and recompile the user program.

Problem Determination

!

Have any non-iBM-suppiied modifications been made {o the compiier or to the
utilities licensed program diskette (5708-UT1)?

NO YES

If the compiler has been changed, use the current release and programs, and
recompile the program. If the utilities licensed program diskette has been
changed, use the current release and programs for system configuration.

Did the DE/RPG compiler terminate abnormally?

YES

|

Two conditions can occur whenever the compiler terminates abnormally:

One condition displays a system error, number 9999, along with the two-
character module 1D displayed on the status line.

The other condition displays DE/RPG and the two-character module ID.
In either case, record the module ID, address, and partition number displayed

and report the condition to the service representative. In addition, record the
size of the partition used.

Refer to Reporting DE/RPG Problems later in this section for a description
of the information that you should gather before calling for service.

Did the DE/RPG compiler get in a loop while compiling a user program? (A loop
is a set of instructions that executes repeatedly while a certain condition exists.)

NO

YES
Report this condition to the service representative.

Refer to Reporting DE/RPG Problems \ater in this chapter for a description
of the information that you should gather before calling for service.

Did the DE/RPG compiler generate any unexpected messages or errors?

NO

YES

Review all warning messages and/or errors to ensure that they are not unex-
pected. Go to the source statement that produced the error and correct it.
Recompile the program.

Error code descriptions are in the DE/RPG Reference Manual. |f you cannot
isolate the problem, refer to Reporting DE/RPG Problems described in this
section, gather the information described there, and call for service.

Note: For service representatives, see Chapter 3. Debugging Aids, Running
the Dump and Trace Programs.

Did the DE/RPG user program get in a loop during its execution, produce incorrect

output, or unexpected messages at execution time? (A loop is a set of instructions

that executes repeatedly while a certain condition exists.)

NO YES
If you cannot solve or circumvent the problem, refer to Reporting DE/RPG
Problems later in this chapter, gather the information described there, and
call for service.

Refer to Reporting DE/RPG Problems later in this chapter, gather the information

described there, and call for service.

REPORTING DE/RPG PROBLEMS
When you identify a DE/RPG problem, refer it to IBM for service.

Gather the following information to help IBM personnel solve the problem.

Compile Time Error

Information to Gather How to Obtain It

Original source program SYSCOPY

Source program listing SYSPRINT or a copy of the listing
Compile-time dump Absolute dump at the time of failure

PTF log number of all changes made SYSPTF-Patch Program (option 5,
to the compiler and/or to the utilities system history)
licensed program diskette (5708-UT1)

Level of the compiler Source program listing

Level of the utilities licensed pro- Adhesive label on the diskette
gram diskette (5708-UT1)

Engineering change level of the Displayed on the screen during IPL
machine

Problem Determination

Execution Time Error
Information to Gather
Original source program

User files required by the DE/RPG
program

Execution-time dump

DE/RPG object program

Description of processing
environment

Printed program output

PTF log number of all changes made
to the compiler and/or to the
utilities licensed program diskette
(5708-UT1)

Level of the compiler

Level of the utilities licensed pro-
gram diskette (5708-UT1)

Engineering change level of the
machine

For further information on the SYSCOPY utility, refer to the Utilities Reference/

Operation Manual,

How to Obtain It

SYSCOPY

SYSCOPY

Absolute dump taken at the time of
failure

SYSCOPY

SYSPTF-Patch Program (option 5,
system history)

Source program listing

Adhesive label on the diskette

Displayed on the screen during IPL

For further information on the patch program, refer to the System Contro/
Programming Reference/Operation Manual.

Chapter 2. Debugging DE/RPG Programs

The information contained in this chapter requires that the reader have a knowledge

of the DE/RPG compiler. This information is intended mainly for the service

representative; however, an experienced programmer can also investigate DE/RPG

problems with it, before or instead of calling for service. Information about the

compiler, the object program organization, and the data areas are described here.
COMPILER

The following information about the compiler is described here:

® Phases

® Work files

® Error handling

® Module descriptions

Compiler Phases

The compiler consists of the following six major phases necessary to compile a
DE/RPG source program into an executable object program:

1. Enter

2, Diagnostic

3. Assign

4. Preassemble

5. Assemble

6. Object

As each module of each phase is brought into the compiler overlay area, the previous
module is overlaid. The following chart (Figure 1) shows the sequence of execution

and a summary of each phase. Figure 2 shows the layout of the compile-time
partition.

Debugging DE/RPG Programs 5

Input

Source statements
on Z-, A-, and C-
specifications and

Enter Phase

“w»
7
Q

) ® Reads and processe
—

® Checks syntax of source statements

compile-time tables

Work file 1
compressions

Work file 1
compressions

Work file 1

Work file 1

Work file 2

® Compresses source statements
® Lists error messages
Diagnostic Phase
) ® Checks syntax of source statements
® Processes keywords and parameters

Assign Phase

> ® Builds tables required by the object program

and assigns addresses to them

® Assigns storage addresses for fields and
constants

® Assigns each file an IOB number

Preassemble Phase
) ® Determines the length, type, and location of
object code that is needed for the object
program
Assemble Phase

® Builds the object code based on the source
statements

Object Output Phase

® Converts the object code strings into a loadable
object module

!

Figure 1. Execution Sequence of Compiler Phases

—
—

Ul

n work file 1

o)
Q
3
n
3
[34]
w
@
[=]
o)
w
(]

Source listing

Work file 1 compressions

Error messages listed

Storage addresses on work
file 2

Storage addresses listed

Compile-time table data on
work file 2

Work file 2

Object code in work file 2

Object module
Object map

Partition |IOB
Keyboard/display 10B
Indicators

Registers

0.75 K bytes

— . —— — — —— — —— — — — — — —— — —

0.5 K bytes

— —— —— ——— — —— — — — — — —— —

2.0 K bytes

3.0 K bytes

O
o
3
=3
@
=
v}
[}
3
3
c
3,
Q
2
=
3
w
Q
@
o
[e)
(¢
P
PRSNGSR ——

10Bs and buffers for:

® Source

® Listing

® Work file 1

® Work file 2

® Main microprocessor work area

Variable to the end of
the partition.

(Minimum size is

2.75 K bytes

Figure 2. Compile-Time Partition Layout

Compiler Communications Area (CCA)

The CCA (compiler communications area) provides an area for information to be
stored and passed from module to module during compilation.

The contents of the CCA are:
® Tables that point to each of the shared routines
® Compiler data set information
® Starting addresses of each compression type
® Selected information that pertains to the source program and the object
program
Shared Routines
Shared routines are used by several modules of each compiler phase. SYSDERPG

loads shared routines, which remain in the compile-time partition during most of
the compilation.

Debugging DE/RPG Programs

Compiler Work Files

wo work files, The first work file contains compressions of
source statements (the compiler version of the source statements) from the Z-, A-,
and C-specifications, and compile-time tables. Compressions are used by the
compiler to determine the object code that is needed.

The second work file contains the object code that the compiler generates. During
the object phase, the object code is moved from one work file to the other if the
work file requires sorting; then the work file is written to the object file.

Compiler Error Handling
The compiler handles source errors during the enter and diagnostic phases.

The enter phase lists the error on the source listing immediately following the
source statement that contains the error. Indicators record errors during the enter
phase while the compressions are created from the source statements so that the
error condition can be stored. Error compressions are updated with error numbers
from the indicators that were previously set.

When the diagnostic phase completes, the error in the error compression is sorted
and listed along with the severity of the error and the error message text.

Compiler Module Descriptions

The following text is a summary of each phase and the modules within each phase.
The module identification name is found in the first 8 bytes of the partition 0B
as the module executes its function. The module is overlaid with the next module
called. (For a detailed description of the partition 10B, refer to the Functions
Reference Manual.)

The compiler is stored on a diskette in two files; SYSDERPG and SYSCMPO.

SYSCMPO is a partitioned data set and contains all modules described here except
SYSDERPG.

Enter Phase

The modules in the enter phase perform initial processing of a DE/RPG source pro-
gram. During this phase the source program is read and checked for proper syntax.
The syntax check is not a complete check, further checks are done in modules of
the diagnostic phases.

If a listing is requested, the source program is listed along with error messages for
errors detected, and both are printed or written to a diskette data set.

Source statements are reformatted as compressions and written to a compiler work
file for other phases to use.

The enter phase modules are listed in the following chart:

Partition 10B
Module Program
Identification Name Function

SYSDERPG SYSDERPG — Determines the device the compiler is loaded

from.

— Initializes the compiler work area, shared control
routines, 10Bs, and buffers.

— Prompts for data set names, device IDs, and list-
ing information.

— Opens data sets.

— Creates error compressions.

RGAC DERPG AC — Checks Z-specification source statements for
errors.
— Reads and compresses Z-specification source
statements.
— Writes these compressions to diskette.

RGAG DERPG AG — Checks A-specification source statements for
errors.
— Reads and compresses A-specification source
statements.
— Writes these compressions to diskette.

RGAH DERPG AH — Checks C-specification source statements for
errors.
— Reads and compresses C-specification source
statements.
— Writes these compressions to diskette.

RGAI DERPG Al — Checks compile-time data tables, file translation
and alternate collating sequence table source
statements for errors.

— Reads and compresses these source statements.
— Writes these compressions to diskette.

RGAJ DERPG AJ - Processes self-check source records.
— Reads and compresses these source statements.

— Writes these compressions to diskette.

RGEA DERPG EA — Loads and initializes shared routines for the
remainder of the compile.

Diagnostic Phase

These modules process the compressions from the work file and provide further
syntax checking for errors not found in the enter phase.

Keywords are prepared for the next phase (assign phase) by reordering and moving
their parameters to parameter lists and reformatting the parameters.

Debugging DE/RPG Programs

10

The diagnostic phase modules are as follows:

Module

Identification

RGEC

RGED

RGEF

RGEH

RGEJ

RGEO

RGEP

RGEQ

RGER

RGES

RGFE

RGFG

RGFM

RGFL

RGFN

RGFS

RGFX

RGFzZ

Partition iOB

Program

Name

DERPG EC

DERPG ED

DERPG EF

DERPG EH

DERPG EJ

DERPG EO

DERPG EP

DERPG EQ

DERPG ER

DERPG ES

DERPG FE

DERPG FG

DERPG FM

DERPG FL

DERPG FN

DERPG FS

DERPG FX

DERPG FZ

Function

Checks syntax of keywords on the A-specifica-
tions,

Checks syntax of keywords on the A-specifica-
tions.

Checks keyword compatibility with the A-speci-
fications,

Checks keyword compatibility and syntax on the
A-specifications.

Checks keyword parameter movement, syntax,
and reserved word handling on the A-specifica-
tions.

Checks job line keywords on the A-specifications.

Checks entry and review lines on the Z-specifi-
cations.

Checks C-specification fields.

Checks keyword references on the A-specifica-
tions.

Checks field positions and record lengths on the
A-specifications.

Sorts and prints {ine numbers and associated
error message numbers.

Sorts and prints error message text.

Contains the text for error messages used by
DERPG FL.

Checks C-specification references.

Generates self-check table and checks keyword
specifications for self-check specifications.

Checks compile-time tables.

Assign Phase

The modules in the assign phase assign the object program information (such as
constants, data fields, and tables) to storage addresses in the object program and
assigns 10B numbers to files.

The assign phase modules are listed in the following chart:

Module
Identification

RGIB

RGIC
RGIE

RGIG

RGII

RGIJ

RGIK

RGIL

RGIM

RGIO

RGIS

RGIZ

Partition 10B

Program

Name Function

DERPG IB — Assigns literals to storage addresses.

DERPG IC — Assigns data areas to storage addresses.

DERPG |E

DERPG IG — Assigns literals to storage addresses.

DERPG i — Builds literal/prompt and AUXDUP tables, and
table dope vectors.

DERPG IJ — Assigns file IOB numbers and accumulates file

DERPG IK and record usage information. Builds logical file

DERPG IL name block.

DERPG IM — Assigns tables to storage addresses.

DERPG IO — Builds compile-time data tables.

DERPG IS — Assigns block numbers and label numbers.

DERPG iZ — Checks for undefined names in the source

program.

Preassemble and Assemble Phases

Preassemble modules determine the type, length, and location of the object code
that is to be created by the assemble phase.

The assemble phase builds the object code that the preassemble phase has deter-
mined from the source program, and places that code in the object program.

The preassemble and assemble modules are listed in the following chart:

Module
Identification

RGMA
RGMB
RGMC
RGMD
RGME
RGMF

Partition 10B
Program
Name Function

DERPG MA — Builds screen format control strings for all
DERPG MB records defined for the CRT file.

DERPG MC

DERPG MD

DERPG ME

DERPG MF

Debugging DE/RPG Programs

1"

Partition I0B

Module Program

Identification Name Function

RGMG DERPG MG

RGMH DERPG MH

RGMI DERPG Mi

RGNA DERPGNA — Builds printer and diskette format control
strings.

RGNZ DERPG NZ — Builds a table of addresses for screen format and
diskette/printer format control strings.

RGPA DERPG PA — Determines which subroutines are needed by the

RGPC DERPG PC object program and includes them,

RGQA DERPG QA — Builds the return-to-program exit code from the

RGQB DERPG QB screen format control string.

RGQC DERPG QC

RGQD DERPG QD

RGQE DERPG QE

RGQF DERPG QF

RGQG DERPG QG

RGQR DERPG QR — Builds the calculations entry to link the return-
to-program exit code to calculations.

RGRA DERPG RA — Builds record level i/0 control strings.

RGUA DERPG UA — Builds caiculations code.

RGUB DERPG UB

RGVA DERPG VA

RG VB DERPG VB

RG VC DERPG VC

RGVD DERPG VD

RGVE DERPG VE

RGYA DERPG YA Builds format control table and partition control block.

RGYB DERPG YB Builds object code to link the following:

RGYD DERPG YD — Data entry driver and Z-specification driver.

RGYF DERPG YF — Job initialization and job termination.

RGYG DERPG YG — |0Bs, buffers, file transiate tables, and alternate

RGYH DERPG YH collating sequence tables for diskette, keyboard,

RGYI DERPG YI printer, and communications data sets.

RGYJ DERPG YJ

Object Phase

The object phase assembles the object code into an executable object module.

The object phase modules are listed in the following chart:

Partition 10B

Module Program

Identification Name Function

RGYZ DERPG YZ — Prints object program map and initializes parti-
tion 10B areas.

RGZC DERPG ZC — Writes a load module to a data set.

OBJECT PROGRAM ORGANIZATION

The first part of the partition area contains fixed addresses relative to the start of
the partition. The addresses are hex 0000 for the partition |OB, hex 0040 for the
logical 1/0 table, hex 0080 for the keyboard display I0B, and hex 0100 for indi-
cators and registers.

For a description of the partition 10B, logical 1/0 table, keyboard/display 10B,
indicators, and registers, see the Functions Reference Manual or the Data Areas
and Diagnostic Aids Handbook.

Indicators and registers that are assigned for DE/RPG programs are described in
the following charts.

Indicator Assignments
Indicator Meaning when On
10 File allocate at open time is not allowed
11-199 DE/RPG user indicators
1108 Keyboard external status disabled
1110 Foreground/background
1151 Enter (add) mode
1162 Attention/system request
1163 Open allocate
1192-1207 Test bits loaded into BR12 (all 16 indicators used this way)

Indicators for Modes

1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

Enter mode

Update mode

Verify mode

Rerun mode

Prompt mode

Print or copy process mode
Print key

Copy mode

Search mode

Search relative record
Search content

Search content forward
Auto run, search content first pass mask, and updated statistics
Search parameter error
Record insert mode

Cancel key pressed

Debugging DE/RPG Programs

14

Indicators for Transaction Data Set

i224
1225
1226
1227
1228
1229
1230

Beginning of extent
Beginning of extent plus 1
First pass record backspace
First pass record advance
End of data

End of data plus 1

End of extent

Indicators for 1/O Functions in the Data Entry Driver

1231
1232
1233
1234
1235

Clear next buffer

Read next record

Read previous record
Write previous record
Write record to extend file

Copy Data Set Indicators

1236
1237
1238
1239
1240
1241

Beginning of extent
Beginning of extent plus 1
First pass record backspace
First pass record advance
End of data

End of data plus 1

Miscellaneous Indicators

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254

Enter was canceled by the common area
Transaction file = 0; copy file = 1

Page forward

Next format

Select format

Record correct

Record changed in record correct
Record marked

Erase function key invoked

1/0 complete

External status pending

End of data in verify mode

Last record written (in copy mode); last record verified (in verify
mode)

Register Assignments

Register

BR10
BR11
BR12
BR18
BR32
BR37
BR38
BR39
BR40
BR41
BR42
BR43
BR44
BR45
BR46
BR47
BR48
BR49
BR50
BR51
BR52
BR53
BR54
BR55
BR56
BR57
BR58
BR59
BR60
BR61
BR62
BR63
BR64
BR73
BR74
BR75
BR76
BR77

BR78
BR79

Meaning

Field changed indicator

Field changed indicator

Used to test bits by indicators 1192-1207
Partition subroutine stack

Register save area

Partition control block address

Key accept address area

Number of inputs and enter commands address
Transaction file IOB address

Print file I0B address

Copy file I0B address

Keyboard/display 10B address

Current read file OB address

Address of OB passed to the open routine
Previous record buffer address

Current record buffer address

Next record buffer address

Mask output area address

Search mask area address

Format control table address

Current format pointer in format table
Status line buffer address

Job statistics counter address

Current screen format control string format number
Logical record length

Previous record number (first half)
Previous record number (second half)
Current record number (first half)

Current record number (second half)
Next record number (first half)

Next record number (second half)
Current read file I0B number

Number of records to insert

Format repeat count

Deleted records count

Next format ID

Displacement in the return-to-program exit table for the next exit
Parameter address from the 1/O driver to the |/O management
subroutines

Constant value 4 for return function
Current named field address

Debugging DE/RPG Programs

16

The followina list shows how the object program is organized and the sequence in
which it is generated. Following this list is a description of each item. (Because
the user program determines which items are inciuded in the object program, some
of the items listed may not be generated.)

10.

1.

12

13.

14.

15.

16.

17.

18.

19.

20.

21,

22.

Literals and prompts constants

Named fields

Logical file name block

User data tables

Literal/prompt and dup/store tables
Table directories

Screen format control strings and table
Printer and diskette edit format control strings and table
Subroutines

Return-to-program exit code
Keyboard record level code

Printer and diskette record level code
Calculations code

Return-to-program exit code table
Format control table

Z-specification driver routine
Termination code

Initialization code

File translation and alternate collating sequence tables
Logical buffers

108Bs

Physical buffers

Literals/Prompts

The addresses of all literal and prompt constants are shown on the source listing.

Named Fields

The addresses of all named fields are shown on the source listing.

Logical File Name Block

The description of the logical file name block is listed in this chapter under Data
Areas.

User Data Table

This table contains the data for the users tables.

Literal/Prompt and Dup/Store Tables

The address of the storage duplication table is at hex displacement 36 in the key-
board/display 10B. The index into the table is in the screen format control string.
This table contains the address of fields that were named on the A-specification
with keywords AUXDUP or AUXST. Access to this table is via the screen format
control string.

The address of this table is at hex displacement OD in the keyboard/dispiay |OB.

This address points to the literal/prompt table, which points to the actual literal/
prompt. The address of each literal/prompt is also shown on the source listing.

Table Directory

The address of the table directory is in the partition I0OB at hex displacement 18.
The main microprocessor uses this address to access tables. The contents of the

table are:

Hex Length in

Displ Bytes (Hex) Description

0 2 Starting address of the table

2 2 Address of the last table entry

4 1 Length minus 1 of the table entry
5 1 Length of the bypass (see Note)
6 2 Number of table entries

Note: Bypass is used for alternate tables where the length is between the last byte
of a search argument and the first byte of the next search argument.

Debugging DE/RPG Programs

17

Screen Format Control String Table

A screen format control string is built for each CRT record defined on the A-speci-
fication. These control strings provide the operations to the keyboard/display
microprocessor to perform.

The address of the screen format contro! string table is in the keyboard/display 10B
at hex displacement 79. This address points to the first byte of the screen format
control string.

The keyboard/display microprocessor uses the keyboard format number in the
Enter instruction as an index into the table.

Printer and Diskette Edit Format Control Strings and Table

Edit format control strings are generated for printer, diskette, and communications
files referred to on the C-specification. The address of the format control string
table is in the partition 10B at hex displacement 24.

Subroutines

Subroutines control /O operations specified on the C-specification. Basically the
1/0 driver and 1/0 management routines control and perform 1/O operations.

The 1/O driver provides the link from the object code to the 1/0 management
routines, which in turn provide the device microprocessors with the necessary
information to move data to and from buffers in the object program.

The object program requests an |/O operation via a CALL instruction, which is
followed by the 8-byte control block. The 1/O driver calculates the 10B address
using the logical 1/0 table, and uses the logical file name block to get the address
of the 1/0 management routine.

The 1/0 management routine uses the 1/O control code to determine the function to
be performed by the device microprocessor. The |/O function is passed to the

device microprocessor in an instruction via the device 10B.

The device microprocessor moves data to or from logical buffers and to or from
physical buffers depending on the |/O operation.

The source listing contains the address of each included subroutine.
The following text lists all the possible subroutines used in a DE/RPG program and
a brief description of each.

RGO1 Keyboard External Status Processor

The keyboard external status subroutine processes external status conditions from
the keyboard for the object program.

RGO3 Keyboard/CRT |/0 Management
The keyboard/CRT /0O management subroutine provides the interface to the key-
board/display device from calculations and from formats which specify the
WRITE(*NO) keyword.

RGO4 Magnetic Stripe Reader 1/0 Management

The magnetic stripe reader I/O management processes open, close, and read opera-
tions for the magnetic stripe reader.

RG20 Printer External Status Processor
The printer external status processor displays and retries error conditions for the
printer, when appropriate, and calls the diskette external status subroutine for
diskette errors when the printer output has been redirected to diskette. Other
printer 1/0 errors are posted in the appropriate logical file block.

RG22 Printer 1/0 Management

The printer /O management subroutine performs printer data set operations such
as open, close, write a record, and control space and skip.

RG30 Diskette External Status

The diskette external status routine provides diskette error recovery during run
time for files controlled by calculations.

RG31 Diskette External Status Processor
This diskette external status routine transfers control to the common area to

process diskette external status conditions for data entry files (transaction files
and copy files).

RG32 Diskette 1/0 Management
The diskette /0 management subroutine processes requests to diskette data sets,

such as open and close. It updates, writes, reads, chains, and deletes records, as
well as sets record limits.

RG33 Diskette 1/0 Management

The diskette 1/0 management provides diskette 1/O operations for data sets that
are keyed and indexed.

Debugging DE/RPG Programs

19

20

RG34 Diskette |/0 Management

The disketie 1/0 management provides diskette 1/0

data sets.

RG35 Diskette 1/0 Management
The diskette 1/0 management provides diskette 1/O operations for data sets that
are keyed, indexed, and multivolume.

RG36 Diskette 1/0 Management
The diskette 1/O management provides diskette 1/0 operations for the transaction
file.

RG40 Communications External Status Processor
The communications external status routine processes external status codes for
SNA and BSC.

RG42 Communications Management
The communications |/O management subroutine performs communications data

set operations such as open, close, write a record, read a record, and FEOD (force
end of data).

RG47 I1BM 3270 Emulation Communications Management
The IBM 3270 Emulation communications management subroutine performs com-

munications data set operations such as open, close, write a record, and read a
record.

RG50 and RG51 1/0 Driver
The 1/0 driver provides the interface from the object code to the 1/0O management

routines. RG50 is provided when no calculation controlled files are used in the
program. RGb1 is provided when a control string is passed in the parameter block.

RG80 Verify Error Display

The verify error display subroutine provides the interface to the common area to
display error codes while in verify mode.

RG81 Error Display

The error display subroutine displays error codes (with or without help text) and
marks the current data field and current record when the automark function is
active.

RG82 Packed/Binary Data Conversion

The packed/binary data conversion subroutine performs data conversion for packed
and/or binary fields.

RG83 Alternate Collating Sequence
The alternate collating sequence subroutine compares two alphameric characters
for the collating sequence by using either the ASCII translate table or a user defined
table.

RG84 Calculations Extended Precision Arithmetic
The calculations extended precision arithmetic subroutine processes all extended
arithmetic for add, subtract, multiply, and divide operations.

RG85 Resolve Table Element Address
The resolve table element address subroutine computes the address of table elements
by using the table directory and index numbers.

RG86 Physical Buffer Allocation
The physical buffer allocation subroutine provides buffer space for devices that

require buffers.

RGY9 File Close

The file close subroutine handies job termination by closing all DE/RPG files and
calling CFA.

Return-to-Program Exit Code
This code handles extended edits for keyboard/display operations that cannot be
handled by the screen format control strings. All named fields require exit code
and the following keywords require exit code:
® ADD
& AUXST
® CHECK (BY BV Gxx Mxx)
® COMP
¢ ERROR

® EXSR

® INSERT

Debugging DE/RPG Programs 21

22

® LOOK
® RANGE
® RANGET
® RESET
® SETOF
® SETON
® SEQ

® SUB

® SUBST
® TADD
e TSUB

® XCHK

The return-to-program exit table address is in the partition control block. The
partition control block address is in BR37.

Record Level Code
Keyboard
This code provides the interface between calculations code and keyboard opera-

tions. This code sets up the return-to-program exit code, initializes cursor positions,
and clears the display line,

Printer/Diskette Record Level Code
This code provides the read and write operations specified on the A-specification.

This code performs functions such as forms control (printer), record identification,
interface to access methods on diskette, and formatting data.

Calculations Object Code

This code performs the operations that are specified on the C-specifications.

Format Control Table

The description of the format control table is in this chapter under Data Areas.

Z-Specification Driver
The Z-specification driver is generated from the Z-specification compressions. It
interfaces with either the data entry driver in the common area when the transac-
tion file is specified or the keyboard/CRT |I/O management subroutine when a
WRITE(*NO) is specified.
The Z-specification driver includes the format control table. The Z-specification
driver passes a pointer to the format control table entry for the current format
to the data entry driver. The Z-specification driver also clears the screen, sets the
cursor, and controls format chaining.
The object code generated by the Z-specification driver controls the repeat count,
format sequence, write function of the TFILE, production statistics, and calls the
data entry driver or keyboard/CRT 1/0 management subroutine.
The address of the Z-specification driver is on the source listing. The contents of
the format control table is in this chapter under Data Areas.

Termination Code

A DE/RPG program is terminated when the End of Job key is pressed or the EOJ
keyword is encountered. Termination code, then performs the following functions:

® Closes files

® Update station statistics

® Goes to end of job

® Write job statistics

® Chains to the next job (EQJ keyword only)

These functions are primarily handled in the common area.

Initialization Code

Initialization code prepares the object program for execution. The main micro-
processor starts executing initialization code when the load prompt response is exe-
cuted. The address of the code is in the partition |OB at hex displacement 10 and
11 {instruction address). The first executable instruction is also on the listing.

Debugging DE/RPG Programs

23

Initialization code performs the following functions:

® Checks indicator O for an active request to dump o

=t
~
o
Q)
[«
[34]
=)
(4%
(43
)
P
[«
-t

® Checks for the data entry driver routine in the common function area
® |nitializes the stack pointer

® Attaches the keyboard and clears the screen if TFILE is present

® |nitializes user fields

® Reads data tables

® Opens all files {except the copy file, print file, and communications file) per-
taining to transaction files (calls |/O driver)

® Prompts for mode selections
® |nitializes the station statistics
® Gets the system date from the system control block
® Calls Z-specification driver
® Allocates storage buffers for:
— register save area
— logical buffers for non-data-entry files
— job statistics

— status line
— search mask areas

File Translation and Alternate Collating Sequence Tables

The file IOB contains the file translation table number that points to the table
directory. The table directory contains the address of the file translation table.

The address of the alternate collating sequence table is in the partition control
block.

Logical Buffers

Three logical buffers for records; previous, current, and next are provided for data
entry. These buffers must have the same length with minimum size dependent on
logical record length.

Two subroutines located in the common area, record advance and record backspace,
exchange addresses to these buffers for record advance and record backspace
operations.

The new addresses of the previous and current buffers is placed in the keyboard/
display I0OB.

Physical Buffers

Physical buffers are used for all files except the communications files and magnetic
stripe reader files.

Double buffers are needed for transaction files and keyed files with WRITE speci-
fied. Separate buffers are needed for copy files and print files if copy and print
10Bs are included.

1/0 Driver
The 1/0 driver provides the interface from object code to 1/0 management
routines for the required 1/O operations. An 8-byte parameter list is input to the

1/0 driver for processing the 1/O control strings.

The address of the 1/0 driver is on the source listing.

DATA AREAS
This section describes the data areas and control blocks used by the DE/RPG pro-
gram and how they can be located in the object program.

Register Save Area
The register save area is a 128-byte area that is used by the common area.

The address of the register save area is in BR32.

Partition Control Block

The partition control block provides the link from a partition to the common area.
The address of the partition control block is in BR37. The contents of the parti-
tion control block are described in the following chart:

Hex Length in
Displ Bytes (Hex) Descriptions
0 2 Record length of the logical buffers for data entry
2 2 Record mark position {no mark = hex FFFF)
4 2 Verify record mark position (no mark = hex FFFF)
6 1 File exchange type:
Hex 00 = basic

01=H

02=1
7 6 Record count for allocating files
oD 2 Display attributes

Debugging DE/RPG Programs

Hex
Displ

OF

10

1"

12

13

15
17
19

1B

26

Length in
Bytes (Hex)

Descriptions

Flags:
Bit 0-1
0

11
2-1
31
4-1
5-1

6-1
7-1

"

bypass production statistics
prompt for writing production
statistics

auto mark

clear screen

write deleted record

write record

write record and bypass ENTR (data
entry)

no prompt for file open

print file specified in the program

CFA2 Flags (Set to hex 00)

Flags:
Bit 0-1
1-1
2-1

31
4-1
5-1
6-1
741

Flags:
Bit 0-1

1-1

2-1

3-1
41
5-1
6-1
71

calculations mode

EXFMT is active

magnetic stripe reader has data
available

EXFMT detected a function key
SUBST determined

first SEQ error detected

not used

keyboard external status enabled

processing a format that specified
WRITE(*NO)

Enter instruction issued for the
EXFMT operation has been canceled
by the common area for ATTN, SYS
REQ, or dump file open processing.
Initialized deleted record insert
count

Force review mode tests for this record
Error code returned with data

End of Job and file closing has begun
Abnormal End of Job

Field modified

Number of records between deleted record insertions for
transaction file (WRITE (*NO) = hex 0000)

Address of the record read by the 1/0 driver

Lowest address for buffer allocation

Lowest address available for buffer allocation

Forward return to program address

Hex Length in

Displ Bytes (Hex) Descriptions

1D 2 Backward return to program address

1F 1 1/0 error indicator for EXFMT operations

20 2 Error code for a function key detected during an

EXFMT operation

22 2 Absolute storage address of the alternate collating
sequence table

24 2 Address of the EXFMT buffer

Logical Record Buffers

Three equal length logical buffers are required by a DE/RPG program for data
entry. The minimum length of each buffer is determined by the logical record
length, There are no alignment requirements nor need the buffers be adjacent.
The address of each logical buffer for the keyboard is in:

Previous: BR46

Current: BR47

Next: BR48

The address of logical buffers for other files are in the device 10B.

Physical Buffers

All files need physical buffers except the communications file and the magnetic
stripe reader file. A double buffer is required for the transaction file and a keyed
file with a WRITE specified. Separate buffers are required for the copy file and the
print file.

The address of the physical buffer is in the device 10B.

Input Mask Buffer

The input mask buffer is a 78-byte area to store input masks for search content
and search sequential content.

The address of the input mask buffer is in BR50.

Debugging DE/RPG Programs

Output Mask Buffer

The output mask buffer is an 80-byte area that follows the input mask buffer. This

area stores the search mask that is passed to microcode for search content and search
sequential content.

The complete input and output mask buffer area is also used to allocate data sets
and write production statistics.

The last 11 bytes of the output mask buffer area is current record buffer when user
inputs are accepted.

The address of this area is in BR49.

Format Control Table
The format control table contains one 10-byte entry for each format defined by a
DE/RPG program. This table controls the sequence between formats on an entry

format; the record IDs and format selection on a review format.

Format O is always the first entry in the table, The address of the format control
table is in BR51. The address of the format currently being displayed is in BR52.

The contents of the format control table are described in the following chart:

Hex Length in
Disp! Bytes (Hex) Description
0 1 Bit 0-1 = Lastentry in this table
1-1 = WRITE(*NO) specified on Z-specifica-
tion statement for this format (used by
Z-specification driver)
2-1 = Calculations reference (BEGSR specified
on C-specification)
3 = Not used
4-7 = Repeat count for the current format
1 2 Format ID
3 1 Keyboard format number
4 2 Displacement into the return-to-program table, or
the calculations entry point address
6 2 Address of format test code
8 1 Starting line number on the display

9 1 Clear line count on the display (hex FF for WRITE {*NO))

Status Line Buffer Area

The status line buffer area contains the 21 bytes (bytes 20 through 40) of the status
line data. The address of this area is in BR53.

The contents of the status line buffer area is described in the following chart:

Hex Length in

Displ Bytes (Hex) Description

0 1 Display control

1 5 Record number

6 1 Display control

7 1 Auto dup/skip indicator
8 1 Display control

9 1 Auto record advance indicator
A 1 Display control

B 2 Format ID

D 1 Display control

E 3 Mode of operation

1 1 Display control

12 1 Verify mark

13 1 Display control

Note: All display control bytes are initialized to hex 20.

Job Statistics Counter Area

The job statistics area is a b4-byte reserved area for job counters that are updated
at mode select time, record advance time, and end-of-job time by the common area.

The address of the job statistics area is in BR54.

Debugging DE/RPG Programs

29

1/0O Driver Parameter Block

The i/0 driver parameter biock foiiows a CALL instruction to the i/O driver

routine.

Hex Length in

Displ Bytes (Hex) Description

0 2 Address of the /O control string

2 1 I/0 control code

3 1 10B number

4 1 Not used, set to hex 00

5 1 Not-found indicator

6 1 1/0O error indicator

7 1 End-of-file indicator
1/0 Control Codes

Code Hex Description

Close 01 Close data set

Open 02 Open data set

Exfmt 03 Execute format

Update 04 Update current record

Write 05 Write next record

Read-P 06 Read previous record

Read 07 Read next record

Chain-R 08 Chain to relative record

Chain-K 09 Chain to keyed record

Delete 0A Delete current record

Delete-R 0B Delete relative record

Delete-K oC Delete keyed record

Code Hex Description

Setll-R oD Set lower limit of relative control
Setll-K OE Set lower limit of keyed record
Wrtno 10 WRITE(*NO) to CRT

Feod 1 Force end of data

1/0 Control String Commands

Each record control string begins with a begin-record command and ends with an
end-record command. Each file group of control strings is preceded by a begin-file
command, followed by an end-file command.

Command

Code Hex 1/0 Operation Description

Noop 01 Continue with next command

Begin-file 02 Begin a file operation

End-file -~ 03 End a file operation

Begin-record 04xxxx Begin a record operation (numeric field table
address) refer to the numeric field table

End-record 05 End a record operation

Execute 06 Execute a transfer

Recid 07 XXXXXX Record identifier and position

Screen 08xxXXXXX Screen formats control string number (index
into screen format table and index into return-
to-program start exit number table)

Format 09xx Format number (index into format table)

Space 0Axx Space the number of line

Skip 0Bxx Skip to line number

Seton 0Cxx Set indicator on

Setof 0Dxx Set indicator off

Debugging DE/RPG Programs

31

Numeric Field Table

There is onc numeric ficld table for cach record in the following format

Hex Length in

Displ Bytes (Hex) Description

0 1 Length minus 1 of the field, or hex FF if end of table
1 2 Address of the numeric field

The logical file name block is the interface to the 1/0 management routine from the
1/0 driver routine. This block contains one entry for each file defined in the source
program. The address of the block is in the data set name address field of the
device 10B at hex displacement 14,

Logical File Name Block

Hex Length in
Displ Bytes (Hex) Description
0 1A File name (data set name)
1A 4 Device code
1E E Owner |D or COMM3270*
2C 2 1/0 routine address
2E 2 L.ogical buffer address
30 2 Error code
32 1 Flags:
Hex 80 = i/Oerror
40 = end of file
20 = record not found
10 = Internal error flag used by {/0
management routines
0OC = transaction or copy file
08 = transaction file
04 = copy file
02 = random access
01 = physical buffer has been allocated

*The following applies only to COMM3270 files:

Hex Length in

Displ Bytes (Hex) Description

1E B 3270 printer control block

29 1 3270 internal to user EBCDIC translation table
high address

2A 1 3270 user EBCDIC to internal translation table

high address

2B 1 3270 last AiD byte sent to host

Hex Length in

Displ Bytes (Hex) Description
33 1 Hex 80 = continued volume
40 = first volume
20 = read previous record in progress
10 = retry with next volume
08 = current record not valid
04 = record not found
02 = volume end of extent
01 = active volume
34 1 Flags:
Hex 80 = current active volume when
reading or updating
40 = index file positioned at end-
of-data
20 = last volume of an offline multi-
volume file {(volume number =
99)
10 = user error indicator specified
OF = index file job number
35 1 Count of the volumes or the length of the LOGON
parameter
36 2 Either the end of page indicator, LOGON address, or

key table entry address

Partition Subroutine Stack

This stack is a system table with a maximum of 128 two-byte entries. Whenever a
subroutine CALL instruction is executed, the address of the next sequential

instruction is assumed to be the return address, and is stored in the stack. The address of
the stack is in BR18.

Debugging DE/RPG Programs 33

34

EXAMPLE PROGRAM SOURCE LISTING

The source listing in the following figure (Figure 3) is from an exampie program in
the DE/RPG User’s Guide. A dump of this program is shown in Figure 4.

QOO0S
QOO02
00003
00004
00005
00004
00007
D000
00009
D005 0
000414
V0012
000413
[VIVIVE R
000415

[S1e10%)
00047
00018
00019
00020

00028
Q0029
00030
000314
00032
000323
00034
00035

037

039

w ok ok X Kk X ¥ R X o ok ok XK X X

¥*
#l INE
#0001

B

DE/RFG COMPILER VOMEX
#Source file. FROGLS
*(Object file. ORJs4

?_‘-}&%*%(-l&#‘;#i})ﬁi—}#i}#i{*l}##%b'l-!-*4‘#&%&***¥<¥-~¥§i~l¥-l’-*}i-¥¥-i-'D’%t**{-&-‘{—%{l‘-&-‘l"
7

JEZ TSI IS S E R TS PSS ST EE T S IR SR LTSS ES I LIS TS L LS LTS
ZJ COMRINA TFILECRLILLMST)
< XAFIND - e WRITE ¢

I ARTOGETH x4 WRIT
75 DEVICE(CRT)

2004 ' CUSTOMER NUMBER
2] MUMRPER s TOO2OLTOHECK DR EXSR (GOGET)
A R TOGETH

A 001004 CUSTO L NAME!

A FCUSHMAST &5 DEVICE(DISK D4
A ROLOOKSE

A CUSNA 30

2] ADDR 30

r GOGET REGSK
e NUMEEF: CHATNLO
e ENDSF

0402

ADDR CONSTANT

NAME
MBER
JSTN

9 ADDR

5 {068

#0014 1048

*
®QOD

errors appeared in this program

Figure 3 (Part 1 of 2). Source Listing

DE/RFG COMFILER voM23

*

*ERROR MESSAGE TEXT
DE Wx10468 CRT field

*

*

is in the prompt Line

OBJECT FROGRAM MAF

®¥ROUTINE ENTRY FOINTS

xEf
®#0670
#0604
*0784
*0850
*QATC
*ORES
*0OD54
*4 7TR4
*
#iDD4
*{F6C
* 9,472

Figure 3 (Part 2 of 2). Source Listing

RTN

RG99 -
RGO -~
RGBS -~
RGOL -
RGO3 -
RG3O
RG33 -
RGSL -

Z-spec

DESCRIFTION

End of job processor

Verify mode evvor display
Fhysical buffer allocation
Keyboard external status voutine
KB/CRT I/0 management routine
Diskette external status voutine
Diskette I/0 management routine
170 dviver -~ full function

driver entry point

Frogram entyy point

Is the

progvam length.

Debugging DE/RPG Programs

35

Data Areas in the Dump Exampie

=~ Bl B
SEEEESEE EEEEE0QONERERDA

N NN
BEBBEB

Partition 10B pointers

Diskette 10B pointers

Printer 10B

Partition 10B

Logical 1/0O table

Keyboard/display 10B

Indicators (10—1255)

Binary registers (BRO—BR127)

Decimal registers (RO—R30)
Literals/prompts

Named fields

Logical file name block for the TFILE IOB
Logical file name block for the CUSMAST 10B
Keyed index file table

Literals/prompts table

Dup/store table

Table directory

Logical buffer next

Logical buffer previous

Logical buffer current

EXFMT buffer (a work area used when EXFMT
and WRITE(*NO) are specified)

Dup/store area (used for INSERT)
Screen format control string (keyboard)
Edit format control string (diskette)

Screen format control string table

System control block hex 00000

System control block hex 00040

System control block hex 00080

Relative address hex 0000

Relative address hex 0040

Relative address hex 0080

Relative address hex 0100

Relative address hex 0100

Relative address hex 0100

Literals/prompts table and the source listing
Source listing

TFILE IOB hex displacement 14
CUSMAST IOB hex displacement 14

Table directory

Keyboard/display 10B hex displacement 0D
Keyboard/display 10B hex displacement 36
Partition 10B hex displacement 18

BR48

BR46

BR47

Partition control block hex displacement 24

Dup/store table
Screen format control string table
Edit format control string table

Keyboard/disptay 10B hex displacement 79

36

Data Areas in the Dump Example

How to Find Data Areas in the Dump Example

2 AR BEEBEEBEEEREBAAE R
BEEE BEEBBRE IEEBEREROEEEBG

Edit format control string table

RG99 End-of-job processor subroutine

RG80 Verify mode error display subroutine
RG86 Physical buffer allocation subroutine
RGO1 Keyboard external status subroutine

RGO03 KB/CRT 1/0 management subroutine

RG30 Diskette external status subroutine

RG33 Diskette 1/0 management subroutine

RG51 1/0 driver—full function subroutine
Return to program exit code

Return to program exit code table
Z-specification driver format control table
Partition control block

Z-specification driver

Review tests

Initialization code (program entry point)
Status line buffer

Logical buffer for CUSMAST

Register save area

Input mask buffer

Output mask buffer

Job statistics counter area

TFILE 10B

CUSMAST 108

Physical buffer 1 for TFILE

Partition 0B hex displacement 24
Source listing

Source listing

Source listing

Source listing

Source listing

Source listing

Source listing

Source listing

Return to program exit code table
Partition control block (BR37) hex displacement 1B
BR51

BR37

Source listing

Z-specification driver format control table hex dis-
placement 06 into each 10 byte table entry

Source listing

BR53

CUSMAST 10B hex displacement 0C
BR32

BR50

BR49

BR54

BR40 and logical 1/0 table

Logical 1/0 table

TFILE 10B hex displacement 18

Debugging DE/RPG Programs 37

Data Areas in the Dump Example

How to Find Data Areas in the Dump Exampie

OV I O
BB HB

Physical buffer 2 for TFILE
Physical buffer for CUSMAST
Partition subroutine stack

Main microprocessor work area

TFILE I0B hex displacement 20
CUSMAST I0B hex displacement 18
BR18

Last 256 bytes of the partition

38

swesboig Ddy/3Q buibbngag

6€

dwnq wesboid sjdwex3z (9 J0 | Wed) ¢ ainbi4

GOOOOLLOORI4300. 00B0OGIO0

Q0020.,0040FFQ0, 004¢
00040.[.0000F
00060..00000000.00000000.
00080 LOOOOFFOO JOODOOO00 .,
000A0. . 00000000, 0000GD00. 000
000(0.‘00000000 OOOiFFOO 00’

04300
04320
04340

04400
04420
04440
04460
04480
(;IMMJ

D, ﬁ()d‘é”l I

e e C s Gl e el el e ek

00. 0040

. NOT USED#* ,

39, 00650(C

Q0. 00001

LDOCOOG00 .,

L

0100
DL20
0140
0140
0180

00000000, ()(JOUUG'
OOOODO0N ., O

LD00G000

200 L 0(

>000J‘UUOO\QOQ.h‘!.‘!

me\!\)’)() . “.H%. haaaaaaaan PP PP 3

.*;.A...A.\’('.‘...."";...\.. Taaa Baaaiaa . %

C3D&DbACE
ARLBOID0

(}(‘!f)(()\)U

#COMBING L (oo b s e aa . %
ELIN ; ¥

')W’) ()(JOJO

D0000D00

00000000
QOOOOHO0

GD00000
10430000 BEH2(

OUOL\()OOU
D00 O
4040404\1

HO00DOG0
00000000

AOOO “)O()OOOOO()OOK

') YOO000000000] %
N s aaasanaaa A()OOOO GO0H000000%
EKOOOOGOOCOOOO00L0 . . L ¥

Hohama s na s aaasasanasanaaananask

T hsnunnaan s a a2 0000000000100008%

40404040
45404040

fwmmu 4]
40404000

A0A040 A0
40404040
40404040

A 104\)40

TOO(‘/U. ,US‘HJM .
%y tid FIRST
T 1234561414 ['.‘.UST(J
EMER BETA 22 SEx
®#COND AVE DUMFOOO0 *

40464640

40404040

11\)4()’3(%1(/

40304040

42()'3’0404'\
G040

STRE»

*
00w

AQ40 40340
40404040

¥
*
¥

oy

dwnQq weiboid sjdwex3 *(9 3o Z 1ed) ¢ eanbiy

')‘II)li()
040(0

mDHl ABOE
QTODOOHO

PHHEOTYIOE
04270000

wun FISO
QROOO11Y

[SEE8]

09&0

DLODOADE

OBOOO?M
BYB04M42

OCOOOOOO
QOOO0Y

O
[HBOAS&O[

’“ﬁ&d

FDOiOOOO
O

1(8(\1 B&H2
I8

1’u4ﬁ1%

SOOOOHET
IDATAL02

V0000 POADOLA BRBAIA0CE
OFAQ0PRE BYBO4ALE 00000990 0350098
A2ALE000 OROODLOT QOODOPR4 B7404451 O0000YER4
PLIAGYEICO ABAGAAT0 Hi104u11 ST GLOOOO0D
OFA0OYHC FEPEQOOO T) ; IF
BRAGIALD PEYEO00R & I}ﬁOﬁOOO 0@&00&00
RiZO4AALL 00000800 0C010ﬁ1i QLOOOO0G 094408E0]
09440944 02440404 09440944 09440944 04820000 03048504
2131445 00000046 L7L80000 00040000 0ooOBS500 08820000
24004500 0SVEQQ4R QOFF0O001L 02010080 053Z0AEH 00000000
GOBD4 TDALAL0Z RELGYAQO 00000AAC R104440F OROQ0OL0S5 BIAD44A0F 7
FAALORGT BLE04ALEZ 00000AED BY804011 O0000BAR B5404a411 O0000RRO
OBOOOi’b 1 | : 99AO0U[4 T2OIAL00 BPETVHAOF BO404ALIL P904C
. TEALESH20 AZA0EL2C ATADSA

ACAOGOS
QUNO0A00

“

UJA04Q’4

REASYA0Y
REPEYHOD
ooOOOUOU

ﬁSﬁdO a

k)l'k)()()
GO0 AR
0000094
RONOOLYE
21980002
ORADOO00
OYRBOYE
00BTOBFF
Q092024
AZAOORDA
2A16803
Ri404A11
CELIA400
GPIH2004R
AARAFFOZ
44040189
ODODORIZE
FRAEADOFD
PFAOORDA
GOO00
010404

HAAED0

PEHOOT

OOOO0D
DOOHODL

HOGOOF
ROAR

“..4.""" ‘] .
Varvu. Glau

¥

PR —
x

sweiboig Hdy/3Q Buibbngeqg

24

dwing weiboiq sjdwex3 *(9 jo g Leq) ¢ ainbi4

05440
5460

SFED
1000
1020
1040
1040
1080
§0A0
10C0

QGOOOF 20
QOOOOF&T
As

REASRCAE
FOAZ0LAA
FEAA0LRE
E140F

DODOILP0
OROGI24C
OCO00OD00
2O04F
4a814
EERRIN

00000
AZADA0OIE
RBAORT
BaAORE
ASAAE
ASA4L LD
OROGL LAY

AOE
PEHO0DL
FLA0004

)i
QRO
114

[919207024]

VAAD

BEAOREGE

.

X X X W ok

ok

®

¥
»
»*

ERE A A

=

*
*
M

'3

Ui

:A,,c:.,.,..c..._o

.,_.:_Mwn__m; ko

oa_mr«:un_

OGO ()

SORabY
EOQOOC

SeTerel”

oYL

PO m

Lo O

00000000
SEOINE

SO

GOO0G

srAI sl

RS g T

O u c C Y

TC_fx_

SART)

.

Trr

H...HU_.C
B TOG

YRITO0¢
80071 Tys
O

L0

FeR VAN

BN 3 THaE eﬁn_oc

v .a. L r

G « FD.,.M_} (v
SEOMOELE

A 0EH

AEDYOVEH
OTO T
POSGOVY

BAOOEAPY

AT OE AW

LODTAVES

ocm HCGA,

PR RS
:c;

AODGON
_h..w GHO00

o

(G5
06d

Figure 4 (Part 4 of 6). Example Program Dump

42

MXTEA
By BDE
A tNA
10394903

EEHD

qzo.ﬂ,??
WOROY
Ow,oo,,ovo&.
OOy Gy

G ¢ QOO

2?5&.3@5%
T Ob Ot

vv..??:
OEOFOBOY
CEObOrOY
OO ay

O

Oty
D08
:_nli.,

:.M.::;:oh,
azecoﬁ.gc
(03 2oL 30 k]

Criz O

Glh

WG T
QOGO

. CCC VOCCC
O»l#« Gt o

,..D.A‘:.,.J

0

oﬁ,..L.oocoo
TOO0 Qo

GOGDE

[12¢] H:...,.

()

ObOEObOY

:;:a:]

GOG0000 :cn. QOG0
QUOGOTO0 QOC
TOOGOOO0 | g (i
QGEEOBEOG GOGQOGHG

AV OO O 3*.3?3 r

Oy O Qg
RN

43

Debugging DE/RPG Programs

igure 4 (Part 5 of 6). Example Program Dump

F

Figure 4 (Part 6 of 6). Example Program Dump

44

Chapter 3. Debugging Aids

COMPILER DEBUG FUNCTIONS
Debug functions are available as an aid for debugging complex DE/RPG problems.
These functions of the compiler should be used by service representatives only,

normally under the guidance and direction of field support personnel. This descrip-
tion is for reference purposes only.

Debug functions are used during compilation to halt on the load of a module and to
dump main storage, compressions, and object text.

A debug function requires an additional 1 K byte in the partition. Ten functions
can be specified for each compilation.

Invoking the Compiler Debug Functions

Functions are invoked by responding to prompts for a compilation.

1. When the list options prompt is displayed, select option 7 instead of options
1,2,3,0r4,

2. Press the Error Reset key when error code 9400 is displayed. (This redisplays
the list options.)

3. Select one of the list options; then select the device for the output.

The following lines are displayed:

e)
BLANK TO END (1R MODULE 1D

DERUG CONTROL SPECTFTCATIONS

KEGTN BEFORE MODLLE . FHD REFORE MODLLE

LOWER LIMIT LTI

FUNCTION CODE
_ J

Debugging Aids 45

46

Specify the functions you want performed by entering information into the fields.
Lower and upper timits define the controls on these functions.

Three prompts are displayed on line 2 as you specify the required information.
The first prompt (BLANK TO END or MODULE 1D) means that no entry ends the
debug function; or enter the module ID to continue, The module {D must be ‘EQ’
or greater,

The next prompt lists the dump function codes and meanings.
The last prompt lists the compression codes and meanings.
Some fields of the function code have different meanings depending on the function

to be performed. The function descriptions that follow contain only the entries
that are valid for that function.

Function Code H = HALT

® Begin before module — The compiler halts when the request to load this module
is made.

® End before module — The compiler will continue to halt for all module load
requests up to and including this module.

Function Code D = Dump Main Storage

® Begin before module — The first dump is taken before the module is loaded.
® End before module — The last dump is taken before this module is loaded.
® |ower limit — The lower limit hex address of main storage. (Defaults to 0.)

® Upper limit — The upper limit hex address of main storage. (Defaults to 0.)

Function Code C = Dump Compressions

® Begin before module — The first dump is taken before the module is loaded.

® End before module — The last dump is taken before this module is loaded.

® |Lower limit — The source statement number (in decimal) of the first compression
to be dumped. If a value of 0000 is entered, all compressions of the specified

type are dumped.

® Upper limit — The source statement number (in decimal) of the ast compression
to be dumped.

® Compression code — The character that identifies the type of compression to
dump:

= Z-compressions

= A-compressions

= C-compressions
Table compressions
= Error compressions
= Debug compressions
= Module compressions

D UTHA WN = O
1]

Function Code T = Dump Text
® Begin before module — Start dumping text at this module.

® End before module — Stop dumping text before this module has loaded.

RUNNING THE DUMP AND TRACE PROGRAMS

When unexpected results occur while executing a user program, use the dump or the
trace function to isolate the problem. When the trace function is to be used, you
must first use the Patch program in order to reserve I0B space to execute dump/
trace. Reserve I0OB space by modifying location hex 100 to 80. By doing this, indi-
cator 0 is set on. Otherwise, if indicator 0 is off, the OB space is used for other
purposes.

For a description of how to use the Patch program, refer to the System Control
Programming Reference/Operation Manual. For a description of how to use the
dump and trace functions, refer to the Functions Reference Manual or the Data
Areas and Diagnostic Aids Handbook.

Debugging Aids 47

48

ASCIIl: American National Standard Code for Iinformation
Interchange.

BR: Binary register.

BSC: Binary synchronous communications.

CCA: Compiler communications area.

compiler communications area (CCA): A portion of main
storage where information is saved for use by other modules
during compilation of a program. Each module can access
the information in the CCA and can also pass the informa-
tion on to the succeeding phase(s).

compressions: The compiler version of source statements
contained on a work file that determines the object code
required.

CRT: Cathode-ray tube.

DE/RPG: Data Entry with RPG subroutines.

displ: Displacement.

dup: Duplicate.

external status: A condition encountered by an /0O
device whenever that device cannot resolve, for example,
an error condition or a certain object code instruction.
The unresolved condition is brought to the attention of
the main microprocessor for it to resolve.

hex: Hexadecimal.

I: Indicator.

ID: lIdentification.

Glossary

1/0: Input/output.

I0B: Input/output control block.
IPL: Initial program load.

K: Storage capacity of 1024 bytes.
KB: Keyboard.

microprocessor: A processing unit that is microprogram-
controlled and performs internal machine operations.

overlay area: A technique of repeatedly using the same
portion of main storage for all compiler phases during the
compilation of a program. As each phase of the compiler
is brought into the overlay area, the previous phase is
overlaid.

PTF: Program temporary fix.

relative addressing: A means of addressing instructions and
data areas by designating their location in relation to the
location counter or to some symbol.

return-to-program exit code: Object program code that
processes advanced edit functions such as self-check digit,
range check, and arithmetic checks between fields for

keyboard/display operations.

SNA: Systems network architecture.

Glossary 49

50

absolute dump 3

alternate collating sequence subroutine 21
alternate collating sequence table 24
assemble phase 11

assign phase 10

binary register assignments 15

buffers
input mask 27
logical 24, 27

output mask 28
physical 24, 27
status line 29

calculations
extended precision arithmetic subroutine 21
object code 22
communications external status subroutine 20
communications management subroutine 20
compile time dump 3
compile time error information 3
compile time partition 7

compiler
communications area (CCA) 7
definition 49

debug functions 45
error handling 8
module descriptions 8
phases 5

work files 8
compressions 8

control codes 30

control string commands 31
copy indicators 14

data areas 25

data areas in dump example 36
data entry driver indicators 14
debugging aids 45

debugging programs 5
diagnostic phase 9

directory, table 17

Index

diskette
edit format control strings 18
external status subroutines 19
1/0 management subroutines 19
record level code 22

dump and trace programs 47

dump example 39

dump, absolute 3

dup/store table 17

edit format control strings 18
enter phase 8
error display subroutine 20
error handling 8
example program
dump 39
source listing 34
execution sequence of phases 6
execution time dump 4
execution time error 4
exit code requirements 21
external status
communications 20
definition 49

diskette 19
keyboard 18
printer 19

file close subroutine 21
file translation table 24
format control table 28

glossary 49

1/0 control codes 30

1/0 control string commands 31
1/0O driver 25

I/0 driver parameter block 30
1/0 driver subroutines 20

1/0 function indicators 14
identifying problems 1

indicator assignments 13
initialization code 23

input mask buffer 27

Index

51

job statistics counter area 29

keyboard external status subroutine 18
keyboard record level code 22

keyboard/CRT |I/0O management subroutine

literals/prompts table 17
logical buffers 24, 27
logical file name block 32

magnetic stripe reader |/0 management subroutine

microprocessor definition 49
miscellaneous indicators 14
mode indicators 13

module descriptions 8

module identification 9-12

named fields 17
numeric field table 32

object code, calculations 22
object phase 12

object program organization 13
object program sequence 16
output mask buffer 28

overlay area definition 49

partition control block 25

partition |0B program name 9-12
partition layout 7

partition subroutine stack 3

patch program 3, 47

phase summary 6

physical buffer allocation subroutine 21
physical buffers 25,27

preassemble phase 11

printer edit format control strings 18
printer external status subroutine 19
printer /0O management subroutine 19
printer record level code 22

problem determination 1

PTF log number 3

52

record level code 22

register assignments 1§

register save area 25

reiease number 1

reporting problems 3

resolve table element address subroutine

return to program exit code 21
definition 49

running dump and trace programs 47

screen format control string table 18
sequence of phase execution 6
shared routines 7

source errors 8

source listing example 34

status line buffer 29

subroutines 18

SYSCOPY 3

SYSPRINT 3

SYSPTF 3

table
alternate collating sequence 24
directory 17

dup/store 17
file translation 24
format control 28
literals/prompts 17
numeric field 32
screen format control string 18
user data 17
termination code 23
trace program 47
transaction data set indicators 14

user data table 17
utilities licensed program diskette 1

verify error display subroutine 20

work files 8

Z-specification driver 23

21

READER’S COMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in 1BM programming
support, requests for additional publications, etc, should be directed to your |BM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

IBM may use and distribute any of the information you supply in any way
it believes appropriate without incurring any obligation whatever. You may,
of course, continue to use the information you supply.

® No postage necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number = Comment

Name

Company or
Organization

Address

JawweiBo.y 8yl 104 sa.Npado.y
uofieuiwielag wajqoid Hdy/3a

08¢s Wal

1-¢684-1¢0S

5C21-7852-1

Fold and tape Please do not staple

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO, 40 ARMONK, N. Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION

Information Design and Development
Department 997

11400 Burnet Road

Austin, Texas 78758

Fold and tape Please do not staple

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.0O. Box 2150

Atlanta, Georgia 30055
(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
U.S.A.

{(International)

—_—— — — — — — a3uq Buoyy Ny —-

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.0. Box 2150

Atlanta, Georgia 30055
(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
US.A.

{International)

SC21-7852-1

Jawwelbo.ad ayl 104 Sainpadold uoneuiwislag wajqo.d Hd4/3d 082S WAl

(82-08ZSS "ON 2lid)

VSN ui palulid

1-298L-120S

