
8M 5110, Guide , User s APL

o -r-

Second Edition (August 1978)

This is a major revision of, and obsoletes, SA21-9302-0. Changes or
additions to the text and illustrations are indicated by a vertical line to the
left of the change or addition.

Changes are periodically made to the information herein; before using
this publication in connection with the operation of IBM systems, be sure
you have the latest edition and any technical newsletters.

This publication conta~ns examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
Goincidental.

Use this publication only for the purpose stated in the Preface.

Publications are not stocked at the address below. Requests for copies
of IBM publications and for technical information about the system
should be made to your IBM representative or to the branch office
serving your locality.

This publication could contain technical inaccuracies or typographical
errors. Use the Reader's Comment Form at the back of this publication
to make comments about this publication. If the form has been removed,
address your comments to IBM Corporation, Publications, Department
245, Rochester, Minnesota 55901. Comments become the property of
IBM.

© Copyright International Business Machives Corooration 1977, 1978

This manual gives you conceptual informatiqn
about using the 5110 with the APL language.
Before using this manual, you should understand
the information in the IBM 5110 APL Introduction,
SA21-9301, especially:

• How to enter data from the keyboard

• How APL functions work with one or two
arguments

• How to create your own user-defined functions
using the built-in APL functions

This manual is intended to be used with the IBM
5110 APL Reference Manual, SA21-9303; that is,
this manual gives you information about using the
5110 system with the APL language for
information processing. The major topics are:

• Computer concepts for data processsing
(Chapter 1)

• An approach to breaking your application into
small parts to make programming easier
(Chapter 2)

• Elements of the APL language and example APL
user--defined functions used for information
processing (Chapter 3)

• Controlling the information in the active
workspace (Chapter 4)

• Using uppercase and lowercase characters,
scrolling the display screen up or down, and
sounding the audible alarm (Chapter 5)

• Creating, using, and maintaining your library
(Chapter 6)

• Using the tape or diskette storage media
(Chapters 7 and 8)

Preface

• Formatting printed reports and example
user-defined functions used for formatting
reports (Chapter 9)

• Creating and using data files for your business
applications (Chapter 10)

• Determining what to do when your program
doesn't work (Chapter 11)

This manual is not intended to give you a
complete description of the syntax and rules
required for each APL command, function, or
variable; you must use the 5110 APL Reference
Manual for this information.

This manual does not need to be read chapter by
chapter. Instead, you can read the appropriate
chapters as required. For example, you might read
Chapter 9, Printer Control when you need to
format a report.

This manual follows the convention that he means
he or she.

Prerequisite Publication

IBM 5110 APL Introduction, SA21-9301

Related Publications

IBM 5110 APL Reference Manual, SA21-9303

IBM 5110 APL Reference Card, GX21-9304

IBM 5110 Customer Support Functions Reference
Manual, SA21-9311

CHAPTER 1. DATA PROCESSING CONCEPTS•• 1
Introduction 1
Concepts•...................... 1

CHAPTER 2. INFORMATION PROCESSING •..••... 6
Input, Process, and Output 5

Output 6
Input 7
Process 8

Putting it all Together 8
Additional Levels of I nput, Process, and Output 9
Conclusion 12

CHAPTER 3. APL LANGUAGE ELEMENTS• 13
Variables 13
Data Representation 14

Numbers 14
Scaled Representation (Scientific Notation) 14
NumE~ric Value Range 14
Numeric Value Precision 14
Character Constants 16
Logical Data 16

Arrays 16
Generating Arrays 17
Finding the Shape and Rank of an Array 20
Empty Arrays 21

Indexing Arrays 22
Joining Arrays Together 26

Catentation • 26
Lamination 28

Useful APL Statements and User-Defined Functions ... 31

CHAPTER 4. ACTIVE WORKSPACE CONTROL ..•• 41
The Active Workspace Environment in a CLEAR WS ... 42
Changing the Active Workspace Environment 43
Getting Data into the Active Workspace 44

The)LOAD and)RESUME Commands 45
The)COPV and)PCOPV Commands 46
The)PROC Command•..... 46

Information Provided about the Active Workspace 48
Active Workspace Storage Considerations 49

Data Types and Storage Considerations 50
Additional Storage Using Diskette Data Files 54

Contents

CHAPTER 5. CONSOLE CONTROL .•..•...•..•. 59
Controlling the Input from the Keyboard 60
Controlling the Information on the Display Screen 62

Using the DCC System Function to Control
Information on the Display Screen 63

Sounding the Audible Alarm 64
Console Control through a User-Defined Function 65

CHAPTER 6. LIBRARY CONTROL .••••.•..•.•. 67
Determining the Size of a Tape or Diskette File 68
Writing Data to a Tape or Diskette File 69

Using the)SAVE Command•. 69
Using the)CONTINUE Command•. 70

Getting Information from a Tape or Diskette File 71
Controlling the Files in the Library ...•.........•. 72
Data Security 73

CHAPTER 7. TAPE CONCEPTS ..•....••.....•. 76
Formatting the Tape 76
Determining the Amount of Storage Available
on a Tape Cartridge 78

CHAPTER 8. DISKETTE CONCEPTS .•.•.•..•.•. 81
Diskette Wear•. 82
Diskette Addressing and Layout 83

Track and Cylinder•. 83
Sector 84
Index Cylinder•. 84
Alternate Cylinders•. 85

Diskette Types and Formats•.•. 85
Diskette Initialization•. 86
Vol u me I D, Owner 1 D, and Access Protection. 86
File ID•. 87
Diskette File Write Protect•. 87
Diskette File Organization•. 88
Reallocating Diskette File Space 89
Amount of Storage Available on a Diskette 90

Number and Size of Diskette Files 91
Types of Data Files•. 91
Allocation of File Space 94

iii

CHAPTER 9. PRINTER CONTROL 95
Formatting Output 96
Formatting Reports 98
Useful APL Statements and User-Defined Functions

for Formatting Reports 102

CHAPTER 10. INPUT/OUTPUT CONTROL•.. 107
Sequential and Direct Access Data Files 108
Logical and Physical Records 108
Types of Data File Formats 109

For Sequential Access Data Files 109
For Direct Access Data Files 110

The 5110 I/O Processor and Shared Variables 116
Establishing an APL Shared Variable 117
Using APL Shared Variables 118

To Create a New Sequential Access or Direct
Access Data File 119

To Add Data to an Existing Data File 121
To Read a Sequential Access Data File 122
To Update Data in a Direct Access Data File 124
To Search by Key a Direct Access Data File 131
To Read-Only Data from a Direct Access

Data File 132
To Read Data from and Write Data to the

Display Screen 133
To Send Data to the Printer 137

Terminating the Operation and Retracting the
Shared Variable Offer 138

Sample Input/Output Operations 140
Using the)RESUME Command 146
More about Records and Files 146

Organizing a Diskette File 148
Ordered and Unordered Records 160
Maintaining Diskette Files 160
Designing a Record " ... : 161
Documenting Record Layout 163
Determining the Number of Records in a File 163

CHAPTER 11. DEBUGGING AND ERROR
RECOVERY TECHNIQUES .•............... 165

Suspended Function Execution 166
State Indicator 166

APPENDIX A. 5110 COMPATIBILITY WITH
OTHER APL SYSTEMS 159

INDEX• 161

iv

Chapter 1. Data Processing Concepts

INTRODUCTION

The IBM 5110 Models '1 and 2 are mUltipurpose data processing
systems with a personal touch. Because of their compact size and
large-scale capabilities, these systems provide solutions to problems
for a wide variety of users. As a 5110 user, only you can determine
the problems to be solved with your system. To help you make these
determinations, this chapter contains general concepts of data
processing. You mayor may not choose to read this chapter,
depending on your data processing knowledge and experience.

CONCEPTS

What can you expect a computer to do with information? How do you
get information into a computer? How does a computer know what to
do with your information? What final results can you expect from a
computer? This section gives general answers to these questions.

Today the computer is doing many jobs, from accounting to predicting
election results to guiding spaceships. It is often looked upon as some
kind of magical machine, but the computer performs no magic.
Everything a computer does is dependent on the people who use it
and the instructions they supply. For every job you want a computer
to do, you must give a' step-by-step procedure (a program) for it to
follow. This procedure is then stored inside the computer. The
information you want is processed according to the stored
instructions.

A computer can do only a few rather simple things, bi.Jt it does them
extremely well. It can retrieve, almost instantly, any item of
information stored in it~ It can compare any two items of information,
and do any arithmetic operations you want: add, subtract, multiply, or
divide. It can be instructed to do any combination of these things in
any sequence you want them done.

The computer works methodi.cally, doing one thing at a time. When it
finishes one step, it goes on to the next, then the next, and the next,
according to instructions. But it performs these steps at an almost
unbelievable speed until it comes up with the answer you want.

Data Processing Concepts 1

2

The task performed by a computer is called data processing. Data
processing means that information is handled according to a set of
rules. Whether you process information by hand or use a computer,
the requirements of a job remain about the same. You must have
input, which is the data you want to do something with; you must
process the data, which is the act of doing something with data
according to instructions; and you must have output, which is the
result of your processing.

To help you understand the 5110 and data processing, let's first look
at how a clerk might process information for the job of billing. For this
job, assume the clerk works with the following data:

• Customer orders

.. Price catalogs

•• Customer records

•• Accounts receivable records

.. Inventory files

The clerk receives a copy of the customer orders after orders are
shipped. He uses these documents to prepare bills that he sends to
customers. To prepare the bill, he follows this procedure:

1. Look up, in a price catalog, the price of each item on the order.

2. Multiply the price by the quantity shipped.

3. Add the total price of items to get the total amount of bill.

4. Check the customer records to see if any special discounts apply,
and adjust the bills accordingly.

5. Type the bill.

6. Adjust the accounts-receivable records to show what the
customer owes.

7. Update the inventory records to show the reduced stock.

For each billing, the cle~k follows the same procedure. In computer
terms, this procedure is his program for doing the job. The customer
order is his input, the calculating and file updating he does is
processing, and the results of the processing (the billing and updated
records) are his output.

The 5110 can speed up the billing operation and reduce costly errors.
The order information can be entered from the keyboard; the records
(such as price lists, customer records, accounts receivable records,
and inventory files) can be quickly referenced and updated (processed)
using tape or diskette storage; and the printer can print the billings.

The parts of the 5110 used for data processing are:

Input

• The keyboard from which data is entered into the system.

• Tape or diskette storage from which data can be read for
processing.

Processing

• The 5110 internal storage, which includes the active workspace. The
active workspace is where calculations are performed and where
user-defined functions (programs) and variables are stored.

Data Processing Concepts 3

4

Output

• The display screen, which displays keyboard input and the results of
executed expressions br statements. That is, the display screen is a
means of communication between the system and you.

• The printer, which prints keyboard input (if specified) and the results
of executed expressions or statements. This printed output is
sometimes called hard copy output.

• The tape or diskette on which data can be stored for future
processing.

As mentioned before, a program is a procedure or set of instructions
you establish for doing a job. These instructions are necessary
because a computer cannot think for itself. When defining a program
for the 5110, you can use a programming language called APL. APL is
a simple-to-use programming language with which you describe how
'you want the 5110 to do a job. Also, in APL, a program is called a
user-defined function.

The next chapter presents an approach to analyzing a problem or job
so that an APL user-defined function can be used to help process
information.

Chapter 2. I nfonnation Processing

This chapter presents an approach to dissecting an application so that
APL user-defined functions can be used to help process the
information. This approach helps you break down the application into
manageable parts so that you can apply APL expressions and
commands to process the information. Breaking the application down
into manageable parts promotes thoroughness and allows the
application to be solved (programmed) faster.

INPUT, PROCESS, AND OUTPUT

Every application consists of three parts:

• The input required for processing.

• The process (APL expressions) required to generate the final result

• The output, which is the final result

Each part might consist·of one or more APL expressions. In the
following sections, each part is discussed in more detail. Also, an
example for finding the compound interest is used to illustrate each
part.

Information Processing 5

6

Output

Because the output or result is the primary reason for a user-defined
function to exist, considering the output provides the best place to
start solving a problem. To do this, consider these questions:

1. What results are required?

2. How should the results be formatted?

3. Who uses the results? For example, should the results be
displayed or printed, or should the results be stored in the active
workspace, on tape, or on diskette for later use?

Now, for the compound interest example, assume the answers to
these questions are:

1. The amount of interest earned.

2. The message THE INTEREST EARNED IS: followed by the
calculated interest earned.

3. Finance officers will use the displayed results to evaluate
different plans.

Once you have answered these questions, you know the purpose of a
user-defined function.

Input

After the output, you should consider what input data is required to
generate the output. To do this, consider such questions as:

1. What input is required?

2. Where does the input come from?

3. How is the input provided?

Continuing with the compound interest example, the answers to these
questions are:

1. The interest rate, number of years, and principal.

2~ From finance officers who need to know the amount of interest
earned for different plans.

3. Through the 5110 keyboard.

In our example, most of the input data will come from the keyboard;
however, other ways also exist. For example, some data might be
permanent and be included within the user-defined function (for
example, headings and labels). There might also be data that is usually
constant but, for certain problems, must be changed. This data might
be coded in the user-defined functions as variables that can be
modified. And, of course, data might also be from tape or diskette.

The following list summarizes the input and output considerations so
far:

Input

Output

Data

I nterest rate
Number of years
Principal

THE INTEREST EARNED IS:
The calculated interest earned

Device

Keyboard

Display Screen

Information Processing 7

8

Process

Your introduction to APL started with APL's processing ability. The
APL language is designed to do processing with a minimum number of
instructions.

Once the input and output are well defined, all of the characteristics
work together to make the process part the most straightforward.

For our compound interest example, the process part consists of:

1. Defining the algorithm used to calculate the compound interest

2. Using the input to generate the results

The formula used in this example for the compound interest is:

CI = Principal x (1 + .01 x Interest Rate}Y6arS

The APL statements that use the input to generate the results might
be as follows:

A~l+,Ol~INTERESTRATE

B~"A* YEA I~S
C~"PRINCI PAL)(B

PUTTING IT ALL TOGETHER

Now that you have considered the three parts of the application, it is
time to write your user-defined function. For the compound interest
example, your user-defined function might look like this:

[:I.]

[2]
[:3]

['+]

V R~" P I~ I NC I PAL COt-l POUND YEt~ I~f Th~ interest r~te m~st be
A~":I.+O • ():I.)(INTEI~ESTI~ATE ~asslgned to ~hls vanabl.e b~fore
IH"A')('YEr.t1~S the user-defmed function IS

C I~" P I~ I NC I P t-d ...)(B executed.
R~" I THE IN T E I~ EST E A I~ N E [I IS: I I :1. () 2 'f' C I

v
So far, you have taken a simple application and designed a
user-defined function to solve it. If the application is larger or more
complex, a more detailed structure is required. This more detailed
structure involves expanding each of the three parts (input, process,
and output) into additional levels of input, process, and output.

ADDITIONAL LEVELS OF INPUT, PROCESS, AND OUTPUT

User-Defined
Function

t
INPUT PROCESS OUTPUT First Level

I it
Input Process Output Additional Levels

The method shown in the previous diagram breaks the first-level
INPUT, part into manageable parts. Let's continue with the compound
interest problem and treat the INPUT portion as a separate problem in
itself.

First, consider the outp;ut of the INPUT portion. Here the output is
actually the input for the first-level PROCESS portion. In this case,
assume that the output must be an interest rate not greater than 18 %,
a number of years not greater than 40, and a principal not greater than
500000.00.

Next, consider the input for the INPUT portion. The input is the same
as before (the interest rate, number of years, and principal for which
the interest earned must be calculated). However, in this case, the
finance officers might be unfamiliar with the user-defined function;
therefore, there should be prompting messages telling them what to
enter.

Finally, consider the process for the INPUT portion. In this case, the
processing consists of error checking and validation of all the input
data, because you want to make sure that the interest rate is not
greater than 18 %, the number of years is not greater than 40, and the
principal is not greater than 500000.00

Information Processing 9

10

Now, taking these considerations into account, the APL statements for
the first-level input portion might be:

V 1~~··EXAMPI...E
[1] START: 'ENTER THE INTEREST RATE, YEARS, AND PRINCIPAL ·
[:~~] X E·· I]
[3] ~«X[1])18)/(X[2])40)/(X[3])500000»/El,E2/E3

r: I~.:I -+ P I~()CESS
[5] El: 'THE INTEREST RATE IS GREATER THAN 18 PERCENT'
(6] "~STAI~T

[7] E2: 'THE NUMBER OF YEARS IS GREATER THAN 40'
[BJ ··~STAI~T
[9J E3: 'THE PRINCIPAL IS GREATER THAN 500000,00'
[:L 0:1 ·1-START
[11::1 PROCESS:

V

As you break an application down into more manageable parts, you
might want to have a separate user-defined function for each part. For
example:

V I~~"INTEI~EST .
[:L::I I~~"INPUT
[2J R~PROCESS R
[~3] Rt'[}UTPUT I~

V

V X~"INPUT
1:::1. J
[2]

START: 'ENTER THE INTEREST RATE, YEARS, AND PRINCIPAL'

I:: ~'5 J
[1+]
I:: ~:.:j J
[6J
['{]

[BJ
[9]
[:LOJ

'\I

X~ .. []
~«X[lJ)18)/(X[2J)40)/(X[3])500000»/E1/E2/E3
.. ~O

E1: 'THE INTEREST RATE IS GREATER THAN 18 PERCENT'
"~START

E2: 'THE NUMBER OF YEARS IS GREATER THAN ~O'

"~STAI~T
E~5: • THE PI~INCIPAL IS GI~EATEI~ THAN ~5()OOOO, 00'
"~STAI~T

V CI~PROCESS INPUT;A;B
[lJ A~1+0,()1~INPUT[:LJ

[2J B~A*INPUT[2J
[3J CI~INPUT[3]xB

V

V R~"DUTPUT CI
£::1.:1 I~~'" THE INTEI~ESr EARNED IS: ' :I. () 2 Tel

'iJ

Information Processing 11

12

CONCLUSION

When programming for an application using the 5110, break the
application down into manageable parts. To do this, first focus on the
program output. This is the primary interface to the user. It also
de'Fines what the real purpose of the program is. Next, consider all the
input data that is required to generate the output. Finally (and only
then) plan the actual processing.

Thinking in this way should help you make the transition from knowing
th~~ APL language to being able to use the APL language to generate
user-defined functions for specific applications.

Chapter 3. APL Language Elements

In this chapter, the following topics concerning the APL language
elements are discussed:

• Variables

• Data representation

• Arrays

• Examples of useful APL statements and user-defined functions

VARIABLES

You can store data in the 5110 by assigning it to a variable name.
These stored items are called variables. Whenever the variable name
is used, APL supplies the data associated with that name. A variable
name can be up to 77 characters in length with no blanks; the first
character must be alphabetic, and the remaining characters can be any
combination of alphabetic, and numeric characters. The -+- (assignment
arrow) is used to assign data to a variable:

LENC1TH~··b

WIDTHf-8
AREA~LENGTHxWIDTH

To display the value of a variable, enter the variable name:

LENGTH
6

WIDTH
8

AI~EA

Lt·B

APL Language Elements 13

14

DATA REPRESENTATION

Numbers

The decimal digits 0 through 9 and the decimal point are used in the
usual way. The character -, called the negative sign, is used to denote
negative numbers. It appears as the leftmost character in the
representation of any number whose value is less than zero:

o I.~
"'1.1·

... ~3""'" 2

Tho negative sign, -, is distinct from - (the symbol used to denote
subtraction) and can be used only as part of the numeric constant.

Scaled Representation (Scientific Notation)

You can represent numbers by stating a value in some convenient
range, then multiplying it by the appropriate power of 10. This type of
notation is called scaled representation in APL. The form of a scaled
number is a number (multiplier) followed by E and then an integer (the
scale) representing the appropriate power of 10. For example:

Number Scaled Form

t Multiplier
66700 6.67E4

t Scale
.00284 2.84E-3

The E (E can be read times 10 to the) in the middle indicates that this
is scaled form; the digits to the right of the E indicate the number of
places that the decimal point must be shifted. There can be no spaces
between the E and the numbers on either side of it.

Nume~nc Value Range

Numeric values in the 5110 can range from -7.237005577332262E75
to 7.237005577332262E75. The smallest numeric value the 5110 can
use is ±5.397604346934028E -79.

Numeric Value Precision

Numbers in the 5110 are carried internally with a precision of 16
significant digits.

Character Constants

Zero or more characters enclosed in single quotes, including
overstruck characters and blank characters (spaces), is a character
constant. The quotes indicate that the characters keyed do not
represent numbers, variable names, or functions, but represent only
themselves. When character constants are displayed, the enclosing
quotes are not shown:

'ABCDEFG'
ABCDEFG

12~"1ABC

, 12:"5ABC'

M~'THE' ANSWER IS:'
M

THE ANSWER IS:

When a quote is required within the character constant, a pair of
quotes must be entered to produce the single quote in the character
constant. For example:

'DON' 'T GIVE THE ANSWER AWAY'
DON'T GIVE THE ANSWER AWAY

Logical Data

Logical (Boolean) data consists of only ones and zeros. The relational
function (> ;;::: = < :::; ~), generate logical data as their result; the result
is 1 if the condition was true and 0 if the condition was false. The
output can then be used as arguments to the logical functions
(A V N X. ~:) to check for certain conditions being true or false.
Logical data can also be used with the arithmetic functions, in which
case it is treated as numeric l' sand 0' s.

APL Language Elements 16

16

ARRAYS

Array is the general term for a collection of data, and includes scalars
(single data items), vectors (strings of data)' matrices (tables of data),
and arrays of higher dimensions (multiple tables). All primitive (built-in)
functions are designed to handle arrays. Some functions are designed
specifically to handle arrays rather than scalars. Indexing, for example,
can select certain elements from an array for processing.

One of the simplest kinds of arrays, the vector, has only one
dimension; it can be thought of as a collection of elements arranged
along a horizontal line. The numbers that indicate the positions of
elements in an array are called indices. An element can be selected
from a vector by a single index because a vector has only one
dimension. The following example shows assigning a numeric and a
character vector to two variable names, Nand C; the names are then
entered to display the values they represent:

N~5 6.2 -3 888 95.12
N

5 6.2 -3 888 95.12
C~··' ABCDEFG'
C

ABCDEFG

Generating Arrays

The most common way to generate an array is to specify the shape
the array is to have (that is, the length of each coordinate) and the
values of the elements of the new array. The APL function that forms
an array is the reshape function. The symbol for the reshape function
is p. The format of the function used to generate an array is Xp Y,
where X is the shape of the array and Y represents the values for the
elements of the array. For the left argument (X), you enter a number
for each coordinate to be generated; this number indicates the length
of the coordinate. Each number in the left argument must be
separated by at least one blank. The values of the elements of the
new array are whatever you enter as the right argument (Y). The
instruction 7pA means that the array to be generated has one
dimension (is a vector) seven elements in length, and that seven
values are to be supplied from whatever values are found stored under
the name A. It does not matter how many elements A has, as long as
it has at least one element. If A has fewer than seven elements, its
elements are repeated as often as needed to provide seven entries in
the new vector. If A has more than seven elements, the first seven
are used. The following examples show generation of some vectors:

"(' I~):I. 2 :,3
:1.2:'512:31.

2(.):1.2:'5
:1. :~~:3 :L 2 3

~5(.):I. .3
1.3 :1..3 1.3 :1..3 1,3

APL Language Elements 17

18

An array with two coordinates (rows and columns) is called a matrix.

Columns

I'--~'---"\

1 2 3 4

6 7 8 Rows

!} 10 11 12

To generate a matrix, you specify X (left argument) as two numbers,
which are the lengths of the two coordinates. The first number in X is
the length of the first coordinate, or number of rows, and the second
number is the length of the second coordinate, or number of columns.
The following example shows how a matrix is generated:

1 2 ~3
lJ. 5 6

ABeD
EFGH

ABC
DEF

M~2 3pl 2 3 4 5 6
M

M'''2 4~)' ABCDEFGH ·
M

Ml'<! ~~(.)M

M:J.

Note that the values in the right argument are arranged in row order in
tho arrays. If the right argument has more than one row, the elements
aro taken from the right argument in row order.

The rank of an array is the number of coordinates it has, or the
number of indices required to locate any element within that array.
Scalars are rank O. Vectors have a rank of 1, matrices have a rank of
2, and N-rank arrays have a rank from 3 to 63 (where N is equal to the
rank). N-rank arrays, like matrices, are generated by providing as the
left argument a number indicating the length for each coordinate (for
example, planes, rows, and columns). The following examples show
how to generate 3-rank arrays. Note that the elements taken from the
right argument are arranged in row order:

ABeD
EFGH
I ,..II{ I...

MNDP
(~I~BT
UVl,JX

AB
CD
EF

GH
I.J
1{1...

MN
DP
QI~

ST
UV
WX

A~·ABCDEFGHIJKl...MNOPQRSTUVWXYZ·
2 :3 I.J.(.>(.:}

\'----- 2-Plane, 3-Row, 4-Column Array

1·1· :.~ ~.~ (.> A

\'----- 4-Plane, 3-Row, 2-Column Array

APL Language Elements 19

20

Finding the Shape and Rank of An Array

Once you have generated an array, you can find its shape (number of
elements in each coordinate) by specifying p (shape function) with
only a right argument, which is the name of the array. If A is a vector
with six elements and you enter p A, the result is one number because
A is a one-dimensional array. The number is 6, the length (number of
elements) of A. The result of the shape function is always a vector:

6

A~111 222 333 444 555 666
~)A

The shape of a matrix or N-rank array is found the same way:

M~"2
M

:1. 2 :3
l~ 5 6

~)M

2 ~5

1~~"2 3 4p1 2 3 4 5 6 7 8
R

1 2 3 4·
~5 6 "'1 B
1 2 3 4,

1::-", 6 "7 B
1 2 ~'5 4·
~5 6 '7 B

~) I~

2 ~3 4·

In some cases, it might be necessary to know just the rank, the
number or coordinates (or indices) of an array. To find the rank, enter
p p (shape of the shape) and a right argument, which is the name of
the array:

6

:L

2 ~3

2

I')
.: .. 3

~~

4·

A~lll 222 333 444 555 666
B~2 3p1 2 3 4 5 6
C~2 3 4p1 2 3 4 5 6 '7
pA

(.>(.)A

,~B

p~)B

(.)C

ppC

The following table shows what the shapes and ranks are for the
various types of arrays:

Data
Type Shape pX Rank ppX

Scalar No dimension (indicated
by an empty vector). 0

Vector Number of elements. 1

Matrix Number of rows and the
number of columns. 2

N-rank Each number is the length
arrays of a coordinate. N

Empty Arrays

Although most arrays have one or more elements, arrays with no
elements also exist. An array with no elements is called an empty
array. Empty arrays are useful when you are creating lists (see
Catenation in this chapter) or branching in a user-defined function.

Following are some ways to generate empty arrays:

• Assign 10 to a variable name to generate an empty vector:

EVECTOR'·· \ 0
[VECTDR

1--
An empty array is indicated

~)EVECTDI~
by a blank display.

()

,~-----------------------
The shape of the empty vector
is zero (zero elements).

• Use a zero length coordinate when generating a multidimensional
array:

This matrix has three rows and no (0)
EMArl~IXl ~-<'5 () p \ () ... __ columns. If one of the coordinates is
EMATf{IXl not zero, you cannot generate the

empty array.

"" A Blank Output Display
pEMATI~IXl

• A function might generate an empty vector as its result; for
example, finding the shape of a scalar:

p'A'

_------------------------ A Blan k Output displ ay.

APL Language Elements 21

22

INDEXING ARRAYS

You may not want to refer to the vvhole array but just to certain
elements. Referring to only certain elements is called indexing. Index
numbers must be integers; they are enclosed in brackets and written
after the name of the variable to which they apply. Assume that A is
assigned a vector as follows: A +- 11 12 13 14 15 16 17. The result of
entering A is the whole vector, and the result of entering A[2] is 12
(assuming the index origin is 1).

H43re are some more examples of indexing:

A~11 12 13 14 15 16 17
A[~~]

A[~:) 3 7 1]
:I.~3 :1.3 17 1:1.

B~<5 1 1+ 6 Blank Character
ACB] I

13111.1-1· :1.6 ~
B~IABCDEFGHIJKLMNOPQRSTUVWXYZ I
BC4 1 14 27 1 :1.4 4 27 3 12 1 9 18]

[lp,N AND CLA I r~
C~22 9 :1.8 7 9 14 9 1
BCe]

VIRGINIA

If you use an index that refers to an element that does not exist in the
array, the instruction cannot be executed and INDEX ERROR results:

(~

11 12 13 14 15 :1.6 17
A[B]

INDEX Er~RDI~
Ar8]
f\.

You cannot index or do anything else with an array until after the array
has been specified. For example, suppose that no value has been
assigned to the name Z; then an attempt to store values in certain
elements within Z would result in an error, because those elements do
not exist:

Z[:.3 1+]~"18 1+6
V(:,LUE E I~ I~O I~

Z I:: :3 !.t.::I ~.. 1. B LI· 6

Indices (whatever is inside the brackets) can be expressions, provided
that when those expressions are finally evaluated, the results are
values that represent valid indices for the array:

B
ABCDEFGHIJKLMNOPQRSTUVWXYZ

XE"1 2 3 4· 5
B[X)(2:J

BDFH.J
x

1231+~:5

B [1'" X)(:3::1
DGJMP

The array from which elements are selected does not have to be a
variable. For example,a vector can be indexed as follows:

2 3 5 7 9 11 13 15 17 19[7 2 ~ 2::1
13 3 7 3

'ABCDEFGHIJKLMNOPQRSTUVWXYZ '[12 15 15 11 27 16 1]
LOOK PA

DDN
MAI~Y

'ABCDEFGHIJKLMNOPQRSTUVWXYZ '[2 ~p~ 15 14 27 13 1 18 25]

Indexing a matrix or N-rank array requires an index number for each
coordinate. The index numbers for each coordinate are separated by
semicolons. Suppose M is a 3 by 4 matrix of consecutive integers:

If you ask to see the values of M, they are displayed in the usual
matrix form:

M
1 2 3 '+
I:!"
,J 6 '7 8
9 10 11 1") . .:..

If you want to refer to the element in row 2, column 3, you enter:

7

If you want to refer to the third and fourth elements in that row, you
enter:

7 8

APL Language Elements 23

24

Similarly, to refer to the elements in column 4, rows 1, 2, and 1, you
enter:

M[l2 :1.;'·1,]
L~ B '+

You can use the same procedure to select a matrix within a matrix. If
you want the matrix of those elements in rows 2 and 3 and columns 1,
2, and 1 of M, you enter:

M[2 :5 ; :1. 2 :1.::1
!5 (.) ~:.:j

? 10 ':t

If you do not specify the index number for one or more of the
coordinates of the array that you are indexing, APL assumes that you
want the entire coordinate(s). For instance, to get all of row 2, you
enter:

M[2;]
~.:j b 'l 8

Or to get all of columns 4 and 1, you enter:

t1 I:: ; J.t. 1.]
q. 1
B I::'

d

12 9

Note: You still have to enter the semicolon to make clear which
coordinate is which. The number of semicolons required is the rank of
the array minus one. If the correct number of semicolons is not
specified, RANK ERROR results:

t1 ~ .. ~'5 '+ (.) '. :I. 2
1~)t1

1'1[6]~"~~

I~ANK E I~ I~() I~
M[6]~"9

You can change elements within an array by assigning new values for
the indexed elements. (The rest of the array remains unchanged.)

A~3 3pl 2 3 4 5 6 7 8 9
i~

:1. ") "7.
,,)

'+ I::'
... J 6

7 B 9
P.[2; ") ~5::1 ~ .. :I. () 20 An

A
:I. 2 "l'

'.:)

1.1· 10 20
"{ 8 9

JOINING ARRAYS TOGETHER

You can join two arrays to make a single array by using the catenation
or lamination functions. The symbol for these functions is the comma.

Catenation

When catenating vectors, or scalars and vectors, the variables are
joined in the order in which they are specified. For example:

A~··:1. 2 3 I~.

B~··I.I· I::' .., (.)

AlB
1 2 ~5 '+ 1+ 5 6

BIA
1.1· !;j 6 1 ")

&. ~3 L~

AI2
:I. ~.~ .." ,5 '+ ~.~

~5 I A
~5 l. 2 :~ 1+

When catenating two matrices or N-rank arrays, the function can take
the form A,[I]B, where I defines the coordinate that will be expanded
when A and B are joined. If the coordinate is not specified, the last
coordinate is used. When A and B are matrices and [I] is [1], the first
coordinate (number of rows) is expanded; when [I] is [2], the last
coordinate (number of columns) is expanded. The following examples
show how to catenate matrices:

Graphic Representation

AlB
10 ~;~ 0 ~30 :1. :I.
L~ 0 ~.:; 0 60 L~~

AI [2::tB
:1.0 ~2 () ~3 0 1:1.
I.~ 0 ~.:jO 60 L~ LI.

A,t:::I.::tB
:1.0 20 30
I.~ () ~:; () 60 •
:1.1 22 :3:3
1·1·4· ''''t!oo

~)\) 66

22 3~3
~.:;~5 66

22 33
!5~:; 66

B
11 22 33
44 55 66

A B
20 30 11 22 33

40 50 60 44 55 66

A 10 20 30
40 50 60

B 11 22 33
44 55 66

APL Language Elements 25

26

Arrays of unequal sizes can be catenated, provided that the lengths of
the coordinates not specified are the same (see the first example
'following). If the coordinates not specified have different values, an
error results (see the second example following):

10 20 30 11

AE··2 3pl0 20 30 1+ () 50 t)()..-- 40 50 60 55

BE"2 L~ (.) 1. 1 22 3:5 '+LI· 1::"1::'
,J,J 6b '77 BB

AJ [2:1B A

'I!~ 20 30 11 10 20 :30 :I.l 22 :33 I.I.'.~ of

I.~O ~5 () 60 ~5 ~::; 6b 77 BB 50 60 55

A 10 20 30
A I I:: :1.:] B 40 50 60

LENGTH EI~r~OR •
A, 1:1J B B 11 22 33
A 55 66 77

A scalar can also be catenated to an array. In the following example, a
scalar is catenated to a matrix. Notice that the scalar is repeated to
complete the coordinate:

A~2 3p10 20 30 ~() 50 6()
A

1020 :30
'+0 !50 60

A ,[2]<;>9
10 :~o ~50 99
LI·(} ~)O 60 1]9

A, [:1.::199
:to 2(} 30
,+ 0 ~5 0 6 ()
99 99 99

A vector can also be catenated to another array, provided the length
of the vector matches the length of the coordinate not specified. See
the following examples:

A,99 aB
1 0 :~~ 0 :'50 99 ... 111------_ t--It-----t---+-----I

L~O ~:50 60 BB

A,[l::199 BB
LENGTH EI~R()J~

f.' I t:: 1.::1 99 88
A

22 33 44
66 77 88

B
22 33 44 I 66 77 88

44
88

The catenate function is useful when you are creating lists of
information. Sometimes it is necessary to use an empty array to start
a list. For example, suppose you want to. create a matrix named
PHONE where each row will represent a seven-digit telephone number.
First you want to establish the matrix, then add the telephone numbers
at a later time. The following instruction will establish an empty array
named PHONE with no (0) rows and seven columns:

PHON[~··() 7(.) \ 0
PHONE Blank display indicates an

.------------------------
pPHDNE

empty array.

o '7

Now, the telephone numbers can be added as follows:

PHONE~PHONE/[lJ·5336686·
PHONE

~::i:·3366B6

PHONE~PHONE,[lJ'45647'71'

PHONE
~5:·5:·566B6

1+~::j61+ 77:1.
(.>PHONE

2 \L.o
7
___________ The list of telephone numbers

now contains two rows.

APL Language Elements 27

28

Lamination

When laminating two variables together, the function joins the
variables together by creating a new coordinate. The function takes
the form A,[I]B, where I is an index number that must be a fraction.
This index number specifies where the new coordinate is added. If the
index number is less than 1, the new coordinate is added before the
first coordinate; if the index number is between 1 and 2, the new
coordinate is added between the first and second coordinate; and so
on. For example:

Graphic Representation

AAA
AAA
AAA

BBH
BBB
BBH

AAA
AAA
AAA

BBB
BBB
BBB

A~"3 3(.)'A'
A

B~··:·5 ~5 (.) , Ie '
B

C~MA J [I :I.::IB
C

A A A
A A A
A A A

8 8 8
8 8 8
8 8 8

/81 Bl8
A A As
A A A~
A A A'r-

The new coordinate is added before
the first coordinate.

AAA
BBB

r.,AA
BBB

r.'f~A
BBB

c~ .. A I I::t. I :I. ::I B
C

(.)c The new coordinate is added between the
~5 2 :3 ... --------- first and second coordinate.

AB
AB
AB

c ~ .. A} I: 2 I :I. ::I B
C

(.)C

3 ~3 ::.~ The new coordinate is added after the
--------- second coordinate.

APL Language Elements 29

30

The new coordinate is always 2 because two variables are joined
along a new coordinate.

Unless one of the variables is a scalar, arrays of unequal sizes cannot
be laminated together. For example:

1 ,')
It"

L~ 5
7 8

1
I.f.
"7

10
10
10

:~

6
9

,.)
~:)

8

10
10
10

A~":·5 ~3 (.) \ ('I
A

C~"A, 1::, 1J:I.O
C

~~
6
9

10
:1.0
10

B~2 3p10 11 12 13 14 15
B

10 11 12
13 1'+ 1~7j

B, 1::, :J.JA
LENGTH ERROR

B,[O,1.J A
A

110110110
1 2 30
4 5 60
7 8 gr-

1 2 3
4 5 6

7 8 9

USEFUL APL STATEMENTS AND USER-DEFINED FUNCTIONS

To remove duplicate blanks from a character vector:

VCOM P I~ESS I:: []:I V
V Z ~"CDM P I~ESB W; I

I: :l ::I Z f· l. .,. ((:L <I> I) X I ~ .. W::::' ') / W E.. '. " l,,1
V

C(]MPI~ESB · AAA
AAA BBBB eee IfDD

BBBB eee nnD'

The right argument is the character vector.

To create a matrix from a character vector with a delimiter for each
row:

VFD RM I:: []:1 V ./ 010 will b~ set to ~ just d~ring
'V Mf-D FORM S; A; F.t; X; Z; !JID /' the execution of this function.

[1J []IOf-O
[2J Mf-(Xf-S~D)/Sf.}S

1:3J Zf.(X¢l'X,N-:ltX)/l+\PX
[~] Mf-«pA),B)p(,(A-l)D,~\Bf-Orr/A~X[Z-lJ/Z-O/-l'Z)\M

V

'D' FORM 'ADBDCCCDD'
A '-
13 ~ eee In this example, the .) character is used
D as the delimiter. The left argument specifies

the delimiter, and the right argument
specifies the character vector.

APL Language Elements 31

32

To remove the alphabetic characters from a character vector, leaving
only the numeric characters and blanks:

V I~EMOVE I: 1]:1 V
V NEW\ .. r~EM()VE OLD

[1:1 NEW~" (OLD.! · 0 12~5L~56·,(B9. .) fOLD
V

OLD~'DAN 30 DAVE 29,5 JERRY 37 MEL 40.8'
I~EM()VE OLD

30 29,5 37 40.8

To replace all trailing blanks with a minus sign:

VBLANI< B I: []:1 V
V Z-E··BLANI<S t1; V

[:LJ Vf.-.,<I>A\<I>M::::"
[2] Z~/M

[3] Z[V/\PV]~'-'
[I.~] Z~M (pM) pZ

'V

MAT~2 5p'AB CDE
MAT

AB
CDE

AH·· .. ·_· .. ·
CDE·· .. ·-

BI...ANI(S MAT

Return all elements of a vector that are even numbers:

VEVEN[[]]V
V Z\ .. EVEN V

[1] Z~(0=2IV)/V

V

EVEN 0 1 2 3 4 5 6 7 8 9
0:~~1.1·68

To delete all comment lines from a user-defined function:

'VCOMMENT[[]JV
'V CDMMENT FN;M

[1] M~[]FX(M[;1]¢·A')/M~[]CR FN
V

[1]

[2]
[:'5]

['+:1

VADD
ACOMMENT LINE :I.
~5+1.~

ACOMMENT LINE 2
'V

COMMENT 'ADD'
VADD[I]JV

'V ADD
[:I. J ~·5+4·

V

To merge two variables with the same shape into a single vector:

VMEI~GE[[]]V
V Zf·A MEI~GE B

[1] Z~,A/[OIO-O.5J B
V

A~~.~ 2~)' A'
Bf·2 2~)'B'

A MEI~GE B
AAAABBBE«

To delete duplicate elements in a vector:

VDUPLICATEI::[lJV
'f,1 Z~"DUPLICATE V

[lJ Z~«\PV)=V\V)/V~,V

V

DUPLICATE 1 2 3 3 4 2 5 6 5 5
123'+56

To find the first nonblank character in a character vector:

VNONBI...ANKI::OJV
V Z~"N()NBL..ANK W

[:l.J Z~"1 t (W¢' •)/W
V

V~" • DAN'

NONBI...ANI(V
D

VNONBI...ANK X I:: [] J V
V Z~NONBLANKX W

I::L] Z~ .. (<\~J;{:' ·)/W
V

NDNBI...ANKX V
D

APL Language Elements 33

34

To determine whether a variable is character or numeric:

VDETERMINE[[]JV
'\} DETEI~MINE W

[lJ 'NC'[DIO+(-lt2tlt,W)=' 'J

c

N

V

AE'" <"I'
BE··<7

DETEI~MINE A

nETEI~MINE B
-+---------.

VDETEI~MINE:I. [[]J'\}
V DETEI~MINE:I. W

1::1.:] 'NC' [[lID+' ':::::1. t 0 (.>W]
'\,1

DETEI~MINE:I. A
c

[IETEI~MINEl B
N

To make scalar or vector into a matrix:

VMATI:~ I X [[]] V
V ZE"MATRIX M

AE" • ABCDEFG'
X~" MATI~IX A
X

The result is C for character or
N for numeric.

AHCDEFG _1------- The result is a 1 by 7 matrix.
(.)X

1 7

To delete all user-defined function names starting with a specified
character vector from the active workspace:

VDEI...ETEFN[[]]V
V DELETEFN C;NL;Z;X

[1] Z~««ltpNI...)lpC)tNI...)A,=C~,C)fNL~(ltC) ONI... 3
[2::1 Xt--[]EX Z

V

Vf~DD[[]]V

V ADD --------------
[1] 3+t.~

V

DEI...FTEFN 'AD'
ADD

VALUE E I~ r~o I~
ADD

A user-defined function in the
active workspace

The function is no longer in the
active workspace

To count the number of occurrences of each unique character in a
character vector:

'VCOUNT t::n J 'V
'Q Z~C()UN·t' l,J; UC

[1] Z~+fWo.=(OAVEW)/OAV

V

COUNT • f-lBHCCC[lDDDE ·
:1. 2 ~~ 1+ :l

COUNT • f~BCDBCDCDD ·
:l ...) .. '~ ~·5 '+

To center the character string in each row of a character matrix:

'VCENTER[[]::tV
'iJ Zf·CENTEI~ M

t:: 1.] Z i·' (.... r (+ 1/\ \~) N::::' ') + 2) (I) M i .. (... 1/\ \ M:::: I ') qH1

A

A
B
C

'V

c

NATi .. 3 6(.) I A
NAT

CENTE I~ M~~T

c

To right-justify the character string in each row of a character matrix:

VRIGHTJUBTIFY[[]]V
V Zi .. RIGHT .. JUSTIFY M

[:I.] Zi" (.... +/A\ (q>N):::: I I)(~N

V

A

(" .,

MAT

RIGHT,JUSTIFY MAT
A
B
C

APL Language Elements 35

36

[:1.:1
[2]
I:: ~5:1
[1+:1
I:: ~5::1
[6]
[7]
[BJ
crr::l
I:: :1. ():1
[:1.:1.]
[12J
1:::1.:5]
I: :1. 1+]

1:::1. ~.:;::I
[:1.6]
[1.7]
[lB]
[::1. C;]

To left-justify the character string in each row of a character matrix:

"LEFT ,JUST I FY I:: []:1 \I
V Z~LEFTJUSTIFY M

[:1.::1 Z~M(+/A\M::::")q)M

A
B
C

A

r;;

(" .,

MAT

LEFT ..JUST I FY r'~~ T

To list each user-defined function in the active workspace:

VI...IBTFNS[[]]V
V I...ISTFNG; ALF; NAME; I ; FUN; COl...; NO; [lID; [lPI,J

V

ATHIS FUNCTION LISTS ALL FUNCTIONS IN THE ACTIVE WORKSPACE
HEXCEPT LISTFNS AND LIBTVARS,
[]ID~M:I.

[] PW~M:I. 32
NAME ~M[]NI... :-5
AI...F~··' '~lBCDEFGH I ...JKI...MNnPGlI~GTUVI;..IXY7.. '
A I... F ~ .. A I... F., · A ABC DE F G H I . ..1 K I... i'1 N () P (~ I~ BTU V W X Y Z A · A L.. F i .. A I... F,' (}:i'.'~? ~3 i:j: !:~i (.; ::p f.~ 9 .~-
NAME~NAME['661AI...F\~NAME;::I
Ii-'O

LOOP:~«ltpNAME)<I~I+l)/O

~(A/NAME[I;]=(-ltpNAME)ttI...ISTFNS')/I...OOP

M~ (A/Nf~ME[I;]:::: ("':1. t (.>N(.~ME) t ' 1...1 STVtll~S') II...OOP
NO~1tpFUN~OCR NAMEr!;]
COL -t .. ((NO I :I.) (.> t [: •) 1 (l' (N (] / :I.) (.)'" :I. + d-..f 0) I ((N n / 2) (.> '::I ')
COI...I:1.;]~(-1tpCOL)tt ,
COL/FUN
2 1 (.>' ,

-~LD(] P

I...IBTFNS
Z~"BI...ANI<S M; V

r :1.:1 v~ .. I (~A \ <l>M:::: ' ,
I: 2] :Z~"/M
r 3] Z[V/\pV]~'-'
I: I+J Z.-«(.>M)pZ

Z ~"A BY B; I~(]W
[1] A~(2t(pA)J 1 l)pA

I... I STFt-!B [1 B::I ... _________ The ATTN key was pressed before
all the functions in the active
workspace were listed.

To list each variable and associated value in the active workspace:

VI...ISTVf.}HB[[]::IV
V LISTVARS;ALF;VAR;I;R;[]IO

[l]

[2]
[3]

fl TH I S FUNCT I ON I... I BT THE Vf.l F~~~ I BLES I N THE ~~CT I VE ~..ID F<K SPACE,
[]I(]~:I.

1: 1+ ::I
I:: ~.:;]
[6]
[7]
[B]
[9]
[1.0]
[:1.:1.]
[:1.2]

V

I~ ~ .. :1. t (.> V f.} F~ ~ .. [] N I... 2
AI...F~' ABCDEFGHIJKI...MNOPQRSTUVWXYZA'
ALF~ALF, 'ABCDEFGHIJKLMNOPQRSTUVWXYZA'
AI...F~MALF I • O·f~~:~~i:i:~::~6:7Ej(j···""""""""""-·M'"''''''''''''''''''''''''''

VAR~VAR['661ALF\~VAR;]
I ~ .. o

1...00 P : .. ~ (R -:: I~" I + 1.) /0
2 :I. (.)' •
.+. []~ ... '/V~~R[I;]

.. ~I...O() P

LISTVARS

A
:1.020 ::50
1+0 ~7jO 60

B
:1.1 ::~2 :33
1.1· LI· ~.:; ~:.:.i 66

The ATTN key was pressed before

AAA workspace were listed.
C /all the variables in the active

B

l...ISTVARS[:I.2::1

To field-protect high-order digits:

VPI~OT[[]]V
'iJ Z~N PROT V

I:: :I. ::I Z ~ .. (-... N) t ((N H<~) P , .)1: •) I V
V

:1. 0 P F~OT ':I. 2~~ , L~~.:; ,

')H(' ')Hf 1. 2 ~'5 , 4 ~5

APL Language Elements 37

38

To delete leading blanks from a character string:

\/DLBt::[I]V
'OJ Z~"DLB A

[1] Z~(-l+{A=' ')\O)'A
'iJ

DI...B . :1,2:.'3 , LI·~,:; ,

To join vectors and print results as a single, sorted vector:

V...JOINt::[]::tV
V Zf·A ...JOIN B; T

[lJ Z~T['T~A/BJ
V

foli··:1. 0 3 :I, !,:,:j b '1
At ••

Bi-:l.~.=i "(' ~:,:; "') r)
,,: .. A'_

(.) ..J()IN B
1 2 2 2 3 5 5 6 7 10 15

V...JDIN:l.t::[]J'V
'iJ Zf·A ,.JOINt B; T

[lJ Z~T['T~A/B]
'iJ

(~) .JOINt B
15 10 7 6 5 5 3 2 2 2 1

To sort up to the first nine columns of a matrix with each row
representing a name:

\;.' ~:::; D F;~ T I:: IJ ::I Xi'

\;.' :.?:~··~::;DI~T 1...1:;;)T; (:iI...F

1...1··/'> 71~) I • ..JENNY ,.Jf~N

I...
. ..JENNY
. ...If~N
LUCY
tlRCHIE
D()UI3I...f~S

BETH

f~I~CHIE

BETH

L~··BORT I...
I...

D()UGLf~S

Jf~N

.JENNY
LUCY

LUCY

To find the location of a name in a list of names:

\lFIND[[]::I\I
V Z~LIST FIND NAME

I:: 1.:1 Z~·· ((LIBTA. :::: (... 1. t (.>I...IST) tNf.",FI[)) / \:1. t (.>I...18T
'V

I... FIND ',JAN'

To delete a name from a list of names:

V DE\", I:: []::I '\I
\I Z~I...IST DEL NAME

I:: 1. :1 Z i·· ((N I... 1ST A , :::: (H. :I. t p I... I S T) t N f~ rl E)) II... I S T
'V

I... DEI... ',.Jf.1N'
ARCHIE
BETH
DDUGLAS
,JENNY
LUCY

APL Language Elements 39

To perform a specified operation if a condition is true:

'\lIF[[]:1V
V Z~ .. OP IF CDN))

I:: 1.:1 Z {"CDND/O P
v

I i··~·~

· P I~ I NT' I F I :::: 3
pr~ INT

I P I~ I NT I I F I :::: L~

40

Chapter 4. Active Workspace Control

The active workspace is the internal storage where calculations are
performed; it is also the place where variables and user-defined
functions are stored. The 5110 system commands, system functions,
and system variables are used to control the active workspace. In this
chapter, the following topics are discussed:

• The active workspace environment in a CLEAR WS

• Getting information about the active workspace

• Changing the active workspace environment

• Getting data into the active workspace

• Active workspace storage considerations

Active Workspace Control 41

42

THE ACTIVE WORKSPACE ENVIRONMENT IN A CLEAR WS

When the 5110 is first turned on, or the RESTART switch is pressed,
or the)CLEAR command is executed, the active workspace
environment has the following characteristics:

II The index origin (010) is 1.

II The comparison tolerance (OCT) is 1 E-13.

II The random number seed (ORL) is 16807 .

• The print width (OPW) is 64.

II The print precision (0 PP) is 5 .

• The latent expression (OLX) is an empty vector.

II The workspace identification [)WSID] is CLEAR WS.

II The number of symbols allowed [)SYMBOLS] is 125.

(See the IBM 5110 APL Reference Manual, SA21-9303, for a complete
description of the system variables and system commands.)

These characteristics control the way some of the APL functions and
system commands will work in the active workspace. For example, if
you have assigned 125 variable names and you enter the statement:

NAME126~IROCHESTER'

SYMBOL TABLE FULL
NA~I~E :1.26

a SYMBOL TABLE FULL error message is displayed, because only 125
symbols (names) are initially allowed in the active workspace. How
you change some of the active workspace environmental
characteristics is discussed next.

CHANGING THE ACTIVE WORKSPACE ENVIRONMENT

Youcan change the system variables, workspace identification
[)WSI D] , and number of symbols allowed [)SYMBO LS]. For the
system variables, you simply assign them a new value. For example:

[\ID~··O ----The index origin is now 0

The number of symbols allowed in the active workspace can be
established only in clear workspace. That is, the size of the symbol
table must be established by the 5110 before any other data is placed
in the active workspace.

Active Workspace

Symbol Table. Eight bytes of active
workspace storage are reserved for
each symbol allowed.

The number of symbols allowed is initially set to 125, which requires
1000 bytes of active workspace storage.

There might be times when you have used the maximum number of
symbols allowed, so you may need to increase the maximum number
of symbols allowed. If you change the number of symbols allowed in
a clear workspace and then use the)LOAD command to load a stored
workspace into the active workspace, the number of symbols allowed
is the same as when the stored workspace was written to the media.
However, you can use the following procedure to change the number
of symbols allowed:

1. Save the contents of the active workspace using the)SAVE
command.

2. Clear the active workspace using the)CLEAR command.

3. Set the new number of symbols allowed using the)SYMBOLS
command. For example:

) SYMBOLS 2~:;:I. ... ~--- Now, 251 symbols are allowed.
l,JAS 12~5

Active Workspace Control 43

44

4. Copy the stored workspace into the active workspace using the
}COPV command. Using the }COPV command does not affect the
number of symbols allowed in the active workspace. The }COPV
command is discussed later in this chapter.

The workspace identification specifies the device/file number and file
10 where the contents of the active workspace are stored when a
)SAVE or }CONTINUE command is issued. The)WSIO command can
be used to change the device/file number and file 10 where the
contents of the active workspace is to be stored. For example:

) LDAD :1.:1. 0 0:1. D(:lT~~l

LOADED ,11. 00:1. DATA,
_, _______ This device file number and file ID is now

) ~J8ID :1.200:1. TEBT associated with the active workspace.
WAS :1.:1.00:1. DATA~

)SAVE
SAVED :1.2001 TEST Change the workspace identification.

Now, when the)SAVE [or)CONTINUE]
command is issued, the contents of the
active workspace are written to the new file.

GETTING DATA INTO THE ACTIVE WORKSPACE

You can get data into the active workspace by entering the data from
the keyboard or reading the data from a tape or diskette file. You read
data from a tape or diskette file using an APL shared variable or one
of the following system commands:

•)LOAO

.1)RESUME

•)COPV

.')PCOPV

•)PROC

See Chapter 10, Input/Output Control, for information on reading data
using APL shared variables. The system commands used for re.ading
data into the active workspace are discussed next.

The)LOAD and)RESUME Commands

The)LOAD and)RESUME commands are used to load an entire stored
workspace into the active workspace. The contents of the stored
workspace then replace the contents of the active workspace. The
)LOAD command has the following characteristics:

• Loads any stored workspace, which was written to tape or diskette
by the)SAVE or)CONTINUE command, into the active workspace.

• If the stored workspace has a latent expression assigned to the DLX
system variable, the latent expression is executed each time the
) LOAD command is used to load that stored workspace into the
active workspace.

• If the stored workspace has shared variables established, the shared
variables are not reestablished when the)LOAD command loads the
stored workspace into the active workspace.

The)RESUME command has the following characteristics:

• Loads any stored workspace which was written to tape or diskette
by the)SAVE or)CONTINUE command into the active workspace.

• If the stored workspace has a latent expression, the latent
expression is not executed when the continued (stored) workspace
is loaded into the active workspace.

• The primary reason for using this command is to reestablish the
system environment as it was when the workspace was written to
the media. That is, if the stored workspace was written to the
media by the)CONTINUE command, any shared variables and/or
suspended functions in the stored workspace are reestablished in
the active workspace by the)RESUME command. See The
)RESUME Command in the IBM 5110 APL Reference Manual,
SA21-9303, for a description of how shared variables are
reestablished.

Active Workspace Control 45

46

The)COPV and)PCOPV Commands

The)COPY and)PCOPY commands are used to copy all or selected
objects (variables or user-defined functions) from a stored workspace
into the active workspace. When these commands are used, the
objects are copied into the active workspace without replacing the
lentire contents of the active workspace. When the)COPY command is
used, any objects already in the active workspace are replaced by the
objects specified by the)COPY command if the objects have the same
name. When the)PCOPY command is used, any objects in the active
workspace are protected and not replaced by the specified objects if
the objects have the same name. These commands have the
following characteristics:

• These commands can only be used to copy objects from a
workspace written to tape or diskette by the)SAVE command. If
you want to copy objects from a workspace written to tape or
diskette by the)CONTINUE command, the stored workspace must
be loaded into the active workspace and then written to the media
by the)SAVE command.

• These commands cannot be used if the active workspace contains
suspended functions.

• These commands can be used to copy objects from several stored
workspaces into the active workspace.

The)PROC Command

An alternative to entering data from the keyboard is to get the data
from a procedure file. A procedure file contains character records that
represent any input that is possible from the keyboard, such as system
commands, function definition, and APL expressions. When the)PROC
command is issued, the 5110 reads and executes one procedure file
record at a time until the last record (end-of-data) is processed. Then
the 5110 goes back to using regular keyboard input. [See the IBM
5110 APL Reference Manual, SA21-9303, for a complete description of
procedure files and the)PROC command.]

A procedure file must be a type I or U data file and. the records cannot
be greater than 128 characters. (See Chapter 10, Input/Output
Control, for a complete description of data files.)

A procedure file is useful for doing unattended applications that
require using system commands and/or function definition. For
example, assume you have· an application that requires several
user-defined functions. However, not enough workspace storage is
available to contain all of the user-defined functions. In this case, you
might:

1. Use the)SAVE command to store the user-defined functions on
tape or diskette.

2. Create a procedure file that contains the following character
records:
a. A)COPV command to copy the first user-defined function(s)

required for the application into the active workspace
b. The statement(s) required to execute the user-defined

function(s)
c. An)ERASE command that erases user-defined functions and

variables that are no longer required
d. A)COPV command that copies the next user-defined

function(s) required for the application into the active
workspace

The previous steps are repeated until the application is complete.

3. Use the)PROC command to execute the statements from the
procedure file. After the last statement is read and executed, the
5110 again accepts input from the keyboard.

Note: Using the)PROC command requires approximately 800
bytes of active workspace storage. The active workspace is
always cleared the first time a)PROC command is used after you
turn the power on or press RESTART, because the required 800
bytes can be allocated only in a CLEAR WS. The active
workspace is not cleared for any subsequent)PROC commands
because the 800 bytes are already allocated until the power is
turned off or RESTART is pressed. Therefore, if you have any
useful data in the active workspace, you should save this data
before using the)PROC command the first time.

Active Workspace Control 47

48

INFORMATION PROVIDED ABOUT THE ACTIVE WORKSPACE

You can get information about the active workspace by simply
entering certain system commands, system variables, or system
functions without specifying any parameters or arguments. The
system commands that provide information about the active
workspace are:

System Command

)SYMBOLS

)WSID

)FNS

)VARS

)SI

)SINL

Information Provided

How many symbols are allowed
and how many symbols are
currently being used. (The symbols
consist of labels, variable names,
user-defined function names, and
any system variables and functions
that have been used.)

The current workspace I D and
device/file number. This
information specifies where the
active workspace is stored when a
)SAVE or)CONTINUE command is used.
(When a stored workspace is loaded
into the active workspace, the
workspace ID and device/file
number of the stored workspace
is assigned to the active workspace.)

The name of the user-defined
functions in the active workspace.

The names of the variables in the
active workspace.

The names of any suspended functions and
the statement number where each
function is suspended. For example:

) B I Y Statement 2 of th is fu nction
FUNCT I [)Nf~ I:: !.:.:j::l -)(- called FUNCTIONA.
FI...INCTIDNB[2::1
FUNCTIONCI::6::1 ~-..--Statement Number

t
Function Name

The * (asterisk) indicates the suspended
functions. The functions without an
asterisk are functions (called pendent
functions) that called the previous
function.

The same information as the)SI command
plus the names local to each function.

The system variables that provide information about the active
workspace are:

System Variable

OCT

010

ORL

OLC

OWA

Information Provided

How different two numbers
must be to be considered unequal.

The value of the index origin.

The starting value used in
generating random numbers.

The statement number currently
active. These statement numbers are
the same as the statement numbers
displayed by the)51 command.

The amount of unused storage
in the active workspace.

Note: The value of these system variables can be used in APL
statements. For example:

+OLC causes a suspended function to resume execution with the next
statement to be executed.

The system functions that provide information about the system are:

System Function Information Provided

ON L The names of the labels, variables,
and user-defined functions in

ONC

the active workspace

The classification (label, variable,
or user-defined function) of a
specified name

ACTIVE WOR"KSPACE STORAGE CONSIDERATIONS

Because the 5110 active workspace contains a fixed amount of
storage, it is good practice to conserve as much storage as possible.

Active Workspace Control 49

50

Data Types and Storage Considerations

The following list shows how many bytes of storage are required for
each data type that can be in the active workspace:

Data Type

Character constant

Variable name (3
characters or less)

Variable name (4
characters or more)

Whole numbers that are
c3qual to or less than
231 -1

Whole numbers that. are
greater than 231 -1

Decimal numbers

logical data

Number of Bytes Required

1 byte per character

12 + (4 x rank) bytes
The rank is the number of
coordinates (ppvariable).

1 byte per character + 21
bytes + (4 x rank) bytes

4 bytes

8 bytes

8 bytes

1 bit (1 byte contains
8 one or zero bits)

Note: Storage is always allocated in 4 byte increments. For example,
the following illustration represents a portion of storage:

1 byte

A

In this example,
storage has been
allocated and used
to this point. Also
the storage requ ired
for the variable
names A, X, and Y
is already allocated.

B I C D

I
The statement
A - 'ABCD'
allocates and uses
4 bytes of storage

The statement
X - 'EF'
allocates 4 bytes
of storage, but
uses only 2 bytes

The statement
Y - 'GH' uses
the remaining
2 bytes.

Following are some considerations that can be used to conserve
storage:

• Make all objects (variables and user-defined functions) not required
for use outside of a user-defined function local to the function.

• Store data in data files on tape or diskette and use an APL shared
variable (see Input/Output Contro/) to transfer the data into the
active workspace when required.

• Clear suspended functions from the active workspace.

• Collect user-defined functions by related operations and store each
set into a workspace file on the media. Then when a certain set of
related functions is required to process data in the active
workspace, the stored workspace containing these functions can be
copied into the active workspace. When the processing is done, the
functions can be expunged (OEX) and another set of functions can
be copied into the active workspace.

• If a value consists of all l' sand 0' s, store the value as logical data.
For example, you have the following vector:

VECTO R~·· :1. () (.> (2 .. ··:1.)
VECTOI~

111 1 1 1 1 1 1 1

The result is a vector of ten 1 's, and each 1 requires 4 bytes of
storage. However, the vector can be changed to a logical vector as
follows:

VECTO 1~~··1 /">. VECTO I~
VECTOR

11111 1 1 111

Active Workspace Control 51

52

The result looks just like the previous result; however, only 2 bytes
of storage are required.

• Because each variable requires at least 12 bytes of overhead, an
array of six elements requires approximately 60 bytes ·Iess storage
than six separate variables.

• Names of 3 characters or less require 8 bytes of storage in the
symbol table (the symbol table is part of the active workspace
where the names of all the symbols, including variables,
user-defined functions, and labels, are stored). Names of 4
characters or more require an additional 8 bytes plus 1 byte for
each character in the name.

Note: Even if an object is erased from the active workspace, the
storage used for its name will not be available for use unless the
contents of the active workspace are written to the media with a
)SAVE command and then loaded or copied back into the active
workspace.

• Identical names that are local to more than one user-defined
function do not require additional symbol-table space for each
function.

When the contents of the active workspace are written to the media
by the)90NTINUE command, and that stored workspace is loaded
into a different 5110 with a larger active workspace, the amount of
available workspace (OWA) remains the same as it was when the
contents of the active workspace were originally written to the media.
To take advantage of the additional storage in the larger active
workspace, write the contents of the active workspace to the media
using the)SAVE command, then load the stored workspace back into
the 5110. Also, for the same reason, a workspace written to the
media by the)CONTINUE command cannot be loaded into a different
5110 with a smaller active workspace.

The following formula shows how much storage in the active
workspace is required to perform an input or output operation to tape
or diskette using an APL shared variable (see Input/Output Contro/):

REQUIRED STORAGE = BUFFER + SHARED VARIABLE +
OVERHEAD

where:

• REQUIRED STORAGE is the amount of storage that must be
available in the active workspace (see OWA) before an input or
output operation to tape or diskette can be performed. If there is
not enough available storage, a WS FULL error occurs.

• BUFFER is the amount of storage required by the data assigned to
the shared variable. This storage is only used during the
input/ output operation.

• SHARED VARIABLE is the amount of storage required for the data
assigned to the shared variable.

• OVERHEAD is the amount of storage used when the input/output
operation is specified. The overhead is as follows:

OUT and OUTF operations-812 bytes
IN operation-792 bytes
INR, lOR, IORH operations-356 bytes

Active Workspace Control 53

54

ADDITIONAL STORAGE USING DISKETTE DATA FILES

You can use a direct access data file to store variables that are not
currently needed in the active workspace. These variables can then be
removed from the active workspace (to conserve storage) and quickly
read back into the active workspace as needed. You can use the
following procedure to store variables for later use on a diskette data
file:

1. Establish a type M direct access data file (see Input/Output
Control) using dummy records. The first dummy record written
to the file should require as much diskette storage as the largest
variable that is to be written to the file. For example, you might
use the following user-defined function to establish a type M file
with 256 bytes allocated for each record:

'V'DUMMY I:: n::l \I
'iJ DUMl1Y; C.: X; I _____ You must specify the file

I~" 0 I D enclosed in single quotes.

X~-:I. nnVD 'C'
[:1.::1
[2]
I:: ~5::1
I: Lt·]

C~X~'OUTF 1:1.008 ID=(REAL,STORAGE)
.. ~ (O;t::I. t X i" C) I E R I~ () R

TYPE::::M'

[5::1 LOOP:C~256p'A'

[6] ~(O~:l.tX~C)/ERROR

7] -t (2 0 ;:: I ~ .. I +:1.) II... 0 0 P
BJ C~-\O

9] ~(O¢ltX~C)/ERROR

:I. OJ 'THE DATA FILE IS CREATED SUCCESSFULLY'
:1.1::1 -~O

I.. :t 2 ::I E I~ I:~ (] R: 'E I~ I~ (] I~"" THE RET U I~ NCO It E IS: 'I 'f' X
V

2. Establish a pair of shared variables, and specify direct access
input/ output operations to the data file. For example, you might
use the following user-defined function:

'\/DPEN[[]::IV
'iJ OPEN FII...EID;X

1:::1.::1 Xt· :1. nsvo 2 "{ p' CTI...BAVEDATf.iAVE'
[2] ,~ (A/X"l:2) IE R I~O R

I:: :'5 ::I C T I... S AV E~" · I c) Ix I D :::: (, } F I I ... FIn 1 ') ,

['+::1 X i··c=rL~3AVE
[5::1 ~(O~:l.i~}7ERROR2
[6] · SUCCESSFUL npEI~ATION'
[7] SAVELIST~ 1 1 p'
[B::I ··~o

You must specify the
file I D enclosed in
single quotes.

[9] FI~ROI~:' THE (]FF[I~ FAII...ED " .. THE I~ESUI...T IS: 'I 'fX
[:1.0] .. ~o
[:1.1::\ ERI~OI~~.~:' THE OPEN FAII...ED · .. ·THE RETURN CODE: '} 'f'X

'iJ

3. Store the variable in the data file. For example, you might use the
following user-defined functions:

The left argument must be 1 to
expunge the variable name from
the active workspace; otherwise,
the left argument must be O.

... ·1 C' ':0- V I::' 1"1",-, ... , /
'If ,.) ~'t ,., IJ:! ...

V EXPUNGE SAVE VAR;MASK;X

The right argument is the variable
name enclosed in single quotes .

[1]

I::~]
[3]

1. (O::::[]NC 'SAVELIBT')/' BAVELIBT~"O Op" '"
!«pSAVELIST)[lJ<pVAR~)VAR)/'SAVELIST~SAVELIST BY VAR'
!(Nv/MASK~«(pSAVELIST)[lJtVAR)A,=SAVELIST»/'SAVELIST ~

SAVELIST BY VAR'
I: 1+] NL~" ((.)Sf.lVEI... I ST) [1.]

[5J DATSAVE~!VAR

[6] CTL§~ij~~l/«NLtVAR)A,=SAVELIST)\l
[7] ~(O~i7eTI...SAVE)/ERROR
[8] X~"O

[9] !EXPUNGE/'X~DEX" '/VAR,'" ,
[10] 'THE VARIABLE IS SAVED ',(X/'AND EXPUNGED')
[ll] .. ~O
[12J ERROR: 'SAVE FAILED'

V

VBY I:: []] '\I This function is used
V Z~"A BY B; ROl,.J4t.--------, by the SAVE function.

[1] A~"(2t(~)A), 1. :1.)(.)(.01

[~~] B~(2t(pB), 11)pB
[3] ROW~lt(pA)rpB

[~J A~(ROW,-ltpA)tA

[5] B~(ROW,-ltpB)tB

[6:1 Z~ .. A I B
V

4. At a later time, read the stored variable back into the active
workspace. For example, you might use the following
user-defined function:

_---------The right argument is the
V'FETCH[U::IV /' variable name enclosed

V Z~"FETCH VAI~; MASK; NL in single quotes.
[1] 4(O=DNC 'SAVELIST')/NOTFOUND
[2] ~«pVAR~,VAR»NL~ltpSAVELIST)/NOTFOUND

[3] ~(Nv/MASK~(NLtVAR)A,=SAVELIST)/NOTFOUND

[4J CTLSAVE~O,MASK\l
[5] ~(0~i7tTLSAVE)/0
[6] Z~VAR,' I§-~BuND'
[7] lVAR , '~DATSAVE'
[8] ~O,DATSAVE~~ij-
[9] NOTFOUN~Tl~VAR,' IS NOT FOUND IN THE FILE'

V

Active Workspace Control 55

56

5. Before the contents of the active workspace can be written to the
media by the }SAVE command, the input/ output operations to the
data file must be terminated. For example, you might use the
following user-defined function:

'i,lCI...OSE I:: [1::1 \I
'\l CI .. ,DSE FII...EID __ -----You must specify the file ID

r: 1] CTI...F;A\'l[~-·~ n enclosed in single quotes.
[::.:~ ::I X ~- C :f C ~:; f~ V E
[3] ~(O¢lf~57ERROR
[!.~] I THE FILE CI...D~:)ED ~:;UCCFS~:)FI.Ji...I...Y I

I:: ~:.i::l .. ~ 0
[6] EI~~:nF~:' THE FILE DID NOT CI...O~:~E ··THF PFTI.JF)N COnE I~::;:'

[7::1 X
V

Note: If you want to use the data file at a later time, do not
terminate the input/output operations. Instead, you should use
the }CONTINUE command to write the contents of the active
workspace to the media and then use the }RESUME command to
reestablish the input/output operations at a later time.

This procedure works as follows, using the sample user-defined
functions:

) i"l(.~Pl< :1.0 :I. B :I. :1 ----- File number 8 is used as
MA I~I< [J) 000 BOO :I. 0 the data file,

DI..H'li'f'(.. Create the data file
THE))?~ T ,~) FILE I ~:) C: I~E{~ TED BUCCF~:~~;FUI...I... Y used to save the

variables.

() PEN · I~Ff~1... I STO Rf.,GF '-.. --- The data file is ready
SUCCESSFUL D PF I~tl T J ON for input/output operations.

A variable to
be saved for later

INFORMATION~'A PROGRAMMING

us/
l...f.lNCil.JtlGF '

The variable is to be expunged.

'1
1 (:' ~ V F.:' "1' 'N I::' rj I:~ M l 'T' .\. (·p.1 I .. ''') ~'I 1 ••• .. I .."" ,n, I~

THE VARIABLE IS SAVED AND EXPUNGED

I NFc) RMf~l T J ON

V,~LUE EI~r~(]I~ ----__ The variable no longer exists in the
I NFD I~rl(.~ T I ON
l

act i ve wo rkspace.

FETCH 'INFDRMATION'
INFOr~~1ATI(]N IS FDUND ~ . .

Read the vanable back mto

, .. >INF~)~M~n~)N., ... ,~ /
A I ROb RAMt1 I Nb I...ANbUf.,bl...

THE IS BAVED

API...
DATf~

the active workspace.

The variable is saved, but it is
not expunged.

FE"rCH I N(.~lt1E I
~

A variable not saved in the
data file.

NAME IB NOT FOUND IN THE FILE

/Before the active workspace
CLOBE I I~E(.'~L I BTnR(.~lGE I /' can be saved, the data

... J ,... ,." .,. I F.- [' I (.) .. , F." 1- f' l J (" t· .. · I::' C' (" , ... t'J I I Y 1 h::. - ,.:. .. , .. 1. ~.:..I .:) . . 1 • ..t::.,.h:)" ... 1 .. 1 file must be closed.

Active Workspace Control 57

58

Chapter 5. Console Control

The SHO console consists of a keyboard. a display screen. and switches.

In this chapter. the following topics concerning the S110 console are
discussed:
• Controlling the input from the keyboard • Controlling the position of the information on the display screen • Sounding the audible alarm • Console control through a user-defined function

Conso\e Contro\ 59

60

CONTROLLING THE INPUT FROM THE KEYBOARD

The following illustration shows the positions on the alphameric
ke,yboard of the uppercase alphameric characters, the APL symbols,
the APL keywords, and the special character combinations:

Note: The special character combinations are engraved on the front of
the appropriate key on the 5110 keyboard. If the 5110 is a
combination APL/ BASIC machine, the special APL character
combinations are below the BASIC keywords.

When you turn the 5110 power on, the 5110 is in standard APL
character mode. That is, you enter the uppercase alphabetic

characters without using the shift ~ key. the APL symbols

using the shift key, and the APL keywords and special character
combinations using the CMD key. For example, if you press:

The character A is entered from
the keyboard.

~ ~O~A~

Q~

The character a is entered from
the keyboard.

The character combination OWA
is entered from the keyboard.

You can also enter lowercase alphabetic characters from the keyboard.
To do this, you use one of the following procedures:

• Use the keying sequence:
1. Press the key.

2. Hold down the (shift) key and press the II (scroll

down) key.

• Enter the following statement to use the console control (OCC)
system function:

/

A 3 as the left argument specifies that the DeC system
function is used to change the character mode.

] [ICC :I.

LpeCifies lowercase alphabetic characters. (See the
IBM 5110 APL Reference Manual, SA21-9303, for a
complete description of the DeC system function.)

Once the 5110 is in lowercase character mode, you enter the
lowercase alphabetic characters without using the shift key, the
uppercase alphabetic characters using the shift key, and APL
symbols using the CMD key. For example, if you press:

The character a is entered from
the keyboard.

~ QD~A~

Q~

The character A is entered from
the keyboard.

The character a: is entered from
the keyboard.

You cannot enter the special character combinations using the CMD
key and a single key when the 5110 is in lowercase character mode.

Console Control 61

62

The 5110 remains in lowercase character mode until:

• The system power is turned off.

• The RESTART switch is pressed.

• One of the following procedures is used to change the keyboard
entry mode to standard APL characters:
-- Perform the keying sequence: . , 1. Press the II key .

2. Hold down the. (shift) key and press the (scroll

up) key.
Enter the statement:

~5 nee 0
:L

L Specifies standard APL character mode

CONTROLLING THE INFORMATION ON THE DISPLAY SCREEN

You can control the information and the position. of the information on
the display screen by using:

• The scroll up II and scroll down II keys

• The Dee (console control) system function to turn display on or off

• The Dee system function to scroll the information on the display
screen up or down

• A pair of shared variables

You are already familiar with using the scroll up and scroll down keys
to position the information on the display screen. How to use a pair of
shared variables to read and write data at any position on the display
screen is discussed in detail under Input/Output Control. How to use
the Dee system function to control information on the display is
discussed in this section.

Using the 0 CC System Function to Control on the Display Screen

In the previous discussion on controlling the input from the keyboard,
the Dee function was used to place the 5110 in lowercase alphabetic
character mode. The Dee function can also be used to:

• Turn the display screen on or off during the execution of a
user-defined function. The primary advantage in turning the display
screen off is that the 5110 internal processing speed is increased by
approximately 18 %.

• Scroll the information on the display screen up or down.

To turn the display screen off during the execution of a user-defined
function, the left argument of the Dee function must be a 1 and the
right argument must be O. The display screen remains off until one of
the following occurs:

• The user-defined function completes execution.

• The Dee function is used to turn the display screen on again (both
the left and right arguments are specified as 1).

• A later statement in the user-defined function generates a result to
be displayed.

Since the oee function generates an explicit result, that result must be
assigned to a variable to prevent the display screen from being
immediately turned on and the result displayed. For example:

r:l. ::t R~"l [ICC o.

When the Dee function is used to scroll the display screen up or
down, the left argument must be 4 and the right argument specifies
the number of lines to scroll up or down. For example:

F~~··4· [ICC 8 Scrolls the information on the display screen
up 8 lines

Scrolls the information on the display screen
down 3 lines

In the previous examples, the explicit result of the Dee function is
assigned to a variable. Otherwise, the explicit result is displayed after
the Dee function scrolls the display screen up or down.

Console Control 63

64

SOUNDING THE AUDIBLE ALARM

Another use of the oee function is to sound the audible alarm feature,
if installed. To do this, the left argument must be a 2 and the right
argument is:

• A 1 to sound the audible alarm. The audible alarm remains on until
any input is entered from the keyboard or the oee function is used
to turn the audible alarm off (the right argument is a 0). For
example:

F)'~··2 [lce :1. 0 :1 0 1. ()

turns the audible alarm on and off three times. The onloff interval
is approximately 0.006 second .

• A vector of 2's, where each 2 sounds the audible alarm for
approximately 1 14 second. For example:

sounds the audible alarm four times for approximately 1 14 second
each time.

CONSOLE CONTROL THROUGH A USER-DEFINED FUNCTION

The Dee system function, like any other system function, can be
executed from a user-defined function. This technique allows the
following console control operations to be initiated from a
user-defined function:

• Turn the display screen on or off.

• Sound the audible alarm.

• Set the keyboard input to standard APL characters or lowercase
alphabetic characters.

• Scroll the display screen up or down.

• Set the left tab position for printed output (see Printer Control for
more information on setting the left tab position).

Following is an example of initiating console control operations from a
user-defined function:

\'J
[:I.]

[2]
[:'5::1
[1+::1
I:: ~::j::l
[I.>]

[7::1
I::B]
[9::1
1:::1. 0::1
1:::1.:1. ::I
[:1.2]
[:1.3::1
I:: :I.I.f,]
1:::1. ~.:;]
I:: :1.1:.')]
[:1.7]

'i,l

Scroll the display screen up 16 lines.
'\lCONT ROL I:: [1::1 W
(~DNTI~~~L~; NA~·iE.: BTi~TE~'iENT.: Rljset the keyboard input to lowercase
I·<~··I·I· LlCC :I. 6 . alphabetic character mode.
R ~., ~'3 [ICC l_II--------J
· ENTE I~ YDU R F I I~BT tlND Lf~BT N(.~i'·iE·
Ni~t'iE f·[']
F<~"3 [ICC 0 -.. --------- Set the keyboard input to standard
R ~.,I.j. [] c C :I. 0 AP L character mode.
e]i" 'I.JEI...CntIjE '
e]i-Nf~ME

'I ENTER A STATEMENT TO BE EXECUTED.'
I~ (_. I.,. I] C C ;.:.~

BTATEt'lENT ~ .. [']

RE .. I+ [ICC ~? -"Turn the display screen off to improve
r~i··:I. nec 0-.. ------.......-'/
I~E" .f. BTi~~TE,\.IENT internal performance when the next

~THE RESULT IS: · \ statement is ,executed.

R~"2 [ICC 2 2 2 2 \
The display screen is turned on again when
output is sent to the display screen.

'"----- Sound the audible alarm when the user-defined
function has completed execution.

Console Control 65

66

Chapter 6. Library Control

The tape or diskette files where you store information is your library.
In this chapter, the following topics concerning the 5110 library control
are discussed:

• Determining the size of a tape or diskette file

• Writing data to a tape or diskette file

• Getting data from a tape or diskette file

• Controlling files in the library

• Maintaining data security

References are made to some of the 5110 system commands; for
example, the)MARK command or the)RESUME command. See the
IBM 5110 APL Reference Manual, SA21-9303, for a complete
description of the system commands. The description includes the
required syntax for each system command. You must use the proper
syntax to enter a system command so that the 5110 will accept that
command.

Library Control 67

68

DETERMINING THE SIZE OF A TAPE OR DISKETTE FILE

Before information can be stored on the media (tape or diskette), the
media files must be formatted by the)MARK command. When using
the)MARK command, you can use the following formulas to
determine the maximum size a file should be marked. The formula for
a workspace file [the contents of the active workspace were written to
the storage media with a)SAVE or)CONTINUE command] is MAXSIZE
= r 3 + (CLEAR-ACTIVE) -+ 1024, where:

• MAXSIZE is the maximum amount of media storage (number of
1024-byte blocks) that would be required to write the contents of
the active workspace to the media.

• CLEAR is the value of OWA in a clear workspace.

• ACTIVE is the value of OWA just before the contents of the active
workspace are written to the media.

The formula for a data file (data written to the media using an APL
shared variable) when all of the data is contained in the active
workspace is MAXSIZE = r (WITHOUT-WITH) -+ 1024, where:

• MAXSIZE is the maximum amount of media storage (number of
1024·-byte blocks) required to write the data to the media.

• WITH is the value of OWA with the data in the active workspace.

• WITHOUT is the value of OW A before any data to be written to
tape or diskette was stored in the active workspace.

There is no formula for determining what size to mark a data file when
the data is written to the media as it is entered from the keyboard.
The amount of storage required depends upon how much data is
entered from the keyboard and what type of data is used. For
information on how many bytes of storage are required by the various
types of data, see Storage Considerations in the Active Workspace
Control chapter.

WRITING DATA TO A TAPE OR DISKETTE FILE

You can write data to a file by using the)SAVE command, the
)CONTINUE command, or an APL shared variable. The)SAVE or
)CONTINUE commands are used to write the contents of the 5110
active workspace to a file. An APL shared variable is used to write
individual data records to a data file (shared variables are discussed in
detail under Input/Output Control).

The following list shows the advantages and disadvantages of using
the)SAVE command versus the)CONTINUE command. You should
consider these advantages and disadvantages when choosing which
command you are going to use when writing the contents of the
active workspace to the media.

Using the)SAVE Command

Advantages:

• The stored workspace can be loaded into a 5110 that has a smaller
active workspace than the original active workspace, providing the
stored workspace does not require more storage than is available in
the smaller active workspace.

• The additional storage is available to the user when the stored
workspace is loaded into a 5110 that has a larger active workspace
than the original active workspace.

• The symbol table is cleared of unused or expunged symbol
references.

• The)COPY and)PCOPY commands can be used to copy specified
variables or user-defined functions from the stored workspace.

Disadvantages:

• The active workspace is not written to the media as fast as when
the)CONTINUE command is used.

• The stored workspace is not loaded into the active workspace as
fast as when the)CONTINUE command is used to write the
workspace to the media.

• If the active workspace contains suspended functions or open data
files exist, the active workspace cannot be written to the media.

Library Control 69

70

Using the)CONTINUE Command

Advantages:

It Even if the active workspace contains suspended functions or open
data files exist, the active workspace can be written to the media.
Any open data files or suspended functions can be restored by the
)RESUME command. The)RESUME command is discussed in more
detail under Getting Data from a Tape or Diskette File in this
section.

•• The active workspace is written to the media faster than when the
)SA VE command is used.

.. The stored workspace is loaded into the active workspace faster
than when the)SAVE command is used to write the workspace to
the media.

Disadvantages:

.. The)COPV and)PCOPV command cannot be used to copy variables
or user-defined functions from the stored workspace .

• The stored workspace can only be loaded into a 5110 with an active
workspace at least as large as the original active workspace.

• The additional storage is not available to the user when the stored
workspace is loaded into a 5110 that has a larger active workspace
than the original active workspace.

GETTING INFORMATION FROM A TAPE OR DISKETTE FILE

You can read information from a tape or diskette file by using the
)LOAD,)RESUME,)COPY,)PCOPY commands, or an APL shared
variable. The)LOAD,)COPY,)PCOPY, and)RESUME commands are
used to place the contents of a stored workspace into the 5110 active
workspace. An APL shared variable is used to read individual data
records from a data file (shared variables are discussed in detail under
Input/Output Control).

Generally, you use the)LOAD command to replace the contents of the
active workspace with the contents of a stored workspace. However,
if there were shared variables or suspended functions in the active
workspace and the)CQNTINUE command was used to write the active
workspace to the media, the)RESUME command reads the stored
workspace into the active workspace and reestablishes the shared
variables and/or suspended functions. That is, the system
environment is reestablished as it was when the)CONTINUE command
was issued.

Using the)CONTINUEand)RESUME commands allows you to work
with shared variables or suspended functions, write the active
workspace to the media, and then reestablish the system environment
at a later time so that you can continue working with the shared
variables and/or suspended functions. See The)RESUME Command
in the IBM 5110 APL Reference Manual, SA21-9303, for a description
of how the shared variables are reestablished.

If a workspace was stored on the media using the)SAVE command,
you can copy all or part of that workspace into the active workspace
by using the)COPY or)PCOPY commands. The)COPY command
copies all or specified objects (variables or user-defined functions) into
the active workspace and replaces any objects in the active workspace
that have the same name. The)PCOPY command copies all or
specified objects into the active workspace; however, any objects in
the active workspace that have the same name are not replaced (they
are protected). The)COPY and)PCOPY commands allow you to read
more than one stored workspace or parts of more than one stored
workspace into the active workspace without replacing objects already
existing in the active workspace.

Library Control 71

72

CONTROLLING THE FILES IN THE LIBRARY

Once you have stored several workspace and data files on a tape or
diskette (your library), you might want to know what files you have in
your library. You can use the)LlB command to display the file headers
for a specified tape or diskette. The file headers provide you with
such information as the file number, the file ID, the file type, and so
on. See The)L18 Command in the IBM 5110 APL Reference Manual,
SA21-9303, for a description of the information contained in the file
header.

When there are files on tape or diskette that contain data that is no
longer required, you can mark these files unused by issuing the)DROP
command. Once a file is marked unused, any data in the file can no
longer be read into the 5110 and the file is available for other uses.

Also, if a diskette file is no longer required, you can make the file
space available for reallocation by issuing the)FREE command. This
allows the file space on the diskette to be used for other numbered
files by the)MARK command. See Diskette Concepts for more
information on how files are allocated on a diskette.

DATA SECURITY

You are primarily responsible for the security of any sensitive data.
After you are through using the 5110, you can remove the data in the
active workspace by one of the following:

• Using the)CLEAR command to clear the active workspace

• Pressing the RESTART switch

• Turning the POWER ON/OFF switch to off

There are several methods available for protecting or removing
sensitive data on a tape or diskette. These methods are:

• Assigning a password to the workspace when the system is writing
the active workspace on the media.

• Rewriting a file, which makes the old data inaccessible.

• Filling a data file with meaningless data. For example, the following
user-defined function fills file 4, a data file named OAT A on tape 1,
with zeros:

VSECU I:~ I TY ; f.); B
1:::1.] :I. []BVO • A I
[2] A~'OUT 1004 ID=(DATA)'
[: :.~] B ~ .. :1. 0 :1. 0·0 0 (.> [I

I:: '4· :I l.J I~ : f.l ~ .. B
[~.:j] .. ~ (PI[1.]::::0) /~JR'\I

• Setting the tape cartridge SAFE switch in the SAFE position to
prevent someone from accidently writing on the tape.

• Using the)PROTECT command to prevent someone from accidently
writing on a diskette file.

• Using the)VOLIO command to prevent unauthorized access to the
diskette files.

• Storing the tape or diskette in a secure place.

Library Control 73

74

Chapter 7. Tape Concepts

There are 204K bytes (1 K = 1024 bytes) of tape storage available on
an IBM Data Cartridge. This tape storage is used for file headers,
workspace files, and data files. In this section, the following topics are
discussed:

• How to format the tape

• How to determine the amount of storage on a tape cartridge that is
actually available to you

FORMATTING THE TAPE

You must use the)MARK command to format files on the tape before
you can store the contents of the active workspace or data records on
the tape. For example:

) MAI~I(:1.0

\
I'" j
~) .'

\ ~Starting File Number

Number of Files to Mark

Size of the Files in Increments of 1,024 (1 K)
Bytes. In this case, the size of the marked
files is 10,240 (10x 1,024) bytes.

Once the previous)MARK command is successfully completed by the
5110, the tape is formatted as follows:

the beginning of
the tape storage.

Each file contains
10,240 bytes of
storage.

This file header
indicates end of

Tape Concepts 75

76

The file headers contain information about the file, such as the file
number, file name, file type, and so on. Each file header requires 512
bytes of tape storage.

Now, if you want to format additional files on the tape, you must use
the)MARK command again. For example:

) t1ARK ~;~O 1 6

L Starting File. Remember, in this
example, five files are already,
formatted.

10..-__ Number of Files to Mark

File Size

The tape is now formatted as follows:

File 6 Header

~
/
I~ 4 II 5 II 6

/ /
File 6 is formatted Unformatted
after file 5. Tape

When the information in a tape file is no longer needed, you can use
the)DROP command to mark the file unused so that the file is
available for other uses. However, once a file is formatted, you
cannot increase the size of the file without re-marking the file. When
you re-mark an existing file, any information in the files following the
re-marked file is lost. For example, assume you want to increase the
size of file 4 on the tape from 10K to 15K:

'-.--I

"'-You want to increase the size
of file 4 by 5K.

After the command:

File Size

/

Number of Files to Format

/ /rting File Number

) MAR 1< :I. ~j :1. l~

is successfully completed, the tape is formatted as follows:

II 4

/
File 4 now contains
15K bytes of tape storage.

This file header now indicates the end of
the marked tape, and any data following
this file header is lost.

A formatted tape has the following characteristics:

• The files are of variable length from 1 K to 200K, in 1 K increments.

• The files can be randomly accessed; that is, you can read a file
without having to read the previous file. However, the data in the
files must be accessed sequentially.

• It can contain both workspace and data files.

• It can contain both APL and BASIC files.

Tape Concepts 77

78

DETERMINING THE AMOUNT OF STORAGE AVAILABLE ON A TAPE
CARTRIDGE

There are approximately 204K bytes of storage on each tape cartridge,
but the amount of tape storage actually available to you depends on:

• How many files are marked (formatted) on the tape

• How the data files were written to tape

Each file on a tape cartridge requires one 512-byte file header.
Therefore, as you mark more files on a tape cartridge, more tape
storage is used for file headers. For example, if you mark one 3K file
on a tape, 512 bytes of tape storage are used for the file header.
However, if you mark three 1 K files on tape, 1,536 bytes of tape
storage are required for the file headers.

One 3K File

IO.5K 3K
,

Three 1 K Files

I O.5K 1 1K O.5K 1K O.5K 1K

Notice that, in each case, a total of 3K bytes of tape storage is
allocated for tape files. However, in the second case, an additional 1 K
bytes more of tape storage are used.

The amount of data you can store in a data file depends on how the
data is written to the data file. (See Input/Output Control for a
complete description of writing data to data files.) For example, when
you first write data to a data file (an OUT operation), the individual
records are sequentially written to tape starting at the beginning of the
data file. Once these records are written to tape, the data file might
look like this:

Data File

I)

.... 1 ~II--------Data Records -------..... _=
~\----------/~:~/~~

Beginning of the Last Data Record Unused End of the
Data File Tape Storage Data File

Now, assume you add data to the data file at a later time (an ADD
operation). The new data starts at the first 512-byte boundary after
the last record in the data file. The tape storage between the last data
record and the additional data records is unavailable for use. Once the
new data records are written to tape, the data file might look like this:

Data File

512-Byte Boundaries (tape storage is
jdivided into 512-byte segments)

, ,
I I I I I I. Data Records----.. ~~~.--Additional Data o_-... ..,...'7'"""T'"-.r-T'""lr-r-J-I

1

~ginning of unavailat. Last Data Record /.nuLd
the Data File Tape Storage Tape Storage

As you add more data to the file, it is possible for more tape storage
to become unavailable. You can compress the data in the data file (use
the unavailable storage) by first reading all the data records from the
file and then writing the data records back to the file, starting at the
beginning of the data file (an OUT operation).

Tape Concepts 79

80

Chapter 8. Diskette Concepts

The IBM diskette is a thin, flexible disk permanently enclosed in a
semirigid, protective, plastic jacket. When the diskette is properly
inserted in the diskette drive, the disk turns freely within the jacket.
The diskette is inserted in the diskette drive as follows:

lower corner as the diskette
is inserted in the diskette drive.
The diskette drive door must be
closed and latched after the
diskette is inserted.

Data is written on the diskette at specific locations (addresses) by the
system. These addresses provide direct access to specific
information. Data written at an address remains there until it has been
replaced by new data. To read data, the desired address is found and
the data is read into the 5110.

Before being shipped to a user, each IBM-supplied diskette is
initialized. Initialization is a process whereby label information and data
addresses are recorded on the diskette. In this chapter, the following
topics are discussed:

• Diskette wear

• Diskette addressing and layout

• Diskette types and formats

• Diskette initialization

Diskette Concepts 81

82

•• Diskette volume 10, owner 10, and access-protect indicator

•• Diskette file information, such as file 10, write-protect indicator, and
organization

•• Reallocation of diskette file space

.. Amount of storage available on a diskette

DISKETTE WEAR

The use of flexible diskette storage provides some significant
advantages, such as low cost, compact size, multiple system functions,
and ease of media handling and storage. It should be recognized,
however, that during recording and reading, the read/write head is in
Gontact with the media, causing diskette wear over time. Variations in
the rate of wear will depend on the particular operating environment
and application characteristics. Care in the storage, use, and handling
Gan also affect diskette life. {See guidelines in the IBM 5110 APL
8eference Maual.} Excessive wear, handling, or contamination can
Gause possible failures in recording and/or reading.

Ultimate wear is to some extent dependent upon total usage of
individual tracks. Care taken to distribute data so that accessing
occurs over the entire recording surface with about the same
1frequency can extend the useful life of the diskette. Actual experience
with individual applications and environments will allow development
of guidelines as to when the media should be replaced.

Unpredictable circumstances such as contamination or severe handling
can cause an early error to occur.

1F0r the previous reasons, consideration should be given to providing
an adequate recovery plan, such as:

'. Backing up critical programs and data files on a second diskette for
use in the event of an error on the primary diskette.

• Periodically moving frequently used files to alternate locations on
the diskette {see the copy function in the IBM 5110 Customer
Support Functions Reference Manual}.

DISKETTE ADDRESSING AND LAYOUT

A diskette address consists of a combination of cylinder number, head
number, and record number as follows:

CC H RR

L Record (sector) Number. The sector into which the data
is to be written or from which the data is to be read.

Head Number. The side of the diskette on'which the data is to
be written or from which it is to be read. This number is hex 0
for all one-sided diskettes and for side 0 of two-sided diskettes.
The number is hex 1 for side 1 of two-sided diskettes.

L-------Cylinder Number. This number identifies the cylinder onto which a
physical record is written or from which it is read.

Track and Cylinder

A track is the recording area on a sing.le diskette that passes the
read/write head while the disk makes a complete revolution. The
read/write head is held by a carriage that can be moved to 77 distinct
locations along a straight line from the center of the disk. Therefore,
each diskette has 77 concentric tracks on which data can be stored.

01 ", I
I ... -. \
I /0\ \

~ I I 77 Tracks
\ , I I t \ ", t
\'",JI-'~~-",-/-/~I-----~

The diskette drive for two-sided diskettes has a read/write head on
each side. Each track on side 0 of a two-sided diskette has an
associated track on side 1.

A cylinder is one track on a one-sided diskette or a pair of associated
tracks (the corresponding tracks on opposite sides of the diskette) on
a two-sided diskette. There are 77 cylinders (numbered 0 to 76) on a
diskette.

Diskette Concepts 83

84

Sector

A sector is a portion of a cylinder. All sectors on a single cylinder are
the same size, and the number of sectors on a cylinder depends on
the number of bytes per sector (see Diskette Types and Formats in
this chapter).

Track 00
I

I
I

Index Cylinder

Cylinder 0 is called the index cylinder and is reserved for information
describing the diskette and its contents. It contains information about
the diskette, such as volume and owner identification. The index
cylinder also contains information associated with each file on the
diskette. This includes the name of each file and the addresses
associated with the file extents. An extent is the maximum space a file
can occupy. The address at the beginning of this space is called the
beginning of extent (BOE). The address at the end of this space is
called the end of extent (EOE). A file may not use all of the space
allocated for it by the BOE and EOE addresses; therefore, another
address for end of data (EOO) exists.

Actual space being used for data

BOE EOO

I I

Area allocated for the file (extent)

EOE
~

The EOO address is used to identify the next unused area within the
extent or to indicate that data has been written to the EO.E address.
(See the diskette initialization function in the IBM 5110 Customer
Support Functions Reference Manual, SA21-9311, for a complete
description of the index cylinder.)

Alternate Cylinders

The last two cylinders (75 and 76) are reserved for use as
replacements (alternate cylinders) for defective cylinders. The
remaining cylinders (1 through 74) are used for storing data.

DISKETTE TYPES AND FORMATS

The 5110 uses three types of diskettes; the one-sided diskette (1),
with data recorded on just one side; the two-sided diskette (2), with
data recorded on both sides; and the two-sided diskette (20), with
data recorded on both sides at double density. The diskettes are
initialized (see Disk Initialization) into various formats consisting of:

• The number of sectors per cylinder

• The number of bytes per sector

The possible diskette formats are:

Sectors Sectors Bytes
per per per
Track Cylinder Sector

F6 26 128
Diskette 1 15 15 256

8 8 512

e
6 52 128

Diskette 2 15 30 256
8 16 512

L6 52 256
Diskette 20 15 30 512

8 16 1,024

Note: The diskette types (1, 2, or 20) are identified on the diskette
label, and the)VOLIO command can be used to determine the bytes
per sector (record size).

Diskette Concepts 85

86

DISKETTE INITIALIZATION

The diskettes must be initialized before they can be used for storing
data. All IBM-supplied diskettes are initialized before they are shipped
to a customer. Reinitializing is not required unless:

• The diskette was exposed to a strong magnetic field.

• A defect occurred in one or two cylinders. In this case, initialization
can be used to take the bad cylinder(s) out of service and use one
or two of the alternate cylinders.

• A sector sequence other than the sequence existing on the diskette
is desired.

• A format (number of sectors per cylinder) other than the existing
format is desired.

See the IBM 5110 Customer Support Functions Reference Manual,
SA21-9311, for a description of the diskette initialization function.

VOLUME 10, OWNER 10, AND ACCESS PROTECTION

Each initialized diskette has volume 10, owner 10, and an
access-protect indicator. The volume 10 is the identification of the
diskette volume, and the owner 10 is the identification of the diskette
volume owner. The access-protect indicator is used to prevent
unauthorized access (reading and writing) to the diskette volume.

The)VOLIO command is used to display or change the volume 10 and
owner 10 or to change the access-protect indicator.

FILE 10

Each file header on a formatted (marked) diskette has a file ID
(identification). When the diskette files are formatted, a filelD is
automatically generated, even though the files are unused. For
example, the file name for file 1 is SYS0001.

The)FILEID command can be used to display or change a file ID.

The file ID for a stored workspace must be a simple name. A simple
name must begin with an alphabetic character and can be up to eight
alphameric characters. For example:

SALES200

The file ID for a data file can be a simple or complex name. A
complex name is two or more simple names with each name
separated by a period. A complex name cannot exceed 17 characters
including the period. For example:

SALES200.DAT A

SALES.DATA.DIST12

DISKETTE FILE WRITE PROTECT

Each file header contains a write-protect indicator. When the
write-protect indicator is on, no data can be written to the file. The
)PROTECT command invokes or removes the write-protect indicator
for a diskette file.

Diskette Concepts 87

88

DISKETTE FILE ORGANIZATION

You use the)MARK command to format files on the diskette before
you can store workspaces or data records on the diskette. For
example:

) M(.~ I:{K :1. 0 ~::; :1. :1.:1.

t L Diskette Drive 1

~ Starting File Number

'-----Number of Files to Format

'---- Size of the Files in Increments of 1,024 (1 K) Bytes. In this case,
the size of the marked files is 10,240 (lOx 1,024) bytes.

Unlike tape files, the diskette files are not always formatted
sequentially on the diskette. For example, file 2 might be on cylinder
3r file 3 on cylinder 9, and file 4 on cylinder 7. You can control the
location of a file on the diskette only by using a totally unmarked
diskette and issuing)MARK commands in the same order as the files
are to be formatted on the diskette.

When the information in a diskette file is no longer needed, you can
use the)DROP command to mark the file unused so that the file is
available for other uses. However, once a file is formatted, you cannot
increase the size of the file without re-marking the file. Reallocating
diskette file space is discussed next.

REALLOCATING DISKETTE FILE SPACE

Unlike tape files, when you re-mark an existing diskette file, no other
diskette files are affected. When you re-mark a diskette file to
increase the size, the file space presently allocated to that diskette file
is made available for other files being marked. The remarked file will
then be located on the diskette where there is enough continuous
storage available for that file. For example, assume you want to
increase the size of file 4 from 10K to 15K by issuing a)MARK 15 1 4
11 command:

Disk
Cylinder

3

After you issue the)MARK command
this file space is no longer allocated
for File 4.

5

Once the file space previously occupied by file 4 is available, that file
space will be used by a subsequent)MARK command that marks a file
of 10K or smaller.

After the)MARK command is successfully completed, file 4 is
formatted on the diskette at a location where at least 15K of
continuous storage is available.

Diskette
Cylinder

Another
Diskette
Cylinder

3

\
Unallocated Diskette Storage

/
4 IW.

20K of unallocated diskette storage was
available at this location before the
)MARK command was issued.

5

10

Diskette Concepts 89

90

AMOUNT OF STORAGE AVAILABLE ON A DISKETTE

The amount of storage available on a diskette depends upon:

• Whether data can be recorded on just one side or on both sides of
the diskette

• The number of sectors per cylinder

.' The number of bytes per sector

Each diskette has 77 cylinders. Cylinder 0 is the index track and is
reserved for information (file headers) about the diskette files.
Cylinders 75 and 76 are alternate cylinders that are used as
replacements for bad cylinders. This leaves cylinders 1 through 74
available for data storage. The following chart shows the amount of
storage available with the different types of diskettes:

Sectors Bytes Available
per per Storage in Bytes
Cylinder Sector (cylinders 1-74)

26 128 246,272
Diskette 1 15 256 284,160

8 512 303,104

52 128 492,544
Diskette 2 30 256 568,320

16 512 606,208

52 256 986,088
Diskette 2D 30 512 1,136,640

16 1,024 1,212,416

Although the previous chart shows the maximum amount of diskette
storage, the amount of diskette storage actually available to you
depends on:

II The number of files and the size of the files marked on the diskette

I' The types of data files that are written to the diskette

• The allocation of file space as the result of previous)MARK and
)FREE commands

Number and Size of Diskette Files

The diskette volume/owner identification (7 sectors) and file header
information are contained on the index cylinder. The remaining
cylinders on each type of diskette can have the following maximum
number of files:

Maximum Number
of Files

Diskette 1

19

Diskette 2 Diskette 20

45 71

Note: For a type 2D diskette, see the disk initialization function in the
IBM 5110 Customer Support Functions Reference Manual, SA21-9311,
for information on how' to get additional file headers.

If you mark the maximum number of files without using all the
available file space, the remaining file space becomes unavailable for
storing data. For example, assume you have an unmarked Diskette 1
with 128 bytes per sector. This diskette has 246,272 bytes available
for storing data; however, you issue the following command:

)Mt~I~K :1.0 :1.9 :/.:1.:1. L In this example, diskette drive 1 is used.

The starting file number.

--'-The number of files to be marked.

The size of each file to be marked.

This command marks the diskette with the maximum 19 files. Because
each file is 10K bytes, a maximum of 190K (194,560) bytes of storage
is allocated for the files. Now, if you subtract the allocated diskette
storage from the available diskette file space:

246,272
-194,560

51,712 "'·---For this example, this much diskette storage is
unavailable for you to store data.

Types of Data Files

How to generate the various types of diskette data files is discussed
under Input/Output Control. Two types of data files can cause
diskette file storage to be unavailable for storing data: U (unblocked)
and M (mixed).

Diskette Concepts 91

92

Type U Data File

A type U data file specifies that each record in the file starts at the
beginning of a sector and that a record cannot span from one sector
to another.

Data File

tL\/J/ '[.:[2 I I I I
Individual Sectors For a type U data file, each record

must be contained in one sector.

The sectors on a diskette can be 128, 256, 512, or 1,024 bytes. If a
record does not require the number of bytes available in a sector, the
remaining portion of the sector is unavailable for data storage.

Unavailable Diskette Storage

To obtain the maximum available storage for a type U data file, you
should do one of the following:

• Write records to the file that are the same size as (or as close as
possible to) the sector size.

• Use a diskette whose sectors are initialized (128, 256, 512, or 1,024)
nearest to the record size. Remember, the entire record must fit in
one sector.

Type M Data File

A type M data file specifies that each record in the file requires the
same amount of file storage as the first record written to the file. That
is, the first record determines the characteristics of the file. Any
record written after the first record cannot be larger than the first
record.

Data File

/Beginning of the Data File

100 Bytes 100 Bytes 100 Bytes

.
\

The first record used this amount of storage;
therefore, any following records are allocated
the same amount of file storage.

100 Bytes 100 Bytes

If any of the following records do not require as much storage as the
first record, the remaining portion of the storage allocated for the
record is unavailable for data storage.

Increments of 100 bytes as specified by the first

Record

\
The first record
written to the file

Unavailable Diskette Storage

To obtain maximum available storage for a type M data file, you
should make the records as uniform in size as possible. Remember,
the size of the records following the first record must be equal to or
less than the size of the first record.

Diskette Concepts 93

94

Allocation of File Space

Previously in this section, reallocating diskette file space using the
}FREE and)MARK commands was discussed (see Real/ocating
Diskette File Space). Using the)FREE and }MARK commands to
reallocate diskette file space can cause fragmented blocks of
unallocated file space on the diskette. For example, assume a diskette
has all the file space allocated, except the following 15K of file space
on a cylinder:

Diskette
Cylinder

D 12 ~
10K of Unallocated
File Space

17

5K of Unallocated
File Space

Now, if you need that 15K of storage for a new file to be marked, the
storage is not available because it is not in 15K continuous bytes.

The fragmented blocks of unallocated file space can be made available
by the compress function (see the IBM 5110 Customer Support
Functions Reference Manual, SA21-9311). The compress function
closes the gaps caused by the unallocated file space and places all of
the unallocated file space in one continuous area.

Chapter 9. Printer Control

You can specify what data is sent to the printer by using the)OUTSEL
system command or an APL shared variable. Also, at any time, you
can print all the information on the display screen by holding down the
CMD key and pressing the m key. When an APL shared variable

is used to send data to the printer, except for using the CMD
and m key, all the data to be printed must be assigned to

the shared variable. (See Input/Output Control for more information
on using shared variables for printing data.) The)OUTSEL command
has three options to specify which data on the display screen is
printed. These options are:

• ALL-specifies that all subsequent information displayed is printed.

• OUT-specifies that only output is printed. Even though input is
displayed it is not printed. For example:

~j·t .. 3

L If you enter this statement, the statement
is displayed but not printed.

~ _____ ..;...The output (result) from the statement is displayed
and printed.

• OFF-specifies that none of the information displayed is printed,
unless an APL shared variable is used to send the data to the
printer.

You can use the following system variable and APL function to specify
the format of printed output:

• DPP Specifies the printing precision of numeric data (how many
digits are printed)

• 5 DCC n Specifies the starting print position (tab n) from the left
margin

• ~ Formats numeric data into character data

Printer Control 95

96

FORMATTING OUTPUT

You can use the DPP system variable to specify the number of digits
to be displayed and printed for decimal numbers and for integers with
more than 10 digits. In a clear workspace, the OPP system variable is
set to 5 (default value). For exampfe:

:I. 23 1+!5 , 67 --- A decimal number with seven digits.
1 ~~31+b

L Only five digits are displayed, and the least significant
digit is rounded off.

The value of OPP does not affect the internal precision of the system.
For example:

- Only five digits are printed.
1?31.~6-

n P P -E" 7 -----Change the printing precision to seven digits.
(.~

1~~~~I+~5, 67 -------Notice that the value of A is still seven digits.
IJ P P ~ .. :::.~

A
1 , ~.:.~EL~ ... ,,---------Even though only two digits are printed, the

internal value of A in the system is seven digits.

Although the OPP system variable allows you to specify the number of
significant digits printed for decimal numbers or integers with more
than 10 digits, there might be times when even more control is needed
for the printed output. The ~ (format) function allows you to
specify the precision and spacing of numeric data. The ~ function
also converts the numeric data to character data. This makes it easier
to print the formatted numeric data with other character data. For
example:

'THE CLASS AVERAGE
D()r'1f~~ I N E I~ I~n I~

IS: I } GO ~Numeric Value

'THE CI .. ,ASB AVE 1:< (.lGE IS: I } B 0 "'''--You cannot join numeric
A and character data

· THE CLAnE AVE r~AGE I B :
THE CLASS AVERAGE IS: 80

t
• } 'f"BO

'--The Format Function

The Printed Result

The following examples show how the "If function can be used to
control spacing and precision of numeric data (see the IBM 5110 APL
Reference Manual, SA21-9303, for a complete description of
the "If. function):

B ~ .. ::5 2 p :1. 2 • :'51.f· ... :3 Lj .• ~:} b "1 0 :I. 2 2 b'" :I. 2:-5 . I.J. ~.:j
B

:I. ;.~ , 3LJ·
o

... (I , ::.~6

·l\L 1::''/'''1] \.. I . '" (;) f

12 ~.--Numeric Value of B
... :I. 2~'5 , I·I·~:.:;

/

,...----'----- Spacing of Nine Positions for Each Number

", Each number should contain two decimal places r; 21'B
1,2,31+

,00
···.26

... 3lf· , ~;7
:1.2.0 ()

... :I. 2:3 ; l~!;:.i
---- Formatted Character Result

.. Spacing and Precision for the First Column

, (. ~SpaCing and Precision for the Second Column

I.) A' .. .; .I.fl

• <. : '0 ~ ;.; : II. -.4------Formatted Character Result
'1/') "~I .. ··71 .6J

.... 26 ... 1. ~.:.~:.3 • '+

I N1ine Positions

Six positions

You can use the Dee (console control) system function to specify a
tab position from the left margin. The printed output then starts from
that tab position. To specify the tab positiof), the left argument of the
Dee function is 5 and the right argument specifies the tab position.
For example:

'PRINTED
p I~ I NTED OUT PUT

OUTPUT'

~:.i [ICC 20

20 character positions

/

The explicit result of
the DCC function.

:I.
'Pt~INTED OUTPUT'

PRINTED OUTPUT

Printer Control 97

98

FORMATTING REPORTS

Sometimes the data stored in the 5110 cannot be used unless the data
is in a printed report. And the printed report cannot be used unless
the report is in a readable format. The following procedure can be
used to generate a readable report, assuming the necessary data for
the report is already stored in the 5110:

1" Determine the headings for the report. The headings should
describe the information in the report.

2" Arrange the data so that the data will be located under the
appropriate heading.

3, Edit the data (see Useful APL Statements and User-Defined
Functions for Formatting Reports).

4. Print the data.

The following example shows how this procedure might be used.

A.ssume you have the following data stored in the system:

P{~RT
:592Lt· 01
~'5921+ 0 2
~'592'+ 0 ~3
:~92L~ 0 1,1.

3 (? :? '+ () ~5
:592LI·Ob
:592'+ 0 7

A numeric matrix with each row representing
a part number of items in stock

NAME _.------ A character matrix with each row representing
the name of the associated part number in
matrix PART

SCREW
NUT
WASHEI~

CONTACT
LEAD
POST
CRT

('1 0 9 0 ('1 ")
".-.. 9 O..-D(')TA • A numeric matrix that

1000 0 . o:? 1000 contains the in-stock quantity,
:1.000 0 .0:1. 1000 on-order quantity, cost per
~50 0 0 2000 .01 2000 part, and reorder quantity for

(I () . ~,:; 0 2000 the associated part number
::,~ 0 !:,) 00 1.03 ~)O 0 in matrix PART

I.~O 0 () 2.72 ~:; () 0
~50 0 200 13b. ~:-;9 200

Now, suppose you want a part inventory report that shows:

• The part number arid name.

• The in-stock and on-order quantities.

• The cost per part.

• The reorder quantity and reorder flag. The reorder flag indicates
that the combined in-stock and on-order quantities are less than the
reorder quantity.

The first step is to determine the headings for the report. In this
example, the following heading is entered:

/ Position 1 on Line 1

HEA[t~"2 ~.:;bp 'PART
RDER'I 'NUMBER NAME

QUANTITY COST
IN-STOCK ON-ORDER PER PART QTY

The second step is to arrange the data so that it is located under the
appropriate heading. In this example, the following statements are
used to arrange the data:

REO
FLAG'

B () D Y ~ .. (t) O"f PA R T) I '

£tory +- BODY, ,8 0 I 9 0,
, I Ni:':)fvlE··------- Join the part numbers and names

This matrix now conta:ins the
part number, name, in-stock
quantity, on-order quantity,
cost per part, and reorder
quantity for each part on
inventory.

12 ~.~ B 0 l'DATA together. ,

~The spacing and precision to format each
associated column of the matrix OAT A.

Printer Control 99

100

At this point there is not enough information available to complete the
report. The reorder flag is needed to indicate the parts with a
combined in-stock and on-order quantity that is less than the reorder
quantity. The following user-defined function might be used to place
asterisks (*) in the reorder flag column when the in-stock plus
on·-order quantity is less than the reorder quantity:

v
r: :1.:]
[:~ :t

VREDR[tERFLAD[[]JV
RF~REOR[tERFLAG;I;X

I~" (DATA[; 1 J+DATA[; 2J) <[tATA£:; I.~J
X~M\ (:LtpDATA)

[~~J I in I / X • Selects the rows where the condition
[If] RF f- ((1 t pDATA) I !':j) p • specified in statement 1 is true
[~;J RF r: I ; J ~ .. · * ·

V
" Places the reorder flag (•••••) in the appropriate rows

Now, the following statement can be used to add the reorder flag the
report data:

BO[tYf-BODY,REORDERFLAG

The body of the report now looks like this:

BODY
:3921.1·01 SCREW
~~92402 NUT
3921~. () 3 WASHE: R
39240 14. CONTACT
:3924· () 5 LEAD
39240t') POST
392'+07 CRT

:I. () 0 0
1000
5000

()

20
1.1·00
~)O 0

o
o

2000
()

500
o

200

.02

.01

.01

.50
1.03
2.72

136.59

1000
1000
2000
2000->f****

~j() 0
500**')f**
200

The third step is to edit the data. In this example, a dollar ($) is to be
placed before each cost per part.

E<O[lY r: ; 36] f- • $ •

The fourth step is to print the report. This might be done several
ways; for example:

• Join the heading and the body and then print the entire report.

REPORT~HEAD,[l]BODY

• Use a user-defined function to print out the report. For example:

VREPORT[[lJ'V'
V R EJ; cHrf--

[:L] HEAir-·· .. ·
[2J B()DY~- «(;) 0 l' PART) " " NAME
[3J BODY~BODY, 8 0 9 0 12 2 8 0 ,DATA
[4] B()DY~B()DY,REORDERFLAG
[5] BODY[;36J~'$'

£: 1.)::1 BODY
V

Now, when the report is printed, it looks like this:

REPORT
PART QUANTITY COST
NUMBER NAME I N·_·STOCK ON ORDER PER PART
:392'+ 0:1. SCREW 1000 0 $.02
39240~! NUT 1000 0 $.01
39::.~4- 0 3 WASHER 5000 2000 $.Ol.
~592404- CONTACT 0 0 $.50
:'59~~L~ 0 5 LEAD 20 500 $ 1.03
3924-06 POST '+00 0 $ 2.72
392'+07 CRT 500 200 $ 136. ~59

REORDER
fJTY FLAG
:1.000
1000
2000
~! 000 iE-*')f**

~:iO 0
500*****
200

Printer Control 101

102

USEFUL APL STATEMENTS AND USER-DEFINED FUNCTIONS FOR
FORMATTING REPORTS

Following are examples of APL statements and user-defined functions
that might be useful for formatting reports.

Drop Bllanks from a Character Vector:

VDROP[[]JV
'V Zf-DROP X

I: :I.] Z ~ .. (X rt. I ') I X
'V

x ~ .. I f~ B C II E FG I

DROP X
ABCDEFG

Drop Blanks and Periods from a Character Vector:

VDROPBP[[]J'V
V Zf-nl~()PBP X

[1 J Z f· (NX~ I I I) IX
'iJ

X~ .. 'A,B,C D E F'
DROPBP X

ABCDEF
Replaco Periods with Commas in a Character Vector:

VREPLACE[I]JV
V Z~"REPLACE X

[1:1 X [(X:::: I , •) I \ f)X J~" I I I

[2J Zf-X
V

X
A,B,C D E F

REPLACE X
A,B,C II E F

Drop Loading Blanks in a Character Vector:

VLEADING[[]J'V
V Z~"I...EA[lING X

I: :l :I Z ~ .. (N "\ I I :::: X) I X
V

A~'" ABC DEF'
LEADING A

f~BC DEF

Left-Justify the Names in a Matrix:

VLJC[]JV
V Zf-L.. • .J X

I:: 1 :I Z f· (... / \ X:::: ' ') <I> X
V

SUE
.JAN

DAVE

SUE
"JAN
DAVE

NAMESf-3 6p' SUE JAN DAVE
NAMES

LJ NAMES

Find the Index of a Name in a Table:

VINDEXC[]JV
V Z~NAME INDEX TABLE

[lJ Z~«TABLE ,=(-ltpTABLE)tNAME»/\ltpTABLE
V

HUE
JAN
DAVE

NAMES

'JAN' INDEX NAMES

Printer Control 103

104

Insert Blank Lines into a Character Matrix:

VBL.ANI(I... I NEB £: [] J 'V
V Z~X BLANKI...INES M

[1] Z~«(ltpM)+l(ltpM)+X)p(Xpl),O)'M

'iJ

DON
DAN
SUE
• .1 I t1
TOM
K It1

DON
DAN

sur:::
JIM

TOM
KIM

NAMEB~6 4p'DON DAN SUE JIM TOM KIM'
NAMES

-----------The left argument determines how
/ often the blank lines are inserted.

2 BLANK LINES NAMES

Print a Matrix Using a Shared Variable:

VPRINT[[]JV
'iJ PRINT X;Z;P

[lJ CR~DAV[[]IO+156]
1:2] p~"' PRT'
[3J Z~l DSVO 'P'
[4] P~-l'/(TX)/CR

SUE
JAN
DAVE

SUE
.JAN
DAVE

V

NAMES~3 4p'SUE JAN DAVE'
NAMES

PRINT NAMES

Drop leading Blanks or More than One Consecutive Blank from a Character
String:

VSCAN[[]JV
V Zt-SCAN X

[1] Z~··1.+ «X#-' ')v' '#-1.q>X)/Xf·' " X
V

A~" ' ?, B C D EF'
SCAN A

,~ BCD EF

Convert a Scalar or Vector to a Matrix:

'\j'CDNVE I~T £: []] 'V
V Z~"C()NVErrr X

[1.J ~(O 1 2 =ppX)/(SCALAR,VECTOR,MATRIX)
[2] MI~rRIX: Zf-X
[3] .. ~O

[~] SCALAR:Zf- 1 1 pX
£: ~:j] .. ~ 0
[6J VECTOR:Zf-(l,pX)pX

V

1 1

A~"CDNVE r~T (.,
(.)A

Join Two Variables Together Side by Side:

VBY£:[]]'V'
V Z~"A BY B; ROW

[:I.] A~"(2't(pA), 1 l)(.>A
I: 2] B ~ .. (2 t ((.) B) I 1 1) p B
[3] RDWt-l't(pA)fpB
[~] A~(ROW,-ltpA)tA

[5J B~(ROW,-ltpB)tB

[6] Z~-A, B
'V

AI~BBB

1~(.:lBBB

BBB

A~"2 2(.)'A'
B~":~ ~'5 f) • B I

A BY B

Printer Control 105

106

Join Two Variables Together One on Top of the Other:

VON[rJJV
V ZfoA ON B;COI...

[1] Afo(-2t 1 1 IpA)pA
[2] B~(-2t 1 1 ,pB)pB
[3] COL~-lt(pA)rpB

[4] Afo«ltpA),COL)tA
[5] Bfo«ltpB)ICOL)tB
[6] Z+-A, [:I.] B

AA
AAI
BDB
BBB
DBB

V

A~"2 2~)'A'
:fH .. 3 3p'B'
A ON B

Chapter 10. Input/Output Control

Input/ output operations consist of the following:

• Reading and writing data records on a tape or diskette data file

• Reading and writing data on the display screen

• Printing data records

In this chapter, the following topics concerning input/output control
are discussed:

• Sequential and direct: access data files

• Logical and physical records

• Types of data file formats

• APL internal code to EBCDIC (extended binary coded decimal
interchange code) translation

• The 5110 I/O processor

• Establishing an APL shared variable as the connection betWeen the
active workspace and the I/O processor

• Using the APL shared variable for input/output operations

• Retracting the shared variable offer

Input/Output Control 107

108

SEQUENTIAL AND DIRECT ACCESS DATA FILES

Sequential access data files can be on tape or diskette: however,
direct access data files can only be on diskette. The data file is
specified as either a sequential access or direct access data file when
it is initially created (see Specifying the Operation to be Performed
later in this chapter).

All 5110 data files are created sequentially: that is, individual records
are written to the file in sequential order.

Data File

Record 1 Record 2 Record 3 Record 4 Record 5

After a data file is created, data can be read from the file as follows:

• For a sequential access file, the records are read in the same
sequence as the records were written to the file. For example, the
first and second record must be read before the third record can be
read. Also, if you want to read a record previous to the last record
read, you must start the operation over from the beginning of the
data file.

• For a direct access data file, you specify the record{s) that are to be
read from the data file. For example, you can specify that the fourth
record in the file be r.ead (without reading the previous three
records) then after the fourth record is read you can specify that the
second record in the file be read, and so on. Also, multiple records
can be read with one statement.

LOGICAL AND PHYSICAL RECORDS

A logical record is the individual record written to a data file. For
sequential access data files, the size of each logical record can vary.
For example, one logical record might require 10 bytes of storage and
the next logical record might require 20 bytes of storage. For direct
access data files, each logical record requires the same amount of
diskette storage. Generally, each logical record must be the same
shape and representation as the other logical records in the data file.

A physical record is a certain amount of tape or diskette storage. For
tape, a physical record is 512 bytes. For diskette, a physical record is
the same as the diskette sector size (128, 256, 512, or 1024 bytes).

TYPES OF DATA FILE FORMATS

For Sequential Access Data Files

There are two types of data file formats for sequential access data
files:

• APL internal format

• General exchange format

Following is a description of these data file formats.

APllnternal Format

The APL internal format allows data to be written to the data file in
the same format as that stored in the active workspace. For example,
the first record written to the data file might be a numeric 10 x 20
matrix, and the second record written to the data file might be a
10-element character vector.

General Exchange Format

The general exchange data format is the basis of exchange between
the 5110 APL and BASIC languages. The general exchange format
only allows character scalars or vectors to be written to the data file.
Therefore, when the system is storing numeric data in data files with
the general exchange data format, the format function must first be
used to change the data to a character scalar or vector.

The following rules apply to a general exchange format data file that is
written using the APL language for later processing using the BASIC
language.

1. All data items must be separated by commas. For example, the
numeric vector 1 3 5 6 must be changed to character data, then
commas must be placed in the blank positions. The following
statement replaces blanks with commas in a character vector:

x [(X::::' ') / \ P X] ~ .. ' I ' .. , ___ where X is the character vector.

2. Negative signs must be replaced by minus signs.

3. The 5110 BASIC language accepts only the first 255 characters in
each character constant.

4. The 5110 BASIC language creates a logical record for each PUT
statement or each row of an array with a MAT PUT statement.

I nput/Output Control 109

110

When the 5110 APL language is used to read a general exchange
format data file (see To Read a Sequential Access Data File later in
this chapter), the following actions are taken by the 5110 if a cursor
return character (hex 9C) or end-of-block character (hex FF) was
embedded in a character vector that was written to the data file:

• If a cursor return character was embedded in the character vector,
the data will be read from tape in a different sequence than it was
written to tape. This condition occurs because as the interchange
data is written to tape, the system writes an end-of-record
character (hex 9C) after each character vector (record) that was
written to tape. The end-of-record character and the cursor return
character are the same. When used on tape, this character
separates the data (records) so that it can be read from tape in the
same sequence as it was written to tape. However, if a cursor
return character is embedded in the data that was written to tape,
the system will recognize it as an end-of-record character when the
data is read from tape.

• If an end-of-block character was embedded in the character vector,
any data from the embedded end-of-block character to the next
physical record is not read from tape. This condition occurs
because the system looks at the tape in 512-byte segments (one
physical record). A physical record can be terminated by an
end-of-block character (hex FF). When the system is reading data
from the tape and an end-of-block character is encountered, the
system skips to the next physical record and continues reading data.
Therefore, if an hex FF character is embedded in the data that was
written to tape, the system recognizes it as an end-of-block
character when the data is read from tape and skips ahead to the
next physical record.

For Direct Access Data Files

There are five types of data file formats for direct access data files.
These formats are:

• APL internal format

• General exchange format

• Unblocked and unspanned format

•• Mixed format

• Nontranslated format

Following is a description of these data file formats.

APL Internal Format

The APL internal format allows data to be written to the data file in
the same format as that stored in the active workspace. However,
unlike sequential access data files, all the records written to the data
file must have the same shape and internal representation. For
example, all of the records written to the data file must be one of the
following:

• Character data

• Numeric binary data (all zeros and ones)

• Numeric fixed point (all integers in the range _231 to 231 _1)

• Numeric floating point (all other values)

These records must have the same shape and representation because,
when multiple records are read from a direct access data file, the
records are laminated (joined) together along a new first dimension
(see Updating a Direct Access Data File later in this chapter).

General Exchange Format

The general exchange format for direct access data files is similar to
the general exchange format for sequential access data files (see For
Sequential Access Data Files under Types of Data File Formats in this
chapter). However, when the general exchange format is used with
direct access data files, all the records written to the data file must be
character data and must have the same shape (p DATA) as the first
record written to the data file. The records must have the same shape
because, when multiple records are read from a direct access data file,
the records are laminated together along a new first dimension.

Input/Output Control 111

112

Unblocked and Unspanned Format

The unblocked and unspanned format is the basis for general
,exchange with other products using diskette storage. In this case, the
file name cannot exceed 8 alphameric characters, and the diskette
sector size must be 128 or 256 bytes.

The unblocked unspanned format allows only character scalars or
vectors to be written to the data file, with each record starting on a
sector boundary. Also, the records cannot exceed (span) a sector
boundary.

When the unblocked and unspanned format is used, all the records
'written to the data file must have the same shape (p DATA) as the
first record written to the data file. The records must have the same
shape because, when multiple records are read from a direct access
data file, the records are laminated together along a new first
dimension.

Since the unblocked unspanned format requires each record to start
on a sector boundary, to prevent wasted diskette storage the record
size should be as close as possible to the sector size. The unused
diskette storage in each sector is unavailable for storing data (see
Type U Data File in Chapter 8, Diskette Concepts).

Mixed Format

The mixed format, like the APL internal format, allows data to be
written to the data file in the same format as the data is stored in the
active workspace. However, the mixed format also allows you to
write records that have different internal representations on the same
data file. For example, you can write character data, logical data,
numeric fixed-point data; and numeric floating-point data on the same
data file. With the mixed format, the first record written to the data
file determines how much file storage is allocated for each additional
record to be written to the data file. For example:

1 st Record
100 Bytes

If the first record requires 100 bytes of file storage, 100 bytes of
storage are allocated for each additional record. See Storage
Requirements in the 5110 APL Reference Manual for information on
how many bytes of storage are required for each data type.

As variolls size records are written to a mixed format data file, any
unused diskette storage allocated for each record is unavailable for
storing data (see Type M Data File in Chapter 8, Diskette Concepts).

Because the records in a mixed format data file do not have to be the
same shape or internal representation, only one record at a time can
be directly accessed from the data file. That is, multiple records
cannot be laminated together.

Input/Output Control 113

114

Nontranslated Format

The nontranslated format is used primarily for reading diskettes from a
non-5110 system and the diskette does not have standard 5110 file
types. Therefore, unless you need to read diskettes that do not have
standard 5110 file types, you might want to skip this topic.

The nontranslated format is the only format that is not specified when
the data file is initially created. The nontranslated format can be
specified only when the system is reading from or writing to any
diskette data file that already exists. When data is written to a direct
access data file using the general exchange or unblocked unspanned
format, the APL internal code is translated to EBCDIC code before the
data is written on the diskette. This EBCDIC code is then translated
back into the APL internal code when the data is read back into the
active workspace.

--=---_-----1
1
'" APL Internal Code V __ ",0 ~I .=------"

EBCDIC Code v.'

AP L I nterna I Code

Active Workspace Translation
Tables

Diskette Storage

However, when the nontranslate format is specified, all attributes of
the file are ignored and any existing diskette file can be read from or
written to. In this case, as the data is being read from or written to
the file, the data is not translated from the EBCDIC or APL internal
code to the other code.

Instead, as data is being read in the nontranslate format from an
EBCDIC diskette file, the EBCDIC representation of the data is placed
in the active workspace. Or when data is being written in the
nontranslate format to the diskette file, the APL internal representation
of the data is written to the diskette file.

Note: Assuming 010 is 0, the APL internal representation of a
character is equivalent to the hexadecimal value of that character's
index in the atomic vector. For example, the APL internal
representation of the character A (OA V [86]) is hex 56 (the bit value is
01010110). You can determine the bit value of the atomic vector index
using the encode (T) function. For example:

2 2 2 2 2 2 2 2 T 86 e 1. 0 :1'1 P :l 1 01

~HexadeCimal 56

The EBCDIC character A has a hexadecimal value of C1 or a decimal
value of 193. In non-translate mode (and 010+1), when the EBCDIC
character A is read from a diskette, the character is stored internally
and displayed as a lowercase h (OAV [193]).

The nontranslate format allows only character vectors to be written to
the file. Also, each sector on the diskette is considered one record.
Therefore, if you specify,that three records should be read or written,
you will read or write three sectors on the file.

Sector Boundaries

When nontranslate format is used,
three records are equal to three sectors.

Input/Output Control 115

116

THE 5110 I/O PROCESSOR AND SHARED VARIABLES

The 5110 I/O processor is responsible for transferring data from the
active workspace to the tape, the diskette, the display screen, or the
printer, and for transferring data from the tape, the diskette, or the
display screen to the active workspace. Before individual data records
can be transferred by the I/O processor, a shared variable must be
established as the connection between the active workspace and the
I/O processor. That is, the variable is shared between the active
workspace and the I/O processor.

Once this connection is established, the shared variable is used to
send control information and data to the I/O processor and to receive
return codes and data from the I/O processor.

ESTABLISHING AN APL SHARED VARIABLE

A variable must be offered to the I/O processor before the variable
can become a shared variable. To do this, you must use the OSVO
(shared variable offer) system function. The OSVO function requires
two arguments; the left argument must be 1 (to specify the 5110 I/O
processor), and the right argument must be character data that
represents the variable name{s) to be shared. If more than one name
is required, the names may be entered as a character matrix with each
row representing an individual name. For example:

:I. [] S V () 'A' ,------The variable name A is
offered to be shared.

1. OSVD 3 lp'ABC'

The vLable names A, B, and Care
offered to be shared.

The OSVO function generates an explicit result of 2 for each variable
name that is successfully established as a shared variable with the I/O
processor. For example:

X~l OSVO 3 lp'ABC'
X

2 ~.~ I')

.:.. ~ There are two users of the shared variable, the
active workspace and the I/O processor. This is called
the degree of coupling.

A 0 or 1 is the result of the OSVO function for each variable name that
is not successfully shared with the I/O processor. If the result is 1,
the left argument of the :DSVO function was a value other than 1. In
this case, the variable name must be retracted and offered as a shared
variable again with a 1 as the left argument of the OSVO function
(retracting the shared variable name is discussed later in this chapter).
If the result is 0, an error message is also displayed.

You can establish up to 12 shared variables in the 5110 active
workspace. If you attem'pt to establish more than 12 variable names
as shared variables, the error message INTERFACE QUOTA
EXHAUSTED is displayed. The statement (0 t-I]SVD []NL.. 2) f[]NL.. 2
displays the existing shared variable names in the active workspace. If
12 shared variable names are already established, you must retract a
shared variable name before another variable name can be offered.

Input/Output Control 117

118

USING APL SHARED VARIABLES

Once a shared variable is established as the connection between the
active workspace and the I/O processor, you can do the following
input and output operations:

• Create a new sequential access or direct access data file .

• Add data to an existing data file .

• ' Read data from a sequential access data file .

• ' Read-only data from a direct access data file.

II Update (read and write) data in a direct access data file.

II Read data from and write data to the display screen.

.. Send data to the printer.

The first value assigned to the shared variable must be a character
string (enclosed in single quotes) that specifies the operation to be
performed. Specifying the operations to be performed and doing
input/ output operations are discussed next.

To Create a New Sequential Access or Direct Access Data File

The first value assigned to the shared variable must specify the
operation to be performed as follows:

OUT
SV ~ 'OUTF device/file number

t
Type of data file:
• OUT - Sequential access
• OUTF - Direct access

A
10 = (file 10) MSG = OFF TYPE = I'

~.
U
M

Type of data file format:
• A - APL internal
• I - General exchange

Direct access
files only {

•• U - Unblocked/unspanned
M - Mixed

For example:

SV~'OUTF 11003 ID~(SALES) MSG=OFF TYPE~U'

t
Unblocked and unspanned
data file format.

The error messages are not displayed.

The data file identification is SALES.

Diskette drive 1, file 3.

Create a direct access data file.

(See the IBM 5110 APL Reference Manual for a detailed description of
each parameter.)

Input/Output Control 119

120

Once the operation to be performed is specified to the I/O processor,
the I/O processor assigns a return code to the shared variable. For
example:

8\1~'" OUTF :1.:1.003 I I):::: (SAI...EB) MSG::::()FF TYP[::::U'
c'V
... > ... '------The return code is checked by referencing the

o 0 ~ shared variable.

The return code is a two-element vector.
1

In the previous example, the return code is 0 0, which indicates that
the operation to be performed is successfully specified to the I/O
processor. See the IBM 5110 APL Reference Manual for a description
o'f all the return codes.

Once the operation to be performed is successfully specified, the
shared variable used to specify the operation is then used to specify
data that is to be written on the data file. That is, each time new data
is assigned to the shared variable, the I/O processor transfers that
data to a data file and assigns a return code to the shared variable.
For example:

() 0

o 0

SV~12t'RECORD ONE'
BV

SV~12t'RECORD TWO'
BV

Remember, in this example, the
data file format is unblocked and
unspanned. All of the records in the
data file must have the same shape.

SV 11-------------Notice that the shared variable
IO STATUS: INVALID OPERATIDN cannot be referenced more than
INTEI~RUPT once to check the return code.

SV
A

SV~:l.2t'RECORD THREE'
X~"BV

X
() 0 ---:--____ __

X -====-==--===--rhe return code can be assigned to another
() variable and then checked more than once.

When all of the data is written to the data file, the operation must be
terminated. The operation can be terminated by assigning an empty
vector to the shared variable. For example:

sv~ .. \ 0 • Empty vector
SV

o o· The operation is terminated. The variable
SV is still shared with the I/O processor.
Therefore, SV can be used to specify and
perform another input/output operation.

See the IBM 5110 APL Reference Manual for a description of other
ways to terminate the operation.

To Add Data to an Existing Data File

There will be times when you want to add data to an existing data file.
If you specify an OUT or OUTF operation, the data you write to the
file always starts at the beginning of the file and the new data is
written over any existing data. Therefore, to add data to a data file
starting after the last record in the file, you must specify the operation
to be performed as follows:

SV +-- 'ADD [device/file number] [10 = (file 10)] [MSG = OFF] I

For example:

o ()

SV~ .. IA[lD :I.:I.OO~~

SV
1[1:::: (SALES) MSG::::()FF ·

1
t

Do not display the error messages.

The file identification of the existing data file.

The data file is on diskette drive1, file 3.

Add data starting after the last record in the data file.

Even though the device/file number and ID = (file ID) parameters are
optional, one or the other of these parameters must always be
specified.

Input/Output Control 121

122

Th43 type of data file (sequential access or direct access) and data file
format are determined by the attributes of the existing data file. In this
ca~;e, assume this example is continued from the previous topic, the
file is a direct access, unblocked, and unspanned data file.

Once operation is specified, data can be sequentially written to the
data file. For example:

o 0

() 0

o ()

SV~12t'RECORD FOUR'
SV

SV~12t'RECORD FIVE'
SV

SV~·· \ O-.. ----You can terminate the operation
SV by assigning an empty vector to the

shared variable.

To Read a Sequential Access Data File

Once a sequential access file is created, the records are sequentially
read from the data file. That is, the records are read from the data file
in the same sequence as the records were written to the data file.
You specify the operation to be performed as follows:

SV+ 'IN [device/file number] [10 = (file 10)] [MSG = OFF]'

For example:

o 0

s V ~ .. ' I N 1.:1. 0 0 1.1·

SV
I D:::: (SEQ) MBG::::OFF'

I I
Do not display the error messages.

The existing data file identification.

The data file is on diskette drive 1, file 4.

Read data from a sequential access data file.

After the operation is specified, the I/O processor assigns a return
code to the shared variable. The I/O processor then assigns a new
record from the data file to the shared variable each time the shared
variable is referenced. For example: First, to create a sequential
access file with 5 records.

VSEQUENT I AL [[1:1 'V
'V SE(~UENT I AL.

[1J SV~'OUT 1100~ ID~(SEQ) TYPE=A'
r:::.~] I~"l

[3J L.OOP:~(v/O~X~SV)/ERROR

[~J SV~'RECORD '1,1
[5J 4(5~I~I+l)/L.OOP

[6] SVf" 0
[7J ~(A/O=X~SV)/O

[8J ERROR: 'CREATING THE DATA FILE FAILED. THE RETURN CODE IS:
• I l' X

SE(~LJENT I AI ...

Now, to read the 5 records from the data file.

() 0

SV~-' IN 1[1:::: (BE(~) •

SV-·----------you should check the return code after the
operation is specified.

c.'V
REef) I~D \o):L =~-------~--. After the return code is checked, each time

SV - / the shared variable is referenced, the I/O
REeO RD 2 processor assigns the next record from the

SV data file to the shared variable.
RECOI~D ~5

X~"BV"4--------lf you want to save a record for later use, you
X must assign the shared variable to another variable.

RECOI~n 1.1·

BV
RECOI~D ~:j ~ After the last record is read from the file, an empty

S V vector (sO) is assigned to the shared variable. This
_ empty vector terminates the operation. (In a

() 0
S V user-defined function, you can check for the

empty vector. For example: ~ (0 = pX <E- SV)/DONE.
The statement branches to DONE if the last record
read was an empty vector.)

Input/Output Control 123

124

When reading a sequential access data file, the I/O processor does
not assign return codes to the shared variable. However, if an error
occurs, an empty vector is assigned to the shared variable and the
operation is terminated. Then the I/O processor assigns a return code
to the shared variable that indicates why the error occurred.

You can also terminate the operation at any time by assigning an
empty vector to the shared variable. For example:

() 0

B V ~ .. I I N I [I :::: (SEQ) I

SV

BV
REeD I~D :L

SV
RECORD 2

SVf' \ 0 ______ The read operation is terminated.
SV.-----

o 0

To Update Data in a Direct Access Data File

Once a direct access data file is created, specified records in the data
file can be updated. That is, records can be read from the data file,
updated in the active workspace, and then written back to the data file
at a specified record location. Unlike the operations discussed so far,
reading or writing specified records on a direct access data file
requires a pair of shared variables. One of the shared variables is
used to specify control information to the I/O processor. The I/O
processor also assigns the return codes to this shared variable. The
other shared variable is used for data that is written to or received
from the data file. The pair of shared variable names must have the
following characteristics:

• The shared variable name used to specify the control information
must have the 3-character prefix CTL.

• The shared variable name used for the data must have the
3-character prefix OAT.

• After the 3-character prefix, the next 15 characters in each name
must be identical, if specified. For example:

g:~J ' 7 These variable names can be used as
a pair of shared variables.

or

CTL NAME]
OAT NAME

Once the pair of shared variables is established, you specify the
operation to be performed as follows:

CTL +- 'lOR [device/file number] [10 = (file 10)] [MSG = OFF] [TYPE = N] ,

IORH. I
1 If th is parameter is

specified, the data is
Read or write to a
direct access data file.
See the IBM 5110 APL
Reference Manual for
a description of the
differences between an
lOR and IORH operation.

not translated (see
Nontranslated Format).
The other formats cannot be
specified when you are
reading from or writing to a
direct access data file, because
these formats were established
when the file was created.

For example:

o x

CTL~'IfJR 1.1.005
CTL

I I):::: (I) I REeT) MS(3::::0FF I

I f
Do not display the error messages.

The file identification.

The data is on diskette drive 1, file 6.

Read records from or write records to a direct access data file.

For a read or write operation to a direct access data file, the second
element of the return code identifies the number of records in the data file.

I nputlOutput Control 125

126

After the operation is specified, the CTL shared variable is then used
to specify what records to read or write. To do this, you must assign
a two- or three-element vector to the CTL shared variable, as follows:

o
CTL~ starting record number [number OJ records]

o specifies a read records operation. If the third element
1 specifies a write records operation.
2 specifies a search by key operation.

(search by key is discussed

is not specified, one
record is assumed.

later in this section).

For example:

CTl..~··P ~:j ~

"-Read three consecutive records, starting with
the sixth record in the file.

Note: The record numbering starts with zero.

o 2 3 4

Therefore, the first record in the file is record number 0, the second is
record number 1, and so on. Also, you cannot read from or write to a
record position that was not originally created using an OUTF or AOO
operation.

When the CTL shared variable specifies a read records operation, the
I/O processor assigns the records read from the data file to the OAT
shared variable. When the CTL shared variable specifies a write
records operation, the data currently assigned to the OAT shared
variable is written to the data file. Therefore, the data must be
assigned to the OAT shared variable before you specify the write
operation. In each case, after reading or writing records, the I/O
processor assigns a return code to the CTL shared variable.

When you read multiple records from a direct access data file, the
records are laminated together along a new first dimension before
they are assigned to the OAT shared variable. For example, assume
you read three records (character vectors) from the following data file:

DATA
FILE

o

I ABCEF I GH IJK I

CTl...f· () ") ~5
CTI...

() 0
DAT

DAN .•
DAVE.
JERRY

2 3 4

DAN.. J DAVE. J JERRY I

~)DAT

3 ~) 04
_------------ The shared variable OAT contains

a 3 x 5 character matrix.

The new first dimension represents the number of records read. You
can specify each individual record by indexing the new dimension.

DAT[1;]
DAN ••

DAT[3;J
• .JERI~Y

5 \

(,

Input/Output Control 127

128

When you write multiple records to a direct access data file, the
records must be joined along a new first dimension before they are
assigned to the OAT shared variable. For example, assume you want
to write the following three records (character vectors) to a direct
access data file:

Df.IT~··3
D{'}T

AAAAA ____________ _ Individual Records
BBBBB-------~~~------.

CCCCC----------+-----+--~

o 0

CTL..~··l 2 3
eTI...

Data
File

o 2 4

ABCEF GHIJK AAAAA BBBBB CCCCC

Following is an example of updating records in a direct access data
file:

2 2

[j,]

[2]
[:~]

[L~ ::I
[5J
[6J
[7::1
[B::J
[9]
[lO]
[ll]

:J. []BVO 2 '+p' CTLXDATX' ____ Establish a pair of
shared variables.

VDJ:RECT[[]:JV . __ ---- Create a direct access data file. 'V D I I~ECT ; I ; X-

V

CTLX~'OUTF 1100~ ID=(DIRECT) TYPE=I'
"~(0#-1 tXf·CTLX) IERI~CH~ __________ I~"l CTLA and DATA can be

LOO P : CTLX f· ' REeD r~D ',T I used for any input/output
"~(0 ~ 1 tX ~CTLX) IE R RO R operation.
~ (5;:: I f; I + 1) ILOO P
CTI...Xf· \ 0-
~(O¢ltX~CTLX)/ERROR
"~o

This operation is terminated;
now CTLA can be used for other
operations.

ERROR: 'CREATING THE DATA FILE FAILED.'
'THE RETURN CODE IS: 'J'X

DI r~ECT

Input/Output Control 129

130

The data file now looks like this:

o 2 3

RECORD 1 RECORD 2 RECORD 3 RECORD 4

CTLX~'IOR 1100~ ID=(DIRECT),
CTL.X

4

RECORD 5

() ~:; -------------- When you specify the operation to a direct
access data file, the second element of

CTLX records in the file.
o 0

DATX'" D.areoo~s~n~

CTL..X~"O 0 ~the return code is the number of

RECORD 1 re~,

o 0

o 0

~ updated, and
DATX~H' RECORD A~ written back at the same record location.

CTLX~"l 0....------
CTLX

CTl..X~O 1 2
CTl..X

o 2 3

DATX
RECORD 2
RECORD 3

Data records can be moved from
one record location to another
record location.

o 0

o 0

() 0

'CTl..X~Hl 3 2 2 3

CTl..X

DArX~H' NEW nATA~ New records can replace existing records
CTLX ~ 1 2....------- in the data file.

CTLX o 2 3

CTL.X~\O

CTLX\ Remember, when you write records to the
data file, the records must meet the
requirements of the data file.

Terminate the operation. Now CTLX and
DATX can be used for other input/output
operations.

4

4

4

To Search by Key a Direct Access Data File

When doing update operations to a direct access data file, you can
search the file for a specific record by first assigning a key value to
the OAT shared variable and then assigning the following vector to the
CTL shared variable:

CTL +- 2

I
starting record numbe\f records

Unlike reading from and writing to

Specifies a search
by key.

a direct access data file, the third
element must be specified for
a search by key.

When a search by key is specified, the key value currently assigned to
OAT is checked against the equivalent number of beginning bytes in
the specified sectors. The specified sectors include the sector that
contains the starting record number through the sector that contains
the last record specified (determined by the number of records
specified). For example:

Sector Boundaries

The first 4 bytes in three sectors
are compared with the key value.

When you are creating a file for search by key operations, the file
should meet the following requirements:

• The records are sorted in ascending sequence.

• The records do not span sector boundaries. However, there can be
multiple records in a sector.

• A record that is greater than any key value that might be specified
should start on the sector boundary following the last valid data
record.

I nput/Output Control 131

132

See the IBM 5110 APL Reference Manual for a description of when a
search by key is complete. If the search is successful, the record(s) in
the sector containing the appropriate record is assigned to the OAT
shared variable (multiple records are laminated together along a new
first dimension). Also, the second element of the return code assigned
to the CTL shared variable represents the record number of the first
record assigned to the OAT shared variable.

eTL
o 1+

"-The search was successful, and the first record aSSigned
to OAT is record number 4.

To Read-Only Data from a Direct Access Data File

To read-only data from a direct access data file is the same as reading
records when updating data in a direct access data file. However,
when you specify a read-only operation, you cannot write data back to
the data file (a CTL DOMAIN ERROR is generated); this prevents data
from accidently being written to the data file. You specify the
read-only operation as follows:

CTL +- 'IIR [device/file number] [lD = (file ID)] [MSG = OFF] [TYPE = N]'

Read-only data from
a direct access data file.

For example:

CTL~'INR 11005 ID=(DIRECT) MSG=OFF'
Cll .. ,

o x

Do not display the error messages.

The file identification.

The data is on diskette drive 1, file 5.

Read-only data from a direct access data file.

The second element of the return code identifies the number of
records in the data file.

See To Update a Direct Access Data File for a description of how
records are read from a direct access data file.

To Read Data from and Write Data to the Display Screen

Reading and writing data on the display screen is similar to reading
and writing data on a direct access data file. That is, the operation
requires a pair of shared variables, with one of the shared variables
having the prefix CTL and the other having the prefix OAT. You
specify the operation as follows:

CTL~'DISPLAY [MSG=OFFJ'

1
The error messages are not displayed.

Read or write data on the display screen.

A pair of shared variables is used for reading and writing
data to the display screen.

Once the operation is specified, the CTL shared variable is used to
specify what character positions to read or write. To do this you must
assign a two- or three-element vector to the CTL shared variable, as
follows:

CTL +- 0 starting character number [number of characters] L 1 If this elemLt is not
o specifies a read data operation. specified, one character
1 specifies a write data operation. is assumed.

I nput/Output Control 133

134

Note: Each character position on the display screen is considered one
record. The character positions are numbered as follows:

LINE

15 0
14 64
13 128
12 192
11 256
10 320
9 384
8 448
7 512
6 576
5 640
4 704
3 768
2 832
1 896
0 960

For example:

CTI...~··O 20

------63
------127
------ 191
------255
------319
------383
------447
------511
------575
------639
------703
------767
------831
------ 895
------959
------1023

1. 0 • ------ Read 10 characters starting
with character position 20.

When the CTL shared variable specifies that characters be read, the
cursor appears on the display screen at the character position
specified by the starting character number. You can then modify the
information on the display screen for the specified number of
character positions. Also, the insert,. delete, and A TIN key perform
the same functions within the specified number of character positions
as they do during standard APL keyboard input. Then, when the
EXECUTE key is pressed, the specified characters are read from the
display screen and assigned to the DAT shared variable as a character
vector.

When the CTL shared variable specifies that characters be written, the
data currently assigned to the OAT shared variable is written to the
specified positions on the display screen. DAT must be a character
vector with at least as many characters as specified by the CTL shared
variable.

In each case, after reading or writing records on the display screen,
the I/O processor assigns a return code to the CTL shared variable.

Following is an example of reading and writing data on the display
screen:

() 0

o 0

6 1+

:I. osva 2 7p'CTLDISPDATDISP'

CTI...DIHP~"· DISPLAY'
CTI...DIBP

CTI...DIHP~··O 6 1+ 6 1+
CTI...DIBP

The cursor appears on line 14.

1'-- Now, enter DISPLAY
I/O and press
EXECUTE.

DATDISP
DISPLAY IIO

Dr-ITDI BP~··:I. ()21+?)DATDISP--~After the data is assigned to

CTI...DISP~··:t. 0 :t. () 2'+

the DAT shared variable, the
DAT shared variable can be used
like any other variable.

~ Write the value currently assigned
to DAT on the display screen.

I nput/Output Control 135

136

The display screen now looks like this:

DISPLAY 1/0
n··sPI...I~Y 1/0
D BPLf.lY IIO
D ~:)PI...AY I/O
It SPI...I~IY I/O
II SPLAY I/O
D SPLAY IIO
Ii SPLAY 1/0
DISPLAY I/O
DISPLI~Y I/O
DIBPI...f.1Y 1/0
DISPLAY 1/0
DISPLAY I/O
IiISPI...(~Y I/O
DISPLAY I/O
D I ~:) PI... (.1 Y I / 0

o 0

Now, scroll up 2 lines
and enter

C T I... II I B P~" \ 0
CTI...DIBP

to terminate the operation.

To Send Data to the Printer

You can control what information is printed by using an APL shared
variable. You specify the operation as follows:

SV+ 'PRT [MSG = OFF]'

+
The shared variable is used for printing data.

For example (assume SV is already established as a shared variable):

o 0

SV<i" ' P I~~T M~:)G::::OFF'

SV

Once the operation is specified, only the information (a character
scalar or vector) assigned to the shared variable is printed. The I/O
processor assigns a return code to the shared variable after each print
operation. For example:

o 0

o 0

SV~'ONLY THE DATA ASSIGNED'
SV

SV~'TO THE SHARED VARIABLE IS PRINTED'
SV

When using a shared variable for print operations, you can only assign
character scalars or vectors to the shared variable. However, you can
also print a matrix as follows:

:I ':> • A ..

MATRIX~~ 2p'123~5678'

r1ATI~I)<

/Carriage return character (assuming OIO~1) .

o ()

o 0

./ ~ This expression catenates a carriage
C R ~" [] AV I:: :I. ~,:j 'l ::1.------ return character at the end of each
(:' V <i" ,', 'I I (.. M A, 'Y' I:) '[''''') ('~ I~) d ~"*I,fl ",l\ }"'j

BV

• :> !:~ VV '<1:" \ 0

Terminate the
operation.

row of the matrix and then ravels
the matrix into a vector, as follows:

1 2 CR 3 4 CR 5 6 CR 7 8 ~ ~ The last
CR is dropped .

Now, when the vector is printed,
a new line is started each time
the carriage return is encountered,
as follows:

1 2
34
56
78

I nputlOutput Control 137

138

TERMINATING THE OPERATION AND RETRACTING THE SHARED
VARIABLE OFFER

As discussed previously, you can terminate an input/output operation
by assigning an empty vector to the appropriate shared variable. After
you terminate the operation, the I/O processor assigns a return code
to the shared variable, and then the shared variable can be used to
specify another input/output operation.

See the IBM 5110 APL Reference Manual for more information on
assigning an empty vector to the shared variable.

There are four other ways that you can terminate the operation:

o Use the DSVR system function to retract the shared variable offer.

o Use the DEX system function to expunge the shared variable name.

.. Complete execution of a user-defined function in which the shared
variable is made local to that function .

• t Use the)ERASE system command to erase the shared variable
name.

In each case, the operation is terminated and the shared variable offer
is retracted. However, a return code is not assigned to the shared
variable to indicate whether or not the operation was terminated
successfully.

Generally, the DSVR function is used after the operation is terminated
imd the shared variable is no longer required for any input/output
operations. The DSVR system function requires one argument; this
argument must be character data that represents the shared variable
names being retracted. If more than one name is required, the names
may be entered as a character matrix with each row representing an
individual name. For example:

[] B V I~ • A · •• ------- The variable name A is no
longer a shareq variable.

[]BVI~ :3 :1. (.i' ABC'

"The variable names A, B, and C are no
longer shared variables.

The DSVR function generates an explicit result of 2 for each shared
variable offer with the I/O processor that is successfully retracted. For
f~xample:

X ~"LlBV I~ 3 :I. (.) I ABC I •• ---- In this case A, B, and C
X are shared variables.

TYPE=:
Parameter and
Data Format

A

APL internal
blocked/ spanned

I

Character data
blocked/ spanned

U

Character data
unblocked/
unspanned

M

APL internal
blocked/ spanned

Once the DSVR function is used to retract a shared variable offer, the
shared variable becomes an ordinary variable.

A~"3+1+
A

The following chart summarizes the data file types for input/output
operations. Sequentially accessed data files require one shared
variable, and directly accessed data files require a pair of shared
variables (CTL/DAT). Records in the data files can be blocked and
spanned or unblocked and unspanned. Blocked and spanned records
can span sector boundaries. Unblocked and unspanned records cannot
span sector boundaries; that is, the record must be less than or equal
to the sector size and there is only one record per sector.

File Type
Displayed Using
the)LlB Command

Sequential Direct,
(OUT) (OUTF) Comments

8 10 • The 5110 defaults to TVPE=A if the parameter is not
specified.

· For file type 10, all the records in the file must be the same
size and representation (character, binary, fixed point, or
floating point).

----,--- --

2 9 · File types 2 and 9 can be read sequentially using an IN
operation.

• File type 9 (blocked and spanned) uses less storage than
file type 10 for character data.

• For file type 9, all the records in the file must be the same
size.

9 or B9 • File types 9 and B9 can be read sequentially using an IN
operation.

· File type B9 is the basis of exchange with other products.
• All the records in the file must be the same size.

8 15 • For file type 15, all the records in the file must use the
same or less storage than the first record written to the file,
and records must be read or written one at a time.

I nput/Output Control 139

140

SAMPLE INPUT/OUTPUT OPERATIONS

'1 .:.,

o 0

o 0

o 0

o ()

o ()

** SEQUENTIAL I/O **

Se<:ltH~n 1: i ('~ l of i l (~.~~ on cI i ~:)k e t t (0,\ al" f~ es~:;en t i all y th e ~:;ame

i:l~) ti:lPe f i l e~:;. The 1:tLlO typ~~~:~ {~l"('~:
GENERAL EXCHANGE (Fi le type 2)
'~PL. INTEI~NAI... (F i l (0,\ typ e B)

:1. [lSVO 'SEQDSI('

Thi~; eX(':lmplf~ SP('~c:i'fif~~:> 'OUT' to inclic:atf~ ou'ti:>ut
clnd clef.au l t~:; to th(-,\ API... INTEI~NAI... F i l e Type,

BE Q D S I(~.. · (] U T j, j, () 0:1. I [I :::: (T EST) •
Once the operation is established and checked
f () r v (~ lid com p let ion ... , i t h a · 0 o· 1" e t tH' n C: 0 d (~ ,

SEQDBI<

1" (,~ COt" d~;; m (~ y b e tin" itt f~ n tot h e dis I< e t t e f i l (-,\ .
Ani n t e 9 e 1" 1- (~ (: 0)" d i~:; ~In" itt e n f i 1- f:) t .

BEQDSI(~" \ 1. 0

Always checl< the return c:ode on output.
SEQDSK

APL.. INTEI~NAL f:;f~qUent i i~ l 'f i l e~; per'iIl it l,n- i t i n<;J of
any t yp (,~ 0 f di-l t a lLl i t h i nth (o~ S<HIl e f i l e, F ())
example, you can write a floating point record,

SEQDSJ(~" , 5+ \ 1. 0
SEQDBI<

and a binary record,

SEQDSK~ 15pO 1 0 1 0 j, 1
SEQDSI(

and a c:haracter record.

SEQDSK~'This is the LAST record.'

BEQDBI(

() 0

o ()

You. ca n n () lIJ c: l 0 ~:~ e t h H of i l C:.\ ,

SEQDSI(~" \ ()

SEG1DBI(

and read what was written to the diskette.

N (] T E t 1'"1<':1 t () n l y the I D «) 1" Ih~ IJ i c (~ / F i leN U ill b f~ r) i =.
nef~dC:.'d to f:~P(:\C j fy (:~ d('ilta f i l f~ on thf~ d j ~:~I< e·l·te.

8EQDBK~'IN ID=(TE8T)'

Check the return code.

(':1 n d '" e a d i:~ (':) C h (.~ c () l" din t h f~ 0 '" d €. i" t h <:1 tit
t.J(':'I~;:' t i 1··t en .

F i i" f;;. t, t h (.~ i n t f~ (:J e r' \" (.~ c () '" d ,
SE(~DSI{

1 2 3 4 5 6 7 8 9 10

the floating point eco d,
8EQDSK

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

the binary reco d,
SEC~DE)I(

() 1 0 101 1 0 1 () 1 0 1 1 ()

and, of i n <!I l I. Y I t h (~ c h a act (.~ '" i" (.~ C 0 i" d .
BE(~DSI<

This is the LAST record.

o 0

T h (.~ 1" f~ ll.l i I. l nOll"- b f~ i:\ n (.~ til P t y v C:.' c to·... i" f~ t U ned ,
which indicates the end of data 0 an I/O erro

SE(~DSI{

Check for an error condition.

A • 0 0 • i" C:.' ·t lU" nco d e i n d i c: a t (:" f:; t hat t I I \:! 1" H

i~:; n () ill 0 i" C:.\ d -i:l t a .

Input/Output Control 141

142

G F N E I:~ I~ I... EX C H tl N G E (F i let y p ~~ 2) f i l ~~ <.:~ a r' (-~ h (':\ n d l ~~ d
the ~;aill(~ as APt. INTEI~NAI... 'f i l e~::. (·~XC(·~pt that all dclt<":'I

m u s t b ~~ inc h a , .. a c: t (-~ \" for" mat , T h i ~:; t Y P (.~ 0 f f i l ~~ m .c:\ y
be exchanged with the BASIC Language,

Both GENERAL EXCHANGE and API... INTERNAL format
f i l (-:' -:;; may b (~ 1.1.1 r" itt (~ n tot a p t~ ina ~::. i mil i:\ r' f i:l ~:; h i (I n
and b () t h a \ .. ~~ c: () en pat i b l t\ tl.l i t h the I B t·i !:;j :I. 0 0 ,

I n a d cI i t ion., "f h (-~ !:.:j :I. :I. 0 1.!.1 ill \ .. (.~ a d ~:.:j :I. 0 0 f i l (.~ t ~I P (.~ ':;; :I.
and ::5,

" .:..

o 0

** RECORD I/O **

:1. nBVO · CTI...DBK ·

:1. []SVO · DATItSI(·

Two shared variables are offered which can be
used together for record input/output.

CTI...DSK~·OUTF 11001 ID=(TEST)'

CTI...DSK

Assignments to CTLDSK write records onto the diskette.
The records must all be the same length and internal
representation since these are default TYPE=A records.

CTLDBK~"l 0 O~)· A'

CTLDSI(~":1.00p' B'

C T I ... It S K ~"1 0 0 p • C •

CTI...DSI(~ .. :1. 0 ()~) · D ·

CTLDSI(fol00p' E'

CTLDSI(~":I.OOp' F'

CTLDSI(~" 20 p • G ·
10 STATUS: INVALID DATA TYPE

CTI ... DSK ~.. :I. ~:j O~) • H I
10 STATUS: INVALID DATA TYPE

CTLDSI(~ .. :I. 0 () p:l.
IO STATUS: INVALID DATA TYPE

NOTE that the assignment must be character and the
length must be 100 since that is true with the first
record. The error messages were displayed because
the MBG=OFF parameter was not specified.

I nput/Output Control 143

o 0

o 6

1.00

144

CTLDBI(~" \ 0

CTI...DBI{

The output operation is now terminated.

Normally, you would want to check return codes
to assure proper operation. For example, ltRCODE
should always be 0 with record input/output

C T I... D S I(~" · I 0 R :1.:1. () () :I.' I D :;:: (T EST) ·

T h ~~ of i l ~~ i s n () tIl b e i n q s p (,~ c:: i fie d of () r i n put () l" () U t P H t
o p ~~ 1" c1 t ion~;. .

You could have used INR~---to READ ONLY
or IORN----to READ or WRITE.

lOR and lORN differ in storaqe requirements and
p (,~ 1" f 0 1" man c e . T h (,~ Y ':;1)" ~~ t h (,~ -:; <o~ in (~\ i n fun c t i () n .

CTL.DBI(

N () T E t hat t 1'1 (-~ 1" (,~ <':1 1" (~ 6 1" (-~ cor' d s;' <:1 v ail a b l (~ .

All reads and writes must address one of these
<:lctU<:1 l r·~~cor'ds.

T 0 add r' ~~ COl" d s t 0 a 1" e c: () l" d I / () of i l,;,\ 0 l" i q ina l l y
created usinq OUTF, you must specify an ADD
oP~~l"at i on.

C T L [I S I{ I.JI ill n 0 I.JJ b f~ U ~~ (.~ d t 0 1" f~ cl dan d h.I)" i t f~ a n cI
DATDSK is the variable containing the data.

CTLDBI(~"i:':) B C
t t t NUMBER OF RECORDS TO READ OR WRITE
t t FIRST RECORD TO READ OR WRITE

-.
t READ OR WRITE (READ=O AND WRITE=1)

CTI...DSI{~" 0 0
This says to read the first record (RECORD 0) and
read only one record which is the default for
the number of records

(.>DATDBI{

::5 :1.00

BBBB
ecce
DIIlID

~5 :1.00

:zzzz
ecce

o ()

DATD8K[:I. 2 3 ~ 5J

CTI...DBI< ~ .. 0 :1. :3
You have read 3 records starting with the second one.

(.>DATDBI(

D f':) T D S I(I:: ;:1. 2 ~'5 I.J. J

D t:1 T D B I(~ .. :I. 0 0 I~) • Z ·
CTLDSI(~ .. :I. :I.

Now you have written a new second record containing
100 Z'8. To check you can reread the first three.

CTLDBI(~" 0 0 3
(.)D('~TlISI(

CTLDBI(~" \ 0

This terminates the input/output operations.
CTI...DBI(

Input/Output Control 145

146

USING THE)RESUME COMMAND

There might be times when you are using a user-defined function to
do I/O operations and you want to stop the I/O operation until a later
time. If you suspend the user-defined function by pressing A TIN once
(a weak interrupt) and then write the contents of the active workspace
to the media using the)CONTINUE command, you can use the
)RESUME command to load the stored workspace into the active
workspace and reestablish the system as it was. That is, the shared
variables and suspended function are reestablished in the active
workspace, and, if you enter -+ OLC the user-defined function
continues execution from the point where it was suspended.

Note: When you use the)RESUME command, you must make sure
that the tapes or diskettes are correctly positioned. See the IBM 5110
APL Reference Manual for a complete description of the)RESUME
command.

MORIE ABOUT RECORDS AND FILES

The basic unit of organized data is the record. A record is a collection
of related data items that are treated as a unit. For example, the
driver's license most of us carry is a record. A time card is also a
record. Each record contains items related to the purpose of the
record. The related items are called fields. The following illustration
shows a record containing the fields of information that might be
found on a driver's license:

Drivers Name Address
License No.

Each field in the previous record contains information relating to a
specific driver. The length of the field is the maximum number of
characters that is to be placed in the field. The next illustration shows
a record containing the fields of information that might be found on a
time card:

Name Location Date Serial No. Shift Start Time

A group of records make up a file. Just as a filing cabinet contains a
number of records in some specific sequence, a 5110 data file also
contains records in some specific sequence.

The following illustration shows a record containing customer
information that would be used in making out an invoice:

Customer
Number

Name Street
Address

\
\

13 TOPPER AVE

City, State

The file would contain as many records as there are customer
numbers. A file should be given a unique name so that the file can be
distinguished from other files. Because the record in the previous
illustration contains customer master information, the file could be
named CUSTOMER.MASTER. A file containing master information
about the products in your inventory could be named ITEM.MASTER.

Different files can contain different record layouts. For example, the
following illustration shows a record that has items related to the item
file:

Item
Number Description

~ I
I Sj4164 I wtOGET

Price
/

J

13.95

Qty in
Stock

004~

Input/Output Control 147

148

Organizing a Diskette File

An important part of any data processing job is file organization. File
organization is the arrangement of records in a file.

Sequential Access Files

Sequential access files are processed consecutively. For example, an
employee master file contains information needed for various reports
concerning each employee, such as payroll checks. Because checks
are usually processed in order by employee number, records are
processed in order. The lowest employee number is processed first
and so on until the last record, the highest employee number, is
processed.

Sequential processing means records are processed one after another
in the order they occur in the file. To process only certain records all
records must be processed, or at least read up to the last record to be
processed.

Direct Access Files

Since sequential processing can be time consuming, it would be
helpful if diskette records were available like books in a library. That
is, you could go to an index, find the location where the book is
stored, go to the right shelf, and get the book you want. No one
would read all the books in the shelves before reading the desired
book. Likewise, it would be desirable to skip the records not needed
in a job and process only the desired ones. Because direct access
files allow specified records to be processed by record number, the
limitation of sequential processing can be overcome by an index.

To create and use an index, you could use the following procedure:

1. As you create the direct access, you also create a matrix with
each row representing a key field in the record. For example, the
first 7 characters in a record are the item number. As you write
a record to the file, you also add the item number to a matrix of
item numbers.

2. Now, when you want to directly access a record by record
number, you can find the record number by using the following
user-defined function (assuming 010+0):

VZ~LIST INDEX ITEM
I:: :1.::1 Z ~ .. ((LIB T I ... • :::: (... :I. t f:i LIS T) tIT E r1)) / l. :I. t (oi I... 1ST V

The explicit result of this user-defined function is the row of the
matrix that contains the specified item number. This explicit
result also identifies the record number of the specified item
number in the data file.

3. Once you find the record number of the specified item number,
you can directly access and process that record without regard to
its relation to other records.

Input/Output Control 149

150

Ordered and Unordered Records

The records in a direct access file can be ordered or unordered. An
ordered file means that the records are arranged in order according to
some major control field or by frequency of use. An unordered file
means that the records are not in any particular order.

With a 5110, it takes less time to specify and read 100 records at one
time than to specify and read individual records 100 times. Therefore,
arranging your records in order of frequency of use might save you
processing time. For example, a wholesale distributor organizes the
file of inventory items by frequency of use. Thus, the most active
items are at the beginning of the file. Then, when the file is used to
write customer orders, most of the records are located in a small area
of the file and can be processed as multiple records. In this example,
the total time to process the orders is less than if the records were
scattered throughout the entire file.

Maintaining Diskette Files

Once a file is created, file maintenance is often necessary. File
maintenance means performing those activities that keep a file current
for daily processing needs. Some file maintenance activities are:
,~dding, deleting, and updating records. Adding means putting a
record in a file after the file is created. Deleting means identifying a
record so it will not be processed with other records. Updating means
adding or changing some data in a record.

Adding Records

Records can be added at the end of a file after a file has been
created. Thus, the file is extended by the added records.

Sometimes, however, the new records must be merged between the
records already in the file. This might be necessary to keep the file in
a particular order when the control fields of the new records are not
higher in sequence than those already in the file; for example, when
you are using the file for search by key operations. To put the new
records in the proper sequence, you must use an APL user-defined
'function to sort the file and create a new file containing the added
records or use the Diskette Sort feature if installed. See the IBM 5110
Customer Support Functions Reference Manual, SA21-·9311, for more
information on the Diskette Sort feature.

Tagging Records for Deletion

When a record becomes inactive, you might not want to process it
with the other records. A record cannot be physically removed from
the file during regular processing; therefore, it is necessary to identify
or tag the record so it can be bypassed. One way to tag such a record
is to put a code, called a delete code, in a particular location in the
record. When the file is processed, your user-defined function can
check for the delete code; if the code is present, the record is
bypassed.

When several records in a file have been tagged for deletion, you
should remove them from the file. This will free diskette space. You
can remove the deleted records by using a user-defined function to
copy the records to be retained onto another file or write new records
over the deleted records.

Updating Records

When you update records in a file, you can add or change some data
on the record. For example, in an inventory file you might want to
add the quantity of items received to the previous quantity on hand.
The record to be updated is read into storage, changed, and written
back in its original location.

Designing a Record

The app'lications that use a certain file determine what data is needed
in a record. You should study these applications and then decide the
layout of the record. Layout means the arrangement of fields in a
record. When you design a record, you must consider processing
requirements of the record and then determine field length, location,
and name.

A name and address file is used to illustrate these design
considerations. Each record in the file contains the following data:

Field

Customer Number
Name
Street Address
City and State
Record Code
Delete Code
(Other fields)

Size (number of characters)

8
20
20
20
2

(total) 47
Total 116

I nput/Output Control 151

152

Determining Field Size

Field size depends on the nature of the data in the field. First, the
lenlgth of the data may vary. In the example, name is 20 characters.
The length of each customer's name varies, but 20 characters should
be sufficient for all names. Secondly, all data in a field might be the
same length. For example, customer number is eight positions, and all
eight positions are used in each record.

ThHre are no firm rules for determining field size. The major problem
involves fields with variable length data. For example, if a name is
planned as 15 characters, and a new customer has 19 characters in his
name, a problem arises when you add his record to the file. To avoid
this problem, try to estimate the largest length of data that will be
contained in a field. Use this length to determine the field size.

Providing for a Delete Code

Remember that records are not automatically deleted. You might want
to place a delete code in a record, and then when the file is processed
you must check for the delete code. In the example, if a customer
becomes inactive, we do not want to process his record. Thus, a
one-position field is included to provide for a delete code.

Of course, if you are using an index to find the records in a direct
access file, you do not need a delete code. Instead, you can remove
the record key from the index. See Organizing a Diskette File in this
chapter for information on creating an index.

Providing Extra Space

At this stage in planning, it is often wise to allow for data to be added
to a record. For example, suppose the name and address file was
created with the fields described, and at a later time each customer's
zip code is needed. If all positions in the record are used, there is no
place to add the zip code. Because the. record length is not yet
established, we can allow for such additions to this record. Although it
is often difficult at the planning stage to imagine what data might be
added, it is wise to reserve extra space. A minimum of 10% extra
space is suggested.

Documenting Record Layout

When record layouts are documented, your APL user-defined function
might be easier to write. A record layout should include the order of
the fields in the record, the length of each field, and the name of each
field. The following illustration shows the layout of a customer master
record:

Customer
Number

Street Address City and State Other Fields Reserved Space

Delete
Code

89 2829 4849 6869 127 128

In the previous example, the sum of the fields is 116 positions.
However, the record size is 128 positions, thus reserving 12 positions
for data that might be needed at a later time.

Determining the Number of Records in a File

When determining the number of records in a file, you should consider
expansion for a reasonable time into the future (at least six months).
Then when you create the file, if you place dummy records in the file,
these dummy records· can then be replaced with valid records at a
later time. Of course, you can also add records to the file using an
ADD operation.

I nput/Output Control 153

154

Chapter 11. Debugging and Error Recovery Techniques

SUSPENDED FUNCTION EXECUTION

The execution of a user-defined function can be interrupted
(suspended) in a variety of ways: by an error message, by pressing
the ATTN key, or by using the stop control vector (S6). In any case,
the suspended function is still considered active, since its execution
can be resumed. Whatever the reason for the suspension, when it
occurs, the statement number of the next statement to be executed is
displayed. A branch to the statement number that was displayed or a
branch to DLC(+DLC) causes normal continuation of the function, and
a branch out (+0) removes the function.

When a function is suspended, the 5110 will:

• Continue to execute system commands except)SAVE, }COPV, and
)PCOPV.

• Resume execution of the function at statement n when +n is
entered.

• Reopen the definition of any function that is not pendent. A
pendent function is a function that called the suspended function. If
a function called a function that called a suspended function, it is
also pendent (see State Indicator).

• Execute other functions or expressions.

• Execute the suspended function again.

Note: The display of output generated by a previous statement might
have been interrupted when the suspension occurred. This would be
caused by the delay between execution of the statement and display
of the output.

Debugging and Error Recovery Techniques 156

156

STATE INDICATOR

The state indicator identifies which functions are suspended (*) and at
what point normal execution can be resumed. Entering)SI causes a
display of the state indicator. Such a display might have the following
form:

)SI
H[7J .)(.
G[2::1
Ft::3]

This display indicates that execution was halted just before statement
7 of function H, that the current use of function H was invoked in
statoment 2 of function G, and that the use of function G was invoked
in statement 3 of F. The * appearing to the right of H[7] indicates that
function H is suspended; the functions G and F are said to be
pendent.

During the suspension of one function, another function can be
executed. Thus, if a further suspension occurred in statement 5 of
function a, which was invoked in statement 8 of G, a display of the
state indicator would be as follows:

)SI
(~ I: ~.:; J .)(.
G[B::I
H[7J .)(.
G[::,~::t

F[:'5:J

An SI DAMAGE error indicates that a suspended function has been
edited or a pendent function has been erased and the normal
execution of the suspended function can no longer be resumed. When
an SI DAMAGE error occurs, the state indicator display will include the
damaged function name and the statement number -1. For example, if
function a is edited and the modification causes an SI DAMAGE error,
the display of the state indicator would be as follows:

)SI
(~I:: ... :1. ::I ~(.

GI::D]
H[7J .)(.
G I:: ::,~::t
Ft::3::1

You can cleat a suspension by entering a branch with no argument
(that is, -+). One susp~nded function is cleared at a time, along with
any pendent functions for that suspended function. The first branch
clears the most recently suspended function, as in the following
example:

"t

)SI
H['?] ,)(.

G[;.:,~]

F[~~)J

It is a good practice to clear suspended functions, because suspended
functions use available storage in the active workspace. Repeated use
of -+ clears all the suspended functions; as the functions are cleared,
they are removed (cleared) from the state indicator. When the state
indicator is completely cleared, the state indicator display is a blank
line.

Note: To display the state indicator with local names, enter the)SINL
command.

Debugging and Error Recovery Techniques 157

158

Appendix A. 5110 Compatibility with Other APL Systems

The follwing user-defined functions are example functions that can be
used to check 5110 user-defined functions for compatibility with other
APL systems:

[1]
[2]
[3]
[I.j.]

I: ~:i:l
[6]
[7::1
[B::I
[~» ::I
[:1.0]
[11::1
[12J

[:I.]
[;? J
[:::~]

[1+::1
I:: ~:j::l
[6]
[7]
[B::t
[9]
[10]
[11]
[12]
[13]
[11+ J

'V'CHECI< [[]::I V
V CHECK F;EA;RL;CF;FL;ED;OIO;OPW

V'

ACHECK FOR POSSIBLE INCOMPATIBILITES IN FUNCTION F
AEA=ERROR ARRAY CL=COLUMN LEDGEND
ARF=ROW FLAGS (ERRORS) RL=ROW LEDGEND

DID-t .. :J.
[] p ~.J~" :L 3 :~~
E{~+." PO RTABLE CF ""[Ie I~ F
I~~ i... +... I I: '} 0 :1. '" ('f' ((:I. t p E PI) } :I.) ~> '" :1. +). :1. t (J E f.i) } I J I
F~ F -t .. (v / E (.~I) \ I.)/': I

CF'~" RF I' ',I~L}' '} CF
F L~'" "t I I:: :I. + E (~ :I
ED~(2 :I. MpCF)p 2 :I. 3
("'h/E)):::: I ') /[1::1 ED

VPDR"ftIBLE[[]JV
V Z~PORTABLE CF;CS;DIO

V

ARETURN A LOGICAL MATRIX (ONES AND ZEROS) THE SAME SHAPE AS
A' 'OCR F' '--A :I. INDICATES CHANGES REQUIRED FOR PORTABILITY
f·) C~:)::::LEGAl.. CHI:) Rf.'ICTE I~ ~:)ET CF::::CHf~) I~ i'1f~1 T R I X OF F

[] I O~":I.
CS~DAV[(14+\9)/(25+\54),(86+\71)/:1.59/160/161]

Z~"NCF+:·:CS
I ~ .. Z. v (C F :::: ' I~I ')
Z~Zv('l DSVO' WHEREIN CF)
Z~Zv(IDCC' WHEREIN CF)
Z~Zv(IOAI' WHEREIN CF)
Z~Zv(IDTS' WHEREIN CF)
Z~"Zv (I UTT' ~JHEREIN CF)
Z~Zv('DUL ' WHEREIN CF)
Z~Zv('DDL' WHEREIN CF)

/
VWHE I:<E I N [: []:I '\/

V Z~A WHEREIN B;DIO
[1] ALOCATION OF VECTOR A IN ARRAY B
£: 2:1 [] I o~ .. 0
[3 J Z ~ .. ((.. - P (.> B) t 1) -!- I'. / [: 0 ::I (~ ((... l ~. (.> B) I p A) e \. (.> (:1) q) 0 I (A <: .. I P.) n I :::: B

v

5110 Compatibility with Other APL Systems 169

160

VTESTFUNCTION[DJV
v 'fESTFUNCTION

I:: 1. :] ~:j [ICC 20
[2] j. USVD 'A'

V

CHECK 'TESTFUNCTION'
[OJ TESTFUNCTION

.)f [1:1 ~) Dr (' ") () t " A'.. . ___________

.)1; [2] :I. nsvo 'A'~
t .. These statements might not

be compatible with another

APL system,

)CONTINUE command 69
)COPY command 46
)DROP command 76, 88
)ERASE command 138
)FILEID command 87
)FNS command 48
)FREE command 90
)LOAD command 45
)MARK command 75,88
)OUTSEL command 95
)PCOPY command 46
)PROC command 46
)PROTEGT command 73, 87
)RESUME command 45, 146
)SAVE command 69
)SI command 48
)SINL command 48
)SYMBOLS command 48
)VARS command 48
)VOLI D Gommand 73, 85
)WSID command 48
OCC system function 62, 95
o EX system function 138
OLC system function 155
OPP system variable 95
OSVO system function 117
OSVR system function 138
-+OLC 155
T function 95

access-protect indicator 82
active workspace 3, 75
active workspace control 41
add data to an existing file 121
ADD operation 79, 121
adding records 150
APL 4
APL commands 5
APL expressions 5
APL internal code 114
APL internal format 109, 111
APL shared variable 95, 117
APL user-defined function 4
application 5
arrays 16
assignment arrow + 13
atomic vector 115
audible alarm 64

beginning of extent (BOE) 84
BOE 84
bytes 75

Index

Index 161

catenation 25
arrays of unequal sizes 26
matrices 25
scalars to arrays 26
vectors or scalars 25
vectors to arrays 26

center character string in matrix row 35
changing workspace environment 43
character constants 15
character position 134
clear suspended functions 157
CLEAR WS environment 42
complex name 87
compress data 79
console control 65, 97, 101
console storage 59
CONTINUE 69
controlling display screen 63
controlling files 72
convert to a matrix 105
COpy 46
count unique characters in vector 35
create a data file 119
create a matrix from a vector 31
creating lists 27
CTL DOMAIN ERROR 132
CTL shared variable 1 24
cursor return character 110

162

OAT shared variable 124
data 1
data cartridge 75
data file

create 119
direct access 108
formats 109
sequential access 108

data files 75
data processing 2
data representation 14
data security 73
data types 50
data written to the data file 120
debugging 155
degree of coupling 117
delete code 151
delete comment lines from a function 32
delete duplicate elements 33
delete function names 34
delete leading blanks 38
delete name from list 39
deleted records 1 51
deleting records 150
designing a record 151
determining field size 152
determining size of file 68
direct access data file 108, 119
diskette 3, 6, 81
diskette addressing 83
diskette drive 81
diskette files

organizing 148
maintenance 150

diskette formats 85
diskette initialization 81, 86
diskette sort feature 150
diskette storage 54
diskette volume 10 82
display screen 4, 7, 63

read from 133
write to 133

documenting record layout 153
DROP 76,88
drop blanks 102
drop blanks and periods 102
drop extra blanks 105
drop leading blanks 102

EBCDIC code 114
empty arrays 21
end of block character 110
end of data (EOD) 84
end of extent (EOE) 84
EOD 34,84
EOE 84, 102
ERASE 138
error rlecovery 155
establishing an APL shared variable 117

fields 146
file headers 75
file ID 87
file maintenance

adding records 150
deleting records 151
updating records 151

file orglanization 146
FILEID 87
find first non blank character 33
find index of name 103
find location of name in list 39
FNS 48
format 6
format

APL internal 109, 111
function 95
general exchange 109, 111
mixed 113
nontranslated 114
unblocked and unspanned 112

formatting reports 98, 101
formatting tape 75
FREE 90

general exchange format 109, 111
generate a matrix 18
generating arrays 17
getting information from a file 71

hard copy output 4
helpful functions 102

convert to a matrix 105
drop blanks 102
drop blanks and period 102
drop extra blanks 105
drop leading blanks 102
find index of name 103
insert blank lines 104
join two variables 106
left- justify 103
print a matrix 104
replace periods 102

I/O processor 116
IN operation 122
index cylinder 84
index file 149
index track 90
indexing arrays 22
initialization, diskette 81, 86
input 2
input/output operations 118
IN R operation 132
insert blank lines 104
interface 12
INTERFACE QUOTA EXHAUSTED 117
internal precision 96
internal storage 3
lOR operation 125
IORH operation 125

join two variables 106
join vectors and print results 38
joining arrays 25

key value 131
keyboard 3, 7, 60

Index 163

laminated records 127
lamination 28
language elements 13
left justify 103
left-justify character string in matrix 36
library control .67
list leach function in workspace 36
list each variable in workspace 37
LOAD 45
logical data
logical record

15
108

lowercase characters 60

maintaining diskette files 150
make scalar or vector into a matrix 34
MARK 75,88
MAT PUT statement 109
matrices 16
merge two variables 33
mixed format 113

negative sign 14
nontranslated format 114
number of records 126
number of records in the file 153
numbers 14
numeric precision 14
numeric value range 14

164

operations
ADD 79, 121
INR 132
lOR 125
IORH 125
OUT 78
OUTF 119
PRT 137

operations to be performed 118
ordered file 150
ordered records 150
organizing a diskette file 148
OUT operation 78, 119
OUTF operation 119
output 2
output format 95
OUTSEL 95

pair of shared variables 124
PCOpy 46
pendent function 155
perform operation on conditions 40
physical record 108
precision

internal 96
printed 96

print data 137
printer 3
printing data 95
PROC 46
procedure file 46
process 2,8
program 1, 12
PROTECT 73, 87
providing extra space 152
PRT operation 137
PUT statement 109

quotes 15

random access 77
rank of an array 19
read a data file 122
read direct 108, 119
read from the display screen 133
read multiple records 127
read records 126
read sequentially 122
read/write head 82
read-only a data file 132
recordl 146
recordls

laminated 127
ordered 150
unordered 150
updating 124
designing 151
fields 146
layout 151
logical 108
numbering 126
physcial 108

remov,s alpha characters from vector 32
removis duplicate blanks from a vector 31
replacl3 periods 102
replacl3 trailing blanks 32
report formatting 98, 101
reshape function 17
RESUME 45, 146
resuml3 execution 155
retracting the shared variable 138
return code 120, 123
return even numbered elements 32
right-justify character string in matrix 35

S~ 155
SAFE l3witch 73
sample input/output operations 140
SAVE 69
scalars 16
scaled representation 14
scientific notation 14
search by key 126, 131
search file for a specific record 131
sector 84
security 73
sequential access 77
sequential access data file 108, 119
sequentially read 122

shape of array 17
shared variable 95, 117
shared variable offer 117
shared variable pair 124
SI 48
SI DAMAGE 156
simple name 87
SINL 48
sort columns of matrix 39
sort feature 150
specifying the operation to be performed 118
starting character number 134
starting record number 126
state indicator 156
stop control 155
storage considerations 49
storage diskette 54
storage, internal 3
suspend I/O operations 146
suspended functions 155
symbol table 43
SYMBOLS 48
system 3
system commands

)CONTINUE 69
)COPV 46
)DROP 76,88
)ERASE 138

)FILEID 87
)FNS 48
)FREE 90
)LOAD 45
)MARK 75,88
)OUTSEL 95
)PCOPV 46
)PROC 46
)PROTECT 73, 87
)RESUME 45, 146
)SAVE 69
)SI 48
)SINL 48
)SVMBOLS 48
)VARS 48
)VOLID 73
)VOLID 85
)WSID 48

system functions
Dcc 62, 95, 97
DEX 138
DSvo 117
DSVR 138

system variable Dpp 95

Index 165

tape 3, 6
tape storage 75
terminate the operation 121, 138
track 83

unblocked and unspanned format 112
unordered file 150
unordered records 150
update a data file 124
updating records 124, 150
useful statements and functions 31, 102
user-defined functions 3

variable name 13
variables 13
VARS 48
vectors 16
VOLIO 73,85
volume 10 54

weak interrupt 146
workspace environment 43
workspace files 75
workspace I D 44
workspace required for I/O operation 53
write data 120
write multiple records 127
write records 126
write to the display screen 133
write-protect indicator 82
writing data to a file 69
WSIO 48

5110 data files 108
5110 I/O processor 116

166

READER'S COMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in IBM programming
support, requests for additional publications, etc, should be directed to your 'B~ .. 1 representative or to the IB~.1 branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

• No postage necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name __ __

Address

»-cOl
rS:
c CJ1
en
CD :-0
G)
c: a:
CD

en »
~

~ o
~

SA21-9302-1

Fold

[
BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES --------'

Fold

--- ------ --------- - ---- ---... --------_.-
(g)

POSTAGE Will IE PAID BY •••

IBM Corporation
General Systems Division
Development Laboratory
Pu bl ications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation

General Systems Division
57750 Glenridge Drive N. E.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(International)

Fold

FIRST CLASS
PERMIT NO. 40
ARMONK, N. Y.

Fold

iii
s::
~
0

»
"'tIl
r
C en
~
en"

G>
c
is:
CD

4'
S' ...
~1
::J

C
C/)

»
C/)

»
~
U:I
w
0

~

,

!~f~i
! ~

Intern~tional Business Machi';'es Corporation
f '~

: i
I '

General Systems Division :
4111 Northside Parkway N.V1?

I
P.O. ~ox 2150
Atlan~, Georgia 30301
(U.S.~.onIY)

i I
Gener,1 Business Group/lnte~national
44 So~th Broadway. ;
White ,Plains, New York 10601

I :

U.S.A,
(Interf,lational)

I

	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	replyA
	replyB
	xBack

