
~---------..,,------~-~--~ ---- ------ - ---- ---- - ---- - - ----------_ .- ·r lAN M. ENGEL

IBM 5100
APL Reference Manual

DEC - 1197T o
o

Preface

This publication is a reference manual that provides
specific information about the use of the IBM 5100
Portable Computer, the APL language, and installation
planning and procedures. It also provides information
about forms insertion and ribbon replacement for the
5103 printer. This publication is intended for users of
the 5100 and the APL language.

Prerequisite Publication

IBM 5100 APL Introduction, SA21-9212

Related Publications

• IBM 5100 APL Reference Card, GX21-9214

• APL Language, GC26-3847

Third Edition (May 1976)

This is a major revision of, and obsoletes, the previous edition SA21-9213-1 and Technical
Newsletter SN21-0258.

Changes have been made throughout, so this manual should be reviewed in its entirety.

Requests for copies of I BM publications should be made to your I BM representative
or the IBM branch office serving your locality.

A form for readers' comments is at the back of this publication. If the form is
gone, address your comments to I BM Corporation, Publications, Dept 245,
Rochester, MN 55901.

©International Business Machines Corporation 1975, 1976

"

o

o

o

o

Contents

CHAPTER 1. OPERATION CHAPTER 4. PRIMITIVE (BUILT-IN) FUNCTIONS. 43
IBM 5100 Portable Computer Overview Primitive Scalar Functions . 43
Display Screen 2 The + Function: Conjugate, Plus. 44
Switches. 2 The - Function: Negation, Minus 45

Power On or Restart Procedures 2 The x Function: Signum, Times 46
Display Screen Control . 3 The -;- Function: Reciprocal, Divide . 48

Keyboard 5 The r Function: Ceiling, Maximum. 49
Attention 6 The L Function: Floor, Minimum 51
Hold 6 The I Function:. Magnitude, Residue 52
Execute 6 The * Function: Exponential, Power 54
Command 6 The ~ Function: Natural Log, Logarithm 55
Positioning the Cursor and Information on the The 0 Function: Pi Times, Circular 56

Display Screen 6 The! Function: Factorial, Binomial 59
Copy Display 8 The? Function: Roll 61

I
I ndicator Lights . 8 The /\ Function: And 62

Process Check 8 The V Function: Or 63 -,
In Process 9 The'" Function: Not 64

The AFunction: Nand. 65
CHAPTER 2. SYSTEM COMMANDS 10 The VFunction: Nor 66
System Overview 10 The> Function: Greater Than 67
System Command Descriptions 10 The = Function: Equal To 68

I
The)CLEAR Command 13 The < Function: Less Than 69
The)CONTINUE Command 13 The ~ Function: Greater Than or Equal To . 70

The)COPY Command. 14 The::; Function: Less Than or Equal To 71

The)DROP Command . 15 The ~ Function: Not Equal To 72

I The)ERASE Command 15 Primitive Mixed Functions. 73

\l The) F NS Command 16 The p Function: Shape, Reshape (Structure) 75

I
The) LI B Command 16 The, Function: Rpvel, Catenate, Laminate 77

The) LOA D Command 18 The / Function: Compress 81

The)MARK Command. 18 The \ Function: Expand. 82

The)MODE Command. 20 The ~ Function: Grade Up 83
The) OUTSE L Command 20 The 'f Function: Grade Down' 84
The)PATCH Command 21 "fhe t Function: Take. 86
The) PCOPY Command 25 The + Function: Drop. 87
The)REWIND Command 26 The 1 Function: Index Generator, Index of 88
The)SAVE Command 26 The ¢ Function: Reverse, Rotate 89
The)Sf Command 27 The ~ Function: Transpose, Generalized Transpose 93
The)SIV Command 27 The? Function: Deal 95
The)SYMBOLS Command 28 The 1. Function: Decode (Base Value) 96
The)V ARS Command 28 The T Function: Encode (Representation) 99
The)WSI D Command 29 The E Function: Membership. 104

i
The [E Function: Matrix Inverse, Matrix Divide 105

CHAPTER 3. DATA 30 The .t Function: Execute 107

t Variables. 30 The ~ Function: Format 108

Data Representation 30 APL Operators 111

Numbers. 30 Reduction Operator (I) 111

Scaled Representation (Scientific Notation) . 31 I nner Product Operator (•) 113

Character Constants 31 Outer Product Operator (0 .) 116

Logical Data 32 Scan Operator (\) 118

-(Scalar. 32 Special Symbols . 120

Arrays 32 Assignment Arrow + 120.

Generating Arrays 33 Branch Arrow -)- 121

Finding the Shape of An Array 35 Quad D 121

Empty Arrays 36 Quad Quote [!] 122

Catenation 37 Comment R 122

Indexing . 39 Parentheses () 122

f
iii

I

I

CHAPTER 5. SYSTEM VARIABLES AND SYSTEM
FUNCTIONS

System Variables
Comparison Tolerance: 0 CT .
Index Origin: 010 .
Printing Precision: 0 PP
Print Width: 0 PW .

Random Link: 0 R L
Line Counter: 0 LC
Workspace Available: 0 WA
Latent Expression: 0 LX
Atomic Vector: 0 AV .

System Functions

The 0 CR Function: Canonical Representation
The 0 FX Function: Fix .
The 0 EX Function: Expunge
The 0 N L Function: Name List

The 0 NC Function: Name Classification

CHAPTER 6. USER-DEFINED FUNCTIONS

Mechanics of Function Definition
Function Header.
Branching and Labels
Loc"!l and Global Names

Interactive Functions
Requesting Keyboard Input during Function

Execution .
Arranging the Output from a User-Defined Function

Bare Output .
Locked Functions .
Function Editing

Displaying a User-Defined Function
Revising a User-Defined Function

123
123
124
125
125
126
126
126
126
126
127

128
128
129
132
132
133

134
134
135
137
139
144

145
146
146
147
148
148
148

Reopening Function Definition 150
An Example of Function Editing 151

Trace and Stop Controls 152
Trace Control 152
Stop Contro I 154

CHAPTER 7. SUSPENDED FUNCTION EXECUTION 155
Suspension 155
State I nd icator . 155

CHAPTER 8. TAPE AND PRINTER INPUT AND
OUTPUT 158

Establishing a Variable to be Shared . 158
Opening a Data File or Specifying Printer Output 159
Transferring Data 163

Transferring Data to Tape (OUT or ADD
Operation) . 163

Transferring Data from Tape (I N Operation) 164
Transferring Data to the Printer (PRT Operation) 164

Closing a Data File or Terminating the Printer Output 165
Retracting the Variable Name Being Shared . 165
Return Codes 166
An Example Using Tape and Printer I nputlOutput 167

iv

CHAPTER 9. MORE THINGS TO KNOW ABOUT
THE 5100

Data Security
5100 Storage Capacity

Storage Considerations
Tape Data Cartridge Handling and Care

CHAPTER 10. THE 5103 PRINTER
How to I nsert Forms
How to Adjust the Copy Control Dial for Forms

Thickness
How to Replace a Ribbon .

CHAPTER 11. ERROR MESSAGES

APPENDIX A. SETUP PROCEDURES

Environment
5100 Setup Procedure .
Auxiliary Tape Unit Setup Procedure

Printer Setup Procedure

APPENDIX B. APL CHARACTER SET AND
OVERSTRUCK CHARACTERS

APPENDIX C. ATOMIC VECTOR

APPENDIX D. 5100 APL COMPATIBI LlTY WITH

IBM APLSV

GLOSSARY

INDEX

171
171
172
173
175

176
177

179
179

182

191
191
192
197
199

201

202

206

210

215

(

(

..

C

\BNI 5100 pORi p.BLE CONlPUiER O\lER\I\EIN
ih 5100 has a displaV screen. KeV"

ihe 5100 \ f igur~t 1 ~t::e~rt~~~c:;\~~:~' .nd

e

an adapter for blOCk and W~ ite

board. a .w
pe

un." • d ind",cator lights communicate informat,on

,V mon\tors'.,-~eh~'ed,/,sbP~:;ds~~:~;:ches alloW the user to control the operations

to the user. I" "
the s,/stem w'" perform.

,

fe.tures ,I.b

le

for the 5100 are an amdliarv t.pe unit. • printer •• nd • COm"

munications adapter.

switches Adapter for SlacK and
\Nh

ite ,'! MonitorS

\ndicatOr Lights
switches

I
9 tl ~

,ape
unit

'\

2

DISPLAY SCREEN

Th~ display screen (Figure 2) can display 161ines of information at a time, with
up to 64 characters in each I ine. Input (information supplied by the user) as well
as output (processed information) is displayed. The bottom two lines (lines 1 and
0) of the display contain information entered from the keyboard. The cursor
(flashing horizontal line) indicates where the next input from the keyboard will
be displayed. If the cursor is moved to a position that already contains a charac
ter, the flashing line is replaced by the flashing character. As the 5100 processes

input, all lines of the display are moyed up so that information can be entered on
the two bottom lines again. The top lines of the display are lost as the lines are
moved off of the display screen.

SWITCHES

The switches on the 5100 console (Figure 3) are used for turning power on,
restarting the system, and controlling how information is displayed.

Power On or Restart Procedures

The following switches are used when turning power on to the system or re
starting the system operation.

Lme Numbers

~
15

14

13

12

11

10

9
8
7
6·

5
4

3 3+2 -4- I nput from the keyboard
2 5 ... Output

o
_ ~ Cursor (flashing horizontal line)

....... 1-------64 character positions ---------1.,.

Normally, to distinguish input from output, input from the key
board is indented and output is displayed starting at the left edge
of the display screen.

Figure 2. The 5100 Display Screen

/ "

(

c

BASIC/APL

Only dual-language machines have this switch. The switch setting determines which
language will be in operation when power is turned on or after RESTART is
pressed. If the switch setting is changed after power is turned on or after RESTART
is pressed, the language in operation will not be changed.

Power ON/OFF

When this switch is in the ON position, power is supplied to the system. The
system performs internal checks and becomes ready in 15-20 seconds. When the
switch is put in the OF F position, no power is supplied to the system.

Note: The message CLEAR WS is displayed when the system becomes ready. If
this message is not displayed after 20 seconds, restart the system operation (the
RESTART switch is discussed next).

RESTART

This switch restarts the system operation. When it is pressed, the system performs
internal checks and becomes ready in 15-20 seconds. The message CLEAR WS is
displayed when the system is ready. If the system does not display the message
after 20 seconds, press RESTART again. If the system does not become ready
after several attempts, call your service representative.

The primary uses of this switch are to restart the system operation after a system
malfunction has occurred and to change the language in operation on dual
language machines.

Note: Any information you had stored in the active workspace (see Chapter 2)
will be lost when RESTART is pressed.

Display Screen Control

The following switches are used to control how the information on the display
screen is displayed.

L32 64 R32

This three-position switch (positions 64, L32, and R32) operates as follows:

• 64 - Characters are displayed in adjacent positions, and up to 64 characters
can be shown on each line.

• L32 - Characters are displayed in alternate positions (blanks between); only
the left 32 characters of the 64-character lines are shown.

• R32 - Characters are displayed in alternate positions (blanks between); only
the right 32 characters of the 64-character lines are shown.

3

~

" tE'
r::::
~
Sol
-f ::s-
eD

~
8
n
0
~

~
CD

BRIGHTNESS L3264 R32 IN PROCESS REVERSE DISPLAY

0 D © D ©
PROCESS CHECK

POWER ON

D
POWER OFF

BASIC ~~~~~~G!£J(RENUM]~(REWIND](CalcRes~~~ COpy

APL (l LOAD)~~CIQ!JCI.:§D(lVARS)~~(lOUTSELHREWIND)~ DISPLAY [DELETE}(INSERT)

OGJCDCDGJCDCDmCJCJOCD ••
fI)(IJ(I)COCDCOOJCOwCDQO

Shift Key

CD OJ CD Q (]] CD CD.GJ rn coO] (]]
GJCDGJQCDCDCIJOOOJCD

()
J

'I

Alphameric Keys Shift Key

BASIC RESTART DISPLAY REGISTERS

D D D
APL NORMAL

• aa _
888 G
GJ88 G
OCJGJ 0
(0)0 [:]

Numeric Keys

I"

'-

(

•

c

REVERSE DISPLAY

This switch determines whether the display screen will display light characters
on a dark background or dark characters on a light background. The brightness
control may have to be adjusted when the switch setting is changed.

DISPLAY REGISTERS

This switch is for the service representative's use when servicing your 5100.

Note: When you use your 5100, this switch must be in the NORMAL position.

KEYBOARD

The 5100 keyboard (Figure 3) has alphameric and numeric keys. The alphameric
keys are grouped together and are similar to those on a typewriter keyboard.
When the keys are pressed, the characters entered appear in the input line (one
of the bottom two lines) on the display screen. If either shift key is pressed and
held, the upper symbol on the key pressed is entered. The top row of alphameric
keys can be used to enter numbers; however, numbers can be conveniently en
tered using the numeric keys on the right side of the keyboard. The arithmetic
symbols (+ - -;- x) located on the top row of the alphameric keyboard can also
be entered using keys to the right of the numeric keys.

The keyboard contains some keys that perform operations in addition to those
performed by a typewriter. These keys are discussed in the following text. Uses
of the APL language symbols on the keyboard are discussed in the APL language
chapter (Chapter 4) of this manual.

Attention.

Pressing ATTN (attention) when entering information from the keyboard erases
everything from the cursor to the end of line o .

Pressing ATTN during execution of any expression or user-defined function stops
system operation at the end of the statement currently being processed. To re
start the execution of a user-defined function, enter -+-0 LC.

Output that was being generated before the system operation stopped may not be
displayed because there is a delay between the execution of the statement that
causes the output and the actual display of the output.

When ATTN is pressed twice during the execution of a statement (either inside or
outside a user-defined function), the execution of that statement stops as soon as
possible. Also, the message INTERRUPT, the statement, and a caret (A) that
indicates where the statement was interrupted are displayed.

5

6

Hold •
When pressed once, HOLD causes all processing to stop; when pressed again, it
allows processing to resume. The primary purpose of HOLD is to permit reading
the display information during an output operation, when the display is changing
rapidly. When the hold is in effect (HOLD pressed once), only the COpy DISPLAY
key is active.

Notes:
1. Holding down the CMD key and pressing HOLD is restricted to use by the

service personnel.
2. When the hold is in effect (HOLD pressed once), the use of the arithmetic

keys (+ - -;- x) on the right side of the keyboard are restricted to use by

service personnel.

Execute

When this key is pressed, the input line of information on the display screen is
processed by the system. This key must be pressed for any input to be processed.

Command

When this key is pressed and held, pressing an alphameric key in the top row
causes the APL command keyword or character above that key to be entered.
in the input line. The command keywords are:) LOAD,)SAVE,)CONT,)LlB,~
)FNS,)VARS,)COPY,)WSID,)OUTSEL, and)REWIND.

Note: Holding down the CMD key and pressing HOLD is restricted to use by the
service personnel.

Positioning the Cursor and Information on the Display Screen

The following keys are used to position the cursor and information on the display
screen:

Forward Space •
When this key is pressed once, the cursor moves one position to the right. When
this key is held down, the cursor continues to move to the right. When the cursor
reaches the last position on one input line (line 1 or 0), it wraps around to the
first position on the other input line.

(

('

(

!I,IIIt,

./

Insert •
When the CMD key is held down and the forward space key is pressed once, the
characters at and to the right of the cursor position (flashing character) are moved
to the right one position, and a blank character is inserted at the cursor position.
The cursor does not move. For example:

/ Flashing character

Before the insert operation: 123V
After the insert operation: 123_567

When these keys are both held down, the characters continue to move to the
right and blank characters continue to be inserted.

Note: If there is a character in position 64 of line 0, the insert operation will
not work.

Backspace •
When this key is pressed once, the cursor moves one position to the left. When
it is held down, the cursor continues to move to the left. When the cursor reaches
position 1 on one input line (line 1 or 0), it wraps around to the last position on
the other input line.

Delete •
When the CMD key is held down and the backspace key is pressed once, the
character at the cursor position (flashing character) is deleted and all characters
to the right are moved over one position to the left to close up the space. The
cursor is not moved. For example:

Before the delete operation: 12344~ r--------.::::. Flash ing character
After the delete operation: 123456

When these keys are both held down, the characters at the cursor position con
tinue to be deleted and all the characters to the right are moved to the left.

7

8

Scroll Up •

This key (located above the numeric keys) can be used only in execution mode.
When this key is pressed once, each displayed line is moved up to the next line.

As the lines are moved up, the top line is lost as it is moved off the display screen.
When this key is held down, the lines continue to move up.

Scroll Down •
This key (located above the numeric keys) can be used only in execution mode.
When the key is pressed once, each displayed line is moved to the next lower line.

As the lines are moved down, the bottom line is lost as it is moved off the display
screen. When this key is held down, the lines continue to move down.

Copy Display CD
If there is a 5103 Printer, when the CMD key is held down and this key is pressed
once, all the information presently on the display screen is printed. COpy
DISPLAY is operational even when the system is in the hold state (the HOLD
key has been pressed once).

Note: The L32 64 R32 switch has no effect on what will be printed.

INDICATOR LIGHTS

The 5100 console (Figure 3) has the following indicator lights:

Process Check

When on, this light indicates that a system malfunction has occurred. In this case,
press the REST ART switch to restart the system operation. If the system opera
tion cannot be successfully restarted after several attempts, call your service repre
sentative.

(

(

(/

("""":

-"-' -'

c

In Process

When the system is processing input, generally the display screen is blank and the
IN PROCESS light is on. After the input is processed, the light goes off, the out
put and flashing cursor are displayed, and the system waits for input.

Notes:
1. For some expressions or user-defined functions (see Chapter 5), output is

generated before th~ expression or function has completed execution. I n such
cases, even though the system is still processing data, the IN PROCESS light
goes off and the output is displayed. The flashing cursor is again displayed
when the system has finished processing the input (the expression or function
has completed execution).

2. If the display screen is blank (no data or cursor is present) and the
IN PROCESS light is off, check the brightness control before calling
your service representative.

9

Chapter 2. System Commands

10

SYSTEM OVERVIEW

The 5100 contains an active workspace, which is the part of internal storage where
the user's data and user-defined functions (programs) are stored. When the power
is turned off or the RESTART switch is pressed on the 5100, all the data in the
active workspace is lost. However, the ~ontents of the active workspace can be
saved on tape (stored workspace) and then read back into the active workspace
for use at a later time (see System Command Descriptions in this chapter). The
contents of the active workspace then exist in both the active workspace and on
tape.

The tape is your library; that is, it is a place where you can store data for later
use. Before a tape can be used, it must be formatted. A formatted tape contains
one or more files where data can be stored. Each file has a file header, which con
tains information about the file. See the) LI B system command in this chapter
for a description of the file header.

The system commands, which are used to control and provide information about
the system, are discussed next.

SYSTEM COMMAND DESCRIPTIONS

The following list shows how system commands are used to control and provide
information about the various parts of the system. Each system command is
described in detail later in this chapter.

Commands that Control the Active Workspace

Command

)CLEAR

)COPY

)ERASE

)LOAD

)PCOPY

)SYMBOLS

)WSID

Meaning

Clear the active workspace.

Copy stored objects (see note 1) into the active workspace.

Erase global objects (see note 1) from the active workspace.

Replace the active workspace with a stored workspace.

Copy stored objects (see note 1) into the active workspace and pro
tect objects in the active workspace from being destroyed.

Change the number of symbols allowed in the active workspace.

Change the active workspace 10.

(

(

{,'

(

c

Commands that Control the Library (Tape)

Command

)CONTINUE

)DROP

)MARK

)SAVE

Meaning

Write the contents of the active workspace on tape. The active
workspace can contain suspended functions.

Drop a tape file.

Format the tape.

Write the contents of the active workspace on tape. The active
workspace cannot contain suspended functions.

Commands that Provide I nformation About the System

Command

)FNS

)LlB

)SI

)SIV

)SYMBOLS

)VARS

)WSID

Meaning

Display the names of the user-defined functions.

Display workspace file headers.

Display the state indicator.

Display the state indicator and local names.

Display the number of symbols allowed and used in the active
workspace.

Display the names of the global variables.

Display the active workspace 10.

Other Commands that Control the System

Command

)MODE

)OUTSEL

)PATCH

)REWIND

Notes:

Meaning

Place the 5100 in communications mode.

Select printer output.

Apply IMFs (internal machine fix) to the system or recover
data after a tape error.

Rewind the tape.

1. Objects refers to both user-defined functions and variables.
2. The system commands)CONTINUE,)COPY,)PCOPY,)DROP,)LOAD,)MARK,

)REWIND, and)SAVE will blank the top 8 or 9 lines on the display screen when
they are used.

11

12

All system commands (and only system commands) have as their first character
a right parenthesis. Each system command must begin on a new line. Para
meters (required or optional information) for the system commands must be
separated by blanks. System commands cannot be used within APL instructions
and cannot be used as part of a function definition (function definition is dis
cussed in Chapter 6).

System commands can be entered two ways:

1. The system command can be entered one character at a time from the
keyboard.

2. The system commands)LOAD,)SAVE,)CONT,)US,)FNS,)VARS,)COPY,
)WSID,)OUTSEL and)REWIND can be entered in one operation by holding
the CMD key while pressing the top-row key just below the label of the
command you want.

The parameters, if required, must be entered and the EXECUTE key pressed before
any operation will take place. Following is an explanation of terms and symbols
used as parameters for system commands:

• Device/file number specifies the tape unit and file to be used. The built-in tape
unit is tape unit 1 and the auxiliary tape unit is tape unit 2. If the value speci
fied is less than four digits, tape unit 1 is assumed and the value specified re
presents only the file number. If the value specified is four digits, the right
most three digits specify the file number and the leftmost digit specifies the
tape unit. For example:

Device/File Number Meaning

Tape 1, file 1

02 Tape 1, file 2

2002 Tape 2, file 2

• Workspace ID is any combination of up to 11 alphabetic or numeric characters
(with no blanks); however, the first character must be alphabetic. If more than
11 characters are entered, only the first 11 are used.

• Password is any combination of up to eight alphabetic or numeric characters
(with no blanks). If more than eight characters are entered, only the first
eight are used.

• Object is a user-defined function or variable name.

• Parameters enclosed in brackets can be optional in certain cases.

..

(

(

(~

(

c

The)CLEAR Command

The)CLEAR command clears the active workspace. A cleared workspace has
no valid name and contains no user-defined variables or functions and no data.
The workspace attributes are set to:

I ndex origin
Workspace identification
Comparison tolerance
Printing width
Printing precision
Random number seed

Data printed
Symbols

CLEAR WS
1E 13
64
5
16807
ALL
125

When the command is successfully completed, CLEAR WS is displayed.

Syntax

)CLEAR

There are no parameters.

The)CONTINUE Command

The)CONTI NUE command, using the specified workspace I D, stores the contents
of the active workspace onto tape without changing the active workspace. Primarily,
this command stores active status, such as suspended functions, so an operation can
be resumed later on the same or a similar machine. When the command is
successfully completed, CONTINUED device/file number workspace ID is displayed.

The)CONTI NUE command on the 5100 is similar in function and format to the
)SAVE command (except as noted below) and is distinguished from the)CONTI NUE
command on IBM APLSV.

Notes:
1. A clear workspace cannot be written on tape.
2. A workspace with suspended functions can only be written on tape using the

)CONTINUE command (it cannot be written to tape using the)SAVE com
mand).

3.

4.

5.

)COPV and)PCOPV commands cannot specify stored workspaces that were
written on tape using the)CONTINUE command.
A stored workspace written to tape using the)CONTINUE command cannot be
loaded into a 5100 active workspace that is smaller than the original active
workspace.

If a stored workspace that was written to tape using the)CONTINUE command
is loaded into another 5100 with a larger active workspace, the workspace
available (see the DWA system variable in Chapter 5) is the same as when the
workspace was written to tape.

6. If ATTN is pressed during a)CONTINUE operation, the system operation is
interrupted and the file is set to unused.

13'

14

7. Shared variable execution status can be stored by using the)CONTINUE
command. A subsequent) LOAD allows the user to, resume execution if the
media is restored to the same condition as when the workspace was stored
using)CONTI NUE (that is, the tape containing the shared variable cannot be
repositioned or placed on a different drive).

8. If a workspace stored with the)CONTINUE command has an open shared
variable or a suspended function, the 0 LX system command will not be
executed when the workspace is loaded.

9. Workspaces are stored and loaded int_o the active workspace faster using the
)CONTINUE command than using the)SAVE command.

10. IMFs are not stored by)CONTINUE. If an IMF is required for operation of
the stored workspace, it should be reapplied by the)PATCH comma~d (if
the IMF is not already in the system) before the workspace is reloaded.

Syntax

)CONTINUE [device/file number] [workspace 10] [:password]

where:

device/file number (optional) is the number of the tape unit and file on the
tape where the contents of the active workspace are to be written. If no de
vice/file number is specified, the device/file number from which the active
workspace was loaded or specified by a previous)WSID command is used.

workspace I D (optional) is the name of the workspace to be stored. This
name must match the workspace I D of both the active workspace and the
file to be used on the tape, unless the file is marked unused. If the file is
marked unused, the active workspace I D and tape file workspace I D are changed
to this workspace I D. If no name is specified in the command, the name of
the active workspace is used.

:password (optional) is any combination of up to eight alphabetic or numeric
characters (without blanks), preceded by a colon. This sequence of characters
must be matched when the stored workspace is to be read back into the active
workspace. If no workspace I D or password is entered, the password associa
ted with the active workspace (if any) is assigned to the workspace being
stored. If just the workspace I D and no password is entered, any password associated
with the active workspace is not used.

The)COPV Command

The)COPY command copies all or specified global objects from a stored work
space to the active workspace. Only objects in stored workspaces that were
written on tape with the)SAVE command can be copied. When the command
is successfully completed, COPI ED device/file number workspace I D is displayed.

Notes:
1. If the active workspace contains suspended functions, objects cannot be copied

into it.
2. If the ATTN key is pressed during a)COPY operation, the system operation is

interrupted and the amount of information copied into the active workspace
is unpredictable.

(~

(

(
....

/

c

Syntax

)COpy device/file number workspace ID :password [object name(s)]

where:

device/file number is the number of the tape unit and workspace file the ob
jects are copied from.

workspace I D is the name of the stored workspace on tape.

:password is the security password assigned by a previous)WSI D or)SAVE
command. If no password was assigned previously, a password cannot be
specified by this command.

object name(s) (optional) is the name of the global object(s) to be copied from
the designated stored workspace. If this parameter is omitted, all global ob
jects in the designated stored workspace are copied.

The)DROP Command

The)DROP command marks a specified file unused. After the file has been
marked unused, the data in the file can no longer be read from the tape. When
the command is successfully completed, DROPPED device/file number file ID is
displayed.

Syntax

)DROP device/file number [file ID]

where:

device/file number is the number of the tape unit and the file on the tape.

file I D (optional) is the name of the stored workspace file to be marked unused.
If the file number specified is a data file, any file ID specified is ignored.

The) E RASE Command

The)ERASE command erases the named global objects from the active work
space. There is no message displayed at the successful completion of the com
mand.

Notes:
1. When a penden\ function (see Chapter 7) is erased, the response SI DAMAGE

is issued.
2. If the object being erased is a shared variable (see Chapter 8), the shared vari

able will be retracted.
3. Even after the object is erased, the name remains in the symbol table (the

part of the active workspace that contains all the symbols used).

15

16

Syntax

) ERASE object name(s)

where:

object name(s) are global names separated by blanks.

The)FNS Command

The) FNS command displays the names of all global user-defined functions in the
active workspace. The functions are listed alphabetically. If the character para
meter is specified, the names are displayed beginning with the specified character
or character sequence.

Note: You can interrupt the)FNS command by pressing the ATTN key.

Syntax

)FNS [character(s)]

where:

characteds) (optional) is any sequence of alphabetic and numeric characters
that starts with an alphabetic character and contains no blanks. This sequence
of characters determines the starting point for an alphabetic listing.

The)LIB Command

The) LIB command displays the file headers of the files on tape (library). The
file header contains the following information:

• File number. The files on tape are numbered sequentially, starting with 1.

• File I D. The file I D can be from 1 to 17 characters. If the file contains a
stored workspace, the file ID is the same as the stored workspace ID.

• File type. The file type is a 2-digit code; the following chart gives the mean
i ng of each code:

File Type Description

00 Unused file

01 Exchange data file (see Chapter 8)

02 General exchange data file (see Chapter 8)

03 BASIC source file

(

(

(""

/

c

File Type

04

05

06

07

08

16

17

19

72

Description

BASIC workspace file

BASIC keys file

APL continued file (see)CONTINUE command in this
chapter)

APL saved file (see)SAVE command in this chapter)

APL internal data format file (see Chapter 8)

Patch, tape recovery, and tape copy file

Diagnostic file

IMF file

Storage dump file

• Size of the file. The files are formatted in increments of 1024-byte blocks of
storage.

• Number of unused contiguous 1024-byte blocks of storage in the file.

• Number of defective records (512-byte blocks) in the file; an asterisk (*) is
displayed if there are more than nine defective records.

Note: This value can indicate when you should relocate a file to avoid loss of
data due to defective areas on the tape.

Following is an example of a file header:

006 FILE6 07 Ol.O .• OO:l ()

File type -1 t
Size of the file~
Available storage _____ ---'

Number of defective records ___

- __ FileID

~ ______ File number

The)LlB command operation can be interrupted by pressing the ATTN key.

17

18

Syntax

) LIB [device/file number]

where:

device/file number (optional) is the number of the tape unit and the starting
file number. All file headers from that file to the end of the tape are displayed.
If no entry is made, the display begins with the first file following the file you
are currently positioned at on tape unit 1. For tape unit 2, the entry 2000 will
display the file headers beginning with the first file following the file you are
currently positioned at on tape unit 2.

The) LOAD Command

The) LOAD command loads the contents of a stored workspace from the tape
into the active workspace, completely replacing the contents that were in the
active workspace. When the command is successfully completed, LOADED
device/file number workspace 10 is displayed.

Note: If the ATTN key is pressed during a load operation, the system operation
is interrupted and the active workspace is cleared.

Syntax

) LOAD device/file number workspace 10 : password

where:

device/file number is the number of the tape unit and the number of the file
on the tape.

workspace lOis the name of the stored workspace.

:password is the security password assigned to the stored workspace by a pre
vious)WSID,)CONTINUE, or)SAVE command. If no password was pre
viously assigned, a password cannot be specified. If a password was assigned
to the stored workspace but is not specified, or if it is incorrectly specified
for this command, the error message WS LOCKED is displayed.

The)MAR K Command

The)MARK command formats the tape so that the active workspace or data
can be saved on it. Each)MARK command formats a specified number of files
to a specified size. Additional files of different sizes can be formatted by using
additional)MARK commands.

When the operation is successfully completed, MAR KED
number of the last file marked size of the last file marked is displayed.

(

(~i

Notes:
1. The ATTN key is not operative during the)MARK command operation.
2. If the message ALREADY MARKED is displayed after a)MARK command

was issued, the specified file already exists on the tape. To re-mark the
specified file, enter GO. If the file is not to be re-marked, press EXECUTE

to continue.

CAUTION
If an existing file on tape is re-marked, the original information in the re-marked
file and the existing files following the re-marked file cannot be used again.

Syntax

)MARK size number of files to mark starting file number [device]

where:

size is an integer specifying the size of each file in 1024-byte (1K) blocks of
storage.

The following formulas can be used to determine what size a file should be
marked. The formula for a workspace file (the contents of the active wo~kspace
written to tape with a)SAVE or)CONTINUE command) is
MAXSIZE= 3+f (CLEAR-ACTIVE)-;-1024, where:

• MAXSIZE is the maximum amount of tape storage (number of 1024-byte
blocks) that would be required to write the contents of the active workspace
to tape.

• CLEAR is the value of DWA (see Chapter 5) in a clear workspace.

• ACTIVE is th~ value of DWA just before the contents of the active workspace
are written to tape.

The formula for a data file (data written to tape using an APL shared variable
-see Chapter 8) when all of the data is contained in the active workspace is

MAXSIZE= r (WI!HOUT -WITHH-1 024, where:

• MAXSIZE is the maximum amount of tape storage (number of 1024-byte
blocks) required to write the data to tape.

• WITH is the value of DWA (see Chapter 5) with the data in the active work
space.

• WITHOUT is the value of DWA before any data to be written to tape was
stored in the active workspace.

There is no formula for determining what size to mark a data file when the data
is written to tape as it is entered from the keyboard. The amount of tape storage
required depends upon how much data is entered from the keyboard and what
type of data is used. For information on how many bytes of storage are required
by the various types of data, see Storage Considerations in Chapter 9.

Note: The file header for each marked file requires 0.5K bytes of storage. There
fore, the number of bytes of tape storage required for each file is the specified size
of the file plus 0.5K.

19

20

number of files to mark is an integer specifying the number of files of the
specified size to format.

starting file number is an integer specifying the file number where formatting
is to start.

device (optional,) specifies the tape unit that contains the tape to be formatted.
An entry of 1 specifies tape unit 1 and 2 specifies tape unit 2. If no entry is
made, tape unit 1 is assumed.

To format a tape for four 12K files, two 16K files, and three 10K files, the
following commands are required:

)MARK 12 4

)MARK 16 2 5 -------~Starting file number

)MARK 10 3 7

The)MODE Command

The)MODE command is used to load the 5100 communications program or 5100
serial I/O adapter program from a tape mounted in tape drive 1. When the system
is in communications mode, APL is no longer available. For more information on
the communications feature or the serial I/O adapter feature, see IBM 5100
Communications Reference Manual, SA21-9215, or IBM 5100 Serial I/O Adapter
User's Manual, SA21-9239, respectively.

Syntax

)MODE COM

The)OUTSEL Command

The)OUTSEL command specifies which data on the display will go to the printer.

Syntax

)OUTSEL [option]

where:

option is one of the following:

• When ALL is specified, all subsequent information that is displayed will be
printed.

• When OUT is specified, only the output is sent to the printer; input is dis
played, but it does not go to the printer.

• When OFF is specified, none of the information displayed is printed, unless
it is assigned to an APL shared variable used by the printer (see Chapter 7).

If no parameter is specified, ALL is assumed. After a) LOAD or)CLEAR com
mand or when the machine is first turned on, the ALL option is active.

(

(

(/

•

c

The)PA TCH Command

The following is a list of the uses of this command. This command is used in con
junction with specially devised programs on the customer support cartridge supplied
with the 5100. The uses are described in detail, following the list:

• Copy IMFs (internal machine fix), the Copy IMF program, and the Load IMF
program onto another tape cartridge.

• Load IMFs for the system program into the active workspace, then make the APL
language available again.

• Display the EC version of each interpreter module.

• Recover data on tape when tape read errors (ERROR 007 ddd-see Chapter 11)
occur during use of one of the following files:

1. Exchange (file type 01)

2. General exchange (file type 02)

3. BASIC source (file type 03)

4. APL internal data format (file type 08)

• Copy the contents of one tape cartridge to another tape cartridge.

The customer support cartridge contains the following files:

• File 1. The programs that copy or load IMFs and the program that displays
interpreter module EC versions.

• File 2. The IMFs for the 5100 .

• File 3. The Tape Recovery program.

• File 4. The Tape Copy program.

• File 5. APL aids. This is a saved work.space file (WSID=APLAIDS) that con
tains the following four functions:

1. !J. !J. TRACE-Traces all the statements in a specified user-defined function.

2. !J.!J. TRACEALL-Traces the first executable statement of each user
defined function currently in the active workspace.

3. !J.!J. TRACEOFF-Turns off all tracing.

4. !J.!J.SHARED-Displays the shared variable names currently in the active
workspace.

The !J.!J. TRACE function requires as its right argument the name of the user
defined function to be traced enclosed in single quotes. The other functions
do not require any arguments.

21

22

This workspace file also contains the following five variables that describe the func
tions in the workspace:

1. DESCRIBE

2. DESCRIBE~~TRACE

3. DESCRIBE~~TRACEALL

4. DESCR JBE~ ~ TRACEOF F

5. DESCRJBE~~SHARED

These functions and variables can be copied into the active workspace using the
)COPY command. For example, to copy the ~ ~ TRACE function into the active
workspace:

)COPY 5 APLAIDS AATRACE

Note: The)PATCH command is not required for using the functions in file 5.

When the)PATCH command is used with the tape cartridge inserted in tape drive 1,
the following options are displayed:

ENTER OPTION NO.
1. COpy IMF TAPE

2. LOAD IMF'S
3. DISP EC VER.
4. KEY-ENTER IMF
5. END OF JOB
6. TAPE RECOVERY
7. TAPE COpy PGM

- .. Flashing Cursor

(

(
~ ..

/

c

To select an option, enter an option number (the tape cartridge must be inserted in
tape drive 1). If an option number other than those displayed is entered, the op
tions will be displayed again. Once the option number has been entered, additional
prompting messages might be displayed for the selected option.

Option 1. Copy IMF Tape

The Copy IMF Tape option allows the following files to be copied from the tape:

• File 1, which contains the Copy IMF program, Load IMF program, and Display
EC Version program.

• File 2, which contains the IMFs for the 5100. The IMFs can be copied from the
file as follows:

1. Copy all IMFs that apply to APL.

2. COpy all IMFs for APL that apply to the 5100 being used.

3. Copy specific 1M Fs by problem number.

4. Copy specified IMFs by problem numbers that apply to the 5100 being
used. (I f a problem number is specified that does not apply to the 5100
being used, it is not copied.)

Note: The tape onto' which files 1 and 2 are to be copied must be marked before
the copy operation is done. Use the)LlB command to determine what size the
files should be marked.

The Copy IMF Tape program will issue prompting messages and wait for the user
to respond to each message.

Copying IMFs allows tape cartridges containing only the IMFs that apply to your
5100 to be created.

Option 2. Load tMFs

The Load IMFs option allows IMFs to be loaded into the system program and then
makes the APL language available again. IMFs can be loaded as follows:

• Load all IMFs that apply to the 5100 being used.

• Load specified IMFs by problem numbers that apply to the 5100 being used.
(If a problem number is specified that does not apply to the 5100 being used, it
is not loaded.)

The Load IMFs program will issue prompting messages and wait for the user to respond
to each message.

Note: The IMFs occupy storage (space) in the active workspace and can also reduce
the performance of your 5100 significantly; therefore, IMFs should not be applied
to your 5100 if the problem does not affect your operation or if the problem can be
circumvented by an APL statement or command. The IMFs will remain in the active
workspace until the power is turned off or RESTART is pressed.

23

24

Option 3. Disp EC Ver.

The Disp EC Ver. option is primarily for your service representative's use. This
option will display a 4-digit code for each interpreter module. The first two digits
are the module identification and the next two digits are the EC version.

The EC Version program will issue prompting messages and wait for the user to
respond to each message.

Option,4. Key-Enter IMF

This option allows the service representative to enter IMFs from the keyboard. The
IMF is then written to file 2 on the tape containing the IMFs. The IMF can then be
loaded or copied from the tape.

Option 5. End of Job

This option causes the APL language to be available again.

Option 6. Tape Recovery

The Tape Recovery option allows the user to recover data from a file or files on

which tape read errors (ERROR 007 ddd) are occurring. The Tape Recovery Pro
gram can be used on the following files:

• Exchange (file type 01)

• General exchange (file type 02)

• BASIC source (file type 03)

• APL internal data format (file type 08)

The Tape Recovery program will issue prompting messages and wait for the user to
respond to each message.

The Tape Recovery program will recover as much data as possible in the file; some of
the data in the record where the tape read errors occur is not recoverable; some of
the data that precedes and follows that record may also not be recoverable.

(

('T

c

Option 7. Tape Copy Program

Syntax

The Tape Copy option allows you to copy the contents (up to the end of marked
tape) of one cartridge to another cartridge. Tape copy can utilize the auxiliary tape
drive, if available. Tape copy also marks the tape being copied to.

Tape copy issues pro~pts and waits for you to respond to each prompt.

) PATCH

There are no parameters.

The)PCOPV Command

The) PCOPY command copies all or specified global objects from a stored work
space into the active workspace. It is the same as the)COPY command, except
that if the objrct name already exists in the active workspace, it is not copied from
a stored workspace. Therefore, the object in the active workspace is protected
from being overlaid and destroyed. Only objects in stored workspaces that were
written on tape with the)SAVE command can be copied.

When the command is successfully completed, COPI ED device/file number
workspace ID is displayed.

Notes:
1. If the active workspace contains suspended functions, objects cannot be copied

into it.
2. If the ATTN key is pressed during a)PCOPY operation, the system operation is

interrupted and the amount of information ,copied into the active workspace is
unpred ictable.

3. If the specified object name already exists in the active workspace, the message
NOT COPIED:object name is also displayed.

Syntax

)PCOPY device/file number workspace ID :password [object name(s)]

where:

device/file number is the number of the tape unit and the stored workspace file.

workspace I D is the name of the stored workspace on the tape.

:password is the security password assigned by the previous)WSID or)SAVE
command. If no password was assigned, a password cannot be specified by
this command.

object name{s) (optional) is the name of the global object(s) to be copied from
the designated stored workspace. If omitted, all global objects in the designated
stored workspace are copied, except those already in the active workspace (if
any).

25

26

The)REWIND Command

The)REWIND command rewinds the specified tape. There is no message displayed
at the successful completion of this command.

Syntax

)REWIND [device number]

where:

device number (optional) is the tape (on drive 1 or 2) to be rewound. If the para
meter is omitted, tape 1 is rewound.

The)SAVE Command

The)SAVE command stores the contents of the active workspace onto tape with
out changing the contents of the active workspace. The stored workspace can be
loaded or copied on a machine with a larger or a smaller active workspace. Also,
individual global objects can be copied from the stored workspace to the active
workspace. When this command is successfully completed, SAVED
device/file number workspace I D is displayed. Do not remove the tape until
th is message is displayed.

Notes:
1. A clear workspace or a workspace with suspended function cannot be written on

tape using the)SAVE command; however, a workspace with suspended functions
can be written to tape using the)CONTINUE command.

2. The)COPV and)PCOPV commands can specify stored workspaces that were
written on tape only if the)SAVE command was used.

3. Depending on the amount of data in the stored workspace, a stored workspace
that was written to tape using the)SAVE command can be loaded into another
5100 with a smaller active workspace.

4. If ATTN is pressed during a)SAVE operation, the system operation is interrupted
and the file is set to unused.

5. No open shared variables are stored in a)SAVE operation. Open shared variables
are stored with the)CONTINUE command.

6. IMFs are not stored by the)SAVE operation. If an IMF is required, it is necessary
to reload the IMF by using the)PATCH command (if the IMF is not already in
the system) before the stored workspace is reloaded.

(

(

(

C"
./

Syntax

)SAVE [device/file number] [workspace I D] [:password]

where:

devicelfile number (optional) is the number of the tape unit and file on the
tape where the contents of the active workspace are to be written. If no
device/file number is specified, the device/file number from which the active
workspace was loaded or which was specified by a previous)WSI D command
is used.

workspace I D (optional) is the name of the workspace to be stored. This
name must match the workspace I D of both the active workspace and the file
to b,e used on the tape unless the file is marked unused. If the file is marked
unused, the active workspace and tape file workspace I D will be changed to
this workspace ID. If no name is specified in the command, the name of the
active workspace is used.

:password (optional) is any combination of up to eight alphabetic or numeric
characters (without blanks), preceded by a colon. This sequence of characters
must be matched when the stored workspace is to be read back into the active
workspace. If no workspace ID or password is entered, the password associated
with the active workspace (if any) is assigned to the workspace being stored.
If just the workspace I D and no password is entered, any password associated
with the active workspace is not used.

The)SI Command

The)SI command displays the names of the suspended and pendent user-defined
functions (see State Indicator in Chapter 7). The suspended functions are indicated
by an *, with the most recently suspended function listed first, followed by the
next most ~ecently suspended function, and so on.

Syntax

)SI

There are no parameters.

The)SIV Command

The)SI V command displays the names of the suspended and pendent user
defined functions (see State Indicator in Chapter 7) and the names local to
each function. The suspended functions are indicated by an *, with the most
recently suspended function listed first, followed by the next most recently
suspended function, and so on.

27

28

Syntax

)SIV

There are no parameters.

The)SYMBOLS Command

The)SYMBOLS command is used to change or display the number of symbols
(variable names, function names, and labels) allowed in the active workspace. The
number of symbols allowed can only be changed immediately after a)CLEAR com
mand has been issued. In a clear workspace, the number of symbols allowed is
initially set to 125 by the 5100. When the command is used to display the number
of symbols allowed, IS the number of symbols allowed, number of symbols used
I N USE is displayed. When the command is used to change the number of symbols
allowed, WAS the former number of symbols allowed is displayed.

Note: When a stored workspace is loaded into the active workspace, the number
of symbols allowed in the active workspace will be the same as when the stored
workspace was written to tape.

Syntax

)SYMBOLS [0]

where:

11. (optional) is an integer equal to or greater than 26 that specifies the number of
symbols allowed in the active workspace. Each symbol allowed requires eight bytes
of storage in the active workspace.

Notes:
1. The number of symbols allowed is assigned in blocks of 21; therefore the

actual number allowed can be larger than the number specified.
2. When a symbol is used in the active workspace, it remains in use even though the

object is erased or, in the case of "VALUE ERROR", never existed. When the
active workspace is written to tape with the)SAVE command and subsequently
reloaded, these unused names are removed from the symbol table; and the number
of symbols in use will be the same as the number of objects in the workspace.

3. The total number of allowed symbols remains the same after writing the wcrk
space to tape with a)SAVE or)CONTINUE command and reloading the work
space to the active workspace. The number of symbols in the active workspace
can be changed as follows:
a. Save the active workspace with the)SAVE command.
b. Clear the active workspace with the)CLEAR command.
c. Set the new number of symbols with the)SYMBOLS command.
d. Copy the stored workspace to the active workspace with the)COPY

command.

t.)

(

(

c

c

The)VARS Command

The)VARS command displays the names of all global variables in the active work
space. The variables are displayed alphabetically. If the character parameter is
included, the names are displayed beginning with the specified character sequence.

Syntax

)VARS [character(s)]

where:

character(s) (optional) is any sequence of alphabetic and numeric characters that
starts with an alphabetic character and contains no blanks. This entry can be
used to define the starting point for an alphabetic listing.

The)WSID Command

The)WSID (workspace ID) command is used to change or display the tape device/
file number and workspace I D for the file where the active workspace contents will
be written if either a)SAVE or a)CONTINUEcommand is used. The)WSID com
mand is also used to change or assign the security password. When the)WSI D com
mand is issued without any parameters, device/file number workspace I D is dis-
played. When the)WSID command is issued with parameters, WAS device/file number
workspace I D is displayed.

Note: The)WSI D command only affects the active workspace; it cannot be used
to change any information on tape.

Syntax

)WSID [device/file number] [workspace ID] [:password]

where:

devicelfile number (optional) is an integer that specifies the device/file number
where the active workspace will be stored when either the)SAVE or)CONTI NUE
command is issued.

Note: If this parameter is omitted, the device/file number is cleared; a)SAVE or
)CONTINUE command will not work unless a device/file number is specified in
that)SAVE or)CONTINUE command;

workspace ID (optional) will be the new name for the active workspace. This
parameter must be entered if any other parameter is used.

:password (optional) is any comoination of up to eight alphabetic or numeric
characters (without blanks), preceded by a colon. These characters will become
the security password for the tape file when the active workspace is written on
tape.

29

Chapter 3. Data

30

VARIABLES

You can store data in the 5100 by assigning it to a variable name. These stored
items are called variables. Whenever the variable name is used, APL supplies the
data associated with that name. A variable name can be up to 77 characters in
length with no blanks; the first character must be alphabetic and the remaining
characters can be any combination of alphabetic and numeric characters. Variable
names longer than 77 characters can be used, but only the first 77 characters are
significant to APL. The +- (assignment arrow) is used to assign data to a variable:

LENGTHi··6
WIDTl-lfo8
AREA~LENGTHxWIDTH

To display the value of a variable, enter just the variable name:

LENGTH
6

WIDTH
8

I~I~EA
4B

DATA REPRESENTATION

Numbers

The decimal digits 0 through 9 and the decimal point are used in the usual way. The
character - , called the negative sign, is used to denote negative numbers. It appears
as the leftmost character in the representation of any number whose value is less
than zero:

O-lJ.

The negative sign, -, is distinct from - (the symbol used to denote subtraction) and
can be used only as part of the numeric constant.

(".

c

c:

Scaled Representation (Scientific Notation)

You can represent numbers by stating a value in some convenient range, then mul
tiplying it by the appropriate power of ten. This type of notation is called scaled
representation in APL. The form of a scaled number is a number (multiplier) followed
by E and then an integer (the scale) representing the appropriate power of 10. For
example:

Number Scaled Form

t Multiplier
66700 6.67E4

• Scale
.00284 2.84E3

The E (E can be read times ten to the) in the middle indicates that this is scaled form;
the digits to the right of the E indicate the number of places that the decimal point
must be shifted. There can be no spaces between the E and the numbers on either
side of it.

Numeric Value Range

Numeric values in the 5100 can range from -7.237005577332262E75 to
7.237005577332262E75. The smallest numeric value the 5100 can use is
±. 5.397604346934028E -79.

Numeric Value Precision

Numbers in the 5100 are carried internally with a precision of 16 significant
digits.

Character Constants

Zero or more characters enclosed in single quotes, including overstruck characters
(see Appendix B) and blank characters (spaces), is a character constant. The quotes

indicate that the. characters keyed do not represent numbers, variable names, or
functions, but represent only themselves. When character constants are displayed,
the enclosing quotes are not shown:

'ABCDEFG'
ABCDEFG

123('~BC

, :1.23('~BC '

M~'THE ANSWER IS:'
M

THE ANSWER IS:

When a quote is required within the character constant, a pair of quotes must be
entered to produce the single quote in the character constant. For example:

'DON' 'T GIVE THE ANSWER AWAY'
DON'T GIVE THE ANSWER AWAY

31

32

Logical Data

Logical (Boolean) data consists of only ones and zeros. The relational functions
(> ~ = < ~:;t) generate logical data as their result; the result is 1 if the condition was

true and 0 if the condition was false. The output can then be used as arguments
to the logical functions (/\I\vv",) to check for certain conditions being true or false.
Logical data can also be used with the arithmetic functions, in which case it is
treated as numeric 1's and D's.

SCALAR

A single item, whether a single number or single character constant, is called a scalar.
It has no coordinates; that is, it can be thought of as a geometric point. The follow
ing are examples of scalars:

• A I ,,,'
A

Scalars can be used directly in calculations or can be assigned to a variable name.
The variable name for the scalar can then be used in the calculations:

2x3
I.>

l~f'2

Bi"~:~
(.·~+B

c·
.J

ARRAYS

Array is the general term for a collection of data, and includes scalars (single data
items), vectors (strings of data), matrices (tables of data), and arrays of higher
dimensions (multiple tables). All primitive (built-in) functions are designed to handle
arrays. Some functions are designed specifically to handle arrays rather than scalars.
Indexing, for example, can select certain elements from an array for processing.

(

('

c

One of the simplest kinds of arrays, the vector, has only one dimension; it can be
thought of as a collection of elements arranged along a horizontal line. The num
bers that indicate the positions of elements in an array are called indices. An element
can be selected from a vector by a single index, since a vector has only one dimen
sion. The following example shows assigning a numeric and a character vector to two
variable names, Nand C; the names are then entered to display the values they re
present:

N~5 6.2 -3 888 95.12
N

~; 6.2 -::5 aB8 (y~;. :1.2
C~" · ABCDEFG'
c

ABCDEFG

Generating Arrays

The most common way to generate an array is to specify the following: the shape
the array is to have-that is, the length of each coordinate; the values of the ele
ments of the new array. The APL function that forms an array is the reshape
function. The symbol for the reshape function is p. The format of the function
used to generate a n array is X p Y, where X is the shape of the array and Y represents
the values for the elements of the array. For the left argument (X), you enter a
number for each coordinate to be generated; this number indicates the length of
the coordinate. Each number in the left argument must be separated by at least one
blank. The values of the elements of the new array are whatever you enter as the
right argument (Y). The instruction 7 p A means that the array to be generated has
'one dimension (is a vector) seven elements in length, and that seven values are to
be supplied from whatever values are found stored under the name A. It does not
matter how many elements A has, as long as it has at least one element. If A has
fewer than seven elements, its elements are repeated as often as needed to provide
seven entries in the new vector. If A has more than seven elements, the first seven
are used. The following examples show generation of some vectors:

7(.>:1. 2]
:1.2:.3123:1.

2p12~5

123 :1.23
5(.)1 . ~5

1.3 1.3 1.3 1.3 1.3

An array with two coordinates (rows and columns) is called a matrix.

Columns

Rows

33

34

To generate a matrix, you specify X (left argument) as two numbers, which are the
lengths of the two coordinates. The first number in X is the length of the first co
ordinate, or number of rows, and the second number is the length of the second
coordinate, or number of columns. The following example shows how a matrix is
generated:

M~2 3pi 2 3 4 5 6
t-1

:1. 2 3
I.~ ~; 6

(o1BCB
EFGH

ABC
DEF

t.1f-2 1+ rJ I ABCDEFGH I

M

M :1. i- 2 :.3 p t1
Mi

Note that the values in the right argument are arranged in row order in the arrays. If
the right argument has more than one row, the elements are taken from the right
argument in row order.

The rank of an array is the number of coordinates it has, or the number of indices
required to locate any element within that array. Scalars are rank O. Vectors have
a rank of 1, matrices have a rank of 2, and N-rank arrays have a rank from 3 to 63
(where N is equal to the rank). N-rank arrays, like matrices, are generated by
providing as the left argument a number indicating the length for each coordinate
(planes, rows, and columns). The following examples show how to generate
3-rank arrays. Note that the elements taken from the right argument are arranged
in row order:

I~IBCD

EFGH
I,.JKI...

MNDP
f~I~ST

UVWX

AB
CD
EF

GH
IJ
1{1...

~1N

DP
GR

ST
UV
WX

A~'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
;.~ :5 lJ. P(.~I

\. ____ 2-plane, 3-row, 4-column array

'+ 3 2 f)l~

\\-___ 4-plane, 3-row, 2-column array

(

(

(
,,,

/

Finding the Shape of An Array

Once you have generated an array, you can find its shape (number of elements in
each coordinate) by specifying p (shape function) with only a right argument which
is the name of the array. If A is a vector with six elements and you enter pA, the re
sult is one number because A is a one-dimensional array. The number is 6, the
length (number of elements) of A's one dimension. The result of the shape function
is always a vector:

A~111 222 333 444 555 666
~) (.1

The shape of a matrix or N-rank array is found the same way:

123

M~2 3p1 2 3 1+ 5 6
M

'+ 5 6
~)M

2 3

'i .:..

R~2 3 4pi 2 3 1+ 5 6 7 B
R

12~3ll·

~5 6 ·7 B
1 2 3 Lt·

~5 6 "7 B
1 2 3 Lt·
~.) t) "7 B

pR
3 4

I n some cases, it might be necessary to know just the rank, the number of coordi
nates (or indice~) of an array. The rank can be found by entering pp (shape of the
shape) and a right argument, which is the name of the array:

Ai-lll 222 ~5~53 4'+'+
Bf·2 3p1 2 3 '+ ~i 6
Ci-2 ~3 I.~~) 1 :~ 3 ,+ ~)

(jA

6
ppA

1
pH

2 3
p(jB

2
pC

2 3 1+
ppC

3

35

36

The following table shows what the shapes and ranks are for the various types of
arrays:

Data
Type

Scalar

Vector

Matrix

N-rank
arrays

Empty Arrays

Shape pX Rank p pX

No dimension (indicated by an empty vector). ·0

Number of elements.

Number of rows and the number of columns. 2

Each number is the length of a coordinate. N

Although most arrays have one or more elements, arrays with no elements also
exist. An array with no elements is called an empty array. Empty arrays are useful
when creating lists (see Catenation in this chapter) or when branching in a user
defined function (see Chapter 6).

Following are some ways to generate empty arrays:

• Assign 10 to a variable name to generate an empty vector:

EVECTOR-E" \.0
[VECTOR An empty array is indicated

------------- by a blank display.
r:iEVECTOR

0,
'-. ____________ The shape of the empty vector

is zero (zero elements).

• Use a zero length coordinate when generating a multidimensional array:

:3 0

This matrix has three rows
EMATRIX:l.~<3 O~) \ 0- and no (0) columns.
EMATJ~IX:1.

A blank output display

~)EMAT J~ I X 1.

• A function might generate an empty vector as its result; for example, finding the
shape of a scalar:

A blank output display.

(~:

c~

(".,
-

./

("

(~

CATENATION

You can join together two arrays to make a single array by using the catenation
function. The symbol for this function is the comma. When catenating vectors,
or scalars and vectors, the variables are joined in the order in which they are speci
fied, as the following examples show:

A~~ 1. :~ :3 I.~

Bi"'+ 5 6
A,B

:l 2 :3 '+ '+ 1::'
\.1 6

B,A
q. ~:; 6 1. 2 :.:~ q.

(4,2
:1. 2 3 '+ 2

3/A
3 1- '1 r:M 3 1+

When catenating two matrices or N-rank arrays, the function can take the form
A,[I]B, where I defines the coordinate that will be expanded when A and B are joined.
If the coordinate is not specified, the last coordinate is used. When A and Bare
matrices and [I] is [1], the first coordinate (number of rows) is expanded; when [I]
is [2], the last coordinate (number of columns) is expanded. The following examples
show how to catenate matrices:

Graphic Representation

A B

Ai"2 :3~):1. 0 20 :3 () 4·0 !!.!j 0 <~) 0 10 20 30 11 22 -B~"2 3(-1l.:1. 22 :3:3 1.1. 1+ "':'I:!' 66 40 50 60 44 55 ,.J ,.J

A,B
1.0 20 30 1:1. ,') ")

Lot!. 33 A B
'+0 ~!50 60 '+'+ 55 66 10 20 30 11 22 33

A/[2:JB 40 50 60 44 55 66
10 ~~ () 30 :1.1 22 33
4·0 ~7j 0 60 '+'+ 55 66

A/[lJB A 10 20 30
10 20 30 40 50 60
I.~O ~5 () 60 ,
1.1- "") ")

I!. A-_ :3~1 B 11 22 33
1+'+ 1::-1::'

.. J ,.J 66 44 55 66

33
66

37

A~-2 ~5(.)tO

B~··2 '+.otl.

(.1 ~ [2:JB

Matrices of unequal sizes can be catenated, providing ,that the lengths of the co
ordinates not specified are the same (see the first example following). If the co
ordinates not specified are not the same, an error results (see the second example
following):

20 30 1.,·0 ~:; 0 60 10 20 30 11

~~2 :·5~3 4·'+ ,::.,:.-
,.J ,J 61.) 77 88 40 50 60 55

A
:1. 0 20 30 1. :I. ::.::~.~ :·5~~ '+'+ • 10 20 30 11 22
1.1-0 ~.:;O (~) () 1::·1::·

d,J l)(~) 77 BB 40 50 60 55 66

A,[lJB
LENGTH ERr~DR

A~ [:I.J B

38

A 10 20 30
40 50 60

B 11 22 33 44
55 66 77 88

A scalar can also be catenated to an array. In the following example, a scalar is
catenated to a matrix. Notice that the scalar is repeated to complete the coordinate:

A~2 3pl0 20 30 ~O 50 60
A

10 20 30
'+0 ~50 60

A,[2J99
1.0 20 30 99
l~O 50 60 99

A,[:LJ99
10 20 30
'+ 0 ~7j () 6 ()
9("/ 99 99

A vector can also be catenated to another array, provided the length of the vector
matches the length of the coordinate not specified. See the following examples:

(.1,99 88
10 20 ::~() 99
1.1·0 ~50 ld) 8B

•

A/t:l]99 88
LENGTH E R I~O R

A/[l] 99 88
A

, 10
40

20 30 99
50 60 88

22 33 44
66 77 88

B
33 44
77 88

(

c

The catenate function is useful when creating lists of information. Sometimes it is
necessary to use an empty array to start a list. For example, suppose you want to
create a matrix named PHONE where each row will represent a 7-digit telephone
number. First you want to establish the matrix, then add the telephone numbers
at a later time. The following instruction will establish an empty array named
PHONE with no (0) rows and seven colum-ns:

PHDNE~"O 7(.>·~ 0
_---I:->H-O-N-E-: _______ Blank display indicates an

pPHONE
empty array.

o '7

Now, the telephone numbers can be added as follows:

PHONE~PHONEIC1]'5336686'

PHONE
5336686

PHONE~PHONE/C1]'4564771'

PI··IONE
~:;:3366B6

45e)I+7'7l
pPHONE

2 _7 ___________ The list of telephone numbers

now contains two rows.

INDEXING

You may not want to refer to the whole array but just to certain elements.
Referring to d,nly certain elements is called indexing. Index numbers must be
integers; they are enclosed in brackets and written after the name of the variable
to which they apply. Assume that A is assigned a vector as follows: A+-11 12 13
14 15 16 17. The result of entering A is the whole vector, and the result of entering
A [2] is 12 (assuming the index origin is 1; see Chapter 5 for more information on
the index origin).

Here are some more examples of indexing:

A~11 12 13 l4 15 16 17
A[3]

A[~:; :3 7 1]
15 13 17 11

Bi":~ ~I. '+ 6 Blank Character

ACB] 1
13 1:1. :1.4 16

B~'ABCDEFGHIJKLMNOPQRSTUVWXYZ ·
8[4 1 1~ 27 1 14 4 27 3 12 1 9 18J

DAN AND CI...A I I~
C~22 9 18 7 9 14 9 1
BEG]

VIRGINIA

39

,40

If you use an index that refers to an element that does not exist in the array, the
instruction cannot be executed and INDEX ERROR results:

A
11 12 13 1~ 15 16 17

A[8]
INDEX ERROR

ACBJ
A

You cannot index or do anything else with an array until after the array has been
specified. For example, suppose that no value has been assigned to the name Z;
then an attempt to store values in certain elements within Z would result in an
error, since those elements do not exist:

Z[3 I.J·]~":I.B '+6
VALUE ErJ.rJ.D'~

Z I:: 3 I~. ::I ~.. :1. B I.). b
/'0.

Indices (whatever is inside the brackets) can be expressions, provided that when
those expressions are finally evaluated, the results are values that represent valid
indices for the array:

B
ABCDEFGH I ,..II{ I...MNO P(~ RSTUVWXYZ

X~-1 2 3 4· ~:=;
B[Xx2]

BDFH,J
X

1 2 3 ~ 5
B[1+Xx:~J

The array from which elements are selected does not have to be a variable. For
example, a vector can be indexed as follows:

2 3 5 7 9 11 13 15 17 19[7 2 ~ 2]
13 3 7 3

'ABCDEFGHIJKLMNOPQRSTUVWXYZ '[12 15 15 11 27 16 1]
l..OOI(PA

• {i BCD E F 0 H I ,"/1< I... r"'1 N [I P (-). F-~ STU \/ t· . .! X '{ :?: 'I:: :::.:~ 1+ (,1+ 1 ~.:.:.i ll.j· "':,":.1
...... I :I. :::~; :I. J D ::? ~.:.:.i J

nDN ~~
r'i(.:,R\' -~------______ ~ ~

The shape of the result is the same as the index.

/ '}

" ,

(

(

("/

c

Indexing a matrix or N~rank array requires an index number f<;>r each coordinate.
The index numbers for each coordinate are separated by semicolons. Suppose M is
a 3 by 4 matrix of consecutive integers:

M~3 4p1 2 3 4 5 6 7 8 9 10 11 12

If you ask to see the values of M, they are displayed in the usual matrix form:

M
1. r)

~
~z ..) I.f.

~5 6
..,

8 (

9 1.0 11 1 r)
~

If you want to refer to the element in row 2, column 3, you would enter:

M[2;3J

If you want to refer to the third and fourth elements in that row, you would enter:

.., 8

Similarly, to refer to the elements in column 4, rows 1,2, and 1, you would enter:

I.f. 8 L\.

You can use the same procedure to select a matrix within a matrix. If you want the
matrix of those elements in rows 2 and.3 and columns 1,2, and 1 of M, you would
enter:

MI:2 3;1. 2 1]

~) 6 c'
oJ

9 1.0 9

If you do not specify the index number for one or more of the coordinates of the
array that you are indexing, APL assumes that you want the entire coordinate(s).
For instance, to get all of row 2, you would enter:

MC2j]
5 6 7 8

41

42

Or to get all of columns 4 and 1, you would enter:

M[i '0I- l.]
l.J. :I.
B 5

:1.2 9

Note: You still have to enter the semicolon to make clear which coordinate is which.
The number of semicolons required is the rank of the array minus one. If the correct
number of semicolons is not specified, RANK ERROR results:

3 L~

Mt<5 LI·p\:L2
pM

Mr.6Jf·9
R(~NK ERROR

M[6]t-9

You can change elements within an array by assigning new values for the indexed
elements. (The rest of the array remains unchanged.)

:I. ")
4-••

1+ I::'
d

t' B

l
I.,.

7

3
b
'1

'i
.'"0.

:1.0
B

A~3 3p1 2 3 4 5 6 7 8 9
A

(:l[2 i ::.~ :3]~-lO 20
f~

::5
:~~ 0

':~

(

(~

('"

Chapter 4. Primitive (Built-In) Functions

APL functions are of two types: user-defined and those that are built into the APL
language. User-defined functions are discussed in Chapter 6. Built-in functions,
called primitive functions, are denoted by a symbol and operate on the data you
supply to them.

The value or values you supply are called arguments. Primitive functions that use
two arguments, such as A";- B, are said to be dyadic; functions that use one argument
are said to be monadic, such as";- B, which yields the reciprocal of B. Arguments can
be single data items (scalars), strings of data (vectors), tables of data (matrices), or
multiple tables of data (N-rank arrays). Arguments can also be expressions or user
defined functions that result in a scalar, vector, matrix, or N-rank array.

There are two types of primitive functions: scalar functions and mixed functions.
There are also operators that operate on the primitive functions. Examples of the
functions and operators are provided throughout this chapter for easy reference and
are set up as they would appear on the display.

PRIMITIVE SCALAR FUNCTIONS

Scalar functions operate on scalar arguments and arrays. They are extended to
arrays element by element. The shape and rank (see Chapter 3) of the result de
pend on the shape and rank of the arguments. For dyadic scalar functions, the re
lation between tile types of arguments and the shape of the result is shown in the
following table. Each scalar function is described following the table:

Argument A Argument B Result

Scalar Scalar Scalar

Array Array with the same Array with the same
shape as A shape as the

arguments

Scalar or one- Array of any Array with the
element array shape same shape as

argument B

Array of Scalar or one- Array with the same
any shape element array shape as argument A

One-element One-element array One-element array
array with the rank with the shape of

different from the the array with the
rank of A greater rank

43

44

The + Function: Conjugate. Plus []

Monadic (One-Argument) Form: Conjugate +8

The conjugate function does not change the argument. The argument can be a
numeric scalar, vector, or other array, and the shape of the result is the same as that
of the argument:

c·
.J

A~" 'H~:;

+(.~

If B is an array, the function is extended to each of the elements of B. The shape of
the result is the shape of B:

B~2 3p-3 -2 -1 0 1 2
B

H'~3 '''2 '-l.
(} 1- 2

+B
-2 '-1

Dyadic (Two-Argument) Form: Plus A+B

The plus function results in the sum of the two arguments. The arguments can be
numeric scalars, vectors, or other arrays. Arguments must be the same shape, unless
one of the arguments is a scalar or single-element array. If the arguments have the
same shape, the result has the same shape as the arguments:

3+~3
6

5.73

:1. 'W :1. N' ~3 +~.l. 2 () '+
:1.

/

(~

(~

If one argument is a scalar or single-element array, the shape of the result is the same
as that of the other input argument. The single element is applied to every element
of the multielement array:

Bf·2 :.3 (.>:1. '")
,:..

.7.
,.) 4· I::·

,.I 6
B

:l. ...)
...... ~3

LI· 5 6
3+B

4- ~5 6
7 B 9

B+3
'4· !5 6
·"1
(8 9

The - Function: Negation, Minus Q
Monadic (One-Argument) Form: Negation -8

The negation function changes the sign of the argument. The argument can be a
numeric scalar, vector, or other array. The shape of the result is the same as that of
the argument:

·":1. ···3

A~-·:J. ·":3
A

····I~

If the argument is an array, the function is extended to each element of the array:

B~2 3p-3 -2 -:I. 0 :I. 2
B

-3 ···2 -1
o :J. 2

.. MB

:3 2 :I.
() -1 -2

45

46

Dyadic (Two-Argument) Form: Minus A-B

The minus function subtracts argument B from argument A. The arguments can be
numeric scalars, vectors, or other arrays. The arguments must be the same shape un
less one of the arguments is a scalar or any single-element array. If the arguments
are the same shape, the result has the same shape as the arguments:

~:~""2
:I.

1+····~5

'+'- '''~:5
9

2 0 -1+

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other input argument. The single element is applied to every
element of the multielement array:

:l 2 ~5
1+ 5 l)

B~2 3p1 2 3 ~ 5 6
B

:~"MB

2 :I. 0
"'1 '-2 "'3

B-'3
'-2 -':1. 0

1. :? :3

The x Function: Signum, Times (IJ
Monadic (One-Argument) Form: Signum xB

The signum function indicates the sign of the argument: if the argument is negative,
- 1 is the result; if the argument is zero, then 0 is the result; if the argument is posi
tive, 1 is the result. The argument can be a numeric scalar, vector, or other array.
The shape of the result is the same as that of the argument:

"':l 0 1

/ "
I~.)1

(
If the argument is an array, the function is extended to each of the elements:

B~2 3p-2 -1 0 1 2 3
B

-~~ -1 0
1 2 ~5

xB
"'1 -1 0

1 :I. :I.

Dyadic (Two-Argument) Form: Times AxB

The times function result is the product of argument A times argument B. The
arguments can be numeric scalars, vectors, or other arrays. The arguments must be
the same shape, unless one of the arguments is a scalar or any single-element array.
Arguments of the same shape have the same shape result:

2x2.1
4· . 2

2 1+
12.2 "'16

6.1 -1+

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other input argument. The single element is applied to every
element of the multielement array:

:I. 2 3

B~2 3p1 2 3 ~ 5 6
B

'+ 5 6
3xB

369
:1.2 :1.5 18

47

48

The"," Function: Reciprocal, Divide CD
Monadic (One-Argument) Form: Reciprocal -;'-8

The reciprocal function result is the reciprocal of the argument. The argument can be
a numeric scalar, vector, or other array. The shape of the result is the same as that of
the argument:

O I::' ,

If the argument is an array, the function is extended to each of the elements:

B~-2 2 ~)2 . ~5
B

2 0 . ~:;
2 0 . ~,:;

'~'H
o . ~:5
o . !:j

Dyadic (Two-Argument) Form: Divide A-;'-B

The divide function result is the quotient when argument.A is divided by argument B,
The arguments can be numeric scalars, vectors, or other arrays. The arguments must
be the same shape unless one of the arguments is a scalar or a single-element array.
Arguments of the same shape have the same shape result:

,.,
,:.,

:I. • ~5

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other input argument. The single element is applied to every
element of the l)1ultielement array:

B~2 2p1 10 20 :1.00
B

:I. 10
20 lOO

~5+B

~3 0.3
o . :J.~; () . ():~ \~,

(~

(

('

Note: There are two additional rules that apply to the divide function:

1.

2.

When zero is divided by zero, the result is 1 :

() .. :. 0
:1.

Any value other than zero cannot be divided by zero:

3+0
DOMAIN ERROR

:'5'~" 0
,

The rFunction: Ceiling, Maximum OJ
Monadic (One-Argument) Form: Ceiling r B

The ceiling function result is the next integer larger than the argument (the argument
is rounded up), unless the argument already is an integer. In this case, the result is
the same as the argument. The argument can be a numeric scalar, vector, or other
array. The shape of the result is the same as that of the argument:

'+

If the argument is an array, the function is extended to each of the elements:

:1. 2
2 2

B~2 2pl 1.3 1.5 2
B

1 1. • :'5

Note: The result of the ceiling function depends on the OCTsystem variable (see
Chapter 5 for information on the OCT system variable).

I

49

50

Dyadic (Two-Argument) Form: Maximum ArB

The maximum function result is the larger of the arguments. The arguments can be
numeric scalars, vectors, or other arrays. The arguments must be the same shape un
less one of the arguments is a scalar or any single-element array. Arguments of the
same shape have the same shape result:

3
-·I.)r···:1.0

'''6
~j • :1. '-:1. '-3 r ~:.=; • j. o "'4-

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

Bi··2 3p:1. 2 ~5 '+ I::'
,J 6

B
:L 2 :3
1+ r.:'

,J I.>
~5r B

::3 3 "7.
.J

'+ I::'
,J 6

(

(

c

c

The L Function: Floor, Minimum

Monadic (One-Argument) Form: Floor LB

The floor function result is the next integer smaller than the argument (the argument
is rounded down) unless the argument is already an integer. In this case, the result
is the same as the argument. The argument can be a numeric scalar, vector, or other
array. The shape of the result is the same as that of the argument:

3 "'3
LI.I·

If the argument is an array, the function is extended to each of the elements:

1 1
:1. 2

B~2 2pl 1.5 1.6 2
B

1-
1.6

LB

:I .• ~5
2

Note: The result of the floor function depends on the OCT system variable (see
Chapter 5 for information on the OCT system variable).

Dyadic (Two-Argument) Form: Minimum ALB

The minimum function result is the smaller of the arguments. The arguments can be
numeric scalars, vectors, or other arrays. The arguments must be the same shape un
less one of the a~guments is a scalar or any single-element array. Arguments of the
same shape have the same shape result:

1+1 .. 6
1+

2
'-fo) I.. "'10

"'1.0
5 . 1 -:I. '-:31 .. 5.1

5 .1 -1, "'4·

51

52

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array: "~,))1.

Bioo::o~ 3(.):1. 2 :05 1+ 1::.
'oJ (:)

B
t 000) ,. ... ooz

'0)
1+ 1::0

,J I:>
:sl.. B

:t. 2 -1,
'\.0)

:05 :3 :3

The I Function: Magnitude, Residue CD
Monadic (One-Argument) Form: Magnitude I B

The magnitude function result is the absolute value of the argument. The argument
can be a numeric scalar, vector, or other array~ The shape of the result is the same
as that of the argument:

1
00
('.9

7.9
1 00.3

3

If the argument is an array, the function is extended to each of the elements:

B~2 2p-S.t -t 0 3.t4-
B

0.0~5 • 1 00.:1.

o :.:~ . 1 '+
IB

~o:j • :I.
o

Dyadic (Two-Argument) Form: Residue A I B

The residue function result (when both argument A and argument B are positive) is
the remainder when argument B is divided by argument A. The following rules
apply when using the residue function:

1. If argument A is equal to zero, then the result is equal to argument B:

016
6

(

(~

c

c

C

2. If argument A is not equal to zero, then the result is a value between
argument A and zero (the result can be equal to 'zero, but not equal to
argument A). The result is obtained as follows:

a. When argument B is positive, the absolute value of argument A is subtracted
from argument B until a value between argument A and zero is reached:

:315
2

b. When argument B is negative. the absolute value of argument A is added to
argument B until a value between argument A and zero is reached:

1

The arguments can be numeric scalar, vectors, or other arrays. The arguments must
be the same shape, unless one of the arguments is a scalar or any single-element
array. Arguments of the same shape have the same shape result:

:317
:I.

:":~ 1 6
0

61 :3
3

() 17
7

71 0
0

-"21 12. ~5
""":I. .7

"-21 """:1.2. ~3
-0 . ~5

21 -'12.3
1 .7

1 12 . ~:~B~5
0 . :3B~)

:1. 1 """~? • :3B~:=j
0 • 6:1.~)

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

B'""2 :3(.>:1. '")
-:- :'5 '+ ~:) /.)

B
1 2 3

'+ ~5 6
31B

:I. 2 0
:1. 2 ()

53

54

The * Function: Exponential, Power

Monadic (One-Argument) Form: Exponential *8

The exponential function result is the Naperian base e (2.718281828459045) raised
to the power indicated by the argument. The argument can be a numeric scalar,
vector, or other array. The shape of the result is the same as that of the argument:

*:1.
2.71.B:3

')f3
20.0B6

If the argument is an array, the function is extended to each element of the array:

() 1
2 3

Bi··~? 2pO 1. 2 :~

13

*B
1.
7.389:1.

~?. 7:1.8~5
20 . 08l)

Dyadic (Two-Argument) Form: Power A * 8

The power function result is argument A raised to the power indicated by
argument B. The arguments can be numeric scalars, vectors, or other arrays. The
arguments must be the same shape unless one of the arguments is a scalar,or any
single-element array. Arguments of the same shape have the same shape result:

2~'3

0.25

1

3

o . :I.~?'5 ... -------2*-3 = 1/23 = 1/8 = .125

The root of a number can be found by raising the number to the power indicated
by the reciprocal of the root. For example, to find the square root:

:1. '+' <j :I. 6·)f··:··2
:I. 2 ~5 '+

(

(

("

c

(""

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

:L 2
~5 1+

1.
9

B~"2 2(.>:1. 2 3 4·
1-3

The ... Function: Natural Log, Logarithm CD CD
The ~symbol is formed by overstriking the 0 symbol and the * symbol.

Monadic (One-Argument) Form: Natural Log ~B

The natural log function result is the log of the argument B to the Naperian base e
(2.718281828459045). The argument can be a non-negative numeric scalar, vector,
or other array. The shape of the result is the same as that of the argument:

m2.7:1.B3
1.

m~.?O . OBb
.. .,
,:)

If the argument is an array, the function is extended to each element of the array:

:I. 3
to 20

Bfo2 2(.>:1. 3 :1.0 20
B

wB
o 1.0986
2.3026 2.9957

Dyadic (Two-Argument) Form: Logarithm Ae B

The logarithm function result is the log of argument B to the base of argument A.
The arguments can be numeric scalars, vectors, or other arrays. The arguments must
be the same shape, unless one of the arguments is a scalar or any single-element array.
Arguments of the same shape have the same shape result:

2m8

2 3 '+(+)8 9 :1.6
322

55

56

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

B~··2 2p1 2 :3 ll·
B

1 2
:3 1+

o
0,1+771.2

(),:5010~3

0,60206

The 0 Function: Pi Times, Circular CD
Monadic (One-Argument) Form: Pi Times 0 B

Thepi times function result is the value of pi (3.141592653589793) times B. The
argument can be a numeric scalar, vector, or other array. The shape of the result is
the same as that of the argument:

01
3, :1. 1+16

o:~

(7 ,4·24·8

If the argument is an array, the function is extended to each element of the array:

1. 2
3 1+

B~··2 2~):t 2 :3 ll·
B

(:)B
:~, 11+16
9,1+24·8

6,28:52
1. 2 , :::;66

Dyadic (Two-Argument) Form: Circular Ao B

The circular function result is the value of the specified trigonometric function
(argument A) for the specified radians (argument B). The arguments can be
numeric scalars, vectors, or other arrays. Arguments must be the same shape, un
less one is a scalar or single-element array. Arguments of the same shape have the
same shape result. The following is a list of the values for the A argument and the
related functions performed. A negative argument A is the mathematical inverse
of a positive argument A; any values for argument A other than the following
will result in DOMAIN ERROR:

(

('

(~

(:

c'

Value of A Operation Performed

008

loB

208 Cosine 8

308

408

508 Hyperbolic sine of B (sinh 8)

608 Hyperbolic cosine of 8 (cosh 8)

708 Hyperbolic tangent of 8 (tanh 8)

Arcsin 8

Arccos 8

Arctan 8

Arccosh 8

Arctanh 8

If 8 is 45
0

, here is how to solve for the' sine, cosine, and tangent of 8 (45
0

is equiva
lent to pi radians divided by 4):

B~"o":"1+
B The left argument specifies

o I 7B~54· /,-------the trigonometric function.
:loB

o . 707:1.1.~.------_Sine of 8

20B
O.70711 .. ·------Cosineof8

:~()B

1. ~.-----------Tangent of 8

57

58

If B is the sine of an angle, then OoB yields the cosine of the same angle, and con
versely, if B is the cosine, OoB yields the sine. Suppose you wanted the sine of
300

, which is equivalent to pi divided by 6:

H'"':l () (c)-~-6)
B

o . ~3 ~.-----------Sine of 30
0

Oe)B
o . B660:3~>4---------Cosine of 30

0

B~-20 «)":--I.>)
B

o . BI.>603~.---------Cosine of 30
0

Oc)B
O

t!!-~. ___________ Sine of 300

• \J~

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

A'""2 2(.>:1. 2 :-5 4·
Bt-t")--;·1+

A

() . 7B~5'+
AoB

0.7071:1.
t

() .7071 :1.

:1..2716

(~

c

The! Function: Factorial, Binomial Q 0
The! symbol is formed by overstriking the quotation mark (,) and the period (.).

Monadic (One-Argument) Form: Factorial !B

The factorial function result is the product of all the positive integers from one to
the number value of the argument. The argument can be a positive numeric scalar,
vector, or other array. The shape of the result is the same as that of the argument:

p+
24-

:l.X2x3X4-
24-

!1 2 :~ 4- ~'5
l. ,')

.:.. 6 2 1.1. 120

The factorial function also works with decimal numbers and zero, but negative
integers are not allowed. When used in this way, factorial can be defined by use
of the mathematical gamma function - (!A) is equal to gamma (A-1):

! 3 . 1 '+
7.173~5

!O
1.

If the argument is an array, the function is extended to each of the elements:

B ... 2 2pO 1 ") :~

B
() 1.
I'Jr
.:.. 3

!B
:I. :1.
,') .. '- 6

59

60

Dyadic (Two-Argument) Form: Binomial A!B

The binomial function result is the number of different combinations of argumenf B
that can be taken A at a time. The result of A! 8 is also the (A+l) th coefficient of
the binomial expansion of the 8 th power. The arguments can be numeric scalars,
vectors, or other arrays. The argument must be the same shape, unless one of the
arguments is a scalar or any single-element array. Arguments of the same shape
have the same shape result:

2 !l+
f.)

2!6 w y Z ! J-----Argument B x
1 1::' .,J

~5 ! ()
0

() ! :3
1

The combinations of
>-..------

argument 8 taken

2!3 argument A(2) at a time

3

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

1

1

~5

'+

o 1
2 3

3

I.>

:I.
10

0 :L '')
':N ~5 ! ~5

1
0 :I, ")

.:- 3 I+! 1+
1+ :I,
B~"2 2~)0 1 2 3
B

2 ! "',+ ~5

10 10 7,87~:j I.)

10
4, I ~5 1+

If noninteger arguments are used, this function relates to the beta function as
follows: Beta (P,Q) is equal to 7Qx(P-l)! P+Q-l

(

(

(

(~

('

c

The? Function: Roll ('71
I~

Monadic (One-Argument) Form: Roll ?8

The roll function result is a randomly selected integer from 0 through 8-1 or 1
through 8 (depending on the index origin). Each integer in the range has an equal
chance of being selected. The argument can be a positive integral scalar, vector, or
other array. The shape of the result is the same as that of the argument:

7300
202

?:30 ()
3

?~5 7 9
2 :I. 4·

'?6 6
!5 1.1·

76 6
6 6

If the argument is an array, the function is extended to each element of the array:

B~2 3pl1 22 33 ~4 55 66
B

1.:1. 2~? 33
",.1+ !7.i !:5 6 t')

?B
2 :l7 :1.6

21+ :I.~~ ,+

Dyadic (Two-Argument) Form

See the Deal function later in this chapter under Primitive Mixed Functions.

61

The A Function: And CD
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: And A/\ B

The and function result is 1 when A and B are both 1; otherwise, the result is O. The
value of the arguments must be either 0 or 1. The arguments can be scalars, vectors,
or other arrays. The arguments must be the same shape unless one of the arguments
is a scalar or any single-element array. Arguments of the same shape have the same
shape result:

01\ :1.
And Table

0
:1.1\:1.

Operator

:1. - Argument A
1AO

0
0 0 :1. :tAO 1. 0 :I.

() 0 () :I. o

'--- Argument B

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

Bf·2 2pO 1- 1 0
B

0 :1.
:I. 0

j.AB

0 :J.
:1. 0

(:

c

C/

c

The v Function: Or GJ
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Or A v B

The or function result is a 1 when either or both arguments are 1; otherwise, the
result is O. The values of the arguments must be 1 or O. The arguments can be
scalars, vectors, or other arrays. The arguments must be the same shape, unless
one of the arguments is a scalar or any single-element array. Arguments of the
same shape have the same shape result:

1vO

OvO
o

o 0 1 1vO 1 0 1
o 1 1 1

Operator

'"
Or Table

v I----Argument A

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

B~··2 2pO j. 0 1
B

0 1
() 1

lvB
j. j.

:1. 1

63

64

The'" Function: Not GJ
Monadic (One-Argument) Form: Not '" B

The not function result is 1 when B is 0 and 0 when B is 1. The values of the argu
ment must be 1 or O. The argument can be a scalar, vector, or other array. The shape
of the result is the same as that of the argument:

1

o

If the argument is an array, the function is extended to each element of the array:

B~"2 3(.>0 1
H

0 1 0
1 0 1

NB
1 () 1
() 1 0

Dyadic (Two-Argument) Form

There is no dyadic form.

"' ..

(

c

c

The A Function: Nand OJ CD
The A symbol is formed by overstriking the and (/\) and the not (,...,) symbols.

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Nand AAB

The nand function result is 0 when both A and Bare 1; otherwise, the result is 1.
The values of the arguments must 1 or O. The arguments can be scalars, vectors, or
other arrays. The arguments must be the same shape, unless one of the arguments
is a scalar or any single-element array. Arguments of the same shape have the same
shape result:

O~l
1

o
o 0 1 1XO :I. 0 1

:I. 1 :I. 0

Nand Table

.----Argument A

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single elemeht is applied to every element
of the multielement array:

B~"2 2pO :L
B

0 :I.
0 1

1XB
:I. 0
1. 0

65

66

The V Function: Nor IT) OJ
The v symbol is formed by overstriking the or (v) and the not(rv) symbols.

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Nor A vB

The nor function result is 1 when A and B are both 0; otherwise, the result is O. The
values of the arguments must be 1 or O. The arguments can be scalars, vectors, or
other arrays. The arguments must be the same shape, unless one of the arguments
is a scalar or any single-element array. Arguments of the same shape have the same
shape result:

o
O\jO

1
o () :1. :l(JO :1. 0 1.

:I. 0 0 0

Nor Table

~--- Argument A

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

B~M2 2?>O 1
B

0 1
0 1

OC:B
:I. 0
:1. 0

/' "

(

(

('~,

ell,

/

The >Function: Greater Than [I)
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Greater Than A>B

The greater than function result is 1 when argument A is greater than argument B;
otherwise the result is O. The arguments can be numeric scalars, vectors, or other
arrays. The arguments must be the same shape, unless one of the arguments is a
scalar or any single-element array. Arguments of the same shape have the same
shape result:

o
-'2> 0

o
.- ~.~ ;: ~~

o

1

o
5,1 '-:1. '-~3>~5, 1 o '''1·1·

o o 1

If one argument is a scalar or a single-element array, the shape of the result is the
same as tha,t of the other argument. The single element is applied to every element
of the multielement array:

B~"2 ~5 (.> :1. 2 ~3 1+ 1'-,'J t.)
.f.{

1 2 -x
•• 1

I~. c' .. } 6
3>B

1 1 0
0 0 0

Note: The result of the > function depends on the OCT system variable (see
Chapter 5 for information on the OCT system variable).

67

68

The = Function: Equal To [J
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Equal To A=B

The equal to function result is 1 when the value of argument A equals the value
of argument B; otherwise, the result is O. The arguments (numeric or character)
can be scalars, vectors, or other arrays. The arguments must be the same shape,
unless one of the arguments is a scalar or any single-element array. Arguments
of the same shape have the same shape result:

0::::5
()

1,65~321=1,65~321
1

1:::: I A I
o

.' A I:::: 'B'
o

':1. ':::::1.

o
:I.

o o 0

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array.

'A':'ABACADAEAFAG'
101 0 101 0 1 0 1 0

Note: If the arguments are numeric, the result of the = function depends on the
OCT system variable (see Chapter 5 for information on the OCT system variable).

(--

('

('

c

The < Function: Less Than CD
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Less Than A < B

The less than function result is 1 when argument A is less than argument 8; other
wise the result is O. The arguments can be numeric scalars, vectors, or other arrays.
The arguments must be the same shape, unless one of the arguments is a scalar or
any single-element array. Arguments of the same shape have the same shape result:

:L .65<2
1

:I.

:I.
0-:: -'+ . '+

o
:I .• 12~5<:I .• :1.23

o
5.1

o 1 0

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

f.u"2 3p:L ~! ~'5 '+ 5 6
B

1 I")
-:" 3

l~ c'
..J 6

~5<B
0 () 0
:L 1 :L

B<3
:L l. 0
() 0 0

Note: The result of the < function depends on the OCT system variable (see
Chapter 5 for information on the OCT system variable).

69

70

The ~ Function: Greater Than or Equal To [~)

Monadic (One-Argument) Form l_;,
There is no monadic form.

Dyadic (Two-Argument) Form: Greater Than or Equal To A~ B

The greater than or equal to function result is 1 when argument A is greater than
or equal to argument B; otherwise, the result is O. The arguments can be numeric
scalars, vectors, or other arrays. The arguments must be the same shape, unless one
of the arguments is a scalar or any single-element array. Arguments of the same
shape have the same shape result:

1 . 65;::2
0

"'2;::0
(I

:~~ ;:: ~~
1

~5 . 1. :I.
1 0 0

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

Bf'2 3pl ;!. 3 I.f. 1::'
..J 6

B
1 '') .:., 3
1+ !7j 6

3~:B
:1. 1 1
() 0 0

Note: The result of the ~ function depends on the OCT system variable (see Chapter
5 for information on the OCT system variable).

(

c --"'

The,; Function: Less Than or Equal To [~)

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Less Than or Equal To A~ B

The less than or equal to function result is 1 when argument A is less than or equal
to argument B; otherwise, the result is O. The arguments can be numeric scalars,
vectors, or other arrays. The arguments must be the same shape, unless one of the
arguments is a scalar or any single-element array. Arguments of the same shape
have the same shape result:

:I.

:I.

:I.
0 -::···"

.,. JIO..

o
5.1-

1 o 0

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

r.{~~·2 3p:J. 2 :3 ll· ~5 I.)
13

1 2 3
I.~ 5 6

3~;B

0 0 1
:I. 1 1.

Note: The result of the ~ function depends on the OCT system variable (see Chapter
5 for information on the OCT system variable).

71

72

The F Function: Not Equal To CD
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Not Equal To A'/=B

The not equal to function result is 1 when argument A is not equal to argument 8;
otherwise, the result is O. The arguments (numeric or character) can be scalars,
vectors, or other arrays. The arguments must be the same shape unless one of the
arguments is a scalar or any single-element array. Arguments of the same shape
have the same shape result:

Ot-5
1

o
'A't-'A'

()

:I.
~5 , :I. "':l ···:3t-~.:;,:I. () '"4·

o 1 :1.

If one argument is a scalar or a single element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

'A'¢'ABACADAEAFAG'
o :I. 0 :I. 0 :I. 0 :I. 0 1 0 :I.

Note: If the arguments are numeric, the result of the ~function depends on the
OCT system variable (see Chapter 5 for information on the OCT system variable).

The not equal to function can also be used as an exclusive or function. When used
in this manner, the value of the arguments must be either 0 or 1:

Exclusive Or Table

Operator~--- _Argument A

73

Dyadic
Mixed J Functions Name Result ." ..

AlB or Compress The elements from B that correspond
A/[I] B or to the 1's in A.
AlB

A\B or Expand B is expanded to the format specified
A \[lJ B or by A; 1 in A inserts an element from
A~B B; a 0 in A inserts a 0 or blank element.

AtB Take The number of elements specified by A
are taken from B.

Ai-B Drop The number of elements specified by A
are dropped from B.

AlB Index of The first occurrence in A of the elements
in B.

A¢B or Rotate The elements of B are rotated as specified
A¢[I] B by A. If A is positive, the elements of B
orAsB are rotated to the left. If A is negative,

the elements of B are rotated to the right.

A~B General ized The coordinates of B interchanged as
transpose specified by A.

A?B Deal The number of elements specified by A
are randomly selected from B, without
selecting the same number twice.

A.LB Decode The value of argument B expressed in
(base value) the number system specified by

argument A.

ATB Encode The representation of argument B in
(representation) the number system specified by

argument A.

AEB Membership A 1 for each element of A that can be
found in B and a 0 for each element
not found.

AffiB Matrix Solution to one or more sets of linear
divide equations with coefficient matrix

(matrices) B and right-hand sides A or
the least squares solution to one or
more sets of linear equations.

AlB Format Argument B converted to a character
array in the format specified by
argument A. "I

74

(~

('

('

Note: The mixed functions reverse, rotate, compress, and expand, and the operators
(see Operators later in this chapter) reduction and scan can be applied to a specific
coordinate of an array. This is done by using an index entry [I] which indicates the
coordinate to which the mixed function or operator is applied. The value of the
index entry can be from 1 to the number of coordinates in the array; the leftmost
coordinate (first coordinate) has an index value of 1, the next coordinate has an
index value of 2, and so on. A matrix, for example, has an index value of .1 for the
row coordinate and an index value of 2 for the column coordinate. If an index entry
is not specified, the last coordinate (columns) is assumed. If a - (minus) symbol is
overstruck with the function symbol or operator symbol, the first coordinate is
assumed (unless an index value was also used). When a function or operator is ap
plied to a specific coordinate, the operation takes place between corresponding ele
ments in the specified coordinate. For example; assume you have a 3-rank array:

• When the first coordinate (planes) is specified, the operation takes place between
corresponding elements in each plane.

• When the second coordinate (rows) is specified, the operation takes place between
the corresponding elements in each row per plane.

• When the third coordinate (columns) is specified, the operation takes place be
tween the corresponding elements in each column per plane.

The p Function: Shape, Reshape (Structure)

Monadic (One-Argument) Form: Shape p B

The shape function result is the shape of the argument; it has one element for each
coordinate of the argument, which indicates the length of that coordinate. The
argument can be any variable or constant:

(J • ABeD · 1------- A Vector with Four Elements

1+
(,J :l "'1

A-••

2
pl. 2 3

~3
A~"2
A

1 2 3
l~ c·

\J 6
pA

2 3

The shape function applied to a scalar yields an empty vector, since a scalar has no
coordinates. An empty vector is indicated by a blank result line:

p2
Blank Result Lines

p'T'~

75

76

The instruction p p B yields the rank (shape of the shape, or, number of coordinates)
of B:

CAR
BAR

FAR
AI~E

2 2

:1

~5

B~2 2 3p'CARBARFARARE'
B

pH

ppB

Dyadic (Two-Argument) Form: Reshape (Structure) A p B

The reshape function forms an array of the shape specified by argument A using
element(s) from argument B. The elements of argument B are placed into the
array in row order. If there are not enough elements in argument B to fill the
array, the elements are repeated. If there are more elements in argument B than
are required to fill the array, only the required number of elements are used.
Argument A must be a nonnegative integer or vector of nonnegative integers. The
number of elements in argument A is equal to the number of coordinates, or the
rank, of the result. Argument B can be any variable or constant. If all of the
elements of argument A are nonzero, then B cannot be an empty array:

2
1 2 :3
4· 5 6

4· 2p'ABCDEFGH'
AB
en
EF
GH

5(.) • MOUSETRAP'
MOUSE

3 l+ p :l.23
:1.2:3 1.23 123 123
:1. 23 12~5 :1. 2:'~ :I. :~3
1,23 :1.23 1~~:3 12~5

1 2
3 4-
5 6
'7 B

1. 2 3
I.~ !7i 6

A~~ 2p1 2 3 ~ 5 6 7 8
A

6p· .. •

(

(

c

The, Function: Ravel, Catenate, Laminate o
Monadic (One-Argument) Form: Ravel ,8

The ravel function results in a vector containing the elements of argument B. If
argument B is an array, the elements in the vector are taken from argument B
in row order. Argument B can be a scalar, vector, or other array. The resulting
vector contains the same number of elements as argument B:

1 2
~3 1+

5 6
'7 8

A~2 2 2pl 2 3 ~ 5 6 7 8
A

IA
:1.23'+5678

ABC
DEF

B~"2 :3 p • ABCDEF ·
B

IB
ABCDEF

Dyadic (Two-Argument) Form: Catenate or Laminate A, [I] 8

The function is catenate when the [I] entry (index entry) is an integer and laminate
when the [I] entry is a fraction.

77

78

Catenate (The Index [I] Entry Is an Integer): The catenate function joins two items along
an existing coordinate. (See the laminate function following for a description of how
to join two items along a new coordinate). The index [I], if given, specifies which
coordinate is expanded. The index entry must be a positive scalar or one-element
array. If no index [I] is specified, the last coordinate is used. Matrices of unequal
sizes can be joined, providing the lengths of the coordinate not specified are the
same (see Catenation in Chapter 3):

A~:I. 1+
[u··7 9 ~5

AlB
1 L~ -, 9 5

A+-2 3p1 I) 3 4 1::' t) t:" ,.1

B+-2 3p7 8 9 1.0 11. 12
A

1 2 3
'+ 5 6

B
7 8 9

10 :L 1. :1.2
AlB

1 2 ~3 7 8 9
L~ 5 6 10 II 12

AI[1JB
1 2 :3
L~ 5 6
7 8 9

1.0 11. :1.2
A, [2Jf.t

1 ,.)
.:- 3 .., 8 9

4 .::' 6 10 1:1. 1 r) \.I ~-

A}[~.~]10 20
:1. ') t:_ ~5 10
I.f- I'" ,,) 6 20

10 20 30 .. C:I.JA
:1. 0 20 30

1 I')
1:- :3

'+ 5 6

/ ,1
"~",

c

c

Laminate (The Index [I] Entry is a Fraction): The laminate function joins two items by

creating a new coordinate, specified by the index entry [I] which must be a posi
tive fraction. If the index entry is between 0 and 1, the new coordinate becomes
the first coordinate; if the index entry is between 1 and 2, the new coordinate is
placed between existing coordinates 1 and 2 (the new coordinate that is added al
ways has a value (or length) of 2). The following chart shows the positions of a
new coordinate in the shape vector (see the following examples) when two 3 by
3 matrices are laminated:

Index Value

.1 - .9

1.1 - 1.9

2.1 - 2.9

Positions of New
Coordinate in the Shape
Vector

3 3

3 3

3 3

Lamination requires either that arguments A and B are the same shape or that one
of the arguments is a scalar:

2

A~3 3pl 2 3 4 5 6 7 8 9
B~3 3pl1 22 33 ~~ 55 66 77 88 99
I~

:I. 2 3
'+ ~.:; 6,
7 B 9~

B
:I. 1. 22 :3:~

'+ '+ ~::; ~.:; 66
77 B8 ,99

C~"A} I: I 8:1B
r .,

:1. 2 3
LI· ~5 I.>
7 B 9

1.1 22 3:3
'4·4 1.':'1::'

\."J 66
77 B8 99

(o)e

3 :3 • Shape Vector

79

80

C~··i~ } I:: :1 .. ~::.i:l B
C

1. 2 :~
:1.:1. 22 ~5~5

7 B 9
."'''.'"1 ((BB <.»(.»

(.)C
~3 2 ~5 II -----------Shape Vector

Cf-A, [2. :I.:lB
r-...

1. :I. :I.
2 ,.) r)

.-:'.A ..

··X ,:> ~3:~

I.f. I+I.~

~5 5~:.i

6 c>6

7 77
8 BB
9 99

pC

3 3 ,.)
k II Shape Vector

The following examples show the result when the two matrices in the preceding example
are catenated instead of laminated:

AI[lJB
1. 2 :5
1+ 5 6
"7 8 9

:1.:1. 22 ~53
4·4- 1::'1::.

.J •. J 66
77 B8 99

A,[2JB
1 ,.)

.:.. :3 1 :1. 22 33
4- 1:," 6 I.I·I~ . .:: . .::. 66 .. I •• J ... J

"7 8 9 77 BB 99

/ "'

(

(

(".

e

C~'

The I Function: Compress CD
Monadic (One-Argument) Forra

See Reduction later in this chapter under APL Operators ..

Dyadic (Two-Argument) Form: Compress A/Ul B or AlB or AfB

The compress function selects elements from argument B corresponding in sequence
to 1 's in argument A. Argument A must be a logical scalar or vector having the
values 0 or 1. Argument B can be any scalar, vector, or other array. Both arguments
must have the same number of elements unless:

• One of the arguments is a scalar or single-element array.

• Argument B is a multidimensional array; then the number of elements in argument
A must be the same as the length of the argument B coordinate being acted on.

When argument B is a multidimensional array, the [I] index entry is used to specify
the coordinate that is acted on. If the index entry is omitted, the last coordinate
(columns) is assumed. If the AJ.B form is used, the first coordinate is assumed. The
rank of the result is the same as the rank of argument B:

0 () 2 I.J.

:I. :1. :l./l 2 ~:~

1 ") 3 /Blank Display Line (empty array)
() (} OIl ") :3 ..:..

[H<5 I.J. f>:I. 2 :3 I.J. ,::-
,.J I.> "7 B 9 10 II :I. ::.~

B
1 ")

.:- :3 I.J.
c'
·_1 (~) "7 B
9 j.O 11 :1. :~

:I. 0 :l./[:I.::tB The first coordinate (rows) is specified;
1. ...) :5 I.J. \ ..:.. the first and third rows, as specified by
<"i 10 j.l j ':> argument A, are selected .

0 1 :1. O/r:2::tB
2 3 \ The second coordinate (columns) is specified;
6 "7

the second and third columns, as specified by
:1. 0 11.

1 0 liB
argument A, are selected.

:l t·)
.:- 3 4·

9 10 11 j ')
0 1 1 O/S

2 :5
6 "7

10 11
liB

:I. 2 3 4·
!5 I.) '7 8
9 10 :I. :1. 1 ':>

OIB
Blank Display Line (empty array)

81

82

The \ Function: Expand CD
Monadic (One-Argument) Form

See Scan later in this chapter under APL Operators.

Dyadic (Two-Argument) Form: Expand A \[1] B or A \B or A~B

The result of the expand function is argument B expanded as indicated by
argument A. Each 1 in argument A selects an element from argument B and each
o in argument A inserts a 0 (or blank for character data) in the result. Argument A
must be a logical scalar or vector having the values 0 or 1. Argument B can be any
scalar, vector, or other array. If argument B is a vector, argument A must have the
same number of 1's as the number of elements in argument B. If argument B is
a multidimensional array, argument A must have the same number of 1's as the
length of the argument B coordinate being acted on.

When argument B is an array, the [I] index entry is used to specify the coordinate
that is acted on. If the index entry is omitted, the last coordinate (columns) is
assumed. If the A~B is used, then the first coordinate is assumed.

If argument B is a scalar or single-element array, it is extended to a length equal to
the number of 1's in argument A. If argument B is not a scalar or single-element
array, the rank of the result is the same as the rank of the B argument.

1. 0 :1. 1 0\1 ")
I:'. 3

1 0 ")
.:.. 3 0

B~"2 3~)1 I") .,. ... 3 4- 5 6
B

1. 2 3
1+ 1:."

.J 6
t {} l\[lJB

:L ~~
"y \ The first coordinate (rows) is ,:)

() 0 0 expanded; a row is inserted be-

4· 5 b tween the first and second row.

l 1 0 1\[2JB
1 ") 0 3 '\ The second coordinate (columns) is .:..

I.~ c:- O 6 expanded; a column is inserted .J

1 0 l\.B between the second and third columns.
1 ")

It: •• 3
0 0 {}

4- 5 6

~I. J

The 4> Function: Grade Up OJ OJ
The ~symbol is formed by overstriking the 11 symbol and the I symbol.

Monadic (One-Argument) Form: Grade Up ~B

The grade up function result is the index values that would select the elements of
argument B in ascending order. That is, the first element of the result is the index
of the smallest element in argument B, the next element is the index of the next
smallest element in argument B, and so on. Argument B must be a numeric vector.
When two or more elements in the vector have the same numeric value, their posi
tion in the yector determines their order in the result (the index value of the first
occurrence appears first in the output). The number of elements in the result is the
same as the number of elements in the argument:

.$3 1- I!!'
... 1 2 I.f.

"~) '+ 1 C' 3J

4tAt-6 2 ~5 :I. 1+ :~

4- 2 6 -5 3 1
ib:3 6 :~ :I. ~5 ::!

L~ 6 :I. 3 5 r>
.:-

The following example shows how the grade up function can be used to sort a vec
tor into ascending order:

At-:l.~ 12 16 18 15 1:1.
A [¢.AJ

11 12 1~ 15 16 :1.8

The result of the grade up function is not the reverse of the grade down function
because of the way equal elements are handled; see The 'W Function: Grade Down
for an example uSing the grade up and grade down functions with equal elements.

Note: The result of the ~ function depends on the 010 system variable (see Chap~
ter 5 for information on the 010 system variable).

Dyadic (Two-Argument) Form

There is no dyadic form.

83

84

The 'I' Function: Grade Down (]] CIJ
The 1 symbol is formed by overstriking the Vsymbol and the I symbol.

Monadic (One-Argument) Form: Grade Down 1

The grade down function result Js the index values that would select the elements
of the numeric vector of argument 8 in descending order. That is, the first element
of the result is the index of the largest element in argument 8, the next element is
the index of the next largest element in argument 8, and so on. Argument 8 must
be a numeric vector. When two or more elements in the vector have the same
numeric value, their position in the vector determines their order in the result (the
index value of the first occurrence appears first in the output). The number of
elements in the result is the same as the number of elements in the argument:

~:'5 :I. ~:) I') ,.-.. 1+
3 ~) 1 Lf. 11

"M
\f1Af'6 " 5 :l 1+ :3

:1. :5 5 6 2 4·
~:3 6 :3 1- 1::'

,J 2
2 5 :1. ~5 6 LI·

The following example shows how the grade down function can be used to sort a
vector in descending order:

A~14 12 16 18 15 11
f~d:: ~A:I

18 16 15 1Lf. 12 11

The following example shows how equal elements are handled when using the grade
up and grade down functions:

A~M!:; ")
A.. 8 7 :5 If 10 1 2 :5

A
c'
... 1

r)
A •• B 7 3 LI· :1.0 :I. 2 :3- Positions 2 and 9 and 5 and 10 are equal.

,A
7 3 1+ 1 6 8

B 6 1 1+ :~ 7

(

(

"

c

c

Because the indices for the equal elements are in the same order (first occurrence
first) for both the grade down and grade up function, the grade down function is
not the reverse of the grade up function:

A[,A:J
10 8 7 5 ~ 3 3 2 2 1

A[~AJ

1 2 2 3 3 4 5 7 8 10

Note: The result of the f function depends on the 010 system variable (see Chap
ter 5 for information on the 010 system variable).

Dyadic (Two-Argument) Form

There is no dyadic form.

85

86

The + Function: Take CIJ
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Take At 8

The take function result is the number of elements specified by argument A, taken
from argument B. Argument B can be a scalar, vector, or other array. Argument A
must be a scalar or vector of integers. If argument B is a vector, argument A must
be a scalar. Argument A must be a vector with an element for each coordinate
of argument B. When argument A is positive, the first elements of argument B
are taken; when argument A is negative, the last elements are taken. If argument
A specifies more elements than the number of elements in argument B, the result
is padded with O's (or blanks for character data). The shape of the result is the
value of A:

:~

"':~t:l, 2

7t:l. 2 3 I", ~3

t 23'+5 00
"'7tt 2 3 '+ 5

00 1 :~34,5

:1, '")
A"

5 6

B~3 ~pl 2 3 ~ 5 6 7 8 9 10 11 12
B

~5 '+
"1 8

9 10 1.1 :1.2

:I.
!:5

1-
'.~

7
10

1

1

7

1
'+

"1
1.0

2
5

'1 .:..

6

2
5

B
1:1,

3
6

8
1t

2 ~5tB
3
'7

Bf-2 ,')
.:.. 3~) 1. 2 3 4 5 6 7 8 9 10 :1.1 12

B
3
6

9
:l2

1 1 :L tB

")
.:.. 1- 1tB

1 2 3tB

"'1 2 3tB
9

:1,2

(~"

c

c

The + Function: Drop OJ
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Drop A+B

The drop function result is the remaining elements of argument B after the number
of elements specified by argument A is dropped. Argument B can be a vector or
other array. Argument A must be a scalar if argument B is a vector.

When argument B is an array, argument A must have one element for each coordi
nate of argument B. When argument A is positive, the first elements of argument B
are dropped from the result; when argument A is negative, the last elements are
dropped:

1 2
1::-
... 1 6
9 10

7 f.)

1l. 12

1 2
5 6

3J.l. 2 3

B~3 ~p1 2 3 ~ 5 6 7 8 9 10 11 12
B

:5 1+
7 a

11 1 ~~
1 2.J.B

--1 -2.J.B

87

88

The 1 Function: Index Generator, Index of OJ
Monadic (One-Argument) Form: Index Generator 18

The index generator function result is a vector containing the first B integers, start
ing with the index origin (see 010 system variable in Chapter 5). The argument can
be a nonnegative integer that is either a scalar or a single-element array.

\5
1. 2 3 Lf. 5

A~" \ 6
A

12~3Lf.56

~:i + ,5 ..--Each of the generated integers is added to 5.
6 7 B 9 lO

Dyadic (Two-Argument) Form: Index of A 1 8

The index of function result is the index of the first occurrence in argument A of
the element(s) in argument B. Argument A must be a vector. Argument B can be
a scalar, vector, or array. The result is the same shape as argument B. If the element
in argument B cannot be found in argument A, the value of the index for that ele
ment is one greater than the largest index of A (010 + pA):

2 41----------------- Second Element

3

2

6

1 9 8
1 c· 1')

\.J .:..

9 :1. :~

9 9 2

'ABCDEFG','C'

A ... 1 :I. 22 :33 Lf.LI· 5~5
A\22

A."9 ") .:.. 8 B 2 t) Lf.
B~"2 3pl 9 8 1 C'

,J

B

A\S

B
2

Note: The result of the 1 function depends on the 010 system variable (see Chapter
5 for information on the 010 system variable).

("

(

(

The 4> Function: Reverse, Rotate OJ m
The ¢ symbol is formed by overstriking the 0 symbol and the I symbol. A special
form of the function symbol is 9, formed by overstriking the 0 symbol and the -
symbol.

Monadic (One-Argument) Form: Reverse <p [I] B or <f>;B or aB

The reverse function reverses the elements of argument B. Argument B can be any
expression.

89

90

When argument B is a multidimensional array, the index entry [I] can be used to
specify the coordinate that is acted on. If the index entry is omitted, the last co
ordinate (columns) is acted on. If the sB form is used, then the first coordinate
is acted on:

<1>1 2 3 1+
I.J. 3 2 1

<I>'I...IVE'
EVIL

~5 2 1
f.) 5 I~.

SAVE
MUCH

M()I~E

TIME

MORE
TIME

SAVE
MUCH

MUCH
BAVE

TIME
MORE

EVAS
HCUM

EROM
Et1IT

EVAS
HCUM

EROM
EMIT

MORE
TIME

SAVE
MUCH

A~2 2 I+p 'SAVEMUCHMORETIME'
A

(~r::I.]A

" '--------The first coordinate (plane) is specified;
the planes are reversed.

(J>[2::tA

" ~-----The second coordinate (rows) is specified;
the rows in each plane are reversed.

(~[3]A

\ ~-----The third coordinate (columns) is

(DA

"
sA

specified; the columns in each plane are
reversed.

The last coordinate is acted on.

" '-------The first coordinate is acted on.

(

(

c

Dyadic (Two-Argument) Form: Rotate A <1> [I] Bar A<1>B or AsB

The rotate function rotates the elements of argument B the number of positions
specified by argument A. If argument A is positive, then the elements of
argument B are rotated to the left (rows), or upward (columns). If A is negative,
the elements are rotated to the right (rows), or downward (columns). Argument B
can be any expression. The shape of the result is the same as that of argument B.

When argument B is a multidimensional array, the index entry [I] can be used to
specify the coordinate that is acted on. If the index entry is omitted, the last co
ordinate (column) is acted on. If the AsB form is used, then the first coordinate
is acted on.

If argument B is a vector, then argument A must be a scalar or single-element array.
If argument-B is a matrix, then argument A must be a scalar or vector. When
argument A is a vector, the number of elements in argument A must be the same as
the number of elements in the coordinate being rotated. For example, if B is a 3
by 4 matrix (each row has four elements) and the row coordinate is specified, A
must have four elements:

2<1>:1. 2 3 4· 5..-- 3 4 5

5 '!2:1 2 3 I.J. 5 (2--1~
4- 5 :I. 2 3

3 4·

'7(~:I. 2 3 I.~ 5
31+~5:1.2

B~3 4-p 1 2 3 ~ 5 6 '7 8 9 10 11 :1.2
B

:I. 2 :5
56'7
9 :1.0 :1.1

1 ()
52'7
9 6 1.1
1. 10 3

o :I.
:I. 2 :3
6 "7 B

11 :1.2 9
o :I.

:I. 2 3
6 "7 B

:1.:1. 12 9
:t. 0

527
9 6:1.1
1 10 3

A~"~"1

f~
-1. () "':1. -2

i
The first coordinate (rows) is specified;

1+ therefore, the rotation is between rows.
8

~: 2$r.1JB r:: r 1 [:2
~ J lOJJ

2<1>[2:1B
I.~ \
!7j '-------The second coordinate (columns) is specified;

:1.0
2<J)B

therefore, the rotation is between columns.

L~' 5 '------The last coordinate is acted on.

:1.0
1 2eB
12

LI· \"-----The first coordinate is acted on.

S
01.2

9
:I.

A(~[1]B

2 1.l B
3 12
'7 L~

6
5 1. 0

91

92

If argument B is an N-rank array, argument A must be a scalar or an array with a
rank that is one less than the rank of argument B. The shape of argument A must
be the same as argument B less the coordinate being acted on:

B~":5
B

1- 2 "1. ...)
'+ I!!'

.J 6
7 B 9

10 1,1- :1.2
:1.3 1'+ :I. ~;
:L6 :1.7 1.8

19 20 11.
22 23 2'+
2~5 26 27

pB
333

~~ ~3 p \ 27

A~3 3pl 0 0 0 2 0 0 0 0
A

1 () 0 _____ The shape of argument A must be the same
o 2 ()...---- as argument B less the coordinate being

o 0 0 acted on.

pA
3 3

A<lH: 1:lB
:1.0 2 3 '--- The first coordinate (planes) is specified;

4· 23 6 therefore, the rotation is between planes.
"7 8 9

~ArgUment A
19 1:1. 1,2 The first element 0 0

13
16

1
'1 ,.) .. ,
25

If
"7
1

10
:1.3
:1.6

19
") '1
.: .. I!.
1")1::-
... 1

c· 15
in each plane is ... ,
rotated one position 0 2 17 :1.8
between planes.

20 2l 0 0 The middle

1'+ 2'+ element in each
plane is rotated two

21.) 27 positions between
A<I>[2JB planes.

2
I::'
,J 6
8

3L 9 The second coordinate (rows) is specified;

:1.7 12
1:1. :I. ~5
1'+ :I.B

20 21
2:5 2'+
26 27

therefore, the rotation is between the rows.

1 0 0

0 2 0

0 0 0

/,------ Argument A

R otation between rows of
he first plane t
Rotation between rows of
he second plane t

Rotation between rows of
he third plane t

(

(

("
/

('~'

c

The lsi Function: Transpose, Generalized Transpose m CTI
The ~ symbol is formed by overstriking the 0 symbol and the \ symbol.

Monadic (One-Argument) Form: Transpose ~B

The transpose function reverses the coordinates of argument B. Argument B can be
any expression. If argument B is a scalar or vector, the argument is unchanged by
the function:

~'ABCD'

ABeD
B~"2
B

:L 2 3 II ...--------- 2-row 3-column matrix.
'.~

c:.
,.I 6

~B

1 4---------- 3-row 2-column matrix.
2 c:-

~

3 6
B-t .. 2
B

" 3 .:..

6 '7
10 :l :1.

1'4· 1 ~:; 16
1t3 jn

" '1 20
22 2:'5 2ll-

~B

2 114,

6 18

~ The coordinates are reversed.

10 22

3 j 1::-, ,J

7 :1.9
1t ::.~3

4- 16
8 20

12 24·

93

94

Dyadic (Two-Argument) Form: Generalized Transpose A~B

The generalized transpose function interchanges the coordinates of argument B as
specified by argument A. Argument B can be any expression. Argument A must
be a vector or a scalar, and must have an element for each coordinate of argument B;
also, argument A must contain all the integers between 1 and the largest integer
specified. For example, to transpose the rows and columns of a matrix, argument A
would be 2 1:

Hf·2 ~3~) :I.
H

:I. 2 :~
I.~ I::'

•• J 6
1"\ .:.: :I.~B

1 I.J.
11
AM 5
3 6

To transpose the rows and columns of a 3-rank (three-coordinate) array, argument A
would be 1 3 2:

B~"2 ~5 I.J. f) \ 21.J.
B

1 I")
tI..

M1. ..) 4·
t::"
\J 6 "l B
9 10 :I. :I. 12

An array with two planes, three rows, and four columns.

13 1 1.1. :1. !7; :1.1.>
:1.7 1B 19 20
21 22 23 21.1·

1. 3 2~B
:I. r:

..J 9
2 ~) 10
3 7 1:1.
l~ B 12 The second and third coordinates have been interchanged,

13 17 2:1.
forming an array with two planes, four rows, and three
columns.

:1.4· :LB 22
15 19 23
11.> 20 ~~l~

(
I~'

.. /

c

The? Function: Deal CD
Monadic (One-Argument) Form

See the Roll function earlier in this chapter under Primitive Scalar Functions.

Dyadic (Two-Argument) Form: Deal A?B

The deal function randomly selects numbers from 0 through 8-1 or 1 through 8
(depending on the index origin), without selecting the same number twice. 80th
arguments must be single positive integers. Argument A must be less than or equal
to argument 8; argument A determines how many numbers are selected.

95

96

The .L Function: Decode (Base Value) CD
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Decode A.l B

The decode function result is the value of argument B expressed in the number
system specified by argument A. For example, to convert 1776 to its value in the

decimal number system (base 10):

10 10 10 1011 7 7 6
1776

The following illustration shows how it was done:

Argument A (number system) specifies the following:

10 10 10 10

,L..--+.L...--..Lt-----'--Ten units in each of these positions

equals one unit of the next position
to the left.

Argument B is a vector with these values:

7 7 6

The result is the same as doing the following:

:1=
x10 =

x10x10 =
x10x10x10 =

6 The units position always represents itself.
70

700 ~~The value in the next position is multiplied
1000 by the rightmost value in argument A.

1776
The value in the next position is multiplied
by the two rightmost values in argument A,
and so on.

The arguments must be numeric. If one argument is a scalar or single-element array,
the other argument can be a scalar, vector, or other array. The result will have the
rank of the larger argument minus one.

(

(

r"

-

(/

c

If either argument A or B is not a scalar, they both must have the same length, or
an error results.

Note: The value of the leftmost position of argument A can be zero, because even
though there must be a value in that position, it is not used when calculating the
result. For example:

o 10 10 1011 7 7 6
1776

If either argument is a scalar, the value of that argument is repeated to match the
length of the other:

10 .L 3 2 5
325

j.O 10 10 .1. 7
777

If argument A is a vector and argument B is a matrix, argument A must have an
element for each row of B:

B~2 3pl 5 2 7 9 4
B

10 J. B

If argument A is a matrix and argument B is a vector, each row of argument A is a
separate conversion factor; argument B must be the same length as a row of
argument A. The result will be a vector with one element for each row of
argument A:

A~2 3pl0 10 10 0 10 5
A

10 10 10 1,= 3
o :l () 5 [Ill x5 = 10

A.L 1 2 3 ill!1: x10x5 = 50
123 63~~------------------------------------63

AJ.2 3 '+
231-1- 119

97

98

If both arguments are matrices, each row of A (conversion factor) is applied to each
column of B. The result is a matrix containing the converted values for each column
of B:

A~2 3p10 10 10 20 10 5
B~3 2pl 2 2 4 3 3
A

:1.0 10 10
20 :1.0 5

B
1 2
2 '+
3 3

AJ.B
123 21+3

63 :L23

The following examples convert hours, minutes, and second to all seconds:

24 60 6011 30 15
5415

The following illustration shows how it was done:

Argument A (number system)

24 60 60

1 _________ 60 units (minutes) equals one unit of the
next position to the left.

fL.. ______ 60 units (seconds) equals one unit of
the next position to the left.

'--------------24 units (hours) equals one unit of the
next position.

Argument B

1 (hour) 30 (minutes) 15 (seconds)

The result was obtained as follows:

15
30x 60

1x60x60

15 seconds
1800 seconds
3600 seconds
5415 seconds

I~ .. J

(

(/

('

c

The T Function: Encode (Representation) m
Monadic Form

There is no monad ic form.

Dyadic Form: Encode AT B

This function is the reverse of the decode function. The encode function result is
the representation of argument B in the number system specified by argument A.

Note: Be sure argument A is long enough to completely represent argument B or
an incorrect answer results.

For example, the representation of 1776 in the decimal number system (base 10):

10 10 10 10r1776
:I. 7 7.6

The following illustration shows how it was done:

Argument A (number system) specifies the following:

10 10 10 10
tL._--'-t_--'t _____ tL..... ___ Ten units in each of these positions

Argument B 'has this value:

1776

equals one unit of the next position to the
left.

99

100

The result is the same as doing the following:

,~

10x10x10 = 1000 11776
1000
776

10x10 = 100

10

.)
1776'
700

76

II)
70

Note: The value of the leftmost position of argument A can be zero. For example:

o 3.0 1.0 3.0'f177e)
1 -, -, 6

If both arguments are vectors, the result is a matrix. Each column in the result con
tains the representation for each element of argument B expressed in the number
system specified by argument A:

l. ()
5 2
9 '+

3.0 ~5,. 36 2L~

7 4·
1. I~.

5~
15
:1

"~,, I

.-

(

(

(

(

c

If argument A is a matrix and argument B is a scalar, then the result is a matrix.
Each column of the result contains the values of argument B expressed in the
number system specified by the corresponding column of argument A:

2
1+
3

20
10

5

A~3 2pl0 20 10 10 10 5
A

B
ArB

tQA T B t-------- The result can be transposed so that
1 2 3 each row represents the values of
2 '+ 3 argument B expressed in the number

systems specified by argument A.

If argument A is a scalar or vector and argument B is a matrix, the result is a matrix
or N-rank array, with one plane for each element of argument A:

A~10 10 10
B~2 2~)123 1+56 789 000
A

10 10 10
B

'+56
0

ArB
..,.
0

c:-
.-:J ..

B 0

.:'"
6

9 0

101

102

If both arguments are matrices, the result is an N-rank array, with one plane for
each element of argument A. Each column of argument A represents a number
system:

10 20
:L 0 20

A+'2 2pl0 20
A

B"'~?
B

88

2(.> 9<'1 88 77 66

77 66
ArB

7 ~}

, ~n

17

Result of the number system in
column 1 of argument A

Result of the number system in
column 2 of argument A

The following example converts seconds to seconds, minutes, and hours:

21+ 60 60 T ~:;4-j.5

1 30 l.5

(

c

The following illustration shows how it was done:

Argument A (number system)

24 60 60

1-'-----60 units (seconds) equals one unit of the
next position to the left.

'--------60 units (minutes) equals one unit of the
next position to the left.

'----------24 units (hours) equals one unit of the
next position to the left.

Argument B

5415 (seconds)

The result was obtained as follows:

oiol;:;

60 x 60 = 3600 15415
3600

60 I::;>
1800

~~':~I~:

.. ,n" ... "._ ',.'" .',\,. •... "',, _, •• , " _. ~~".: .• :,.".,,;,':. .,. m','," ,",,;I~, ,,'n,." L .. " .. " n' .. " , ... ,~ , "," •• '" " "" ', .. ' .• r .. ~-,..-••• -

103

104

The E Function: Membership 'CD
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Membership A€B

The membership function result is a 1 for each element of argument A that can be
found among the elements of argument 8 and a 0 for every element that cannot be
found. The shape of the result is the same as the shape of argument A.
Arguments A and 8 can be any scalar, vector, or array:

l~.Z j, 2 3 '+ .::-
•• 1

j,

1.5.::l. t)
..:.. 3 1+ 5

0
'A'~'BANNA'

1
'AHC'~'BANANA'

1 1 0
At-2 2pl ~~

1:,.-
.J '7

Bt-4 Lf·p12 4t::· ... 1 78
,~

1 3
~) 7

B
1':> 4·~5 7B :1.2
I+~; "?B :1. ~? 4 1::-•• 1

78 :1.2 4·~:; 78
:1.2 '+5 7B :1.2

A~B

0 0
() ()

Bt-I+ '4·?) :I. 2 4 I::'
,J 7 B

A
1. 3
~'5 7

B
1 2 4 5
'7 B 1. 2
'+ 1::'

J 7 8
:I. 2 4- S

A.::B
1- 0
t :I.

(

c

The fll Function: Matrix Inverse, Matrix Divide CD CD
The ffi symbol is formed by overstriking the 0 and the f symbols.

Monadic (One-Argument) Form: Matrix Inverse iii

The matrix inverse function inverts a nonsingular matrix or computes the pseudo
inverse of a recta,ngular matrix. The result is a matrix. Argument a must be a
numeric matrix, and the number of columns must not exceed the number of rows.
The number of columns in the argument is the number of rows in the result, and
vice versa.

If argument a is a nonsingular matrix, rna is the inverse of a. If the matrix does
not have an inverse, then DOMAIN ERROR results:

Af-2 2(.):1. :3 ~:5 '('
A

1 3

EIA
OMO • B7~j o . :3'7~~
0.625 -0.125

:l 2
:3 6

Af-2 2(.):1. 2 :3 6
A

I~IA

DOMAIN EI~ROR
~~Ij~

A

If argument a is a rectangular matrix, rnB is the pseudoinverse of the matrix (least
squares solution):

3 5
:1. 2
2 I.J.

Af-3 2p3 5 :I. 2 2 ~
(4

EtA

Dyadic (Two-Argument) Form: Matrix Divide AlliB

-'")
.:..

1 I") . .:..

The matrix divide function solves one or more sets of linear equations with co
efficient matrices. Argument a must be a numeric matrix. The number of columns
in a must not exceed the number of rows. Argument A must be a numeric vector or
a matrix. The length of the first coordinate of argument A must equal the length
of the first coordinate of argument B.

105

106

The rank of the result is the same as the rank of argument B. The length of the
first coordinate of the result is the same as the number of columns in argument B.
If argument A is a matrix, then the second coordinate of the result is the same
length as the second coordinate of argument A.

If argument B is a square matrix and argument A is a vector, then the result is
the solution to the set of linear equations with coefficient matrix B and right-hand
sides A:

2 3

:3 ~S

:1. 2

'7 1.

Af-8 :3
Bf-2 2pl. 2 3 "'1.
AEiB

B~"2 2p3 ~~j :I. 2
B

If argument B is a square matrix and argument A is a matrix, then the columns of the
result are the solution to the sets of linear equations with coefficient matrix Band
right-hand sides equal to the columns of A:

A-t .. 2 2p2b :1.6 9 6
Bfo2 2p~~ 5 :1. :~
A

21.) lb
9 6

B
3

,.M
,)

:l 2
AEIB

7 2
1. I:>

.:..

If argument B is rectangular, then the result is the least squares solution to one or
more sets of linear equations:

Ai .. :3 ~51):l.1. :I. L~ ... ")
.:.. '+ 7 -1

[H-3 2p3 5 :I. 2 2 '+
A

1.1. 11+ ."-:>
.:..

4- '7 "'j,

11 11+ --:>
.:..

B
:3 5
:L 2
2 L~

AEiB
"'4· -7 1
'+,6 "'1 -1.

(

c

The .t Function: Execute CD Q
The.! symbol is formed by overstriking the J. and the 0 symbols.

Monadic (One-Argument) Form: Execute ~B

The execute function evaluates and executes argument B as an APL expression.
Argument B can be any character scalar or vector.

1+2

10

'+

p,fo' l+2'
.!1

! A ----The character vector in the variable A is executed.

Cfo'«A*2)+(B*2»*,5'
A~-3

B~··I.~

... C

At·6
B~B

.f.e

(~I<:" :I.
Bt·2
.+. (tl::::B)/' (~I+B>'

tl <: •• 2 ., " .. A + 8 is executed only when A equals B .
.t. (A:::: H) / (I + H

Dyadic (Two-Argument) Form

There is no dyadic form.

107

108

The .. Function: Format CD []
The" symbol is formed by overstriking the T and the 0 symbols.

Monadic (One-Argument) Forms: Format ,,8

The monadic format function result is a character array that is identical in appear
ance to the one displayed when the value of argument B is requested:

1 2
~:5 6>
9 :to

1 " ~
c'
J 6
<"} 10

B+<5 L~ (J \ :1.2
B

3 4-
'7 B

:I. 1. 12
X~"'fB
X

~~ '+ .., .-.-----This matrix is a character matrix . B"
1. :to :1.2

Dyadic (Two-Argument) Form: Format A" 8

The dyadic format function result, like the monadic format function result, is a
character array. However, argument A is used to control the format (the spacing and
precision) of the result. Argument A is a pair of numbers: the first number deter
mines the total width of the format for each element and the second number deter
mines the precision used.

(

(

- ._,

(
..•. "

c

If the precision number is positive, the result is in the decimal form, with the number
of decimal places specified by the precision number. If the precision number is
negative, the result is in scaled form, with the number of digits to the left of the E
specified by the precision number:

B~3 2p12.34 -34.567 0 12 -0.26 -123.45
B

12.34
o

-0.26 -123.45
Xfo9 21B
X

:I. 2 • :'5L~ ·-:.3Q· • 57
.00 12.00

.- ")6 .-., ")3 4 C:" 1 • "._., :.,. · ... '1
~~

~'
Cf-9 -2,B
C

1. • 2EO:1. '-3. 5EO 1
0.0['''01 1.2EOl
I~ -1,. 2E02 1

~~~ 

Width of nine positions 

(left margin) 

Width of nine positions 

(left margin) 

If the width entry in argument A is zero, the 5100 uses a field width such that at 
least one space will be left between adjacent numbers. If only a single number is used, 
a width entry of zero is assumed. 

12.34· -34-.57 
.00 12.00 

I - · 26j -123.4- 51 

~~ ~_------~---- Width of eight positions 

(left margin) 

If you get a DOMAIN ERROR when using the format function, increase the width 
(left digit) of the left argument. 

109 



110 

Each column of an array can be formatted differently by using a control pair in 
argument A for each column of the array. 

Width of six positions 

(left margin) 

Notes: 
1. If the DPW system variable is set to an invalid value, DPW IMPLICIT ERROR will 

result when the format function is used. 
2. Even if the specified format causes all of the significant digits to be truncated, 

the sign of the original number is retained. For example: 

1+ 2'f"-.OOOI+ 

f'OO 
"'------------The sign is retained. 

3. If the format function is used with a shared variable during input operations (see 
Chapter 8)' alternate records are skipped if the input data is already in character 
form. 



( 

( 

( 

(
" 

./ 

(I 

c 

APL OPERATORS 

An APL operator applies one or more dyadic primitive scalar functions to arrays. 
The operators are reduction, inner product, outer product, and scan. 

Reduction Operator If) CD 
The symbol for the reduction operator is I. The forms of reduction are: (DIU] B or 
CD/B orC!),£B, where(f)can be any primitive dyadic scalar function that is applied 
between each of the elements of a single vector. 

The rank 'of the result is one less than the rank of argument B, unless argument B 
is a scalar or a single-element vector; then the result is the value of the single element 
of argument B. When argument B is a vector, the reduction of that vector is the same 
as putting the primitive dyadic function between each of the elements: 

10 

10 

Bf-:1. 2 3 1+ 
+/B 

If argument B is an empty vector (see Chapter 3), then the result is the identity 
element, if one exists, for the specified function. The identity elements are listed 

in the following table: 

Identity Element Table 

Dyadic 
Function 

Times 
Plus 
Divide 
Minus 
Power 
Logarithm 
Maximum 
Minimum 
Residue 
Circular 
Binominal 
Or 
And 
Nor 
Nand 
Equal to 
Not equal to 
Greater than 
Not less than 
Less than 
Not greater than 

x 

+ 

* 
~ 

r 
L 
I 
o 
! 
v 
/I. 

V 
A 

> 
~ 

< 
~ 

Identity 
Element 

1 
o 
1 
o 
1 

-7.237 ... E75 

o 

1 
o 
1 

7.237 ... E75 

1 ) 
o I Apply for 
o ~ logical 
1 ~ arguments 

~, only 

111 



112 

When argument B is a multidimensional array, the [I] index entry is used to specify 
the coordinate acted on. If the index entry is omitted, the last coordinate (columns) 
is acted on. If the<D tB form is used, the first coordinate is acted on. Indexing along a 
nonexistent coordinate will result in INDEX ERROR. 

When argument B is a multidimensional array, the coordinate of argument B that is 
acted on is eliminated: 

6 

6 

c· 
'-' 
5 

o 

1 

B~"2 :3pt 
B 

t ") 
': .. 3 

1+ I!:' 
·,,1 f.) 

+/B 
j I::' "-.• J ---------The last coordinate (columns) is assumed; 

+ I I:: 2::1 B therefore, the reduction is between columns: 

:1.5 

'7 9 

'7 9 

+fB ~ 1+2+3=6 

+ I I: 1. ::I B The second coordinate (in this case, columns) 
~ is specified. 

B~"2 :.~ 4'P\21+~ 
B The first coordinate (rows) is specified; 

1') ,. ... ~:~ lJ. therefore, the reduction is between rows: 
I!:' 

'''' 6 "l B 
<'I :1.0 :1.1. 1.2 2 3 

11~. 1. ~.) :L 6 
:1.7 :LB :1.9 20 

5 
§. 
7 

§. 
9 

21 22 23 24· 
+/[:l.JB 

:1.6 :L B 2 o--------The first coordinate 

22 21+ 2(~) 20 
~:~ 0 32 3 14. 36 

IH· \ 0 
B 

+/1'3 

::::/B 

(planes) is specified; 
therefore, the reduction 
is between planes. 

riB 
-'7 I ;?':37E7~.:i 

If argument B is an array that has a coordinate whose dimension is zero, then reduc
tion along that coordinate yields an array whose elements are equal to the identity 
element for the function. The identity element for each function is given in the 
preceding table. 



( 

( 

Inner Product Operator (.I 0 
The symbol for the inner product operator is • (period). The inner product opera
tor is used to combine any two primitive scalar dyadic functions and cause them to 
operate on an array. An example of its use would be in matrix algebra. in finding 
the matrix product of two matrices. The form for inner product is: A <D.@ B, 
where(Dand @are any primitive scalar dyadic fun,ctions. Function@is performed 
first and then(Dreduction is applied between the results of function®. 

The result is an array; the shape of the array is all but the last coordinate of 
argument A catenated to all but the first coordinate of argument B (-1 {- pA)'(1 {- pB). 
If argument A and argument B are matrices, the elements in each row of argument A 
are acted on by the elements in each column of argument B: 

A~-2 2p1 ") 
.:- 3 '+ 

B~-2 r) I::' .:..P,J 6 '7 8 
A 

6 
8 ~--------(1x5) + (2x7) = 19 

ri::.2A+.
XB 

1.J·3 ~50 

The above example is t~e same as doing the following for each element in the result: 

( 1.x5)+(2x'l) 
19 

(:l.x6)+(2x8) 
22 

4·3 
(3x6)+(4·xS) 

50 

, 113 



114 

The shapes of arguments A and B must conform to one of the following conditions: 

1. Either A or B is a scalar. 

A~-2 2(..)1 2 3 I.J. 
Bi-~5 

A 

B 
/'"-------(1x5) + (2x5) = 15 

/ A+, x 1-3 
;11; :35 

2. The last coordinate of argument A is the same length as the first coordinate 
of argument B. (If both are matrices, the column coordinate of argument A 
is the same length as the row coordinate of argument B.) 

A~-3 2p1 2 :'5 '+ t::' 
.J 6 

Bi-2 ~5p7 8 <"I 10 1:1. 12 
(~ 

1 2 

B 
'7 9 

l. 0 '.2 
A+ , x=--"I:::;..o{ ___ _ 

/
-- (3x8) + (4x11) = 68 27 ]0 3~5 

6111 7!:j 
<'15 :I. 06 :1.17 

.' 



c 

c 

If argument A and argument Bare N-rank arrays, the elements in each row of 
argument A are acted on by the elements in each plane of argument B: 

A~-2 2 2(.n8 
A 

1 2 
~3 If 

5 l:> -, 
{ 8 

B~-2 2 2p8+\t3 
B 

9 10 
:I. :I. 12 

13 14· 
15 j.6 

A+,xB 
31::-,J 38 
1+:1. '+4· 

79 86 
(l:~ 100 

123 134 
:1.'-1·5 l.5f.') 

:1.67 182 
197 2:1.2 

115 



116 

Outer Product Operator (0 .) CD 0 
The symbols for the outer product operator are 0 •• The outer product operator 
causes a specified primitive scalar dyadic function to be applied between argument A 
and argument B so that every element of argument A is evaluated against every ele
ment of argument B. The form of the function is: A 0 .CDB, whereG)is a dyadic 
primitive scalar function. Arguments A and B can be any expressions. Unless 
argument A is a scalar, the shape of the result is the shape of argument A catenated 
to the shape of argument B. If argument A is a scalar, the shape of the result is the 
same as the shape of argument B: 

A~··2 
Bf·l 2 3 1+ 
A 

2 
B 

1 .. J 
.-:.. 3 4-

Au, xB 
::! 1+ 6 8 

A~~ 1 ,.) 
ik. 3 

B~··3 4 c· ..... 
I~ 

B 
1+ 5 

r.1(),XB 

LJ. I::" 
.J 

B 10 
t ::! 11::· ... J 

The above example is the same as doing the following for each element in the result: 

4· 
:I.x5 

6 

8 
2x~5 

10 

9 

12 

15 



c 

c 

More examples: 

Af..2 

3' '+ 5 
<5 7 B 

B~2 3pl 2 3 4 5 6 

Ao. +B 

Af.~2 2p.1. ~2 ,3' '+ 

.B~3' 3":>\9 

A 

B 
2 3' 
5 6 

7 B 9 

Z~"Ao • +B 
pZ 

2 2 3' 3' 
z 

JJII- 3' 4 

5 <5 7 

B 9 10 

fl.lf-4 5 

6 7 a 
9 1. (J .1 .. 1. 

--- ··1+1=2 

2+1=3 

III :5 6 

"789 

10 1.1. 12 

3+1=4 

e 
11. 

4+1=5 



118 

Scan Operator 1\) CD 
The symbol for the scan operator is \. The forms of scan are: (f)\[I] B,G)\B or 
®~B, where®can be any scalar dyadic primitive function and argument B is a 
numeric vector or other array. The scan operator, like the reduction operator, 
operates on the elements of a single vector, and is the same as putting the primitive 
dyadic function between each of the elements. But the scan operator accumulates 
the results as the operation is repeated along the vector. The shape of the result is 
the same as that of the input argument: 

+\:1. 2 3 1+ 5 
1. 3 6 :1.0 1. 5 ...... ~----- This result is the same as doing the 

6 

10 

1 ~5 

1 following for each element in the 

:1.+2 

1.+2+~3 

1. +2+~5+1+ 

:1. +2+~5+1.~+5 

result. The first element in the 
result is the first element of the 
argument. 

When argument B is a multidimensional array, the [I] index entry is used to specify 
the coordinate the scan is to proceed along. If the index entry is omitted, the last 
coordinate (columns) is acted on. If the(f) ~B form is 'used, the first coordinate 
is acted on. 

IH<5 ,+p\l:~ 

B 

..... -----The first coordinate (rows) is specified; therefore, 
the scan is between rows . 

..... -----The second coordinate (columns) is specified; 
therefore, the scan is between columns. 

/ " 



Ai"2 ~3 ,+p \ 24· 

( 
A 

1. 2 ~~ 1+ 
5 <!) 7 8 
9 :1.0 1:1. 1=~ 

:1.3 1. '+ :1.5 :I./.) 

(~ :1.7 18 1.9 ~~o 

2:1. 22 23 24· 
+\[l.JA .. The first coordinate (planes) is specified; 

1. 2 :3 '+ therefore, the scan operation is between planes. 
5 6 7 8 
9 :1.0 1:1. :1.2 

("-~ 
1'+ 1.6 1.8 20 
I,,:) 24- ~~6 2B '-..... 
30 32 34· ~~6 

+\[2JA .. The second coordinate (rows) is specified; 
:I. 2 3 If therefore, the scan operation is between rows 
/.) B 1:0 :1.2 for each plane. 

1.5 :1.8 21. 2l~ 

:1.3 :I.I~. :I. ~) 1.6 
30 :32 3 1+ 36 
5:1. 54· 57 60 

+\[3JA .. The third coordinate (columns)' is specified; 
:I. ~3 /.) 10 therefore, the scan operation is between columns 

('" 5 1:1. 18 26 for each plane. 
<'I :1.9 30 If.~ ,/ .:.. 

13 27 4-2~, 58 
:1.7 35 5'+ 74-
21 1.f.~5 66 90 

c 

c 
119 



SPECIAL SYMBOLS 

Assignment Arrow -<- (J 
The assignment arrow causes APL to evaluate everything to the right of the arrow 
and associate that value with the name to the left of the arrow. For example, 
A+2+3 means that 2+3, or 5, is assigned to the name A. When A is used in a later 
APL statement, it has a value of 5. 

Notes: 
1. When a value assigned to a variable is used as the argument for a function, 

the value assigned to the variable is used by the function, regardless of 
any previous or future value assigned to the variable. For example: 

6 

3 

-, 

A~hl+ 

(A~"3) +A 

A 

(A~"3) +A~··I+ 

A 

2. To avoid confusion, a variable should not be referenced in the same expression 
it is assigned, except directly to the right of the assignment. For example: 

3 

A~"2 
A~"A+:I. 

A 



( 

(" 

Branch Arrow + [] 

The branch arrow is used for the following: 

• To change the order in which the statements are executed in a user-defined 
function. See Branching in Chapter 6 for more information on branching. 

• To resume execution of a suspended function (see Suspension in Chapter 7). 

• To clear the state indicator (see State Indicator in Chapter 7). 

OuadO CD 
The quad is used to ask for input and to display output. To display output, the quad 
must appear immediately to the left of the assignment arrow. The value of the APL 
expression to the right of the arrow is assigned to the quad and will be displayed. 
For example: 

7 
1.2 

The 7 displayed is the value assigned to the quad. The 12 is the final evaluation of 
the APL expression. 

When used to ask for input, the quad can appear anywhere except to the immediate 
left of the assignment arrow. Execution of the expression stops at the quad a'nd re
sumes when an expression is entered to re'place the quad. When a quad is encountered, 
the quad and colon symbols (0: ) are displayed to indicate that input is requested. 
For example: 

[]: 

:LOO 

See Chapter 6 for more information on quad input or output within a user-defined 
function. 

121 



122 

Ouad Quote I!l (]] Q 
The quad quote symbol is formed by overstriking the quote symbol' and the quad 
symbol O. The quad quote operates the same way as the quad when requesting 
input, except that the data entered is treated as character data. For example: 

CAN'T 
x 

CAN'T 
Xf-r.:1 

'CAN" T' 
X 

'Cf-iN' , T' 

Note: If a system command is entered for a quad quote input request, the system 
command is treated as a character string and will not be executed. 

See Chapter 6 for more information on quad quote input or output within a user
defined function. 

Comment ~ GJ CD 
The comment symbol is formed by overstriking the n symbol and the 0 symbol. 
The comment symbol must be the first nonblank character in a line and indicates 
that the line should not be executed. For example: 

VPLlJBt:[]::IV 
'i./ ONE PLUS TWO 

[lJ ATHE PURPOSE OF THIS FUNCTION IS 
[2J ATO ADD TWO NUMBERS TOGETHER! 
[:3:1 ONE+TWD 

V 

l~6 

Parentheses () 

Parentheses are used to specify the order of execution. The order of execution is 
from right to left with the expressions in parentheses resolved (right to left) as they 
are encountered. For example: 

27 

) 



( 

(--

( '" 

_/ 

Chapter 5. System Variables and System Functions 

SYSTEM VARIABLES 

System variables provide controls for the system and information about the sys
tem to the user. These variables can be used by a function as arguments the same 
as any variable. 

The following is a list of the system variables and their meanings. A complete des
cription of each follows the list: 

Variable Name Meaning 

OCT Comparison tolerance 

010 Index origin 

OPP Printing precision 

OPW Printing width 

ORL Random link 

OLC Line counter 

OWA Workspace available 

OLX Latent expression 

OAV Atomic vector 

Notes: 
1. To find the value assigned to a system variable, enter the variable name. The 

value assigned to the OCT, 010, OPP, OPW, ORL, and OLX system variables 
can be changed by using the assignment arrow (~). For example, entering 
010+-0 assigns the value 0 to the 010 system variable. 

2. The use of any system variable causes an entry to be made in the symbol table 
for that symbol. Therefore, if the symbol table is full, a SYMBOL TABLE FULL 
error is generated. 

123 



124 

Comparison Tolerance: OCT 

o 

The value of this variable determines the maximum tolerance (how different the two 
numbers must be to be considered unequal) when using any relational function and 
at least one argument is a noninteger. For example, two numbers are considered un
equal if the relative difference between the two numbers exceeds the comparison 
tolerance value. The following illustration shows how the comparison tolerance 
works with the relational functions: 

• 
----- A>B 

±OCTxA' 
~ Value of argument A 

Real number line 

The relationship of 
any value (argument B) 
to argument A 

A' is the next lower integer power of 16 for the largest argument. For example: 

:1. 6 *·0 :1. ;.~ ~~ I., .... ----The first five integer powers of 16. 
i 16 256 4096 65536 

[leT ~- I :I. 
1. '4·:::: 1.!) I 

o 

:1. !):::::I, 6 I 

1 

o 

1 

Next lower integer power (A') is 1; therefore, 
the difference between the arguments exceeds 
±OCTxA' (.1x1 = .1). 

Next lower integer power (A') is 16; therefore, 
the difference between the arguments does not 
exceed ±.OCTxA' (.1x16 = 1.6). 

Next lower integer power (A') is 16; therefore, 
the difference between the arguments exceeds 
±.OCTxA' (.1x16 = 1.6). 

Next lower integer power (A') is 256; therefore, 
the difference between the arguments does not 
exceed ± DCTxA' (.1 x256 = 25.6). 

Note: The OCT function considers any number in decimal form a non integer. For 
example, 1000 is an integer and 1000. is a noninteger. 

The value of the comparison tolerance variable also affects the floor and ceiling 
functions. The comparison tolerance is added to the argument for the floor function 
and subtracted for the ceiling function. For example: 

3 

I.~ 

[]CT~- ,0:3 
L 2 I <7B 

r~5 10 1+ 

2.98 + .03 = 3.01 (The integer 3 is in the range of 
2.98 + .03.) 

2.96 + .03 = 2.99 

3.03 - .03 = 3 (The integer 3 is in the range of 
3.03 - .03.) 

3.04 - .03 = 3.01 



( 

c· 

In a clear workspace, the comparison tolerance value is set to 1 E-13 (see 
Chapter 3 for an explanation of scaled representation). 

Index Origin: 010 

The value of this variable determines the index origin. The value can be either 0 
or 1, which means that the first component of a vector or array is indexed with 
a 0 or 1, depending on what the value is set to. In a clear workspace, the value 
is set to 1. 

The functions affected by index origin are indexing ([]), index generator (t), 

index of (t), roll (7), deal (7), grade up (~), and grade down ('f). 

0 :1. '') ,.:. 

1 2 "X 
,.) 

0 :I. 2 

[]IO~-O 

1 2 3 
3 
(h6 :~ 

0 
\ 4· 
~5 
IJI()~-:I. 

'+ \ 1. 2 

I.. ~:j 

:3 '+ The index values represented by the 
result start from 0 rather than 1. 

Note: All other examples in this manual are shown with the index origin set to 1. 

Printing Precision: DPP 

The value of this variable determines the number of significant digits displayed for 
decimal numbers and for integers with more than 10 digits. The value of this var
iable does not affect the internal precision of the system. The value can be from 
1 to 16. In a clear workspace, the value is set to 5. This means that the number 
of significant digits displayed for decimal numbers or for integers with more than 
10 digits is limited to 5 and scaled representation (see Chapter 3) is used (if re
quired). For example: 

tr-------Decimal .Number Examples 

123'+5. b 
123'+6 .... 1-----------Five digits are displayed and the 

:I. 23lJ.~5 . 67 least significant digit is rounded off. 

123lJ.6 
123lJ.!56. "7 

1 .2:34·6E5 

tr-------1nteger Examples 

:I. 231+5l) 7B9 0 
:1.23'+567890 

1 ~.~3lJ.5l) -'890 :1. 
:I .• 23'+6E 1 () 

125. 



126 

Print Width: OPW 

The value of this variable determines the length of the output line for both the 
display and printer. The value can be from 30 to 390. In a clear workspace, 
the value is 64. If this variable is set to a value greater than the length of one 
line across the display or printer, the output will overflow onto the next line. 

Note: During function definition mode (see Chapter 6), the print width variable 
is automatically set to 390. The variable returns to its original value when the 
function is closed. 

Random Link: ORL 

The value of this variable is used in generating random numbers. The value can 
be from 1 to 231 _2. In a clear workspace, the value is 7*5 (16807). This value 

is changed by the system each time a random number is generated. 

Line Counter: 0 LC 

This variable is a vector. The first element is the function statement number 
currently being executed. The next element is the number of the statement 
(in another function) that invoked the function being executed. The remaining 
elements follow the same pattern. The user cannot set this variable but can dis
play it. Attempts to modify OLC are ignored by the system. For more informa
tion on OLC, see Chapter 7. 

Workspace Available: OWA 

The value in this variable indicates the amount of unused space (the number of 
unused bytes) in the active workspace. The user cannot set the value for this 
variable but can display it. Attempts to modify DWA are ignored by the system. 

Latent Expression: 0 LX 

A character vector assigned to the latent expression variable is automatically 
executed as an expression by the execute (.!) function when a stored workspace 
containing the latent expression is loaded into the active workspace. 

Uses of the latent expression variable include the form OLX+-'G', where a func
tion named G is executed when the stored workspace is made active. The form 
DLX+-"'MESSAGE WHEN WORKSPACE IS MADE ACTIVE'" displays the mes
sage MESSAGE WHEN WORKSPACE IS MADE ACTIVE when the stored work
space is loaded into the active workspace. 



( 

( 

c 

c 

[lJ 
[2] 
1:3] 
[4·] 
I::~:; ] 
[6] 
[7] 
[8J 
[9] 
[10] 
[11.] 
[12] 
[:1.3] 
(14-] 
[:I.5J 
[:1.6] 

Y 
I 

W 
I 

R 
G 

N 
T 

Atomic Vector: DAV 

The atomic vector is a 256-element vector that includes all possible APL charac
ters. The following example shows it can be used to determine the indices of any 
known characters in the vector (assuming 010 is 1): 

DAY, 'ABC' 
87 88 89 

Appendix C contains a list of the characters in the atomic vector. The most com
mon use of the atomic vector is for generating line feed and cursor return charac
ters to arrange output. The following example shows how the atomic vector can 
be used to generate these characters. 

The function called NAMES will display your first and last name. Each name will 
start at the left margin and each character in the name will be one line lower than 
the previous character: 

'VNAMES[D]V 
V A NAMES B;OUTPUT;I;J;OIO 

[]IOi-:l. 

'V 

I 

,Jf'( ~), f.O+Ii"('>, A 
ASTATEMENT 5 CATENATES THE ARGUMENTS TOGETHER 
RAND ALSO PUTS A BLANK CHARACTER BETWEEN EACH CHARACTER 
OUTPUT~«2xJ)p 1 O)\(,A),(,B) 

ASTATEMENT 8 PLACES A LINE FEED CHARACTER (OAV[160]) 
AIN EACH BL~NK ELEMENT OF OUTPUT 
OUTPUT[2X\j-l]~DAV[160] 

ASTATEMENT 11 PLACES A CURSOR RETURN CHARACTER (DAVE157]) 
AAFTER THE FIRST NAME 
OUTPUT[2XI]~OAV[157J 

ANOW WHEN THE CHARACTER VECTOR Q~!PY! IS DISPLAYED, 
AAPL RESPONDS WITH THE APPROPRIATE ACTION WHEN A LINE 
AFEED CHARACTER (OAV[160]) OR CURSOR RETURN CHARACTER 
A(OAV[157J) IS ENCOUNTERED IN THE CHARACTER STRING 

OUTPUT 

'VIRGINIA' NAMES 'WINTER' 

N 
'1 

A 

E 
R 

127 



128 

SYSTEM FUNCTIONS 

System functions are used like the primitive (built-in) functions; they are monadic 
(one argument) or dyadic (two arguments) and have explicit results. 

Following is a list of the system functions and their meanings. A complete des
cription of each follows the list: 

System Function Meaning 

OCR name Canonical representation 

OFX name Fix 

DEX name Expunge 

ONL class Name list 

character ONL class Name list beginning with the specified character 

ONC name Name classification 

The 0 CR Function: Canonical Representation 

The OCR function formats a user-defined function into a character matrix. This 
function is monadic (takes one argument); the argument for the OCR function 
must be a scalar or vector of characters representing the name of an unlocked 
user-defined function. For example, you have the following user-defined function: 

V I~~"INTG A 
1:1.J R~"A?)O 
[~~J I~"l 
[3l START:R[I]~A 
[I+J If-I+1. 
[5J ~(I~A)/STARTV 

The function I NTG is used to create a vector whose length and contents are spe
cified by the input argument: 

INTG L~ 

'+ If. '+ '~. 
INTG 7 

777 777 7 

-II.. l 



CI~. 
- ---/ 

To format the function INTG into a character matrix and assign the matrix to a 
variable named VAR, the following instruction would be entered: 

VAR~[ICR I INTG' 

VAR is displayed as follows: 

VAR 
R~INTG A ..... I-------First row is line 0 of the function. 
1~f-ApO 
I f'l 
START: R[ I ]~-A 
If·I+j . 
..• (I :;;A) /START 

pVAR ..... ~----lndicates VAR is a 6-row, 12-column matrix. 
6 12 

Notice that the line numbers are removed along with the opening and closing \j. 

Also, labels within the function are aligned at the left margin. 

Now matrix VAR can be changed by simply indexing the elements: 

VAR[lf. i 12]~" I I ......... ~ ___ The element in row 4, column 12 
VA R is changed to I. 

Rf-INTG A 
1~~-ApO 

If-1 
STAI~T: Rr.I]~··I 
I~-I+:l 

-. (I :~A) /STAI~T 

To format a matrix created by the OCR function into a user-defined function, use 
the OFX function. The OFX function is discussed next. 

The 0 FX Function: Fix 

The OFX function forms (fixes) a user-defined function from a character matrix 
(that was most likely formed using the OCR function). This function is monadic 
(takes one argument); the argument for the OFX function is the name of a matrix 
to be formed into a user-defined function. If an error is encountered (invalid char
acter, missing single quote, etc) as the matrix is being formed into a user-defined 
function, the operation is interrupted, the number of the row in error minus one 
is displayed, and no change takes place in the active workspace (the user-defined 
function is not formed). 

129 



130 

To show how the OFX function works, we will use the matrix created in the pre
vious example (see the OCR function). To form matrix VAR into a user-defined 
function, the following instruction would be entered: 

[]FX VAr~ APL responds with the name of 
I NTG .... -4--------the user-defined function. 

The OFX function produces an explicit result (the array of characters that repre
sents the name of the user-defined function), and the original definition of the 
user-defined function (if there was one) is replaced. 

Now the function I NTG can be displayed and executed: 

VINTG[[]JV 
'V R~-INTG A 

[tJ R~··ApO 

[2] I ~<l 
I:: ::~] ST('~~~T: I~[ I ]~-I 
[1·1·] lfoI+:1. 
[5] .. ~ ( I ~;A) ISTAI~T 

V 

INTG 5 
1 '1 3 '+ c-.. -- ~ 

INTG B 
1 2 :3 1+ 1::-

-.J 6 7 8 

Following is an example that shows how the OCR and OFX functions can be 
used to modify the definition of a function within another function_ This 
example will use the following user-defined function: 

VINTG[[]]~l 

'V Rf·INTG A 
[:I.] R~-I~pO 

[2] I~t 

[3] START;R[I]~A 

[1+] I~-·I+:I. 

[5] ~(I~A)/START 

V 

INTG l+ 
l+ 1+ 4· 1+ 



(-

Format the function into a matrix: 

M+-OCR • INTG '~Canonical Representation 
M 

Ri" INTG A 
R+-ApO 
If·:I. 
START: I~[ I ]i"l~ 
1+-1+1 
.. ~( I::;A)/START 

Now, define a function called CHANGE, which, when performed, will execute a 
modified version of INTG. 

[:1. ] 
[2J 
[3] 

Lf. l~ 

1. 2 

Lf. Lf. 

I NTG is made a local function so that the _. _ . . .. \. I global version will not be change (the local 
V> CHANbE 1 IN T b 1 Y version will not exist after the execution of 

MI"J ... '">"] • I' .. + I .t. ,,'". f- .. CHANGE is complete). 
Yf-DFX M 

INTG 4-V~ASSign the explicit result of the OFX function 
V ~ to Y so that it will not be displayed. 

Execute the modified version of I NTG. 

INTG '+ .. Execute INTG. 
Lf. I~ 

CHANGE .. Execute CHANGE. 
3 Lf. 

INTG '+ .. Execute INTG again. 
I.f. Lf. 

131 



132 

The 0 EX Function: Expunge 

The OEX function erases global objects or active local objects specified by the 
argument from the active workspace (unless the object is a pendent or suspended 
function). This function is monadic (takes one argument); the argument must be 
a scalar, vector, or matrix of characters. 

Thus, if object AB is to be erased, the following instruction would be entered: 

[lEX 'I~B' 

Note: Even after the object is erased, the name remains in the symbol table (the 
part of the active workspace that contains all of the symbols used). To clear out 
the symbol table, save and then reload the workspace. 

The 0 EX function returns an explicit result of 1 if the name is available and a 0 if 
it is not available or if the argument does not represent a valid name. When the 
OEX function is applied to a matrix of names (each row represents a name), the 
result is a logical vector (zeros and/or ones) with an element for each name. The 
OEX function is like the )ERASE command, except that it applies to the active 
referent (see Chapter 6, Local and Global Names) of a name. 

Note: If the object being expunged is a shared variable (see Chapter 8), it will 
be retracted. 

The ONL Function: Name List 

The ON L function yields a character matrix; each row of the matrix represents 
the name of a local (active referent) or global object in the active workspace. 
The ordering of the rows has no special significance. The ONL function can be 
either monadic (takes one argument) or dyadic (takes two arguments); in both the 
monadic and dyadic forms, the right argument is an integer, scalar, or vector that 
determines the class(es) of names that will be included in the result. The values 
for the input argument and associated classes of names are: 

Argument 

1 
2 
3 

Name Class 

Names of labels 
Names of variables 
Names of user-defined functions 

It does not make any difference in what order the class of names appears in the 
argument. For example, ONL 2 3 or ONL 3 2 results in a matrix of all the vari
able and user-defined function names. 

In the dyadic form, the left argument is a scalar or vector of alphabetic charac
ters that restricts the names produced to those with the same initial character 
as that of the argument. For example, 'AD' ONL 2 results in a matrix of all 
the variable names starting with the character A or D. 



,:( .. 

(-

Uses of the ON L function include: 

• Erasing objects of a certain class (and also beginning with a certain character). 
For example: 

rJEX · B' ONI ... 2 

erases all the variables whose names start with B. 

• Avoiding the choice of a name that already exists. 

The 0 NC Function: Name Classification 

The ONe function is monadic (takes one argument); the argument is a scalar or 
array of characters. The result of the function is a vector of numbers represent
ing the class of the name given in each row of the argument. The classes of names 
are as follows: 

Result 

o 
1 

2 

3 

4 

Meaning 

Name is available for use 

Name of a label 

Name of a variable 

Name of a function 

Name is nonstandard (not available for use) 

133 



Chapter 6. User-Defined Functions 

134 

APL provides an extensive set of primitive functions; nevertheless, you may want 
a function to solve a special problem. APL provides a way to create a new func
tion, called function definition. During function definition, you use existing APL 
functions to create new functions called user-defined functions. 

Normally, the 5100 is in execution mode; that is, after a line has been entered 
and the EXECUTE key pressed, the 5100 executes that line. To define a func
tion, the mode must be changed to function definition mode; after the function 
is defined, the mode must be changed back to execution mode before the func
tion can be executed. The mode is changed by entering the V (del) symbol. The 
first V changes the mode to function definition mode; the second V indicates the 
end of function definition and changes the mode back to execution mode. 

No statement error checking is performed during function definition mode. That 
is, all error checking is performed when the statement is executed. 

MECHANICS OF FUNCTION DEFINITION 

The following steps are required to define a new function: 

1. Enter a V followed by the function header (see Function Header in this 
chapter). After the function header is entered, APL responds with a 
[1] and waits for the first statement of the function to be entered: 

V'HDME SeD RE v I B I TO I~ (function header) 
[1] 

2. Enter the statements that define the operations to be performed by the 
function. As each line is entered, APL automatically responds with the 
next line number: 

[:1. :I 
[2] 
[:-3:1 
[1.1·] 

'iJ HOME SC()I~E 

'THE FINAL 
+/HDME 
'TO' 
+/VISITOR 

VIBIT()I~ 

SCDRE IS: 

Note: During function definition mode, the print width (see 0 PW system vari
able in Chapter 5) is automatically set to 390. The print width returns to its 
original value when the function is closed. This prevents problems that occur 
when editing statements that exceed the print width. Editing statements are 
discussed later in this chapter. If a user-defined function contains a statement 
that is greater than 115 characters in length, that statement cannot be edited and 
the function cannot be written on tape. (See OCR and OFX in Chapter 5 for 
information on changing a user-defined function to a matrix.) 



( 

I"~ ~" 

3. Enter another \j when the function definition is complete. The closing \j 

may be entered alone or at the end of a statement. For example: 

[~J +/VISITORV 
or 

[5] V 

Note: If the closing \j is entered at the end of a comment statement, which 
begins with a A symbol, the \j will be treated as part of the comment and 
the function will not be closed. 

Function Header 

The function header names the function and specifies whether a function has no 
arguments (niladic), one argument (monadic), or two arguments (dyadic). 

Note: Function names should not begin with S~ or T~, because S~ and T ~ are 
used for stOp and trace control (Stop Control and Trace Control are discussed 
later in this chapter). 

The function header also determines whether or not a function has an explicit 
result. If a function has an explicit result, the result of the function is tempor
arily stored in a result- variable (names in the function header) for use in calcula
tions outside the function. The result variable must be included in the result 
statement (the statement that determines the final result of the function) as well 
as the function header. For example: 

"J RESULT~ 
[1] RESULT~X+YV 

3PLUf~ 
Result Variable 

"1 ~ The result of the function is 

17 
1. 0+~5 PLUS LI·~ temporarily stored in the re

sult variable so that it can 
be used by another function. 

User-defined functions that do not have an expl icit result cannot be used as part 
of another expression. For example: 

v X PI...US:t. Y 
[1] X+YV 

7 
:1.0,+:3 PLUS 1 l~ 

VALUE E I~ RO I~ 
10+:3 PLUSl 1+ 

135 



136 

The following table shows the possible forms of the function header: 

Number of Format of Header 
Arguments Type No Explicit Result Explicit Result 

0 Niladac VNAME VR+-NAME 
1 Monadic VNAME B V R+-NAME B 
2 Dyadic VA NAME B V R+-A NAME B 

There must be a blank between the function name and the arguments. Also, the 
same symbol cannot appear more than once in the function header; thus, 
Z+-FUNCTION Z is invalid. 

For user-defined functions, the order in which the arguments are entered is 
important. For example, assume that Z+-X DIVIDE Y represents a function in 
which Z is the result of Xf Y. Now if 20 DIVIDE 10 is entered, the result is 2. 
However, if 10 DIVIDE 20 is entered, the result is 0.5. 



C" 

Branching and Labels 

Statements in a function definition are normally executed in the order indicated 
by the statement numbers, and execution terminates at the end of the last state
ment in the sequence. This normal order can be modified by branching. 

Branching is specified by a right arrow (~) followed by a label (name) that speci
fies the statement that is to be branched to. For example, the expression 
~START means branch to a statement labeled START. When assigning a label 
to a statement, the label must be followed by a colon (:) and must precede the 
statement. The colon separates the labe' from the statement: 

[2J START: N~-N+:L 

[!:;] "~STAI~T 

In the previous example, the label START is assigned to the second statement in 
the function. In other _words, START has 3 value of 2; however, if the function 
is edited and the statement is no longer the second statement in the function, 
START will automatically be given the value (or ,statement number) of the new 
statement. (See Function Editing later in this chapter.) 

137 



138 

Labels are local to a function-which means they can only be used within that 
function. Following are some additional rules that apply to the use of labels: 

• They must not appear in the function header. 

• You cannot assign values to them. 

• They can be up to 77 characters in length. 

• They cannot be used on comments. 

• When duplicate labels or labels that duplicate a local name are used, the first 
use of the label or name is the accepted use. 

If the branch is to zero (-+()) or any statement number not in the function, the 
function i's exited when the branch statement is executed. If the value to the right 
of the -+ is a vector (for example, ~L 1 ,L2,L3), the branch is determined by the 
vector's first element. If the vector is an empty vector (there are no elements), the 
branch is not executed, and the normal sequence of statement execution continues. 
For example, the conditional branch ~(I ~N)/START is evaluated as follows: 

1. First, the condition (I ~ N) is evaluated; the result is 1 if the condition is 
true and 0 if the condition is false. 

2. The result of step 1 is then used as the left argument for the compress 
(A/B) function: 
a. If the result of step 1 was 1, START is selected from the right argument 

and a branch to the statement labeled START is taken. 
b. If the result of step 1 was 0, nothing is selected from the right argument 

(an empty vector is the result) and the sequence of execution falls through 
to the next statement. 

Following are three examples of defining and using a function to determine the 
sum of the first N integers. Each function uses a difterent method of branching. 
Remember, the expression to the right of the ~ is evaluated and the result deter
mines to what statement the branch is taken: 

I: :1.:1 
[2] 
[:3] 
[1+] 

[!7j J 
[6J 

'V Sf·SUM:L N 
s~··o 
14.··:1. 

CHECK : ··~I...~lHEI ..• X I ::;N ..... i----Branch to LABEL if I$N; otherwise, 
LABEl ... : S~"S+ I exit the function. 
I~'I+l 
"~CHECK'V 

SUM:I. 5 

I~,",} 

''<I •• 



( 

c' 

'iJ Sf·SUM2 N 
[1] Sf'O 
[2J It-l 
[3] C H E C K : ~ ( I::· N ) / () .. ---- Branch to 0 (terminate the function) 
[I.~] Sf'S+:!: or fall through. 
[5] I~"I+1 
[6] "~CHECI<" 

SUM2 ~5 
:L ~::; 

'iJ St-SUM3 N 
[:I. J Sf'(} 
[2] I ~ .. O 
[3] CHECI( : S~"S+ I 
[I·I·J If·I+:!. 
[ ~:j :t -+ ( I :~N) /CHECI<V ... Branch to CHECK or fall through. 

SUM~5 !:=j 
1 t:· ,., 

Several forms of the branch instruction are shown in the following table: 

Branch Instruction Result 

-+L.ABEL 
-+0 

Branches to a statement labeled LABEL 
Exits function 

-+L.ABELx X::::Y Branches to LABE L or exit function 
Branches to L 1, L2, or L3 ~«X<Y)I(X=Y»)(X>Y»/Ll,L2)L3 

oof.(Ll.IL2)[1+X::::Y] Branches to L 1 or L2 
-~(X::::,()/O Exits function or falls through to next statement 

-+ (X:'.::'() /L.'~BEL } Branches to LABE L or falls through 
-+ (X::::Y) pLABEI... 

Note: Branching will also work if a specific statement number is specified to the 
right of the~. For example, ~3 means branch to statement 3; or ~1+-3xA means 
I is assigned the value of 3 times the value of A, and the value of I is then used as 
the branch to statement number. However, these forms of branching (using 
statement numbers instead of labels) can cause problems if the function is edited 
and the statements are renumbered. 

Local and Global Names 

A local name is the nam~ of a variable or user-defined function that is used only 
within a particular user-defined function. A global name is the name of a variable 
or user-defined function that can be used within a user-defined function and can 
also be used outside of it. An example of the use of a local variable name would 
be the name of a counter used in a user-defined function (which is not required 
for any use outside the function). 

139 



140 

To make a name local to a user-defined function, it must be contained in the 
function header. For example, the function header VZ+-EXAMPLE X;J;I estab
lishes the result variable Z, the argument X, and variables J and I as local variables. 
Notice that the local names, other than the result variable and arguments, follow 
the right argument (if any) and are preceded by semicolons. 

A local name can be the same as a global name (variable or user-defined function) 
or a local name in another function. However, any reference to the name local 
to the function will not change the values of any other global or local objects 
(variables or user-defined functions) or cause them to be used. 

After a user-defined function has executed, the .following rules apply to the local 
and global variables used by the function: 

• Any value assigned to a local variable is lost. 

• If a local variable had the same name as a global variable, the value of the glo
bal variable remains unchanged. 

• If the value of a global variable was changed by the function, it retains the 
new value. 



( 

('" 

("" 

For example: 

LOC~<1. 0 () 
GI...DBf.··l 0 0 
VRESULT~EXAMPLE;I...OC;X 

I: 1] L(JCf'~50 

[2] X~"25 

[~3::1 GJ...OBf·:1. 0 
[4J RESULT~LOC+GI...OB+XV 

EXAMPLE 
B~5 

X .. ........ ---- X has no value after the function 
VALUE ERROR has executed. 

X 
1\ 

LOC .. ----The global value associated with this 

10() name was unchanged by the function. 

GLOB II ---The global value was changed by the 
10 function, since G LOB was not made 

local name to the function. 

141 



142 

Since the value of a local name disappears as soon as execution of the function 
finishes, the only time you can use or display the value of a local name is while 
the function to which it belongs is still executing. is suspended, or is pendent. 

Note: If a name is local to a function that calls another function, the value of 
that local name can also be used by the called function. 

A name local to a function that has not completed execution or that is suspended 
(see Chapter 7) will be inaccessible if the name is also local to a more recently 
called function. Putting it another way, the value of a name that you can use or 
display is always the most recent local value of the name. Of course, as execu
tion of the more recently called functions is completed, the next earlier value of 
each local variable will again be accessible. A name can therefore be said to have 
one active referent or value, and possibly several latent referents or values. For 
example: 

\l DANiXX 
I: :to ] xx·~" 100 
[2J 'THE FUNCTION DAN GIVES XX THE VALUE' 
r:::3] XX 
[~J 'AND CALLS THE FUNCTION DAVE' 
[~:;] DAVE 
[6J 'WHEN DAVE IS THROUGH EXECUTING AND EXECUTION RETURNS' 
[7J 'TO DANI XX ONCE AGAIN HAS THE VALUE' 
[aJ XXV 

V DAVEiXX 
[:r.] XX~-20 0 
[2] 'THE FUNCTION DAVE GIVES XX THE VALUE' 
[3J XX 
[~] 'AND CALLS THE FUNCTION JERRY' 
[5J JERRY 
[6J 'WHEN JERRY IS THROUGH EXECUTING AND EXECUTION RETURNS' 
[7J 'TO DAVE, XX ONCE AGAIN HAS THE VALUE' 
[aJ XX'\] --------------------------I-J 

'V ,JEI~I~Y i XX 
[1.] XX~-:~OO 

[2J 'THE FUNCTION JERRY GIVES XX THE VALUE' 
[:3] XX 
[4·] 'AND RETUI~NS TO DAVE"\I -------------------' 



DAN 
THE FUNCTION DAN GIVES XX THE VALUE 
100 
AND CALLS THE FUNCTION DAVE 
THE FUNCTION DAVE GIVES XX THE VALUE 
200 
AND CALLS THE FUNCTION JERRY 
THE FUNCTION JERRY GIVES XX THE VALUE 
300 
AND RETURNS TO DAVE 
WHEN JERRY IS THROUGH EXECUTING AND EXECUTION RETURNS 
TO DAVE, XX ONCE AGAIN HAS THE VALUE 
200 
WHEN DAVE IS THROUGH EXECUTING AND EXECUTION RETURNS 
TO DAN, XX ONCE AGAIN HAS THE VALUE 
100 

XX 
VALUE ERROI~ 

XX 

The )SIV command causes the SIV list (state indicator with local variables and 
local user-defined functions listing) to be displayed. The SIV list contains a com
plete set of referents of a name. 

Note; See System Functions in Chapter 5 for an example of a local user-defined 
function using the OFX system function. 

If the SIV list is scanned downward, the first occurrence of a variable name is its 
active referent. If the name appears again, it is a latent referent. Global names 
are not found in this list; they can be displayed with the )VARS command and 
)FNS command. 

In the following SI V display, variable P has referents as follows: 

G1:7] 
FI:'+J 
G[:~J 

R[2J 
G[~~] 

)SIV 
~fZ X I 

P ..J ...... --- Active referent of P is local to function F. 

*C X T 
P ..... ____ First latent referent of P 

Z X I is local to function R. 

As the state indicator is cleared (see Chapter 7), latent referents become active. 

143 



144 

INTERACTIVE FUNCTIONS 

User-defined functions can display messages and/or request input from the key
board. The messages (character data) in the user-defined function are enclosed in 
quotes. The 0 (quad) and [!] (quad quote) symbols are used to request input from 
the keyboard during function execution. The following function is an example of 
an interactive function that computes the amount of interest on a capital amount 
for a given number of years: 

V C1 
[1J 'ENTER THE CAPITAL AMOUNT IN DOLLARS' 
[2] A~"[] 

[3] 'ENTER THE INTEREST IN PERCENT' 
[1+:1 I~-IJ 

[S] 'ENTER THE PERIOD IN YEARS' 
£: 6::1 Y~"J] 
[7J 'THE RESULT IS' 
[8] AX(1+0,01xI>*YV 

CI 
ENTER THE CAPITAL AMOUNT IN DOLLARS 
[]: 

:1.00 
ENTER THE INTEREST IN PERCENT 
1]: 

B 
ENTER THE PERIOD IN YEARS 
[]: 

THE I~ESUI...T IS 
:f.:l.6,6'+ 

CI 
ENTER THE CAPITAL AMOUNT IN DOLLARS 
[]: 

:1.000 
ENTER THE INTEREST IN PERCENT 
[]: 

8,8B 
ENTER THE PERIOD IN YEARS 
[] : 

~ .. 
~j 

THE RESULT IS 
1. ::j:~(} ,2 



( 
Requesting Keyboard Input during Function Execution 

The D (quad) appearing anywhere other than immediately to the left of the assign
ment arrow indicates that keyboard input is required. When the D is encountered 
in the function, the two symbols D: (a quad symbol followed by a colon) are dis
played, the display is moved up one line, and the cursor appears. The quad and 
colon symbols are displayed to alert the user that input is required. Any valid 
expression entered at this point is evaluated and the result is substituted for the 
quad. You can escape from a quad input request by entering the right arrow ~. 

An invalid entry in response to request for input results in an appropriate error 
message and the request for input is made again. Any system commands entered 
will be executed, after which the request for input will again be made. An empty 
input (no keying) is rejected and the 5100 again displays the symbols D: and 
awaits input. 

When the quad quote [!] (a quad overstruck with a quote) is used, input from the 
keyboard is treated as character data. The input begins at the left margin of the 
display; quotes do not need to be entered to define the data as character data. 
When [!] input is requested, the symbols D: do not appear as they did with a D 
input request. The input is entered after the flashing cursor appears on the screen. 
For example: 

CAN'T 
x 

CAN'T 
Xt-I~ 

'CAN' 'T' 
X 

'CAN' 'T' 

Anything you enter in response to a quad quote request for input is considered 
character input. Therefore, if you enter a system command or a branch arrow 
(~) to terminate the function, the entry is treated as character data for the 
function and the system command or branch will not be executed. This can be 
a problem if you are trying to escape from a quad quote input request. There
fore, APL provides an escape for this situation. To escape from a quad quote 
input request, enter the lDsymbol by holding.the CMD key and pressing the o key. The function is interrupted and the function name and the line num· 

ber being executed are displayed. You can then modify the function or termi
nate it by entering the right arrow ~. 

145 



146 

ARRANGING THE OUTPUT FROM A USER-DEFINED FUNCTION 

The output from user-defined functions can be arranged by using the format func

tion (see the,," function in Chapter 4) or bare output. Bare output is discussed 
next. 

Bare Output 

After normal output, the cursor is moved to the next line so that the next entry 
(either input or output) will begin at a standard position. However, bare output, 
denoted by the form [!]~X (X can be any expression), does not move the cursor 
to the next line. Therefore, more than one variable or expression can be displayed 
on the same line. For example: 

'V X TIMES Y 
[:1, J I~I~"X 
[2] I~I~" . TIMES , 

[:3] r:l$, .. y 
[I+J 1~lf' 

, I <:, . 
, ,,) 

I: !:j J XXY'V 

2 TIMES 1+ 

2 TIf~ES 1+ IS B 

Since the cursor does ilot return to the next line after bare output, when quad 
quote ([!]) input is entered following the bare output, the input starts after the 
last character of the bare output. Then when the input is processed, it is pre
fixed by any bare output on the input line. For example: 

[1] 

[2J 
[:'5::1 
[1+] 

THI~:) 

'iJ OUTPUT~INPUT 

L~I~ .. ' THIS IS Bi~RE OUTPUT! ! ! ' 
ATHE NEXT STATEMENT REQUEST ~ INPUT 

IN'.-r.i 
ANOW DISPLAY THE INPUTV 

ClUTPUTIJ,INPUT 
ISBA RE OUT PUT! ! !..r- The cursor appears here. Now 

enter THIS IS [!] INPUT. 

TdI8 IS B(.~I~E OUTPUT!!! THIS IS I~I INPUT, 

After EXECUTE is pressed, 
the output line looks like 
this. 



( 

(: 

( 

[:I.] 
[2] 
[3] 

[1+] 

I: ~7j J 
[6J 

Therefore, if quad quote input follows bare output (but only the input is to be 
processed), the bare output must be removed from the input line. Following is 
an example of a function that will remove the bare output: 

V R~BARE40UTPUT MSG;OIO;J 
I]IO~":I. 
r.H .. MSG 

ACHECK THE BARE OUTPUT FOR EMBEDDED CURSOR RETURNS 
J~-1+(.MSG)\DAV[157J 

ADROP ANY BARE OUTPUT PREFIX FROM THE INPUT 
R~«6~IJ-l)+1)'~V 

This is how the function works: 

VOUT4IN ~-----The Bare Output 
[lJ BARE40UTPUT 'THIS IS BARE mJTPUT! ! ! ' 
[2J V , ____ _ 

(JUTb,IN 
- This function will remove the bare output. 

THIS IS BAI~E OUTPUT!! !_ ..... ----The cursor appears here. Now 
enter THIS IS [!] INPUT. 

THIS IS BARE OUTPUT!! !THIS IS ~ INPUT 
THIS IS r.J INPUT 

'--..... -----This is the final result. 

LOCKED FUNCTIONS 

A locked function can only be executed, copied or erased; it cannot be revised or 
displayed in any way, nor can trace control and stop control (see Trace Control 
and Stop Control later in this chapter) be changed. A function can be locked, or 
protected, by opening or closing the function definition with a V (\7 overstruck 
with rv), instead of a \7. 

When an error is encountered in a locked function, execution of that function is 
abandoned (not suspended). If this function was invoked by another locked 
function, execution of the second function is abandoned also, and·so on, until 
either (1) a statement in an unlocked function or (2) an input statement is 
reached. Then an error message is displayed. In the first case, the execution of 
the unlocked function is suspended at the statement; in the second case, the 5100 
waits for input. 

Note: A lockep function cannot be unlocked; therefore, if the function contains 
an error, the function cannot be edited and the error corrected. 



148 

FUNCTION EDITING 

Several methods are used when in function definition mode to display and revise 
a user-defined function. Also, after a function definition has been closed, the 
definition can be reopened and the same methods used for further revisions or 
displays. (See Reopening Function Definition in this chapter.) 

Displaying a User-Defined Function 

Once in function definition mode, part or all of a user-defined function can be 
displayed as follows: 

• To display the entire function, including the function header and the opening 
and closing V , enter [0]. APL responds by displaying the function, then wait
ing for the entry of additional statements. 

• To display from a specified statement to the end of the function, enter [On], 
where n is the specified statement number. APL responds by displaying the 
function from statement n to the end of the function, then waiting for the 
last statement displayed to be edited (see Editing Statements in this chapter). 

• To display only one statement of the function, enter [nO], where n is the 
statement number to be displayed. APL responds by displaying statement n 
and waiting for the statement to be edited (see Editing Statements in this 
chapter). 

The following table summarizes function display when in function definition mode: 

Entry 

[nO] 

[On] 

[0] 

Result 

Displays statement n 

Displays all statements from n onward 

Displays all statements 

Revising a User-Defined Function 

Statements in a user-defined function can be replaced, added, inserted, deleted, or 
edited as follows: 

• To replace statement number n, enter [n] and the replacement statement. If 
just [n] is entered, APL responds with [n], then waits for the replacement 
statement to be entered. If the function header is to be replaced, enter [0] 
and the new function header. 

• To add a statement, enter [n] (n can be any statement number beyond the 
last existing statement number) and the new statement. APL will respond 
with the next statement number, and additional statements can be entered if 
required. 



( 

( 

(0 

(' 

c 

• To insert a statement between existing statements, enter [n] and the new state
ment. n can be any decimal number with up to 4 decimal digits. For example, 
to insert a statement between statements 8 and 9, any decimal number be
tween 8.0000 and 9.0000 can be used. APL will respond with another deci
mal statement number and additional statements can be inserted between 
statements 8 and 9 if required. (These and the following statements are auto
matically renumbered when the function definition is closed.) 

Note: The statement number 9999.9999 is the last valid statement number. 

• To delete statement n, enter [lln]. 

Note: The [l~n] and closing V cannot be entered on the same line. If the func
tion definition is to be closed immediately after a statement has been deleted, 
the closing V must be entered on the next line. 

• To edit a specific statement, use the following procedure: 

1. Enter [nO] (where n is a statement number). Statement n is displayed. 

2. 

3. 

Choose one of the following options: 
a. To change a character, position the cursor (flashing character) at the 

character to be changed. Enter the correct character. 
b. To delete a character, position the cursor at the character to be 

deleted. Then press the backspace ( .) key while holding the 

command (CMD) key. The character at the cursor is deleted from 
the line and the characters that were to the right of the deleted char
acter are moved one position to the left. 

c. To insert a character, position the cursor to the position where the 
character is to be inserted. Then press the forward space ( • ) 

key While holding the command (CMD) key. The characters from the 
cursor position to the end of the line are moved one position to the 
right. For example: [1] A+-1245 should be [1] A+-12345. Position 
the cursor at the 4 and press the forward space and command (CMD) 
keys simultaneously. The display will look like this: [1] A+-12_45. 
Now enter the 3. 

d. To delete all or part of a line, press ATTN to delete everything from 
the cursor position to the end of the line. 

Press EXECUTE. The next statement number is displayed. 

Note: If more than one statement number is entered on the same line, only the 
last statement number is used. For example, if a line contained 
[3] [8] [4] 'NEW LINE', only statement 4 is replaced when EXECUTE is pressed. 

149 



150 

Reopening Function Definition 

If you want to edit a function that has previously besn closed, the function defini
tion must be reopened. For example, if function R is already defined, the function 
definition for function R is reopened by entering V R. The rest of the function 
header must not be entered or the error message DEFN ERROR is displaye~ 
and the function definition is not reopened. The 5100 responds by displaying 
[n+1], where n is the number of statements in R. Function editing then pro
ceeds in the normal manner. 

Function definition can also be reopened and the editing or display requested on 
the same line. For example, VR[3]S~S+1 edits the function by entering the new 
line 3 (S~S+1) immediately. Then the 5100 responds by displaying [4] and 
awaiting continuation. The entire process can be accomplished on a single line: 
VR[3]S~S+1 Vopens the definition of function R, enters a new line 3, and termin
ates function definition. VR[D]V causes the entire definition of R to be displayed, 
after which the 5100 returns to execution mode. 

Note: You cannot reopen the definition of a function, delet~ a statement, and 
close the function (for example, VR[~4]V) on the same line, since the closing V 
cannot be on the same line as the [Lln]. 

When an error occurs in, a function, the function name, the line number, and the 
statement in error are displayed. A caret on the following line indicates where the 
5100 stopped execution of the statement. The statement in error can be corrected 
as follows: 

1. Scroll down until the caret is removed from the screen. 

2. Scroll up one line. 

3. I nsert a V before the function name. 

4. Correct the error in the statement. 

5. Place a V after the statement. 

6. Press EXECUTE. 

This procedure works only if the complete statement is displayed. 



( 

(""" 
--,/ 

C't 

C 

An Example of Function Editing 

In this example, the user-defined function AVERAGE is used to show how the 
methods used to revise and display functions work: 

VAVERAGE X~·~~~~~~~~~~~~~~~~~~~Define the function. 
[1] 'THIS FUNCTION CALCULATES AVERAGES' 
[2] +/X+(+/X~X)V 

AVEI~AGE 2 4· 6 B~.~~~~~~~~~~-~~~~-Executeandtestthefunction. 
THIS FUNCTION CALCULATES AVERAGES 

'VAVERAGE[:I.,7] 'THE AVEI~AGE IS· ..... ---------Insertastatement. 
[1 , B:1 [:1.0]· Display statement 1. 
[:1.] · THIS FUNCTION CALCULATES AVERAGES .~ 
[.I.] 'THIS FUNCTION CALCULATES AVERAGES AND SUMS' Statement 1 was edited 

~------------------[2] [3] 'THE BUM IS' to look like this. 
[",.] +/XV ~~---___ ~~~~~~~~~~~~_ 

Add statements 3 and 4. 

VAVERAGE[L1J'V~ 
'V AVERAGE X --~~~~~~--~--~~-Display the function. 

[1] 'THIS FUNCTIDN CALCULATES AVERAGES AND SUMS' 
[2] 'THE AVERAGE IS' 
[3] +/X+(+/X=X) 
[l.f.J 'THE SUM IS' 
[5J +/X 

V 

AVERAGE 2 '+ 6 B ...... .--~~~~~~~~~~~~---Executeaverage. 
THIS FUNCTION CALCULATES AVERAGES AND SUMS 
THE AVERAGE IS 
5 
THE SUM IS 
20 

VAVERAGE [~5J +/X~·?)X ...... ~~--~~-~~~~-~-Replace statement 3. 
[ 4· ] I:: 1J.1::1 'II Delete statement 1. 
[,2] I: 0 :1 AVE I~AGEIJ.SlJM XV.. Replace the function header. 

[ :L :I 
[2J 
[3J 
[4·] 

THE 
c· 
.... } 

THE 
20 

[3J 
[1+ :I 

VAVERAGE~SUM[rJ]V ... ~~~-~~-----~-~~-Display the function. 
'V AVERAGEt.\SUM X 

'THE AVERAGE IS' 
+/X+pX 
'THE SUM IS' 
+/X 

AVERAGEIJ.SUM 2 ~ 6 8 
AVEI~AGE IS 

SUM IS 

VAVEI~AGEIlSUM [[]3JV .... _____________ .....-_Display the function from 

'THE SUM IS' statement 3 to the end. 

+/X 

151 



152 

TRACE AND STOP CONTROLS 

APL provides the ability to trace or stop execution of user-defined functions, pro
viding the functions are not locked (see Locked Functions in this chapter). 

Trace Control 

Trace control is used to display the results of selected statements as a function 
executes. The display consists of the function name followed by the number and 
results of the selected statement. For example: 

~STEVE[1] 2 • Result 

Function " Statement 
Name Name 

Statements to be traced are specified by a trace vector. The format of the trace 
control function is T D, STEVE+-V, where STEVE is the name of the function and 
V is the vector specifying the statement numbers to be traced. For example, if 
T D, STEVE+-2 3 5 is entered, the statements 2, 3, and 5 are traced each time 
function STEVE is executed. T D, STEVE+- 't 0 must be entered to discontinue 
the tracing of function STEVE. To trace each statement of the function, enter 
TD, STEVE+-tN, where N is the number of statements in the function: 

'VSTEVE I:: []::I 'V. 
V STEVE J 

[:1.::1 Af·l x:t: 
[2] B~"2xJ 

[:'5] C~"3x:t: 

[1+] [I~"L~xI 

[~:;] A+B+C+D 
'f/ 

STEVE 2 
20 

TllSTEVE~" \ 1,1, 

STEVE 2 
STEVE[:I.:1 2 
STEVEt::2] 1+ 

STEVE[3] 6 
STEVE[LI,] B 
20 

~Trace the first four statements 
in function STEVE. 

TllSTEVEf-2 ~"--Trace statement 2 in function STEVE. 
STEVE 2 

STEVE I:: 2:1 Lt, 
20 

20 

TASTEVE f- \ () -----Discontinue tracing in function STEVE. 
STEVE 2 



( 

( '"" 

" " 

Trace control can also be set by statements within a function. These statements 
initiate tracing when a variable contains a certain value. For example: 

I: :1,] 
[2] 
[3] 
[4] 
[~:'i] 

VBTEVEf:I]J'\I 
V STEVE I 

f.,~·l X I 
T oSTEVE ~":3 X F,:::2-Trace statement 3 in function STEVE 
C~ .. 3 X I when A equals 2. 
It~ .. I+ X I 
A+C+D 

STEVE 2 
8TEVE[:3] 6 
16 

STEVE ::~ 

2'+ 

Note: The following instruction will establish trace control for the first statement 
of each user-defined function in the active workspace: 

J. "'l t, I 0 ' , ' (.) · , T · ) , IJ. ' } ( ( (I]NL :3)" '~ .. ' ) } , :l ' ) J ' 

This instruction can be used to find out what functions are called by another 
function. 

The following user-defined function named TRACE will establish a trace vector 
for each statement in a specified user-defined function: 

VTRACE[DJV 
'iJ TRACE NANE 

[1] !'T6',NAME, '~\ltpOCR'" ,NAME, 
V 

153 



154 

When executing the function TRACE, the argument must be entered in single 
quotes. For example: 

VBTEVE[I]JV 
V STEVE I 

[:1. :I A4, .. j, xl 
[2:1 B~"2 X I 
[:3] C~:~ X I 
[I~. ::r n~-'·I· X I 
[~:.i] A+B+C+D 

V 
TRACE 'STEVE ' ..... I----Establish a trace vector for each 
BTEVE 2 statement in function STEVE. 

STEVE[l::t 2 
STEVE[2J 4· .... 1--------- Each statement of function 
BTEVE [3::1 b STEVE has been traced. 
STEVE['+] B 
STEVE[~:j] 20 

20 

Stop Control 

TflSTEVEf-\O 
STEVE 2 

Stop control is used to stop the execution of a function just before specified 
statements. At each stop, the function name and statement number of the state
ment to be executed next is displayed. The statements are specified by a stop 
vector. The format of the stop control function is S~ STEVE~V, where STEVE 
is the name of the function and V is the vector specifying the statements. After 
the stop, the system is in the suspended state (see Chapter 7); execution is 
resumed by entering ~DLC (see Chapter 5). S ~ STEVE~ t 0 (STEVE is the 
function name) must be entered to discontinue the stop control function. 

Stop control can be set by statements within a function. These statements 
initiate halts when a variable contains a certain value. For example, 
S~ STEVE~4xN >8 means stop before statement 4 in function STEVE when 
N is greater than 8. 

Trace control and stop control can both be used in the same user-defined function. 
An attempt to set trace control or stop control for a nonexistent function creates 
a variable and causes a syntax error. For example: 

)CLEAR 
CLEAR WB 

SI:!.F~··:1. 2 :5 
SYNTAX ERROR 

SI:!.F~·· 1 2 :5 
A 

)VARB 
F 

I··· .. 

!" 



( 

( 

Chapter 7. Suspended Function Execution 

SUSPENSION 

The execution of a user-defined function can be interrupted (suspended) in a var
iety of ways: by an error message (see Chapter 11), by pressing ATTN (see 
Chapter 1), or by using the stop control vector (see Chapter 6). In any case, the 
suspended function is still considered active, since its execution can be resumed. 
Whatever the reason for the suspension, when it occurs, the statement number of 
the next statement to be executed is displayed. A branch to the statement num
ber that was displayed or a branch to 0 LC (~D LC, see Chapter 5) causes normal 
continuation of the function, and a branch out (-+0) exits the function. 

When a function is suspended, the 5100 will: 

• Contintle to execute system commands except )SAVE, )COPY, and )PCOPY. 

• Resume execution of the function at statement n when ~n is entered. 

• Reopen the definition of any function that is not pendent. A pendent func
tion is a function that called the suspended function. If a function called a 
function that called a suspended function (and so on), it is also pendent 
(see State Indicator in this chapter). 

• Execute other- functions or expressions. 

Note: The display of output generated by previous statements might have been 
interrupted J.then the suspension occurred. This would be caused by the delay 
between execution of the statement and the display of the output. 

STATE INDICA~OR 

The state indicator identifies which functions are suspended (*) and at what point 
normal execution can be resumed. Entering )SI causes a display of the state indi
cator. Such a display might have the following form: 

HI:7J 
G[2] 
F[~3] 

This display indicates that execution was halted just before statement 7 of func
tion H, that the current use of function H was invoked in statement 2 of function 
G, and that the use of function G was invoked in statement 3 of F. The * 
appearing to the right of H[7] indicates that function H is suspended; the func

tions G and F are said to be pendent. 

155 



156 

During the suspension of one function, another function can be executed. Thus, 
if a further suspension occurred in statement 5 of function a, which was invoked 
in statement 8 of G, a display of the state indicator would be as follows: 

)51 
G[~7jJ * 
OrB] 
H[7::1 ~~ 

G[2J 
F[3] 

An 51 DAMAGE error (see Chapter 11) indicates that a suspended function has been 
edited or a pendent function has been erased and the normal execution of the suspended 
function can no longer be resumed. Therefore, when an 51 DAMAGE error occurs, the 
state indicator display will not include the damaged function name (however, the 
asterisk is still displayed). For example, if function a is edited and the modification 
causes an 51 DAMAGE error, the display of the state indicator would be as follows: 

)5I 

,* G [8] '''-------- No suspended function name is displayed. 

H[7J ~(. 

GI:2J 
Ft:3] 



c-

(~ 

c 

A suspension can be cleared by entering a branch with no argument (that is, -+). 

One suspended function is cleared at a time, along with any pendent functions 
for that suspended function. The first branch clears the most recently suspended 
function, as the following example shows: 

H1:7] 
G[~~] 

FT3] 

~ 

)SI 
-)(. 

It is a good practice to clear suspended functions, because suspended functions 
use available storage in the active workspace. Repeated use of -+ clears all the 
suspended functions; as the functions are cleared, they are removed (cleared) from 
the state indicator. When the state indicator is completely cleared, the state indi
cator display is a blank line. 

Note: To display the state indicator with local names, enter the )SIV command 
(see Local and Global Names in Chapter 6 for more information on the SIV list). 

157 



Chapter 8. Tape and Printer Input and Output 

158 

Input and output involving the tape or printer can be done with an APL shared 
variable, which is a specific variable shared between the active workspace and the 
tape or printer. During output operations, the data assigned to the shared variable 
is printed, or is written on tape. During input operations, data is read from tape 
and assigned to the shared variable; the shared variable can then be used in an ex
pression in the active workspace. To do tape or printer input or output, the 
following steps must be performed: 

1. Establish a variable to be shared. 

2. Open a data file on tape or specify printer output. 

3. Transfer the data. 

4. Close the data file or terminate the printer output. 

5. Retract the variable being shared. 

ESTABLISHING A VARIABLE TO BE SHARED 

The OSVO function is used to establish the variable name(s) to be shared. The 
OSVO function is dyadic (requires two arguments) and is entered as follows: 

The left argument must be a 1. 

The right argument NAME(S) can be up to eight variables to be shared. If more 
than one name is required, the names must be entered as a character matrix with 
each row representing a name. For example: 

SHARE~3 3p'ONETWOTHR' 
SHAI~E 

ONE} 
Tl,J()" Each row represents a separate variable name. 
THR 



( 

(

It>. 

_/ 

c 

Following are three examples of how the DSVO function can be entered: 

• :!. [lBVO 'DATA' 

• At-'DATA' 
1 []SVO A 

• SHAREt-3 :!.p'ABC' 
l. []SV() SHA Ix I::: 

'Establishes three names (A, B, 
and C) to be shared. 

The 5100 will respond with a 2 for each shared variable that is successfully estab
lished and a 0 or 1 for each variable that is not. If a 1 is displayed, a value other 
than 1 was specified as the left argument for the DSVO function. In this case, the 
variable name must be retracted (see Retracting the Variable Name being Shared 
later in this chapter) and reestablished as a shared variable before it can be used 
for input/output. If a 0 is displayed, an error message (see Chapter 11) will also 
be displayed. 

Note: The instruction +/O;tDSVO DNL 2 will display the existing number of 
shared variables in the system, and the instruction (O;tDSVO DNL 2)/[1] DNL 2 
will display the existing shared variable names. 

OPENING A DATA FILE OR SPECIFYING PRINTER OUTPUT 

The first value assigned to the shared variable must be information required to 
open a data file on tape or to specify printer output. When opening a data file, 
this information specifies the following: 

• Data to be transferred to tape or from tape 

• Device/file number 

• File 10 

• Data format to be used 

Note: If this information has already been assigned to a variable name that is 
being used as the right argument for the DSVO function, the 5100 will establish 
the variable name to be shared, then open the data file or specify printer output. 
The return codes are described later in this chapter. 

159 



160 

This information must be character data (enclosed in single quotes) and must be 
entered with a blank between each parameter, as follows: 

IN A 
or or 

OUT 
~ +- , or 

ADD 
device/file number [ID=(file ID)] [MSG=OFF] TVPE=or 

11 
or 
PRT 

or 
12 

where: 

~ is the name of the variable being shared. 

ill specifies that the data is to be transferred from tape into the active 
workspace. 

OUT specifies that the data is to be transferred to a tape file. 

ADD specifies that the data is to be transferred to an existing tape file, 
following the last record in that data file. 

PRT specifies that the data is to be printed. 

Note: When PRT is specified, the only other information that can be speci
fied is MSG=OFF (which is defined later). 

device/file number specifies the tape unit and file number. For example: 

1003 

f-~ File Number 3 

~TapeUnit1 
Note: If fewer than four digits are used, tape unit 1 is assumed, and the 
value entered represents only the file number. 

ID=(file ID) (optional) specifies from 1 to 17 characters enclosed in 
parentheses: 

• For an IN or ADD operation, the entry (file I D) is compared to the file I D in 
the file header; the open fails if they do not match. 

• For an OUT file, the entry (file ID) is put in the file I D field of the file header 
(see the )LlB command in Chapter 2). If the ID=(file ID) parameter is not 
specified, the characters DATA are put in the file ID field. 

It is a good practice to give the data files meaningful names; for example, a 
file that contains sales data could be named SALES. Also, any blanks within 
the 17 characters become part of the file ID. 

Note: To do an OUT operation to an existing data file (write new data 
over the existing data), the file ID specified must match the existing file 
10 for the data file or the data file must be dropped using the )OROP command 

(see Chapter 2). 



(" I 

c 

MSG=OFF (optional) specifies that no error message is to be displayed for 
nonzero return codes (see Return Codes in this chapter). 

A 
or 

~
TYPE=~~ (optional) can only be specified for OUT operations. 

or 
12 

It specifies the 

data format to be used when writing data to tape: 

• When TYPE=A is specified, the APL internal data. format is used; that is, 
the data is written on tape in the same format that it is stored in, in the 
active workspace. 

• When TYPE=I or TYPE=ll is specified, the exchange data format is used. 
When the exchange data format is used, only character scalars or vectors 
can be assigned to the variable being shared. Therefore, when storing numeric 
data or arrays on tape using the exchange data format, the data must first be 
changed to a character scalar or vector (see the "f function in Chapter 4). 

The following items apply to an exchange data file that is used by both the 
5100 APL and BASIC languages: 

1. 

2. 

3. 

All data items must be separated by commas. For example, the numeric 
vector 1 3 5 6 must be changed to character data, then commas placed in 
the blank positions. 

Negative signs must be replaced by minus signs. 

Enclosing single quotes must be part of any data that represents character 
constants. Also, any embedd.ed quotes in the character constant must be 
represented by double quotes. 

Note: The 5100 BASIC language accepts only the first 18 characters in 
each character constant. 

4. The 5100 BASIC language creates a logical record for each PUT statement 
or each row of an array with a MAT PUT statement. 

• When TYPE=12 is specified, the general exchange data format is used; it is the 
same as TYPE=I (and TYPE 11) except that the data file can also be used as 
a BASIC language source file. 

Note: The data format can be specified only for an OUT operation. For fN 
or ADD operations, the data format is specified by the data file type (see 
)L1B command in Chapter 2). If the data format is not specified for an OUT 
operation, the APL internal data format (TYPE=A) is used. 

CAUTION 
If the tape cartridge is removed from the 5100 when an OUT or ADD file is open, 
the file will be unusable. If another tape is inserted at this point, one of its files 
may be destroyed. See Closing a Data File or Terminating the Printer Output in 
this chapter for information on how to close a data file. 

1S1 



162 

The following four examples, using an APL shared variable named EXAMPLE, 
show how the information required to open a data file or specify printer output 
can be entered: 

1. EXAMPLE~'IN 1001 ID=(TEST) 

L LThe value TEST will be compared 
to the file header field. 

File 1 on tape unit 1 is to be opened. 

Data is to be transferred from tape 
into the active workspace. 

2 EXAMPLE~'OUT 003 ID=(TEST2) TYPE=I' 

L t Exchange data format" 
is to be used. 

The value TEST2 will be placed 
in the device header field. 

File 3 on tape unit 1 (assumed) is to be opened. 

Data is to be transferred to tape 

from the active workspace. 

a EXAMPLE~'ADD 3' L lFile 3 on tape unit 1 (assumed) is to be opened. 

Data is to be transferred into an existing file on tape. 

Note: Since the file I D was not specified, no value is compared to the file 

header field. 

4. EXAMPLE~'PRT MSG=OFF' 

1 LNO error messages will be displayed 

~ for nonzero return codes. 

Data is to be printed. 

After the information has been entered, a code (2-element vector) that indicates 
whether the operation was successful or not is assigned to the shared variable. A 
return code of 0 0 indicates the operation was successful, and a nonzero return 
code indicates that the operation failed. See Return Codes in this chapter for a 
description of each return code. 



( 

L...-__ 

('T'."~1t\ 

j 

c 

TRANSFERRING DATA 

After the data file has been opened or printer output specified, data can be trans
ferred using the shared variable. (An example using tape and printer input/output 
is shown later in this chapter.) 

Transferring Data to Tape (OUT or ADD Operation) 

When data is assigned to the shared variable, the data i~ written on tape and a 
return code is assigned to the shared variable. A 0 0 return code means the data 
was transferred successfully and a nonzero return code means the transfer of 
data failed. See Return Codes in this chapter for a description of each return code. 

For OUT operations to an existing data file (writing new data over the existing data), 
any existing data following the new data cannot be used again. 

For ADD operations, the new data is written to the data file starting at the 512-byte 
boundary following the last record in the file. This might cause'some tape storage 
to be unused, for example: 

Start of the data for 
an OUT operation 

512-Byte Boundaries 

Unused Tape 
Storage 

End of the data for 
an OUT operation 

L Start of the 
data for an 
ADD operation 

The unused tape storage that results from an ADD operation is unavailable for use. 
However, you can make all the unused tape storage available for use (compress the 
data), as follows: 

1. Transfer the data from the data file. 

2. Perform an OUT operation to write all the data back on tape. 

Data File 

163 



Transferring Data from Tape (IN Operation) 

When data is transferred from tape, the data is read from tape and is assigned to 
the shared variable in the same sequence as it was written to tape. New data is 
read from the tape file and assigned to the shared variable each time the shared 
variable is used. (There is no return code assigned to the shared variable after an 
IN operation.) 

Using the format function (" ) directly on a character shared variable when doing 
input operations causes alternate records to be skipped. 

When doing an I N operation with an exchange data file, the following conditions 
occur if a cursor return character (X'9C') or end-of-block character (X'FF') was 
embedded in a character vector that was written to tape: 

• If a cursor return character was embedded in the character vector, the data 
will be read from tape in a different sequence than it was written to tape. 
This condition occurs because as the interchange data is written to tape, the 
system writes an end-of-record character (X'9C') after each character vector 
(record) that was written to tape. The end-of-record character and the cursor 
return character are the same. When used on tape, this character separates the 
data (records) so that it can be read from tape in the same sequence as it was 
written to tape. However, if a cursor return character is embedded in the data 
that was written to tape, the system will recognize it as an end-of-record char
acter when the data is read from tape . 

• If an end-of-block character was embedded in the character vector, any data 
from the embedded end-of-block character to the next physical record is not 
read from tape. This condition occurs because the system looks at the tape in 
512-byte segments (one physical record). A physical record can be terminated 
by an end-of-block character (X'FF'). When the system is reading data from 
the tape and an end-of-block character is encountered, the system skips to the 
next physical record and continues reading data. Therefore, if an X'FF' char
acter is embedded in the data that was written to tape, the system recognizes 
it as an end-of-block character when the data is read from tape and skips 
ahead to the next physical record. 

Transferring Data to the Printer (PRT Operation) 

When data (character scalars or vectors only) is assigned to the shared variable, it is 
printed and a return code is assigned to the shared variable. A 0 0 return code indicates 
the data was printed successfully and a nonzero return code indicates the opera-
tion failed. See Return Codes in this chapter for a description of each return code. 

Note: The )OUTSEL OFF command is automatically issued by the system when 
doing PRT operations. The )OUTSEL option wi" return to its previous setting 
after the PRT operation has been terminated (PRT termination is discussed next). 



( .. 

c· 

CLOSING A DATA FILE OR TERMINATING THE PRINTER OUTPUT 

Transferring an empty vector will close the data files or terminate the printer out
put and a final return code will be issued. ADO return code indicates the file 
was closed or printer output was terminated successfully. See Return Codes in 
this chapter for a description of each return code. Also, for an I N operation, the 
file is closed and a return code is issued if an error occurs due to the device or if 
an end-of-file empty vector is returned. 

CAUTION 
For OUT and ADD operations, if the tape cartridge is removed from the 5100 
before a data file is closed, the data in the file will be unusable. 

After a data file has been closed, another data file can be opened by assigning 
the information required to open a file to the shared variable. Once the tape and 
printer input and output operations are done and the data files are closed or print
ing is terminated, the variable name being shared should be retracted. How to re
tract the variable name is discussed next. 

RETRACTING THE VARIABLE NAME BEING SHARED 

The DSVR function is used to retract a variable name being shared. That is, once 
the DSVR function has been used successfully, the variable name still exists as 
an APL variable, but it cannot be used to transfer data to tape or printer, unless 
it is reestablished as a shared variable. The DSVR function is monadic (takes one 
argument) and is entered as follows: 

[]SV R · NAME ( S) • 

where NAME(S) can be the names of up to eight variables. If more than one name 
is required, the names must be in a character matrix with each row representing a 
name (see Establishing a Shared Variable earlier in this chapter). . 

The 5100 will respond with a 2 (or a 1 if the left argument for the DSVO func
tion was not a J -see Establishing a Variable to ·be Shared in this chapter) for each 
variable name that is successfully retracted and a 0 for each variable name that is 
not successfully retracted. Normally, if a variable name cannot be successfully 
retracted, it was never properly establjshed as a shared variable. 

Note: If the DSVR function is used before a file is closed, the system will auto
matically close the file. 

165 



166 

RETURN CODES 

Return codes assigned to the shared variable when doing input/output operations 
indicate whether or not the operation was successful. If the return code is non
zero and MSG=OFF was not specified, an error message is also displayed. 

Operation of the system does not stop when a nonzero return code is assigned. 
Therefore, if you have a user-defined function that is doing input/output opera
tions, the user-defined function should check the return code that was assigned 

to the shared variable to make sure each operation is successful. When you are check
ing the return code, the shared variable cannot be referred to more than once. 

Following is a description and/or user's response for each return code and error 
message: 

Code Error Message 

00 

1 eee 

20 INVALID FILE 

30 INVALID DEVICE 
or 

INVALID DEVICE NUMBER 

40 INVALID FILE NUMBER 

50 NOT WITH OPEN DEVICE 

60 INVALID PARAMETER 

70 WS FULL 

80 DEVICE NOT OPEN 

Description and/or User's Response 

Operation successful. 

Device error; the second element 
(eee) is the error code (see 
ERROR eee ddd in Chapter 11). 

The specified file cannot be used 
for input/output operations. 

Enter the information required to 
open the file again, using device 
number 1 or 2. 

Enter the information required to 
open the file again, using a valid 
file number. 

The specified device is already being 
used for input/output operations; 
the existing open file must be closed 
before another file can be opened. 

The information required to open 
the file was entered incorrectly; 
enter it again, correcting any key
ing errors. 

Use the )ERASE command to erase 
any unwanted objects; then enter 
the information required to open 
the file again. 

Open the file. 



( 

c 

Code Error Message Description and/or User's Response 

90 

100 

11 0 

EXCEEDED MAXIMUM 
RECORD LENGTH 

INVALID DATA TYPE 

This return code is only a warning; 
an empty vector was read from tape, 
but the empty vector is not the 
end-of-file empty vector. 

This error was probably caused by 
the tape being removed before the 
file was closed. The remaining data 
in the file cannot be read. 

The wrong type of data was used; 
for example, noncharacter data was 
sent to an exchange file, noncharacter 
data was used as the information 
required to open a file, or non
character data was sent to the 
printer. 

AN EXAMPLE USING TAPE AND PRINTER INPUT/OUTPUT 

In this example, file number 11 on tape unit 1 will be used as a data file. First, 
a variable name must be established to be shared and the data file opened so that 
data can be written to the file (OUT operation): 

O:L :I. 

o () 

)L.IB :J.:J. 

1. I]SVO 'SHARE' ... 

rFile 11 is an unused file. 

o () 016 Establish a variable name 

to be shared. 

/' Open the data file. 

SHARE~'OUT 101:1. ID=(INVENTORY), 
SJ-rARE-... ~--______ Check the return code 

'The file was opened 
successfully. 

that was assigned to 
the shared variable. 

167 



o () 

() () 

() () 

() (} 

168 

Now, as data is assigned to the shared variable, it is transferred (written) to the 
data file: 

SHARE~··· 21+~36:3() 0 SCREW ~:.:j () 0 0 • 
SHA'~E 

0 () 

SHAI~E~"' 21+~561+() () NUT 7000' 
SHi~I~E 

0 0 
SHARE~' 21+~.)f.)5~:)() ~JAS~·IE R ~)O ' 
SHAI~E 

() () 

SH(.~RE~" ' 53~)7BO 0 eIRe HD :lO' 
SHAI~E 

o () 
SHA I~E." \ () ... ----After all the data has been transferred, 
SHA RE the file must be closed. 

() () 

If more data is to be added to an existing data file but the file is closed, a vari
able name must be established to be shared and the data file opened again: 

Note: In this example, the variable name SHARE has not been retracted and can 
still be shared. 

__ ---------Open the data file again. 
~ 

SHARE~'ADD lOll ID=(INVENTORY), 
SHAI~E 

SHARE~'535795() BOARD 
SHAI~E 

SHARE~'5357951 A/W 
SHAI~E 

!:.) ') 

These records are added 
t' following the existing 
. records in the file. 

SHAI~Ef' \ 0 
SHARE 

------The file is closed. 

Since no more data is to be written on tape, the shared variable should now be 
retracted: 

[]SVR 'SHARE' 
2 



c 

[1] 

[2] 
[]] 
r: LI·] 

[5] 

[6] 
£:7] 
[BJ 
[9] 
[10] 
[1:1. :1 
I: 1 ~~J 
[:I.:~] 

[: :1.4·] 
I: 1~;] 
[1.6] 
[:1.7] 
[18] 
[19] 

[20] 
1:2:1.] 
[22] 
[2~3] 

Now, assume that at a later time you want to read the data frQm file 11 and 
print it on the printer, using the following user-defined function: 

'iJPI~INT[IJ]'iJ 

'iJ PRINT i IAIORK 

'iJ 

AREAD DATA FROM THE DATA FILE AND ASSIGN IT TO WORK 
LODP: WORK t·DATA 
ACHECK FOR AN EMPTY VECTOR (INDICATING AN END OF FILE OR 
ATAPE ERROR)--AN EMPTY VECTOR HAS A SHAPE OF 0 (NO ELEMENTS) 

.~ (O::::pWOI~I<) /DDNE 
ADISPLAY AND PRINT THE VALUE ASSIGNED TO WORK 

P I~NT f-Ot-WO RK 
ACHECK THE RETURN CODE FOR THE PRINT OPERATION 
~(O 0 ~+/WORKt-PRNT)/PRINT4ERROR 
"~LODP 

PRINT4ERROR: PRINT ERROR--THE RETURN CODE IS: 
WDI~K 
•• Jot) 

A TERMINATE THE PRINTER OUTPUT 
[lONE:PRNTf-,O 
ACHECK THE RETURN CODES TO MAKE SURE ALL TAPE INPUT 
ADPERATIONS WERE SUCCESSFUL AND THE SHARED VARIABLE 
APRINTER OUTPUT IS TERMINATED 
~(O 0 ~+/WORKt-DATA)/TAPE4ERROR 
~(O 0 ¢+/WORKt-PRNT)/PRINT4ERROR 
-.0 

TAPE4ERROR: 'TAPE ERROR--THE RETURN CODE IS: 
WORK 

The variable names to be shared must be established again and the data file 
opened. Also, printer output must be specified: 

NAMESf-2 4p'DATAPRNT' 
NAMES 

DAT f~ ________ Establish the variable names 
PRNT ~ to be shared. 

2 2 

o 0 

() 0 

1 I:rSVO NI~MES 

/' Open the data file for input. 
DATAf-tIN lOll ID=(INVENTORY), 
DATA 

PI~NTt- t PRT t ... ------Specify printer output. 

PRNT 

169 



170 

Now, when the function PRINT is executed, the data file is read, displayed, and 
printed: 

PI~INT 

2 i+56:30 0 SCI~E{J.I 

2 1+!561·1· 00 NUT 
21.1·!::il.)5!:) 0 ltJASHE R 
5:~!5'lB 00 C I I~C BIt 
~i3~;7(J~5 () BOARD 
5:35795:L A/W 

~sooo 
7000 

~:; () 

10 , ... 
~) 

After the operation is complete, the shared variable names should be retracted: 

[l8V I~ Nf.,MES 
2 2 



(~ 

( 

(' 

C•·· ~/ 

Chapter 9. More Things to Know About the 5100 

DATA SECURITY 

You are primarily responsible for the security of any sensitive data. After you 
are through using the 5100, the data in the active workspace can be removed by 
one of the foil owi ng: 

• Using the )CLEAR command to clear the active workspace 

• Pressing the RESTART switch 

• Turning the POWER ON/OFF switch to off 

There are several methods available for protecting or removing sensitive data on a 
tape. These methods are: 

• Assigning a password to the workspace when writing the active workspace on 
tape. 

• Rewriting a tape file, which makes the old data inaccessible. 

• Filling a data file with meaningless data. For example, the following user
defined function fills file 4, a data file named DATA on tape 1, with zeros: 

VBECURITY[[]]'\i' 
V SECURITY 

[:l.J :~ 1]8VD .(.~. 

[2] A~'OUT 4 ID=(DATA), 
[3J B~ 10 1000 pO 
[ll·] "Jf~:A~H 

[5] 4(A[1]=O)/WR 
'V 

Note: ERROR 010 ddd will be displayed after the data file has been filled with 
zeros. When this error is displayed, enter 

2 

171 



172 

5100 STORAGE CAPACITY 

The base 5100 (Model A 1) has a storage capacity of 16K (K = 1024 bytes). 
Figure 4 shows how this storage is allocated for various requirements. Notice 
that the workspace available to the user (active workspace) is 10,600 bytes, 
while the remaining bytes are used for internal purposes. The storage capacity 
is increased in the following models of the 5100: 

Model A2 is 32K 
Model A3 is 48K 
Model A4 is 64K 

In these models, all additional storage is allocated to the active workspace. 
For example, on the Model A4, the active workspace is approximately 60,000 
bytes. 

10,600 
Bytes 

5784 
Bytes 

Active Workspace 

(Suggested 1M F Area, 1 ,ooq Bytes) 
f-- ------- --- ------ --- - - -- -----

Symbol Table (see note) 

5100 Internal Storage Requirements for Pointers, 
Counters, etc 

l'------_-----J 
Note: The symbol table requires eight bytes of storage for 
each symbol allowed in the active workspace (see )SYMBOLS 
in Chapter 2). 

Figure 4. Storage Allocation for a Model A 1 5100 



( 

(' 

c 

c 

Storage Considerations 

The following list shows how many bytes of storage are required for each data 
type that can be in the active workspace: 

Data Type 

Character constant or variable name 

Whole numbers that are equal to or 
less than 231 _1 

Whole numbers that are greater than 
231 _1 

Decimal numbers 

Logical data 

Number of Bytes Required 

1 byte per character 

4 bytes 

8 bytes 

8 bytes 

1/8 byte (1 byte can contain 8 
ones or zeros) 

Because the 5100 active workspace contains a fixed amount of storage, it is good 
practice to conserve as much storage as possible. Following are some considera
tions that can be used to conserve storage: 

• Make all objects (variables and user-defined functions) not required for use out
side of a user-defined function local to the function. 

• Store data in data files on the tape, and use an APL shared variable (see 
Chapter 8) to transfer the data into the active workspace when required. 

• Clear suspended functions (see Chapter 7) from the active workspace. 

• Group user-defined functions by related operations and store each group into 
a workspace file on tape. Then when a certain group of related functions is 
required to process data in the active, workspace, the stored workspace contain
ing these functions can be copied into the active workspace. When the pro
cessing is done, the functions can be expung~d (see Chapter 5) and another 
group of functions (one workspace) can be copied into the active workspace. 

• If a value consists of all 1's and D's, store the value as logical data. For example, 
you have the following vector: . 

VECTOR~"l 0 p (2·-:1.) 
VECTOR 

1 111 111 1 1 1 

The result is a vector of ten l's, and each 1 requires four bytes of storage. 
However, the vector can be changed to a logical vector as follows: 

VECT[)R~"lAVECTDr~ 
VECT()I~ 

1 1 1 1 111 111 

The result looks just like the previous result; however, only 2 bytes of storage 
was required. 

173 



174 

• Since each data item requires at least 12 bytes of overhead, an array of six 
elements would require approximately 60 bytes less storage than six scalars. 

• Names of 3 characters or less require 8 bytes of storage in the symbol table 
(the symbol table is part of the active workspace where the names of all the 
symbols, including variables, user-defined functions, and labels, are stored). 
Names of 4 characters or more require an additional 8 bytes plus 1 byte for 
each character in the name. 

Note: Even if an object is erased from the active workspace, the storage used 
for its name will not be available for use unless the contents of the active 
workspace are written to tape with a )SAVE command and then loaded or 
copied back into,the active workspace. 

• Identical names that are local to more than one user-defined function do not 
require additional symbol-table space for each function. 

When the contents of the active workspace are written to tape using the 
)CONTINUE command, then the stored workspace is loaded into a 5100 
with a larger active workspace, the amount of available workspace (see DWA 
system variable in Chapter 5) remains the same as it was when the contents of 
the active workspace were originally written to tape. To take advantage of the 
additional storage in the larger active workspace, write the contents of the active 
workspace to tape using the )SAVE command, then load the stored workspace 
back into the 5100. 

The following formula shows how much storage in the active workspace is required 
to perform an input or output operation to tape using an APL shared variable (see 
Chapter 8): 

REQUIREDbSTORAGE = BUFFER +SHARED~'vARIABLE 

where: 

• REQUIRED~STORAGE is the amount of storage that must be available in the 
active workspace (see DiWA in Chapter 5) before an input or output operation 
to tape can be performed. If there is not enough available storage, a WS FULL 
error occurs. 

• BUFFER is the amount of storage in the active workspace reserved by the 5100 for 
input and output operations. This storage is reserved when the data file is opened. 
For all output operations and input operations using an internal data file (file type 
8), BUFFER is about 650 bytes. For input operations using an exchange data file 
(file types 2 and 3), BUFFER is about 650 bytes plus the storage required for the 
largest record in the data file. 

• SHARED~VARIABLE is the amount of storage required for the data assigned to 
the shared variable. 

/ } 
~L 



(-

(-

TAPE DATA CARTRIDGE HANDLING AND CARE 

• Protect the tape data cartridge from dust and dirt. Cartridges that are not 
needed for immediate use should be stored in their protective plastic envelopes. 

• Keep data cartridges away from magnetic fields and from ferromagnetic mater
ials that might be magnetized. Information on any cartridge exposed to a 
magnetic field could be lost. 

• Do not expose data cartridges to excessive heat (more than 130
0 

F) or sunlight. 

• Do not touch or clean the tape surface. 

• If a data cartridge has been exposed to a temperature drop exceeding 30° F since 
the last usage, move the tape to its limits before using the tape. The procedure 
for moving the tape to its limits is: 

1. Use the) LIB command to move the tape to the last marked file. 

2. Use the )MARK command to mark from the last marked file to the end of 
the tape. For example: 

3. 

)MARK 2001 n 

where n is the number of the last marked file, plus one. 

When ERROR 012 (end of tape) is displayed, use the )REWIND command 
to rewind the tape. 

175 



Chapter 10. The 5103 Printer 

,176 

The IBM 5103 Printer is available as a feature attachment and has these 
characteristics: 

• Bidirectional printing (left to right, then right to left). The 5103 bidirectional 
printing operates as follows: 

The print head moves from the left margin and prints a line. Succeeding lines 
will be printed in either direction depending on which end of the new line is 
closest to the current position of the print head. The print head will be 
returned to the left margin periodically when printing is not imminent. 

• 132 characters across the print line. 

Note: If the width of the forms is less than 132 characters and the OPW 
system variable (see Chapter 5) is greater than the width of the forms, 
loss of data will occur as the print head leaves the form. 

• Capability of using individual or continuous forms. Maximum number of 
copies is six, but for optimum feeding and stacking, IBM recommends a 
maximum of four parts per form. 

• Adjustable forms tractor that allows the use of various width forms. The 
forms can be from 3 to 14.5 inches (76.2 to 368.3 mm) wide for individual 
forms and from 3 to 15 inches (76.2 to 381 mm) wide for continuous forms. 

• Print position spacing of 10 characters per inch and line spacing of six lines 
per inch. 

• Stapled forms or continuous card stock cannot be used. 

• The character printing rate is 80 characters per second. The throughput in 
lines per minute is function-dependent. 

• A vernier knob (located on the right side of the printer) that allows for fine adjust
ment of the printing position. This knob should only be used when the print head 
is in its leftmost position. 



How to I nsert Forms 

Form Guide Rack 

Vernier Knob 

Forms Path for Singlepart Forms 

Forms Path for Multipart Forms 

~~~~~~-Forms Guide Rack. 

("""

Friction Feed Rolls

1. Pivot the plastic shield forward.

2. Push the print head to the extreme left position.

3.

4.

For single part forms, pivot the form guide rack
up and-forward to a vertical position. For multi
partiforms, leave the form guide rack in the
horizontal position.

The diagrams below and to the left show the proper
forms path for singlepart and multipart forms.

Push the paper release lever to the rear to acti
vate the friction feed rolls.

5. Place the forms on the table behind the printer.

Note: The forms must be positioned behind the
printer so that the fotms feed squarely into the printer.

6. Thread the paper down, over the rollers, behind the
tractors, and behind the platen.

7. Turn the paper-advance knob to move the paper around
the platen until you can grasp it with your fingers.

117

Tractor Cover and 'Pins

Right Tractor Knobs

178

Release
Lever

Paper-Advance
Knob

8. Open both tractor covers.

9. Pull the paper release lever forward to disengage the
friction feed rolls.

10. Pull the paper up and place the left margin holes over the

tractor pins. Be sure the left tractor is in its leftmost
position.

11. Close the left tractor cover.

12. Squeeze the two knobs on the right tractor and sl ide the
tractor to align the pins with the right margin holes.

13. Place the right margin holes over the tractor pins.

14. Close the right tractor cover.

15. For singlepart forms, pivot the form guide rack to a
horizontal position

16. Turn the paper-advance knob to position the form
for the first line to be printed. The paper should exit
over the form guide rack.

Note: To move the form backward, turn either paper
advance knob backward and pull the form from be
hind the printer to keep the form from buckling at the
print head.

17. Close the plastic shield.

18. The plastic guides on the rear of the wire rack should
be positioned (one on each side of the forms) so as to
aid in guiding the forms for proper feeding. These
guides are positioned by sliding them back and forth.
If you are installing the printer, return to step 7 of
the Printer Installation Procedure.

CAUTION

The switch that senses end of forms is deactivated when the
friction feed rolls are engaged. Thus, the print wires could
hit the base plat~n if no forms are in the printer.

(~

("-

«, .. "

c'

How to Adjust the Copy Control Dial For Forms Thickness

1.

2.

3.

- -- ----~--

If you are using singlepart forms, set the copy
control dial on O.

If you are using multipart forms and the last sheet
is not legible, rotate the copy control dial toward 0
one click at a time to obtain the legibility you desire.

If you are using multipart forms and the ribbon is
smudging the first sheet, rotate the copy control
dial toward 8 one click at a time until smudging
stops.

How to Replace a Ribbon (Part Number 1136653)

Forms Tractor

1. Turn off power to the printer.

2. Tilt the forms tractor back by lifting both sides at the
front.

3. Raise the printer cover.

179

Ribbon Box Cover

~

Loop

180

4. Be sure that the print head is to tne extreme left.

5. Turn the feed roll release knob counterclockwise until
it points to the right.

6. Open the ribbon box cover.

7. Put on the gloves supplied with the new ribbon.

8. Remove the old ribbon from the guides being careful to
disengage it from the clip on the print head.

9. Lay the ribbon loop on the top of the ribbon in the rib
bon box. Pick up the entire ribbon and discard it.

Disk

Ribbon Holder

10. Eject the new ribbon from its holder into the ribbon
box by pressing on the disk.

11. Remove the disk from the ribbon and discard the disk
and the holder.

12. Hold the coil lightly with one hand and pull about 10
inches (254 mm) of ribbon from the coil.

13. Form a loop from the ribbon across the print head.

(

Left
Guide Post

c

Upper
Guide Post Platen

Guide Shoe Slot

Feed Rolls

14. Thread the part of the loop nearest the platen between
the feed rolls and on the inside of the upper guide post.

15. Turn the feed roll release knob clockwise to close the
feed rolls.

16. Thread the ri bbon between the pri nt head and the platen.
Be sure the ribbon is under the clip on the print head.

17. Thread the other part of the loop through the slot in the
bottom of the ribbon box.

18. Thread the ribbon through the guide shoe and around
the left guide post.

O_Feed Roll 19.
Release Knob

Insert the horizontal part of the ribbon twist (bottom
edge first) between the two horizontal guides.

Ribbon Box

20. Move the print head back and forth across the
platen to remove the slack from the ribbon. Con
tinue moving the print head until you are sure
that the ribbon feeds properly. Leave the print head
at the extreme left.

21. Close the ribbon box cover.

22. Close the printer cover and turn the power on.

23. Reposition the form tractor.

181

Chapter 11. Error Messages

Error Message

ALREADY MARKED

CHARACTER ERROR

DEFN ERROR

DEVICE NOT OPEN

Error messages can result when using APL primitive (built-in) functions, user
defined functions, system commands, system variables, or input/output opera
tions. The following list contains the APL error messages along with some pos
sible causes for the error condition and a suggested user's response:

Cause

The specified file was previously marked.

An invalid character was entered.

An invalid request to u~e the function
definition mode was made:

• A V symbol was erroneously used in
a statement.

• An attempt was made to reopen a
locked function.

• An attempt was made to reopen a
function using more than just the
function name.

• An attempt was made to open a new
function definition using the name of
a previously defined global variable name.

• An invalid edit request was made in
function definition mode.

• An attempt was made to edit a pen
dent function.

An attempt was made to read a data file
and the file is not open.

User's Response

If the file is to be remarked, enter GO.

Note: Any existing data in the files
following the last re-marked file will no
longer be available.

Enter a corrected statement_

If the statement was intended to open or
close a function, the V is valid only in the
beginning and ending positions.

Enter a corrected statement.

Enter a different function name or erase
the global variable.

Enter a val id edit request.

If the suspended function execution can be
terminated, clear the state indicator (see
Chapter 7), then edit the function.

Assign the information required to open the
file to the shared variable.

DEVICE TABLE FULL An attempt was made to establish more
than eight variable names to be shared
for tape or printer input/output.

Retract any unused shared variable names.

182

Error Message

DOMAIN ERROR

(,

ERROR eee ddd

ERROR 002 ddd

ERROR 003 ddd

ERROR 004 ddd

ERROR 005 ddd

ERROR 006 ddd

ERROR 007 ddd

c
ERROR 008 ddd

c

Cause

The function indicated by the caret (A)

cannot operate on the arguments given:

• The resu It exceeds the capacity of
the 5100 «-7.237 ... E750r
>7.237 ... E75).

• A character argument cannot be used
in an arithmetic operation.

• The argument is not mathematically
defined for the function (that is, 12 ~ 0).

• Numeric and character data cannot
be joined together.

• An error occurred in a locked function.

• Format length is incorrect.

User's Response

Determine the correct arguments for the
function in error. Then correct the state
ment in error.

eee is the error code for an input/output device operation and ddd is the device number.
The device numbers are: 500-printer; 001-built-in tape unit; 002-auxiliary tape unit.
Following is a list, cause, and user's response for the input/output device error messages:

Command error.

Tape error.

Tape error or second tape not ready.

Uneven winding of the tape.

The tape cartridge is not inserted in
the indicated tape unit.

An attempt was made to write on a tape
that is file-protected. (The SAFE switch
on the tape cartridge is in the SAFE
position.!

Tape read error.

The tape cartridge was probably removed
from the tape unit when data or a work
space was being written to tape. The
data in the file cannot be used.

Performing tape operations with an un
MAR Ked cartridge will cause error 004.
Otherwise, try the operation again. If the
error occurs a second time, call your ser
vice representative.

Move the tape to its limits using the procedure
described under Tape Data Cartridge Handling
and Care, in Chapter 9.

Insert a tape cartridge and try the
operation again.

If you want to write on the tape, turn the
SAFE switch on the tape cartridge off of
the SAFE position.

Use the)PATCH command and Tape
Recovery program (see Chapter 2) to
recover as much data as possible.

Try the operation again. If the error
occurs again, copy the files following the
file that caused the errors onto another
tape. Then use the)MARK command and
re-mark the tape from the file that caused
the error.

183

Error Message

ERROR 010 ddd

ERROR 011 ddd

ERROR 012 ddd

ERROR 013 ddd

ERROR 014 ddd

ERROR 050 ddd

ERROR 051 ddd

'ERROR 052-059 ddd

EXCEEDED MAXIMUM
RECORD LENGTH

IMPLICIT ERROR

INCORRECT COMMAND

184

Cause

Data is to be written to a data file, but
all the space in the file has been used.

An attempt was made to write the active
workspace on tape with a)SAVE
command, but the specified file could
not contain all the information from the
active workspace.

A file number was specified that has
not been marked.

The end of the tape has been reached.

The specified device is not attached.

Device error.

The printer has run out of forms.

The printer POWER ON/OFF switch is
turned off.

Printer errors.

The tape was removed before the data
file was closed during a tape input/
output operation.

The system variable that precedes the
error message was previously assigned
an invalid value or was undefined in a
function due to the system variable
being made local to the function.

Note: This error message is not displayed
until the system variable in error is used
by the APL system.

A system command was entered
incorrectly:

• The command keyword was not a
valid keyword.

• One of the parameters was entered
incorrectly.

• Too many parameters were entered
for the command.

User's Response

Use the)MARK command to format a
larger file and do the operation again.

Use a larger file to save the active
workspace.

Specify the correct file number or use the
)MARK command to mark the tape.

Use another tape cartridge.

Try the operation again. If the error
occurs a second time, call your service
representative.

Insert forms in the printer (see Chapter 10).

Turn the POWER ON/OFF switch on.

Try the operation again. If the error
occurs a second time, call your service
representative.

The data in the file cannot be used.

Assign a valid value to the system variable
(see Chapter 5).

Enter the command in its correct form.

(

(

c

Error Message

INDEX ERROR

INTERFACE QUOTA
EXHAUSTED

INTERRUPT

INVALID DATA TYPE

INVALID DEVICE

INVALID DEVICE
NUMBER

INVALID FILE

Cause

The index values given are outside the
boundaries of the array or a primitive
function or APL operator being sub
scripted by index [I] has been given
an argument that does not have an Ith
dimension.

An attempt was made to establish more
than eight variable names to be shared
for tape or pri nter input/output.

Attention was pressed twice when the
5100 was processing data or an invalid
tape input/output operation was
attempted.

Only exchange data can be used, but
there was an attempt made to use data
that is not a character scalar or vector.

An attempt was made to open a data
file with other than character data.

A device was specified that does not
exist or is incorrect for the operation
to be performed.

A device number that does not exist
was specified.

The file type is not valid for the
attempted operation. For example,
an attempt was made to load a.data
file or read a workspace file.

An attempt was made to load or copy
a damaged file. The file was probably
damaged by the tape being removed
from the tape unit before a save,
operation was complete.

The wrong file I D was specified.

User's Response

If a variable is being indexed, check its
shape (pA) against the index values.

If a primitive function or operator is being
indexed, determine the rank(s) (p p A) of
its argument(s); then check the index to
see if it is equal to or less than the re
quired rank.

Check the index origin (010) to ensure
that it is consistent with the statement
being executed.

Retract any unused shared variable names.

If an invalid tape input/output operation
was attempted, check the file open infor
mation to make sure the file was opened
correctly.

Change the data to a character scalar or
vector.

Enclose the information required to open
the data in single quotes.

Specify the correct device number.

Specify the correct device number.

Use the)LlB command to determine the
file type.

The data in the file is unusable. The file
can be dropped (use the)DROP command)
and reused.

Use the) LI B command to find the correct
file I D and reenter the statetnent.

185

Error Message

INVALID FILE NUMBER

INVALID OPERATION

INVALID PARAMETER

LENGTH ERROR

LINE TOO LONG

NONCE

NOT COPIED: names

186

Cause

The file number 0 was specified for a
)LOAD,)SAVE,)CONT,)DROP,
)COPV or)PCOPV command.

An attempt was made to open a data
file, but the file number was not valid.

An invalid tape input/output operation
was attempted. This message is followed
by an INTERRUPT error message.

A keying error was made or arl incorrect
parameter was specified when entering
the information required to open a data
file or specifying printer output.

A keying error was made when entering
the parameters for a system command.

The shapes of the two arguments are
not valid for the function indicated by
the caret (A).

An attempt was made to edit a statement
(in a user-defined function) that is greater
than 115 characters.

An attempt was made to save a work
space that contained a user-defined func
tion with a statement having more than
115 characters. In this case, the error
message is preceded by the function name
and the statement number that caused
the error.

An I-beam function was used. These
functions are not used in the 5100 APL
system.

An attempt was made to index a portion
of an array with a rank greater than 14.

An attempt was made to use a take or
drop operator on an array with a rank
greater than 9.

An attempt was made to laminate an
array with a rank greater than 20.

A)PCOPV was issued, but each object
named in the message was not copied.
The active workspace already contained
a global object with the same name.

User's Response

Reenter the command specifying the
correct file number.

Use the) LI B command to find the correct
file number. Then reenter the information
required to open the data file.

Check the file open information to make
sure the data file was opened correctly
or make sure you are using the shared
variable correctly.

Enter the file open information or system
command again, correcting the keying
errors.

Make sure the arguments are valid for the
function. Then reshape (restructure) the
arguments.

Break the statement up into two state
ments or use the OCR and DFX functions
to edit the statement.

Use the OCR function to make the user
defined function a matrix; then save the
workspace on tape.

Do not use the I-beam functions.

Display entire array or break the
array into smaller sections.

Break the array into smaller rank
arrays.

Break the array into smaller rank
arrays and reshape.

Issue a)COPV command if the named
objects should be copied ..

/1
4,)

c

Error Message

NOT FOUND: names

NOT SAVED, THIS WS
IS workspace I D

NOT WITH OPEN DEVICE

NOT WITH SUSPENDED
FUNCTION

NOT WITH SYSTEM
ERROR

RANK ERROR

Cause

A)ERASE command was issued, but
the global objects named in the message
were not found in the active workspace.

A)COPY or)PCOPY command was
issued, but the specified global object
poes not exist in the specified workspace.

A)SAVE or)CONTINUE command was
issued but the stored workspace I D is
not the same as the active workspace I D.

An attempt was made to issue a system
command or open a file on a tape unit
that is already being used for input/out
put operations.

A ,OUTSEL command was issued, but
printer output has been specified for a
shared variable.

An attempt was made to do a)SAVE,
)COPY, or)PCOPY operation and the
active workspace contains a suspended
function or an open request for quad
input.

An attempt was made to do an opera
tion other than)CLEAR after a
SYSTEM ERROR occurred.

An attempt was made to use a function
that requires the rank of the arguments
to conform, but they do not. For
example, a function requires the rank
of the arguments to be the same, but
they are not.

An attempt was made to use an argument
whose rank is too large for the operation.

The number of semicolons in the index ,
does not equal the rank minus 1.

User's Response

Reissue the command using the correct
object names.

Reissue the command using the correct
object name or stored workspace.

Use the correct I D or change identifica
tion of the active workspace, using the
)WSI D command; then reissue the)SAVE
command.

Close the data file or wait until the input/
output operation is complete before
issuing the command or the file open
information again.

Retract the printer shared variable.

Clear the suspended function or request
for quad input by using -+ (right arrow).

(see SYSTEM ERROR)

Make sure the arguments are valid. Then
reshape (restructure) the arguments so that
they have the correct rank (p pA).

Use the correct number of semicolons.

187

Error Message

SI DAMAGE

SYMBOL TABLE FULL

SYNTAX ERROR

SYSTEM ERROR

VALUE ERROR

188

Cause

The state indicator was made invalid
because one of the following occurred:

• A function exists in the state indica
tor list, but the function was erased.

• A suspended function's header was
changed.

• A label was removed or changed
on the suspended statement.

• Statements were added to or erased
from a suspended function.

More symbols were used than the number
of symbols allowed.

The symbol table in the stored work
space is full and a load operation was
attempted. This error is caused by the
latent expression variable even if it
has not been assigned.

The part of the statement indicated by
the caret (1\) is syntactically invalid.

A malfunction occurred in the APL sys
tem program and the data in the active
workspace is lost.

The object indicated by the caret (1\)

has not been given a value:

• If the object is a variable name, the
variable was not previously assigned
a value.

• If the object is a function name, the
function header did not specify a
result, the function did not assign
a value to the result variable, or the
function does not exist.

User's Response

Use the)SI or)SIV command to display
the state indicator. Clear out the state
indicator by entering ~ repeatedly.

)SAVE the workspace,)CLEAR the active
workspace, increase the number of sym
bols allowed by using the)SYMBOLS
command, then)COPY the stored work
space into the active workspace.

Note: Erasing a symbol from the active
workspace does not remove it from the
symbol table; however, saving the active
workspace and loading it again will remove
any unused symbols from the symbol table.

Enter a corrected statement.

Enter the)CLEAR command; if the error
continues to occur, call your service
representative.

Note: If SYSTEM ERROR occurred on a
load or copy operation, the error may be
caused by a bad stored workspace file.
Try loading or copying another stored
workspace file to see if the error occurs
again.

Assign a value for the indicated variable or
correct the function so that it has an ex
plicit result. The value must be assigned
before the object is used.

.'

Error Message

WS FULL

WS LOCKED

(
.... ,

/

c

Cause

One of the following conditions occurred:

• A)COPY or)PCOPY command was
issued, but the active workspace could
not contain all the objects requested.

• The active workspace could not con
tain all the information required to
build a defined function.

• The active workspace could not con
tain the intermediate results of an
APL expression.

• The active workspace could not con
tain the final results of an APL
expression.

• The active workspace could not con
tain the information required to do
input/output operations.

• A workspace was written to tape
with a)SA VE command, but the
extra storage required when loading
the stored workspace back into the
active workspace exceeds the avail
able storage .

• Too many symbols were specified
in a)SYMBOLS command

The workspace is password-protected,
but no password or the wrong pass
word was specified in the command.

The workspace is not password-protected
and a password was specifie~.

Us~r's Response

Erase unnecessary objects. If there is still
not enough space:

Partition the workspace into two or
more workspaces with related
functions.
Store data in a separate workspace or
in a shared variable file.
Reprogram using smaller intermediate
results.
Clear the state indicator with -+ if
suspended functions exist.
Reduce the size of the symbol table.
See note under)SYMBOLS.

Use the)COPY command to make the
stored workspace into two workspaces.

Reenter the command with fewer symbols
allowed specified.

Reenter the command with the correct
password specified.

Enter without a password.

189

Error Message

WS NOT FOUND

WS TOO BIG

190

Cause

A)LOAD,)DROP,)COPV, or
)PCOPV command was issued, but
there is no stored workspace with the
identification specified in the command.

One of the following conditions occurred:

• An attempt was made to load a work
space stored with the)CONTINUE
command into a 5100 with less in
ternal storage.

• An attempt was made to load a work
space stored with the)CONTINUE
command into the active workspace,
but IMFs have been applied reducing
the available internal storage.

• An attempt was made to write the
active workspace (using the)CONTINUE
command) into a file that is too small.

User's Response

Reenter the command with the correct
workspace identification.

Use a 5100 with enough internal storage.

Restart to clear the IMF, load the stored
workspace into the active workspace,
)SAVE the active workspace, apply the
IMFs, then load the stored workspace again
or copy only the required objects.

Use a file that is large enough.

(-', ,
/

Appendix A. Setup Procedures

ENVIRONMENT

The 5100 Portable Computer and associated units are designed for these
environments:

Operating Environment Nonoperating Environment

Relative humidity

Maximum wet bulb
temperature

8%-80% 8%-80%

You should not expose the machine to extreme temperatures for an extended time. For
example, do not store the machine in the car trunk when the weather is very warm or very
cold. If you must expose the machine to extreme temperatures, the machine should be
acclimated to the operating environment before turning it on:

• If the machine was exposed to heat, allow it to cool enough so that you can place your
hand on the surface without discomfort before turning it on.

• If the machine was exposed to cold and there is no frost or moisture on the external
surfaces or visible on the internal parts, the machine can be turned on.

• If the machine was exposed to cold and there is frost or moisture on the external·sur
faces or visible on the internal parts, acclimate the machine for 8 hours after the frost
and moisture disappears. This is to make sure all internal moisture evaporates before
turning the machine on; otherwise, the machine may be damaged.

191

192

5100 SETUP PROCEDURE

After you have placed the 5100 where you intend to use it, make sure the red POWE R
ON/OFF switch (located on the front panel) is in the OFF position. Plug the power
line into a grounded electrical outlet.

Note: For proper operation, the 5100 must be plugged into a grounded outlet.

Set the POWER switch to ON, and be sure that the fan is operating:

• If your machine location is not too noisy, you should hear the fan motor
operating.

• If you are not sure, hold a light piece of paper near the air intake on the back of
the machine. The loose end of the paper should be pulled toward the machine.

If the fan does not appear to be operating, check your power outlet. If it is OK, set
the POWER switch to OFF and call for service. Do not continue with these
i nstructi ons.

If the fan is operating, wait for about 20 seconds and your 5100 will be ready for
operation.

APL Checkout Procedure

o 1. After power has been on 20 seconds, the display screen should show:

_/ The underline (cursor) flashes on and off. l CI...EAt~ we:'

If the display screen does not show the above information, check the
following top panel switches:

a. Turn the BRIGHTNESS control to get the best character definition.
b. Set the DISPLAY REGISTERS.s\',itch to the NORMAL position.
c. Set the L32 64 R32 switch to t;le center (64) position.
d. Set the BASIC/APL switch (combined machines only) to the APL

position.
e. If information displayed is not as shown above, press the RESTART

switch. This recycles a portion of the power-on sequence. If the infor
mation displayed is still not as shown above (after the 20-second delay),
call for service.

.. ~)

o 2.

(

(

,

03.

(~

c

If the display screen does not show the correct results in the remaining steps
of this procedure, press RESTART once, go back to step 1 and try again. If
the correct result is s.till not shown, call for service.

Enter the data shown by the key drawings below. The data will be displayed
as the keys are pressed.

If you make a keying error, you can press the backspace key • ··(above

EXECUTE) to backspace the cursor, then press the correct key.

Where the bottom portion of the key is shown shaded, hold the shift key

down while you press the character key. (Enter the unshaded character.)

Press the following keys in sequence line by line:

The display now shows:

CLEAR WS
VTEST

[1]

Be sure to use the multiply
'------- key and not the alphabetic

X.

Below the lines of the test program that you just entered, the answer of 27
will be displayed (the program multipl"ies 3 times 9):

VTEST
[1] A+-3
[2J Bf-9
[3] Cf-AxB
[1+:1 CV

TEST

193

194

04. If you checked out the tape operation under the 8ASIC checkout procedures,
insert the tape cartridge into the 5100 and go to step 6. Remove an unused or
scratch tape cartridge from its package. Check that the arrow is pointing away
from the word SAFE as shown in the illustration. Insert a coin or screwdriver
into the slot :f you must turn the triangular arrow away from the word SAFE.

Note: Do not use any prerecorded tape cartridges that were shipped with your

machine.

This edge goes into machine first.

o 5A. Insert the tape cartridge into the 5100 (metal bottom down), and press it in
until it seats firmly. Then press the following keys (you must leave a space
before each number):

~J~!~~~ space ~ space r~ space ~

58. The previous step initialized the tape to hold information. If a message of
MARKED is displayed, go to step 6. If a ~essage of ALREADY MARKED is
displayed, the tape is already marked. To re-mark the tape, press:

o 6. Press the following keys:

~ ~ ~ ~ ~ space ~. space ~.~

07.

08.

09.

C'
/

The last step wrote the program onto tape, but it is still recorded in the
storage workspace. To prove the program can be read from tape, the program
must be erased from the workspace. To do th is, press the following keys:

To read the program from tape into the 5100, press the following keys:

When LOADED 1002 WS is displayed, press these keys:

The display screen should again show:

lJ
TEST

27

~
Position 1. ~

Position 7

This completes the APL checkout procedure.

I

195

196

o 10. Check to see that you received all the items on the Contents Checklist.

If the words above the top row of numeric keys are labeled on the left with:

APL , you have an APL machine without the communications feature.

BASIC , you have a BASIC machine without the communications feature.

BASIC
APL

} ,you have a combined machine.

COMM }
BASIC
APL

COMM }
APL

, you have a combined machine with the communications feature.

, you have an APL machine with the communications feature.

COMM } BASIC ' you have a BASIC machine with the communications feature.

If you have not checked out BASIC on a combined machine, set the
BASIC/APL switch to the BASIC position, press RESTART, and go to the
BASIC Checkout Procedures in Appendix C of the IBM 5100 BASIC
Reference Manual, SA21-9217. If you already did the BASIC checkout
procedures, continue with step 11.

o 11. If the auxiliary tape unit is to be installed, unpack the tape unit and pro
ceed to the Auxiliary Tape Unit Setup Procedure which follows. After
installing the auxiliary tape unit, return to step 12.

o 12. If the printer is to be installed, unpack the printer, and proceed to Printer
Setup Procedure, which comes later in this appendix. After installing
the printer, return to step 13.

o 13. If your 5100 is equipped with any other feature, use the manual supplied
with that feature to set up and check out the feature, then return to
step 14 in this manual.

o 14. When the preceding devices or features are installed, or if none are, begin
reading the IBM 5100 APL Introduction to learn how to operate your 5100.

(

("-

c

c

AUXILIARY TAPE UNIT SETUP PROCEDURE

o 1.

o 2.

Set the 5100 and auxiliary tape unit power switches to OFF.

Remove the shipping tape from the signal cable (flat cable) and connect the
signal cable into the back of the 5100. Make sure the connector fits squarely.
Turn the knob in a clockwise direction until the connectors fit together firmly:

Storage Position for Terminator Plug

\\\\\\\"'111111111111111111111'1
~

Terminator Plug

The terminator plug connects
into the lower position.

Power Line Plugs

o 3. Check that the terminator plug is in place on the rear panel as shown in the
preceding diagram.

o 4. Remove the shipping tape from the power line and plug the power line into
a grounded electrical outlet.

05.

06.

Set the auxiliary tape unit POWE~ switch to ON, and be sure that the fan
is operating.
a. If your location is not too noisy, you should hear the fan motor operating.
b. If you are not sure, hold a light piece of paper near the air intake on the

left side of the tape unit. The loose end of the paper should be pulled
toward the tape unit.

If the fan does not appear to be operating, check your power outlet. If it is
OK, set the POWER switch to OFF and call for service. Do not continue with
these instructions.

Set the 5100 POWER switch to ON and continue to the checkout procedure.

197

198

Tape Unit Checkout Procedure

Note: The following steps assume you are using the same cartridge that you used
to check the 5100. If you are not, write any program onto the cartridge in the
auxiliary tape unit and read it back.

o 1. Insert a tape cartridge into the auxiliary tape unit after checking that the
arrow is pointing away from the word SAFE.

o 2. Press the following keys to read in the program that was stored on tape during
the 5100 checkout procedure:

o 3. After the message LOADED 2002 WS appears on the display screen, press
the following keys:

o 4. The message CONTINUED 2002 WS appears on the display to verify that
the program was written back to tape and was checked by the 5100.

This completes the checkout procedure for the auxiliary tape unit.

Return to step 12 of the 5100 checkout procedure.

(

(

c:

PRINTER SETUP PROCEDURE

01. Set the 51 00, 5103, and 5106 (if attached) POWE R switches to OFF.

o 2. If you have an auxiliary tape unit, remove the terminator plug from the
bottom position and insert it into the top position (storage position).

03. Remove the shipping tape from the printer signal cable (flat cable) and
connect the signal cable to the back of the auxiliary tape unit, if it is
attached, or to the back of the 5100. Make sure the connector fits
squarely. Turn the knob in a clockwise direction until the connectors
fit together firmly:

BNC Connector
for TV Monitor

Forms Tractor

Storage Position for
Terminator Plug

5100 Portable
Computer (rear) Printer (rear)

Auxiliary Tape
Unit (rear)

Connector
Position

~11111111111~111111111II~1 ,,~
""'"111

The printer signal connects to the back of the
5100 if the auxiliary tape unit is not attached.

o 4. Remove the shipping tape from the printer power line and plug the power
line into the back of the auxiliary tape power plug or into a grounded elec
trical outlet.

199

200

o 5. Unpack the forms tractor and set it in place on top of the printer as shown
in the drawing.

1+------ Forms Guide Rack

a. Position this part of the
forms tractor first. Press
down firmly to snap into
place.

- b. Then rock the forms
tractor forward and
snap this part into place.

Must be in this position.

o 6. Insert paper in the printer. Use the printer information in this manual if you
need help in inserting the paper (see Chapter 10).

o 7. Set both the printer and 5100 POWER switches to ON and continue on to
the checkout procedure.

Printer Checkout Procedure

Press several alphameric keys to display some information. Then, hold down the
CMD key and press the key CD below Copy Display on the

command word strip. The printer will provide a copy of the information on the
display screen.

Return to step 13 of the 5100 checkout procedure.

(J

(

(

P"' • .

c

Appendix B. 5100 APL Character Set and Overstruck Characters

Overstruck characters are formed by entering one character, backspacing, and enter
ing the other character. The 5300 APL character set consists of all the characters
represented on the 5100 keyboard plus the followinq overstruck characters:

Function Character Keys Used

Comment

Execute

Factorial, combination

Format ~

Grade down W

Grade up th

Logarithm 6\}

Matrix division ~

Nand /\

Nor V

Protected function V

Quad quote ~

Rotate, reverse ¢

Transpose ~

Compress f (see note)

Expand ~ (see note)

Rotate, reverse e (see note)

Note: These are variations of the symbols for these functions; they are used when
the function is acting on the first coordinate of an array.

201

Appendix C. Atomic Vector

202

The following chart shows the character, the character name, and the index of
that character in the atomic vector:

Character

r
::I
(

)

/

~ ..
··t

+

x

.K-

r
I..
I
r..

Character Name

I~ESE I~VED I I I

I<ESERVED I I I

I~ESERVED I

I~ESEI~VED I

I~ESE I~VED .
I:~EBEI~VED.
RESERVED.
RESERVED.
RESERVED
RESERVED.
I~I:::BE RVED.
REBEI~VED.
I~ESEI<VED.
REBE I<VED . . I

LEFT BI~ACI<ET. .
I~ I GHT B l~f::\CI< ET .
LEFT PARENTHESIS.
I~IGHT PARENTHESIS
SEMICOLON

BACI(BI ... (.iBH.
LEFT f~ I~ RD~J .
I<IGHT ARI~~(]v..1

I~EBEI~VED.
'<ESE I<VED . .
DIERESIS (UPPERSHIFT 1)
PLUS ...
i'1INUS .
Tlt1ES . .
DIVIDE.
STAI~. .
MAXIMUt'1 . . • .
MINIt1UM .
I:~EBIDUE .
AND
or~. . . .
I ... ESS TH(.1N
LESS THAN OR EQUAL.
E(~UAI... . .
GREATER THAN OR EQUAL
GI~EATEI~ THAN.
NOT EQUAL

i •

Index
(010+-1)

:1.

I::·
,.J

l)
·l
B
9
:1.0
1:1.
:1.2
:I. :·5
:1. 1.,.

:I. ~::i

:1.6
:1.7
:I.B
:1.9
20
2:1.
. ..) ,.)
,,: : ..

21.f·
2!::i
'") t." ,: .. ~.)
,.) ...•
...... (

(

(''''''- ,

Character

(~

~::

!
(I)

.I.

T

:n:

[]
I~I
(f)

N

'" N
V

B
C
D
r
F
G

Character Name

ALPH('~ .
EPBILDN
IOlf, ..
I:~HD
OMEGf, .
COMMA .
SHRIEK (EXCLAMATION).
REVE I~BfiL
ENCODE (Bi~)SE)
DECODE (REPRESENTATION) .
CIRCLE.
'JlUE I~Y
NOl
UP f:,RI~DlJJ.
DOWN f,l~f~DlJJ. .
SUBSET. . . .
RIGHT SUBSET.

CUP
UNDEI~BCDI~~E.
TI~f.lNSPOSE . .
][· .. ·BEAt1. . . .
NULL (SMALL CIRCLE) .
(~Ui~)D . .)
(~Ut',D (~UDTE. .
LOG
NAND
NOR I •••

LAf1 P~"COt'1MENT. .
GRf.ll)E UP. . .
G l~i~tIE DOI,JN. .
OVEI~Sl I~UCI< C1 1:~CI...E"·-HYPHEN.
DVE I~ST I~UCI< SLi~SH""HY PHEN . .
OVERSTRUCK BACKSI...ASH-HYPHEN .
MATRIX DIVIDE ...,....
FDI~t1(,~,T. I

EXECUTE . .
('~f1PEI~BAND .
fIT. . .
POUND . . .
DOLLAI~. I •

UNUSED. .'.
TRACE (T DELTA) .
S T (] P (S {I E I... T A) .
fl •

B
(: , ,
1:1 ••
E
1·-..
G .

Index
(010+-1)

1+:'5
!.j.LI·

'+ ~::.i

"I·b
1+7
!.f·B
I+~;>

~5 0
~:5 :I.
~:.:;2

~:5 ~:.:.i

'::'i, , .. ' \.)

6b
f.) '7
6B
69
70
7:1.
7~.~

73
71+
7~:.:;

'''} i, , \,)

203

204

Character

H
I
• .J
I(

I...
N
N
D
p
(~

I~
(" .:>
T
U
V
v.1
x
y
.. ,
,c ••

Character Name

H .
I .
• .J •
I{ •

I... .
til
N .
o .
p .
(~ .

T .
U
V •
W .
X .
y ..,
.(.. ,
DELTA .
(~""UNDE I~BC(J I~E. .
H-··UNDE I~BCD I~E. .
C····UNDE I~BCO I~E .
D····UNDEI~BCOI~E .
E ····UNDE 1~~:)Cc) I~E .
F·-UNDEI:~BCORE. . . • .
G-··UNDE I~SC(J I~E. .
H-"UNDEI~BCORE .
I ····UNDE r~BCO RE. . .
• J····UNDE I~SCD I~E.
I('-'UNDE I~BCO I~E .
I...····UNDE I~~:)CD I~E.
N····UNDE I~SC(] I~E. .
N····UNDEI~BC(]RE.
(]····UNDEI~SCOI~E. .
P·· .. UNDEI~SCDRE. .
(~····UNDE I~BCD I~E. .
R····UNDEI~BCDI~E. .
S· .. ·UNDE I~BCO I~E .
T-UNDERBCORE ...
U'-'UNDE I~BCClI~E
V-"UNDE RSCD RE. .
J...J····UNDE I~SCO I<E.
X ····UNDE I~BC(] I~E .
y····UNDEI~BCDI~E.
Z-UNDERBCDRE
DELTA-UNDERBCDRE ..
() , • • • • , I , • I

l I I • • •

2 .

Index

(OIO~1)

too
:1.0:1.

:I. 0 :::.~
to:;)
:t. 0 1+
:1. 0 ~5
:1.06
:1.07
:1.00
:I. 0 (.;i
:1. :1.0
:1.:1.:1.
:1.:1.2
:1.:1.3

:1. :1. 1+
:I. :I. ~5
:1.:1.6
:1.:1.7
:1.:1.0
:1.:1.9
:1.2 ()
:1.2:1.

:1.2:':)
:1.21+
:I. 2~:5
:1.26
:1.2"'"
:l.2B
:1.29
'1 3 ()

3:1.

:1.36
:1.3",:"
:1.30

:1.3(:1
:1. 1+ ()
:1.1.1.:1.

:1.'+2
:1.43
:1.'+1·1·

(-

C

(~'~

c

Character

,+

'\/

.·V
V

lTJ

%
IV
If)..

(:)

f\
b
D
A
f~:

r~
i~j

.{:
.(..
(;
(j

/.~

Character Name

,+ .
I::'
.,J •

(.) ..
'7 .
B .
<;> •

PERIDD.
O\lE I~B(~ 1<
HL(.':-.r'-U(• • • • • • • •
(HJD'I'E
COLON
DEI... (FN DEF, CHAI<) ••

Index
(010+-1)

:1.1+~5

:1.I+b
:1.

'
.1.7

1.4·B
:l. LI·9
:1.50
:1. !51.
:1.52
:1. ~:;~3

:I. ~:i 1.1·

:/.56
CU I<SO R I<E'I'U ~~N :I. ~:;7
END OF BLOCK(CANNOT BE DISPLAYED) :1.58
BACI{ S P .. ~}CE
I ... INEFEED,
PI~O'I'ECTED DEL.
UNUSED.
UNUSED .•..•.
UNUSED. .
UNUSED.
UNUSED. . • • .
UNUSED. . , ..
UNUBED. . . • . . .
LENGTH OF Z''''SYf'1BOL Tf~BL..E. '.' . .
O-U-T FOR COMMUNICATION TAPE.
LOGICAL NOT •
DOUBLE QUOTE .•.....
PERCENT
PROTECTED DEL.Tf.}
BULLS EYE . ,
I~ UMLAUT.
o UMLAUT
U UMLAUT.
.. ~NGST I<Oi"I. .
AE Dlf~IGRAPH • . .
P SUB T . . .
N TILDE . .
POUND STEI~LING. .
CENT ...
D TILDE
A TILDE • . .

:/.59
:l.bO
:1.6 l
:l.c>2
1. 6~3
:I.bl.~

:I. 6~5
:1.66
:1.67
:1.68
:I.6~;>

:J. 7 0
1. 7 :1.
:1.·?2
:1.73
:1.7LI·
l 7~:i
:1.76
:1.77
:1.78
:1. 79
:I.BO
:1.8 l
:1.82
:L83
:1.84·
:L 8 ~'5
:1.86

Note: The remaining elements (187-256) are unused.

205 ..

Appendix D. 5100 APL Compatibility with IBM APLSV

206

The 5100 APL system differs from the IBM APLSV system primarily because the
5100 is a single user system with different input/output devices and it has display
screen output rather than typewriter output. The differences are as follows:

• Turning power on signs the user on; therefore, no sign-on or ID number is
required.

• The 5100 active workspace is generally smaller than APLSV active workspace.
It is further limited by the shared variable processor which uses it for input/
output buffers and work areas.

• The default number of symbols is 125 instead of 256, which increases the avail
able workspace for most users.

• The library number that appears in system commands has been redefined to a
device/file number. It is a 1- to 5-digit number that specifies the device and
file number where a workspace is to be)SAVE'd or) LOAD'ed. If the number
is less than 4 digits, it is only the file number; device 1 is assumed; otherwise,
the high-order 1 or 2 digits is the device number.

• The) LOAD,)COPY,)PCOPY commands require the library (device/file) num
ber and workspace ID parameters. The)DROP command requires the library
(device/file) number and if the specified file is a stored workspace" file, the
workspace I D parameters. These requirements protect the user from inadver
tently destroying his or her saved workspaces.

• The following commands are not supported because they apply only to multi
terminal systems and remote systems:

)OFF;)OFF HOLD;)CONTINUE HOLD;)PORTS;)MSGN;)MSG;)OPRN;
)OPR; all special system operator commands

• The following commands are not supported because the function is not
supported:

)GROUP;)GRPS;)GRP

• The following commands are not supported:

)ORIGIN;)WIDTH;)DIGITS

They are available with the system variables 010, DPW, and DPP, respectively.

•

(

•

..

(~II

• The following commands have been added to support the 5100 processor and
its input/output devices:

)MARK

)OUTSEL

)REWIND

)MODE

)PATCH

To format tape files

To specify which transactions are to be printed

To rewind the tape unit

To select communications mode

To load an IMF or Tape Recovery program into storage
from an I BM-supplied tape

• The)CONTINUE command has been changed to save workspaces with sus
pended functions. The parameters are the same as)SAVE but the stored work
space cannot be)COPY'ed, or)LOAD'ed into a 5100 with a smaller active
workspace.

• Since the 5100 system is not in a communications environment, the RESEND
mesGage will not occur.

•)SAVE and) LOAD have to be implemented with only one workspace area
(no spare); therefore, the following error messages have been added:

1.

2.

Function name [statement number] LINE TOO LONG - Cannot save
functions with statements greater than 115 characters.

WS TOO BIG - Workspace is too big to fit in the active workspace.

3. NOT WITH SUSPENDED FUNCTION - Only the)CONTINUE command
""ill work to write the workspace to tape.
I

• For diagnostic reasons, occurrence of SYSTEM ERROR does not clear the
workspace. The following message occurs when attempting anything other than
)CLEAR after a system error:

NOT WITH SYSTEM ERROR

• Saved workspaces are not time-stamped and dated because that information is
not available in this system; therefore, the following messages now occur after
library operations:

COPIED device/file wsid
LOADED device/file wsid
SAVED device/file wsid
CONTINUED device/file wsid
DROPPED device/file wsid

207

208

• The)LlB command does more than list the saved workspaces. It lists all the
files on the specified device. The response, therefore, contains more informa
tion (see)LlB command in Chapter 2).

• The following system messages have been added for the new system commands
and input/output operations:

ALREADY MARKED
DEVICE NOT OPEN
DEVICE TABLE FULL
ERROR eee d
EXCEEDED MAXIMUM RECORD LENGTH
INVALID DATA TYPE
INVALID DEVICE
INVALID DEVICE NUMBER
INVALID FILE
INVALID FILE NUMBER
INVALID OPERATION
INVALID PARAMETER
MARKED b ri
NOT WITH OPEN DEVICE

• The shared variable processor on the 5100 is designed to provide an interface
between only one APL user and one I/O processor. Thus, only one processor
number is supported (1).

The response to OSVO is 2, since, if it is a valid share, it is always accepted
before the APL user regains control. (If an unsupported processor is specified,
the response is 1.)

The response to DSVR is the same as the response to DSVO.

Being strictly a sequential machine, the only mode of interaction is reversing
half-duplex; that is, the I/O processor always responds to each action by the
APL user. Therefore, the access control vector (OSVC) is always 1 1 1 1.

Since there are never -any outstanding offers, OSVO always returns an empty
vector.

• This is a single user system without an internal clock; therefore, the following
system variables and functions are not supported:

OTS
OAI
OTT
OUL -
ODL -

Time stamp
Accounting information
Terminal type
User list
Delay

• The I-beam functions have been replaced with system variables or system func
tions and are not supported.

• Catenation using semicolons has been replaced by format, but it is still supported
on the 5100.

•

't

it
(

(

• Data can be exchanged between APL and BASIC or other systems via commun
ications; therefore, the following characters have been added to the APL char
acter set:

$,#,@,&,',%,"

• The display screen is 64 characters wide; therefore, the initial values for OPW
and OPP system variables are 64 and 5 instead of 120 and 10.

If the print width is altered to something greater than 64, any output that ex
ceeds 64 characters is wrapped to another line o~ the display screen.

• Bare ([!]) output followed by bare ([!]) input yields a different reply. For
APLSV, the [!] input is prefixed by the same number of -blanks as the previous
[!] output. For 5100 APL, the [!J input is prefixed by the previous [!] output.
(See Chapter 6 for more information on bare output followed by bare input.)

• The display screen provides the ability to edit lines of data directly; therefore,
the following changes were made to function definition:

[NO] Now displays line N in the display screen lines 1 and 0 for
editing.

[NOM]

[~N]

Has the same result as [NO]; the M is erased when execute is
pressed.

Allows line N to be deleted. N must be a single line number.

The use of the ATTN key to delete a line works, but only in function de
finition mode, not while entering function definition m'ode.

To prevent problems when displaying or editing statements in a user-defined
function, the print width (OPW) is automatically set to 390 when the 5100
is in function definition mode. The print width automatically returns to its
previous setting when the function definition is closed.

There is only limited editing space; therefore, function statements that are
greater than 115 characters cannot be edited, and the message
LINE TOO LONG is displayed.

• The 5100 will insert a quote if an uneven number of quotes is entered.

209

I

Glossary

I BM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing (Copyright © 1970 by American
National Standards Institute, Incorporated), which was
prepared by Subcommittee X3K5 on Terminology and
Glossary of the American National Standards Committee
X3.

ANSI definitions are identified by an asterisk. An asterisk
to the right of the term indicates that the entire entry is
reprinted from the American National Standard Vocabulary
for Information Processing.

active referent: The usage of a name that was most recently
localized, or the. global usage if the name is not localized.

active workspace: A part of internal storage where data and
user-defined functions are stored and calculations are
performed.

ADD operation: Using a shared variable to add informa
tion to an existing data file.

alphameric keys: The keys on the left side of the keyboard
that are arranged similar to a typewriter keyboard.

APL internal data format: See internal data format.

arguments: Data supplied to APL functions.

array: A collection of data that can range from a single
item to a multidimensional data configuration. Each ele
ment of an array must be the same type as the other ele
ments (all characters, all numeric, or all logical).

assign: To use the +- (assignment arrow) to associate a
name with a value.

available storage: The number of unused 1024-byte blocks
of storage in a file on tape.

210

bare output: To display output without the cursor return
ing to the next line.

branch instruction: An instruction that modifies the nor
mal order of execution indicated by the statement mem
bers. Branch instructions always begin with a -r (branch
arrow).

branching: Modifying the normal order of execution indi
cated by the statement numbers.

built-in function: See primitive function.

byte: A unit of storage. For example, a character takes
one byte of storage.

character constant: Characters that do not represent num
bers, variables, or functions. Character constants are en
closed in single quotes when they are entered (except for
[!jinput); however,the single quotes do not appear when
the character constants are displayed.

command keyword: The name of a system command in
cluding the right parenthesis. For example, the command
keyword for the)MARK command is)MARK.

comment: An instruction or statement that is not to be
executed~ A comment is indicated by a A as the first
character.

conditional branch: A branch that is taken only when a
certain condition is true.

coordinate: A subset of data elements in an array. For
example, a matrix has a row coordinate and a column
coordinate.

cursor: The flashing character on the display that indicates
where the next input from the keyboard will be displayed.

•

•

(

(

•

("""~

data file: A file on tape (file type 01, 02, or 08) where
data was stored using a shared variable.

defective record: A 512-byte block of storage on tape that
cannot be read.

device/file number: Specifies the tape unit and file to be
used when doing tape input or output operations.

dual-language machine: A 5100 that can execute either
APL or BASIC statements.

dyadic functions: Functions that require two arguments
(a right and a left argument).

editing: Modifying an instruction or statement that already
exists.

element: The single item of data in an array .

empty array: A variable that has a zero in its shape vector.
The array has no (zero) elements.

exchange data file: The data in the file is in the exchange
data format.

exchange data format: The data consists of all character
scalars or vectors.

execute: To press the EXECUTE key to process data on
the input line.

execution: The processing of data.

execution mode: The mode that is operative when state
ments or functions are executed. Contrast with function
definition mode.

explicit result: The result of a function that can be used in
further calculations. The function must contain a result
variable if it is to have an explicit result.

file: A specified amount of storage on tape. The tape is
formatted into files by using the)MARK command.

file 10: The name of a file on tape. If the file contains a
stored workspace, the file I D is the same as the stored
workspace I D.

file number: The files on tape are sequentially numbered
starting from one.

file type: Identifies the type of data stored in a file.

function body: Consists of the statements within a user
defined function. These statements determine the opera
tion(s) performed by the function.

function definition: Defining a new function (a user
defined function) to solve a problem.

function definition mode: The mode that is used when
defining or editing user-defined functions. The 'V symbol
is used to change the mode of operation. Contrast with
execution mode.

function header: Defines the function name, number of
arguments, local names, and whether or not the function
will have an explicit result.

general exchange data file: The data in the file is in the
general exchange format.

general exchange data format: The data consists of all
character scalars or vectors.

global names: The value or function associated with
these names can be used within or outside of a user
defined function unless the name has been made local
to a user-defined function that is executing, suspended,
or pendent. Contrast with local names.

identity element: The value that generates a result equal
to the other argument of a function.

IN operation: Using a shared variable to read informa
tion from a data file.

index entry [I]: (1) A value or values enclosed in brackets
that select(s) certain elements from an array. (2) A value
enclosed in brackets that determines the coordinate of an
array to be acted on by a primitive mixed function.

211

index origin: Either 0 or 1 and is the lowest value of an index. library: A tape cartridge where data is stored for future
The index origin is set to 1 in a clear workspace and can be use.
changed by using the 010 system variable.

input: Information entered from the keyboard or read
from tape using a shared variable.

input line: Consists of the 128 positions on lines 0 and 1
of the display screen. Any information on the input line
will be processed when the EXECUTE key is pressed.

instruction: A function or series of functions to be
performed.

integer: A whole number.

interactive function: A user-defined function that requests
input from the keyboard as it executes.

internal data file: The data in the file is in the internal
data format.

internal data format: The format in which the data is stored
in the 5100.

keyword: See command keyword.

labels: Names that are placed on statements in a user
defined function for use in branching.

latent referent: The usage of a name that has been made
unavailable by a more recently called function. The usage
for that name cannot be accessed.

length: (1) The length of a vector is the number of ele
ments in the vector. (2) The length of a coordinate of
other arrays is the number of items specified by that coor
dinate. For example, a matrix has a row coordinate with
the length of 2, therefore, the matrix has two rows.

212

local name: A name that is contained in the function
header and has a value only during the execution of that
user-defined function.

locked function: A function that cannot be revised or dis
played in any way. The opening or closing V was over
struck with a '" .

logical data: (Boolean data) Data that consists of all ones
and zeros.

matrix: A collection of data arranged in rows and columns.

mixed function: The results of mixed functions may
differ from the arguments in both rank and shape.

monadic functions: Functions that require one argument.
The argument must be to the right of the function symbol.

multidimensional array: An array that has two or more
coord i nates.

n-rank array: An array that has more than two coordin
ates (a rank of more than 2).

niladic function: A user-defined function that does not
require any arguments.

numeric keys: The keys on the right side of the keyboard
that are arranged similar to a calculator keyboard.

object: A user-defined function or variable name.

operators: Have as their arguments dyadic primitive
scalar functions. These arguments are applied to
arrays in a specified way.

OUT operation: Using a shared variable to write infor
mation into a data file.

(

c

c\

output: The results of statements processed by the 5100.

overstruck character: A character formed by entering one
character, backspacing, and entering another character.
Only certain combinations of characters can form over
struck characters.

parameter: (1) Information needed by 'a system command
(such as device/file number). (2) Information required to
open a data file or specify printer output.

password: A sequence of characters that must be matched
before the contents of a stored workspace can be loaded or
copied into the active workspace.

pendent function: Any function in the state indicator list
that is not a suspended function.

physical record: A 512-byte block of storage on tape.

plane: The coordinates of an n-rank array other than the
rows and columns.

primitive function: The functions that are part of the APL
language (such as , + - .;. x).

PRT operation: Using a shared variable to output data on
the printer.

rank: The number of coordinates of an array (p p).

record: Data assigned to a shared variable.

result variable: A variable to the left of the assignment
arrow in the function header where the results of the func
tion are temporarily stored for use in further calculations.

return code: Assigned to a shared variable after a PRT,
OUT, or ADD operation. This code indicates whether or
not the operation was successful.

scalar: A single data item that does not have a dimension
(p p = 0).

scalar function: The results of the scalar functions are the
same shape as the arguments. The function is applied to
corresponding elements in the arguments.

scale: An integer representing the power of ten in scaled
representation.

scaled representation: Stating a value in a convenient
range and multiplying it by the appropriate power of ten.

scroll: Moving the information on the display screen up or
down.

shape: The length of each coordinate of an array.

shared variables: A variable shared by the active workspace
and the tape or printer. Used to transfer data during IN,
OUT, ADD, or PRT operations.

significant digit: * A digit that is needed for a certain pur
pose, particularly one that must be kept to preserve a spe
cific accuracy or precision.

single-element array: An array with a shape of all 1 'so
For example, a matrix with one row and one column.

state indicator: Contains information on the progress
(statement number of the statement being executed) of
user-defined fl.mction execution. Can be displayed to
show all suspended and pendent user-defined functions
and localized names.

statement: A numbered instruction within a user-defined
function.

statement number: The number of a statement within a
user-defined function.

stop control (Sld: Stopping execution of a user-defined
function before the execution of a specified statement.

stop vector: Specifies the statements when using stop
control.

stored workspace: The contents of the active workspace
stored on tape.

213

suspended: See suspended function.

suspended execution: See suspended function.

suspended function: Execution has stopped because of an
error condition, ATTN being pressed, or stop control being
used.

system commands: Are used to manage the active workspace
and tape or printer operations.

system functions: Are used to change or provide informa
tion about the system.

system operation: Processing input data.

system variable: Provides controls for the system and infor
mation about the system to the user.

trace control (T t::.): Displaying the results of specified
statements during the execution of a user-defined function.

trace vector: Specifies the statements when using trace
control.

transferring data: Using a shared variable to write data to
tape, read data from tape, or output data to the printer.

214

user-defined functions: New functions defined using the
primitive functions. See function definition mode.

variable name: A name 'associated with the value of a
variable.

variables: Data stored in the 5100.

vector: An array with one dimension (p p = 1).

workspace: See active workspace.

workspace available: The amount of unused storage
(number of unused bytes) in the active workspace.

workspace 10: A name given to the contents of the active
workspace. A stored workspace has the same name as the
active workspace when the contents of the active work
space were written to tape.

(

)CLEAR command 10, 13
)CONTINUE command 11,13,18,26,173
)COpy command 10, 13, 25
)DROP command 11,15,160
)ERASE command 10,15
)FNS command 11,16
)LlB command 11,16
) LOAD command 10, 18
)MARKcommand 11,18
)MODE command 11,20
)OUTSEL command 11,20,164
)PATCH command 11,21
)PCOpy command 10,13,25
)REWIND command 11,26
)SAVE command 11,13,18,25,26,173
)SI command 11, 27, 155
)SIV command 11,27,143
)SYMBOLS command 10,28
)VARS command 11,28
)WSID command 10,14,18,27,29
[I] index entry 75
[0] 148
[On] 148
[nO] 148
[t~ nJ 149

137

0: 145
Dinput 145
OAV system variable 127
OCT system variable 124
OCR function 128
o EX function 132
o FX function 129
010 system variable 125
o LC system variable 126
o LX system variable 126
ONC function 133
DNL function 132
OPP system variable 125
o PW system variable 126
DR L system variable 126
OSVO function 158
OSVR function 165
DWA system variable 126
[!J input 145
[!J output 146
ffifunction 105
'e' raised to a power 54
\l symbol 134
-+() 138
m character 145

155
: password 12, 14, 18, 25, 29
+ function 44
- function 45
x function 46
+ function 48
r function 49
L function 51

I function 52

* function 54
~ function 55
Qfunction 56
! function 59
? function 61 , 95
1\ function 62
Vfunction 63
,..., function 64
A. function 65
V function 66
> function 67
= function 68
<function 69
;:::: function 70
:s:; function 71
;t function 72
p function 75
, function 77
/ function 81
\ function 82
~ function 83
'if function 84
t function 86
..j, function 87
1. function 88
¢ function 89
?s? function 93
.1 function 96
T function 99
E function 104
.t function 107
lS function 108
/ operator 111
\ operator 118
• operator 11 3
o • operator 116

abandoned execution 147
absolute value 52
active referent 132, 142
active workspace 10
adapter for TV monitors 1
ADD operation 160, 163
add statements 148
alphameric keys 4
alternate records 110
amount of unused space
and function 1\ 62

126

APL character set 200
AP L cha~acters 1 26
AP L command keyword
APL internal data format
APL language symbols 5
AP L operators 111

6
161

Index

215.

APL shared variable 21:>, 158, 174
arguments 43
arranging output 146
arrays 32
assignment arrow + 120
atomic vector OA V 127, 201
attention key 5, 155
automatically execute expression 126
auxiliary tape unit 1
available storage 17, 174
available workspace 126

backspace key 7
bare output 146
bare output prefix 146
base value 96
BASIC/APL switch 3
binomial function I 60
branch arrow -+ 121, 137
branch instructions 139
branch to a specific statement number 139
branch to zero 1 38
branching 137
brightness control 9
BUFFER 174
built-in functions 43
byte boundary, 512 163
bytes of storage 173

canonical representation OCR 128
catenate function, 37, 77
catenation 37
ceiling function r 49
change an array to a character array 108
change the device/file number and workspace I D
change the number of symbols allowed 28
change the sign 45

i character constant 31, 173

character set 201
checkout procedu re

APL 192
printer 200
tape unit 198

circular function 0 56
clear suspended functions 157, 173
clear workspace attributes 13
clearing suspended functions 157
clqse data files 165
coefficient matrices 105
combinations of B 60
command key 7
command keyword 7
commands that control the active workspace 10
commands that control the library (tape) 11

29

commands that provide information about the system 11
commands, system 10

216

comment A 121,135
communications adapter 1
communications mode 20
communications program 20
comparison tolerance OCT 124

81
138

44
88

compress data 1 63
compress function /
conditional branch
conjugate function +
consecutive integers
conserve storage 173

coordinate 33, 75
copy display 8
copy display key 6
copy objects into the active workspace
creating a new coordinate 79
creating lists 39
customer support tape 21
cursor 2,6
cursor return character (X'9C') 164

dark characters 5
data file 159,173, 174
data representation 30
data security 171
data to be printed 20
deal function? 95
decode function .1
defective records
defining a function
del \j symbol 134
delete characters
delete statements
device/file number

96
17

134

7
148
12,160

14,25

display characters in alternate positions 5
display device/file number and workspace I D 29
display fi Ie headers 16
display local names 142
display messages 144
display names of suspended functions 27
DISPLAY REGISTERS switch 5
display screen 1
display screen control 3
display the existing shared variable names 159
display the number of symbols allowed 28
display the variable names 28
display user-defined function names 16
display value of a variable 30
displaying a user-defined function 148
displaying more than one value on the same line
divide function';- 48
drop elements from an argument 87
drop function + 87
drop tape file 11, 15, 160
dual-language machines 3
dyadic 43
dyadic functions 135
dyadic mixed functions 73

•

146

(~

•

("

(':'

c

edit statements 148
editing statements 134
empty array 36, 39
empty vector 138
encode function T 99
end of block character (X'FF') 164
entering system commands 12
equal to function = 68
erase information 5
erase objects from the active workspace 15, 132
error message 155, 182
error message displayed 166
escape from 0 input 145
escape from [!] input 145
establish a variable to be shared 158
examples of function editing 151
exchange data format 161,164,174
exclusive or 72
execute fu nction.! 107
execute key 6
executes the argument 107
execution mode 134
expand arguments 82
expand function \ 82
explicit result 135
exponential function * 54
expunge 132

factorial function I 59
fall through 138
file header 10,16,19
filelD 16
file number 16
file size formula 19
file type 16
files 10
fix function DFX 129
flashing character 2
floor function L 51
form a matrix into a function 129
format 108
format a function into a matrix 128
format function" 1 08, 146
formats the tape 18
formatted tape 10
forms an array 76
forms thickness 179
formula for file size 19
forward space key 6
function definition 134
function definition mode 134
function definition, reopen 148
function editing 147
function header 135, 139
functions, primitive 32

gamma function 59
general interchange data format 161
generalized transpose function ~ 94
generate empty arrays 36
generating arrays 33
global names 139
global variable 140
grade down function ~ 84
grade up function ~ 83
greater than function > 67
greater than or equal to function:2: 70

hold key 6,8

10 = (file 10) 160
identity elements 111
IMF 23
IN operation 160,164,174
index entry

decimal 79
integer 78

index entry [I] 75
index entry assumed 75
index generator function t 88
index of function t 88
index of specified elements 88
index origin 010 125
index values

in ascending order 83
in descending order 84

indexing 32, 39
indicate the sign 46
indicator lights

process check 8
in process 9

indices 34
information printed 8
inner product .operator 113
input 2
input line 2
input, processed 6
insert characters 7
insert forms, printer 177
i nse rt state me nts 148
integers 173
interactive fu nctions 144
interchanges the coordinates of the argument 94

217

internal checks 3
internal data format 161
internal machine fix (lMF) 23
interrupted function 155
invert a nonsingular matrix 105

joi n two arrays
join two items

keyboard 5
keys 5
keyword 6

labels 137

37, 78

37, 78

laminate function, 77, 79
language in operation 3
larger of two arguments 49
last valid statement number 149
latent expression 0 LX 126
latent referent 142
least squares sol ution 106
length of the output line 126
less than function < 69
less than or equal to function ~ 71
library 10
light characters 5
line counter OLC 126
load a stored workspace into the active workspace 18
local function 131
local names 27, 139
local names, display 142
local objects 132,173
local user-defined functions 143
local variable 139
locked functions 147
log of B to base 'e' 55
log of B to base A 55
logarithm function ~ 55
logical data 32, 173
L3264 R32 switch 3

magnitude function 52
mark a file unused 15
matrices 32
matrix divide function iii 105
matrix inverse function iii 105
matrix product 113
maximum function r 49
membership function E 104
minimum function L 52
minus function - 46
mixed functions 43

218

models 172
monadic 43
monadic functions 135
monadic mixed functions 73
MSG = OFF 161,166
multiplier 31

N-rank array 34
name classification 0 NC
name list ONL 132

133

names of the objects in the active workspace 132
nand function 7\ 65
natural log function ~ 55
negation function - 45
negative sign 30
new coordinate, creating 79
next larger integer 49
next smaller integer 51
niladic functions 135
nonsingular 105
nor function V 66
not equal to function ~ 72
not function'" 64
numbers 30

decimal 173
range 31
precision 31
whole 173

numeric keys 5

objects 11
opening a file 159
operators 43, 111
or function V 63
order of execution 122
other commands that control the system 11
OUT operation 160,163,174
outer product operator o. 116
output 2
output line, length 126
overstruck characters 200
overview, system 10

parameters for system commands 12
parentheses () 122
password 12,14,18,25,27,29
pendent function 156
physical record 164
pi times B 56
pi times function 0 56
plane 75
plus function + 44
portable computer
positioning information 6
positioning the cursor 6
power function * 54

~.)I

(

(

•

)

("""

c~,

power on procedure 3
power ON/OFF switch 3

power on/off, printer 176
precision 108
primitive functions 32, 43
primitive mixed functions 73
primitive scalar functions 43
print data 160
print information 8
print input and output 20
print output 20
print width DPW 126
printer 20, 176
printer characteristics 176
printer output 158
printer power on/off switch 176
printing precision Dpp 125
process input 6
processi ng 6
processing input 9
product of A times B 47
product of all positive integers 59
protect objects 25
protecting sensitive data 171

PRT operation 160,164
pseudoinverse of a rectangular matrix 105

quad 0 120
quad input 145
quad quote [!J 121
quad quote input 145
quotient of A divided by B 48

radians 56
raise A to the B power 54
random integer 61
random link DRL 126
random numbers 61,95,126
range 31
rank 35,42
ravel function, 77
reciprocal function + 48
reduction operator / 111
remainder 53
remove bare output 147
removing sensitive data 171
reopening function definition 148, 150
replace ribbon 179
replace statements 148
representation of an argument in a specified number system 99
representation of the class of names 133
request input 144
reshape function p 33, 76
residue function I 53
restart procedure 3
RESTART switch 3,8
restart system operation 3

result variable 135
resume execution 155
retract shared variable 16, 165
retract the variable name being shared 165
return codes 1 62
REVERSE DISPLAY switch 5
reverse function <p 89
reverses the coordinates of the argument 93
reverses the elements of the argument 89
revising a user-defined function
rewind the tape 26
ribbon, printer 179
roll function? 61
rotate function <p 91

148

rotates the elements of the argument

scalar 32
scalar functions 43
scale 31
scaled representation 31
scan operator \ 118
scroll 8
scroll down 8
scroll up 8
select elements from arguments 81
sensitive data 171
serial I/O adapter program 20

setup procedure
auxiliary tape unit 197
printer 199
5100 192

shape function p 75
shape of an array 35
shape of the argument 75
shared variable 158, 174
shift key 5
significant digits displayed 125
signum function x 46
SI V display 143
size of files 1 7
skip alternate records 110
smaller of two arguments 52

91

solution to one or more sets of linear equations 105
sort vector

in ascending order 83
in descending order 84

special symbols 120
specify order of execution 122
specifying printer output 11,20, 164
state indicator 27, 143, 155
state indicator with local names 143
stop control 147,154
stop control vector 155
stop processing 5,6
stop system operation 5, 6
stop vector 154
storage capacity 1 72
storage considerations 173
store data 10, 30
structure 76
subtract 46
sum of two arguments 44
suspended function execution 155
suspended functions 155
suspended functions, cleared 157
suspension 155

219

switches
BASIC/APL 3
DISPLAY REGISTERS 5
L32 64 R32 3
POWER ON/OFF 3
RESTART 3
REVERSE DISPLAY 5

symbols 5
system command description

commands that control the active workspace 10
commands that control the library 11
commands that provide information about the system 11
other commands that control the system 11

system command parameters
brackets 12
device/file number 12
object 12
password 12
workspace I D 12

system commands
control the active workspace 10
control the library 11
provide information about the system
other commands 11

system commands, entering 12
system commands, parameters 12
system functions 128
system malfunction 8
system operation 2, 8
system overview 10
system ready 3
system variables 123

take elements from an argument 86
take function t 86
tape 10

220

11

tape cartridge
care 175
handling 175

tape error recovery program 24,25
tape input and output 158
tape storage 19
tape unit, auxiliary 1, 12
tape winding 183
terminate printer output 165
times function x 47
trace control function 147, 152
TRACE user-defined function 152
trace vector 152
transfer data from tape 160, 163
transfer data to tape 160,164
transferring data 163
transpose function ~ 93
trigonometric functions 56
TV monitor adapter
TYPE = 161

uneven tape winding 183
unused space 126
unused storage 17, 163
user-defined function, reVising
user-defined function 134

148

value expressed in a specified number system 96
variable name 30, 173
variables 30
vectors 32

workspace available DWA 126
wrap around 6
write the active workspace to tape 13, 26
write the contents of the active workspace to tape 13,26
WS FULL error 174

512 byte boundary 163

•

(

(

o

o

c

READER~COMMENTFORM

IBM 5100 SA21-9213-2
APL Reference Manual

YOUR COMMENTS, PLEASE •••

Your comments assist us in improving the usefulness of our publications; they are an important
part of the input used in preparing updates to the publications. All comments and suggestions
become the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM branch office serving your locality.

Corrections or clarifications needed:

Page Comment

I would like a reply. D
Name __ _

Address __ _

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

SA21-9213-2

Fold

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY , , ,

IBM Corporation
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation
General Systems Division
57750 Glenridge Drive N.E.
Atlanta, Georgia 30301
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

FIRST CLASS

PERMIT NO. 387

ROCHESTER, MINN,

Fold

(')

S
»
0"
::l
cc
r
:;'
CD

IlJ s:
en -c
Q'.

»
"0
r
II
CD cr ...
CD

= n
CD

s:
A)

= c
!!.

"0 ...
5'
!.
5'"
C
C/P

~
en »
N ...
cb N/' ... '
'fJ,(,
N

o

o

o

..

o

o

o

o

. .

SA21-9213-2

International Business Machines Corporation
General Systems Division
57750 Glenridge Drive N_E_
Atlanta, Georgia 30301
(USA Only)

IBM World Trade Corporation
821 United Netions Plaza, New York, New York 10011
(International)

en
l>
N ...
cO
N ...
C(o)
N

f

