
--- ------ - ---- ---- - ---- - - ----------- ' - o 
IBM 5100 ,... 
APL Introduction It) 



Preface 

This manual discusses the mechanics of using APL with the IBM 5100. 
It is intended to provide the users of the 5100 with enough background 
in the APL language to use the IBM 5100 APL Reference Manual, 
SA21-9213, for answering their questions about how the APL functions 
work. 

Second Edition (December 1975) 

This is a major revision of, and obsoletes, the previous edition 
SA21-9212-0. Changes are conti nually made to the specifications 
herein; any such changes will be reported in subsequent revisions 
or technical newsletters. 

Requests for copies of I BM publications should be made to your 
IBM representative or the IBM branch office serving your locality. 

A form for reader's comments is at the back of this publication. 
If the form is gone, address your comments to I BM Corporation, 
Publications, Dept 245, Rochester, MN 55901. 

© International Business Machines Corporation, 1971, 1975 

o 

o 

o 

o 

o 



Contents 

CHAPTER 1. INTRODUCING THE IBM 5100 1 Generating a Random Number 31 

About this Manual Generating Consecutive Numbers 31 

(C_~, About the APL Language Generating an Empty Vector. 32 

About the 5100 Finding the Shape of an Existing Variable 32 
_~/I 

Alphameric Keys. 2 
Numeric Keys . 2 CHAPTER 4. APL FUNCTIONS THAT 

Operating Keys 2 REQUIRE TWO ARGUMENTS 33 

APL System Command Keywords 4 Relational Functions 34 

C· Arithmetic Function Keys. 4 Why Two Numbers Identical in Appearance 

Getting Started 4 Are Not Always Equal 36 

Entering and Displaying Data. 5 An Example Using a Relational Function 36 

Correcting Keying Errors 8 Logical Functions 37 

Replacing a Character 8 And 38 

Deleting a Character. 9 Or. 39 

Inserting a Character 10 Finding the Larger of Two Numbers 41 
Finding the Smaller of Two Numbers 42 

CHAPTER 2. INTRODUCING THE APL Finding the Index of a Value in a Vector 43 

LANGUAGE 14 Generating a Random Sequence of Numbers. 43 

Types of Functions in APL 14 Selecting Certain Elements From (Compressing) a 

Addition, Subtraction, Multiplication, and Vector or Matrix 44 

Division 14 Expanding a Vector or Matrix 45 

Another Arithmetic Function-Raising a Number Joining Two Items Together 47 

(~ to a Power 16 Building a Vector of Results Using Catenation 49 

Finding the Root of a Number 17 Finding the Logarithm of a Number 51 

Storing Data in the IBM 5100 for Later Use 17 
Performing Several Operations in the Same CHAPTER 5. APPLYING THE SAME 

Instruction 18 OPERATION TO ALL THE ELEMENTS OF A 

Specifying the Order of Execution-Using VECTOR COLLECTIVELY (REDUCTION) 53 

Parentheses 19 Plus Reduction 53 
Using Strings of Numbers and Tables 19 Using Plus Reduction to Find the Average 53 

Using APL with Strings of Numbers (Vectors) 20 Using Plus Reduction to Sum the Products of 

Using APL with Tables of Numbers (Matrices) 22 Two Vectors. 56 
Referring Only to Certain Numbers in a String or Minus Reduction (Alternating Sum) 56 
Table of Numbers (Indexing) 24 Maximum Reduction: Finding the Largest Value 

You Are Not Limited to Using Only Numbers 26 in a Vector 57 

C 
Minimum Reduction: Finding the Smallest Value 

CHAPTER 3. APL FUNCTIONS THAT REQUIRE in a Vector 57 
ONE ARGUMENT 28 Or Reduction: Checking for a Specific Value 

How Many Arguments Are Required by an APL in a Vector 58 
Built-In Function? . 28 And Reduction: Checking for All Values in Two 

APL Function Symbols That Are a Combination Vectors Being Equal 58 

C' 
of Two Characters . 28 CHAPTER 6. USING THE BUlL T·IN 

Determining the Whole Numbers Nearest a FUNCTIONS 59 

Fraction 29 Now Let's Look at the Things You Can Do 59 

Rounding to the Nearest Whole Number 29 
Sorting a Vector in Ascending or Descending 

Sequence . 30 

C 
iii 



CHAPTER 7. FUNCTION DEFINITION 
What Is Function Definition? . . . 
How Is a Function Defined? . . . . . 
Testing Your Function Before Using It 
How To Use the Trace and Stop Features 

Trace T /:;. . . . . . . . . . . 
Stop S/:;.. . . . . . . . • . . . 

What To Do If You Make a Mistake When Defining 
Your Function . . . . . . . . . . . 

Displaying the Entire Function . . . . . 
Adding One or More Statements at the End of 
the Function. . . . . . . . . 

Replacing Statements within a Function 
Inserting One or More Statements in a 

Function . . . . . . . . . . 
Deleting a Statement from a Function. 
Displaying a Specific Statement or from a 
Specific Statement to the End of a Function 

Modifying a Single Statement. . . . . . 
Editing the Function Header. . . . . . 
A Faster Way to Add, Replace, or Insert One 

71 
71 
71 
73 
75 
75 
75 

77 
78 

79 
80 

81 
82 

83 
83 
84 

Statement in a Function 85 
Types of Function Headers 87 
Why Have a Result Variable? 88 
Local and Global Names 89 
Branching, Labels, and Looping 91 

Branching and Labels 91 
Looping. . . . . . . 94 

How To Enter Data during Function Execution 95 

iv 

CHAPTER 8. WHAT YOU CAN DO WHEN 
YOUR FUNCTION STOPS. . . . 98 

When the Attention Key Is Pressed. . . . 98 
When the Stop Control Feature Is Used 100 
When an Error Is Encountered in the Function 101 
When a UJ Character Is Entered for a [!] Input 

Request . . . . . . . . . . .. 102 
Finding Out What Functions Are Suspended. 102 
Using the Hold Key To Stop Processing 103 

CHAPTER 9. USING YOUR TAPE 
C~RTRIDGE (LIBRARY) 104 

What Are System Variables? . . . 108 

APPENDIX A. OVERSTRUCK CHARACTERS. 112 

INDEX. . . . . . . . . . . . . . . 114 



c 

Chapter 1. Introducing the IBM 5100 

ABOUT THIS MANUAL 

This manual will show you how to operate the IBM 5100 using the APL 
language. If you are not familiar with the APL language, you should do 
the suggested keying operations or examples on your 5100 while reading 
the manual from cover to cover. If you are familiar with the APL 
language, you should read Chapters 1 and 2 to learn how to operate the 
5100; however, you may then want to skip to Chapter 7. Not all of the 
features or functions of the APL language are covered in this manual. 
For more information about the 5100 or the AP L language, see the 
IBM 5100 APL Reference Manual, SA21-9213. 

This manual was written with the assumption that the 5100 has been 
set up and checked out. If the 5100 has not been set up, use the set 
up procedure in the IBM 5100 APL Reference Manual before 
continuing to read this manual. 

ABOUT THE APL LANGUAGE 

APL has many built-in functions that allow you to effectively solve your 
problems. However, if you need a special function to solve a problem, 
APL also allows you to define your own functions. The functions you 
define are similar to programs written in other computer languages. 

APL is a good language to experiment with; nothing you do from the 
keyboard can damage the 5100, and the more you experiment, the more 
you will learn about APL. 

ABOUT THE 5100 

The IBM 5100 (Figure 1) is a portable computer designed to help you 
solve problems. The display screen and indicator lights communicate 
information to you, and the keyboard and the switches allow you to 
control the operations the 5100 will perform. 

Before you begin to use the 5100, you should become familiar with the 
keys and control panel (Figure 1). The control panel switches will be 
explained later. A brief description of the keys follows; how you use the 
keys will be discussed later. 

Introducing the IBM 5100 



2 

Alphameric Keys 

The alpha keys are similar to those on a standard typewriter, except that 
there are no lowercase characters. The alpha characters are all uppercase, 
even though they are in the lowercase position on the keys. Thus, you 
do not use the shift key for alpha characters. 

If you want to enter an upper shift character, you must hold down the 
shift key and then press the key to enter the character, just as you would 
to type an uppercase character on an ordinary typewriter. 

Numeric Keys 

Either the top row of alphameric keys or the special calculator 
arrangement of numeric keys can be used to enter numbers. 

Operating Keys 

The black key labeled CM 0, the gray keys with the legend names 
EXECUTE, ATTN, and HOLD, and the gray keys with the arrows are 
all special operating keys. The keys with the arrows and the space bar, 
which is used to enter blank characters, automatically repeat the operation 
they perform when held down. 

Backspace key 

Forward space key 

Attention key 

Scroll up key 

Scroll down key 

1 
Hold key 

~ •• ••• • 
------------- Execute key 

/ )1 
',~ 



( 

c 

\N PROCESS \ndicator 
PROCESS C\-\ECK \ndicator 

BrightnesS 
Co ntr 0\ 

POWER 
ON/Off 
switch 

( ""'" 

/ 

REVERSE 
O\SPLA'Y 
switch 

c figure "\. ,.he 5,00 

BAS\C/APL 
SW\tch 

O\SPLA'Y REG\S"TERS/NORMAL Switch 

speda\ operator KeV
s 

IntrodUcing the ISM 5100 3 



4 

APL System Command Keywords 

The words that are above the top row of numeric keys are system command 
keywords, which you can enter by holding down the CMD key and then 
pressing the key below the desired keyword. For example, to enter 
) LOAD, hold down CM D and press the 1 key. The system commands 
and their uses are discussed later, in Chapter 9. 

Arithmetic Function Keys 

The four keys to the right of the calculator arrangement of numeric keys 
are the arithmetic function keys. These keys are used to perform division, 
multiplication, subtraction, and addition. There are also keys on the 
alphameric keyboard that perform these functions. Notice that the + and 
x symbols are used for division and multiplication. 

GETTING STARTED 

Make sure the switches on your IBM 5100 are set as follows: 

Switch 

L32 64 R32 
BASIC/APL (Combined machines only) 
DISPLAY REGISTER/NORMAL 

Setting 

64 
APL 
NORMAL 

If your 5100 has the BASIC/APL switch, it can execute both BASIC and 
APL language statements. The language to be used is selected by the user 
before power up or during the restart sequence. 

Make sure your 5100 is plugged in and turn power on. If power is 
already on, press RESTART and wait about 20 seconds. During this 
time, the 5100 performs internal checks to make sure it is operating 
correctly. 

After 30 seconds, if the message CLEAR WS has not appeared in the 
lower lefthand corner of the display screen, an error has been detected 
during the internal checks. In this case, press RESTART. The 5100 will 
perform the internal checks again. If the CLEAR WS message does not 
appear after several tries, call your service representative. 

.:.) 



(: 

c 

c 

ENTERING AND DISPLAYING DATA 

First, let's look at the display screen. Normally, information displayed 
by APL begins at the left edge of the display screen, and the input from 
the keyboard is indented when it is displayed. The small horizontal 
flashing line indicates the position on the line where the next input from 
the keyboard will be displayed. This flashing line is called the cursor. 
The cursor moves as each character is displayed. 

The display screen can contain up to 16 lines of data. Each line has 64 
positions across the display screen. The bottom two lines are used to 
display input, and the remaining 14 lines contain a history of the opera
tions you have performed. 

Line 
Numbers 

15 

14 

13 

12 

11 

10 

9 
8 
7 

6 
5 

4 

3 

2 

1 

0 

I ------64 Character Positions ------..... I • 

CI...Et·~1 F< 

~ This message is displayed when your 5100 

~ _ is ready for use. 

IAIS =------------- ~ursor (flashing line)-display of keyboard 
-" mput normally begins indented six positions 

on line 1. 

There are 128 positions available for input from the keyboard; that is, 
there are 64 positions available on line 1 and 64 positions on line O. When 
position 64 of line 1 is used as you enter data from the keyboard, the 
cursor moves to the left margin of line O. The cursor is then at position 
65 of the possible 128 positions available for input. 

Introducing the IBM 5100 5 



6 

Now let's enter some data into the 5100 using the numeric keyboard 
and the arithmetic function keys. Press the following keys: 

[]08 
Notice that the characters are displayed as each key is pressed. To 
process the data you just keyed, you must press the EXECUTE key. 
Press the EXECUTE key now. 

The display screen will look like this: 

Notice that the instruction you entered, 2+3, appears indented on the 
display screen; the answer, 5, appears on the left margin of the next line; 
and the cursor appears on the next line. The information displayed moves 
up each time the EXECUTE key is pressed. 

Enter and execute the instruction 125+75 by pressing the following keys: 

080000 

The display screen will look like this: 

1::
-.. } 

200 
:1. 2 ~_:j + 7 ~_:; 

.. ~ 



( 

c 

c 

The appearance of your display can be changed by switches on the 
control panel. The REVERSE DISPLAY switch allows you to change 
from black characters on a white background to white characters on a 
black background and vice versa. Change the switch and select the type 
of display you feel most comfortable with. You may have to adjust the 
brightness control as you change from one to the other. 

Now, watch the display as you set the L32 64 R32 switch to the L32 
position. With the switch in this position, the leftmost 32 characters on 
each line are displayed with an extra space between each character. The 
rightmost 32 characters on each line will not be displayed. With the 
switch in the L32 position, your display should look like this: 

C I... F (.'~I r-"'.. 1,,1 S 
2 -}- ";' 

~:> 

&:.-
.... 1 

:I. 
.... , ,;; . .. }. '(" I;:' .. :: . .. J . ••. i 

~:.:: 0 0 

In the R32 position, the rightmost 32 characters are displayed with a 
space between each character. Now, set the switch in the R32 position 
and notice that the display is blank because there were no characters in 
the rightmost 32 positions of the display screen. 

Return the switch to the 64 position, and notice that all characters are 
displayed without the space in between. For exercises in the remainder 
of this book, keep the switch in the 64 position. 

There are two keys above the numeric keys that move the display line 
up or down. The up arrow (scroll up key) moves the display up 

one line and the down arrow • (scroll down key) moves the display 

down one line. As the lines are moved up or down, the displayed 
information on any line that is moved off of the display screen is lost. 
Either key continues to move the display lines if it is held down. Now 
use the down arrow to move the display down one line. 

The display will look like this: 

CI...E(.~ R lA}S 
2+3 

l ~.:.::!5+7~~ The value 200 is now on the input line and 
20 0 ~ can be used as input. Notice that input can 

begin in any position on the line. 

Introducing the IBM 5100 7 



8 

Now press the following keys: 

o GJ [_0 ___ ) 

The display screen will look like this: 

200 +!50 
2~:5 () 

Now that you are familiar with the display screen, only the line or lines 
being discussed will be shown. 

CORRECTING KEYING ERRORS 

The IBM 5100 has a number of very useful features that allow you to 
correct errors made when data was entered. On a line-by-line basis, at 
any ti me, you can: 

• Replace a character 

• Delete a character 

• I nsert a character 

Replacing a Character 

To replace a character, move the cursor with the backspace key 

or forward space key, until the cursor is positioned at the 

incorrect character. The cursor moves one character space in the 
direction of the arrow each time the appropriate key is pressed. These 
keys continue to move the cursor if they are held down. V\lhen the cursor 
is at the incorrect character, you replace the incorrect character by 
simply keying the correct character. 

/ J 



(/ 

c 

c 

For example, you want to do the problem 22+12. But you press the 
following keys: 

00000 
The display screen looks like this: 

22+:1.:1. .... 

To correct the error, the cursor must be moved back one position (under 
the second 1) so that the character can be rekeyed. Now press the 
backspace key one time. Note that the cursor is replaced by a 

flashing character. The flashing character serves the same function as the 
cursor; it indicates the position on the line where the next input from the 
keyboard will be displayed. Now to correct the error and execute the 
problem, press the following keys: 

Deleting a Character 

To delete a character, you also use the backspace key or forward 

space key· to move the cursor. Once the cursor is in the position 

of the character to be deleted (the character is flashing), hold down the 
eM D key and press the backspace key once. The character is then deleted 
and any characters to the right are shifted one position to the left to 
close up the space left by the deletion. 

I ntroduci n9 the IBM 5100 9 



10 

For example, you want to do the problem 13+45. But you press the 
following keys: 

OOOOOGJ 
The display screen looks like this: 

1. :.::~ 3 + 1./. !~; .... 

Press the backspace key and move the cursor (flashing character) back 
to the 2. Look at the labels that appear above the backspace and 
forward space keys: DELETE and INSERT. To delete the 2, hold down the 
CMD key while you press once. 

The display screen looks like this: 

:I. 3+1.1·~:.:.i 

\ 
This character is flashing. 

Now press the EXECUTE key to execute the problem. 

I nserting a Character 

To insert a character, position the cursor using the backspace key 

or forward space key; then hold down the CMD key and press 

the forward space key once. This operation moves the flashing 

character (and all other characters to the right of it) one position to the 
right, creating the space you need to insert one character. The cursor is 
not moved. Now, to insert the character, simply press the desired key. 



For example, you want to do the problem 123x6. But you press the 
following keys: 

The display screen looks like this: 

l3x b_ .. 

To correct the error, press the backspace key and move the cursor 
(flashing character) back to the 3. Look at the labels that appear above 
the backspace and forward space keys: DE LETE and I NSE RT. To perform 
the insert function, with the cursor positioned at the 3, hold down the 
CMD key while you press • once. 

The display screen looks like this. 

:1 ... _:3::<6 

Now to correct the keying error and execute the problem, press the 
following keys: 

[] 

Introducing the IBM 5100 11 



12 

There is one more way to correct a keying error. If you make several 
errors part way through the line, you can backspace the cursor to the 
character following the last correct character and then press the ATTN 
(attention) key. Everything from the cursor position to the end of the 
input line will be cleared from the display. 

Since the data from the input line is not processed until the EXECUTE 
key is pressed, you can visually verify any input before it is processed. 
However, if you do press the EXECUTE key before you notice a 
mistake, you can simply enter the input again or you can use the down 
arrow a (scroll down key) to move the input back down to the 

input line to correct it. Either way, you must press the EXECUTE key 
again. 

For example, you want to do the problem 135+280, but you enter and 
execute 134+280. The display screen looks like this: 

To correct the input, press the down arrow. three times to clear 

the result from the screen. The display screen now looks like this: 

:1. :314·+28 0 

Then press the up arrow a once to move the original input back 

up to the first input line so that it can be corrected. 



(~ 

c 

From this point on, we will use examples in the following format to 
illustrate what we are discussing. You enter the instructions that are 
indented. The results displayed on your 5100 should be the same as 
the results shown in this manual. 

EXAMPLES: 

:3 .-: .. I.J. • Instructions to be entered 
'''j 

I ____________ Results 

Remember, the data you key is not processed until 
the EXECUTE key is pressed. 

Introducing the IBM 5100 13 



Chapter 2. I ntraducing the AP L Language 

14 

TYPES OF FUNCTIONS IN APL 

There are two types of functions in APL: user-defined functions 
(programs) and those that are built into the APL language. The APL 
built-in functions are denoted by special symbols. User-defined 
functions are discussed later, in Chapter 7. 

The built-in functions operate on data supplied, called arguments. 
For example: 

2 + 3 

1 light Argument 

Built-in Function (addition) 

Left Argument 

ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION 

o 8 Machines with APL Only 

OeD 00 or o 0 Combined Machines 

Alphameric Keys Arithmetic Function Keys 

Four commonly used built-in functions (+ - x 7) perform the normal 
arithmetic operations when they are used. These symbols are located 
on the top row of the alphameric keys and also to the right of the 
nu meric keys. 



( ""'"' ."::.., 

_./ 

c 

c: 

c 

EXAMPLES: 

3+6 ... -- Add 3 and 6. 

:::::. >:: () "1-- Multiply 3 times 6. 

:I.B 
n I 

1.1· ::::::i:: > The right argument is subtracted from the left argument. 

,~ The high horizontal bar is the negative sign. Compare it 

with the minus which is the symbol for subtraction; the 
negative sign appears near the top of the character instead 
of on the center line. 

..... 
~.::. 

a .,. ~ > The left argument is divided by the right argument . 

1+.:;,<:) 

As you have seen in the example, the negative sign is different from the 
minus. When you are doing arithmetic operations in APL, do not use 
the minus to repr.esent negative numbers or the negative ~jii.~ sign for 
a subtract operation. Ii 

Problems: Using Addition, Subtraction, Multiplication, and Division 

1. Find the total number of cars that a dealer sold during one week if 
his daily sales were 3, 5, 2, 6, 7, 3 and 4. 

2. Find the net number of cars removed from the same dealer's lot if 
20 people had trade-ins. 

3. Find the dealer's average profit per car if he made a total profit of 
$2700 for the sales in problem 1. 

4. Find the dealer's total earnings if he made $20 on each car sold. 

Introducing the APL Language 15 



16 

Possible Solutions 

Problem 1: 

30 

Problem 2: 

:30····20 
10 

Problem 3: 

90 

Problem 4: 

20x~30 

600 

ANOTHER ARITHMETIC FUNCTION-RAISING A NUMBER 
TOAPOWER ~ -

Another arithmetic operation that you are probably familiar with is 
raising a number to a power. In AP L, you use the * function to raise 
the left argument to the power specified by the right argument. 

EXAMPLES: 

:.3*2 _.-- 3 raised to the second power. 

2')(':::~ _.-- 2 raised to the third power. 

/ -) 'I 
'I~ •.•. ", 



c 

c 

c 

Finding the Root of a Number 

You can use the power function * to find the root of a number. To do 
this, you simply raise the number to the power 17n, where n is the root 
you want to find. 

EXAMPLES: 

'-I. ~(. ( 1 .-: .. ;,::) .. 1--The square root of 4. 

'+-)1:. I !.:.:j ... ---- Another way to enter the instruction to find a 
square root of a number (.5 is the same as 172). 

a·)~ ( :t. --;,3) 

2 ~.--------- The cube root of 8. 

STORING DATA IN THE IBM 5100 FOR LATER USE rio:!, 
You can store data, either direct input that you enter from the keyboard 
or the result of a calculation. These stored items are called variables. 
Each variable has a name associated with it. Whenever you use the name of a , 
variable, APL supplies the value associated with that name. A variable 
name can be up to 77 characters long (with no blanks); the first 
character must be alphabetic; the remaining characters can be any 
combination of alphabetic and numeric characters. It is good practice 
to use names that represent the data you are storing. For example, if 
you want to store a value that is the area of a rectangle you might use 
the name AR EA; or if you want to store some sales data, you might use 
the name SALES. 

You create a variable by assigning the data to a name. To assign a value 
to a name, you use the assignment arrow *-. The value to the right of 
the *- is assigned to the name to the left of the *- • 

Introducing the APllanguage 17 



18 

EXAMPLES: 

995 

P I~ I CE ~··99 I !:; I) • After you press the EXECUTE key, you 
~:~i::~I:.~I~~~~!!.~·· P F< I C:E x :I. 0 ~ have created a variable named PRICE 
/. k.f. LI::. with a value of 99.50. 

S (H., E G The result of a calculation can also be 
assigned to a variable. 

If you want to know the current value of 
a variable, you simply enter the name of 
the variable. 

PRICE'~"B6 I 7!5 ... ---- You can change the value of a variable 
PF:ICE 

P RIC E .~ .. P PIC E + :I. 0 
PRICE -

the same way you assigned the original 
value. 

- You can also use the variable and change 
its value in the same instruction. 

__________ You cannot use a name as a variable if 
it does not have a value assigned to it. 

COb ''1' .. : .. ~::; (~II... F ~:::; 
V i:·~11... U E [: F< I~: 0 R ... -------- The error message indicates why the 

C I] ~::; r .. ,:. ~::) i:~II...E ~:) instruction failed. 
I\ _____ --~ 

The caret (A) indicates where the 
instruction failed. 

Note: Do not be concerned at this time 
about the error message that is displayed; 
all of the 5100 AP L error messages and 
suggested user's responses are described 
in the IBM 5100 APL Reference Manual, 
SA21-9213. 

PERFORMING SEVERAL OPERATIONS IN THE SAME INSTRUCTION 

In the preceding examples, only one arithmetic function was used in each 
example. However, you are not restricted to writing instructions with 
only one function. Any number of functions can occur in the same 
instruction. As soon as you use more than one function, however, you 
must be concerned about the order in which they are used. In APL, the 
rightmost function in any instruction is executed first, then the next 
rightmost, and so on. 



(
"~ 

~/ 

c 

EXAMPLES: 

:l.B 

:1.0 

Order of execution is right to left. 

3 X ;;.::+1+ - 4 is added to 2, and that result is multiplied by 3. 

1+ + :::~ x ~.~:: ... -- 3 is multiplied by 2, and that result is added to 4. 

Remember that an APL function uses as its right 
argument the result of the expression to its right. 

SPECIFYING THE ORDER OF EXECUTION-USING PARENTHESES ~J b~'%J 

In APL, parentheses are used the same way as they are in conventional 
arithmetic: the operations inside the parentheses are executed before 
the operations immediately outside them. 

EXAMPLES: 

:1.0 

1. q. 

( ?; x::.:.:: ) + LI· ... --The expression 3x2 is evaluated first and the 

result is added to 4. 
( I.J.+:'.\ ') X';:' 

, ... , ..... ~ The expression 4+3 is evaluated first and the 

result is multiplied by 2. 

Remember, the rule of the order of execution 
is from right to left with the expressions in 
parentheses resolved first and from right to 
left as they are encountered. 

USING STRINGS OF NUMBERS AND TABLES 

A powerful feature of APL is the way it handles strings and tables of data. 
So far, you have used APL with only single numbers (called scalars): but 
APL also works with strings of numbers (vectors) and tables (matrices). 
The operations you have performed using single numbers are simply 
extended to each number in a string or a table. For example, if you have 
a string of numbers assigned to a variable named SALES, you can add 2 
to each number in the string by simply entering 2+SALES. 

Introducing the APL Language 19 



20 

Using APL with Strings of Numbers (Vectors) 

A string of numbers is called a vector. When you enter a string of numbers, 
there must be at least one blank between each number; each number is 
called an element of the vector. 

EXAMPLES: 

:I. I.~ 1+ 2 f; 35 ... ------- You have entered a 5-element 
:I. I.p+ 2 9 :·5~:.) vector (a string of five numbers), 

STRING~1~~ 16 39 2 
_ 
..... -------------------S T R I N G A vector can be assigned to a 

:L 1.f.1.f. 1. t.) ~'5 9 2 variable name. 
SALES~125 220 316 90 
S(.i1...E6x:l. 0 ... -------- Each element (number) in the 

:I. ::;.:: ~5 0 2 ~.:: 0 0 :-3 :I. <'=> 0 9 0 0 vector can be operated on by 
a single number. 

t)(.·iLES ~.----------
:I. ~? ~.:; ::.:: ::.:!. 0 :'5 1. 6 .:? 0 

Note that the value of SALES 
has not changed. 

I::' '''} 
,.I ( 

PRIC[~" , ~:.:;O :1.,00 ,"{~5 :1.,:1. 0 
TOTAI...~"BAI...ESx PI~ICE 

TOT f.) I... .... --------- Each element in a vector can be 
operated on by the 
corresponding element in 
another vector with the same 
number of elements. 

:I. 2 q·+4· ~:.:; (;\~ 

:1. 0 There must be at least one 
:1.21.1· + 1+ ~.:j f.) -~------ blank between each element 

of the vector, or the result 
will be different. 

:1. ~:!. :':~ + '+ 5 ... -------- You cannot use two vectors 
I... ENG THE I~ I~ 0 I~ that do not have the same 

:1. 2 :3 + '+ ~S number of elements, unless 
1\ one of the arguments is a 

single number. 

.'!' 



C: 

(~~" 

C
~· 

./ 

Problems: Using Strings of Numbers 

1. Find the squares of the numbers from 1 to 5. 

2. Find the squares, cubes, and fourth powers of the numbers 2 and 3. 

3. A small mutual fund broker specializes in five funds. He wants to 
know how much of each fund he had sold at the close of the day. 
By 4:00 PM, he had sold $1500, $3200, $1200, $2300, and $2400, 
respectively, of the five funds. In the last hour of the day, he sold 
$100, $500, $300, $200 and $0 of the respective funds. Write a 
single APL statement to determine his closing sales figures for each 
fund. 

4. The five funds in problem 3 sold for $7.30, $11.58, $3.45, $2.17 
and $5.56 per share. How many shares of each fund were sold? 

5. The broker receives the following percentages of commission on the 
five funds: 3.25, 2.5,3.0,3.75 and 3.5. How much did he earn 
from each fund today? What are his total earnings for the day? 

Possible Solutions 

Problem 1: 

:1. 2 3 Lt- ~:;~-2 

1. 1+ <"I :J.b 2!5 

Problem 2: 

,-) 
..... ~:~1f2 

1.1- 9 
2 ~31(-3 

B 27 
'") 
A" •• :~-~ll_ 

1t> B:I. 

or 

2*~_~ 3 L~ 

4- 8 1.6 
:3*2 3 L~ 

~~ 27 8l 

Introducing the APL Language 21 



22 

Problem 3: 

1500 3200 1200 2300 2400+100 500 300 200 0 
1600 3700 1500 2500 2400 

Problem 4: 

1600 3700 1500 2500 2400+7.30 11.58 3.45 2.17 5.56 
219.18 319.52 434.78 1152.1 431.65 

Problem 5: 

1600 3700 1500 2500 2400x.0325 .0250 .0300 .0375 
52 92.S 45 93.75 84 

52.00+92.50+45.00+93.75+84.00 
367, 2~7j 

Using APL with Tables of Numbers (Matrices) 

I 

A table of numbers is sometimes called a matrix. The numbers in the 
matrix are arranged in rows and columns; each number is called an 
element of the matrix. 

rColumn 

2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 I-ROW 
An individual element in row 3, 

column 4 of the matrix. 

You use the reshape p function to create matrices. The left argument 
specifies the number of rows and columns and the right argument 
specifies the data or variable name for the data to be placed in the matrix. 



(' 

c 

c 

EXAMPLES: 

,..-------------- The first number in the left argument 1\ specifies the number of rows; the second 

2 :~ (J :l 2 3 5 6 number specifies the number of columns. 

:1. 2 3 
1+ 5 ~) 

~-------The right argument specifies the values to 
be placed element by element into the 
rows of the matrix. 

TABLE~2 3p1 2 3 4 
TABLE 

There must be a blank between the 
numbers specifying rows and columns. 

:J. 2 ~5 ...... ------------- If there are not enough elements in the 
'+ :I. 2 right argument to fill the matrix, the 

elements are repeated. 

VECTOR~l 2 3 4 5 6 7 8 9 10 11 12 
MI~TRIX~-3 3pVECTOR If there are more elements in the right 

MAT I~ I X t argument than are required to fill the 
:I. 2 3 matrix, only the first (leftmost) elements 
I.~ ~i I.) are used. 
"l B 9 

.---------- The reshape p function can also be used l when creating a vector. 
VI"'(\'T'(') R FDU R~··q· (.> :: •• 1 • 

FOUR tL __________ The number of elements in the vector. 
:1. 2 :.3 '+ 

MAT I~ I X"':I. 0 Each element in the matrix can be operated 
i:1. :1.2 :1.3 +!...----------- on by a single number (remember, the 
:1.4· :I.!:!j 1.~) value of MATRIX is not changed). 
:1.7 :1.8 19 

NUMBERS~1 2 3 4 5 6 7 8 9 
EXAMPLE8~"3 :3pNUMBERS+~.:; Remember that APL executes an 

EXAM PLEB instruction from right to left-the 
6 '7 8 result of NUMBERS+5 is used as the 
9 10 11. 

12 1.3 ll~ 

RESULTS~EXAMPLES"'MATRIX 

right argument for the reshape p 
function. 

RESULTS t 
7 (.~ it ...... -------Each element in a matrix can be operated 

:I. :':~ :t. !5 :1.7 on by the corresponding element in another 
:1.9 2:1. 2~5 matrix of the same shape. 

Introducing the APL Language 23 



24 

EXAMP LE5-continued 

LESS~2 2pNUMBERS 

1 ::.::: 
:3 '+ 

t"j f:~ 'r I~ I )( x i"'~ 1...1 f··j B E I~ G .. ·----A matrix and a vector 
I~~INI< E I~ I~D I~ 

~1f~ T 1< J X X NUi\1BE I:~G or 

t·1 (.~ T I~ I X X I... EGG .... ------ two matrices that do not have 
I... ENG THE I~: H 0 R the same shape (number of rows 

Mf:Yf F< 1)( X I...E~:)S and columns) cannot be used 
unless one of the arguments is 
a single number. 

REFERRING ONLY TO CERTAIN NUMBERS IN A STRING OR TABLE 
OF NUMBERS (INDEXING) ~ ~ 

Indexing is a way to refer to only certain elements in a string or table 
by specifying the position of the element you want. The numbers you 
use to specify the positions of the elements are called index numbers. 
These index numbers are enclosed in brackets [ ] following the vector 
or matrix to which they apply. 

EXAMPLES: 

71.J· 

TEMP~68 74 78 65 80 85 
TEMP I: 2:1 .... ----------you can refer to a single 

element. 
TEr'1P[3 :1. 2::1 

7B 60 71+ t ___________ You can refer to several 

TEMP[2]+TEMP[3 1 2] 

elements. Notice that the 
elements are displayed in 
the order in which you 
indexed them. 

1~:;2 :I. LI·2 :l.q·B 11:.---------you can index and perform 
other operations in the 
same instruction. 

TEMP[7]~"BB ... ·--------you can change a single 
TEt1 P element of a vector. 

68 74 78 65 80 85 88 

70 70 

TEMP[:'~ 6]~"70_ 
TEf1P[:3 6] You can also change several 

elements. 



C' 

c 

EXAMP LES-continued 

~ 
T E M P I: ~.:; :1.::1 ~ .. :-3 ::.~ ...§ 6 
TEM P '-- _____ Notice that the new values 
"7 0 6~::; ::~2 70 BB----- are assigned in the same order 

as the index numbers. 

For a matrix, you need 
an index number for the 
rows and an index number 
for the columns-these 
numbers are separated 
by a semicolon. 

TIM E B~" ~5 :-5 (.) N U M B E R S ..... ----- Remember, we have previously 
'r IMES assigned a value to NUMBERS. 

:1. 2 ::~ 

'+ ~:.; 6 
7 B 7' 

Left side of the ; specifies 
the row(s). 

Right side of the; specifies 
the column(s). 

T:r: ME S I:: 3 .: 2 :'3::1 ~.-------- you can refer to several 

TIt1EEH: 1. i:l. 2] 

TIMES!::::!. ::5 j 2 :3::1 

elements. In this case, you 
have referred to the second 
and third elements in the 
third row. 

ii; ~ --.---------------__ Notice that when you refer 

to more than one row and 
more than one column, your 
result is a matrix. 

Introducing the APL Language 25 



26 

EXAMPLES-continued 

,.----------- If you do not specify a 
l I t''H::B I:: ~;.~ jt J column, you get the whole 

row. 
TI~iEB[ ,; :3::1 

:':~ b 9~t .. If you do not specify a row, 
you get the whole column. 

These values (the third 
T I i"1E~J I:: .::1. :3::1 column) are displayed 

:1. 3 horizontally, because they 

~:~; <:-:1 

:1. ~:~;: 

1+ 0 
'''} 

~::: i 

,::' 
,J 

are a string of numbers 
(vector). 

Note: Even when selecting 
entire rows or columns, the 
semicolon is still required to 
make it clear whether the 
index number is for the rows 
or columns. 

T I !··1EG I:: ::? ,; 1::1 >:: T I i"'iE:~:; I:: : .. :~;.; 3 ]··--You can index and perform 
other operations in the same 

..... ,. \:1::' ::::; , ... ) . ':;' "I'~" ii instruction. 1 .. ll ............. ,Io ...... ~ 
T I ('1 E f) _______ 

:3 . You can change the value of 

TIc··iFf:;!:: 1 .; :I. ]·:: .. ;':;:+3 
''I'' I f-i E:3 I:: :I. .; :I. ::I 

elements in a matrix. 

YOU ARE NOT LIMITED TO USING ONLY NUMBERS ';jj!:iiil;:::!l~ 

Although the examples so far have used only numeric data, APL also 
works with character data. Character data, for example, can be used 
for headings on a table or to create a list of names. When you enter 
character data, you must enclose the data in single quote characters '. 
These single quote characters indicate that the data is character data and 
is not a variable name, a number, or a function. When character data is 
displayed, the single quote marks do not appear. 

Character data, like numeric data, can be a single character (scalar), a 
string of characters (vector), or a table of characters (matrix). Unlike 
numeric data, when you have a character vector or matrix, each character 
is a separate element and is not separated from the other elements by a 
blank. In fact, a blank in the character data is also a character (blank 
character) . 



c 

EXAMPLES: 

• j::-, • .... --------------- Single character 

• ,:'~I f{C . --.... ------:-__________ _ 

N 1...1 fii :0 E R .~.: 1+ !.::.; 6 
• :1. ~.? :::=) • + ( ... ~ 1...1 r'1 r: E F·~ 

(scalar). 

String of three 
characters (3-element 
vector). 

This instruction does 
not yield a result of 
5, because the values 
are characters not 
numbers. 

DOr·i(', I N I::: P ,~~o I~ -.. ------------- You cannot add 
, :L.:.::~·:~ • + NUi'·H:H::: F~ character data and 

numeric data. 

r---------------To place a quote'within 
· :OCH-·! .• , T DO 'fHi:~'r' the character string, 

DON · T DD TH,~~,T you must use a pair 
·rH(.~INI< ~:)~ .. · Y·OI...I (~I RE Il .. IEI...COr·1E·, of quotes. 

TH(.iNI{!:::; '" 
y' [I U (.; 1:< E 1 ..•. .1 E I... C (] ('·i E Character data can be 

!::;;:,:" ( .... j 
·.JOHN 
.. ..1 (:iC:1< 
lUi"j 

. .JOHN 

assigned to a variable 
name. 

, J .•• , ... '" "n .•. ~~I'-" -,,-. J-J-'-'-"'-' -.... -... -. -. ~........--. --- Blank characters, 
(\ j:~, f'i ::.!j~" ~:; p, f··) .... 1 . ..1 ., 1\ '.. (.:',1 ... : <. I U f'1 
f") (.:', T P I :XN~-·I.j· 1-1- pN(.~t·1En -.------ Create a character 
(j (', T h: I XN matrix, each row 

represents a name. 

t .... __________ Indexing works with 

character data also. 

So far, you have used APL with some common arithmetic operations. 
You have also seen how APL works with scalars (single data items), 
vectors (strings of data), and matrices (tables of data). However, you 
are not limited to just the functions we have discussed so far. In the 
following chapters, you will be introduced to more things you can do 
with APL. 

Introducing the APL Language 27 

, ';."";':";,;,.!~,"~.;, . .","''';'''':;'';.~I'''''\'"'''''''''"''''"_''''''.''''' .... '~n'''rr ... ''''.'''''~>'''''''''''''''''''T'''"'·''_~~'''''''·''''''·'''''''''"'"~_"_·''"''''_''··"''''···''·' .... '''''II''.''.,''"'' •• ~.' •• ".' I -"- ' •.. '1" • .,.... """~~··'T I'~ 



Chapter 3. APL Functions That Require One Argument 

28 

In this chapter you will use some APL functions to do the following: 

• Determine the whole numbers nearest a fraction. 

• Sort a vector into ascending or descending order. 

• Generate a random number. 

• Find the shape of an existing variable. 

There are additional APL functions that require one argument; however, 
these functions will be discussed later, in Chapter 6. 

HOW MANY ARGUMENTS ARE REQUIRED BY AN APL BUILT-IN 
FUNCTION? 

In this chapter, you will use APL functions with one argument. In the 
next chapter, you will use some of the same APL function symbols with 
two arguments. As you will see, these symbols perform different APL 
functions when they are used with one and with two arguments. When 
you use an APL function with one argument, the argument must be to the 
right of the function symbol. 

APL FUNCTION SYMBOLS THAT ARE A COMBINATION OF TWO 
CHARACTERS 

Some of the AP L function symbols you will use are a combination of 
two characters. You remember that when correcting keying errors, if 
you positioned the cursor at a certain character and pressed another key, 
a new character would replace the original character. However, certain 
APL symbols require two characters, one struck over the other. For 
these symbols, key the first character, backspace, and key the second 
character. It does not matter in which order the characters are keyed. 
The symbols that are a combination of two characters are called overstruck 
characters. Appendix A shows the overstruck characters and the keys 
required to enter them. 

Note: If you key an overstruck character and then want to change it, you 
can position the cursor at the character and key another character. The 
new character will replace the overstruck character. 



( 

( '"'''''' 

/ 

DETERMINING THE WHOLE NUMBERS NEAREST A FRACTION ~ ~ 

When you want to disregard the fractional part of a number and just 
consider the nearest whole number, you can use the floor L and ceiling r 
functions. The floor function will round the number down to the next 
smaller whole number and the ceiling function will round the number up 
to the next larger whole number. 

EXAMPLES: 

1.1· 

IB 

rB 
C~"3 

Ie 

:::~ -~==Ir~c=======~lf the number is already a whole number, the 
:::~ - result is the same as the argument. 

B~" "'~3 . !.=529 

The result for the floor and ceiling functions is 
----.:-------- determined according to the number's position 

on the number line: 

(smaller) 

Rounding to the Nearest Whole Number 

I I I I I I I I I 
-4-3-2-' 0'234 

(larger) 

It is a common practice to round numbers to the nearest whole number. 
You can do this by adding .5 to the number and then using the floor 
function. 

EXAMPLES: 

X ~ .. I+ I 4 + . !::j .1----- Rounds 4.4 to the nearest whole number. 
LX 

X ~ .. I+ • 6 + · ~.:j •• ----- Rounds 4.6 to the nearest whole number. 
LX 

LXi .. l.l· I 1++. ~.) ~ 

X
· I I . " .. ~ These examples could also be entered this way . 
. i .... + . 6+ . ,':J 

X 
APL Functions That Require One Argument 29 



30 

The grade up ~ and the grade down t functions can be used to sort a 
vector into ascending or descending sequence, because they give you the 
indices of the argument in ascending or descending order. 

EXAMPLES: 

,t,{i - The largest value is the ninth 
8_ ~:=j '+ ;.:.:: "(' :3 (:) :I. <;>- element. 

----------------------The smallest value is the 

eighth element. 

Bf-F, I:: {h(.~::1 .,---------- Indexing A this way sorts the 

15 29 37 45 58 62 74 80 96 

W(~ 

9 1 637 2 458 

elements of A in ascending 
order. 

Remember, when indexing 
elements in a vector, the 
index numbers or the 
index expression must be 
enclosed in [ ] . 

Cf .. A£: tpA]~·----------The elements of A are sorted 
c in descending order. 

96 80 74 62 58 45 37 29 15 



(~~ 

GENERATING A RANDOM NUMBER (.~l 

To generate a random number, you can use the roll function 7, which 
generates a random number between 1 and the value of the argument. 

EXAMPLES: 

>< ~ .. '? / .•• ------ Generates a number between 1 and 6. 
}( 

~.:.;.; •• ------------The result can be any number between 1 and 6. 

{':, ~ When this function is used with a vector, a 

:I. 3 :I. :::. random number is generated for each element. 

GENERATING CONSECUTIVE NUMBERS 

There are times when you will want to generate a vector of consecutive 
numbers from one value to another value. You can do this by entering 
an instruction like this: 

V E C: TOP .~ .. :1. ;.:.:: :3 I.~ ~.:.:.; c· "/ n 
\lLC"rC'p 

However, you can also use the index generator function 1, which generates 
consecutive numbers from 1 to the value specified by the argument. 

EXAMPLES: 

:I. ~? J ,:~. n ~:.:.; (~ ./ B _______ Eight consecutive numbers 

(::- -,"} n 

:~:.~ 1.1· ..... 
C) 

"./!:::C:TCHU··!.:.;.;+ \ !.:.:.; -Five added to each consecutive number 
\l[C 'ro i=< 
,-'r 1 0 ',"I' 

::.:: ')1: '1. (.~ • First 6 powers of 2 
1 I::') ::~~ ::.~: (-::.1.1· 

APL Functions That Require One Argument 31 



32 

Generating an Empty Vector 

An empty vector is just that-a vector with nothing in it (no elements). 
Why have a vector with nothing in it? As you will see later, when joining 
two items together or branching in a user-defined function, there are 
times when you will want to generate an empty vector. One way to 
generate an empty vector is to use 1 O. 

EXAMPLES: 

N(.·~lr1E 

V {11... U E E I~: I~ 0 P _1--- An error occurs if you use a variable name that does 
N (.~ t1 E not have a value assigned. 
1\ 

N (.~I f··i [ ~ .. \ 0 -, --Generate an empty vector. 
N(1i'-1E 

The result is a blank display line (no value). 

FINDING THE SHAPE OF AN EXISTING VARIABLE ':1.1) 

As you learned in Chapter 2, the left argument of the reshape function 
determined the number of elements in a vector or the number of rows 
and columns in a matrix. Thus, the number of elements in a vector or 
a matrix is referred to as the shape of the vector or matrix. For example, 
the shape of matrix M, which has two rows and three columns, is: 2 3. 
To find the shape of an existing variable, you can use the shape function 
p. 

EXAMPLES: 

SCI~I...(.:I p.~ .. I+ 
\I E C: TOP ~ .. ~? 1+ 6 B 
,:j":1 T I~ I )( .~ .. ? 3;:;·~ Reshape function (has two arguments). 
(.) ~::; c (~ I... I{~' I~ 
----------Blank display line-the shape of a scalar 

i:)VECTOI~: is an empty vector. 
l~_~ __ -:~~~ ________ __ 

e t··i (.:., T I~ I ){ Number of elements in the vector. 

~? :.:~; ...... --------------
Number of rows and columns in the matrix. 

EM P T Y ~ .. \ 0 ~I------ Generates an empty vector. 
Ei'1PTY 

----------Blank display line. 
eEMPT\( 

o ~'-------------Number of elements in an empty vector. 



(' 

( ".""" 
.' y' 

c 

Chapter 4. APL Functions That Require Two Arguments 

In this chapter you will use some APL functions that require two 
arguments. You can use these functions to do the following: 

• Compare the arguments to determine if one is equal to, greater than, 
or less than the other argument. 

• Process logical data-true (1 's) and false (O's) data. 

• Find the larger of two numbers. 

• Find the smaller of two numbers. 

• Find the index of a value in a vector. 

• Generate a random sequence of numbers. 

• Compress (select certain elements from) a vector or matrix. 

• Expand a vector or matrix by inserting zeros or blanks. 

• Join two items together. 

• Find the logarithm of a number. 

There are additional APL functions that require two arguments; however, 
these functions will be discussed later, in Chapter 6. 

APL Functions That Require'Two Arguments 33 



34 

RELATIONAL FUNCTIONS 

When solving problems with APL, you might want to test the relationship 
between two values. For example, you might want to test a counter to 
see if it has reached a certain value; or you might want to do something 
different in the solution to your problem, depending on whether a certain 
condition is true or false. The following APL functions are used to test 
the relationship between two values: 

Function Symbol Key 

Greater than > 

Less than < 

Greater than or equal to 

Less than or equal to 

Equal to = 

Not equal to 

When these functions are used, the relationship between the two values 
is evaluated, and a 1 results if the relationship is true, and a 0 if false. 



( 

( 

(' 

EXAMPLES: 

I) 

:I. 

:I. 

:I. 

I] 

"~I { .. :1. () 

B~"20 
I~I::::B 

(1::::);3 .. ··:1. 0 

AiB 

B~" ' DEF ' 
.. ·i::::B 

I) (I () ----------The = and ~ operators also work with character 
PI t- B ---------data. Remember, each element is compared with 

:I. :1. 1. the corresponding element in the other argument. 

APL Functions That Require Two Arguments 35 



36 

Why Two Numbers Identical in Appearance Are Not Always Equal 

APL stores all numeric values with an internal precision of 15 decimal 
digits; however, decimal values with more than five significant digits 
are normally rounded off to five digits before they are displayed. Thus, 
occasionally, different numbers will look alike when displayed. 

EXAMPLES: 

A*,,:I. ,~,:3 
B f- • ~'5 ::~ :'3 ~1 :'5 
(.1 

o .3:-5:3:33 .. rt--------Only five of the 15 digits are displayed. 
B 

o . :3:':~~5:33 

o 
(:.) :::: B ~.-------The values are not equal. 

[] p p ~·-------DPP is a system variable that determines how 
many significant digits will be displayed. This 
variable is automatically set to 5 when the 
power is turned on or RESTART is pressed. 
(The system variables are discussed in 
Chapter 9.) 

[] P Pi" :1. ~:.:; rt Set the 0 PP system variable so that 15 
I~ significant digits will be displayed. 

o . :B;53;533~~3:3:3;B;B~ 
B ~ o . :3 :::~ 3 :3 ~~ • Notice the difference between the two values. 

- Set the OPP system variable back to 5. 

Remember, the value displayed may not be the exact value that the 5100 
has stored for the variable. 

An Example Using a Relational Function 

Suppose the correct answer to a problem has been stored as a variable 
called RIGHT and the answer supplied by a student has been stored as 
a variable called ANSWER. To keep track of the student's score, you 
want to add 1 to his score if his answer is the same as the right answer; 
otherwise, you want to leave his score unchanged. 



( 

(' 

c: 

(~III, 

If the student got the problem right, it is true that ANSWER=RIGHT. 
To add 1 to his score only if his answer is equal to the right answer, you 
could enter this instruction: 

SCORE+-SCORE+ANSWER=RIGHT 

Then the amount added to SCORE is 1 when the two values are equal 
and 0 when they are not equal. 

Suppose that instead of adding 1 when the student is right, you want to 
give some problems more weight than others. The weight of the current 
problem is stored under the variable WEIGHT. If the student gets the 
problem right, you want to add WEIGHT to his score; otherwise, you 
want to leave his score unchanged. You could enter this instruction: 

SCORE+-SCORE+WEIGHTxANSWER=RIGHT 

If the student's answer is equal to the right answer, then ANSWE R= 
RIGHT has the value 1, so the amount added is WEIGHT x 1. But if 
the answers are not equal, then the amount added is WEIGHT x 0, 
which is O. 

LOGICAL FUNCTIONS 

The logical functions take only ones and zeros as arguments and are used 
to check for certain conditions. (They usually check the results of 
relational functions.) The fundamental logical functions are: 

Function Symbol Key 

And 

Or v 

In our discussion of the logical functions, we will use tables like the 
following one to show the possible results of the logical functions: 

- Values of the Right Argument 

-Results 

t ......... ________ Values of the Left Argument 

APL Functions That Require Two Arguments 37 



38 

To use this table, simply find the value of the right argument on top of 
the table and the value of the left argument on the left side of the table. 
Then, follow the column represented by the right argument down and the 
row represented by the left argument across. Where they intersect is the 
result of the logical function when those values are supplied as arguments. 
For example, find out what the result of 1 1\ 0 is as follows: 

,------- Follow the value of the right 

argument down. 

Follow the value 

of the left 

argument across. 

They intersect here; thus, 

the result is O. 

And ~ .. 

- Right argument. 

- The result is 1 only if both arguments are 1. 

t'-_________ Left argument. 

The And function is used to check for two conditions being true. 

For example, suppose you want to know when the items that cost more 
than $100.00 have a quantity less than 10. You could use the following 
instruction: 

(COST>100)A(QUANTITY<10) 

1 

t'--------The result is 1 when the 

quantity is less than 10. 

L---------------The result is 1 when the cost 

is greater than 100. 

Notice how the parentheses in this instruction specify the order of 
execution. 



(:. 

EXAMPLES: 

(~ u (.-~ N TIT '( -E-- B 
COST~-:l.20 
( COST::-:I. 0 () ) t\ «(~UI{.)NT I TY -:::1. 0 ) 

:I. ~.-------------------- Both conditions are true. 
(~U(.1NT I TV ~--2~:; 
(COST::-l00)A(QUANTITY-::l0) 

o ... --------------------At least one condition is 
not true. 

Or ~!~~"J 

1.lllli-Right argument. 

o -The result is 1 if either argument (or both) is 1. 

'1:..---------- Left argument. 

The Or function is used to check for at least one of two conditions being 
true. 

For example, suppose you want to know when either the inventory for a 
certain item is less than 10 or the orders for that item exceed the inventory. 
You could use the following instruction: 

(INVENTORY-::l0)v(ORDERS>INVENTORY) 

I 
L The result is 1 when the orders 

are greater than the inventory. 

L.-_________ The result is 1 when the inventory 

is less than 10. 

APL Functions That Require Two Arguments 39 



40 

EXAMPLES: 

I NVENTO RY ~"1 ~3 
o I~ [I E R B ~ .. ~::j 
(INVENTORY<10)v(ORDERS>INVENTORY) 

O~1--______________________ Both conditions 
(] I~DE I~S~"2~::i are false. 
<: INVENTDI~Y<:I. 0) v <: ORDEI~S> INVENTOI~Y) 

t~ _______________________ _ 
At least one of 
the conditions 
is true. 

Problems: Using Relational and Logical Functions 

1. It is vital to build error checking into all space systems to prevent 
catastrophy. For example, two indicators checking one condition 
are commonplace. If either or both of the indicators show danger, 
action must be taken. 

Assume that the A indicator is over its limit at 1.3725 amps and the 
8 indicator is over its limit at 1.5365 amps. Enter an expression that 
will result in a 1 when one or both indicators are outside their limits; 
the indicators read 1 .3732 and 1.5362, respectively. 

2. A survey was conducted by the PTA in which the teacher and the 
parent of the child each evaluated ten of the child's characteristics. 

One child's teacher replied 1, 0, 1, 1, 0, 1,0, 0, 1, 0 to the questions 
dealing with his characteristics. His parent answered 1,0,0, 1,0, 1, 
1, 0, 0, O. 

Show which questions the teacher and parent both replied to with 
a 1. 

Possible Solutions 

Problem 1: 

(:I.,5365~1,5362)v:l.,3725~:1.,3732 

1 

Problem 2: 

(,10)xl 0 1 1 0 :I. 0 0 :I. OAl 0 0 1 n :I. 1 0 0 0 
1 004 060 0 0 0 



(" 

FINDING THE LARGER OF TWO NUMBERS ,~ 

The result of the maximum r function is the larger of the two arguments. 

EXAMPLES: 

36 

I~I ~ •• ~7; 

B~"6 

ArB 

())xB) r(.~XI-:"1 

To see how you could use the maximum function, suppose you work for 
a department store. Each month the store calculates the amount charged 
and the amount paid by each customer. Your job is to find the difference 
between the total accumulated charges and the total accumulated payments 
for each customer. This difference is stored in a variable named BALDUE. 
The store also charges a service charge of 1.5% of the unpaid balance each 
month. You could find this charge with the following instruction: 

CHARGE~BALDUEx,015 

However, some of the customers have overpaid their bills. For them, 
BALDUE is a negative number and shows as a credit on their monthly 
statements. If you calculate the service charge by the instruction just 
shown, you will be paying them interest at a rate of 1.5%. Instead, the 
store prefers to calculate the service charge as 1.5% of the balance due 
or of 0, whichever is greater. To do this, you could use the following 
instruction: 

CHARGE~,015xorBALDUE 

APL Functions That Require Two Arguments 41 



42 

FINDING THE SMALLER OF TWO NUMBERS ~ 

The result of the minimum L function is the smaller of the two arguments. 

EXAMPLES: 

2~.:.:.i 

:I. ~!. 
... , 
( 

,{,) ~ .. ~::i 
Bf·6 
{iL B 

C~··:I. 

D~"3 
CLD ..., 

( 

'+ OIl C~ 
'."1 

' ... ,::. 8 ~'1 

{ 

Problems: Using the Maximum and Minimum Functions 

1. Find the largest dollar expenditure for the following gasoline 
purchases: 
a. 16.8 gal at 52.9 cents per gal 
b. 13.5 gal at 55.9 cents per gal 
c. 15.6 gal at 57.9 cents per gal 

2. For the following purchases, find the smallest quantity of nuts 
received: 
a. 71 cents for walnuts at 33 cents per Ib 
b. 53 cents for cashews at 27 cents per Ib 
c. 64 cents for pecans at 29 cents per Ib 

Suggested Solutions 

Problem 1: 

(:l.6.8x.529)f(13.5x.559)f15,6X,579 
9.032 1+ 

Problem 2: 

(71+33)1..(53+27)1..64+29 
:1 .. 963 

/ J, 



( 

(

",','!' 
~II, 

;/ 

FINDING THE INDEX OF A VALUE IN A VECTOR ' •. j •• ~ 

When you want to find out if a value is an element in a vector, and if it 
is, which element it is, you use the index of 1 function. The index of 
function gives you the position (index) of the first occurrence in the 
left argument of the values in the right argument. If a value in the right 
argument is not in the left argument, the result is 1 plus the length of the 
left argument. 

EXAMPLES: 

I.j. 
23 33 23 8 16 29\N 

(:':"i~" ' t,I<CDEFG . 
(:,'~ I C(:',FE I 

E: .;: .. ''') 1+ ,..; .. 
C: ~ .. 1 :':S ~? I::' 

d - Index of the first occurrence. 

,...------------- Index generator function. 

H ---____ '----------- Index of function. 

- Value does not occur in the 
left argument; the result is 1 
plus the length of the left 
argument. 

GENERATING A RANDOM SEQUENCE OF NUMBERS 'liI~ 

In Chapter 3, you used the roll function (? with one argument) to generate 
one random number. But by using the deal function (? with two arguments) 
you can generate a random sequence of numbers without generating the 
same number twice. That is, the deal function generates the number of 
random numbers specified by the left argument from 1 through the value 
specified by the right argument. The random numbers are selected so that 
no two numbers are the same. Therefore, the left argument cannot be 
greater than the right argument. If you specify the left argument equal 
to the right argument, you get all the numbers from 1 through the number 
specified by the right argument, in random order. 

APL Functions That Require Two Arguments 43 



44 

EXAMPLES: 

2?!':; 
~::; '+ II ----------- May be any two different numbers 

lO?:l.O 
~5 

. .,.. 
,J B 10 (:) <t :~ 4· 1-

between 1 and 5 . . .., 

I "'These numbers can be in any order, as 
you will see if you enter this 
instruction several times. 

SELECTING CERTAIN ELEMENTS (COMPRESSING) 

FROM A VECTOR OR MATRIX r"~ 

You can use the compress function / to select certain elements from a 
vector or matrix. The left argument must be a vector of all l's and O's 
or an expression that results in such a vector. When selecting elements 
from a vector the number of elements in each argument must be the same; 
the corresponding elements of the right argument are retained for each 1 
in the left argument. 

EXAMPLES: 

V~··:1. ") 
t:.. ::~ '+ I:;' 

.oJ 6 
.. ., 
( B 

1 0 1 :t 0 :I. :1. :1./\/ 
:t. ~':~ ,+ 6 7 B 

0 0 0 0 0 0 0 0/\/ 
Result is an empty vector. 

A~-l 0 0 0 0 0 I] :I. 
A/V 

t 8 
:I. 0 :1. 0/ I l~IBCD I 

AC 



( 

(" 

c 

When selecting elements from a matrix, you must select and omit entire 
rows or columns. To do this, you must specify the coordinate (rows or 
columns) to be acted on by using an index value [I]. The index value is 
1 if the first coordinate (rows) will be acted on and 2 if the second 
coordinate (columns) will be acted on. 

EXAMPLES: 

:I. 

Bt<5 LI'P'~ 1.2 
B 

2 :3 4· 
I.> 7 t:1 

<i 1 0 1 1 _______ :1. 2 Remember, the left argument must contain a 
1 for each item to be selected and a 0 for each 
item to be omitted. 

() 1. O/[l::lB 
7 B· ... ----The first coordinate (rows) is specified. 

:1. 0 1. O/[2JB 
:3 +'-----The second coordinate (columns) is specified. 
7 

<.)) 1t 

:\. 
,:: . .... , 

:1. 
:.~ 

"'1 
( 

<") 11 

() :I. OIB 

~ If no index entry is specified, the last 
coordinate (columns) is acted on. 

EXPANDING A VECTOR OR MATRIX ... 

You can use the expand \ function to insert blanks or zeros in a 
vector or matrix. The left argument must be a vector of all 1's or O's or 
an expression that results in such a vector. The number of 1's in the 
left argument must be equal to the number of elements in the right 
argument. The O's in the left argument indicate where the blanks or 
zeros will be inserted; blanks are inserted in a character vector or matrix 
and zeros are inserted in a numeric vector or matrix. 

EXAMPLES: 

1. 1. 0 0 :1.\:1. 2 :5 1+ 
:I. 2 0 3 () 1+ 

l. t () :I. 0 1\' I~BCD' 
fiB C n 

APL Functions That Require Two Arguments 45 



46 

When expanding a matrix, entire rows or columns of blanks or zeros are 
inserted. As when using the compress function, you must specify the 
coordinate (rows or columns) to be acted on by using an index value 
[I]. The index value is 1 if the first coordinate (rows) is to be acted on 
and 2 if the second coordinate (columns) is to be acted on. 

EXAMPLES: 

B~"2 
B 

:1. ") ,: .. 
"J 
•• J loJ. 

:l. 0 
:I. 0 2 
:'5 0 1,1· 

:1. 1-
:I. 2 
"I 
,.1 If. 
0 0 

1 0 
:1. 0 2 
~'5 0 1+ 

C~<~ 
C 

I~B 
en 

:L () 

A B 
C ,I [I 

2 (.1, •. 1.,. 

r--------The left argument must contain a 1 for each f 
:1.\[2:1B row or column being acted on. 

t ------Insert columns. 
O\[lJB 

:I.\B 

:I.\C 

t '------ Insert rows. 

If no index entry is specified, the last 
coordinate (columns) is acted on. 

Problems: Using the Compress and Expand Functions 

1. Define a vector called ACCTS containing these five accounts: 56 
103 100 13 O. Select those with balances of $100 or 
more. 

2. Define the matrix DATA+3 3p 19. Then insert a row in 
DATA, with the values 20, 21, and 22, after the first row. 

Possible Solutions 

Problem 1: 

ACCTS~56 103 100 13 0 
(ACCTS~100)/ACCTS 

:J.O::~ 100 



( 

C" 

Problem 2: 

'7 B 9 

:t. ~? :::=:: 

01]0 
'+ ~5 \1) 
'7 B 9 

20 2:1. 
I.,. ~::; 

'7 B 

D (::'1 T (~I <;" : .. ~~ :';) fi i. 9 
D{~, T (~ 

DATA~l 0 1 1\[1JDATA 

DATA[2;J~20 21 22 
:op, T ,{i 

JOINING TWO ITEMS TOGETHER [J>::~ 

You use the catenate, function to join two vectors together to make a 
single vector by placing a comma between the left and right arguments. 
The number of elements in the resulting vector is the sum of the number 
of elements in the two vectors being joined (catenated). 

EXAMPLES: 

i;~1 .~ .. :1. 
1') 
&0. ~3 

B~"I.J· 1::- l> ... J 

{i I B 
1 "\ •. :. "T 

-:> q. ~::.i 6 
17: ~.". 

.' "1 
'+ ~~j 6 :1. ::? ::5 

c~ .. · C(.iT I 

:O~-'EN' 

E i" • I~~I TID N ' 
C.I D .. E 

C(iTENI~TIDN 

l)O~1(.1IN ERI~()R-'---
(.1., C 
1\ 

A vector must be either all numbers or all 
characters; therefore, you cannot catenate 
character data to numeric data. 

APL Functions That Require Two Arguments 47 



48 

You also use the catenate function to join two matrices together. To do 
this, you can use an index value [I] to specify which coordinate is to be 
extended (that is, whether the number of rows or the number of columns 
is to increase). The index value is 1 if the first coordinate (number of 
rows) is to be extended and 2 if the second coordinate (number of columns) 
is to be extended. 

EXAMPLES: 

:I. 2 
3 '+ 

!5 6 
'''1 
i B 

:I. .-) 
.t: .. 

3 '+ 

:I. ... ) .. : ... 
3 14· 

:I. I") 
~ .. 

3 '4· 
!5 (; 
"'1 B i 

~:j 

"( 

A~··/:) • A_ 2(.) '.,'+ 
B~-2 :~:.:~ i:> I.j. + ~. '+ 
A 
I-I 

D 

fL. t::2]B • ---- You have just joined two columns to two 

6 
B 

existing columns (increased the number of 
columns). A,B______. 

~; ~; When no coordinate is specified, the last 

A , I: 1. :1 B~ coordinate (columns) is acted on. 

In this case, you have joined two rows to two 
existing rows (increased the number of rows). 

When catenating two matrices, the arguments must conform-that is, the 
lengths of the columns must be the same if the columns are to be 
catenated and the length of the rows must be the same if the rows are 
being catenated. 

/ '" 
" J 



( 

(:_-/ 

(

II"", 

,/ 

c 

EXAMPLES: 

t\~"2 2 (Jlj. 

(.~ 

'.j. '+ 
1.1· q. 

C~-2 .. ,.. " .• :)(.)<:> 

C 
6 6 6 
6 6 (~) 

PI,[lJC 
I... ENG THE R I~ 0 I~ ~'---The length error was caused because the row 

~~I) [:I.] C coordinate was specified when A and C have rows 
of different lengths. 

A { ....--:-+---:

C { ~-:-+---:--+--:--I 
t~ .' [2:1 C _ .. ---Note that the matrices can be joined along the 

I~. 1+ 6 6 6 column coordinate, since the lengths of the 
1+ q. 6 6 6 columns are the same. 

Building a Vector of Results Using Catenation 

Suppose that as you work through a series of problems you want to 
accumulate the answers. One way to do this is to catenate each new 
result to a vector of results previously obtained. If the most recent 
result is in a variable called LATEST and all the former results are in a 
vector called RESULT, you could use the following instruction: 

RESULT+- RESULT,LATEST 

APL Functions That Require Two Arguments 49 



50 

Nate: The first time this instruction is executed, there is no value for 
R ESU LT. Therefore, before you use this instruction, you should enter 
the following instruction: 

RESUL T +-10 

This instruction gives R ESU L T an initial value (makes it an empty 
vector). 

EXAMPLES: 

LATEBT~" :1. O+~5 

RESULT~RESULTILATEST 
VI~LUE ERR()R~.-----------RESULT does not have a 

REBUI... T ~"I~ESUI", T I L(.~ TEtrr value; therefore, it is not a 
variable and cannot be used 
in an instruction . 

. ~ __ ------- Give RESULT an initial 
RESULT~""\ 0- value (empty vector). 

I~ESUL T 
----------------- Blank display. 

1 ~; 

1 1::' ")1::-
"J .:.. ,.J 

RESULT~RESULT,LATEST 
REBUL T 1.---------- Now RESULT can be used .. 

I...I~ T E B T ~., :I. ~,:; + :1. 0 
RESULT~RESULTILATEST 
I~EBULT 

Problem: Using the Catenate Function 

Assign codes to variables as follows: A+-'I', B+-'T', C+-'D', D+-'R', E+-'GH', 
F+- 'YO', G+-' ',and H+-'U'. Then see what message is displayed if you 
catenate the variables in the following sequence: 

FHGCACGABGDAEB 

J 



(' 

(

',"'1[ 
~, 

c 

Possible Solution 

I~~~" • I . 
Bf" 'r' 
C'~" · :0 • 
D~" . ,~ · 
[,(-' GH' 

F'~'" 'y'D' 
G~ ... 
H~" I U I 

F,HJG,C,A,C,G,A,B,G,D,A,E,B 
YOU DID IT RIGHT 

FINDING THE LOGARITHM OF A NUMBER ~\~i~ L[~cJ 

You use the logarithm ® function to find the log of the right argument to 
the base specified by the left argument. The log of a number B to a base 
A is the power needed to raise A to the value B. 

EXAMPLES: 

")' 

":) 

:B~ .. t)1('3 

B 

t,(f)D -----The log of B to the base A. 

APL Functions That Require Two Arguments 51 



52 

Problem: Using the Logarithm Function 

1. What is the logarithm of 256 to the base 2? 

2. To what power must 10 be raised in order for it to equal 100000? 

Possible Solutions 

Problem 1: 

Problem 2: 

&: • 
.... 1 

10(+>:1.00000 



( 

(

"'I' 
. ,I'. 

("~ 

c 

Chapter 5. Applying the Same Operations to all the Elements of a Vector 
Collectively (Reduction) 

It is often useful to have the sum (or the product, or the maximum, for 
example) of all the elements in a vector. APL has a simple procedure for 
applying the same operation to all the elements of a vector collectively. 
This operation is called reduction, because it reduces a numeric vector 
down to a single number that represents the sum, the product, or the 
maximum, for example. The reduction operator is /. The left argument 
is the function that is applied to all the elements in a vector; the vector 
is the right argument. 

You may have noticed that the reduction operator and the compress 
function are the same symbol. However, you can tell the difference 
between the compress function and the reduction operator by the left 
argument. For the compress function, the left argument is a vector of 
1 's and D's and for the reduction operator, the left argument is an APL 
built-in function. 

PLUS REDUCTION 

EXAMPLES: 

:1. ~:; 

f.1 <t •• :I. ~.:.~ 3 q. ~.:.:.i 

+/1~1 

:I. +2+3+1++~.:.:.i""---Adding all the elements of A together is the 
same as +/A. 

Using Plus Reduction To Find the Average 

The reduction operator is useful for finding the average of the elements 
in a vector. Suppose vec~or X is as follows: 

X~"2 q. 3 3 2.~5 2 

Reduction 53 



54 

The following instruction could be used to find the average of the elements 
in X: 

2. 7~5 

(.~VG~·· (+/X) ··;·(.)X 
I~IVG 

Now let's analyze the previous instruction. 

1. We find the number of elements in X (the length of X): 

2. Then we calculate the sum of the elements in X: 

+/x 

3. Now we can find the average by dividing 16.5 by 6: 

2. 7~j 

AVG~··:I. 6 . ~::j":"6 
(.~IVG 

/ J 



(" 

c 00.962 
I 

Problems: Using Plus Reduction 

1. Using reduction, find the average amount that a certain family 
spends each week on food. The weekly grocery bills for November 
were $31.05, $29.78, $25.44, and $35.98. 

2. Temperatures of a laboratory solution were recorded over a 
12-hour period: 

6 AM 75.8° 
7 AM 71.9° 
8 AM 77.0° 
9 AM 80.3° 

10 AM 85.1° 
11 AM 82.2° 
12 Noon 83.2° 

1 PM 84.9° 
2 PM 85.3° 
3 PM 85.0° 
4 PM 82.5° 
5 PM 80.9° 
6 PM 78.4° 

Find the average temperature. 

Possible Solutions 

Problem 1: 

BILLS~31.05 29.78 25.~~ 35.98 

(:-, V G ~" ( + /: B I I... L S ) '7' (.i BILL B 

Problem 2: 

TEMP~75.8 71.9 77.0 80.3 85.1 82.2 83.2 84.9 85.3 85.0 82. 
~:5 B 0 ,<") 78. 1+ 
AVG~(+/TEMP)+pTEMP 

AVO 

Reduction 55 



56 

Using Plus Reduction to Sum the Products of Two Vectors 

Suppose that PRICE is a variable that contains the price list for various 
items sold by a store, and 01 and 02 are two vectors indicating the 
quantity of these items ordered by two customers. Then the total bill 
for customer 1 is the sum of the product of PR ICE times 01, and the 
total bill for customer 2 is the sum of the product of PRICE times 02. 

EXAMPLES: 

PRICE~.66 1.40 27.10 2.39 14.00 7.60 8.45 2.80 
Ql~O 0 2 1 0 0 0 0 
Q2~12 7 0 5 0 0 0 10 
+/0:1. x PI:<ICE 

+ / (} 2 x P r~ ICE 
I!!' "'1 t "'1 
,.J ( .0 ( 

MINUS REDUCTION (ALTERNATING SUM) 

EXAMPLES: 

...... ) 
,: .. 

(i ~ .. ::!) 2 :I. '+ 
.... /{~ 

::5····~~···· :1. ····'+_1-- fA is the same as this instruction. 

The following illustration shows why the answer is -2. 

Direction of processing is from right to left. 

3 - 2 - 1 - 4 ~.----First operation (subtract 4 from 1; the result is -3). 

2V- -3l-• Second operation (subtract -3 from 2; the result 
is 5). 

2 + 3 
~ 

3 - 5 ~.----_ Third operation (subtract 5 from 3; the final result 
~ is-2). 

1-21~1------Result. 



(".'_"~.\ 
.Y 

MAXIMUM REDUCTION: FINDING THE LARGEST VALUE IN A VECTOR 

To select the largest single element in a vector, you can reduce the 
vector with the maximum r function. 

EXAMPLES: 

:Oi~)I...DUE~"62 . :I.~.~ :1.:27 I.j .• Q·2 lB. 6!.:.:.i •• --Amount owed 
r ./[:I~·iI...DUE by all the 

customers of a 
store. 

Largest amount 
owed. 

MINIMUM REDUCTION: FINDING THE SMALLEST VALUE IN A VECTOR 

To select the smallest single element in a vector, you can reduce the vector 
with the minimum L function. 

EXAMPLES: 

N U t·1 [: E F~ ~ .. :I. :I. l:.. '+ "'1 ...... \ 
( '1 

I../NUMBEI:< 

Reduction 57 



58 

OR REDUCTION: CHECKING FOR A SPECIFIC VALUE IN A VECTOR 

Suppose you want to know whether a certain value exists in a long 
vector. You could use Or v reduction to find the answer. 

EXAMPLES: 

() 

l'------ Generate a vector of 50 random numbers. 

NUt1BEF<Gi-50?lO (I 
\1 /NI.Jt·1BE I~~)::::B 

The result of NUMBERS=8 is a vector 
consisting of a 0 for each element of 

... NUMBERS that does not equal 8 and a 

1 for any element that does equal 8. 

When the vector (result of NUMBERS=8) 
is reduced (the Or function is placed 
between each element), the result is 1 if 
at least one of the elements was 1. 

A displayed result of 1 indicates that the 

value 8 was in NUMBERS and a 0 
indicates that it was not. 

AND REDUCTION: CHECKING FOR ALL VALUES IN TWO VECTORS 
BEING EQUAL 

You can use And 1\ reduction to determine whether corresponding 
elements of two vectors are equal. 

EXAMPLES: 

/

TWO vectors 
that have the 

,. ... \? f' i'I . . ... <' .. :' . '''( ", f" . ''', "X '<' . I'~ .... , "'1 .... , kl::. I '.1., .. .I. .I., 10,:) .I., cb.:) .I., "','.,,,' +i.> .I., ,::.,::. i ,::. . same number 
LOCI< i<l. , 01 :L, 763 :I., B98 :1..2:3'+6 :I., ::.~272 of elements. 
/ .... /1( E ,,(::::1...0CI{ 

o ~I--------------------------------------------------- At least one of 
the elements of 
KEY does not 
match the 
correspond i ng 
element of 
LOCK. 



(''''" ..••..•• 

)., 

; 

c 

Chapter 6. Using the Built-in Functions 

This chapter contains a summary of the things you can do with the 
APL built-in functions. Some of the functions have already been 
discussed in the previous chapters and all of the functions are described 
in the IBM 5100 APL Reference Manual, SA21-9213. Also there is an 
example included for each function; you should enter these examples 
on your 5100 to see how these functions work. 

Note: Many of these functions provide special mathematical capabilities. 

NOW LET'S LOOK AT THE THINGS YOU CAN DO 

Things You Can Do Function Name Keys 

APL Functions That Require One Argument (see Chapter 3 
for more information) 

• Determine the next larger whole 
number 

Ceiling 

r '+ . {:.O (:.1 ... ----If the number is already a whole number, 
the same number is the result. 

• Determine the next smaller whole 
number 

Floor 

I.. LJ· 1 6:3 ~.:.:: ... ----If the number is already a whole number, 

the same number is the result. 

• Sort a string of numbers in 
ascendi ng order 

Grade up 

I::' : .. :~; :I. 
~:,,::,:<"3 '7 :::: 2-1--- Indices of A in ascending order 
:,;~ 1+ _____ 

"J 

,-:':, I:: l'tJi~,::I of Sorts A using the indices 

:I. ;? .. ~. 
'.::' "(' 'i 

Using the Built-In Functions 59 



60 

Things You Can Do 

• Sort a string of numbers in 
descending order 

Function Name 

Grade down 

~? 9:1. _Indices of A in descending order 
1+ 2 l 

(.1[0/(1]' .------Sorts A using the indices 
<,;> ".., ~5 

,") ., .... :I. 

• Generate a random number Roll 

?6 

Keys 

~:~ ~.------------The result can be any number between 
1 and 6. 

• Generate a consecutive string of 
numbers 

\ ~~} 

I ndex generator 

1 ::,:: :·5 4, !5 ... -------Generates a string of five consecutive 
numbers. 

• Determine the .length of a string 
or the number of rows and 
columns in a table 

Shape 

~:; ...... ___ .-:.P:A~ ______ - Length of the string named A 

,'J M PI T I~ I X ~ .. 2 :':~ (.) \ 6- Creates a table and finds its shape in the 

l same instruction (the number of rows and 
columns) 

Reshape function (discussed in Chapter 2) 
:I. 2 
'+ ~:j 6 

2 3 

Shape function 



( 

( -.... , 

/ 

Things You Can Do Function Name Keys 

APL Functions That Require Two Arguments (see Chapter 4 
for more information) 

The result from the following six functions is 1 if the relationship 
specified by the APL function is true; otherwise the result is O. 

• Determine whether two values 
are equal 

:I. 

• Determine whether the left 
argument is greater than the 
right argu ment 

:I. 

• Determine whether the left 
argument is less than the right 
argument 

:1. 

• Determine whether the left 
argument is greater than or equal 
to the right argument 

:1.2;:: 1.:1. :1.2 
:1. 1. 

• Determine whether the left 
argument is less than or equal to 
the right argu ment 

:I. :to 

• Determine whether two values 
are not equal 

7#:77 "7 
:I. 0 

Equal to 

Greater than 

Less than 

Greater than or 
equal to 

Less than or 
equal to 

Not equal to 

Using the Built-In Functions 61 



62 

Things You Can Do Function Name 

The following two logical functions are usually used to check 
the results from relational operations. Logical functions can 
use only l's and O's as arguments. The result is 1 when the 
condition being checked for is met; otherwise, the result is O. 

• Determine whether two conditions And 
are true 

:1,/\:1. I) 

1 0 

• Determine whether at least one 
of two conditions is true 

lv:l. 0 
:1. :1. 

• Find the larger of two numbers 

~:.i 

• Find the smaller of two numbers 

l.f. 

• Find the index of a given value 
in a vector 

Or 

Maximum 

Minimum 

Index of 

Keys 

Lvl -

3 •• ------------The right argument is found in the third 
position of the left argument, which is a 
vector. 

• Generate a specific nu mber of 
different random numbers 

3'?6 

Deal 

::::: ~5 :t •• ---------Can be any three different numbers 
between 1 and 6 



( 

"') 0 :.3 ,\' .. 

co 

c 

:I. 
0 

Things You Can Do Function Name Keys 

• Compress (select certain elements 
from) a vector or matrix 

Compress 

• Expand a vector or matrix 

0 1. 0 1 0 :I. o '\~.:.:: ::3 1.\. I::' 
... .1 

Selects the elements that correspond to 
the ones in the left argument 

Expand 

'+ I] ~:j 0 _---------Inserts elements according to the zeros 4 

in the left argument 

• Join two arguments together Catenate 

. Ci:~IT' ! 'EN' " 'i:'~ITION' 
CI~~ITENi:~IT I DN 

• Find the log of a number Logarithm 

?(+)B .. ·-------Log of 8 to the base 2 

APL Functions In Addition To The Ones Already Discussed 
In Previous Chapters (see the IBM 5100 APL Reference 
Manual, SA21-9213, for more information) 

• Change the sign of a nu mber Negation 

.... 3 ""+ 

• Find the sign of a number Signum 

"':1. 0 :1. ... --------- The result is -1 for a negative number, 
o for 0, and 1 for a positive number. 

• Find the reciprocal of a number Reciprocal 

, ';' 
~'." .... :." 

Using the Built-In Functions 63 



64 

Things You Can Do 

• Raise e (2.71828) to a power 

·*1 :~ 
2.71.0:3 20. OB6 

• Find the log of a number to the 
base e 

(f)2.71B:3 20,OB6 

• Multiply a number by pi 
(3.14159) 

(Jl 3 
3 11.4:1.6 9,4248 

• Find the product of all whole 
numbers between 1 and a 
specified number 

Function Name 

Exponential 

Natural log 

Pi times 

Factorial 

Keys 

G:J -

24· •• ----------The result is the same as 1 x2x3x4. 

• Change a 1 to a 0 or a 0 to a 1 Logical not 

o 1. 

• Determine whether at least one 
of two conditions is false 

Nand 

o :I. 
1. ~ 1. 0 •• ----- The result is 1 when at least one argument 

is 0; otherwise the result is O. 

• Determine whether two conditions Nor 
are false 

o 0 
1 ~ 1 0 •• ----- The result is 1 when both arguments are 0; 

otherwise the result is O. 



(~ 

Things You Can Do 

• Change a scalar or matrix into a 
vector 

:I. 2 :3 
'+ ~) 6 

~1tITr~IX~":2 :'3(:>",6 
t'1"~1 T I~ I X 

I N,~TRIX 

Function Name Keys 

Ravel 

1 2 :3 1+ ~5 6 ~.-----The matrix is changed to a vector. 

• Execute a character string as an 
AP L expression 

• Convert numeric data into 
character data 

Execute 

Format 

A~" T 2'+ .. ·------How to use this function with two arguments 
f"~1 is discussed in the IBM 5100 APL Reference 

Manual, SA21-9213. 

" .. , 
,::. This is a character value. 

A is a 2-element (character) vector. 

• Find the value of a number 
without regard to the sign of 
the number 

I !7j 3 ,- LI, 6 

• Invert a square matrix or compute 
the pseudo-inverse of a rectangu
lar matrix 

I~Ai-2 2p1. 
"'0 , B7~5 
o , 62~5 

3 ~,) 7 
() , :'~7!::i 

-0 , 12~,:,:; 

• Reverse the elements in a vector 
or matrix 

(j)'I...IVE' 
EVIL 

Absolute value 

Matrix inverse 

Reverse 

Using the Built-In Functions 65 



66 

Things You Can Do 

• Find the remainder left over from 
a divide operation 

Function Name Keys 

Residue (remainder) 

2 ~.------------ 2 is the remainder of 8 divided by 3. 

• Find the values for the trigono
metric functions of an angle 

Circular 

~3 ~ The left argument specifies the trigonometric 
:1. function (in this case, tangent). 

The result is the tangent of 45° (11' .. 4 radians). 

• Find the number of combinations 
of a number taking so many at a 
time 

::::! '+ 

Binomial 
(combination) 

I.) ~.------------ Four items taken two at a time can make 
six different combinations. 

• Find out if a certain value (left 
argument) exists in a vector or 
matrix 

Membership 

, t~BC ' +.: • H('if'H:'INI~' ~The result is 1 if the value in the left argument 

:I. :I. 0 exists in the right argument; otherwise the 
result is O. 

• Express a value in another 
number system 

24 60 601:1. 30 15 

Decode (base value) 

!::jl+ :I.!5 ~ .. ----------- Expresses 1 hour 30 minutes 15 seconds 
in all seconds 

• Represent a value in a specified 
number system 

21+ 60 60 ,.~;1.j·15 

Encode 
(representation) 

:1. 30 :I.!5 ~.-------- Represents 5415 seconds in hours, minutes, 
and seconds 



(~ 

c 

c 

Things You Can Do 

• Solve one or more sets of linear 
equations with coefficient 
matrices 

26 9~B~2 2p3 5 :I. 2 
.., :1. 

• Take a certain number of elements 
from a vector or matrix 

3t(.'.)~" :l 

Function Name Keys 

Matrix divide 

Take 

:3 04.----------These three elements were taken from the 
vector. 

• Drop a certain number of elements 
from a vector or matrix 

Drop 

:,3.l-A 
1+ ~,:,) 04.----------- The result is the elements remaining after 

• Join two arguments together by 
forming an array with an 
additional dimension 

the specified 'number of elements have 
been dropped. 

Laminate 

1 2 3 4 5,[.5J6 789 0 
:I. 
(;) 

'j 
..... -
....• 
f 

3 I." ~5 04.----------- Two vectors are joined to form a matrix. 
B 9 0 

• Rotate the elements in a vector 
or matrix as specified by the 
left argument 

2 <» 1. ::,:: ~'5 1+ ~:; 

~3 I." ~7j :I. 2 -------

Rotate 

Rotates the vector two positions 

Using the Built·ln Functions 67 



68 

Things You Can Do Function Name Keys 

• Create data arrangements with at 
least one dimension (a data 
arrangement with two dimensions 
has both rows and columns) 

Reshape 

~ Each number in the left argument is called 

:I. 2 ..z ,.> 
1+ I::' (~) ,.1 

"1 B 

~::~~i-21 r 11.8 :::;~~~::~-this N-rank array has three 

Last coordinate is the columns. 

t () :1.1 

Next to the last coordinate specifies rows. 

Leftn;tost coordinate is the planes. 

:1.:3 :1,'+ :1. ~.:j - Planes 

:1.1.>:1.7:1.0 ~ 
A R RA Y t: 2; :3 i :1. ::I You can index elements within N-rank arrays 

by putting a semicolon between each 
coordinate. 

:1.6 

• Interchange coordinates (such as 
rows and columns of a matrix) 
of an array 

Transpose or 
general ized 
transpose 

~AI~RAY ------ When used with one argument, this function 4 

:I. 
'+ 
"1 

2 
1::' ,., 
B 

:~ 
(~) 

f~ 

:1.0 
:1. :::~ 

:Lb 

:I. t 
:L 4· 
:1.7 

1 ::.~ 
:L ~:.:; 

18 

reverses the coordinates. 

Note: This function could also be used with 
a left argument that specifies how the 
coordinates are to be interchanged. 



'~'--,"'. ~/ 

( ','"'" 
1/ 

---,," 

Things You Can Do Operator Name Keys 

APL Operators 

An APL operator applies certain built-in functions to a vector 
or matrix. The reduction operator has already been discussed 
in Chapter 5. 

• Apply the same operation 
collectively to all the elements 
of a vector 

+/1 ") 
~: .. "1. 

"i 1.1, I::' 
"J 

Reduction 

:1. ~j ------------The sum of the elements • 
r /~:~2 6 '/7 :1. <t 2 

77 ------------The largest element • 
I.. /~:~2 6 7"? :t. (.1 ''') 

,:-
,') 
, ..... ------------- The smallest element • 

• Apply the same operation 
cumulatively to each element 
of a vector (the resu It of each 
operation is used in the next 
operation) 

+\1 2 :3 '+ 
:I, :36 l,O 

:1.+2 

Scan 

:1, 

] The scan function works the same as if 
you entered these instructions. 

6 
1 +2+~5+q, 

lO 

• Generate operation tables for 
various APL functions and data 

A~"l 2 3 LI, 

Au. xA 
:1. 2 :'3 L~ 

Outer product 

::.~ I.~ 6 B _---- A multiplication table of numbers 

~~ 6 <t 12 1 through 4 
L~ B :1.2 :1.6 

Using the Built-In Functions 69 



70 

Things You Can Do 

• Find the matrix product of two 
matrices 

A ~ .. 2 2 f> :1. ;.~ ::~ 1.1· 

B~"2 2(.) 5 6 7 B 
(:'1+. xB 

Operator Name Keys 

I nner product 

:I. ~~ 22 _ ... -------- The matrix product of matrices A and B 
1+:3 ~:5 0 



(' 

c 

Chapter 7. Function Definition 

WHAT IS FUNCTION DEFINITION? 

Although APL has many built-in functions, there will be times when 
you want a special function to solve a problem. APL allows you to 
define your own functions (called user-defined functions) and store 
them for repeated use. 

HOW IS A FUNCTION DEFINED? ~~ 

You use existing APL functions to create a new user-defined function. 
The new function consists of: 

• A function header containing the name of the function and other 
information (the types of function headers are discussed later in 
this chapter). 

• An instruction or series of instructions, called statements, which 
define the operation(s) to be performed. 

When executing APL instructions, the IBM 5100 is in execution mode; 
however, before a new function can be defined, the mode must be 
changed to function definition mode. The \] (del) symbol is used to 
change the 5100 from one mode to another. For example, to change 
from execution mode to function definition mode, a \] is entered as the 
first character in the function header; then after the function is defined, 
another \] is entered to close the function definition and change the 
mode back to execution mode. Once the 5100 is back in execution 
mode, you can execute your user-defined function. 

Now, to show how a function is defined, let's create a function to find 
the hypotenuse of a right triangle. The instruction used for this could 
be written as ((A *2)+( B *2)) * .5, where we square the lengths of the two 
sides A and 8 and then take the square root of their sum, which is the 
length of the hypotenuse. The function must have a name by which it 
can be identified, so let's name this function HYP. Now enter the 
opening \] (to place the 5100 in function definition mode) and the 
function header, as follows: 

\I H P f- A H Y P B - Function header. 
I: 1.] -~ ______ _ 

APL responds with the number of the first 
statement (instruction) to be entered. 

Function Definition 71 



72 

As each statement is entered, the next statement number is displayed. 
Now enter the remainder of the function as follows: 

HP~·· ( «(~~(·2) + (B·)(·2) ) .)( .. !:i -.---Instruction. 
v-~----__________ _ 

Closing \l - Changes mode back 
to execution mode. 

Notice that the names in the function header (other than the function 
name itself) are all used in the body of the function. In particular, 
notice how the result variable name, HP, is assigned the final result by a 
statement in the function. 

The display screen will now look like this: 

VHP~"f1 HYP B 
[lJ HP~«A*2)+(B*2»*.5 
[2] V 

Note: If you make a mistake when entering this function, see What To Do 
If You Make a Mistake When Defining Your Function later in this chapter. 
The up arrow • (scroll up key) and down arrow • (scroll down key) 

do not work during editing of user"defined functions. 

When you entered the closing \l , the function HYP was stored in your 
active workspace, so you can use it just like any other APL function 
with two argu ments. 

EXAMPLE: 

/~"'~---- Lengths of the two sides. 

:'5 HYP 4 
5 -.--------- Length of the hypotenuse. 

10 

5 10 

Xt··6 
Y~··B 

X HYP 

R~--:3 6 
I...~ .. I+ B 
R HYP 

Y) Like other APL functions, the arguments can be 
in different forms. 

I... 

Whenever you want to use HYP, just enter its name with the arguments 
you want. The symbol for the calculation of the hypotenuse of a 
right triangle is HYP, just as the symbol for addition is +. 

J' 



( 

(~ 

c 

c 

A function can have only one instruction, like HYP, or it can contain 
many instructions. 

EXAMPLE: 

VHPf-f':i HYPL. B. The function HYP could also have been 
I: 1::1 A2~"f~)~f2 defined like this. 

[2] B2~"B')('2 

I: 3 J S~"A::)+ n::.> - Note that the closing \j can also be on the 
[L~ J H p~ .. ~:·i*· : ~:;v - same line as the last instruction. 

3 HYPI... 14· 
5 • Same result as HYP. 

Problems: Using Function Definition 

1. Define a function that displays the sum of any two numbers. 
Then use the function. 

2. Define a function that displays the area of any rectangle. 
Then use the function. 

Possible Solutions 

Problem 1: 

VS~"M SUM N 
I: 1:1 S~"M+N\1 

b SUM :-5 

Problem 2: 

VAf-LENGTH AREA WIDTH 
[1] A~LENGTHxWIDTH 

[2J V 
I.J. A REA !7j 

20 

TESTING YOUR FUNCTION BEFORE USING IT 

Once you define your function, you should always try using it with 
data that will give you a known result. For example, suppose that in 
the function HYP you used the following expression by mistake: 

tr----- Should have been * 
«A*2)+(B')f2» x.5 

Function Definition 73 



74 

You wou Id get an answer, but it wou Id not be the right answer for the 
hypotenuse of a right triangle. 

When you test your function, one of the following will occur: 

• The 5100 will display the result you expect. 

• The 5100 will display an error message. 

• The 5100 will display a result, but not the result you expect. 

• Nothing will happen. 

If the 5100 Displays the Result You Expect 

Great! Your function works. 

Note: Even though your function worked one time, you may want to 
test it some more to make sure it will work for each application you 
intend to use it for. 

If the 5100 Displays an Error Message 

You can use the IBM 5100APL Reference Manual, SA21-9213, to find 
out what the error message means and what you must do to correct it. 

Note: An error condition will cause the execution of your function to 
stop; see Chapter 8 for more information on what to do when your 
function stops executing. 

If the 5100 Displays a Result Other Than the One You Expect, or 
If Nothing Happens 

In either of these cases, you have two alternatives: 

• Display the entire function and check it for errors. Displaying the 
Entire Function is discussed later in this chapter. 

• Use the trace and stop features (discussed next) to help find the 
problem. 

Note: When a user-defined function is used and nothing happens 
(that is, neither result nor the cursor appears on the display screen) 
or a result is repeated continuously, the function is probably 
looping. In this case, press the ATTN key to stop (suspend) function 
execution. Chapter 8 contains information on what to do when your 
function stops. 

/ ), 



( 

HOW TO USE THE TRACE AND STOP FEATURES rli~Ji" ',(~J 

Trace T 1'5. 

The trace feature allows you to watch the execution of your function, 
statement by statement. That is, the final result calculated for each 
statement traced is displayed. You can either trace all of the statements 
or just certain statements in a function. To use the trace feature, 
enter T 8" the function name, +, and the statement numbers to be 
traced. For example: 

Tl\E)«(.'it'lPI...E~··:t. 2 :3 '+ ~;.:; (.) 
~~ 

t LThe statement numbers to be traced 

The name of the function to be traced 

The previous statement could also be entered as follows: 

Tt\EXtii'1PL.E~···~ 6 
t 

Generates a vector of numbers from 1 to 6 

Stop Sb 

The stop feature allows you to stop the execution of your function just 
before a specified statement is executed. That is, function execution 
is temporarily suspended (suspended functions will be discussed in greater 
detail in Chapter 8). After function execution has stopped, the 5100 
displays the number of the next statement to be executed. To use the 
stop feature, enter S8, , the function name, + , and the numbers of the 
statements before which function execution is to stop. For example: 

Sb.EXf~IMPI...E t··3 6 T ~e specified statement numbers 

The name of the function 

After function execution has stopped, you can start it again by entering 
+0 LC. 0 LC is a system variable that contains the next statement 
nu mber to be executed; see Chapter 9 for more information about 
system variables, and the IBM 5100 APL Reference Manual, SA21-9213, 
for a complete description of the 0 LC system variable. 

Function Definition 75 



76 

Now let's use trace and stop to find a problem in a function. 

EXAMPLES: 

'VHP~~A HYPX B 
1::r.:1 I THE HYPOTENUSE IS I~Defines a function that calculates the 
[2:1 A2~-A*2 hypotenuse of a right triangle. 
[3::1 B2~-Bi('2 

[4-::1 This function has an error in it. 
[!:j] 

Tests the function using data for which 
3 HY PX LI· __________ the correct result is known. The result 

THE HY POTENUSE :r S should be 5. 

T!!.HYPXt"2 ~~ '+ ~:i 
3 HYPX 4· 

THE HYPOTENUSE 
HYPXC2J <'1 
HYPXC3J :1.6 

Using the trace feature to find the problem 

The 5100 responds with the function 
name, statement number, and the result 
of the statement being traced. 

HI' P X [: q.::I 2~:) ~ The correct result was obtained in each 
HI' PX [: 5] :r. 2 I 5 statement except statement 5; therefore, 
:L 2 I ~:.:; statement 5 probably contains the error. 

T 15. H Y P X~" \ 0 ..... ------ To turn off the trace feature, use 10 as 
the statement to be traced. 

Bb.HYPX~-4· ~:5 
Using the stop feature to find the problem 

3 HYPX 1·1· 

THE HYPOTENUSE IS 

.... 
_---------- The 5100 responds with the function 

HI' P X [ '+ ::I - name and the next statement number 
A 2 to be executed. 

9 r.c2~ When the function is stopped, you can 
enter the variables to see if they con
tain the expected values. 

16 

-t/]LC •• --------- Continue execution by entering ~DLC. 

H Y P X [5] ..... ----------_ Execution stops at the next statement 
specified for the stop feature. 

25 
·-tOLC 

12.5 

Sb.HYPX~" \ 0 _ 

All the variables contained the correct 
values; therefore, statement 5 must be 
in error. 

- To turn off the stop feature, use 1 0 as 
the statement to be stopped at. 

Note: How to correct an error in a 
function is discussed next. 



(' 

( '-','" -, 

-- ,..-_/ 

( ',",', 

~, 

y 

c 

WHAT TO DO IF YOU MAKE A MISTAKE WHEN DEFINING 
YOUR FUNCTION 

If you make a mistake when defining your function, you can correct it 
by editing the function. When editing a function, you can do the 
following: 

• Display the entire function. 

• Add one or more statements at the end of the function. 

• Replace statements. 

• Insert one or more statements. 

• Delete a statement from the function. 

• Display a specific statement or from a specific statement to the end 
of the function. 

• Modify a single statement. 

If you notice your mistake as you are defining your function, you can 
correct it without reopening the function definition (the 5100 is 
already in function definition mode). However, if the function definition 
is closed, you must first reopen it. To do this, you must enter the V 
followed only by the function name. If you enter the complete function 
header, you will get an error message. 

Now, let's define a function to use in doing some function editing. 
Enter the following: 

VBTAT X 
[:1.::1 N~··,~)X 

[2] (+/X)·H~ 

1::5 ] I..lX 
[I+J r/xv 

This function calculates the average, smallest, and largest number in a 
vector of numbers. Notice that this function does not have a result 
variable in the function header; however, it will stil,1 display the results. 
The reason for having a result variable in your function will be 
discussed later. 

Function Definition 77 



78 

Displaying the Entire Function r~' [4!!~0101} fi;;~f;' 

To display a function, you enter [0] immediately after any statement 
number or as shown in the following example. 

EXAMPLE: 

[:I.] 

[2::1 
[3] 

I:I+J 

1.1· 

:I. 
9 

This instruction opens, displays, and closes 

!~----------------~I I I 
J t~------------~' 

\lET(.~T[U]'~' the function definition. 
~I ST(.~IT X 

'V' 

N~··(.)X 

(+/X)-":·N 
I../X 

- Displayed function. 

I .. IY 
I /, 

STf~T 

/ Try the function. 

2 <,i :l 



(" 

(
..---"" .. _. 

1-____ ./ 

(~ 

c 

Adding One or More Statements at the End of the Function 

To add statements to a function, you open the function definition and 
the number of the first available line is displayed. Then you can enter 
the statements you want to add. 

EXAMPLE: 

[~jJ 

I:: :1.::1 
[2] 
[:3] 

[1+ :I 
I:: ~:.;::I 

L~ 

:1. 

<t 
(j 
\.1 

The 5100 displays the number of the first 
available line. 

'\7 ~:) T (.'1 T • Open the function. 
<j""/X)····I/Xf"' 

.. ~ Add this statement to find the range of the 
numbers in the vector. The V closes the function 
(you are only adding one line). 

VG T (; T I:: IJ:I \7- Display the function. 
\I ST('~T X 

N~"I'JX 
(+/:;()··:-N 
1../)( 

'

" l'Y' 
l /\ 

(r /'X) ····/../X 
'\/ 

- Displayed function. 

f:) T (;~I T <t 2 1--Try the function. 

Function Definition 79 



80 

Replacing Statements within a Function 

To replace statements, the statement number to be replaced must be 
enclosed in brackets [ ] followed by the new statement. 

EXAMPLE: 

[1.] 

[2] 
[3J 
r:'+] 
[~j] 

VSTAT [D] ... ----This instruction opens and displays the 
'V STAT X function. 

N~-,~X 

(+/X) ·:-N 
I .. /X 
fiX 
(r/X)··ML/X 

~--- Displayed function. 

The 5100 displays the number of the first 
available line. 

tr -------Notice that you can specify another state-
I: c) ] I: 2:1 ( + / X ) .-:. ~) X ~I ment number by enclosing it in brackets. 

'V 
[:I.] 

[2] 
I: ~·5:1 
[1+:1 
[~:;J 

'V 

,+ 
l. 
9 
B 

'VSTAT[[]J\I 
STAT X 
Nt- (JX 
(+/X) ·~pX 
I.. IX 
fiX 
<r/X)····L/X 

STAT 9 1 

Now, replace statement 2 with this state
ment for finding the average. The V closes 
the function. 

I ----- Display the modified function. 

.. )---- Displayed function. 

2 



c' 

Inserting One or More Statements in a Function 

To insert statements in a function, you must use a decimal statement 
number that is between the numbers of the statements where you want 
to insert the new statement. For example, to insert a statement between 
statements 1 and 2, you could use the statement number 1.5 or any 
decimal number between 1 and 2. 

EXAMPLE: 

VST· 
[t)] [1.5] 

1:1.6] V 

Open the function. 

/ The 5100 displavs the number of the first 
/ ~ blank line. 

x ... Insert a statement between statements 1 and 2; 
~ the inserted statement displays the vector of 

.......... ~numbers. 

If you do not enter 'V, the 5100 responds 
with another decimal statement number. 

Enter the closing 'V. 

VSTf~T[DJV ---- Display the function. • 
V STAT X 

[1] N~··I~X 
[2] X 
1:3] (+/X) ·7PX '--_-- Notice that the 5100 has renumbered the 
1:4] L/X statement numbers. 
[5J fIX 
[6] (r/X)-L/X 

V 

STAT 9 2 :I. 
9 2 1 
I.,. 
1 
9 
8 

Function Definition 81 



82 

Deleting a Statement from a Function ~ 

To delete a statement from a function, you enter L~ n] , where n is the 
number of the statement you want to delete. 

EXAMPLE: 

'V S TAT ( []:I ... ---- Open and display the function. 

[l. ] 
[2] 
(3] 
(1+] 

(5] 

[6J 

V STAT )( 
N~- pX 
X 
(+/X) ":-.oX 
I../X 
fiX 
(rIX)"-L/X 

Displayed function. 

The 5100 displays the next available statement 
number. 

[ '7:1 [ ~I+ J ... ------- Remove statement 4; you no longer need to 
( ~.:j J 'iJ know the smallest number. 

Note: The closing \l must not be entered on 
the same line as [i1 n]; you must enter it on 
another line or an error will occur. 

VSTA1TI]]V ... ·---Display the modified function. 

[1] 
[2] 
[3J 
('+] 
(~5J 

V STAT X 
Nf'.oX 
X 
(+/X)+(.)X 
r/X 
(r IX)"-L/X 

STAT 2 9 1 
291 
..,. 
<} 

8 

Displayed function-the original line 4 was 
deleted and the statements were renumbered. 



(' 

c 

c 

(
~JI~ 

L / 

Displaying a Specific Statement or from a Specific Statement to the 
End of a Function 

You have already seen how to display the entire function; you can also 
display only one statement or each statement from a certain statement 
to the end of the function. To display one statement, you enter [nO] , 
where n is the statement number you want to display. To display each 
statement from a certain statement to the end of the function, you 
enter [On] , where each statement from statement n to the end of the 
function is to be displayed. 

EXAMPLE: 

[3] 
VBTAT[3[(]'V-~---Display statement 3. 
(+/X) ":-pX 

v S TAT I:: [] 1+ :I 'OJ _'4 ___ Display each statement from statement 4 to 
1: 1+ :I 
I: ~7j:1 

r / X the end of the function. 
<f/X)····L/X 

Modifying a Single Statement 

You can correct keying errors in a statement of a function the same way 
you correct keying errors made during entering of instructions in 
execution mode. That is, the same procedures for inserting, deleting, or 
replacing characters are used. To correct keying errors in function 
definition mode, you must currently be entering the statement in error 
or you must display the statement you want to correct. 

Note: You cannot use the up or down arrows (scroll up or scroll down 
keys) when the 5100 is in function definition mode. 

Function Definition 83 



84 

EXAMPLE: 

---Open the function and display statement 2. 
1:2] 
I: 2J N ... ------- Enter an N to replace the X in the displayed line. 
[3 J Vi (You now want to know the number of elements 

in the vector.) 

The 5100 responds with [3]; now enter the closing 'V. 

VSTATI:[]JV • Display the function. 
V STAT X 

[:I.] N~"pX 
[2] N 
1:~3] (+/X) +(.>X - N has replaced the X. 
[1+] r/X 
1:5] (r IX) ''''L/X 

V 

STAT 2 9 1 

Editing the Function Header 

You can edit the function header the same way you would edit any 
other statement in the function. To do this, you specify statement 0 as 
the statement to be ed ited. 

EXAMPLE: 

I::L :1 
1:2] 
[3] 
[1+] 

[5J 

v S TAT [ 0 J S TAT :I. X V. The original function header is 
VB TAT 1 [[I] V ~ replaced with this function header. 

V STATl X ~ 
N f- (.> X Display the function. 
N 
(+IX) ·~"(.>X 
r/X 
(f/X)-L/X 

Note: Do not be concerned at 
this time if the error message 
SI DAMAGE is displayed; this 
error message and a suggested 
user response is described in the 
IBM 5100 APL Reference Manual, 
SA21-9213. 

VS TAT [IJ J V .. ,------- You cannot display the function 
ItEFN ERROR STAT because the function no 

VSTAT longer has that name. 



(' 

A Faster Way to Add, Replace or Insert One Statement in a Function 

If your function is closed and you have only one statement to add, 
replace, or insert, it can be done using only one instruction. For 
example, the following instruction opens, changes, and closes the 
function defi nit ion : 

Opens the STAT1 function. 

Specifies that statement 3 is to be edited. 

I Replaces the existing statement 3. 

/ /'Ose5 the STATl function. 

VSTAT1[3J(+IX)+NV 

Function Definition 85 



86 

EXAMPLE: 

[lJ 
[2] 
[3J 
[1+] 

[5] 

3 
4· 
9 
B 

V 

V 

VSTATll:DJV • -------Display theSTATl function. 
STAT1 X 
N~"pX 
N 
(+IX) +(.>X 
r/X 
<I"/X)'-L/X 

VSTAT11:6J'THIS STATEMENT WAS ADDED 'V 
--------~Add a statement to the function. 

STATl 2 9 :l -.------Nowtry the function. 

THIS STATEMENT WAS ADDED 

[lJ 
[2] 
[3] 

1:4] 
[5] 

[6J 
[7] 

3 
4 
1 
9 
8 

VSTAT1. [3J (+/X) '~NV • Replace a statement. 
VSTAT:I. [3, 5J L./XV 
VSTAT:l [DJV ~ ----. Insert a statement. 

V STATl X~ 
N~" p X Display the modified function. 
N 
(+/X) ,,;.·N 
L./X 
fiX 
<f/X)""L/X 
'THIS STATEMENT WAS ADDED' 

STATl 2 9 :1. 

THIS STATEMENT WAS ADDED 



( 

(
'--

'~., 

~_/y' 

(' 

c 

TYPES OF FUNCTION HEADERS 

Like the APL built-in functions, you can have user-defined functions 
with one or two arguments. You can also have user-defined functions 
without any arguments. The number of arguments required by a 
function is defined in the function header. For example: 

'V RESULT +ARGUMENTl FUNCTIONNAME ARGUMENT2 

~iS function requires two arguments. 

\} R ESUL T +FUNCTIONNAME ARGUMENT 

~iS function requires one argument. 

\} RESULT +FUNCTIONNAME 

~iS function requires no argument. 

When a function is executed, the value used for an argument is assigned 
to the variable name that appears as the argument in the function 
header. This variable is then used in the function. For example', you 
might have the following function: 

VR~-A DIVIDE B 
[1.:1 R~"A~' BV 

If you enter 10 DIVIDE 2, the value 10 is assigned to A and the value 2 
is assigned to B. Now when the statement A+ B is executed, the result 
is 5. 

Note: For some user-defined functions (as with some built-in functions), 
it is important that you enter the arguments in the proper order. For 
example, if you enter 2 DIVIDE 10, the answer would be 0.2 instead of 5. 

When defining a function with one argument, the argument must be to 
the right of the function name; otherwise, the argument will be treated 
as the function name, and vice versa. 

Function Definition 87 



88 

EXAMPLES: 

vr~f'A AREAl B ... ----Two arguments-this function finds 
[1] l~f'A X IiV' the area of a rectangle. 

:L2 AREAl 12 
1.41+ 

v r~f-SQRT X ~.------ One argument-this function finds 
[ 1 J R f- X * I ~5 V the square root of a number. 

Af·:L 4· 9 16 ::.~5 ~56 

SQRT A ... ------- The argument can be a vector. 
12~~L~~;6 

VR~-DICE ~.------- No argument-this function simulates 
[:1.::1 1~~"?6 6 the roll of two dice. 
[2] 'V 

DICE 
------------=_ The results can be any pair of numbers 

between 1 and 6. 

WHY HAVE A RESULT VARIABLE? 

So far in our discussion of user-defined functions, we have usually 
defined functions with a result variable. A result variable is a variable 
name with which the result of a function is temporarily stored for use 
in an APL instruction. When your function has a result variable, it is 
said to have an explicit result. Without an explicit result, your function 
cannot be used in an APL expression. 

The following function has a result variable; therefore, it has an explicit 
result. 

_. /R~lt vari~~I~ 
VR~~JLlf-QTY 11EMX COST 

[lJ RESULTf-COST+QTY V 

f 
Result Variable 

The result variable must appear in both the function header and the body 
of the function (it must be included in the statement where the final 
result is determined). 



(' 

c 

EXAMPLES: 

'iJ(~TY 1 TEM cnST -.---- Define a function without an 
[ :I.] COST -: .. (~ TYV explicit result. 

1,0 ITEM .60 
0.06 

o . 06 be used in APL expressions. 
S T () I~ E ~ :I. 0 ITEM 760 The result of the function cannot 

Vf~LUE EJ~R()R 

STORE~10 ITEM 0.6 
1\ 

10+:1.0 ITEM .60 
0'.06 
VALUE ERI~OR 

:1.0+10 ITEM 0.6 
A 

'iJRESULT~-(~ ITEMY C----Define a function with an explicit 
[1] I~ESUL T~"C";"(~V result. 

0.06 

0.06 

:1. 0.06 

10 ITEMY .60 

~~T() R~ ~-1 0 I TEMY • 607 The result of the function can now 
S TOR E. / be used in an AP l expression. 

10'" 1 () I TEMY • 60 Remember, if you plan to use the 
function you are defining in, 
calculations, you must provide a 
result variable. 

LOCAL AND GLOBAL NAMES 

A name appearing in a user-defined function can be either local or 
global. A global name has the same value during the execution of a 
function as it has outside of the function. A local name has a value 
only while a function is active. Any name appearing in the function 
header (except the function name) is a local name. So far we have 
seen that a function header can contain a result variable and arguments. 
Since these variable names are contained in the function header, they 
are local to the function. But other names can also be made local to 
the function by placing them in the function header following the right 
argument (if any) with a semicolon preceding each name. For example, 
the function header 'iJ LOOP R;I;J makes the right argument R and the 
variables I and J local to the function. Now to see how local and global 
names work, let's use some. 

Function Definition 89 



90 

EXAMPLES: 

VGLOB(~I... •• ------------ Define a function without 
I: 1.] G A E·' 3 any local names. 
[:~~:1 . GB~"I.j· 
[~5:1 GCE .. ~i 
I: I+::t GA+GB+GCV' 

GLOBAL 
1.2 

GB >-0 •• t-------------- Since these names are global 
GA ! 

4· variables, they also exist out-
GC side the function. 

VLOCAL i LA i LB i LC •• ----- Define a function with all 
1::1.:1 I...AE"3 ~l local names. 
[2J LBE"r.,. 
[3:1 LC~5 Notice how the names are 
I: '+ J L(~-+-LB+LCV made local to the function. 

LOCAL 
:L2 

VALUE 

VALUE 

Execute LOCAL, then enter the variable 
names to see what values they represent. 

---=,.,.... Since these variable names are 
local to the function, they only 
represent a value during the 
execution of the function. 

LC 
VALUE ERR()r~ 

LC /Define a function using both 
" local (GA and GB) and global 

(GC) names. 

VCOMBINATION;GA;GB 
I: 1 J GA~6 : Local names that are the same 
[2 J GB." 7 as existing global names. 
[3J GCE"B -~=:-_______ ~. 
[1+ J GA+GB+GCV Global name. 

COMBINATION 
21. 

GA 

31.J. •• ~~~~~~~~~~~~~~~~=------~=--- Notice that outside the function, 
_ GB the existing global values (previously 

established by the function GLOBAL) 

GC 
8 

are used. The new values (6 and 7) 
existed only during the execution of 
the function. 

Since this variable name is not 
local to the function, the global 
value was changed. 

) 



(' 

c 

Now, you are probably wondering why you should make variable names 
local to a function. Following are some reasons for using local variables: 

• Let's assume you have defined a function named COUNT that uses a 
variable named X. At Some later time, you assign the result of an 
important calculation to a global variable named X. Now if you 
execute COUNT, the following conditions can occur: 

1. If X was made local to COUNT, the global value of X is not 
, changed. 

2. If X was not local to COUNT, the global value of X (the 
results of your important calculation) is changed. 

• You can conserve space in your active workspace by not storing the 
values for variables you do not use outside of a function. 

BRANCHING, LABELS, AND LOOPING 

Branching and Labels 

Statements in a user-defined function are normally executed in the order 
indicated by the statement numbers, and execution terminates at the end 
of the last statement in the sequence. However, this normal order of 
execution can be modified by branching (transferring to another point 
in the sequence). Branching is indicated by a right arrow -+ followed by 
a label that specifies the statement to be branched to. 

For example, the expression -+ST ART means branch to a statement 
labeled START. When alabe,1 is assigned to a statement, the label is 
followed by a colon and must precede the statement. The colon separates 
the label from the statement: 

[5] '~START 

In the previous illustration, the label START is assigned to the second 
statement in the function. In this case, START has a value of 2; however, 
if the function is edited and the statement is no longer the second 
statement in the function, START will automatically be given the value 
of the new statement number. Now as the function executes, when 
statement 5 is executed, a branch is taken to the statement labeled 
START. 

Function Definition 91 



92 

Labels are local to a function; that is, they can only be used within that 
function. Following are some rules that apply exclusively to the use of 
labels: 

• They must not appear in the function header. 

• You cannot assign values to them. 

There are two types of branch statements you can use-unconditional 
branches and conditional branches: 

• Unconditional branches are branches that are taken each time the 
branch statement is executed. You have already seen an example of 
an unconditional branch, [5] -+START, where the branch to the 
statement labeled START is taken each time statement 5 is executed. 
Another common use of an unconditional branch is -+0, which causes 
the execution of the function to be terminated. 

• Conditional branches are branches that are taken depending upon 
some condition that exists at the time the branch statement is executed. 
Conditional branches are used, for example, to branch to a statement 
if a condition is true and to otherwise continue with the next 
statement (fall through). This type of branch can be ent"ered like 
this: 

-+(CONDITION)/N 

The branch to statement N is taken if the condition is true; otherwise 
the next statement is executed. For example, APL executes the 
branch statement -+(1 ~N)/START as follows: 

1. First, the condition (I ~N) is evaluated; the result is 1 if the 
condition is true and 0 if the condition is false. 

2. The result of step 1 is then used as the left argument for the 
compress (/) function: 
a. If the result of step 1 was 1 , START is selected from the right 

argument and a branch to the statement labeled START is 
taken. 

b. If the result of step 1 was 0, nothing is selected from the right 
argument (an empty vector is the result). A branch to an 
empty vector means execute the next statement in sequence 
(fall through). 



( 

( 

(: 

I n the following example, you will use two variations of a function to 
determine the sum of each number from 1 to the value of the argument 
(each function will use a different method of branching). 

EXAMPLES: 

VSf·SUM2 N 
[1] Sf'O 
[2] :r f- :I. 
[3] CHECI< : 4 ( 1::- N ) /0 • ---Branch to 0 (terminate the function) or fall 
r: 4· J Sf'S+I through to the next statement. 
[5] If-I+1 
(6)] '~CHECKV • ------ Unconditional branch to CHECK. 

BUM2 5 
:L5 

VS~"~3UM3 N 
[:1. :1 s~ .. () 
[2] If·Q 
[3J CHECK : S~-S+ I 
1:4] I~-I+1 

[5J .. ~ (I::;N) /CHECK'V • ---Branch to CHECK or fall through . 

SUM3 5 
:1.5 

Function Definition 93 



94 

Looping 

A repeated segment of a function is called a loop; when you have a loop 
in your program, you must provide a way to get out of the loop. 

EXAMPLE: 

VLOOP -·-----------This function executes a 
I: :I. ] If- 0 continuous loop. 

[2J LABEL: 'THIS PROGRAM CONTAINS A LOOP' 
[3J I~-I+:I. 

[4·J ~LABELV 

THIS 
THIS 
TI-IIS 
THIS 

LOOP 
PROGRAM 
PROGRAM 
pr~()GRAM 

PROGRAM 
THIS PI~OGRAM 
THIS PROGRAM 
THIS PI~OGRAM 

CONTAINS A 
CONTAINS A 
CONTAINS A 
CONTAINS A 
CONTAINS A 
CONTAINS A 
CONTAINS A 

LOOP 
LOOP 
LOOP 
LOOP 
LOOP 
LOOP 
LOOP 

Note: To stop execution 
of LOOP, press the ATTN 
key. 

LOOP[3J-'-------------Thenameofthefunction 
and the statement number 
where execution stopped is 

displayed. 

VLOOP[I.I.J~ (I¢:3) II...ABEL..'V I Provide a way to get out of 
VLOOP[[]]V the loop. 

'iJ LOOP 
[ 1 :1 If- 0 Display the function. 

[2] LABEL: 'THIS PROGRAM CONTAINS A LOOP' 
[3J If·I+:I. 
[4J ~(I~3)/LABEL 

LOOP 
THIS PROGRAM CONTAINS A LOOP}--
TH I S P ROG RAM CO NT A I NS A LOO P . The loop is executed three 
THIS PROGI~AM CONTAINS A LOOP times. 



(~ 

(~ _._--' 

c 

HOW TO ENTER DATA DURING FUNCTION EXECUTION .~ ~iI~ 

So far you have defined functions for which you have supplied the data 
for the function as arguments. This method of supplying data limits you 
to two input arguments, and you must be familiar with the function so 
that you can enter the required arguments in the correct order. However, 
you can also define user-defined functions that display requests for input 
data as the function executes. This type of function allows you to input 
any amount of data; and you can also define your function so that it 
specifies what type of data is to be entered. To do this, you use the 
D (quad) or [!] (quad quote) symbols in your function to request input 
from the keyboard. When a D is encountered in a function, execution 
stops and D: is displayed to indicate that the system is waiting for 
numeric or character input (character data must be enclosed in single 
quotes) for the keyboard. When a [!] is encountered in a function, 
execution stops, the cursor appears, and the system waits for input from 
the keyboard; but in this case, everything on the input line from 
position 1 to the cursor or the last character entered (whichever is the 
farthest on the input line) is treated as character input, even though you 
do not use enclosing single quotes when YQU enter the data. 

EXAMPLE: 

Enter the following user-defined function to determine the final score of a 
baseball game: 

VBASEBALL 
E1J 'ENTER THE NAME OF THE VISITING TEAM' 
[2] VISITf-~ 
[ 3 J 'ENT E R T~~:~E::-~: I~I:-( ~S: .. C~C;::-) R;:E~B;::-:Y~I~N~N~ITiN:J;G;:::-:}" ---- The input from the 

['+ J VSCO RE ~ .. O keyboard will replace 
[!:j] 'ENTE R THE NAME OF the D or [!] and be 
[6] HOME~"~ assigned to the 
1:"7:1 'ENTE R THE I I~ SCD RE BY I NN I NG ' variables. 
[8J HSCOREf·[]----------
[9] 'THE FINAL SCORE WAS:' 
1:3.0] VISIT 
[11] +/VSCDRE 
[12J HOME 
[13J +/HSCOREV 

The score by inning was: REDS - 0 1 0 2 0 3 2 5 0 
BLUES - 0 0 0 2 3 1 3 0 0 

Function Definition 95 



EXAMPLE (continued) 

Now execute the function: 

___________ 
Notice how the messages 
identify the type of key-

BASEBALL board input required. 
ENTER THE NAME OF THE VISITING TEAM 
REDS • This character data is not 

enclosed in single quotes, 
since it was requested by a 

ENTER THEIR SCORE BY INNING 
[I: 

[!] in the function. 

() :L 0 2 0 3 2 5 0 •• --------- This is not character data, 
ENTER THE NAME OF THE HOME TEAM since it was requested by a 
BLUES 0 and is not enclosed in 
ENTER THEI R SCOr~E BY INNING single quotes. 
0: 

o 0 023 1 3 0 () 
THE FINAL SCORE WAS: 
REDS 
1:3 
BLUES 
9 

Note: AD: indicates that 
the keyboard input is reques
ted by 0 in the function; no 
0: (blank line) indicates 
that the keyboard input is 
requested by [!J in the 
function. 

When you are using interactive functions, there may be times when you 
will need to escape from a request for input. Normally pressing the 
ATTN key will cause the execution of your function to stop; however, 
pressing the ATTN key during a request for input does not stop the 
function (the function will continue to wait for input to be entered). 
Therefore, APL provides a way to escape from input requests. To 
escape from a 0 input request, you enter -+, which will cause execution 
of your function to be terminated. 

To escape from a [!] input request, you must enter the OJ character. 
This character is entered by holding the CMD key and pressing the 0 
key once followed by the EXECUTE key. This will cause the execution of 
your function to stop. What you can do when your function stops is 
discussed next, in Chapter 8. 



(' 

(' 

c 

EXAMPLE: 

---------------- Let's use the BASEBALL 
function to show how to 
escape from input requests. 

~ ..... ---------------------- Entering -+ in response to 
a 0 input request causes the 
execution of the function 
to be term i nated. 

------------------------ Try escaping from a !!I by 
entering -+. Your entry was 
treated as a character, and 
used as the visiting team's 
name. 

------------ Enter some numbers so that 
the next !!I input request 

--~~~~~~~~~~~~~~~~~~~~~~~~willbediSPlayed. 

- lintering the QJ character 
(holding CMD and pressing 

the 0 key once) causes 

the execution of the function 
to stop. 

Function Definition 97 



Chapter 8. What You Can Do When Your Functions Stops 

98 

The execution of your user-defined function will stop when: 

• The ATTN key is pressed. 

• The stop feature is used. 

• An error is encountered in the function. 

• A QJ character (the CMD key held and the 0 key pressed once) 

is entered for a ~ input request. 

A function that has stopped executing for one of the preceding reasons 
is called a suspended function. A suspended function is still active, since 
its execution can be resumed later. 

Now let's look at what you can do when your function stops executing. 

WHEN THE ATTENTION KEY IS PRESSED 

When you press the ATTN key during the execution of your user
defined function, the function stops executing at the end of the 
statement currently being executed. In this case, the 5100 displays the 
function name and the next statement number to be executed. 

After your function stops executing, you can do one of the following: 

• Edit the function. 

• Execute the function again. 

• Execute another user-defined function. 

• Execute system commands except for )SAVE, )COPV, and )PCOPV. 
The system commands are described in the IBM 5100 APL Reference 
Manual, SA21-9213. 

• Terminate the function by entering -+. 



c 

c 

Generally, after you have stopped your function by pressing the ATTN 
key, you will want to resume execution of the function at a later time. 
To do this, you enter -+0 LC. D LC is a system variable that contains the 
statement number of the next statement to be executed (see the IBM 
5100 APL Reference Manual, SA21-9213, for a complete description of 
the 0 LC system variable). 

Note: If you wanted to resume execution at a statement other than the 
one immediately following the last statement executed, enter -+n (where 
n is the statement number at which you want to resume execution). 

EXAMPLES: 

VSFUNCT I ON i COUNT ~.------------ Define a function 
I: 1 J COUNT ~- 0 with a continuous 
[2J LOOP:' THIS FUNCTION CONTAINS A LOOP' loop. 
[3J COUNT~COUNT+l 
[I ... J ~LOOP 
[5J 'THIS FUNCTION LOOPED' 
[6J COUNT 
[7J 'TIMES'V 

SFUNCTION 
THIS FUNCTION CONTAINS A LOOP 
THIS FUNCTION CONTAINS A LOOP 
THIS FUNCTION CONTAINS A LOOP 
THIS FUNCTION CONTAINS A LOOP 
THIS FUNCTION CONTAINS A LOOP 
THIS FUNCTION CONTAINS A LOOP 
THIS FUNCTION CONTAINS A LOOP 

SFtJNCTION[~3]-'---------------

VSFUNCTION[~J~(COUNT<3)/LOOPV 

'+[]LC 

Press the ATTN 
key to stop execution 
of the function. 

The function is 
suspended at the 
statement number 
shown in the [ ] on 
your display screen. 

Edit the function so 
that it does not 
contain a continuous 
loop. 

Resume execution 
of the function. 

What You Can Do When Your Function Stops 99 



100 

EXAMP LES-continued 

THIS FUNCTION LOOPED 
7 .... ---........--------------------- The value shown 
T I MEr:) here on your display 

screen is the number 
of times the function 
looped. 

SFUNCTION .... -------------- Now execute the 
THIS FUNCTION CONTAINS A LOOP function again. 
THIS FUNCTION CONTAINS A LOOP 
THIS FUNCTION CONTAINS A LOOP 
THIS FUNCTION LOOPED 
3 
TIMES 

Note: When the ATTN key is pressed twice during the execution of an 
APL statement or expression (either within or outside of a user-defined 
function), the execution of the statement or expression stops 
immediately. The message I NTE R R UPT, the statement being 
processed, and the caret (A) that indicates where the statement was 
interrupted is displayed. You can use this method to interrupt 
statements that take a long time to execute. However, any results 
generated by the statement or expression before it was interrupted 
might not exist after the interrupt. 

WHEN THE STOP FEATURE IS USED 

You are already familiar with the stop feature, which was discussed in 
Chapter 7. When using the stop feature (as when using the ATTN key), 
you can do the following: 

• Edit the function. 

• Execute the function again. 

• Execute another user-defined function. 

• Execute system commands except for )SAVE, )COPY, and )PCOPY. 

• Resume function execution by entering -+ 0 LC. 

• Terminate the function by entering -+ • 

/ 'J ) 
~. 



WHEN AN ERROR IS ENCOUNTERED IN THE FUNCTION 

The reason the execution of your function stopped in this case, unlike 
the reasons in the other two cases, cannot be controlled by you. That 
is, the 5100 automatically stops the execution of your function and 
displays an error message when an error occurs in the function. The 
error messages and a suggested user's response for each error are 
described in the IBM 5100 APL Reference Manual, SA21-9213. 

Errors in a user-defined function are sometimes difficult to find and 
correct. The error message displayed indicates where the execution of 
the statement stopped, and why; but the reason the failure occurred at 
that point might have been because a mistake (either a keying error or 
an error in the solution to the problem) was made earlier in the statement 
or because a mistake was made in an even earlier statement in the 
function. Following are some hints to help you find errors in a statement 
or expression that is failing or giving the wrong results. 

• Check the expression (statement) you entered for any keying errors. 

• Analyze the execution of the expression from right to left. Remember, 
AP L executes an expression from right to left with the expressions in
parentheses resolved (right to left) as they are encountered. 

• Use the shape p function to make sure the shapes of the arguments 
are what you expect. For example, suppose you have a function 
named CAT that catenates two vectors together to form one vector; 
however, one of the arguments you supplied was a matrix. 

• Enter the names to check the values of the arguments to make sure 
they are what you expect (local names in a suspended function can 
be displayed, since the function is still active). 

• Break the expression down and execute it in smaller segments. 
The up • and down • arrows (scroll up and scroll down 

keys) make it easy for you to break the expression down; that is, you 
can execute the expression like APL does (from right to left with 
expressions in parentheses resolved as they are encountered). To do 
this, you enter the first operation performed by APL, for which the 
result will be displayed. Then press the down arrow three times and 
the up arrow once to remove the previous result from the display 
screen (so that it is not on the input line when the EXECUTE key 
is pressed again) and to place the instruction you just entered in a 
position for you to add more operations. Now you can add the next 
operation to the instruction, and the next, until the error in the 
instruction is found. 

What You Can Do When Your Function St-ops 101 



102 

It is important that you maintain a history (either a printout on the IBM 
5103 Printer or a handwritten copy) of what you did when you were 
trying to find the cause of an error. Then if you cannot find the error 
and you think the problem is caused by the 5100, this history will help 
your service representative determine where the problem is. 

When a function has stopped because an error occurred, as when pressing 
the ATTN key or using the stop feature, you can do the following: 

• Edit the function. 

• Execute the function again. 

• Execute another user-defined function. 

• Execute system commands except for )SAVE, )COPY, and )PCOPY. 

• Resume execution of the function by entering -+0 LC. 

• Terminate the function by entering -+ . 

WHEN A I) CHARACTER IS ENTERED FOR A [!J INPUT REQUEST 

In Chapter 7, you used the m character to escape from a [!J input request 
and to stop function execution. In that case, the 5100 displayed the 
message INTERRUPT, the function name, and the statement that 
requested the input. After your function stops, you can do the same 
operations that you did when the function stopped for any other reason. 
However, in most cases, you will want to terminate the function by 
entering -+ . 

FINDING OUT WHAT FUNCTIONS ARE SUSPENDED 

The state indicator contains the function name and the number of the 
statement to be executed next for each suspended function. To display 
the state indicator, you enter )SI or )SIV. See the IBM 5100 APL 
Reference Manual, SA21-9213, for more information on the state 
indicator. 



( 

c 

USING THE HOLD KEY TO STOP PROCESSING II 
We have already discussed the ways a user-defined function can be 
suspended. You can also stop the execution of a function by pressing the 
HOLD key once. In fact, this stops the entire system from processing 
any data. To resume processing after pressing the HOLD key, you must 
press the HOLD key again. The HOLD key is useful when the information 
on the display screen is changing rapidly; that is, you can stop processing, 
read the displayed information, and then resume processing. 

EXAMPLES: 

VHDLDF t Define a function. 
[1] H~"O 

[2J 'PRESS THE HOLD KEY TO STOP PROCESSING' 
[~:~] LOOP: HE"H+l 
['+] H 
[5J ~(H¢25)/LOOPV 

HDI...DF 
PRESS THE HOLD KEY TO STOP PROCESSING 

,.:.. ~ I 3 .t------------ The value displayed here on your 
• display screen indicates how many 

times the function looped before 
processing stopped. 

Now press the HOLD key again to resume processing. 

Note: If your 5100 is not processing any data or user-defined functions 
and the cursor is not flashing on the display screen, the HOLD key 
might have been pressed once, stopping all processing. 

What You Can Do When Your Function Stops 103 



Chapter 9. Using Your Tape Cartridge (Library) 

104 

So far you have used only the IBM 5100 active workspace. The active 
workspace is the part of the 51 OO's internal storage where the calculations 
are performed; it is also the place where the variables and user-defined 
functions are stored. When you set the 5100 POWER ON/OFF switch 
to off or press RESTART, the data in the active workspace is lost. 
However, before turning the power off or pressing RESTART, you can 
save the data in your active workspace by writing the contents of the 
active workspace on a tape cartridge. This tape cartridge is like a library; 
that is, you can write the contents of your active workspace on the tape 
(like placing a book on the library shelf) and, at a later time, put the 
information stored on the tape back into the active workspace (like 
taking the book off the library shelf to use it again). 

The tape library consists of one or more files (each file is I ike a book), 
and just as each book in a library has a name, each file that contains 
information on the tape also can have a name (file identification). 

The IBM 5100 system commands are your means of controlling the 
active workspace and tape (library). Look at the labels above the alpha
meric keyboard; these system command keywords can be entered by 
simply pressing the eM D key with the appropriate key below the label. 
The system command keywords can also be entered character by 
character. Notice that each system command begins with a ) symbol. 
There are some system commands that do not appear on the labels above
the keyboard. All of the 5100 system commands are discussed in detail 
in the IBM 5100 APL Reference Manual, SA21-9213. 

In the following example, you will see how some of the system commands 
work. First, a tape cartridge must be inserted into your 5100. Be sure 
the tape contains no data required for any further use, and that the SAFE 
switch (Figure 2) does not point to SAFE. Now insert the tape cartridge 
(Figure 3). 



c~' 

Make sure the SAFE switch 
is not in this position. 

Figure 2. The SAFE Switch 

Insert the tape cartridge into the 5100 as shown. 

Figure 3. Inserting a Tape Cartridge into Your IBM 5100 

Using Your Tape Cartridge (Library) 105 



106 

EXAMPLES: 

Press RESTART on your 5100; all the data that was in the active workspace is now 
lost. 

CLEA R WS .1------------ This message will be displayed 
when the 5100 is again ready 
for you to enter data. 

Enter the following function and variable so that you can store them on tape for 
later use: 

VEXAMPLEiRiNAME 
[lJ 'THIS FUNCTION COUNTS THE CHARACTERS IN YOUR NAME' 
[2J 'NOW ENTER YOUR NAME' 
[3J NAME4, .. ~ 
[I+J 'THERE ARE' 
[5J pNAME 
[6J 'CHARACTERS IN YOUR NAME'V 

VARIABLE~'LET' 'S SAVE THIS DATA' 

Now try the function EXAMPLE to see if it works. 

) FNS .1-------......;..-- The )FNS system command 
EXAMPLE displays user-defined function 

names in the active workspace. 

) VA RS··---------- The )VARS system command 
VA R I A B L E displays the global variable 

names in the active workspace. 

Before a tape can be used, the files you want to use must be formatted. 



(~" 

c 

The) MA R K command formats 
files on the tape. This command 
specifies: 

I I tr-----
- Size of the files to be 

formatted 
- Number of files to format 
- Starting file number 

)MARK 16 ~5 1 
MARKED 0003 0016 

- APL will respond with MARKED, 
number of the last file marked, 
and the size of the files; If the 
file you want to use has been 
marked before, you will get a 
message ALREADY MARKED. 
In this case, enter GO and press 
the EXECUTE key to reformat 
the tape files. 

The files are formatted in blocks of 1024 bytes. For example, the size of the files 
just formatted is sixteen 1024 byte blocks (or 16384 total bytes). See the IBM 
5100 APL Reference Manual, SA21-9213, for information on what size to format 
files. 

Now let's write the contents of the active workspace on the tape. 

) CONT I NUE :J. 00:1. INFO. This becomes the name of the 
CONTINUED 1001 INFO ~fileontape. 

This specifies the device/file 
number (device 1, file 001 ) 
where the contents of the 
active workspace are written. 

) CLEAR ~.---------- You do not have to turn the 
CLEAr~ WB power off or press RESTART 

to clear all of the existing data 
out of the active workspace; 
you can use this system 
command. 

The data in a stored workspace can be placed back into the active workspace. 

)LOAD 
LOADED 10 () 1. 

1. 0 0 1 I N F () • The stored workspace name 
INFO~. (workspace 10). 

~ The device/file number where 
the stored workspace wi II be 
loaded from. 

Using Your Tape Cartridge (Library) 107 



108 

)FONS -
E X AMP L E _ ...... ---------- Now the data that was stored 

) VARS on tape is in the active work-
VARIABLE space once again. 

The remaining system commands are described in the IBM 5100 APL Reference 
Manual,SA21-9213. Try using these system commands to see how they work. 

So far, you have learned how to write the entire contents of the active 
workspace on tape. However, you can also write one variable at a time 
to a file on tape. This data can then be read from tape at a later time in 
the same order as it was written to tape. For more information on how 
to do this, see Chapter 8, Tape and Printer Input and Output in the IBM 
5100 APL Reference Manual, SA21-9213. 

WHAT ARE SYSTEM VARIABLES? 

System variables are variables within the active workspace that control 
the system. All system variables begin with the 0 symbol and are set to 
an initial value by the 5100 in a clear workspace. See the IBM 5100 APL 
Reference Manual, SA21-9213, for a complete description of each system 
variable. In the following example, you will see how the value of some 
system variables can be changed and how this affects certain APL 
functions. 

EXAMPLES: 

The index origin 010 system variable determines the index origin. The value of 
the 010 system variable can be either 0 or 1, which means that the first element of 
a vector or array is indexed with a 0 or 1 depending upon what the 010 system 
variable is set to. The APL functions t ? ~ Ware affected by the 010 system 
variable. 

1 

1 

IJIO .... ----------- You can display the value of a 
system variable the same way you 
display the value of any variable. 

The 010 system variable is 
initially set to 1 by the system. 

Results when the 010 system 
variable is set to 1. 

\ 

'"'- ,. 



c 

C
I~ 

~/ 

~3?3 
3 1 2 ~.--------------- These numbers can be in any 

0 1. r) 
.: .. 

1 2 0 

[]IO"'O 
I!.~ 

\0 

3 '+ 
~5?:·3 

order. 

You can change the value of 
some system variables. 

Notice how the results of these 
APL functions change when the 
D 10 system variable is changed. 

These numbers can be in any 
order. Notice that the values 
start from O. 

The printing precision 0 PP system variable determines the number of significant 
digits displayed. 

[]PP 
5 ~.----------------- The DPP system variable is 

1,·:-.3 
o . ~~3333 

initially set to 5 by the system. 

0.33 
Five significant digits are 
displayed. 

Now only two significant digits 
are displayed. 

The comparison tolerance 0 CT system variable determines how close two numbers 
must be when you are using the relational, floor, or ceiling functions. 

o 

1 

UCT ~.------------ The OCT system variable is 
initially set to 1 E-13. by. the 

~~r~~~L_ ~~~~~~, 
, ... },J,.J .... I,.J..'(.).·~· , , .. 1, •. 1 ,.} "JJ"} f '" system. 

OCT ~-:I. E '-:j ~ These two values are not 
. 555~:j~)56:::: , :.i~:j~55~:j57 considered equal. 

~NOW these two values are 
considered equal. 

) CLEA I~ The workspace is clear and the 
CLEAR WS :.: ... :.:.:.~----------- system variables are once again 

set to their original values. 

Using Your Tape Cartridge (Library) 109 





c 

REMEMBER, APL IS A GOOD LANGUAGE 

TO EXPERIMENT WITH. THE MORE YOU 

EXPERIMENT, THE MORE YOU LEARN. 

c 

c 
111 



Appendix A. Overstruck Characters 

/ t 
, .. J 

Name Character Keys 

Comment 

Compress r (See note) 

Execute 

Expand ~ (See note) , 

Factorial, Combination 

Format 

Grade Down 

Grade Up 

Logarithm 

Matrix Division 

Nand 

Nor 

Protected Function 

112 



Name Character Keys 

(' Quad Quote 

Rotate, Reverse 

Rotate, Reverse e (See note) 

Transpose 

Note: These are variations of the symbols for these functions; they 
are used when the function is to act on the first coordinate of an array_ 

c 

Overstruck Characters 113 

,,,.,,,',,,.',,,,,,,""'"'''',,"''''',"''''' '"'''~''''''''''m''''' "", .. " "", .. "'". """'"'''''''''' ""," '" "'"." I'! I ·~ ... ·~rr.!!'~t"'.'!'''"''·''''II''I' !'I'''~I I ""!t'!" I!" ."~.~'J"'!'!'_".'!"'.'."!' .• :!l"!!"'!!l~'''!!!'!!!lI''!''!!''IJ'lftI'., .. , ..•. 



Index 

)CLEAR command 107, 109 
)CONTINUE command 107 
)FNS command 106 
)LOAD command 107 
)MAR K command 107 
)VARS command 106 
[I] 45,46,48 
[0] 78 
[On] 83 
[nO] 83 
[lln] 82 
o 95 
0: 95 
OCT 109 
010 108 
OPP 36,109 
I!l 95 
-+[] LC 76, 99 
., character 96, 102 
'lsymbol 71 
r function 29, 41 
L function 29, 42 
~ function 30 
,function 30 
? function 31, 43 
\ function 22, 32 
p function 32 
< function 34 
$ function 34 
> function 34 
~ fu nction 34 
= function 34 
=1= function 34 
" function 37, 38 
v function 37, 39 
/ function 44, 45 
, function 47 
~ function 51 

active workspace 104 
adding statements 79 
addition 14 
alpha keys 2 

114 

alphameric keys 2 
ALREADY MARKED 107 
alternating sum 56 
and function" 37, 38 
and reduction 48 
APL language 1 
APL system command keywords 4 
arguments 14, 28, 87 
arithmetic function keys 4 
arithmetic operations 14 
assign a value 17 
assignment arrow 17 
attention key (see ATTN key) 
ATTN key 4, 12, 74, 98 
average 53 

backspace key 4, 8, 9, 10 
BASI C/ AP L switch 4 
black background 7 
black characters 7 
blank character 26 
branching 91 
brightness control 7 
built-in functions 1, 14, 59 

calculator arrangement 4 
catenate function, 47 
ceiling function r 29 
character data 26 
CLEAR WS 4 
closing IJ 72 
CMD key 4,9 
column 22 
command keywords 4 
comparison tolerance OCT 109 
compress fun<::tion / 44 
conditional branch 92 
conform 48 
consecutive numbers 31 
control panel 1 

/ 



<= 

c: 

C 

C 

coordinate, acted on 45,46 
correct a keying error 
correcting keying errors 
cursor 5 

deal function? 43 
del symbol 71 
delete a character 9 
deleting statements 82 
display appearance 7 

11 
8 

display global variable names 106 
display registers/normal switch 4 
display screen 1, 5 
displayed information 5, 6 
displaying a statement 83, 84 
displaying data 5 
displaying from a specific statement 83 
displaying the entire function 78 
displays user-defined function names 106 
division 14 
down arrow 7, 12, 72 

editing a function 77 
editing the function header 84 
empty vector 32,50 
enteri ng data 5 
entering data during function execution 
equal to function = 34 
error in the function 101 
error message 18,74,101 
escape from input requests 
EXECUTE key 4,6,12 
execution mode 71 
expand a vector or matrix 
expand function \ 
explicit result 

features 
files 104 
flashing line 5 

88 

floor function L 29 
format files 107 

45 

96 

45 

95 

forward space key 4,8,9,10 
function body 72 
function definition 71 
function definition mode 71 
function editing 77 
function execution stops 98 
function header 71, 84, 88, 89 
functions 1 

global names 89 
global variable names 106 
grade down function t 30 
grade up function ~ 30 
greater than function> 34 
greater than or equal to function;:::: 34 

history 5 
HOLD key 4,103 
HYP function 71 

index generator function 1 31 
index numbers 24 
index of a value 43 
index of function 1 43 

index origin 010 108 
index value [I] 45, 46, 48 
indexed 30 
indexing 24 
indicator lights 
input 5 
input line 7 
insert a character 10 
insert blanks or zeros 45 
insert tape cartridge 104 
inserting statements 81 
instructions 71 
interactive functions 96 
internal checks 4 
internal precision 36 

Index 115 



join two items 47 

keyboard 
keying errors 8 
keys 1 
keywords 4,104 

labels 91 
larger of two numbers 41 
less than function < 34 
less than or equal to function:$ 34 
library 104 
local names 89 
local variables 91 
logarithm function ~ 51 
logarithm of a number 51 
logical functions 37 
looping 74, 94 
lost lines 7 
L32 64 R 32 switch 4, 7 

matrices 19 
matrix 22, 26 
maximum function r 41 
maximum reduction 57 
minimum function L 42 
minimum reduction 57 
minus 15 
minus reduction 56 
modifying a statement 83 
move display lines 7 
multiplication 14 

negative numbers 15 
negative sign 15 
not equal to function =1= 34 
numeric keys 4 

116 

operating keys 4 
or function v 37, 39 
or reduction 58 
order of execution 18, 19 
overstruck character 28 

parentheses 19 
place a stored workspace into the active 
workspace 107 

plus reduction 53 
portable computer 
power function * 16 
power up sequence 4 
printing precision DPP 109 

quad input 95 
quad quote input 95 

random number 31,43 
reduction 53 
relational functions 34 
reopen function definition 77 
replace a character 8 
replacing statements 80 
request for input data 95 
reshape function 22 
restart sequence 4 
restart switch 4 
result variable 72, 77, 88 
reverse display switch 7 
roll function? 31 
root of a nu mber 17 
rounding off numbers 29 
row 22 

SAFE switch 104 
scalar 26 
scroll down 72, 83 
scroll down key 4, 7 
scroll up 72, 83 



c 

scroll up key 4, 7 
selecting certain elements 44 
semicolon 25 
set up procedure 
shape 32 
shape function p 32 
shift key 2 
single quote chatacters 26 
smaller of two numbers 42 
sorting a vector 30 
standard typewriter 2 
state indicator 102 
statement number 72 
statements 71 
stop control feature 100 
stop execution 75 
stop feature 75 
stop processing 103 
storing data 17 
strings of numbers 19 
subtraction 14 
suspended functions 75, 98 
switches 1, 4 
system command keywords 4, 104 
system commands 104 
system variables 108 

tables 19 
tape cartridge 104 
testing your function 73 
trace featu re 75 
turn off stop 76 
turn off trace 76 
typewriter 2 

unconditional branch 92 
up arrow 7, 12, 72 
user-defined functions 14, 71 

variable name 17 
variables 17 
vectors 19, 26 

white background 7 
white characters 7 
write the active workspace to tape 107 

Index 117 





( """'" -, 

_/ 

C~'\ 
y 

c 

c 

READER'S COMMENT FORM 

IBM 5100 SA21-9212-1 
APL Introduction 

YOUR COMMENTS, PLEASE . .. 

Your comments assist us in improving the usefulness of our publications; they are an important 
part of the input used in preparing updates to the publications. All comments and suggestions 
become the property of IBM. 

Please do not use this form for technical questions about the system or for requests for additional 
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM 
representative or to the IBM branch office serving your locality. 

Corrections or clarifications needed: 

Page Comment 

I would like a reply. D 
Name ____________________________________________________________ _ 

Address 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



SA21-9212-1 

Fold 

Fold 

--- -------------------- ------------_.-
" 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ... 

I BM Corporation 
General Systems Division 
Development Laboratory 
Pu bl ications, Dept. 245 
Rochester, Minnesota 55901 

International Business Machines Corporation 
General Systems Division 
57750 Glenridge Drive N.E. 
Atlanta, Georgia 30301 
(USA Only) 

I BM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(I nternational) 

Fold 

FIRST CLASS 

PERMIT NO. 387 

ROCHESTER, MINN. 

Fold 

.~ 

p *" i'" ... 

CD 
s:: 
UI 
..& 
Q 
Q 

» 
." 
r-
;-.... ... 
0 a. c n 
ct. 
0 
::s 

." ... 
S· 

I 
S· 
C 
en 
~ 

en » 
N 
..& 

cD 
N 
..& 

~ 
..& 



(~-

c 

c 

READER'S COMMENT FORM 

IBM 5100 SA21·9212·1 
APL Introduction 

YOUR COMMENTS, PLEASE .•. 

Your comments assist us in improving the usefulness of our publications; they are an important 
part of the input used in preparing updates to the publications. All comments and suggestions 
become the property of IBM. 

Please do not use this form for technical questions about the system or for requests for additional 
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM 
representative or to the IBM branch office serving your locality. 

Corrections or clarifications needed: 

Page Comment 

I would like a reply. D 
Name _______________________________________________________ ~ 

Address ______________________________________ _ 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A . 

........ "" .• ~ •••• , ... "-, ..... "."""" .. " .. , ••• "" ... , •• " •• "' •. -,,.~---." ••.•.. "'''.'''''' ... ''''' •.. ,,,''.'''.'''' ... ,,.... . .•. ~......,.......,."".~."., . "."" ..•. "'''~.-.'''-...-...., ..................... ..."."..-.... ''' •. ,.".''''''." .. '''-~,-~~-.--.. - .. """" '''''''' • """"--'!"!" '''''''''''''.'''''''' ''''.''''.'''''.''''',"'''''' '''.' , ,,' , "'." ..•. ,,,, ...... ,,"'''' .•. ,,,"',,,,,,.,,.'''.' "", " .. ".'" ""''''-~'''''''''''"''''''''''"' .. ' 



SA21-9212-1 

Fold 

Fold 

--- ------ ----
:: :=:. === ==-=~= 

'.]) 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ... 

I BM Corporation 
General Systems Division 
Development Laboratory 
Pu bl ications, Dept. 245 
Rochester, Minnesota 55901 

International Business Machines Corporation 
General Systems Division 
57750 Glenridge Drive N.E. 
Atlanta, Georgia 30301 
(USA Only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

Fold 

FIRST CLASS 

PERMIT NO. 387 

ROCHESTER, MINN. 

Fold 

(') 
c: ... 
» 
o 
::l 

co 
r 
5· 
CD 

~ .. 
:i" 
S-a. 
S· 
c en 
~ 
(I) 

» 
N -cD 
N -~ - '" 



(
'''''''' ''>, 

"" ..... ' 

o 

c 

c 

READER~COMMENTFORM 

IBM 5100 SA21·9212·1 
APL Introduction 

YOUR COMMENTS, PLEASE ..• 

Your comments assist us in improving the usefulness of our publications; they are an important 
part of the input used in preparing updates to the publications. All comments and suggestions 
become the property of IBM. 

Please do not use this form for technical questions about the system or for requests for additional 
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM 
representative or to the I BM branch office servi ng your local ity. 

Corrections or clarifications needed: 

Page Comment 

I would like a reply. D 
Name ____________________________________________________________ _ 

Address ------------------------------------------------------------

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



SA21-9212-1 

Fold 

Fold 

BUSINESS REPLY MAIL 

NO POSTAGE STAMP NECESSARY I F MAILED IN THE UNITED STATES 

POSTAGE Will BE PAID BY ... 

I BM Corporation 
General Systems Division 
Development Laboratory 
Pu bl ications, Dept. 245 
Rochester, Minnesota 55901 

International Business Machines Corporation 
General Systems Division 
57750 Glenridge Drive N.E. 
Atlanta, Georgia 30301 
(USA Only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

Fold 

FIRST CLASS 

PERMIT NO. 387 

ROCHESTER, MINN. 

Fold 

0:1 
s: 
en 
..a 
0 
0 

» 
"'D 
r-
;-,.. .. 
0 
~ c n 
ct. 
0 

= 
"'D .. s· 
rt 
~ 

S· 
c: en 
~ 

(I) 

» 
N 
..a 
cD 
N 
..a 
~ 
..a 



( 

c 

c 

o 

READER~COMMENTFORM 

IBM 5100 SA21-9212-1 
APL Introduction 

YOUR COMMENTS, PLEASE ••. 

Your comments assist us in improving the usefulness of our publications; they are an important 
part of the input used in preparing updates to the publications. All comments and suggestions 
become the property of IBM. 

Please do not use this form for technical questions about the system or for requests for additional 
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM 
representative or to the IBM branch office serving your locality. 

Corrections or clarifications needed: 

Page Comment 

I would like a reply. 0 
Name ________________________________________________________ ___ 

Address ___________________________________ _ 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



SA21-9212-1 

Fold 

Fold 

--- ------ --------- - ---
:!:====~= .;J 

BUSINESS REPLY MAil 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY , , , 

I BM Corporation 
General Systems Division 
Development Laboratory 
Publications, Dept. 245 
Rochester, Minnesota 55901 

International Business Machines Corporation 
General Systems Division 
57750 Glenridge Drive N.E. 
Atlanta, Georgia 30301 
(USA Only) 

I BM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(I nternational) 

Fold 

FIRST CLASS 

PERMIT NO. 387 

ROCHESTER, MINN. 

Fold 

(') 

S 
» 
0" 
::l 

IC 

r 
5' 
m 

CD s:: 
U1 -0 
0 

» 
." 
r-
;-
r+ .. 
0 
Q. 
C 
n 
r+ 
0' 
~ 

." .. 
5' 
r+ 
(1) 

Q. 

:r 
C 
en 
~ 

en » 
N -cQ 
N -~ -




