uonaonponu| Jdy
181ndwo?) 8/qeliod

00LG NWEI

=
o
&
Q
3
)
o
By
eyt
=
w
o
<

IBM 5100

SA21-9212-1

Preface

This manual discusses the mechanics of using APL with the IBM 5100.
It is intended to provide the users of the 5100 with enough background
in the APL language to use the /BM 57100 APL Reference Manual,
SA21-9213, for answering their questions about how the APL functions
work.

Second Edition (December 1975)

This is a major revision of, and obsoletes, the previous edition
SA21-9212-0. Changes are continually made to the specifications
herein; any such changes will be reported in subsequent revisions
or technical newsletters.

Requests for copies of IBM pubilications should be made to your
IBM representative or the IBM branch office serving your locality.

A form for reader’s comments is at the back of this publication.

If the form is gone, address your comments to 1BM Corporation,
Publications, Dept 245, Rochester, MN 55901.

© International Business Machines Corporation, 1971, 1975

CHAPTER 1. INTRODUCING THE IBM 5100
About this Manual .
About the APL Language .
About the 5100
Alphameric Keys .
Numeric Keys .
Operating Keys
APL System Command Keywords
Arithmetic Function Keys .
Getting Started .
Entering and Displaying Data
Correcting Keying Errors
Replacing a Character
Deleting a Character .
Inserting a Character

CHAPTER 2.
LANGUAGE
Types of Functions in APL .
Addition, Subtraction, Multiplication, and
Division .
Another Arithmetic Functlon Ralsmg a Number
to a Power
Finding the Root of a Number R
Storing Data in the 1BM 5100 for Later Use .
Performing Several Operations in the Same
Instruction
Specifying the Order of Executlon Usmg
Parentheses
Using Strings of Numbers and Tables
Using APL with Strings of Numbers (Vectors)
Using APL with Tables of Numbers (Matrices)
Referring Only to Certain Numbers in a String or
Table of Numbers (Indexing)
You Are Not Limited to Using Only Numbers

INTRODUCING THE APL

CHAPTER 3. APL FUNCTIONS THAT REQUIRE
ONE ARGUMENT

How Many Arguments Are Requrred by an APL
Built-In Function? .

APL Function Symbols That Are a Comblnatlon
of Two Characters .

Determining the Whole Numbers Nearest a
Fraction . .

Rounding to the Nearest Whole Number .

Sorting a Vector in Ascending or Descending

Sequence .

-

O WOWOMOTHEBBEBNNN=S — =

—_

14
14
16
17
17
18
19
19
20
22
24
26
28
28
28

29
29

30

Contents

Generating a Random Number

Generating Consecutive Numbers
Generating an Empty Vector .

Finding the Shape of an Existing Varlable

CHAPTER 4. APL FUNCTIONS THAT
REQUIRE TWO ARGUMENTS
Relational Functions .
Why Two Numbers identical in Appearance
Are Not Always Equal
An Example Using a Relational Functlon
Logical Functions
And .
Or.
Finding the Larger of Two Numbers
Finding the Smaller of Two Numbers .
Finding the Index of a Value in a Vector .
Generating a Random Sequence of Numbers .
Selecting Certain Elements From (Compressing) a
Vector or Matrix .
Expanding a Vector or Matrlx
Joining Two Items Together .
Building a Vector of Results Using Catenatlon
Finding the Logarithm of a Number

CHAPTER 5. APPLYING THE SAME
OPERATION TO ALL THE ELEMENTS OF A
VECTOR COLLECTIVELY (REDUCTION}

Plus Reduction

Using Plus Reductron to Flnd the Average
Using Plus Reduction to Sum the Products of
Two Vectors .

Minus Reduction (Alternatmg Sum) .

Maximum Reduction: Finding the Largest Value
in a Vector :

Minimum Reduction:
in a Vector

Or Reduction: Checklng for a Specrfrc Value
in a Vector

And Reduction: Checkmg for All Values in Two
Vectors Being Equal .

CHAPTER 6. USING THE BUILT-IN
FUNCTIONS . . .

Now Let's Look at the Thmgs You Can Do

Finding the Smallest Value

31
31
32
32

33
34

36
36
37
38
39
41
42
43
43

44
45
47

49
51

53
53
53

56
56

57

57

58

58

59
59

iii

CHAPTER 7. FUNCTION DEFINITION
What Is Function Definition? .
How Is a Function Defined? .
Testing Your Function Before Using It
How To Use the Trace and Stop Features
Trace TA
Stop SA .

What To Do If You Make a Mvstake When Deflnmg

Your Function .
Displaying the Entire Functlon

Adding One or More Statements at the End of

the Function . .
Replacing Statements WIthm a Functlon .
Inserting One or More Statements in a

Function . .
Deleting a Statement from a Functlon
Displaying a Specific Statement or from a

Specific Statement to the End of a Function
Modifying a Single Statement .

Editing the Function Header .
A Faster Way to Add, Replace, or Insert One

Statement in a Function .

Types of Function Headers
Why Have a Result Variable? .
Local and Global Names
Branching, Labels, and Looping .
Branching and Labels
Looping . . .o
How To Enter Data during Functnon Executlon

71
71
71
73
75
75
75

77
78

79
80

81
82

83
83
84

85
87
88
89
91
9N
94
95

CHAPTER 8. WHAT YOU CAN DO WHEN
YOUR FUNCTION STOPS .

When the Attention Key Is Pressed .

When the Stop Control Feature Is Used

When an Error Is Encountered in the Function .

When a O Character is Entered for a [1] Input
Request

Finding Out What Functlons Are Suspended
Using the Hold Key To Stop Processing

CHAPTER 9. USING YOUR TAPE
CARTRIDGE (LIBRARY) .
What Are System Variables? .

APPENDIX A. OVERSTRUCK CHARACTERS .

INDEX .

98
98
100
101

102

102
103

104

108

112

114

C

Chapter 1. Introducing the IBM 5100

ABOUT THIS MANUAL

This manual will show you how to operate the IBM 5100 using the APL
language. If you are not familiar with the APL language, you should do
the suggested keying operations or examples on your 5100 while reading
the manual from cover to cover. If you are familiar with the APL
language, you should read Chapters 1 and 2 to learn how to operate the
5100; however, you may then want to skip to Chapter 7. Not all of the
features or functions of the APL language are covered in this manual.
For more information about the 5100 or the APL language, see the

IBM 5100 APL Reference Manual, SA21-9213.

This manual was written with the assumption that the 5100 has been
set up and checked out. If the 5100 has not been set up, use the set
up procedure in the /BM 5100 APL Reference Manual before
continuing to read this manual.

ABOUT THE APL LANGUAGE

APL has many built-in functions that allow you to effectively solve your
problems. However, if you need a special function to solve a problem,
APL also allows you to define your own functions. The functions you
define are similar to programs written in other computer languages.

APL is a good language to experiment with; nothing you do from the
keyboard can damage the 5100, and the more you experiment, the more
you will learn about APL.

ABOUT THE 5100

The IBM 5100 (Figure 1) is a portable computer designed to help you
solve problems. The display screen and indicator lights communicate
information to you, and the keyboard and the switches aliow you to
control the operations the 5100 will perform.

Before you begin to use the 5100, you should become familiar with the
keys and control panel (Figure 1). The control panel switches will be
explained later. A brief description of the keys follows; how you use the
keys will be discussed later.

Introducing the IBM 5100

Alphameric Keys

The alpha keys are similar to those on a standard typewriter, except that L
there are no lowercase characters. The alpha characters are all uppercase,)»
even though they are in the lowercase position on the keys. Thus, you
do not use the shift key for alpha characters.

If you want to enter an upper shift character, you must hold down the
shift key and then press the key to enter the character, just as you would —
to type an uppercase character on an ordinary typewriter.

Numeric Keys

Either the top row of alphameric keys or the special calculator
arrangement of numeric keys can be used to enter numbers.

Operating Keys
The black key labeled CMD, the gray keys with the legend names
EXECUTE, ATTN, and HOLD, and the gray keys with the arrows are
all special operating keys. The keys with the arrows and the space bar,

which is used to enter blank characters, automatically repeat the operation
they perform when held down.

Backspace key

Forward space key

Attention key

Scroll up key

Scroll down key

Hold key

!

Execute key .

REVERSE

IN PROCESS DISPLAY RESTART
(‘“ Indicator Switch Switch
PROCESS BASIC/APL DISPLAY
CHECK Indicator Switch REGISTERS/NORMAL

Error Switch

Message

(s List
_~ Brightness L32 64 R32
Control Switch

ON/OFF
Tape
/Cartndge

L Switch

Display
Screen

Special Operator Keys

Arithmetic
Function
Keys

Alphameric
Keys

\gj Numeric Keys

EXECUTE Key

Shift Key

Figure 1. The 5100

Introducing the IBM 5100 3

APL System Command Keywords
The words that are above the top row of numeric keys are system command
keywords, which you can enter by holding down the CMD key and then
pressing the key below the desired keyword. For example, to enter
)LOAD, hold down CMD and press the 1 key. The system commands
and their uses are discussed later, in Chapter 9.

Arithmetic Function Keys
The four keys to the right of the calculator arrangement of numeric keys
are the arithmetic function keys. These keys are used to perform division,
multiplication, subtraction, and addition. There are also keys on the
alphameric keyboard that perform these functions. Notice that the + and
x symbols are used for division and multiplication.

GETTING STARTED

Make sure the switches on your |IBM 5100 are set as follows:

Switch Setting
L32 64 R32 64
BASIC/APL (Combined machines only) APL
DISPLAY REGISTER/NORMAL NORMAL

If your 5100 has the BASIC/APL switch, it can execute both BASIC and
APL language statements. The language to be used is selected by the user
before power up or during the restart sequence.

Make sure your 5100 is piugged in and turn power on. If power is
already on, press RESTART and wait about 20 seconds. During this
time, the 5100 performs internal checks to make sure it is operating
correctly,

After 30 seconds, if the message CLEAR WS has not appeared in the
lower lefthand corner of the display screen, an error has been detected
during the internal checks. In this case, press RESTART. The 5100 will
perform the internal checks again. If the CLEAR WS message does not
appear after several tries, call your service representative.

(mm
-

-

®

ENTERING AND DISPLAYING DATA

First, let’s look at the display screen. Normally, information displayed
by APL begins at the left edge of the display screen, and the input from
the keyboard is indented when it is displayed. The small horizontal
flashing line indicates the position on the line where the next input from
the keyboard will be displayed. This flashing line is called the cursor.
The cursor moves as each character is displayed.

The display screen can contain up to 16 lines of data. Each line has 64
positions across the display screen. The bottom two lines are used to
display input, and the remaining 14 lines contain a history of the opera-
tions you have performed.

Line I 64 Character Positions
Numbers
15 []
14
13
12
11
10
9
8
7
6
5 This message is displayed when your 5100
4 is ready for use.
3
2 CLESE WS / Cursor (flashing line)—display of keyboard
1 input normally begins indented six positions
0 on line 1. ,

There are 128 positions available for input from the keyboard; that is,
there are 64 positions available on line 1 and 64 positions on line 0. When
position 64 of line 1 is used as you enter data from the keyboard, the
cursor moves to the left margin of line 0. The cursor is then at position
65 of the possible 128 positions available for input.

Introducing the IBM 5100

Now let’s enter some data into the 5100 using the numeric keyboard
and the arithmetic function keys. Press the following keys:

Notice that the characters are displayed as each key is pressed. To
process the data you just keyed, you must press the EXECUTE key.
Press the EXECUTE key now.

The display screen will look like this:

CLEAR WS
PR

Notice that the instruction you entered, 2+3, appears indented on the
display screen; the answer, 5, appears on the left margin of the next line;
and the cursor appears on the next line. The information displayed moves
up each time the EXECUTE key is pressed.

Enter and execute the instruction 125+75 by pressing the following keys:

OO O]

The display screen will look like this:

CLEARE W&
23
LGS

200

The appearance of your display can be changed by switches on the
control panel. The REVERSE DISPLAY switch allows you to change
from black characters on a white background to white characters on a
black background and vice versa. Change the switch and select the type
of display you feel most comfortable with. You may have to adjust the
brightness control as you change from one to the other.

Now, watch the display as you set the L32 64 R32 switch to the L32
position. With the switch in this position, the leftmost 32 characters on
each line are displayed with an extra space between each character. The
rightmost 32 characters on each line will not be displayed. With the
switch in the L32 position, your display should look like this:

ool Ea R W5
2+ 3
&
1 I S

In the R32 position, the rightmost 32 characters are displayed with a
space between each character. Now, set the switch in the R32 position
and notice that the display is blank because there were no characters in
the rightmost 32 positions of the display screen.

Return the switch to the 64 position, and notice that all characters are
displayed without the space in between. For exercises in the remainder
of this book, keep the switch in the 64 position.

There are two keys above the numeric keys that move the display line
up or down. The up arrow | (scroll up key) moves the display up

one line and the down arrow | (scroll down key) moves the display
down one line. As the lines are. moved up or down, the displayed
information on any line that is moved off of the display screen is lost.
Either key continues to move the display lines if it is held down. Now
use the down arrow to move the display down one line.

The display will look like this:

CLEAR WS

The value 200 is now on the input line and
can be used as input. Notice that input can
begin in any position on the line.

Introducing the |1BM 5100

Now press the following keys:

CJeJ) e

The display screen will look like this:

CLEAR WS

P

200 +51

AE0

\

Now that you are familiar with the display screen, only the line or lines
being discussed will be shown.

CORRECTING KEYING ERRORS
The IBM 5100 has a number of very useful features that allow you to
correct errors made when data was entered. On a line-by-line basis, at
any time, you can:
e Replace a character

e Delete a character

e |nsert a character

Replacing a Character

To replace a character, move the cursor with the backspace key

or forward space key, until the cursor is positioned at the

incorrect character. The cursor moves one character space in the
direction of the arrow each time the appropriate key is pressed. These
keys continue to move the cursor if they are held down. When the cursor
is at the incorrect character, you replace the incorrect character by
simply keying the correct character.

For example, you want to do the problem 22+12. But you press the
following keys:

D

The display screen looks like this:

To correct the error, the cursor must be moved back one position (under
the second 1) so that the character can be rekeyed. Now press the
backspace key one time. Note that the cursor is replaced by a

flashing character. The flashing character serves the same function as the
cursor; it indicates the position on the line where the next input from the
keyboard will be displayed. Now to correct the error and execute the
problem, press the following keys:

Deleting a Character

To delete a character, you also use the backspace key or forward

space key to move the cursor. Once the cursor is in the position

of the character to be deleted (the character is flashing), hold down the
CMD key and press the backspace key once. The character is then deleted
and any characters to the right are shifted one position to the left to

close up the space left by the deletion.

Introducing the 1BM 5100

For example, you want to do the problem 13+45. But you press the
following keys:

UueJu il

The display screen looks like this:

1334405

Press the backspace key and move the cursor (flashing character) back

to the 2. Look at the labels that appear above the backspace and

forward space keys: DELETE and INSERT. To delete the 2, hold down the
CMD key while you press once.

The display screen looks like this:

L340

This character is flashing.

Now press the EXECUTE key to execute the problem.

Inserting a Character

To insert a character, position the cursor using the backspace key

or forward space key; then hold down the CMD key and press

the forward space key once. This operation moves the flashing
character (and all other characters to the right of it) one position to the
right, creating the space you need to insert one character. The cursor is
not moved. Now, to insert the character, simply press the desired key.

)

For example, you want to do the problem 123x6. But you press the
following keys:

)
The display screen looks like this:

13%6.

To correct the error, press the backspace key and move the cursor

(flashing character) back to the 3. Look at the labels that appear above

the backspace and forward space keys: DELETE and INSERT. To perform
the insert function, with the cursor positioned at the 3, hold down the

CMD key while you press once.

The display screen looks like this.

1.3x4

Now to correct the keying error and execute the problem, press the
following keys:

Introducing the IBM 5100

1

12

There is one more way to correct a keying error. |f you make several
errors part way through the line, you can backspace the cursor to the
character following the last correct character and then press the ATTN
(attention) key. Everything from the cursor position to the end of the
input line will be cleared from the display.

Since the data from the input line is not processed until the EXECUTE
key is pressed, you can visually verify any input before it is processed.
However, if you do press the EXECUTE key before you notice a
mistake, you can simply enter the input again or you can use the down
arrow {scroll down key) to move the input back down to the

input line to correct it. Either way, you must press the EXECUTE key
again.

For example, you want to do the problem 135+280, but you enter and
execute 134+280. The display screen looks like this:

1AW+ E80
1y

To correct the input, press the down arrow S three times to clear

the result from the screen. The display screen now looks like this:

1L34+280

Then press the up arrow once to move the original input back

up to the first input line so that it can be corrected.

From this point on, we will use examples in the following format to

4 illustrate what we are discussing. You enter the instructions that are

(indented. The results displayed on your 5100 should be the same as
the results shown in this manual.

EXAMPLES:

3+ «————Instructions to be entered

Results

(Remember, the data you key is not processed until
the EXECUTE key is pressed.

Introducing the IBM 5100 13

Chapter 2. Introducing the APL Language

14

TYPES OF FUNCTIONS IN APL
There are two types of functions in APL: user-defined functions
(programs) and those that are buiit into the APL language. The APL
built-in functions are denoted by special symbols. User-defined
functions are discussed later, in Chapter 7.
The built-in functions operate on data supplied, called arguments.

For example:

2 + 3
Right Argument

Built-in Function (addition)

Left Argument

ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION

X ‘ D Machines with APL Only
‘ - l +‘ | + ' _ l or
+
Nt
Combined Machines

x

—— —

Alphameric Keys Arithmetic Function Keys

Four commonly used built-in functions (+ - x +) perform the normal
arithmetic operations when they are used. These symbols are located
on the top row of the alphameric keys and also to the right of the
numeric keys.

()
. .

EXAMPLES:

A+ & <—— Add 3 and 6.

A5 A <«—— Multiply 3 times 6.

I i > The right argument is subtracted from the left argument.

The high horizontal bar is the negative sign. Compare it
with the minus which is the symbol for subtraction; the
negative sign appears near the top of the character instead
of on the center line.

> The left argument is divided by the right argument.
[FR

3
0.5

As you have seen in the example, the negative sign is different from the .
minus. When you are doing arithmetic operations in APL, do not use

the minus to represent negative numbers or the negative sign for
a subtract operation.

Problems: Using Addition, Subtraction, Multiplication, and Division

1. Find the total number of cars that a dealer sold during one week if
his daily sales were 3, 5, 2, 6, 7, 3 and 4.

2. Find the net number of cars removed from the same dealer’s lot if
20 people had trade-ins.

3. Find the dealer’s average profit per car if he made a total profit of
$2700 for the sales in problem 1.

4. Find the dealer’s total earnings if he made $20 on each car sold.

Introducing the APL Language

15

16

Possible Solutions

Problem 1:

T b+ T

0
Problem 2:
3020
10
Problem 3:
270030
20
Problem 4:
20%30
400

ANOTHER ARITHMETIC FUNCTION—-RAISING A NUMBER
TO A POWER

Another arithmetic operation that you are probably familiar with is
raising a number to a power. In APL, you use the * function to raise
the left argument to the power specified by the right argument.

EXAMPLES:

A7) ~——— 3Jraised to the second power.

2%} «——— 2 raised to the third power.

i

Finding the Root of a Number

(‘ You can use the power function x to find the root of a number. To do
) this, you simply raise the number to the power 1+n, where n is the root
you want to find.

(EXAMPLES:

43¢ (]+ 32y <«—— The square root of 4.

-9, Jj «<————— Another way to enter the instruction to find a
(M“ = square root of a number (.5 is the same as 1+2).
' B 1+3)
s The cube root of 8.

STORING DATA IN THE IBM 5100 FOR LATER USE

You can store data, either direct input that you enter from the keyboard
or the result of a calculation. These stored items are called variables.
Each variable has a name associated with it. Whenever you use the name of a_
variable, APL supplies the value associated with that name. A variable
oo, name can be up to 77 characters long (with no blanks); the first
(character must be alphabetic; the remaining characters can be any
combination of alphabetic and numeric characters. It is good practice
to use names that represent the data you are storing. For example, if
you want to store a value that is the area of a rectangle you might use
the name AREA; or if you want to store some sales data, you might use
the name SALES.

You create a variable by assigning the data to a name. To assign a value

to a name, you use the assignment arrow <. The value to the right of
the « is assigned to the name to the left of the «.

Introducing the APL Language 17

18

EXAMPLES:

have created a variable named PRICE
with a value of 99.50.

WL IR
YE L

The result of a calculation can also be
- . ¢
PASV] assigned to a variable.

If you want to know the current value of
a variable, you simply enter the name of
the variable.

¥y «<————— You can change the value of a variable
the same way you assigned the original
value. :

FRLICE+L0

You can also use the variable and change
Gé T its value in the same instruction.

You cannot use a name as a variable if
it does not have a value assigned to it.

The error message indicates why the
instruction failed.

Vil g

The caret (A) indicates where the
instruction failed.

Note: Do not be concerned at this time
about the error message that is displayed;
all of the 5100 APL error messages and
suggested user's responses are described
in the /IBM 5100 APL Reference Manual,
SA21-9213.

PERFORMING SEVERAL OPERATIONS IN THE SAME INSTRUCTION

In the preceding examples, only one arithmetic function was used in each
example. However, you are not restricted to writing instructions with
only one function. Any number of functions can occur in the same
instruction. As soon as you use more than one function, however, you
must be concerned about the order in which they are used. /n APL, the
rightmost function in any instruction is executed first, then the next
rightmost, and so on.

EXAMPLES:

(: Order of execution is right to left.

Fx 2+ «——— 4isadded to 2, and that result is multiplied by 3.

fae}
bt

b 3% «—— 3is multiplied by 2, and that result is added to 4.

Remember that an APL function uses as its right
argument the result of the expression to its right.

(‘“" SPECIFYING THE ORDER OF EXECUTION—USING PARENTHESES

In APL, parentheses are used the same way as they are in conventional
arithmetic: the operations inside the parentheses are executed before
the operations immediately outside them.

EXAMPLES:
e, (3 %2) +U «<——— The expression 3x2 is evaluated first and the
10 result is added to 4.
- (H+3 xR
1w \ The expression 4+3 is evaluated first and the

result is multiplied by 2.

Remember, the rule of the order of execution
is from right to left with the expressions in
parentheses resolved first and from right to
left as they are encountered.

USING STRINGS OF NUMBERS AND TABLES

C

- A powerful feature of APL is the way it handles strings and tables of data.
So far, you have used APL with only single numbers (called scalars): but
APL also works with strings of numbers (vectors) and tables (matrices).
The operations you have performed using single numbers are simply

, extended to each number in a string or a table. For example, if you have

C a string of numbers assigned to a variable named SALES, you can add 2

to each number in the string by simply entering 2+SALES.

Introducing the APL Language

19

Using APL with Strings of Numbers (Vectors)

A string of numbers is called a vector. When you enter a string of numbers,
there must be at least one blank between each number; each number is
called an element of the vector.

EXAMPLES:

1wy 2% 35 You have entered a 5-element
Lo 209 35 vector (a string of five numbers).

STRINGeIUY 145 3% 2

STRING —— A vector can be assigned to a
Tl 16 X9 2 variable name.

SHlLESE12E 220 316 %0

SalESx1n Each element (number) in the
1250 2200 3160 200 vector can be operated on by

a single number.

SalLES Note that the value of SALES

12% 220 Flé 90 has not changed.

FRICE« ., S0 1.00 .75 1.14
TOTALESALESXPRICE
TOTAL ! Each element in a vector can be
GAH 290 237 ¢y operated on by the
corresponding element in
another vector with the same
number of elements.

L2 4y 5 4
S 7 10 > There must be at least one
124084 blank between each element

Han of the vector, or the result
will be different.

102 3+u 8 You cannot use two vectors
LENGTH ERROR that do not have the same
1 23 + B 5 number of elements, unless
A one of the arguments is a

single number.

Problems: Using Strings of Numbers

1.

2.

Find the squares of the numbers from 1 to 5.
Find the squares, cubes, and fourth powers of the numbers 2 and 3.

A small mutual fund broker specializes in five funds. He wants to
know how much of each fund he had sold at the close of the day.
By 4:00 PM, he had sold $1500, $3200, $1200, $2300, and $2400,
respectively, of the five funds. In the last hour of the day, he sold
$100, $500, $300, $200 and $0 of the respective funds. Write a
single APL statement to determine his closing sales figures for each
fund.

The five funds in problem 3 sold for $7.30, $11.58, $3.45, $2.17
and $5.56 per share. How many shares of each fund were sold?

The broker receives the following percentages of commission on the
five funds: 3.25, 2.5, 3.0, 3.75 and 3.5. How much did he earn
from each fund today? What are his total earnings for the day?

Possible Solutions

Problem 1:

12 3 b G2

&

T .

Problem 2:

2 xu
b 9

2 3x3
8 27

2 Fny
146 81

or

22 3 4
b 8 16

In2 3 L
¢ 27 81

Introducing the APL Language

21

22

Problem 3:

1500 3200 1200 2300 24004100 %S00 300 200 0
1600 3700 1500 2[00 2400

Problem 4:

1600 3700 1900 2500 2400+7.30 11,58 3.45 2,17 .56
219,18 319,52 434,78 1152.1 431,65

Problem 5:

L&00 3700 1500 2500 2400x., 0325 0250 0300 0375
H2 92,5 ul 93.75 84
SR, 00492, 50445, 00+93, 7S+, 00

6725

Using APL with Tables of Numbers (Matrices)

A table of numbers is sometimes called a matrix. The numbers in the
matrix are arranged in rows and columns; each number is called an
element of the matrix.

rCqumn

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15 |«——Row

(i

An individual element in row 3,
column 4 of the matrix.

You use the reshape p function to create matrices. The left argument
specifies the number of rows and columns and the right argument
specifies the data or variable name for the data to be placed in the matrix.

CM

EXAMPLES:

1

4

.

11
14
17

19

.
[R5

8

TABLEeD 3pl 2 3 W
TABLE

3

“

A

VECTORe1 2 3 4 5 6 7 8
MATRIXe3 3pVECTOR

MATRIX §
3
&
&

FOUR&4 pVECTOR
FOUR 1

34

MATRIX+10
12 13

1% 16
18 19

The first number in the left argument
specifies the number of rows; the second
number specifies the number of columns.

The right argument specifies the values to
be placed element by element into the
rows of the matrix.

There must be a blank between the
numbers specifying rows and columns.

If there are not enough elements in the
right argument to fill the matrix, the
elements are repeated.

10 11 12

If there are more elements in the right
argument than are required to fill the
matrix, only the first (leftmost) elements
are used.

The reshape p function can also be used
when creating a vector.

The number of elements in the vector.
Each element in the matrix can be operated

on by a single number {remember, the
value of MATRIX is not changed).

NUMBERSeL 2 3 4 & &6 7 8 9

EXAMPLES+3 3pNUMBERS+D
EXAMPLES

T 8

10 11

13 14

Remember that APL executes an
instruction from right to left—the
result of NUMBERS+5 is used as the
right argument for the reshape p
function.

RESULTSeEXAMPLES+MATRIX

RESULTS 1;
g 11

15 17

21 23

Each element in a matrix can be operated
on by the corresponding element in another
matrix of the same shape.

Introducing the APL Language

23

24

EXAMPLES—continued

2eNUMBERS

MATRIXXNUMBERS A matrix and a vector

RANK ERROR

MATRIXANUMBERS or

2y

MATRIAXLESS two matrices that do not have
LENGTH ERROR the same shape (number of rows

MAaTRIXXLESS and columns) cannot be used

~ unless one of the arguments is

a single number.

REFERRING ONLY TO CERTAIN NUMBERS IN A STRING OR TABLE
OF NUMBERS (INDEXING)

Indexing is a way to refer to only certain elements in a string or table
by specifying the position of the element you want. The numbers you
use to specify the positions of the elements are called index numbers.
These index numbers are enclosed in brackets [] following the vector
or matrix to which they apply.

EXAMPLES:

TEMPsAE T4 78 &5 80 85 V2

TEMPL2] You can refer to a single
?H element.

TEMPLZ 4 21
TE 68 TH You can refer to several

elements. Notice that the
elements are displayed in
the order in which you
indexed them.
TEMPL2I+TEMPLE 1 2]

152 143 148 A You can index and perform
other operations in the
same instruction.

TEMPL?1+88 You can change a single
TEMP element of a vector.
&8 TW TE AN 80 89 48
TEMPLE &61¢70
TEMPLZ &1 \You can also change several

F T elements.

4

EXAMPLES—continued

(| renped 13532 56
TEMP L// Notice that the new values
ShH T OTH 6% 33 T 88 are assigned in the same order

as the index numbers.

(For a matrix, you need

_ an index number for the
rows and an index number
for the columns—these
numbers are separated
by a semicolon.

TIMES«3 3 peNUMRBE RS <————— Remember, we have previously
TIMES assigned a value to NUMBERS.
L2 3
b % 6
T8 9
Left side of the ; specifies
the row(s).

Right side of the ; specifies
the column(s).

_ You can refer to a single
‘ element

TIMESLEZ2; 21 or

TIMESLS 2 %1 you can refer to several
8 9 elements. In this case, you
TIMESDL; L 21 have referred to the second
1 2 and third elements in the
TIMESLS 3,2 31 third row.

¥

st

[0 .

39 Notice that when you refer
to more than one row and
more than one column, your

CN result is a matrix.
.,

b

Introducing the APL Language

25

26

EXAMPLES—continued

f If you do not specify a
TIMESLZ column, you get the whole
) row.
TIMEST ;37
F a6 09 t If you do not specify a row,
you get the whole column.

These values (the third
TIMESD L 31 column) are displayed
1 03 horizontally, because they
b & are a string of numbers
W (vector).

Note: Even when selecting
entire rows or columns, the
semicolon is still required to
make it clear whether the
index number is for the rows

or columns.
TIMESCE, LISTIMESL R ; 3 1«=——You can index and perform
Gé , other operations in the same
M 2oEded instruction.
iﬁ \
1 ooF You can change the value of
A elements in a matrix.

N

YOU ARE NOT LIMITED TO USING ONLY NUMBERS

Although the examples so far have used only numeric data, APL also
works with character data. Character data, for example, can be used

for headings on a table or to create a list of names. When you enter
character data, you must enclose the data in single quote characters '.
These single quote characters indicate that the data is character data and
is not a variable name, a number, or a function. When character data is
displayed, the single quote marks do not appear.

Character data, like numeric data, can be a single character (scalar), a
string of characters (vector), or a table of characters (matrix). Unlike
numeric data, when you have a character vector or matrix, each character
is a separate element and is not separated from the other elements by a
blank. In fact, a blank in the character data is also a character (blank
character).

C

EXAMPLES:

e Single character
i (scalar).
YA \
AT String of three
AR characters (3-element
ey ' : vector).

This instruction does
not yield a result of
5, because the values
are characters not

numbers.
LR e

FHLIMBE R
R You cannot add
5 MUMBER ' character data and

numeric data.

f To place a quote within

CTONT T DO THATY the character string,

DONT DDTHAT ' you must use a pair

THANK Se ' YO ARE WELCOME ' of quotes.
THANK S \

YO ARE WELCOME Character data can be
assigned to a variable

name.
{ I Blank characters.
pIAME S SarM T JOHMJACKTOR
MATRIXNY Y aNaMES Create a character

HETRIKN matrix, each row
' represents a name.

NoMESES & 7 81

SO L

Indexing works with
character data also.

So far, you have used APL with some common arithmetic operations.
You have also seen how APL works with scalars (single data items),
vectors (strings of data), and matrices (tables of data). However, you
are not limited to just the functions we have discussed so far. In the
following chapters, you will be introduced to more things you can do
with APL.

Introducing the APL Language

27

Chapter 3. APL Functions That Require One Argument

28

In this chapter you will use some APL functions to do the following:
o Determine the whole numbers nearest a fraction.

e Sort a vector into ascending or descending order.

e Generate a random number.

o Find the shape of an existing variable.

There are additional APL functions that require one argument; however,
these functions will be discussed later, in Chapter 6.

HOW MANY ARGUMENTS ARE REQUIRED BY AN APL BUILT-IN
FUNCTION?

In this chapter, you will use APL functions with one argument. In the
next chapter, you will use some of the same APL function symbols with
two arguments. As you will see, these symbols perform different APL
functions when they are used with one and with two arguments. When
you use an APL function with one argument, the argument must be to the
right of the function symbol.

APL FUNCTION SYMBOLS THAT ARE A COMBINATION OF TWO
CHARACTERS

Some of the APL function symbols you will use are a combination of

two characters. You remember that when correcting keying errors, if

you positioned the cursor at a certain character and pressed another key,

a new character would replace the original character. However, certain
APL symbols require two characters, one struck over the other. For

these symbols, key the first character, backspace, and key the second
character. It does not matter in which order the characters are keyed.

The symbols that are a combination of two characters are called overstruck
characters. Appendix A shows the overstruck characters and the keys
required to enter them.

Note: If you key an overstruck character and then want to change it, you
can position the cursor at the character and key another character. The
new character will replace the overstruck character.

Lo

C

C
Y

DETERMINING THE WHOLE NUMBERS NEAREST A FRACTION

When you want to disregard the fractional part of a number and just
consider the nearest whole number, you can use the floor | and ceiling [
functions. The floor function will round the number down to the next
smaller whole number and the ceiling function will round the number up
to the next larger whole number.

EXAMPLES:

Bed, G2Y

Lk

IR
I

Ce3

LG
3

Fe If the number is already a whole number, the
3 result is the same as the argument.

Fe TE, H2Y

LR
iy

[E The result for the floor and ceiling functions is
3 determined according to the number’s position

on the number line:

(smaller) (larger)

432101234

Rounding to the Nearest Whole Number

It is a common practice to round numbers to the nearest whole number.
You can do this by adding .5 to the number and then using the floor
function.

EXAMPLES:

X, 4+, 8 ~——————— Rounds 4.4 to the nearest whole number.

|X
L} :
'}f;% ¥ e Rounds 4.6 to the nearest whole number.
LXed o, 5
1.
4 Xe Ll G+ 05 > These examples could also be entered this way.
S LS]
X

5 APL Functions That Require One Argument

29

30

SORTING A VECTOR IN ASCENDING OR DESCENDING SEQUENCE

The grade up 4 and the grade down V functions can be used to sort a
vector into ascending or descending sequence, because they give you the
indices of the argument in ascending or descending order.

EXAMPLES:

A0 WS S 3T 29 TR OEB 1D 96

1) /The largest value is the ninth
B 542736 1P

= & element.

\ The smallest value is the

eighth element.

BedLaA] Indexing A this way sorts the
& elements of A in ascending
1H 29 37 w8 B8 62 T 80 %6 order.

Remember, when indexing
elements in a vector, the
index numbers or the
index expression must be
enclosed in [].

R4

1L & 37 2058
Cealeal The elements of A are sorted
o " in descending order.

Y6 B0 VR &2 58 wE 3T 291G

(j/h

GENERATING A RANDOM NUMBER

To generate a random number, you can use the roll function ?, which
generates a random number between 1 and the value of the argument.

EXAMPLES:
TN Generates a number between 1 and 6.
X
ff}_; The result can be any number between 1 and 6.
Hevd & b 6
% \ When this function is used with a vector, a
Y S A random number is generated for each element.

GENERATING CONSECUTIVE NUMBERS

There are times when you will want to generate a vector of consecutive
numbers from one value to another value. You can do this by entering
an instruction like this:

VECTORL 2 3% 4 5 & 7 8

However, you can also use the index generator function 1, which generates
consecutive numbers from 1 to the value specified by the argument.

EXAMPLES:

First 6 powers of 2

&l

APL Functions That Require One Argument

31

Generating an Empty Vector

An empty vector is just that—a vector with nothing in it (no elements).
Why have a vector with nothing in it? As you will see later, when joining
two items together or branching in a user-defined function, there are
times when you will want to generate an empty vector. One way to
generate an empty vector is to use 1 0.

EXAMPLES:
NrE

Value ERROR An error occurs if you use a variable name that does
MHiME. » not have a value assigned.
Py

The result is a blank display line (no value).

FINDING THE SHAPE OF AN EXISTING VARIABLE

As you learned in Chapter 2, the left argument of the reshape function
determined the number of elements in a vector or the number of rows
and columns in a matrix. Thus, the number of elements in a vector or

a matrix is referred to as the shape of the vector or matrix. For example,
the shape of matrix M, which has two rows and three columns, is: 2 3.
To find the shape of an existing variable, you can use the shape function
- ‘

EXAMPLES:

HUALARSY

LI

Ep VReshape function (has two arguments).
pSUal.aR
-~ Blank display line—the shape of a scalar
PVECTOR is an empty vector.
I —-—
pMETRIX Number of elements in the vector.

pEe——

Number of rows and columns in the matrix.

EMPTY e () Generates an empty vector.
EHPTyY

Blank display line.
pEMPTY
{i

Number of elements in an empty vector.

C

oy,
(- ‘)//

-~

Chapter 4. APL Functions That Require Two Arguments

In this chapter you will use some APL functions that require two
arguments. You can use these functions to do the following:

Compare the arguments to determine if one is equal to, greater than,
or less than the other argument.

Process logical data—true (1’s) and false (0’s) data.

Find the larger of two numbers.

Find the smaller of two numbers.

Find the index of a value in a vector.

Generate a random sequence of numbers.

Compress (select certain elements from) a vector or matrix.
Expand a vector or matrix by inserting zeros or blanks.
Join two items together.

Find the logarithm of a number.

There are additional APL functions that require two arguments; however,
these functions will be discussed later, in Chapter 6.

APL Functions That Require Two Arguments 33

RELATIONAL FUNCTIONS
When solving problems with APL, you might want to test the relationship
between two values. For example, you might want to test a counter to
see if it has reached a certain value; or you might want to do something
different in the solution to your problem, depending on whether a certain

condition is true or false. The following APL functions are used to test
the relationship between two values:

Function Symbol Key

Greater than >

Less than <

Greater than or equal to

v

Less than or equal to <
Equal to =
Not equal to #

When these functions are used, the relationship between the two values
is evaluated, and a 1 results if the relationship is true, and a O if false.

)

EXAMPLES:

Ael0

Bed2

A=l
]

P10
1

AR
1

A
1

s
]

fAe ARG
e DEF

=R
o 0o >The =and = operators also work with character
fER data. Remember, each element is compared with

N | the corresponding element in the other argument.

C u

APL Functions That Require Two Arguments

35

Why Two Numbers Identical in Appearance Are Not Always Equal

APL stores all numeric values with an internal precision of 15 decimal
digits; however, decimal values with more than five significant digits

are normally rounded off to five digits before they are displayed. Thus,
occasionally, different numbers will look alike when displayed.

EXAMPLES:

0,

0
]

g
vt

o

}

Aele3
e, A3333%
“

333 313 Only five of the 15 digits are displayed.
Q
V33333
e The values are not equal.
ee (PP is a system variable that determines how

many significant digits will be displayed. This
variable is automatically set to 5 when the
power is turned on or RESTART is pressed.
{The system variables are discussed in

Chapter 9.)

[PPe1s Set the []PP system variable so that 15
A significant digits will be displayed.

CR3ARIFIFIIZIZRRR
K \
33333 Notice the difference between the two values.

[P Pet \
Set the [JPP system variable back to 5.

Remember, the value displayed may not be the exact value that the 5100
has stored for the variable.

An Example Using a Relational Function

Suppose the correct answer to a problem has been stored as a variable
called RIGHT and the answer supplied by a student has been stored as
a variable called ANSWER. To keep track of the student’s score, you
want to add 1 to his scoré if his answer is the same as the right answer;
otherwise, you want to leave his score unchanged.

(nw »,

C

C

If the student got the problem right, it is true that ANSWER=RIGHT.
To add 1 to his score only if his answer is equal to the right answer, you
could enter this instruction:

SCORE«SCORE+ANSWER=RIGHT

Then the amount added to SCORE is 1 when the two values are equal
and 0 when they are not equal.

Suppose that instead of adding 1 when the student is right, you want to
give some problems more weight than others. The weight of the current
problem is stored under the variable WEIGHT. If the student gets the
problem right, you want to add WEIGHT to his score; otherwise, you
want to leave his score unchanged. You could enter this instruction:

SCORE<«SCORE+WEIGHTxANSWER=RIGHT
If the student’s answer is equal to the right answer, then ANSWER=
RIGHT has the value 1, so the amount added is WEIGHT x 1. But if

the answers are not equal, then the amount added is WEIGHT x O,
which is 0.

LOGICAL FUNCTIONS
The logical functions take only ones and zeros as arguments and are used

to check for certain conditions. (They usually check the results of
relational functions.) The fundamental logical functions are:

Function Symbol Key

And A

In our discussion of the logical functions, we will use tables like the
following one to show the possible resuits of the logical functions:

Logical Function—— A <—— Values of the Right Argument

~—— Results

t Values of the Left Argument

APL Functions That Require Two Arguments 37

38

To use this table, simply find the value of the right argument on top of
the table and the value of the left argument on the left side of the table.
Then, follow the column represented by the right argument down and the
row represented by the left argument across. Where they intersect is the
result of the logical function when those values are supplied as arguments.
For example, find out what the result of 1 A O is as follows:

Follow the value of the right
argument down.

Follow the value
of the left They intersect here; thus,
argument across. 1 the result is 0.

And

<~——Right argument.

<~——The result is 1 only if both arguments are 1.

Left argument.
The And function is used to check for two conditions being true.

For example, suppose you want to know when the items that cost more
than $100.00 have a quantity less than 10. You could use the following
instruction:

CROBT-L0) ~(QUANTITY =10
t Theresultis 1 when the
quantity is less than 10.

The result is 1 when the cost
is greater than 100.

Notice how the parentheses in this instruction specify the order of
execution.

EXAMPLES:

QUANTITY«8
COLT«120
CCDST=L003A{BUANTITY <10
1 Both conditions are true.
GUANTITY« 25
(COST1L00)ACQUANTITY = L0)
0 At least one condition is
not true.

Or

|— Right argument.

<~——The result is 1 if either argument (or both) is 1.

Left argument.

The Or function is used to check for at least one of two conditions being
true. ‘

For example, suppose you want to know when either the inventory for a
certain item is less than 10 or the orders for that item exceed the inventory.

You could use the following instruction:

CINVENTORY=1L0)v(ORDERS > TNVENTORY)

L——The result is 1 when the orders

are greater than the inventory.

The result is 1 when the inventory
is less than 10.

APL Functions That Require Two Arguments

39

EXAMPLES:

INVENTORY«1%
ORDERS ¢S :
CINVENTORY <10 v (ORDERS = INVENMTORY)

e Both conditions
ORDERS 2% are false.

CINVENTORY=L0) v (ORDERS > INVENTORY)

At least one of
the conditions
is true.

Problems: Using Relational and Logical Functions

1.

It is vital to build error checking into all space systems to prevent
catastrophy. For example, two indicators checking one condition
are commonplace. If either or both of the indicators show danger,
action must be taken.

Assume that the A indicator is over its limit at 1.3725 amps and the
B indicator is over its limit at 1.6365 amps. Enter an expression that

- will result in a 1 when one or both indicators are outside their limits;

the indicators read 1.3732 and 1.5362, respectively.

A survey was conducted by the PTA in which the teacher and the
parent of the child each evaluated ten of the child’s characteristics.

One child’s teacher replied 1,0, 1, 1,0, 1,0, 0, 1, 0 to the questions
dealing with his characteristics. His parent answered 1,0,0, 1,0, 1,
1,0,0,0. ' ¢

Show which questions the teacher and parent both replied to with
al.

Possible Solutions

Problem 1:

CLOBRASE1L G342 372521 3732

Problem 2:

(vil0)x1 0 4L 1 01 001 0A 00 1 01 1000

Loouw0é60000

S/

C

(ﬂn"h\
- e

FINDING THE LARGER OF TWO NUMBERS

The result of the maximum [function is the larger of the two arguments.

EXAMPLES:

e
Bed
AR

(EHXRBIMAXA

To see how you could use the maximum function, suppose you work for

a department store. Each month the store calculates the amount charged
and the amount paid by each customer. Your job is to find the difference
between the total accumulated charges and the total accumulated payments
for each customer. This difference is stored in a variable named BALDUE.
The store also charges a service charge of 1.5% of the unpaid balance each
month. You could find this charge with the following instruction:

CHARGE€BALDUEX , 015

However, some of the customers have overpaid their biils. For them,
BALDUE is a negative number and shows as a credit on their monthly
statements. If you calculate the service charge by the instruction just
shown, you will be paying them interest at a rate of 1.5%. Instead, the
store prefers to calculate the service charge as 1.5% of the balance due
or of 0, whichever is greater. To do this, you could use the following
instruction:

CHARGES 015x 0] BALDUE

APL Functions That Require Two Arguments 41

42

FINDING THE SMALLER OF TWO NUMBERS

The result of the minimum | function is the smaller of the two arguments.

EXAMPLES:
Ael
Bed
ALER
5

(RXBILAXA

o,
el b 7Y
ne3 208 7
CLn
LR

Problems: Using the Maximum and Minimum Functions

1. Find the largest dollar expenditure for the following gasoline
purchases:
a. 16.8 gal at 52.9 cents per gal
b. 13.5 gal at 55.9 cents per gal
c. 15.6 gal at 57.9 cents per gal

2. For the following purchases, find the smailest quantity of nuts
received:
a. 71 cents for walnuts at 33 cents per |b
b. 63 cents for cashews at 27 cents per Ib
¢. 64 cents for pecans at 29 cents per Ib

Suggested Solutions

Problem 1:

CLA B H29INOLE G, 55915, &0 57y
@, 0324

Problem 2:

(713300327604 +279
1.763

C

R
e

FINDING THE INDEX OF A VALUE IN A VECTOR

When you want to find out if a value is an element in a vector, and if it
is, which element it is, you use the index of 1 function. The index of
function gives you the position (index) of the first occurrence in the

left argument of the values in the right argument. If a value in the right
argument is not in the left argument, the result is 1 plus the length of the
left argument.

EXAMPLES:

SRCRE 2E D 1E 9N

i EBCDERFGS
LU <] o

YR Lo
K S
"y

Index of the first occurrence.

Index generator function.

Index of function.

Value does not occur in the
left argument; the result is 1
plus the length of the left
argument.

GENERATING A RANDOM SEQUENCE OF NUMBERS

In Chapter 3, you used the roll function (? with one argument) to generate
one random number. But by using the deal function (? with two arguments)
you can generate a random sequence of numbers without generating the
same number twice. That is, the deal function generates the number of
random numbers specified by the left argument from 1 through the value
specified by the right argument. The random numbers are selected so that
no two numbers are the same. Therefore, the left argument cannot be
greater than the right argument. If you specify the left argument equal

to the right argument, you get all the numbers from 1 through the number
specified by the right argument, in random order.

APL. Functions That Require Two Arguments

43

EXAMPLES:

- . ’
] “]

L May be any two different numbers
10710 between 1 and 5.

538 10 6 9 2y 1 '?\
These numbers can be in any order, as

you will see if you enter this
instruction several times.

SELECTING CERTAIN ELEMENTS (COMPRESSING)
FROM A VECTOR OR MATRIX

You can use the compress function / to select certain elements from a
vector or matrix. The left argument must be a vector of all 1’sand 0’s

or an expression that results in such a vector. When selecting elements
from a vector the number of elements in each argument must be the same;
the corresponding elements of the right argument are retained for each 1
in the left argument.

EXAMPLES:

Vel 2 3 4 5 6 7 8

101 1t 01 17%
L3 w678

0000 000 05V

f oy

Result is an empty vector.
Asl 0 0 0 0 0 06 1
LYAY

10 1 0/ ABCH”
Al

(“ "y,
s

EXPANDING A VECTOR OR MATRIX

When selecting elements from a matrix, you must select and omit entire
rows or columns. To do this, you must specify the coordinate (rows or
columns) to be acted on by using an index value [1]. The index value is
1 if the first coordinate (rows) will be acted on and 2 if the second
coordinate (columns) will be acted on.

EXAMPLES:

Be3 Ypall

&
1 2 3 4
H o6 7 B
10 11 12 Remember, the left argument must contain a
1 for each item to be selected and a O for each
item to be omitted.
0 1 070108
96 8 L Thefirst coordinate (rows) is specified.
L0 1 070208
1 3 The second coordinate (columns) is specified.
57
¢ 11

01 0o/8

13 \
Y If no index entry is specified, the last
i

coordinate (columns) is acted on.

You can use the expand \ function to insert blanks or zeros in a

vector or matrix. The left argument must be a vector of all 1’s or O's or
an expression that results in such a vector. The number of 1’s in the
left argument must be equal to the number of elements in the right
argument. The O’s in the left argument indicate where the blanks or
zeros will be inserted; blanks are inserted in a character vector or matrix
and zeros are inserted in a numeric vector or matrix.

EXAMPLES:
L0 0 INL 23 4%
1203 04
11 0 1 0 1N"apcD’
AR GO

APL Functions That Require Two Arguments

45

46

When expanding a matrix, entire rows or columns of blanks or zeros are
inserted. As when using the compress function, you must specify the

coordinate (rows or columns) to be

acted on by using an index value

[1]. The index value is 1 if the first coordinate (rows) is to be acted on
and 2 if the second coordinate (columns) is to be acted on.

EXAMPLES:

Be2 dpal
B

F
L0 INC2IR

S
[

D S AN I A

W
E= i %

L0 AINR

Ce2 2p " ARCT

AR
Ccn

AR
GCn

The left argument must contain a 1 for each
row or column being acted on.

Insert columns.

Insert rows.

If no index entry is specified, the last
coordinate (columns) is acted on.

Problems: Using the Compress and Expand Functions

1. Define a vector called ACCTS containing these five accounts: 56
103 100 13 0. Select those with balances of $100 or

more.

2. Define the matrix DATA<3 3p 19. Then insertarow in

DATA, with the values 20, 21,

Possible Solutions
Problem 1:
ACCTSH«56 103 100

(ACCTE2100) 7ACCTS
103 100

and 22, after the first row.

13 0

Cum

Problem 2:

UéTded o w
DATH

1 2 3

% 4

Voa e

DATAsL 0 1 INC1304aTa
TaTa

1 2 3

4 00

b5 4

Toa 9

DaTal2,; de20 21 22

et a

i - i

a
ok wd
20 21 22
;

:

;i

2o

Ly)} <

voR

3

JOINING TWO ITEMS TOGETHER

You use the catenate , function to join two vectors together to make a
single vector by placing a comma between the left and right arguments.
The number of elements in the resulting vector is the sum of the number
of elements in the two vectors being joined (catenated).

EXAMPLES:

el 2 3
Bel 5 &
AR
1.2 3 4 5 6
B é
bWy os 12
CeCAaT?
et BN
e aTIoN'
L0 E
CATENATION

I» O

.

HOMAIN ERRDRK<-———— A vector must be either all numbers or all
Al characters; therefore, you cannot catenate
s character data to numeric data.

APL Functions That Require Two Arguments 47

48

You also use the catenate function to join two matrices together. To do
this, you can use an index value [1] to specify which coordinate is to be
extended (that is, whether the number of rows or the number of columns

is to increase). The index value is 1 if the first coordinate (number of

rows) is to be extended and 2 if the second coordinate (number of columns)
is to be extended.

EXAMPLES:

Ged 2pak
Be Zpl+aly

&
102
3

I
)
T8

AL2IR You have just joined two columns to two
1 28 & existing columns (increased the number of
I 4 78 columns).

A,
125 6 \
78 , When no coordinate is specified, the last
A, C1IR coordinate (columns) is acted on.
" v
Iy \
&

In this case, you have joined two rows to two
) existing rows (increased the number of rows).

When catenating two matrices, the arguments must conform—that is, the
lengths of the columns must be the same if the columns are to be
catenated and the length of the rows must be the same if the rows are
being catenated.

N

"y,
e //

C

C

EXAMPLES:

Aed 2ol

A
LIRS
(F)
Ce2 3pd
-
H b b
&h bH b
A.0110
LENGTH ERRQOR <———The length error was caused because the row
A, tll ¢ coordinate was specified when A and C have rows
A of different lengths.
4 4
A
4 4
6 6 6
C
6 6 6
A+ [0 21 «<———— Note that the matrices can be joined along the
4 4 6 6 column coordinate, since the lengths of the
W aHé 6 columns are the same.

Building a Vector of Results Using Catenation

Suppose that as you work through a series of problems you want to
accumulate the answers. One way to do this is to catenate each new
result to a vector of results previously obtained. If the most recent
result is in a variable called LATEST and all the former results are in a
vector called RESULT, you could use the following instruction:

RESULT«RESULT,LATEST

APL Functions That Require Two Arguments 49

Note: The first time this instruction is executed, there is no value for
RESULT. Therefore, before you use this instruction, you should enter
the following instruction:

RESULT«10
This instruction gives RESULT an initial value (makes it an empty
vector).
EXAMPLES:
LATESTe10+5
RESULTERESULT LATEST
Val.UuEe ERROR RESULT does not have a
RESULTRESIHLT LATEST value; therefore, it is not a
A variable and cannot be used
in an instruction.
Give RESULT an initial
RESULTH ﬂ/ value (empty vector).
RESULT
Blank display.
RESULTERESULT, LATEST
RESULT Now RESULT can be used.
15

LATESTeLS+10
RESULTERESULT, LATEST
RESULT

15 25

Problem: Using the Catenate Function
Assign codes to variables as follows: A<‘l’, B<‘T’, C<'D’, D<'R’, E<'GH’,
F<'YOQO’, G« ’, and H«‘U’. Then see what message is displayed if you

catenate the variables in the following sequence:

FHGCACGABGDAESB

50

Possible Solution

He 'l
FoM, G0 00068, G, 0,8,E, 8

YOUb LD I7T RIGHT

(FINDING THE LOGARITHM OF A NUMBER

You use the logarithm @ function to find the log of the right argument to
the base specified by the left argument. The log of a number B to a base
A is the power needed to raise A to the value B.

EXAMPLES:
C " e 3
| U e |‘.’I] i }
B
&

fi@ i =——————The log of B to the base A.

L

APL Functions That Require Two Arguments 51

52

Problem: Using the Logarithm Function
1. What is the logarithm of 256 to the base 2?

2. To what power must 10 be raised in order for it to equal 100000?

Possible Solutions

Problem 1:

2256

Problem 2:

Li@la0000

Chapter 5. Applying the Same Operations to all the Elements of a Vector

Collectively (Reduction)

It is often useful to have the sum (or the product, or the maximum, for
example) of all the elements in a vector. APL has a simple procedure for
applying the same operation to all the elements of a vector collectively.
This operation is called reduction, because it reduces a numeric vector
down to a single number that represents the sum, the product, or the
maximum, for example. The reduction operator is /. The left argument
is the function that is applied to all the elements in a vector; the vector
is the right argument.

You may have noticed that the reduction operator and the compress
function are the same symbol. However, you can tell the difference
between the compress function and the reduction operator by the left
argument. For the compress function, the left argument is a vector of
1's and 0’s and for the reduction operator, the left argument is an APL
built-in function.

PLUS REDUCTION

EXAMPLES:
Asl 23 45
/0

1434344+ «—————Adding all the elements of A together is the
15 same as +/A.

Using Plus Reduction To Find the Average

The reduction operator is useful for finding the average of the elements
in a vector. Suppose vector X is as follows:

Xe2 w3 3 2,5 2

Reduction

53

54

The following instruction could be used to find the average of the elements
in X:

AVGE (+/X) = pX
AVG

2075

Now let’s analyze the previous instruction.

1. We find the number of elements in X (the length of X):
X
(o]
2. Then we calculate the sum of the elements in X:
+/X
16,5
3. Now we can find the average by dividing 16.5 by 6:

AVGEL S G 6
AvE

2,75

C

(MM
/
—

Problems: Using Plus Reduction

1. Using reduction, find the average amount that a certain family
spends each week on food. The weekly grocery bills for November
were $31.05, $29.78, $25.44, and $35.98.

2. Temperatures of a laboratory solution were recorded over a

12-hour period:

—
O WO N

11

—
DD WN =N

AM
AM
AM
AM
AM
AM
Noon
PM
PM
PM
PM
PM
PM

75.8°
71.9°
77.0°
80.3°
85.1°
82.2°
83.2°
84.9°
85.3°
85.0°
82.5°
80.9°
78.4°

Find the average temperature.

Possible Solutions

Problem 1:

AVEE CH/RBILLE) »pRTLLE

AV

A0.543

Problem 2:

TEMP«?S .8 71.9

5 80,9 784

AVEECHATEMP Y = pTEMP

AVE

80,9462

BILLEeZL . 05 29, 7¢

-
L)

08B0 as.

A8 83,02 84,9 85,3 89

082,

Reduction

55

56

Using Plus Reduction to Sum the Products of Two Vectors

Suppose that PRICE is a variable that contains the price list for various
items sold by a store, and Q1 and Q2 are two vectors indicating the
quantity of these items ordered by two customers. Then the total bill
for customer 1 is the sum of the product of PRICE times Q1, and the
total bill for customer 2 is the sum of the product of PRICE times Q2.

EXAMPLES:

PRICE« . &6 L.40 27,10 2.3% 14,00 7.60 8,45
Gled 0 2 L 0 0.0 0
GRel2 T 0 5 0 00 10
+SQLNPRICE
Hh 5

+ RN PRICE

MINUS REDUCTION (ALTERNATING SUM)

EXAMPLES:

-/A is the same as this instruction.

The following illustration shows why the answer is ~ 2.

Direction of processing is from right to left.

3 - 2 - 1 - 4 ~<——— First operation (subtract 4 from 1; the result is ~ 3).

N —
2 - 3
Second operation (subtract ~ 3 from 2; the result
is B).
2 + 3
N
3 - 5 «—————— Third operation (subtract 5 from 3; the final result
is ~2)

[ﬂ Result.

C
,,,) '

C

MAXIMUM REDUCTION: FINDING THE LARGEST VALUE IN A VECTOR

To select the largest single element in a vector, you can reduce the
vector with the maximum [function.

EXAMPLES:

Amount owed

BALDUE«A2 1S 127w u2 18,45

FABaLDUE by all the
17 customers of a
\ store.
Largest amount
owed.

MINIMUM REDUCTION: FINDING THE SMALLEST VALUE IN A VECTOR

To select the smallest single element in a vector, you can reduce the vector
with the minimum | function.

EXAMPLES:

MUMBEReL 1a W 7 7%
LANUMBE R

Reduction

57

OR REDUCTION: CHECKING FOR A SPECIFIC VALUE IN A VECTOR

Suppose you want to know whether a certain value exists in a long
vector. You could use Or v reduction to find the answer.

EXAMPLES:
I—'“. Generate a vector of 50 random numbers.
NUMBERS 507100 The result of NUMBERS=8 is a vector
v /NUMBE RS =8 consisting of a 0 for each element of
{ “*NUMBERS that does not equal 8 and a

1 for any element that does equal 8.

When the vector (result of NUMBERS=8)
is reduced (the Or function is placed
between each element), the resultis 1 if
at least one of the elements was 1.

A displayed result of 1 indicates that the
value 8 was in NUMBERS and a 0
indicates that it was not.

AND REDUCTION: CHECKING FOR ALL VALUES IN TWO VECTORS
BEING EQUAL

You can use And a reduction to determine whether corresponding
elements of two vectors are equal.

EXAMPLES:

KEY«L., 01 1.7&3 1,888 11,2348 1,

LOCK«1 .01 1.763 1.898 1.234é6 1

ASKEY=L0CK

o} : At least one of

the elements of
KEY does not
match the
corresponding
element of
LOCK.

Two vectors
that have the
same number

of elements.

C

C

Chapter 6. Using the Built-in Functions

This chapter contains a summary of the things you can do with the
APL built-in functions. Some of the functions have already been
discussed in the previous chapters and all of the functions are described
in the /1BM 5700 APL Reference Manual, SA21-9213. Also there is an
example included for each function; you should enter these examples
on your 5100 to see how these functions work.

Note: Many of these functions provide special mathematical capabilities.

NOW LET'S LOOK AT THE THINGS YOU CAN DO

Things You Can Do

Function Name

Keys

APL Functions That Require One Argument (see Chapter 3
for more information)

e Determine the next larger whole Ceiling

number

¢ +————|f the number is already a whole number,
the same number is the result.

e Determine the next smalier whole Floor

number

L4

s

)
30

.} 4———————1f the number is already a whole number,
the same number is the resulit.

e Sort a string of numbers in Grade up
ascending order

i3

550102

-
i

209 1 Indices of A in ascending order

Al didl

12 37

t_:)

Sorts A using the indices

Using the Built-In Functions 59

Things You Can Do Function Name Keys

® Sort a string of numbers in Grade down
descending order

Paed V2% 1 Indices of A in descending order
bR 3 G

gt Sorts A using the indices
9 7T 321

e Generate a random number Roll
Ph
5 The result can be any number between
1 and 6.
o Generate a consecutive string of Index generator
numbers
1B
1238 48 Generates a string of five consecutive
numbers.
® Determine the length of a string Shape

or the number of rows and
columns in a table

J/__,,__— Length of the string named A

pMATRIX+2 3@\ b= Creates a table and finds its shape in the

o

2 3 same instruction (the number of rows and
MaTRIX columns)
1 23
W 5 & Reshape function (discussed in Chapter 2)

Shape function

ﬂLN

C

Things You Can Do

Function Name

Keys

APL Functions That Require Two Arguments (see Chapter 4

for more information)

The result from the following six functions is 1 if the relationship
specified by the APL function is true; otherwise the result is 0.

Determine whether two values
are equal

BR=R3

Determine whether the left
argument is greater than the
right argument

Determine whether the left
argument is less than the right
argument

F il

Determine whether the left
argument is greater than or equal
to the right argument

1211 12

Determine whether the left
argument is less than or equal to
the right argument

bHib 9

Determine whether two values
are not equal

TETT 7

Equal to

Greater than

Less than

Greater than or
equal to

Less than or
equal to

Not equal to

Using the Built-In Functions

61

62

Things You Can Do

Function Name Keys

The following two logical functions are usually used to check
the results from relational operations. Logical functions can
use only 1’s and O's as arguments. The result is 1 when the
condition being checked for is met; otherwise, the resulit is O.

Determine whether two conditions And

are true

Ial 0

Determine whether at least one
of two conditions is true

Find the larger of two numbers

Aan

Find the smaller of two numbers

LW

Find the index of a given value
in a vector

Generate a specific number of
different random numbers

34

Or

Maximum

Minimum

Index of

The right argument is found in the third
position of the left argument, which is a
vector.

Deal

Can be any three different numbers
between 1 and 6

Things You Can Do Function Name Keys

e Compress (select certain elements Compress
from) a vector or matrix

o0 172 3 48
o A4 Selects the elements that correspond to
the ones in the left argument

& Expand a vector or matrix Expand

¥ SO (N T O A § AL, S
S T VO | B R] Inserts elements according to the zeros
in the left argument

e Join two arguments together Catenate

CAT L TENT L TATTON
COTENATION

® Find the log of a number Logarithm

2en Log of 8 to the base 2

APL Functions In Addition To The Ones Already Discussed
In Previous Chapters (see the IBM 5100 APL Reference
Manual, SA21-9213, for more information)

e Change the sign of a number Negation
oy
3y
e Find the sign of a number Signum
LSRN |
I I The result is "1 for a negative number,

0 for 0, and 1 for a positive number.

e Find the reciprocal of a number Reciprocal

Tad

I8

33333

Using the Built-In Functions 63

Things You Can Do Function Name Keys

Raise e (2.71828) to a power Exponential

*1 3
2.7183 20.086

Find the log of a number to the Natural log
base e

82,7183 20,086

Multiply a number by pi Pi times
(3.14159)

ol 3
J.1ulé 904248

Find the product of all whole Factorial
numbers between 1 and a
specified number

by
24 The result is the same as 1x2x3x4.
Changea1toaOoraOtoal Logical not
~1 0
01
Determine whether at least one Nand

of two conditions is false

121 0 The result is 1 when at least one argument
01 is 0; otherwise the result is 0.

Determine whether two conditions Nor
are false

The result is 1 when both arguments are Q;
00 otherwise the result is 0.

Things You Can Do

Function Name

Keys

® Change a scalar or matrix into a Ravel
vector
MATRIXeZ Zpvé
MATRIX
12 3
b5 6
SHMATRIX
12 305 6 The matrix is changed to a vector.
e Execute a character string as an Execute
APL expression
e 4
i
e Convert numeric data into Format
character data
fj"‘"‘ ¥l How to use this function with two arguments
& is discussed in the /BM 5100 APL Reference
2 Manual, SA21-9213.

[al3

oy

e Find the value of a number
without regard to the sign of
the number

153 "hé
53 46

® [nvert a square matrix or compute
the pseudo-inverse of a rectangu-
lar matrix

RAael 201 3 5 7

0,875 0,375
0,625 0125

o Reverse the elements in a vector
or matrix

O LIVE'
EVIL

Absolute value

Matrix inverse

Reverse

M\ This is a character value.
A is a 2-element (character) vector.

Using the Built-In Functions

65

Things You Can Do Function Name Keys

e Find the remainder left over from Residue (remainder)
a divide operation

318
o 2 is the remainder of 8 divided by 3.

® Find the values for the trigono- Circular
metric functions of an angle

lﬁmThe left argument specifies the trigonometric
ZI,\ function (in this case, tangent).
The result is the tangent of 45° (m + 4 radians).

o Find the number of combinations Binomial

of a number taking so many at a (combination)
time '
214 ;
& Four items taken two at a time can make

six different combinations.

e Find out if a certain value (left Membership
argument) exists in a vector or
matrix

TABC & T BANANA <~—The result is 1 if the value in the left argument

1 1 0 exists in the right argument; otherwise the
result is 0.
e Express a value in another Decode (base value)

number system

2460 S0a1 30 15

Bl 1 - Expresses 1 hour 30 minutes 15 seconds
in all seconds
e Represent a value in a specified Encode

number system (representation)

2 60 H0TEHRLE
1 30 15 Represents 5415 seconds in hours, minutes,
and seconds

Things You Can Do Function Name Keys

(e Solve one or more sets of linear Matrix divide
equations with coefficient
matrices
26 PHBeD 2p3 0% 1 2

\ ‘/'
s

o Take a certain number of elements Take
from a vector or matrix

e Drop a certain number of elements Drop
from a vector or matrix

Jtael 2 3 4 3

i

These three elements were taken from the
vector.

ZiA
b % The result is the elements remaining after
the specified number of elements have
been dropped.
("“‘ e Join two arguments together by Laminate
) forming an array with an

additional dimension

12 3 8w 5, 0.%16 789 0

1 2 385 Two vectors are joined to form a matrix.
& 7T B 90

e Rotate the elements in a vector Rotate n
or matrix as specified by the

left argument

™ 201 2 3 4 O
3512 Rotates the vector two positions

C

Using the Built-In Functions 67

68

Things You Can Do

o Create data arrangements with at Reshape
least one dimension (a data

Function Name Keys

arrangement with two dimensions
has both rows and columns)

4———————"' Each number in the left argument is called

AR R(:.Y@'T I Ipulf a coordinate—this N-rank array has three

{s, R RAY coordinates.
1
I & Last coordinate is the columns.
/ v Next to the last coordinate specifies rows.
10 11 12 Leftraost coordinate is the planes.
I L A Planes
L& 17 18 /\
ARRAYLZ; 3,10 You can index elements within N-rank arrays
16 by putting a semicolon between each
coordinate.
e |nterchange coordinates (such as Transpose or
rows and columns of a matrix) generalized
of an array transpose
RARRAY ———— When used with one argument, this function
1 10 reverses the coordinates.
o3
7 14 Note: This function could also be used with
a left argument that specifies how the
2041 coordinates are to be interchanged.
9o1u
g 17
312
) l
? 18

¢

Things You Can Do

APL Operators

An APL operator applies certain built-in functions to a vector
or matrix. The reduction operator has already been discussed

in Chapter 5.
e Apply the same operation
collectively to all the elements
of a vector

+/1 2 F W5

® Apply the same operation
cumulatively to each element
of a vector (the result of each
operation is used in the next
operation)

51 02 3k
1 3 6 10

1
1

1+2

Operator Name Keys

Reduction

The sum of the elements
The largest element

The smallest element

Scan

3 The scan function works the same as if

14243
é

14243l
10

o Generate operation tables for

various APL functions and data

Asl 2 3 4
Ae . XA
12 3 4
2 % 6 8
3 6 912
b8 12 16

you entered these instructions.

Outer product

A mulitiplication table of numbers
1 through 4

Using the Built-In Functions

69

70

Things You Can Do

¢ Find the matrix product of two
matrices

A 201 23 4
Be2 20 % & 7 8
At XR

19 22

B3 50

Operator Name

Inner product

The matrix product of matrices A and B

Keys

"y,
. vy /

HOW IS A FUNCTION DEFINED?

Chapter 7. Function Definition

WHAT IS FUNCTION DEFINITION?

Although APL has many built-in functions, there will be times when
you want a special function to solve a problem. APL allows you to

define your own functions (called user-defined functions) and store

them for repeated use.

You use existing APL functions to create a new user-defined function.
The new function consists of:

e A function header containing the name of the function and other
information (the types of function headers are discussed later in
this chapter).

® An instruction or series of instructions, called statements, which
define the operation(s) to be performed.

When executing APL instructions, the IBM 5100 is in execution mode;
however, before a new function can be defined, the mode must be
changed to function definition mode. The v (del) symbol is used to
change the 5100 from one mode to another. For example, to change
from execution mode to function definition mode, a vis entered as the
first character in the function header; then after the function is defined,
another vis entered to close the function definition and change the
mode back to execution mode. Once the 5100 is back in execution
mode, you can execute your user-defined function.

Now, to show how a function is defined, let's create a function to find
the hypotenuse of a right triangle. The instruction used for this could
be written as ((A*2)+(B*2))*.5, where we square the lengths of the two
sides A and B and then take the square root of their sum, which is the
length of the hypotenuse. The function must have a name by which it
can be identified, so let's name this function HYP. Now enter the
opening v (to place the 5100 in function definition mode) and the
function header, as follows: '

YHP&«a HYP R <—— Function header.

I |
\ APL responds with the number of the first

statement (instruction) to be entered. -

Function Definition

71

72

As each statement is entered, the next statement number is displayed.
Now enter the remainder of the function as follows:

PP CCR®D)+ AR))%, ¥ =<————00— Instruction.
Closing V — Changes mode back
to execution mode.

Notice that the names in the function header (other than the function
name itself) are all used in the body of the function. In particular,
notice how the result variable name, HP, is assigned the final result by a
statement in the function.

The display screen will now look like this:

VHPen HYP R
L1 HPe AR+ (RX2))%, 5
21 v

Note: If you make a mistake when entering this function, see What To Do
If You Make a Mistake When Defining Your Function later in this chapter.
The up arrow (scroll up key) and down arrow §# (scroll down key)

do not work during editing of user-defined functions.

When you entered the closing v, the function HYP was stored in your
active workspace, so you can use it just like any other APL function
with two arguments.

EXAMPLE:
Lengths of the two sides.
3 HYP 4
& Length of the hypotenuse.
X&6
Y8
X HYP Y
10
Re3 & Like other APL functions, the arguments can be
Lely 8 in different forms.
R HYP L
S 10

Whenever you want to use HYP, just enter its name with the arguments
you want. The symbol for the calculation of the hypotenuse of a
right triangle is HYP, just as the symbol for addition is +.

A function can have only one instruction, like HYP, or it can contain
many instructions.

EXAMPLE:

VHPen HYPL, 8 <——— The function HYP could also have been
11 A2epn defined like this.
L21 B2eR%2
[31 SeA2+R2 - Note that the closing V can also be on the
[hT HPeSs, By same line as the last instruction.

3 HYPL 4

¢

Same result as HYP.

Problems: Using Function Definition

1. Define a function that displays the sum of any two numbers.
Then use the function.

2. Define a function that displays the area of any rectangle.
Then use the function.

Possible Solutions

Problem 1:

VEeM HUM N
L1 SeM+NV

& SUM 3
@

Problem 2:

VACLENGTH AREA WIDTH
11 ACLENGTHxWIDTH
21 v

I AREA &

20

TESTING YOUR FUNCTION BEFORE USING IT

Once you define your function, you should always try using it with
data that will give you a known result. For example, suppose that in
the function HYP you used the following expression by mistake:

Should have been *
({A%X2)+(RR2))X .5

Function Definition

73

You would get an answer, but it would not be the right answer for the
hypotenuse of a right triangle.

When you test your function, one of the following will occur:

The 5100 will display the result you expect.

The 5100 will display an error message.

The 5100 will display a result, but not the result you expect.

Nothing will happen.

If the 5100 Displays the Result You Expect
Great! Your function works.

Note: Even though your function worked one time, you may want to
test it some more to make sure it will work for each application you
intend to use it for.

If the 5100 Displays an Error Message

You can use the /BM 5100 APL Reference Manual, SA21-9213, to find
out what the error message means and what you must do to correct it.

Note: An error condition will cause the execution of your function to
stop; see Chapter 8 for more information on what to do when your
function stops executing.

If the 5100 Displays a Result Other Than the One You Expect, or
If Nothing Happens

In either of these cases, you have two alternatives:

e Display the entire function and check it for errors. Displaying the
Entire Function is discussed later in this chapter.

e Use the trace and stop features (discussed next) to help find the
problem.

Note: When a user-defined function is used and nothing happens
(that is, neither result nor the cursor appears on the display screen)
or a result is repeated continuously, the function is probably

looping. In this case, press the ATTN key to stop (suspend) function
execution. Chapter 8 contains information on what to do when your
function stops.

-—

(‘M\
/
3

HOW TO USE THE TRACE AND STOP FEATURES

Trace Ta

The trace feature allows you to watch the execution of your function,
statement by statement. That is, the final result calculated for each
statement traced is displayed. You can either trace all of the statements
or just certain statements in a function. To use the trace feature,

enter T, the function name, <, and the statement numbers to be
traced. For example:

TAEXAMPLE«L 2 3 b 5 &
N N,
LThe statement numbers to be traced

The name of the function to be traced

The previous statement could also be entered as follows:

THEXAMPLE &

Generates a vector of numbers from 1 to 6

Stop SA

The stop feature allows you to stop the execution of your function just
before a specified statement is executed. That is, function execution

is temporarily suspended (suspended functions will be discussed in greater
detail in Chapter 8). After function execution has stopped, the 5100
displays the number of the next statement to be executed. To use the
stop feature, enter SA, the function name, <, and the numbers of the
statements before which function execution is to stop. For example:

SAEXAMPLE«3 &
The specified statement numbers
The name of the function
After function execution has stopped, you can start it again by entering
+[JLC. OLC is a system variable that contains the next statement
number to be executed; see Chapter 9 for more information about

system variables, and the /1BM 5100 APL Reference Manual, SA21-9213,
for a complete description of the [JLC system variable.

Function Definition

4 e T ————— s

75

76

Now let's use trace and stop to find a problem in a function.

EXAMPLES:

VHPe«A HYPX R
F11 "THE HYPOTENUSE 16 '-<——Defines a function that calculates the
L2 AReA%D hypotenuse of a right triangle.
[31 BReR%2

FUT Senp2+R2 This function has an error in it.
[51 HPeS M
Tests the function using data for which
X HYPX W /the correct result is known. The result
THE HYPOTENUSE IS5 should be 5.
12,5
Using the trace feature to find the problem
TAHYPXe2 I 4 5
I HYPX 4
THE HYPOTENUSE
HYPXE2T ¢
HYPXTZ1 14

HYPXCHT 2% The correct result was obtained in each
HYPXLST 12.5 statement except statement 5; therefore,
12.5 statement 5 probably contains the error.

TAMYPXe () To turn off the trace feature, use 10 as
the statement to be traced.

The 5100 responds with the function
name, statement number, and the result
of the statement being traced.

SAHYPXeY 5
Using the stop feature to find the problem
3 HYPX U

THE HYPOTENUSE I8
The 5100 responds with the function

HYPXIW] —_— name and the next statement number
Al to be executed.
9 \
B2 When the function is stopped, you can
14 enter the variables to see if they con-
tain the expected values.

+[JL.C Continue execution by entering >[JLC.
HYPXLS] Execution stops at the next statement
8 specified for the stop feature.
+{JLC All the variables contained the correct
12.5 values; therefore, statement 5 must be
in error.

SAHYPXée)
\

To turn off the stop feature, use 10 as
the statement to be stopped at.

Note: How to correct an error in a
function is discussed next.

WHAT TO DO IF YOU MAKE A MISTAKE WHEN DEFINING
YOUR FUNCTION

(- If you make a mistake when defining your function, you can correct it
by editing the function. When editing a function, you can do the
following:

(A e Display the entire function.

e Add one or more statements at the end of the function.
e Replace statements.

(- e Insert one or more statements.

e Delete a statement from the function.

e Display a specific statement or from a specific statement to the end
of the function.

¢ Modify a single statement.

If you notice your mistake as you are defining your function, you can
correct it without reopening the function definition (the 5100 is
already in function definition mode). However, if the function definition
is closed, you must first reopen it. To do this, you must enter the Vv
(followed only by the function name. If you enter the complete function
i header, you will get an error message.

Now, let's define a function to use in doing some function editing.
Enter the following:

VETAT X
17 NepX
L2 (+/7% 14N
3T LAX
L I S 41
C
- This function calculates the average, smallest, and largest number in a
vector of numbers. Notice that this function does not have a result
variable in the function header; however, it will still display the results.
The reason for having a result variable in your function will be
("w discussed later.

Function Definition

77

78

Displaying the Entire Function

To display a function, you enter [[J] immediately after any statement
number or as shown in the following example.

EXAMPLE:

[
|
31
L4

This instruction opens, disrlxlays, and closes

I
\;i’(

STaTLOIV the function definition.
STaT X
Mé @
{4/ X)+N /Displayed function.
L7 X

7% /Try the function.

5TAT 2 9 1

C

Adding One or More Statements at the End of the Function

To add statements to a function, you open the function definition and
the number of the first available line is displayed. Then you can enter
the statements you want to add.

EXAMPLE:

The 5100 displays the number of the first
available line.

VST A T~——————0pen the function.
&3 (7K1 /X

\ Add this statement to find the range of the
numbers in the vector. The V closes the function
(you are only adding one line).

VYGETAT L[11V¥<—— Display the function.
¥V S8TAaT X

[NéepX
L2 (47K)+N .
i o . —D | jon.
3] /X isplayed function
I I/
La (1A% /X

‘v;-‘

8T 9 2 1 <«—Try the function.

s

P
W e

Function Definition

79

Replacing Statements within a Function

To replace statements, the statement number to be replaced must be
enclosed in brackets [] followed by the new statement.

EXAMPLE:

VSTAT [[]] =———— This instruction opens and displays the

V 6TAT X function.
11 NépX
L23 (+/X)+N
31 L/ X Displayed function.
Ll /7%
L5 (F/7X)~./X
v

The 5100 displays the number of the first
available line.

Notice that you can specify another state-
F&1 L2271 (+/X)+pXV ment number by enclosing it in brackets.
Now, replace statement 2 with this state-
ment for finding the average. The V closes
the function.

VSTATL[}]V +=—————— Display the modified function.

V 8TAT X
r11 NepX
r21 (/XY= pX
31 L/X ~—————— Displayed function.
Iul [7X
N ([/Xy~./X

v

STAT ¢ 1 2

i
1
9
8

80

C\
;

Inserting One or More Statements in a Function

To insert statements in a function, you must use a decimal statement
number that is between the numbers of the statements where you want
to ifsert the new statement. For example, to insert a statement between
statements 1 and 2, you could use the statement number 1.5 or any
decimal number between 1 and 2.

EXAMPLE:
Open the function.
The 5100 displays the number of the first
blank line.
VETAY '
re1 Ci.51 X Insert a statement between statements 1 and 2;
m l the inserted statement displays the vector of
C1.61 ¥ numbers.

If you do not enter V, the 5100 responds
with another decimal statement number.

Enter the closing V.

VSTATIE[] ¥ <«——— Display the function.

V STAT X \
K11 NéepX
L2131 X
L31 (+/X)+pX e ——— Notice that the 5100 has renumbered the
L3 L/X statement numbers.
L5l /X
L&l (I'/X)-L/X
'

STAT 9 2 1

*
-

0=+ 9

Function Definition

81

82

Deleting a Statement from a Function

To delete a statement from a function, you enter [An], where n is the
number of the statement you want to delete.

EXAMPLE:

VSTATL[]]~————— Open and display the function.

¥V STAT X
£11 NepX
K21 X
31 (+/X)+pX Displayed function.
Ll L/X —
LSl /X
6l (['7X)~|./X The 5100 displays the next available statement
‘v//] /number.
E73 CAWD Remove statement 4; you no longer need to
L5 ¥ know the smallest number.
Note: The closing V must not be entered on
the same line as [A n]; you must enter it on
another line or an error will occur.
VSTATEL[]1V «<———Display the modified function.
Vv STAT X)
L1l NepX
Lal X
£31 (+/X)+=pX L‘\ Displayed function—the original line 4 was
w3 /X deleted and the statements were renumbered.
G (/X)L /X :
Vv]
STaT 2 9 1
29 1
4
Q@
8

W
¥

Displaying a Specific Statement or from a Specific Statement to the
End of a Function

You have already seen how to display the entire function; you can also
display only one statement or each statement from a certain statement
to the end of the function. To display one statement, you enter [n[]],
where n is the statement number you want to display. To display each
statement from a certain statement to the end of the function, you
enter [(In], where each statement from statement n to the end of the
function is to be displayed.

EXAMPLE:

VOTATE A 1V<+———Display statement 3.
£31 (H/ X)) pX

YSTATEIM 1V =—————Display each statement from statement 4 to
IR /X the end of the function.
L5l ([/X)y-L/X

Modifying a Single Statement

You can correct keying errors in a statement of a function the same way
you correct keying errors made during entering of instructions in
execution mode. That is, the same procedures for inserting, deleting, or
replacing characters are used. To correct keying errors in function
definition mode, you must currently be entering the statement in error
or you must display the statement you want to correct.

Note: You cannot use the up or down arrows (scrqll ub or scroll down
keys) when the 5100 is in function definition mode.

Function Definition 83

EXAMPLE:

VSTATE2[]D Open the function and display statement 2.
21 X

£21 N Enter an N to replace the X in the displayed line.
L3131 V¥ (You now want to know the number of elements

\ in the vector.)

The 5100 responds with [3]; now enter the closing V.

VSTATLIIV —o Display the function.

V¥ S5TAT X)
[NepX
£21 N
L3 (+/X)+pX L—Nhas replaced the X.
(| r7X
L% (F/7Xy~L/X
v)
STAaT 2 9 1
3
I
Q
8

Editing the Function Header

You can edit the function header the same way you would edit any
other statement in the function. To do this, you specify statement O as
the statement to be edited.

EXAMPLE:

VETATLOIGTATL X Ve——_The original function header is
voTATLILIIV

replaced with this function header.
V STATL X \
£1d NéepX

Display the function.

213 N
£33 (+/X)=pX Note: Do not be concerned at
Lyl /X

this time if the error message
£53 (r/7x)-L/X S| DAMAGE is displayed; this
error message and a suggested

user response is described in the
I1BM 5100 APL Reference Manual,
SA21-9213.

VSTATLOIV You cannot display the function
LEFN ERROR STAT because the function no
VETAT longer has that name.

A Faster Way to Add, Replace or Insert One Statement in a Function

(' If your function is closed and you have only one statement to add,
replace, or insert, it can be done using only one instruction. For
example, the following instruction opens, changes, and closes the
function definition:

(Opens the STAT1 function.
Specifies that statement 3 is to be edited.

Replaces the existing statement 3.

(Closes the STAT1 function.

VSTATIL31(+/X) +NV

C

Function Definition 85

86

EXAMPLE:

11
£231
£31
Ch3d
LSl

3
y
&
8
THIS

£11
£21
£33
LWl
£33
L4
Cv31

~ 00 = F W

v

VaTATILOIV Display the STAT1 function.
STATL X

NepX

N

(+/X)=pX

.

(F/7Xy—-L/7X

VETATLLAD ' THIS STATEMENT WAS ADDED 'V

Add a statement to the function.

STATL 2 9 1

Now try the function.

STATEMENT WAS ADDED

VOTATIL31(+/X)+NVY<~————Replace a statement.
VSTATILZ . SIL/XV
VSTATLL[IIV —

Insert a statement.
STAT1 X ‘\\“*-\\\\\\
NepX

Display the modified function.
N

(+/X)+N

L/X

/X

(r/7Xx)-L/Xx

"THIS STATEMENT WAS ADDED

8TAT1 2 9 1

HIS STATEMENT WAS ADDED

N’

(w)
e

C

C

.

TYPES OF FUNCTION HEADERS

Like the APL built-in functions, you can have user-defined functions
with one or two arguments. You can also have user-defined functions
without any arguments. The number of arguments required by a
function is defined in the function header. For example:

vRESULT<ARGUMENT1 FUNCTIONNAME ARGUMENT?2
Aﬁs function requires two arguments.

v RESULT<+FUNCTIONNAME ARGUMENT

\

This function requires one argument.
v RESULT<+FUNCTIONNAME

ZT;\is function requires no argument.

When a function is executed, the value used for an argument is assigned
to the variable name that appears as the argument in the function
header. This variable is then used in the function. For example, you
might have the following function:

VRea DIVIDE R
L1 ReA+RV

if you enter 10 DIVIDE 2, the value 10 is assigned to A and the value 2
is assigned to B. Now when the statement A: B is executed, the result
is b.

Note: For some user-defined functions (as with some built-in functions),
it is important that you enter the arguments in the proper order. For
example, if you enter 2 DIVIDE 10, the answer would be 0.2 instead of 5.

When defining a function with one argument, the argument must be to

the right of the function name; otherwise, the argument will be treated
as the function name, and vice versa.

Function Definition

87

EXAMPLES:

VReA AREAL B Two arguments—this function finds

£11 ReAxRV the area of a rectangle.
12 AREAL 12

14y
v R*"‘éf(‘) RT X One argument—this function finds
C11 ReX* GV the square root of a number.
Al 4 9 16 25 36
SQRT A «— The argument can be a vector.

1 23456

VReDICE No argument—this function simulates
LL1 Re?s & the roll of two dice.
L21 v
DICE
18 The results can be any pair of numbers
DICE between 1 and 6.
3 i

WHY HAVE A RESULT VARIABLE?

So far in our discussion of user-defined functions, we have usually
defined functions with a result variable. A result variable is a variable
name with which the result of a function is temporarily stored for use
in an APL instruction. When your function has a result variable, it is
said to have an explicit result. Without an explicit result, your function
cannot be used in an APL expression.

The following function has a result variable; therefore, it has an explicit
result.

Result Variable

VRE‘:(JLT@GTY ITEMX COST
L11 RESULTeCOST+QTY V

Result Variable
The result variable must appear in both the function header and the body

of the function (it must be included in the statement where the final
result is determined).

A

EXAMPLES:

vaQTY ITEM COST <———— Define a function without an
L1 COST-QTYV explicit resuit.

10 ITEM &0
0.06

STORE«10 ITEM .60 The result of the function cannot

0.06 be used in APL expressions.
VALUE ERROR
STORE«10 ITEM 0.6
A
10+10 ITEM .60
0.06
VALUE ERROR
10410 ITEM 0.6

M

VRESULT#Q TITEMY (<——— Define a function with an explicit

C11 RESULT«(C+QV result.
10 ITEMY .60
0.06
STORE«10 ITEMY .40 The result of the function can now
STORE be used in an APL expression.
0.064
10.06 10410 ITEMY .60 Remember, if you plan to use the

function you are defining in.
calculations, you must provide a
result variable.

LOCAL AND GLOBAL NAMES

A name appearing in a user-defined function can be either /ocal or
global. A global name has the same value during the execution of a
function as it has outside of the function. A local name has a value
only while a function is active. Any name appearing in the function
header (except the function name) is a local name. So far we have

seen that a function header can contain a result variable and arguments.
Since these variable names are contained in the function header, they
are local to the function. But other names can also be made local to
the function by placing them in the function header following the right
argument (if any) with a semicolon preceding each name. For example,
the function header v LOOP R;l;J makes the right argument R and the
variables | and J local to the function. Now to see how local and global
names work, let's use some.

Function Definition

89

90

EXAMPLES:

£
L

VELORBAL Define a function without
11 Gaed any local names.

21 GReY

£31 GCeS

LWl GA+GRHGLV

r
C
L
L

1

v

v

L
C
C
C

GLORAL
2
GA
GRE > ~ Since these names are global
variables, they also exist out-
GC side the function.
VLOCAL ;LA;LE; L. C =—— Define a function with all
11 Lae3 ~ local names.
27 LRel t
31 LLCeS Notice how the names are
b1 LA+LE+LCV made local to the function.
o LOCAL
2 Execute LOCAL, then enter the variable
LA names to see what values they represent.
ALUE ERROR '
LA Since these variable names are
A local to the function, they only
LR represent a value during the
ALUE ERROR execution of the function.
LR
A
LC
VALUE ERROR
LG Define a function using both
A local (GA and GB) and global
{GC) names.
VCOMBINATION,; GA; GR
13 GA¢d Local names that are the same
21 GReV = as existing global names.
31 GCe \ ,
431 GA+GR+GCV Global name.
COMBINATION
1
GA

Notice that outside the function,
M the existing global values (previously
established by the function GLOBAL)
GG are used. The new values (6 and 7)

existed only during the execution of
the function.

Since this variable name is not
local to the function, the global
value was changed.

Now, you are probably wondering why you should make variable names
local to a function. Following are some reasons for using local variables:

e Let's assume you have defined a function named COUNT that uses a
variable named X. At some later time, you assign the result of an
important calculation to a global variable named X. Now if you
execute COUNT, the following conditions can occur:

1. If X was made local to COUNT, the global value of X is not
" changed.

2. If X was not local to COUNT, the global value of X (the
results of your important calculation) is changed.

® You can conserve space in your active workspace by not storing the
values for variables you do not use outside of a function.

BRANCHING, LABELS, AND LOOPING
Branching and Labels

Statements in a user-defined function are normally executed in the order
indicated by the statement numbers, and execution terminates at the end
of the last statement in the sequence. However, this normal order of
execution can be modified by branching (transferring to another point

in the sequence). Branching is indicated by a right arrow - followed by
a label that specifies the statement to be branched to.

For example, the expression -~START means branch to a statement
labeled START. When a label is assigned to a statement, the label is
followed by a colon and must precede the statement. The colon separates
the label from the statement:

L21 START:NeN+1

LS A8TART

In the previous illustration, the label START is assigned to the second
statement in the function. In this case, START has a value of 2; however,
if the function is edited and the statement is no longer the second
statement in the function, START will automatically be given the value
of the new statement number. Now as the function executes, when
statement 5 is executed, a branch is taken to the statement labeled
START. :

Function Definition

[T

91

92

Labels are local to a function; that is, they can only be used within that
function. Following are some rules that apply exclusively to the use of
labels:

o They must not appear in the function header.
® You cannot assign values to them.

There are two types of branch statements you can use—unconditional
branches and conditional branches:

® (Unconditional branches are branches that are taken each time the
branch statement is executed. You have already seen an example of
an unconditional branch, [5] -START, where the branch to the
statement labeled START is taken each time statement 5 is executed.
Another common use of an unconditional branch is -0, which causes
the execution of the function to be terminated.

e (Conditional branches are branches that are taken depending upon

some condition that exists at the time the branch statement is executed.

Conditional branches are used, for example, to branch to a statement
if a condition is true and to otherwise continue with the next
statement (fall through). This type of branch can be entered like
this:

+(CONDITION)/N

The branch to statement N is taken if the condition is true; otherwise
the next statement is executed. For example, APL executes the
branch statement - (I>N}/START as follows:

1. First, the condition (I>=N) is evaluated; the result is 1 if the
condition is true and O if the condition is false.

2. The result of step 1 is then used as the left argument for the
compress (/) function:

a. If the result of step 1 was 1, START is selected from the right
argument and a branch to the statement labeled START is
taken. ‘

b. If the result of step 1 was 0, nothing is selected from the right
argument (an empty vector is the result). A branch to an
empty vector means execute the next statement in sequence
(fall through).

(/’

In the following example, you will use two variations of a function to
determine the sum of each number from 1 to the value of the argument
{each function will use a different method of branching).

EXAMPLES:

£13
£L21
L33
4l
L5
L&

£13
£21
£31
L4
£33

15

VEeSUME N

GeQ

Led

CHECK : 2 (I >»N) /0 -=———Branch to 0 (terminate the function) or fall

S¢5+1 through to the next statement.

ITel+l

HCHECKYV = Unconditional branch to CHECK.
SUM2 9
VEeGUMI N

860

T¢0

CHECK : 5¢5+1

Tel+l

H{IENY /CHE (K ¥ = Branch to CHECK or fall through.

5UM3 5

Function Definition

93

Looping

A repeated segment of a function is called a loop; when you have a loop
in your program, you must provide a way to get out of the loop.

EXAMPLE:
vLOOR This function executes a
11 ITed continuous loop.

C21 LAREL : "THIS PROGRAM CONTAINS A LOOP®
L31 T¢I+l
Chl 2LARELV

Loap

THIS PROGRAM CONTAINS A LOOP
THIS PROGRAM CONTAINS A LOOP
THIS PROGRAM CONTAINS A LOOP
THIS PROGRAM CONTAINS A LOOP
THIS PROGRAM CONTAINS A& LOOP
THIS PROGRAM CONTAINS A LOOP Note: To stop execution
THIS PROGRAM CONTAINS A LOOP of LOOP, press the ATTN
key.
LOOPL3] The name of the function

and the statement number
where execution stopped is
displayed.

VLOOPLH I+ (I#3) /1L.AREL V= Provide a way to get out of

VLOOPLOIV the loop.
v LOOP \
[11 T1e0

Display the function.

C23 LAREL:"THIS PROGRAM CONTAINS A LOOP’
£L31 Tel+l
Chl 4 (1#3) /LABEL
v
LOOP

THIS PROGRAM CONTAINS A LOOP
THIS PROGRAM CONTAINS A LOOP — The loop is executed three

THIS PROGRAM CONTAINS A LOOP times.

’

A

HOW TO ENTER DATA DURING FUNCTION EXECUTION

So far you have defined functions for which you have supplied the data
for the function as arguments. This method of supplying data limits you
to two input arguments, and you must be familiar with the function so
that you can enter the required arguments in the correct order. However,
you can also define user-defined functions that display requests for input
data as the function executes. This type of function allows you to input
any amount of data; and you can also define your function so that it
specifies what type of data is to be entered. To do this, you use the

O {guad) or [(quad quote) symbols in your function to request input
from the keyboard. When a [J is encountered in a function, execution
stops and [J: is displayed to indicate that the system is waiting for
numeric or character input (character data must be enclosed in single
quotes) for the keyboard. When a [1 is encountered in a function,
execution stops, the cursor appears, and the system waits for input from
the keyboard; but in this case, everything on the input line from

position 1 to the cursor or the last character entered (whichever is the
farthest on the input line) is treated as character input, even though you
do not use enclosing single quotes when you enter the data.

EXAMPLE:

Enter the following user-defined function to determine the final score of a
baseball game:

VEASERALL
£11 "ENTER THE NAME OF THE VISITING TEAM'
C21 VISITed~——

F31 "ENTER THEIR SCORE BY INNING' The input from the
LUl VECORE«[D keyboard will replace
L33 "ENTER THE NAME OF THE HOME TEAM® the [J or [and be
Lé&1 HOME« assigned to the

C71 "ENTER THEIR SCORE RY INNING' . variables.

£81 HBCOREe€[]=«

L91 'THE FINAL SCORE WAS:*®
Ci01 VISITY

L1113 +/VSCORE

C127 HOME

L1311 +/HSCOREV

The score by inning was: REDS

-010203250
BLUES - 000231300

Function Definition

95

EXAMPLE (continued)

Now execute the function:

Notice how the messages
/ identify the type of key-
RASERALL board input required.
ENTER THE NAME OF THE VISITING TEAM
REDS This character data is not

enclosed in single quotes,
since it was requested by a

ENTER THEIR SCORE RY INNING [in the function.
[:
0 1L 0 203 25190 This is not character data,
ENTER THE NAME OF THE HOME TEAM since it was requested by a
BLUES 0 and is not enclosed in
ENTER THEIR SCORE RY INNING single quotes.
It .
000231300 Note: A [J: indicates that
THE FINAL SCORE WAS: the keyboard input is reques-
REDS ted by [J in the function; no
13 O: (blank line) indicates
BLUES that the keyboard input is
Q@ requested by (7] in the
function.

When you are using interactive functions, there may be times when you
will need to escape from a request for input. Normally pressing the
ATTN key will cause the execution of your function to stop; however,
pressing the ATTN key during a request for input does not stop the
function (the function will continue to wait for input to be entered).
Therefore, APL provides a way to escape from input requests. To
escape from a [] input request, you enter -, which will cause execution
of your function to be terminated.

To escape from a [1] input request, you must enter the U character.
This character is entered by holding the CMD key and pressing the

+

key once followed by the EXECUTE key. This will cause the execution of
your function to stop. What you can do when your function stops is
discussed next, in Chapter 8.

EXAMPLE:

(, Let’s use the BASEBALL
function to show how to
escape from input requests.

TN 3 Entering > in response to
() a [] input request causes the
execution of the function
to be terminated.

Try escaping from a [1] by
(entering . Your entry was

treated as a character, and
used as the visiting team's
name.

Enter some numbers so that
the next [1] input request

‘ wm be displayed.
Entering the U character
{(holding CMD and pressing

the key once) causes
+

the execution of the function

0 Iy,
(to stop.

Function Definition 97

Chapter 8. What You Can Do When Your Functions Stops

98

The execution of your user-defined function will stop when:
e The ATTN key is pressed.
e The stop feature is used.
e An error is encountered in the function.
e A D character (the CMD key held and the key pressed once)
+

is entered for a [input request.
A function that has stopped executing for one of the preceding reasons
is called a suspended function. A suspended function is still active, since

its execution can be resumed later.

Now let’s look at what you can do when your function stops executing.

WHEN THE ATTENTION KEY IS PRESSED

When you press the ATTN key during the execution of your user-

defined function, the function stops executing at the end of the

statement currently being executed. In this case, the 5100 displays the

function name and the next statement number to be executed.

After your function stops executing, you can do one of the following:

e Edit the function.

e Execute the function again.

o Execute another user-defined function.

e Execute system commands except for }SAVE,)COPY, and }PCOPY,
The system commands are described in the /BM 5100 APL Reference
Manual, SA21-9213.

e Terminate the function by entering .

Ch

C

(w

Generally, after you have stopped your function by pressing the ATTN
key, you will want to resume execution of the function at a later time.
To do this, you enter ~[J LC. JLC is a system variable that contains the
statement number of the next statement to be executed (see the /BM
5700 APL Reference Manual, SA21-9213, for a complete description of
the (LC system variable).

Note: |f you wanted to resume execution at a statement other than the
one immediately following the last statement executed, enter -~n (where

n is the statement number at which you want to resume execution).

EXAMPLES:

VSFUNCTION; COUNT

£11 COUNTe«0

C27 LOOP: "THIS FUNCTION CONTAINS A LOOP’
£31 COUNTECOUNT+1

Cul -LO0OP

L51 "THIS FUNCTION LOOPED

L61 COUNT
£71 "TIMES'V

SFUNCTION

THIS FUNCTION
THIS FUNCTION
THIS FUNCTION
THIS FUNCTION
THIS FUNCTION
THIS FUNCTION
THIS FUNCTION

SFUNCTIONLC3]

VEFUNCTIONCUI(COUNT =3) /L.OOPY

+[LC

T ——rr—rT—re—— 1y

CONTAINS
CONTAINS
CONTAINS
CONTAINS
CONTAINS
CONTAINS
CONTAINS

> D

Loop
LOOP

LOOP

Loop
Loop
Loop
Loop

Define a function
with a continuous
loop.

Press the ATTN
key to stop execution
of the function.

The function is
suspended at the
statement number
shown inthe [] on
your display screen.

Edit the function so
that it does not
contain a continuous
loop.

Resume execution
of the function.

What You Can Do When Your Function Stops 99

381 e e R A 18 1

100

EXAMPLES—continued

THIS FUNCTION LOOPED

7 The value shown

TIMES here on your display
screen is the number
of times the function

looped.
SFUNCTION Now execute the
”‘.HIS FUNCTION L:ONTAINE; A L«O()P functionagain.
THIS FUNCTION CONTAINS A LOOP
THIS FUNCTION CONTAINS & LOOP

THIS FUNCTION LOOPED
3
TIMES

Note: When the ATTN key is pressed twice during the execution of an
APL statement or expression (either within or outside of a user-defined
function), the execution of the statement or expression stops
immediately. The message INTERRUPT, the statement being
processed, and the caret (A) that indicates where the statement was
interrupted is displayed. You can use this method to interrupt
statements that take a long time to execute. However, any results
generated by the statement or expression before it was interrupted
might not exist after the interrupt.

WHEN THE STOP FEATURE IS USED

You are already familiar with the stop feature, which was discussed in
Chapter 7. When using the stop feature (as when using the ATTN key),
you can do the following:

e Edit the function.

Execute the function again.

Execute another user-defined function.

Execute system commands except for)SAVE,)COPY, and)PCOPY.

Resume function execution by entering ~[JLC.

Terminate the function by entering .

2
)
I/
..

WHEN AN ERROR IS ENCOUNTERED IN THE FUNCTION

The reason the execution of your function stopped in this case, unlike
the reasons in the other two cases, cannot be controlled by you. That
is, the 5100 automatically stops the execution of your function and
displays an error message when an error occurs in the function. The
error messages and a suggested user’s response for each error are
described in the /BM 5100 APL Reference Manual, SA21-9213.

Errors in a user-defined function are sometimes difficult to find and
correct. The error message displayed indicates where the execution of
the statement stopped, and why; but the reason the failure occurred at
that point might have been because a mistake (either a keying error or

an error in the solution to the problem) was made earlier in the statement
or because a mistake was made in an even earlier statement in the
function. Following are some hints to help you find errors in a statement
or expression that is failing or giving the wrong results.

e Check the expression (statement) you entered for any keying errors.

Analyze the execution of the expression from right to left. Remember,
APL executes an expression from right to left with the expressions in
parentheses resolved (right to left) as they are encountered.

Use the shape o function to make sure the shapes of the arguments
are what you expect. For example, suppose you have a function
named CAT that catenates two vectors together to form one vector;
however, one of the arguments you supplied was a matrix.

Enter the names to check the values of the arguments to make sure
they are what you expect {local names in a suspended function can
be displayed, since the function is still active).

Break the expression down and execute it in smaller segments.
Theup ## B and down n arrows (scroll up and scroll down

keys) make it easy for you to break the expression down; that is, you
can execute the expression like APL does (from right to left with
expressions in parentheses resolved as they are encountered). To do
this, you enter the first operation performed by APL, for which the
result will be displayed. Then press the down arrow three times and
the up arrow once to remove the previous result from the display
screen (so that it is not on the input line when the EXECUTE key

is pressed again) and to place the instruction you just entered in a
position for you to add more operations. Now you can add the next
operation to the instruction, and the next, until the error in the
instruction is found.

What You Can Do When Your Function Stops

101

L —— s 8L

It is important that you maintain a history (either a printout on the iBM

5103 Printer or a handwritten copy) of what you did when you were \ P
trying to find the cause of an error. Then if you cannot find the error ﬁ
and you think the problem is caused by the 5100, this history will help .
your service representative determine where the problem is.

When a function has stopped because an error occurred, as when pressing
the ATTN key or using the stop feature, you can do the following:

e Edit the function.

e Execute the function again.

® Execute another user-defined function.

e Execute system commands except for)JSAVE,)COPY, and)PCOPY.
¢ Resume execution of the function by entering ~[JLC.

e Terminate the function by entering .

WHEN A D CHARACTER IS ENTERED FOR A 1 INPUT REQUEST

In Chapter 7, you used the U character to escape from a [input request
and to stop function execution. In that case, the 5100 displayed the
message INTERRUPT, the function name, and the statement that
requested the input. After your function stops, you can do the same
operations that you did when the function stopped for any other reason.
However, in most cases, you will want to terminate the function by
entering .

FINDING OUT WHAT FUNCTIONS ARE SUSPENDED

The state indicator contains the function name and the number of the
statement to be executed next for each suspended function. To display
the state indicator, you enter)Sl or)SIV. See the /BM 5100 APL
Reference Manual, SA21-9213, for more information on the state
indicator.

102

C

USING THE HOLD KEY TO STOP PROCESSING

We have already discussed the ways a user-defined function can be
suspended. You can also stop the execution of a function by pressing the
HOLD key once. In fact, this stops the entire system from processing

any data. To resume processing after pressing the HOLD key, you must
press the HOLD key again. The HOLD key is useful when the information
on the display screen is changing rapidly; that is, you can stop processing,
read the displayed information, and then resume processing.

EXAMPLES:

VHOLIF Define a function.
L1T1 He
21 "PRESS THE HOLD KEY T0O STOP PROCESSING'
[31 LOOP:HeH+1
43 H
L1 2 (HA2E) 7L.O00PY

HOLIDF
PRESS THE HOLD KEY TO STOP PROCESSING
1
3 The value displayed here on your
: display screen indicates how many

. times the function looped before
processing stopped.

Now press the HOLD key again to resume processing.

Note: If your 5100 is not processing a4ny data or user-defined functions
and the cursor is not flashing on the display screen, the HOLD key
might have been pressed once, stopping all processing.

What You Can Do When Your Function Stops

103

Chapter 9. Using Your Tape Cartridge (Library)

104

Y,

So far you have used only the IBM 5100 active workspace. The active
workspace is the part of the 5100’s internal storage where the calculations
are performed; it is also the place where the variables and user-defined
functions are stored. When you set the 5100 POWER ON/OFF switch
to off or press RESTART, the data in the active workspace is lost.
However, before turning the power off or pressing RESTART, you can
save the data in your active workspace by writing the contents of the
active workspace on a tape cartridge. This tape cartridge is like a library;
that is, you can write the contents of your active workspace on the tape
(like placing a book on the library shelf) and, at a later time, put the
information stored on the tape back into the active workspace (like
taking the book off the library shelf to use it again).

The tape library consists of one or more files (each file is like a book),
and just as each book in a library has a name, each file that contains
information on the tape also can have a name (file identification).

The IBM 5100 system commands are your means of controlling the
active workspace and tape (library). Look at the labels above the alpha-
meric keyboard; these system command keywords can be entered by
simply pressing the CMD key with the appropriate key below the label.
The system command keywords can aiso be entered character by
character. Notice that each system command begins with a } symbol.
There are some system commands that do not appear on the labels above
the keyboard. All of the 5100 system commands are discussed in detail
in the /1BM 5100 APL Reference Manual, SA21-9213.

In the following example, you will see how some of the system commands
work. First, a tape cartridge must be inserted into your 5100. Be sure
the tape contains no data required for any further use, and that the SAFE
switch (Figure 2) does not point to SAFE. Now insert the tape cartridge
(Figure 3).

Make sure the SAFE switch

Figure 2. The SAFE Switch

Insert the tape cartridge into the 5100 as shown.
S
/
N ‘\’ “\
A\ B>
\? 2\ '
S) 1

0
0

-

Figure 3. Inserting a Tape Cartridge into Your IBM 5100

Using Your Tape Cartridge (Library) 1085

EXAMPLES:

Press RESTART on your 5100; all the data that was in the active workspace is now
lost.

CLEAR WS This message will be displayed
when the 5100 is again ready
for you to enter data.

Enter the following function and variable so that you can store them on tape for
later use:

VEXAMPLE ; R; NAME
C11 'THIS FUNCTION COUNTS THE CHARACTERS IN YOUR NAME'®
C21 "NOW ENTER YOUR NAME'
L3 NAME+[
L4l "THERE ARE’
LS51 pNAME
L61 "CHARACTERS IN YOUR NAME'V

VARIABLE« 'LET' 'S SAVE THIS DATA’

Now try the function EXAMPLE to see if it works.

YFNS The)FNS system command
EXAMPLE displays user-defined function
names in the active workspace.

IVARS The }VARS system command
VARIARLE displays the global variable
names in the active workspace.

Before a tape can be used, the files you want to use must be formatted.

106

“w

™
..‘/\//

The YMARK command formats

files on the tape. This command

specifies:

— Size of the files to be
formatted

— Number of files to format

— Starting file number

!
TMARK 146 3 41// APL will respond with MARKED,

MARKETD 0003 0016 ‘ number of the last file marked,
and the size of the files: If the
file you want to use has been
marked before, you will get a
message ALREADY MARKED.
In this case, enter GO and press

the EXECUTE key to reformat
the tape files.

The files are formatted in blocks of 1024 bytes. For example, the size of the files
just formatted is sixteen 1024 byte blocks (or 16384 total bytes). See the /BM
5100 APL Reference Manual, SA21-9213, for information on what size to format
files.

Now let’s write the contents of the active workspace on the tape.

JCONTINUE 1001 INFO «———This becomes the name of the

CONTINUED 1001 INFQ \file on tape.
This specifies the device/file

number (device 1, file 001)
where the contents of the
active workspace are written.

»CLEAR You do not have to turn the
CLEAR W& : power off or press RESTART
to clear all of the existing data
out of the active workspace;
you can use this system
command.

The data in a stored workspace can be placed back into the active workspace.

YLOAD 1001 INFO The stored workspace name
LOADED 1001 INFO (workspace ID).

The device/file number where
the stored workspace will be
loaded from.

Using Your Tape Cartridge (Library} 107

108

YFNS
EXAMPLE > Now the data that was stored
YVARS

on tape is in the active work-
VARTAERLE space once again.

The remaining system commands are described in the /BM 5100 APL Reference
Manual, SA21-9213. Try using these system commands to see how they work.

So far, you have learned how to write the entire contents of the active
workspace on tape. However, you can also write one variable at a time
to a file on tape. This data can then be read from tape at a later time in
the same order as it was written to tape. For more information on how
to do this, see Chapter 8, Tape and Printer Input and Output in the IBM
5100 APL Reference Manual, SA21-9213.

WHAT ARE SYSTEM VARIABLES?

System variables are variables within the active workspace that control
the system. All system variables begin with the [J symbol and are set to
an initial value by the 5100 in a clear workspace. See the /BM 5100 APL
Reference Manual, SA21-9213, for a complete description of each system
variable. In the following example, you will see how the value of some
system variables can be changed and how this affects certain APL
functions.

EXAMPLES:

The index origin [J1O system variable determines the index origin. The value of
the []10 system variable can be either 0 or 1, which means that the first element of
a vector or array is indexed with a 0 or 1 depending upon what the []10 system
variable is set to. The APL functions 1 ? } ¥ are affected by the []10 system
variable.

110 -— You can display the value of a
system variable the same way you
display the value of any variable.

The []10 system variable is
initially set to 1 by the system.

Results when the []10 system
variable is set to 1.

373

31 2 These numbers can be in any

1100 order.
01 2 3K You can change the value of

373 some system variables.

1 20
Notice how the results of these
APL functions change when the
[J10 system variable is changed.

These numbers can be in any
order. Notice that the values
start from 0.

The printing precision [JPP system variable determines the number of significant
digits displayed.

(app
) The [JPP system variable is

1+3 initially set to b by the system.
0,33333

0 PPU\

1+3 Five significant digits are
0.33 displayed.

Now only two significant digits
are displayed.

The comparison tolerance [JCT system variable determines how close two numbers
must be when you are using the relational, floor, or ceiling functions.

T The []CT system variable is
1E~L3 initially set to 1E~ 13 by the
L SENEDHe= , BEOHENY system.
0 \
[CTe«1E™S These two values are not
L SER5E56=, BEHE555Y considered equal.
1 \
Now these two values are
considered equal.
YCLEAR The workspace is clear and the
CLEAR WS - system variables are once again

set to their original values.

Using Your Tape Cartridge (Library) 109

.~ =

REMEMBER, APL IS A GOOD LANGUAGE
TO EXPERIMENT WITH. THE MORE YOU

(EXPERIMENT, THE MORE YOU LEARN.

11

Appendix A. Overstruck Characters

Name

Comment

Compress

Execute

Expand

Factorial, Combination

Format

Grade Down

Grade Up

Logarithm

Matrix Division

Nand

Nor

Protected Function

112

Character

o

>?

<

(See note)

(See note) -

Keys

C “
'

Name Character Keys

Quad Quote m
Rotate, Reverse ¢
Rotate, Reverse e (See note)
Transpose ®

Note: These are variations of the symbols for these functions; they

are used when the function is to act on the first coordinate of an array.

Overstruck Characters

113

Index

)JCLEAR command 107, 109
JCONTINUE command 107
)JFNS command 106
JLOAD command 107
JMARK command 107
)VARS command 106
[11 45,46, 48

O 78

{On] 83

[ndJ] 83

[An] 82

O 95

O: 95

OcT 109

Jio 108

gep 36, 109

Mm 95

-{JLC 76,99
©character 96, 102
vsymbol 71

[function 29, 41

| function 29, 42

A function 30

¥ function 30

? function 31, 43

1 function 22, 32

p function 32

< function 34

< function 34

> function 34

> function 34

= function 34

function 34

A function 37, 38

v function 37, 39

/ function 44,45

, function 47

® function 51

active workspace 104
adding statements 79
addition 14
alpha keys 2

114

alphameric keys 2

ALREADY MARKED 107
alternating sum 56

and function A 37, 38

and reduction 48

APL language 1

APL system command keywords 4
arguments 14, 28, 87 : -
arithmetic function keys 4
arithmetic operations 14

assign a value 17

assignment arrow 17

attention key (see ATTN key)
ATTN key 4,12,74,98

average 53

backspace key 4, 8,9, 10
BASIC/APL switch 4
black background 7

black characters 7

blank character 26
branching 91

brightness control 7
built-in functions 1, 14, 89

calculator arrangement 4
catenate function, 47
ceiling function [29
character data 26
CLEARWS 4

closing V. 72

CMD key 4,9

column 22

command keywords 4
comparison tolerance [JCT 109 -
compress function/ 44
conditional branch 92
conform 48

consecutive numbers 31
control panel 1

coordinate, acted on 45, 46
correct a keying error 11
correcting keying errors 8
cursor 5

deal function ? 43

del symbol 71

delete a character 9

deleting statements 82

display appearance 7

display global variable names 106
display registers/normal switch 4
display screen 1,5

displayed information 5, 6

displaying a statement 83, 84
displaying data 5

displaying from a specific statement 83
displaying the entire function 78
displays user-defined function names 106
division 14

down arrow 7,12,72

editing a function 77

editing the function header 84
empty vector 32, 50
enteringdata 5

entering data during function execution 95
equal to function= 34

error in the function 101

error message 18, 74, 101
escape from input requests 96
EXECUTE key 4,6, 12
execution mode 71

expand a vector or matrix 45
expand function \ 45
explicit result 88

features 1

files 104

flashing line 5
floor function | 29
format files 107

forward space key 4,8,9, 10
function body 72

function definition 71
function definition mode 71
function editing 77

function execution stops 98
function header 71, 84, 88, 89
functions 1

global names 89

global variable names 106

grade down function § 30

grade up function 4 30

greater than function > 34

greater than or equal to function > 34

history b5
HOLD key 4,103
HYP function 71

index generator function 1 31
index numbers 24

index of avalue 43

index of function 1 43
index origin (JIO 108
index value [1]1 45, 46, 48
indexed 30

indexing 24

indicator lights 1

input 5

input line 7

insert a character 10
insert blanks or zeros 45
insert tape cartridge 104
inserting statements 81
instructions 71

interactive functions 96
internal checks 4

internal precision 36

Index

116

join two items 47

keyboard 1
keying errors 8
keys 1

keywords 4, 104

labels 91

larger of two numbers -41
less than function< 34
less than or equal to function < 34
library 104

local names 89

local variables 91
logarithm function ® 51
logarithm of a number 51
logical functions 37
looping 74, 94

lost lines 7

L32 64 R32 switch 4,7

matrices 19

matrix 22, 26
maximum function [41
maximum reduction 57
minimum function | 42
minimum reduction 57
minus 15

minus reduction 56
modifying a statement 83
move display lines 7
multiplication 14

negative numbers 15
negative sign 15

not equal to function # 34
numeric keys 4

116

operating keys 4

or function v 37, 39

or reduction 58

order of execution 18, 19
overstruck character 28

parentheses 19

place a stored workspace into the active
workspace 107

plus reduction 53

portable computer 1

power function * 16

power up sequence 4

printing precision [JPP 109

quad input 95
quad quote input 95

random number 31, 43
reduction 53

relational functions 34
reopen function definition 77
replace a character 8
replacing statements 80
request for input data 95
reshape function 22
restart sequence 4

restart switch 4

result variable 72, 77, 88
reverse display switch 7
roll function ? 31

root of a number 17
rounding off numbers 29
row 22

SAFE switch 104
scalar 26

scroll down 72, 83
scroll down key 4,7
scrollup 72,83

scroll up key 4,7 unconditional branch 92

e selecting certain elements 44 uparrow 7,12,72
(semicolon 25 user-defined functions 14, 71
. set up procedure 1
shape 32
shape function p 32
shift key 2
e single quote chatacters 26 variable name 17
(smaller of two numbers 42 variables 17
- sorting a vector 30 ‘ vectors 19, 26

standard typewriter 2
state indicator 102
statement number 72
on statements 71
('w stop control feature 100 white background 7
g stop execution 75 white characters 7

stop feature 75 write the active workspace to tape 107

stop processing 103

storingdata 17

strings of numbers 19

subtraction 14

suspended functions 75, 98
switches 1,4

system command keywords 4, 104
system commands 104

system variables 108

tables 19

tape cartridge 104
testing your function 73
trace feature 75

turn off stop 76

turn off trace 76
typewriter 2

Index 117

SESEE———— e ey S e . - e R ———

E———

READER’S COMMENT FORM

IBM 5100 SA21-9212-1
APL Introduction

YOUR COMMENTS, PLEASE . ..

Your comments assist us in improving the usefulness of our publications; they are an important
part of the input used in preparing updates to the publications. All comments and suggestions
become the property of {BM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your |BM
representative or to the | BM branch office serving your locality.

Corrections or clarifications needed:

Page Comment

| would like a reply. D

Name
Address

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

SA21-9212-1

—_— — — — — — aunbuogyIn) — — — — -

FIRST CLASS
PERMIT NO. 387
ROCHESTER, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WillL BE PAID BY . . .

IBM Corporation

General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

uondnponul 1dv 00LS N8I

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

{USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

'V'S'N ul paulid

L-CLZ6-1levs

READER’S COMMENT FORM

IBM 5100 SA21-9212-1
APL Introduction

YOUR COMMENTS, PLEASE . ..

Your comments assist us in improving the usefulness of our publications; they are an important
part of the input used in preparing updates to the publications. All comments and suggestions
become the property of |BM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your 1BM
representative or to the 1BM branch office serving your locality.

Corrections or clarifications needed:

Page . Comment

| would like a reply. D

Name
Address

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

SA21-9212-1

aulbuoiy 1IN) — — — — -
£

FIRST CLASS
PERMIT NO. 387
ROCHESTER, MINN.

.|
]
BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES L] E
I 2
POSTAGE WILL BE PAID BY . . . —— a.
L] 8
L | > h
EEEE——— 2
.] -
IBM Corporation — 2
General Systems Division — 4
Development Laboratory &
Publications, Dept. 245]
Rochester, Minnesota 55901
©
=
| &
_________________________________ Q.
| 5
Fold Fold c
|
>
|
I L7d
>
N
I -—
©
N
-
Lod
- v

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

READER’S COMMENT FORM

IBM 5100 SA21-9212-1
APL Introduction

YOUR COMMENTS, PLEASE . ..

Your comments assist us in improving the usefulness of our publications; they are an important
part of the input used in preparing updates to the publications. All comments and suggestions
become the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. instead, direct your inquiries or requests to your |BM
representative or to the 1BM branch office serving your locality.

Corrections or clarifications needed:

Page Comment

| would like a reply. D

Name
Address

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

SA21-9212-1

— ——— om—— —— —— —— ———— — o o— o— —— t— m— —— m——t — m——— — o momm e S — —— — ——— — — —

FIRST CLASS
PERMIT NO. 387
ROCHESTER, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . . .

IBM Corporation

General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

{BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International)

uopaNponu| 14V 00LS WEI

"¥'S'N Ul paruLg

L-CLZ6-LevsS

®

READER’S COMMENT FORM

1BM 5100 SA21-9212-1
APL Introduction

YOUR COMMENTS, PLEASE . ..

Your comments assist us in improving the usefulness of our publications; they are an important
part of the input used in preparing updates to the publications. All comments and suggestions
become the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. .Instead, direct your inquiries or requests to your |BM
reprasentative or to the |BM branch office serving your locality.

Corrections or clarifications needed:

Page Comment

| would like a reply. D

Name
Address

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

1L

SA21-9212-1

FIRST CLASS
PERMIT NO. 387
ROCHESTER, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WiLL BE PAID BY . . .

IBM Corporation

General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

— —
=
= =
— =
B

International Business Machines Corporation
General Systems Division

8775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

I1BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

uondnponu| 1dv 00LS gl

'V'S'N ut parulid

1-2LZ6°LCVS

SA21-9212-1

uononposuj 1dv 00LS NGl

‘¥v'STN ul pajulid

L-¢Lze6-LevsS

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017

(International)

