
--..- ---------.-- ~--- ~ _ -- - - -----------_.- Technical Report
April 1976 07.607

IBM 5100 SHARED VARIABLE PRIMER

Andrew J. Cubbon

Communications General Systems Division Rochester, Minnesota

Communications

07.607

IBM 5100 SHARED VARIABLE PRIMER

AndrewJ. Cubbon

This primer is designed to supplement the IBM 5100 APL Reference
Manual (SA21-9213) Chapter 8. It begins with several simple exercises
using APL Shared Variables. Following the exercises is a more detailed
discussion of I/O using Shared Variables in question and answer format.

Some of the topics covered are:

- How Shared Variables work.
- How to read and write tape.
- How to copy data fIles.
- How to use the printer.
- How to exchange data with BASIC and Communications.
- How to close input files.
- How to avoid some common errors.

General Systems Division Rochester ~ Minnesota

07.607

Andrew J. Cubbon is a Staff Marketing Support Representative in
the 5100 Marketing Support Center. He received a BS degree in 1969
from the University of Illinois and an MS in 1974 from the
University of Minnesota.

Cubbonjoined IBM in June 1969.

ii

07.607

INTRODUCTION FOR IBM 5100 APL I/O USING SHARED VARIABLES

This report is designed to assist the new user of the IBM 5100
with APL Shared Variables. The only way to do device (tape,
printer, etc) operations under program control in APL is to use
Shared Variables. First, run through some simple exercises using
Shared Variables. This should be followed by a detailed series
of questions and answers.

Output to Tape

This exercise will write data to the inboard tape unit.

1 Mount a data cartridge.

2 Mark a small file.

)MARK I I I

3 Offer a Shared Variable.

1 DSVO 'SV'
2

4 Open the file for output.

SV+'OUT l'

5 Check the return code.

SV
o 0

6 Write a character record.

SV+'REC l'

7 Check the return code.

SV
o 0

8 Write a numeric record.

SV+3 3 pt9

9 Check the return code.

SV
o 0

1

07.607

10 Close the file. The last (only) buffer will be written to
tape.

SV+'lO

11 Check the return code.

SV
o 0

Input From Tape

Read back the file just created.

1 Using the same Shared Variable and tape file, open the file
for input.

SV+'IN l'

2 Check the return code.

SV
o 0

3 Read the first record. The tape will read the first (only)
block.

SV
REC 1

4 Read the second record. There will be no tape movement as
value is in the buffer.

SV
123
456
789

5 Attempt to read a third record.

SV
Nothing (empty vector) indicates end-of-data

6 Check the close return code.

SV
o 0

7 Retract the Shared Variable.

DSVR 'SV'
2

2

07.607

8 Erase the Shared Variable to avoid problems with its reuse.

)ERASE SV

Copying and Printing a File

This exercise will copy the file you just created to the second
tape and print each record.

1 Mount another tape in the second tape unit.

2 Mark a small file on the second tape.

)MARK 1 1 1 2

3 Offer the Shared Variables, one each for input, output and
the printer.

1 DSVO 3 3 p 'SV OSVPNT'
222

4 Open the printer.

PNT+'PRT'

5 Open the input device.

SV+'IN l'

6 Open the output device with an ID.

OSV+'OUT 2001 ID=(COPY) I

7 Check return codes.

PNT
0 0

SV
0 0

OSV
0 0

8 Get first record.

DATA+-SV

9 Print it and check return code.

o 0

PNT+DATA
PNT

3

07.607

The printer will print:

REC 1

10 Write it to tape and check return code.

o 0

OSV+-DATA
OSV

11 Get second record.

DATA+-SV

12 Print it and check return code.

o 0

PNT+-, (w DATA), OA V [157]
PNT

The printer will print:

123
456
789

13 write it to tape and check return code.

o 0

OSV+-DATA
OSV

14 Attempt to get third value.

DATA+-SV

15 Check shape of DATA.

pDATA
o the zero (empty vector) indicates end-of-data

16 Erase the Shared Variables. Note that this will close them
also.

)EPASE SV OSV PNT

4

07.607

QUESTIONS AND ANSWERS ABOUT SHARED VARIABLES

Q: Why Shared Variables?

A: This is a frequently asked question. To put it another way,
why did APL not use READ/WRITE or GET/PUT? The answer:
because this would require the protocol for the various
devices to become part of the APL language. Any new devices
or changes to existing devices protocol would require a
redefinition of that portion of the APL language. Also, APL
has functions with only one or two arguments. I/O devices
usually require many more, which would destroy the simpli­
city of APL's syntax.

Thus, the Shared Variable, a simple link to the outside
world. None of the requirements of the I/O device are
included in the language. This facilitates additions or
changes in I/O configurations.

Q: What is a Shared Variable?

A: It is an ordinary variable with connections. That is, all
the rules of ordinary variables apply: 1 to 77 character
identifier, first character is alphabetic, can be used in
APL expressions, etc. However, it is unlike ordinary vari­
ables when it is linked to the 5100's I/O devices. Values
assigned to a Shared variable are passed out to the selected
device. When referenced, the value is provided by the
selected device. Each separate reference gets a new value.
If a value is to be used more than once, it should be assigned
to an ordinary-Varra~

Examples:

The vector 3 4 5 is passed out to an I/O device via the
Shared Variable SV:

SV+3 4 5

The Shared Variable SV is referenced to get two records from
an I/O device.

SV
123

SV
10 11 12

5

07.607

Q: Are there any restrictions on their use?

A: Although assigning and referencing are similar to ordinary
variables, there are times when one or the other operation
is not permitted. Depending on how you are accessing the
I/O device, doing the wrong thing can cause an INVALID
OPERATION error which causes an INTERRUPT to occur in the
statement performing the incorrect operation. An example of
this would be trying to assign a value (other than an empty
vector) to a Shared Variable established for an input
operation.

Q: What about errors?

A: If the data assigned to a Shared Variable is invalid, the
5100 does two things: It displays an error message, and
puts a return code in the Shared Variable. The return code
can be checked by the APL function doing the I/O operations.
If no error is detected, a return code of 0 0 is placed in
the Shared Variable. It is always good procedure to check
the return code after an assignment operation. Remember,
only one reference per value. Thus, the return code is only
available for one reference unless it is assigned to an
ordinary variable. The following example of checking return
codes could be used:

If SV is the Shared Variable and has just been assigned a
value,

[n] +(O~+/SV)/o

[n] +(O~+/RT+SV)/ER

[m] ER: 'ERROR CODE ',~RT

exits the function if the
return code is not 0 o.

prints the return code if
not 0 o.

6

07.607

ESTABLISHING SHARED VARIABLES

Q: How is a variable shared?

A: As you have seen, you use Shared Variables to exchange data
with the I/O devices of the 5100. Now we will discuss how
to establish the connection. This is done by offering a
variable to be shared. The offer is done with the Shared
Variable Offer system function DSVO. DSVO requires two
arguments: the number 1 and the name of the variable to
offer. The 1 indicates the variable is to be used for I/O
operations*. The variable's name is a character argument "to
DSVO. For example:

1 DSVO 'SV'

offers SV for I/O operations.

Q: What is the result of DSVO?

A: The result, not return code, of this system function is:

o - invalid variable name,
invalid left argument, or
already eight variables being shared

1 - 1 was not the left argument of DSVO

2 - the variable was accepted.

Remember, this is a result of the DSVO function just like 7
is the result of the + function if 3 and 4 are its arguments.
It can be tested or used the same as the result of the +.

Q: Can we share more than one variable?

A: Yes, up to eight. They may be offered one at a time or
several variables may be offered at the same time. To do
the latter, the right argument of DSVO is a character matrix
whose rows are the names of the variables to be offered.
The result is a vector of numbers, one for each variable
offered. For example:

*

1 DSVO 2 3 p'SV PNT'
2 2

For purists, the 1 is the "processor number" used on
larger systems with multiple users.

7

07.607

Offers SV and PNT which were both accepted. This could also
have been done as two separate offers:

1 DSVO 'SV'
2

1 DSVO 'PNT'
2

Q: Why offer more than one variable?

A: If you want to operate more than one device at a time, you
need one Shared Variable for each device. For example, if
you are reading records from the tape and printing them on
the printer, you would have one Shared Variable for the tape
and one for the printer.

Q: How do we check if a variable is shared?

A: If you have been doing a lot of experimenting with Shared
Variables, you may get to the point where you don't remember
if a variable is shared or not. This can be checked using
DSVO with only one argument (monadic). The result is the
status of the right argument which is a variable name or a
matrix of names. For example:

DSVO 'sv'
2

tells you that SV is currently being shared.

Q: What if we don't know the variable's name?

A: DSVO DNL 2

Checks all the variables in the workspace. If one of the
elements of the result vector are not equal to 0, the corre­
sponding row in the DNL 2 matrix of variable names is the
name of a Shared Variable.

8

07.607

Q: What happens if an existing variable is offered?

A: If a variable already exists in the ordinary sense and is
then offered, its value is used by the 5100 to open the I/O
device (discussed in the next section). Therefore, if the
variable that is offered is something other than a valid
Openlist, an error message will occur during the offer. For
example:

A+3
1 DSVO 'A'

INVALID DATA TYPE
2

The share is successful (the 2) but the open attempt is not,
so an error message is displayed. The 5100 is still expec­
ting a valid Openlist. If one is now assigned to A, the I/O
operations will proceed normally.

This error may be avoided by erasing the variable prior to
sharing it. Further measures will be discussed in a later
section.

9

07.607

OPENING I/O DEVICES

Q: How are the I/O devices opened?

A: After the Shared Variable has been accepted by the 5100, we
must communicate our I/O requirements. For example, do we
want to do input or output, to what file, shall we assign an
ID, what type should the file be, etc. These and other
characteristics are established with an Openlist. An
Openlist is a character string (vector) that the 5100 is
expecting first and only once.

Q: What do we do first?

A: The first parameter tells the 5100 what we want to do:

IN - Input from the I/O device
OUT - Output to the I/O device
ADD - Add records to an existing tape file
PRT - Output to the 5103 Printer

Q: Does ADD use the same amount of tape as OUT?

A: No, generally it will use more! The more times you open a
file for ADD, the more extra tape is used. The cause is ADD
starting a new physical block when the file is opened,
skipping the unused part of the previous ending block.

Q: How do we specify which device and file?

A: The next parameter specifies the device and file number (not
used with PRT):

ddfff dd - device number
fff - file number

10

07.607

For example:

Thus:

2001
3

tape 2, file 1
(tape 1), file 3

SV+'IN 3' opens tape 1 file 3 for input.
SV+'OUT 2001' opens tape 2 file 1 for output.
SV+'ADD 17' opens tape 1 file 17 to add records to end
of existing file.

The remaining parameters are optional when they are valid.

Q: How about file identifiers?

A: 10= (identifier)

For example:

10= (FILE-I)
ID=(10/12/75)
ID={SALES MAR)

the identifier can include any
o to 17 characters except a
right parenthesis.

The ID parameter has different results when used with the
different I/O operations:

IN The value specified is checked against file header
& ID. If not the same, the open attempt fails--
ADD INVALID FILE. If the ID parameter is not used, no

checking occurs.

OUT- Case 1: a marked but unused file (type 0). The
specified 10 is written in the file header. If
the ID parameter is not used, an ID of DATA is
used.

Case 2: A previously used data file (types 1, 2,
or 8). The value specified is checked against the
file header 10. If not the same, the open attempt
fails--INVALID FILE.

Case 3:
or 8).

Note:

A previously used file (not types 1, 2,
Open fails--INVALID FILE.

In order to overwri.te a file with a new
ID or nondata file type, it has to be
dropped via the)DROP command.

PRT- The ID parameter is invalid.

11

07.607

For example:

SV~'IN I ID=(FILE-l)' opens file 1 for input and checks
to see if the header ID is FILE-I.

Q: What kinds of data can be transferred to or from
an I/O device?

A: The kinds of data that can be written out to or read from
I/O devices depends on the I/O device and (if applicable)
the file type specified. The tape will accept all types of
data. The printer (PRT) will only accept single characters
or strings of characters. More details will be covered in a
later section.

Q: What about specifying file type?

A: TYPE=t where tis:

I - for data exchange (type 1)
II - for data exchange (type 1)
12 - for general exchange (type 2)

A - for APL internal (type 8) this is the default
value.

For example:

TYPE=I
TYPE=I2

This parameter is only valid for OUT operations. Other
operations get the type from the I/O device.

For example:

'OUT 3 TYPE=I' opens tape I file 3 as a data
exchange file

For TYPE=I, II, or 12 files, data must be single characters
or character strings. Other forms are invalid and will
cause an INVALID DATA TYPE error. The Ravel , and Format ~
functions can be used to convert other forms into character
strings (vectors). For example, if:

A ~ 3 4 5 it can be outputted as ~A
A ~ 2 3 p 'ABC' it can be outputted as ,A

12

07.607

When reading numeric data in from an exchange file, it can
be converted back to numeric with the Execute £ function.
For example, if SV is the Shared Variable then:

A+~SV will cause A to get the numeric values of the
input characters.

TYPE=A files will accept any form of data in any shape. No
conversion is necessary.

Q: What about BASIC source (type 3) files?

A: Type 3 files can be read by APL but cannot be created. To
create a BASIC source file, use TYPE=I2 which can be loaded
as either source or data by BASIC.

Q: Can we get rid of the error messages?

A: MSG=OFF This parameter may be used with IN, OUT, ADD, and
PRT. It (once processed) prevents the displaying
of error messages.

If this parameter is used, it is more important that the
return codes from the I/O operations be checked to prevent
errors from going unnoticed.

For example:

SV+'OUT 1 MSG=OFF' opens tape 1 file 1 for output and
inhibits error messages

Q: How do we know it is opened?

A: Once the open is complete you should check the return code.
To do this, you have only to reference the Shared Variable.
For example:

[n] SV+'OUT 3'
[n+l] ~(O~+/SV)/O exits function if an error occurred.

13

07.607

TRANSFERRING DATA

Q: How do we get data from the I/O device?

A: Now that you have established the link to the I/O device and
have told it what you want to do, how do you do it? Let us
discuss getting data from the I/O device.

Before you can get any records, you will always get the
return code from the open.

SV
o 0

There are several techniques you can use to get the data
from the I/O device. You could simply key in the Shared
Variable and press execute:

SV
record 1

SV
record 2

This method is useful if you are just checking the first few
records to see, for example, if they are the correct format.
However, for larger amounts of data, this becomes tedious.

Q: What about an input function?

A: This leads to another method. You could write a function to
repetitively reference the input variable and perhaps
process, display, and/or print each input record. For
example:

[n] LOOP: SV
[n+l] +LOOP

The problem with the above function segment is that it never
stops. When there is no more input data, the I/O device
will be closed. An Openlist will be expected, not getting
it, it will repeatedly display:

DEVICE NOT OPEN
8 0

Q: How can we prevent this error?

A: To prevent this, a check should be made for end-of-data.
End-of-data is signalled by an empty vector. The above
segment could be rewritten:

14

[n]
[n+l]

07.607

LOOP: ~(O~pSV)/LOOP

'END-OF-DATA'

Here line n is executed until the shape of the Shared Vari­
able is 0, indicating end-of-data. Of course, the sample
does not do anything with the values read. They could also
be assigned to 0 to display them:

[n] LOOP: ~(O~pD+SV)/LOOP

Q: What if we want to process the input values?

A: They should be assigned to an ordinary variable for process­
ing.

[n]
[n+l]
[n+2]

LOOP: ~(O=pORD+SV)/O
ORD + 12
~LOOP

Q: How can we copy data to another device?

A: Input records could be assigned to an output Shared Variable
(OSV) to copy data from one device to another:

[n] LOOP: ~(07pOSV+SV)/LOOP

The problem with the above function segment is that the
return codes from the output operations are never checked.
This could be done:

[n] LOOP: ~(O=pOSV+SV)/ENDOFDATA
[n+l] ~(O~+/OSV)/O
[n+2] ~LOOP

[n+3] ENDOFDATA:

Where line n+l exits the function if the return code indi­
cates the output operation was not successful.

Q: Does an empty vector always indicate end-of-data?

A: No, if the file is an exchange file (file types 1, 2, or 3),
it is possible to get an empty vector that is not at end-of­
data. This occurs if two new-line characters (DAV[157])
were written on the media when it was created. This condi­
tion can be distinguished from an end-of-file by checking
the Close return code. The Close return code is available
at the next reference after an empty v~ctor. In this case,
its 9 0 instead of 0 O. If the Close return code is 9 0,
you can continue processing data. Note: If you are copying,
writing out any empty vector to an output Shared Variable
closes it.

15

07.607

Q: What about errors?

A: Errors during input are also indicated by an empty vector
which indicates that the device is closed. The return code
specifying the error is, like the real empty vector return
code just discussed, available on the next reference to the
Shared Variable. A value of 0 0 indicates a true end-of­
data has been reached. Error messages will also be dis­
played.

Q: How do we close an input device?

A: It is not necessary to explicitly close input devices if
end-of-data is reached. In fact, doing so will cause an
error. However, if the file is to be reopened, or another
file on the same device is to be opened, before end-of-data
is reached, an explicit close must be done. To do this you
assign an empty vector to the Shared Variable:

There are other implicit ways of closing which will be
discussed in later sections.

Q: How do we write data to an I/O device?

A: You saw how to do output with the copy operation. In that
example, the input Shared Variable, SV, was assigned to the
output Shared Variable, OSV. Remember also, that we checked
the return code to insure that the output operation occurred
successfully:

[n] LOOP: ~(O=pOSV+SV)/ENDOFDATA
[n+l] ~(O~+/OSV)/O

[n+2] ~LOOP
[n+3] ENDOFDATA:

It is important that you close output devices. This ensures
any partial blocks will be written to the I/O device. This
can be done by assigning an empty vector to the Shared
Variable as you did for input devices:

OSV+tO
or

OSV+' ,
or'

OSV+Opl

16

07.607

Q: What other ways are there?

A: If you retract (DSVR) the Shared Variable before it is
closed, it will be closed. If you)ERASE or expunge (DEX) a
Shared Variable, it will be retracted and closed. If you
localize the variable, it will be closed when the function
is exited. However, with these techniques, you cannot check
if the close was successful, since the return code is not
available.

Q: What about errors during a Close?

A: As with input files, after the explicit close (assigning an
empty vector), the next reference of the Shared Variable
will yield the return code of the Close. A 0 0 indicate a
successful close. It is more important to check output
closes because a close failure may make the file unusable.
Of course, error message will occur (unless MSG=OFF was
specified) during the implicit closes even though no return
codes are available.

17

07.607

DATA TYPES

Q: What kinds of data can be output?

A: This usually depends on the type of I/O device being ad­
dressed. For example, the tape cartridge will accept any
type of data when writing to an APL internal (type 8) file.
The printer and exchange files (types I or 2) require the
data be a single character or strings of characters.

Q: Why use exchange files?

A: Exchange files, as the name implies, are for data exchanging
(type 1) with BASIC on the 5100 or the Communications
feature for transmission to a remote system. The general
exchange file (type 2) is for exchanging BASIC source. APL
will read a BASIC source file (type 3) but cannot create
one.

Q: How is the printer different?

A: The printer is very similar to the exchange files in that it
accepts only single characters and strings of characters.
It differs though, in that it prints the data when the
assignment occurs, rather than waiting for a full buffer.
Because of the implicit new line, an actual new line at the
end of the character string has no effect. To get multiple
spacing, just add an extra new line character. For example,
the following will do double spacing:

P~'ABC',2pDAV[157]

Q: What if we want to exchange (type 1 or 2) or print numeric
data?

A~ This problem can be solved using the Format • function which
converts its right argument into characters. If we wanted
to exchange or print the numbers in the variable A.

SV+.A

would convert it to an appropriate character string (vector).

18

07.607

Q: What if we want to exchange (type 1 or 2) a matrix?

A: This can be accomplished with the Ravel ,function. This
function will convert any right argument into a string
(vector). For example, the following will output the charac­
ter matrix variable A:

SV+,A

Note, however, that the shape (number of rows and columns)
is not retained. We could output the shape separately as
follows:

SV+"fpA

Q: What about printing a matrix?

A: You could use Ravel here but this will cause the matrix to
be printed as a string of values. To retain the matrix
shape when it is printed, you could print it row at a time.
However, row at a time does not take advantage of the matrix
handling capabilities of APL. A better method involves
catenating new-line characters to the end of each row prior
to raveling it. If A is a numeric matrix, the following
will cause it to print correctly.

A+3 4 p1.12
P+, ("fA) ,DAV [157]

Q: What about data for BASIC?

A: Some important rules you must keep in mind for data ex­
changed with BASIC on the 5100. First, all data items must
be separated by commas--not blanks. Character data must be
enclosed in quotes and cannot exceed 18 characters per item.
For example:

'THIS CHARACTER ITE',IM IS TOO LONG'

The above item was broken into two parts. Negative signs
have to be converted to minus signs. Finally, the length of
the entire record should be kept under 54 characters in­
cluding commas and quotes if it is to be LOADed in BASIC.
If it is only to be accessed via 'GET' there is no arbitrary
limit to its size.

19

07.607

Q: What about reading exchange data?

A: Since we are discussing exchange data, a few points about
reading exchange files should be made. First, the data will
come back as character vectors. Numeric data can be recon­
verted using the Execute ~ function:

A~~SV

If the file was created by BASIC, the Execute function can
be used to remove the commas (which are treated as the
Catenate function) and quotes if the data is not mixed
numeric and character. Remember to translate the minus
signs to negative signs before converting numeric data.

[n]
[n+l]
In+2]

ORD~SV

ORD[(ORD='-')/lpORD]~'
ORD+~ORD

Q: Will exchange data read the same as it was written?

A: Not always! If you included any new line characters in the
character strings, when they were written, they will be
interpreted as end-of-record marks. This means they will
not be read back and the original record will be segmented.
For example, if this string was written on an exchange file:

SV~'ABC1,OAV[l57] ,'CDE'

will be read back as two separate logical records:

ABC and CDE

Note: The OAV[157] was not read.

20

07.607

AFTERWARDS

Q: What happens when we are done?

A: Several things can occur when the I/O operation is complete.
You'll remember that if end-of-data occurs on input, the
file closes. Or, we can close a file by assigning an empty
vector to the Shared Variable.

Q: What happens to the Shared Variable after the file is closed?

A: It remains in existence as a Shared Variable. It is as if
no I/O had occurred. It is waiting for an Openlist. That
is, we can use it again for another I/O operation.

Q: What if we do not want to share anymore?

A: If the Shared Variable is no longer needed, it can of
course be)ERASE'ed for expunged (DEX). If you wish to keep
the variable but return it to an ordinary variable, you can
Retract it:

DSVR 'sv'
2

The result is the same as the result of DSVO when the
variable was offered. Just like DSVO, DSVR will accept a
character matrix as an argument:

DSVR 2 3 p'SV OSV'
2 2

resulting in a numeric vector.

Q: What if we do not know the variable's name?

A: OSVR ONL 2

will retract all the variables in the workspace. If a
variable is not shared, it's status will not be affected.

Q: What happens if the I/O device is still open?

A: It will be closed. However, the success of the close
cannot be checked, because the return code is not available.

21

07.607

Q: What is the value of a retracted Shared Variable?

A: The last value it had. This value is left in the variable
and will change only when a new value is assigned.

Q: What happens if we)ERASE a Shared Variable?

A: If a Shared Variable is erased or expunged, it is retracted.
If the I/O device is still open it is closed. However, the
success of the close cannot be checked, because the return
code is not available.

Q: What about DSVC and DSVQ?

A: These functions are of limited meaning on the 5100. They
are more applicable to multiple, independently controlled
processors.

They have been retained only to maintain consistency with
APL/SV on larger systems. Their results are covered in
Appendix D of the IBM 5100 APL Reference Manual. Their
meaning on larger systems is discussed in the APL Shared
Variable User's Guide (SH20-l460).

22

07.607

PROBLEMS

Q: What are some cornman SV problems?

A: The following questions will cover some of the cornman
Shared Variable problems. These problems are easily avoided
and will cease to bother you once you get used to using
Shared Variables.

Q: What causes an INVALID DATA TYPE error during the offer?

A: Sometimes you will get INVALID DATA TYPE or INVALID PARA~
METER errors when you offer a variable (DSVO). This is
caused by offering an existing variable that already has a
value, if that value is not a character vector or valid
Openlist.

To avoid these errors, it is good procedure to offer only
new variables. To assure this, you should erase all Shared
Variables when they are no longer needed. The best way to
accomplish this is to localize them in the functions where
they are used.

Q: What causes the NOT WITH OPEN DEVICE error?

A: You may get this error even though you cannot find any
outstanding Shared Variables. This is caused by a Shared
Variable being local to a suspended function that is buried
in the execution stack. To check this, do a)SI and execute
enough right arrows (~) to clear the stack (one for each
*'ed entry). Remember, when developing functions, to keep
the execution stack clear and localize the Shared Variables ..

Q: How can we reuse an output file?

A: A problem that occurs during development of a function is
the INVALID FILE error when you try to open an output file
the second time. To prevent this error, you could)DROP the
file each time, but this is tedious. To avoid the error,
specify ID=(DATA) to overwrite the file.

23

07.607

Q: How come we get a VALUE ERROR on input?

A: This error indicates an incomplete data file. This is
usually caused by failing to close the file when it was
created. Be sure the file is closed before removing the
tape. Again, localization of the Shared Variable can help
here. If the variable is localized, the file will be closed
whenever the function is exited.

Q: What about)COPY,) SAVE, etc?

A: To avoid confusion and problems, library functions that will
alter or put the workspace on tape (except) CONTINUE)
should only be done without Shared Variables in the work­
space. Again, localization will help. Since)COPY,) SAVE,
etc, cannot be done with suspend functions, all local Shared
Variables will not exist'when they are executed. If you are
not sure, the following expression will insure a workspace
free of Shared Variables:

DSVR DNL 2

24

