PAEE NU SH TTTE कमob GAOOG CAOTO G०15
 की 25 G086 एलिए FA＋\％ GAOA5 Fकठ GAOS5 किक्ष कि06S किण7\％ croes Mos： Geos QBOIO बही： ceqeo
 Feo3 Cक्ष COlO ल०। लक्ष एक्ड Co．8 Ceठ5 लकA？ Geas cere CCose ceme G०6\％ Were CCOTS CCOCO WCOS5 कल9\％ एcoss Cलि cooos कणos Weos 42083 GEOTO लहा5 CEPO लघ० लि30 एeठs CW4 Eeq4 जE\％ एल्ड世ebe CEO65 GE\％\％ लएक्ड世Ee\％ जएes GEoge 9.003 FPo\％ कणनी कण 5 F．020 जएes Tros GFose W＂oes ccos लका० फलिड पषะe Gegs पष्ट एक्ष्ड C6ene फHos Groges CHose बhete Fमा： E402． कापes लमose

LOCATMONS
Loce et
Ioc 95
LC 0
Lप एक
©C 031
105 055
LOC 04
LOE 045
LC ©
いट 05
Coc 061
LOC 065
पe \％
Toा．．
TOOL
TOOLS 011
TOOLS 915
ToLEs oz
RE\＃oo
EEH 003
स्तो 015
REM 02
स्त ण्ट
BEM 03
Eसम 055
सम 041
EM 045
REW os
EEM 55
REN O6
सEM 965
EEM 97
REM 075
REM OBA
EEM 0．5
EEM 09
EEM 095
RET 161
PEEVENTVE
PM oet
DTAGNOSTTCS
DIAG \circ ©
DTAG 005
DIAG 015
DमिG 0 दs
DTAG os
DTAE 45
DमAG 05
DTAG 075
DTAG 0 ह5
DTAG 095
DTAG 105
DTAG 115
DTAG
DTAE 185
DHAG 145
DTAG 15
DTAE 165
DIAG 175
Loge
LOE 0
फूg 015
TGE 03
Lण 05
LOG 045
पष 975
．06 0es
SYS TEST
SYS TEST 001
SYS TEST OIS
YS TEST 02
YY TEST OSS
SYS TEST 645
SYS TEST 65
SYS TEST OQS
YS TEST 125
TNSTALIATION
WNT 0 ot
TMST EII
TAET 94 E
TNTT Юः।
TNST 0 es
Tust 0

T NUM	EC NUM
00061697\％	A29558
9000446144	A02214
000616957	A20560
0066169578	A20558
0006169579	92958
000646950	920560
0006169564	ब2055
¢0661695e2	A20566
0066169593	A29562
0606169564	926562
0006169595	A20562
9006169586	A20558
0006169597	A20560
9006169568	A20560
0006169569	A2055\％
0000446156	A02214
9006169613	A20560
0006169614	A20560
0006169615	A20562
0006169616	A2055e
0000446163	A02214
0006169557	A20562
0006169558	A26562
0006169559	A20562
0006169560	A20562
0006169561	A26562
0006169562	A20562
0006169563	A20562
0006169564	A20562
0006169565	A20562
0006169566	A20562
0606169567	A26562
0006169568	A20562
0006169569	A20562
0006169570	A20562
0006169574	A20562
0066169572	A20562
0606169573	A20562
0006169574	A20562
0006169575	120562
9006169576	Q20562
0000446161	A02214
0006169617	A20558
0000446163	A02214
0006169394	A20558
0066169395	A20562
0006169396	A205se
0006169397	A20558
0066169398	A20558
0006169399	A20558
0006169400	A2055e
0006169401	A26556
0006169402	A20558
0006169403	A20558
0006169404	A20556
0006169405	A20558
0006169406	A20556
0006169407	A20558
0006169408	A20562
0006169409	A20558
0006169410	A20598
0006169411	A20559
0000446204	902．14
0006169379	A20560
0006169380	A20558
0006169384	A20558
0006169382	A20558
0066169383	＋20556
0066169394	A2055\％
9066169385	A2055e
0006446215	A02． 4
0006169786	¢20550
0006169387	920560
0006169388	A255e
0066169389	＋20558
0006169790	A20560
0066169394	420558
0006169392	＋2055
0006169393	A20558
0006446226	A0224
0006169590	A20562
906616959	¢20562
0006169592	¢2055\％
0006169593	A2952
0066169594	A29560
06616959	श256\％

－W． 0 के $\%$ \％

W． $062 \% 35$

\therefore H． $06 \% \% 680$

．W．$\quad 0927680$

．W． 002676800
$.4 . \quad$ ． $026 \pi 36$

．W． 06267636
．W． $0626 \% 36$
－W． 06267680
．W．\quad ． $02 \% \% 3 \%$
． $4 . \quad$ 002 676 c
．W．\quad ． $02 \% 639$
－W．0002676380
．W． $00 \% \% 76 \% 0$
．W．$\quad 002676380$
－H． $092 \% \%$ क人
．W．0002676300

．W．00026\％360
．W．\quad ． 0267860
－W．o602676380
．b．$\quad 06267636$
．W．0062676586
．W．$\quad 9626 \% 680$
－ ， $0.6 \% 6 \% 6$
．W．$\quad 00267 \% 90$
－W． $0626 \% 680$
．W．$\quad 6926 \% 36$
－W．002676380
W． 00267639
．W． $0602 \% \% 360$
．W．06०2676386

．H． $0692 \% 636$
． $4 . \quad 00026 \% 680$
H． 06267680
．W． 096267680
－W．$\quad 062673 \mathrm{~F}$
－W． 0626 GBCO

．W．$\quad 0026763 \mathrm{O}$

．W． $096 \% 7636$
แ．$\quad 062676 \mathrm{O}$
．H．$\quad 00 \% 67680$
－4．$\quad 90267680$
W．\quad ． 06267880
．W． $0002 \% 7680$
－H． 0 02 $6 \% 3 \mathrm{\theta}$
－W． $006 \% 7630$
－W． $092 \% 686$

4． 060267689
－H． 09267680
．H．क्ण2676580

－H． 90267680
． $4 . \quad 006267650$

W． $062 \% 7650$
． $4 . \quad 0602678 \mathrm{~F}$

．W．क्ष $\quad 67638$
．W． 06267636

. W． 06267380
．4． 0626836

－W．09\％2\％63क
4． $0962 \% 686$

－b． $0 \% 6 \% 36$
W．फेक\％नुक्

Fक¢E NUM	M	TTTE	
Whes5		TnSt	055
कH\%4\%		TMST	¢4
CH045		TNST	045
कमeso		TUST	051
कमण5		TMST	05
9H060		TMST	¢ ${ }^{\circ}$
9T003		TNSF	CTTON
CT005		TMep	091
97010		TNEP	903
9.015		TUS	005
9T020		TMEP	067
GT025		Tnep	069
GT.30		TMS	011
GT0\%		TNSF	013
GTP40		TNSP	915
GT045		TMS	617

PABT NUM	EC NUM	FEATUEE B/M OR B/MS
0066169596	A29560	W. 0602676300
0006169597	लेक56	. W. 6002676780
0066169598	A20562	.W. 0002676300
900616959\%	ले5560	W. ¢00267680\%
0006169600	A20560	, W. 060267680
006 6169601	M2056	. W. 0002676380
0006446238	A02214	. 4.0002676300
0606169618	क2055	, W. 0002676300
0006169619	A20562	. W. 0002676390
0006169620	A2055	, W. 0002676780
0066169621	A20558	, W. 0002676380
0066169622	A20558	, W. 0 .02676300
0006169623	ल. 055	, W. 0002676380
0006169624	A20559	.W. 0002676390
0006169625	A35269	W. 6002676380
0006169626	A20556	.4. 0002676380

TOTAL FART NUMERE THTS VOLUME

4381 B/M 2676380	$\begin{array}{\|l\|} \hline \text { MI } \\ \text { Seq GA005 } \\ \hline \end{array}$	$\begin{aligned} & \text { PN } 6169378 \\ & 1 \text { of } 2 \\ & \hline \end{aligned}$	EC A20558 01 Oct 84				

- Coprioph IBM Corp. 1984

The drawings and specifications contained herein shall not be reproduced in whole or in part without written permission.

IBM has prepared this maintenance manual for you in the use for installation, maintenance, or repair of the specific machine indicated. IBM makes no representation that it is suitable for any other purpose

Information contained in this manual is subject to change from time to time. Any such change will be reported in subsequent revisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about IBM products (machines and programs), programming, or service that are not announced in your country. Such references or information must not be construed to mean that IBM intends to announce such IB
products, programming, or services in your country.

Publications are not stocked at the address below; requests for IBM publications should be made to your IBM representative or to the IBM branch office serving your locality.
A form for reader's comments is provided in Volume A01, Introduction. If the form has been removed, comments may be addressed to IBM the form has been removed, comments may be addressed to IBM Endicott, NY, U.S.A. 13760 . IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

- 2 las

LOCATIONS
LOC 011
Contents

Machine Layout	OC 012
Gate Layouts	LOC 015
Gate 01A	LOC 015
Front View	LOC 015
Right-Side View	LOC 015
Rear View	LOC 016
Gate 01B	LOC 021
Right-Side View	LOC 021
Rear View/Gate 01B Open	LOC 021
Gate 01C	LOC 022
Front View	LOC 022
Rear View	LOC 022
Gates 01D, 01F, 01G, and 01H	LOC 025
Gate 01 E	LOC 026
Board Layouts	LOC 031
Board 01A-A1	LOC 031
Functional Locations	LOC 031
Board 01A-A2	LOC 032
Functional Locations	LOC 032
Board 01A-A3	LOC 035
Functional Locations	LOC 035
Board 01A-A4 (1 Megabyte Cards)	LOC 036
Functional Locations	LOC 036
Board 01A-A4 (2 Megabyte Cards)	LOC 037
Functional Locations	LOC 037
Board 01A-A4 (1 and 2 Megabyte Cards Intermixed)	LOC 038
Functional Locations	LOC 038
Board 018-A1	LOC 041
Functional Locations	LOC 041
Pin Layout for Boards 01A-A1 to 01A-A4 and 01B-A1	LOC 042
Board 01A-B1 or 01A-B2	LOC 045
Functional Locations	LOC 045
Board 01A-B1 or 01A-B2 Resistor Pin Layout	LOC 046
Board 01A-B1 or 01A-B2 Module Pin and I/O Signal Pin Layout	LOC 047
Board 01A-B1 or 01A-B2 Terminals	LOC 048
Connectors	LOC 051
Top Card Crossover (TCC) Connectors	LOC 052
Service Panel	LOC 055
Operator Control Panel (OCP)	LOC 056
Power Supplies	LOC 06
Sense Capacitors	62
Transformers	LOC 065
Primary Control Compartment (PCC)	06
Relays and Circuit Protectors (CPs)	LOC 071

 - Coprright 18м Corp. 1984

0000000000000000000000000000000000

Gate Layouts

Gate 01A

Front View

Right-Side View

${ }^{3}$ Coorrmght IBM Capo. 1984

Gate 01A
Rear View

${ }^{3}$ Coovright 18M Coro ${ }_{1984}$.

0000000000000000000000000000000000

Gate 01B
Right-Side View
Rear View/Gate 01B Open

- Copryight IBM Cop. 1984

Gate 01C

Rear View

*TR104A, B, C, and CP2
Only on all 50 Hz and 60 Hz Japan machines

- Copright IBM Corp. 1984

\square

B/M 2676380

4381-3 \begin{tabular}{|l|l|}
\hline $\begin{array}{l}\text { MI } \\
\text { Seq_GA025 }\end{array}$ \& $\begin{array}{l}\text { PN } 6169580 \\
2 \text { of } 2\end{array}$

\hline

\hline EC A20558 \& EC A20560

01 \&

\hline
\end{tabular}

B/M 2676380

Board 01A-A1

Functional Locations

Channel To Channel Adapter (CTCA)
Card Locations:
CTCA X 82
$C 2$
Maintenance Bias Control (MBC)
Card Locations:

Card Plug Positions
A2 \times Bus $1 / 0$ Cable
A3 \times Tag 1/O Cable
A4 Y Bus I/O Cable
A5 Y Tag I/O Cable
B2 CTCAX
C2 CTCAY
D2 Spare
E2 Spare
F2 $\begin{array}{ll}\text { G2 } & \text { Spare } \\ \text { Spare }\end{array}$
$\begin{array}{lll}\text { G2 } & \text { Spare } \\ \text { H2 } & \text { Spare }\end{array}$
J2 Spare
K2 Spare
L2 Spare
$\begin{array}{lll}\text { M2 } & \text { Spare } \\ \text { N2 } & \text { Spare }\end{array}$
$\begin{array}{ll}\text { N2 } & \text { Spare } \\ \text { P2 } & \text { Spare }\end{array}$
$\begin{array}{ll}\text { P2 } & \text { Spare } \\ \text { Q2 } & \text { Spare }\end{array}$
R2 Spare
$\begin{array}{ll}\text { S2 } & \text { Spare } \\ \text { T2 } & \text { Spare }\end{array}$
U2 Reset Card
V2 MBC Card
W2 Terminator Card
$\times 2$ PPC Cable
$\begin{array}{ll}\times 3 & \text { Service Panel Cable } \\ \times 4 & \text { Service Panel Cable }\end{array}$
$\times 5$ Operator Control Panel

Note: Highlighted areas show the locations of Top Card Crossover (TCC) Connectors.

Top Card Connectors

Position BW/CW	ion Part Number
	CW 8645658
$\begin{aligned} & \mathrm{BW} / \mathrm{CW} \\ & \mathrm{BX} / \mathrm{CX} \end{aligned}$	X 8645658
BY/CY	Y 8645658
BZ/CZ	Z 8645658
vw	8645678
vx	8645678
VY	8645678
Vz	8645678
Cable Plug Positions	
	Channel X Bus 1/O
	Channel X Tag I/O
YC Sp	Spare
YD S	Spare
	Spare
YF Sp	Spare
YG PS	PS101 Control
YH A	Airflow Sensor (AFS)/PS 102
YJ Sp	Spare
YK S	Spare
YL S	Spare
YM P	Power Control Lines and MBC
YN R	Reset and T Lines
YP S	Spare
Yo S	Spare
YR S	Spare
ZA	Channel Y Bus 1/0
ZB C	Channel Y Tag I/O
ZC	CTCA Voltage Sense to/from PCC
ZD Sp	Spare
ZE S	Spare
ZF V	Volt Sense to MBC
ZG S	Spare
	Spare

Board 01A-A2

Functional Locations
Diskette Drive Adapter (DDA)
Card Locations:
$\begin{array}{ll}\text { Drive } 1 & \text { K2 } \\ \text { Drive } 2 & \end{array}$
Cable Locations:
$\begin{array}{ll}\text { Drive } 1 & \text { ZD } \\ \text { Drive } 2 & \text { ZF }\end{array}$
Device Cluster Adapter (DCA)
Card Locations:
Q2, R2
Cable Locations:
Ports
YN
Latch Display Card
Card Location:
G4
Local Channel Adapter (LCA)
Card Locations:

LCA 1	V2
LCA 2	X2
LCA 4	W2

Cable Locations:
LCA from $\mathrm{CH} / \mathrm{SP}$
LCA to $\mathrm{CH} / \mathrm{SP}$
LCA Tailgate
LCA Tailgate

YO
YR
YR
ZG
ZH

Note: Highlighted areas show the locations of Top Card Crossover (TCC) Connectors.

Power Control Adapter (PCA)
Card Locations:
PC Isolation
PC Isolation
PC Sense
PC Sense
PC Interface
Cable Locations:
A2,A3,A4,A5,
B2,B3,B4,B5
Remote Support Facility Adapter (RSF)
Card Locations:
P2,04
Cable Locations:
ZE

Serial Number Card
Card Locations:
F4
Support Bus Adapter (SBA)
Card Locations:
SBA 2
SBA 1
Convert Card
Cable Locations
YE,YF,YG,YH
Support Processor (SP) and SP Storage (Volume 0)

Card Locations:
H2

Support Processor Storage (SPS) (Volume 1)

 Card Location:J2
Top Card Connectors
Position
DW/EW/FW
DX/EX/FX
GY/HY
KX,LX,KY,LY,SX,TX
VX/WX,VY/WY,VZ/WZ
Card Plug Positions
A2 PCA Cable
A2 PCA Cable
A3 PCA Cable
A4 PCA Cable
A5 PCA Cable
B2 PCA Cable
B3 Spare Digitals Term
$\begin{array}{ll}\text { B4 } & \text { Not Used } \\ \text { B5 } & \text { PCA Cable }\end{array}$
C2 PC Isolation Card
C4 PC Isolation Card
D2 PC Sense
E2 PC Sense
$\begin{array}{ll}\text { F2 } & \text { PC Interface } \\ \text { F4 } & \text { Serial Read }\end{array}$
F4 Serial Read Card
G4 Latch Display Card
J2 Support Processsor Storage
K2 DDA 1
L2 DDA 2,
M2 Reserved
N2 Reserved Communication Adapter (RSF)
$\begin{array}{ll}\text { P2 } & \text { Common } \\ \text { Q2 } & \text { DCA }\end{array}$
04 38LS (RSF)
R2 DCA
S2 SBA 2
$\begin{array}{ll}\text { T2 } & \text { SBA } 1 \\ \text { U2 } & \text { Convert }\end{array}$
U2 Convert Card
V2 LCA 1
$\begin{array}{ll}\text { V2 } & \text { LCA } 1 \\ \text { W2 }\end{array}$
W 2 LCA 4
$\times 2$ LCA 2

4387

- Coovight BM Caro. 1984 | Nii | |
| :--- | :--- |
| Seq GA03O | $\begin{array}{l}\text { PN } 6169581 \\ 2 \text { of } 2\end{array}$ | EC A20558

01 Oct 84

LOC 032

Board 01A-A3

Functional Locations
IFA Channel Cards for PUO
Card Locations:
Channel 0
Channel 1
Channel 2
Channel 3
Channel 4
Channel 5
Channel 6
Channel 7
Channel 8
Scan Cards

Channel 0-5
Channel 0-5

Card Location:
L2

Card Locations:
N2
N4
Oscillator Card
K2
E2
F2
G2
H2
J2
P2
Q2
R2
R2
ocation

Cable Plug Positions
YA Spare
$\begin{array}{ll}\text { YA } & \text { Spare } \\ \text { YB } & \text { Spare }\end{array}$
YC Spare
YD Oscillator Oscillator
Oscillator Oscilata
YH Power Sens
YJ Channel 3 Bus/Tag Out
YK Channel 4 Bus/TTa Out
YL Channel 5 Bus/Tag Out

Card Plug Positions

A3 Special Access
A4 IPU Oscillator
5 Spare
Channel 2 Bus/Tag Out Channel 1 Bus/Tag Out Channel 1 Bus/Tag In
Channel 2 Bus/Tag In Channel 2 Bus/Tag In Channel Control $3,4,5$ Channel Control 3,4,5 Channel Control $3,4,5$ Channel Control 3,4,5 Channel Control $0,1,2$ Channel Control $0,1,2$
Channel Control $0,1,2$ Channel Control $0,1,2$ Channel 1
Channel 2
Channel 3
Channel 4
Channel 5
Channel 0
Oscillator
Spare
M2 Spare
M3 Spare
$\begin{array}{ll}\text { M4 } & \text { Spare } \\ \text { M5 } & \text { Spare }\end{array}$
N2 Scan Channel 0-5
Scan Channel 6-8
2 Channel 6
02 Channel 7
R2 Channel 8
2 Spare

	Spare

2 Channel Control 6,7,8
V3 Channel Control $6,7,8$
V4 Channel Control 6,7,8
5 Channel Control 6,7,8
W2 Unused
W3 Unused
W5 Unused
$\times 2$ Spare
$\begin{array}{ll}\times 2 & \text { Spare } \\ \times 3 & \text { Spare }\end{array}$
$\begin{array}{ll} \\ \times 4 & \text { Spare } \\ \times 4 & \text { Spare }\end{array}$
$\times 5$ Spare

4381-3	MI	$\text { TPN } 6169582$	EC A20558	EC A20560			
B/M 2676380	Seq GA035	1 of 4	01 Oct 84	18 Feb 85			

Board 01A-A4 (1 Megabyte Cards)

Functional Locations
Storage Cards

Card Locations:

4 Megabytes 0-3
4 Megabytes $4-7$
4 Megabytes $8-11$
4 Megabytes $12-15$
8 Megabytes $0-3$
8 Megabytes $4-7$
8 Megabytes $8-11$
8 Megabytes $12-15$ 12 Megabytes $0-3$ 12 Megabytes $4-7$
12 Megabytes $8-11$ $\begin{array}{ll}12 \text { Megabytes } & 8-11 \\ 12\end{array}$ 16 Megabytes 016 Megabytes $4-7$ 16 Megabytes $8-11$ N2 $\begin{array}{lll}16 \text { Megabytes } & 8-11 & \text { G2 } \\ 16 \text { Megabytes } & 12-15 & \text { B2 }\end{array}$

Terminator Cards
Card Locations:
A2,A4,F2,F4,M2,M4,S2,S4

Card Plug Positions
A2 Terminator Card (Odd)
A4 Terminator Card (Odd)
B2 Data Bytes 12-15 (16 megabytes)
C2 Data Bytes 12-15 (12 megabytes) Data Bytes 12-15 (4 megabytes) Terminator Card (Odd)
G2 Data Bytes 8-11 (16 megabytes)
H2 Data Bytes 8-11 (12 megabytes)
J2 Data Bytes 8-11 (8 megabytes)
K2 Data Bytes 8-11 (4 megabytes)
L2 Clock
M2 Terminator Card (Even)

N2 Data Bytes 4-7 (16 megabytes) P2 Data Bytes 4-7 (12 megabytes) O2 Data Bytes 4-7 (8 megabytes) R2 Data Bytes 4-7 (4 megabytes) Terminator Card (Even)
Terminator Card (Even) 2 Data Bytes 0-3 (16 megabytes) 12 Data Bytes 0-3 (12 megabytes) V2 Data Bytes 0-3 (8 megabytes) W2 Data Bytes 0-3 (4 megabytes) X2 BSM Data Bytes $8 / 9$ X3 BSM Data Bytes $10 / 11$ $\begin{array}{ll}\text { X4 } & \text { BSM Data Bytes } 12 / 13 \\ \text { X5 } & \text { BSM Data Bytes } 14 / 15\end{array}$

4381-3
B/M 2676380

0000000 Board $01 \mathrm{~A}-\mathrm{A} 4(2$ Megabyte Cards $)$

Functional Locations

Storage Cards

Card Locations:

8 Megabytes 0-3
8 Megabytes $8-11$
8 Megabytes $12-15$
16 Megabytes 0-3
16 Megabytes 4-7
16 Megabytes $8-11$ 6 Megabytes $12-15$ 24 Megabytes 4
24 Megabytes $8-11$
24 Megabytes 12-15
32 Megabytes 0
32 Megabytes 4-7
$\begin{array}{ll}32 \text { Megabytes } & 8-11 \\ 32 & \text { Megabytes } \\ 12-15\end{array}$
Terminator Cards
Card Locations:
A2,A4,F2,F4,M2,M4,S2,S4.

Card Plug Positions
A2 Terminator Card (Odd)
4 Terminator Card (Odd)
Data Bytes 12-15 (32 mas Data Bytes 12-15 (24 megabytes) Data Bytes 12-15 (16 megabytes
Data Bytes $12-15(8$ megabytes) Terminator Card (Odd) Terminator Card (Odd)
Data Bytes 8-11 (32 megabytes)
42 Data Bytes 8-11 (24 megabytes)
J2 Data Bytes 8-11 (16 megabytes) Data Bytes 8-11 (8 megabytes)
2 Clock
M2 Terminator Card (Even)
M4 Terminator Card (Even)

N2 Data Bytes 4-7 (32 megabytes) P2 Data Bytes 4-7 (24 megabytes) Q2 Data Bytes 4-7 (16 megabytes) S2 Terminator Card (Even)
S4 Terminator Card (Even)
T2 Data Bytes 0-3 (32 megabytes U2 Data Bytes 0-3 (24 megabytes) V2 Data Bytes 0-3 (16 megabytes) W2 Data Bytes 0-3 (8 megabytes) X2 BSM Data Bytes $8 / 9$
X3 BSM Data Bytes $10 / 11$
$\begin{array}{lll}\text { X4 } & \text { BSM Data Bytes } 12 / 13 \\ \times 5 & \text { BSM Data Bytes } & 14 / 15\end{array}$

Cable Plug Positions
YA Oscillator/Channel Spec
YB
Ypare
YC
YC Spare
YD BSM Control
YE BSM Control
YG BSM Control/Address
YH Spare
$\begin{array}{ll}\text { YH } & \text { Spare } \\ \text { YJ } & \text { Spare } \\ \text { YK } & \text { Spare }\end{array}$
YK Spare
YL BSM Control/Address
YM BSM Control/Address
$\begin{array}{ll}\text { YN } & \text { BSM Data Byites } 6 / 7 \\ \text { YP } & \text { BSM Data Bytes } 4 / 5\end{array}$
$\begin{array}{ll}\text { YP } & \text { BSM Data Bytes } 4 / 5 \\ \text { YQ } & \text { BSM Data Bytes } 2 / 3\end{array}$
YR BSM Data Bytes 0/1
ZA Power
$\begin{array}{ll}\text { ZB } & \text { Spare } \\ \text { ZC } & \text { Spare }\end{array}$
$\begin{array}{ll}\text { ZC } & \text { Spare } \\ \text { ZD } & \text { Spare }\end{array}$
ZE Spare
ZF
ZG
Spare
ZH Spare

4381-3 B/M 2676380	$\begin{aligned} & \text { MI } \\ & \text { Seq GAO35 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PN } 6169582 \\ & 3 \text { of } 4 \\ & \hline \end{aligned}$	EC A20558 $01 \text { Oct } 84$	EC A20560 18 Feb 85			

Board 01A-A4 (1 and 2 Megabyte Cards Intermixed)

Functional Locations
Storage Cards
Card Locations:
4 Megabytes 0-3
4 Megabytes 4 -7
4 Megabytes $8-11$
4 Megabytes $12-15$
8 Megabytes $0-3$
8 Megabytes $4-7$
$\begin{array}{ll}8 \text { Megabytes } 4-7 & \text { V2 } \\ 8 \text { O2 }\end{array}$
8 Megabytes $8-11$

8 Megabytes $12-15$ 8 Megabytes 12-15 16 Megabytes 0-3 $\begin{array}{ll}16 \text { Megabytes } & 4-7 \\ 16 \text { Megabytes } & 8-11\end{array}$ $\begin{array}{ll}16 \text { Megabytes } & 8-11 \\ 16 \text { Megabytes } & 12-15\end{array}$ 24 Megabytes $0-3$ 24 Megabytes $4-7$ | 24 Megabytes $8-11$ |
| :--- | :--- | 24 Megabytes $12-15$ B2

One Megabyte Cards (16 or $\mathbf{2 4}$ Mb Storage)
Card Locations:
D2,E2, J2, K2, 02, R2, V2, W2
Two Megabyte Cards (16 Mb Storage)
Card Locations:
C2,H2, P2, U2.
Two Megabyte Cards ($\mathbf{2 4} \mathbf{~ M b}$ Storage)
Card Locations:
B2,C2,G2,H2,N2,P2,T2,U2.
Terminator Cards
Card Locations:
A2,A4,F2,F4,M2,M4,S2,S4.

Card Plug Positions
A2 Terminator Card (Odd)
A4 Terminator Card (Odd)
B2 Data Bytes 12-15 (24 megabytes)
C2 Data Bytes 12-15 (16 megabytes)
D2 Data Bytes 12-15 (8 megabytes)
E2 Data Bytes 12-15 (4 megabytes)
Terminator Card (Odd)
Terminator Card (14 megabytes)
Data Bytes 8-11
Data Bytes 8-11 (16 megabytes) Data Bytes 8-11 (16 megabytes)
$\begin{array}{lll}\mathrm{J} 2 & \text { Data Bytes 8-11 (} 8 \text { megabytes) } \\ \mathrm{K} 2 & \text { Data Bytes } 8-11 \text { (} 4 \text { megabytes) }\end{array}$
Clock
M2 Terminator Card (Even)

N2 Data Bytes 4-7 (24 megabytes) P2 Data Bytes 4-7 (16 megabytes) Q2 Data Bytes 4-7 (8 megabytes) R2 Data Bytes 4-7 (4 megabytes) S2 Terminator Card (Even) T2 Terminator Card (Even) U2 Data Bytes 0-3 (16 megabytes) V2 Data Bytes 0-3 (8 megabytes) W2 Data Bytes 0-3 44 megabytes $\times 2$ BSM Data Bytes $8 / 9$ X3 BSM Data Bytes 10/11 X4
$\times 5$
BSM Data Bytes
$14 / 15$

Cable Plug Positions

YA Oscillator/Channel Spec
$\begin{array}{ll}\text { YB } & \text { Spare } \\ \text { YC } & \\ \text { Spare }\end{array}$
$\begin{array}{ll}\text { YC } & \text { Spare } \\ \text { YD } & \text { BSM Control }\end{array}$
YE BSM Control
YS BSM Control
YG BSM Control/Address
H Spare
J Spare
YK Spare
BSM Control/Address
YM BSM Control/Address
$\begin{array}{ll}\text { YN } & \text { BSM } \\ \text { YPata Bytes } 6 / 7 \\ \text { BSM Data Bytes } 4 / 5\end{array}$
Y B BSM Data Bytes $2 / 3$
YR BSM Data Bytes 0/
A Power
Spare
Spare Spare
Spare
Spare Spare
Spare
Spare
Spare
Spare
Spare
ZG
ZH. Spare

Pin Layout for Boards 01A-A1 to 01A-A4 and 01B-A 1

Note: Board/Retention Cover hardware may be present and may have to
Note. Board/Retention Cover hardware may be present and may have to
be removed to probe pins. For removal of the Board/Retention Cover, see
Vol. AO7, Removals and Replacements.

Board 01A-B1 or 01A-B2

Functional Locations
Arithmetic Logic Unit (ALU)
Module Location:
HE
Cache
Module Locations:

Cache 0/1	MA	
Cache 2/3	ME	
Cache 4/5	RA	
Cache $6 / 7$	RE	
Channels		
Module Locations:		
Channel Controls		RN
Channel Interface $0-5$	RS	
Channel Interface $6-8$	VN	

Channel Data Buffer (CDB)
Module Location:
DA
CREG
Module Locations:

CREG 0	DN
CREG 1	HS
CREG 2	DJ
CREG 3	MS

Clock
Module Location:
MJ

Control Storage (CS) Control
Module Location:
DS
Directory Lookaside Table (DLAT)
Module Location:
MN
Error Checking and Correction 1 (ECC 1)
Module Location:
RJ

Error Checking and Correction 2 (ECC 2)
Module Location:
VE
Keys
Module Locations:
HN
Local Storage External (LS EXT)
Module Location:
HJ

Processing Unit Storage Address Register (PUSAR)
Module Location:
DE
Shifter
Module Location:
HA
Module Plug Positions
DA CDB
de pusar
DJ CREG 2
DN CREG 0
DS CS Control
HA Shifter
HJ LSEXT
HN Keys
MA Cache 0/1
ME Cache $2 / 3$
MJ Clock
MN DLAT/DIR
MS CREG 3
RA Cache $4 / 5$
RE Cache 6/7
RJ ECC 1
RN Channel Control
VE ECC 2
VN Channel Interface 6/8
Cable Plug Positions
VA
VJ
VS
WA
WJ
WS

4381-3
$B / M 2676380$

- Coprrignt ism Copp. 1984

Board 01A-B1 or 01A-B2 Module Pin and I/O Signal Pin Layout

${ }^{\circ} \mathrm{Cmomsmancon}$ an
0000000000000000000000000000000000

Connectors

OCP Jack (Pin Side)

$$
2 \times 18 \text { Position }
$$

Edge Connector

4381-3
4381-3
B/M 2676380 \square

[^0]

 | | | |
| :--- | :--- | :--- | :--- |

- Cooprignt IBM Copp. 1984

3278-2A and 3279-2C

$$
\begin{aligned}
& \text { Power On/ Power off Lamp Test Chaninel To Channel }
\end{aligned}
$$

Power Supplies

Left Side View

- Copright IBM Corp. 1984

4381-3

-Copright IBM Corp. 1984

Relays and Circuit Protectors (CPs)

TOOLS

Contents

ntenance Tools List	OOLS 005
Tool Figuras	06
Actuation Tood	
ation T	
Conductive Parts Caddy (Pa	6
Continuity Check	OLS 006
I/O Signal Cable Unlatch Tool (Part 2360	
Lighted Magnitier (Part 4526	Tools 011
Module Pin Template (Part 5665902)	Tools 011
Probe Mask (Part 9953923)	Tools 011
Module Pin Aligner (Part 2360424)	Tools 011
Probe Mask Probe Assembly Part 40	Toossol1
Toraue Wrench (Part 5665903)	Tooss ${ }^{\text {d }}$
1/4 to 3/8 Drive Adapter (Part 18052	Tools ${ }^{\text {d }}$
Modular Jack Test Adapter (Part 63396	Tools 012
uation Tools	Tools 015
Operation	
Continuity Checker	TooLs 016
Operation	Tools 016
Maintenance	Tools 016
Battery Replacement	
p Replacement	Tools 016
Module Pin Aligner	тоо

Maintenance Tools List
TOOLS 005

Use the following tools to maintain the 4381 Processor

Tool Description	Part Number	Figure Page
Actuation Tool (1/O Cables)	2360092	TOOLS 006
Actuation Tool (Boards 01A-A1 to 01A-A4 and 018-A1)	4134750	TOOLS 006
Conductive Parts Caddy	6428141	TOOLS 006
Continuity Checker - Continuity checker - Adapter - Battery 1.35 V - Battery 2.8 V - Extension - Lamp	453587 453954 453119 453120 5500731 5353889	TOOLS 006/016 TOOLS 016
1/O Signal Cable Unlatch Tool	2360349	TOOLS 006
Lighted Magnifier	452642	TOOLS 011
Modular Jack Test Adapter	6339647	TOOLS 012
Module Pin Aligner	2360424	T00LS 011/021
Module Pin Alignment Template	5665902	TOOLS 011
MCM Probe Kit Assembly - MCM Probe Kit - Probe Mask - Probe Assembly		
Torgue Wrench for Power Bus	5665903	TOOLS 012
1/4 to 3/8 Drive Adapter	1805216	TOOLS 012

Actuation Tool (Part 2360092)
(1/O signal cables)

Actuation Tool (Part 4134750)

(Torque leaf springs)

4381-3
8/M 2676380

- Copright 18м Corp. 1984
\square EC A20558 EC A20560 \square

TOOLS 006

Lighted Magnifier (Part 452642)

Module Pin Template (Part 5665902)

Module Pin Aligner (Part 2360424)

Probe Mask Probe Assembly (Part 401064)

(Part 2360424)

Probe Mask (Part 9953923)

Torque Wrench (Part 5665903)

Modular Jack Test Adapter (Part 6339647)

1/4 to 3/8 Drive Adapter (Part 1805216)

4381-3 B/M 2676380	$\begin{array}{\|l\|} \hline \mathrm{MI} \\ \text { Seq GB010 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { PN } 6169614 \\ 2 \text { of } 2 \end{array}$	$\begin{aligned} & \text { EC A20558 } \\ & \text { O1 Oct } 84 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { EC A20560 } \\ & 18 \text { Feb } 85 \\ & \hline \end{aligned}$			

Actuation Tools
This actuation tool (part 2360092) is used to remove and replace $1 / O$ signal cables groupers. It is a hand-operated tool with a preset torque setting when
turned in a clockwise direction. Torque control is needed to prevent damage to the screw threads and inserts.

Note: The part number for the blade of the actuation
tool is 2360093 . tool is 2360093 .
Operation
Ensure the tip of the tool is seated in the socket head screw to be removed or replaced. When tightening the
screw, turn the tool in a clockwise direction until you feel screw, turn the tool in a clockwise direction until you feel
the tool slip and hear a clicking sound. Screw is now fully tightened. When removing a screw, ensure the tip is fully seated in the socket head screw. The actuation tool has a positive drive in a counterclockwise direction.

This actuation tool (part 4134750) is used to torque the horizontal cable retention bars and mounting screws for the card cages on boards 01A-A1 through 01A-A4 and
$018-A 1$. It is a hand-operated tool with a preset torquen setting when turned in a clockwise direction. Torque control is needed to prevent damage to the screw
threads, inserts, and boards.
Note: The part number for the blade of the actuation tool is 4138537 .

Operation
Ensure the tip of tool is seated in the socket head screw to be removed or replaced. When tightening the screw, turn the tool in a clockwise direction until you feel the tool slip and hear a clicking sound. Screw is now fully
tightened. When removing a screw, ensure the tip is fully seated in the socket head screw. The actuation tool has positive drive in a counterclockwise direction.

4381-3

$B / M 2676380$ | $\begin{array}{l}\text { M1 } \\ \text { Seq_GBO15 }\end{array}$ | $\begin{array}{l}\text { PN 6169615 } \\ 1 \text { of } 2\end{array}$ |
| :--- | :--- | | EC A20558 | EC A20562 |
| :--- | :--- |
| 01 Oct 84 | 30 Aug 85 |

${ }^{\bullet}$ Coppright IBM Corp. 1984

The continuity checker is a plastic housing with a clear plastic lens that contains an indicator. A 6-32 threaded
rod extends from one end to a flexible lead with a $6-32$ threaded stud extending from the other end. Various probe tips can be adapted to the continuity checker.

Operation

Assemble the necessary probe tip to the continuity checker. Connect the probe tip on the flexible lead to a convenient checkpoint. Probe with the threaded rod (with probe tip) protruding from the other end of the continuity checker.

Warning: Do not use the CE ohmmeter on LSI logic. Circuits could de damaged.

Maintenance

Maintenance consists of replacement of the following:

- 1.35 V battery (part 453119)
- 2.8 V battery (part 453120)
- Indicator lamp (part 5353889

Battery Replacement

Remove the lockscrew near the front of the continuit checker. Hold the body, and pull the clear plastic end batteries (observe the polarity). Reverse this procedure for reassembly.

Lamp Replacement

Disassemble the tool as in the "Battery Replacement" procedure. Loosen the locknut, and remove the circui card assembly from the plastic lens. Remove the defelive lamp. Remove the lens cap from the new lamp. and insert in the circuit card assembly.

Extension

\square

- Coprrignt 18M Corp. 1984

Module Pin Aligner

Warning: A module can be destroyed by touching the
pins because of ESD (Electrostatic Discharge). Always pins because of ESD (Electrostatic Discharge).
wear the wrist band when handling a module.

Pins may become bent on the module so that it cannot be installed properly without causing severe damage to the system. To ensure against this potential damage, the pins must be straightened so that the alignment between smooth insertion.
Note: Do not attempt to straighten a pin that is bent more than the distance to the next row of pins or quivalent. A tool, as shown, is provided for aligning single pin and the other end is for straightening multiple
pins.
As an aid in observing the spring connectors, use the Lighted Magnifier (part 452642). A visual inspection must be made by sighting down the row of pins. Any pins in question should be checked with the multiple end
of the tool to ensure alignment. Never install a module before checking the pin alignment.

\square

Tools required:
Conductive Parts Caddy (part 6428141)
Actuation Tool (part 4134750).

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open rear cover of frame.
5. Determine board to be removed, and remove the card cover A.

Warning: A module can be destroyed by touching the card contacts and/or the exposed module pins on the back of a card. Whenever handling a card, be extremely careful not to touch the card contacts or module pins before discharging yourself to ground. -
6. Compare the part number and EC level of the old board to the new board. Verify that you have the correct board for replacement.
7. Ensure that the cards and connectors are labeled for proper repositioning before they are removed from the board assembly
8. Remove top card crossover connectors if applicable.
9. Remove the cards from the board, and place in the conductive parts caddy (part 6428141).
\qquad

10. Remove air baffle(s) B.
11. Loosen cable opening cover screws C , slide the cover out of the way, and tighten the screws.
12. Loosen leaf spring torque screws D using the actuation tool (part 4134750) until all tension has been removed.
13. Remove upper and lower cable retainer brackets E.

Note: The upper cable retainer bracket has two grooves and the lower has one.
14. Remove I/O cable connectors.
15. Open front cover of frame.
16. Open gate 01C.

Note: The board/retention cover may have been removed while probing the pin side of the board or the board/retention hardware may not be present.
18. Remove the four board/retention cover mounting screws K.
19. Remove the board/retention cover \boldsymbol{F}.
20. Remove all voltage crossover connectors, minibus connectors, and discrete components from pin side of board (label if required).
21. Remove the four latch rail mounting screws \mathbf{G}.
22. Remove the latch rail H.
23. Remove the 14 board mounting screws (18 if board/retention hardwāre is not present).
24. Remove board and guide assembly by sliding the assembly towards you.
25. Reverse procedure for board replacement.

Note: When reinstalling the latch rail, ensure the latching surface is away from the board.
17. Unlatch all cable retainers \boldsymbol{J}.

4381-3
B/M 2676380

MI	PN 6169558 Seq GC010 1 of 4

Tools required:

Conductive Parts Caddy (part 6428141)
Actuation Tool (part 4134750)

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position
4. Open front cover of the machine.
5. Open gate 01C and then open gate 01B

Warning: A module can be destroyed by touching the card contacts and/or the exposed module pins on he card contacts and/or the exposed module pins extremely careful not to touch the card contacts or module pins before discharging yourself to ground
6. Remove the gate card cover \mathbf{A}
7. Compare the part number and EC level of the old board to the new board. Verify that you have the correct board for replacement.
8. Ensure that the cards and connectors are labeled for proper repositioning before they are removed from the board assembly.
9. Remove top card crossover connectors if applicable.
10. Remove the cards from the board, and place in the conductive parts caddy (part 6428141).
11. Loosen cable opening cover screws \mathbf{B}, slide the over out of the way, and tighten the screw
12. Loosen leaf spring torque screws \mathbf{C} using the actuation tool (part 4134750) until all tension is removed.
13. Remove upper and lower cable retainer brackets \mathbf{D} Note: The upper cable retainer bracket has two grooves and the lower has one.
14. Remove I / O cable connectors.

Note: The board/retention cover may have been removed while probing the pin side of the board or the board/retention hardware may not be present.
15. Unlatch all cable retainers \mathbf{H}
16. Remove the four board/retention cover mounting screws J.
17. Remove the board/retention cover \mathbf{E}
18. Remove all voltage crossover connectors, minibus connectors, and discrete components from pin sid of board (label if required).
19. Remove the four latch rail mounting screws \mathbf{F}
20. Remove the latch rail \mathbf{G}
21. Remove the 14 board mounting screws (18 if board/retention hardware is not present).
22. Remove board and guide assembly by sliding the assembly towards you
23. Reverse the procedure for board replacement

Note: When reinstalling the latch rail, ensure the latching surface is away from the board

4381-3

B/M2676380 | MI | |
| :--- | :--- |
| Seq GC010 | PN 6169558 | EC A20558

Tool required:

Actuation Tool (part 4134750).

Note: This procedure enables you to probe the pins on

boards 01A-A1 through 01A-A4 and 01B-A1 that are covered by the board/retention cover.

1. Unlatch the cable retainers \mathbf{C}
2. Remove the four mounting screws B
3. Remove the board/retention cover \mathbf{A} from the
oard
4. Reverse the procedure for board/retention cover replacement.

LSI Cards

Warning: Damage results if cards are removed with power on. Do not remove any FRU until you power down the processor.

1. Power down the processor using the following procedure unless you are instructed differently by a repair procedure.
a. Ensure that you are in CE Mode.
b. Ensure that the $1 / O$ Power Hold switch on the service panel is set to I/O Power Hold.
c. Set the Power Off switch on the service panel to Power Off.
d. Wait until the service panel displays 00000.
e. If you exchange cards on board 01A-A1, set CB1 and CB2 to the off position.
2. Open the frame covers.

Warning: A module or card can be destroyed by Electrostatic Discharge (ESD). See your ESD kit for safety and maintenance instructions.
3. Remove the board card cover.
4. Determine the card to be removed.
5. To remove, unlock the extractor levers A at the same time until the card disengages.
6. To replace, open both extractor levers fully. Insert the card guide into the slotted guide grooves (card components to the right). Apply firm finger pressure to the card holder to ensure proper seating. After reseating, lock both of the extractor levers at the same time.
7. Install the board card cover.
8. Power up the processor using the following procedure unless you are instructed differently by a repair procedure.
a. If you exchanged cards on board 01A-A1, set CB1 and CB2 to the on position.
b. Set the Power Off switch on the service panel to Normal.
c. Press Power On.
d. When the Local Time Clock displays, enter the date and time in the fields on the screen and press ENTER.
e. When the Power Up/Down screen displays, key in UC and press ENTER.
f. Set the I/O Power Hold switch on the service panel to Normal.

CAUTION

The weight of the board is approximately 36 kg 80 lb). Two persons are needed to remove and

Tools Required:
Actuation Tool for Cable Grouper (part 2360092) $1 / 4$ to $3 / 8$ Drive Adapter (part 1805216) Torque Tool for Commoning Bus (part 5665903).

Removal

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.

4. Open rear frame cover
5. Loosen one screw, and open B1 plenum
6. Ensure that the cable groupers are labeled for proper repositioning before they are removed from the board assembly
7. Remove all cable groupers starting with the bottom positions and work toward the top.
8. Remove the conductive mat from your ESD kit and place it on the floor near the processor.
Note: See your ESD kit for safety and maintenanc structions.
9. Open the new board shipping container.
10. Remove the new board from the shipping container and place it on one-half of the conductive mat handles down).
11. Remove the module guard located at the bottom of the board assembly \mathbf{B}, and install it on the board
12. Remove the 12 commoning bus screws at the board terminal blocks \boldsymbol{A} left and right side.
13. Remove and label any additional wires connected to the commoning bus.
14. Open the front frame cover.
15. Open gate 01C.
16. Remove the three connectors ($\mathrm{J} 1, \mathrm{~J} 2$, and J 3) from PS111.
17. Remove the ground wire located at the top righ corner of the board.
18. Remove the eight board mounting screws, leaving the top two screws for last.

Note: Before removing the board, ensure that you have work space large enough for two boards.
19. As the last two screws are removed, pull out the base of the board and set it on the lower support ledge of the frame.
21. Remove the module guard from the old board assembly.
22. Fasten the ESD wrist band to the wrist of the person who will be transferring the modules from the old board to the new board.

Note: See your ESD kit for safety and maintenanc
23. Transfer the modules at this time, and ensure tha they are properly plugged.

Note: For the correct module removal procedure, see page REM 025.
24. Remove the wrist band and store it in the ESD kit
20. Remove the board assembly by pulling the right side Remove the board assembly by pulling the right sid
away from the frame first. Then remove the board assembly, and place it on the conductive mat (handles down).

B/M 2676380 \begin{tabular}{|l|l|}
\hline MI GCO2O \& $\begin{array}{l}\text { PN } 6169560 \\
\text { Sof } 4\end{array}$

\hline

\hline EC A20558

O1 Oct 84
\end{tabular} \(\begin{gathered}EC A20559

O3 Dec 84\end{gathered}\)

- Cooprignt IBM Corp. 1984

Replacement

1. Install the module guard on the new board assembly.
2. To install the board, first lift and rest the board assembly on the lower support ledge in front of the opening with the bottom of the board assembly
against the lip of the support ledge.
3. Slide the board assembly to the extreme left of the frame, aligning the board bus terminal block tabs with the commoning bus tabs.
4. With the board in this position, tilt the top of the board assembly inward against the frame, aligning he board bus terminal block tabs with the commoning bus tabs.
5. In a continuous motion, lift the board assembly against the commoning bus until the bottom of the oard assembly clears the main support ledge. ogainst the machine frame
6. Install the eight board mounting screws, finger tight only.
7. Remove the module guard from the new board assembly, install it on the old board assembly, and pack the old board in the shipping container.
8. Remove the ESD cable and store it along with the conductive mat in your ESD kit.
9. Install all cable groupers starting at the top of the
10. Install the 12 commoning bus screws. (Align board if necessary by shifting the board to the right or to the left to align the distribution bus to the commoning bus.)
11. Tighten the 12 screws. All screws must be torqued at $S R 27 \pm 4$ Newton meter ($20 \pm 3 \mathrm{ft} \mathrm{lbs}$).
12. Install the board ground wire.

> Note: Measure the ground integrity of the replaced FRU using a digital multimeter (part 8496278) for 0.1 ohm or less before any connectors are reconnected. Place one probe on the machine frame near the replaced FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the replaced FRU. If the measurement is 0.1 ohm or less, you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly installed ground wire. CAUTION If the measurement is still greater than 0.1 ohm. invoke your support structure. invoke your support structure.
13. Close and tighten B1 plenum
14. Close frame cover
15. Go to the wire side of the board and torque the eight board mounting screws to SR 12 ± 2 Newton meter ($9 \pm 1.5 \mathrm{ft} \mathrm{lbs}$).
16. Reinstall connectors J1, J2, and J3 into PS 111
7. Place CB 1 and CB 2 to the ON position. Press Power On/IML on the OCP.
18. Run the MSS diagnostics and PU diagnostics Option \checkmark test.
$4381-3$
$B / M 2676380$

- Coppright IBM Corp. 1984

MI	PN 6169560
2 of 4	

EC A2055
01
$010 c t$
84

EC A2055
03

0000

CAUTION

The weight of the board is approximately 36 kg (80 weight of the board is approximately 36 kg
install the board.

Tools Required:

Actuation Tool for Cable Grouper (part 2360092) $1 / 4$ to $3 / 8$ Drive Adapter (part 1805216) Torque Tool for Commoning Bus (part 5665903).

Removal

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open rear frame cover.
5. Loosen one screw, and open B2 plenum.

6. Ensure that the cable groupers are labeled for proper repositioning before they are removed from the board assembly.
7. Remove all cable groupers starting with the bottom positions and work toward the top.
8. Remove the conductive mat from your ESD kit and place it on the floor near the processor
Note: See your ESD kit for safety and maintenance Note: See
instructions.
9. Open the new board shipping container.
10. Remove the new board from the shipping container and place it on one-half of the conductive mat
(handles down).
11. Remove the module guard located at the bottom of the board assembly C , and install it on the board that is to be removed.
12. Remove the upper bus safety shield
13. Remove the 12 commoning bus screws at the board terminal blocks \mathbf{A} left and right side.
14. Remove and label any additional wires connected to the commoning bus.

15. Perform the following two steps if a two piece bus bar is installed:
a. Using a quarter-inch drive socket set, remove the three screws holding the commoning bus and distribution bus terminal block \mathbf{B}

Note: There may be six screws on early level boards
b. Remove the terminal block; be careful not to drop the block.
16. Open the front frame cover
17. Open gate 01C.
18. Remove the three connectors ($\mathrm{J} 1, \mathrm{~J} 2$, and J 3) from PS 106.
19. Remove the ground wire located at the top right corner of the board.
20. Remove the eight board mounting screws, leaving the top two screws for last.

Note: Before removing the board, ensure that you have work space large enough for two boards.
21. As the last two screws are removed, pull out the base of the board and set it on the lower support ledge of the frame.

- Coovirignt 18M Corp. 1984

Replacement

1. Install the module guard on the new board assembly
2. To install the board, first lift and rest the board assembly on the lower support ledge in front of then apaing the lip of the support board assembly
3. Slide the board assembly to the extreme left of the rame, aligning the board bus terminal block tabs with the commoning bus tabs.
4. With the board in this position, tilt the top of the board assembly inward against the frame, aligning the board bus terminal block tabs with the commoning bus tabs.
5. In a continuous motion, lift the board assembly against the commoning bus until the bottom of the oard assembly clears the main support ledge. against the machine frame.
6. Install the eight board mounting screws, finger tight only.
7. Remove the module guard from the new board Remove the module guard from the new board
assembly, install it on the old board assembly, and pack the old board in the shipping container.
8. Remove the ESD cable and store it along with the
conductive mat in your ESD kit.
9. Install all cable groupers starting at the top of the board.
10. Install the 12 commoning bus screws. (Align board if necessary by shifting the board to the right or to the eft to align the distribution bus to the commoning bus.)
11. Tighten the 12 screws. All screws must be torqued at $S R 27 \pm 4$ Newton meter ($20 \pm 3 \mathrm{ft}$ lbs).
12. Reattach the terminal block (if present) with three screws.
Note: Only three screws are needed if replacing an early level board.
13. Install the board ground wire.

Note: Measure the ground integrity of the replaced FRU using a digital multimeter (part 8496278) for 0.1 ohm or less before any connectors are near the replaced FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the replaced FRU. If the measurement is 0.1 ohm or less, you have a good ground. If the measurement is greater than 0.1 ohm, check for a improperly installed ground wire.

If the measurement is still greater than 0.1 ohm, invoke your support structure.
4. Install the safety shield.
15. Close and tighten B2 plenum
16. Close frame cover.
17. Go to the wire side of the board and torque the eigh board mounting screws to SR 12 ± 2 Newton meter ($9 \pm 1.5 \mathrm{ft} \mathrm{lbs}$).
18. Reinstall connectors $\mathrm{J} 1, \mathrm{~J} 2$, and J 3 into PS 106 .
19. Place CB1 and CB2 to the ON position. Press Powe On/IML on the OCP.
20. Run the MSS diagnostics and PU diagnostics Option V test.

4381-3

B/M 2676380 \square $\left\lvert\, \begin{aligned} & \text { PN } 6169560 \\ & 4 \text { of } 4\end{aligned}\right.$ | EC A20558 | EC A20559 | EC A20560 |
| :--- | :--- | :--- | EC A20562

30 Aug 85
${ }^{-}$Cooprigh IBM Coro. 1984

Tools required:
Module Pin Aligner (part 2360424)
Module Pin Alignment Template (part 5665902).
Warning: Do not remove any screws from the spring housing. Attempting to remove the spring housing results in permanent damage to the B1 or B2 board.

1. Press Power Off on the operator control panel unless instructed differently by a repair procedure.
2. Open rear cover of the machine.
3. Open B1 or B2 plenum by loosening one screw.

Warning: A module can be destroyed by touching the pins because of Electrostatic Discharge (ESD). Never touch the pins of a module unless you are wearing a wrist band.
4. Remove the wrist band and the ESD cable from the ESD kit.

Note: See your the ESD kit for safety and maintenance instructions.
5. Plug the wrist band and the ESD cable into the B1 or B2 plenum latch bracket.
6. Fasten the ESD wrist band to the wrist of the person who will be removing and installing the modules.
7. Attach the ESD cable to the the protective container of the new module.
8. Determine which pluggable module is to be removed.
| 9. Hold the two bail-retaining latches \mathbf{A} on both sides of the module assembly, located near the top.
10. Squeeze both latches toward each other, and hold them in that position while pulling the actuator bail B outward with your finger.
11. Apply additional downward force on the actuator bail to drive the module free of the spring connectors.

Note: The module must be held in position because it is free to be removed.
12. Carefully remove the module away from the module site. Remove the new module from the protective container and place the old module in it.
13. Ensure that the new module pins are aligned; use the Module Pin Alignment Template (part 5665902).

Note: Do not attempt to straighten any module pin that is bent more than the distance to the next row or equivalent. Doing this can cause the pin to break off during module insertion. Pins bent less than this distance can be straightened using the pin aligner (part 2360424).
14. Carefully place the module in position, and hold in position until the next step.
15. While holding the module in position, siowly but | continuously push the actuator bail in until it hits the stop.
16. The two bail-retaining latches, located on both sides of the module assembly near the top, should be in a latched position.
17. To ensure the module is properly seated, squeeze the two bail-retaining latches toward each other and pull the actuator bail with your finger until the actuator bail is in a free state.
18. Hold the module and try to move it. If the module is tight, reactivate the actuator bail. If the module is loose, go back to step 12.
19. Remove the wrist band and ESD cable and store in the ESD kit.
20. Close the B1 or B2 plenum, and tighten the screw.

Actuator Bail

1. Remove the module.
2. Ensure that the actuator bail \mathbf{B} is in the open position.
3. Squeeze the actuator bail shown at \mathbf{D} until the pivot points are free from the spring housing.
4. Remove the actuator bail from the spring housing.
5. Reverse the procedure for actuator bail replacement.

Note: When reinstalling the actuator bail, ensure the bail-retaining latches \mathbf{A} are on the inside of the actuator bail.

Bail-Retaining Latches
Warning: Do not remove any screws from the spring housing until instructed in this procedure. Attempting to remove the spring housing results in permanent damage to the B1 or B2 board.

1. Remove the module.
2. Remove the actuator bail.
3. Remove the one mounting screw, lockwasher, and washer C from the bail-retaining latches A.
4. Remove the bail-retaining latches.
5. Reverse the procedure for bail-retaining latches replacement.

$\begin{aligned} & 4381-3 \\ & \text { B/M } 2676380 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Mi } \\ \text { Seg GCO25 } \\ \hline \end{array}$	$\begin{array}{\|l} \text { PN } 6169561 \\ 1 \text { of } 2 \end{array}$

| EC A20558 | EC A20560 | | |
| :--- | :--- | :--- | :--- | :--- |
| O1 Oct 84 | EC A20562 | | |
| 18 Feb 85 | | | |

Tool Required:

Scissor Clamp (part 9900233).

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Open rear frame cover.
4. Loosen one screw, and open B1 or B2 plenum.
5. Remove retention cover(s) A from terminator resistor section.
6. Place scissor clamp (part 9900233) B in center of terminator resistor (TR) and pull straight out.

Warning: The spring housing is not fastened to the board. To prevent the spring housing from falling off the board, do not remove more than one row of TRs at a time.
7. Reverse procedure for terminator resistor replacement.
Note: When replacing TRs, ensure that the replacement resistor has the same colored part number as resistor that was removed. The two resistors that can be used are (part 4481673) black in color and (part 4481674) red in color shown at C

Pluggable Terminator Resistor

$4381-3$
$B / M 2676380$

Sense Capacitors

1. Press Power Off on the operator control panel:
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open rear cover of frame
5. Open B 1 and B 2 plenum by loosening one screw on each.
6. Locate bus bars on top of board B2.
7. Remove the upper safety shield by loosening three mounting screws and remove the lower safety shield by loosening two mounting screws.
8. Unplug four wires A that are fasten to the sense
capacitor assembly. capacitor assembly.
9. Remove the six screws and washers [B that fasten the sense capacitors assembly to bus bars A, B, and
10. Remove the sense capacitors assembly
11. Reverse procedure for sense capacitors replacement.

Rear view of Sense Capacitor

1/O Signal Cables
Tools Required:

Torque Tool for Cable Grouper (part 2360092) Cable Unlatch Tool (part 2360349).

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB 1 and CB 2 in the OFF position.
4. Open rear frame cover.
5. Open B 1 or B 2 plenum by loosening one screw.
6. Determine which cable grouper assembly is to be removed.
7. Remove grouper assembly.
| 8. Remove retainer arms at \mathbf{D} if present.
8. Determine which $18-\mathrm{PAC}$ is defective.
9. Orient the grouper housing so that one end of the housing is facing towards you.
10. Hold the cable unlatch tool (part 2360349), and position it so that the narrow end of the tool is parallel to the slot openings as shown at A.
11. The front end of the tool has a recessed ledge that seats against the slot ribs.

Note: With the 18-PAC cable positioned for either end, rotate the tool 180 degrees so that the recessed ledge of the tool is away from the side wall of th housing and the straight side of the tool is agains the side wall.
13. Place the tip of the tool on top of the latch arm protruding out of the housing.
Warning: To prevent damage to the slot ribs, do not use excessive force when moving the latch arm.
14. Holding the tool with the tip resting on top of the latch arm, push the tool straight in until the recessed dge of the tool comes in contact with the slot rib as shown at B
15. While holding the tool in this position, press the working end of the tool down slowly moving the latch arm down below the latching shelf surface as shown at \mathbf{C}
16. Repeat this same procedure for the other end of the 18-PAC cable.
17. Hold all the trilead cables attached to the 18 -PAC to be removed, and gently pull on the cables to remove the 18 -PAC.
Note: Do not unlatch and remove more than one 18-PAC cable assembly at a time.
18. Remove enough cable retainers to permit tracing of cables into the cable channel.
19. Ensure that you have the correct cables and cut the cables (in the channel) at both ends.
20. Place replacement cable on top of pile in cable raceway, and replace cable retainers.
21. Reconnect both ends of replacement cable into grouper.
22. Install retainer arms if present.
23. Install grouper assembly.
24. Close B1 or B2 plenum by tightening one screw.
25. Close the rear frame cover.
26. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the ON position.
27. Close left side cover of frame.
28. Press Power On/IML on the operator control panel.

4381-3
4381-3
3/M 2676380 MI GCO3O
Seq GC PN 6169562

2 of 2 \begin{tabular}{l}
EC A20558

01

01

\hline

EC A20562

30 Aug 85

\hline
\end{tabular} 30 Aug 85

Power Supplies
Power Supply 101

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB 1 and CB 2 in the OFF position.
4. Open front cover, and locate PS 101.
5. Remove the front safety shield.
6. Disconnect P07 \mathbf{A}
7. Disconnect cables at \mathbf{B}
8. Disconnect ground wire \mathbf{C}
9. Remove the four mounting screws and washers \mathbf{D}
10. Carefully pull PS 101 from frame.
11. Reverse procedure for PS 101 replacement.

Note: After reconnecting the ground wire, measure Note. Af integrity of the replaced FRU using a digital multimeter (part 8496278) for 0.1 ohm or less before any connectors are reconnected. Place one probe on the machine frame near the replace FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the less, you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly
installed ground wire.

CAUTION

If the measurement is still greater than 0.1 ohm. invoke your support structure.

Power Supply 102

1. Press Power Off on the operator control panel
. Open left side cover of frame.
2. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
3. Open front cover, and locate PS102.
4. Disconnect cables at \mathbf{A} and \mathbf{B}
5. Disconnect ground wire C
. Remove the four mounting screws and washers [D
Carefully pull PS 102 from frame.
Reverse procedure for PS102 replacement.
Note: After reconnecting the ground wire, measure the ground integrity of the replaced FRU using a digital multimeter (part 8496278) for 0.1 ohm or less before any connectors are reconnected. Place FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the replaced FRU. If the measurement is 0.1 ohm or less, you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly installed ground wire.

CAUTION
If the measurement is still greater than 0.1 ohm, invoke your support structure.

\square
4381-3

| EC A20558 |
| :--- | :--- |
| 01 Oct 84 | | EC A20562 |
| :--- |
| 30 Aug 85 |

-Copyight IBM Copp. 1984

Power Supply 103

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open front cover of frame.
5. Open gate 01C, and locate PS103 on rear of gate.
6. Disconnect cables at \mathbf{A}
7. Disconnect cable P10 B
8. Disconnect ground wire C
9. Remove the four mounting screws and washers \mathbf{D}
10. Carefully pull PS103 from frame.
11. Reverse procedure for PS 103 replacement.

Note: After reconnecting the ground wire, measure Note: After reconnecting the ground wire, measure
the ground integrity of the replaced FRU using a digital multimeter (part 8496278) for 0.1 ohm or
less before any connetors are reconnected. Place less before any connectors are reconnected. Place one probe on the machine frame near the replaced FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the less, you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly installed ground wire.

CAUTION

If the measurement is still greater than 0.1 ohm invoke your support structure.

Power Supply 104

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open rear cover of frame, and locate rear of PS 104.
5. Disconnect cables at \mathbf{A}
6. Disconnect cable P14 B at the rear of PCC box.
7. Locate front of PS 104 on left side of frame.
8. Disconnect ground wire \mathbf{C}
9. Remove the four mounting bolts, washers, and lockwashers D
10. Carefully pull PS 104 from frame
11. Reverse procedure for PS 104 replacement.

Note: After reconnecting the ground wire, measure Note: After reconnecting the ground wir, mat
the ground integrity of the replaced FRU using a the ground integrity of the replaced for
digital multimeter (part 8496278) 0.1 ohm or less before any connectors are reconnected. Place one probe on the machine frame near the replace FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the less, you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly installed ground wire.

CAUTION

If the measurement is still greater than 0.1 ohm, invoke your support structure.

$4381-3$

$B / M 2676380$ | $\begin{array}{l}\text { MI } \\ \text { Seq GC040 }\end{array}$ | $\begin{array}{l}\text { PN } 6169564 \\ 2\end{array}$ |
| :--- | :--- | | EC A20558 | EC A20562 |
| :--- | :--- |
| 01 | |
| OC Oct 84 | |
| 30 | Aug 85 |

Power Supply 105

Tools Required:
1/4 to $3 / 8$ Drive Adapter (part 18052 16)
Torque Tool for Commoning Bus (part 5665903)

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open rear cover of frame.
5. Open B2 plenum to gain access to the rear of PS 105.
. Remove the safety shield covering the voltage bus bars.
6. Disconnect cables at \mathbf{A}
7. Remove two voltage bus bars fastened at B
. Locate front of PS 105 on left side of frame.
8. Remove ground wire \mathbf{C}
9. Remove the two mounting bolts, washers, and lockwashers D
10. Remove bolt, washer, lockwasher, and nut \mathbf{E}
11. Carefully pull PS 105 from frame
12. Perform the following.
a. See Volume A03, page PR 1015 for the correct current settings of the new power supply.
b. Reverse procedure for PS 105 replacement.

Note: After reconnecting the ground wire, measure the ground integrity of the replaced FRU using a digital multimeter (part 8496278) for 0.1 ohm or less before any connectors are econnected. Place one probe on the machin frame near the replaced fra ensuring the
painted surface is penetrated. Place the oth probe on any bare metal area of the replaced FRU. If the measurement is 0.1 ohm or less, you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly installed ground wire.

CAUTION
the measurement is still greater than 0.1 ohm, invoke your support structure.
c. Torque the voltage bus bar screws shown at \mathbf{B} 27 ± 4 Newton meter ($20 \pm 3 \mathrm{ft} \mathrm{lbs}$) using the orque wrench and $1 / 4$ to $3 / 8$ adapter.

Warning: Ensure that the voltage bus bars and terminals are not touching the machine frame.

381-3 \square EC A20558

- Coprigntriem Copr. 198

Power Supply 106

Tools Required:

1/4 to $3 / 8$ Drive Adapter (part 1805216)
Torque Tool for Commoning Bus (part 5665903).

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open front cover.
5. Open gate O1C, and locate rear of PS 106 .
6. Remove cables at \mathbf{A}
7. Open rear cover of frame.
8. Open B2 plenum to gain access to the rear of PS 106.
9. Remove the safety shield covering the voltage bus bars.
10. Remove two voltage bus bars fastened at \mathbf{B}
11. Locate front of PS 106 on left side of frame
12. Remove ground wire \mathbf{C}
13. Remove the two mounting bolts, washers, and lockwashers D
14. Remove bolt, washer, lockwasher, and nut \mathbf{E} 15. Carefully pull PS 106 from frame.
15. Perform the following
a. See Volume A03, page PR 1015 for the correc current settings of the new power supply.
b. Reverse procedure for PS 106 replacement. Note: After reconnecting the ground wire, measure the ground integrity of the replaced FRU using a digital multimeter (part 8496278) for 0.1 ohm or less before any connectors are frame near the replaced FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the replaced FRU. If the measurement is 0.1 ohm or less, you have a good ground. If the measurement is greater than 0.1 ohm , check for an improperly installed ground wire.

CAUTION

If the measurement is still greater than 0.1 ohm, invoke your support structure.
c. Torque the voltage bus bar screws shown at \mathbf{B} to 27 ± 4 Newton meter ($20 \pm 3 \mathrm{ft} \mathrm{lbs}$) using the torque wrench and $1 / 4$ to $3 / 8$ adapter.

Warning: Ensure that the voltage bus bars and terminals are not touching the machine frame.

REM 046

Power Supply 107

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open front cover of frame, and locate the front of PS107.
5. Disconnect ground wire A
6. Disconnect cables at \mathbf{B}
7. Open gate 01c.
8. Open gate 018 , and locate rear of PS 107
9. Remove the four mounting screws and washers \mathbf{C}
10. Carefully pull PS 107 from frame.
11. Reverse procedure for PS 107 replacement.

Note: After reconnecting the ground wire, measure the ground integrity of the replaced FRU using a the ground integrity of the replaced FRU using a
digital multimeter (part 8496278) for 0.1 ohm or digital multimeter (part 8496278) for 0.1 ohm or
less before any connectors are reconnected. Place one probe on the machine frame near the replaced FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the
replaced FRU. If the measurement is 0.1 ohm or replaced $F R U$. If the measurement is 0.1 ohm or
less, you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly installed ground wire.

caution

If the measurement is still greater than 0.1 ohm, invoke your support structure.

Power Supply 108

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open front cover of frame, and locate front of PS 108.
5. Disconnect ground wire A
6. Disconnect cables at \mathbf{B}
7. Open gate 01C.
8. Open gate 01B, and locate rear of PS 108 .
9. Remove the four mounting screws and washers \mathbf{C}
10. Carefully pull PS 108 from frame.
11. Reverse procedure for PS 108 replacement.

Note: After reconnecting the ground wire, measure the ground integrity of the replaced FRU using a digital multimeter (part 8496278) for 0.1 ohm or less before any connectors are reconnected. Place one probe on the machine frame near the replaced lace the other probe on any bare metal area of the replaced FRU. If the measurement is 0.1 ohm or less, you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly installed ground wire.

CAUTION
If the measurement is still greater than 0.1 ohm, invoke your support structure.

Power Supply 109

1. Press Power Off on the operator control panel.
2. Open left side cover of frame
3. Locate the Primary Control Compartment (PCC), and Locate the Primary Control Compartmen
4. Open front cover of frame, and locate front of PS109.
5. Disconnect ground wire \mathbf{A}
6. Disconnect cables at B
7. Open gate 01C
. Open gate 01B, and locate rear of PS109
8. Remove the four mounting screws and washers \mathbf{C}
9. Carefully pull PS 109 from frame
10. Reverse procedure for PS 109 replacement.

Note: After reconnecting the ground wire, measure the ground integrity of the replaced FRU using a digital multimeter (part 8496278) for 0.1 ohm or ess before any connectors are reconnected. Place FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the replaced FRU. If the measurement is 0.1 ohm or less, you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly installed ground wire.

CAUTION
If the measurement is still greater than 0.1 ohm invoke your support structure.

4381-3
B/M 2676380

- Coovightr 18 M Coro. 1984

Power Supply 111

Tools Required:
1/4 to 3/8 Drive Adapter (part 1805216)
Torque Tool for Commoning Bus (part 5665903).

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and Locate the Primary Control Compartmen
4. Open front cover and locate the rear of PS111
5. Remove cables $\mathrm{J} 1, \mathrm{~J} 2$, and J 3 shown at \mathbf{A}
6. Remove the safety shield covering the voltage bus bars.
7. Remove two voltage bus bars fastened at B
8. Locate front of PS111 on left side of frame.
9. Remove ground wire C
10. Remove the two mounting bolts, washers, and lockwashers D
11. Remove bolt, washer, lockwasher, and nut \boldsymbol{E}
12. Carefully pull PS111 from frame.
13. Perform the following
a. See Volume AO3, page PR 1015 for the correct current settings of the new power supply.
b. Reverse procedure for PS 111 replacement.

Note: After reconnecting the ground wire, measure the ground integrity of the replaced FRU sing a digital multimeter (part 8496278) for econnected. Place one probe on the machine frame near the replaced FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the replaced FRU. If the measurement is 0.1 ohm or less, you have a good grow. . installed ground wire.

AUTION

the measurement is still greater than 0.1 If the measurement is stil greater
ohm, invoke your support structure.
c. Torque the voltage bus bar screws shown at \mathbf{B} Torque the voltage bus bar screws lon 27 ± 4 Newton meter $(20 \pm 3 \mathrm{ft}$ lbsing the torque wrench and $1 / 4$ to $3 / 8$ adapter.
Warning: Ensure that the voltage bus bars and Warning: Ensure that the voltage bus bars and

Power Supply 112
Tools Required:
1/4 to 3/8 Drive Adapter (part 1805216)
Torque Tool for Commoning Bus (part 5665903).

1. Press Power Off on the operator control panel.
2. Open left side cover of frame,
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open front cover and locate the rear of PS112.
5. Remove cables J 1 , J 2 , and J 3 shown at \boldsymbol{A}
6. Remove the safety shield covering the voltage bus bars.
7. Remove two voltage bus bars fastened at \mathbf{B}
8. Locate front of PS112 on left side of frame.
9. Remove ground wire \mathbf{C}
10. Remove the two mounting bolts, washers, and lockwashers D
11. Remove bolt, washer, lockwasher, and nut E
12. Carefully pull PS112 from frame.
13. Perform the following
a. See Volume AO3, page PR 1015 for the correct current settings of the new power supply.
b. Reverse procedure for PS 112 replacement.

Note: After reconnecting the ground wire, measure the ground integrity of the replaced FRU
using a digital multimeter (part 8496278) for using a digital multimeter (part
0.1 ohm or less before any connectors are reconnected. Place one probe on the machine frame near the replaced FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the replaced
FRU If the measurement is 0.1 ohm or less, FRU. If the measurement is 0.1 ohm or less,
you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly installed ground wire.

CAUTION

If the measurement is still greater than 0.1 ohm, invoke your support structure.
c. Torque the voltage bus bar screws shown at \mathbf{B} to 27 ± 4 Newton meter ($20 \pm 3 \mathrm{ft} \mathrm{lbs}$) using the torque wrench and $1 / 4$ to $3 / 8$ adapter
Warning: Ensure that the voltage bus bars and terminals are not touching the machine frame.

Transformers

Transformer 100

1. Press Power Off on the operator control panel.
2. Open left side cover of frame
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open PCC door, and locate TR 100 .
5. Remove ground wire.
6. Remove input wires on TB1.
7. Remove four mounting nuts \mathbf{A}
8. Carefully pull TR 100 from frame.
9. Reverse procedure for TR 100 replacement.

Note: After reconnecting the ground wire, measure Note: After ground integrity of the replaced FRU using a the ground integrity of the replaced FRU using a
digital multimeter (part 8496278) for 0.1 ohm or less before any connectors are reconnected. Place one probe on the machine frame near the replaced FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the replaced FRU. If the measurement is 0.1 ohm or less, you have a good ground. If the measurem
greater than 0.1 ohm, check for an improperly installed ground wire.

caution

If the measurement is still greater than 0.1 ohm invoke your support structure.

${ }_{B / M 2676380}^{4381-3}$ | MI | |
| :--- | :--- |
| Seq GC065 | $\begin{array}{l}\text { PN } 616956 \\ 1 \text { of } 2\end{array}$ | | EC A20558 | |
| :--- | :--- |
| O1 Oct 84 | EC A20562 |
| 30 Aug 85 | |

1.

${ }^{-}$Copriget 1 BM Coxp. 1984

Transformer 101

1. Press Power Off on the operator control panel
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open PCC door, and locate TR 101.
5. Remove ground wire
6. Remove input wires on TB1
7. Disconnect plug J02
8. Remove the four mounting nuts \boldsymbol{A}
9. Carefully pull TR 101 from frame
10. Reverse procedure for TR 101 replacement

Note: After reconnecting the ground wire, measure the ground integrity of the replaced FRU using a digital multimeter (part 8496278) for 0.1 ohm or less before any connectors are reconnected. Place
one probe on the machine frame near the replaced one probe on the machine frame near the repled.
FRU ensuring the painted surface is penetrated Place the other probe on any bare metal area of the replaced FRU. If the measurement is 0.1 ohm or less, you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly installed ground wire.

CAUTION
If the measurement is still greater than 0.1 ohm. invoke your support structure.

4381-3
M 2676380

| $\begin{array}{l}\text { M1 GCO65 }\end{array}$ | $\begin{array}{l}\text { PN 6169569 } \\ \text { Soq_ } 2\end{array}$ |
| :--- | :--- | | EC A20558 | EC A20562 |
| :--- | :--- |
| 01 Oct 84 | 30 Aug 85 |

Transformer 102

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and Locate the Primary Control Compartmen
4. Open front cover of frame.
. Open gate 01C, and locate TR 102 on rear of gate
5. Disconnect PO1 A
6. Disconnect cables PO1 and PO2 at $\mathrm{JO1}$ and $\mathrm{JO2}$ of PS102.
7. Cut tie wrap
. Remove the four mounting bolts and washers \mathbf{B}
8. Carefully pull TR 102 from frame.
9. Reverse procedure for TR 102 replacement.

Transformer 103

1. Press Power Off on the operator control panel
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open front cover of frame.
5. Open gate 01 C , and locate TR 103 on rear of gate.
6. Disconnect PO1 at A
7. Disconnect P 10 at J 10 of PS 103 .
8. Remove the four mounting nuts B
9. Carefully pull TR 103 from frame
10. Reverse procedure for TR 103 replacement.

4381-3

$B / M 2676380$ | M |
| :--- |
Seg		PN 6169570
2 of 2		EC A20558
:---:	:---:	:---:
01 Oct 84		EC A20562
:---		
30 Aug 85		

REM 072

Transformer 104
All 50 Hz and Japan 60 Hz only.
CAUTION
TR 104-A, B, and C each weigh 25 kg (55 lb).
Obtain aid before removing or replacing.

1. Press Power Off on the operator control panel.
2. Open left side cover.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open front cover.
5. Open gate 01C, and locate TR104-A, B, or C on rear of gate.
6. Determine the transformer to be removed (A, B, or C).

Note: Label all wires before removing TB screws.
7. Disconnect TB-1 wires 1,3 , and 5 of the transformer to be removed. For the correct line voltage wiring sequence, refer to Volume C01, page YAO81.
8. Locate and disconnect TB-4 wires running from the transformer to TB-4.
9. Cut the nylon cable tie wraps, and route the two wires back to the transformer area.
10. Remove the four mounting nuts \mathbf{A}.
11. Carefully pull the transformer away from the frame.
12. Reverse procedure for TR 104-A, B, or C replacement.

*TR104A, B, and C. Only on all 50 Hz and 60 Hz Japan machines.

Air Moving Devices
Air Moving Device 101

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open rear cover of frame, and locate AMD 101.
5. Loosen the four cover mounting screws, and remove the cover.
6. Disconnect cable A
7. Disconnect ground wire B.
8. Puil AMD 101 from frame.
9. Reverse procedure for AMD 101 replacement.

Air Moving Device 102

1. Press Power Off on the operator control panel.
2. Open left side cover of frame
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open left side cover of frame, and locate AMD 102.
5. Loosen the four cover mounting screws, and remove the cover
6. Disconnect cable A
7. Disconnect ground wire B
8. Pull AMD 102 from frame.
9. Reverse procedure for AMD 102 replacement.

Note: After reconnecting the ground wire, measure the ground integrity of the replaced FRU using a the ground integrity of the replaced FRU using a
digital multimeter (part 8496278) for 0.1 ohm or less before any connectors are reconnected. Place one probe on the machine frame near the replaced FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the replaced FRU. If the measurement is 0.1 ohm or less, you have a good ground. If the measureme
installed ground wire.

caution

If the measurement is still greater than 0.1 ohm invoke your support structure.

4381-3

$B / M 2676380$ | MI | $\begin{array}{l}\text { PN } 6169572 \\ 2 \text { of } 2\end{array}$ |
| :--- | :--- |
| Seq_GC080 | | | EC A20558 | $\begin{array}{c}\text { EC A20562 } \\ 01 \\ \text { Oct } 84\end{array}$ |
| :---: | :---: |
| 30 Aug 85 | |

REM 082

- Coprignt IBM Capp. 1984

Air Moving Device 103

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.

Note: AMD 104 must be removed before AMD 103.
4. Open rear cover of frame, and locate AMD 103 (AMD 103 is located behind AMD 104).
5. Loosen the four cover mounting screws, and remove the cover.
6. Disconnect cable A of AMD 104.
7. Disconnect ground wire B from AMD 104.
8. Pull AMD 104 from frame.
9. Disconnect cable A of AMD 103.
10. Disconnect ground wire \mathbf{B} from AMD 103.
11. Pull AMD 103 from frame.
12. Reverse procedure for AMD 103 replacement. Note: After reconnecting the ground wire, measure
the ground integrity of the replaced FRU using a
digital multimeter (part 8496278) for 0.1 ohm or
less before any connectors are reconnected. Place
one probe on the machine frame near the replaced
FRU ensuring the painted surface is penetrated.
Place the other probe on any bare metal area of the
replaced FRU. If the measurement is 0.1 ohm or
less, you have a good ground. If the measurement is
greater than 0.1 ohm, check for an improperly
installed ground wire.
CAUTION
If the measurement is still greater than 0.1 ohm,
invoke your support structure.

4381-3 \square EC A20558 \square

Air Moving Device 104

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open rear cover of frame, and locate AMD 104.
5. Loosen the four cover mounting screws, and remove the cover.
6. Disconnect cable A
7. Disconnect ground wire \mathbf{B}
8. Pull AMD 104 from frame
9. Reverse procedure for AMD 104 replacement.

Note: After reconnecting the ground wire, measure the ground integrity of the replaced FRU using a digital multimeter (part 8496278) for 0.1 ohm or less before any connectors are reconnected. Place FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the replaced FRU. If the measurement is 0.1 ohm or less, you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly installed ground wire.

CAUTION
If the measurement is still greater than 0.1 ohm. invoke your support structure.

\square
4381-3
$B / M 2676380$

- Cooprignt 18M Copp. 1984

REM 086
10000000000000000000000000000000000

Air Moving Device 105

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open front cover of frame.
5. Open service panel to gain access to front of AMD 105.
6. Loosen the four cover mounting screws, and remove the cover.
7. Disconnect cable \boldsymbol{A}.
8. Disconnect ground wire \mathbf{B}.
9. Pull AMD 105 from frame.
10. Reverse procedure for AMD 105 replacement.

Note: After reconnecting the ground wire, measure the ground integrity of the replaced FRU using a digital multimeter (part 8496278) for 0.1 ohm or less before any connectors are reconnected. Place one probe on the machine frame near the replaced FRU ensuring the painted surface is penetrated. replaced FRU. If the measurement is 0.1 ohm or less, you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly installed ground wire.

CAUTION
If the measurement is still greater than 0.1 ohm , invoke your support structure.

Air Moving Device 106

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position
4. Open front cover of frame.
5. Open gate 01 C
6. Loosen the four cover mounting screws, and remove the cover.
7. Disconnect cable \mathbf{A}
8. Disconnect ground wire B
9. Pull AMD 106 from frame.
10. Reverse procedure for AMD 106 replacement.

Note: After reconnecting the ground wire, measure the ground integrity of the replaced FRU using a digital multimeter (part 8496278) for 0.1 ohm or less before any connectors are reconnected. Place FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the replaced FRU. If the measurement is 0.1 ohm or less, you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly installed ground wire.

CAUTION
If the measurement is still greater than 0.1 ohm. invoke your support structure.

AMD 106
\square
4381-3
M 2676380

REM 092

Air Moving Device 107

1. Press Power Off on the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Locate AMD 107 on the left side of the frame.
5. Remove the two top mounting screws, loosen the bottom mounting screw and remove the cover.
6. Remove the four mounting nuts and star washers, inside the cage assembly.
7. Disconnect cable \boldsymbol{A}.
8. Disconnect ground wire \mathbf{B}.
9. Pull AMD 107 from frame.
10. Reverse procedure for AMD 107 replacement.

Note: After reconnecting the ground wire, measure the ground integrity of the replaced FRU using a - digital multimeter (part 8496278) for 0.1 ohm or less before any connectors are reconnected. Place one probe on the machine frame near the replaced FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of the replaced FRU. If the measurement is 0.1 ohm or less, you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly installed ground wire.

CAUTION
If the measurement is still greater than 0.1 ohm, invoke your support structure.

0000000000000000000000000000000000

Service Panel

1. Press Power Off at the operator control panel.
2. Open left side cover of frame.
3. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
4. Open front cover of frame.
5. Loosen the two screws located at A (top and bottom left side of the service panel).
6. Open the panel.
7. Remove connectors A1, A2 and B2 located at B (rear of the service panell).
8. Remove six card assembly holding screws shown a
C .
9. Reverse procedure for service panel replacement.

Note: Reinstall the safety shield.

1. Press Power Off on the operator control panel (OCP).
2. Remove the diskette from the diskette drive.
3. Open the left side cover of the frame.
4. Locate the Primary Control Compartment (PCC), and place CB1 and CB2 in the OFF position.
5. Open the front cover of the frame.
6. Locate the cover stay on the upper right cover hinge.
7. Remove one end of the cover stay by slipping it over he mounting stud
8. Open gate 01C, and locate the rear of the diskette drive to be removed.
9. Disconnect the power plug \mathbf{A} from the diskette
drive
10. Remove the stop bracket at rear of the diskette drive base B
11. Slide the diskette drive to the rear, permitting enough space to disconnect the ground wire at \mathbf{C}
12. Go to the front of gate 01C, and open the service panel door (two screws).
13. Slide diskette drive forward, and remove the right side plastic shield \mathbf{D} which covers the circuit card on sidght side of the unit (Loosen three screws).
res
14. Remove the two shielded ground wires at \mathbf{E}
15. Cut the tie wrap at \mathbf{G}
16. Disconnect the signal cable \mathbf{F} from the bottom of the circuit card.
17. Pull the diskette drive unit out from the rear.

Note: The cover \mathbf{H}, top bracket \boldsymbol{I}, bottom bracket J, and handle \mathbf{K} must be exchanged from the old diskette drive to the new diskette drive.
18. Reverse the procedure for diskette drive replacemen

Note: After reconnecting the ground wire, measure the ground integrity of the replaced FRU using a digital multimeter (part 8496278) for 0.1 ohm or less before any connectors are reconnected. Place one probe on the machine frame near the replaced FRU ensuring the painted surface is penetrated. Place the other probe on any bare metal area of th less, you have a good ground. If the measurement is greater than 0.1 ohm, check for an improperly
installed ground wire.
CAUTION
If the measurement is still greater than 0.1 ohm , invoke your support structure.

- Coprigign IBM Copr. 1984 | 01 Oct 84 | 03 Dec 84 | 30 Aug 85 |
| :--- | :--- | :--- |

PREVENTIVE MAINTENANCE

Air Filters
Examine the air filters for dust accumulation and vacuum as necessary. Replace filters that do not pass light after vacuuming.
This procedure should be performed on a annual basis or as the environment requires.

The following filters and their locations are contained in

Part Number	Location
864605	AMD 101
8645606	AMD 102
864607	AMD 103 and 104
8645608	AMD 105 and 106
88645609	Left side cover


```
000000000000000000000000000000000000000
```


0000000000000000000000000000000000

Contents

Introduction	DIAG 002
Maintenance and Support Subsystem (MSS)	DIAG 002
Processing Units (PU)	diAg 002
Diagnostic Summary	DIAG 005
MSS	DIAG 005
Basic and Extended MSS Diagnostics	DIAG 005
Optional MSS Diagnostics	DIAG 005
Diskette Analysis Test	DIAG 005
Processing Unit	DIAG 005
Processing Unit Basic Diagnostics	DIAG 005
Machine Speed Microdiagnostics (MSMDs)	DIAG 005
Special Channel Interface Diagnostics	DIAG 005
Diagnostics by Diskette	diAg 005
FUNC2	DIAG 005
DIAG1	DIAG 005
Overview of the Maintenance Package	DIAG 010
Retry	diAg 010
Error Log Analysis (ELA)	DIAG 010
Reconfiguration	diAg 010
Problem Analysis (PA)	diAG 010
Processing Unit Analysis (PUA)	diAG 010
Repair Procedures	DIAG 010
mss, Power and Reference Codes.	DIAG 015
MSS and Power Codes	DIAG 015
Reference Codes	dIAG 015
Maintenance and Support Subsystem (MSS) Diagnostics	dIAG 020
Basic and Extended MSS diagnostics	DIAG 020
Basic MSS Test Descriptions	DIAG 020
Running MSS Basic and Extended Diagnostics	DIAG 025
Looping MSS Basic and Extended Diagnostics	DIAG 025
Basic Diagnostic MSS Codes	DIAG 030
Extended MSS Diagnostics by Test ID	DIAG 045
MSS Repair Action Screens	DIAG 055
Running the Power Controller Adapter (PCA) Tests Manually	DIAG 060
PCA Diagnostic Reference Codes	DIAG 060
Optional MSS Diagnostics	diAg 070
Running Optional MSS Diagnostics	diAG 070
Diskette Analysis	DIAG 100

Processing Unit Diagnostics	DIAG 105
Test Case Monitor (TCM)	DIAG 105
MSMD Monitor	DIAG
Diagnostic Mode Test Case Monitor Screen	diAG
Basic Diagnostics	DIAG
Basic Diagnostic Organization	diAG 110
Machine Speed Microdiagnostics (MSMDS)	dIAG 115
MSMD Test Organization	DIAG 115
How to Run Processing Unit Diagnostics	DIAG 120
Option I- Isolation Mode	DIAG
Option V-Verification Mode	diAg
Option C-Channel Interface Diagnostics	DIAG
How to Run Channel Interface Tests	DIAG
Mark In Test	DIAG
Channel Microcoded Device Exerciser (CMDE) - Normal Mode	diAG
Channel Microcoded Device Exerciser (CMDE) - Support Mode	diAg 145
Channel Wrap Test	dIAG 150
Option T- Installation Mode	DIAG 160
Option F-Field Support Center Mode	DIAG
Monitor	

\square

8/M 2676380 \begin{tabular}{|l|l|}
\hline MI \& PN 6169394

Seq GEOO5 \& 1 of 2

\hline

\hline EC A20558

01 Oct 84
\end{tabular}

- Copright $18 \times$ Corp. 1984

This section contains information on processor diagnostics only. For information on System Test/4381, System Test/4381XA, or 4300-FRIEND, see "System Test" in this volume. For channel-to-channel adapte

The processor has a Maintenance and Support Subsystem (MSS), two Processing Units (PU), and a power section.

Maintenance and Support Subsystem (MSS)

The MSS consists of a Support Processor (SP) and the following device adapters:

- Device Cluster Adapter (DCA) that controls the system console displays and printers
- Diskette Drive Adapters (DDA) that control the diskette drives
- Remote Support Facility (RSF)
- Service Panel
- Power Controller Adapter (PCA) that controls power to the processing unit
- Support Bus Adapters (SBA) that communicate with the processing units
- Local Channel Adapter (LCA).

Processing Units (PU)

- Contain main storage and the arithmetic units for execution of customer programs.

Communicate with the system's $1 / O$ devices through the $1 / O$ channels.

Diagnostic programs are used with the Repair Procedures in Volumes A01 through A05 to isolate failures and verify repairs in all the areas outlined above.
Some of the MSS diagnostics are resident in the read-only portion of MSS storage. All other diagnostics are loaded from the diskette drives. The MSS diagnostics control storage. The remaining diagnostics are loaded into processing unit control storage and run under control of the Machine Speed Microdiagnostic (MSMD) Monitor program.

Diagnostic Summary

MSS

Basic and Extended MSS Diagnostics

- Located in support processor Read-Only Storage (ROS) and the DIAG1 diskette.
- Tests basic support processor and adapter operations.
- Run in support processor storage.
- Start automatically after the support processor is powered up.
- Indicate failures with five-digit MSS Codes displayed on the service panel or reference codes displayed on the console.

For more information, see page DIAG 020.
Optional MSS Diagnostics

- Located on the DIAG1 diskette.
- Supply additional testing for the support processor and adapters.
- Run in support processor storage.
- Can be selected after the Extended MSS diagnostics complete if the DIAG1 diskette is installed in diskette drive 1.
- Indicate failures by reference codes and repair screens.

For more information, see page DIAG 070.

Diskette Analysis Test

- Located on FUNC1 diskette.
- Tests any of the system diskettes for unreadable records.

For more information, see page DIAG 100.

Processing Unit
Processing Unit Basic Diagnostics

- Located on FUNC2 and DIAG1 diskettes.
- Test hardware path to ensure MSMDs can be started. These are on FUNC2.
- Test some processing unit hardware that cannot be fully tested by the MSMDs. These are on DIAG1.
- Run in support processor storage.
- Can be selected from the Diagnostic Mode PU Diagnostic Selection screen after the processing unit is powered up.
- Indicate failures by reference codes.

For more information, see page DIAG 110.
Machine Speed Microdiagnostics (MSMDs)

- Located on the FUNC2 diskette.
- Require both processing units.
- Test most of the processing unit hardware.
- Run in processing unit control storage.
- Can be selected from the Diagnostic Mode PU Diagnostic Selection screen after the processing unit is powered up.
- Indicate failures by reference codes.

For more information, see page DIAG 115.
Special Channel Interface Diagnostics

- Located on DIAG1 diskette.
- Test channel receivers, drivers, and interface cables.
- Run in processing unit control storage.
- Can be selected from the Diagnostic Mode PU Diagnostic Selection screen.
- Indicate failures by error screens on the console.

For more information, see page DIAG 135.

Diagnostics by Diskette
FUNC 1
Diskette Analysis
FUNC2
MSS Basics
I/O Bus Test
DCA and Console Display Test
PCA Tests
Routine 0 Tests 1 through 8
Routine 1 Tests 1, 3, 4, 6, and 8
PU Basics

D001 through D049	Scan rings
D050 through D099	Clock maintenance commands
D100 through D199	Clock Basics
D200 through D299	PU, Control storage
	maintenance commands
D300 through D399	Control storage addressing
D400 through D499	Control storage
D500 through D599	Channels
D600 through D7FF	Storage, dual processing unit
MSMDs	
Storage Load 1	PU data flow, branch, shifter,
Storage Load 2	interrupts, timers, multiplier
SAR, cache, addressing, DLAT	
Storage Load 3	Main storage, swap buffer
Storage Load 4	Channel data buffer, channel traps
Storage Load 5	l-cycles, retry, traps
Storage Load 6	Dual processing unit

DIAG 1

MSS Basics and Extended
I/O Bus Test
Diskette Test 1
Diskette Test 2
Additional SP Storage Test DCA and Console Display Test

MSS Optional

Option 90	Service Panel
Option AO	DDA/Diskettes
Option CE	Console printers/displays
Option DO	RSF
Option EO	RSF wrap
PU Basics	
D900 through D999	Machine check propogation
DA00 through DA99	PU, Control storage
DB00 through DB99	maintenance commands
DD00 through DD99	Channels
DE00 through DEFF	Storage
MSMD Storage Load 7	

The following are used by the processor to analyze

roblems

Retry
Error Log Analysis (ELA)
Reconfiguration

- Problem Analysis (PA

Processing Unit Analysis (PUA)
A brief description of each item follows

Retry

The retry routine runs in the support processor when a processing unit hardware failure occurs. It reads out the PU scan ring latches and stores them on the diskette, alls the ELA routines, determines if reconfiguration is

Error Log Analysis (ELA)
The ELA routines use the PU scan ring values to generate a reference code, reference code extension, and FRU list.

Reconfiguration

Special backup hardware and microcode have been added o some areas of the processor to be used if the primary to some areas of the processor to be
hardware fails. These areas include:

- Cache
- Channel data buffer
- Control storage
- Swap buffer.

In addition, sections of main and key storage can be flagged as bad so they are not used by the customer's program. If main storage, key storage, the multiply function, or multiple areas of cache are reconfigured, the ystem runs in a degraded mode and the customer is the other areas does not cause a loss of system. performance and does not cause the diagnostics to fail. Warning: Do not swap FRUs between locations in cache or in the swap buffer. This can cause econfiguration data to be invalid. Follow the PU Repair reconfiguration data to be invalid. Follow the PURe
Procedures for exchanging FRUs in these locations.

Problem Analysis (PA)

Special analysis routines are sent with the processor so the customer can:

- Do initial problem determination
- Run Processing Unit Analysis (PUA)
- Send error logout information to a remote support center
- Display program, channel, and I / O status data stored when a failure occurred.

Problem Analysis is run automatically for some system errors. The customer may run PA at any time.
Problem Analysis allows the customer to call in the part numbers of the FRUS that are the probable cause of the failure.

The service representative uses Problem Analysis to find the location of FRUs to be exchanged and to display information recorded when Problem Analysis ran.

Processing Unit Analysis (PUA)

Processing Unit Analysis can be run by the customer as a Processing Unit Analysis can be run by the customer as
part of Problem Analysis (PA Option 3). The diagnostics are:

- MSMD storage loads 1 to 6 .
- if MSMDs detect an error, PU Basics D001 to D7FF (FUNC2 diskette)
If a failure is detected by the PUA diagnostics, the customer is given a PA log number (PAxx) and the part numbers of the most probable failing FRUs.

Repair Procedures

Volumes A01 through A05 contain procedures for you to follow when repairing a failure on the processor. Begin all repairs at "START Repair Procedure" in Volume A01.

- Coopright 18м Coxp. 1984

MSS, POWER, AND REFERENCE CODES

MSS and Power Codes

The service panel has a five-digit display used by the support processor to display error conditions until the MSS is powered up and the path to the system console tested by MSS Basic and Extended diagnostics. If an error is detected in the power-up or power-down
sequence, the error condition is displayed in the last two sequence, the error condition is ar played ine last two digits of the service panel. If an error is detected customer's program is running, all five digits display the error. The two-digit power codes and the five-digit MSS codes are used as entries to the Repair Procedures.
Note: With no error on the system, the service panel displays the present SP storage address.

MSS Codes

$\begin{aligned} & 0 E x x x \\ & o x_{x x x} \\ & 0 F x \end{aligned}$	SP error detected by ROS diagnostics
$8001 \times$	1/0 bus error
815 xx	Error on diskette drive 1
816xx or 817xx	MSS error while functional code is running
818xx or 81Fxx	Error on diskette drive 1
82xxx	MSS error while functional code is running
835xx	Error on diskette drive while reading diagnostics
88xxx or 89xxx	DCA or console display errors

Reference Codes

Reference codes show that an error was detected either during normal machine operation or while a diagnostic was running.
eference codes are eight-character (hex) numbers with a format of: UU RRRR IS.

Where:
UU Defines the area of failure
RRR Gives specific failure information; it does not have a fixed format.
Specifies the reference code source
Gives status information.
An eight-digit extension field can be added to the eference code to provide information on failing FRUs. The extension field does not have a fixed format.

IS Codes
Indicator (I) field (bits 0 through 3 of IS)

- Power monitor

SP check handler
Any SP CAC or access method
Processing unit $I M L$ routine Error logging or retry routin Any other SP microcode Basic diagnostics
MSMD diagnostics
A Error Log Analysis (ELA)
Power failure analysis
Test Case Monitor (TCM) MSS diagnostics

Status (S) field (bits 4 through 7 of IS)
Bit $4=1 \quad$ RRU identified
Bit $5=1 \quad$ Log available
it $6=1 \quad$ Irrecoverable error

$$
\begin{aligned}
& \text { PUO error } \\
& \text { PU1 error }
\end{aligned}
$$

Bit $7=1 \quad$ PU1 error
U1 error

UU Codes
1x Power problem
11 Processing unit power
14 Channel-to-channel adapter power
14 Channel-to-channel
1D Digital sensor failure
1F Undefined power problem
4x through $9 x$ and FD Processing Unit
$\begin{array}{lll}4 \mathrm{x} & \text { Storage } \\ 50 & \text { Control storage }\end{array}$
59 PU
50 Clocks
60 Channel
70 Storage controller
71 Storart Bus Ader (Model Group 1 only)

Ex System problem
EC SP microcode
ED LCA or channel O
EE Processing unit microcode
Fx Maintenance and Support Subsystem (MSS)
FO Support Processor (SP)
F1 Support processor storage
F2. Local Channel Adapter (LCA)
F4 Diskette Drive Adapter (DDA)
F5 Diskette driv
F8 Device Cluster Adapter (DCA)
F9 Display console and keyboard
FD Support Bus Adapter (SBA)
FE Common Communications Adapter (CCA)

MSS diagnostics are the primary method for isolating failures in the MSS

The diagnostics for the MSS are:
Basic and Extended

- Optional.

Basic and Extended MSS diagnostics

Basic and Extended MSS diagnostics are in SP ROS and on the DIAG1 diskette. They are run automatically when the processor is powered up or re-IMLed.

Errors detected while running Basic or Extended MSS diagnostics are indicated either by MSS codes displayed the service panel or by reference codes displayed on the system console. MSS codes are five-digit codes displayed on the service panel and used for entry to the Repair Procedures. The MSS codes are used to indicate system console are tested.

Basic MSS Test Descriptions

Test	Dascription	Mss Code
SP Basic Test	Read from SP ROS; tests SP logic.	OFFxxx, OExxx
1/0 Bus Test	Read from SP ROS; tests the SP bus. Failures cause two instruction loops.	$8001 \times$
Diskette Tests 1	Read from SP ROS; tests diskette drive status and diskette drive ready.	8150x
Diskette Test 2	Read from diskette; checks diskette drive operation.	8180x, 8181x
$\begin{array}{\|l\|} \hline \text { DCA and Console } \\ \text { Display } \\ \hline \end{array}$	Checks basic operation of DCA and console display.	$88 \times 0 \times$
DCA and Console Display Test 91	Tests write instruction to console attached to port 0. Note: 89101 is displayed if the console is not powered up.	8910x
DCA and Console Display Tests 92 through 96	Test additional DCA and console display operations.	8920x-8960x

4381 ${ }^{3 / M 2676380}$ \square

- Coprignt IBM Capp. 1984

0000000000000000000000000000000000

Running MSS Basic and Extended

 DiagnosticsTo run the MSS Basic and Extended diagnostics:

1. Set the CE Mode switch to Normal.
2. Set the I/O Power Hold switch to $1 / O$ Power Hold.
3. Set the Power Off switch to Power Off
4. Install DIAG1 into diskette drive 1.
5. Reset the Power Off switch to Normal, and press Power On. Basic and Extended MSS diagnostics run after power up.

Notes:

1. After MSS diagnostics start running, the first visual indication is the MSS Diagnostic Test Option Selection screen with the message: BASIC MSS DIAGNOSTICS COMPLETED. If this screen does not appear within 30 seconds, a failure occurred in the MSS Basic diagnostics and an MSS Code is displayed on the service panel. The second visual indication is the addition of the message: MSS EXTENDED DIAGNOSTICS COMPLETED. A failure in the MSS Extended diagnostics results in a Repair Action creen that gives the reference code, a list of possit failing FRUs, a sequence of repair steps, and a ference to the Repair Procedures.
2. If the MSS Diagnostic Test Option Selection screen is displayed but input from the keyboard is not accepted, suspect a DCA or console keyboard problem
3. If you run the Extended MSS diagnostics with power on the processing unit, an SBA test failure can occur
4. Successful end of the Basic and Extended diagnostics is indicated by the message: EXTENDED is indicated by the message:
DIAGNOSTICS COMPLETED.
5. If you suspect problems with the power controller adapter, use the FUNC1 diskette with the procedure outlined on page DIAG 060 .
6. While looping the Basic and Extended MSS diagnostics (Option FF on the MSS Diagnostic Option Selection screen), the console goes blank during the ROS diagnostics. If the screen remains blank, look for an MSS Code on the service panel.

Looping MSS Basic and Extended Diagnostics

To loop the MSS Basic and Extended diagnostics:

1. Set the I/O Power Hold switch to I/O Power Hold.
2. Set the CE switch to Normal.
3. Set the Power Off switch to Power Off.
4. Install DIAG1 in diskette drive 1.
5. Reset the Power Off switch to Normal, and press

Power On. Basic and Extended MSS diagnostics run
Power On. Basic and Extended MSS diagnostics run
one time, and the MSS Diagnostic Option screen is
displayed.
6. If you want to loop all the MSS Basic and Extended diagnostics, key in FF and press ENTER.
7. If you want to loop a single MSS Extended
7. If you want to loop a single MSS Extended
diagnostic, key in TEST/RTN ID and press ENTER. For a description of extended MSS diagnostic tests
and routines, see "Extended MSS Diagnostics by and routines, see "Extended M
Test ID" on page DIAG 045.
Example: 11 will loop one of the SP storage tests.
8. To end a looping test, press Power On/ML

dAG 025

Basic Diagnostic MSS Codes

Routines from SP ROS
Test SP logic.

MSS Code	Error Description
OEOOX - OEO5x	SP branching error
OEO6x- OEOCx	SP error on control instruction
OEODX - OE13x	SP. logic error
OE14x-OE18x	SP storage addressing error
OE1AX OE21x	SP ROS error
OE22x-0E25x	SP logic error
OE26x-0E29x	SP branching error
OE3Fx	SP arithmetic error
OE48x	SP register addressing error
OE56x-0E68x	SP logic error
OE7Bx-0E81x	SP branching error
OE94x-0EB4x	SP storage addressing error
OEBAx-OEBBx	SP storage error
OEC2x	SP cache error
OF80x- OFCOx	SP branching error

1/O Bus Test
The SP bus is tested using the DCA card. If a failure is
detected, the failing data is written to the bus repeatedly.

MSS Code	Error Description
80011	SP bus error (data $=02020000$)
80012	SP bus error (data $=0206$ B6B6)
80013	SP bus error (data $=0204$ A55A)
80014	SP bus error (data $=0204$ FFFF)
80015	SP bus error (data $=02000000$)
80016	SP bus error (data = FFFF FFFF)

Diskette Drive Test 1
Tests diskette drive 1 reset, basic status, and ready.

MSS Code	Error Doscription
81502	Adapter check on read basic status
81504	Drive not ready in 20 seconds
81505	Basic status wrong after reset
8150 A	Drive dropped ready
81513	Timeout when DDA addressed; SP enters two step loop
81523	Parity error when DDA addressed; SP enters two step loop

Diskette Test 2
Reads track 2 loader from side 0 , track 0 . Loads records
1 and 2 into SP storage address 0638 .

MSS Code	Error Description
81801	Adapter check on seek
81802	Adapter detected error on read ID
81803	Not at track 0 after seek
8180A	Dropped ready after seek
8180 C	No interrupt after read ID from track 0
8180 F	No interrupt after read record
81810	Record not found on read data
81811	Data CRC error on read
81812	Drive error after read data
81820	No interrupt on seek
81 F12	Data CRC error
81F20	Seek error
81 F21	No interrupt seek or read record
81F29	Wrong status after seek

\square4381

$B / M 2676380$| M1 | |
| :--- | :--- |
| Se | EC A20558 |
 \title{

}
 \title{

}

DIAG 035

Additional SP Storage Test

Loads tests from tracks 3 and 4 into the first 32 K and tests for storage parity errors.

MSS Code	Error Description
83501	Timeout
83502	SP stiting for diskette
83503	External MC/PC while loading
8350 A	Diskette drive dropped ready
8350 C	Wrong status after diskette operation
88512	CRC erro on read
83520	Seek error

DCA and Console Display Tests

Test 81	Tests adapter reset command
Test 82	Tests load and read cycle steal byte.
Test 83	Tests set and read basic status.
Test 84	Tests reset adapter.
Test 85	Tests invalid command.
Test 86	Tests set/reset basic status.
Test 87	Tests set/reset extended status.
Test 88	Tests write/read control latches.
Test 89	Tests start cycle steal.
Test 8A	Tests that start cycle steal not started with enable off.
Test 88	Tests read to port 0.
Test 8C	Tests restart DCA.
Test 8D	Tests load, read, and reset byte counter.
Test 8 E	Tests address register and controls.
Test 8 F	Tests poll counter stepping.
Test 90	Tests timer stepping.
Test 91	Tests write to port 0 . If no terminal is attached and powered up, DCA testing is terminated.
Test 92	Tests block poll.
Test 93	Tests clear command to terminal.
Test 94	Tests setting/resetting over 63 counter.
Test 95	Tests byte counter.
Test 96	Exit routine for DCA diagnostics.

MSS Code	Error Descriotion
88101	MC/PC error on reset
88102	Basic status bits not reset
88103	Basic status bits not reset
88201	Read cycle steai control byte error
88202	Cycle steal control byte not all ones after load
88203	Cycle steal control byte not all ones after load
88301	Reset basic status did not reset correct bits
88302	Read basic status error
88303	Read basic status error
88304	Set basic status did not set correct bits
88305	Read basic status error
88306	No DCA interrupt received
88401	Reset adapter did not reset status bits
88402	Reset adapter did not reset interrupt from DCA
88501	MC/PC register wrong at test start
88502	Invalid command did not set MC/PC in SP
88503	Invalid command did not set MC/PC in adapter
88601	All basic status bits off after reset except DCA active
88602	All basic status bits off after reset except stop poll
88603	DCA active not on after read/reset
88604	DCA active was reset on read/reset
88701	Extended status not set correctiy
88702	Extended status not reset correctly
88703	Extended status not correct
88801	Read command not all zeros
88802	Write did not set status bits
88803	Control latches not reset by reset adapter
88901	Incorrect status after start cycle steal command
88902	Incorrect command queue start cycle steal command
88 A01	Incorrect basic status after start cycle steal command
88402	Cycle steal control byte wrong
88403	Command queue wrong
88801	Basic status wrong
88802	Basic status not reset
$88 \mathrm{CO1}$	Cycle steal control byte wrong
$88 \mathrm{CO2}$	Basic status wrong
88001	Byte couinter not set to ones
88002	Keyboard queue 2 wrong
88601	Basic and extended status wrong
88 EO 2	Device address wrong
88E03	Error queue wrong

\square
4381
$B / M 2676380$,

MSS Code	Error Description
88 FO 1	Diagnostic data wrong
$88 \mathrm{FO2}$	Poll counter bits not set
88 FO 3	Poll counter bits not reset
89001	Basic status bit not reset
89101	Stop poll or DCA active not on
89102	No power on response from port 0 display
89103	Status wrong on write command
89104	No power on reset in status
89105	Cycle steal pointer wrong for keyboard queue
89201	Extended status wrong
89202	Poll timeout data wrong
89203	Error queue pointer not updated
89301	Basic status wrong
89302	Wrong data in status queue
89401	Basic status wrong after looping 63 times
89402	Basic status wrong after looping 64 times
89403	Basic status wrong after read/reset
89404	Status change after loading cycle steal control bytes
89405	Read/reset basic status failed to reset all bits
89501	Basic status wrong after start cycle steal
89502	Received status wrong
89503	Received data wrong (one byte)
89504	More than iwo data bytes received
89505	Data queue pointer not updated
89506	Received data wrong (six bytes)
89507	More than six bytes received
89508	Data queue pointer not updated
89601	MC/PC set from DCA

Extended MSS Diagnostics by UU Codes

UU	Area Code	Test Tested	Routine ID
ID			

Example of Reference Code from MSS Extended Diagnostics
Test and routine ID (SP storage test routine 2)
Reference code (UU RRRR IS)
\square
UU code from table above $]_{\square}^{F 1}$
Error information \qquad
F8 indicates MSS diagnostics
\square
4381

- Copright iem Copp. 1984

Extended MSS Diagnostics by Test ID

Test	Description
Test 0 Routine 1	Tests level switching of the support processor. Reference codes are:
Test 0 Routine 2	Invalid instruction recognition. Reference codes are:
Test 0 Routine 3	Test parity recognition. F0 0301 F8 Wrong parity
Test 0 Routine 4	Tests storage from X'00400' to X'OFFFF' for parity and data compare. To determine the failing location if an error occurs: 1. Key in G and press ENTER. A reference code of $\mathrm{FO} 04 \times x$ F8 is displayed. 2. Key in G and press ENTER. A reference code of $F O 04 y \mathrm{~F} F 8$ is displayed. Where xx is the high-order storage address and $\mathrm{y} y$ is the low-order storage address. Reference codes are:

Test	Description
Test 0 Routine 5	Tests register space. Reference codes are: FO 0501 F8. Data miscompare FO 0502 F8 Storage parity check
Test 0 Routine 6	Tests storage addressing (OEOOO to OFOOO). Reference codes are: FO 0601 F8 Data miscompare FO 0602 F8 MC/PC while reading
Test 1 Routine 1	Writes into and reads out of the second 64 K storage card. To determine location if an error occurs: 1. Key in G and press ENTER. A reference code of FO 11 xx F8 is displayed. 2. Key in G and press ENTER. A reference code of FO 11 y F F8 is displayed. Where xx is the high-order storage address and yy is the low-order storage address. Reference codes are: F1 1101 F8 Data miscompare F1 1102 F8 Storage parity check
Test 1 Routine 2	Tests addressing in second 64 K card. Reference codes are: $\begin{array}{ll}\text { F1 } 1201 \text { F8 } & \text { Data miscompare } \\ \text { F1 } 1202 \text { F8 } & \text { Storage parity error }\end{array}$
Test 1 Routine 3	Stores and executes instructions in X' 10000^{\prime} to X^{\prime} '1FFFF'. Reference codes are: $\begin{array}{ll}\text { F1 } 1301 \text { F8 } & \text { Sum incorrect } \\ \text { F1 } 1302 \text { F8 } & \text { Machine check }\end{array}$
Test 1 Routine 4	Tests SP storage in virtual mode. Reference codes are: F1 1401 F8 Data miscompare F1 1402 F8 Storage parity check

- Coprright IBM Corp. 1984

Test	Description
Test 1 Routine 5	Tests level O DLAT and translation tables in virtual mode. Reference codes are:
Test 1 Routine 6	Tests instruction DLAT during level switching in virtual. Reference codes are: F1 16×0 F8 Wrong DLAT for level x . F1 16 yz F8 Wrong level switch. y is present level; z is the desired level.
Test 2 Routine 1 and Routine 9	Tests SBA reset and checks basic status. Reference codes are: x equals 1 for SBA 1 and x equals 9 for SBA 2.
Test 2 Routine 2 and Routine A	Tests commands to SBA of reset adapter, reset status, and set status. Reference codes are:

Test	Description
Test 2 Routine 3 and Routine	Tests shift data and read data commands to the SBAs. Reference codes are:
Test 2 Routine and Routine	Tests shift data with inverted parity to the SBAs. Reference codes are: FD $2 \times C 2$ F8 MC/PC timeout error x equals 4 for SBA 1 and x equals C for SBA 2.
Test 2 Routine 5 and Routine D	Tests shift data without parity command to the SBAs. Reference codes are: FD 2×01 F8 Shift data error FD 2x02 F8 Control register data bad FD $2 \times A 1$ F8 MC/PC timeout error FD $2 \times A 2$ F8 MC/PC parity error x equals 5 for SBA 1 and x equals D for SBA 2.
Test 2 Routine 6 and Routine E	Tests write control to the SBAs. Note: Reference codes FD 2802 F8 and FD 2 E02 F8 are normal if routine is looped. Other reference codes are: x equals 6 for SBA 1 and x equals E for SBA 2.

Error Codes for Tests 3 and 4
F2 RRRR F8

Error code (see below) Rout ine number
Test number (3 or 4)

Error codes:

yy	Description
01	No I/O interrupt
02	Unexpected I/O interrupt
02	Set interrupt pending failed
03	No I/O interrupt
04	No expected machine check
05	MC/PC when not expected
06	SP write timeout
07	SP read timeout
08	SP rad buffer overflow
09	Command rejected (10 retries)
10 to $1 F$	
20 to 2 CC	Status not as expected
30 to 33	Command reject to I/O interrupt
40	Y/O interrupt did not occur
55	LCA is disabled

 interrupt did not occur
 LCA is disabled

\square

MSS Repair Action Screens

When an error is detected during the MSS Extended or Optional diagnostics, a Repair Action screen is displayed as a guide for the repair. The Repair Action screen lists suspected FRUs and gives a Repair Procedure reference to be used if the repair is not successful. The Repair Action screens are:

Reference Code	Option	Repair Action	Notes
F0xxxxF8	FF	Reseat or exchange the following: 01AA2 H2 Support Processor	
F1xxxxF8	FF	Reseat or exchange the following: 01AA2 J2 Support processor storage 01AA2 H2 Support processor	
F8xxxxF8	CE	Reseat or exchange the following: 01AA2 Q2 DCA 01AA2 R2 DCA Note: F8Cx03F8 is a normal reference code if no device is attached to port x .	Cable goes to ports 0 through 3 on 01F gate
F5xx0AF8	AO	Go to "MSS Repair" on page MSS 001	Check diskette cover
F5xxxxF8	AO	Go to "MSS Repair" on page MSS 001	
FDxxxxF8	FF	Reseat or exchange the following: Note: FD2301F8 is a normal reference code if you did not power off before running MSS diagnostics.	
F2xxxxF8	FF	Reseat or exchange the following:	
F6xxxxF8	FF	Reseat or exchange the following:	Verify jumpers on D2 and E2
FExxxxF8	DO	Reseat or exchange the following:	

MI	PN 6169400 1 of 4

\square

Running the Power Controller Adapter

 (PCA) Tests ManuallyThe diagnostics for the PCA are on the FUNC1 diskette and are run after the MSS diagnostics when the processor is IMLed. If a failure occurs, a reference code is displayed.

To run the PCA tests manually:

1. Set the I/O Power Hold switch to Normal.
2. Set the CE Mode switch to CE Mode.
3. Set the Power Off switch to Power Off.
4. Install FUNC1 in diskette drive 1.
5. Reset the Power Off switch to Normal, and press Power On
6. When the Partial Power screen appears, move the cursor to the COMMAND field, key in OWP, and cursor to the COMMAND field, key
press ENTER. The PCA tests run.

Note: After running the PCA routines, the MSS must be powered off and powered on again before any MSS diagnostics are run because of the special reset used for

PCA Diagnostic Reference Codes

Reference Code	FRUs	Description
F6 0101 FA to F6 0103 FA	01A A2F2	Latch modules cannot be reset.
F6 0201 FA to F6 0204 FA	01A A2F2,D2	Sense card 2 latch modules cannot be reset.
$\text { F6 } 0301 \mathrm{FA} \text { to } \mathrm{F6}$ $0313 \mathrm{FA}$	01A A2D2,E2,F2	Latch module, byte address, or data bits bad.
$\text { F6 } 0401 \text { FA to F6 }$ $0410 \mathrm{FA}$	01A A2D2,F2	Sense card 2 address bad.
$\begin{aligned} & \text { F6 } 0501 \text { FA to } \mathrm{F6} \\ & 0504 \mathrm{FA} \\ & \hline \end{aligned}$	O1A A2E2	Data bits for sense card 1 cannot be set.
F6 0601 FA	O1A A2F2	Sense card 2 latch module data bits bad.
$\begin{aligned} & \text { F6 } 0701 \text { FA to F6 } \\ & 0704 \text { FA } \\ & \hline \end{aligned}$	01A A2F2,E2, D2	Test sense bytes.
$\begin{aligned} & \text { F6 } 0801 \text { FA to } \mathrm{F6} \\ & 0808 \mathrm{FA} \\ & \hline \end{aligned}$	01A A2F2,E2,D2	Read digital sense bytes.
$\text { F6 } 0901 \text { FA to } \mathrm{F6}$ $0908 \mathrm{FA}$	01A A2F2,E2,D2	Sense bytes not equal to FF.
$\begin{aligned} & \text { F6 } 1101 \text { FA to F6 } \\ & 1106 \mathrm{FA} \\ & \hline \end{aligned}$	01A A2D2,E2	DAC not within 25% of MSS reference voltage.
$\begin{aligned} & \text { F6 } 1301 \text { FA to F6 } \\ & 1305 \mathrm{FA} \\ & \hline \end{aligned}$	01A A2D2,E2	DAC do not compare equal.
F6 1401 FA	O1A A2D2,E2,F2	Interrupt byte is bad.
$\begin{aligned} & \text { F6 } 1601 \text { FA to } \mathrm{F6} \\ & 1607 \mathrm{FA} \\ & \hline \end{aligned}$	01A A202,E2	Timeout circuit does not reset the control latches.
F6 1801 FA	01A A2F4	Serial number is wrong.

- Copright ІвM Corp. 1984

THIS PAGE INTENTIONALLY LEFT BLANK
\square - Coprrignt IBM Corp. 1984

Optional MSS Diagnostics

Optional MSS diagnostics are on the DIAG1 diskette and give additional testing for:

- Service panel
- Diskette drives
- Device Cluster Adapter (DCA)
- Optional printers and displays
- RSF.

While the Optional MSS diagnostics are running, any arrors detected are indicated by Repair Action screens that guide you in the repair of the problem.

Running Optional MSS Diagnostics

1. Set the CE Mode switch to Normal.
2. Set the I/O Power Hold switch to I/O Power Hold.
3. Set the Power Off switch to Power Off.
4. Install DIAG1 in diskette drive 1
5. Reset the Power Off switch to Normal, and press Power On. Basic and Extended MSS diagnostics run after power up.
6. Key in the selected option from the MSS Optional Diagnostic Selection screen, and press ENTER.

For additional information on running the MSS Optional diagnostics, refer to the flowchart and notes on page DIAG 075.

Optional MSS Diagnostics Selection Screen

make selection, enter desired option:
OPTIONS
(FF) LOOP MSS BASIC AND EXTENDED DIAGNOSTICS
(90) RUN OPTIONAL SERVICE PANEL OIAGNOSTICS
AO) RUN OPTIONAL DDDA/DRIVE TESTS
(CE) TEST ALL CONSOLE/PRT PORTS
(DO) RUN RSF ADAPTER DIAGNOSTICS
EO) RUN RSF CABLE WRAP TEST (EIA INTERFA RUN RSF CABLE WRAP TEST (EIA INTERFAC
then press enter
to terminate looping, press iml button.

DIAG 075

Notes

1. When the service panel displays 80000 , press and release Logic Reset. The service panel then displays the following:

80000	87777	EEEEE
81111	88888	FFFFF
82222	99999	FO123
83333	AAAAA	F4567
84444	BBBBB	F89AB
85555	CCCCC	FCDEF
86656	DDDDD	

The time between displays is two to four seconds. The test is complete when FCDEF is displayed. After displaying FCDEF, the service panel continues to display the current SP storage address.
2. Place the DIAG1 diskette in the diskette drive to be tested.
3. Options $\mathrm{CO}-\mathrm{C} 3$ loop the tests to the selected console (ports $\mathrm{O}-3$). Option CF loops all consoles.
Option CE tests each console one time.
4. The reference code F8 Cx03 F8 is a normal stop if no device is attached to port $1 \mathrm{D}=\mathrm{x}$ or the device on port $D=x$ is not ready. To bypass this stop, key in G and press ENTER.
5. The DO and DF options are for all RSF adapters. The EO and EF options are only for the EIA interface and EO and EF options are only for the EIA interface wrap mode. Disconnect the EIA interface cable at the modem end, and install the wrap plug before selecting the Ex options.
6. Failures sensed by the EIA cable wrap test (Ex) are indicated by a reference code FE EOxx F8, where x is the failing line as shown below:
FE EOEE F8 - Send or receive data FE EOFF F8 - (TD or RD) failur
FE EOXX F

CTS	Clear to send
DCD	Data carrier detect
DRS	Data rate select
DSR	Data set ready
DTR	Data terminal ready
RI	Ring indicator
RTS	Request to send
SSB	Select standby

For a wiring diagram of the EIA interface cable, see Volume A06, Service Aids, "EIA Adapter Configuration."
\square

Optional MSS Diagnostics by UU Codes

$\mathrm{UU}_{\text {Code }}$	Area Tested	Test ID	Routine ID
F5	Diskette Drive Adapter	A	1 and 2
F8	Display Console Adapter	${ }_{\text {B }}^{\text {c }}$	${ }^{1,6,8} 1$ to ${ }^{\text {a }}$
FE	Remote Support Facility	D	1 to E
		E	1 to 5

Example of Reference Code from MSS Optional Diagnostics
Test and routine ID (Diskette speed check)
Reference code (UU RRRR IS)
UU code from table above \qquad F5 A4xx

Error information

F8 indicates MSS diagnostics \qquad

MSS Optional Diagnostics by Test ID
Diskette Tests (Option AO)
Tests A and B run on the diskette drive you select. For the error code $(x x)$ values, see "Test A and B Error Codes" on page DIAG 085

Test	Description	UU RRRR
Test A/B Routine 1	Verifies diskette adapter interrupts.	F5 B 1xx
Test A Routine 2	Tests pointers and access lines.	F5 A2xx
Test A Routine 3	Verifies that CCA can detect wrong commands.	F5 A3xx
Test A Routine 4	Checks diskette speed.	F5 A4xx
Test A Routine 5	Checks that diskette head engages/disengages.	F5 A5xx
Test A/B Routine 6	Routine A selects head 0 ; routine B selects head 1. Checks cylinders 0-75 can be read. Verifies with read iD.	F5 A/B6xx
$\begin{aligned} & \text { Test } A / B \\ & \text { Routine } B \end{aligned}$	Routine A selects head 0 ; routine B selects head 1. Writes 256 bytes of X'FF' on cylinder 75, record 4.	F5 A/BBxx
$\begin{array}{\|l\|} \hline \text { Test } \mathrm{A} / \mathrm{B} \\ \text { Routine } \mathrm{C} \\ \hline \end{array}$	Routine A selects head 0 ; routine B selects head 1. Writes 256 bytes of $X^{\prime} A 50 F^{\prime}$ on cylinder 74, record 4.	F5 A/BCxx
$\begin{aligned} & \text { Test A/B } \\ & \text { Routine } D \end{aligned}$	Routine A selects head 0 ; routine B selects head 1. Writes 256 bytes of data on cylinder 8, record 1 and on cylinder 74, record 1 - then compares the data.	F5 A/BDxx
Test A/B Routine	Routine A selects head 0 ; routine B selects head 1. Verifies busy and no record found can be detected.	F5 A/BExx

- ${ }_{\text {B/M }} \mathbf{4 3 1} 2676380$	$\begin{array}{\|l\|} \hline \mathrm{MI} \\ \mathrm{Seq} \text { GE040 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { PN } 6169401 \\ & 2 \text { of } 2 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { EC A20558 } \\ \text { O1 Oct } 84 \\ \hline \end{array}$				

st	Description	UU RRRR
Test D Routine	Verifies CCA (RSF) commands. Reference codes are:	FE D 1xx
Test D Routine 2	Verifies not valid CCA commands set errors. FE D201 F8 \quad Timeout \quad MC/PC not set by invalid command	FE D2xx
Test D Routine 3	Verifies CCA control register reset and read.	FE D3xx
Test D Routine 4	Verifies modem control register reset and read commands.	FE D4xx
Test D Routine 5	Verifies modem status register (bits 2, 3, and 6 are not tested).	FE D5xx

Test	Description	UU RRRR
Test D Routine 6	Verifies correct interval and reset of TI in basic status.	FE D6xx
Test D Routine 7	Verifies operation of timer controls.	FE D7xx
Test D Routine 8	Check set/reset of enable/disable bit. FE D801 F8 Failed to set enable FE D802 F8 Failed to reset enable	FE D8xx
Test D Routine 9	Check set/reset of output request, input request, and adapter in sync bits.	FE D9xx
Test D Routine A	Check that input request is stopped if receive mode is off.	FE DAxx

```
B/M2676380
MI GEO45
Sog_GE04 PN 6169402
2 of 2 EC A20558
01 Oct 84
```


Test	Description	UU RRRR
Test D Routine B	Check that SDLC frame bit sets and resets	FE DBxx
Test D Routine C	Check that test underruin bits set and reset. FE DCBO1 F8 Failed to set underrun bit FE DCBO2 F8 Failed to reset underrun bit FE DCBF7 F8 Unexpected status during transmit	FE DCBx
Test D Routine D	Check that test overrun bits set and reset.	FE DDxx
Test D Routine E	Check that SDLC invalid sequence bits set and reset.	FE DExx
Test E Routine 0	Check external cable wrap (for EIA interface only). FE EOEE F8 No transmit or receive data connection FE EOFF F8 FE EOxy F8 \quadCCA card failure Wrap in/out does not match. For x and y values, see "Test E Routine O Error Codes."	

Test E Routine 0 Error Codes

Cata carrier detect
Data rate select
Data set ready
Data terminal ready
Ring indicator
Request to send
Select standby

Test	Description		UU RRRR
Test E Routine 1	Check 15 ones recognition using SDLC.		FE E1xx
	FE E101 F8 FE E102 F8 FE E1F7 F8	SDLC invalid sequence bit not on SDLC invalid sequence bit not reset Unexpected status during test	
Test E Routine 2	Check repeated frame insertion.		FE E2xx
	FE E201 F8 FE E202 F8 FE E2F1 F8	Timeout waiting for output request reset No adapter in sync or frame bits Unexpected status error during test	
Test E Routines 3 and 4	Check DDA and modem data paths in wrap mode. Routine 3 is CCA wrap, routine 4 is modem wrap. (x equals 3 or 4 in the following.)		FE ExFx
	FE Ex01 F8 Timer interrupt before CTS		
	$\begin{aligned} & \text { FE Ex02 F8 } \\ & \text { FE Ex03 F8 } \end{aligned}$	Timer interrupt after CTS	
	FE Ex03 F8 FE Ex04 F8	Modem status error	
	FE Ex04 F8 FE Ex05 F8	Overrun/underrun	
		Output request with transmit off Input request; no data transmitted	
	FE Ex06 F8 FE Ex07 F8 FE Ex08 F8	input request; last data already received	
	$\begin{aligned} & \text { FE Ex08 F8 } \\ & \text { FE Ex09 F8 } \end{aligned}$	Received data does not equal expected data	
	FE ExOA F8 FE Ex0B F8	Input request before flag in SDLC Basic status invalid	
	FE ExOB F8 FE Ex0C F8	Invalid exception	
	FE EXOD FE8 EXOE F8	SDLC frame on; adapter not in SDLC Data decoded as SDLC flag	
	FEEXOE F88	Adapter status error	
	FE ExFF F8 FE E3FE F8	Timeout on adapter interrupt Wrong level interrupt in SP IORR	
	$\begin{aligned} & \text { FE E3FE F8 } \\ & \text { FE E4FA F8 } \\ & \hline \end{aligned}$	Wrong level interrupt in SP IORR Modem wrap with DSR off	
Test E Routine 5	Check if SP check is on from any preceding RSF test.		FE E5xx
	FE E5xx F8	SP check (xx equals SP check register).	

MI GE GE050	PN 6169403			
Sof 2		$	$	EC A20558
:---	:---	EC A20558		

01 Oct 84 \square
\square

Diskette Analysis

The Diskette Analysis test is on the FUNC1 diskette. It can be used to check any of the functional or diagnostic diskettes for unreadable records.

To run the test:
. With the FUNC1 diskette in diskette drive 1 , key in
2. Note that a starting cylinder number (00), starting record number (01), and drive number (2) are given. Either use these default values or specify your
values for cylinder, record, and drive number.
3. Insert the diskette to be analyzed (into the diskette Insert the diskette to
4. Press ENTER to start the diskette analysis.

To continue the analysis if error information fills the screen, press ENTER. To cancel the analysis, press CNCL
For an example of diskette errors, see "Diskette Analysis test Error Display Screen." If there are more errors than one screen can display, press ENTER to display the additional error screens. For a definition of the diskette drive status bits, see "Diskette Drive Status Bits.

Diskette Drive Status Bits

Bits	Values	Meaning
0-1:	00	Good ending
	01	CRC Error
	10	Command Error
	11	Hardware Error
2-4:	000	Operation Complete
	0011	Contro Complete
	011	Busy
	100	Overrun/Underrun
	101	Timeout
	110	Recrat fot found
	111	Diskette not ready
5:	1	sp Check
6:	1	Adapter enable
7:	1	Interrupt pending

Diskette Analysis Test Selection and Error Display Screens

```
```

ERROR DISPLAYS *DISKETTE ANALYSIS*

```
```

ERROR DISPLAYS *DISKETTE ANALYSIS*
to Start: 1) SELECT STARTING CYlindER and record number
to Start: 1) SELECT STARTING CYlindER and record number
SEFAUL IS RECORD 1 ON CYLINDER O).
SEFAUL IS RECORD 1 ON CYLINDER O).
2) SELECT DISK DRIVE FOR ANALYSIS (DEFAULT IS DRIVE 2)
2) SELECT DISK DRIVE FOR ANALYSIS (DEFAULT IS DRIVE 2)
3) INSERT DISK TO BE ANALYZED INTO SELECTED DRIVE.
3) INSERT DISK TO BE ANALYZED INTO SELECTED DRIVE.
OO STARTING CYLINDER NUMBER (00-4C
OO STARTING CYLINDER NUMBER (00-4C
OTARTING RECORD NUMBER (01-1A BACK-HEAD)
OTARTING RECORD NUMBER (01-1A BACK-HEAD)
2 TARGET DRIVE FOR ANALYSIS (1-2)
2 TARGET DRIVE FOR ANALYSIS (1-2)
to EXIT: 1) MAKE SURE ORIGINAL DISKEtTES ARE INSTALLED.
to EXIT: 1) MAKE SURE ORIGINAL DISKEtTES ARE INSTALLED.
2) SELECT ANY SCREEN.
2) SELECT ANY SCREEN.
NOTE: ALL NUMBERS IN HEX
NOTE: ALL NUMBERS IN HEX
Q GENERAL SELECTION
Q GENERAL SELECTION
Z RETURN TO PROG SY
Z RETURN TO PROG SY
COMMAND: QED

```
COMMAND: QED
```

```
    START: 1) SELECT STARTING CYLINDER AND RECORD NUMBER
```

 START: 1) SELECT STARTING CYLINDER AND RECORD NUMBER
 TARGET DRIVE fOR ANALYSIS (1-2)
 TARGET DRIVE fOR ANALYSIS (1-2)
 COMMAND: QED POG SYS

```
COMMAND: QED POG SYS
```

ERROR DISPLAYS *DISKETTE ANALYSIS*

LINE	CYLINDER	HEAD	RECORD	MOdule	DEvICE
Numb	NUMBER		NUMBER	1 D	StATUS
0	09	FRONT	83	4351	42
1	23	BACK	01	FFFF	42

PARAMETERS ARE

IF SCREEN IS FULL AND ANALYSIS IS NOT COMPLETE: PRESS ENTER TO CANCEL ANALYSIS: INSTALL ORIGINAL DISKETTES, PRESS CNCL KEY
COMMAND: QED

PROCESSING UNIT DIAGNOSTICS

The two types of processing unit diagnostics available for isolation of errors and verification of repairs are:

- Basics
- Machine Speed Microdiagnostics (MSMDs).

For a description of processing unit Basic diagnostics, see page DIAG 110. For a description of Machine Speed Microdiagnostics (MSMDs), see page DIAG 115

Test Case Monitor (TCM)

The TCM is on the FUNC1 diskette. It is loaded into SP storage when any of the processing unit diagnostics are requested
The TCM loads either Basic diagnostics into SP control storage or MSMDs into processing unit control storage. The TCM controls the execution of the Basic diagnostics

During the processing unit Basic diagnostics and the MSMDs, the TCM controls communication between the diagnostics and the system console.

MSMD Monitor

The MSMD Monitor is on the FUNC2 diskette and is loaded by the TCM into processing unit control storage when MSMDs are to be run

When MSMDs are running, communication to the system console is: diagnostic to MSMD Monitor to TCM to the console.

Diagnostic Mode Test Case Monitor Screen

In Field Support Center mode, the Diagnostic Mode Tes Case Monitor screen is displayed whenever PU diagnostics are running. It displays prompting and error information. For an explanation of the error and prompting messages given on the Test Case Monitor screen, see
DIAG 200.

While PU basic diagnostics are running, the test ID is displayed in the lower left-hand corner of the Diagnostic Mode Test Case Monitor screen. For a description of DIDs 110 "Basic Diagnostic Organization" on page DIAG 110

Basic Diagnostics

The Basic diagnostics are located on the FUNC2 and the DIAG1 diskettes. They run in SP control storage under control of the Test Case Monitor.

The Basic diagnostics test the processing unit through the support bus adapter. If errors are detected by the diagnostics, a reference code, a FRU list, and Repair
Procedure references are displayed. For a description of rocedurence codes, see "MSS, Power, and Reference Codes" on page DIAG 015. Some of the Basic diagnostics are used to ensure that the
processing unit is capable of running MSMDs. These diagnostics are on FUNC2. The other Basic diagnostics est areas that the MSMDs cannot test. These diagnostics are on the DIAG1 diskette.

For information on running processing unit Basic diagnostics, see "How to Run Processing Unit Diagnostics" on page DIAG 120

Basic Diagnostic Test IDs

Basic diagnostic IDs are six characters long starting with a D and ending in M3
Example

010				
$T[$				

Diskette	Test IDs	Area Tested
FUNC2	D001 to D049	Scan Rings
	D050 to Do99	Clock maintenance commands
	D100 to D199	Clock basics
	D200 to D299	PU, control storage maintenance commands
	D300 to D399	
	D400 to D499	Control storage
	D500 to D599	Channels
	D600 to D7FF	Storage controller, dual processor controls
DIAG1	D801 to D849	Scan Rings
	D850 to 8899	Clock maintenance commands
	D900 to D999	Clock Basics
	DA00 to DA99	PU, Control storage maintenance commands
	DB00 to DB99	PU
	DC00 to DC99	Control storage
	DD00 to DD99	Channels
	DEOO to DEFF	Storage controller

0000000000000000000000000000000000

Machine Speed Microdiagnostics (MSMDs)

MSMDs are the main tool for isolating hardware failures and verifying repairs in the processing units. They run in processing unit control storage at machine speed. If an list, and Repair Procedure page reference are displayed.

For MSMD storage loads 1 through 5, the TCM loads a single storage load from FUNC2 into PUO and PU1 control storage. The storage loads are run first in PUO then in PU1.

For MSMD storage load 6, the TCM loads the storag load from FUNC2 into PUO and PU1 control storage.
The storage load is then started in both processing units to test dual processor controls. In control storage, the MSMDs run under the control of the MSMD Monitor. Console messages are passed from the MSMD Monitor to

See "How to Run Processing Unit Diagnostics" on page DIAG 120.
MSMD Test IDs
MSMD test IDs are eight characters long starting with a Z and include the MSMD section ID and the UU and RRRR detected.

Example:
Test 10

Test (Special Arithmetic Test) Unit Code as follows:
$50=$ CTL STG $\begin{array}{ll}55=\text { dual } \operatorname{STG} & 46=\text { BSM } \\ 55 & 47=\text { BSM } \\ 59=\text { PU } & \\ 60=\text { CHNL } & 65=\text { CHNL } \\ 70=\text { STG } & 75=\text { dual }\end{array}$ $\begin{array}{ll}60=\text { CHNL } & 75=\text { Cdual } \\ 70=\text { STG } & \text { FD } \\ 50=\text { CLKS } & \text { SBA }\end{array}$ Contained in section G Contained in sec)
(Stor age load 1)

Reference Code
 Always 98 for MSMD
Test (from Test ID)

$$
\text { - UU Code (from Test } 10 \text {) }
$$

\square
B/M 2676380
EC A20558
01 Oct 84

MSMD Test Organization

The first six MSMD storage loads are on the FUNC2 diskette and storage load seven is on the DIAG1 diskette. Each storage load contains one or more sections and each section contains several tests.

$\begin{aligned} & \text { Storage } \\ & \text { Load } \end{aligned}$	Section	Section Name	Areas Tested	First Test ID of Load
1	A	zadataoo	PU data flow 1	ZA590101
	B	zBdataoo	PU data flow 2	
	c	zCBRANOO	Branching	
	D	ZDSHFTOO	Shifter	
	E	ZESHFTOO	Spare	
	F	ZFINTM00	Interrupt/timers	
	G	ZGIPUAOO	Special arithmetic/multiplier	
2	H	ZHSTGCOO	SARs, retry, cache, and keys	ZH590801
	1	ZISTGCOO	ACB Traps, DLAT	
	J	ZJSTGC00	Address facilities	
3	K	ZKBSMTOO	Main storage	2K401101
	L	ZLBSMTOO	Main storage	
	M	ZMBSMTOO	Spare	
	N	ZNPAGEOO	Swap buffer in page/out page	
4	\bigcirc	ZOCHANOO	Externals, sequence counts, traps	20621501
	P	ZPCHANOO	Channel SARs	
	0	ZOCHANOO	Data buffer, store, and data mode	
	R	ZRCHANOO	LCA	
	s	2SCHANOO	High speed data	
- 5	T	zticycoo	I-cycles	27592001
	u	ZUTRAPOO	Traps	
	v	ZVRTRYOO	Retry	
6		ZXDSP000	Dual processor controls	2X522401
		zYDSPOOO	Dual processor controls	
7	w	zWCMDEOO	Channel interface	2W652301

How to Run Processing Unit Diagnostics

1. Ensure the FUNC1 diskette is installed in diskette drive 1.
2. Set the CE Mode switch to CE Mode.
3. Key in QG and press ENTER. The Diagnostic Mode
PU Diagnostic Selection screen displays.
4. Key in one of the following options:

I to isolate a failure before exchanging FRUS
\checkmark to verify a repair after exchanging FRUs
C to run special channel diagnostics
F to run diagnostics after installation R to return to the General Selection screen (Q)
5. Press ENTER
6. Follow the prompting messages on the screen

After running diagnostics, select option R on the Diagnostic Mode PU Diagnostic Selection screen. Diagnostic mode is ended and the General Selection screen (Q) is displayed. To return to normal operation:

1. Install FUNC1 in diskette drive 1 and FUNC2 in diskette drive 2 .
2. Set the CE Mode switch to Normal
3. Key in OL and press ENTER. The Program Load screen displays.
4. If the Program Load Screen displays IML COMPLETE, IMI REQURED displa displays, continue with the next step.
5. Press Power On/IML.
6. When the General Selection screen displays, key in OLM and press ENTER. This IMLs the processing unit.
7. When IML COMPLETE displays, the processor is ready to continue normal operation.

Operating Tips

1. Both PUs are required for diagnostics. You canno run diagnostics on one of the PUs while customer jobs run on the other PU
2. When the processing unit Basic diagnostics are running, the test ID of the test running is displayed in the left-hand corner of the Test Case Monitor screen.
3. If you want to interrupt a diagnostic run, hold down the ALT key while pressing MODE SEL. This cancels the run, and displays the Diagnostic Mode PU Diagnostic Selection screen.

Note: Do not interrupt a diagnostic run if the message VERIFY HAS CLEANUP DO NOT INTERRUPT is displayed.
4. When the diagnostic run is complete or has ende because of an error, the Diagnostic Mode PU Diagnostic Selection screen is displayed if you press ENTER.
5. Before running the processing unit diagnostics, set the system control options on the following screens to normal

Compare (QA Screen) Operation Rate (OO Screen)

For an explanation of setting the system control options, see Volume A08, "Console Functions.

Option I - Isolation Mode

When you select this option, you are prompted to enter the reference code of the failure you are working on. Th system error logs are checked for the reference code you
entered. You have the option of changing your entry if it is not found; then you are asked if the processor is available for testing. Answer by keying in Y or N and pressing ENTER. If the processor is not available at this time, the FRU list generated by ELA at the time of failur is displayed. If the processor is available for testing, the failing PU is determined from the reference code you entered and a group of diagnostics is selected and run to isolate the failure. The following sequence is used to run the tests until an error occurs

- Basic diagnostics D001 to D7FF (FUNC2 diskette)
- MSMD storage loads 1 through 6 .
- Basic diagnostics D800 to DFFF (DIAG1 diskette) Note: Not all the diagnostics are run every time. Tests are sel

If the diagnostics do not detect an error, the FRU list that was generated by ELA at the time of failure is displayed If an error is detected, you are given a combined $F R U$ lis for the reference code you entered and the the diagnostic reference code. The priority of the FRUS on the FRU list
is:

1. FRUs on both ELA and diagnostic FRU lists
2. FRUs on the diagnostic FRU list only
3. FRUS on the ELA FRU list only

DIAGNOSTIC MOD
 te failure option
 EC $\times x \times x \times x$
 key in the system reference code and press enter

 if NONE is AVAILABLE, enter "NONE"[^1]\square

Option V - Verification Mode

When you select this option, a group of diagnostics is selected and run to verify the repair of a processing unit failure.

After you select Option V , you are requested to enter either the Problem Analysis number (PAxx) or the reference code for the failure you are working on. If neither is available, enter NONE.
xample: If this option is used to test an engineerin change, enter NONE.

After your PA number or reference code is correctly entered, the Diagnostic Mode PU Diagnostics Verify epair Option screen is displayed and you are th
exchanged. If no FRUs were exchanged, press ENTER Example: If a card was swapped or a cable reseated. press ENTER.

The reconfiguration data is then reset to primary hardwar
for the FRU you replaced lif the FRU has backup
ardware) and diagnostics start running in the following equence

Failing test lif original symptom was a PU basic failure)

- Basic diagnostics DOO1 to D7FF (FUNC2 diskette)
- MSMD storage loads 1 to 6
- Basic diagnostics D800 to DFFF (DIAG1 diskette).

If errors occur during the verification test, you are directed back to the Repair Procedures. If no errors occur, you ar directed to the End Repair Procedure.

Notes:
. Do not interrupt a verification run if the message VERIFY HAS CLEANUP DO NOT INTERRUPT is displayed. Interrupting the test can leave the wrong processor reconfiguration data and cause degraded performance.
2. If the test is accidentally interrupted:

- Reselect the verification mode option
- Enter the reference code you were working with
- Enter the FRUs exchanged when prompted
- Follow the instructions on the screen

Verify Repair Option Screens

> DIAGNOSTIC MODE
> PU DIAGNOSTICS VERIFY REPAIR OPTION
> EC $x \times x \times x \times$

KEy in the problem analysis code (paxx) and press enter
if NONE is AVAILABLE, enter "none".
v

DIAGNOSTIC MODE
PU DIAGNOSTICS VERFY REPAIR OPTION

COMMAND:
OPTIONS IN EFFECT: \qquad $=\quad$ TYPE " X " IN INPUT FIELD(S) ASSOCIATED WITH

Copyright IBM Corp. 1984

Option C - Channel Interface

Diagnostics

The channel interface diagnostics are in storage load 7. They include:

- Mark \ln Test—Detects a reset failure of the Mark In bit on the channel interface
- Channel Microcoded Device Exerciser (CMDE)-Used Channel Microcoded Device Exerciser (chms. (See to diagnose channe
- Cable Wrap Test (CWT)—Used to isolate channe interface adapter driver and receiver and channel cable problems. (See page DIAG 150.)

How to Run Channel Interface Tests

1. Set the CE Mode switch to CE Mode.
2. Ensure FUNC1 is installed in diskette drive 1.
3. Install DIAG1 in diskette drive 2.
4. Key in QG, and press ENTER. The Diagnostic Mode

PU Diagnostic Selection screen displays.
5. Key in C, and press ENTER. The first Channel Interface Diagnostic Option screen displays.
6. Key in one of the following:
a to test a channel attached to PUO.
1 to test a channel attached to PU1
7. Press ENTER, the second Channel Interface Diagnostic Option screen displays.
8. Make one of the following selections:

01 Selects CMDE
02 Selects CWT and the Mark In test
E Ends the channel interface tests
When you select one of the tests, detailed run instructions and test options are displayed to aid you in running the test.

Mark In Test

Checks for a failure to reset an active (up) level of the
Mark in interface line by wrapping Mark Out to Mark in
[For tailgate pin locations, see "Bus Wrap Terminator
(Part 8483772) Wiring."]
Notes:

1. The Mark in test runs automatically after the Channel Wrap test.
2. The wrap terminators must be installed on the channel being tested when running the Mark In test.
3. An open condition of the Mark In line is reported as ground.
For details on selecting CWT and the Mark In test, see "How to Run Channel Interface Tests." After the tests are selected, detailed run instructions are displayed on the screen.

Example of Mark In Test Error Screen

Channel Microcoded Device Exerciser

 (CMDE) - Normal ModeUse the CMDE to diagnose channel or I/O device problems. If this test does not detect any errors, run System Tem 381 or System Test/4381XA to isolate

For details on how to select CMDE, see "How to Run Channel Interface Tests" on page DIAG 135. After CMDE is selected, detailed run instructions are displayed on the screen.
Normally, you will run the CMDE only under the direction of the Repair Procedures. For the operation of CMDE in this mode, see the flowchart on this page. To use CM this way, key in the channel address (00 to 08) whe prompted by the screen. CMDE sends a Test $1 / 0$, Start I / O, and Sense sequence to each device address on the channel until a response is received. When a device responds, CMDE requests that you ready the device you
want to test and enter the address of that device for example, OE). CMDE then sends the Test I/O, Start I/O and Sense sequence to that device and shows if a good response is received.
Note: CMDE tests the address range of 00 through EF for PUO and the address range of 00 through FF for PU1. The address range FO through FF is reserved for LCA on puo.

If no response is received from any device on the channe in the first Test $1 / 0$, Start $1 / 0$, and Sense sequence, you are then prompted to ready a device on the channel and $1 / 0$, and Sense sequence to that device and shows if a good response is received.

- Copright IBM Coxp. 1984

Combla

Channel Microcoded Device Exerciser (CMDE) - Support Mode

A second method for using CMDE is intended for support personnel. For the operation of CMDE in this mode, see the flowchart on this page. To use CMDE this way, key in the channel address followed by an x (for example 02 x). CMDE then displays an option screen. The options on this screen let you run additional channel command sequences to devices on the channel.

Notes:

1. CMDE runs to the end for an I/O device even though the device does not have an entry in the UCW table.
2. For I / O device sense and status bit values, see 'Status and Sense Bit Meanings.'

Status and Sense Bit Meanings
Device (unit) Status
80 Attention
40 Status Modifier
10 Control Unit End
Busy
Channel End
04 Device End
02 Unit Check
01 Unit Exception
Channel Status
80 Program Controlled Interrupt
40 Wrong Length
20 Program Check
08 Protection Check
08 Channel Data Check
04 Channel Control Check
02 Interface Control Check
01 Chaining Check
Sense Byte 0

80	Command Reject
40	Intervention Required
20	Bus-Out Check
10	Equipment Check
08	Data Check
04	Overrun

Note: The sense information listed is not valid for all devices; it is a general guide only.

Channel Wrap Test

The Channel Wrap Test (CWT) can be used to isolate the following channel problems

- Channel interface adapter receiver and driver failures.
- Channel interface cable and connector failures.

The CWT verifies that:

- When each bus-out or tag-out line is activated, the corresponding tag-in or bus-in line is at an active
- All tag and bus lines can be reset. See "CWT Error Example 2 (Unable to Reset Bits).
For details on how to select CWT, see "How to Run Special Channel Tests." Before running CWT, run storage up to the channel interface adapter receivers and drivers.

Two wrap terminators (bus wrap and tag wrap) must be installed before running CWT. For terminator part 8483772) Wiring"' and "Tag Wrap Terminator (Part 8483773) Wiring.'

The wrap terminators can be installed:

- At the I / O tailgate $(01 \mathrm{E})$ instead of the I / O interface cables to test the channel interface adapter card
- At an $1 / O$ device instead of the interface terminator or on the channel out interface cables to test the interface cables and connections on the channel

After you have completed CWT, remove the wrap terminators and reinstall the channel terminators and the interface cables.

Notes:

1. Interrupts from I / O devices attached to the channel that you are testing can cause CWT to fail
2. A short between DATA IN and SRV IN cannot be detected by this test.
3. METERING OUT is not tested here; see "Metering Test Repair Procedure" in Volume A01, page CHNL 06
4. If the CWT runs successfully, the Mark in test is run automatically.
5. If your system has shared control units attached, ensure that the shared control units have the interface you are testing disabled.
6. If you have an IBM 3044 Fiber Optic Channel Extender Link attached to the channel you want to test, do not run CWT to the remote (Model D01) end of the link. To run CWT to the local (Model C01) end of the 3044 link, ensure that the Link Disable switch is in Disable.

Channel FRU Locations

Note: For channel 0 on PUO, the cables from 01AA3 to 01AA2 are: Bus in/tag in

01A-A3 YM to 01A-A2 Yo
For additional information, see Volume A06, Service Aids, "Channel Failure Isolation.

Bus Wrap Terminator (Part 8483772) Wiring
Tag Wrap Terminator (Part 8483773) Wiring

Bus Bit	Bus Out	Bus in
P	803	G03
0180	D04	J04
$1(40)$	B05	G05
2(20)	D06	J06
3(10)	B08	G08
4(08)	D09	J09
$5104)$	810	G10
6102)	D11	J11
$7101)$	812	612
MARK	D13	J13

Tag Bit (hex)	Tag Out	Pin	Tag In	Pin
0180	SUPR	B12	REQ	J06
$1(40)$	OP	J13	op	B03
2(20)	HOLD	G12	DISC	J11
3(10)	ADR	810	ADR	в05
4(08)	SEL	D09	SEL	в08
5(04)	CMD	D11	Stat	D04
6102)	DATA	G10	DATA	G08
$7101)$	SRV	D13	SRV	D06
	MTR	J04	MTR	G05

CWT Error Example 1 (Dropped Bits)

CWT Error Example 1 shows one instance of dropped bits and one instance of shorted lines on channel 4.

1. Dropped bus bit 1. Bits $1,3,5$, and $7\left(X^{\prime} 55^{\prime}\right)$ were sent on bus-out and bits 3,5, and 7 ($\mathrm{X}^{\prime} 15^{\circ}$) were sent on bus-out and

Also bit 1 ($\mathrm{X}^{\prime} 40^{\prime}$) was sent on bus-out and no bits ($\mathrm{X}^{\prime} \mathrm{OO}^{\prime}$) were returned on bus-in.
2. Command Out (CD) or Status in (ST) is shorted to either Hold Out (HD) or Disconnect In (DC). Hold Out $x^{\prime} 20^{\prime}$) was sent on tag-out; Disconnect In and tatus $\ln \left(X^{\prime} 24^{\prime}\right)$ were returned on tag-in.

Also Command Out, Data Out, and Service Out $X^{\prime} 07^{\prime}$) were sent on tag-out and Disconnect In, Status in, Data In, and Service In ($X^{\prime} 27^{\prime}$) were
returned on tag-in. returned on tag-in.

Notes:

1. Interrupts from $1 / O$ devices attached to the channel that you are testing can cause CWT to fail.
2. Suspect a bus parity bit failure if the screen shows that a failure was detected but the ACTUAL and EXPECTED bit patterns are the same.
3. For the meanings of the tag abbreviations that appear on the screen, see "CWT Tag Abbreviations."
4. For the hex values assigned to the tag lines, see "Tag Bit Values.'
5. The hardware sets tag bit 7 (Service Out) on whenever tag bit 5 (Command Out) and/or tag bit 6 (Data Out) are set on.
6. For bus and tag pin locations, see Volume A06, Service Aids, "Bus and Tag Lines."

CWT Error Example 2 (Unable to Reset Bits)

CWT Error Example 2 shows a failure to reset a tag and bus line on channel 04

1. TAGS 10. The Address out tag ($\mathrm{X}^{\prime} 10^{\prime}$) cannot be reset.
2. BUS 40 . Bus bit $1\left(X^{\prime} 40^{\prime}\right)$ cannot be reset.

Note: The hardware sets tag bit 7 (Service Out) on whenever tag bits 5 (Command Out) or tag bit 6 (Data Out) are set on. Ignore tag bit 7 if tag bits 5 or 6 are on.

CWT TAG ABBREVIATIONS
OP Operational
$\begin{array}{ll}\text { AD } & \text { Addres } \\ \text { HD } & \text { Hold }\end{array}$
DC Disconnect
SE Select
$\begin{array}{ll}\text { SP } & \text { Suppress } \\ \text { RE } & \text { Request }\end{array}$
$\begin{array}{ll}\text { RE } & \text { Request } \\ \text { SR } & \text { Service }\end{array}$
$\begin{array}{ll}\text { SR } & \text { Service } \\ \text { CD } & \\ \text { Command }\end{array}$
ST Status
DA Data
Tag Bit Values

Bit	Hex	Tag-Out	Tag-In
0	80	Suppress	Request
1	40	Operational	Operational
2	20	Hold	Disconnect
3	10	Address	Address
4	08	Select	Select
5	04	Command	Status
5	02	Data	Data
7	01	Service	Service

This option is to be run only at installation time to verify that all primary and backup hardware is error free.

If you select the Installation Mode option at installation time, all Basic and MSMD diagnostics are run against both primary and backup processor hardware. If the Installation Mode option is selected after installation time and primary hardware has been reconfigured, the and primary hardware has been reconfigured, the
reconfigured hardware is not tested. The following sequence is used to run the tests:

- Basic diagnostics D001 to D7FF (FUNC2 diskette)
- MSMD storage loads 1 through 6 (2 passes)
- Basic diagnostics D800 to DFFF (DIAG1 diskette).

DIAGNOSTIC MODE
PU DIAGNOSTIC INSTALLATION TEST OPTION EC xxxxxx
WARNING
THE FOLLOWING TEST IS FOR USE DURING PROCESSOR INSTALLATION ONLY

IS THIS AN INSTALLATION DIAGNOSTIC RUN?

command

 ===> ENTER RESPONSE-(Y/N)OPTIONS IN EFFECT: T

DIAG 165

Option F - Field Support Center Mode

Select this option only under the direction of the Field Support Center or Engineering. When you select Option for the first time, a warning message is displayed. If you can run diagnostics on the processor at this time, press ENTER. The Field Support Center screen is displayed.
To run diagnostics from the Field Support Center screen:

1. Key in a selection from each of the following option fields: DISPLAY, PRINT, TERMINATION, and TEST SELECTION.
2. Press ENTER
3. If you selected an option other than the default (intensified) options, press ENTER again to start running the selected tests.

If no entry is made for any of the option fields, the default (intensified) value is used. The options may be entered in any order, but you must have two digits for each alection and only one selection for any option.

When a selection other than the default selection is keyed defaen selection is intensified on the screen as the deaut selecion.
If you select options other than those offered on the screen or select conflicting options, a message prompts you to change your selections.

The options available are:
DISPLAY
DO Test IDs are displayed as the tests are run.
R1 Results of a failing test are displayed.
D2 All test IDs and results of failing tests are
D3 Results of all tests are displayed.
D4 No test IDs or test results are displayed.

PRINT

PO Test IDs are printed on the console printer as the
1 Test results are printed on the console printer only
for failing tests.
P2 All test IDs and the results of failing tests are
printed on the console printer
P3 Test results are printed on the console printer for
4 No test IDs or results are printed.
termination
To Testing stops on the first erro
Testing continues when errors are detected. Note:
option T1 is selected, testing continues only when actual and expected results do not agree. Testing is topped if a machine check is detected.

test selection

The selected processing unit Basics are run. S1 The selected MSMDs are run.
S2 All MSMDs are run (except storage load 7). 3 All processing unit Basics on FUNC2 and all MSMDs except storage load 7 are run.

For selections DO, D2, PO, and P2, failing tests are identified by a " next to the test ID.

After the option selections are entered, one of four tes input screens is displayed. The test input screen displayed depends on which test selection option (SO to S3) was entered. The test input screens are:

Basic Test(s) Input screen. Displayed when Option SO is selected (page DIAG 170).
MSMD Test(s) Input screen. Displayed when Option S 1 is selected (page DIAG 170).

Runall MSMDs Input screen. Displayed when Option S2 is selected (page DIAG 175).

Runall Tests Input screen. Displayed when Option S3 is selected (page DIAG 175).

target pu

U0 Run diagnostics on processor 0 onlv. U1 Run diagnostics on processor 1 only.
U2 Run diagnostics on both processor O and processor 1.

If both processors are selected (option U2) with basi diagnostics, each basic diagnostic is run first on PUO hen on PU1.
If both processors are selected (option U2) with MSMDs each core load ($0-5$, and 7) is first loaded in PUO and PU1, run in PUO, then run in PU1. Core load 6 is loaded in PUO and PU1 and each test case is run first in PUO. then run in PU1 before running the next test case.

Basic Tests Input Screen

Enter the start and ending test identifiers for the tests you want to run in the START TEST ID and END TEST ID fields. (For the Basic test IDs, see "Basic Diagnostic Organization" on page DIAG 110.) If you want to run only one Basic test enter that test in the START TEST field and leave the END TEST ID field blank. Enter the number of times you want the test or group of tests to run in the TEST RANGE LOOP COUNT field. If you want the tests to keep looping, enter four blanks in the TEST RANGE LOOP COUNT field.

MSMD Tests Input Screen

nter the start and ending MSMD test identifiers or section names of the MSMDs you want to run in the START TEST ID and END TEST ID fields. (For MSMD section names and a description of MSMD test IDs, se MSMD Test Organization" and "MSMD Test IDs" on page DIAG 115.) If you want to run only one MSMD test or section, enter the test ID or section name in the
START TEST ID field and leave the END TEST ID field blank. If you want to run only one MSMD storage load enter the storage load as $M x(x=1$ through 6) in the START TEST ID field and leave the END TEST ID field lank. If you want to continue running after an error, enter Y in the DISABLE MACHINE CHECKS field. If N is intered, the diagnostics stop when an error is detected group of tests, enter the number of times you want th loop to run in the TEST RANGE LOOP COUNT field, or enter four blanks to keep the tests looping until you press he ALT and MODE SEL keys. If you selected a group of tests, enter the number of times you want each test in
the group to run in the TEST LOOP COUNT field.

\square
4381
$B / M 2676380$
 EC A20558

- Cooxright BM Coro. 1984

Runall Input Screen
Runs all Basic PU diagnostics on FUNC2 and MSMD storage loads 1 through 6 . If you want the MSMDs to run more than one time, enter the number of times you want the MSMDs to run in the TEST LOOP COUNT field. If you want the tests to continue running when an error occurs, entered, the diagnostics stop when an error is detected and the error information is displayed.

All MSMDs Input Screen
Enter the number of times you want the MSMDs to run in the TEST LOOP COUNT field. If you want the tests to continue running when an error occurs, enter Y in the DISABLE MACHINE CHECKS field. If N is entered, the diagnostics stop when an error is detected and the error information is displayed.

4381
4381
B/M 2676380

MI	PN 6169411
Seq GE090	1 of 3

- Coprright IBM Corp. 1984

ENTER:
EST LOOP COUNTER (RELIABILITY COUNT) $=02$
DISABLE MACHINE CHECKS $(Y / N)=Y$

RESTART : R RESTART DIAGNOSTIC MODE

COMMAND:
OPTIONS IN EFFECT: CDIP4S3T1

Message	Reason	User Action Required
BOTH IDS MUST BE SECTION IDS OR TEST IDS REENTER TEST ID(S)	A MSMD range consisting of one test ID and one section ID was entered. When selecting a MSMD range, both IDs must be section IDs or both must be test IDs.	Enter a valid range of MSMD test or section IDs.
CONSOLE PRINTER NOT AVAILABLE. SUPPRESS PRINT OPTION ASSUMED.	An error occurred while attempting to configure a selected printer for TCM use. The print option defaults to suppress print.	Press ENTER to continue.
CONTINUING WILL DESTROY PROCESSING UNIT DATA. PRESS ENTER TO CONTINUE.	If PU diagnostic option F is selected, IML and IPL are required before starting customer programs again.	Press ENTER to go to the Field Support Center screen or key in a new selection and press ENTER.
CONTROL STORE LOAD COMPLETE MSMDS RUNNING	A MSMD storage load is complete and the tests have started.	None.
DIAGNOSTICS ENDED	An R option was encountered.	None. The General Selection screen is displayed.
DISPLAY ERROR	A TCM command to the console display failed probably because of a microcode error.	Press ENTER to return to the General Selection screen.
DUPLICATE IDS NOT ALLOWED REENTER TEST ID(S)	The start and end test IDs of a range were identical.	Reenter a valid test range.
END OF MSMD TEST(S). PRESS ENTER TO RESTART TCM	A MSMD run has completed.	Press ENTER to continue the TCM.
ENTER Y TO BYPASS CONTROL STORE LOAD	The requested MSMD storage load is the same as the storage load just completed.	Enter Y to request a different CS load. Press ENTER (with no Y) to run the same CS load.
INVALID LOOP COUNT REENTER LOOP COUNT	A not valid hex character was entered.	Enter a valid hex character.
invalid input CHECK YOUR ENTRY	PU diagnostic option V was selected and a not valid character was entered.	Enter a valid character.
INVALID TEST ID: $x x x x x x x x$ REENTER TEST ID(S)	A wrong test or section ID was entered. (The not valid ID remains in the input area.)	Reenter test or section ID(s).
INVALID OPTION: : REENTER OPTION	An invalid option was entered.	Enter a valid option.
INVALID RESPONSE - REENTER	An invalid option was entered after PU diagnostic option was selected.	Enter 0 or 1.
POWER GROUP NOT DEFINED CHECK OFS SCREEN	Power group on OFS screen is not defined.	Change the power group on QFS to a valid one.
MOUNT DIAGI ON DRIVE 2. PRESS ENTER WHEN READY.	The requested test is not on the diskette that is now installed.	Install the requested diskette and press ENTER.
MSMD CONTROL STORE LOAD: CSLOAD n	Informs the operator that the next MSMD storage load is loading. $\mathbf{n}=$ the load number (1-7).	None.
MSMD MONITOR ERROR. INVALID TEST ID. PRESS ENTER TO RESTART TCM.	The MSMD monitor detected a wrong MSMD section or test ID.	Press ENTER to return to the Diáñostic ivóde PU Diagnostic Selection screen.
MSMD RESET IN PROCESS	Run status information.	None.
MULTIPLE TESTS MUST BE OF THE SAME TYPE REENTER TEST ID(S)	A range of tests was selected that included both Basic and MSMDs.	Enter a range of test IDs that includes only Basics or only MSMDs.
NO PU REQUEST PRESS ENTER TO RESTART TCM	A stop command was given to the TCM without a request from the console. This can be either a a hardware failure or a diagnostic error.	Press ENTER to return to the Diagnostic Mode PU Diagnostic Selection screen. Run Problem Analysis to analyze the error.

Message	Reason	User Action Required
PRINT ERROR	A TCM command to the console printer failed. This is probably a printer problem.	Press ENTER to return to the General Selection screen.
PROCESSING UNIT POWER DOWN PRESS ENTER. USE PWR SCREENS.	Processing unit power is off.	Press ENTER to return to the General Selection screen. Power up the processing unit by the power screens (QW).
RANGE ENTERED NOT ON ONE DISKETTE REENTER TEST ID(S)	The range of tests selected are contained on more than one diskette.	Enter a range of test IDs that are contained on one diskette only.
RANGE ENTERED NOT ON ONE SECTION REENTER TEST ID(S)	The MSMD range selected is not contained in only one section.	Enter a range of MSMD test IDs that are contained in one section.
RECORD ALL INFORMATION ON THIS SCREEN. PRESS ENTER TO RESTART TCM.	A machine check occurred during a MSMD run. $x=$ the MSMD CS load number (1 to 7), but the TCM cannot be certain of which test was running when the check occurred.	Exchange the listed FRUs, and run the selected tests again.
RDID ERROR MOD ID: xxxx RC: xx	A diskette error occurred. Some common return codes are:	Press ENTER to return to the Diagnostic Mode PU Diagnostic Selection screen.
RE-ENTER MESSAGES	A wrong response was entered to a request for information.	Follow the displayed instructions, and enter the requested information.
RUN HALTED DUE TO TERMINATE ON ERROR OPTION. PRESS ENTER TO RESTART TCM.	An error was detected while running under the stop on error option.	Press ENTER to return to the Diagnostic Mode PU Diagnostic Selection screen.

- Cooprigitr IBM Corp. 1984

Message	Reason	User Action Required
SECTION $\mathrm{Zx} \times \mathrm{x} \times \times \mathrm{OO}$ ENDED (STARTED)	Run status information.	None.
SELECTED TEST(S) xxxx TO xxxx PROCESSED. PRESS ENTER TO RESTART TCM.	The selected Basic tests have run to completion.	Press ENTER to return to the Diagnostic Mode PU Diagnostic Selection screen.
SELECTED TEST(S) NOT FOUND OR BYPASSED. PRESS ENTER TO RESTART TCM.	Either no test exists in the selected range or not all tests in the selected range can be executed.	Press ENTER to return to the Diagnostic Mode PU Diagnostic Selection screen.
SELECT PU SIDE BY ENTERING " 0 " OR "1."	PU diagnostic C was selected and a character other than 0 or 1 was entered for the selected PU.	Enter 0 or 1.
TEST IDS MUST BE IN SEQUENCE REENTER TEST ID(S)	Selected test IDs were not entered in increasing order.	Enter test IDs in increasing order.
UNEXPECTED ERROR. GO TO START 001. USE REFERENCE CODE BELOW.	The support processor has detected an error.	Press ENTER to return to the General Selection Screen.
VERIFY SELECTED OPTIONS AND PRESS ENTER TO CONTINUE.	The selected options are highlighted. The user is given a chance to either change selections or leave it the way it is.	Press ENTER to go to the next screen.

4381						
B/M 2676380	MI Seq GE090	PN 6169411 3 of 3	EC A20558 O1 Oct 84	EC A20559 O3 Dec 84		

- Copright IBM Corp. 1984

logs

Contents
Introduction ${ }^{\text {How to }}$ Display Processor Lo.................... LOG 0011
Summary of Log Screens LOG 010
Reference Code History Log LOG 015
Maintenance and Support Subsystem Logs ... LOG 025
SP Logout Summary LOG 025

RSF Line Error Statistics . LOG 045
Processing Unit Logs LOG 050 Processing Unit Logout Directory LOG 050 Processing Unit Microword Directory $\cdots \cdots . .$. LOG 055
Processing Unit Logout Summary

Channel interface Control Check (IFCC) Logs . LOG 075 Channel Interface Logout Summary LOG 075

Power Logs Power Legs Error Logout Directory LOG 085 LOG 085
Po Power Error Logout Detail LOG 090
\square
-

When a hardware failure or a microcode error is detected in the processor, status information is collected,
formatted, and recorded in the logout area of the diskette. For the MSS, support processor status and device adapter latches are recorded. For the processing unit, the
scan ring latches are recorded.

Error Log Analysis (ELA) routines use the logged data to
isolate the failure by developing a reference code,
reference code extension, and FRU list. These are used
with the repair procedures to guide the service
representative in a repair action. See "Diagnostics" in
this volume for more information on reference codes.
The error logs are:

- Reference Code History
- Support Processor (SP)
- SP Event Counters
- Processing Unit (PU)
- Channel Interface Control Check (IFCC)
- Power.

Time-of-day Clock (TODC) Equivalent: The TODC Equivalent is recorded with each log to show the time the error occurred. The TODC Equivalent is stored in the support processor with a format of: $\mathrm{yy} / \mathrm{mm} / \mathrm{dd} \mathrm{hh} \mathrm{mm}$
ss. ss.
When the processor is powered up, the TODC Equivalent is set by the customer during support processor IML. The is set by the customer during support processor IML. Th
TODC Equivalent is updated periodically during normal machine operation from the system time-of-day clock.

How to Display Processor Logs
To display a log:

1. Set the CE Mode switch to CE Mode.
2. Press MODE SEL. The General Selection screen is displayed.
3. Refer to "Summary of Log Screens." Select the log you want to display, and key in the digits shown in

Summary of Log Screens

Log Type	Screen Name	To display, Enter:	Summary
Support Processor (SP)	SP Event Counters RSF Line SP Summary SP Detail	OESE OEL OESD OESDxx	Running totals of SP information. RSF line operations and errors. Summary of last 16 SP logs. Detailed information on SP $\log \mathrm{XX}$.
Power	Power Log Directory Power Log Detail	OEWD QEWDxx	Summary of last 16 power logs. Detailed information on power power $\log x x$.
Processing Unit (PU)	PU Logout Directory PU Summary Microword Directory PU Reconfiguration Data	QEPD QEPS QEPM QEPR	Last eight PU logs and last irrecoverable PU log. PU error counters. PU control storage registers at the time of failure. Areas of the processor reconfigured because of an error.
Channel	IFCC Summary IFCC Detail	QEI QEIDxx	Summary of last 16 interface control checks. Detailed information on interface control check xx .

4381-3
B/M 267

- Copyright IBM Corp. 198

reference code history log screen

The Reference Code History Log screen is a record of the last 31 different power, support processor, and processing unit reference codes with the time of failure and number of times each one occurred.
To display the Reference Code History Log screen

1. Press MODE SEL
2. Key in OERD and press ENTER.

To clear the Reference Code History Log screen:

1. Set the CE Mode switch to CE Mode.
2. Press MODE SEL
3. Key in OERDP and press ENTER
4. When prompted, key in P and press ENTER again.

Label Identification

RN: Record number. Record number 00 is the latest entry.

CT: Count. The number of consecutive times the same reference code was logged. If CT is greater than 1 , the TODC Equivalent gives the time of the first failure.

TODC EQUIV: The time of the failure.
REF CODE: The reference code defining the failure. For a dotailed description of reference codes, see "MSS, Power, and Reference Codes" in the "Diagnostics"
section.
RC EXTN: The reference code extension, it any, for the failure.

\square
${ }^{4381}{ }^{1}$

MI GFO10	$\begin{array}{l}\text { PN } 6169380 \\ 1 \text { of } 4\end{array}$
Seq GF0	

EC A20558
010

- Copriont 18M Corp. 1984
this page intentionally left blank

0000000000000000000000000000000000

MAINTENANCE AND SUPPORT SUBSYSTEM LOGS
LOG 025

Maintenance and Support Subsystem (MSS) hardware failures and microcode errors are logged if enough of the MSS is operational.

The MSS log screens are:

- SP Logout Summary
- SP Detail Log
- SP Event Counters
- Remote Support Facility (RSF) Line Error Statistics.

SP Logout Summary Screen

The SP Logout Summary contains a record of the last 1 SP error logs.

To display the SP Logout Summary screen:

1. Press MODE SEL.
2. Key in OESD and press ENTER.

To clear the SP Logout Summary screen:

1. Set the CE Mode switch to CE Mode.
2. Press MODE SEL.
3. Key in QESDP and press ENTER.
4. When prompted, key in P and press ENTER again

Label Identification

LN: Log number. Log number 00 is the latest entry.
EVENT: The total number of SP errors since the last
$C T$: The number of consecutive times the same failure occurred.

TODC Equivalent: Time of the log.
LVL: The level the SP microcode was running in at the time of failure.
MM: The master mask value.
MC: SP check register contents. For bit values, see
SPCK under "Label Identification" on page LOG 030

MSW: Microcode status word value.
C-IC: Corrected instruction counter value.
NST: The SP microcode instruction executing at the time of failure.

ADPT. Adapter address the microcode was working with at the time of failure

SIC: Address of the last microcode instruction.
LMR: Last module read from the diskette.

SP Detail Log Screen

The SP Detail Log screen contains detailed error information recorded at the time of a failure on the support processor
To display the SP Detail Log screen:

1. Press MODE SEL.
2. Key in QESD x and press ENTER. Where $x x$ is a log number ($00-15$) selected from the SP Logou Summary screen (OESD),

Two different formats are used for the SP Detail Log screen depending on the interrupt level of the SP microcode at the time of failure. The two formats are for:

Microcode levels 2 through 5 (see "SP Detail Log for Levels 2 through $5^{\prime \prime}$).

Microcode levels 1, 6, and 7 (see "SP Detail Log for Levels 1,6 , and $7^{\prime \prime}$).

Label Identification

LEVEL: Level of the SP microcode at the time of failure
MMASK: Master mask setting.
CMASK: Common mask setting
SPCK: SP check register contents. Bit values are:

- I/O parity erro

1 1/O timeout
SP storage parity error
SP microcode check
Burst mode chan
Always zero
6 Instruction Counter change
7 Always zero
LOMC: SP check register contents after log (bits are the same as SPCK).

IOIRR: I/O interrupt request register contents at the time of failure.

MIRR: Microcode interrupt request register contents at the time of failure.

IOADPT: 1/O adapter address (if error occurred during an 1/0 operation).
10CMD: 1/O command to a device attached directly to the SP bus.

IC: Instruction counter value.
C-IC: Corrected instruction counter value.
LMR: Last module ID read from the diskette
LMRB: Last module ID base program read
INST: Instruction at time of failure.
CNFG: Configuration data for devices attached to the SP bus

DLAT: Directory lookaside tables
REFCODE: Reference code defining the failure
RC EXTN: Reference code extension
MSWs: Microcode status words.

SP Detail Log for Levels 2 through 5

BURST MODE: Burst mode registers for each SP attached device.

I/O STATUS: Status of I/O devices attached to the SP. (See "I/O Status Fields" on page LOG 035.)
Note: A letter can be displayed before the value in the $1 / O$ status fields (except PU). The letters define the error condition. The error conditions are

C Machine check
P Parity erro
T Timeout
PLDA: Program link data area values. (See "PLDA Fields"' on page LOG 031.)

REGS: Data values in the active register pages.

PP: Primary page active at the time of error

SP: Secondary page active at the time of failure.
SPIL CURRENT INSTRUCTION: Address and data of the current SP microcode instruction at the time of failure

SPIL LAST INSTRUCTION: Address and data of the last SP microcode instruction at the time of failure.

SPIL BRN TABLE: Last 13 SP microcode instruction
DEVICE CONTROL BLOCK: Sixty-four bytes of device dependent information.

PLDA Fields

	c1	C2	C3		
Byte 0					
Bit 0	Soft stop	Async stop occurred	CE switch on		
Bit 1	Hard stop	Address compare	Operation rate not normal		
Bit 2	Not used	Mode or swap key	Check control not normal		
Bit 3	PU degraded	Console function request		Address control not normal	
Bit 4	Machine check	Start key disabled		Diagnostic test active	
Bit 5	Check stop	Not used			
Bit 6	Off-line	Mode key disabled		Not used	
Bit 7	Wait state	Swap key disabled		Not used	
Byte 1	No bits used	No bits used	No bits used		
	OP	CK		BF	
Byte 0					
Bit 0	Instruction step	Machine check channel detect		Block active	
Bit 1	Word step	Not used		Block invoked	
Bit 2	Clock cycle step	Not used		Block processing startAddress compare command	
Bit 3	Clock pulse step	Not used			
Bit 4	Repeat microword	Machine check no retry		Erase in progress	
Bit 5	Not used	Log machine check no retry		Save request	
Bit 6	Not used	Disable		Verify block	
Bit 7	Not used	Stop after log		Deactivate	
Byte 1 Bit 0 Bit 1 Bit 2 Bits 3-7	No bits used	No bits used			
				ODD patch, special block Not used Deactivate Not used	
Byte 0 C4 DS M					
Bit 0	Not used	Not used C	Cold IML	3270 mode	
Bit 1	Not used	Configured N	Not used	Printer/keyboard mode	
Bit 2	Not used	Not used N	Not used	RCS code	
Bit 3	Not used	Not used In	Interval timer	Not used	
Bit 4	Not used	Channel to channel N	Not used	Not used	
Bit 5	Start key	Not used N	Not used	RSAM code	
Bit 6	Stop key	Not used IPL	IPL failed	Not used	
Bit 7	External interrupt	Not used IM	IML failed	ROCF monitor	

SP Detail Log for Levels 1, 6, and 7

\square

B/M2676380 | MI | |
| :--- | :--- |
| Soq GF015 | PN 6169381 | EC A20558

0000000000000000000000000000000000

LOG 035

Bits		DISK1/DISK2	Bits	PWR	SBA
0-1:	00	Good ending	0	Not used	Control parity check Data parity check Command parity check Address parity check Shift register busy SP machine check Timer interrupt enable Timer interrupt request
	01	CRC error	1	Not used	
	10	Command error	2	Not used	
	11	Hardware error	3	Not used	
2-4:	000	Operation complete	4	Command check	
	001	Control complete	5	SP machine check	
	010	Drive error	6	Interrupt enable	
	011	Interrupt request	7	Interrupt request	
	100	Overrun/underrun			
	101	Timeout			
	110	Record not found			
	111	Disk not ready			
5:		SP check			
${ }_{7} \mathbf{7}$		Adapter enable			
7:		Interrupt pending			

	LCA	ccA	DCA	PUO and PU1
Byte 0				
Bit 0	Command received	Input request	Counter overfiow	Operate
Bit 1	Status received	Output request	Read timeout	Stopword
Bit 2	Chaining	DCE interrupt	Line error	370 mode
Bit 3	Stop transfer	Timer interrupt	Read error	EC/BC mode
Bit 4	Chaining cancel	Exception	Stop poll	DAT
Bit 5	Count $=0$	SP machine check	Timer	Wait
Bit 6	Interface disconnect	Interrupt enable	Error queue	Channel sequence match
Bit 7	Outstanding status	Interrupt request	Not used	CS address match
Byte 1				
Bit 0	SP interface error	Overrun	Extended status	Store address match
Bit 1	370 interface error	Underrun	Command complete	LS address match
Bit 2	Interface disable	Receive clock	DCA active	Not used
Bit 3	Status pending	SDLC invalid	Key status	System state
Bit 4	Adapter busy	SDLC frame	Not used	PU clock run
Bit 5	SP machine check	Wrong character	SP machine check	Channel clock run
Bit 6	Interrupt enable	Break byte	Interrupt enable	Storage clock run
Bit 7	Interrupt request	Adapter in sync	Interrupt request	Instruction step
Byte 2				
Bit 0	System reset	Receive	Not used	Microword step
Bit 1	Stack status	Transmit	Not used	
Bit 2	Enable/disable chaining	Inhibit 0 insertion	Not used	Pulse step
Bit 3	Select reset	Auto, EBCDIC	Not used	Disable error
Bit 4	CU end error	ASCII, SDLC	Not used	Control store error
Bit 5	Data cancel	Code length	Not used	Disable error
Bit 6	Not used	Code length	Not used	Channel error
Bit 7	Not used	NRZI	Not used	Instruction step
Byte 3				
Bit 0	Not used	DS ready	Not used	
Bit 1 Bit 2	Not used Not used	${ }_{\text {RLSD }}$	Not used Not used	Not used Not used
Bit 3	Not used	Ring indicator	Not used	Not used
Bit 4	Not used	DSR transmit	Not used	Not used
Bit 5	Not used	Not used	Not used	Not used
Bit 6	Not used	RLSD transmit	Not used	Not used
Bit 7	Not used	CTS transmit	Not used	Not used
Byte 4				
Bit 0	Not used	Terminal ready	Not used	Not used
Bit 1	Not used	RTS	Not used	Not used
Bit 2	Not used	Wrap	Not used	Not used
Bit 3	Not used	Test	Not used	Not used
Bit 4	Not used	Standby	Not used	Not used
Bit 5	Not used	Half speed	Not used	Not used
Bit 6	Not used	New sync	Not used	Not used
Bit 7	Not used	DCE interface disable	Not used	Not used

\square

SP Event Counter Screen

The SP Event Counter screen keeps a count of various events in the support processor.

To display the SP Event Counter screen:

1. Press MODE SEL.
2. Key in QESE and press ENTER.

More than one screen is needed to display the SP counters. If you want to move between screens, press and hold the ALT key and press the PAGE UP or PAGE DOWN key.

The TOTAL columns record the number of times the event occurred since the machine was installed. counters. The DELTA columns record the number of times the event has occurred since the last time the SP Event Counters were cleared.
If a TOTAL or DELTA field reaches its maximum value, it is reset and starts counting from zero. This can result in

If you want to clear the DELTA columns on the SP Event Counter screens:

1. Set the CE Mode switch to CE Mode.
2. Key in OESER and press ENTER.
3. When prompted, key in R and press ENTER again.
```
ERROR LOG DISPLAY* N HOURS *SP EVENT COUNTERS*
    CURRENT TODC EQUIV: yy/mm/dd hh mm ss
OO DELTA POWER ON HOURS
    MTAL DELTA TIMES POWERED ON
    0 0 HOURS IN DIAGNOSTIC MODE
    0 0 SP PARITY ERR HARD RECOV
    O SP PARITY ERR SOFT RECOV
    0
    0 0 SUCCESSFUL LCA RETRY
    0 O SUCCESSFUL DCA RETRY
COMMAND: QESE
AST RESET TODC EQUIV:
    MAST RESET TOD EQUIV:
    0 0
    0 0 AUTO SP-REIML
    O O UNSUCCESSFUL LCA RETRY
    O O UNSUCCESSFUL DCA RETRY
=>
```

```
ERROR LOG DISPLAY*
ON HOURS *SP EVENT COUNTERS*
    TOTAL POWER ON HOURS
        TOTAL POWER ON HOURS
    TOTAL DELTA
    0 RELA SUCCSSSFUL CCA RETRY
    0
    0
    0 PU-IML XA MODE
        00 PU-IPL SCESSFUL RETRY
        O PU SUCCESSFUL RETRY
        O PU UNSUCCESSFUL RETRY
```



```
    O O PU
COMMAND: QESE
```

CURENT TODC EQUIV: y / $/ \mathrm{mm} / \mathrm{dd} \mathrm{hh} \mathrm{mm}$
LAST RESET TODC EOUIV: yy $/ \mathrm{mm} / \mathrm{dd} \mathrm{hh} \mathrm{mm}$ LAST RESET

RESET DELTA DELTA UNSUCCESSFUL CCA RETRY UNSUCCESSFUL DDA RETRY
$0 \quad 0$ UNSUCCESSFUL PCA RETRY
$0 \quad 0$ PU-IML S370
$0 \quad 0$ PUI SUCCESSFUL RETRY
0 PU1 SUCCESSFUL RETRY
0 PU1 UNSUCCESSFUL RETRY
0 PU1 CHECK STOP RETRY
O PUI EXCGENT MÁCHINE CHECK
0 PUI CHANNEL RESET
=>

4381

$B / M 2676380$ | M1 | |
| :--- | :--- |
| Soq GF020 | $\begin{array}{l}\text { PN } 6169382 \\ 2 \text { of } 2\end{array}$ | EC A20568

01 Oct 84 - Coopright rim Corp. 1984
 000 00

RSF Line Error Statistics Screen
The RSF Error Statistics screen keeps a count of the number of Remote Support Facility operations and the line errors encountered.

To display the RSF Error Statistics screen:

1. Press MODE SEL.
2. Key in QEL and press ENTER.
CNFG/REMOTE

NUMBER OF OPERATIONS NUMBER OF ERRORS
NUMBER OF UNDERRUNS/OVERRUNS

Q GENERAL SELECTION
Z RETURN TO PROG SYS Z RETURN TO PROG SYS

COMMAND: QEL
RSF LINE ERROR STATISTICS

SEND
0000 0000

0000
0000

$$
0000
$$

COMMAND: QEL $==$
\square

The Processing Unit Log screens are:

- Processing Unit Logout Directory
- Processing Unit Microword Directory
- Processing Unit Logout Summary
- Processing Unit Reconfiguration Data

Processing Unit Logout Directory Screen

The Processing Unit Logout Directory screen contains information on the last nine processing unit logs if at least one of them was caused by an irrecoverable error. If none of the last nine PU logs were caused by an irrecoverable error, the screen contains the last eight PU logs and the last log caused by an irrecoverable error.

To display the Processing Unit Logout Directory screen:

1. Press MODE SEL.
2. Key in OEPD and press ENTER

To clear the Processing Unit Logout Directory screen:

1. Set the CE Mode switch to CE Mode
2. Press MODE SEL.
3. Key in QEPDP and press ENTER.

Label Identification
ID: Log identifier number from 0001 to FFFF.
PU: The failing processing unit (0 or 1).
TODC: Time of the failure
REFERENCE CODE: The reference code that resulted from the error, or blank if the reference code was not available.

ERR: Storage error that occurred as follows
DBE Double-bit error
FSS A soft-soft double-bit error was forced by retry. KEY Key error

STG ADDR: The location of a storage failure if a storag error occurred or the message AD N/A if the address is not available.

MACH STATUS: The machine status after the failure is logged and analyzed as follows:
CHANNEL ERRO
A channel error occurred. If the channel error cannot be corrected, the channel is removed from use and the failing channe field.
CHECK STOP
An error occurred that cannot be retried.
CHECK STOP (RESET)
An error occurred during system reset.
EXIGENT MACHINE CHECK
An error occurred with processor damage or system damage.

LOGOUT NOT EXIST
No logout data is available for the error
LOGOUT PURGE
The date and time the log was cleared. SUCCESSFUL RETRY

The error condition was retried without another error.

UNSUCCESSFUL RTY
he error condition was retried and
another error occurred.
CHANNEL RST
An \mathbf{X} indicates that the channells) (00 through 08) were reset because of the failure. A channel ID of 00 through 08 shows the ID of a channel that was emoved from use because of an error

4381 B/M 2676380	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { MI } \\ \text { Seq_GFO25 } \\ \hline \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { PN } 6169383 \\ & 2 \text { of } 5 \\ & \hline \end{aligned}$	$\begin{array}{ll} \text { EC A20558 } \\ 01 & 0 c t ~ 84 \\ \hline \end{array}$				

- Coprright 18 m Copp. 1984

Processing Unit Microword Directory
Screen
Two Processing Unit Microword Directory screens contain a record of the information stored in the PU control storage registers at the time of a failure.

To display the Processing Unit Microword Directory screens:

1. Press MODE SEL
2. Key in OEPM and press ENTER. The first Processing Unit Microword Directory screen is displayed.
3. Press ENTER to display the second screen.

While either of the screens is displayed, pressing ENTER will display the other screen.

Label Identification

Note: A next to one of the fields shows the field contains microinstruction address or data existing at the contains milcroin

ID: The same ID as the Processing Unit Logout Directory screen.
CREG: The microinstruction performed at the time of failure.

CREGSAVEA, CREGSAVEB, and CREGSAVEC: The last three microinstructions performed.

CSARBU: Address of the microinstruction performed at the time of failure.

SAVERG: Address of the next-to-last microinstruction.
CK STOP, RTY FLAG, GHERDARD, GHERDASP, GHERDACC, and COMMUNICATION: Contain additional error information intended for engineering use only.

Examples of PU Microward Directory Screens

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

COMMAND: QEPM
==> PRESS ENTER

PROCESSING UNIT M		ROWD	LOGOUT DIRECTORY		MODEL:4381	SERIAL NUMBER:	
0185	050200co	000000	C4008000	00000000	00000000	1201928	00000000
0184	41000040	00008200	00000000	00056000	00000000	92870000	00
0183	60000080	00005306	1440000C	680000AO	00000000	9287	000
0182	020080co	00080000	00000000	00000000	00000000	1201928	0000
0181	60000000	0000E87E	04000000	00000000	00000000	12019281	00000000
0180	020057F0	00080000	00000000	00000000	00800000	92879880	00000000
01AF	020057F0	00080000	00000000	00000000	00800000	92879880	00000000
OIAE	60000000	04000000	008000co	00000000	00000000	$911201 E 0$	00000000
01 AD	600000co	00005030	04000000	00000000	00000000	12019281	00000

	Sol	$\left.\right\|_{\text {PN } 6 \text { f } 5169383}$					

- Copright rim Corp. 1884

Processing Unit Logout Summary

A Processing Unit Logout Summary screen is provided for each processing unit. The Processing Unit Logout Summary screens contain error statistics for sections of the processing units.

To display the Processing Unit Logout Summary screens:

1. Press MODE SEL.
2. Key in one of the following:

- OEPSO for processing unit 0 (PUO)
- OEPS 1 for processing unit 1 (PU1).

3. Press ENTER.

Each entry on the PU Logout Summary screen has two counters. The counters in the left-hand columns can be changed or reset by moving the cursor to the counter the center columns collect over the life of the machine; they cannot be reset.
Machine status and storage error statistics are displayed in the left-hand side of the screen. The rest of the screen has error statistics for each area of the processing unit.

Label Identification

SUCCESSFUL RETRY: The processor retried a machine check successfully.
UNSUCCESSFUL RETRY: The processor did not retry a machine check successfully.

UNRTY (RETRY 1): An unretriable machine check occurred.

UNRTY (RETRY 2): An unretriable machine check occurred during retry
UNRTY (NO RETRY): The processor was operating with heck control in no retry mode when a machine check occurred.

CK ST (RETRY 1): The processor went to check stop on a machine check.

CK ST (RETRY 2): The processor went to check stop on a machine check that occurred during retry
CK ST (SKIP LOG): The processor was operating with heck control in no log. A machine check occurred during retry, the counter was updated but no log was recorded.

CK ST (MC RESET): A machine check occurred during processor IML or system reset.
KEYS: A storage key error occurred.
DBE HARD-HARD: A storage double-bit error where both bits are solid failures.

DBE HARD-SOFT: A storage double-bit error where one bit is a solid failure and the other bit is an intermittent failure.
BE SOFT-SOFT: A starage double-bit error where both bits fail intermittently.

AADOWARE COUNTER: Records the number of single-bit main storage errors.

PU Reconfiguration Data

The PU Reconfiguration Data screen records any reconfiguration that takes place because of a processing
unit error. Up to thirty reconfiguration logs can be stored.

To display the last 15 reconfiguration logs:

1. Press MODE SEL.
2. Key in QEPR and press ENTER.

If there are more than 15 reconfiguration logs, the message PRESS ENTER is displayed at the bottom of the screen.

Label Identification

LOGID: The same ID as the Processing Unit Logout Directory screen (OEPD). Since all processing unit errors do not result in reconfiguration, all log IDs on the QEPD screen may not be displayed on the PU Reconfiguration Data screen.
TODC: The time of the failure.
Reconfiguration Data: Shows what areas of the processing unit have been reconfigured because of the error. The areas that can be reconfigured are:

- CACHE

Cache is reconfigured on a byte basis. If byte four of cache is bad, byte four is assigned to the backup area cache is bad, byte four is assigned to the back
for all cache pages. The reconfigured bytes (0 through 7) are indicated by an X.

- cache dir

If a part of the cache backup area is bad, the associated cache directory entry is used to flag the processor that this area of cache cannot be used. The cache directory has 32 associated classes (CONG. CL) with eight slots each.

- CDB

The channel data buffer has four extra buffers that can be used for reconfiguration: two extra buffers (X and Y) for channels 0 through 5 and two extra buffers (X and Y) for channels 6 through 8. The extra buffers are shown with the channels assigned to

- STG DBE

If a double-bit error occurs in main storage, the erro ype is displayed with the address of the failing doubleword. The error types are:

SS Both bits are failing intermittently (soft-soft). This error is not correctable.

HH Both bits are failing all the time (hard-hard). This error is correctable.

HS One bit is failing all the time; the other is failing intermittently (hard-soft). This error is correctable.

CR The error is correctable.
NC The error is not correctable.
ERR A machine check occurred while trying to analyze an error. The error type was not determined.
NE No error was found
The error type is displayed to the left if an even address failed and to the right if an odd address failed. The sample screen on this page shows a
soft-soft, noncorrectable error for an even address.

- CNT STG

Control storage is reconfigured to a 2 K backup area on a byte pair basis. The screen displays the byte pai that was reconfigured, bit 20, and the address.

- HW MULT

If the multiply function fails, multiply instructions are done by microcode

- SWAP BUFF

The swap buffer is reconfigured on a byte pair basis.
The reconfigured bytes (0 through F) are indicated
with an x .
LATEST LOGID: The last log that required
reconfiguration.

Two channel IFCC log screens are available

- Channel Interface Logout Summary
- Channel Interface Logout Detail.

Channel Interface Logout Summary Screen

The Channel Interface Logout Summary screen displays the number of Interface Control Check (IFCC) logs take the number of Interface Control Check (IFCC) logs channels with greater than eight logs, $8+$ is displaye
The last channel to have an IFCC is displayed under LAST IFCC SAVED.
To display the Channel Interface Logout Summary screen

1. Press MODE SEL.
2. Key in OEl and press ENTER

Notes:

1. Only channels which are configured for the processor are displayed on the Channel Interface Logout Summary screen
2. If a reconfiguration has taken place, the LAST IFCC SAVED field may point to a channel that is not displayed on the screen.
3. If multiple errors occur in a short time span, IFCC logging can be stopped to increase processor speed. logging has been stopped, you can start logging gain by clearing the channel interface logs or by top while clearing the log must a processor is in hardstop when the logs are cleared, logging will not continue when the system is started again.
4. If ** is displayed in the LAST IFCC SAVED field, no IFCC have occurred since the ${ }^{\circ}$ FCC logs were purged.
5. If you display one of the Channel Interface Logout screens (QEI or QEIDxxy) with the system running and an interface control check occurs, the General Selection (Q) screen is displayed. (This will occur for nd you want to display a console function screen, press STOP

सERROR DISPLAYS* $X X Y=C H N L X X, L Y$

DXXY DISPLAY

P PURGE IFCC LOGOUTS

Q General select
Z RTN TO SYSTEM
LAST PURGE: $y y / \mathrm{mm} / \mathrm{dd} \mathrm{hh} \mathrm{mm}$
COMMAND: 0 :
COMMAND: QEI

LAST
IFCC
SAVED CHNL LOGGE $\begin{array}{ll}00 & 00 \\ 01 & 02\end{array}$
$\begin{array}{ll}10 & 00 \\ 11 & 00 \\ 12 & 00 \\ 13 & 00 \\ 14 & 00 \\ 15 & 00 \\ 16 & 08+ \\ 17 & 00 \\ 18 & 00\end{array}$

4381
4381
B/M 2676380 \square PN 6169384
1 of 2 \square
\square

Channel Interface Logout Detail Screen
On the Channel Interface Logout Detail Screen, log 1 always contains information about the latest failure. If there are more than eight logs on the selected channel, $8+$ is displayed for the selected channel on the Channel Interface Logout Summary Screen. Logs 1 through 4 through 8 contain information about the first four logs occurring after the logs were cleared. In this case, $\log 8$ is the first error to occur after the logs were cleared.
To display the Channel Interface Logout Detail screen:

1. Press MODE SEL.
2. Key in OEIDxx and press ENTER. Where $x x$ is the address of the PU/channel (00 through 08 for channels on PUO or 10 through 18 for channels on PU1) that you want to display.
3. To intensify the tag lines active for a specific failure, key in QEIDxxy and press ENTER. $x x$ is the same PU/channel and y is the log number (1 through 8) from the L field.

Note: If the sequence count (SO) contains 68, 6C, or 78, the device address (DEVA) and logical address
(SCHID) are invalid.

Label Identification

L: The log number.
TYPE: 370 if the device active at the time of failure uses 370 mode; 370 X if the device uses 370XA mode.

DEVA: The address of the device the channel was working with at the time of failure
SCHID: The operating system's logical device address (for 370XA mode only).

SO: The microcode sequence count for the error. For information on sequence counts, see Volume A06, "Service Aids,'" "Catalog Numbers ($\mathrm{S} / 370$)" or "Catalog Numbers ($\mathbf{S} / 370 \times \mathrm{A}$).

ERROR	$\begin{aligned} & \text { LOGOUTS } \\ & \text {-OADDR } \end{aligned}$	$\begin{aligned} & \text { *CHANNEL } 00 \text { interface } \\ & \text {-TAGS-- } \end{aligned}$						LOGOUTS* CAT		TOD:	/dd hh:mm:ss ENGINEERING
L TYPE	DEVA SCHID	in	OUT	SQ	IN	OUT	CNT	NUM			
370x	02337777	44	32	11	55	77	FF	55 y	/dd	hh:mm:	0000000
370	O00E ****	00	02	44	00	00	04	$42 \mathrm{yy} / \mathrm{m}$	m / dd	hh:mm:ss	OE00FOIC20
370	000E ****	00	02	44	00	09	09	$42 \mathrm{yy} / \mathrm{m}$	m / dd	hh:mm:ss	400201692
4370	OOOE ****	00	02	44	00	00	03		dd	h:m	E00F01C20
5370	O00E	00	02	44	00	09	05	42 yy	m / dd	hh:mm:ss	2400201692
6370	000E ****	00	02	44	00	00	02	$42 \mathrm{yy} / \mathrm{m}$	m / dd	hh:mm:ss	OE00FO1C20
7 370x	02338657	44	32	77	55	77	64	$55 \mathrm{yy} / \mathrm{m}$	m / dd	hh:mm:ss	000000000000
$\begin{aligned} & 8330 \\ & \text { TAGIN }=2 \\ & \text { COMMAN } \end{aligned}$	OOOE **** REQ OPL DIS : OEIDOO1					V/DAT		$B O U T=A D$	CMD	hh:mm:ss DAT SRV	2400201C92 SUP OPL SEL

\qquad

TAGS IN: Tag in lines active on the channel at the time
of failure as follows:

Bit:	0	1	2	3	4	5	6	7
Tag:	REQ	OPL	DIS	ADR	SEL	STA	SRV/DATA	Not
used								

Note: Tags In gives the tag values after the interface receivers. The interface lines can be different from the values of Tags in if a receiver fails.
TAGS OUT: Tag out lines active on the channel at the time of failure as follows:

Bit:	0	1	2	3	4	5	6	7
Tag:	Not used	ADR	CMD	DAT	SRV	SUP	OPL	SEL

Note: Tags Out gives the tag values before the interface drivers. The interface lines can be different from the values of Tags Out if a driver fails.
The abbreviations used for the tag lines are:
$\begin{array}{ll}\text { ADR } & \text { Address in/out } \\ \text { SEL } & \text { Select in/out }\end{array}$
CMD Command out
$\begin{array}{ll}\text { SRV } & \text { Service in/out } \\ \text { DIS } & \text { Disconnect in }\end{array}$
DAT Disconnect
OPL Operational in/out
STA Status in
$\begin{array}{ll}\text { REO } & \text { Request in } \\ \text { SUP } & \text { Suppress out }\end{array}$
BUS IN: Data on bus-in at the time of failure, BUS OUT: Data on bus-out at the time of failure.

CNT: The number of times the same error occurred sequentially.
CAT NUM: The microcode catalog number for the erro For information on catalog numbers, see Volume A06,

TOD: Time-of-day equivalent of the error if the CNT field is one, or the time-of-day equivalent for the last error of the group if the CNT field is greater than one.

ENGINEERING DATA: Additional data logged to help dentify the failure. The fields are all one byte long and are labeled:
Byte Field ID
0 CHSYNCO
CHDATAO
3 CHDATAZ
4 CHCMDR
5 CHIMODE (370XA only)
WVRKFATH (З $370 \times$ A oniy)
TOD (top line): Time you requested the IFCC Logout Detail screen.

TAGIN=...TAGOUT=... (line 19): The tag lines active at the time of failure are intensified on this line for the log ID you entered

0000000000000000000000000000000000

POWER LOGS

Two power error logout screens are available:

- Power Error Logout Directory
- Power Error Logout Detail

Power Error Logout Directory Screen

The Power Error Logout Directory screen displays the reference codes and times of the last 16 power logs. Line 00 represents the latest power log.
To display the Power Error Logout Directory screen:

1. Press mode del.
2. Key in QEWD and press ENTER.

To clear the Power Error Logout Directory screen:

1. Key in OEWDP and press ENTER.
2. When prompted, key in P and press ENTER again.

All the Power Error Logout screens are cleared.
yy/mm/dd hh:mm:ss 1101600 E
$02 \mathrm{yy} / \mathrm{mm} / \mathrm{dd} \mathrm{hh}: \mathrm{mm}: \mathrm{ss} \quad 1141300 \mathrm{E}$
$02 \mathrm{yy} / \mathrm{mm} / \mathrm{dd} \mathrm{hh}: \mathrm{mm}: \mathrm{ss} \quad 1141300 \mathrm{E}$
$03 \mathrm{yy} / \mathrm{mm} / \mathrm{dd} \mathrm{hh}: \mathrm{mm}: \mathrm{ss} 1101920 \mathrm{E}$
$03 \mathrm{yy} / \mathrm{mm} / \mathrm{dd}$
04
$\mathrm{yy} / \mathrm{mm} / \mathrm{dd}$
$05 \mathrm{yy} / \mathrm{mm} / \mathrm{dd} \mathrm{hh}: \mathrm{mm}: \mathrm{ss} 00000000$
$06 \mathrm{yy} / \mathrm{mm} / \mathrm{dd} \mathrm{hh}: \mathrm{mm}: \mathrm{ms}$:ss 000000000

$\mathrm{yy} / \mathrm{mm} / \mathrm{dd}$ hh:mm:ss 00000000
$\mathrm{yy} / \mathrm{mm} / \mathrm{dd} \mathrm{hh}: \mathrm{mm}: \mathrm{ss} 00000000$
$10 \mathrm{yy} / \mathrm{mm} / \mathrm{dd}$ hh:mm: ss $\mathbf{h h}: \mathrm{mm}: \mathrm{ss} 000000000$
$11 \mathrm{yy} / \mathrm{mm} / \mathrm{dd}$ hh:mm: ss 00000000

$13 \mathrm{yy} / \mathrm{mm} / \mathrm{dd} \mathrm{hh}: \mathrm{mm}: \mathrm{ss} 0000000$
$14 \mathrm{yy} / \mathrm{mm} / \mathrm{dd} / \mathrm{hh}: \mathrm{mm}: \mathrm{ss} 0000000$
$14 \mathrm{yy} / \mathrm{mm} / \mathrm{dd} \mathrm{hh}: \mathrm{mm}: \mathrm{ss} 00000000$
$15 \mathrm{yy} / \mathrm{mm} / \mathrm{dd} \mathrm{hh}: \mathrm{mm}: \mathrm{ss} 00000000$
$15 \mathrm{yy} / \mathrm{mm} / \mathrm{dd} \mathrm{hh}: \mathrm{mm}: \mathrm{ss} 00000000$
COMMAND: LEWD
TIME OF LAST PURGE: $y y / m m / d d$ hh:mm:ss
\square
\square

Power Error Logout Detail Screen

The Power Error Logout Detail Screen gives detailed information about the power system at the time an error occurs.

Note: Only the last four logs of the Power Error Logout Summary screen (00 through 03) can be displayed in detail.
To select the Power Error Logout Detail screen:

1. Enter QEWDxx; where xx is the selected line number from the Power Error Logout Summary screen 100 through 03).

abel Identification

POWER LOGOUT xx: The detail logout number you selected by entering OEWDxx

REFERENCE CODE: The reference code that defines the power error condition.

TOD: The time of the failure.
CONTROL LATCHES AT TIME OF ERROR: The sequence of power control latches up to the failure.

OWER ERRORS: The power errorls) detected at the time of failure.

4381 B/M 2676380	$\begin{array}{\|l\|l\|} \hline \mathrm{MI} \\ \text { Seq GF035 } \\ \hline \end{array}$	$\begin{aligned} & \text { PN } 6169385 \\ & 2 \text { of } 2 \\ & \hline \end{aligned}$	EC A20558 01 Oct 84				

LOG 090

Contents

System Test Introduction	SYS TEST 015 SYS TEST 015
Wait State Codes	SYS TEST 015
ST4381 and ST4381XA Run Flo	SYS TEST 020
Channel-to-Channel	SYS TEST 025
3890 Initialization Procedures	SYS TEST 025
ing MVS Utilities to Copy System	
Test/4381XA	SYS TEST 030
430	
Introduction to 43	
How to Use 4300-FRIE	
Loading 4300-FRIEND from the DIAG1	
Diskette	SYS TEST
Overview on Making a CCW Chai	SYS TES
Specifying a Single CCW Chain	SYS TEST
Advanced Capabilities of 4300-FRIEND	SYS TEST
Specifying Multiple CCW Chains	SYS TEST 0
Symbolic 1/O Areas	SYS TEST 045
CCW Chain Sequence Control and Delay	
Between CCW Chains	SYS TEST 050
Data Compare	SYS TEST
Increase/Decrease Counter	SYS TE
Data Ripple/Random	SYS TEST 0
Predefined CCW Chains	SYS TEST 055
Storaga Protection Key Modification	SYS TEST 055
Trace Function	SYS TEST 055
硣	SYS TEST 060
Unit Control Block (UCB)	SYS TEST 060
Information Requested by 4300-FRIEND	SYS TEST 065
4300-FRIEND Messages	SYS TEST 075
Status and Operator Messages	SYS TEST 075
Error Messages	SYS TEST 080
4300-FRIEND Commands	SYS TEST 095
Changing Existing CCW Chains	SYS TEST 115
Change Commands	SYS TEST 125
CCW Chain Execution Control	SYS TEST 125
W Commands	SYS TEST 130
General CCWs	SYS TEST 130
Disk CCWs	SYS TEST 130
Fixed Block (FB) Commands - 3370	SYS TEST 135
Tape CCWs	SYS TEST 135
Card Reader/Punch CCWs	SYS TEST 140
Printer CCWs	140
CRT and Hard-Copy Printer CCWs (3277/3278-3287)	SYS TEST 140
eleprocessing CCWs (270x, 370	SYS TEST 145
CCW FLAGS	SYS TEST 150
COMMAND MODIFI	SYS TEST 150

Introduction

There are two versions of System Test for the 4381. Use System Test/4381 (abbreviation: ST4381) if your system runs in 370 mode only. Use System
est/4381XA (abbreviation: ST4381XA) if your system uns in 370XA mode or in both 370 and 370XA modes. Note:

Use the flowcharts on this page and page
SYS TEST 020 for general information on running eithe ST4381 or ST4381XA. The operation of either System Test is the same.

This page provides information about System Test. If you are not sure how to begin, read this page. Be especially attentive to the information about protecting customer data.

To run System Test, go to page SYS TEST 020.
For information on copying ST4381XA using MVS utilities, see page SYS TEST 030.
Note: For more information on running System Test see the information shipped with your ST4381 tape and he information printed on the system printer after you IPL.

Wait State Codes

o display the wait state codes, press the STOP key. The code is displayed in the status area of the screen
0000FFO1: Enabled wait state at IPL time; ST4381 is waiting for the ENTER key to be pressed.

OODEADO1: An irrecoverable error on the operator onsole is preventing communication with the operator. More information may be available on the printer

ODEADO2: An irrecoverable error occurred on the ST4381 load device. More information may be availabl on the printer.

OODEADO3: The ST4381 control program was damaged by an unexpected storage alteration or program interrupt, or a tape for $\mathrm{S} / 370$ mode (ST4381) was IPLed in S/370XA mode.
OODEADO4: Unrequested continuous interrupts are ccurring when they are masked off. More information occurring when they are masked off. More information

ODEADO5: An irrecoverable error occurred while changing processing units for an $1 / O$ operation.

OOEEEEEE: System Test is terminated in response to the Terminate command. This is the normal end of tes

Reasons to Run ST438

- To test the I/O configuration
- After you install an EC
- To attempt to repeat an earlier failure
- To copy your ST4381 tape

Data Protection

Warning: Have You Protected The Customer's Data?

Magnetic Tape Drives

- Do not test a tape drive if it is shared by another system; always make it not available. Directions on how to so this are displayed, when needed, on the screen.

Always install a scratch (spare) tape on the tape drives being tested.

- Always remove a customer's tape from a tape drive if you are not sure of its safety.
- Write a tape mark on all blank tapes (the screen gives directions when needed).
- Do not change the switches on tape control units with the communicator feature after the start of preconfiguration

DASD Devices

- Do not test a DASD device that is shared. This slows system operation and may stop (lock out) the customer's processor. To prevent this, either make the shared DASD not available (drop it) or vary it to Test Level 2 (the screen gives you directions when they are needed).
- Install a CE pack on DASD with removable packs for level 1 testing.

To Run ST4381, You Need:

- A tape load device
- An operator console
- Two megabytes of processor storage
- The I / O devices to be tested
- An output printer (recommended).

Getting Ready To Run ST4381

1. Ensure that the processor is IMLed

Note: An IPL from PU1 in 370 mode requires Note: An IPL from Pu1 in 370
2. Ready your IPL device.
3. Display the Program Load (OL)/screen, and ensure

- The correct mode is specified $(S / 370$ s/370XA).
o change the mode, display the OLI screen, and select the correct mode.
- U IPL UNIT specifies the ST4381 load device
- The correct processor is selected

To select the IPL processor key QTO for PUO or OT1 for PU1.
4. Display the QFO screen, and ensure that the console is in DISPLAY mode and that the display console have assigned addresses.
5. Make ready the devices to be tested.

Note: The hard copy output printer must be connected to the same processor used for IPL.
6. Go to the next page

ST4381 and ST4381XA Run Flowchart

$4381-3$

B/M 2676380 $\left.$\begin{tabular}{|l|l|l|l|}
\hline $\begin{array}{l}\text { MI } \\
\text { Seq GG010 }\end{array}$ \& $\begin{array}{l}\text { PN 6169387 } \\
\text { 2 of } 2\end{array}$

\hline

\hline EC A20558

01 Oct 84

 \right\rvert\,

EC A20560

18 Feb 85

\hline
\end{tabular}

- Copright 18M Coxp. 1984

Channel-to-Channel
No testing is done on a channel-to-channel adapter or a 3088 unless they are varied to level 1 after configuration. Also, either run in wrap mode or run one of the following programs on the other CPU at the same time:

ST4300
ST370
System Test/4381
System Test/4381XA

3890 Initialization Procedures

To test a 3890 Document Processor with System Test/4381 or System Test/4381XA, do the following:

1. Ensure that functional coreload *FAO is loaded and that the test routine switch is set to image run.
2. Set all features to off using the operator panel. Fo details, see the 3890 Document Processor Operator's Guide.
3. Install a jumper from 01B-C3J06 to ground. (This prevents time-outs.)
4. Set the On Line switch to On Line and press START.
5. After starting System Test/4381, make the 3890 not ready.
6. Vary the 3890 to test level 1.
7. Set the Test Routine switch to Process.
8. Place test documents in the hopper and pres START. Testing of the 3890 begins.
9. Remove the time-out jumper at the end of the test.

```
Using MVS Utilities to Copy System
Test/4381XA
Copy System Test/4381XA to one of the following Direc
    Access Storage Devices (DASD):
    3330
    3340
    3375
    3380.
To copy System Test/4381XA:
1. Delete the System Test/4381XA data set if it exists.
2. Copy System Test/4381/XA to DASD.
3. Create an IPL record.
Use the following JCL for steps }1\mathrm{ and 2.
Note: All lowercase characters are installation
dependent and must be specified by the user.
\begin{tabular}{|c|c|c|}
\hline //COPYST & JOB & paramet \\
\hline //STEP 1 & EXEC & PGM \(=1 \mathrm{EFBR} 14\) \\
\hline //DELDSN & DD & DSN=S80.SYSM, VOL=SER=volid, UNIT=disk, DISP=(OLD,DELETE) \\
\hline \(1 /\) STEP2 & EXEC & PGM=LOADER, REG \(10 \mathrm{~N}=1024 \mathrm{~K}\) \\
\hline //SYSLIN & DD & \(V O L=S E R=580 T A P, ~ U N I T=\) tape,\(L A B E L=(3, N L\) \\
\hline & &  \\
\hline //SYSLOUT & DD & SYSOUT \(=\) A \\
\hline //TAPEFILE & DD & VOL=REF \(={ }^{*}\). SYSLIN, UNIT \(=A F F=S Y S L I N, L A B E L=(, N L)\), \\
\hline & & DCB \(=\) DEN \(=3, \mathrm{D}\) SP \(=0 \mathrm{~L}\) D \\
\hline //DISKFILE & DD &  \\
\hline \[
11
\] & &  \\
\hline //SYSPRINT & DD & DCB \(=(\) LRECL \(=80, B L K S ~\)
\(S Y S O U T=A\) \\
\hline
\end{tabular}
Notes:
1. Correct execution results in a return code of 0 . If the return code is not 0 , refer to the SYSPRINT output for the error messages
2. System Test/4381XA requires a new or empty data set. If the data set already exists, delete it and
reallocate it prior to the copy.
3. The copy program requires a 100 K region.
```


Use the following JCL for step 3.
Note: All lowercase characters are installatio dependent and must be specified by the user.

$\begin{array}{lll}\text { //WRIPL } & \text { JOB } & \text { parameters }\end{array}$
//ISTEP3
\(\begin{array}{lll}//SYSPRINT \& DD \& \begin{array}{l}SYSOUT=A
D I S P=S H R, D S N=S 80 . S Y S M(U I P L D R), ~\end{array},
/ / 1 P L T E X T \& D D \& DIS\end{array}\)
 REFORMAT DDNAME(S80) VERIFY(volid) IPLDD(IPLTEXT)

0000000000000000000000000000000000

4300-FRIEND

Introduction to 4300-FRIEND

4300-FRIEND (Fast Running Interpreter Enabling Natural Diagnosis) is a test tool that lets you analyze complex I/ probiems. It is a stand-alone, offline program that console. .

4300-FRIEND supports all channel command words (CCWs) for most S/370 files, drums, tapes, card reader/punch units, and teleprocessing devices. You enter each channel command from the console keyboarc and run at the same time.

If 4300-FRIEND needs any additional information about the command (such as record numbers or data length),

How to Use 4300-FRIEND

Loading 4300-FRIEND from the DIAG1 Diskette
Note: To run 4300-FRIEND to Processing Unit 1 (PU1) requires a display console attached to channel 0 on PU1.
To load 4300-FRIEND from the DIAG1 diskette

1. Do a system IML (S/370 mode)

Note: If your normal console keyboard language is Japanese/Katakana, use the OFL screen to sele U.S. English before running 4300-FRIEND. For see Volume A06, "(aFL) Language Configuration."
2. Key OCLEAR next to COMMAND, press the ENTER key
3. Key QFO next to COMMAND and then key N next to PRT/KYBD, press the ENTER key
4. Set the CE Mode switch to CE Mode.
5. Key either OTO or OT1 next to COMMAND to select PUO or PU1 press the ENTER key.
6. Key OLKE next to COMMAND, press the ENTER key Message MOUNT PROPER DISK, ENTER is displayed.
7. Remove the FUNC2 diskette from diskette drive 2 , insert the DIAG1 diskette into diskette drive 2, and press the ENTER key. After 4300-FRIEND is loaded message REMOUNT FUNCTIONAL DISK is displayed.
8. Remove the DIAG1 diskette and insert the FUNC2 diskette into diskette drive 2
9. Press the MODE SEL key on the system display console (the keyboard near the OCP).
10. Key ORES next to COMMAND, press the ENTER key

Note: If you are using a single console system, do steps 11 through 13; if you are using a multiple console system, skip steps 11 through 13, and go to

1. Key OZ next to COMMAND, press the ENTER key
2. Press the ENTER key twice (4300 -FRIEND starts running).
3. Enter your replies to the 4300 -FRIEND requests.
4. Press the ENTER key on the display console that you want to use to control 4300 -FRIEND.
5. Enter your replies to the 4300-FRIEND requests on the display console you selected in step 14. You can now use the system display console for normal manual system console functions while the display console you selected in step 14 is controlling 4300-FRIEND.)

The following lists $4300-$ FRIEND requests. For details bout these requests, see "Information Requested by 300-FRIEND.

ADR=	LOG START $=$
ATT=	MASK=
$\mathrm{BBCCHH}=$	MASK BYTE=
BL OFFS=	MLCCCBBCCHHRDDS $=$
BLCK CNT=	MODE (BC/EC) $=$
CMD=	MODE CMD=
$\mathrm{CYL}=$	MODEL=
DATA $=$	NUMBER OF TIMES=
DEV=	OP BYTE=
DEV ADDR=	PHY START $=$
DEV TYPE=	RCD NO=
$\mathrm{DL}=$	REPL CNT $=$
HARD $\operatorname{COPY}(\mathrm{Y} / \mathrm{N})=$	SD=
HD=	SEC PRINTER ADDR=
IDAWS IN HEX=	SECOND SD=
KEY=	THIRD SD=
$\mathrm{KL}=$	WCC=

LOG END=
following lists 4300-FRIEND commands. For details bout these com 4 . 4 D Commandi
$\$ \$?$
$\$ \$ n n n$

$\$ \$ n n n, *$

$\$^{*}=\mathrm{hh}$
? or ??
ADD
ALARM
ALTER KEY
ALTER nnn
BMPX
BTS
BTS
BUILD
CCW
CHANGE KEYBOARD
CHANGE nnn
CLEAR
CLEAR\$C
COMPAR
CONFIG
CONNEC
COUNTER
CREATE
CSW $=$ xxx
DATA DUMP
DECREASE
DISCONNECT
DISPLAY
DUMP \$
DUMP KEY
DUMP
DUMPT
EXCIRIO
EX CLRIO
EX HDV
EX STIDC
EX TCH
EX TIO
flag
GO
HALT
HELP
increase INT
KEY CAW
KEY CCW
KEY IDA
LIST
LOOP
NO ALARM
NO BMPX
NO COMPARE
NO DATA DUMP
NO DECREASE
NO HALT
No increase
NO INT
NO TEST I/O
NO TIME DELAY
NO WAIT
POINTER CCW
pointer data
POINTER IDA
PRINT SENSE
PSW
REMOVE
REMOV
RESET
RETURN
SCOPE
SENSE
SET FB
START READER
status
STOP
SUBST
EST I/O
time dela
RAC
WAIT
\square

Summary on Making a CCW Chain

To make a CCW chain:

- Respond to 4300-FRIEND requests (see "Information Requested by 4300-FRIEND").
- Respond to 4300-FRIEND messages (see "4300-FRIEND Messages").
- Optionally specify a predefined CCW chain (see "Predefined CCW Chains").
- Specify 4300-FRIEND commands (see
"4300-FRIEND Commands").
- Specify CCW commands (see "CCW Commands").

Specifying a Single CCW Chain

To specify a single CCW chain

1. Specify the device address of the unit you want to test when 4300-FRIEND asks for it (DEV=).
2. When COMMAND appears on line 20 , key a CCW command and press the ENTER key.
3. Key any additional information 4300-FRIEND requests
4. After you have specified the entire CCW chain, ke GO and press the ENTER key. The device perform GO and press the ENTER key.
5. If you want to specify another CCW chain, press the REQUEST key
6. When the PROCEED indicator turns on, key RESET or
7. Go to step 1 , and specify the new CCW chain.

xamples of a Single CCW Chain

The following example instructs 4300 -FRIEND to first seek cylinder 5 , head 5 and then to seek cylinder 198 ead 9 on device address 260
DEV=DEVICE ADDRESS=260 (Enter address) ENTER CCW LIST IN ENGLISH
seek (Enter command
(Enter number)
(Enter number)
CYL=198 (Enter comman
$\begin{array}{ll}H D=9 & \text { (Enter number) } \\ \end{array}$
go
The next example instructs 4300 -FRIEND to read one block of data from a fixed block device (3370).
$\mathrm{DEV}=240$
$0=438100-337000$
CHAR $=3008210102$.
ENTER CCW LIST IN ENGLISH
def ext
MASK BYTE= $C 0$
PHY.START $=$
OG.START
OG. END $=3$
OCate
OP. $B Y T E=06$
REPL. CNT=
BLCK. CNT= 32
BL. OFFS. $=$
read fb
$\mathrm{DL=} 16384$
bop 1
LOOP IS FINISHED ON UNIT 0240

Restrictions

4300-FRIEND inserts TIC *-8 or SET FLLE MASK CCWs if you leave it out. This can cause a not valid CCW chain.

Example of an Invalid CCW Chain
seek
CYL
H
S
HD=1
search ha eq
write ro
N 10
SET FILE MASK INSERTED
(Placed before the WRITE RO)
$\mathrm{KL}=0$
$\mathrm{KL}=0$
$\mathrm{DL}=100$
The above CCW chain is not valid because the write ro command is not directly preceded by a SEARCH CCW. You must specify a Set File Mask before the search ha command.
\square

${ }^{\circ}$ Coprigh IBM Cap. 1984

Advanced Capabilities of 4300-FRIEND

Specifying Multiple CCW Chains
To enter (and run) multiple CCW chains for the same or different devices, do the following:

1. Perform steps 1 through 4 in "Specifying a Single CCW Chain." (After you key GO and press the
2. Press the ENTER key again (while the first CCW chain is running).
3. When PROCEED appears on line 20 , key $\mathrm{dev}=\mathrm{xxx}$ ($x \times x$ is a device address). You can enter the previously-specified device address or a different device address.
4. Do not key RESET.
5. Enter the CCW chain to be overlapped.
6. Key GO.
7. Repeat steps 2 through 6 to specify another CCW chain.

To change one or more of the CCW chains in a multiple To change one or "More of the CWW Chains."

Example of a Multiple CCW Chain

This example assumes that you are overlapping a seek pperation on devices 160 and 161
$\mathrm{DEV}=160$
ENTER CCW LIST IN ENGLISH
seek
$C L=1$
CYL= 100
$\mathrm{CYL}=100$
$\mathrm{HD}=2$
go (First CCW chain starts to run) (Press ENTER)
$\mathrm{dev}=16$
(Enter address for next CCW chain
CYL $=100$
HD $=3$
seek
CYL $=200$
$H D=4$
$H D=4$
go (Both CcW chains run)

Symbolic I/O Areas

You can reference the data address specified in one CCW from another CCW by using 4300-FRIEND. This lets you first read and then write the same data or vice versa. liso, by using the same area to you can conserve storage space.

For disk files, the symbolic $1 / O$ area applies only to the data area of any count-key-data (CKD) or key-data command. $4300-$ FRIEND uses data chaining to get the data field of these commands.

To use symbolic I/O areas:

1. Key the normal READ, WRITE, or PRINT commands followed by a comma and into $\$ x$ if the command is an input command, or from $\$ x$ if the command is an output command.
x can be any keyboard character, but we recommend you use characters a to z for easy cross-referencing. Characters entered in lowercase are converted to uppercase.
2. If your data is in character and hex format, use the CREATE/BUILD command. This command builds a CREATE/BUILD command. This command bullds write-type CCW commands.
3. If this is the first time you use a symbolic character $4300-$ FRIEND asks for the more information. If yo have already used the symbolic character and have not issued a RESET command, you are not asked Table generated by 4300 -FRIEND contains the corresponding data address and the implied length of the data area.)
To get a list of the assigned symbolic names, use the To get a list of the a
xample 1: Writing Disk Records 0 and 1 from Same Area
$D E V=160$
ENTER CCW LIST IN ENGLISH
seek
CYL $=5$
$\mathrm{HD}=1$
set file mask
MASK = cO
tic *-8
write ro,from\$a
(\$a points to data area)
$\mathrm{KEY}=$
KATA $=500 x$ xOf0 (1000 bytes of data) write count key data, from \$a
KEY=
$\mathrm{KEY}=$
go

Example 2: Using the CREATE/BUILD Command
DEV $=184$
create $50, \$ b$
DATA $=x 02$
DATA $=4$ cABCDEFGH 1234
DATA $=\times 03$
DATA = (Press ENTER to end requests)
write,from $\$$ b
read into \$a
$\mathrm{DL}=50$
1-compare $\$ \mathrm{a}, \$ \mathrm{~b}$
(Specifies data compare)
go
(Press ENTER)
(Prints loop counter)
go $\mathrm{UNIT}=0184$, LOOP $=0000000 / 0001585-\mathrm{A}$ (Restarts operation)

CCW Chain Sequence Control and Delay

 Between CCW ChainsThe WAIT command causes 4300-FRIEND to wait until a CCW chain routine completes (device-end interrupt)
before the next chain starts. You usually use the WAIT command with symbolic $1 / O$ areas when you are writing data that was read by a previous CCW chain. This ansures that all the data is read before the write CCW run. You can
CCW chain.

To use WAIT:

1. Specify WAIT anytime during the entry of the CCW chain.
2. After you key WAIT in the last CCW chain, key GO.

Example 1: Tape to Printer (80/80 List)
$\mathrm{DEV}=281$
NTER CCW LIST IN ENGLISH
read,into\$a
$D L=80$
wait
$D E V=e$
print,from\$a
csw $=01$
sns=0
wait
go
Example 2: WAIT with Time Delay (Single CCW Chain)
reset
$D E V=18$
ENTER CCW LIST IN ENGLISH
write
wait 500 (Causes delay of 500 m
after device end before
starting the next write CCW)

Data Compare

Specify the COMPARE command anytime during the entry of a CCW chain. If you are using symbolic $1 / 0$ areas, you must have already defined them. 4300-FRIEND compares the areas when it completes each CCW chain

Example 1: Write and Read Disk Record Zero

In this example of the COMPARE command, $\$ r$ and $\$ s$ are any previously defined symbolic $1 / 0$ areas. If you do not specify a compare length, 4300-FRIEND uses the length of the operand r for the amount of data to be
compared.
$D E V=161$
DEV $=161$
ENTER CCW LIST IN ENGUSH
seek

CYL= xa

$\mathrm{CY}=7$
write ha (Writes home address
SET FILE MASK seek argument)
EET FILE MASK INSERTED
write ro,
KEY $=$
DATA $=1800 x$ fofo
read ro,into\$s
$\mathrm{KL}=$
$\mathrm{DL}=3600$
$\mathrm{DL}=3600$
\$r \$s (Uses length of \$r)
go

Example 2: Write and Read a Tape Record
in this example of the COMPARE command, d000 and d3e9 are the addresses of the areas you want to compare. (To obtain the addresses, use the CCW command.) 1000 is the number of bytes to be
reset
$D E V=180$
DEV $=180$
ENTER CCW LIST IN ENGLISH
write
DATA = 1000xf
backspace
read 1000
ccw (Displays a CCW chain)
1-00A000 01 OODO00 6000 03E8
2-00A008 27 OOD3E8 6000000 3-00A010 02 OOD3E9 6000 O3E compare d000,d3e9, 1000
go
Increase/Decrease Counter
Use the INCREASE or DECREASE command to increase or decrease a one- to four-byte field by a specified amount after each running of the CCW chain. You can use this

Example 1: Record Counter for Tape
$D E V=180$
write, from $\$$ a
DATA $=100 \mathrm{c} 1234567890$
(See data pointer address
STATUS command. ... $C=00 A 008$,
$1 \mathrm{D}=00 \mathrm{D} 3 \mathrm{E} 8,1 \mathrm{l}=$.
To use last 4 bytes of write
data field as counter, subtract
4 from (D) data pointer.)
increase 4, d3e4, 1,0,1
loop 1000 (Writes 1000 records)
go
i-stop (Stops first CCW chain)
dev=180
rewind
loop 1
1000
LOOP IS FINISHED ON UNIT 0180
rep 1
read,into \$b
$\mathrm{DL}=1000$
increase 4, $\mathrm{d} 3 \mathrm{e} 4,1,0,1$
(Updates old $\$ 1$
compare $\$ \mathrm{a}, \$ \mathrm{~b}$

compare $\$ \mathrm{a}, \mathrm{S}$ Compares re

(Compares
loop 1000
go
Example 2: Change a Device Address
This example shows how to test a certain range of devic This example shows how to test a certain range of devic
sense device, into\$x
list=1 (Gets UCB address)
$01-$ UNIT $=0000$, UCB $=0 D 0000$, FL=0019
OAAOOO E4 OODOOO 6000000
increase $2, \mathrm{~d} 0000,1$, xff, 0
(Changes device address from
data dump $\$ x$ x,*
(Dumps result of sense $1 / 0$)
go
\square

4381-3 | $\begin{array}{l}\text { M1 GO2 } \\ \text { Seq GG025 }\end{array}$ | $\begin{array}{l}\text { PN } 6169390 \\ 2 \text { of 4 }\end{array}$ |
| :--- | :--- | EC A20558

EC A20560

- Coovight IBM Carp. | | |
| :--- | :--- |
| 10 Oct 84 | 18 Feb 85 |

Data Ripple/Random

RIPPLE and RANDOM are CCW command modifiers that you can specify with a CCW command. If you specify RIPPLE or RANDOM, 4300-FRIEND searches for all either ripples (moves the data pattern one byte to the left) or generates a random data pattern at each completion of the CCW chain. Random data is generated four bytes at a time, and data is rippled in blocks of 256 bytes. SEARCH, WRITE HA, and the count field of WRITE COUNT KEY DATA CCWs are bypassed

Restrictions: Do not use RIPPLE or RANDOM with indirect data addressing (IDA) or with WRITE SPECIAL COUNT KEY DATA CCWs.

Example 1: Write Random Data on Disk
$\mathrm{DEV}=161$
NTER CCW LIST IN ENGLISH
seek
$H D=1$
set mask
MASK = cO
write ha
write rO , rando
$\mathrm{KEY}=$
DATA $=3600 \times$ xff (Data used for firs
record and establishes data length
read ha (Verifies home address)
read ro (Verifies record zero written)
$\mathrm{KL}=0$
$\begin{array}{ll}\mathrm{DLL} & 3600\end{array}$
Example 2: Ripple Data on Printer
reset
DEV $=e$
ENTER CCW LIST IN ENGLISH
space 1 ,ripple
DATA $=4 c A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ~$ DATA=4cAB
csw=01
loop
NUMBER OF TIMES $=500$
go

Predefined CCW Chains

Specify $\$ \$ x x x$ to use the predefined CCW chains (and data strings) provided by 4300 -FRIEND. To display the available CCW chains, key $\$ \$$?

You may need to specify a RESET command or the device address ($\mathrm{DEV}=\mathrm{cuu}$) before using a predefined CCW chain. in some cases, the device address is fixed, and you must change it with the $n-D E V=c u u$ or SUBcuu, nnn command.

The predefined chains are:

$\$ \$ 001$ Card to Printer (OOC/OOE)
$\$ 002$ Sets Tape to 1600 BPI (181) and Copies Tape to Tape (180/181)
0010 To Tape (180/1) an $\$ A$, mages for symbolic data areas $\$ A, \$ H, \$ 1$, and $\$ 2 . \$ A=A N-$ train, $\$ H$
$=H N-t r a i n, \$ 1=$ PCS-AN train, $\$ 2=$ PCS-HN train. (Use Examples 1 and 2 below as a guide in the use of $\$ \$ 010$.
\$\$101 3287 Ripple Print 1 (specify $\mathrm{DEV}=$... before).
\$\$102 3287 Ripple Print 2 (specify $\mathrm{DEV}=$... before).
\$\$103 3287 Color Print (specify DEV $=\ldots$... before).
$\$ 1043287$ Color Print of programmed symbols
1110 (specify $\mathrm{DEV}=$ before)
$327 \times$ Display/read (specify $\mathrm{DEV}=\ldots$ before). sed with increments on the screen buffer addresses, and the read data is compared.
$\$ \$ 1113278$ Display/read (specify $\mathrm{DEV}=$... before). Same as 110 , but with a single SiO
\$\$119 $327 \times$ Display with Increment (specify DEV= before). RESET before $\$ \$ 50 \mathrm{n}$ commands, and specify the device address $\mathrm{DEV}=$...
$\$ \$ 500$ 3310-CE Track Initialization
$\$ \$ 5013310$ - Read FB with Increment
$\$ \$ 510 \quad 3370$ - CE Track Initialization
$\$ \$ 511$ 3370-Read FB with Inc
$\$ \$ 521$ 3370-Repair

Note: The 3262 Models 3 and 13 also run the 3287 CCW chains.

Example 1: Load 1403/3203 with PCS-AN Image
$\mathrm{DEV}=00 \mathrm{e}$
(Loads 4 UCS images
into symbolic area
$\$ \$ 004$
(Loads UCS buffer with PCS-AN image)
LOOP IS FINISHED ON UNIT OOOE
Example 2: Load 1403/3203 with AN, HN, or PCS-HN Image

DEV $=000$
\$\$010
gtld (Needed for 1403 only)
load ucs, from \$x
$\mathrm{H}(\mathrm{HN})$, or 2 (PCS-HN))
loop 1
go
LOOP IS FINISHED ON UNIT OOOE
Example 3: Ripple Print Using the AN Image
This example assumes that you have loaded the UCS buffer with the AN image (see Example 2 above).
$\mathrm{DEV}=2 \mathrm{e}$
$\$ \$ 010$ (Gets
print,from\$a,ripple
(Ripples AN-train image)
$\mathrm{csw}=01 \quad$ (Masks unit exception)
loop 100 (Do 100 times)
loop 100 (Do 100 times)
LOOP IS FINISHED ON UNIT OO2E
Storage Protection Key Modification
Use the KEY CAW, KEY CCW, KEY DATA, KEY IDA, DUMP KEY, and ALTER KEY commands to display or modify the storage keys of the different storage are used for CCW chaik. Intall, and after a RESE (1). The current assignments are displayed on line 20 or after the STATUS command.

You can dump or alter the storage keys of any area with the DUMP KEY or ALTER KEY commands. You can alte the special areas for CCWs, data, and IDAW with th
KEY CCW $=$, KEY DATA $=$, or $K E Y$ IDA $=$ commands. You can display for each CCW chain the key used for the CAW with
the CCW $=$ or LIST $=$ commands in the third flag digit; yo can alter it with the nn-KEY CAW= command.

Trace Function

Use the TRACE command to make a trace table in storage of all SIOs issued for, and all interrupts received from, the test devices during the running of the CCW chains. You can use the TRACE command instead of the GO command. If you specify the TRACE, * command, all SOOs , TIOs , and HIOs are traced, including those for the operator console and the secondary printer. You can
restrict the trace to one device by specifying a device address with the TRACE command. The trace table start address is stored at location $\mathrm{X}^{\prime} 040 \mathrm{C}^{\prime}$; the current trace table pointer is stored at address $\times 0414$. Use the DUMP function after the trace loop is finished (or the running is stopped).

Example:

dump 12,40c
00040C 000D2000000D3F70 000D28FO
The trace function stores trace information in 16-byte records

The CPU timer value stored in the trace entry represents bytes 3 to 5 of the doubleword binary counter. The last digit of the stored value is decremented every 16 microseconds.
The one-byte repetition counter is incremented if identical trace entries (except the time value) are stored in ignored.

An entry of 16 bytes containing all $X^{\prime} \mathrm{FF}^{\prime}$ indicates the end of the current trace area. If the trace reaches the las trace area entry, the trace again uses the first entry and all following. You can display the last trace entries or th example, DUMP $\times 300, \mathrm{~d} 20 \mathrm{eO}$. The DUMPT command automatically displays the last trace entries (up to a maximum of 36).
Because the same storage area is used for predefined Chains, these chains (command $\$ \$$ nmi) are destroyed

4381-3

$B / M 2676380$ | MI | |
| :--- | :--- |
| Seq_GGO25 | $\begin{array}{l}\text { PN } 6169390 \\ 3 \text { of } 4\end{array}$ | | EC A20558 | EC A20560 |
| :--- | :--- |
| 01 Oct 84 | 18 Feb 85 |

- Coprright IBM Coxp. 1984

Special Storage Areas

$X^{\prime} 0300^{\prime}$ Special TIO/SIO loop area.
Four-byte data area address (standard $X^{\prime} D O O O^{\prime}$). This address should point behind the data space up to the end of the storage. Four-byte CCW area address (standarc X'AOOO' must start on double word boundary)

X'0408' Four-byte IDA area address (standard X'9F80' must start on word boundary).
$\mathbf{x}^{\prime} 0400^{\prime} \quad$ Four-byte trace area start address (standard X'4FFF' before storage end)
$x^{\prime} 0410^{\prime} \quad$ Four-byte trace area end address (standard $X^{\prime} 2 F F F$ ' before storage end)

X'0414' Four-byte current trace entry pointer.
$X^{\prime} 0418$ ' Four-byte address of first unit control block (UCB)

X'041C' Two-byte internal program version/level (xxyy).

X'041E' Two-byte secondary output station (printer) address.
X'0402' Two-byte keyboard device address.
X'0422' Two-byte printer device address (for internal use).
X'0424' Two-byte current test device unit address used for TIO.

X'0426' Two-byte last test device used unit address used for HIO after 2 x external interrupt (INT command)
$X^{\prime} 044 C^{\prime} \quad$ Control indicator byte (INDBYTE)
$X^{\prime} 01^{\prime}=3277$-type console
$X^{\prime} 10^{\prime}=E C$ mode.
$X^{\prime} 044 F^{\prime} \quad$ SP console control byte $X^{\prime} 01^{\prime}=$ SP console unit control block area; storage end
X'GFFF' X'6FFF

To change where 4300-FRIEND locates the data area, the CCW area, or the IDA area, use the following patch (REP) card before the END (last) card, or alter the stora
areas after $4300-$ FRIEND is loaded by the ALTER command. Note that CCWs start on doubleword
boundaries and IDAWs on word boundaries; these areas must not overlap. Assign the data area to the last part of the storage.
Patch Card Format
$\begin{array}{ll}\text { column } \\ 1234 & 17\end{array}$
\&REP 000400 XXXX,XXXX
(XXXXXXXX is the address of the new data area)
2
9
ALTER command example:

DEV =DEVICE ADDRESS=(Any
device address)
alter $8,400, \times x \times x \times x$ ($x \times x \times x \times$ is address
of new data area)
003f8 xxxxxxxx
(Altered storage is displayed)
reset (Activates changes)

Unit Control Block (UCB)

For each CCW chain that is made, 4300-FRIEND uses a special control block called a UCB. The address of each UCB can be displayed by the $\mathrm{CCW}=$ or $\mathrm{LIST}=$ commands. The length of one UCB entry is 48 bytes.

$\begin{aligned} & \text { By } \\ & \text { Dec } \\ & 00 \\ & 02 \end{aligned}$		$\begin{array}{\|c\|} \hline \text { size } \\ 2 \\ 2 \\ \hline \end{array}$	Contents
	$\begin{gathered} \mathrm{He} \\ 00 \end{gathered}$		Device address
			Chain flags:
			8000 Wait
			4000 Compare
			2000 Increase/decrease
			1000 Ripple/random/zero (plus indicator in CCW byte 5)
			0800 Data dump.
			0400 Data dump on operator console
			0200 Continue if loop is finished 0100 FB device
			00×0 CAW key
			00008 UCB is used
			0004 Device or control unit is busy 0002 Chain being executed
			0001 Device ready (active)
04	04	4	CCW pointer = address of first CCW
08	08		CSW mask bytes set by CSW=command
10	OA	2	Sense bytes mask set by SENSE = command
12	OC		Time delay set by WAIT command
16	10	4	Time out counter for missing device end (TIME DELAY)
20	14		Operand one address of COMPARE
24	18	4	Operand two address of COMPARE
28	1 c	2	Length of compare fields
30	1 E		Length for DATA DUMP function
32	20	4	Address for DATA DUMP function
36	24	4	Address of the INCREASE/DECREASE table
40	28	2	Loop count; set by LOOP cmd (threshold)
42	2A	2	Number of Sl0s run
44	2 C	4	Not used

4381-3
$B / M 267638$ \square
B/M 2676380 PN 6169390

4 of 4 | EC A20558 | EC A20560 |
| :--- | :--- |
| O1 Oct 84 | 18 Feb 85 |

Information Requested by

4300-FRIEND

Listed below are the 4300-FRIEND requests and your replies to them. Enter decimal data with no separation; that is, 123456 (not 123,456 or 123456). Enter an before the hex data ; for example, $\times 60$. If you enter
wrong information, 4300 -FRIEND asks you to try again.

If a program loop occurs, enter the character i or perform a program (PSW) restart.

ADR $=$
Specify (in hex) a two-byte 3277 buffer address.
ATT=
Specify (in hex) a one-byte 3277 attribute character. The
default is 660 . default is $\times 60$
$\mathrm{BBCCHH}=$
Specify (in hex) a six-byte 2321 seek argument
$\begin{array}{ll}\text { Byte } & \text { Function/Range (hex) } \\ 0 & \text { / } \\ 1 & \text { Cell/00 } \\ 1 & \text { Subcell/00 } \\ 2 & \text { Strin } \\ 3 & \text { Strip/00-09 } \\ 4 & \text { Head position/00-04 } \\ 5 & \text { Head number/00-13 }\end{array}$

BL. OFFS. $=$

Specify a block offset value for the LOCATE fixed block command. Enter either a decimal value (0 to
4294967295) or a hex value (xO to xffffffff). The default value is 0 .

BLCK. CNT=
Specify a block count value for the LOCATE fixed block command. Enter either a decimal value (1 to 65535) or a hex value ($x 1$ to $x \mathrm{ffff}$). The default value is 1 .

CMD=
Specify a 3277 command
'EM' End of message - for printer
'EU' Erase unprotected + addre
'FF' Forms feed - for printer
$\begin{array}{ll}\text { 'IC } & \text { Insert cursor } \\ \text { 'MF' } & \text { Modify field + attribute character }\end{array}$
'NL' New line - for printer
'PT' Program tabulator
'RA' Repeat to address + address and fill character
'SA' Set attribute + attribute character
$\begin{array}{lll} & \text { SB' } & \text { Set buffer address }+ \text { address } \\ & \text { 'SF' } & \text { Start field }+ \text { attribute character }\end{array}$
 ENTER = no command
End of data stream (no code generated)

CYL=
Specify (in decimal or hex) a cylinder number for a seek command. The default is 0 .

DATA $=$
Specify data. 4300-FRIEND repeats the DATA= reques until no more data is entered. (You can specify both hex and decimal data for one symbolic data area by using the

Specify the data in one of the following formats:
nnxhhhhh or nncddddd
nn is an optional decimal duplication factor.
$x \quad$ indicates hex data.
hhhhh is the hex data.
c indicates EBCDIC data
dddd is the EBCDIC data (up to 242 characters). 4300-FRIEND does not convert lowercase characters to uppercase.

Example of DATA=

DATA $=100 x f f$ DATA $=1000 \times f 0 f 0$ DATA $=80 \mathrm{c} 1$
DATA $=12 \mathrm{cabc}$
DATA $=12 \mathrm{cABC}$ DATA= Press ENTER
$D E V=D E V I C E$ ADDRESS
(appears first time only)
DEV=
(all other times)
Specify a device address in hex. Leading zeros are not required. If you do not specify a device address, $4300-$ FRIEND uses the last entered device address or enters the command input mode, if you didn't specify a device address before. For more details, see the "DEVICE=" command.

DEV. $A D D R=$
Specify the device address of the new operator console or the address of the secondary output station, the printer. If the secondary output station address is set to zero, the secondary printer function is not active.

DEV. TYPE

Specify the type of new console.
1052 1052-type console
327x 327x-type console
PRT Secondary output printer, which must accept a $x^{\prime} 09$ ' print command. The PRT function is not
Sp System console with X $^{\circ} 83^{\prime}$
TP Terminal printer as secondary output required.

DL=
Specify the data length; either a decimal (1 to 32767) or hex ($\times 0001$ to $\times 7$ ffff) value. The default value is 1 .
ENTER DEVICE TYPE (32xx)=
If the device did not respond to the Sense ID command $4300-$ FRIEND requests the printer device type for the UCSB load.

ENTER TIME hh:mm:ss=
Enter the current time of day. The default time-of-day is zero.
HARD COPY $(Y / N)=$
Specify Y for a copy of all console messages; press the NTER key if you do no
$H D=$
Secify (in decimal or hex) a head number. The default is ead 0.

DAWS IN HEX=
Specify the real storage addresses for the IDA address list (IDAWs). Enter as many addresses as required, separated by commas (leading zeros are not required) Do not use storage range $\mathrm{X}^{\prime} 0000^{\prime}$ to $\mathrm{X}^{\prime} \mathrm{A} 000{ }^{\prime}$ ' the $4300-$ FRIEND program resides there). If data is moves the data to the specified real storage arical(s).
$K E Y=$
Specify the key for the data field. Enter the data as shown for DATA $=$

SYS TEST 070

Specify the key length. Enter either a decimal (0 to 255) or hex (x 00 to xff) value. The default value is 0 .
LOG. END=
Specify the logical end for the DEFINE EXTENT fixed block command. Enter a decimal value (up to is the value read by the READ DEVICE CHAR fixed deault command.

LOG.START=

Specify the logical start for the DEFINE EXTENT fixed block command. Enter a decimal value (up to
67295) or a hex value (up to xffffffff). The default value is 0 .

MASK $=$
Specify (in hex) a one-byte file mask for the SET FILE MASK command (for example, MASK $=18$). The defaul
is $X^{\prime} C 0^{\prime}$ (press the ENTER key).

MASK BYTE=

Specify (in hex) a one-byte mask for the DEFINE EXTENT fixed block command. If you do not provide a mask, the default mask for the first 12 bytes of the data area is X' $00^{\prime} .4300-$ FRIEND sets the last four bytes in the data
area to the value read by the READ DEVICE CHAR command (logical end)

MLCCCBBCCHHRDDS=

Specify (in hex) 15 bytes of buffer control information for the buffer control record (this is the record transferred to the 2314 on an INIT BUF command)
M Mode byte; 81 (needs write buffer) or 0
L Length byte; 6 D
\qquad
Command $1(00,07,13)$
Command $2(29,31,69, ~ A 9, ~ E 9) ~$ Command 3 ($05,06,0 \mathrm{D}, \mathrm{OE}, 16,1 \mathrm{~A}, 35$,
B8ССНн

R
D

Seek argument
Record number
Data length
Example:
INIT BUF
MLCCCBBCCHHRDDS $=816$ d0731350
WRITE BUF 00000 c 3000101005000
DATA $=40 \times f 0 f 0$
MODE (BC/EC)=
Specify the control mode; BC for Basic Control mode or EC for Extended Control mode. The default is EC

MODE CMD $=$

Specify (in hex) a MODE SET command code. Th default is $\times 93$ (7 -track tape $/ 800 \mathrm{bpi}$).

MODEL=

Specify 81 for the processor model. This chooses the proper time calculation for the WAIT and TIME DELAY commands.

NUMBER OF TIMES=

Specify the number of times you want to run the last entered CCW chain or the CCW chain specified in the LOOP command. Enter 1 to 32767 in decimal.

OP. BYTE

Specify (in hex) the operation byte for the LOCATE fixed block command The default is $\mathrm{X}^{\prime} 00^{\circ}$

PHY.START $=$
Specify the physical start for the DEFINE EXTENT fixed block command. Enter a decimal (up to 4294967295) or hex value (up to xffffffff). The default is 0

RCD NO.

Specify the record number to be used in the file identifier field. Enter a decimal (0 to 255) or hex value ($\times 00$ to xfi).

REPL. CNT $=$
Specify the replication count for the LOCATE fixed block command. Enter a decimal (0 to 255) or hex value (x00 to xfff . The default is 0 .

SD=
Specify (in decimal) the defect skip displacement for the 3340/3350 home address.
SEC. PRINTER ADDRESS=
Specify either the device address of the secondary outpu printer on which a hard copy of all operator messages a解 routine to load a UCS buffer. You can enter the optional LOG operand after the printer address; for example, OE,LOG. This causes the call of the PRINT LOG function If you want to modify the secondary printer address later, use the CHANGE KEYBOARD command.

SECOND SD=
Specify (in decimal) the second defect skip displacement for the 3340/3350 home address.

SELECT UCS-TYPE (xx,xx,xx,xx)
Select a UCS buffer type from a displayed menu.
THIRD SD=
Specify (in decimal) the third defect skip displacement for he 3340/3350 home address.

wCC=

 default is $\mathrm{X}^{\prime} \mathrm{CB}^{\prime}$.

XATT
Enter 327x extended data stream attribute TYPE/VALUE pir as four hex digits. If commands START FIELD EXTENDED or MODIFY FIELD were specified, you can enter more than one attribute pair. To end the sequence, . If you press the ENTER key only, valu

4300-FRIEND Messages
If a message starts with *, 4300-FRIEND waits before displaying the message so you can use the ENTER key to stop the processing. Status information is displayed as follows (the current UCB is displayed together with area pointers):
aa $n n-$ ccuu-ff $C=x x, k f \quad D=x x, k f I=x x, k f m m$

- aa indicates the following:

COMMAND Key a 4300-FRIEND command.
REPLACE Key a replacement CCW command.

RESPOND Key requested information.
RUNNING 4300-FRIEND is running CCW chain(s). If stop address $X^{\prime} O D E A D O^{\prime}$ is displayed, $4300-$ FRIEND is waiting for an I/O interrupt from a device being tested. You can enter 4300-FRIEND commands during this mode without stopping the processing.

TRACING 4300-FRIEND is tracing CCW chain(s) as they run.

SCOPING $4300-$ FRIEND is looping on a SIO or TIO command.

TIOLOOP 4300-FRIEND is repeating a TIO command.

PRNTLOG PRINT LOG function; copies the screen to a printer.

WORKING 4300-FRIEND commands are running; no action is required.

- $\mathrm{nn}=$ Chain number
- \quad ccuu $=$ Unit address
- $\quad \mathrm{ff}=$ Flag bytes
- $\quad \mathrm{C}=\mathrm{xx}=\mathrm{CCW}$ area address
- $\mathrm{k}=$ Area key
- $f=$ Fetch protection on if F
- $\mathrm{D}=\mathrm{xx}=$ Data area address
- $I=x x=$ IDA area address
- $\mathrm{mm}=$ Block multiplexer mode (BMPX) or selector mode (SEL).

Status and Operator Messages
\$x aaaaaa IIII
Appears after the DUMP\$ command. $x=$ the symbolic /O area name; aaaaaa $=$ address (in hex) of the area; $1 I I I=$ length (in hex) of the area.
aasaaa $K=k, F=f, R=r, C=c$
Displays the storage protection keys of a 2 K storage area Address aaaaaa is the first byte of the area; $k=$ storage key in hex; $f=$ fetch protection on if $1 ; r=$ reference bit on if 1 ; $c=$ change bit on if 1 .

CHAR $=x \times x . .$.
Displays the data received for a READ DEVICE CHAR fixed block command.

COND CODE $=\mathrm{n}$ ON UNIT $\times x \times x$
Displays condition code n for device xxxx after an XTIO, XCLRIO, XHIO, XHDV, XTCH, or XSTIDC command. This message is also displayed to indicate the status of the Test I/O.

Condition code 0 indicates that device xxxx is ready and available. Condition code 2 indicates that the channel or subchannel to which the device is attached is busy. Condition code 3 indicates that the address is not recognized by a channel or any device on the channel. To enter commands, press the ENTER key and enter NOTEST. If SCOPE is active, 4300-FRIEND requires a PSW restart to exit from the scope loop.

COND CODE $=1$ ON UNIT xxxx CSW yy yy ... yy yy
SNS zzzzzzzzzz.zzzzzzzz
Displays the condition code, CSW, and sense bytes for device xxxx after an XTIO, XCLRIO, XHIO, XHDV, XTCH, or XSTIDC command.

This message is also displayed to indicate the status of the TEST I/O. Condition code 1 indicates that the CSW was stored.

EC-MODE SET, NO RESET POSSIBLE
Indicates that the Extended Control mode was set, and return to Basic Control Mode is not possible unless you re-IPL 4300-FRIEND.

ENTER CCW LIST IN ENGLISH
Displayed after you enter reply to $\mathrm{DEV}=$ at the beginning of a new CCW chain.

EXT-INTRPT BROKE CHAIN
Indicates that the INT feature was active and that the second external interrupt stopped 4300-FRIEND. The TIO mode is reset.

HALT
Displayed after 4300-FRIEND detects a condition that requires a program halt. To continue, specify GO.

HALT ON ERROR
Indicates that an error occurred during the running of a CCW chain. It also indicates a unit check or a permanent CU-busy condition at the device used for the START READER command.

ID = xxxx...
Displays the ID of the processor.
/ $\mathrm{O}=\mathbf{c c c c t t - d d d}$ dt .
Displays bytes two to seven of the Sense I/O command for the new device specified. This message does not appear if the Sense $/ / O$ command is not supported by the device (first byte is not $X^{\prime} F F$ ').

LOOP IS FINISHED ON UNIT $x \times x x$
Displayed if the CCW chain of unit $x x x x$ has run the number of times specified by the LOOP command. The running of all active CCW chains is discontinued after waiting for outstanding I/O interrupts. If busy devices do not present their interrupt in the time specified by the TIME DELAY command, a Halt I/O is issued.
$n n * U N I T=c c u u, L O O P=x x x / y y y-1$
Appears after the COUNTER command. $n n=C C W$ chain number; ccuu = unit address; $x x x=$ loop threshold; $y y y=$ SIO counter. $1=$ active/stopped line indication.
$n n *$ UNIT = ccuu, UCB=aaaaaa, FL=cccc

Indicates the UCB entry if you specified the CCW= or LIST $=$. $\mathrm{nn}=$ CCW chain number; ccuu = unit address; aaaaaa $=$ address of 34-byte long UCB entry; cccc $=$ active UCB flags.

4381
B/M 2676380

MI Seq GG030	$\begin{aligned} & \text { PN } 6169391 \\ & 3 \text { of } 5 \end{aligned}$

nn-ccuu-ff C=xxx,kf D=yyy,kf l=zzz,kf mmm
Appears after the STATUS command. The current UCB is displayed together with area pointers. $\mathrm{nn}=\mathrm{CCW}$ chain number; ccuu = unit address; $\mathrm{ff}=$ flag bytes; $\mathrm{xxx}=\mathrm{CCW}$ area address; $\mathrm{k}=$ area key; $\mathrm{f}=$ fetch protection if $\mathrm{F} ; \mathrm{WYY}=$
data area address; $z z 7=10 \mathrm{~A}$ area address; $\mathrm{C}=\mathrm{CCW}$ area: $D=$ data area; $l=$ IDA area; $\mathrm{mmm}=$ block multiplexer mode if BMPX or selector mode if SEL.

PRINTER NOT READY

Displayed if the secondary printer is not available or not ready. Make the printer ready or correct the device address.

SET FILE MASK INSERTED
ndicates that you did not specify a SET FILE MASK mmand. Therefore, 4300 serted a Set File Mask CCW preceding the last CCW requires a set file mask if you specify a WRITE HA (home address) or WRITE RO (record zero) command, a not valid CW chain may result.

TART

isplayed after you start running the CCW chain by pressing the ENTER key without input GO.

STORAGE SIZE= xxxxxx
Displays (in hex) the storage size of the system.

TIC *-8 INSERTED

dicates that you did not specify a TIC. Therefore 300-FRIEND automatically inserted a TIC *-8 CCW before the last CCW entered. Because the CCW chain CCW command, a not valid CCW chain may result.

UCSB LOAD SUCCESSFUL FINISHED
The UCS buffer load was successful.
UNIT $=x \times x x$ - COUNT $=n n n$
Indicates a DATA DUMP print out. $x x x x=$ unit address $\mathrm{nnn}=\mathrm{SIO}$ counter.

WAIT UP TO 5 SECONDS UNTIL LOAD IS FINISHED
ndicates that the UCS buffer load is in process. 4300-FRIEND STANDARD OPTION SET

Displays all the standard options of $4300-$ FRIEND set during program initialization. If you want to change options, use the BMPX, NO BMPX, TIME DELAY nn, HALT, ALARM, or NO INT commands.

Error Messages

device end or other I/O interrupt missing
Indicates that a working device did not issue an $1 / \mathrm{O}$ interrupt within 15 seconds.

DEVICE NOT AVAILABLE, CC=3
dicates that the specified printer is not operational -DEVICE QUEUE FULL, LAST CMD IGNORED

You have tried to enter more than 99 devices into the device queue. Enter RESET to clear the device queue, and start again.

ENTER
"DEV =" OR "ADD" BEFORE CCW- You entered a CCW ammand with an incorrect UCB (device) assignment.

RROR DURING UCSB LOAD

he UCSB load.

EXT-INTRPT, PSW $=x \times x / y y y E$
4300-FRIEND detected an unexpected external interrup $x x x$ is the old PSW for the interrupt.
E at the end of the message indicates an EC mode interrupt. In this case, yyy is the interruption code.

-IDAW POINTS TO PROGRAM AREA

Indicates that one of the specified IDA addresses point inside the 4300 -FRIEND program. 4300 -FRIEND ignores all entered IDAWs and repeats the request for IDAWs.
-INVALID MODEL, USE 31-41-81 OR 115-168 OR 25-75
Indicates that you specified the wrong model.
1/O-INTRPT, PSW $=x x x / y y y E$
4300-FRIEND detected an unexpected input/output interrupt (usually from other devices becoming ready). xxx is the old PSW for the interrupt. The CSW and sense data are also displayed.
E at the end of the message indicates an EC mode interrupt. In this case, yyy is the interruption code. MCK-INTRPT, PSW $=x \times x /$ yyy E

4300-FRIEND detected an unexpected machine check interrupt. The log out area is saved so that it can be golayed by the DUMP command. $x x x$ is the old PSW for the interrupt
E at the end of the message indicates an EC mod interrupt. In this case, yyy is the interrupt code.

NO UCS SUPPORT FOR THIS DEVICE

The specified printer is not a $3203,3211,3262$, or 3289 device.

PGM-INTRPT, PSW $=x \times x /$ yyy E
4300-FRIEND detected an unexpected program interrupt $x x x$ is the old PSW for the interrupt.
E at the end of the message indicates an $E C$ mode interrupt. In this case, yyy is the interrupt code

If PGM interrupts start to be displayed, do a PSW restart If this does not help, reload 4300-FRIEND. For the DUMP, DISPLAY, or ALTER commands, this error can occur if the specified address is out of storage or the page is disconnected in VSE mode.

PRINTER NOT READY
$\mathrm{CC}=0$ was not received from the printer during the UCSB SVC-INTRPT, PSW $=x \times x /$ yYy E

4300-FRIEND detected an unexpected supervisor cal (SVC) interrupt. xxx is the old PSW for the interrupt.
E at the end of the message indicates an EC mod interrupt. In this case, yyy is the interrupt code -SYMBOL TABLE FULL, LAST CMD IGNORED You tried to enter more than 40 symbolic characters. To clear the symbol table, key CLEARS.

SYNTAX ERROR

Displayed for misspelled statements or information invalid or wrong number of characters, undefined CCWs missing delimiter (comma) unknown verbs, etc. Key ? and correct the error.

-SYNTAX ERROR- ON INPU

4300-FRIEND detected an error in the information entered for a DATA $=, K E Y=$, or $\mathrm{BBCCHH}=$ request of datal or no data after x or c. Enter ? ad error.

-UNDEFINED SYMBOL(S)

4300-FRIEND detected a symbol that was not previously defined. You cannot COMPARE or DUMP from a defined. You cannot COMPARE or DUMP from a SYmbolic $1 /$ area uniess it has arready been derined CCW command modifier.
-UNIT=xxxx - CC=1 AFTER SIO

CSW yyy

LOOP nnn
Indicates that the Start I/O command is not accepted (condition code $=1$). The CSW device status is not control unit busy or device busy or not a single channel end or device end/channel end limmediate commands). Check that the device is ready and online. LOOP cou successfully initiated $1 / O$ operations.
UNIT=xxxx - CC=3 AFTER SIO
LOOP nnn
Indicates that the Start I/O command is not accepted condition code $=3$). LOOP counter nnn is not incremented.
-UNIT=xxxx - DATA COMPARE ERROR
BYTE NO. =aaaa $\$ X=b b \$ Y=c$
lone entry for each byte
that faile
Indicates a data compare error.
xxxx Device address.
nnn Lope numbess.
aaaa Relative byte number of the two areas compared
$\times \quad$ Represents the first area and is a symbolic character if symbolic $1 / O$ areas were used (otherwise $=1$).
Represents the second area ($=2$, if no symbolic area).
bb Represents the hex byte in the first area
-UNIT $=\times x \times x$ - INCORRECT CSW CSW yyy

Indicates any unusual status; for example, attention, unit exception, and any channel status in the CSW.
-UNIT=xxxx - $1 / 0$ INTRPT,UNIT CHECK CSW 00 OOD4EO OE 000000
CSW 00 OOD4EO OE 000000
LOOP 00662
Indicates that 4300-FRIEND received an $/ \mathrm{O}$ interrupt, and unit check is on in the CSW. 4300-FRIEND displays the device address that gave the unit check, the actual CSW, and the sense bytes received from the device. the sense data, the SIO sense ended with an not valid status.

- UNIT=xxxx - NO DEV-END OR CU-END I/O INTRPT

Indicates that 4300-FRIEND did not receive a device end or control unit end within five to ten seconds after tharting a CCW chain or recelving a control unit busy running.

You can change the time delay with the TIME DELAY command. If a timeout occurs, 4300 -FRIEND issues a HALT I/O to reset the device and then waits another tim pariod for a device interrupt from the HALT I/O.
\square
B/M 2676380

EC A20558
01

- Coprright IBM Corp. 1984

0000000000000000000000000000000000

4300-FRIEND Commands

In general,4300-FRIEND ignores all vowels, blanks, periods, and asterisks input except in data. You can use
or syntax errors or to repeat the previous input, enter a question mark (?).
If storage addresses are entered for a command, they must be entered in hex. Other numeric data (for example, data length) can be entered in either decimal or hex (an x must precede the hex value).

The first line of the commands shows the primary form of The first line of the commands shows the primary form of
the commands; accepted alternate forms are listed after the primary form.
$\$ \$?$
Use this command to display the first 79 source characters of all predefined CCW chains.
$\$ \$ n n n$,
Use this command to display the source of predefined CCW chain nnn.
\$* $=$ hh
Use this command to assign two hex digits (hh) for the characters \$ and *. The characters \$ and * in hex input fields are replaced by the digits assigned. The default value is $X^{\prime} F F^{\prime}$.
? or ??
Use this command (?) to display (and modify) the last input entered on a 3277 -type console (up to 30 bytes) If you specify two question marks (??), the next to last input is displayed.
nn-ACTIVATE,*
n-ACT
se this command to reactivate a CCW chain(s). nn is the UCB number displayed by the LIST= function. If the
optional parameter *is specified, all stopped CCW chain are activated (see "LOOP" commmand).

ADD

Se this command to add a CCW to the last CCW chain ntered. (4300-FRIEND turns on the command chain bit the preceding CCW.) For an existing CCW chain additional CCWs can be added by using the nn-ADD
command (see "Modifying Existing CCW Chains").

ALARM

Use this command to sound an audible alarm after message appears that requires operator action.

To reset ALARM, see the "NO ALARM" command.
ALTER KEY nnn,addr., ,f
ALTER KEY nnn,\$c,k
ALTER KEY Sc,, ,f

Use this command to alter the storage key for storage area addr or symbolic $1 / 0$ area $\$ c$ (c can be any alphabetic character) to the key specified by k. This command also sets fetch protection on if you specify an f the last operand. The length is nnn bytes.

ALTER nnn,addr,hhhh
ALTER nnn,\$c,h
Use this command to alter up to 80 bytes at address addr or symbolic $1 / 0$ area $\$ c$ (c can be any alphabetic character). Data hhhh is moved to storage. The length hex the area to be altered can be specified in decim hex. After the alter operation, the changed data is dumpes)

BMPX
Enable block multiplexer mode
se this command to set block multiplexer mode on (standard if you specify EC mode).

To disable block multiplexer mode, see the "NO BMPX command.

BTS

Branch to TIO/SIO loop
Use this command to loop (using a small TIO/SiO loop at address $\mathrm{X}^{\prime} 300^{\prime}$) the last CCW chain entered. Stop the oop by pressing the external interrupt button twice if INT active. If iNT is not active, do a PSW restart

UILD nnn,\$c
BLD nnn,\$c
CREATE nnn.\$c
CRT nnn,\$c
Use this command to reserve a symbolic data area \$c (c represents any alphabetic character). You can specify the length zero (0), a data area with length one is created and no data is requested (pointer). The created data area can be used in all following CCWs until you specify the RESET command. (Enter data in response to message DATA = 4300 -FRIEND repeats the DATA $=$ request until you enter no more data or the length count decrements to 0).

LIST
List CCWs Use this command to display the channe program being generated together with up to 16 data bytes in hex. If you specify a device address, all CCW device address of 0 or $C C W=$ alone, 4300 -FRIEND displays all CCW blocks of all devices.

If you have not entered GO, the command chain bit is on in the last CCW. If you enter CCW immediately after an /O error message, the displayed CCW chain is the one flagged by ** (CCW address in CSW minus 8)

Example:

UCB = unit control block address for this CCW chain. FL fiag bytes in this UCB. Use the nn-CCW command for one UCB. for example, 2-CCW to display UCB chain two.

CHANGE KEYBOARD

CK
Use this command to request a new keyboard address for command input or the address of the secondary printer for CRT hard copy.
Note: 4300-FRIEND asks for the device type of the new console/secondary output station. Secondary output station printing produces a hard copy of all messages for the console. If a secondary output station is specified, make sure that it can handle the print CCW X'09'. Rese the secondary output by speciifying address $=0$ and type $=$ PRT.

CHANGE nnn,addr,ccco
 CHANGE $\mathbf{n n n}$. $\$ \mathrm{~b}$, cc

Use this command to alter up to 80 bytes at address addr or symbolic $1 / 0$ area $\$ \mathrm{~b}$ ($\$ \mathrm{~b}$ represents any alphabetic character). Data cccc is moved to storage length (nnn) of the area in decimal or hex. After the storage alter operation, the changed area is displayed.

CLEAR

Use this command to clear all CCW execution flags in al active UCBs and to reset the execution counters. You ter an error stop to reinitializ the CCW run sequence

CLEARSc
Use this command to clear the reference to symbolic dat area $\$ c$ or to all symbolic references if you do not specify a symbolic data area.

COLOR TEST
Use this command to invoke an interactive test case for extended data stream orders (requires $327 x$ extended features

COMPARE $\mathbf{\$ x , \$ y , n n n}$ CMP addr1, addr2,nnn

Use this command to compare two data areas (addr 1 to Use this command to compare two data areas (addr 1 to addr2 or symbolic 1/0 area $\$ x$ to $\$ y$). Specify the leng
($\mathrm{n} n \mathrm{n}$) of the area in decimal or hex format (maximum length is 65535 or X 'ffff'). If you do not specify a length, the length of the first symbolic $1 / O$ area is used. Only two areas can be compared for one CCW chain. The two
areas compared can be different in any CCW chain(s).

You can enter COMPARE anytime during the generation of a CCW chain, and you can specify it for each CCW chain entered. Any symbolic l/O areas to be used mus have been defined before. 4300-FRIEND does the comparison when it completes the CCW chain.

To reset COMPARE, see the "NO COMPARE" command. CONFIG xxx,yyy
CNFG
Use this command to test a range of devices (from address $x x x$ to address yyy). If you do not specify device addresses, all device addresses from X'000' to X'FFF

4300-FRIEND issues a TIO command, a SIO sense, and SIO sense I/O command to each device. The resulting condition codes, first four sense bytes, and sense $1 / O$ information bytes one to seven are displayed. In addition, TCH and STIDC commands are issued for the first device $X^{\prime} 00^{\prime}$. The first byte of the channel ID means $X^{\prime} 00^{\prime}=$ selector channel; X $^{\prime} 10^{\prime}=$ byte-MPX channel; $X^{\prime} 20^{\prime}=$ burst-MPX channel. Devices or channels that store condition code 3 after TIO/TCH are not displayed.

All outstanding $1 / 0$ interrupts are cleared before the CONFIG command. If an I/O interrupt is encountere after one device is tested, a message is displayed.

CONNECT nnn, addr

CONN nnn, \$c

Use this command to connect a storage block of length nnn (full 2 K blocks are used).

COPY xxx

Use this command to copy the last-entered CCW chain for device xxx. The CCW chain is not actually duplicated Instead, the same physical CCW chain is used. This (of the same

COUNTE

CNTR
Use this command to display the LOOP values and the SIO counters for all active CCW chains/UCBs.

CREATE

See the "BUILD" command.
csw $=\mathbf{x x x x}$
CSW status mask
Use this command to generate a CSW device and channel status mask. The two-byte long hex xxxx field indicates those bits that you want 4300 -FRIEND to ignore. You can enter CSW= anytime during the generation of a CCW chain and you can specify it for each CCW chain entered The device-end bit cannot be turned off.

DATA DUMP nnn,addr.
DATA DUMP
DTDMP \$c.*
Use this command to dump the specified data area (add or symbolic $1 / 0$ area $\$ \mathrm{c}$) on the secondary printer after running each CCW chain. You do not have to specify the secondary printer is not specified, the operator console is used for the display. If the optional parameter * is
specified, the dump also appears on the operator console.
To reset DATA DUMP, see the "NO DATA DUMP" command

DECREASE n,addr,incr,thr,ini,
DCR n,addr,incr,thr,ini,n2,
addr2,incr2, thr2,ini2,
Use this command to decrement a counter after each completion of a channel program. You can specify a second counter which is updated if the threshold of the first counter is reached. Use this command with the INCREASE command only. For an explanation of the parameters, see the "INCREASE" command.

To reset the DECREASE command, see the "NO DECREASE'" command.

DEVICE=xxx
$\mathrm{DEV}=\mathbf{x x x}$
Use this command to create a new UCB for the next CCW chain entered with the unit address of xxx (leading address of the operator console is used. The last-entere UCB entry is completed by turning the command chaining bit off in the last CCW.
Note: 4300-FRIEND analyzes the device type at this time. The following commands are run if the device is ready:

For FB device type determination: Sense I/O (X'E4') 2321 determination (if Sense I/O not accepted): Seek Cylinder (X^{\prime} OB') - length $4 \mathrm{X}^{\prime} \mathrm{FF} . \mathrm{FF}$
ak (X'07') X'000010000000
fter previous checks
ense ($X^{\prime} 04^{\prime}$) - if any error occurred before to clean status.

If the specified device does not handle the above
commands, you can specify a dummy device address (for example, 0) and later specify the real device address with the nn -DEVICE $=$ command.

DISCONNECT nnn, addr
DISC nnn, \$c
DSC \$c
Use this command to disconnect a storage block of length nnn

ISPLAY nnn,addr.xxx
 ISPLAY $\mathbf{n n n}, \$ \mathrm{c}, \mathbf{x x x}$
 DSPL \$c,xxx

se this command to display the contents of storage haracter format. Storage is displayed in lines of 64 bytes (maximum) along with the address of the first byte addr indicates the beginning address; $n n n$ indicates the ength (in decimal or hex) of the area to be displayed. ptionally, you can specify a line printer address xxx for output.

UMP

Use this command to dump the names of all assigned symbolic $1 / O$ areas along with their storage address and length in hex.

UUMP KEY nnn,add

DMPK \$c

Use this command to dump the storage keys of storag area addr for nnn bytes.

UMP nnn,addr,xx

DMP \$ $\mathbf{c}, \mathbf{x x x}$
Use this command to dump nnn bytes of storage starting at address addr. You can specify nnn in decimal or hex. You can specify a line printer address $x \times x$ for output. \$c is any symbolic $1 / O$ area specified by a previous BU
CREATE command or by the FROM or INTO CCW command modifiers lif you do not specify a length, the one stored for the symbolic field is used). Symbolic address can be offset $\$ \mathrm{c}+\mathrm{a}(\mathrm{a}=$ offset $1 . . \mathrm{F})$.

DUMP T

Use this command to dump the last entries 36 maximum) of the TRACE are

EX CLRIO,xxX

XC
Execute Clear I/O Use this command to display the ondition code received after running the Clear I/O condition code received

EX HDV,xxx

XHD
Execute Halt Device
Use this command to display the condition code receive after running the Halt Device command to device $\mathbf{x x x}$.
EX HIO.xxx
XH
Execute Halt $1 / 0$
Use this command to display the condition code received after running the Halt $1 / O$ command to device $x \times x$

EX STIDC,xxx

Execute Store Channel ID
Use this command to display the condition code received after running the Store Channel ID command for device xxx.

EX TCH,xxx
XTC
XTC
Execute Test Channel
Use this command to display the condition code receive after running the Test Channel command for device $x x x$.

EX TIO.xxx
Execute Test I/O
Use this command to display the condition code received after running the Test $1 / O$ command to device $\mathbf{x x x}$. If you do not specify device address $\mathrm{xxx}, 4300$-FRIEND uses the last device address entered.

FLAG $\mathbf{n n}$.xx

Modify Flag Byte
Use this command to modify the flag byte in CCW nn to hex value xx . If you specify no value, the flag is set to zero.

Use this command to start running all active CCW chains After they have started running, the CRT console accepts commands for example, STOP, ACTIVATE, COUNTER, EXHIO, etc.) without halting the run. You can stop 4300-FRIEND with an I/O interrupt by pressing the ENTER key on the operator's console.

HALT
Use this command to halt processing after an $1 / 0$ error or false PSW swap occurs. No device is restarted, but additional errors can be indicated.
To not halt after an I/O error occurs, see the "NO HALT" command.

HELP
Use this command to display operating hints.

Initialize

Use this command to initialize 4300-FRIEND. (This command is the same as RESET Oxcept it is (This command is the same as RESET, except it is accepted in
all input fields; for example, in data request.) The device queue, CCW area, data area, and IDA areas are zeroed. All references to symbolic $1 / 0$ areas ($\$ a$ to $\$ z$) are reset. A new device address is requested
INCREASE n,addr,inc,thr,ini,
INCR n, addr,inc,thr,ini,
n2,addr2,inc2,thr2,ini2.*
Use this command to advance a counter after each channel program completes. You can specify a second counter that is updated if the threshold of the first DECREASE command only.

- $n=$ length of the counter (field) 1 to 4
- addr $=$ hex address of the counter.
- \quad inc $=$ optional increase value (in decimal or hex). The default is 1 .
- $\mathrm{thr}=$ optional threshold value (decimal or hex) of the counter at which the counter is initialized. The default $=0$.
- ini = optional value (decimal or hex) to which the counter is initialized at the beginning and when the threshold is reached. The default is 0 .
- * = stop processing if threshold of the only or second counter is reached.

To reset the INCREASE function, see the "NO NCREASE" command.
int
interrupt
Use this command to discontinue the running of CCW chain(s) after the external interrupt button has been pressed twice. A Halt I / O instruction is issued after about five seconds to those $1 / O$ devices that are still active. Th tiO mode of 4300 -FRIEND is reset

To handle external interruptions normally, see the "NO NT'" command.

KEY CAW=k
Use this command to specify CAW key k for the running of the CCW chain. k can be any hex digit 0 to F. The standard key used is 1 .

KEY CCW=k,f
Use this command to specify storage key k for the CCW area (for all CCW chains). The standard key is 1 without etch protection. Specify f to fetch-protect the CCW area.

KEY $\operatorname{DATA}=k, \mathbf{f}$
Use this command to specify storage key k for the data area (for the next CCW chains to be entered).
$4300-$ FRIEND increments the data area pointer to the next 2 K storage boundary and sets the specified key up hrough the end of storage. The standard key is 1 without fetch protection. Specify f to fetch-protect th data area.

KEY IDA=k,f
Use this command to specify the storage key k for the DA area (for all CCW chains). The standard key is 1 without fetch protection. Specify f to fetch-protect the A area

LIST
See the "CCW" Command.

OAD UCSB

Use this command to load the UCSB buffer of the 3203, 3211,3262 or 3289 printers (4300-FRIEND requests al necessary load information). The Block Data Check function is set for the printer.

LOOP / LOOP nnn,*
Use this command to specify the number of times to loop he entered CCW chain. Specify the loop number nnn in decimal (the maximum number is 65535). The SIO counter is reset to zero.

If you specify the optional parameter * the CCW chain is stopped when the specified loop count is reached. Yo CT,* command. If you do not specify the parameter and the CCW chain has looped the specified number of times, 4300-FRIEND stops running all active CCW hains, displays LOOP IS FINISHED ON UNIT $x x x x$, and requests a new command.

Enter GO to repeat the CCW chain(s). You can display he current loop values (thresholds) with the COUNTER command

NLRM

Use this command to reset the audible alarm on the operator console

NO BMPX
Use this command to set block multiplexer mode off (standard if you specify BC mode).

NO COMPARE
 NCMP

Use this command to reset the compare indication for the last entered chain or for the chain specified in the nn-NOCOMPARE format.

NO DATA DUMP
 NDTDMP

Use this command to reset the Data Dump command.

NDCR
Use this command to reset the Decrease command.
NO HALT
Use this command for a no halt after an $1 / 0$ error occurs.

No increase

NINCR
Use this command to reset the Increase command
NO INT
Use this command to instruct 4300-FRIEND to handle the external interruptions normally (no interrupt).

NO TEST I/O
Use this command to reset the TIO mod

NO TIME DELAY

 NTDUse this command to instruct 4300-FRIEND to go wait state after all active UCB devices are started until an $1 / O$ interrupt occurs. Devices that do not return a recommended, in order to save processor time, if 4300-FRIEND is used in the VM environment.

NO WAIT

Use this command to reset the wait indication for the last Use tered command to reset the wait indication for the last entered

POINTER CCW=xxx

PTRCCW=xxx
Use this command to specify the next CCW address (xxx) (must be on doubleword boundary)

POINTER DATA $=x x$

PTRDT=xxx
Use this command to specify the next CCW data are address (xxx)

POINTER IDA=xxx

PTRD=xxx
Use this command to specify the next IDAW address (xxx) (must be on word boundary).

PRINT SENSE

PRTSNS
Use this command to display the 32-byte long standard sense area. The TIO mode of 4300-FRIEND is reset.

PSW

Program (PSW) Restart
In execution mode, use this command to request a Clea function without a counter rese

QUIT

Use this command to qut request for console input (for example, DATA $=1$. The las command is ignored, and a new command is requested The REPLACE function is reset.

REMOVE $=x \times x$ RMV $=x x x$

Use this command to remove all CCW chains for device $x \times x$ from the device queue. If you are running several chain(s) of a device can be removed with this command. To remove a single CCW chain, use the STOP command.

REP nn
Replace CCW
Use this command to replace CCW nn in the last CCW chain entered with the next CCW entered. Use the chain entered with the nexif a spentered. Use the
nn -REP command to modify you are entering a CCW chain, specifying REP alone replaces the last entered CCW with the next one.

peset

Use this command to reinitialize 4300-FRIEND. The device queue, CCW area, data area, and IDA areas are are reset. A new device address is requested.
RETURN
Use this command to change from card/tape input to Userator console input. Otherwise, use the GO or TRACE command.

SCOPE

Use this command to loop on a Start I/O or Test $1 / 0$ instruction. SCOPE can only be used in single CCW chain node. If you specify SCOPE after a TEST I/O, do a PSW ESTART to exit SCOPE mode. If you specify SCOPE after a START $1 / O$, use the console REOUEST to exit.

SENSE=xxxx
Use this command to create a sense byte status mask The two-byte long, hex xxxx field indicates those bits 4300-FRIEND will ignore in the first two bytes of the ense field. You can enter this command anytime during eneration of a CCW chain, and you can specify it for each CCW chain entered.

SET FB

Set Fixed-Block Device
Use this command if a device does not store the correct FB ID after a sense I/O.

SIZE
Use this command to display the storage size in hex
START READER,xxx, ${ }^{*}, n n n n, B$
s,xxx
Use this command to read the CCW chain(s) from either card reader or a tape drive with address xxx. If the
second parameter is *, all records read are displayed. As an optional third parameter, a four-digit test case number
can be specified. This number must be located in
columns 3 to 6 of the first record of a test case. If a tape is used and a desired test case has been passed, a fourth dil specified.
status
Use this command to print all the program indicators normally displayed on line 20.

nn-STOP

Use this command to deactivate CCW chain nn. nn is the UCB number displayed by the LIST= function.

SUBST xxx,yyy

Substitute

Use this command to search all channel programs for device address yyy and then change the device address to ox. If you want to change the device address in a sperro com hand

TEST I/O
T
Use this command to repeatedly run the TIO instruction (using the last-entered device address only) and to display you specify a loop count for the last entered UCB, the TIO oop can be restricted. To execute the TIO only once, use the EX TIO command. By entering SCOPE instead of GO, the results are not displayed.
Reset TIO mode by pressing the ENTER key twice (if INT fature is active) or by commands NO TEST I/O, PRINT SENSE, or RESET.
time
Use this command to get the current time. This is either the time-of-day or the elapsed time since the program was started.

IME DELAY nn
TMDL nn
Use this command to set the timeout counter (for the unning of all CCW chainsl to decimal $n n$ seconds. An error message is displayed if 4300-FRIEND does not ceeive a device end for a CCW chain within the specified console or secondary printer is used as a test device
For no time delay, see the "NO TIME DELAY" command

TRACE xxx

TRC
Use this command to start running all active CCW chains and to build up a trace area that contains information bout all SIOs and I/O interrupts of all test devices. If you seecify an asterisk (*) for device address xxx , the SIO nd TOS for the operator console and the secondary printer are also traced. If you specify device address xxx , only trace entries for this device are stored in the trace area. You can dump the last entries in the trace area with the DUMPT command.

WAIT nn,n
se this command to instruct 4300-FRIEND to complete the current CCW chain (device end interrupt) before tarting the next CCW chain. If you do not specify n 4300-FRIEND starts the next CCW chain when it receives the device end interrupt. Otherwise, it waits for n milliseconds before starting the next CCW chain. acond parameter (n) is optional and specifies 0.1 milliseconds.

To reset the Wait function, see the "NO WAIT command

Changing Existing CCW Chains
eration of a CCW chain, all entered commands are related to the current UCB (the number of the current UCB is displayed on the screen). To change an existing $C C W$ chain (UCB), specify the UCB/CCW chain number (get the UCB/CCW chain number by using CCW $=$ or LIST $=$ commands), a hyphen (-1 , and then the command.

Example 1
This command changes the loop count for CCW chain 12:

12-loop 5000

Example 2

This command copies CCW chain number 2 to the current UCB by using the same CCWs and data:
\square4381

$B / M 2676380$| MI GG 6169392 | |
| :--- | :--- |
| Seq GG035 | PN 5 |EC A20558

0000000000000000000000000000000000

SYS TEST 125

Change Commands

For more information on these commands, see "4300-FRIEND Commands.
nn-ACTIVATE
Activates UCB/CCW chain number nn

nn-ADD

Adds a command after CCW chain number nn (see also "nn-SETFB")
nn-CCW
Lists the CCWs of UCB/chain number nn.
nn-COMPARE ...
Specifies/changes COMPARE values.
nn-NO COMPARE
Deactivates COMPARE for CCW chain number nn. nn-COPY

Copies CCW chain number n n to the current UCB. nn-COUNTER
Lists the counters of UCB/CCW chain number nn $\mathbf{n n - C S W = x x x x}$

Specifies/changes the CSW bits to be ignored. nn-DATA DUMP

Specifies/changes the DATA DUMP values.
nn-NO DATA DUMP
Deactivates DATA DUMP for CCW chain number nn . nn-DECREASE ..

Specifies/changes the DECREASE values

nN NO DECREASE

Deactivates DECREASE for CCW chain number nn nn-DEVICE=

Changes the device address for CCW chain number nn. nn-FLAG nn, xx
Changes the flag byte in CCW chain number nn nn-INCREASE ..

Specifies/changes the INCREASE values.
nn-NO INCREASE
Deactivates INCREASE for CCW chain number nn. nn-KEY CAW=

Specifies/changes the CAW key
nn-LIST
Lists the CCWs of UCB/CCW chain number nn
nn-LOOP
Specifies/changes the LOOP count
nn-REP nn
Replaces a CCW in CCW chain number nn (see also
"nn-SETFB").
nn-SENSE=nnnn
Specifies/changes the sense bits to be ignored.
nn-SETFB
Sets FB type for device ($n n$-REP and nn-ADD commands
require a previous nn-SETFB command for 3370).
nn-STOP
Stops/deactivates UCB/CCW chain number nn .
nn-WAIT nnnn
Specifies/changes WAIT for CCW chain number nn .
nn-NO WAIT
Deactivates WAIT for CCW chain number nn.
CCW Chain Execution Control
Before an SIO is issued, 4300-FRIEND checks the CCW chain and zeros all input areas indicated by the ZERO flag in the CCW.

If an $1 / 0$ interrupt or condition code 1 or 3 occurrs after a Start I/O, 4300-FRIEND analyzes the CSW and issues the specified UCB control commands:

1. Successful completion of a CCW chain (either no error detected or error was masked out by CSW=/SENSE= commands).
a. Data compare
b. Data dump

Data ripple or random
d. Increment or decrement storage field
e. Compare loop count
2. Unsuccessful execution of a CCW chain (error in CSW after I/O interrupt and CSW status no masked).
a. Issue sense command if there is a unit check in
b. If all the sense bytes are masked and no other error is in CSW, handle it as normal interrupt.
c. Display error message.
c. Display error
e. Data ripple or random.
f. Increment or decremen
a. Compare loop decrement storage field.

CCW COMMANDS

In general,4300-FRIEND ignores all vowels, blanks periods, and asterisks except in requested data. All commands can be entered in either uppercase or lowercase characters.
Following the CCW command, a CCW flag or CCW
Following the CCW command, a CCW flag or CCW comma.

The CCWs that have an "S* following the command ar automatically generated with the Suppress Incorrect Length indicator (SIL) set on. If you do not want the SUL bit set on, specify NOSILI after the CCW command.

For a detailed description of the device CCWs, refer to the Component Description manual for that device.

General CCWs

CMD HH *S*
Command Code in Hex
Enter any hex command code. If the last hex digit is odd, data is requested.

HEX HHHHHHHHHHHHHHHH
Complete CCW in Hex
Enter a complete CCW in hex. Sixteen hex characters are packed into an 8-byte CCW and inserted into the CCW packed into an 8-byte CCW and inserted into the CCW
chain. The data address in the CCW is changed to point to the next available data area location of 4300 -FRIEND (if SKIP bit is not on in CCW flag). Blanks can be inserted to separate fields. No CCW flag or CCW command modifier can be specified.

NOP ($X^{\prime} 03^{\prime}$) ${ }^{\circ}$ 。

READ ($X^{\prime} 02^{\prime}$) ${ }^{\prime} S^{\prime}$
SENSE (X 04^{\prime}) ${ }^{\text {S }}$ SNS

Length is always 32 bytes. The standard sense bits (byte zero) are:
$x^{\prime} 80^{\prime}=$ Command reject
$\mathrm{X}^{\prime} 40^{\prime}=$ Intervention require
$\times 20^{\circ}=$ Bus-out check
$X^{\prime} 10^{\prime}=$ Equipment check
$X^{\prime} 08^{\prime}=$ Deta
$x^{\prime} 08^{\prime}=$ Data check
$X^{\prime} 04^{\prime}=$ Overrun
SENSE I/O DEVICE (X'E4') *S*
SNSDVC
TIC *-n..n or -n..n (X'08)
TIC ${ }^{+}+\mathbf{n} .$. n or $+\mathbf{n} . . n$
Transfer in Channel
$\mathrm{n} . \mathrm{n}$ is the decimal number of bytes for the channel to
transfer to (displacement) the * and + or - are optional. only TIC is entered, ${ }^{*}-8$ is assumed. If X is the first hex displacement.

WRITE (X'01') ${ }^{\circ} \mathbf{S}^{*}$
Disk CCWs
DIAGNOSTIC LOAD (X'53')
DGL
DIAGNOSTIC WRITE (X'73')
DW
ERASE (X'11') *s*
INIT BUF (X'E3
Initialize Buffer - 2314
MT + CCW
Set multitrack bit for specified CCW

READ BUF (X'E2')

Read Buffer - 2314
READ BUFFERED LOG (X'A4)
RBL
Read Buffered Log - 33XX
READ COUNT (X'12')
RC
READ COUNT KEY DATA (X'1E') *S* RDCKD

READ DATA ($X^{\prime} 06^{\prime}$) s^{*}
READ DIAGNOSTIC STATUS (X'44') RDDGS

READ HA ($X^{\prime} 1 A^{\prime}$)
RH
Read Home Address
READ IPL ($\mathbf{X}^{\prime} 02^{\prime}$) *s* RDPL

READ KEY DATA (X'OE') *
RKD
READ RO ($\mathrm{X}^{\prime} 16^{\prime}$) ${ }^{-S *}$

Read Record Zero
READ SECTOR (X'22')
RSC
RECALIBRATE (X 13^{\prime}) ${ }^{\circ} \mathbf{S}^{*}$
CL

RL
Device Release - string switch

RESERVE (X'B4')

RSV
Device Reserve - string switch
RESET BUF ($\mathbf{X ' C 3}^{\prime}$) *s*
RSTBF
Reset Buffer - 2314
RESTORE ($\mathrm{X}^{\prime} 17^{\prime}$) *S*
RSTR
SEARCH HA EQ (X'39')
SHO
Search Home Address Equal
SEARCH ID EQ (X'31')
SOD
SEARCH ID HI (X'51')
SDH
SEARCH ID HI EQ (X'711)
SDOH
SEARCH KD EQ (X'2D') *s* SDT

Search Key and Data Equal
SEARCH KD EQ HI (X'6D') *S* SKDQH

Search Key/Data Eq/Hi
SEARCH KD HI (X'4D') *S* CHKDH

Search Key and Data High
SEARCH KEY EO (X $\mathbf{2 9}^{\prime}$) ${ }^{\circ}$ s sak

SEARCH KEY EO HI (X•69.) ${ }^{\circ} \mathbf{S}^{\circ}$ SKOH

0000000000000000000000000000000000

SEARCH KEY HI (X'49') *S

SKH
SEEK (X'07')
SK
SEEK CYL (X'OB')
SKCL
SEEK HEAD (' $^{\prime} \mathrm{BB}^{\prime}$)
SKH
SET FILE MASK (X'1F')
SFM
SET SECTOR (X'23')
SPACE COUNT (X'OF') *S* SPCNT

WRITE buf (X'E1')
WBF
Write Buffer - 2314
WRITE COUNT KEY DATA (X'1D’)
WCKD
WRITE DATA (X'05')
WD
WRITE HA ($\left.X^{\prime} 19^{\prime}\right)$
WH
Write Home Address
WRITE H40 (X'19')
Write 3340 Home Address
WRITE H50 (X'19')
WH50
Write 3350 Home Address
WRITE KEY DATA (X'OD') WKD

WRITE RO (X'15')
WRRO
Write Record Zero
RITE SPECIAL COUNT KEY DATA (X'01’) WSPCKD

Fixed Block (FB) Commands - 3370
Fixed block (FB) devices are identified during device
address specification time ($\mathrm{DEV}=\ldots$...). If the device
handles FB (depends on SENSE I/O bytes 4 and 5 which must be X' 3370^{\prime} ', the DEVICE CHARACTERISTIC is read and saved for later use. If the device does not store the command can be used after DEV $=$.
DEFINE EXTENT (X'63')
DX
(16 bytes)
Requested parameters are:
MASK BYTE = (two hex digits)
PHY.START = (decimal value or up to 8 hex digits preceded by " X ").

LOG.START $=$ (decimal value or up to 8 hex digits preceded by " X ").
LOG. END= (decimal value or up to 8 hex digits preceded by " X '").

If nothing is entered, the defaults are:
First three parameters are all 0.
LOG. END is the value read by the READ DEVICE
CHAR command (reduced by 1).
DIAGNOSTIC CONTROL (X'F3') DCNT
diagnostic sense (x'c4)-s
DGSNS
LOCATE (X'43')
LC
(8 bytes)
Requested parameters ar
OP. BYTE =(two hex digits)
REPL. CNT=(decimal value or up to 2 hex digits preceded by " X ").
BLCK. CNT=(decimal value or up to 4 hex digits preceded by " X ").
BL. OFFS.=(decimal value or up to 8 hex digit preceded by " X ").

If nothing is entered the defaults are:
OP. BYTE $=X \cdot{ }^{\prime} 06$
REPL. CNT $=\times{ }^{\circ} 0^{\circ}$
BL. OFFS. $=x \cdot 00000000$
READ BUFFERED LOG (X'A4') *S* RBL
READ DEVICE CHAR (X'64') RDDVC

READ FB ($\mathbf{X ' 4 2}^{\prime}$) * $\mathrm{S}^{\boldsymbol{*}}$ RFB
READ IPL (X`02') *S RDPL

RL

Device Release - string switch
RESERVE ($\mathrm{X}^{\prime} \mathrm{B} 4^{\prime}$) * S^{*}
RSV
Device Reserve - string switch
SENSE EXTENDED ($\mathbf{X}^{\prime} 84^{\prime}$) *S* SNSX

WRITE FB ($\mathbf{X ' 4 1}^{\prime}$)
WFB

Tape CCWs
BACKSPACE ($\mathrm{X}^{\prime} 27^{\prime}$) ${ }^{\circ}$ S BSR
Backspace Record
BSF (X'2F') *s*
Backspace File
ERG ($\mathrm{X}^{\prime} 17^{\prime}$) *s
Erase Record Gap
FSF ($\mathrm{X}^{\prime} 3 \mathrm{~F}^{\prime}$) * S^{*}
Forward Space File
FSR (X'37') ${ }^{\circ}{ }^{*}$
Forward Space Record
MODE SET (X'93')
MDST
Mode Set 7-track, 800 bpi
MODE SET 800 (X'CB') MDST 8
Mode Set 9 -track, 800 bpi
MODE SET 1600 (X'C3') MDST
Mode Set 9-track, 1600 bpi
MODE SET 6250 (X'D3') MDST 6

Mode Set 9-track, 6250 bpi
READ ($\mathrm{X}^{\prime} 02^{\prime}$) ${ }^{\circ} \mathrm{S}^{*}$
RD
READ BACKWARDS (X'OC') * \mathbf{S}^{*}
RDBK
${ }^{4381} \mathbf{~} 2676380$
 \square
$\underset{\text { REW }}{\text { REWIND (} X^{\prime} 07}{ }^{\prime}$) ${ }^{\text {© }}$
REW
UNLOAD (X'OF') * ${ }^{\circ}$
RUN
WRITE (X'01') *s*
WRT
WTM ($\mathrm{X}^{\prime} \mathrm{FF}^{\prime}$) ${ }^{\circ} \mathrm{S}^{*}$
Write Tape Mark
Card Reader/Punch CCWs

2540 punch, feed, select stacker
PUNCH BINARY ($X^{\prime} 21^{\prime}$) ${ }^{\circ}$ •
PNCHBNR
2540 punch binary, feed, select stacker
PUNCH 42 (X'C1') ${ }^{\prime} \mathbf{S}^{*}$
PNCH42
1442 punch, eject, select stacker 2
PUNCH 42 BINARY (X'E1') © \mathbf{S}^{*}
PNCH42BNR
1442 punch binary/eject/select stacker
READ CARD ($\mathrm{X}^{\prime} 02^{\prime}$) *S*
RCD
Printer CCWs
ALLOW DC (X'7B')
LLWDC
Allow Data Chec
BLOCK DC (X'73')
BLCKDC
Block Data Check
$\underset{\text { FLD }}{\text { FOLD }\left(X^{\prime} 43^{\prime}\right)}$
FLD
Fold -3211 + 3203-4
GATE LOAD (X'EB')
GTLD
Gate Load-1403
IMM + CCW command
MM
Immediate - use with SPACE/SKIP commands
LOAD FCB (X'63') *S*
LDFCB
Load Forms Control Buffer
LOAD UCS (X'FB') *S*
LDCS
Load UCS Buffer without Folding
For 1403, a GATE LOAD command must be executed before a LOAD UCS.

LOAD UCS F (X'F3') *s
LDCSF
Load UCS Buffer and Fold ; not for 3211
PRINT (X'09') *S
PRT
Print with one Space after
RAISE COVER (X'6B')
RSCVR

RFCB
Read FCB 3211
READ PLB (X'02') *s*
RDPLB
Read PLB 3211

READ UCSB ($\mathrm{X}^{\prime} \mathrm{OA}^{\prime}$) ${ }^{\mathbf{*}} \mathrm{S}^{*}$
RCSB
Read UCSB 3211
SKIP_{n}.
SKPn
Skip to Channel $n ; n$ is 1 to 12
SKIP 0 ($\mathbf{X}^{\prime} 83^{\prime}$)
SKPO
Skip to Channel 0 immediate - 321
SPACE \boldsymbol{n} (X'CC') $\mathbf{S}^{\boldsymbol{e}}$
SPC
Print with n Spaces After
n is 1,2 , or 3; command is $X^{\prime} 09^{\prime}, X^{\prime} 11^{\prime}$, or $X^{\prime} 19^{\prime}$ immediate $\mathrm{X}^{\prime} \mathrm{OB}^{\prime}, \mathrm{X}^{\prime} 13^{\prime}$, or $\mathrm{X}^{\prime} 1 B^{\prime}$.

UNFOLD ($X^{\prime} 23^{\prime}$)
NELD
Unfold [3211 + 3203-4]
WRITE (X'01') ${ }^{\circ} \mathbf{S}^{\bullet}$
Write without Space Warning: This can destroy printe ribbons

CRT and Hard-Copy Printer CCWs (3277/3278-3287)

ERASE ALL U (X'OF') *S*
RSLL
Erase All Unprotected
ERASE/WRITE (X'05') •S

ERASE WRITE CRT (X'05') *S
RSW3277
Erase Write 3277 Data
instead of DATA= 3277, specific requests are keyed. To end them, enter * after CMD= is keyed. See "Command Table." Do not specify indirect addressing (IDA).

READ BUFFER ($\mathrm{X}^{\prime} \mathbf{0 2}$) *s*
RBFF

RMD
SELECT (X'OB') *S
SLCT
WRITE (X 01) ${ }^{\circ} \mathbf{S}^{\circ}$
WRITE CRT (X'01’) *s*
W3277
Write 3277 Data Stream
Instead of DATA $=3277$ specific requests are typed. To nd them, enter * after CMD= is typed. See "Command Table" below. Do not specify indirect addressing (IDA)

Command Table

f you specify WRITE CRT or ERASE WRITE CRT 4300-FRIEND asks for the 3277 command (buffer control order).

```
SB'\quad Set Buffer Address (X'11') + address
'S'\quad Start Field ( }\mp@subsup{X}{}{\prime}1\mp@subsup{D}{}{\prime})+\mathrm{ attribute characte
'Sf',
M'(C',
M' Pt', Program Tabulator ( (X'05')
    character (DATA=)
    character (DATA=)
    Erase Unprotected (X ' Knd of Message ('19')- +or adres
    End of Message (X'19') - for printer
    Forms Feed (X'15') - for printer
    New Line (X \ 15)- -or printer
    ENTER key = no command
```


- Coopright 18 M Coro. 1984

0000000000000000000000000000000000

Teleprocessing CCWs (270x, 370x)
ADPREP ($\mathrm{X}^{\prime} \mathrm{IE}^{\prime}$) ${ }^{\circ} \mathrm{S}^{\bullet}$
ADP
Address Prepare
BREAK (X'OD') ${ }^{\text {© }}{ }^{\text {© }}$
BRK
CONTROL SCB (X'OB')*S*
cs
(CtI SCB SDLC - 16 bytes)
Address aligned on fullword boundary.
OFS Enter buffer offset in decimal (default= 2).
ADR Enter SDLC station address.
FLG $X^{\prime} 80^{\prime}$ Inactive station ($0=$ active)
$x^{\prime} 40^{\circ}$ Datapoll station ($0=$ contact
$\times 20^{\prime}$ Send rnr poll ($0=r$ r)
$\mathrm{X}^{\prime} 10^{\circ}$ Reply rnr to poll $(\mathrm{O}=\mathrm{rr})$
NSC Enter ns current.
NSA Enter ns acknowledged.
NRA Enter nr of next frame to be received
IDT Enter four byte identification field in hex
DIAL ($\left.X^{\prime} 29^{\prime}\right)^{\circ} S^{*}$
Dial, switched line with autocall
DISABLE (X ${ }^{\prime} \mathbf{2 F}^{\prime}$) ${ }^{\mathbf{*}} \mathbf{S}^{\boldsymbol{*}}$
DSBL
Disable Line
ENABLE ($\mathrm{X}^{\prime} 27^{\prime}$) ${ }^{\circ} \mathbf{S}^{*}$
NBL
Enable Line
INHIBIT (X'OA) * ${ }^{*}$ NHBT

LISTEN (X'OA') *S*
LSN
SDLC $\times .21$ switched

POLL ($\mathrm{X}^{\circ} 09^{\prime}$) S^{-}
Poll/Autopoll
POLL SCB (X $\left.09^{\prime}\right)^{\circ} \mathbf{S}^{*}$
PLLS
Poll SCB -SDLC Autopoll
Enter SCBs as for Control SCB command. End command with answer ' n ' after Y $\mathrm{N}=\mathrm{N}=$.

POLL SDLC (X'OF') ${ }^{\mathbf{S}}{ }^{\prime}$
PLLSD
PREPARE ($\left.X^{\prime} 06^{\prime}\right)^{\circ} \mathbf{S}$
READ ($X^{\prime} 02^{\prime}$) \mathbf{S}^{*}
READ PIU (X'06') "S
RDP
Read PIU - SDLC
SADn ${ }^{*} S^{*}$
SDn
SAD n -270x; n is $0,1,2$, or 3
SET MODE ($\mathrm{X}^{\prime} 23^{\prime}$) *S*
SENSE SCB ($\mathrm{X}^{\prime} 14^{\prime}$) ${ }^{\circ}{ }^{\circ}$
SNSS
Sense SCB SDLC - 24 bytes
Address aligned on fullword boundary.
WRAP (X'05)
WRP
WRITE (X'01) * ${ }^{\circ}$
WRITE PIU (X'05') ${ }^{\prime} \mathbf{S}^{*}$ WP
Write PIU - SDLC
\square

CCW FLAGS

You can enter a CCW flag after a CCW command, a CCW modifier, or another CCW flag (separated by a comma). Note that some CCW flags are automatically set by $4300-F R I E N D$. After the CCW has been specified, you can change these flags with the 4300-FRIEND FLAG command
DC ($\mathrm{X}^{\prime} 80^{\prime}$)
Data Chaining
Uses address portion of next CCW (command chaining is not turned on

IDA ($\mathrm{X}^{\prime}{ }^{\prime} \mathbf{4}^{\prime}$)
Indirect Data Addressing
Note: This parameter must be the last one you enter in the CCW command. 4300-FRIEND requests IDA areas for IDAW. Do not specify a CCW command modifier with IDA.

NSL
Reset Suppress Incorrect Length Indicato
PCI ($\mathbf{X}^{\prime} \mathbf{0 8}^{\prime}$)
Program Controlled Interrupt
Causes a channel controlled interruption. 4300-FRIEND ignores all interrupts with PCI on in the CSW until device end is posted in the CSW.
SILI (\times 20')
Suppress Incorrect Length Indicator
Causes suppression of possible incorrect length indication in CSW.
SKIP ($X^{\prime} 10^{\prime}$)
Suppresses transfer of information to storage.

CCW COMMAND MODIFIERS

Add the following CCW command modifiers to a CCW command for the indicated reasons. You can combin these modifiers when needed

CRT or 3277
Requests a special 3277 data stream after WRITE and erase write.

FROM
Specifies a symbolic $1 / 0$ area is to be used.
into
Specifies a symbolic $1 / 0$ area is to be used. LENGTH
LN
Data Length
4300-FRIEND requests key length and data field length for the file count instead of using the amount of data have a fixed data length assigne. For commands which LENGTH to change the fixed data length.

NEW
Reset CCW indicators.
This modifier resets the disk indicators for:

- TIC required
- Set File Mask required.

RANDOM
RN
Generates random data, bypasses 'home address' and 'count fieids'.

RIPPLE

Moves the data area one byte to the left for all write ccWs.

ZR

Clears input area of CCW before performing a Start $1 / O$

4381 B/M 2676380	$\begin{array}{\|l\|l\|} \hline \text { MI } \\ \text { Seq_GG040 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { PN } 6169393 \\ 6 \text { of } 6 \end{array}$	EC A20558 $01 \text { Oct } 84$			

INSTALLATION

Contents	
Installation Time Guideline Processor and Ship Group Checkout	INST 002
Power Plug Installation (If Required) Preparing the Power Cable for Plug Installing the Power Plug	inst 011 NSTOH1
Site and Processor Safety Checkout Checking the 4381 Processor Power Plug	
Checking the Customer Power Receppacie	inst 012
Measuring the Customer Primary Power	5
Physical Sotup	InST 016
Chanel	${ }_{\text {ins }}^{\text {inst } 016}$
Installing Operator Console	Inst 021
$3279-2 \mathrm{C}$	INST 022
3205 and Operator Control Panel	INST 025
Installing Remote Support Facility (RSF) Unpacking the Cable Box	inst $03!$ inst 031
External Cable -- Part 8482931 Set Modem Adapter Card (Canada/U.S.A.	INST 032 INST 032
Set Modem Adapter Card (Japan)	
External Cable -- Part 8482930 (External Modem) Set Modem Adapter Card (External Modem)	INST 035 INST 035
External Cable -- Part 8482934 Set Modem Adapter Card . . .	INST 036 INST 036
External Cable -- Part 8482933 Set Modem Adapter Card (External Modems)	INST 041 INST 04
External Cable -- Part 401441 Set Modem Adapter Card	INST 042
Mss Power-On Checks and Diagnostics	
Running MSS Extended Diagnostics...	${ }_{\text {INST }}^{\text {INST } 045}$
Running PU Diagnostics Based on Initial Install or Relocation Ceneral Instuctions	046
OCP Checkout	INST 046
Running Cable Wrap Test (CWT)	INST 046
System Conifiguration	
${ }^{3279}$ Display Console Aids	${ }^{\text {INST }} \mathbf{0 5 1}$
${ }_{\text {contiguraion Aids }}^{\text {Cideta }}$	- ${ }_{\text {INST }}^{\text {INS }} 0511$
Remote Support Facility Aids	INST 051
Patch Aids	INST 051
Running Channel To Channel Adapter (CTCA) Test	INST 051
Installing Interrace Cablas	inst

Clock Time	Area
1.0	Processor and Ship Group Checkout Poover Plug Installation If Required) Site and Processor Safety Checkout Physical Setup
.6	Instal Operator Console Install RSF
2.0	Mss Power-On Checks and Diagnostics
1.4	System Configuration
1.5	Install Interface Cables
2.0	Final System Checkout

8.5 Hours Total Install Time

Processor and Ship Group Checkout

danger

Do not touch any customer power receptacles at the installation site until instructed in the "Site and Processor Safety Checkout" procedure.

Start here after completing the unpacking instructions.

1. Check the processor for physical damage.
2. Ensure that the processor history matches the features listed on the customer order, and notify your manager of any differences.
3. Ensure that possible last minute processor location changes have not affected I/O cable lengths or power outlets.
4. Unpack the large shipping group package and open the boxes. Ensure that the following items were shipped:

- Vol A01 thru A08, C01, Operations Manual, and the PA Guide.
- RSF phone with hardware lif featuredi OCP with OCP cable, coax cable, channel wrap blocks, alignment template, module pin aligner, leveler assemblies, and terminators.

5. Verify that one DIAG1, two FUNC1, and two FUNC2 diskettes are packed in the storage pocket near the service panel.

Note: If the Remote Support Facility (RSF) feature B/M 1806885) was ordered, cable and coupler assembly (part 401441) will be installed in gate 1G. Go to "Site and Processor Safety Checkout.'
6. If the RSF feature other than B/M 1806885 was ordered, verify the correct external RSF cable is part of the ship group. For the correct cable part number refer to the RSF table shown at \mathbf{A}.

4381-3

- Coprignt IBM Corp. 1984

| EC A20558 | EC A205559 | EC A20560 | EC A20562 |
| :--- | :--- | :--- | :--- | EC A20558

01 Oct 84 103 Dec 8

Power Plug Installation (If Required)

This procedure applies only in countries where the machine is shipped without a plug on the power cable. Because of the various styles of power plugs, This Procedure is for Reference Only. The shield must be properly terminated at the plug to ensure proper grounding of the power cable.

Preparing the Power Cable for Plug
Review the figure before starting, and refer to this figure during the procedure.

1. Remove about $65 \mathrm{~mm}(2-5 / 8 \mathrm{in})$ of the cable jacket starting at the plug end of the cable.
2. Unbraid (do not cut), and carefully comb out the shield exposing the cable core.
3. Remove the Mylar separator and cable filler exposing the conductors.
4. Carefully fold the shield back over the cable jacket, and temporarily wrap tape to protect the shield.
5. Install clamp, rubber insulator, and connector shell over the cable core.
6. Remove $14 \mathrm{~mm}(9 / 16 \mathrm{in})$ of insulation from the conductors.

Installing the Power Plug
Note: Nonraised Floor Only. Slide the power cable under the machine frame before connecting the power plug.

The following steps show you how to attach one style of the power plug to the line cord.

1. Remove the tape from the shield, and then loosen and separate the strands.
2. Slide the rubber insulator up against the shield.

Note: Ensure that the ground wire is slightly longer than the adjacent wires.
3. Complete the installation of the power plug by installing the contact assembly to the proper conductors of the power plug. Ensure that the shell makes contact with the shield at all places (360 degrees).

Line Cord Identification

Line Cord Identification

Neutra
Phase 1 Phase 2

* For 220 V wiring, tie the neutral to the line cord.

4381-3
B/M 2676380 \square
\square

Tools required:

CE Tool Kit
CE Meter (part 8496278)
High Voltage Test Probes (parts 1749249 and
1749250) 1749250).

This procedure must be performed to ensure that the installation environment is safe. For plug and receptacle to each completed step.

Checking the 4381 Processor Power Plug

Repair all IBM product problems if any are found

- 1. Verify CB1 and CB2 are in the OFF position.
- 2. Make the following resistance measurements; a reading of less than .1 ohm shows a safe reading of less than .
grounding conductor.
- a. Measure the resistance between the ground pin of the processor power plug
and the processor frame.
- b. Measure the resistance between the processor power plug shell and the processor frame. If there is no plug, measure between the gree
and the processor frame.

Note: If the resistance values are less than. ohm, the processor power plug has a safe ground. Continue this procedure.

- 3. Make the following resistance measurements; value greater than 2000 ohms shows a safe processor power plug.
- a. Measure the resistance from the phase pins to the processor power piug sheii
- b. Measure the phase-to-phase resistance of the processor power plug.

Checking the Customer Power

 ReceptacleIf any problems are found

- Alert the responsible Field Manager.
- Call your Installation Planning Representative (IPR) for assistance.

Notify the customer of the problem.

DANGER

With the customer branch CB in the OFF position, do not touch the exterior shell of the customer eceptacle with anything except the test probes until you have completed step 2.
Power must not be applied to the processor if the building ground cannot be located and verified.

Note: Water pipes, raised floors, and electrical conduit MAY be connected to building ground; therefore, provid a usable ground reference. If you are unable to locate building ground, contact your IPR for assistance.

- 1. Ensure that the customer branch CB is in the OFF position
- 2. Perform the following voltage measurements; all voltage values should be less than 1 Vac .
- a. Measure the voltage between the exterior shell of the customer receptacle and the building ground.
_ b. Measure the voltage between the ground pin of the customer receptacle and the building ground.
_ c. (World Trade Only) Measure the voltage between the neutral of the customer receptacle (if present) and the building ground.
Note: If the voltage values are less than 1 Vac , the curtor receptal is safe to touch.

Make the following resistance

_ 3. measurements; a reading of less than
ohm shows a safe grounding conducto

- a. Measure the resistance between the ground pin of the customer receptacle
to the exterior shell.
- b. Measure the resistance between the ground pin of the customer receptacle to the building ground.

Note: Digital meters may give unstable eadings if leakage current is flowing in the
building ground circuit. If the reading appears unstable or greater than 1 ohm use an ECOS 1020, 1023, or equivalent to measure ground impedance only. If the resistance is less than 1 ohm, the customer receptacle has a safe ground
_ 4. Perform the following voltage measurements of the customer receptacle; all voltage values should be less than 1 Vac .

- a. Measure the phase-to-phase voltage.
- b. Measure the phase-to-ground voltage
— c. (World Trade Only) Measure phase-to-neutral voltage (if present).
_ d. (World Trade Only) Measur neutral-to-ground voltage (if present)

Notes:

1. If voltage values are less than 1 Vac , continue
2. Ensure that the language on all safety labels match the country to which the processor is being installed Refer to "4381 Processor Safety Inspection Guid
for the correct locations and part numbers.

INST 012

Measuring the Customer Primary Power

This procedure must not be performed until you have completed the following procedures.
"Checking the 4381 Processor Power Plug"
"Checking the Customer Power Receptacle"
Do not touch the internal parts of the customer receptacle with anything except the test probes.

- 1. Place the customer branch $C B$ in the $O N$ position.
- 2. Perform the following voltage measurements; all voltage values should be less than 1 Vac .
- a. Measure the voltage between the axterior shell of the customer receptacle and the building ground.
- b. Measure the voltage between the ground pin of the customer receptacie and the exterior shell.
- c. (World Trade only) Measure the voltage between the neutral of the customer receptacle and the building ground.
Note: If the voltage values are less than 1 Vac, the customer receptacle is safe.
_ d. Impedance-grounded neutral power systems only. Measure the voltag between neutral of the customer receptacle and building ground. If the voltage is greater than 10 Vac , check the phase fault indicator for a phase continue until the phase fault is corrected.
- e. Measure the phase-to-phase voltage of the customer receptacle. Continue only if the voltage values measured meet th
_f. Check the voltage label on the cover of the Primary Control Compartment (PCC) box to ensure the processor is correctly wired for the customer outlet. If there is a problem, see Volume C01, "Pow
Logics" on page YA081 for proper wiring, or invoke your support structure.
- g. Place the customer branch CB in the OFF position.

A 50/60 Hertz Primary Power Voltage

Nominal	Minimum	Maximum
50 Hz		
200	180	220
220	193	238
380	333	410
400	350	432
415	363	448
60 Hz		
200	180	220
208	180	220
220	193	238
240	208	254

- Copprigh I IBM Corp. 1984

Processor Location

1. The cable entry and exit holes in the processor frame are shown at A. The opening in the subfloor hole must be large enough to accommodate all $1 / 0$, Power, and Power Control Interface (PCI) cables. Note: Excessive cold air on the Air Flow Sensors can cause a power-on failure.
2. Remove the $1 / O$ cable cover $01 E$, and route the power cable through the frame opening.
3. Install two plate assemblies (part 401502) under the frame as shown at B. Adjust the levelers until the to rotate. The levelers will stabilize

For nonraised floor installations only.
a. Remove two setscrews shown at \mathbf{C}.
b. Remove rubber O ring, and slide locking collar away from power plug.
c. Slide the power plug under the processor frame.
d. For replacement reverse the procedure.

Note: Ensure that the O ring is seated in the grooved area of the plug.
5. (Japan only). For machines with $B / M 1806743$, install leveler retainers as shown at \mathbf{D}.
6. Install cable tie (part 2637668) from the frame support shown at E to the cable.
7. Connect the power plug to the customer receptacle.

Channel-To-Channel Adapter (CTCA) Only

 For CTCA switch settings, see Volume A06, Service Aids 'CTCA Switch Settings."

\section*{B381 2676380} | $\begin{array}{l}\text { MI GHO15 } \\ \text { Seq GHO15 }\end{array}$ | $\begin{array}{l}\text { PN } 6169592 \\ 2\end{array}$ |
| :--- | :--- | | EC A20558 | EC A20559 |
| :--- | :--- |
| O1 Oct 84 | 03 Doc 84 |

- Copright IBM Copp. 1984

Installing Operator Console
3278-2A
CAUTION
The weight of the display console is approximately 36 kg (80 lb). Get aid in lifting.

Note: For the correct setup procedures, see 3278-2A Setup Instructions, and follow normal safety practices.

1. The operator console consists of a keyboard with the operator control panel (OCP) and display console unit. This unit is placed on the operator console table.
2. Remove the cover on gate $01 \mathrm{~F} / 01 \mathrm{H}$ as shown at A.
3. Connect the coaxial cable (part 5578477) to the display console, route the cable to gate 01F, and connect to socket 0 as shown at \mathbf{B}.

Note: If the processor was shipped with a stand-alone OCP, do not use it with the 3278-2A console. Disconnect the the OCP cable (part 401462) from the OCP unit. This cable connects the 3278-2A to the processor. The OCP unit should be left on-site with the customer.
4. Connect the OCP cable (part 401462) to the display console, route the cable to gate 01F, and connect to socket J1 and ground tab as shown at C.
5. Install the EMC clamp (part 167338) to the OCP cable, and then fasten the clamp to the grounding stud D using a flat washer (part 1622305), lockwasher (part 1622319), and nut (part 1622404).
6. Connect the power cord to the customer-supplied outlet.

Note: If the display has a Security Lock feature, ensure that the key is in the ON position.
7. Replace the cover on gate $01 \mathrm{~F} / 01 \mathrm{H}$.
8. Perform the offline test using the 3278 Model $2 A$ Display Console Maintenance Information, Order No. SY27-2546.
9. Connect all optional printers or displays to gate 01 F at positions 1, 2, or 3 .
10. If RSF is featured on this processor, go to INST 031.
11. If RSF is not featured on this processor, go to INST 045.

3279-2C
caution
The weight of the display console is approximately 36 kg (80 lb). Get aid in lifting.

Note: For the correct setup procedures, see 3279-2C

1. The operator console consists of a keyboard with the 1. The operator console consists of a keyboard with the
operator control panel (OCP) and display console unit. The unit is placed on the operator console table.
2. Remove the cover on gate $01 \mathrm{~F} / 01 \mathrm{H}$ as shown at
3. Connect the coaxial cable (part 5578477) to the display console, route the cable to gate $01 F$, and connect to socket 0 as shown at \mathbf{B}

Note: If the processor was shipped with a stand-alone OCP, do not use it with the 3279-2C console. Disconnect the the OCP cable (part 401462) from the OCP unit. This cable connects the 3279-2 2 to the processor. The OCP unit should b
4. Connect the OCP cable (part 401462) to the display console, route the cable to gate 01F, and connect to socket J 1 and the ground tab shown at C .
5. Install the EMC clamp (part 167338) to the OCP cable, and then fasten the clamp to the grounding stud D using a flat washer (part 1622305) lockwasher (part 1622319), and nut (part 1622404).
6. Connect the power cord to the customer-supplied outlet.
Note: If the display has a Security Keylock feature ensure that the key is in the ON position.
7. Replace the cover on gate $01 F / 01 \mathrm{H}$
8. Perform the offline test using the 3279 Display Terminal Maintenance Information, Order No. SY33-0069.
9. Connect all optional printers or displays to gate 01 F at positions 1, 2, or 3
10. If RSF is featured on this processor, go to INST 031 .
11. If RSF is not featured on this processor, go to INST 045.

$4381-3$ $B / M 267$
 Coopright 18M Corr. 1984

MI
Sog GHO2O

2 of 2 | EC A20558 | EC A20562 |
| :--- | :--- |
| 01 Oct 84 | 30 Aut 85 | \square

0000000000000000000000000000000000

INST 025

3205 and Operator Console Panel

CAUTION

The weight of the display console is about 20 kg (45 (b). Get aid in lifting

Note: For the correct setup procedures, see 3205 Color Display Console Maintenance Information, and follow normal safety practices.

1. The color display console consists of a keyboard video unit, and logic unit. The OCP is part of the processor ship group.
2. Place the Color Display Console and the OCP on the operator console table.
3. Install OCP plate (part 401345) under the right end of the console base, and place the OCP on top of the plate adjacent to the keyboard as shown \mathbf{A}.
4. Remove the cover on gate $01 F / 01 \mathrm{H}$ as shown at \mathbf{B}
5. Connect the coaxial cable (part 5578477) to the display console, route the cable to gate 01F, and connect to socket 0 as shown at \mathbf{C}
6. Route the OCP cable (part 401462) from the OCP to gate 01F, and connect the cable to J1 position and connect the ground tab shown at \mathbf{D}.
7. Install the EMC clamp (part 167338) to the OCP cable, and then fasten the clamp to the grounding tud E using a flat washer (part 1622305) lockwasher (part 1622319), and nut (part 1622404).
8. Connect the power cord to the customer-supplied outlet.

Note: The display has a Security Keylock feature; ensure that the key is in the ON position.
9. Replace the cover on gate $01 \mathrm{~F} / 01 \mathrm{H}$
10. Connect all optional printers or displays to gate 01F at positions 1,2 , or 3 .
11. If RSF is featured on this processor, go to INST 031
12. If RSF is not featured on this processor, go to INST 045.

Front View 3205

0000000000000000000000000000000000

Installing Remote Support Facility (RSF)

Note: If this installation does not include the Remote
Support Facility feature, go to page INST 045.
This section describes the installation of the RSF cable to gate 01G.

Unpacking the Cable Box
If feature $\mathrm{B} / \mathrm{M} 1806885$ was ordered, cable assembly (part 401441) is installed in gate 01G; go to page INS 042 to continue the cable installation.
. For external cable (part 8482931), go to page INST 032.
2. For external cable (part 8482930), go to page INST 035.
3. For external cable (part 8482934), go to page INST 036.
4. For external cable (part 8482933), go to page INST 041.
5. For external cable (part 401441). go to page INST 042

External Cable -- Part 8482931

1. Locate and remove the cover \mathbf{A} on gate 01 G by loosening screws \mathbf{B} and \mathbf{C}.
2. Connect RSF external cable D to $01 \mathrm{G}-\mathrm{CCA} 1$ as shown
3. Connect cable shield \mathbf{E} to gate 01 G (as shown).
4. Route RSF external cable through opening adjacent to gate 01G.
5. Install tie wrap (part 5270166) to the external cable, and fasten it to the adjacent frame support shown at and fasten it to the adjacent frame
F using screw (part 1621230).
6. Reinstall the cover \mathbf{A} by tightening screws \mathbf{B} and
\mathbf{C}.
7. Do one of the following to complete the RSF externa cable installation:

- To connect external cable, part 8482931 Canada/U.S.A.), first connect adapter (part 1853134) and then refer to coupler.
- To connect external cable, part 8482931 (Japan), see B/M 1864633 contained within B/M 4143541.

Set Modem Adapter Card (Canada/U.S.A.)

1. Remove card (part 8564508) from 01A-A204.
2. Set all rocker switches to the OfF position.
3. Set rocker switch K to the $O N$ position.
4. Use the Transmit DBM chart to match rocker switches A through I to levels specified on the switches A throu
coupler ($X=O N$).
5. If level is not shown, use the -8 dbm settings.
6. Install the card in 01A-A204
7. Go to page INST 045.

Set Modem Adapter Card (Japan)

1. Remove card (part 5688021) from 01A-A2O4.
2. Set all rocker switches to the OFF position.
3. Set rocker switches $A A, B B, C C, D D, L, M$, and N to the ON position.
4. Use the Transmit DBM chart to match the rocker switch settings A through H and R levels shown on switch settings A thr
the coupler ($X=O N$).
5. If no level is shown, use the -8 dbm settings.
6. Install the card in 01A-A2O4
7. Go to page INST 045.

4381-3 \begin{tabular}{|l|l|}
\hline MI GHO3O \& PN 6169595

\hline

\hline EC A20558 \& EC A20559 \& EC A20560

01 \& Oct 84 \& O3 De5
\end{tabular}

External Cable -- Part 8482930 (External Modem)

1. Locate and remove the cover \mathbf{A} on gate 016 by loosening screws \mathbf{B} and \mathbf{C}.
2. Connect RSF external cable \boldsymbol{D} to 01G-CCA1 position.
3. Connect cable shield \mathbf{E} to gate 01 G as shown.
4. Route RSF external cable through the opening adjacent to gate 01 G .
5. Install tie wrap (part 5270166) to the external cable, and fasten it to the adjacent frame support shown at and fasten it to the adjacent fram
6. Reinstall the cover \mathbf{A} by tightening screws \mathbf{B} and
7. Connect external cable connector (part 8482930) G to the customer supplied modem.
8. To complete this cable installation, see your modem instructions.

Set Modem Adapter Card (External

Modem)

1. Remove card (part 5864668) from 01A-A204.
2. Verify that positions D and F have jumpers installed.
3. Install the card in 01A-A204.
4. Go to page INST 045.

A2O4
(Reference Only)

External Cable -- Part 8482934

1. Locate and remove the cover \mathbf{A} on gate 01 G by loosening screws \mathbf{B} and \mathbf{C}.
2. Place foam pad (part 401478) D on gate O1G as
shown. shown.
3. Place the RSF external cable assembly \mathbf{E} on top of the foam pad in gate 01G.
4. Install retainer bracket (part 401479) \boldsymbol{F} using screw (part 1621176).
5. Install ground wire \mathbf{G} to housing \mathbf{H} using screw (part 1621190) and washer (part 1622346).
6. Install connector J to 01G-CCA1
7. Route TB1 cable \mathbf{K} through opening adjacent to Route TB1 cable \mathbf{K} through opening adjacent
8. Install tie wrap (part 5270166) to the external cable and fasten it to the adjacent frame support shown a L. using screw (part 1621230)
9. R Reinstall the cover \mathbf{A} by tightening screws \mathbf{B} and

Note: For a detailed description of TB1 wiring, refer to Volume A06, Service Aids "Line Plate Configuration (World Trade)."
10. To complete the RSF external cable instaliation, contact your telephone company representative.

Set Modem Adapter Card

. Remove card (part 5167246) from 01A-A2O4
Set all rocker switches to the OFF position.
. Set rocker switches I, J, K, P, and N to the $O N$ position.
4. Use the Transmit DBM chart to match rocker switches A through H and R to levels specified on the coupler ($\mathrm{X}=\mathrm{ON}$).
5. If no level is shown, use the -8 dbm settings.
6. Install the card in 01A-A2O4.
7. Go to page INST 045.

INST 036

0000000000000000000000000000000000

External Cable -- Part 8482933

1. Locate and remove the cover \mathbf{A} on gate 01 G by Locate and remove the cover
loosening screws \mathbf{B} and \mathbf{C}.
2. Install the RSF external cable assembly Dinto gate 016 E.
3. Route the cable assembly through the opening Route the cable assembly through the opening
adjacent to gate $01 G$ and then to the location of adjacent to gate 0
4. Install the two mounting screws (part 1621176) and the two flat washers (part 1622304) shown at \mathbf{F}.
5. Connect the cable shield \boldsymbol{G} to gate 01 G shown at
H.
6. Connect the ground wire \mathbf{J} using the screw (part 1621190) and washer (part 162346) K to gate 01G shown at L
7. Connect cable \mathbf{M} to 01G-CCA 1
8. Install tie wrap (part 5270166) to the external cable, and fasten it to the adjacent frame support shown at N using screw (part 1621230).

Set Modem Adapter Card (External

 Modems)1. Remove card (part 5864668) from 01A-A2O4
2. Verify that positions D and F have jumpers installed
3. Install the card in 01A-A2O4.
4. Go to page INST 045

(Reference Only)
5. Reinstall the cover \mathbf{A} by tightening screws \mathbf{B} and C.
6. Connect external cable connector (part 8482933) \mathbf{P} to cable connector (part 1727744) Q.
7. To complete this cable installation, see your modem instructions.

External Cable -- Part 401441

1. Locate and remove the cover \mathbf{A} by loosening screws
2. Route cable \mathbf{D} through the opening adjacent to gate 01 G and then to the telephone.
3. Ensure that the 01G-CCA1 connector \mathbf{E} is properly seated

Reinstall the cover \mathbf{A} by tightening screws \mathbf{B} and

Set Modem Adapter Card

1. Remove card (part 8564508) from 01A-A2O4.
2. Set all rocker switches to the Off position.
3. Use the Transmit DBM chart to match rocker switches A through 1 to the 0 dbm level ($X=O N$).
4. Set rocker switch J to the ON position.
5. Install the card in 01A-A2O4.
6. Go to page INST 045 .

Note: The unpacking, assembly, and connection of the IBM supplied telephone is TOTALLY the responsibility of the customer and is NOT to be performed by the IBM service representative.
5. Give the customer the box labeled part 4494964 which contains the IBM supplied telephone.

4381-3
$8 / \mathrm{M}_{2676380}$ Ml
Seq

- Coprright IBM Corp. 1984 | EC A20558 | EC A20560 |
| :--- | :--- |
| 01 Oct 84 | 18 Feb 85 |

$$
0
$$

Note: If a processor failure occurs while performing the following instructions, go to Volume A01, "Start Repair Procedure," on page START 001. Once the failure has been corrected, return to the point in the instructions from where you left.

1. Ensure the Unit Emergency Only switch is in the On position and the customer branch CB is in the ON position.
2. Diskette drives 1 and 2 are unloaded.
3. Ensure that the operator console is powered on.
4. Set the CE Mode switch to CE Mode, the Power Off switch to Normal, and verify the following.
a. CP1, CB1, and CB2 are in the ON position at the PCC.
b. CP 2 is in the ON position (all 50 Hz and 60 Hz Japan machines).
c. The 5 Volt, 24 Volt, Basic Check, and MBC On indicators are on.
5. Press Power On at the service panel, and verify the following:
a. The Power In Process indicator is on.
b. After about 30 seconds, 81504 appears in the MSS Code display indicating the SP ROS diagnostics ran error free.
6. Press Lamp Test, and verify that the remaining service panel lights are now on.

Running MSS Extended Diagnostics

1. Set the CE Mode switch to Normal.
2. Set the I/O Power Hold switch to I/O Power Hold.
3. Set the Power Off switch to Power Off.
4. Install the DIAG1 diskette into diskette drive 1.
5. Set the Power Off switch to Normal.
6. Press Power On. The Basic and Extended Diagnostics (FF) start to run.
7. The message MSS EXTENDED DIAGNOSTICS COMPLETED is displayed when the tests are completed.

Note: Errors are indicated by the stop words displayed on the service panel or by a reference code shown on the console.

Running Additional MSS Tests
Note: A error message is displayed on the operator console screen if ports 1,2 , or 3 on gate 01F are unused.

1. Power on all displays/printers, and ensure that all device switches are set to the Normal position.
2. Key in the two-digit code for each selected test, and press ENTER.

INST 045
3. Follow the instructions displayed on the operator console screen.

Notes:
a. Run Test AO against diskette drive 1 and diskette drive 2.
b. Run test EO ONLY if external cable 8482930 or 8482933 is installed.

MSS Test Selection.

90	Run Service Panel diagnostics
AO	Run DDA/Drive tests
CE	Test all console/printer ports
DO	Run RSF adapter diagnostics
EO	Run RSF cable wrap test (EIA interface only)

Note: For additional information, see "Optional MSS Diagnostics," under Diagnostics in this volume.

MI Seq_GHO45	PN 6169598 1 of 2

Running PU Diagnostics Based on Initial Install or Relocation

Notes:

1. Ensure that channel $\mathbf{0}$ is terminated
2. If a failure should occur, correct the failure and restart this test.
3. Perform Language Configuration first, only if another keyboard other than the U.S. console "Language Configuration."

General Instructions

1. Set the CE Mode switch to CE Mode
2. Remove DIAG1 diskette from diskette drive 1 .
3. Install FUNC1 diskette into diskette drive 1 and FUNC2 diskette into diskette drive 2
4. Press IML at the service panel

Note: Ignore the message "PORT x CONFIG ERROR."
5. Enter date and time

Note: If the processor that you are installing DOES NOT have a printout packaged with the diskettes go to step 8 .
6. Go to Volume A06, Service Aids, and perform "System Configuration--Service.'
Note: For the correct system configuration information, use the printout packaged with the diskettes.
7. After performing "System Configuration-Service continue with step 8 on this page.
8. Key in QWW, press ENTER
a. Key in UC, and press ENTER.
9. The Power Complete indicator is now on
10. Press MODE SEL.
11. Key in QG, and press ENTER to display the Diagnostic Mode PU Diagnostic Selection screen.
12. Select the correct option.

Note: When either option is selected, all available Basic and MSMD diagnostics are run against PU 1 and PU 0 hardware.
a. INITIAL INSTALL-Option

1) Key in T, and press ENTER.
2) Key in Y , and press ENTER.

Note: Do not terminate this test.
b. RELOCATION-Option I (Isolate Failure)

Note: If Option T is run at this time and econfiguration has occurred, a message is displayed on the operator screen indicating that the hardware is reconfigured. Run Option I at this time.

1) Key in I, and press ENTER.
2) Key in None, and press ENTER.
3) Key in Y, and press ENTER.
4) To terminate this test, press and hold ALT and then press MODE SEL

OCP Checkout

Set the Power Off switch to Power Off and then back to Normal on the service panel
2. Set the CE Mode switch to Normal
3. The indicators on the OCP are not on at this point.
4. Press Power On/IML on the OCP. Enter the needed information on the Time-of-Day screen. Verify that the Power Complete indicator is on.

Note: If this machine has the channel to chan feature, the Chan-Chan Disabled indicator is on or of feature, the Chan-Chan Disabled indicator is on
as the Channel-To-Channel switch is pressed.
5. Press Lamp Test on the OCP, and verify that the Power in Process, Power Complete, Basic Check, System, Wait, and Chan-Chan Disabled lif CTCA is featured) indicators are on
6. Press Power Off on the OCP, and verify that machine powers down.
7. Set the CE Mode switch to CE Mode. The Basic Check indicator is now on
8. Press Power On/IML on the OCP, and verify that the processor does not power up.
9. Press Power On on the service panel, the processor will now power up. Key in the needed information on the Time-of-Day screen. When the OWW screen is displayed, enter UC. Verify that power is complete
10. Press Power On/IML on the OCP. The processor will IML and the General Selection Screen appears.

Running Cable Wrap Test (CWT)

1. Ensure that the CE Mode switch is in CE Mode.
2. Ensure the FUNC1 diskette is in diskette drive 1 .
3. Install DIAG1 diskette in diskette drive 2.
4. Key in QG, and press ENTER to display the Kiagnostic Mode PU Diagnostic Selection screen.
5. Select Option C, and press ENTER.
6. Select PU side 0 .
7. Select 02 for Cable Wrap Test after the Channel Test Selection screen is displayed.
8. Run CWT on all channels attached to PU O.

Note: Detailed run instructions and test options ar displayed on the operator console.
9. Key in option E.
10. Select Option C, and press ENTER
11. Select PU side 1.
12. Select 02 for Cable Wrap Test after the Channel Test Selection screen is displayed.
13. Run CWT on all channels attached to PU

Note: Detailed run instructions and test options ar displayed on the operator console
14. Key in option E .
15. After completing this test, remove DIAG1 from diskette drive 2, and install FUNC2 in diskette drive

0000000000000000000000000000000000

System Configuration

The following procedures are contained in Volume A06 Service Aids. Perform these procedures now.
Note: Perform Language Configuration first, only if ether keyboard other than the U.S. console keyboard is used.

3279 Display Console Aids
erform the following procedure if the system has a 3279-2C Display Console attached:
"3279 Display Console Adjustment."
Configuration Aids
erform the following configuration procedures a installation:
"System Configuration-Customer"

- I/O Configuration
"I/O Configuration ($\mathrm{S} / 370$)" for $\mathrm{S} / 370$ mode of peration.
"S/370XA Installation" for 370-XA mode of operation.
- "Customer Data and Security Control (Problem Analysis)"

Remote Support Facility Aids

Perform the following RSF procedures at installation

- "Send Service Information (Problem Analysis)"
- "Remote Operator Console Facility (ROCF)" (if applicable)
- "Data Bank Initialization.

Diskette Aids

Perform the following diskette procedures at installation:

- "Language Configuration" (if required)
- "Module Transfer."

Patch Aids

Perform the following patch procedure at installation:

- "Patch Installation" (if applicable)

Running Channel-To-Channel Adapter (CTCA) Test

Note: Ensure that Channel $\mathbf{0}$ is terminated.
To run this test, both sides of the CTCA (X and Y) mus
be cabled to channels on the same processor. Before running this test, verify that the channels are operationa For details on the CTCA tests, see Volume A06, Service Aids, "CTCA Tests."

0000000000000000000000000000000000

Installing Interface Cables

1. Set the CE Mode switch to Normal, and set the Power Off switch to Power Off
2. Plug the Power Control Interface (PCI) cables into the $010 \mathrm{I} / \mathrm{O}$ rack as shown at A
a. Start with position 1 (top left socket) on the PCl panel located at 01D
b. Remove the yellow wire jumper from its plug position
c. Plug the PCl cables in numerical order until al PCI cables are plugged.
d. Install the yellow wire jumper next to the las position plugged with the PCl cables.
3. Connect channel cables to gate $\mathrm{O} E \mathrm{E}$ as shown at Notes:
a. To prevent cable interference, install channel cables in a left-to-right sequence.
b. Ensure that ALL channels are terminated with 370 type terminators BUS (part 2282675) and TAG (part 2282676).
4. Connect CTCA cables to gate 01 H as shown at C
5. If the processor has an interrupt cable that must be connected to the processor, go to Volume A06, Service Aids, "External Interrupts" for more details.
6. Reinstall gates 01 E and $01 \mathrm{~F} / 01 \mathrm{H}$ covers.

	nel	Channel 1		Channet2		Channel3		Channel4		Channel5		Channel6		Channel 7		Channel8		Channel 0		Channel1		$\begin{gathered} \text { Channel } \\ 2 \end{gathered}$		Channel 3		Channel 4		Channel 5		Channel6		Channel7		$\begin{gathered} \text { Channel } \\ 8 \end{gathered}$	
A1	A2	A3	A4	A5	A6	A7	A8	A9	B1	B2	B3	B4	B5	B6	B7	B8	B9	c1	C2	C3	C4	C5	c6	c7	C8	c9	D1	D2	D3	04	D5	D6	D7	D8	D9
Bus	tag																																		

Final System Check

Running System Test/4381
System Test/4381 should be run for approximately one hour (2 passes) with all 1/O devices connected. For a complete description of System Test/4381, see "System Test/4381" in this volume.

After running System Test/4381, go to Volume A06, Service Aids, and perform "S/370 XA Installation" if this is a XA account. After successfully running System Test/4381, invoke PA Option E (service action complete).

Completing the Installation

1. If you have installed more than one machine, report your time accurately on each machine.
2. File all documents, and complete any associated paperwork.
3. Turn system and the 4381 Processor Operations Manual over to the customer.

Relocation or Discontinuance
Procedure

By using the Processor Installation instructions and the Unpacking Instructions, you can disconnect the system for equipment location change or discontinuance.

Note: If this system uses the IBM supplied telephone (part 4494964) for RSF transmissions, the telephone is part of the system and must be packaged with the system. The part number is located on bottom of the telephone.
\square

4381 PROCESSOR SAFETY INSPECTION GUIDE

Table of Contents

Line Cord Ground Check . INSP 003
Frame . INSP 004
External Check . INSP 004
Internal Check 004
PCC and PS104 Fuses . INSP 005
Line Filter INSP 006

Safety Labels . INSP 007
Gate 01C \qquad INSP 009

Diskette Drives \qquad INSP 010

Gate 01A \qquad INSP 011 Safety Labels INSP 011

Console Devices (3205, 3278-2A, 3279-2C) . INSP 013
Internal Check INSP 013

Power On/Off Check \qquad INSP 015

Safety Labels \qquad INSP 017

\square	PN 6169618
1 of 2	

Purpose

To supply a safety inspection procedure for the processor.
This safety inspection should be done:

- When you inspect a processor for an IBM maintenance agreement and there is reason to
question the processor's safety.
- When IBM per call service is requested and no service has recently been performed by IBM.
- When an alterations and attachments review is performed
If the inspection indicates unacceptable safety condition(s), the condition(s) must be corrected before IBM provides service to the machine.

While performing this inspection, special attention must be given to these areas:

- 50 to 60 Hz conversions using IBM or non-IBM parts.
- Feature/model changes and EC upgrades

Additions of non-IBM power supplies or attachments.
Missing safety covers.

- Removed, faded, or painted-over safety labels.
- Primary power parts replacement requirements.
- Other product safety related items.

Items Needed

- CE tool kit
- Fluke* 8060A digital voltmeter (part 8496278) or equivalent.

Trademark of John Fluke Mfg. Co. Mount Lake Terrace,
Washington
\square

-Copright IBM Corp. 1984

Line Cord Ground Check
DANGER
Use only test probes to touch the exterior shell of the customer's receptacle until step 9.
_ 1. If processor main power connector is unplugged, go to step 8.
_ 2. Press Power Off at the operator control panel or the service panel.

- 3. Switch CB1 and CB2 off.
- 4. Have the customer locate and turn off the branch circuit breaker to the processor and all physically attached I/O devices.
- 5. Use Fluke* 8060A meter to check for 0 Vac from the receptacle case A to building ground. If voltage is less than 1 Vac , the shell can be touched but not separated.

6. Loosen locking device but do not separate connectors.

DANGER
Do not touch connectors to be separated. Wrap connector with electrical tape or wear rubber gloves.

- 7. After taping connector or while wearing rubber gloves, separate connectors.
_ 8. Carefully meter from ground pin of receptacie in building ground for 0 Vac. Do not continue if condition is not met.
- 9. Measure from ground pin of receptacle to the case of the receptacle for 0 Vac . Do not continue if condition is not met.
_ 10. Measure resistance from ground pin of the customer receptacle to building ground. Reading should be less than 1.0 ohm .

Note: Digital meters may give unstable readings if leakage current is flowing in the building ground circuit. If the reading appears unstable or greater than 1 ohm , use an ECOS 1020, 1023, or equivalent to measure ground impedance only.

- 11. Measure resistance from ground pin of receptacle to receptacle case. Reading should be less than 1.0 ohm.
_ 12. Measure resistance from ground pin of disconnected power cord to frame ground. The resistance should be less than. 1 ohm.
_ 13. Check main power cord for damaged, broken insulation, or arced pins. Ensure the correct locking plug is used.

DO NOT RECONNECT MAIN POWER CONNECTOR UNTLL INSTRUCTED TO DO SO.

For 220 V wiring, tie the neutral to the line cord.

4381-3
B/M 2676380

MI	PN 6169619
Seq GIO1O	1 of 2

\square EC A20558
01 Oct 84 EC A20559 \quad EC A20562 EC A20562
30 Aug 85

Frame

External Check

- 1. Check for damaged or missing external covers.
- 2. Check cover latches for function:ing correctly.
- 3. As doors are opened, check the hinges for breakage or corrosion.
- 4. Check covers for sharp edges.

Internal Check
_ 1. Check for non-IBM alterations or attachments. If present, complete form R -OO9, Non-1BM Alterations/Attachments Survay.

- 2. Inspect for smoke or water damage and

3. Inspect all cables for damage, correct ratings, all needed grommets in place at frame
feed-throughs, and tie-downs in plac DANGER
dANGER
A shock hazard may exist while plugging or disconnecting inline or Mate-N-Loke connectors because of the connector pin connectors because of the connector pin
slipping from its socket. Before working with any connectors, ensure power is off

- 4. Check that FDS cables are correctly seated and Check that all covers are corrective
- Trademark of AMP Inc. Harrisburg, Pennsylvania

- Copprignt IBM Copr. 1984

0000000000000000000000000000000000

INSP 005

PCC and PS 104 Fuses
The fuses listed below are for the PCC and PS 104 only. Located on the cover of the PCC. A
F1 4 amps 230 Vac
F2 2.8 amps 240 Vac
Located on PS 104 to the left of the PCC. B
F1 15 amps 600 Vac
F2 15 amps 600 Vac
F3 15 amps 600 Vac
F4 15 amps 600 Vac
F5 6 amps 600 Vac
F6 6 amps 600 Vac
F7 6 amps 600 Vac
F8 6 amps 600 Vac
F9 $\quad 1.6 \mathrm{amps} 600 \mathrm{Vac}$
Ensure the following:
_ 1. Green/yellow wire G from PCC cover to frame is tight.

- 2. Green/yellow wire \mathbf{D} from top rear of PCC to frame is tight Located near J14.
_ 3. Green/yellow wires \boldsymbol{H} at lower rear of PCC are tight.
- 4. The power strain relief \mathbf{E} is tight and undamaged.
- 5. Green/yellow wire \mathbf{F} in plug J01 is tight
_ 6. Meter for less than 1 ohm from the convenience outlet ground pin C to the frame.

Rear of PCC

${ }_{B / M 2676380}$ | MI |
| :--- |
Seq_G1015	PN 6169620	EC A20558			
01 OCT 84		01 OCT 84			
:---	:---	:---	:---		

Ensure the following:

-1. Green/yellow wires from PS 104, PS 105 PS 106, PS111, and PS $112 \boldsymbol{A}$ to the frame are
tight. tight.

- 2. Remove the acoustical barrier B at AMD 102. Ensure green/yellow wire from motor to frame is tight. This wire is mounted above the motor on the blower mounting frame. Ensure green/yellow wire from the blower mount to the Install the acoustical barrier.
- 3. Open PCC box cover. Ensure safety covers for CP1 C CB1, and CB2 are in place. CB1 is rated for 10 amps ; CB2 is rated for 25 amps D. Ensure green/yellow wires \mathbf{E} in all plugs
inside the PCC are tight.
- 4. Green/yellow wires \mathbf{G} inside of PCC are tight.

Line Filter
Note: Line filter is not installed on machines for Japan
Remove line filter cover \boldsymbol{F}. Ensure all wires at the line filter are tight. Install line filter cover.

4381

B/M 2676380 \begin{tabular}{|l|l|}
\hline $\begin{array}{l}\text { M1 } \\
\text { Seq_G1015 }\end{array}$ \& $\begin{array}{l}\text { PN 6169620 } \\
2 \text { of } 2\end{array}$

\hline

\hline EC A20558

01 OCT 84
\end{tabular}

- cooviaremcan

INSP 007

Safety Labels

Ensure all safety labels as shown are in place and
readable. For safety label part numbers, see page INSP
Item B is located between CB1 and CB2 inside the PCC.
Item \mathbf{D} is located inside the PCC.
Close the cover of the Power Control Compartment
(PCC).
(PCC).

HAZARDOUS AREA
a trained service PERSONNEL ONLY

LINE VOLTAGE
PRESENT WITH MACHINE POWER OFF

PCC Cover

Rear of PCC

Inside PCC

C This unit equipped with line filter circuits. See installation manual for special grounding wire requirements.

WARNING

D High grounding conductor current. Grounding machine. Never operate machine with grounding conductor disconnected.

M1 _G1020	PN 6169621
Seq of 1	

EC A20558
O1 OCT 84

Gate 01C

Ensure the following:
_ 1. Green/yellow strap A from gate O1C to frame is tight
_ 2. Green/yellow strap B from PS107, PS 108, and PS 109 to the frame is tight.

- 3. Remove the acoustical barrier C at AMD 105 Ensure green/yellow wire to blower cover, green/yellow wire from motor to blower cover and green/yellow wire in plug are tight. Install acoustical barrier.
_ 4. Green/yellow strap D from AMD 105 to the Grame is tight.
_ 5. Green/yellow strap E from PS 101, PS 102, and PS 103 is tight.
_ 6. Green/yellow wire in all plugs is tight.
— 7. Green/yellow strap from the service panel to the frame is tight.

Note: Transformers 104A, 104B, 104C, and CP2 are or all 50 Hz and Japan 60 Hz machines. If present, CP2 is mounted on the frame of gate 01C over PS 101

Ensure the following:
_ 1. Green/yellow wire in plugs for TR 101, TR 102, TR103, TR 104A, TR 104B, and TR104C to transformer case is tight

- 2. Nuts or screws F mounting TR 101, TR 102 , tight.
— 3. Check for a 3.2 amp fuse in TR 102, a 4.0 amp Check for a 3.2 amp fuse in TR 102, a 4.0 amp
fuse in TR103, and 15 amp fuses in TR 104 if TR 104 is installed.
- 4. Ensure the DANGER 550 V label is in place for TR101, TR 102, and TR 103. Label is mounted on the capacitors on the transformers. For safety label part numbers, see page INSP 017

4381

B/M 2676380 \qquad | EC A20558 |
| :--- |
| 01 |
| 01 |

- Copright IBM Coxp. 1984

Diskette Drives

Ensure the following:

- 1. Diskette drives are correctly installed
_ 2. Green/yellow wires in plugs for diskette drives are tight.
_ 3. Belt safety cover (if installed) is in place.
- 4. Green/yellow wire from both diskette drives A
- 5. $\begin{aligned} & \text { Power cable strain relief for both diskette drives } \\ & \mathbf{B} \text { is tight. }\end{aligned}$

Diskette Drive
\square

Gate 01A
Ensure the following:

- 1. Green/yellow straps A from board $01 A-B 1$ and $01 \mathrm{~A}-\mathrm{B} 2$ plenums to the frame are tight.

2. Swing open gate $01 C$ and ensure the green/yellow ground straps for boards 01A-B1 acated at the top right corner of the boards.

- 3. Remove acoustical barrier B from AMD 101 Ensure green/yellow wire to blower cover and green/yellow wire in plug are tight. Install acoustical barrier.
_ 4. Remove acoustical barrier C from AMD 103 AMD 104, and AMD 106. (AMD 103 located behind AMD 104). Ensure green/yellow wire to blower cover, green/yellow wire from motor to blower cover, and green/yellow wire in plugs are tight. Install acoustical barrier.

5. Ensure the safety cover over the decoupling capacitors D are tight. Decoupling capacitors cover is mounted over the capacitors.

- 6. Green/yellow wire in plugs at rear of PS104 and PS 105 E is tight. Gate 01A-B2 must be
swung open to see the rear of PS 105 .

Safety Labels

Ensure safety label \mathbf{F} is in place and readable. For safety Ensure safety laber F is in place and 1 part.

4381 2676380 \qquad	PN 6169623
1 of 1	\(\begin{aligned} \& EC A20558

\& 01 OCT 84\end{aligned}\)

0000000000000000000000000000000000

INSP 013

Console Devices (3205, 3278-2A, and 3279-2C)

External Check

- 1. Check all covers for correct latching.
_ 2. inspect for sharp edges.
_ 3. Ensure all feet are present and undamaged at the base.
- 4. Check CRT for cracks, bubbles, or damage.

Internal Check

_ 1. No smoke, water damage, or foreign substances
_ 2. Frayed or broken wiring
_ 3. Terminal board covers undamaged; no screws missing.
_ 4. Mate-N-Lok plugs for pushed back pins or wires.
_ 5. Rubber boot over filter capacitor is undamaged.
6. Correct grounding of CRT yoke \mathbf{A}
— 7. All capacitors for damage, expansion, or leakage.
_ 8. Verify connections to all capacitors are secure.
_ 9. Correct grounding of CRT main power cord B to frame

- 10. Correct grounding of 3205 or 3278-2A or 3279-2C line cord C
- 11. All high voltage, hazardous voltage, fuse size, and any other safety labels are in place and readable. For safety label part numbers, see
page INSP 017 .

LINE CORD GROUNDING (3279-2C)

CRT YOKE GROUNDING

LINE CORD GROUNDING (3278-2A)

000000000000000000000000000000000

Power On/Off Check
_ 1. Verify the customer's branch circuit breaker is off.
2. Connect the processor power plug to the customer's receptacle.

- 3. Activate the customer's branch circuit
breaker.
- 4. Activate CB1 and CB2 B at the PCC in the processor.

5. Ensure the processor console is powered on.
6. Press Power On A on the service panel.

- 7. At Power Complete \mathbf{F}, set the Unit Emergency Only switch on the service panel to Emergency Power Off.

8. Ensure that PS104, AMD 102, and AMD 104 are off. If PS 104 is still on, reference code 1101160 E is displayed on the syst safety hazard exists.
Warning: This condition can only be cleared by tripping CB1 and CB2. These problems can be caused by binding points KO2, K03, or K04, binding reay po or PS101. or a bad card at 01A-A1V2 or 5 Volt, 24 Volt may MBC On indicators C on Volt, 24 Volt, and MBC On indicators C CB2
the service panel will be on if CB1 and CB2 the service panel will be of if CB1 and

- 9. Set the Power Off switch to Normal at the service panel. Press Power On.
- 10. At Power Complete, switch the Unit Emergency Only switch E to Power Off.
- 11. Ensure that the 5 Volt, 24 Volt, and MBC On indicators at the service panel are off.
- 12. Switch the Unit Emergency Only switch to

Note: If the switch fails to reset, retention spring \mathbf{G} is installed. To reset the switch, push down on the retention spring Emergency Only switch on the service Emengel.
13. Press Power On at the service panel. At
Power Complete, switch CB1 and CB2 off.

- 14. Ensure processing unit power is off and AMDs and diskette drives are not running
-15. Ensure that the 5 Volt, 24 Volt, and MBC On indicators on the service panel are of
- 16. Switch CB1 and CB2 on.
- 17. Press Power On on the service panel.
- 18. At Power Complete, switch CP1 off D
- 19. Ensure no voltage is present at the convenience outlet.

20. Switch CP1 on

0000000000000000000000000000000000

Safety Label Description and Part Numbers

Description	English	Gorman	Canadian	French	French Dutch	Finnish	Italian
HAZARDOUS AREA TRAINED SERVICE PERSONNEL ONLY	369207	6815193	6815179 and 369207	6815182	6081052	8326801	
LINE VOLTAGE PRESENT WITH MACHINE POWER OFF	138755	6825819	984123	6825828	6121851	6825818	
DANGER 550 VOLTS	8483959	2582954					
WARNING High grounding conductor current. Grounding circuit continuity is vital for safe operation of machine. Never operate machine with grounding conductor disconnected.	5731697	4154584	4154583	6825908	4154587	6825879	
This unit equipped with line filter circuits. See installation manual for special grounding	5397579						

Description	Norwegian	Spanish	Swedish	Brazilian Portuguese	Japanese	Denmark	Dutch
HAZARDOUS AREA TRAANED SREVIICE PERSONNEL ONLY	369207	6815180	8551904	6815183	8326797	1806772	369207
LINE VOLTAGE PRESENT WITH MACHINE POWER OFF	138775	4154591	8551903	6815188	6825840	1806773	138775
DANGER							
550 VOLTS							

\square

${ }^{-}$Coprright 18м Corp. 1984

[^0]:
 ${ }^{\circ}$ Copyright IBM Corp. 198

[^1]: COMMAND:
 ===>
 COMMAND:
 OPTIONS IN EFFECT:

