

If Printer Is/Not Busy: This instruction branches the pro-
gram to a particular instruction depending on the status
of the printer. The format of the IF PRT instruction is:

Column | 1 18 |13 |18 123 |28
Entry Step/Label | IF PRT |IS/NOT |BSY Branch
Step/Label

Upon execution of this instruction, the program branches
to the step/label specified in column 28 if the status of the
printer matches the status specified in column 18. For ex-
ample, if IS is entered in column 18, and the printer is
busy, the branch is taken. If the printer does not match
the status specified in column 18, the program continues to
the next sequential instruction. If an error is pending from
the last print instruction, the printer error is posted, the
print retry is initiated, and the program control goes to the
IF PRT instruction.

If CRD Is/Not Busy: This instruction branches the program
depending on the status of the attached card 1/0 device
(129 or 5496). The format of the instruction is identical

to the if-printer-is/not-busy instruction, except that CRD

is required in columns 13-16. The format of the {F CRD
instruction is:

Column |1 t8 |13 |18 |23 | 28
Entry |Step/Label [IF Icnn IIS/NOT Ist Branch
Step/Label

Display and Keyboard Operations

The ENTR instruction is the means by which the param-
eters in a .FIELD control statement are implemented. This
instruction allows prompting to be displayed to the opera-
tor, defines the type of data to be entered, accepts data
entered via the keyboard, and defines the disposition of
that data.

40

The format of an ENTR instruction is:

Column |1 |8 |13 118 |23
Entry Step/ |[ENTR Buffer/ |Message Number/ | CQverlap
Label Register | Register
Column Contents
1 Step/label — is the number or symbolic label

assigned to this instruction.

8 ENTR — indicates that the keyboard should
be opened to accept input.

13 Buffer/register — identifies which buffer con-
tains the desired prompting message. This
buffer is also specified in columns 13-14 of
the .FIELD control statement. A register
{A-Z) containing the buffer number can also
be specified in column 13 of the ENTR
instruction.

18 Message number /register — identifies which
message (1-99) within the buffer is to be
displayed. An entry of 1 indicates that the
message starts in the first position of the
buffer. If the message number is greater
than 1, the specified buffer is scanned be-
ginning at the first position. A register con-
taining the message number can alsc be spec-
ified in column 18. The first message in an
overflow buffer is message number 2 (see
.FIELD, Columns 18-19).

23 Overlap — this entry determines if operation
is to be overlapped or nonoverlapped. Over-
lapped operation (enter an X in column 23)
means that processing of subsequent in-
structions continues concurrently with the
data being entered. Nonoverlapped operation
(leave column 23 blank) means that proces-
sing of subsequent instructions does not con-
tinue until the ENTR instruction is exited
(waits for data to be entered). Note that the
ENTR operations cannot be overlapped with
the OPEN and CLOZ instructions.

The first prompting message defined by the ENTR instruc-
tion is displayed, along with fill characters defining the
field to be entered, in lines 5 and 6 of the display screen.
The field to be entered is identified by a series of either
dashes (numeric) or periods (alphabetic). Note that the sys-
tem inserts a blank between the prompting message and the
field to be entered.

Diskette Operations

Reading and writing of records on a diskette are controlled
by disk instructions and by the . DATASET control state-
ment. The results of execution of a disk instruction depend
on the information contained in the .DATASET control
statement (see .DATASET in this chapter). Disk instruc-
tions are described in detail in the following paragrapbs.

Read (READ)

A read instruction causes the system to read or search and
read a data record from a data set on a diskette. The format
of a read instruction is:

Column | 1 [8 113 {18 |23
Entry Step/ |READ | Data Set | Fmt | Register, Key,
Label No. }|or Minus
Column Contents
1 Step/label — is the number or symbolic label
essigned to this instruction.
8 READ — identifies the operation to be per-
formed {read a data record).

13 Data set — specifies the number assigned to
the data set in the .DATASET control state-
rnent, The buffer specified in the DATASET
control statement (columns 38-39) contains
the record after the read. The valid range for
this required entry is 1-4.

18 Format no. — specifies the number of the

format to be used after completion of the
physical read. Formatting is from the |/O
buffer into the registers specified in the for-
mat record. The formatting is data-directed
if a D is entered into column 18 of the READ
instruction instead of a format number (see
DJata Directed Formatting in this chapter).

If no entry is made in column 18, no format-
1ing takes place, but the 1/0 buffer (specified
in the .DATASET control statement) con-
tains the record just read.

Column

23

Contents

Register — indicates a iegisier address, key,
or can be blank or minus. if data set access
is sequential (except write or write extend),
the specified register contains the relative
record number to be read. This number is
relative to BOE. The register value is in-
cremented by one after each READ instruc-
tion.

For key indexed access merhod, the entry in
column 23 on the coding sheet indicates the
register containing the key of the record to
be read. If a matching record is not found,
indicators 225-228 sre set on to indicate
data sets 1-4, respectively, as specified in
columns 13-15. Formatting does not take
place, and the next higher record is contain-
ed in the 1/0 buffer. If the index value is not
within the index table rangz, indicators 229-
232 are set on to indicate the respective data
set specified in columns 13-15, and no disk
operation takes place.

If no key register address is entered, the next
sequential record is read, regardless of data
set access method, except for sequential write
or sequential write extend {READ instruction
invalid). If a minus sign is entered, the pre-
ceding nondeleted sequential record is read
unless the deleted record exit procedure has
been coded in the .DATASET statement
{except at BOE), regardliess of data set access
method, except for sequential write or se-
quential write extend {READ instruction in-
valid).

If a deleted record is read, and the deleted
record exit has been specified in the .DATA-
SET control statement, the exit routine is
taken. If the exit is not specified in the
.DATASET staterment, sequential reads are
issued until a nondeleted record or EOD
(end of date) is encountered. 1f deleted
records are skipped, the relative number is
incremented for each deleted record read.

Reference Material 41

A sample READ instruction is:

Column l1 I 3 |13 l 18 l 23
Entry IStep/Label [READ [1 [15] A

Sequential or Index Update Access Methods: |f register A
contains 53 and BOE equals 10001, this instruction reads

record number 12001 (track 12, sector 1). Format level 15

is used to fill registers after the physical read. Register A
contains 54 at the compietion of the instruction. The file
disk address is 12001 assuming that there are no deleted
records within the file.

Key Indexed Access Method: Assuming that register A
contains the key Jones, this instruction reads the first
record with the matching key of Jones and uses format

level 15 for formatting. The file disk address is the address

of the record containing Jones. If no match is found,
indicator 225 is turned on, no formatting takes place, and
the file disk address is the next higher record above the

position where the match would have been. The /0O buffer

for the data set also contains the next higher record.

Write Disk Record (WRT)

The work station will write a record on the diskette and
allow for overlapped machine and operator-machine
functions, when this instruction is used.

The format of a WRT instruction is:

Column | 1 | 8 |z |18 | 23
Entry Step/ WRT/| Data Set| Format Buffer/Register
Label
Column Contents
8 WRT — identifies the operation to be
performed (write record).
13 Data set — the number assigned to the data
set in the .DATASET control statement.
This required operand has a valid range of
1-4.
18 Format — identifies the number of the for-

mat to be used before the physical write.
Formatting is from registers to the output
buffer. The output buffer specified in the
DATASET control statement {columns 38-
39) contains the record to be written. If no
entry is made, formatting does not take
place. (Note that, if both the format and
buffer numbers are omitted, a blank record
is written.)

42

Column Contents

23 Buffer — identifies the number of the buffer
to be moved into the data set output buffer,
if any. This is the first operation of the
instruction execution. The contents of the
specified buffer are not changed. If no
entry is made, the /O buffer is blanked
before formatting. If both the buffer
number of the data set and this entry are the
same, the contents of the {/O buffer are
not changed.

23 Register — identifies the register (A-Z) which
contains the relative record number within
the data set where the write takes place.

This number is relative to BOE. When a
register is coded, no buffer movement or
blanking takes place at execution. This

type of write is only valid to a sequential
update {SU) or label update (I) data set.

A write invalid error (7XC) is posted if SU

or | type is not specified. A relative record
number of 1 accesses the BOE record. A
record number of zero, or beyond BOE,
posts a 7XD error. A record number greater
than or equal to end of file posts a 7XC error.
If the 7XC or 7XD errors are detected, any
specified formatting is performed. Under
this condition, the write operation is
suppressed. The register value is incremented
by 1 after completion of this instruction.

If a read with relative record number is issued prior to the
write with relative record number, the record written will

be one greater than expected. For example:

Assume register A = 10:

Column | 1 | 8 |13 [18 | 23
Entry | Step/Label | READ |1 | [A
Register A is incremented by one after the read:

Column | 1 E l13 [|23
Entry | Step/Label | WRT |1 | [A

Register A contains a value of 11, not 10, Therefore,
use the following:

Column | 1 | s |13 |18]2
Entry Step/Label | WRT 1 1/0 buffer
number

A sample WRT instruction is:

Column | 1 | s 13 | 18] 23
Entry lStep/LabeI I WRT] 2 ,5 Ie

In this example, the instruction moves the contents of
buffer 6 into the output buffer specified, then formats
data according to format 5. The current file disk address
and EOD are incremented, if necessary, and the record
from the specifiecl buffer is written at the current file disk
address (data set number 2). The contents of buffer 6

are unchanged.

Extend Data Set and Write Disk Record (WRTE)

The work station will write a record on the diskette and
altow for overlapped machine and operator-machine

functions, when this instruction is used.

The format of a WRTE instruction is:

Column | 1 |8 | 13 | 18 | 23
Entry |Step/LabeI lWRTE I Data Set I Formatl Buffer

Column Contents

1 Step/label — is the number or symbolic label
assigned to this instruction.

8 WRTE — identifies the operation to be
performed {extend data set and write disk
record).

13-24 All other operands in this instruction are

defined as for the WRT instruction.

Execution of the WRTE instruction is identical to execu-
tion of the WRT instruction except that it is valid only

for SU data sets so that the disk is automatically positioned

at EOD prior to writing.

Delete a Disk Record (WRTS)

The format of a WRTS instruction is:

Column | 1 |8 | 13 | 18 |23
Entry Step/Label | WRTS Data Set Format | Buffer/
Register

Column Contents
8 WRTS — identifies the operation to be
performed (delete a disk record).
13-24 All other operands are defined as described

for the WRT instruction. Execution of a
WRTS instruction is identical to execution
of a WRT instruction, except that a special
data address mark is written to the disk out-
side of the 128-position record. If the for-
mat and buffer numbers are not specified,
the character D is forced into the first posi-
tion of the 1/O buffer. Thus, if a buffer or
format is specified, a D must be forced into
the first position. Therefore, an instruction
with only a data set number entered writes
a deleted record, as defined by basic disk
interchange.

To ensure successful execution of this instruction, the
following checks are made:

® The first character of the written record is saved.
® The record is read after the write attempt.

A record is considered deleted if the following conditions
are met:

® A cyclic redundancy check (CRC) is successfully made
at the end of the record.

® A special address indicator is detected.
® The first position of the record contains a D.
® No other error indicators are on.

Note: A deleted record is written by the Models 1 and 2
data station with a D in the first position of the record,
the CRC and a special address indicator. However, no check

is made to see that the D or CRC was written on disk.
Only the special address indicator is checked when a deleted

record is read by the Models 1 and 2 or the Models 3 and 4
in data station mode.

A sample WRTS instruction is:

Cotumn | 1 |8 |13 | 18 | 23

Entry IStep/LabeI |WRTS I 1 [I

In this example, a deleted record is written to data set 1.
The current file disk address is changed, if necessary.

Reference Material 43

Wa:it 1/0 {iVAIT)

This instruction ensures that any input/output operation
is compieted before executing the next instruction. This
instruction waits until all outstanding /O is complete
including keyboard, diskette, and printer, and detects any
pending errors. The instruction will not, however, wait on
card 1/0. Note that the IF PRT BSY instruction can be
used to wait on the printer with errors detected. If any
errors are detected on overlapped files, the system posts a
700 series error message and the operator must abort the
job. The instruction is coded by the entry WAIT in
columns 8-11, followirg the step number or label. The IF
CRD instruction must be used to wait on card /0.

Open Data Set (OPEN)

This instruction contrcls dynamic opening of data sets
during program execution. However, if this instruction is
not used, data sits are opened by the system prior to
execution, The re-opening of an open data set resets the
EOD. The format of an OPEN instruction is:

Column | 1 | 8 | 13 | 18 |23
Entry Step/Label l OPEN] Data Set] Format I Register

Column Contents

i Step/label — is the number or symbolic label
assigned to this instruction.

2 OPEN - identifies the operation to be per-
formed 'open data set).

13 Data set — the number assigned to the data

set in th2 .DATASET control statement. This

required operand has a valid range of 1-4.

18 Format -- identifies the format to be used
when reading desired information from the
data set label into registers. If the data set
cannot be opened, no formatting occurs.
1f nothing ts entered in column 18, no
formatting occurs. Zero is invalid.

23 Register — identifies a register containing
informaticn controlling the definition of
certain cata set characteristics (such as

name, drive number}. All pending operations
to the data set are completed before changing

data set attributes.

44

The specified register in column 23 may contain (left-
justified) the information in the following specified bytes:

Bytes Contents

1-8 Data set name

9 Drive number (drive one = 1, drive two = 2)
10 Data set access method (See Columns 58-60

Type (R) under DATASET in this chapter.)

11 Data set access method (See Columns 58-60
Type (R) under DATASET in this chapter.)

12 Data set access method (See Coiumns 58-60
Type (R) under .DATASET in this chapter.)

13 Suppress extent checking (Enter character
A).

Note: Suppressing extent checking improves
performance. Also, the extent check will
fail for null data sets received in BSCA mode.

14 Redefine additional parameters in next
sequential register (Enter character X).

15-16 Not used

If an X is entered in position 14 of the register, additional

attributes are redefined in the next sequential register (for

example, A and B). {Bytes 1-12 apply only to key indexed
data set access methods.) These parameters must be right-
justified with leading zeros or blanks.

Bytes Contents

1-3 Number of bytes per index entry {See Col-
umns 63-64 Index Length (O} uncler
.DATASET in this chapter.)

4-6 Number of tracks per index entry (See Col/-
umns 68-69 Tracks/Index (O) under
.DATASET in this chapter.)

7-9 Number of bytes per key (See Columns
73-74 Key Length (O) under DATASET
in this chapter.}

10-12 Position of key (starting position} in the
record (See Columns 78-80 Key Position
(O} under .DATASET in this chapter.)

13-15 Record length (See Columns 28-30 Record
Length (O) under .DATASET in this chapter.)

16 Not used

If these parameters are to be bypassed (use the original
.DATASET specification), blanks must be inserted in the
appropriate positions of the register (except for extent
checking). If no register is specified in column 23 of the
OPEN instruction, the existing data set is opened (as
defined in the .DATASET control statement). A sample
OPEN instruction is:

Column |1 | 8 |13 | 18 | 23
Entry IStep/LabeI | OPEN | 2 | Bstind) 5
Register S = Positions: 1 6 10 16
Register S Contents: PROBLEM SuU
Relative .DATASET control statement:
/

[DATASER [T1 T TR]14

Dataset Dataset name Record Drive 7

length

‘:ﬂlﬂ EENENRNCOOCRCTUENSTRRRNERRRCINY

Buffer Deleted Index Tracks
record routine length

routine Extent
check

In this example, data set 2 is opened, formatting is done
according to format 3, and the data set is defined as an
SU. The data set name is PROBLEM and extent checking
is specified. The disk drive number is that defined in the
.DATASET control statement for this data set, and register
T is not used (no X in position 14 of register S).

Open Data Set Errors: An attempt to open a data set that
is open already opens the requested data set and does not
update the original file extents. If a data set cannot be
opened, a 500 series error, along with the data set number,
is posted. This error can be reset by:

@ The RESET key which retries the open sequence.

® ALPHA or NUMERIC SHIFT and RESET which closes
the data set and posts a 100 error (job complete).

® ALPHA and NUMERIC SHIFT and RESET which
returns the work station to index mode.

End of Job (EXIT)

All valid ACL programs for the work station must include
an EXIT instruction for a normal end of job (unless an
EXEC instruction is specified). This instruction closes all
data sets and waits for all printer operations to complete
(system close), and then posts a 100 halt message on the
status line (screen flashes). RESET must be pressed to
return to data station mode. You can indicate an EXIT
instruction by simply entering EXIT beginning in column 8
on the instruction coding sheet. A sample EXIT instruction
is:

Column | 1 8

Entry | Step/Label EXIT

Close Instruction (CLOZ)

Although the system automatically closes data sets when
the EXIT instruction is used, you can control the dynamic
closing of data sets during execution with the CLOZ
instruction. The format of a CLOZ instruction is:

Column ' 1 l 8 i 13
Entry l Step/Label I CLOZz l Data set Number
Column Contents

8 CLOZ — identifies the operation to be

performed (close data set).

13 Data set number — identifies the number of
the data set to be closed.

Closing Data Sets: The following steps occur during the
closing of a data set:

1. All physical input/output to the data set is completed.
A close instruction for a data set already closed is
ignored and does not cause an error.

2. The data set label is read (SU, SW, SWE organization
only). If this read develops an /O error, the CLOZ
instruction posts a terminal error message in the
display.

3. The EOD address on the label is updated.

4, The label is written on the index track. This write
does not occur if an error is detected during the read
of the label or if the data set type is read only.

b, The data set is marked closed within the system.

Reference Material 45

Closing Data Errors: 1f a data set cannot be closed, a 600
series error, along with the data set number, is posted. The
error can be reset by the following:

® The RESET key, which retries the close sequence
(except for a drive not ready error — 6X0).

® ALPHA SHIFT and NUM SHIFT and the RESET key,

which aborts the job and posts a 100 error (job complete).

Note that the file EOD is always posted on the display on
adrive 1 or 2 error, if the drive is found in a not-ready
state, or a disk error occurs.

Printer Operations

Form size, type of printer attached, and printer output
buffer are specified in the .PRINTER control statement.
Editing is controlied by specifications in the .FORMAT
control statement. The primary printer control instruction
is the PRNT instruction.

Each time a new program is initiated, the paper must be
manually set in the printer to the top of the page because
the internal line counter is set to one at the start of each
program,

46

Print a Line (PRNT)

This instruction specifies requirements for printer cutput.
The instruction format is:

Column |1 |8 | 13 |18 |23 |28
Entry Step/| PRNT Forms Format | Buffer Qverlap
Label Control
Column Contents
1 Step/label — is the number (0-767) or

symbolic label (four-position} assigned to
this instruction.

PRNT — is the print instruction name,

13 Forms control/ — is the vertical forms control
to be executed after a line is printed.

Valid entries are:

0 No vertical forms movement.
For the 3715 single-direction
printer {type 3), a carriage
return command is issued.

S or blank Single space
D Double space
T Triple space
1-127 Skipping to a specific line
number
18 Format — is the format number for format-

ting and editing data out of registers to the
buffer assigned in the .PRINTER control
statement.

23 Buffer — is the buffer which is to have its
contents moved to the output buffer
assigned to the printer.

28 Overlap — if X is entered, successive instruc-
tions are executed concurrently with
previously issued printer output. If column
28 is blank, further execution of any ACL
instruction does not proceed until the
printer-cycle is completed.

The following operations occur when the PRNT instruction
is executed:

1. The contents of the buffer specified in column 23 are
moved to the buffer assigned to the printer. If
column 23 is blank, the printer buffer is also blanked
{hex 40). If the buffer in column 23 is the same as
the buffer specified in the .PRINTER statement, its
contents are not changed.

2. Data is moved from registers to the printer buffer as
specified by the format number in column 18. If

column 18 is blank, no formatting occurs.

3. The contents of the printer buffer are output to the
printer. If column 28 of the PRNT instruction
contains X, printer operations are overlapped with
all other processing.

If line length exceeds 128 characters, both the pri-
mary (.PRINTER columns 33-34) and secondary
(.PRINTER columns 38-39) buffers must be odd.
The characters beyond 128 are then output from
the next even buffer. Because the 3715 (type 4)
printer prints two lines at a time, the physical print
occurs after every other PRNT instruction. This
allows formatting of lines printed in both directions
in order to look ahead for the longest line.

If a 3715 application requires immediate output, use
a printer type 3 or 5.

If a printer type 4 is used, a PRNT instruction
containing the desired immediate output, followed
by adummy PRNT, (PRNT with format parameter
and buffer number blank) is required.

Normal program termination closes the printer,
although pending lines are printed before the system
close message {100} is posted.

4, The vertical forms control (column 13) is executed
after the last character is printed.

Note: Normal nonprintable characters print (on the
3713 and 3715) as graphic characters (for example,
hexadecimal FF prints as). This differs from
printing in standard data station mode on the 3741
Models 1 and 2.

If the forms control stops at or between the end of forms
line and overflow line, as defined in the .PRINTER control
statement, indicator 148 is set on. Also, in this instance,

a branch is made to the page overflow processing step
number/label (if specified in columns 43-46 of the
PRINTER control statement).

Skip to Line Number or Space (PCTL)

This instruction executed vertical forms control independ-
ent of actual printing, but always overlaps with other
executable instructions. The PCTL instruction format is:

Column| 1 | 8 l 13
Entry I Step/Label I PCTL I Forms Control

Column Contents
1 Step/label — is the number or
symbolic label (four-position) assigned
to this instruction.
8 PCTL — is the print instruction name.
13 Forms control — is the vertical forms

control with the same valid entries as the
PRNT instruction.

This instruction does not output data to the printer, and
does not change any buffers or registers. Indicator 148
and page overflow are processed as defined in the PR NT
instruction.

Table Operations

A table is a group of successive fields of the same length.
The content of any one field is called the argument, and
the placement or location of the field in the group of
fields is called the index.

For example, a list of employee numbers can be processed
as a table. The table argument refers to ar employee
number in the list and the table index refers to a location
in the list. The argument length is fixed at the length of
the employee number.

When each table argument is greater {from a collating
sequence standpoint) than the argument with the next
lower index, it is said to be an ordered table.

The total length of a table is limited by available work
station storage and each table must end in a hexadecimal
FF. Tables can be loaded or read from disk into buffers
or they can be created using .BUFFER control statements.
There may be more than one table in a buffer as shown

in the following example:

Buffer 6:
TRPAC:TRUCKBMRAILHHHPOSTHHHAIRHBMMCOUNTERi

Table 1 Table 2

Reference Material 47

Table instructions are as follows.

Search Table for Equal Entry (TBFX)

The format of a TBF X instruction is:

Column |1 |8 | 13 |18 | 23 | 28
Entry Step/| TBFX Buffer | Table Register | Length
Label
Column Contents
1 Step/label — is the number or symbolic label
assigned to this instruction.
8 TBFX — is the table instruction (find equal
table entry).
13 Buffer — is the number of the buffer

in which the table starts.

18 Table — is the number of the table in the
buffer specified in column 13. The buffer
specified and all succeeding buffers are
scanned for a hexadecimal FF delimiter
until the correct table number is found.

23 Register — specifies a pair of sequential
registers (such as A, B; W, X; X,Y). The
register specified in this operand is always
the first of the pair and will contain the table
index. The second (implied) register
contains the table argument. Registers I,

R, and Z cannot be specified in this operand.

28 Length — specifies the argument length. This
instruction is used when the table argument
is known and you want to find the table
index of that argument (Figure 23). The
instruction can be used on ordered or non-
ordered tables because the entire table is
scanned for an exact compare. If an equal
entry is not found, the program can notify
the operator by posting an invalid number
message on the display screen.

48

General Ledger
Number 625

Display

Keyboard l

Invalid Number
Message

621
622
701
705
801
806
808
809
810

Storage

Figure 23. Table Search for Equal Entry

~

The number of bytes specified by the length is taken from
the low-order bytes of the argument register, and the table
is scanned looking for an equal entry. If found, it sets the
four low-order positions of the index register to the
relative number of the table entry (first entry in the table
is number 1). If no equal entry is found, the index register
is set to zero. Orly the index register is changed.

Search Table for Equal/High Entry (TBFN)

The format of a TBFN instruction is:

Column | 1 |8 |13 |18 |23 |28
Entry l Step/Label I TBFNlBuffer I TabIeIRegister I Length

Column Contents

8 TBFN - is the table instruction (find equal/
high table entry).

13 Buffer — is the number of the buffer in
which the table starts.

18 Table — is the number of the table in the
buffer specified in column 13. The buffer
specified and all succeeding buffers are
scanned for a hexadecimal FF delimiter
until the correct table number is found.

23 Register — specifies a pair of sequential
registers (such as A, B; W, X; X, Y). The
register specified in this operand is always
the first of the pair and will contain the table
index. The second (implied) register
contains the table argument. Registers |,

R. and Z cannot be specified in this operand.

28 Length — specifies the argument length.

This instruction is used when a table argument is known and
an equal or high index entry is to be found. The table,
which must be in ascending sequence, is scanned sequentially
looking for an equal or high entry. If the entry found is
high, indicator 163 is set on {and must be reset by the
program), and the index entry number of that higher
argument is put in the index register. If the argument is
higher than the last entry in the table, indicator 163 is not
set on, and the index register is set to zero.

If an equal entry is found, this instruction sets the four low-
order positions of the index register to the entry number

of the equal entry. The normal EBCDIC collating sequence
must be used. Indicator 163 is not set on and the index
register is not set to zero.

Read Table Entry (TBRD)

The format of a TBRD instruction is:

ColumnI 1 |8 | 13 | 18 |23 | 28

Entry | Step/Label | TBRD | Buffer | Tablo| Register | Lenyth

Column Contents

1 Step/label — is the number or symbaolic label
assigned to this instructicit.

8 TBRD — is the table instruction {read table
entry).

13 Buffer — is the number of tire bufter ir
which the table starts.

18 Table — is the number of the table in the
buffer specified in column 13. The buffer
specified and all succeeding buffers are
scanned for a hexadecimal FF detimiter
until the correct table number s tound.

23 Register — specifies a pair of sequential
registers {such as A, B; W, X, X, Y). The
register specified in this operand is always
the first of the pair and contains the table
index. The sign, if any, is ignored. An index
of zero does not change the argument
register and sets on indicators 156 and 160.
The second (implied) register contains the
table argument at the end of the operation.
Registers |, R, and Z cannot be specified
in this operand.

28 Length — specifies the argument fength.

This instruction is used when the table entry is known and
the table argument is to be put into a register. The
instruction can be used on ordered or nonordered tables.

Using the low-order four bytes of the index register, the
instruction takes the argument at that index number and
puts it into the low-order positions of the argument
register. The unused high-order positions are set 10
blanks. Indicators 156 and 160 are set on f the table read
goes beyond the table end. These indicators must be
reset by the program.

Reference Material 49

Write Table Entry (TEWT)

The format of a TBWT instruction is:

Column | 1 g | 13] 18 |23 28
Entry | Step/Label | TBWT | Buffer | Table | Register lLength

Column Contents
1 Step/label — is the number or symbolic label
assigned to this instruction.

8 TBWT - is the table instruction (write
table entry).

13 Buffer -- is the number of the buffer in which
the tabie starts.

18 Table — is the number of the table in the
buffer specified in column 13. The buffer
specified and all succeeding buffers are
scanned for a hexadecimal FF delimiter
until the correct table number is found.

23 Register — specifies a pair of sequential
registers (such as A, B; W, X; Y, Z). The
register specified in this operand is always
the first of the pair and contains the table
index. The sign, if any, is ignored. An
index of zero does not change the argument
register and sets on indicators 156 and 160.
The second (implied) register contains the
table argument to be written. Registers I,

R, and Z cannot be specified in this operand.

28 Length — specifies the argument length.

This instruction is used when the index and the argument
are known and the argument is to be written at the index.
The argument must be in the low-order bytes of the register.
No registers are changed. When using this instruction in an
ordered table, be careful that the existing ascending
sequence is not destroyed. Indicators 156 and 160 are

set on if a write operation goes beyond the end of the

table. These indicators must be reset by the program.

50

Move Data from Buffer to Register (GETB)

This is a table-type instruction which indexes through a
buffer and extracts specific entries. The format of a
GETB instruction is:

Column | 1 e |13 |18 |23 |2

Entry IStep/LabeIl GETBIBuffer] Table | Register | Length

Column Contents
1 Step/abel — is the number or symbolic label
assigned to this instruction.

8 GETB — is the table instruction (move data
from buffer to register}.

13 Buffer — is the number of the buffer
in which the table starts.

18 Table — must be a table number (1-16).

23 Register — specifies a pair of sequential
registers (such as A, B; W, X; X, Y). The
register specified in this operand is always
the first of the pair and contains the byte
position from the leftmost byte in the table.
The second register contains the data moved
from the buffer. Registers !, R, and Z
cannot be specified in this operand.

28 Length — specifies the number of bytes to
be moved.

This instruction is a special form of the read table (TBRD)
instruction and is used to read a specific field from

buffer into the argument register. The table index register
is used, not as a field position, but as a byte position from
the leftmost byte of the character string to be moved. The
number of bytes moved is specified by the length operand.
The unused high-order bytes of the argument register are
set to blanks. Only the argument register is changed.

This instruction does not set any indicators, and ignores
the hexadecimal FF delimiter once the correct table
has been found.

Move Data from Register to Buffer (PUTB)
The format of a PUTB instruction is:

Column | 1 [8 |13 |18 |2 |28
Entry lStEp/LabeI l PUTBIBuffer l TablelRegister lLength

Column Contents

1 Step/label — is the number or symbolic label
assigned to this instruction.

8 PUTB — is the table instruction {move data
from register to buffer).

13 Buffer — is the number of the buffer in
which the table starts.

18 Table — must be a table number {1-16).

23 Register — specifies a pair of sequential
registers (such as A, B; W, X; X, Y). The
register specified in this operand is always
the first of the pair and contains the byte
~osition from the leftmost byte in the
buffer. The second register contains the
data to be moved to the buffer. Registers
I, R, and Z cannot be specified in this
operand.

28 Length — specifies the number of bytes to
be moved.

This instruction is a special form of the write table (TBWT)
instruction. It is used to write a specific field into buffer.
The last four bytes of the table index register are used,

not as a field position, but as a byte position from the
leftmost byte of the start buffer. This byte position must
point to the leftmost byte where the bytes are to be

moved. Data movement is from left to right into the low-
order positions of the argument register. The number of
bytes moved is specified by the length operand. No registers
are changed.

This instruction sets no indicators, and ignores the hexa-
decimal FF delimiter once the correct table has been found.

Internal Data Movement Operations

Internal data movement instructions move and exchange
the contents of registers and buffers to other registers
and buffers, read from buffer, and write to buffer.

Read from Buffer (REFM)

The REFM instruction internally reads from buffer and
formats into registers. This instruction is typically used
to read data from the display screen (buffer 2}. The
format of an REFM instruction is:

Column | 1 |8 [13 | 18

Entry IStep/LabeI l REFMl Buff ‘ Format

Column Contents

1 Step/label — is the number or symbolic
label (four-position) assigned to this
instruction,

8 REFM — identifies the operation to be
performed (read from buffer).

13 Buffer — identifies the buffer containing
the data to be read and forrmatted.

18 Format — indicates the format to be used.

Formatting is from buffer to registers.
This instruction causes no physical 1/0
(except for the display screen). IfaDis
specified for this required operand,
formatting is data-directed (see Data
Directed Formatting in this chapter).

A sample REFM instruction is:

Column I 1 I 8 I 13
Entry |Step/Label | REFM [2 [9

in this example, the REFM instruction uses format number
9 to format data into registers from buffer 2 (display
screen lines 2, 3, and 4).

Reference Material 51

Read Blocked Record from Buffer (RBLK)

This instruction access2s individual records within a block
of records which contains records of less than 128 bytes.
The format of an RBLK instruction is:

Column | 1 | 8] 3]s | 23
Entry IStep/LabeI I RBLK I Buffer I Format I Register

Column Contents
1 Step/latel — is the number or symbolic label
assigned to this instruction.
8 RBLK — identifies the operation to be
performed (read blocked record from buffer).
13 Buffer - identifies the number of the buffer

containing the data to be formatted. This
entry must be coded.

18 Format — identifies the number (1-254) of
the format to be used. This is a required

entry. Formatting is from buffer to registers.

Only the data starting at the position
specified in the register entry (column 23}
is formatted. Format definition, however,
is taken from the start of the format record.
The format must define formatting for the
first logical record in the buffer. This
instruction causes no physical disk reading.
Formatting is data-directed if D is entered
in column 18. (See Data Directed Format-
ting in this chapter.)

23 Register — identifies the register containing
the buffer position (first from the left) at
which formatting is to start within the
buffer. This is a required entry.

52

Some sample RBLK instructions are:

Assume the following control statement entries:

e
ARAN
I
BUFFER | | SNy
34952PRO quﬁmbbEMMMdm*

Also assume the following instructions:

LABEL
ERRRL-RRINRRRnNRRRA AR RRNS,
L RBILK] 8L T] L] el +] |
HEHRTT
REIRARRRR RN NERRNARY

Assuming these conditions, the result would be as follows.

Register A would contain — 349562
Register C would contain — PROB
Register D would contain — 01

Then, assuming the following instructions are executed:

T

HESERRRENEN

ARIRRAREne LT
H y ! ﬁ
[N st
- H l J]

12 3 ‘L B 9 10 111213 14 16 16 17 J1B 19 20|27 22|25 24 751;1;7 28 29 30 31|32

The result wouid be:

Register A contains — 458935
Register C contains — NAME
Register D contains — b

Write to Buffer (V/RFM)

This instruction writes and formats data into buffer. The
format of a WRFM instruction is:

Cotumn | 1 |8 13 |1 23
Entry Step/Label | WRFM | Buffer Format | Buffer
One No. Two
Column Contents
1 Step/label — is the number or symbolic
label (four-position) assigned to this
instruction.
8 WRFM — identifies the operation to be

performed (write to buffer).

13 Buffer one — identifies the buffer that
receives the contents of the buffer
specified in column 23 of this instruction.
The buffer does not have to be associated
with a .DATASET control statement.

18 Format no. — identifies the number of the
format to be used. Formatting is from
registers to buffer. If this entry is not
coded, no formatting occurs.

23 Buffer two — the contents of this buffer are
moved into the buffer specified in column 13
of this instruction before formatting. The
contents are unchanged. If this entry is not
coded, the buffer specified in column 13 is
blanked before formatting. If the same buffer
is specified in columns 13 and 23, the contents
of buffer one {column 13) are not changed.

A sample WRFM instruction is:

Column | 1 | 8 | 13] 18 | 23
Entry | Step/Label | WRFM | 2 | 7 |4

In this example, the contents of buffer 4 are moved into
buffer 2 (lines 2, 3, and 4 of the display). Format 7 is
then used to format register data into buffer 2. The
contents of buffer 4 are not changed.

Write Blocked Record to Buffer (WBLK)

This instruction writes and formats blocked records into
buffer. The format of a WBLK instruction is:

Cotumn | 1 s |13 |18 o3

Entry IStep/LabeI | WBLK l Buffer l Format l Register

Column Contents

1 Step/label — is the number or symbolic
label (four-position) assigned to this
instruction.

8 WBL K — identifies the operation to be
performed (write blocked record to buffer).

13 Buffer — identifies the buffer that will be
partially formatted each time this
instruction is executed. This operand must
be coded, aithough no physical disk writing
takes place.

18 Format — identifies the number of the
format to be used when formatting from
registers to buffer. {f this operand is not
coded, an error is flagged by the translator.

23 Register — identifies the register containing
the location (offset) from the first (leftmost)
position of the buffer. This is a required
entry.

Execution is similar to that for a RBLK
instruction, except that data movement is
from registers to buffer.

Assume that buffer 4 contains three blocked, logical records,
each record being 40 bytes long. Also assume that format
number 9 specifies data to be moved from registers to the
logical records. The following sequence will format the
registers specified in format 9 into the secord logical

record contained in buffer 4.

11) q T i TTTTTT7TT7T
I |
L1 ELI\LHHT
.IFo o T
RIABE C L
Nl x‘ Sltml a ‘
\Jl l; ’
LABEL
2 3|4 5 6 7|8 910 11{12{13 14 15 16 17 28 29 30
1A =
] | MBILIK] 4 ¢4
L y

Reference Material 53

Exchange Buffer Contents (EXCH)

This instruction exchanges the contents of two separate
buffers. The number of the buffers to be exchanged
must be entered. A sample EXCH instruction is:

Columﬂl I & | 13 l 23

Entry IStep/LabeIl EXCH] 2 |8

In this example, the contents of buffer 2 will be the
previous contents of buffer 8, and vice versa.

Move Data from Buffer to Buffer (MOVE)

This instruction moves the contents of one buffer into
another buffer. This is done by simply entering both
buffer numbers. The first buffer specified receives the
contents of the second buffer specified. A sample
MOVE instruction is:

Column | 1 | 8] 13|23
Entry IStep/LabeII MOVE | 1 [4

In this example, the contents of buffer 4 are moved into

buffer 1. The contents of buffer 4 are not changed.

Move Partial Content from Register to Register (MVER)

This instruction moves part of the contents of a register
into corresponding positions in another register. The
format of a MVER instruction is:

Coumn |1 | 8 13 e 23 s
Entry Step/ MVER | To From Byte Length
Label Register | Register | Positions

54

Column

1

23

28

Contents

Step/label -- is the number or symbolic label
assigned to this instruction.

MVER - dentifies the operation to be
performed {move specified register contents
to register indicated).

To register — identifies the register to which
data should be moved.

From: register — identifies the register from
which data is to be moved.

Byte position — specifies the leftmost byte
position of both the to and the from registers.

Length — indicates the number (1-16) of
characters to be moved.

Upon execution of this instruction, characters are moved
from the register specified in column 18 to the register
specified in column:13. Character positions not referenced
are unchanged. Data is moved from left to right starting at
the position specified in column 23. The number of
characters moved is specified in column 28. Thus, data
moved from the column 18 register is placed in eguivalent
positions in the column 13 register. No indicators are set
by this instruction. A sample MVER instruction is:

Register A contents:

Register B contents:

FFF
111
14 15 16
FFFFF
45 4 32

12 13 14 15 16

The following MVER instruction produces:

STEP/
LABEL

12

a

|o

Y18 910 1112113 14 15 16 17|18 19 20{21 22023 24 25)26 27 |28 29 30 3'32‘

My {
mﬁ A

i

—t
F

IRRRREEN

Register A contents:

FFFFF
651 1 1
12 13 14 15 16

Register B contents: Unchanged

Move Partial Content to Register with Offset (MOFF)

This instruction moves part of the contents of a register
into specific locations in another register. The format of
a MOFF instruction is:

Column |1 | 8 13 18 |23 28
Entry Step/ MOFF | To From Byte Length
Label Register | Register { Position

Column Contents
1 Step/label — is the number or symbolic label

assigned to this instruction.

8 MOFF — identifies the operation to be
performed {(move specified data into the
offset position of the register indicated).

13 To register — identifies the register to which
deta should be moved.

18 From register — identifies the register from
which data should be moved.

23 Byte position — specifies the leftmost byte
position of the register (column 13) into
which the characters are to be moved.

28 Length — specifies the number of characters
to be moved.

Upon execution of this instruction, the number of characters
(column 28) counting from the low-order {rightmost} end

of the from register (column 18) are moved to the to

register (column 13). The characters start in the receiving
register at the byte position {column 23}, and continue

for (column 28) positions to the right. Positions not
referenced in the (column 13) register are unchanged. A
sample MOFF instruction is:

Register F contents:

F F F
3 2 1
1. 14 15 16
Register B contents:
FFFFF
8 76 5 4
1 12 13 14 15 16

This MOFF instruction produces the following results:

STEP/
LABEL

1.2 314 5 6 7|8 910 11[12]13 14 15 16 17|18 19 20|21 22{23 24 25|26 27 |28 29 30 31

F 9

LN e N

Register F contents:

FFFFFFFF
87654321

T————_910 1112 13 14 15 16

Register B contents: Unchanged

Load Data Buffer to Register (LOAD)

This instruction is used to access a specific field in buffer.
The buffer position of the field is specified in the instruction
rather than through a register. The format of a LOAD
instruction is:)

Column | 1 K | 13 | 8 | 23 | 28
Entry Step/Label | LOAD Buffer Buffer Register | Length
Offset
Column Contents
1 Step/label — is the number or symbolic label

assigned to this instruction.

8 LOAD — identifies the operation to be
performed (load specified register with
indicated data).

13 Buffer — identifies the number of the buffer
containing the data.

18 Buffer offset — identifies the position in the
buffer of the leftmost byte to be accessed.

23 Register — identifies the register to which
data is to be moved.

28 Length — specifies the number of characters
to be moved.

Reference Material 55

Upon execution of this instruction, the specified register

is loaded with the number of bytes indicated by length

from the address computed by the buffer and buffer offset
entries (columns 13 and 8). The buffer and buffer offset
address indicates the byte that loads into the byte position

of the register specified by subtracting bytes (column 28)
from 17. Data is loaded so that the units {rightmost) position
of the register is loaded last. Only the specified register is
changed. The high-order bytes in the register are set

to blank (hex 40). A sample LOAD instruction is:

Buffer 2 contents:

446444CCCC F F
000005678 7 8

1 M. ..

Register A contents:

FFFFFFFFF F F F F F F F
999999999 9 9 9 9 9 9 9
1 16

This load instruction produces the following results:

STEP/
LABEL

12 3|4 65 8 7)8 910 11[12}13 14 15 16 17|18 13 20{21 2223 24 25|26 27 2829303173_2‘

Lidall 2 L o

T -

Register A contents:

ccccCFF
BowBBBEE B 5 6 7 8 7 8
1 11 12 13 14 15 16

56

Store Data Register to Buffer (STOR)

Execution of the STOR instruction is opposite to that of
the LOAD instructiori. The rightmost contents of the
specified register are written to the specified buffer area.
Register contents are unchanged.

The format of a STOR instruction is:

Column | 1 |8 |13 |8 |23 |28
Entry Step Number STOR|Buffer|Buffer Register | Length
or Label Offset
Column Contents
1 Step/label — is the number or symbolic label

assigned to this instruction.

8 STOR — identifies the operation to be
performed (store specified buffer with
indicated data).

13 Buffer — identifies the number of the buffer
in which data is to be stored.

18 Buffer offset — identifies the position within
the buffer that stored data should start.

23 Register — identifies the register from which
data should be taken.

28 Length — identifies the number of byte posi-
tions to be moved from the register.

The following instruction would cause the nine low-order
positions of register A to be stored in buffer 2 (display)
starting at position 40.

STEP/
LABEL
v 2 3]4 5 & 708 9510 11[12}13 14 15 16 17|18 19 20!21 22]132425 26 27 [28 29 30 31

el | 1 T ol 2 T il

Tyt rrrrryrrTrTTre

TTTTTh

Zone Bytes in Register (ZONE

This instruction assigns zones to specified bytes in a register.

The format of a ZONE instruction is:

Column |1 |8 |13 18 |23 |28
Entry Step/| ZONE Register | Zone |Byte Length
label Position
Column Contents
1 Step/label — is the number or symbolic label
assigned to this instruction.
8 ZONE — identifies the operation to be per-
formed (zone bytes in a register}.

13 Register — identifies the register address con-
taining data to be zoned.

18 Zone — specifies immediate data indicating
the zone to be forced (0-9, A-Fj.

23 Byte position — indicates the position of the
bytes from the leftmost position of the regis-
ter.

28 Length — indicates the number of bytes to
be zoned.

Upon execution of this instruction, the bytes in the register
specified in colurmn 13, starting at the entry in column 23,
and going to the right for the number of bytes specified

in column 28, receive zones as specified by column 18.
Only the register being zoned is changed.

Assume that register Z contains the following:

G4bbbbhbbl & 4 4 4 F F F
000000000 0 0 0 0 3 2 1
6

123456789 10 11 12 13 14 15 1

Sample ZONE instruction 1-

STEP/
LABE!L

1.2 3[4 5 6 7{8 9101112113 14 15 16 17|18 19 20{27 22/23 24 25|26 27 |28 29 30 31|3

o F ! n
i 1

Resulting register Z contents:

FFFFFFFFF F F F F F F F
000000000 0 0 0 0 3 2 1
6

123456 789 10 11 12 13 14 15 1

Sample ZONE instruction 2:

STEP/
LABEL

1 2 3[a 5 6 7|8 a1091)12]13 14 15 16 17[18 19 20[21 22{23 24 25126 27 (28 29 30 a1[32]
L : . 7
] b)
. It
e b b]
H [d

Resulting register Z contents:

FFFFFFFFF F F F F F F D
000000000 0 0 0 0 3 2 1

123456789 10 11 12 13 14 15 16

Reference Material 57

Miscellaneous Instructions

The following instructions have important uses in the ACL 1
program, as shown below.

Set Indicators On (SON) 8
This instruction selects and turns on certain indicators. The

format of a SON instruction is: 13
Column |1 |8 113 118 23

Entry |Step/Label [SON [NNN |[NNN |NNN

where NNN = an indicator {1-255) or blank for no indicator. 18

Upon execution of this instruction, the selected indicators
are turned on. No registers or buffers are changed. Note
that indicator 161 turns on the flashing display screen
while indicator 162 gives a short audible keyboard buzz.

The ACL instruction, SON 161, turns on indicator 161 and
turns off indicator 192 (RESET key indicator). The
instruction, SON 161 132, turns on both indicators 161
and 192. The instruction, SON 192 161, turns on only
indicator 161. {After turning on indicator 192, indicator
161 turns on, which then turns off indicator 192.)

Set Indicators Off (SOFF)

This instruction turns off selected indicators. The instruc-
tion has the same format as the SON instruction. Upon
execution of this instruction, however, the selected in-
dicators are turned off. All indicators, except for the three
switches (AUTO REC ADV, PGM NUM SHIFT, and
AUTO DUP/SKIP), can be turned off with this instruction.
Note that indicator 161 can be set off with this instruction
to turn off the display error line {flashing screen). This in-
dicator can be reset by pressing the RESET key. Avoid
turning certain system indicators off or on (Appendix A).
The keyboard indicator (197) can only be tested. This in-
dicator does not lock or unlock the keyboard.

Checkpoint Statement (CKPT)

The CKPT statement, which interrupts an ACL program and
provides a reentry point, has the following format:

Column | 1 18 |13 118
Entry Step/Label | CKPT Data set | Register
Number

58

Column

Contents

Step/label — is the number or symbolic label
assigned to this instruction. The CKPT can-
not be at step number 255, 511, or 767.

CKPT — identifies the operation to be
performed.

Data set number — is the number of the data
set (with a .DATASET statement) that con-
tains the executing ACL program as it

exists at the interrupted point, or checkpoint.
This data set must meet the requirements

of an object data set.

Register — is the register that contains in-
formation about the checkpoint data set.
The register must contain the following
information:

Register
Position Contents

1-8 Data set name

9 Drive number (1 or 2)

10-12 Data set access method (SW or
SWE)

13 Restart point (C or E)

15-16 Checkpoint ID no. (any EBCDIC
character)

Data set name — is the name of the data set
to be used to store the checkpoint records.
This is a required field.

Drive number — is the number of the disk
drive containing the checkpoint data set.
This entry must be 1 or 2. This is a required
field.

Data set type — must be SW or SWE.

Restart point — a C indicates the program is
to continue from the next sequential state-
ment after completion of the request. Note
that for the SWE access method, the current
checkpoint record does not overlay the pre-
vious checkpoint records. An E or any other
character other than a C indicates that the
program is to be terminated and a system
close be attempted after the checkpoint

(see Program Restart in Chapter 4).

Checkpoint 1D — a two-character field used to
identify the checkpoint. These two characters
overlay the last two characters of the program
name on the display screen, and can be used
to identify the current checkpoint.

The CKPT statement saves the status of the machine at the
execution time of the statement. This allows a restart from
this point in the program.

The checkpoint data set must not be open when the CKPT
instruction is executed. If itis open, a 9X1 error is posted.
The CKPT instruction opens the checkpoint data set, and
closes it after the checkpoint is completed (see Program
Restart in Chapter 4).

Insert Character in Buffer (ICBF)

This instruction generates a character of code (hexadecimal
or keyboard character) and inserts that character in a speci-
fic position in a buffer or register. This can be used for edit-
ing a print line (inserting slashes in a date, for example) with
characters not otherwise available. The format of an ICBF
instruction is:

Column |1 I8 113 [18 |23
Entry Step/Label | ICBF Buffer/ |Position |Character
Register
Column Contents
8 /CBF — identifies the operation to be per-
formed.
13 Buffer/register — identifies the number of the
buffer/register that is to receive the character.
18 Position — indicates the position within the
buffer at which the character should be
entered.
23 Character — identifies the character of im-
mediate data that is inserted in the buffer/
register.

Generate Self-Check Number (GSCK)

This instruction creates a self-check number when, for ex-
ample, a master file of customer numbers is created. This
eliminates calculation of a self-check numkter, The format
of a GSCK instruction is:

Column | 1 18 113 118 |23
Entry | Step/Label [GSCK | Register | [
Column Contents
8 GSCK — identifies the operation to be per-
formed.
13 Register — identifies the register (A-Z) con-

taining the data which is used to compute

the self-check number. The seif-check num-
ber is computed from this data as specified

by the .SELF-CHECK control statement. The
SELF-CHECK control statement also spec-
ifies the placement of the self-check number
in the register.

No Operation (NOP)

The NOP instruction reserves a program step/label for later
use. The instruction causes no operation and does not
change any indicators or registers. The instruction is initiated
by entering NOP in column 8 on the coding sheet.

Reference Material 59

Execute Program Chain (EXEC) When the ORG is executed, the instruction following the
ORG is assigned the step number specified in columns 13-

This instruction closes all data sets and waits for all 15. If these columns are blank, step number 000 is assigned.
printer operations to complete {system close), then chains In the object data set, space created by the ORG function
directly from the end of one job to translation or is filled with hexadecimal FF. The space is considered
execution of the next program. The format of the EXEC unused. Because the ORG is used, then deleted by the
instruction is: label processor, it is ignored by the translator. ORG may
not be used if the label processor step is bypassed (the
Column | 1 Is 113 translator will post an invalid instruction error). The ORG
Entry | Step/Label [EXEC rA or E function is useful in moving the object code in storage, or

in program overlays. Note that the step number entry must
Column Contents be right-justified.
1 Step/label — is the number or symbolic label Read a Card (CRDR)

assigned to this instruction.

The CRDR instruction reads and transfers data from cards
in the IBM 5496 Data Recorder or the IBM 129 Card Data
Recorder. The transferred data can be loaded into a speci-
fied buffer, and then formatted. The CRDR instruction is:

EXEC — is the name of this instruction.

13 Type of execution to be performed. An entry
of A indicates that the next program shouid
be translated. An entry of E indicates that
the next program should be executed. Column | 1 |8 |13 118 | 28

Entry | Step/Label | CRDR [Buffer | Format | Operation

If an A is entered in column 13, this instruction can be pre-
ceded by a MOVE instruction, which moves the input
(source) data set name (as it appears on the data set label)
and the output (object) data set name into buffer 2. (See 1
Chapter 4 for information about the Translator feature.)
This information can also be read from a data set stored in
buffer 2. The EXEC instruction then reads this data from
the display screen and initiates translation.

Column Contents
Step/label — is the number or symbolic label
assigned to this instruction.

8 CRDR — identifies the operation to be per-
formed (read a card).

13 Buffer — identifies the buffer into which
If an E is entered in column 13, this instruction can be pre- the data read from the card is to be loaded.
ceded by a MOVE instruction, which moves the output (ob- This is a required entry.
ject) data set name and the program name into buffer 2. 18 Format — identifies the number of the

This information could also be read from a data set stored format which is to control formatting
in buffer 2. The EXEC instruction reads this data from the of the data after it is loaded into the
display screen and initiates execution of the program. This buffer. A blank defaults to data-

option can also be used 10 execute label processing. directed formatting.

28 Operation — identifies the sequence of the
Assigning a Step Number (ORG) operation. Valid entries are:
You can assign any valid step number to the next sequential e S — specifies that the read be started, but
instruction by using the ORG function. The format of this no data be transferred to the work
function is: station.
Column | 1 18] 13-15 .
Entry ORG Step Number ® X — specifies that data read by thg 5496
Assigned or 129 be transferred to the specified
buffer.

o Blank — specifies that data be read by
the 5496 or 129 and concurrently loaded
into the specified buffer.

60

Upon execution of this instruction, data is read from cards
by the 129 or 5496, transferred into the specified buffer,
and then form .ed according to the format specified in
column 18. The S in column 28 allows data to be read
from the card, but not transferred until the entire read is
completed. Data is then transferred by use of the X entry
in column 28. The S parameter can be used in conjunction
with the IF CRD I1S/NOT BSY instruction to loop on this
operation unti! cards are completely read. Because the
reading is fully overlapped with the attached printer,

this eliminates the printer speed from being limited by
reading time.

Punch a Card (CRDP)

This instruction transfers data from the work station to the
IBM 129 Card Data Recorder or the IBM 5496 Data Re-
corder. The receiving machine then punches that data onto
80 or 96-column cards. The format of the CRDP instruc-
tion is:

Column | 1 |8 {13 |18 | 23
Entry Step/ CRDP Buffer Format | Buffer
Label
Column Content
1 Step/label — is the number or symbolic
label assigned to this instruction.
8 CRDP — identifies the operation to be per-
formed (punch a card).
13 Buffer — identifies the buffer from which

data is transferred to the 129 or 5496.
This is a required entry,

18 Format — identifies the number of the for-
mat which controls formatting of data into
the buffer specified in columns 13-14.

23 Buffer — identifies the buffer which can
contain additional data to be transferred
to the 129 or 5496. This data is first
loaded into the required buffer {columns
13-14), formatted according to the format
in columns 18-20, then transferred to the
129 or 5496. If columns 23-24 are blank,
the buffer specified in columns 13-14 is
first blanked, then formatted.

COMMUNICATIONS

The 3741 Model 4 Programmable Work Station has all of
the functions available through ACL (application control
language), plus the communications facility currently avail-
able on the 3741 Model 2.

Communication capabilities of the Model 2 and Model 4

are described in Chapter 10 of the /BM 3741 Data Station
Reference Manual, GA21-9183. The access method facilities
and macro instructions required to write an application
program that defines, activates, and controls the 3741
Models 2 and 4 are described in the /1BM 3740 BTAM/TCAM
Programmer’s Guide, GC21-5071.

Binary Synchronous Communication

The binary synchronous communications aclapter allows

the 3741 to function as a point-to-point terminal. The

basic BSCA function allows data transmission using EBCDIC
directly as the communication line code. Operation is
half-duplex over a private line, a common carrier leased

line, or a common carrier switched network. The mode of
transmission is synchronous, serial-by-bit, and serial-by-
character.

Operator Transmission End of
selects —_——— <4 Procedure
Reception

communication

The operator selects BSCA communications from the index
and update modes only. The following procedure estab-
lishes a data link and communication begins:

1. Load the diskette.

2. Position the diskette to the data set label or record
where communication is to start.

3. Press FUNCT SEL upper and COMM,
4, Press the appropriate mode key.
5. Press DATA on the modem.

The 3741 disconnects from the line when communication,
whether transmission or reception, is complete.

Reference Material 61

Expanded Communications Feature

The Expanded Communications feature provides the

following additional functions for the 3741 Models 2 and 4:

® Expanded buffer {512 bytes)

® Transmit selected field

® Transmit selected records

® Receive and insert constants and blanks

® Unattended printing after completion of communication

® Unattended ACL program mode after completion of
communication (Model 4 only)

Unattended ACL program mode is explained here because
it relates directly to the 3741 Model 4.

Unattended ACL Program Mode after Communications

The information required to translate or execute an ACL
program is put in track 0, sector 3 of disk 1. When commu-
nication is complete, the information in sector 3 is shifted
one position to the left and displayed.

Operator Transmission
selects _____ i
communication Reception

ACL translation

Disk 1, with the load parameters properly recorded, must
always be mounted before establishing the mode. The
object data set, containing the Model 4 program, must be
labeled and mounted on the drive as specified by the pa-
rameters recorded in track 0, sector 3 of the disk in drive 1.

The information required for translation is:

Position Required Information

2-9 Source data set name.

10 1 or 2, depending on the disk drive the
source data set is mounted on. Defaultis 1.

12-19 Object data set name.

20 1 or 2, depending on the disk drive the ob-
ject data set is mounted on. Defaultis 1.

21 The character A.

62

The information required for execution is:

Position Required Information

2-9 Object data set name.

10 1 or 2, depending on the disk drive the ob-
ject data set is mounted on. Defaultis 1.

12-15 ACL. program name.

21 The characrer E.

The operator can s&t up the unattended ACL program mode
by keying:

i. FUNCT SEL upper and COMM
2. The character E

3. The appropriate mode key

Communication Mode from an ACL Program

Operator intervention can be reduced further wheri the
Communication Link {RPQ]} feature is installed on a 3741
with the Expanded Commurications feature.

The purpose of the Communication Link (RPQ) feature is
to set up the communication mode parameters under con-
trol of an ACL program, rather than having an operator key
the setup sequence manually.

The communication mode and additional parameters are
entered inn ACL registers A and B by the program. To trans-
mit or receive blocked records or to print under format con-
trol requires that proper masks or formats be set up in ACL
buffers 8, 9, and 10,

The linkage to communications begins when the COMM
instruction is encountered in an ACL program.

Column 1 | 8 | 13 18 23
Entry Step/ COMM l
Label

The 3741 does extended validity checking of ii:put param-
eters. The commurication function takes control at the
conclusion of setup checking by transferving registers A
and B to Model 2 registers and the ACL butters 8, . and

10 to Model 2 prog-am levels 8, 9, and A. Then, communi-

cations takes place in the same maanner as with a Model 2
with the Expanded Communications feature.

COMM ACL transliation
statement in Transmission
ACL program |——pmue — — = — — —D{EJ-L—execution I

starts Reception .,

communication ‘Q‘ Printing l

The object data set must precede the received data sets
during receive mode to avoid overwriting of the object
data set.

Register A must contain the following information:

Register

Position Contents

1 The character M, if the call is placed at the
3741. Any other character defaults to auto-
answer mode. (This position is not used on
nonswitched lines.)

2 The character P, if upon compietion of
communications, the first data set received
is to be printed. The character E, if upon
completion of communications, an ACL
program is to be loaded and executed. Any
other character causes the 3741 to go to
communications complete mode {(upon the
completion of communications) requiring
RESET to return to index {X) mode.

3 The communications mode character (T, J,
P, R, B, K, or D}.

4 Format numbers 2 through 9. This position
is used only if position 2 contains a P and
buffer 10, position 1 contains X'7A’ {:).

5 If a read or a write to file 1 has been per-
forrned and the character N is coded in this
position, no multivoiume indicator {contin-
uation} check wiil be made and EBSCA will
assume that the entire file resides on disk 1.
If a read or a write has not been performed
or if a blank is coded in this position, the
multivolume indicator (continuation} check
will be made.

6-16 Not used.

Register B must contain the following information if the
terminal 1D feature is installed:

Register

Position Contents

1-15 Remote ID.

16 Remote ID length (hex) even if the length is

zero {no remote 1D being sent).
Data set 1 must have the following characteristics:
® Open and loaded on disk drive 1

® SW, SWE, or SU type file for receive (R) and inquiry (I)
modes

e KU, KR, or SR type file for transmit (T, B, P, D, J, K)
modes

Data sets 2, 3, and 4 must be closed when using the commu-
nications linkage function.

The mode selected determines whether the first record is
written to disk or transmitted.

The first record is written to disk in receive rnode as
follows:

® At the EOD address if data set 1 is an SWE type file.

® At the data set 1 disk address plus one if data set 1 is an
SU or SW type file. If no activity was generated against
the file, the first record is written at the BOE address.

When a read or write instruction is executed before the

COMM instruction, the received records must have the same

record length as the existing records in the file. The first

record is transmitted in transmit mode as follows:

o Null record {STX ETX) if data set 1 is a null data set
(BOE = EOD).

® BOE record if no activity was generated against data
set 1.

® Record at the data set 1 disk address.

Reference Material 63

Chapter 3. Design and Implementation Considerations

CONSIDERATIONS FOR EFFICIENT KEY ENTRY
PROGRAMS

The work station coupled with ACL can be an efficient
data entry tool. However, the efficiency of the data entry
job for the key entry operator is dependent on the program-
mer. Paramount in all key entry programs is adequate error
correction facilities for the operator. A discussion and cod-
ed examples of error correction routines are provided later
in this chapter. Additional guidelines for writing efficient
key entry programs are as follows.

Alpha/Numeric Fields

Because it is easier to manually shift the keyboard for
numeric characters than for alpha characters, mixed atpha/
numeric fields should be defined as A in position 23 of the
.FIELD; unless there is only a very occasional alpha charac-
ter in a field, then U in position 23 should be used.

Error Correction

Operators detect approximately 80 percent of their keying
errors, so immediate operator correction of previously
entered fields should be constantly provided using the T
in column 36 of the .FIELD statement (special keyboard
close).

Prompting Messages

Prompting messages issuzd to the operator should be spelled
exactly like the captions on the source document. Prompt-
ing messages should also appear in the same sequence as
listed on the source document to facilitate the ease of key-
ing. ACL allows you to reformat the fields to meet the
requirements of the output record format. After fields are
entered, they should be displayed on lines 2, 3, and 4 of the
display screen, and shouid be separated by spaces rather
than displayed in packed diskette output record format,
which is difficult to read.

Restart

Because operators are frequently interrupted during their
work, the ACL program should indicate to the operator the
point at which processing was stopped. You should con-
sider using the checkpoint/restart capabilities of ACL. The
CKPT instruction is discussed in Chapter 2, and the pro-
gram restart procedure is discussed in Chapter 4. Qutput
data sets are automatically positioned at the interrupted
point upon restart. See .DATASET in Chapter 2, and note
the SW and SWE access methods.

Guidance Techniques

In many applications the operator keys directly from a
source document; that is, the operator performs a data
transcription function. The operator’s eyes are on the doc-
umentation and not following the display screen. The ACL
provides two tools to guide the operator in this environment.

The first of these tools is the display screen flash. The flash-
ing screen is turned on by setting on indicator 161 in the
ACL program. This feature is normally used when the ACL
program determines an error condition {for example, keyed
data is outside a range check). Besides flashing the screen,
this indicator locks out the keyboard and provides an audi-
tory signal {no key click), so the operator can recognize the
error even if the operator does not look at the screen.

The second tool is the buzzer. Keying throughput can be
increased by setting on indicator 162 (buzzer) to give a

ready buzz when the operator must wait for the machine
(for example, searching a file to validate an account number).
On the other hand, if the operator should be looking at the
screen for visual verification, then the ready buzz should

not be used (for example, searching a file on customer num-
ber for the customer name and address and wanting the
operator to visually verify that the address is correct).

Keying Pattern

The keying pattern of the job should be thoroughly studied.
If there is a fixed-length field in a logical series of variable
length fields, an exit key such as RIGHT ADJ should be re-
quired (position 29 in .FIELD control statement) for all of
the fields so the operator does not have to learn the excep-
tional field.

Variable-length fields which are seldom filled should require
an exit key so the operator does not have to be concerned
if the field is full and erroneously exit the next fieid.

Do not control branching in the ACL program with extra
keystrokes by calling for extraneous yes- and no-type mes-
sages rather than controlling branch key blank field on the
(SKIP, RIGHT ADJ) exit keys.

The keying pattern for the job should have a logical flow.
The capability of the work station to allow fields to be
entered in a sequence convenient for the operator and out-
put on the diskette or printer in a different arrangement

to meet other data processing requirements should be
utilized.

Function Keys

The work station installation may be operated in both data
station mode (Models 1 and 2) and ACL program mode
(Models 3 and 4). Thus, the ACL programs should simulate
the data station function keys (for example, REC ADV).
This also provides consistency among the various ACL pro-
grams to be run by the same operator.

Key Recommended Function

FIELD BKSP
REC BKSP

Go back to the previously entered field.

Go back to the beginning of the previous-
ly entered group of fields. The beginning
depends on the format of the source docu-
ment and not necessarily on the record
written to the diskette (the beginning of

a line on the source document).

FIELD ADV Go to the next field to be entered. In
some applications, you may want to in-
hibit FIELD ADYV if data was not previous-

ly entered for the field.

REC ADV Go to the next group of fields to be enter-
ed or reviewed. The group of fields depends
on the source document. Some applica-
tions may require that data is mandatory

in all fields. Thus, you may want to inhib-
it REC ADV if this data was not previously

entered.
Displaying Data

Displaying data on the display screen should be thoroughly
planned so it is most convenient and readable for the opera-
tor. For example, data is often recorded on the disk in a
compact form, but the capability of the work station to dis-
play this data with separations between fields for easier read-
ing should be utilized.

STORAGE ALLOCATION AND REQUIREMENTS

The standard work station has 4096 positions of pro-
grammable storage. This storage is used to accommodate
the ACL programs during execution. Figure 24 shows how
a typical ACL program appears in storage. Note that the
first 1024 positions of storage contain 26 general purpose
registers (A-Z}, an indicator table, and work station
control programming. This area of storage cannot be
altered by the ACL programmer, except for the contents
of the registers and the status of certain indicators.

The remaining 3072 positions of storage are divided into
128-position buffers (1-24). Buffers 1 and 2 are permanent-
ly assigned to the display screen. Any data written to buffer
1 or 2 is immediately displayed (first 120 bytes) on the
screen.

The remaining 22 buffers are used to store:

® Data set and printer input/output buffers.
® Tables.

® Operator prompting messages.

® Program instructions.

® Disk indexes (key indexed access method).
® Data formats.

Buffers 3-24 are assigned by the ACL control statements,
except for the data formats, which are always loaded begin-
ning in buffer 24. Disk indexes used by the key indexed
access method can be loaded autornatically or assigned in
the .DATASET control statement. |If the automatic option
is selected, the system locates an unused area in storage to
build the index.

As you code an ACL program, buffer assignments start with
buffer 3. The first buffers assigned are usually the input/
output buffers for the data sets to be accessed and for the
printer, if required. Tables and messages c¢an be defined by
using the .BUFFER control statement. You control the
point where program instructions are loaded by identifying
the starting buffer number. This must be an odd-numbered
buffer and must follow buffers assigned for data sets, the
printer, prompting messages, tables, and constants.

The 8K storage feature provides 32 additional buffers, for
a total of b6.

Design and Implementation Considerations 65

Translator Storage Assignments

The following rules are used by the translator for placing
instructions in storage. They can aid you in coding or
patching a source program. (For the rules governing the
label processor, see Chapter 4.)

66

Instructions preceded by step numbers are placed in
storage at the position corresponding to the step num-
ber. (The actual physical location of the instruction
depends on the starting buffer number of the program,
as specified in columns 18-19 of the NAME controi
statement.) If the indicated storage position already
contains an instruction, a translator error is posted.

Instructions not preceded by a step number {columns
1-3 blank) are piaced at the next available storage |o-
cation. If the first instruction in the program has no
step number, it is placed at the location for step num-
ber 000. Note that instructions do not have to be
coded in the source program in the exact order they
appear in the object program, unless columns 1-3 are
blank.

When the translator has assigned all instructions to
storage locations, it checks to see that any unused
storage locations are preceded by a GOTO instruc-
tion. If any other instruction is followed by an un-
used storage location, a translator error is indicated.
Note that comment records should be coded to identi-
fy buffer and indicator usage within the program.

Storage Requirements

To determine the storage requirements for your ACL pro-
grams, use the ACL storage estimator form shown in Figure

25.
Registers Indicators
A 1
255
. Work Station
4 Control Programming
1024|Buffer —1 Display (lines 1, 5, 6)
-2 Display (lines 2, 3, 4)
-3 Printer
-4 Printer
-5 Data set (1)
-6 Data set (2)
—7 Tables
—8 Tables
2048|Buffer —9 Prompting messages
-10 Prompting messages
-1 Instructions
—12 Instructions
—13 Instructions
—-14 Instructions
-~15 Instructions
-16 Instructions
3072|Buffer —17 Disk indexes
-18 Disk indexes
-19 Disk indexes
-20
=21
—22 Data formats
—-23 Data formats
—24 Data formats

4096

Read-Write Storage

Figure 24. Typical ACL Program Structure (4K)

} Fixed

Variable
(under pro-
grammer
control)

1 Registers, indicators, and work station
control storage (FIXED)

2 Display screen buffers (FIXED)
3 Operator prompting message
Number of messages {) x4={()

Total number of characters

in messages +()
TOTAL

4 Data sets
Number of data sets () x 128

5 Printer buffers

128 print positions () x 128
132 print positions {) x 266%*

TOTAL
6 Tables™

Number of entries per

table {)
Entry length x {)
Plus 1 {)
TOTAL {)

(1024)

(256)

7 Instructions”

Number of instructions {) x4 ()
8 Data formats™

Number of formats plus 1 { }

Total number of fields in
formats +{)

TOTAL {) x4 {)

9 Index tables (key indexed access method)
per index

Tracks in dataset () +2()

Tracks per entry ()
Entry length x {)
TOTAL () {)

TOTAL STORAGE REQUIREMENT {)

Because these parts of your program start in a buffer,
that entire buffer may be allocated for only that part,
unless you specify another use for the remaining buf-
fer area.

* *

Only positions 1-4 are actually used in the next
sequential buffer.

Figure 25 (Part 1 of 2). ACL Storage Estimator Form

Figure 25 (Part 2 of 2). ACL Storage Estimator Form

Design and Implementation Considerations 67

EFFICIENT USE OF WORK STATION STORAGE

The following sections provide a number of programming
techniques which allow you to conserve and fully utilize
storage space in the work station.

Using Operator Messages

A key area in conserving storage is the definition and use of
operator prompting messages to be displayed. If overused,
these messages can not only slow down the operator but
significantly increase your program storage requirements.

The following are general rules for writing the ACL program:

® Specify M in column 28 of your .FIELD control state-
ments, when applicable.

® Do not use the .BUFFER contro! statement to define
captions displayed on lines 2, 3, and 4 of the screen.

® Reuse prompting messages defined by your .FIELD con-
trol statements, when applicable.

® Utilize abbreviations in your operator prompting
messages.

In many cases, it can be advantageous to retain keyed data
by moving it to lines 2, 3, and 4 of the display screen. You
may also want to display a caption with the data. By speci-
fying M in column 28 of your .FIELD control statements,
the prompting message and related data is moved to the
specific position on lines 2, 3, and 4, after the data is keyed.
You also specify the starting display position in columns
33-35 of the .FIELD control statement. Do not use the
.BUFFER control statement to define additional captions
to be displayed on lines 2, 3, and 4. Each .BUFFER control
statement uses 128 positions of additional storage.

It is possible to use the same messages as defined in .FIELD
statements for print, diskette write, or other display opera-
tions. Each prompting message defined by a .FIELD state-
ment is stored contiguously (followed by a 4-position con-
trol block) in the buffer specified in the .FIELD control
statement. If the prompting message overflows to the over-
flow buffer, an additional three bytes are used at the end
of the primary buffer.

Total buffer space can be utilized by combining .FIELD
prompting messages, initialized .BUFFER data, and table
data in the same buffer. .FIELD information, however,
must start in the first position of the buffer. For example,
a buffer can be initialized (with a .BUFFER statement) or
table data can be loaded to fill the remaining positions of a
buffer containing a .FIELD prompting message. (See Col-
umns 13- 14 Buffer (R) and Columns 18-19 Overflow Buffer
(O) under .FIELD in Chapter 2.)

You can load prompting messages into general registers
(A-Z) by issuing a REFM instruction to the buffer contain-
ing the messages. Once in the registers, the message can be
used in any one of the operations mentioned.

Because the operator needs only enough information to
understand what action must be taken, you can minimize
storage requirements by using abbreviations in your operator
prompting messages. This may, however, depend on the
individual operator and the complexity of the abbreviation,
although the operator will probably rely less on the prompt-
ing messages as experience is gained.

Using Tables

ACL allows you to search, read, and write tables in storage.
You may occasionally find that too much storage area is
required to maintain an entire table. it is possible, however,
to segment a long table into subtables, and store the seg-
ments in a diskette data set. The subtables can be retrieved
by using the key indexed or relative record number access
methods. The key indexed method assumes an ascending
sequenced table. The relative record number method
assumes a table with no sequence. For both methods, let us
assume that table entries are 10 positions in length, and that
10 entries are stored in each 128-byte sector, with a2 hexa-
decimal FF in position 121. The hexadecimal FF indicates
the end of a table to the work station. Both access methods
search for an equal entry, as specified in the TBF X instruction.

In Figure 26, the key indexed access method starts with a
read or search of the table file based upon the search argu-
ment contained in register B. Note that the key is specified
in the .DATASET statement as starting in position 111 with
a length of 10 positions. The search of the file is terminated
when an equal key or a higher key is found. The subtable
segment that should contain an equal entry is in buffer 3,
the input buffer for the table file. A table search is then
initiated by the TBFX instruction. !f no equal entry is
found, register A will be zero. Register A is then tested with
an IF instruction, causing a branch to an error routine called
ERR1.

1234656 7 8 9101112 |_‘4u|5|6|7|8|920212223242526277829303!323’934

36 37 38 29 40 41 424344454647484

12 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80,

DATASENT [110 | [[rialelelel [[[] [vlg| | s 7Bl [11]1]

[[]E

Dataset name Record Drive
length

Bufter

Dele!ed

record
routine

Tracks

Extent
check

7L | LTRRI Tl [[][] [l [Jeh

routine length length posmon

[

)

/// COMMENTS
13 14 15 i\ 19 20

8 910 11|12 2t 22|23 24 25//&2930 31132|33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 50 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 15 16 17 78
S

ElAID Elab Tlarllel LisirNG] BEAR R GIUIME T EGTISITER

TlRE ealrlchl lsilal-frlall e Ll ENTRY
o sl TRy ERRO ;}
4l |
, |
> {

Figure 26. Key Indexed Method Searching a Table of Ascending Sequence

The relative record number access method (Figure 27),
starts by initializing the relative record number in the table
to 1. A read of the first record in the table file is done,
followed by a table search of those table entries contained
in the input buffer. If no match is found, the program
branches back to the read operation and the next record in
the table is read. When the end of the table file is reached
and no matching entry has been found, the ACL program
branches to an error routine called ERR 1.

Note that the end-of-file routine is specified in columns 53-
56 of the .DATASET statement. If the table is in ascending
sequence, the reading of subtables can be terminated when
a high entry is found by using the TBFN instruction and
testing indicator 163 (table high, no equal entry found).

Design and Implementation Considerations

69

12345

Record Butfer

length

STEP/

0 21 22 25 24 %5 76?71879303! 32 33 34 45 36 37 38 30 40 41 47 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72737475767‘

e | |0 {1 el A TR

LLLLL ME@HWWT

Tracks

Key
length

Index
length

Deleted
recoid

Type

routine

}

routing Extent
check

Figure 27. Relative Record Number Method Searching a Sequential Table

Using the Key Indexed Access Method

The key indexed access method minimizes the time required
to search data sets arranged in ascending sequence by using
the index, which can be built in storage automatically. The
storage required for the index may exceed available storage
space, depending on the size of the data set. You can vary
the size of the index to be built with two entries in the
.DATASET control statement. in columns 63-64 of the
statement, you can specify an index length smaller than the
key length specified in columns 73-74 of the .DATASET
statement. This reduces the size of the total index because
the index contains the high-order positions of the key. The
significance of the key should not be lost. In columns 68-
69 of the DATASET control statement, the number of
tracks represented by each index entry may be specified.
The more tracks represented by an index entry, the less
storage required for the total index. Note, however, that
access time increases in proportion to the increase in tracks
represented. Thus, the size of the index should be deter-
mined by both the storage required and the access time
desired.

Providing Operator Error Correction

Operator error correction techniques may be provided in
the ACL program, although the storage space required must
be a consideration. The special keyboard close (column 36
of the .FIELD control statement) and a register in place of
the actual buffer and message number (columns 13 and 18
of the ENTR instruction} may be specified to minimize the
number of instructions required to provide operator error
correction technigues. Figures 28 and 29 show the use of
these options. Note that 14 instructions are needed in
Figure 28 to provide for zsntered data and operator error
correction. Figure 29 shows another method of providing
operator error correction requiring 24 instructions.

70

LABEL COMMENTS
[I 2 3|4 5 »(i 718 9 10 ¥1 (1213 14 15 16 17|18 19 20|21 d?fi 24 25]2’6 27128 29 30 31{32|33 34 35 36 37 38 39 40 41 47 43 44 35 46 47 4B 49 50 51 62 53 54 55 56 57 58 59 60 61 62 6/ /IG 77 78 79 80
| T T !
N I * L TIALITZE LATITIVIE] R .
L L READ L P b L READ] FRROM TARLE] FITILE
- TIBF X! 13 4 A L@ || SEARCH SluBi-TARLEL L1 1
CILEL AL L sl L@ RIOL HIF NO| |EIQUAIL| Fox.qNH EAD
! LLLE] LLL EEEEREEE N J

Programming for operator error correction can be enhanced
by use of .FIELD overflow buffers. For example, a corres-
ponding ENTR instruction is:

STEP/
LABEL
delelRl 1| erlel 2l [T TIal 1 1]

Where register A contains the current message number, and

7 is the number of the buffer containing the start of .FIELD
messages. |f the overflow buffer is specified in the .FIELD
control statement {columns 18-19), the buffer number does
not have to be incremented or range-checked. When cross-
ing buffer boundaries, the first complete message in the next
buffer has a message number one greater than the last message
in the preceding buffer.

Remember that each instruction, regardless of type, occupies
four positions of storage.

[T 25

4 5 6 77 8 91011122 |415|E:7 |B"Q 20 21 22 2? 211 25 ?5_2L282930 3; 3:2’21
RE[GT[STER [[M Ah
SJREGISTER | [X || b
« REG|I STER Y | 3
JREGISTER| | | |Z N
STEP/
LABEL COMMENTS
1 2 3|4 8 6 7218 9 10 11{12[13 14 15 16 17 18 19 20{21 72|23 24)26 27 28 29 30 31(32]33 34 35 36 37 3B 39 40 4t 42 43 44 45 46 47 48 49 50 5! 52 53 54 5556575659506‘6’1v ‘5777879M(
Eleln MR |y EINTIER] ,aplplREls sl IrlEl e
FILIR| 11198 IS5 RlAIC L CK CE| PR E (
) 1ls OIN AIDIV| ElLD| ADIVANCE| PRESBEDR
3 09 5 N RCD| | [RECORD| ADIY PRIEISISED|?
Dlv £ = X ENID T GIE]? \
TIo EGIN
RIAICIK E z BlEGIN FITRIST| MESIKS AGE!?
= z - || Blaklkislpialclel OINE! MEISKS AGIE
T EleiN il | {
RIEJE READ! REICORD [FIRIOM DTS/l
RIT RIITIE! ID TITEE ‘\
Wine BIEGIN 1.1]
({

Figure 28. Technigque for Providing Operator Error Correction

Design and Implementation Considerations

71

“

7 8 9011 12

5

3 TV S
- L

AL

=g
* m

»

2z <

s s Bl i B B
MM MM m

8]
&
i
"

g

?f""" f S

I
| vl

oD ~

.

Buifer Overflow Feld Eatposmon | |5 6 7
buffer length control |
Spenial close
Fueld type Chaining b

Data disposition

STEP/
LABEL

H
(L]
T
E

8910 1112131415 1617 16 19 2021 22 23 24 25 26 27 28 29 30 31 32 43 36¢

Display line 5

NNNNNNNN

|
1

107172|

Buffer space (Numbers 572
for programmer use oniy}

1 2 3}4 5 6 7|18 910 1[12]13 14 15 16 17[18 19 20{21 22|23 24 25(26 27 |28 29 30 31

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 €

73 74 75 716 77 78 79 sol

SIGIL NTIRl |3

FITIR <) IR S SiG

F 9.3 S

19 S ON N|D

X m

B m

< S

W T PN N

OO0
=<
0
o

919 S

e

P oo PO

FITIR 9) S

m
—
2]
=

Q) S

FiT 99 S

T

QR 5

PPOoOKPHPODKO®™®pPpK

SREEoNe]
=3
=
©

~

M
28]

9 LS

1Al
m m

A A

=

F 919 S

L9R

-
w

FITIR U 93 'S

<D oK

F 919 5

SEANA

Mp T mm

...‘

O oDD

AL

N mHEOmm
< b x K

FIT 93 MS L C. 2
E 9 L \Y
F N ENID D) z

12 3j]a 5 6 7[8 10 11 [12[13 14 15 16 17 [18 19 20|21 22}23 24 25]26

N

7[28 29 30 3

7.38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

66 67 63 69 70 71 72 73 74 75 16 77 78 7980]

Figure 29. Technique for Providing Operator Error Correction

72

OPERATOR DOCUMENTATION, TRAINING, AND
TESTING

Since operating procedures for the work station depend on
the programming for each application, documentation and
training for the operator for each job must be provided.
Clear and complete documentation is essential for the
following reasons:

e Work stations and operators may be at remote locations

where assistance from a programmer is not readily available.

® The incidence of new operator training exists due to nor-
mal operator turnover.

Operator Documentation

To aid the operator in running your job, a job run sheet and

step-by-step instructions should be provided. The job run

sheet should include:

® Job name and number.

® Name, location, and telephone number of the programmer.

® Printer setup instructions (if used) specifying form num-
ber and description, print head vertical alignment, spac-
ing desired, and number of parts per form.

o Diskette data set label specifications (if scratch diskettes
are used). Note that data set labels should be preestab-
lished for the operator and controiled by the program.

® Instructions for starting the program, inciuding diskettes
and respective disk drives, and the keying sequence for
starting a job. Note that there are three basic techniques
to start a job depending on (1) if the program identifica-
tion is written on sector 8 of the index track, {2) if the
program identification is written on a reserved sector of
the index track, or {3} if the program identification is
keyed by the operator.

® Instructions for ending the job.

® |Instructions for aborting or continuing the job in the
event of a system error.

® A summary of special keys and functions, such as FIELD
BKSP, REC BKSP, REC ADV, FIELD ADV, DUP, and
SEL PGM, when used to add or delete records, or for
special branching.

A sample job run sheet is shown in Figure 30.

Step-by-step instructions should be provided to supplement
prompting messages to the operator. Although the program
contains prompting messages, these messages only teil the
operator the location in the job flow, Particularly for the
new operator, these prompting messages require the addi-
tional interpretation provided by step-by-step instructions.
Note that these instructions should include a review of the
work station error list and any necessary special instructions
for some of the errors.

Design and Implementation Considerations 73

IBM 3741 Models 3 and 4 Job Run Sheet

Items with a box[__Jare optional and can be ignored unless checked[><].

Job Name Job Number

Programmer Location Telephone
Printer Setup
Form Number/Description
Single Double Space 1 2 3 4 5 6 Part Form

Printer Alignment

Starting Program
Drive 1 Diskette

[Drive 2 Diskette

Program Identification T T T IT T I TL T 1T I1L]
Program Identification:[:]will be displayed when drive 1 is ready.
[Jis written on the diskette. Press REC BKSP

times until it is displayed.

[must be keyed. Press FUNCT SEL lower and DELETE REC to clear the display,

then key the program identification.
After the program identification is displayed, press FUNCT SEL upper then E.

Ending the Job

Aborting the Job

To continue after aborting

Summary of Special Keys and Functions

Figure 30. Sample Job Run Sheet

74

Operator Training

The most efficient method of operator training is for the
programmer to demonstrate the program using the job run
sheet and step-by-step instructions for reference. During
this demonstration, the operator should execute each step
while the programmer explains the meaning of prompting
messages and special keys and switches. The demonstration
should include operator correction of errors and unbalanced

hash totals. New operators must be shown how to key minus

{or credit) right-adjust fields. Note that the dash key inserts
the minus sign (D zone) in the units position of numeric

fields, then performs the right-adjust function. Once trained,

operators can instruct new operators in the use of the job
run sheet, step-by-step instructions, and work station
functions.

Application Debugging

When debugging the program, use an operator who typically
uses the program. This tests both the program and support-
ing documentation. The debugging also allows the operator
to identify difficult keying sequences and make suggestions
for increased efficiency.

Additional Documentation

The programmer should also provide the operator with:

® A listing of the source program.

® The files and data set labels for each diskette.

Although this documentation is not always needed by the

operator, it could be useful to the IBM service personnel
if a difficulty arises.

DATA SET ACCESS METHODS

The following section is provided to aid in selecting the
access method most suited to your particular application.
The format of the diskette for the work station is the same
as for the data station. The disk unit reads and writes on
only one side of the diskette. The diskette is divided into
an index or label track and 73 data tracks. Each track is
divided into 26 sectors. Each sector can contain up to 128
positions of data. All ACL read and write operations access

one sector at a time using one of the following access methods.

® Sequential
® Random by relative record number
® Key indexed

The index or label track, track 0, can contain up to 19
different data set labels. These data set labels are used to
define the data sets contained on the diskette. Data set
labels are created and modified using the data station func-
tions or by an ACL program using the label update access
method. For detailed information concerning the format
of the label or index layout, and the data set labels, see the
IBM 3741 Data Station Reference Manual, GA21-9183.
Data set access methods available within ACL are discussed
in the following section.

Sequential Access Method

The sequential access method reads or writes sequentially
based upon the physical disk address, one record or sector
at a time. This same method is used by the 3741 Models 1
and 2 Data Station. The sequential method:

® Writes records into a new data set.

o Writes records at the end of an existing data set.

e Reads records from an existing data set.

e Reads and updates records in an existing data set.

® Reads and updates records in an existing data set and
writes new records at the end of an existing data set.

Design and implementation Considerations 75

To use the sequential method, specify an S in column 58 of
the .DATASET control statement and the appropriate op-
eration in column 59 (R for read, W for write, or U for up-
date). In addition, to extend or write additional records in
an existing data set, enter SWE in columns 58-60 of the
.DATASET statement (Figure 31). To perform the actual
read and write operations, the following instructions are
used:

Instruction Function

READ Read a data record

WRT Write a data record

WRTS Delete a data record

WRTE Add & data record at the end of a data set

READ and WRT Update a data record

You can code two operands with the READ instructions.
The first operand in column 13 defines the file number to
be accessed, and the second operand in coilumn 18 defines
the format number to be used with the operation (Figure
32). During the read and write operations, data is moved

to or from the input or output buffer assigned to that data
set in column 38 of the .DATASET control statement. Dur-
ing a read operation, the data from the sector read is trans-
ferred to the assigned buffer; and, if a format number is
specified, the appropriate data is also transferred to the
general purpose registers used in the .FORMAT statement
specified.

The WRT instruction has three operands. The first oper-
and in column 13 defines the file or data set number to be
accessed; the second, in column 18, identifies the .FOR-
MAT statement to be used with the operation; and the third,
in column 23, defines the buffer number from which data

is transferred in order to be written on the diskette.

The WRTE instruction can contain the same operands but
always writes the record at the end of data in the data set
or at the current end of data address.

The WRTS instruction can be used to write a record and
insert the special address mark used for deletion of a sector
or record. |f a format or buffer is specified in the WRTS
instruction, the sector is updated to reflect values contained
in the registers or the buffer. If no format or buffer is
specified, a D is placed in position 1 of the record and re-
maining positions 2-128 are blanked.

To perform an update on an existing record within a data
set, first specify the update operation by codinga U in
column 59 of the .DATASET control statement.

A read to the record to be updated must be issued followed
by a write to the same data set in order to update selected
fields or the entire record (Figure 33).

B4 B 66 67 PR BY 70 /1 77 1o 04 T 11T

1 Pt
TR
HH H* it
ol ’ ! ’
1.. 1 ’ l}'w‘k‘ i [r\'i lkf
COMMENTS
iji"[”‘li% XI AISIB 1%9 19 2u;"' %L”‘lf%‘%ﬁ"%rJf‘r‘iaﬁa_r"“Tdi('z’#ﬁtha‘ ‘Lviiﬁz’sfa K)feTi?['g 59 BC b'{“}jw}MT‘s %IG B8 Fit 20 71’7 UT’M o 6
‘ k* 1 - :'44'4"1 ‘r'{; %4 + ot l R ﬁf*j' f#;j o ot T -—-
READ L 1|1y READ RECORD OR. SECTOR Wi NO £ DR
T ! “"%”‘“H' "Hviﬁ*a?%***’*"‘#**\L% R i e
i "‘?~'7'1‘ ‘T#"'Tl*"‘"‘"}%l‘l:' [ﬁf
READ B 1R '| READ RECORD WLTH FORMATTIING K BN
-4 illir l'{‘,.’l;i“ts.,,i.lll ‘;li‘l‘
j} : [P L : 1 ml N ‘ | T‘ !
- f r + ‘J;;y*‘vyy1¢v‘¢~>'v'fv~v‘1\4T1 1
R| Cod] D DATA, DIRECT. R \R.D|. WAL T|H! FbRI T SELEC
T ! DRRECT RECORD WIiTH. EORMAT, ‘\Jw’
r+4 bt 4 beod A + +o-wlj—+£4»‘¢*lj—$< i Pl ~o$i$¢ #—L

Figure 32. Sequential Read Instructions

76

Contained within the .DATASET control statement are
two programmable exits which can be used to exercise pro-
gram control when the specific conditions occur during
processing of a data set:

® Deleted Record — columns 48-51
® End of File — columns 563-56

These exits are discussed under .DATASET in Chapter 2.

Relative Record Number Access Method

The relative record number access method reads and updates
records within a data set based upon the relative record num-
ber of the record from the start of the data set. With the
READ instruction, you identify the specific relative record
number desired. The system then searches to that location

’36 7 wau i ;mv 1617 18 19 7

i

lengtr

f

11l

I

/
I i

i
I
i

My

‘:Zx

Ib 0728 29 30 31 32 33 34 3 30 7533(;4011 47414&454 47 48 49 50 51 52 53 &

il

111

Deried

|H»-

and reads that record or sector. The relative record number

access method:
® Reads records from an existing data set.
® Reads and updates records in an existing data set.

To use the relative record number access method, specify

S in column 58 and R or U in column 59 of the .DATASET
control statement. These specifications are the same as for
the sequential access method. The difference between the
two methods is in the coding of the READ operation. A
third operand is required for the relative record method.
The general purpose register (A-Z) that contains the relative
record number to be read (Figure 34) must be identified in
column 23. When the READ instruction is executed, the
work station control programming calculates the physical
disk address of the relative record specified. A direct seek
is then issued to that record, the record is read and trans-
ferred to the input/output buffer assigned, and the data is
transferred to the appropriate registers if a .FORMAT num-
ber has been assigned.

'90 91 92 93 94 95 86 97 98‘

I

|

|

N
T
|
|

)}
¢
{

Ind
end
positi

|

Index
end
buffer

NASERRR RERRN L i 1 i
JFORMAT| | | 1 | L L] IREAD M i IT
A AAAN B 'd ; q Ei FIF |
] - | e
IR H
1Y 3 4 5 6 7 B 91071 17 I—JMV‘;‘()VIYB 19 20 21 22 23 24 75 26 27 28 29 3G 21 32 33 34 35 ’iGJ/JHﬂAﬂd‘A 43 44 45 46 47 4B 49 LU R L7 0] ‘A"
- Charactor ! !
Number posttion Charactur Second record
STEP/
LABEL COMMENTS
1.2 34 5 6 748 910 111213 14 15 16 17| 18 19 20 IZ] 24 25[26 7 28 29 30 V} 137 34 3% 36 3 38 T:i 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 74 75 76 77 18 719 30_]
1 ¥ T T T T i
| ! r I . { [’
- »Jg- s A b i‘ I fbert g b b g l : l g
Py P Lo ‘ ;
i H H [
TIPET 1T r RERRRESECUREREEREN i {
' 1 T T i BRSNS !
el | | IREAD 1] | 1] , 1 | D RECORD To| BE Upp (
s c ‘ vERREUEEREARREREREERREE SREREES g
PELL = Mo L H SRR R .
| 1 RN [
MRIT] | L il © b ol MWRTTE, WPDATED RECO
) : : i | i
(e BE[GN | | g
! il ST -+ n
i S T T
: J T ESRERESEERERE: ERRE
! e P RN
-) R ‘. I ; bo- 1 [! + - - tobg 7‘ 1 >
- - poob ftee "T IR | t 4t *} + 1 ‘k'— - * 1: l % ¥ j b+)
L j | b i Pl b I J’.,iH

Figure 33. Coding Required for Sequential Update Access Method

Design and Implementation Considerations 77

To read and update a record with relative record number
accessing, the record is first read into the 1/O buffer. The
program then modifies either the 1/O buffer or the content
of the register used for formatting the 1/0 buffer. A write
command then places the updated 1/0 buffer back on the
disk. Although the relative record is not referenced by the
write command, the updating is done to the last record
read. The content of the register containing the record
number is incremented after the read operation. The fol-
lowing example illustrates this procedure.

<-.m 17 1819 20 21 22 25 24 25 26 277829303\3233343 36 37 38 39

The relative record number and sequential access methods
are combined so that hoth methods can be used to access
the same data set. After the read operation is completed,
when a register has been specified in column 23, the value
in the register is incremented by the work station control
program to reflect the next sequential record to be read.

Note that register E is b after the read is completed, al-
though the update is to the fourth record.

ﬂss ii) X,, Ll | | gl | 1]
il ’ | |
Dax se Dataset name Record Drive
iength
/OMMENTS ——
szvs 14 15 16 1718 19 20§21 22]23 24 25|26 27 [28 29 30 /3 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 4y oav 52 63 54131)6[7 58 591r»lmt £i3 IMG ti767 68 69 70 71 72 13
{ i i | H {
LLs H 11 \j‘,;ig;,w‘ 1 N
n 2 £ RDHIEDJi,;H_m
3 C] AL THE | BUFFER
R W TJ‘HA NEW CONTENTS
_ . I A
o ' | /
L" —++ t— +-t T bt l w‘ ‘; l WL# “ L”’#‘l#‘i’

STEP/ /
LABEL COMMENTS
12 3|4 s 6 748 910 11[12]13 14 15 16 17|18 19 20|2s 22_17 /Jﬂbii 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 43 LU 51 52 53 54 55 56 57 L8 59 60 GIIGZIBJ 64 65 66 67 68 69 70 71 2 72 fl 79 80
Ll 1 1_7 I 5 —
B RE n £l /RectistER | lconThs REILATI|TIVIE] RIEICORID INUIM ER!
bl Pl b | i
i RRRERRRERERRRE R e e e
Figure 34. Instruction for Read with Relative Record Number
STEP/
LABEL COMMENTS
12 314 s 6 |8 9 1011 {12]|13 14 15 16 17 |18 19 20(21 22123 24 26|26 27 [28 29 30 31(32|33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 348 49 SU[bl 62 53 54 95 56 57 58 59 60 6|'52I53 64 65 66
¢ ¢
4 44— A# +- %
{ READ L] |}]12 E _LLEL ICONTIAITINIS RELA{JV@,REC RD NLUMBER
L Ll
Hrtt +- T B ? ;
— - T b T 1
L [deleted 1 deleted l valid 1
49 50 51 52
Diskette Records

Figure 35. Relative Record Read to a Deleted Record

78

Deleted records should not be allowed in a data set accessed
with the relative record number access method. If deleted rec-
ords are found in & data set being accessed with this method,
they are bypassed until the first valid record is found and
processed. In additicn, the vaiue in the register specified

is incremented to reflect the deleted records bypassed.

In Figure 35, a read is issued to relative record number 50.
Record numbers 50 and 51 are deleted. Record 52 is a
valid record. At the completion of the read operation,
record 52 has been processed and the register has been
incremented to 53.

To process the deleted records rather than let the work
station control programming bypass them, an exit must be
defined in columns 48-51 of the .DATASET control state-
ment and instructions must be provided in the ACL pro-
gram to handle the processing of the deleted records. Note
that formatting is not performed if the deleted record exit
is taken.

Key Indexed Access Method

The key indexed access method searches an existing data
set randomly using a search argument up to 16 positions
iong. The search argument can be a control field or a data
element within each record of a data set. The key indexed
access method requires that the records in the data set be
arranged in ascending sequence, according to the search
argument or control field. When using the key indexed
access method, the work station control program auto-
matically builds an index table in storage for the data set
to be accessed. When a search argument is specified by

the ACL program, a search is first made in the index table.
The index table points to the appropriate track or tracks in
the data set where the record should be found. If the
matching record is not present, a record-not-found condition
is posted by setting indicator 225, 226, 227, or 228 {for
data set 1, 2, 3, or 4, respectively) for appropriate action
by the ACL program.

The key indexed access method provides the ability to:
® Randomly read records from an existing data set.

® Randomly read records and update in an existing
data set.

To use the key indexed method, specify K in column 58
and R or U in column 59 of the .DATASET control state-
ment. In addition, the characteristics of the index to be
built by the work station control program and the size and
position of the key within the records of the data set must
be defined. In columns 63-64 specify the size of each
index entry and in column 68-69 the number of tracks
each index entry represents. Columns 73-74 are used to
define the length of the key field within the data records,
and columns 78-80 define the beginning position within
the data record where the key is located. At the time the
data set is opened during ACL program execution, the
index table is built by scanning the data set and extracting
the appropriate keys based upon the above parameters.

Design and Implementation Considerations 79

80

Sector No. 01 02 03 04 26

Track No.
1 IKEY101 KEY 102 KEY103 KEY 104 KEY]O% &(EY126 |
2 [KEY201 KEY202 KEY203 KEY204 KEY20< 2KEY226 [
Data 3 [KEY301 KEY302 KEY303 KEY304 KEY30§ ZKEY326 l
Tracks
4 IKEY401 KEY402 KEY403 KEY404 KEY40 KEY426]
5 [KEY501 KEY502 KEY503 KEY504 KEYQ 2KEY526 J
6 lKEY601 KEY602 KEY603 KEY604 KEY60 KEY626]
)
L [DATAlSER] | | HILH IiLUL MHHTHEHHHHUL TTT Hleﬁl&HIWHUHHMH
Datoser ndex M mn posion
In Core
Index KEMJK@Z@@M@ YI5@LKEYIBIKEY BBIKEYROUKEY 2L F, |
N — St Nt oo R e e, o
Index No. 1 2 3 4 5 6 7 8
Record BOE BOE+ BOE+ BOE+ BOE+ BOE+ EOD-1 Endof
Location 1 Track 2 Tracks 3 Tracks 4 Tracks 5 Tracks Index
Mark
DRTASEN | mum SRR RSN NRUBIRRIRURNRRAARRARNARNARRRNE CRRN T ANK RRN. T

wngth length position

In C
i KEYSAKEY bBKEYSIKEYSIKEY IBREYABREYLPE. . | .

N e S S S L N USSR L S

Index No. 1 2 3 4 5 6 7 8

Record BOE BOE+: BOE+2 BOE+3 BOE+4 BQOE+5 EQOD-1 End of

Location Track Tracks Tracks Tracks Tracks fndex
Mark

To perform the search and read operation using the key
indexed method, defjne a third operand in column 23 of
the READ operation. Column 23 must contain the name
of a general purpose register (A-Z) which contains the
search argument.

The contents of the register are compared to the index to
locate the appropriate track or tracks. A scan is then per-
formed on the appropriate track or tracks to locate the
matching record. If the record is found, the data is trans-
ferred to the input/output buffer assigned; and, if a .FOR-
MAT number is specified, the data is moved to the assigned
registers.

When the index is built by the work station control pro-
gram, the program automatically locates vacant storage
(between the last instruction and the data formats) for the
index table. If there is not enough storage available to build
the entire index, the work station control program builds a
partial index and issues a halt message to the operator indi-
cating that there is not enough space. The operator can re-
set the halt message and continue at a degraded perform-
ance level. The work station control program checks the
sequence of index entries. If the index is found to be out
of sequence, a halt is issued to the operator indicating that
the data set is out of sequence, and the job is terminated.

The following parameters in the .DATASET control state-
ment define where the index is to be loaded in storage:

Columns Function

83-84 The buffer number where the index table is
to start.

88-90 Start address within the start buffer where
the index table is to start.

93-94 The buffer number where the index table
is to end.

98-100 Position (plus one) in the end buffer where

the index is to end.

These parameters build and load the index into specific
buffers automatically. Once in the buffer, the index can
be written onto a data set. The automatic index build is
bypassed if N is entered in column 60 of the DATASET
control statement.

If the data set has no changes or very few changes, the
index can be built, stored on a diskette data set, and, load-
ed at program execution. This can be done by defining the
data set containing the index entries, reading the entries in-
to storage, and moving the entries to buffers defined in
columns 83-84, 88-90, 93-94, and 98-100. This approach
to loading the index table may take less time than building
the index every time the data set is opened.

Index or Label Access Method

Data set labels for a given diskette are always located in
sector 8 through 26 of the index track, track 00. The for-
mat and content of each label are shown in Figure 36. Fig-
ure 37 illustrates how the data set labels are displayed on
the display screen to the work station operator. Labels

can be created and maintained by the work station operator
using the standard data station functions. See the /BM
3741 Data Station Operator’s Guide, GA21-9131. An ACL
program can also be written to create and maintain the data
labels by using the index or label access method. Selection
of the method used for maintaining data set labels should
consider the qualifications of the operator. Labels 1-26
can be accessed.

To gain access to the data set labels via an ACL program,
define the index track as a data set with a .DATASET con-
trol statement. Starting in column 18, define the name as
LABEL. Be sure to specify the record length as 80 in
column 28. Specify the access method in column 58 of the
.DATASET statement as I. No entry in column 59 is re-
quired. Code an A in column 61 to suppress extent check-
ing. Access the individual labels by identifying the relative
record number of the label on track 0. The relative record
number is placed in the general purpose register (A-Z)
coded in the third operand of the READ instruction, col-
umn 23. To update or modify the label, the READ instruc-
tion must be followed by a WRT instruction to the same
file. Note that, when using this access method, you should
avoid creating a data set label with extents that overlap with
an existing data set.

Design and Implementation Considerations 81

Field Name I Position l Purpose

Header 1 1-4 Label identifier; must be HDR1
5 Reserved
Data set name 6-13 Descriptive name for data set
14-22 Reserved
Record length 23-27 Logical record length
28 Reserved
Beginning of extent {(BOE) 29-33 identifies the address of the first sector of the data set. Positions 29

and 30 contain the track number, position 31 must be 0, positions
32 and 33 contain the sector number.

34 Reserved
End of extent (EOE) 35-39 Identifies the address of the last sector reserved for this data set.
40 Reserved
Bypass data set 41 The IBM 3747 Data Converter and the 3741 communication feature

require that this field contain a B or a blank. If a B is not present,

the data set is processed. The coding allows the user to store programs
and data on the same disk. In communications mode on the 3741
Models 2 and 4, a B in column 41 indicates that the data set is to be
bypassed during transmit mode and used during receive mode.

Accessibility 42 This field must contain a blank in order for processing to take place.

Write protect 43 If this field contains a P, the disk can be read only; otherwise this
field must be blank, in which case both reading and writing are
permitted.

Interchange type indicator 44 Must be blank. A blank indicates the data set can be used for data
interchange.

Multivolume indicator 45 A blank in this field indicates a data set contained on one diskette; a C

indicates a data set is continued on another diskette™; an L indicates
the last diskette on which a continued data set resides.

Volume sequence number 46-47 Volume sequence number specifies the sequence of volumes in a
multivolume data set. The sequence must be consecutive, beginning
with 01 (to a maximum of 99), if used.

Creation date 48-53 Can be used to record the date the data set was created. The format
of the creation date is YYMMDD, where YY is the year, MM is the
month, and DD is the day.

54-66 Reserved

Expiration date 67-72 Can be used to contain the date that the data set expires. The format
of the expiration date is YYMMDD, where YY is the year, MM is the
month, and DD is the day.

Verify mark 73 This field must contain a V or a blank. V indicates the data set was
verified.
74 Reserved
End of data (EOD) 75-79 Identifies the address of the next available sector.
80 Reserved

*The work station program loader does not recognize continued data sets {BSC) when loading the ACL program.
The same is true for the translator source data set, and for data sets used by the ACL program. (See Multiple Disk-
ette Data Sets in this chapter.)

82

Figure 36. Data Set Label Format

Beginning of
Extent (BOE)

Record
Length

End of
Extent (EOE)

End of

Header 1 Data (EOD)

Note the positions in which these fields are located.

Figure 37. Data Set Label Fields on the Display Screen

BLOCKING AND DEBLOCKING OF LOGICAL RECORDS

Al read and write operations to diskette data sets are per-
formed on a sector basis. A READ instruction always trans-
fers one sector from the diskette to the work station stor-
age. A write instruction (WRT, WRTE, WRTS) always trans-
fers one sector to the diskette from the work station stor-
age. In some cases, storing more than one logical record in

a 128-byte sector may be advantageous, because of file size
or access performance. The ACL programmer must per-
form the blocking and deblocking of logical records within
his program.

To assist in the blocking and deblocking operations, two
instructions are provided within the application control
language:

Instruction Function
RBLK Read blocked record with offset
WBLK Write blocked record with offset

The RBLK instruction rereads a portion of a blocked record
or sector after it has been transferred by a READ instruc-
tion (without a .FORMAT defined from the diskette} into
the input/output buffer in work station storage. A .FOR-
MAT statement that defines the image of the first logical
record within the sector must be defined.

Follow the READ instruction with a series of RBLK in-
structions to reread each logical record, and the appropriate
instruction to process the data. The format of the RBLK
instruction is:

Columns Specification
8-11 RBLK operation code
13 Data set input/output buffer defined in
.DATASET statement
18 .FORMAT statement number
23 General purpose register (A-Z) containing

logical record offset

Assume that there are three logical records, 40 characters
long, stored in a sector. The first logical record begins in
position 1 and the last record ends in position 120. A
.FORMAT statement is defined for record 1 as shown in
Figure 38. Once the sector is read without a .FORMAT
defined from the diskette data set, the RBLK instruction
issues first with the offset of 1, second with an offset of 41,
and, finally, with an offset of 81 stored in register A.

The offset is atways equal to the first position in the logical
record. This same technique can be used in the blocking
of logical records using the WBLK instruction. See Figure
39.

Using the RBLK and WBLK instructions in conjunction with
the key indexed access method requires special processing
techniques with the ACL program. The key indexed access
method allows you to specify one key field per sector. Mul-
tiple logical records within a sector mean multiple key fields.
To handle multiple records, specify the key field within the
last logical record of the sector in the .DATASET control
statement. When the READ instruction for the key index-
ed data set is issued, the sector transferred to input/output
buffer is the sector containing an equal key or the next high-
er key. Test for the record-not-found condition, indicators
225-229, depending upon the data set number. If the
appropriate indicator is not on, the last logical record in

the sector is equal. {f the indicator is on, reread the other
logical records in sector and compare the key field of each
to the search argument to find the equal record.

Design and Implementation Considerations 83

Figure 38. Sample .FORMAT Control Statement

1

A

RIBILIK 13

t
|

1

L q —
.J»l T r‘mT e 1 — e S
H —
et = e e —
e e e e
. & o T T
S e TGS ;
— — 4 JE—— [e — ——
& ‘\m o | ww S R
s W [od T
B o : &
Z s
s Qe = = Q
] = Qo ul @
b L ¢ B~) S ¥l H .
2 [y T R TS Y o, T
j ST V1 £ YO * 5 Ly b~
o5 Q g Q
zis[] a a ; aQ a
H L R = = H [
Zlsl w W u g ul MY
S ; a4 aq L o N [«
) i ! Il
T I
B3 F LJ I } t
— ﬁ A .
hal ; F * I | i
& HA ; % ﬁ ; T | ;
& L ! _ I !
al | “ L]
] = N ;
2] —H < T T <
]| L v JIlC | a |
S S] e S
B T 2 2 : .MITl
S M f Ishan 5 T 2 T
2 v a3 2+ 2T e 2
= ; bt . I) %]
el ! LT = £
of T o : o™ ; o
A , £ £ _ £ ,
+ - T e
o] : 2 [N a2 nloen A
o T 3 X 5] 8 X
T o ; o o
2 o ! a D,u

RIBILIK [3| |

1| Relah! o

}g

1

1.2 314 5 8

STEP/
LABEL

t—+

14—

Figure 39. Instructions for Reading Blocked Records with Format Offset

84

MULTIPLE DISKETTE DATA SETS

The work station control program opens all data sets
defined with a .DATASET control statement when the
operator loads an ACL program. At the conclusion of a
job, when an EXIT or EXEC instruction is executed, all
open data sets are closed and the normal end of job halt
(100) is posted for the operator. These procedures are
followed by the work station control program, unless the
OPEN and CLOZ instructions are specified within the ACL
program.

The OPEN and CLOZ instructions allow you to dynami-
cally open and close data sets during the execution of the
ACL program. This ability provides flexibility in creating
your work station application. For example, a data set

may be larger than one diskette. If so, mount one volume

of the data set, open, process, and close the volume. In
turn, the second volume can be mounted, opened, processed,
and closed.

The OPEN instruction can specify:
® The data set to be opened.
® A FORMAT statement to be used to read the label.

® A register or a pair of registers containing information
which overrides certain parameters within the .DATA-
SET control statement.

The first operand identifies the data set number to be
opened.

The second operand defines a .FORMAT statement to be
used in reading selected fields within the data set label such
as the BOE, EQOD, or EQE.

The third operand overrides selected parameters within the
.DATASET statement. The parameters included are data
set name, drive number, and access method. (See Chapter
2 for the discussion of OPEN and the related parameters.)

This operand makes it possible to open more than four
data sets during an ACL program execution. A dummy
.DATASET control statement can be defined with asterisks
for the data set name. This specification indicates to the
work station control programming that the data set is to be
opened during program execution. The .DATASET state-
ment can be updated with the actual data set name and its
related attributes.

CURRENT FILE DISK ADDRESS (CFDA)

The CFDA is an internal address consisting of disk sector
and cylinder {track) numbers. The programmer will find it
useful, in some cases, to be able to manipulate this disk
address. The CFDA cannot be changed directly, but its
value can be altered by issuing read or write commands.

When the CFDA is changed by the system, it is altered after
a disk instruction (read, write, for example) is initiated, but
before any physical disk execution is attempted. Figure 40
summarizes how the work station alters the CFDA as a
function of the data set access method and as a function of
the type of disk instruction issued. Note that:

1. The BOE is the sector-cylinder address of the first
record in the data set.

2. The EOD is the sector-cylinder address of the first
available record space after the last record in the data
set. EOD is continually updated as records are added
to the end of a data set (extending).

The value of the CFDA is altered by the system as shown

in Figure 40. The system uses the CFDA, plus the change
shown in Figure 40, prior to attempting the operation shown
in the left column.

Design and Implementation Considerations 85

Data Set Organization Type

(SR} (Sw) (SWE) (SU) (KR,KRN) (KU,KUN))]
Sequential Sequential Sequential Sequential Key Key Index
Read Write Write Update Indexed Indexed Update
Extend Read Update
Value after file open BOE-1 BOE-1 EOD-1 BOE-1 BOE-1 BOE-1 0000
Value change during
write WRT Invalid +1 +1 None Invalid None None
WRT with relative
record number Invalid Invalid Invalid +1 Invalid Invalid +1
Value change during
write WRTE Invalid Invalid +1 +1 Invalid Invalid Invalid
Value change during
read-offset not
specified +1 Invalid Invalid +1 +1 +1 +1
Value change
during read-offset
specified Value in Invalid Invalid Value in Value in Value in Value in
register register register register register
Value change during
read minus {-) -1 Invalid Invalid -1 -1 -1 -1
Value change during Value in Invalid Invalid Value in CFDA CDFA Value in
read with sequential register register placed at placed at register
key specified-match matched matched
found record record
address address
Same as above but Value in Invalid Invalid Value in CFDA CFDA Value in
match not found register register placed at placed at register
next next
higher higher
record record
address address

Figure 40. Alterations to Current File Disk Address

86

PROGRAMMING HINTS

The following section contains a collection of hints for
consideration when designing your ACL program.

Control Program

A control or master program can be created to control pro-
gram execution sequence and selection and to minimize the
operator interface in program or job selection. For example,
you can specify that the invoicing program automatically
foliow the order entry job. Also, the execution of a specific
job may be inhibited until ail prerequisite jobs have been
completed. The major benefit of this approach, however,

is easier usage by the operator. Program or job selection
can then be done interactively to minimize operator con-
fusion and resulting errors. See Execute Program Chain
(EXEC) in Chapter 2 for a discussion of implementing this
procedure.

.FIELD Control Statement

When .FIELD control statements are used, consider the
following:

1. To share a buffer by using .FIELD statements in the
low-numbered positions (positions 1-80) and data for
constants in the high-numbered positions (positions
81-128), the .BUFFER control statement must pre-
cede the .FIELD statement.

2. The use of chained .FIELD statements is not recom-
mended, because it eliminates the ability to identify
the current message. This is especially true when us-
ing the special keyboard close indicator. In this case,
when the special keyboard close option is specified
(T in column 36 of the .FIEL.D control statement)
and chaining is also specified, it is impossible to
identify the current message if the special keyboard
close indicator is on when the ENTR instruction is
completed.

Keyboard Indicator

1. Indicator 197 is used to indicate the status of the key-
board. It is only significant when overlapped ENTR
instructions are used. When it is on, indicator 197
indicates that the keyboard is open for data entry.
This means that the program has opened the keyboard
with an overlapped ENTR instruction {an X in column
21) and the operator has not yet exited the field.

2. The keyboard cannot be opened by setting on indi-
cator 197 (with a SON 197 instruction}. Setting on
indicator 197 results in no operation. Most non-
data keys and the three switches (AUTO REC ADV,
PGM NUM SHIFT, AUTO DUP/SKIP) are active
(they set their respective indicators} even though
the keyboard is not open.

3. Setting off indicator 197 does not close the keyboard.

Design and Implementation Considerations 87

PROGRAMMING RESTRICTIONS

The following are general restrictions to consider when
designing the ACL program.

Tables

1. No more than 16 tables can start in one buffer.

2. Registers I, R, and Z cannot be specified as the
table index.

3. Table entries are limited to 16 positions.

Program Origin Buffer

The program origin buffer (which identifies where instruc-
tions are to begin) must be specified in the .NAME control
statement as an odd-numbered buffer.

Sequence of ACL Source Programs

1. The .NAME control statement must be the first state-
ment in the source data set.

2. The .DATASET, .PRINTER, .SELF-CHECK, and
.REGISTER control statements may follow the
.NAME statement in any sequence.

3. The remaining control statements, .FORMAT,
.BUFFER, and .FIELD, can follow in any sequence,

but must precede instructions.

4, The .END control statement must be the last state-
ment in the source data set.

88

Display Unit

Lines 1, 5, and 6 are referenced by reading or writing to
buffer 1. Lines 2, 3, and 4 are referenced through buffer 2.

1. The first 40 positions of buffer 1 contain line 1 of
the display, which is used by the work station con-
trol programming. Positions 1-8 are used to post
error messages and halts. Positions 9-36 are used by
the trace functions {Chapter 4} during program exe-
cution. Positions 37-40 are used to post the ACL
program name.

2. . The programmer should leave positions 49 and 50
of buffer 1 (line 5, positions 9 and 10) blank for
aesthetic purposes; however, position 49 can be
used if needed. Position 50 is blanked by the work
station each time an ENTR is processed.

3. Positions 51-120 of buffer 1 contain prompting mes-
sages and fill characters that display on lines 5 and 6.

4, Positions 121-128 of either buffer 1 or 2 are not dis-
played or maintained by the work station control
programming. However, when the above positions
are specified in columns 33-35 of the .FIELD state-
ment, the data is moved into positions 121-128 of
buffer 2 and positions 41-48 of buffer 1. Positions
41-48 of buffer 1 are not cleared when buffer 2 is
cleared.

5. Positions 1-120 of buffer 2 are displayed on lines 2,
3,and 4.

6. To display all 128 positions of a diskette record, the
first 120 positions can be displayed on lines 2, 3, and
4, and positions 121-128 can be displayed in positions
41-48 of buffer 1, or on line 5 of the display unit.

7. The maximum allowable number of positions for a
prompting message and related fill characters is 68.

8. Position 8 of line 1 must be blank the first time card
1/0 (129 or 5496) is called. If position 8 is not blank,
the error line {indicator 161} is turned on. This con-
dition only applies to the first call to card 1/O (sub-
sequent calls do not affect the error line).

9. If an overflow buffer is specified in columns 18-19

of the .FIELD control statement, and if a message
overflows to that buffer, then the first message in
the overflow buffer is referenced as message number
2.

Printer Operations

1. A maximum form length of 127 lines can be specified
in the .PRINTER control statement.

2. When a 132-position print line is specified, two con-
secutively numbered buffers are required, and the
first buffer must be an odd-numbered buffer,

3. Positions 129-132 are not maintained by the system.
If 132 print positions are specified, ensure that the
first four positions of the buffer following the print
buffer are cleared, as required.

4. Take care in attempting to print records containing
certain characters. In some cases, nongraphics print

as graphic characters.

b. The 3713 Printer allows for suppression of spacing

during a print operation. Time must be allowed, how-

ever, for the print head to return to the left margin.
This is done automatically by the ACL control
program.

6. PRINTER control statements are required if trace or
dump to printer is to be used. The .PRINTER state-
ment should be removed or verification must be made
to ensure that the type printer attached and the
PRINTER statement are in agreement during pro-
gram execution. If the PRINTER statement is not
correct, errors can result.

Arithmetic Operations

The basic format of arithmetic instructions is as follows:

R: = R, operator R;

1. R; must always be a general purpose register. R, can
be a register or a single digit constant {0-9) exceptin
the divide operation where it can only be a register.

Rj3 can be a register or a single digit constant.

2. The move immediate instruction shown below is
limited to a constant of plus or minus 65535.

R = +65535
R equals general purpose registers A through Z.

3. In the multiply and divide instructions, the R, and
Rj registers cannot be the result register (Ry).

Branching Operations

1. The Indexed GOTO provides a step number from
0 to 767, or 0-999.

2. The following instructions are limited to branching
within the same 256-instruction block.

IF
IF
IF
IFD
IFD
IFD

>>> > > >
AV I AV I
O mmm @ E

Disk Access Methods

1. The maximum number of data sets that can be online
at one time during program execution is four.

2. In the key indexed method, the maximum size for a
search argument or key is 16 positions. The key in-
dexed access method provides for read and update
operations.

Internal Data Movement

Take care when processing data directly to and from over-
lapped input and output buffers with the following instruc-
tions:

ICBF

TBWT

PUTB

STOR

ENTR (keyboard overlap}

WRT and WRTE (diskette operations which are always
overlapped)

PRNT (printer overlap)

To ensure the integrity of these 1/0 buffers, issue a WAIT
instruction before or after the 1/0 instruction or test the
1/0 busy indicator(s) before issuing one of the above in-
structions.

Restricted Areas
Modification of storage used for ACL control can resulit in

invalid execution of programs if IBM changes the location
or definition of this area.

Design and Implementation Considerations 89

PROGRAM PERFORMANCE Overlapped |/O-Printer

This section presents various techniques and procedures to Under normal operation of the PRNT instruction, the
improve the performance of the ACL program. Because the machine waits until the printer has completed its action
work station is an operator-oriented device, preserve this (print/return, skip is always overlapped) before proceeding
orientation by assuring that the data processing performed to the next instruction. This prevents the inadvertent modi-
by the machine is not apparent to the operator. In other fication of the printer buffer by subsequent instructions
words, the operator should not have to wait for the machine. before the printer uses the buffer. To improve performance,
For this reason, the following suggestions are made to im- enter an X in column 28 of the PRNT instruction to cause
prove the performance of the program. the machine to begin execution of the next instruction as

soon as the print cycle has been initiated. However, it then
becomes your responsibility to preserve the contents of the

General Considerations printer buffer and ensure that the printer has completed
its cycle before modifying that buffer. Use the IF PRT
ACL application programs can perform some processing BSY to determine if the printer is busy, or use the WAIT
during data entry; however, processing should be kept at instruction. Figure 41 shows the coding for overlapped
a level that wili not impact the data entry operators printing. If the printer buffer is not protected, intermittent
efficiency. Delaying and overlapping processing steps to print problems can occur, and not be detected during trace
utilize the time it takes an operator to turn pages or skip operations. The overlapped print instruction can signifi-
to different areas on a data entry form is called effective cantly improve performance, but should be used only after
overlapping. Combining effective overlapping with the it is thoroughly understood. Note that overlapped printing
overlapping capabilities of instructions ENTR, PRNT, does not occur during the trace operations (Chapter 4},
WRT, and WRTE (actual overlapping) will provide the
most efficient programming performance. Processing may In Figure 41, the X in column 28 of the PRNT instruction
be delayed until a batch editing run is made after data indicates that the following READ instruction can be exe-
entry is complete. This completely minimizes operator cuted while the print cycle is being completed. The IF
delay time. PRT BSY instruction indicates that the program should
loop on this instruction until the printer has completed its
Another method of improving program performance is cycle. The contents of buffer 4 (containing data set 1) are
to reinitialize a diskette to an alternate sequence. A then moved into buffer 5 (printer output buffer).

diskette initialized to sequence 01 may require a longer
program@n time than a diskette initialized to alternate
sequence 02, 03, ... 13. Refer to Disk Record Sequences
in the section Disk Initialization in the IBM 3741 Data
Station Reference Manual, GA21-9183.

IIDWMSiEm R S L

mnqm e Lot i

87 84 €9 90 91 92 93 94 95 96 97 98 99 g
LT

Index index Index
start end end
position butfer position

12 3 4 4 8 7>‘nv_»1|11 1314 Th 16 17 TR 19 20 2V 271742526272829303\323334353&37183(;40414 a3 44 47 A
.PHIMTJE m::ui Lllhlkdl 5T IHM |
erfl Provtre § o

Characters Pum Hry Secondary [
et ""6 per Buffer Buffer "
page line
1 N f T4t f E o e (S AL S B Tyttt !
PRO, | . | PRNT; S] | XL EERERE L ‘ L
.) : : | ! [. |
L READL Ll } S IRARORERRE=ELN 1
“fIED,,U = \/ S SN T‘fl'l‘w i
P JLEL L PRIT S Y | |LP HEN RN
1 [! T [T
i J V IE _5 L‘ D T ;‘) I i TTT \ ‘44T
P
L 1] B S O W O O Ll] I L o L
12 3[4 s 1 PIPE @10 31 [12]13 14 15 18 17 | 18 19 20|21 22123 24 2526 27|28 29 30 31{3233 34 W‘; 3(3/ 38 3% 40 41 37 87 44 4% 46 47 a8 40 R0 ur S92 51 55 B E 203 74 7% 76 1) 18 79 80

Figure 41. Sample Coding for Qverlapped Printing

90

Overlapped 1/0-Keyboard Disk/Data Set Procedures

Like the PRNT instruction, the normal operation of the You can enter an A in column 61 of the .DATASET control
ENTR instruction is nonoverlapped. |If processing can be statement to suppress the overlap extent checking which is
done before the data from the keyboard is available, use part of the process of opening a data set. This decreases the
the overlapped ENTR instruction. By entering X in column amount of time required to open a data set. By taking this
23 of the ENTR instruction, you allow the machine to pro- option, however, you lose some of the protection provided
ceed to the next sequential instruction as soon as the prompt- by the system to ensure that multiple data set labels do not
ing message is displayed to the operator. indicator 197 is address the same disk space {that is, the extents do not

set on by the ENTR instruction and set off as soon as the overlap).

last ENTR field is exited. Indicator 197 can be tested to
determine if the required data is available (Figure 42).

Program Load of Index Table for Key Indexed Data Set
In Figure 42, the X in column 23 of the ENTR instruction

indicates that subsequent instructions can be executed as By using the options specified for program load of the in-
soon as the prompting message (ENTER QUANTITY) is dex table in the . DATASET control statement, the time
display to the operator. The {FI 197 instruction indicates required to open a key indexed data set is significantly re-
that the program should loop on this instruction until the duced. See Data Set Access Methods in Chapter 3, for a dis-
operator has entered required data and exited the field cussion of implementing this option.

(indicator 197 off). The IFI 200 instruction indicates that
the program should branch to instruction SP {not shown)
if the operator exited the field via a special keyboard close
key (FIELD, BKSP, DUP, FIELD ADV, REC BKSP, REC
ADV, or SEL PGM). The special keyboard close option is
indicated by the T in column 36 of the .FIELD statement.

P2 034 5 6 2 8 aan

995969798 90 SHE33

TR A

65866 /6859707172 Butter space (Numbers 5.72

46 47 4B 49 50 51 52 45!5“(’,05'

T T TR T8 TR IT@’W!ENT R B 111111

Butte: Overtlow i P M 1631274140516 07 1818 20 2 22 23 24 75 26 17 28 24 30 3
butter

for programmer use onl
Disislay bine & oroy;)

IEEERRRANRAR AR EREN . T n %
o ENTIR XL [e - 1

LA = R L 20| , | -

L | el st Lo LR L] IREEEEEE " {
(el | o | sl L | on | dsel L] ¥ §
1P A= 4P =By l I s : - ?

ot TIOR| 15 D P, | Lib| | I S I bbb
At T e s e s 6 0 v 16 6 B 2 24 2% 27 zefjl T2]33 34 3 36 37 38 39 40 4,’4:%}44’ 4y 46 47 a5 49 50 51 52 53f f 6 o8 68 70 1 '74%1 e s me 7 10 Btg

Figure 42. Sample Coding for Overlapped ENTR Instruction

Design and Implementation Considerations 91

Record Access

Review the ACL access methods to ensure that the method
selected provides the greatest possible advantage for a
specific application. The data sets used in that application
should be positioned to minimize disk seek times. To do
this, place only one active data set on each disk drive. If
this is not practical, ensure that the most active data sets
are on separate disk drives. Analyze the expected usage of
the data sets to determine if special placement on the disk-
ette provides any benefits. For example, if the majority of
activity on a given data set is expected in the first portion
of that data set, place it as the last data set on a diskette.

It should be placed last in terms of extents, not necessarily
in terms of data set labels. This reduces the average time
required to access a different data set on the same diskette.

1t is often possible to improve the performance of a program
by controlling the overlap of machine and operator-machine
functions. For example, there is a normal delay in operator
data entry which occurs as operator attention shifts from
one line to the next on a source document. This delay in-
creases as the operator finishes a document and starts the
next. These intervals can be used to perform /0 functions
that might otherwise affect operator throughput. Certain
1/0 functions can also be overlapped (such as ENTR, PRNT,

and disk WRT) to minimize the impact of disk record access-

ing. For example, allow the operator to begin keying the
first field of the next document before writing the first
record to the diskette. This makes the record access time
transparent to the operator and improves program perform-
ance.

Execution Timing
The execution timings for certain machine operations in
the following list are for use in estimating program execu-

tion time, and to aid in selection of alternatives for resolving
specific problems. Since many operation times depend on

92

the data being manipulated, it is not practical to attempt a
calculation of exact execution times. However, ranges are
provided to allow reasonable estimates.

Operation Execution Time {ms)

Shift Right 4.4

Shift Right and Round 6.6

Shift Left 4.4

Shift Left with Sign 6.6

Add 12-22

Subtract 12-22

Multiply 45-148

Divide 10-130

Equate (A = +XXX) 11

Replace (A=B) 4.8

LOAD 3.6-4.8

STOR 2.4-4.8

GOTO 1.8

GOTO (indexed) 2.4

IF (Logicals) 2.4-6.0

NOP 2.5

ICBF 1.7

EXCH 38.0

MOVE 26.0

SON 2.2 (1 indicator)
2.8 (2 indicators)
3.6 (3 indicators)

SOFF 2.1 (1 indicator)
2.7 (2 indicators)
3.6 (3 indicators)

RGO 2.0

SCE — Register 1.6

— Buffer 1.9
SCN — Register 1.6
— Buffer 1.9

Table Operations
Disk Operations

See Figures 43-46
See Figures 43-46

The following execution timings have assumed operations
with no overlapped /0 or formatting. T represents time
in milliseconds.

Operation

MVER
MOFF

L =

Operation

GETB
PUTB

Operation

REFM

WRFM

1l

thou

TMO MIO WY

3
lad
i

[

mod 2 =

Operation

RBLK
WBLK

Range

TMVER =2.6+0.14L. 2.74-4.84
TMOFF =2.5+0.2L 2.7-5.7

The value in the length field of the source instruction {(column 28).

TGETB = 4.6 + 0.09(N-1) + 0.09C + 0.096L
TPUTB = 3.6 + 0.09(N-1} + 0.09C + 0.16L

The value for table number (column 18).

The number of characters bypassed, including tabie separator X'FF’, until the specified table is
reached. The value is O for table 1 (N=1).

The value in the length field of the source instruction (column 28).

TREFM =9.7 + 0.336H + 1.83int <

o|T

) +0.064F + 2.43 + 0.9(D+1) +0.93E
mod 2
S/ A
TWRFM =106+ < B (+0.336H + 1.83.

H
int <.§> + 0.064F + 1.78D + 0.9(D+1)mod 2 +0.144E
I C

16.4 if source column 23 = column 18 is not blank.

0.0 if column 23 = column 18.

5.8 if column 23 is blank.

The number of formats defined before the specified format.

The total number of fieids defined in all of the formats defined prior to the specified format.
The number of fields defined within the specified format.

The total number of character positions defined within the specified format.

The int means take the integer value of. The term in which int appears assigns an additional 1.83 milliseconds

for every eight formats defined before the specified format. Take the next lowest integer value.
The mod 2 means modulus 2 which adds 0.9 million when D is even.

TRBLK = TREFM + .7 milliseconds
TWBLK = TWRFM

The timings for REFM with data directed formatting (D
in column 18) and WRFM with editing will be slightly
higher than the timings for REFM and WRFM which have
been defined.

Design and implementation Considerations

93

Refer to the preceding list and note the following items.

1. The variation in the execution times of the SON and
SOFF instructions is caused by the varying number
of indicators being set on or off.

2. The execution time of the WRFM instruction de-
pends on the number of fields in the referenced for-
mat, the length of those fields, and whether or not a
buffer is specified {Figure 43).

3. The execution time of the REFM instruction depends
on the number of fields in the referenced format, and
the length of those fields (Figure 44).

4. The variation in execution time of the IF {(logicals)
is caused by left-to-right scan of the specified registers.
The instruction is exited as soon as the required mis-
match or unequal entry is found.

5. The execution times of the table operations depend
on the physical characteristics of the table, and the
index within the table of the element being accessed.

TBFX/TBFN

The following characteristics of TBFX and TBFN instruc-
tions have significant impact on the execution time of these
instructions:

® The location of the specified element in the table. Since
the table is searched from the low-ordered end to the
high-ordered end (first of first buffer through last of last
buffer}, it takes less time to find an element of a table
if that eiement is toward the front end of the table.

® The location within each element of the significant char-
acters. The search argument is compared against the
individual elements of a table on a character-by-character
basis from the left. The first mismatch within an element
causes the machine to start comparison on the next ele-
'ment in the table.

The effect of this can be seen in Figure 45, where the only
difference between the execution time for table operations
on tables with different element lengths (that is, number of
characters per element) is in the potential location of the
significant character. (For example, if an argument of
000123 is compared with an element of 002345, the third
character would be the first significant character).

94

TBRD/TBWT

The execution time of these instructions is a function of the
length of elements within the table and the relative location
(index) of the element being accessed. Sample execution
times are shown in Figure 46.

Diskette Operations

The execution times for the disk operations {(READ, WRT,
WRTS, WRTE} are a function of the access method of the
data set, and the location of the access mechanism of the
affected disk drive when the instruction is issued. The most
significant factor is the distance the read head (access mech-
anism) must travel to the record being accessed. Perform-
ance is significantly improved if this distance is minimized
by sequential accessing of data sets, and by separating active
data sets onto separate drives. Sample timings for disk read
operations are:
Read with relative .06-4.8 seconds/record
record number
Read with key
Sequential

.5-6.0 seconds™/record
5 seconds/track

Assumes that one index entry is assigned for each track.

Number of Size of Use Execution
Fields Fields Buffer? Time (ms)

0 - Yes 26.1

1 4 Yes 27.6

1 16 Yes 28.8

2 16 Yes 31.8

8 8 Yes 2.2

8 8 No 42,0

Figure 43. Execution Time for WRFM Instruction

Number of Size of Execution

Fields Fields Time {ms)}
1 4 10.8
8 4 30.6
8 8 384
32 4 99.0
64 2 179.4
128 1 364.8

Figure 44. Execution Time for REFM Instruction

- of first significant character
——t ———— —

L] L] Ll T T A
10 20 30 40 50 60 70 80 90 100 110 120

Time (Mitliseconds)

Figure 45, Execution Time Chart for TBFX/TBFN Instructions

Figure 45 can be used for estimating execution times of
TBFX and TBFN instructions. The chart shows the times
for the TBF X instruction and should be increased by 0.5
milliseconds for TBFN. The only other difference between
the TBFX and TBFN is in the situation where the search
argument is not in the table. In that case, the TBFX execu-

tion time is determined by the size of the table, and the
TBFN is determined by the location, within the table, of
the element which is higher in sequence than the search
argument {if this element exists).

This ¢chart is the result of timings of table operations on
specific tables. To use it for estimating the execution time
for a TBFX instruction for your table, first estimate the
average index which the TBFX instruction will return, This
gives the range for your particular table. For example, if
your table has b0 entries uniformiy distributed, then the
average value of the index is 2b. From the chart, this gives
a range of 22 to 98 milliseconds for finding an entry in the
table if the elements are 16 characters each, or a range of
22 to 37.5 milliseconds, if the elements of the table are
four characters long.

Where — — — — indicates location

The range for 16-character elements if the search argument
is not found is 37 to 180 milliseconds.

For a more accurate estimate, it is necessary to determine
the average location of the first mismatch (first significant
character) during a compare. For example, a table made up
of the numbers from 1101 to 1150 (four character elements)
would have the mismatch on the third comparison, with 3.2
as the average. You can use this information to estimate the
average execution time for a TBFX instruction for this table
to be 35 milliseconds.

Index |Instruction Character/ Execution
Number|Type Element Time (ms)
1 TBWT 1 3.6
1 TBWT 16 6.3
25 |TBWT 1 8.4
25 |TBWT 16 10.8
50 |TBWT 1 13.2
50 |TBWT 16 15.6
1 TBRD 1 4.8
1 TBRD 16 6.3
256 |TBRD 1 9.3
25 |TBRD 16 10.8
50 |TBRD 1 14.1
50 |TBRD 16 15.6

Figure 46. Execution Time for TBWT/TBRD Instructions

The performance numbers in this section should only be
used for estimating program execution times. Because of

all the variables involved, a 10% variation from the projec-
ted timings could be the case. The timings presented assume
no overlapped /0 is in process, and that the machine check
indicator (160) is not on. Either of these conditions can
cause longer execution times for some instructions, but the
machine check indicator increases the execution of all in-
structions by 4%.

Design and !mplementation Considerations 95

Chapter 4. 3741 Operation

The 3741 Models 3 and 4 Programmable Work Station has
the same data station functions as the 3741 Models 1 and 2
Data Station unless the work station is under control of an
ACL program. The 3741 Model 3 has the same standard
functions and available features as the 3741 Model 1. The
3741 Model 4 has the same standard functions and available
features as the 3741 Model 2. For a detailed description of
the 3741 standard mode of operation, see the /IBM 3741
Data Station Operator’s Guide, GA21-9131. For a detailed
description of the 3741 standard functions and available
features, see the IBM 3741 Data Station Reference Manual,
GA21-9183.

ACL programs for the work station can only be loaded from
disk. The translator feature is available to translate ACL
source programs into object programs. To gain access to
the translator feature or the ACL program execution mode,
the work station must first be in index (X) mode. It is con-
venient for the operator to key a function select deiete
seguence in the index (X} mode to blank the screen before
keying the setup parameters.

The following sections contain details on translation, execu-
tion, and program debugging.

INITIATING TRANSLATION WITH THE LABEL
PROCESSOR

The label processor disk (included with work stations that
have the translator feature) must be used with ACL pro-
grams that have labels preceding source statements. The
label processor associates the labels with step numbers for
internal processing. After the labels have been associated
with step numbers, the label processor sends the ACL pro-
gram into translation. Labe! processor operation occurs in
three passes made possible by an overlay structure. The pro-
gram code for the base pass and pass 1 is loaded at program
load time. After pass 1 is complete, the object code for

pass 2 is transferred from disk to overiay the code used for
pass 1. The same is true for pass 3 code, which is transferred
from disk to overlay pass 2 code after pass 2 is complete.

Base Pass
The base pass of the label processor controls the execution

of the three passes of label processor operation. The base
pass also loads the object code for passes 2 and 3.

96

Pass 1

The first pass of label processor operation reads the ACL
label processor input file and generates a cross-reference
work file for later use in sorting and printing the cross-
reference listing. Pass 1 of the label processor then checks
the four character executable instruction labels, and tables
all defined labels for subsequent association of labels with
step numbers.

Pass 2

The second pass of the label processor reads the ACL label
processor input file and writes the transiator input file.
During the one-for-one transfer of records, any ORG func-
tions are written as deleted records. Label processor pass
2 then prints the ACL label processor input file (when the
AUTO DUP/SKIP switch is on}. This pass of operation
then replaces labels with corresponding step numbers and
prints all invalid, unresolved, or duplicate label error messages.

Pass 3

The third pass of the label processor sorts the defined labels,
links labels with corresponding references, prints the cross-
reference listing, and links to the translator.

Label Processor Input Data Set

The first record of the ACL label processor input data set
must be a .NAME control statement, and cannot be a de-
leted record. The ACL label processor input data set
{source) name cannot be blank. Columns 63-70 of the
NAME statement contain the label processor output data
set name (translator input data set). Default is TRANSLAT.
Column 71 of the NAME statement contains the drive num-
ber for the label processor output data set. Default is drive
2. Columns 73-80 of the .NAME statement contain the
translator output data set name (object data set). Column
81 contains the drive number for this data set. Defaultis
drive 1. If columns 73-80 are blank, the ACL translator is
not selected upon completion of the label processor.

The label processor disk contains the object program (four
tracks), a temporary work data set (four tracks) called
TEMPDATA, and output data sets to be defined by the pro-
grammer (65 tracks). The output data sets are also input

for the translator. Note that two data set names are reserved
and cannot be used by the programmer. These are the
TEMPDATA (temporary work data set) and SYMBOLIC
{which contains the object code for passes 2 and 3). Any
attempt to use these data set names may result in an error,
and label processor results are invalid.

The label processor assigns files in the following manner:

® File 1 contains the ACL label processor input data set,
which is required through pass 2.

® File 2 contains the TEMPDATA temporary work file,
which is required for passes 1 and 3. This file must be
allocated four tracks.

® File 3 contains the label processor output data set, which
is required for passes 2 and 3. This data set is defined in
columns 63-70 of the .NAME control statement.

® File 4 contains the SYMBOLIC data set, which is required
for all three passes. This data set contains the object
code for passes 2 and 3. The ACL label processor config-
urator program is used to merge the object code for the
three passes into the SYMBOLIC data set. All printed
headings and error messages are included immediately
after the object code.

A recommended data set allocation is shown below.

® Drive 1 contains the ACL label processor input data set
and the translator output data set. These can be on the
same disk or on separate disks. The ACL label processor
input data set is required through pass 2.

® Drive 2 contains the ACL label processor object code
(four tracks), the temporary work data set (TEMPDATA
— four tracks), and output data sets (65 tracks).

After an ACL program with labeled statements has been
through the label processor, it may be changed without go-
ing through the label processor again. This is done by chang-
ing the contents in the data sets used for the label processor
output. After the label processor output data set has been
changed, translation is initiated the same way as translation
without using the label processor.

The following steps are required when using the label
processor disk:

1. While the label processor is in operation, the printed
output can be controlled by setting the three
switches to the following positions:

AUTO DUP/SKIP Switch

ON — prints source statements and cross-
reference (error messages are always
printed). Printing only occurs when this

switch is on.

OFF — suppresses printing of source statements
and cross-reference.

This switch may be set on and off during printing.

PROG NUM SHIFT Switch

ON — suppresses generation of cross-reference
work file.
OFF — generates cross-reference work file.

This switch must be set at the start of the program.

REC ADV Switch

This switch should be off. It has no effect on the
label processor, but controls the translator listing.

2. Load the disk with the ACL program into disk drive
1. The object program may or may not be on the same
disk. |f the object program is not on the same disk,
an error code (511) is displayed when the label proces-
sor is finished. The operator should then insert the
disk with the object program data set and press RE-
SET to continue. The label processor runs faster if
the label processor input and output data sets are on
different drives.

3. Load label processor disk into disk drive 2.

4, Blank display screen by pressing FUNCT SEL lower
and DELETE REC.

3741 Operation 97

5. Key in the following parameters.

Columns Entry
1-8 SYMBOLIC
9 2

11-14 LABL
6. Press FUNCT SEL upper and E.

7. Display message tells the operator to key in the data,
then press RIGHT ADJ.

8. Display message tells the operator to key in the
source data set name, then press RIGHT ADJ.

The following information will be displayed as the label
processor goes through its three passes.

PASS 1:
® Line 1 contains ACL LABEL TRANSLATOR.

® Lines 2, 3, and 4 contain the first 120 characters of the
records as they are read from the input data set.

® Line 5 contains REQUEST INPUT DATA SET AND
DISK DRIVE NUMBER.

® The bottom line contains PASS-1.

PASS 2:

® Lines 2, 3, and 4 contain the first 120 characters of the
records as they are read from the input data set.

® The bottom line contains PASS-2.

PASS 3:
® Lines 2, 3, and 4 contain the cross-reference listing as it
is being printed, followed by any labels which are in

error.

® The bottom line contains PASS-3.

98

Label Processor Output

Label processor printer output includes:

1. Source listing of statements and instructions.
2. Cross reference.

3. Error messages {duplicate labels, undefined and/or
invalid labels, and omitted labels).

Source Listing

The first page of the source listing contains the heading
(ACL SYMBOLIC LABEL PROCESSOR 3741 MODELS

3 AND 4), the file name, the date, and the page number.
Comment statements and control statements are printed
beginning in position 19, with the last 18 positions of the
input record truncated. The disk address of the source in-
put record is printed in positions 1-5. The record sequence
number within the input data set is printed in positions 8-
11. Definition records for FORMAT and .BUFFER are
printed intact beginning in position 1. Executable instruc-
tions are printed beginning in position 19, with the last 18
positions of the input record truncated. The disk address
of the source input record is printed in positions 1-5. The
record sequence number in the source data set is printed in
positions 8-11. The generated instruction number is printed
in positions 14-16. Figure 47 shows a sample source listing
printed for Sample Program 2-Mailing List Inquiry in Appen-
dix D.

Cross Reference

At the start of the cross-reference listing, the heading
CROSS-REFERENCE is printed. The symbolic label is
printed in positions 1-4. The record sequence number {where
the label is defined) is printed in positions 7-10, followed

by the record sequence numbers of where the label is used.

If the number of references exceeds a printed line, another
line is started beginning under the referenced column. Con-
trol statements with label fields are also referenced. Figure
48 shows a sample cross reference printed for the Sample
Program 2-Mailing List Inquiry in Appendix D.

A BYMRILIE |
130020 0001
13003 0007
13004 0003
13005 0004
13006 0005

HHHHHHHHHHT ET1 1010
13008 0007

0 U A O 0 I Y N O S A

13010 0009
13011 0010
13012 0011
13013 00L2
13014 0013
13015 0014
13016 001%
13017 0016
13018 0017
13019 0018 00¢
13020 0019 001
13021 0020 00F
13022 0021 Q063
13023 0022 004
13004 a0=
13025 00¢
13026 007
14001

14002 GOf
14003 02
14004 0029 009
1400% 0030 0190
14006 0031 011
14007 0032 012
14008 0033 013
14009 0034 014
14010 003%
14011 0034 01%
14012 0037 016
14013 0038
14014 0039 017
1401% 0040 018
14016 0041 01¢%
140317 0042
14018 0043 020
14019 0044 021
14020 0045 022
14021 0044
14022 0047 023
14023 0048 024
14024

14025 0%
14026

L2222 RS SRR LSS S

Figure 47. Source Listing for Sample Program 2

ARCL TRAaNSL AT falopnain g [RISTAN it (TN [ATN A AR FAGE-01-
-~ NAME KL A T MEIRCT
¥ w
AT ESET 1 Ml 151 L 1 - Ll L (14
90
LFORMAT | fetomt @it WRTTE DICRFTTE FORMAT
(T T T T O T A Y 0 0 0 0 R ey B oy oy R N A N A R N N N N A A SR Y RY RPN AER RS RE TR AR BRI
SFORMAT ! AT AND WRTTE DISFLAY FORMAT
PUAE U R e D R I e A R AR S Re TN AT KRR SR AURRET I SU RN FofEE
* KW
SETELT | 4 win kTR bR TOME R NI
ETERDE 2 3 il) OALT BTREL 1%
LELD 3 A Ao | SRR ARl
SETELDE 4 3 a1 1 ORZT LDURNTRY OF S TATE*
STELE 3 LN ls AT ZLE L0y
P Y 0 K 3 noz | O34T TELEFHONE»
L T B ant 6] CUSTOMER &0 FOUNDE Rk ERE Y *
* N *
HETGN WEEM 2 CLEak LINES 2932 AND A OF DESPLAY
Y + A SET BUFIER NUMBER = 3
Z + | SET MESHAGE NUMBER = 1
ENTR 4 ENTER CBSTOMER NUMEBEER
AR AT B O EMIC 0F ANREDC GO END QR JOR
READ | 1 il SEaBCH BATASET FOR CUSTOMER RECORD
R 22% 08 ON ERE TP w0 BECORDE FOLNG ERROR MESSAnE
WHEM 2 DLSFLAY RECORD
* ¥ N
AL e 2 + | AT ONE T MESSAGE MURMRER
KN
NEXT ENTR Y £ FHTER STREETy CITYy STATEY ZIF» AND TELEFHONE
VRTR 198 1H U BLR FIELD BACKSHFACE
IFIR 199 IS 0N SRIF RECORIN ADVANLE
EIR 185 I8 ON NEXT SELECT FROGRAM? RESTORE SAME MESSAGE
IFIR 186 IS on NEXT LU RESTORE SAME MESSAGE
IFIR 190 14 0N NEXT RECORD RACKSFACE? RESVTURE SAME MESSAGE
*H %
(NS U4 & GRIELAST MESS5A0E? UFDATE DISKETTE RECDRD
GOTO Al
>R
BACK Z = Z 1
1K 7 1 BEGN FTRES T MESSAGE?
GO0 NEXT
* XK
GRIF REFM 2 J READ DISFLAY FOR UFDATE RECORD
WRT ! 1 WRITE UFDAYED D3SK KEC
GATO BEGN
3 %
ERE ENTR 3 7 INVALTD CUST MESSAGE
GOYO BEGN
* ¥
ENT EXTY
«END
NUMEBER OF ERRORS
3741 Operation 99

CROSS - Rk

ADT 0027 0037

BACK 0039 0030

BEGN 0018 0040 Q244 0048

END QOn0 Q022

ERR 0047 0024

NEXT 0029 0032 0033 0034 0041
SKIF Q043% 0031 00364

Figure 48. Cross Reference Printing for Sample Program 2

Label Processor Error Messages

® An error message is printed prior to any source records if
more than 159 (4K) or 319 (8K) labels are defined, or
more than 1584 references are made to these labels.

e An error listing of the invalid, unresolved, or duplicate
labels is printed. The error is listed before the statement
in error, or at the beginning of the error listing.

® An error message is displayed if the first record of the
ACL source program is not a .NAME control statement.
The operator can press the RESET key to exit the label
processor.

During pass 1 of the label processor, the printed error listing
contains the record in error, followed by the error message
(five asterisks preceding the relative record number of the
record in error), and one of the following headings:

® STATEMENT NUMBER IN ORG STATEMENT NON-
NUMERIC — this heading indicates an ORG instruction
in error (ORG is ignored). The instruction number in an
ORG is nonnumeric.

® NUMBER OF LABEL REFERENCES EXCEEDS SYM-
BOL TABLE SIZE — this heading indicates reference
symbol table overflow. The reference is not included in
the cross reference or replaced with an instruction num-
ber.

® NUMBER OF DEFINED LABELS EXCEEDS SYMBOL
TABLE SIZE — this heading indicates label table overflow.
The label is undefined to the program.

® /NSTRUCTION NOT DEFINED — this heading indicates

that the label has an instruction mnemonic (PRT, for
example) that is not defined for ACL.

100

¥

E kLN OE

During pass 2, the following errors are detected. If the
AUTO DUP/SKIP switch is off, the record in error is not
printed before the error message. Errors are identified by
the following headings:

® DUPLICATE LABEL — this heading indicates a label de-
fined more than once in a program. All of the multiple
definitions of the label are printed after the heading.

® /NVALID LABEL — this heading indicates that labels
are undefined and/or invalid because they violate syntax
rules. All such labels and their references are listed after
the heading.

® OMITTED OR INVALID REFERENCES — this heading
indicates that an instruction requiring a label has a blank
label field.

® NUMBER OF ERRORS = NNNN — this heading is printed
at the end of pass 2 to indicate the total number of errors
detected.

Note that, because the label processor phase of translation
is a program, execution errors could also occur during trans-
lation (Appendix C).

ACL Label Processor Configurator

In order to tailor the ACL label processor to your particular
system configuration, a disk is provided at installation time
to record the following parameters:

® Printer type

® Printer forms control
— Number of characters per line
— Number of lines per page
— Number of printed lines per page

® Keyboard
— Standard 3741 or proof keyboard
— Language group

The procedure below must be followed at system installa-
tion time in order to build a label processor disk.

1. Insert the translator diagnostic diskette in drive 1.

2. Insert a blank disk in drive 2. (A blank disk has been
initialized, its label has been recorded at sector 08, it
has extents defining the entire disk, it is a null data
set and sectors 09-26 on the index track are deleted.)

3. Press FUNC SEL upper and E. A message is displayed
to verify that the configurator program is loaded and
the disk in drive 2 is being checked for the following:

Sector 08
BOE = 01001
EOD = 01001
EOE = 73026

The data set is not write-protected or secure.
Sector 07 isa VOL1.

The buzzer also sounds, and the system waits for

the RIGHT ADJ key to be pressed before continuing.

The remaining sectors (09-26) on the index track
do not define a data set with extents overlapping
those of sector 08.

4. If any of these conditions are violated, the data set
label defined by sector 08 is displayed on lines 2, 3,
and 4 of the display screen. The operator can press
the RIGHT ADJ key to continue, or press RESET
to go to job completion system code 100.

5. If these checks are completed, sectors 08-26 of the
index track are written with the following:

Sector 08
HDR1 TRBANSLAT 128 09001 73026
09001

Sector 09
HDR1 TEMPDATA 128 05001 08026
05001

Sector 10
HDR1 SYMBOLIC 128 01001 04026
P 01001

Sectors 11-26 (these sectors are written deleted)
DDR1 DATAXX 128 74001 73026

74001
(XX = corresponding sector number.)

After the index track is created, messages are displayed re-
questing system configuration parameters. These parameters
are:

® Keyboard = STANDARD (RIGHT ADJ) or PROOF (P).
® Machine size = 4 {4K) or 8 (8K}

® Keyboard language group
0 = United States, United Kingdom, France (Querty),
ltaly, Germany (U.S. graphics), and Japan (English
nomenclature).

= Norway

= Sweden

= Denmark

= Germany (German graphics)

Spain/Latin America

= Belgium and France (Azerty)

= Portuguese

= Katakana

= Brazil

OO NOO D WN =
1l

® Printer type
1 = 3713 Printer
2 = 3717 Printer
3 3715 (bidirectional floating margin)

1t

® Printer forms control {Right-adjusted, unless overridden
by entry of C). Entry is a three-digit number with lead-
ing zeros, if required).
— Number of characters per printed line (4-128)
— Number of printed lines per page (7-127)
— Number of lines per page (7-127)

3741 Operation 101

The object code from three data sets is combined into one
data set (SYMBOLIC) to altow execution of the ACL labe!
processor. Sector 26 of track 1 identifies the level of the
ACL labe!l processor plus the selected system configuration
parameters. Sector 26 of track 1 is:

Position Description

1-8 Revision date-MM-DD-YY (where MM = month,
DD =day, and YY = year)

9 Printer type

10-12 Maximum number of characters per line minus
one

13-15 Maximum number of printed lines per page

16-18 Maximum number of lines per page

19 0 = Standard keyboard

20-21 Keyboard language group

22 Machine size (4 or 8K)

23-128 Blank-Reserved

After the ACL labe! processor disk is built, a message is dis-
played requesting one of two responses. RIGHT ADJ ends
the job normally {100 is posted on the dispiay), or D
creates a link to program execution, which invokes the ACL
label processor.

INITIATING TRANSLATION WITHOUT LABEL
PROCESSOR

The translator feature converts program source statements
into object code. Object programs must be contained in
data sets with a logical record length of 128 characters;
source programs must be in data sets with a record iength
of 80 characters or more. The object data set must be at
least two tracks long and start on a track boundary. The
source and object data sets may be on either the same or
separate disks.

102

To initiate the translator, the operator may place the disk(s)
in either disk drive 1 or 2. With the work station in the in-
dex (X) mode, the operator should:

1. Set the AUTO REC ADV switch on to print the
translator input data set.

2. Blank the display screen by pressing FUNCT SEL
lower and DELETE REC.

3. Key in the following parameters.
Columns Entry
1-8 Source data set name. (If the operator

keys the wrong data set name, the
translator must be aborted and the job
restarted.)

9 1 or 2 depending on the disk drive the
source file is mounted on.

Default is disk drive 1.
11-18 Object data set name.

19 1 or 2 depending on the disk drive the
object file is mounted on.

Default is disk drive 1.

Note: The source or object data set name may be
left blank when initiating translation, but both can-
not be blank. The first data set, on the disk, with a
blank name is then used for the data set. If both
source and object data set names are left blank, an
error code (10) is posted on the display. This error
code indicates that the source and object data sets
are the same data set. The operator must press
ALPHA and NUM SHIFT with RESET to go to index
{X} mode in this situation.

4, Press FUNCT SEL upper and A to initiate translation.

The object file is checked for a duplicate program
name as specified in the .NAME control statement. If
a duplicate name is found, a warning message {19) is
displayed. To write the new program over the old
object program, press RESET. If the new object pro-
gram is not to replace the old object program, press
ALPHA and NUM SHIFT with RESET to return to
index (X) mode.

PROGRAM EXECUTION
To execute an ACL object program the operator may place
the disk in either disk drive 1 or 2. With the work station in

the index (X) mode the operator should:

1. Blank the display screen by pressing FUNCT SEL
lower and DELETE REC.

2. Key in the following parameters.

Column Entry

1-8 Object code data set name
9 1 or 2 depending on which drive contains
the disk

Default is disk drive 1

11-14 The program name as it appears in the
.NAME control statement of the program

3. Press FUNCT SEL upper and E to initiate execution
of the ACL program.

After the program has been completed, a job completion-

system code (100) is displayed. The operator must then
press RESET to place the 3741 in index {X) mode.

Communications

See Communications in Chapter 2.

3741 Operation

103

PROGRAM DEBUGGING

To aid program debugging, select from the following pro-
gram trace capabilities:

® Step trace

® Register trace

Step and register trace
® Stepstop
® Single step trace

Note that using traces causes the printer to revert to non-
overlap mode.

Step Trace

Step trace provides the ability to follow the fiow of the pro-
gram while it is being executed. This is accomplished by
displaying to the programmer the step number every time
the sequence of execution is altered from sequential.

After the execution of a GOTO, RGO or any |F instruction
that takes the nonsequential path, or any special exits taken
from 1/0 control operations, the step number of the instruc-
tion where control is to be transferred is displayed. Then,
after display is completed, the step number that has just
been displayed is executed.

Register Trace

Register trace provides the capability to display the contents
of a register each time a step that changes a register (except
for 1/0 type steps and GSCK) is executed.

The register trace outputs the contents of the changed regi-
ster following execution of: Add, subtract, multiply, divide,
immediate, shift right, shift left, TBRD, GETB, LOAD,
ENTR (to a register), MVER, ZONE, and MOFF. The re-
sult register is displayed after execution of the step is com-
pleted, and before the next sequential step is started.

104

Step Stop

Step stop provides a means to stop at a specified step num-
ber or instruction. After initiating the step stop, a + is dis-
played in position 10 of line 1 of the display screen followed
by the step number and the program executes until this step
number is reached. When the specified step number is
reached the + changes to a - and program execution stops
before that instruction is executed. To continue, press
NUM SHIFT and RESET.

Single Step Trace

Single step trace provides the capability to step through
the program one step at a time. This trace is used in
conjunction with the step and register trace to monitor
the machine while it steps through the program. Output
must be to the display. Single step trace to the display
requires the NUM SHIFT and RESET keys to execute
the next instruction,

Trace Output

The step, register, step and register, or single step trace can
be output to the display or the printer. A .PRINTER state-
ment is required to output the trace to the printer. Step
stop is output to the display as described previously.

The output from trace is displayed on the screen beginning
in position 10 of line 1. If the output is to the display only,
execution is halted until the NUM SHIFT and RESET keys
are pressed. Pressing any other key advances the step and
also performs the function of the key. If the output is to
the printer, execution is halted until all the characters are
printed. Execution is then resumed automatically.

The output forms of the step trace and register trace are:
® Spnnn

® Rnnn daadaaadaaaaaaaa

® Rnnn

The S indicates a step trace, and nnn indicates the next step
number to be executed. The R indicates that the output is
a register trace, the nnn is the associated step number, and
the a's are the contents of the register being traced. Rnnn
is output in single step mode for steps not included in regi-
ster trace.

Selecting Trace

The trace can be turned on or off from the keyboard any
time during program execution. It cannot be started until
after the program is loaded. No change is required in the
source program or translation to activate the trace, except
a .PRINTER statement is required to output the trace to
the printer (see Printer Operations under Programming
Restrictions in Chapter 3).

To Turn On Trace:

1. Hold down ALPHA and NUM SHIFT and press
FUNCT SEL lower.

2. F-or step stop trace, key nnn, where nnn is a step num-

ber, and n is any number 0-9 {a numeric keyed in the
first position specifies step stop). f NUM SHIFT and
RESET are pressed after the program is halted at the
desired step, the program continues until the specified
step number is encountered again.

3. For the remainder of the trace functions (single step,

step and/or register), key Tnm, where:

n = 0 for output to the display screen only.

n = 4 for output to printer and display screen.

m = 1 for trace of transfer steps only.

m = 2 for trace register changes only.

m = 3 for trace steps and registers (1 and 2 above).

m = 4 for trace all steps not included in 1 and 2
above.

m = b for trace combining 1 and 4 above.

m = 6 for trace combining 2 and 4 above.

m = 7 for trace all steps in step stop mode {1, 2, and
4 above).

Note: The NUM SHIFT key must be pressed while
keying n and m. If NUM SHIFT is not pressed, the
process must be repeated from step 1.

To Turn Off Trace:

1. Hold down ALPHA and NUM SHIFT keys and press
FUNCT SEL lower.

2. Key T10.

Program Restart

It is possible to intermix work station program operation
and base 3741 operations, if the necessary coding has been
introduced in the program. To interrupt the ACL program,
use the checkpoint (CKPT) instruction {(see /nstructions in
Chapter 2).

To restart the program the operator must:

1. Blank the display screen by pressing FUNCT SEL
lower and DELETE REC.

2. Key in the following parameters.
Columns Entry
1-8 Checkpoint program data set name
9 1 or 2 depending on which disk drive

contains the disk
Default is disk drive 1

11-14 Checkpoint program name
3. Press FUNCT SEL upper and E.

The restart program loads the checkpoint program and
opens all data sets which were open at the time of the check-
point statement execution. All data sets are positioned at
the point they were when the CKPT was initiated. The
checkpoint program name is displayed in positions 37-40 of
the status line. Execution is returned to the sequential step
following the CKPT instruction.

A 5XA (X = the data set number) error is displayed if
a CKPT instruction is issued on a write protected file.

Customer Diagnostic Diskette

Each work station is provided with a diagnostic diskette
which can be used to isolate the cause of an error to either
the program or the execution hardware. A second diskette
is provided for work stations with the translator feature.
This second diskette is updated by the label processor con-
figurator to conform to the particular system. The diagnos-
tic diskettes contain programs that should be run before you
call for IBM service assistance. These programs exercise the
work station hardware. At the completion of successful
execution of these programs, a 100 message (job completed)
is posted on the display. This indicates that the hardware is
functioning properly and that the cause of the error may be
in the program. Both diagnostic program diskettes must be
configured (only once) to the type of printer, keyboard,
and storage attached to the work station. The procedure
for configuration is:

1. Insert one of the diagnostic diskettes in drive 1.
2. Advance to data set label 10.
3. Press FUNCT SEL upper and E.

4. Respond to prompted data entry requests.

3741 Operation 105

When this procedure is completed, data set label 7 is up-
dated as a summary of the diagnostic configuration, and
may be used as a quick reference to proper configuration.
Note that configuration is necessary only once.

To process the execution hardware diagnostic:

1. Insert the execution diagnostic diskette in drive 1.

2. Check data set label 7 for proper configuration.

3. If the proper configuration is displayed, backspace to
data set label 6.

4. Press FUNC SEL upper and E.

With a 3717 Printer attached, this program runs for approxi-
mately seven minutes. With a 3713 or 3715 Printer attached,
this program runs for approximately nine minutes. With no

printer attached, program run time is approximately three
minutes. The 100 message is displayed after a successful
program run.

To execute the translator diagnostic:
1. Insert the transiator diagnostic diskette in drive 1.
2. Check data set label 7 for proper configuration.

3. If the proper configuration is displayed, record back-
space to data set label 6.

4. Press FUNC SEL upper and A.

With a 3717 Printer attached, this diagnostic runs for ap-
proximately five minutes. With a 3713 or 3715 Printer,
the program runs for approximately seven minutes. The
100 message is displayed after a successful program run.

STORAGE DUMPS

All or part of the 4K/8K storage may be output to the dis-
play, the printer, or to disk. If terminal program errors are
encountered, select a dump option, or abort the job (all
data sets are closed and the 100 message is posted). After
completion of the selected dump option, control returns to
index mode, no files are closed, and the 100 message is not
posted. If you select a dump option during normal execu-

106

tion, control returns to the interrupted point in the program
after completion of the dump. The four storage dumps are:

® Unformatted display dump.
® Formatted display dump.

® Printer dumr‘).

® Disk dump.

To initiate a storage dump any time during program execu-
tion:

@ Press FUNC SEL lower with ALPHA and NUMERIC
SHIFT.

® Key Dkn, where:
D = the dump function.

k = 0,1, 2,3, {4K) or up to 7 (8K} indicating the start-
ing 1K buffer address of the dump.

n = 0 to specify the unformatted display dump.

n = 1,2,3,4 (4K) or up to 8 (8K) indicating the num-
ber of 1K increments to dump to the printer.

n = 9 to specify the formatted display dump.
kn= 99 to specify the disk dump.
® The NUM SHIFT key must be pressed while keying k and

n. Ifitis not pressed, the process must be repeated from
FUNC SEL lower with ALPHA and NUM SHIFT.

Note the functions of the following keys:
® Any key advances the display dump.

® The ALPHA SHIFT key and any key backspaces the
display dump.

® The ALPHA and NUMERIC SHIFT keys and any key
terminate dump operations.

® The ALPHA and NUMERIC SHIFT and the RESET key
(twice) aborts the job.

All display dumps will wrap around storage contents if you
advance beyond the last buffer (the first buffer is displayed)
or backspace past the first buffer (the last buffer is displayed).

Unformatted Display Dump

The unformatted display dump sets the display address to
the specified starting address. The first 120 characters of
the 128-byte buffer are displayed {in hexadecimal) in lines
2, 3, and 4 of the display. The last eight bytes of the buffer
are displayed in hexadecimal starting in position 10 of line
1. By pressing any key, the display is advanced by 128
bytes. By pressing FUNC SEL upper and ALPHA and
NUMERIC SHIFT, the dump mode is exited and the program
is returned to program execution (at the point where the
dump is initiated), leaving the display at the address last
displayed.

Hexadecimal Display

When hex data is keyed or displayed, not all of the data
represents displayable characters suchasan ABCor012
3. When the hex data keyed is not a displayable character,
a hexadecimal display is provided that represents the eight
bit code for the data. The basic display (no bits on) looks
like this:

Other lines are added to the display for each bit that is on
in the EBCDIC code.

Hex Value of
Bit Position Bit Position
Add these values together
to get the first hex digit.
Only add those values to-
gether for the lines display-
ed.

WN—=0O
NP 0

Add these values together
to get the second hex digit.
Only add those values to-
gether for the lines display-
ed.

wo b
SN N N

Example: Assume the display looks like this:

The first hex digitis 8 + 4 + 1 = D and the second hex digit
is a 0. The hexadecimal value is hex DO.

Assume another display looks like this:

The first hex digitis 8 + 4 + 1 = D and the second hex digit
is8+4+2=E. The hexadecimal value is hex DE.

This procedure allows you to observe the dynamic state of
any buffer. The eight bytes displayed on line 1, however,

are not dynamically updated. By pressing any key (except
FUNC SEL upper) with ALPHA and NUMERIC SHIFT,

the dump mode is exited and the display address is restored
to buffer 2. In this case, the eight bytes in line 1 are blanked.
By pressing ALPHA SHIFT with any key, the display is
backspaced 128 bytes.

During any storage dump to the display, a specific register
or indicator may be addressed. Figure 49 shows the actual
storage address of each register and the object code equival-
ent for each register.

Indicators are located in storage in the address range of
0120 to 013F. This 32-byte area of storage contains 256
bits, each bit corresponding to an indicator. Each byte, thus
contains eight indicators. For example, in order to address
indicator 72, display byte 0128.

3741 Operation 107

Source Object Actual Source Object Actual

Reference Code Address Reference Code Address
A 70 0070 N B1 01BO
B 80 0080 o) C1 01CO
C 90 0030 P D1 01D0
D A0 00AO Q Et 01EQ
E BO 00BO R F1 01F0
F Cco 00CO S 82 0280
G DO 00DO T 92 0290
H EO 0OEO U A2 02A0
! FO 00FO \ B2 02B0O
J 71 0170 W c2 02C0
K 81 0180 X D2 02D0
L 91 0190 Y E2 02EQ
M Al 01A0 z F2 02F0

Figure 49. Register Addresses in Storage

Formatted Display Dump

The formatted display dump displays 32 characters as
follows:

® Line 2 — Zone half bytes
® Line 3 — Numeric half bytes
® |ine 4 — Displayable EBCDIC character or byte display

The first display shows the first 32 bytes of the specified
starting location. Press any key to advance the display by
32 bytes. Press ALFHA SHIFT with any key to backspace
the display 32 bytes. A counter on line 1 of the display
shows the number of increments keyed. Press ALPHA and
NUMERIC SHIFT and any key to exit the dumg mode.
Note that the display buffer (buffer 2) is not restored to its
original contents.

108

Printer Dump

The printer dump formats 128 bytes across the page in three
lines as follows:

Zone Half

Bytes

o\ I 1 1 2 1

GGG GFFFF4GCFF4bhbb64b4040000040664644CCECS
00001254004040000000000000000000000041310
1254 DO4=——— Printable EBCDIC DATA

Numeric Half Characters
Bytes

The print line is terminated when remaining bytes of the
128-byte segment are the same as the last printed byte.
Printline length is assumed to be 128. When a printer dump
is to be initiated, the executing program must contain a
PRINTER control statement (see Printer Operations under
Programming Restrictions in Chapter 3). Ifa PRINTER
control statement is not included, this function defauits to
a formatted display dump,

When the printer dump is completed, the work station
returns to its state at the time the dump was initiated.
Printed register and indicator addresses are shown in Figure
49,

Disk Dump 5. The image of the buffers in storage is written into three
tracks of the %$DMPnn diskette beginning at the nn
track. The system internally records the number of
dumps taken in the job. If less than three tracks are
available for the next dump, the internal count is re-
set and the next dump overlays the first dump at track
nn. The internal count is reset at each start of job,
and is saved on checkpoint/restart. The VOL label is
never updated. Buffer contents (128 characters) are
written to disk beginning in sector 1 of the track and
continuing for 32 or 64 consecutive tracks.

The disk dump function provides |BM service personnel with
the ability to write to disk the entire contents of the work
station storage. This data can then be printed or displayed
for analysis. Although you need not be concerned with the
analysis of the stoage dump to disk, debugging time can be
saved by initiating the disk dump function before |1BM
service personnel arrive.

The disk dump function can be initiated at any time during
program execution by the following procedure:

A ready message (RS) is posted during the dump. If
disk write errors occur during the dump, an RS5 mes-
sage is posted, the error line is turned on, and the

1. Press ALPHA and NUM SHIFT, followed by the
FUNC SEL lower key. This sequence interrupts

the current program for subseqguent restart.

Press D99. This sequence specifies the disk dump. The
system saves the volume name of the diskette in drive
1 (disk dumps are output only to drive 1), posts a

dump continues.

When the dump is completed, a DC message is posted
and the system waits for the drive to go not-ready
{(indicating removal of the dump diskette). If the

DS message, and waits for the drive to go not-ready. drive goes not-ready during the dump, no errors are
posted, the internal dump count is not incremented,
3. When drive 1 goes not-ready, a MS message is posted and the dump is considered complete.

and the system waits for the customer diagnostic disk-

ette to be inserted. 7. If the drive is ready when the dump is initiated (step
2), an MC message is posted. Insert the original pro-
gram diskette. The system checks the volume name
against the name stored (step 2). If the names match,
the message area is blanked and execution continues
from the interrupted point {step 1). If the names do

not match, a DC message is again posted.

4. The customer diagnostic diskette has a volume name
of %DMPB6. When dumping to another scratch disk-
ette, it must have a volume name of %DMPnn (where
nn is a number from 1-71). If the volume name is
incorrect, a DS message is posted, and steps 2 and 3
must be repeated. The numerics in the volume name
indicate the diskette track at which the dump is to
start. The diagnostic diskette has nine tracks (66-74)
reserved for three dumps. If the initial seek to the
dump area fails, a DC3 error is posted.

3741 Operation 109

Appendix A. Indicators

INDICATOR DEFINITION

1-99 User-specified

100-146 Reserved

147 Printer error

148 Printer page overflow

149 Card 1/0 end of data set

150 Card 1/0 end of job

161-163 Reserved

154 Invalid GSCK result in
modulus 11

155 RBLK/WBLK overflow

156 Table index error

157 Division error

158 Multiply overflow

110

SET ON BY

User program

Any printer error
Printer reaches overflow line
specified in columns 23-25 of

.PRINTER

When ?/ terminating card
is read

When ?* terminating card
is read

GSCK resultis 10
Low-order three bytes of
the register are 000

Attempt to read or write
beyond the end of the table

Attempt to divide by zero

Carry results from multiply
operation

SET OFF BY

User program

User program

Next PRNT instruction

User program

User program

User program

User program

User program

User program

User program

INDICATOR

159

160

161

162

163

164

165

166

167

168

169-184

DEFINITION

Add/subtract overflow

Machine check

Error line

Short keyboard buzz

Table high entry found

Printer busy

Disk drive busy

AUTO REC ADYV switch
PROG NUM SHIFT switch
AUTO DUP/SKIP switch

Reserved

Keyboard Indicators

SET ON BY
Carry results out of high-
order positions of factor 1

register

Arithmetic overflow
indicators (155-159)

All system errors causing
keyboard lock or display

screen flash

User program

Equal entry not found, but
a higher entry is found.

Execution of any print
command.
Disk busy
Switch on
Switch on

Switch on

The keyboard is set to a locked status (indicator 197 off)
until an ENTR instruction opens the keyboard for data
entry, and sets indicator 197 on. After execution of the
ENTR instruction, the keyboard is again locked and indicator
197 is turned off. When the keyboard is locked, only the
keys which set keyboard indicators, special function keys,
and the RESET key are active.

The following are keyboard indicators and their respective

keys.

SET OFF BY

User program

User program

User program or RESET key

User program

User program or by the machine
hardware if an equal entry is found.

Compiletion of any print com-
mand or end of printing due
to a print error

Disk not busy

Switch off

Switch off

Switch off

Appendix A. Indicators 111

INDICATOR

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

240

DEFINITION

SEL PGM

DuUP

FIEL.D COR™

NEW LINE™

TAB®

REC BKSP

CHAR ADV*

RESET”

FIELD ADV

SKIP

RIGHT ADJ

Negative right adj,

dash (—)

Keyboard open/closed

FIELD BKSP

REC ADV

Special keyboard indicator

Continued checkpoint
taken

SET ON BY

Pressing key when keyboard
open {at ENTR instruction)

Pressing key when keyboard
open (at ENTR instruction)

Pressing key

Pressing key

Pressing key

Pressing key when keyboard

open {at ENTR instruction)

Pressing key

Pressing key

Pressing key when keyboard

open {at ENTR instruction)

Pressing key to exit field

Pressing key to exit field

Pressing key to exit field

Initiating ENTR instruction

Pressing key when keyboard

open (at ENTR instruction)

Pressing key when keyboard
open (at ENTR instruction)

Indicators 185, 186, 190,
193, 198, and 199

Completion of continued (C)
CKPT and return to normal
program execution

SET OFF BY

User program or next ENTR
instruction

User program or next ENTR
instruction

User program or pressing any
asterisked key

User program or pressing any
asterisked key

User program or pressing any
asterisked key

User program or next ENTR
instruction

User program or pressing any
asterisked key

User program or pressing any
asterisked key

User program or next ENTR
instruction

User program or next ENTR
instruction

User program or next ENTR
instruction

User program or next ENTR
instruction

Completion of ENTR
instruction

User program or next ENTR
instruction

User program or next ENTR
instruction

User program or next ENTR
instruction

User program or by start of a
CKPT operation

*Program control keys that are used when the programmer desires to receive communication from the operator without
using an ENTR instruction. Only one of these indicators can be on at a time.

112

Indicators Within a Function-Selected Sequence

The following indicators are set on when the corresponding
key is pressed in a FUNC SEL sequence. Each of these indi-
cators can be set off by the RESET key, or by the next key-
board indicator {187-189 or 191), or by the next FUNC
SEL sequence (only one of these indicators can be on at a
time}, or by the user program.

INDICATOR FUNC SEL key
201 Lower CHAR ADV
202 Lower DUP
203 Lower FIELD COR
204 Lower less than (<)
205 Lower asterisk (*)
206 Lower percent (%)
207 Lower slash (/)

208 Lower HEX

209 Upper percent (%)
210 Upper slash (/)

211 Upper HEX

212 Lower dash (—)
213 Lower REC ADV
214 Lower at sign (@)
2156 Lower SEL PROG
216 Lower FIELD ADV
217 Upper at sign (@)
218 Upper SEL PROG
219 Upper FIELD ADV
220 Upper CHAR ADV
221 Upper DUP

222 Upper FIELD COR
223 Upper less than (<)
224 Upper asterisk (*}

Indicators Set by Data Movement

The following indicators are set by data management during
operation. Each of these must be set off by the user pro-

gram.

225%
226™
227*
228*

2297
230
231*
232%

No record found--data set 1
No record found—data set 2
No record found—data set 3
No record found—data set 4

Key not in table—data set 1
Key not in table—data set 2
Key not in table—data set 3
Key not in table—data set 4

These indicators
are set on if the
desired record is
not found on the
specified track.

These indicators

are set on if the index
table is exceeded, or
the key is less than
the first index entry.
Indicators 225-228
are also set on.

*See Columns 58-60 Type (R) under .DATASET in Chap-

ter 2.

Indicators 233-255 are reserved.

Appendix A. Indicators 113

Appendix B. Translator Error Messages

TRANSLATOR ERROR FORMATS

Errors detected during the translation phase are listed on
both the display and the printer. An object program with
errors should not be used until all errors are corrected.
Action on warning messages is at the users discretion.
Disk errors include the disk address (cylinder and sector)
of the error in the source or object file (from the label
processor).

The display lists a maximum of seven messages, while the
printer lists all error messages. f the source code is being
printed, the error message is printed before the line found
in error. Error codes have the following format:

XX0YY 227 where XX = track, YY = sector, and
277 = error message.

XXX** 222 where XXX = step number and 222 =
error message.

¥r¥¥¥ 722 where ZZZ = warning message.

Figure 50 shows printed error codes. Appendix B contains
a detailed listing of translator error messages.

Track
Sector
Error Code

03002 (203

«DATAS \l OBJECTT 4 1 3 SR

\Control Statement

in Error

Step Number

Error Code Instruction in Error

Warning Code

Mok sl sk sk 106

Figure 50. Error and Warning Messages During Translation

114

Message

The following is a list of the error messages displayed to the
operator. The corresponding meaning of each message is
also listed. The first group of messages are those that will
stop translation. To leave translation, the operator should
press the ALPHA and NUM SHIFT keys and the RESET
key. Messages are preceded by an S (reading from the source
file), or an O (reading from the object file).

MESSAGES THAT STOP TRANSLATION APPEAR ON
LINE 1

Message Meaning
0 Early disk removal error
3 Disk seek error
4 Disk read error Messages also
5 Disk write check error display disk
8 Disk write error address
9 Disk no record found error
{no |D match)
10 Source and object on the same data set
1 Invalid logical record length for source (must
be greater than or equal to 80)
12 Empty source file error (beginning of extent =
end of data)
14 Invalid logical record length for object {must
be equal to 128)
15 Object BOE not at track boundary
16 No space available for object storage
17 Invalid entry in .NAME control statement, or
the .NAME is not the first source statement
(positions 123-128 of .NAME are reserved)
18 Printer not ready

MESSAGES THAT DO NOT STOP TRANSLATION
APPEAR ON LINE 6

Meaning

19 Program name already in object data set. To
continue translation, press RESET. The object
stored under this name will be replaced. To
abort translation, press ALPHA and NUMERIC
SHIFT and RESET. Note that this message
appears on line 1.

Control Statement Messages

Message

20

21

.NAME
Message
30

31

32

.DATASET

Message
40

41

42

43

44
45

46

47

48

49

Meaning

Unrecognizable control statement. Control
statement must have a period in column 1,
followed by the statement name and parameters
in the appropriate columns.

Control statements in invalid order. (.NAME,
.DATASET, .PRINTER, .SELF-CHECK, and
.REGISTER must appear first.}

Meaning

Muttiple .NAME statements in the source data
set

Invalid program start address specified {entry
must be an odd-numbered buffer, and may not
exceed available buffer storage)

Invalid machine size specified or attempt to
transiate 8K program on a 4K machine

Meaning

Invalid logical record length specified (the entry
in columns 28-30 must be 1-128 bytes)

Invalid data set access method specified (the
entry in columns 58-60 must be SR, SU, SW,
SWE, KR, KRN, KU, KUN, or)

Invalid tracks/index (the entry in columns 68-
69 must be 1-74)

Invalid bytes/key (the entry in columns 73-74
must be 1-16 and must be greater than or equal
to the index entry length in columns 63-64).
Invalid index length (the entry in columns 63-
64 must be 1-16 bytes)

Invalid key position (the entry in columns 78-
80 must be 1-128 bytes)

Origin buffer must be specified for an indexed
data set (KUN or KRN type). The entry in
columns 83-84 must be 1-24.

Invalid physical drive address (the entry in
column 33 must be 1 or 2)

Invaiid index start or end position within buffer
(the entry in columns 88-90 and 98-100 must
be 1-128 bytes)

Multiple .DATASET control statements with
the same data set number (column 13 entry
must be 1-4)

Message

50

51

52

53

54

.PRINTER
Message

60

61

62

63

64

65

66
67

Meaning

Key length {columns 73-74) must be greater
than or equal to the index length {columns 63-
64)

Record length +1 (columns 28-30) must be
greater than or equal to key length {columns
73-74) plus the key position (columns 78-80) in
the record. |f the record length is not specified,
the key length plus key position cannot exceed
129.

The number of the index end buffer (columns
93-94) is less than the number of the index
origin buffer (columns 83-84).

The index end position {columns 98-100) is less
than or equal to the index start position (col-
umns 88-90) for an index table to be built with-
in the same buffer.

The character A must be entered in column 61
in order to bypass extent checking.

Meaning

Printer type not specified (column 13 must be

1 for 3713, 2 for 3717, 3 for 3715 single direc-
tion, 4 for 3715 bidirectional floating margin,
or 5 for 3715 bidirectional fixed margin). Zero
and blank are invalid. This error also applies

to the printer specification in the .NAME state-
ment (column 23).

Overflow line {(columns 23-25) exceeds lines
per page (columns 18-20). Overflow defaults
to 60, and lines pér page to 66.

Buffer (columns 33-34) not specified. Odd-
numbered buffer must be specified if the charac-
ters to print exceeds 128.

Invalid characters to print {entry in columns
28-30 must be 4-132)

3715 bidirectional printer specified, but no
secondary buffer (columns 38-39) is identified,
or print line exceeds 128 characters and second-
ary buffer is not odd-numbered.

Invalid lines per page {(columns 18-20 must con-
tain 1-127) or overflow line number (columns
23-25 must contain a number less than or equal
to the lines per page entry). This entry also
applies to the .NAME control statement (col-
umns 28-30 and 33-35), where lines per page
must be equal to or greater than 7.

Multiple .PRINTER control statements
Primary and secondary print buffers cannot
have the same buffer number.

Appendix B. Translator Error Messages 115

.FIELD

Message Meaning

70 Invalid field type character {column 23 must
contain A for alpha, U for numeric, or D for
digits).

71 Data disposition error {column 28 must contain
B or blank, R, M, or D)

72 Field chaining error (column 29 must contain
blank, C, J, or L or column 36 is not blank or
T)

73 Exit control error (column 30 must contain
blank, J, or Z)

74 Delimiter error (asterisk missing after message)
or prompting message plus field length exceeds
69.

75 Field length error (columns 24-25 must

contain 1-16 if data is moved to a register, or
1-64 if data is moved to a buffer) or the field
length plus the buffer displacement (columns
33-35) exceeds 129, or the field length plus
the message length is greater than 69.

76 Buffer full error, or 2 or fewer positions remain
in a .FIELD buffer.

77 Invalid message character (hex 00 or hex FF
are invalid)

.FORMAT

Message Meaning

80 * /, 0 following an invalid field (indicates an
undefined field with no register definition
character)

81 Blank following an invalid field {no register
definition character)

82 $ foilowing an invalid field (no register defini-
tion character)

83 Minus sign following an invalid field {no register
definition character)

84 & or period following an invalid field (no regis-
ter definition character)

85 Formats have overlaid instruction storage area.

86 Blank record warning error {no format
following .FORMAT)

87 Field break warning error {indicates that more

than 16 register designation characters have
been entered for the same register in a format).

116

SELF-CHECK
Message Meaning
90 A GSCK or IFCHK instruction has been issued

91

92
93
94
95
96
97

without a corresponding .SELF-CHECK state-
ment.

Self-check format error (columns 23-25 and
28-30)

Multiple .SELF-CHECK statements error
.SELF-CHECK modulus error

.SELF-CHECK displacement error
SELF-CHECK table error

SELF-CHECK weight error

SELF-CHECK format combination error

General Error Messages

Message

100

101

102

103

104

105
106
107
108

109

110

111
112

113

114
115
116

Meaning

Data set number specified has no .DATASET
control statement.

Unrecognizable statement

Invatid register specification {must be A-Z)
Registers I, R, and Z cannot be used in table
instructions.

Buffer number specified must be 1-24 for 4K
program or 1-56 for 8K program. It may
exceed available buffer storage.

Out of range arithmetic constant (must be 0-9),
or constant coded in sign position when assign-
ing a 2-b digit constant

Out of range number error (greater than 256)
Invalid character in a numeric field

Invalid data set number (must be 1-4)
Unrecognizable arithmetic statement (column
23 must contain +, —, ¥, /, or blank)

Invalid displacement or number of characters to
be moved or zoned in MVER, MOFF, or ZONE
instruction

Invalid indicator number specified (must be
1-255)

Invalid format number (must be 1-254)

Invalid print control code specified (must be T,
D, S, or 0-127)

Invalid length or displacement specified in a
LOAD or STOR instruction. {Length must be
1-16 and displacement must be 1-256, but
length plus displacement cannot exceed 257.
For displacements greater than 128, an odd-
numbered buffer must be specified.)

Invalid table number (must be 1-16)

Invalid table entry length field {(must be 1-16)
Save step number or label missing in RGO
instruction

Message
117

118

119

120

121
122

123
124
125
126
127
128
129
130
131

132
133

134
135
137

138
139

Meaning

Message number in ENTR instruction {column
18) must be entered (valid range is 1-99)
Duplicate instruction number or label (program
must not extend into format storage area, and
each control statement must have a buffer speci-
fication within the program storage area)
Branching step number or {abel is not in the
same 256-instruction block. The following
branching instructions must have a GOTO
address within the same 256-instruction block:
IFA=,IFA>, IFA<,IFD A=, IFD A>,

IFD A<,

Invalid step number/label specified in columns
1-4 or 28-31 of a branching instruction.
.PRINTER control statement missing

Invalid replace {move register to register) instruc-

tion (columns 23 and 28 must be blank)
Register name cannot be the same as the result
register in multiply and divide instructions.
Invalid constant in shift instruction (column 28
must be 1-15)

Program storage overflow (step number exceeds
available buffer storage)

Factor 1 (column 18) and factor 2 (column 28)
cannot be blank in arithmetic instructions.
Invalid buffer displacement {(must be 1-128)
Invalid register displacement (must be 1-16)
Duplicate format number error

Entry appears in field that should be blank
{check columns 5-7, 17, 21-22, and 26-27)
Constant is out of range in assigning a constant
instruction (columns 23-27 must be 1-65535)
Invalid zone specified (must be 0-9 or A-F)
Invalid overlap specified in ENTR, PRNT, or
CRDR instructions (column 23 or 28 must be
X for overlapped or blank for nonoverlapped
operation)

Unrecognizable shift instruction
Unrecognizable |F instruction

Invalid assigning constant instruction (column
28 contains an entry)

Invalid option specified in EXEC instruction
Zero control code for the printer type
specified

Warning Error Messages

Message
140
141
150

151
152

153
154
155
156
157

158
159
160
161

162
163
164
165
166

167

172

Meaning

Format number not defined by .FORMAT
statement

Column 23 cannot be blank in IF or IFD
branching instructions

Dummy GOTO missing at return address in
RGO instruction

Branch to undefined step number/label error
Step number/tabel missing from sequence. Also
ensure that control statements, {.BUFFER and
.FIELD) do not extend into the source
instructions program area.

Branching address exceeds available buffer
storage

EXIT instructions missing (can occur if the
EXIT instruction is within the instructions
causing program overflow)

Reserved

Reserved

Reserved

Reserved

Data set 1 deleted record procedure step num-
ber/label invalid (must be dummy GOTO)
Data set 2 deleted record procedure step num-
ber/labe! invalid {must be dummy GOTO)
Data set 3 deleted record procedure step num-
ber/label invalid (must be dummy GOTO)
Data set 4 deleted record procedure step num-
ber/label invalid (must be dummy GOTO)
Data set 1 end of file error step number/iabel
invalid (instruction must be a dummy GOTOQ)
Data set 2 end of file error step number/label
invalid (instruction must be a dummy GOTO)
Data set 3 end of file error step number/label
invalid (instruction must be a dummy GOTO)
Data set 4 end of file error step number/label
invalid (instruction must be a dummy GOTO)
Printer overflow routine step number/iabel
invalid (instruction must be a dummy GOTO)
.END control statement missing in program

Note that second pass errors {greater than 150) may occur
if buffers are assigned above the program origin buffer for
data storage.

Appendix B. Translator Error Messages 117

Appendix C. Execution Error Codes, Meanings, and Operator Responses

Errors during execution are displayed in positions 5, 6, 7,
and 8 of display line 1. Printer errors and disk errors over-
lay keyboard errors.

Printer Errors

If a printer error is encountered the operator should first
check for the obvious problems, such as the cover open or
no forms. The operator must choose one of the following
responses:

Display
Position

Contents Error Meaning Operator Response

56 7 8

2-16 P P errors preceded by
a numeric are posted
if the 3717 Printer
is specified in the
.PRINTER state-

ment {Note 2).

Press NUM SHIFT and
RESET to bypass the
print instruction.

Press ALPHA SHIFT
and RESET to bypass
any remaining print
instruction.

P 1 Printeris not
attached.

P 2 Printerror during
forms movement
(Reposition forms
if necessary.)

Press RESET to retry
the dump from one
last buffer (P3 only).

Press ALPHA and NUM

P 3 Printerror during SHIFT with RESET to
dump (Reposition return to index (X)
forms if necessary.) mode.

P 4 Print error while
printing or during
trace to printer.

Press RESET to retry
the print instruction
(P3 and P4 only).

Keyboard indicators are not turned off when correcting
printer errors.

118

Notes:

1. If a P2 or P3 error occurs and the operator selects to by-
pass the print instruction or retry the dump, the operator
must manually check vertical forms alignment to ensure
that it is correct for the next print instruction.

2. For a work station with the 3717 Printer, the numbers
2-16 are displayed in positions b and 6 to indicate the
following errors:

2 Print belt synchronization check

Not used

Thermal overload check

Hammer check (1-22)

Hammer check (23-44)

Hammer check (45-66)

Carriage synchronization check

9 Forms jam

10 Busy-too-long check

11 Cover intertock open

12 Throat interiock open

13 Hammer echo check

14 Print belt speed check

15 Printer not ready

16 End of form

0O~NO Oh W

Card 1/0 Errors

The following errors apply to the attached card 1/O device
(5496 or 129) and have the same operator response options
as the P4 printer errors. Note that resetting read errors be-
fore clearing the 5496 can jam two cards in the read station.

Display
Position
Contents Error Meaning
56 7 8
Al The attached device is offline, or switches are
set improperly, or card jam in the transport.
A 2 Hopper empty; stacker full, or misfeed.
A3 Byte transferred between work station and 1/0O

device does not compare.

A4 Program sequence invalid {(successive start read
instructions — S in column 23 of CRDR instruc-
tion or punch following start read)

Invalid Key Errors

Display
Position
Contents Error Meaning
56 78
9 0 Invalid key was

pressed in an ENTR
statement

9 1 Key is pressed
when not in an
ENTR statement
or entry field is
full {requiring
exit key) and
nonexit key
is pressed

Keyboard overrun —
keying rate exceeds
keyboard capability

Job Completion System Halt

Display
Position

Contents Error Meaning

56738

1 0 0 Job complete - not
an error condition

Operator Response

Press RESET to contin-
ue program execution.
Note that this turns off
keyboard indicators.

Operator Response

Press RESET to go to
index (X) mode.

.FIELD Control Statement Errors

If an error is encountered, the .FIELD control statement’
must be corrected before the program can be executed.

Display
Position
Contents

56 7 8

150

Error Meaning Operator Response

Offset and length is
greater than 128 or
buffer does not con-
tain prompting
messages

Data sent to register
and field length
greater than 16

Press ALPHA and NUM
SHIFT with RESET to
return to index (X)

) mode.

Register specifica-
tion is zero

Message not found
in buffer (message
number greater
than 1 can’t be
found in buffer in
ENTR)

Prompting message
and field greater
than 69

More than eight
continuation fields
in one ENTR

Appendix C. Execution Error Codes, Meanings, and Operator Responses 119

Miscellaneous Errors

If an error is encountered, the operator must choose one of
the responses associated with the error code.

Display
Position
Contents

56 7 8

2556

Error Meaning

Hardware parity
error

Disk Open Errors

Operator Response

Press ALPHA and NUM
SHIFT with RESET to
return to index (X) mode.

If an error is encountered, the operator must choose one of
the responses associated with the error code(s). Note that
disk open failed in each case.

Display
Position
Contents Error Meaning Operator Response
56 7 8
2 0 0 Diskerroron Press ALPHA and NUM
program |oad SHIFT with RESET to
return to index {X) mode.
2 0 1 Object data set Press ALPHA and NUM
length is zero SHIFT with RESET to
return to index (X) mode.
2 0 2 Object data set
is less than two
tracks (4K} or Press ALPHA and NUM
4 tracks (8K) SHIFT with RESET to
2 0 3 Attempt to load return to index (X)
an 8K program mode.
on a 4K machine
2 0 4 Program name not Press ALPHA and NUM
found or program SHIFT with RESET to
name is not on a return to index (X) mode.
correct track
boundary
2 0 5 Invalid drive num- Press ALPHA and NUM
ber (position 9 or SHIFT with RESET to
19) is keyed when return to index {X) mode.
selecting opera- If the data set is a contin-
tion. This error is ued data set, try another
possible for both disk to see if the pro-
translation and gram name is there.
execution
2 0 6 Object data set has Press RESET to initiate
been altered execution with altered
data set.
Press ALPHA and NUM
SHIFT with RESET to
return to index (X) mode.
New translation required.
2 0 7 Feature not Press ALPHA and NUM
available SHIFT with RESET to
return to index (X) mode.
2 5 3 Work station Press ALPHA and NUM

120

storage failure

SHIFT with RESET to

return to index (X} mode.

Display
Position
Contents Error Meaning Operator Response
56 78
5 X 0 Drive not ready
5 X 1 Dataset name not
found in user
program, or object
data set not found Press RESET to retry
during program open.
load or data set(s)
from .NAME Press NUM SHIFT and
statement missing RESET to go to job
5 X 2 Record length on completion-system code
index track does 100 or to return to index
not match record mode for 5X1 during
length specified program load only.
in DATASET
5 X 3 Invalid label
extent
5 X 4 Read error on
index track ®
5 X 5 No space available Press RESET to go to
to build index job completion-system
table, or disk error code 100.
while building in-
dex, for key in-
dexed data set
5 X 6 Register informa-

tion invalid for
dynamic open
(column 23 of
OPEN instruction)

Display

Disk Close Errors

If an error is encountered, the operator should manually
record the EQD value in positions 12 through 16 of buffer
1. The operator must then choose one of the following re-
sponses. Disk close failed in each case.

Display
Position
Contents

Error Meaning Operator Response

X 0 Drive not ready™

X 2 ReadID error
(can’t find label
on index track)

Seek command

error (can't re-
turn to index

Press RESET to retry
any error except 6X0.

Position
Contents Error Meaning Operator Response
56 7 8

5 X 7 Extents overlap Press RESET to retry
with some other open.
data sets on this Press NUM SHIFT and
disk RESET to go to job

completion-system
code 100.

5 X 8 Notenough space This is a warning message.
to build a com- Press RESET to continue
plete index table program execution.
for a key indexed Press NUM SHIFT with
data set RESET to go to job com-

pletion-system code 100.

5 X 9 Key indexed data Press RESET to go to
set index entries job completion-system
are not in sequence code 100.

5 X A Secured/protected Press RESET to retry
file (position 11 of open.
sector 7 is not blank,
position 42 of the Press NUM SHIFT with
tabel is S, position RESET to go to job
43 of the label is P, completion-system
and the file is open- code 100.
ed for a write opera-
tion, or positions
1-4 of sector 7 do
not contain ‘'VOL1")**

5 X ? Write gate check Press RESET to retry

(hardware error)

operation.

Press NUM SHIFT and
RESET to go to job
completion-system
code 100.

Note: X = data set number (1 through 4).

track)

Press NUM SHIFT and
RESET to go to job
completion-system
code 100.

Read command
error {found
label, but can’t
read it)

Write check error
(located and read
label, but can’t
write it}

Write command
error (read label
but can’t write it)

6 X 9 Seek read ID error

Note: X = data set number (1 through 4).

* 1 the drive is opened and closed after a data set has
been opened, a 7X0 error occurs when an attempt is
made to access the data set. The EOD of the data set
cannot be updated. If the opened data set is SU, SW, or
SWE, however, a 6X0 error is posted. Press NUM SHIFT
and RESET to bypass the data set, then the remaining
data sets can be closed.

*

* If a record length is shortened on a data set already writ-
ten, a length error (1) occurs when reading these records
in Model 1 (Data Station) mode. If this data set is speci-
fied as key indexed (KR) with index table build, a 544
length error occurs while reading records into the index
table during an open operation in Model 3-4 mode. If
the data set is specified as sequential, a 7X4 (read) error
occurs on the first read to the data set, and not during
the open operation.

* These errors make the disk unusable in work station
mode, but usable in data station mode.

Appendix C. Execution Error Codes, Meanings, and Operator Responses 121

Disk Errors

Display
Position
Contents

5 6

/P

7

X0

Error Meaning

Data set not open-
ed or drive not
ready

Read ID error

3 Seek error

Read error
{See 5X4)

Write check error

Write control ad-
dress mark error

8 Write error

Seek read I1D error

Read to write only
data set error

Write to read only,
WRTE to nonex-
tended data set,

or WRT with rela-
tive record number
with KU, SW, SWE,
or KUN data set
organization

Attempt to read
below BOE

End of file is en-
countered, but no
EOF exit is speci-
fied.

Operator Response

Press RESET to go to
job completion system
code 100.

Note: X = data set number (1 through 4).

If the drive is opened and closed after a data set has been

opened, a 7X0 error occurs when an attempt is made to
access the data set. The EQD of the data set cannot be

updated. !f the opened data set is SU, SW, or SWE, how-

ever, a 6X0 error is posted. Press NUM SHIFT and RE-

SET to bypass the data set, then the remaining data sets

can be closed.

122

Checkpoint Errors
Display
Position
Contents Error Meaning Operator Response
56 7 8
9 X O Drive not ready
9 X 1 Data set open
error. Checkpoint
data set already
open at time of
checkpoint.
Note: CKPT instruc
tion cannot be at
instruction step
number 255, 511, Press RESET to go to
or 767. job completion-system
code 100.
9 X 2 Syntaxerrorin
register or data
set length not
128
9 X 3 Dataset BOE not
on sector one
9 X 4 EOE reached be-
fore checkpoint
complete
9 X 5 Invalid data set
specified
9 X 6 Writeerror

Note: X = data set number (1 through 4).

Communication Link Errors

Display
Position
Contents

C

C

01

Error Meaning

File 1isan I-
type file

File 1 is not on
drive 1

File 1 is not
open

File is an SU-,
SW-, or SWE-
type file, but
the commun-
ications mode
selected is not
Rorl

File 1 is a KU-,
KR-, or SR-type
file, but the
communications
mode selected is
notT,P,B,D,
J,or K
Unattended
print is
selected, but the
AUTO REC
ADV switch is
not on

Keylock is
locked

Unattended
print and
transmit mode
are selected
Unattended
ACL program
execution and
inquiry mode
are selected
Inquiry mode
is selected, but
file 1 record
length does not
equal 128

Operator Response

Press RESET to return to
index (x) mode.
Press RESET to return to
index (x) mode.
Press RESET to return to
index (x) mode.
Press RESET to return to
index (x) mode.

Press RESET to return to
index (x) mode.

Press RESET to return to
index {x) mode or set the
AUTO REC ADV switch
on and press RESET to
continue.

Press RESET to return to
index {(x) mode or unlock
key and press RESET to
continue.

Press RESET to return to
index (x) mode.

Press RESET to return to
index {x) mode.

Press RESET to return to
index {x) mode

Dispiay
Position
Contents

c11

Error Meaning

Inquiry or
receive mode
is selected and
the disk is
positioned
beyond sector
73026
Transmit mode
is selected with
the disk at EOD
There is a disk
write error
There is a disk
read error

No record is
found

Volume label
on disk 2 is
secure

Receive data
and insert con-
stants program
is not equal to
the file 1
record length
Disk drive 1

is not ready
when the
COMM instruc-
tion is executed
Unattended
print is selected
and byte 4 of
register A does
not equal 2
through 9
There is a disk
seek error

Disk drive is
not ready
during ACL
communications
linkage
execution

File 2 is not
closed

File 3 is not
closed

Operator Response

Press RESET to return to
index (x) mode.

Press RESET to return to
index (x) mode.

Press RESET to return to
index {x) mode

Press RESET to return to
index (x) mode.

Press RESET to return to
index (x) mode.

Remove disk 2 and return
to the index {x) mode.

Press RESET to return to
index {x) mode.

Press RESET to return to
index {x) mode.

Press RESET to return to
index {x) mode.

Press RESET to return to
index (x) mode.
Press RESET to return to
index {x) mode.

Press RESET to return to
index (x) mode.
Press RESET to return to
index (x) mode.

Appendix C. Execution Error Codes, Meanings, and Operator Responses

123

Display
Position
Contents

67889

c438

c99

124

Error Meaning

File 4 is not
closed
Communica-
tions feature is
not installed.
There is a write
gate error on
disk drive 2

Operator Response

Press RESET to return to
index (x) mode.
Press RESET to return to
index (x) mode.

Remove disk 1 and return
to the index {x) mode, or
remove disk 2 and press
RESET to continue, or
press RESET to continue.
(Any writing to disk 2 can
be unpredictable.)

Operation Code Error

Dispiay

Position

Contents Error Meaning Operator Response

56 7 8

1 Y Y Y Attempt to exe- Press ALPHA and NUM
cute an invalid SHIFT and RESET to
operation return to index mode.

Note: YYY is for diagnostic purposes only.

SAMPLE PROGRAM 1-ORDER ENTRY

Sample program 1 illustrates the coding of an order entry
application which operates on the 3741 Models 3 and 4.
Figure 51 is the order form to be used. Note that the fields
to be entered include:

® Customer number

® Order number

® Date

® Salesman number

® Purchase order number

® Ship instructions

Appendix D. Sample Programs

e Product code
® Quantity
® Price

Figure 52 shows the data displayed after entry, and the
format of the diskette record written for the loader-type
information. Figure 53 shows how the data is displayed
and written for each item on the order.

During the data entry function, a shipping code is used to
search a table to find the corresponding shipping instruc-
tion. If an invalid shipping code is keyed, an error message
{Figure 54) is displayed to the operator.

ABC COMPANY
SALES ORDER FORM

CUSTOMER # ORDER #
CUSTOMER NAME
STREET
CITY, COUNTRY
Table Search
ORDER DATE SALESMAN PURCHASE ORDER # SHIP VIA
PRODUCT CODE DESCRIPTION QUANTITY PRI‘CE

_

Limit ™~ Multiply
Check

]
)

Legend: Fields to be entered are ir bold type

Figure 51. Order Form for Sample Order Entry Program

Appendix D. Sample Programs 125

CUSTOMER 00001240

DATE 08L073

SHIP VIA TRUCK

SALESMAN 02

(RDER GG a0

CUSTOMER ORDER DATE SALES-
NUMBER NUMBER MAN
1 9 17 23

.

DISKETTE RECORD

Figure 52. Display of Entered Data and Format of the Diskette Record

CUSTOMER 00001240

ITEM 00000236

URLDER 050

WDIY . Zo2oo

ORLES

CUSTOMER ORDER ITEM QTyYy PRICE
NUMBER NUMBER NUMBER
1 9 17 25 30

DISKETTE RECORD

Figure 53. Display and Diskette Writing for Each Item on the Order

126

B VRIDER
NUMBE R

SHEPPING

INSTEUCTION

15

o

After the quantity s eniercd, o bt chieck s made to see if
the guantity s greater than 1000. 1f o s, the operator is
notibed by an error message, shown in Fgure 55

Figure 54. Table Search and Error Message i Siupping Code

Figure 55, Limit Cheax and Ereor Message for Quantity Exeeds 1000

The conmg ne
56

APy el IS faegrar s Loown in Figure

5 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 5758 59 60 61 62 63 64 65 66 6768 6970 71 72 73 74 75 76 7778 74

I O PR 55
' ooy N
ST T Ty
bbb LD _ | A I Lldd
Overtiow Edit Currency Register Proof Keyboard Machine Intermediate Data Drive Object Data
e Control Keyboard Size Set Name Number Set Name
Wb oL s e 49 36 37 38 39 40 41 42 43 44 45 46 47 4B 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 7

Sw

THE R
oL 3
T
i N i l I I
BEREERE I I
bl i [{ | 1 - _‘_‘<— 8 SO A E 4t
s b I —1]
! N 1 _ L.
I s Butte: Deleted EOF Type tndex Tracks Key Key
record toutine length length positio
routine Extent

check

Frgure 56 (Past 1 of 4}, Cochng

ter Sarnyte Uirder Entry Program

Appendix D. Sampie Programs 127

128

SBG B W2 Bl B4 BL Wy 83

'

44 45 46 27 4% & 50 50 G0 90 b4 58 B 5

Héig‘afﬁ l
L1 HHHHBY
wﬁlﬁh

CEEEEEEE

DOODD

 WRITE HEADER TO DISKETTE
1
12,

ccecccec oL

Cualane 2l

) ROE |

1§59 teds

g 2d

s{od” T2 Rz |

| A T < .3 ,

s -

5 j [T ~ (35 i i c

3 .W_: . R |

4 B . u e | .

mri r}fm Py i i : : #l\THA -
wrlfﬁnB LTV} I\Mf,ﬂ i ﬂbm%ﬂfilr.A E H
e R’ a2 B EEETE N EYW & | ——
: I mﬁ B] SN S SN B "
A e R TR e e e B I WD
A I MIU R . Mwi\} b |~D&.MM a @ l’u i
i e o SR el v-) o - -

S namatinrs SN 1 o

- AK W] R

e <) .,lw

< = Q. ., .4 E \

kS < o BIMH LN ; ! ! T H

4 T N T ER) XIS ol i sl s a B ol sl sbe il 3 2
11 . Y B N ; R -

I i) i L\w.” Pl . |

° TEd [;

- 1" 2| NI ONG

. v HeYWaWeils =)= =)=

" I R] 3

- - (Wi AR T RTY]

- e[= e T e Tama Thet T — —

: SRR R RS

Figure 56 (Part 2 of 4). Coding for Sample Order Entry Program

Dats dispos:tan

~~——— indicates continuation of the first and last character (register).

LABEL) _1 j_L J_Lcuwmm o . n

i1 T T TrtTTT T T ' V T M

o | | M&;m 2T ST T ekl uWes\ @m)am;
PO || ENTR M L | i L e ,smmeue, R

ol lEMTR’-! R St i | - DRDES R ‘ ot
el | | ENTR [A N _DATL‘, SR L |

4 ENTR |4 7 R A L NN

5] ENTIR 4] 8| | lPuRCHASE ORDER. | ., .., . i .

b GOTO L B2[3| | BRANCH| 7Ol SHIP CODE| Romxwa‘; RSN ‘

04| REEM R L b bbby |l RERD] DEsPlLAlY: fqa H@A@E@, R\EJCD!RD o e

a1 WRIT| | [=1 ,AM,L Al WRETE. HEADER: RE R HL Ph
esrlo] | STIOR| R; |4 | 4L Pg b; LLF_A&1 LIINE, 3] 1OF; ‘D‘I;SPT AIY . L [.‘[I

%] s[ToR |2 507 AT Lb; CLEAR |LTINE: 3% oir: D:L,sP‘LAlY. R Ry l i |

IT. ‘ 73, {1 XL 8L)| CLEAR: ILTINGE] 3, OF D‘;bmﬁ Cocn Db !

L2 EN|TIR] 14 3 T | }I‘.TEW‘.;.} Ppbp i .;isu. NERRERNNRRS
103 GOT O I D313 | BRANCH| (T LIMIT| ;c_meq& ROUTINE, byt 5 {
B4 ENTR H 51 RITCE. o by 4y q e | i ‘.‘;RE,#,, it i
i s EFM 20 113 T 1 -REJADL DTS P LAY, FORI DETAIIL. RECORD) | S RERERERSSS

o F = o || il E PRICEl X QUAN |+ [EXTENSIEN, | RN Pl

7 MIRIT i WRITIE| DETALLL, REC) R S SR 1

8 FICR| 2L 31| sl | | oi @ | IF| FUNCITEON }_owaR?Egzppaq ADVANCE| NEMW ER. L || ;
@‘iﬁ FILR 201 s || on | F CTION, LoMWER-RETURN, TO. ND[EXL | ENDI DF| b0

2] FirR| lilslg] | [rls @112 | rF| New [LTINE-NEW LINE] RDER, | 1,141 \
Iﬂ&.l. | GOTOL | L Bal | iodp] uNTiTiL Al KEY| ISl PRESISED || ! | ! | L]
22 EXLT] | L] I oF pRH@.R SR ; Tl | v l iy :
v2233 5 6 7 s,\gluz L\&n‘%uLw |jn V8 19 20|21 2273 24 5] 26 27|50 26 30 a1 32T e 3 36 37%‘ 3994 4 a3 a1 ay i“ e 5(} 2 ;l 03 azsa-,l 57 58 49 60 61 52‘61 salas.sssv rjsa 0 V‘J"?J 73 74 75 76 77 78 19 RO

Figure 56 {Part 3 of 4).

STEP,
LABEL

Coding for Sample Order Entry Program

| COMM[NIS l
| | |] ol 2] Bli| Llall OV "SHLIPi \/IA;M% £5 'AG[EL Jlo RTEEE s |11 1 L[¢
215 ’ TIBIFIX] Jb IS bl J EARCH, TABLE| L L. FOR E UAL ISHITP| ClODE, A % g

& FLLL I o 3 ROR| MESISAGE] TF NG EQUARLL FiQuU ;)
P27 } T8RP| 6| | ||]2 | 1] 7. | i KF| [EQUALF-READ| TABLE 2 FORL INSTRUCTION |- []}
VI BIER Ry || e i) Move TINSTRUCTION O DISPLAY, ||| | {
209 | | | moT @7, | RETURN O MATNLINE | [[0] ST S .
ag |] EroR 2f || B0y || L PLAY, TINVAL um‘ HIZPL CODE, . ||, | | | %
23l |, ENTR 4| Lo | Pl AlY, ERRROR P ;H‘, ey ;;11 % }
3R] EaT B3l | RETWRN| rol ENT&R SHIP CODE i b Y
3L] ENTIR Y Hl L L |4 ENTER QUANTIZTIV 0] P bbb b
EX Loalpl 12 o0 || D 50 111 Lo LTy TN REG; ; D | Rpm DISPlL v Ly Poblg g 1.
35 LFD | D, 20 LN D37, IF. Ty, (GREATER T Leoa- g, F‘ A AR
b GRTD QLM | DTHERWISE, RETWURN, T ;Mj/x.riNlL El ., |4. RN |)
- ENTR| |5 N | ERRORI MESSAGE [l L ﬁ{
38 P BEN LS L& R I i : j Q{ARACT R: }N‘Lom Rl 6KIP, ONE, “ﬁ i ‘ } | }
SEEIREREC ipe R | 125133 TE| [CHARACTER. IS, R GO Tiol ENTE| ,DHA TR |
4 || lskEl | s e LAl] IIFI CHARACTER IS A [SKLP| DNE . || . | RRERN k N
Y gﬁm Ly | 37, L CHARACTER) NOT, R OR A, - LERRDN..,‘ g hipyid
o] e | D4 | CHARACTIER L6 Al - ALCEIPT, QVER-LIMIT BT Y, i1, ||
E 1l] W i ‘l‘,Tlf,M v,i,.,,“ R RE RN R
T T - oy "“ ';:;fH% Spe b A RREEE
AR IER R RN RS b §
T A A IS T S SRS H ' R bk
UL i R RN BRI i

Figure 56 {Part 4 of 4).

Coding for Sample Order Entry Program

Appendix D. Sample Programs 129

SAMPLE PROGRAM 2-MAILING LIST INQUIRY

Sample program 2 illustrates the use of two key functions
within the ACL language:

® Using the key indexed access method

® Providing error correction using the special keyboard
close function of the .FIELD control statement, and us-
ing registers to specify the buffer and message number in
the ENTR instruction

The operator is first requested to enter the customer number.

A search of the mailing list data set (Figure 57) is initiated.
If the matching record is not found, the operator is request-
ed to reenter the customer number. If the record is found,
it is displayed to the operator in the format shown in Fig-
ure 58. The operator is prompted to enter a new street,
city, state, zip code, and telephone number. If any of these
fields are not to be udpated, the operator presses the FIELD
ADV key to advance to the next field, or REC ADV key to
advance to the end of the record and update the diskette.

If an error is detected in a previously entered field, the
operator can press the FIEL.D BKSP key to return the pro-
gram to the previous field.

130

The ACL coding necessary for this sample program is shown
in Figure 59.

CUSTOMER NUMBER 1-10
CUSTOMER LAST NAME 11-25
CUSTOMER FIRST NAME 26-36
TELEPHONE NUMBER 37-43
STREET 44-59
CITY 60-75
COUNTRY OR STATE 76-85
ZIP CODE 86-90

Figure 57. Format of Records in Mailing List Data Set

(Program name}

(Lastname) (Firstname) _ (Phone No)

(Street)

(Crty) (Stxize) -

(Z1p code)

{Prompting

Message)

Figure 58. Format of Mailing List Record Displayed to the Operator

Name Origin Printer Cnes Overﬂow Edit Currency Register Proof Keyboard Machine Intermediate Data Orive Object Data Drive

1234557BW‘OH\1\3!&!5!6!718‘9202172232475762728?930313733343536 37 38 39 40 41 42 43 44 45 46 474849 51 52 54555655859606 62 6364 65 66 6768 6970 71 72 73 74 7576 77 78 79 80 81
WWWP EESRNANENRRIRRARERRNRAN |

buffer Per Page e Control Keyboard Size Set Name Number Set Name Number

wesboay Adnbuy 117 Buijiey aydwes 10y BuIpo) (g 40 | 1ed) G nbig

swelboid sjdweg 'Q xipuaddy

LEL

723456 7891011012 uu‘ 16\7!8192071 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 3B 9 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 65 56 57 56 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 79 79 O 1 82 B3 84 BS 86 87 86 69 90 91 92 93 94 95 96 97 98 99 S
1 T T,

i - ! [T
-DATASE[T ll | | h@ﬂ K[[[k g 1T
: 7 1P T ‘
. l i} . . \ i
NEEEE) .) . N I N O N O
+ } 1 11T | ‘
jT bt b R ;T,, bt b TJ EE | ﬁk,r s
PEPETHEITL T T ! AT AENEERNEERNNRRE AREEINER
Da(asr Dat. aset dmE Recurd Drive Buffer Deteted EQF Type index Tracks Key Key Index Index index (ndex
lengtr record routing length length position ongin start end end
sutine Extent buffer position butter posttion
check
T s 2 2 1% e 1o 26 7 %8 5 40 41 47 43 44 45 45 47 4 -

Ty

:E%
R
T

bbb | i h

bl e b e e f‘...l.‘ - e . _
I L

L.700 REN S N B IR S e RN S Rk)r; [-
T | I

P

L/ I

123456 79 w0 izfiza
S

_ SR : T
Nurmber Rarscer e sevand rocars
position
Number
R T R EEEa
234567839 12 475 16171819 20 21 22 23 28 25 26 27 28 29 30 1 3 3134 35 36 37 38 39 40 41 47 43 44 45 46 47 48 49 50 51 52 53 54 5K 56 57 b 59 B0 61 62 63 64 55 66 57 K8 69 70 71 72 73 74 75 76 77 I8 /3 BO B1 B2 B3 B4 BS A6 #7 AR HD 90 91 92 93 44 95 96 97 98 99 5SSOI FEDBELI NI LR T Y

A o

Lty Rz || B

&Mq.* i } ,

Mﬁﬂﬂi RRNRNRNARERRENAAN) N

L ! T 1 |
IRRN-ARRERRNRNE B ||| (BT STREET L L L NN
N ERRE-RRRERRNRN ARRRTNRE" ;N NRNNRRE NESNRSRRANNES S L ; 111
\ 4113 ALS| || 14 || PaMT COUNTIRY TATEX | [L] i, ‘ S 1 REBARASAAL
BERZENRY-SNuc Dis W2l | WLl me copex | L1 ; BEEEERI _
ul by || 13 p) | PR TELE PHONEX . . IR i
JRIELD | 7| | Y I clusT | = REKEY* | | % . }{ A
EERRSUEE T -+ SERRE CrTr et
R i by
1] ! O : T
HH EARERERRESCSs T Bl e
L4 | k.l..j MHMI} L Ll % ,_,_j,;% L o 1%141 ‘LT
AIEENEEERNE N || N Ji J JJ,,J L] H_L,Lj | I Ll Lol dd 1 ; Sl L‘LM Ll
Butéer Queritow Frerd £ 5 ict 34 N5 35118 CH 2071 20 2324 15 26 27 28 D¢ M0 31 3D 33 34,38 36 17 38 }(A AU 4Y 47 40 42 4b 4F 47 45 3 8 —i 56 351 SQG B1 € 63 64 iifﬁ 5_8f 0T YL Buffer space
butfer “f”q"‘ T Dspiay lne B T T Dso\Ay\ 8 T for

~~———— |ndicates continuation of the first and last character (register).

Register Usage

A — Customer number (keyed)
B — Street
C — City
D — Country or state
E — Zip Code
F — Telephone
G — Scratch
H — Customer number (read from file)
I — Customer last name
J — Customer first name
STEP/
LABEL COMMENTS]
& i»ﬂ 9 1!‘—»‘—%;3 l'l 1;\6 17118 18 20421 22§23 24 26|26 27 [28 29 30 31[32)33 34 35 36 37 3B 39 40 41 42 43 44 45 48 47 4B 49 50 51 52 51 54 55 56 57 58 59 50 61 62 63 64 65 66 67 68 69 70 ! 72 73 74 ?5 76 7 /8 79 BO
mi[F | | LelaR] Ll L Y 1 E [D[IEIE L 44
AL by 2L 3 1 SIETT] B E Tb =13 . ,‘,,+]
S . 2| | B 8 O O . SEIT = |
3 ENTR ||]] iy TR CUSTOMER| # #_ |
i CIFTIR 12]1]2] AJI-JS DN ,juLD F X| GOl ITOl. END] OF| S0 AR NAR
Li 1l L READ W | L VAL L)L R DAT Al ISET| IF s TOMEIR IRIECIORID)
1 FTR [ERIR F E OUNDI-ERIROR; [ME El 1]
i S Y| £
Rl sl + T SISAGE| # i
18 TR YL L TER| STIREET, CTirlyls TATHFJLFD,hELEPﬁo
JEFIR W 1 (TS| | | ON[| C K LDl K 2]] 1 1
i1 JLFTR 19l | lxs! | | ON| | Pl RECOIR DIV ElP| L
TIFILIR LIRS S INIEIXT] BIEILECT o 7l RESTIORE STA £, MESSAE
JIFTIR Ligle). ON] | EXITL DUP?| RESTORE (SAME] MESSAGE] | S
R LFIIR qp ms EXT] RIE. D! BlAlC Klslplac E|? LITIORE| (SlaME S
£ j;_ dlid=ll el] | Bl T ? TE] DIrlekiETTE! RE
] O o 1 M,:hno Ll j |
A+=,,] - i | | . !
TED | | an 1+ HBEEN FrRsT MEsslseRt 1L
soagl Bl Elx T LU 1& 1
SKre! | | REFM 21 || aanl Y| | PDATIE RECORD
MWRIT! | il RILIT Qﬁfr Sk RECORD] | |
1 o) B L J J
ra L1l iyl LI TELL vl el messlaeel |1 LLLULULLELL LD LT
Figure 59 {Part 2 of 3). Coding for Sample Mailing List Inquiry Program
STEP/
1LABEL COMMENTS
|| Bom G i EA
L EXILT]] L] i || i mENE.
E 1 I ! | e ‘ l 4.
| ‘ : - i i |
- o 11 Tt T 1 T i1 T T

Figure 59 (Part 3 of 3). Coding for Sample Mailing List Inquiry Program

132

SAMPLE PROGRAM 3-OVERLAY PROGRAM

Sample program 3 illustrates how an overlay program is
coded. In the example, there is one mainline program
and two overlay programs. Some important items to be
considered when using overlays are:

The coding necessary for this program is shown in Figure 60.

The .NAME statement must reference the same origin
buffer in the mainline and overlay programs. (Buffer
9 in this example.)

_.FORMAT statements must be used in the mainline
program, while dummy formats may be used in the
overlay program. This is because formats are loaded
in high storage by the work station at translation time
and consist of pointers only.

The ORG instruction references the actual buffer
where the overlay will be positioned in the mainline
program. Since each instruction is 4 bytes in length,
there are 32 instructions per buffer, and by assigning

a step number of 128 with the ORG instruction, the
next instruction would start four buffers away from
the buffer referenced in the .NAME statement. A step
number of 000 is in the .NAME referenced buffer.

In the example, the overlay programs are executed once
to create the overlay data set. The first overlay program

references the overlay data set as an SW file and writes
the first three records of the file. The second overlay

program references the overlay data set as an SWE file
and writes the next three records of the file.

The retrieving of the overlays from the data set is
accomplished by using relative record reads.

Overlays may degrade performance due to the reading
of additional records.

Appendix D. Sample Programs

133

l:be{sﬁcmfr/pw e ACTUA m&g
mwh &55
oAt oo - o
SBUFFER w - o _
ﬁg} 5 Y-;ﬁsm”ﬂ*; T T
i T,\ r:ow Ac“/’é,@cw/ygw ”#:H/!e‘ f;émmfl m%
R RN BEERRRR NS
i »}W)ﬁ'ﬁf uE| |k Ple O6R) g”l LS RER ARRON R D ARR PSR RN AT RN AR AN NRARRARRA [
pdisel | ke LT e e T [RE
ek L L ASKLE HAR fvp ﬂé AENERSAREN gill
;/éF/ | 9] | WOIT| | oM | DQ,/H LF ‘hic;ok‘p AD MOT WKESSED], B0 O s S
KT L ENDoF, ,37";1?10 /Ww,y;w i | et
DBLG ,E N Lib, |1 L E e 5K W ek i ik {
L 5070 | 1. DB o sk ‘fpk’ ﬁ Eﬂpewb‘)" \CQMﬂﬂCT OVERLIAlY PKO&()| ||
i MoVE, |2 7 LI MOVE MAINLINE c,qmj/!a% To crr 1 \
i JENMTR B |12 Ll Ask Pow SPOUSE' S NAME. . L |
ot oA T L AL e Ger ' SPouse’ Fog T | A /)
PRUT! | PRNT DL L)y 7 FOWW”OWH:,M 1L (RS
Jgofd N 1T ugzd ‘S’ﬁb‘ rofxv/e@g ; RSN o)
. .y ; 3 ; “}.; ﬂ.‘r‘l”;‘iiiiui‘%¢¢] |
< GET THE, PRIOFER| DviERL Y U BENh |
w2 | enrk 8 |3 L] o, owTacT vy Emersepcy | T TTTIT {
LoollAal e ; I AL, REC wg‘%;ﬂewr VE’ i /
Llrlisde B e | k] vve ovepny weeoep || T |
S AL E L R NITTAL REC MO | ok VFRIEWDYL L i
L kg T T AT ~BUFFER OYERL RN RSERRNIRRENY i
, LMo s LD] - BuFy F/@; qnej,w;% SN E R R RNl
L] Resl) Lt A : ‘Ly')i ﬁml,*;i N Mg
. OVEl B | L1 + { b{ Ll Ll \
L READ T | I WiSTR vtew ﬂyif EERRRRNRENI ¢
LI avie b3 LT I| | e /W m‘ucf W"y pw Jﬂ AOSRRLIERRA R $
LBl L L | OvRL B0 Execure ovERLAY L] b
| ore| | Lz |l] | ;fisgfﬁg WEXT IWSTRUCT/OM 1M Burred 23 || L1111
vl Moa LT o, ser up OVERLAY BR, w LpgeL | L
11 Lo ited] L seT so pExT msr@uwmm s Rodd L
RETW | | Bblrp | P/?NT GoTo PRINT //VF()W,T/OW L)
EWp ; l‘r,“f,”,_.‘_m, R RaRuiEy %
L i i ! L [L Pl ‘ : ! PN i i _

Figure 60 {Part 1 of 3). Coding for Sample Overlay Program

134

5
|

I
i

Fo

. e T
Joo —— 8 T T T TN T N T T T T 2
ts ! P ea—— Iig\&/ﬁ,\,ﬁu\:ﬂl‘_ A S S r } 2
. ¥ i — L . | A -t :
—— | E= A St ——
- B antl Mmlﬁ 1 Lo S L,vl - KAWM,/““: M - ” [©
! T =
S \\h\\\\u — — i i : Bd
- o - ; W I e
i bt i S - N T T ! T =
s R S s 2 N~ . E
m + e k4 I $— = 3
o= oz z h) Q I 2
g~ T - s ST £
e - e SV S S g
= - — : N :
N R @ ; : ¢
SeE — 8 O l,wv = ~J, 8
RS R z LN Y ~I — 5V] s
S - S g Q 2N+ 'Ow i 1] 2
HEE - e R ﬁ RN ; 2
PA S e . 3 QAW e ~) i3
m% £ e o s | Em— e S TS ; 5
e E i I LERTTECEC D oSSR <) S S EEE 8
mw,w . L i E— L e QY [N V) gAN..A AW} I
5 £3 S 3 ORI NI RENIN) = L
L b BRSNS NO X <. e
; N T[N O W & s
SR O =~ ~ [y s
e O [NV s
W3 b T -~
wvie Y 1y
v
-

|
*
; i !
AdVERL
D OVER
pw

i
i

|
|

VIERLAY,
vy

: - XS
2 — ~ H
D H i —SU§ RIS
T > - [R) =y
el UK sSI g
B S ! T
)

QW FRoM

[
L

TV,

;
.
f

ove

§

R e

128

s,

Lis df"I
AL |

<l

|

}

1

1

t

|

F REL 7Tl
RN
|

£l

OVERL
K K
LA

it
+

-y
i
|

' Slo FlRSlr

:
T MolVE
M
7

£
ﬂr%f#
I
oiF; ﬂ
Lol
£ .1BuF
Fil
e W5
.
ff
‘ A”
L beT
TN GOTO
S€

|

T S0 WeXT IMsTRUCTY oM [/ BUFFIER] |14

END OF
UNISED, 570
|
YF'
e
0 Rl

sros
| S0,
70

N

i
3

i

—¢

I
i
|
t
t
|
i
I

oveRLA
|
It
o[
R
| t
ﬁl:%Q‘;wr |
‘—ii
3
Ti
4o
711 ON
5
Mf
1 1
!
| | TO| e Al b
1 1
T
[
i
|

L1 ST
£

|
|
1
|
}
Dl
R AP
‘é@
L RE
TVONS
b

i
t

13

4
t
t
|
c ot
%

e | iR e
“‘VT

T
4
I
1
,
! t
L Rerw
|
1
I
|
i

4t 4 ot b
i
|

3 s E = =
P i S —— & j
- & E e %

B - — <« b ™~ ¥,

y

|
:
|

1

/28
!

Move 12

1203 14 15 16 1 fra e 20020 2273 24 2w

Il
1
'
I

\
1

DRG

ARyl Wik

8 910 1

]
|

1lowe| | Lzl

1 Nop

B T
RS
H [i
| el
5
t
I

—

EWD] DF| OVERL AY I/ W|slTRuic

i
:
|

o [TWE

RiETW|
s [EMD

|~

il

«BUFFER
R
| [F

1

PRINTER
i
+FORMAT

21
F

135

Appendix D. Sample Programs

Figure 60 (Part 2 of 3). Coding Yor Sample Overlay Program

s 19 00)

77 78 79 80 |

WAFER 1|3

rol |
1l

LIFIF)

4

SET Ul PVeRLAY BRANICH L4E5L<

T

1

b

KoM OFEELﬂVE

RILAY! Ke)

VWSlTRUCTY DM [T W

3

tow| To: PRT .

-t 1

(/oM BEGINS |1

ST BE| PRECED, BY

!

S AVE
:

i

EColD SITOR/ w3 |

U
AP

:

5 W IR,
Fork PRIMT]

7

|2

7,
\y

€
1

<
2
F

L.
|

7 sld A/kis 1 MslTR

T‘

’F/Egﬁ 2

I
|

RE |- BUFF.

bt

+

Tv‘v

Flow FIR/
"FREWD

i

Re /Wislrieu
Vel olvieklLa
7l Isp| Mex(T]

RE

5

oTo KETURN

1

Ger

:

ST
e
f

WNPSED STORAG

!

EN olF] loviere

HSK
h e

!

—+

11,
|

3 . o
5 i e MF
2 _ Joc oc
: ; s :
5 223 : ;
S T =
£ — : T
P 3 [
: : | —
¥ E
1,* —4 41 —— =
- z St
——
Ml‘l.?i -
- i — N
i N
e E
-+ + A \.{v - — -
——— ﬂ, N
— b
T E—
|
pilana B A
N T
i Be smm
] =T
= T | .wmwww
- BT I
I A — K S
s . * HLY)
- :
wu\l
T |
. -l
.- Sl
e . W v
£ |3
e i IB

o
s =z I =
i ~ i ~ , !
L1 |0 ! N WY] I
oc L NN =
B il Q |
JE D ~
£ M< “3 . = s | |
2] RN
AN OS5~ >~ ; ;
BRI ~ o aUAr T
2\ N MRS
RO S H T)
2 T & L=
=S | TW’. - ~
=[] LT
= = >
Y 'NTRT T e,
Y R N~
TSN SN NS YN
I uy
B ~ O X O
TR ER R OISR TRG 0S
- X ><Q [MENISEESIAN RIS
MTMMWWEG 2 Q3 W~ W D=
BN _ Q| i Dy
<N, ;
) U S
- X =z =9
~ 3 ' T~ Ef —/N4
N : L] . WO
e M I i E3)

Figure 60 (Part 3 of 3). Coding for Sample Overlay Program

136

The Printer Link (RPQ) feature allows an ACL program to
load printer control format programs into format buffers,
then select PRINT TO EOD mode at the Model 2 level. At
the conclusion of printing, a method is provided to return
to ACL program mode at the Model 4 level.

Printer Link is applicable only to a 3741 Model 4 with

the Communication Link {(RPQ) feature, Expanded Commu-
nication feature, and either a 3715 or 3717 Printer attached.
Printer control format programs and the Expanded Commu-
nication feature are described in the /BM 3741 Data Station
Reference Manual, GA21-9183. The Communication Link
(RPQ) feature, the 3715 Printer, and the 3717 Printer are
described in Chapter 2 of this manual.

In order to start the Model 2 PRINT TO EOD function from
an ACL program you must:

® Close data sets 2, 3, and 4.
® QOpen data set 1 as an SR type file on drive 1.

® Load printer programs in ACL buffers 2-10 (buffer 1
cannot be usad).

® Load ACL register A with print control information.
® Program the COMM instruction,

® Turn on the AUTO REC ADV switch.

Appendix E. Printer Link (RPQ) Feature

The linkage to print mode begins when a COMM instruction
is encountered in an ACL program. The format of this
instruction is:

Column 1 I 8 I 13 I 18 | 23
Entry l Step/ COMM l I I
Label

The work station assumes that the input to the print mode
linkage function is in register A, and that buffers 2 through
10 contain print control programs.

Register A must contain the following information before
the COMM instruction is executed:

Position Required Information

1 Not used.

2 The character D.

3 Not used.

4 Format numbers 2 through 9. Used only if
buffer 10 contains a question mark.

5 The character N if the check for a continued
data set is to be skipped.

6-16 Not used.

Appendix E. Printer Link (RPQ) Feature 137

When printing is complete, the work station will return
either to the index track or to ACL program mode to

translate or execute a program. You must put one of the
following print control characters in position 001 of buffer

10 to tell the work station which way to return.

Return Point after Print Meaning

Index Track ACL Program Mode

Colon (:) Question mark (?) Printing is under control of the format program
selected by byte 4 in register A.

Percent sign (%) Exclamation point (1) Printer format program is selected by the character
in position 1 of each record.

Plus sign (+) Left parenthesis: (Printing is under control of data stream characters.

When the question mark, exclamation point, or left paren-
thesis is in position 1 of buffer 10 and either the COMM

instruction is executed or PRINT TO EQOD is manually

selected, the work station completes PRINT TO EOD and
returns to ACL program mode. The work station will either
translate or execute a program, depending on the informa-

tion you put in track 0, sector 3 of drive 1.

The information required to transtate an ACL program

Position Required Information

2-9 Step numbered source program name

10 Drive number where source data set is
mounted

12-19 Object program data set name

20 Drive number where object data set is
mounted

21 The character A

is:

The information required to execute an ACL program is:

Position Required Information

2-9 Object program name

10 Drive number where object data set is
mounted

12-15 ACL program name

21 The character E

138

SAMPLE PROGRAM

This program illustrates sample coding required for register

A, a format program in buffer 9, and the COMM instruction.

It also shows the question mark in buffer 10, and sector 3
which returns the work station to ACL execute mode.

The following is a printout of the SOURCE data set:

The following is a printout of sector 3:

Column 2

ELT 1 TEST i

The first instruction in this program, the COMM instruction,
uses the information in register A to go to Model 2 PRINT
TO EOD mode. Printing is now under control of the
programs in buffers 9 and 10. When printing is finished, the
qguestion mark in buffer 10 tells the work station to reload
and execute the program in ACL mode by using the infor-
mation in sector 3 of the index track.

This program is for a 3715 Printer, but can be used with a
3717 Printer by changing byte 23 of the .NAME statement
to a 2 and byte 13 of the .PRINTER statement to a 2.

Appendix E. Printer Link (RPQ) Feature

139

The following steps are required to use this program:

140

Label three unused diskette data sets with the
foilowing names (positions 6-13 of the index track);
SOURCE (one track), OBJECT (two tracks starting
on a track boundary), and RECORD.

Key the sample program into the SOURCE data set.

Enter the information to be printed into the
RECORD data set.

Enter the following information into sector 3 of the
index track:

Positions Entry
2-7 OBJECT
10 1

12-15 TEST
20 E

Translate the sample program.

Turn on the AUTO REC ADV switch. The C09 error
occurs if this switch is not on.

Execute the sample program.

Execution error codes for the Printer Link (RPQ)
feature are listed in Appendix C of this manual.

Printing can be stopped by turning off the AUTO
REC ADV switch. Printing could be restarted again
by turning on the AUTO REC ADV switch and
pressing REC ADV.

.BUFFER 21,87
.DATASET 8,115
END 28

drive number 29

1/O data set name 28

operating mode 28

output data set or program name 29
FIELD 25,87,116

buffer 25

errors 119

overflow buffer 25
.FORMAT 22,83,116
.NAME 6,115
.PRINTER 14,115
.REGISTER 20
SELF-CHECK 15,116

ACL control statements coding sheet one 3
ACL control statements coding sheet two 3
ACL instructions coding sheet 3

ACL label processor 3, 96

ACL label processor configurator 101

ACL program operation 4

ACL storage estimator 66, 67

ACL transtator 1,96

add instruction 30,92

algorithm control 15

application control language 1, 96
arithmetic operations 29, 30, 89

assigning a constant value 32, 89, 92
assigning a step number (ORG) instruction 60

binary synchronous communication 61
blanking a register 31

blocking and deblocking of logical records 83
branching operations 4, 33, 89

BSCA 13

buffer assignments 3, 65, 68

buffer number 1, 21,54

card /O 60,61,838

card |/O errors 118

characters per line 14, 89, 101

checkpoint errors 122

checkpoint ID number 58

checkpoint statement (CKPT) instruction 58
CKPT {checkpoint statement) instruction 58
close (CLOZ) instruction 45, 85

CLOZ (close) instruction 45, 85

Index

COMM {communications link/printer link} instruction 62, 137

comma edit control 7, 24

comments 3,6, 29

communication link errors 123

communications 61

communications link (COMM) instruction 62, 137
communications mode from an ACL program 62
complement 16

conditional branching 35

considerations for efficient key entry programs 64
control program 87

control statement name 15

control statements 1,6, 115

CRDP (punch a card) instruction 61

CRDR {read a card) instruction 60

creating a source program 1

cross reference 98, 100

current file disk address 43, 85, 86

customer diagnostic diskette 105

data directed formatting 23, 51, 52
data disposition 26

data movement 25

data position 28

data set access methods 4, 10,75
data set |/O buffer 9,42, 66

data set labels 82

data set name 8

data set number 8

decimal edit control 7

decimalize setf-check number 16
delete a disk record (WRTS) instruction 43, 76
deleted record routine 9,77

design and implementation 64
designated buffer load 21
diagnostic diskette 105

digit 1/O control 16

digit position 15

disk close errors 46, 121

disk dump 109

disk errors 122

disk open errors 45, 120

diskette operations 41,94

display and keyboard operations 5, 40, 88
display screen flash 64, 111

divide instruction 31

drive number 8

dummy GOTO 9,15, 34

dynamic close of a data set 45, 85
dynamic open of a data set 44, 85

Index

141

EBCDICchart 18

edit control characters 7, 23

edit currency characters 7

editing 5, 23

editing examples 24

efficient use of work station storage 68

end of file routine 9, 77

end of job (EXIT) instruction 45

ENTR (keyboard input) instruction 40

error correction 64,70

error messages 114, 118

EXCH (exchange buffer contents} instruction 54
exchange buffer contents (EXCH) instruction 54
EXEC (execute program chain) instruction 60
execute program chain (EXEC) instruction 60
execution error codes 118

execution timing 92

EXIT (end of job) instruction 45

exit control 27

expanded communications feature 62

extend data set and write disk record (WRTE) instruction
extent check 13, 91

43,76

field chaining 26

field exit control 27

field exit keys 26

field length 26

field type 26

format character 22

format character position 22
format number 22

format record 22

formatted display dump 108
formatting blocked records 23
formatting records greater than 128 characters 23
function keys 65

general error messages 116

generate self-check number instruction 59

GETB (move data from buffer to register) instruction 50
GOTO (unconditional branch) instruction 34,9

GSCK {generate self-check number) instruction 59

hexadecimal display 107

| {label update) access method 13, 81

ICBF (insert character in buffer) instruction 59
if CRD is/not busy instruction 40, 44

if format is/not instruction 37

if indicator is/not on instruction 37

if printer is/not busy instruction 40

if registers equal instruction 36

if registers greater/less instruction 36

if register is/not absolute numeric instruction 38

142

if register is/not negative instruction 35

if register is/not self-check instruction 39

if register is/not signed numeric instruction 39
if register is/not zero or blank instruction 35
index access method 81

index end buffer 14, 81

index end position 14, 81

index length 13

index origin buffer 13, 81

index start position 13, 81

index table 12,81, 91

indexed GOTO unconditional branch 33
indicators 110

initiating translation with the label processor 96
initiating translation without the label processor 102
input transiate table 17

input translate table buffer number 17

insert character in buffer (ICBF) instruction 59
instruction block 36

instructions 29

intermediate data set name 7

internal data movement operations 51, 89
introduction 1

invalid key errors 119

job completion system halt 119

job run sheet 73,74

key indexed access 11,42,70,79

key indexed read only access (KR) 11, 86

key indexed read only access, no index build (KRN} 11, 86
key indexed update access (KU) 11, 86
key indexed update access, no index build (KUN) 11, 86

key length 13
key position 13

keyboard buzz 64, 111
keyboard designation 7, 101
keyboard indicators 87, 111

keyboard input (ENTR) instruction 40

keyboard operations 40

keying pattern 64

KR {key indexed read only)} access method

KRN (key indexed read only, no index build)
access method 11, 86

KU (key indexed update) access method 11, B6

KUN (key indexed update, no index build) access method

11,86

label processor error messages 100
label syntax ruies 1

label update {1} access method
lines per page 14, 101
LOAD {load data buffer to register) instruction 55
load data buffer to register (LOAD) instruction 55

13, 81

11,86

machine size 7, 101

miscellaneous errors 120

miscellaneous instructions 58

MOFF {move partial content to register with offset)
instruction 55

MOVE (move data from buffer to buffer) instruction

move data from buffer to buffer IMOVE) instruction

move data from buffer to register (GETB) instruction

move data from register to buffer (PUTB) instruction

move partial content from register to register (MVER)
instruction 54

move partial content to register with offset (MOFF)
instruction 55

move register to register instruction 32

multipie diskette data sets 85

multiply instruction 30

MVER (move partial content from register to register)
instruction 54

no operation (NOP) instruction 59
non-printable characters 47, 89
NOP (no operation) instruction 59

object data set name 8

OPEN (open data set) instruction 44, 85
open data set (OPEN) instruction 44, 85
operation code error 124

operator documentation, training, and testing 73
operator error correction 70

operator training 73,75

ORG (assigning a step number) instruction 60
output translate table 18

output translate table buffer number 18
overflow buffer 25

overlapped operation 46, 90

PCTL (skip to line number or space) instruction 47
primary printer buffer 15

print a line (PRNT) instruction 46
print form size 7

print forms control 101

printer buffers 15

printer dump 108

printer error messages 118

printer link (RPQ) feature 137
printer operations 46, 89

printer overflow line number 7, 14
printer overflow routine 15
printer type 7, 14,101

PRNT (print a line} instruction 46
product table 16

product table buffer number 17
program debugging 104

program execution 103

program interruption 58
program name 6

program origin buffer 6, 88

54
54
50
51

program performance 90, 92
program restart 58, 64, 105
programming restrictions 88
prompting buffer 25, 40

prompting message 28, 64, 68
prompting message abbreviations 68
prompting message number 40
prompting register 7

proof keyboard 7

punch a card {CRDP) instruction 61
PUTB {move data from register to buffer} instruction 51

random by relative record number access 4

RBLK (read blocked record from buffer) instruction 52, 83
read a card (CRDR) instruction 60

read blocked record from buffer (RBLK) instruction 52,83
read from buffer (REFM)} instruction 51, 94

read instruction 41,76

read table entry (TBRD) instruction 49, 94

record length 8

REFM (read from buffer) instruction 51,94

reference material 6

reformatting 5

register contents 20

register trace 104

registers 3, 20, 41

relative record number access 4, 69,77

restricted areas 89

return transfer [subroutine call] (RGO) instruction 34
RGO (return transfer) instruction 34

sample programs 125, 130, 133, 139

search table for equal/high entry (TBFN) instruction 49, 94
search table for equal entry (TBF X} instruction 48, 94
second format record 22

secondary printer buffer 15

selecting trace 105

self check examples 19

self check moduius 15

self checking 5,15, 39

sequential access method 10,42,75

sequential read access 10, 86

sequential update access 10, 86

sequential write access 10, 86

sequential write extend 10, 86

set indicators off (SOFF) instruction 58, 94

set indicators on (SON) instruction 58, 94

shift left logical instruction 31

shift left signed instruction 31

shift right logical instruction 31

shift right round instruction 32

shift right signed instruction 32

single step trace 104

skip if character is/not equal instruction 38

skip to line number or space (PCTL) instruction 47
SOFF (set indicators off) instruction 58, 94

SON (set indicators on) instruction 58, 94

source listing 98, 99

special keyboard close 28

SR (sequential read) access method 10, 86

step numbers 3, 29,96

Index

143

step stop 104 unattended ACL program mode after communications 62

step trace 104 unconditional branch 33

STOR (store data register to buffer) instruction 56 unformatted display dump 107

storage 1, 61 United Kingdom special algorithm 1 17
storage allocation and requirements 65, 66 using operator messages 68

storage dumps 106 using tables 68

store data register to buffer (STOR) instruction 56
SU (sequential update) access method 10, 86

subtables 68
subtract instruction 30
sum manipulation 16 WAIT (wait 1/O) instruction 44
summing of products 15 wait 1/0 (WAIT) instruction 44
SW (sequential write) access method 10, 86 warning error messages 117
SWE {sequential write extend) access method 10, 86 WBLK (write blocked record to buffer) instruction 53, 83
symbol interval count 7 weighting factors 18
symbolic labels 3, 29, 96 weighting factors register 19
WRFM (write to buffer) instruction 53, 94
write blocked record to buffer (WBLK) instruction 53, 83
write disk record (WRT) instruction 42,76
write table entry (TBWT) instruction 50, 94
table argument 47,94 write to buffer (WRFM) instruction 53, 94
table index 13, 47,95 WRT (write disk record) instruction 42,76
table number 88 WRTE (extend data set and write disk record)
table operations 4,47, 68 instruction 43,76
TBFN (search table for equal/high entry) instruction 49, 94 WRTS (delete a disk record) instruction 43,76

TBFX (search table for equal entry) instruction 48, 94

TBRD (read table entry) instruction 49, 94

TBWT (write table entry) instruction 50, 94

trace output 104

tracks per index 13 ZONE (zone bytes in register) instruction 57

translation 96 zone bytes in register (ZONE) instruction 57
translator error formats 114

translator error messages 114
translator storage assignments 66

3713 printer 7,14
3715 printer 7, 14, 137
3717 printer 7, 14, 137
3741 operation 96

144

Junf]
IHTH
iy
II|||||I
||||||||

®

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150

Atlanta, Georgia 30301
{U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
U.S.A.

(International)

GA21-9194-3

S-PBLE LZYD "M'ST Ul peiulld [enuepy 90udiajay BulwweiBold UoRe ™ MIOM 3|qBUIWEIBOId b PUB £ SISPOW L LE INAY

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in IBM programming

READER'S IMENT FORM

support, requests for additional publications, etc, should be directed to your 1BM representative or to the I1BM branch office nearest your location.

Error in publication (typographical, iHustration, and so on). No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

® No postage necessary if mailed in the U.S.A,

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name

Address

enuen

aoualasay Bulwwelboig
uoneis yJop sjgewuwelfosy

¥ pue g SiapoN LyLE NG

£v61l6-12VO

GA21-9194-3

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM Corporation

General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

ol
7%

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
US.A.

{International)

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
i
| §
I
l

Fold

1815 %JOM B|GeWWRIBOI] b PUE € SIAPOW L LE W

jenuey aduaseey Buiwwelbe:

Ev616-1ZVD VSN Ul paluld

Please use this form ... ' to identify publication errors or request changes to publications. Technical questions about IBM systemns, changes in I1BM programming

READER’S .MENT FORM

support, requests for ar Jitiona! publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your tocation.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

® No postage necessary if mailed in the U.S.A.

fnaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name L

Address

|enuey

aaualayay Bulwwesboliy
uollelg 3Jopp ajqewwes6oliy

v Pue £ s|apo LyLE WEI

£v616-1CVO

GA21-9194-3

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM Corporation

General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

il

O

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150

Atlanta, Georgia 30301
{U.S.A. only)

General Business Group/international
44 South Broadway

White Plains, New York 10601
U.S.A.

{International)

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

jenuew aouaseyay Burwwesdc:

1815 YI0M BqewweIBolg & PUE € SIPPOW Ly LE WEI

£P6L6-LZVD V'S Ul PALULY

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in |BM programming

READEF OMMENT FORM

support, requests for additional pubtications, etc, should be directed to your IBM representative or to the IBM branch office nearest your tocation.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

® No postage necessary if mailed in the U.S A,

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name

Address

jenuepy

adualajay Bulwwelboiq
uof1R1g HJIOM djgewwelBosy

P Pue € S|apoiN Lb/E NI

£v616°1CVD

GA21-9194.3

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WiLL BE PAID BY ADDRESSEE:

IBM Corporation

General Systems Division
Development Laboratory
Putlications, Dept. 245
Qochester, Minnesota 55901

®
international Business Machines Corporation

Generz! ..ystems Division
4111 Northside Parkway N.W.
P.0. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
USA.

‘nternational)

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

|
|
|
l
I

Fold

— — aunbuoiyin) — — — — —

11818 §JOM 3jqewwesbold ¢ pue ¢ sjapow Ly /L€ WEI

|enuep 8oudsg ey Bulwwelbo:

£-v616-1ZVD "V'S'N Ul patulid

