
I GC30-3001-2

Systems

Systems

GC30-3001-2

IBM 3735 Programmer's Guide

(OS and DOS Systems)
Program Numbers OS 360S·CQ596

DOS 360N·CQ490

Preface

This programmer's guide provides system programmers,
application programmers, and system operators with the
information they need to use IBM 3735 Programmable
Buffered Terminal facilities in a teleprocessing system.

All readers should have a general knowledge of System/
360 and System/370 data processing techniques in a tele
processing environment. Those responsible for designing or
installing part or all of a system that includes 3735 terminals
as remote devices must have a more detailed knowledge
about teleprocessing systems. An annotated bibliography at
the back of this book directs readers to publications con
taining this type of information. All users of this book
should be familiar with the information contained in the
IBM 3735 Programmable Buffered Terminal Concept and
Application publication, Order No. GA27-3043, which
describes the operating characteristics and features of the
3735 terminal.

The system programmer's main concern is with the
system generation and storage requirements that are
necessary to include the Form Description (FD) macro
instructions, the Form Description (FD) utility, and the
appropriate access method support in his system. This
information is found in the "System Design Considerations"
section. He also needs to establish sequences of job con
trol statements that permit the application programmer to
use these facilities. This information is found under
"Assembling the Form Description Macro Instructions,"
"Using the OS Form Description Utility," and "Using the
DOS Form Description Utility."

The application programmer is responsible for writing
the form description programs (FDPs), and the application
programs that transmit the completed FDPs and data to the
3735 and process the data captured at the 3735. Since
these programming responsibilities may be divided among

Third Edition (July 1972)

different people in a data processing installation, this.
publication distinguishes between the person who writes
the FDPs (called a forms encoder) and other programmers.
In installations where one person is responsible for pro
gramming the entire package, this distinction should be
ignored. The application programmer should be generally
familiar with the contents of the entire publication (with
the possible exception of the "System Generation" and
"Storage Estimates" sections). He should have a thorough
understanding of the use of the FD utility, the available
telecommunications access methods, and the relationships
between the FDPs and the data transmitted from the 3735
to the central computer. The application programmer need
not be proficient in Assembler Language programming, but
he should be acquainted with IBM System/360 and System/
370 Assembler Language macro instructions. If he lacks
this general knowledge, he should have the services of an
Assembler Language programmer available to him.

Programmers and system operators both need to know
what action to take when various messages are directed to
them .. Appendix E describes the Operating System (OS)
messages, and Appendix F describes the Disk Operating
System (DOS) messages. The system operator should also
read the "Introduction," which describes the general
functions of the 3735 terminal, the FD macro instructions,
and the FD utility.

Readers who use this book for reference purposes will
find a page following the list of illustrations that allows quick
access, via tabs, to the discussions they seek. In addition,
the reference user will find that several of the appendixes
contain condensed information, such as a macro format
summary (Appendix B), a summary of 3735 operating pro
cedures (Appendix I), and a summary of 3735 data and
command functions (Appendix K).

This is a major revision of, and obsoletes, GC30-3001-1 and Technical Newsletter
GN30-3000. Significant new material has been added throughout, and existing
material has been changed extensively; therefore, no vertical lines appear in the
margins, and the manual should be reread in its entirety. This revision contains
information on the File Storage capability supported for the 3735. This infor
mation includes descriptions of two new FD macros, FDLOAD and FDSYNTAX,
as well as additional operand specifications for the FDFORM, FDFIELD, and
FDCTRL macros.

Changes are periodically made to the information herein; before using this publication
in connection with the operation of IBM systems or equipment, refer to the latest
SRL Newsletter for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

This manual has been prepared by the IBM System Development Division, Publica
tions Center, Dept. E01, P.O.Box 12275, Research Triangle Park, North Carolina
22709. A form for reader's comments has been provided at the back of this manual.
If the form has been removed, comments may be sent to the above address.

© Copyright International Business Machines Corporation 1972

Contents Introduction
What The 3735 Is And What It Can Do

Configuration
Program Support . • . .

Form Description Macro Instructions
Form Description Utility Program
System Design .

How To Write A Form Description Program
Macro Coding Conventions

Operand Promotion
Operand Chaining

Macro Format Conventions
Structural Form Description Macro Instructions

FDFORM Macro Instruction
FDPAGE Macro Instruction
FDLlNE Macro Instruction
FDFIELD MacrQ Instruction

Source Keyword Operands
Input Data Verification Operands
Sink Keyword Operands
Output Data Editing Operands

Procedural Form Description Macro Instructions
FDCTRL Macro Instruction
FDLOAD Macro Instruction .

Delimiting Form Description Macro Instruction
FDEND Macro Instruction

Diagnostic Form Description Macro Instruction
FDSYNT AX Macro Instruction

Segments and Paths in a Form Description Program
Assembling the Form Description Macro Instruction

Operating System (OS) Assembly Considerations
Disk Operating System (DOS) Assembly Considerations

How To Use The Form Description Utility
What the Form Description Utility Does
Using the OS Form Description Utility

OS Control Step Operations
OS Link-Edit Step Operations
OS Storage Step Operations

Using the DOS Form Description Utility
DOS Control Step Operations .
DOS Link-Edit Step Operations
DOS Storage Step Operations .

System Design Considerations
Telecommunications Access Methods

OS TCAM
OS and DOS BT AM

Transmission Codes
Timeouts
Communication Procedures

37 35-to-CPU Transmission
Sending Abort Conditions .

CPU-to-373S Transmission
Form Description Program Message Format.
ID List Message Format
Selectric Message Format .
Terminate Communicate Mode Message Format
Power Down Message Format
Text Message Format
Transmission Blocks
Receive Abort Conditions

Inquiry Operations .
Application Programs .

Switched Network Considerations
Multipoint Network Considerations
Relating Application Programs to Form Data

Bypassed Fields
Form Records

On-Line Processing
Batch Processing
Combined Operation

1
1
2
4
5
6
6

7
7
8
9

10
11
11
17
20
27
33
40
43
48
55
S5
70
71
71
71
71
72
76
77
78

79
79
80
83
83
84
85
87
89
90

91
91
92
92
92
92
93
93
9S
95
96
97
97
97
97
98
98
98
99

100
101
102
102
102
102
103
104
104

iii

iv

System Generation Considerations
Storage Estimates

3735 Disk Storage Considerations
OS Storage Considerations
DOS Storage Considerations .

Appendix A. 3735 Numeric Data Self-Checking Algorithms

Appendix B. Form Description Macro Instruction Format Summary

Appendix C. Sample Form Description Macro Program

Appendix D. Form Description Macro Instruction MNOTE Messages

Appendix E. OS Form Description Utility Diagnostic Messages
OS Control Step Messages .
OS Link-Edit Step Messages
OS Storage Step Messages .

Appendix F. DOS Form Description Utility Diagnostic Messages

DOS Control Step Messages
DOS Link-Edit Step Messages
DOS Storage Step Messages

Appendix G. DOS BT AM Sample Program

Appendix H. OS BT AM Sample Program

Appendix I. Summary of 3735 Operating Procedures

Appendix J. Katakana Support Information
Character Coding Aids .

Katakana Display MNOTEs
Romaji Character Coding .

Appendix K. Summary of 3735 Data and Command Functions

Appendix L. CPU Data File Load or Update

Appendix M. 3735 Supported Graphic Characters

Glossary .

Bibliography

Index.

104
105
105
106
106

109

111

113

119

153
153
155
156

159
159
160
160

165

171

177

181
183
183
183

187

189

191

193

197

199

Illustrations Figure

1
2
3
4
5
6
6
7
8
9
10
11
12
12
13
14
14
14
14
14
14
14
15
16
17
18
18
18
18
18A
19
20
21
21
22
23
24
25
26
27
28
29

Title

IBM 3735 Programmable Buffered Terminal-Typical Configuration
IBM 3735 Operating Environment
IBM 3735-CPU Interaction
Macro Instruction Statement Format
Promotable Operands .
Permitted Operand Chaining Formats (Part 1)
Permitted Operand Chaining Formats (Part 2)
Format of the FDFORM Macro Instruction .
Coding the FDFORM Macro Instruction
Format of the FDPAGE Macro Instruction .
Coding the FDPAGE Macro Instruction.
Format of the FDLINE Macro Instruction .
Coding the FDLINE Macro Instruction (part 1)
Coding the FDLINE Macro Instruction (Part 2) . i,'

Format of the FDFIELD Macro Instruction
Coding the FDFIELD Macro Instruction (Part 1)
Coding the FDFIELD Macro Instruction (part 2)
Coding the FDFIELD Macro Instruction (part 3)
Coding the FDFIELD Macro Instruction (Part 4)
Coding the FDFIELD Macro Instruction (Part 5)
Coding the FDFlELD Macro Instruction (part 6)
Coding the FDFIELD Macro Instruction (Part 7)
Summary of PICTURE Character Functions
Examples of PICTURE Specifications
Format of the FDCTRL Macro Instruction. •
Coding of FDCTRL Macro Instruction (Part 1) •
Coding of FDCTRL Macro Instruction (Part 2) •
Coding of FDCTRL Macro Instruction (Part 3) .
Coding of FDCTRL Macro Instruction (part 4) •
Format of FDLOAD Macro Instruction
Format of the FDEND Macro Instruction
Jones Supply Company Invoice . .
A Form Description Program for the Jones Supply Co. Invoice (Part 1) •
A Form Description Program for the Jones Supply Co. Invoice (Part 2) .
Flow of Control and Data Through the Assembler .
Flow of Control and Data Through the Form Description Utility
Data Flow Through the OS Form Description Utility .
OS Control Step Output Format.. ..
Data Flow Through the DOS Form Description Utility
DOS Control Step Output Format •
3735 Character Code Chart - EBCDIC
3735 Character Code Chart - ASCII . •

Page

1
3
4
7
8
9

10
12
13
18
19
21
22
25
27
29
31
32
34
40
42
48
50
54
55
57
61
63
69
70
71
73
74
75
76
81
82
84
88
89
93
94

v

'\

FORM
DESCRIPTION

MACROS

FDFORM

FDPAGE

FDLlNE

FDFIElD

FDCTRl

FDlOAD

FDEND

ASSEMBLY

FORM
DESCRIPTION

UTiliTY

OS UTiliTY

DOS UTiliTY

SYSTEM
DESIGN

t
t
t
t
t

APPENDIXES t

What The 3735 Is
And What It Can Do

Introduction

The IBM 3735 Programmable Buffered Terminal (hereafter referred to as the 3735) com
bines some of the features of an interactive terminal with the efficiency of buffered batch
transmission to provide a new approach to source document (form) preparation and data
capture. Designed primarily for applications using preprinted (fixed format) business forms
and batch processing, the 3735 can be tailored, via user-designed form description programs
(FDPs), to fit the needs of a variety of data processing environments.

This programmer's guide describes methods and techniques that can be used to design,
write, and generate form description programs (FDPs). The major sections of the book
discuss:

• The Form Description (FD) macro instructions, which a forms encoder uses to describe
forms and specify the functions desired for processing forms at the 3735 ("How to
Write a Form Description Program").

• The Form Description (FD) utility program, which transforms assembled form des
cription programs (FDPs) into records that can be transmitted to a 3735 and interperted
by its control program ("How to Use the Form Description Utility").

• Other factors that must be considered in designing a teleprocessing system that uses
3735 terminals as remote stations ("System Design Considerations").

The 3735 is a programmed terminal consisting of a desk-side control unit and a cable
connected IBM Selectric ® I/O-II Printer Keyboard that can be placed on the type-
writer pedestal of a standard secretarial desk (see Figure I). The 3735 control unit contains

Figure 1. IBM 3735 Programmable Buffered Terminal-Typical Configuration
(Telephone, Desk, and Chair Not Furnished by IBM)

Introduction

Configuration

2 IBM 3735 Programmer's Guide

a communication interface disk storage space for control information and recorded data,
and a microcoded resident terminal control program (TCP) that permits flexible control of
the terminal/operator interaction.

During document preparation, the 3735 provides:

• Operator gUidance: The 3735 can display set-up instructions, exception messages, and
indications of keying or procedural errors.

• Programmed forms control: The 3735 automatically positions the fORll for printing
each line. .

• Autqmati~print-element positioning: The 3735 automatically positions the print ele
ment ,for printIng data within predefined fields.

• Data validation: The 3735 can examine input data for character set membership, char
acter count, logical comparison with other data, or self-checking of numeric data.

• Format and editing: The 3735 provides centering, left and right justification, under
lining, character fIlling, and numeric-data editing.

• Logical capabilities: The 3735 can conditionally process or bypass pages, lines, and
data fields.

• Arithmetic capabilities: The 3735 can add, subtract, multiply, divide, and divide and
round.

• Power typing: The 3735 can automatically print previously entered or internally
generated information from storage.

The information captured during document preparation is stored, under program con
trol, for later transmission to a central computer. An entire day's transactions can be
stored for unattended transmission to the central computer, and processed data can be
returned from the central computer for use in the next day's operation. Figure 2 illus
trates the 3735 operating environment.

The 3735 terminal can communicate with an IBM System/360 (except Model 20 or
Model 67 in Time-Sharing mode) or System/370 (Model 135, 145, ISS, 165, or 195)
central processing unit (CPU) through an IBM 2701 Data Adapter Unit, IBM 2703
Transmission Control, IBM 3705 Communications Controller, or an Integrated Communi
cations Attachment (System/360 Model 25, System/370 Model 135, or System/3 only)
over switched communication lines at 1200 or 2000 bps (or at 2400 bps with an IBM
3872 Modem).
control unit. A magnetic disk storage device within the control unit contams tne termlDaJ
control program (TCP), the form description programs (FDPs), and an area for storage of
user data. The number of FDPs that can be stored on the diSk depends on their length.
The "Storage Estimates" discussion in the "System Design Considerations" section con
tains further information concerning FDP and data storage requirements.

The basic storage capacity for FDPs and user data is 62,832 bytes. This storage capa
city can be expanded (by special features) in two increments of 41,888 bytes to a total
of 146,608 bytes. Other features that can be provided are:

• Automatic Answer, which allows unattended communication with a CPU.
• A synchronous clock, which allows transmission rates of 600 or 1200 bps (600 bps

is available only for IBM World Trade Corporation customers).
• Multipoint communication on leased lines at 1200, 2000, or 2400 bps.
• A keylock to prevent unauthorized use of the 3735.
• An Operator Identification Card Reader, which may be used to read either an IBM

Magnetic Stripe Identification Card or an IBM Credit Card.
• A 5496 Data Recorder adapter, which allows an IBM 5496 Data Recorder to be

attached to the 3735. (The 5496 is a buffered, operator-oriented, key-entry unit that
punches and reads 96-column data cards.)

• A 3286 Printer adapter, which allows an IBM 3286 Printer Model 3 to be attached to
to the 3735 for use as an auxiliary printer.

DAYTIME:

Source Record

Retrieve
Correct
Power Type

THEN AT NIGHT·· UNATTENDED:

POWER TYPE IN THE MORNING

Figure 2. IBM 3735 Operatq Environment

Receive

Central
Computer

Central
Computer

Introduction 3

Program Support

4 IBM 373SPI'ogrammer's Guide

• A File Storage capability , which permits the user to code an FDP that performs read,
write, and update operations on a user. area of the 3735 disk storage file .

• A combination File Storage and external numpad capability, which permits the user
to code an FDP that performs read, write, and update operations on a user area of the
3735 disk storage file. If this combination is selected, the 5496 Data Recorder adapter
cannot be installed.

IBM System/360 and System/370 program support for the 3735 is provided under the
Operating System (OS) and the Disk Operating System (DOS). This support provides
for assembling user-written FOPs, for preparing assembled FOPs for transmission to the
3735, and for transmitting programs and data between a central computer and 3735
terminals.

The 3735 uses the binary synchronous communications (BSC) method of line control.
The BSC support provided in OS TCAM, OS BTAM, and DOS BTAM handles message
transmission between the computer and the 3735. Figure 3 shows the general data flow
and interaction between the central computer (CPU) and a 3735.

Two levels of program control are used in the 3735. The forms encoder generates
FOPs by coding FD macro statements that specify the structure (layout) of a form and
how it is to be processed. The terminal control program (TCP), recorded in the 3735
control unit during manufacture, interprets the FOPs and provides detailed 3735 control.
This two-level approach relieves the forms encoder of much of the detailed programming
required to capture form data at the 3735.

r
Coded Form
Description
Macro Statements

.. ->
'-YO

CENTRAL COMPUTER

• Assembles Form IBM 3735

Description macros
• Stores Form Description • Stores Form Description

programs for transmission programs and data on disk

to 3735 • Performs logiCal and

• Sends Form Description arithmetic functions
programs to 3735 • Handles local I/O and
terminals other programmed

• Controis Communication functions
between 3735 and central • Handles communication
computer with CPU

• Processes data gathered • Permits entry and retrieval
at 3735 terminals of source document data

'. Creates data records to under program control
be sent to 3735 terminals • Provides for on-line

inquirY operations

~ ,./f
Communications
Link

Figure 3. IBM 373S-CPU Interaction

Form Description Macro
Instructions

The Form Description (FD) macros consist offour structural macro instructions
(FDFORM, FDPAGE, FDLINE, and FDFIELD), two procedural macro instructions
(FDCTRL and FDLOAD), one delimiting macro instruction (FDEND), and one
diagnostic macro instruction (FDSYNTAX). The macros may be coded in many different
ways to describe many different kinds of forms. Each FD macro statement consists of:

• A name entry (optional in all but the FDFORM macro), which is a symbol created by
the forms encoded to identify the statement.

• An operation entry, which specifies the macro-instruction operation desired.
• Operand entries, which specify additional details that further defme the macro-instruc

tion operation. Depending on the needs of the FDP, one, several, or no operands can
be coded.

Every form description program (FDP) must begin with an FDFORM macro statement
and end with an FDEND macro statement.

The structural macro instructions describe the physical structure of a form. Their
general functions are as follows:

• FDFORM: You code this macro only once, as the first statement in an FDP. It
provides the FDP identification (in two ways, by form name and by code number),
data condensation options, a device option, a buffer option, an object deck selection
option, an assembly mode option, a mechanical left-margin setting, an operator
message, and horizontal tabular-stop settings.

• FDPAGE: You code this macro to describe each page within a form. It names the
page, specifies a number for the page, defines the vertical size (height) of the page,
specifies the extent of the vertical margins, and provides for backward references to
the macro statement.

• FDLINE: You code this macro to describe each line within a page. It names the
line, specifies a number for theiine, defmes the horizontal size (width) of the line,
specifies the extent of the horizontal margins, provides for repeated execution of a
group of macro statements, and provides for backward references to the macro
statement.

• FDFIELD: You code this macro to describe each data field within a line. It names
the field, locates the field within the line, specifies the origin and destination of the
field data, specifies the processing to be performed on the field data, provides for
repeated execution ofa group of macro statements, permits specification of condi
tional branches, and provides for backward references to the macro statement.

The procedural macro instruction FOCTRL provides much of the decision-making
power in your FDP. You can code it anywhere between FDFORM and FDEND to test
various indicators, alter the contents of the 3735 counters and program logic indicators,
initiate repeated execution of a group of macro statements, select conditional branches
that permit nonsequential processing of a form, accumulate batch totals, and perform
I/O operations (including communication with a CPU).

The procedural macro instruction FDLOAD is used to create a specialized FDP that
loads the user's data area on the 3735 disk storage me with data sent from the CPU.
Such an FDP consists of only FDFORM, FDLOAD, and FDEND macro statements.

You code the delimiting macro instruction FDEND only once, as the last statement
in your FDP. It indicates to the Assembler that no more macro statements describing
the current form are to follow, and it reinitializes the Assembler for a possible following
FDP in the same assembly.

The diagnostic macro instruction FDSYNT AX may be used to aid in locating errors
in an FDP. It may be coded before or between other FD macros and instructs the
Assembler to suppress code generation, but to check all macro statements for syntactic
integrity.

Introduction 5

Form Description Utility
Program

System Design

6 IBM 3735 Programmer's Guide

The output module from your error-free FOP assembly must be further processed
before it can be sent to the 3735. This additional processing is done in the central
computer'by the Form Description (FO) utility, which transforms the assembled FOPs
into blocks of instruction sequences that the 3735 can interpret and use. The FO utility
is executed in three steps:

• The control step examines the FOP object modules for integrity and generates the
linkage Editor control statements needed to produce an overlay program that is
executed in the storage step.

• The link-edit step combines the output of the control step with an IBM-supplied
module to create the program that is executed in the storage step.

• The storage step places the FOPs in a user-specified data set for later transmission
from the central computer to a 3735.

Each step of the utility produces an output listing that describes the results of
processing, including any errors that may have been detected. When the utility has
finished its processing withou terror, the FOPs in your data set are ready for transmission
from the central computer to 3735 terminals.

The user is responsible for providing the teleprocessing application programs that
transmit the FOPs and other data to his 3735 terminals. In addition, the user needs to
provide the application programs that process the data collected at the 3735. The
design of such application programs depends on the telecommunications access method
(OS TCAM,OSBTAM, or DOS BTAM) provided in the central computer. Operation
with these access methods is discussed in the "System Design Considerations" section.
This section also provides system design and usage information that will help the system
programmer and application programmer to tailor their particular computing facilities
to include 3735 terminals.

Further information concerning 3735 operations can be found in the IBM 3735
Programmable Buffered Terminal Concept and Application publication, Order No.
GA27-3043. '

Macro Coding Conventions

How To Write A Form Description Program

After a forms designer has decided what forms are to be used for various 3735 applications
and what kinds of information he needs from the forms, a forms encoder must write form
description programs (FDPs) that the 3735 can interpret and use to process the forms.
The Form Description (FD) macro instructions provide the forms encoder with a flexible,
comprehensive source language that he can use to describe how the forms are structured,
and how the 3735 is to process each data field of a form.

Only those instructions generated during the assembly of the FD macro statements may
be included in an FDP. The forms encoder may, however, use the Assembler instructions
TITLE, EJECT, SPACE, and PRINT to control the format of his output listing. In fact,
use of the Assembler PRINT NOGEN instruction will substantially reduce the size of the
FDP listings. Such Assembler instructions are not considered to be part of an FDP.

An FD macro statement is coded in columns 1 to 71 of a standard SO-column card. If
more than one card is needed to complete a macro statement, a nonblank character must
be placed in column 72, and the statement continued on the following card, starting in
column 16. All columns to the left of column 16 on the following card must be blank.

Statements may consist of from one to four entries in the statement field (columns
1-71), as shown in Figure 4. They are, from left to right: a name entry, an operation
entry, an operand entry, and a comments entry. These entries must be separated by
one or more blanks, and must be written in the order stated. A name entry, if used,
must begin in column 1. If no name entry is used, the operation entry can begin any
where beyond column 1, but must be completed before column 71.

A name entry (symbol) may be from 1 to S characters long. It must begin with an
alphabetic character (A-Z, or the characters #, @, and $), and may not contain any blanks
or special characters. Numeric characters may be used following the initial alphabetic
character.

Name Operation Operand Comments Col.
Entry Entry Entry Entry 72

FORM001 FDFORM FIO= '001', COMMENTS HERE X
MRGSTOP= 11

j

Continuation begins in """;,",,J column 16 of next card. - indicator

Figure 4. Macro Instruction Statement Format

Operands are of two general types, positional and keyword. Positional operands must
be coded in a particular order. Keyword operands, on the other hand, may usually be
coded in any order. A keyword operand is identified by its format, which is:

KEYWORD = value

For example, in the FDPAGE macro instruction, pagenum is a positional operand, and
HEIGHT = value is a keyword operand. Keyword operands may themselves contain
positional or keyword sub operands (without an = sign).

How To Write A Form Description Program 7

:g
a:
C.J

~

:IE
a:
o
u.

I

Operand Promotion

8 IBM 3735 Programmer's Guide

Every macro instruction operand, except the last in a given macro statement, must be
immediately followed by a comma. No blanks are permitted between operands and the
commas that separate them, unless you are using more than one card to code the macro
statement. In this case, you can place a comma immediately after the operand, place a
nonblank character in column 72, and begin the next operand on the following card
(in column 16). When an optional keyword operand is not coded, its associated comma
should also be omitted. If excess sub operands are coded in some operand, they are
ignored, and the FD macros issue a warning message to that effect:

An entire statement field can be used for a comment by placing an asterisk (*) in
column 1.

Sample programs in Figure 21, and in Appendix C, illustrate these coding conventions,
and show how comments can be used effectively to describe the function of each state
ment entry. Further information on Assembler Language coding conventions can be
found in the OS Assembler Language pUblication, Order No. GC28-6514, or the Disk and
Tape Operating Systems Assembler Language publication, Order No. GC24-3414.

Many Form Description (FD) macro instruction operands may be coded in more than one
type of structural macro statement. Such coding results in "promoting" an operand to a
position of higher authority than normal.

The authority of a macro statement extends through an FDP until the same type of
macro statement (or a macro statement of higher authority) appears later in the FDP.
The values specified in a promoted operand are effective throughout the authority of a
macro statement, except where modified temporarily in a macro statement of lower
authority. The levels of authority are suggested by the macro names themselves; FDFORM
is the highest-authority macro, FDPAGE the next lower, FDLINE the next lower, and
FDFIELD the lowest. The delimiting macro FDEND terminates the authority of
FDFORM. (No promotion to or from FDCTRL is possible since its operands do not
directly relate to form structure.)

Consider the case where all pages of a form have the same vertical and horizontal out
put space requirements. If you code the operands that control these functions in the
FDFORM macro statement, their authority extends throughout the entire FDP. You
need not specify these operands again in another macro statement unless you wish to
temporarily override the promoted specification.

Operand promotion can save a substantial amount of coding in many fixed-format
form descriptions. However, not all operands can be promoted to a macro statement of
higher authority. Figure 5 lists the operands ~hat can be promoted, their origins, and
their functions. Any operand in the table can be coded in any macro of higher authority
than the macro in which it normally appears. For example, the SOURCE operand,
normally coded in FDFIELD, can be coded in any of the higher-authority macros
(FDLINE, FDPAGE, or FDFORM).

FUNCTION OPERAND PROMOTED FROM

page height (vertical output spacel HEIGHT FDPAGE
vertical margin checking VMRG

line width (horizontal output space WIDTH FDLlNE
horizontal margin checking HMRG

orgin of input data SOURCE* FDFIELD
kind of input data (character setl KIND
self·checking of input data SELFCHK
destination of output data SINK
justification of output data JUSTIFY
fill chars in unused positions FILL
underscoring of data fields UL

*Except SOURCE = 'string' and SOURCE = X10r X2.

Figure 5. Promotable Operands

Operand Chaining

If an operand that is not promotable is coded in some other macro than the one in
which it is permitted, the Assembler issues an error message that flags the operand as an
undefined symbol.

Some 3735 applications may require the coding of one or more operands that contain
more characters than Assembler character-handling limitations permit. When coding
FOPs to support such applications, you can overcome these limitations by chaining to
gether successive macros of the same type. (Operands that may require this treatment
are also those which cause large numbers of FOP bytes to be generated at the tillle the
operand is assembled.) The chaining function is invoked and controlled according to the
following rules and procedures:

• When chaining is used, operands must be coded in the order shown in Figure 6.
• The general technique used to specify chaining is to code the character C as the last

suboperand of the chained operand, then to code the macro and its continued operand
again. For example:

FOO 1 FOFORM FID = '00 I ',MESSAGE = ('long text block' ,C)
FOFORM MESSAGE = 'remainder of long text block'

MACRO OPERANDS PERMITTED CHAINING SPECIFICATIONS

FDFORM FID
....,

OBJECT
PACKING
MRGSTOP) none
MODE
DEVICES
BUFFERS

MESSAGE MESSAGE = ('string', C) or MESSAGE = (cc (d), C)
HTAB HTAB = (d, d, d, •.. , d, C)

HEIGHT
....,

VMRG
WIDTH
HMRG
SOURCE
SELFCHK) none
KIND
SINK
FILL
JUSTIFY
UL -"

Figure 6. Permitted Operand Chaining Formats (Part 1 of 2)

The C suboperand tells the FO macros to interpret the next sequential macro state
ment as a continuation of the macro statement that requested chaining.

• The chaining function is performed by the FO macros, and is separate from the card
continuation facility provided by the Assembler. Thus, you should not code a
"continuation" character in column 72 of the card image that requests chaining
unless you are using the next card only for a comment.

• Macro statements chained together in this manner may not have a name entry coded
in any macro except the first one in the chain.

Figure 6 lists, for each macro instruction that uses chaining, (I) the operands that may
be coded in the macro, (2) the order in which the operands must be coded, and (3) the
places in the operand fields at which the chaining indicator, C, may be inserted.

How To Write A Form Description Program 9

Macro Format Conventions

10 IBM 3735 Programmer's Guide

MACRO OPERANDS PERMITTED CHAINING SPECIFICATIONS

FDFIELD SAVELOC

1 CYCLE none
BATCH

SOURCE SOURCE = ('string', C)

COUNT

1
SELFCHK
KIND
SINK none
FILL
JUSTIFY
UL

COMPARE The C may be coded only after AND or OR. For example:
COMPARE = (EO, 'A', OR, C)

CTR CTR = ((d, operation) , C)
IND The C may be coded following a complete suboperand

specification, as follows:
IND = ((1, EO, 'A'), C)
It may also be coded following an AND or OR within a
suboperand specification, as follows:
IND = ((1, EO, 'A'), (2, EO, 'B', AND, CII

PICTURE PICTURE = ('picturespec' , C)

FDCTRL SAVELOC none
CYCLE none
IF The C may be coded only after an AND or OR (if any).

For example:
IF = (IND (3) ,OR, C)

IND IND = ((d, value) ,C)
CTR CTR = ((d, or, opnd) , C)
TOTAL TOTAL 0: ((total spec) ,C)
COMMAND COMMAND = ((cmndgrp) ,C)
GOTO none

Figure 6. Permitted Operand Chaining Formats (Part 2 of 2)

Several conventions are followed in describing the order and arrangement of the Form
Description (FD) macro instructions:

• Code uppercase letters and all special characters exactly as shown in the individual
macro descriptions. Exceptions to this conv~ntion are brackets, [] ; braces, n ;
ellipses, ... ; and subscripts. These are not coded.

• Lowercase letters and words represent variables for which you must substitute specific
information or specific values.

• Braces, {} ,indicate that you must code one of the alternatives shown within the
braces. The braces themselves are not coded.

• Brackets, [], indicate an optional item. You can omit the items within the brackets
at your discretion. Any item not within brackets must be coded. The brackets them
selves are not coded.

• Items in a stack, one over another, represent alternative operand entries. You may
code only one of a group of stacked items. If the stacked items are within braces, you
must code one of the items. If the stacked items are within brackets, you may code
one or none.

• If one of a group of stacked items within brackets is underscored, and you do not
supply a specific value, that item is implied by default. Such items are therefore called
default values. They are provided by the FD macros.

• An ellipsis, ... , indicates that the preceding item or group of items can be entered
more than once in succession. The ellipsis is never coded.

• Character strings (indicated by 'string') must be enclosed by apostrophes ('). If an
apostrophe or an ampersand appears in the character string, it must appear doubled
(for example, '0' 'KELLY WORKS FOR SMITH && JONES, INC.').

Structural Form Description
Macro Instructions

FDFORM Macro Instruction

• Certain graphic characters available on the 3735 are not found on many card punch
machines. Such characters can be coded in several ways. Lowercase alphabetic
characters, for example, may be coded by multi-punching the appropriate combina
tions, or by special coding, as explained in the next bullet item. For a detailed list of
the valid EBCDIC and ASCII characters, refer to Appendix M in the rear of this
publication.

o Lowercase alphabetic characters may be specified not only by multi-punching,
but also by coding an underscore character (-) at the beginning and end of each
character string that is to be lowercase. The underscore character is not translated;
instead, the first one encountered directs the FD macros to interpret any following
uppercase Roman letters as lowercase until underscore character is encountered (or
the character string ends). Uppercase is assumed at the start of a string, and use of
the underscore character is prohibited where lowercase characters are illegal (such
as in Katakana strings). Any multi-punched lowercase letters in the character
string are not affected by use of the underscore character.

• The letter d indicates a term coded as one or more decimal digits, with leading zeros
optional. Whenever a specific number of digits is required, that number is indicated
by the number of d characters shown in the format illustration.

• Other notational symbols are explained when they occur.

The structural Form DeSCription (FD) macro instructions describe the structural organi
zation of the form and the processing required for each data field. They are normally
coded so that forward progression is maintained through the entire form (that is, from
page to page, from top to bottom on a page, and from left to right on a line). However,
nonsequential encoding can sometimes be used to advantage in the structural macros
FDLINE and FDFIELD, and in the procedural macro FDCTRL.

An FDFORM macro instruction must be coded as the first macro instruction for each
FDP you write. The FDFORM macro specifies:

• The name by which the FDP is stored in the user's data set (symbol). A name entry
must be coded.

• A 3-digit decimal character string that the 3735 operator uses to request the program
at the terminal (FID). An FID number must be coded.

• The condensation that is desired for data sent from the 3735 to the central computer
(PACKING).

• Specify Katakana character code for IBM Japan terminals (DEVICES).
• Use of certain buffers for additional data storage (BUFFERS).
• Selection of the type of object deck that is to be prepared (OBJECT).
• Creation of a specialized FDP to load when File Storage is present the user's data area

of the 3735 disk storage file with CPU-generated date (MODE).
• A mechanical left margin setting (MRGSTOP).
• A 3735 operator message (MESSAGE).
• Horizontal tabular stop setting (HT AB).

If you want card-image identification and assembly-listing headings in your Assembler
output, you should place an Assembler TITLE statement in front of the FDFORM state
ment. For example:

FOOl TITLE 'FID 001 - GENERAL WHOLESALE COMPANY INVOICE'

You should also consider using a PRINT NOGEN statement to reduce the size of the
assembler output listing. See the discussion under "Listing Control Instructions" in

How To Write A Form Description Program 11

symbol

FlD= 'ddd'

12 IBM 3735 Programmer's Guide

either the DOS Assembler Language publication, Order No. GC24-3414, or the OS
Assembler Language publication, Order No. GC28-65 14, for further information on the
use of the TITLE statement, the PRINT statment, and other listing control statements.

Figure 7 shows the format of the FDFORM macro instruction.

Name Operation Operands

symbol FDFORM FID= 'ddd'

[,PACKING = eo JI YES
DELIMIT·

[,DEVICES = (3735, K [D [))
[,BUFFERS= II RPBI I. (LPB I '('32J I) I)

126
120
d

[,OBJECT= (0S)) *
DOS

[,MODE = (NON LOAD))
LOAD

[,MRGSTOP = {~))

I ,MESSAGE ' {~I (G) J r (GY) 1. . .11
'string' 'strmg'

[,HTAB= (d[.,d) ...))

Figure 7. Format of the FDFORM Macro Instruction

The name entry (symbol) specifies the name of the form and must be coded. The char
acters you code become the name by which the operating system and the system pro
grammer refer to the form.

The FID operand specifies the form identification number by which the FDP is selected
at the 3735 terminal. The FID operand must be coded. The ddd characters are the digits
that the 3735 operator uses to request the FDP. You must code three decimal digits in
this operand field, and the framing apostrophes are required.

The value of ddd may range from 000 to 989. FID number 999 is reserved for the
3735 Functional Test Form, and FID numbers 990 to 998 are reserved for other purposes.
If forms using any of these reserved FID numbers are sent from the central computer,
they are accepted as valid by the 3735. However, if the 3735 operator selects one of
these reserved numbers, the reserved function is performed. You should be especially
careful to code a unique FID number for each FDP you write, since no tests are dupli
cate FDP numbers are performed by the FD macros, the FD utility, or the 3735. If
duplicate FDP numbers are sent to the 3735, the 3735 will accept them and catalog
them, but only the first such FID number found in the disk directory can be used. All
other FDPs with the same number are inaccessible to the 3735 operator.

When the FDP is executed at the 3735, this three-digit identification number is placed
in the first three bytes of a data record that is to be sent to the CPU. This number is
always sent to the CPU when the 3735 transmits its operator-created data, as described
in the "System Design Considerations" section under the heading "Form Records".

An FDFORM macro statement may be coded as simply as:

FORMOOl FDFORM FID = '001'

The name entry (symbol) and the FID operand (FID) are required. When specified in
this way, the default values are assumed for the PACKING and MRGSTOP operands, and
no MESSAGE or HTAB functions are provided when this FDP is used at a 3735. In

PACKING = t NO. 1
YES
DELIMIT

addition, RPB may not be specified as a data source or sink, no Katakana coding is
allowed, and the line printer buffer (IPB) checking limit is 132.

Figure 8 is a chart that will help you decide how to code the other FDFORM operands.
A detailed discussion of each operand follows the chart.

If you want to ... Code ... Unless you want to use
the default value of. •.

Remove extra null character PACKING = YES PACKING = NO, which
from the end of each (If you want any field does not remove any
data field sent to the delimiters, you must blanks from the
CPU •.• put them in yourself.) data fields or insert any

and ... delimiters.
have the 3735 insert a PACKING = DELIMIT,
delimiter between the which removes null
data fields ... character and puts a

X'1 C' delimiter be-
tween data fields.

Specify Katakana code DEVICES = (3735,KI, No Katakana code.
(for IBM Japan terminals) ... which specifies that this

FOP will use Katakana
code.

Use the RDR and PCH BUFFERS = RPB Normal use of the
buffers as a single (Use of this buffer is RDR (input only) and
192-character storage discussed following the PCH (output only)
buffer (RPB) ... chart.) .buffers.
Use more than 132 bytes BUFFERS = (LPB,d), Use of only 12
of the 236-byte line where d is a value from bytes in the line
printer buffer (LPB) 133 to 236. printer buffer.
for data storage ...

Prepare an object deck OBJECT = systype, where An object deck created for
for a particular FD systype is either OS or system on which the FOP
utility (either OS or DOS). DOS. assembly is performed.

Use this FOP to load the MODE = LOAD, which MODE = NONLOAD,.which
3735 disk storage file with allows the FDLOAD indicates that the FOP is not
CPU-generated data macro (and no others) used to load the 3735 disk
records. to be used in this FOP. with CPU data.

Specify a mechanical MRGSTOP = d,where d MRGSTOP = 0, which
left margin to be set is a number from 0 to 129. means that the operator
on the 3735 Selectric Output begins in position should set the stop at
printer •.. d + 1. the form's left edge.

Provide a 1-line message MESSAGE = 'string', No message provided
for the 3735 operator where 'string' is the to the operator
(for setup instructions message text of up to (not recommended).
or status information) ... 127 characters. If more Note: The framing

than one message line apostrophes are required,
is required, see the operand but not counted.
description following the
chart.

Define the horizontal HTAB = (d,d,d, ... ,d), No tab stops to be
tabular stops to be where d, d, d, ... , d set at the 3735.
set on the 3735 are successive tab stop
Selectric printer ... positions. The stops

may be coded from
MRGSTOP + 2 to \

MRGSTOP + 129.

Figure 8. Coding the FDFORM Macro Instruction

The PACKING operand specifies how the 3735 is to pack (condense) data records created
under this FDP before transmitting them to the central computer. PACKING = NO is the
default specification, and indicates that no packing is to be done. (NO implies that the

How To Write A Form Description Program 13

DEVICES = (3735 , K[D])

BUFFERS = ([RPB 1

[, (LPB['1!E}])])
1:26
120
d

14 IBM 3735 Programmer's Guide·

application program that processes the data collected under this FDP excepts to fmd
fIXed-length data fields.) PACKING = YES specifies that consecutive trailing blanks in
every data field are to be deleted, and PACKING = DELIMIT specifies both that con
secutive trailing blanks are to be deleted and that a delimiter is to be inserted between
data fields. The delimiter used by the 3735 is the IFS character in EBCDIC or the FS
character in ASCII (both have a hexadecimal representation of'IC').

The packing option selected remains in effect throughout the entire form. If you want
to supply your own unique graphic delimiters, code PACKING = YES and insert your
delimiters as data between fields that you are going to send to the central computer. You
can use a data sink specification or require the operator to do this. Such coding may be
inefficient when large numbers of fields require delimiters.

If a form created at a 3735 can contain several completely blank or partially blank
left-justified data fields, you should consider specifying PACKING = YES or PACKING =
DELIMIT. Such coding eliminates unnecessary trailing blanks from the data field, and
increases the amount of "real" data that can be transmitted to the central computer in a
given message. However, when PACKING = YES is coded, the application program at
the central computer cannot easily tell where one data field ends and the next begins.
The YES option is available in case you want to use your own graphic delimiting char
acter instead of the X'IC' provided by the 3735. Use of PACKING = YES prohibits the
use of transmitted data at another 3735.

Coding DEVICES = (3735,K) specifies that this FDP is to be used on a 3735 that uses
Katakana code. The resulting FDP can then be used only on a 3735with this code set.
(This code facility is intended primarily for IBM Japan terminals.)

When coding FD macro statements for an FDP that will be used on a 3735 with the
Katakana character set, you should code DEVICES = (3735,K) or DEVICES = (3735, KD)
so that correct code can be generated during the FD macro assembly. Coding DEVICES =
(3735,KD) specifies that the phonetic equivalents of the Katakana characters are to be
printed in the Assembler listing. Complete details on the Katakana support are in
Appendix J.

The 3735 provides several different buffers that your FDP can use for temporary data
storage while it is being executed at the 3735. Four of these buffers are:

• The card reader buffer (RDR), which is a 96-character read-only storage area that is
used to hold data read in from a 5496 data card by an FDCTRL READ (RDR)
command.

• The card punch buffer (PCH), which is a 96-character write-only storage area that is
used to hold data that is to be punched on a 5496 data card by an FDCTRL PUNCH
command.

• The storage buffer (STG), which is a 236-character write/read storage area that can be
used for storage of data in your FDP.

• The line printer buffer (LPB) , which is a 236-character write/read storage area that is
used primarily to hold data that is to be printed on a 3286 matrix printer.

If you have forms that require more write/read storage space for data than the 236 .
bytes provided in the storage buffer (STG), you can use the storage space that is normally
used for reading and punching 5496 data cards by coding BUFFERS = RPB (read/punch
buffer) in the FDFORM macro. You can also use the 236 character positions in the line
printer buffer (LPB) for similar purposes if space for the buffer was allocated during the
3735 system installation. See the "System Generation Considerations" section under the
heading "3735 System Generation Options" for further details.

Coding BUFFERS = RPB specifies that the 96-character reader buffer (RDR) and the
96-character punch buffer (PCH) are to be treated as a single 192-character read/punch

OBJECT = {:s}

MODE = {NONLOAD}
LOAD

buffer (RPB). If only RPB is coded, the enclosing parentheses may be omitted. This
specification allows you to use the storage normally provided for 5496 input/output
operations just as you would the storage buffer (STG). Use of the combined read/punch
buffer in this manner prohibits use of the SOURCE and SINK specifications that direct
data to PCH or request data from RDR. However, you can still read or punch 5496 cards
by using the first 96 characters of RPB (1 to 96) when you want to get from the reader
buffer, and the last 96 characters of RPB (97 to 192) when you want to put data in the
punch buffer. As when using RDR or PCH, you must then issue the appropriate FDCTRL
command, READ (RDR) or PUNCH.

Coding BUFFERS::. (LPB,d) specifies that up to 236 positions of the line printer buffer
(LPB), as specified by d, are to be used for data storage. Note, however, that only the
first 132 characters in the buffer are moved to the 3286 printer when a PRINT command
is executed. You should take care, therefore, to use LPB positions 133-236 only for data
that is not to be printed. The qualifiers 120 and 126 indicate that the 3286 printer uses a
120-character or a 126-character platen. The number of characters moved when a PRINT
command is executed is adjusted accordingly. If no qualifying value is coded, or if
BUFFERS = LPB is not coded at all, the useful length of the line printer buffer is assumed
to be 132 characters.

When coding an FDP that uses the 3286 printer, you should understand that the 3286
is simply a sequential output device, and that you control the format of its forms in two
ways:

1. By the contents of the data strings you place in the line printer buffer (LPB).
2. By the sequences of PRINT, CLEAR, SKIP(d), and SKIPTO(d) commands that you

code in FDCTRL macro instructions.

Forms used on a 3286 need not be related to forms used on the 3735 Selectric ®
printer in size or content. The appearance of 3286 output is limited only by the size of
its platen and the paper stock used (except that reverse forms motion is not permitted on
either the 3286 printer or the Selectric ® printer).

The use of these buffers is explained more fully in the discussions of the FDFIELD
SOURCE and SINK operands, and the FDCTRL COMMAND operand.

Note: If both buffer options are desired, code BUFFERS = (RPB, (LPB,d». If
BUFFERS is coded, then at least one of the suboperands must be coded.

The OBJECT operand specifies that an object deck is to be prepared for a particular FD
utility, either OS or DOS. If this operand is coded, then either OS or DOS must be .
coded. If this operand is not coded, the resulting object deck is prepared for the FD
utility of the system on which the FDP assembly occurs. For compiling multiple FDPs
in a single assembly, all programs must follow the same object format.

The MODE operand specifies whether or not the current FDP is to be used for creating
or updating data records on the 3735 disk storage file from CPU-generated data. The
File Storage capability must be presented in order to execute a me load FDP. These
operations are specified by coding the FDLOAD macro. If this type of FDP is desired,
then MODE = LOAD must be coded. For all other FDPs, the MODE operand should
be omitted or specified as MODE = NONLOAD. FDPs having FDLOAD macros must
be execu ted in playback mode at the terminal. If these FDPs are not execu ted in play
back mode, the terminal operator receives a macro-generated message and the FDP is
canceled. The only macros that can be coded follOwing an FDFORM macro with
MODE = LOAD specified are FDLOAD macros and an FDEND.

How To Write A Form Description Program 15

MRGSTOP = r~]

MESSAGE = (~ ee[(&1)] l
L 'string' 5

16 IBM 3735 Programmer's Guide

The MRGSTOP operand specifies, relative to the form (rather than to the 3735's position
index scale), the character position at which the 3735 operator is to set the terminal's
mechanical left-margin stop. The value of d may range from 0 to 129, and has a default
of o. The 0 setting is equivalent to a margin stop at the left edge (or "tear line") of the
form. Actual output can begin in position d + 1.

For example, if you are describing a form that never uses the leftmost 15 character
positions of each line, you can achieve more efficient Selectric printer motion by specify
ing MRGSTOP = 15. Such coding would allow output to begin in character position 16
(MRGSTOP + 1).

The MESSAGE operand specifies a character-string message that the 3735 operator can
have printed before starting to process the form. The string length (excluding the
framing apostrophes, which are required) may range from 1 to a maximum number of
characters that depends on the particular Assembler used. You can use the MESSAGE
operand to provide the 3735 operator with descriptive information about the form,
instructions on how to set up the form, and so forth.

The 3735 operator can obtain the message not only by selecting the FDP, but also by
requesting a listing of all resident FDPs and their associated operator messages. (When
this listing is requested, only the first 30 characters of the operator message are printed,
and any carriage control characters in the message are printed as blanks.) The 3735
control program perfomls a carriage return (CR) function both before and after display
ing the message data to the 3735 operator. If you want to use any additional position
control functions (for example, to print your message on more than one line), you must
use the appropriate carriage control sequences. The carriage control (cc) characters per
mitted are:

HT (d) - horizontal tab d times
SP (d) - forward space d times
BS (d) - backspace d times
NL (d) - new line d times
LF (d) -line feed d times
CR - carriage return

The repetition factor (d) allows you to request that the carriage control operation be
performed more than once. If no repetition factor is coded, a default value of 1 is used.
The CR character may not specify any repetition factor at all. The other carriage control
characters may specify repetition factors from 1 to 127. However, you should take care
not to violate the page height and width limitations of the paper stock on which the
message is to print. For example, to print your message on two lines, you could code:

MESSAGE = ('TEXT FOR LINE l' ,NL, 'TEXT FOR LINE 2')

In this example, the NL characters inform the 3735 that a new line function should be
performed. If only one MESSAGE sub operand is coded, the outer framing parentheses
may be omitted.

Note: The new line (NL) operation combines the functions of one carriage return (CR)
and d line feeds (LF). The horizontal tab (HT) function should be used with extreme
caution, since the tab setting routine is not executed at the 3735 until after the
message is printed.
To enable an operator to know the status and use of each FDP in the 3735, the

MESSAGE operand data should include such information as:

• The purpose of the FDP .
• The type of form required.

IlIAD = (d[,d] ...)

FDPAGE Macro Instruction

• Mechanical set-up instructions.
• FDP version level.
• Date of creation or last revision.

As much of this information as possible should be included in the first 30 characters
of the message. With this information available, an operator should be able to work with
different FDPs with little difficulty.

The HTAB operand specifies the horizontal tabular stop positions on the Selectric ®.
printer. Values of d may range from MRGSTOP + 2 to 130, except that the 3735 cannot
perform the HTAB exercise ifMRGSTOP is greater than 129. The number of character
positions between successive stops, or between MRGSTOP + 1 and the lowest-numbered
stop, cannot exceed 127. When an FDP has been selected, the 3735 operator can request
the terminal to perform the tabular-stop-setting exercise. The exercise can be bypassed
when working on subsequent copies of the same form. You should take care to place as
few tabular stops as possible within field boundaries, since the 3735 must then space
across the remainder of the field instead of tabulation, thus reducing mechanical
efficiency.

The values coded in HT AB specify tabular stop settings in relation to the left edge of
the form. Thus, to have the operator set the margin stop at column 9, and a tab stop at
column 54, you should code MRGSTOP = 9 and HTAB = 54. In this case, output may
begin in column 10 (MRGSTOP +1). Specification of one or more tabular-stop settings
can often increase 3735 operating efficiency, thus allOwing an operator to enter more
data in a given amount of time.

Notes:

1. The smallest amount of code necessary to control mechanical motion on the
Selectric ® printer is generated when 15 or fewer stops are specified, and when no
adjacent stops are more than 31 character positions apart.

2. If only one tabular stop is specified, the enclosing parentheses may be omitted.

The following are some examples of correctly coded FDFORM macro statements.

FORMONE FDFORM FID = '001' ,PACKING = DELIMIT, MRGSTOP = 10,
HTAB = (15,33,49)

F989 FDFORM FID = '989' ,MESSAGE = 'GWC ORDER - USE FORM
383901 - SET X MRGSTOP AT 0 - VERS 4 - OS/25/72'

ACME036 FDFORM FID = '036' ,PACKING = YES,BUFFERS = RPB

The FDPAGE macro instruction marks the beginning of each page description within a
form. This macro may not be coded before FDFORM is coded. An FDPAGE macro
can be coded to:

• Name the page (symbol).
• Specify a page number within the form (pagenum).
• Define the vertical output space for the page (HEIGHT).
• Specify the setting of the vertical-margin checking limits (VMRG).
• Provide for backward references to the macro statement (SA VELOC).

How To Write A Form Description Program 17

symbol

pagenum

18 IBM 3735 Programmer's Guide

Figure 9 shows the format of the FDPAGE macro instruction.

Name Operation Operands

[symbol) FDPAGE [pagenum 1 [• HEIGHT = {:6} 1

[. VMRG =) {!t}](. t~~ht} II 1

[. SAVELOC = [NO }I
YES
d

Figure 9. Format of the FDPAGE Macro Instruction

The name entry (symbol) specifies the name of the page, if coded. A name entry is
required if SA VELOC is coded, or if the macro is an explicit CYCLE target or limit or
a branch target (that is, if the macro is referred to elsewhere);

When used to describe an ll-inch-high page, an FDPAGE macro may be coded simply
as:

FDPAGE

In this case, default values provide a page number one greater than the previous page
number (starting with page 1), a height of 66 lines, vertical margin checking limits of

. 1 and 66, and no retention of the macro-statement location. Figure 10 is a chart that
will help you decide how to code the FDPAGE operands. A detailed discussion of each
operand follows the chart.

The pagenum operand marks the beginning of each page description within the current
form. This positional operand may be coded with values from 1 to 16383. If you do not
code it in the first FDPAG E macro of an FDP, a default of 1 is used. If you do not code
a page number in a subsequent FDPAGE macro statement in the same form description
program, a default value one greater than the previous page number is used. Coding this
operand does not physically place a number on the form at the 3735. You can perform
this function, if desired, by coding an appropriate FDFIELD macro instruction some
where in the page.

Page numbers usually form an increasing series within a single form description, but
they need not be consecutive. If pages are not numbered consecutively, undescribed
interventing pages are assumed, for control purposes, to have a height equal to the value
of the HEIGHT operand in force at the FDFORM level. Where this is inappropriate for
one or more such pages, you can define dummy (nUll) pages by coding adjacent FDPAGE.
macros that specify the necessary HEIGHT values, but with no intervening line descrip
tions.

The purpose of such coding is to provide an accurate count of lines throughout a form
in which page HEIGHT varies from page to page, and in which more than one processing
sequence is possible. When coding standard forms of uniform page size, you need not be
concerned with specifying dummy pages. In such cases, all you need to do is code the
proper HEIGHT value as necessary.

HEIGHT = [:61

If you want to ..• Code •.• Unless you want to use
the default value of .•.

Specify a page number pagenum as a number 1 for the first
within the form ... from 1 to 16383. FDPAGE macro in

an FOP, and the
previous page number
plus 1 for all other
pages.

Define the height of HEIGHT = d, where d HEIGHT = 66, which
the page ••. is a number from 1 to defines a page 11 inches

16383 that specifies the high at 6 lines per inch
number of lines on the (66 lines in all).
page.

Define vertical margin VMRG = (dt , db) , where dt = 1 and db = HEIGHT.
limits for the page .•. dt is the top margin line Enclosing parenthese may

and db is the bottom be omitted when only dt
margin line. Neither dt is coded. When only db
nor db can be less than is coded, it must be preceded
1 or greater than by a comma, and the
HEIGHT, and dt can- parentheses are required.
not be greater than db.
Output is allowed in the
dt, db lines, and anywhere
in between.

Save the location of SAVE LOC = YES, if you SAVE LOC = NO, which
the page so that you want to save the location does not save the statement
can make backward for the entire form, or location.
references to it ... SAVELOC = d, where d Note: If SA VE LOC is

is the number of backward coded YES or d, a name
references you will make entry is required in the
to this statement. FDPAGE statement.

Figure 10. Coding the FDPAGE Macro Instruction

The HEIGHT operand specifies the number of physically usable line positions on the
current page. You can specify the value of d from 1 to 16383. If you do not specify
HEIGHT in an FDPAGE macro, the default value is that coded in FDFORM, if one is.
If you do not specify HEIGHT in either of these macros, a default value of 66 is used,
corresponding to a page height of 11 inches and a vertical spacing of 6 lines per inch
(66 lines in all).

The HEIGHT operand provides the 3735 with some of the information it needs to
properly advance forms in the Selectric ® printer. Thus, if you are not using ll-inch
high forms, you should code this operand with a value that describes the height of the
forms you are using.

The VMRG operand delimits the range of contiguous line positions on the page in which
output is allowed. The first sub operand (dt) specifies the top vertical margin line, and the
second suboperand (db) specifies the bottom vertical margin line. Output is allowed in the
specified lines, and in all lines between them. The minimum value that you can specify
in either of these positional sub operands is 1, the maximum is the current value of
HEIGHT, and dt may not be greater than db. If you do not supply VMRG values in an
FDPAGE macro, the default values are those coded in FDFORM, if any are. If you do
not supply VMRG values in either of these macros, default values of 1 and HEIGHT are
used (that is, output is allowed on the entire page as defined by HEIGHT). If a db value
coded in an FDFORM macro statement is greater than the current value of HEIGHT,
VMRG values of 1 and HEIGHT are used.

Note: If only the dt sub operand is coded, the enclosing parenthese may be omitted.
If only the db suboperand is coded, the enclosing parentheses are required, and the
db specification must be preceded by a comma to indicate the absence of dt.

How To Write A Fonn Description Program 19

,.

SAVELOC = [lm-J
YES
d

FDLlNE Macro Instruction

20 IBM 3735 Programmer's Guide

Many forms do not need to use all the available output space on a page. For example,
an invoice may not require data entry before line 15 because a preprinted company name
and address occupies the space from line 1 to line 14. In such cases, you can use the
VMRG operand to establish vertical-margin limits on the page. To continue with the
preprinted invoice example, you can set a top margin.at line 15, and allow the bottom
margin to default to the page height, by coding:

VMRG = 15

Such coding enables the FD macros to cross-check the line numbers you will code in
FDLINE macro statements. In addition, you may find that your FDPs are easier to
read and interpret when one or both of the vertical margins are explicitly specified.

A backward reference to a macro statement involves a branch (transfer of control) to it.
For a branch of this type to be successful, the location of the branch target must be
known when the branch instruction is encountered. During an FDP assembly, macro
statement locations are not usually saved. Thus, when you know that you are going to
make a backward reference to a particular macro statement, you need to code SA VE
LOC = YES or SAVELOC = d (where d is the number of references you will make to the
statement) in the macro statement that is the branch target. (Forward references-such
as those made by the CYCLE operand of FDLINE, FDFIELD, or FDCTRL, and by the
GOTO operand of FDCTRL-are always retained until they can be resolved.)

The default action (NO) is not to save the statement location. Coding SA VELOC =
YES causes the FD macros to save the location for the duration of the current FDP. Cod
ing SA VELOC = d causes the FD macros to save the location only until d backward refer
ences to the location have been resolved, at which time the location is discarded.

You can specify from 1 to 255 backward references to this macro location. If the
specified value of d is greater than 225, the FD macros supply the value YES instead,
causing the location to be saved for the entire FD macro assembly. For efficiency, as
few locations as possible should be saved concurrently. SAVELOC may not be coded
to imply reverse form movement. Backward branching is permitted in the FDP logic
only- not in the 3735 movement. An example of the use of SA VELOC is shown in the
discussion of the FDCTRL macro instruction.

Note: The SA VELOC operand is not promotable, but it may be coded in any FD
macro except FDFORM and FDEND.

The following are some examples of correctly coded FDPAGE macro statements:

PAGE2
NONUM
LONGPAGE

FDPAGE 5,HEIGHT=44,VMRG=21
FDPAGE 2,HEIGHT=68,VMRG=(5,63),SA VELOC=YES
FDPAGE HEIGHT=75,SA VELOC=3
FDPAGE 10,HEIGHT=300,VMRG=(,278)

The FDLINE macro instruction marks the beginning of each line description within a
page. If an FDPAGE macro is coded, FDLINE must be coded at least once in the form
description (following the FDPAGE). An FDLINE macro can be coded to:

• Name the line (symbol).
• Specify a line number within a page (linenum) or skip lines in a summary block (SKIP).

(Summary blocks are described in connection with the CYCLE operand.)
• Define the horizontal output space for the line (WIDTH).
• Specify the setting of the horizontal-margin checking limits (HMRG).
• Provide for the repeated execution of sequences of macro statements (CYCLE).
• Provide for backward references to the macro statement (SA VELOC).

symbol

linenum

Figure 11 shows the fonnat of the FDLINE macro instruction.

Name Operation Operands

[symbol] FDLlNE [~inenum J I [. WIDTH = {a5} I
SKIP (d) d

[,HMRG=([[mrg~~oP+11)[' [W~~th }111
[• CYCLE = ([cI I [. limit I [• target I) I

[. SAVELOC = [NO J I
YES
d

Figure 11. Format of the FDLlNE Macro Instruction

The name entry (symbol) specifies the name of the line, if coded. A name entry is re
quired if SA VELOC is coded, or if the macro is an explicit CYCLE limit or target, or a
GOTO target (that is, if the macro is referred to elsewhere).

When used to describe a line on an 8.5-inch wide page, an FDLINE macro may be
coded as simply as:

FDLINE

In this case, default values provide a line number one greater than the
previous line number (beginning with the top vertical margin (VMRG) value),
a width of 85 characters, horizontal margin checking limits of MRGSTOP + 1
and 85, and no cyclic processing or retention of the macro statement location.

Figure 12 is a set of charts that will help you decide how to code the FDLINE oper
ands. A detailed discussion of each operand follows the chart in which the operand is
introduced.

The linenum operand marks the beginning of each line within a page. This positional
operand may be specified with values from 1 to 16383, or as SKIP (d), as discussed later.
Coding this operand does not physically place a number on the fonn at the 3735. You
can perform this function, if desired, by coding an appropriate FDFIELD macro instruct
tion somewhere in the line.

The entire fonn may consist of no more than 16,383 lines, which can be distributed
throughout the necessary pages in any manner suitable to the needs of the application.
Thus, even though you could define 16,383 pages, they would have to be one-line pages.
You can define as many as 248 complete 66-line pages (a total of 16,368 lines).

If you do not specify a line number in the first FDLINE macro of a page description,
a default value equal to the VMRG-determined top margin is used. (See the description
of the VMRG operand in the FDPAGE discussion.) If you do not specify a line number
in a subsequent FDLINE macro statement in the same page description, a default value
one greater than the previous line number is used.

Line numbers usually form an increasing series within a single page description, but
they need not be consecutive. In fact, when more than one path through the lines of a
given page is possible, you can often obtain more efficient FDP processing by coding the
lines out of normal sequence.

For example, if one processing sequence uses lines 1,2,4,6, and 8, while another
processing sequence uses lines 1,3,5,7, and 8, then the line coding sequences 1,2,4,6,

How To Write A Form Description Program 21

22 IBM 3735 Programmer's Guide

If you want to .•. Code ... Unless you want to use
the default value of •.•

Specify a line number linenum as a number The VMRG·determined
within a page .•. from 1 to 16383. top margin for the

first FDLlNE on a
page, and the previous
line number + 1 for all
other lines.

Skip one or more lines SKIP (d), where d is a No skipping to or
at the end of a CYCLE number from 0 to 16382. within a summary
to or within a summary See the CYCLE operand block.
block •.. description following

the chart for more details.

Define the width of WIDTH = d. where d is a WIDTH = 85, which
the line •.. number from 1 to 130 defines a line 8.5

that specifies the number inches long at 10
of character positions character positions
on the line. per inch (85 positions

in all).

Define horizontal margin HMRG = (dl,drl, where dl dl = MRGSTOP + 1 (from
limits for the line ... is the left margin and FDFORM), and

dr is the right margin. dr = WIDTH. Enclosing
Neither dl nor dr can parentheses may be
be less than MRGSTOP + 1 omitted when only dl
(from FDFORM) or larger is coded. When only
than WIDTH, and dl can dr is coded, it must
not be larger than dr. be preceded by a
Output is allowed in the comma, and parentheses
dl , dr positions and all are required.
positions between.

Repeat the execution CYCLE = (d , limit, target), No repeated eXfilcution
of a group of macro where: of macro statements.
statements ... • d is a number from 1 When CYCLE is coded,

to 16383 that speci· at least one of the
fies tha maximum num· suboperands should be
ber of times the cycle coded. The default values
can operate. are described following the

• Limit is the name chart in the CYCLE operand
entry of the last discussion.
macro in the repeated
group.

• target is the name
entry of the macro to
be executed when the
cycle is finished.

Figure 12. Coding the FDLINE Macro Instruction (Part 1 of 2)

and 3, 5, 7, 8 require only two instances of nonsequential FDP processing. The con
ventional sequence. 1, 2, ... , 7, 8, on the other hand, requires six. The coding of such
processing sequences might be as follows:

FDLINE

FDCTRL

FDLINE

FDLINE

FDLINE

1

IF = IND (10), GOTO = THREE

2

4

6

FDCTRL GOTO = EIGHT BRANCH AROUND 3·7

SKIP (d)

HMRG = ([[m~:op + J I
[, f W!~th]])

THREE FDLINE 3

FDLINE 5

FDLINE 7

EIGHT FDLINE 8

In another example, suppose that you want to describe two ways of entering a
customer number onto a form, one using the 5496 card reader, and the other using the
Selectric ® keyboard. You could, in this case, define two lines that differ only in
their data source specifications, and control which line is used by setting and testing an
indicator based on an operator-entered character. (Data sources are described in the
discussion of the FDFIELD macro instruction.) If the output space for the customer
number is in line 10, positions 26-35, and you are going to use indicator 1, the coded
macro statements might appear as follows (the indicator should be set before entering
this code segment):

KCUSTO FDLINE 10
FDCTRL IF = IND (1) ,GOTO = RCUSTNO
FDFIELD 26, 35, SOURCE = KBD
FDCTRL GOTO = NEXT

RCUSTNO FDFIELD 26,35, SOURCE = (RDR,I,IO)
NEXT [macros for further processing]

Still another example of this type of coding is shown in the sample program in
AppendixC.

The SKIP (d) specification causes the 3735 to skip d form lines before processing the line,
as discussed more fully under "target" in the description of the CYCLE operand. Values

. of d may range from 0 to 16382.

The WIDTH operand specifies the number of physically usable character positions on the
current line. You can specify the value of d from 1 to 130. If you do not specify WIDTH
in an FDLINE macro, the default value is that coded in the previous FDPAGE macro, if
one is, or else that coded in FDFORM, if one is. If you do not specify WIDTH in any of
these macros, a default value of 85 is used, corresponding to a line length of 8.5 inches
and a horizontal spacing of 10 character positions per inch (85 positions in all).

Note: If a value of MRGSTOP or HT AB coded in FDFORM is greater than 85, then
the WIDTH default is set at 130 instead of 85.

The WIDTH operand provides the 3735 with some of the information it needs to
properly position the Selectric type element for printing on the form. Thus, if you are
not using 8.5-inch wide forms, you should code this operand with a value that describes
the width of the forms you are using.

The HMRG operand delimits the range of contiguous character positions on the line in
which output is allowed. The first sub operand (d 1) specifies the left margin character,
and the second suboperand (dr) specifies the right margin character. Output is allowed
in the specified character positions, and in all positions between them. The minimum
value that you can specify in either suboperand is the value ofMRGSTOP + 1 (see the
description of the MRGSTOP operand in the FDFORM discussion), the maximum is the
current value of WIDTH, and dl may not be greater than dr. If you do not supply HMRG
values in the FDLINE macro, the default values are those coded in the including FDPAGE
macro, if any are, or else those coded in FDFORM, if any are. If you do not supply
HMRG values in any of these macros, default values of MRGSTOP + 1 and WIDTH are
assumed (that is, output is allowed on the entire line as defined by MRGSTOP + 1 and
WIDTH).

How To Write A Form Description Program 23

CYCLE = ([d] [,limit I [,tatget])

d

limit

24 IBM 3735 Programmer's Guide

If a d 1 value (,~oded in a higher-level macro statement is incompatible with the value
of MRGSTOP, a default value of MRGSTOP + 1 is used. If the value of a dr coded in a
higher-level macro statement is incompatible with the current value of WIDTH, a default
value of WIDTH is used. In each case, the incompatible values are ignored.

Note: If only the dl suboperand is coded, the enclosing parentheses may be omitted.
If only the dr suboperand is coded, the enclosing parentheses are required, and the dr
specification must be preceded by a comma to indicate theabsence of d1.

Many form's 00 not need to use allthe available ~~t~ut space on a line. In fact, most
preprinted forms provide for blank marginspn ~ach$id~ (}fthe)ine. In such cases,you
can use the HMRG operand to establish. horizontal-margin limits on the line. If, for
example, the form you are describing has lO-character margins on each side of an 85-char
acter line, you can set the HMRG values at 11 and 75 by coding:

HMRG ::: (11,75)

Such coding enables the FD macros to cross-check the document field boundary
positions you will code in FDFIELD macros. In addition, you may find that your FDPs
are easier to read and interpret when one or both of the horizontal margins are explicitly
specified.

The CYCLE operand specifies a cycle count (d), delimits a group of sequential macro
statements that are to be processed repeatedly as a unit (limit), and specifies where
sequential processing is to resume after the cyclic processing ends (target).

Note: The CYCLE operand is not promotable, but it can l:!e coded in FDLINE,
FDFlELD, or FDCTRL.

If you describe a form, such as an invoice, that may have several lines of similar data,
you can use the CYCLE operand to save coding the same line format repeatedly. The
number of lines may be variable, up to the maximum specified by the cycle count (d).
All you need to to is code a single CYCLE operand that specifies:

1. The maximum number of times you want the line to repeat (d) - default is 1.
2. The name entry of the last macro statement in the repeated group (limit) - default is

the current macro statement.
3, The name entry of the macro that is to be processed when cyclic processing is com

pleted (target) - default is the next sequential macro statement after the limit.

Specification of each suboperand is optional, but if CYCLE is coded, then at least one
sub operand should be coded.

Specifies the maximum number of times that the group of macro statements is to be
processed. If no value is specified for d, a value of 1 is assumed. The value of d may
range from 1 to 16383, but is limited to the largest value that cannot cause processing
of the resulting last line to pass beyond the VMRG-determined bottom margin of the
current page. (See the description of the VMRG operand in the FDPAGE discussion.)
To circumvent this restriction, you can define one large page that, when printed at the
3735, has the appearance of several pages.

Is the name of the subsequent macro statement that is the last of the consecutive macro
statements that describe the repeated group. The macro statements in such a group fre
quently describe an integral number of whole lines .. When processing reaches the macro
statement named by limit, control is returned to the current FDLINE macro statement
(the one containing the CYCLE operand), unless this isthe last time through the group,
as determined by the cycle count (d) or by operator intervention. When processing
reaches the limit statement during the last processing cycle, control is passed to the macro
statement named by target. If the limit suboperand is not coded, the current macro state
ment (the one issuing the CYCLE) is assumed to be the limit.

target

· You may not code an FDPAGE macro between the current FDLINE macro and the
limit statement, nor may you code another macro statement that also specifies a CYCLE
operand. (That is, you may not perform cyclic processing from one page to the next,
and you may not nest CYCLE operands.)

The macro statement named by limit must bean FDLINE, FDFIELD, or FDCTRL
macro.

Note: An unconditional GOTO should not be specified in an FDCTRL macro state
ment that is a CYCLE limit.

Is the name of the subsequent macro statement that is to be processed when cyclic
processing is either completed (the cycle count, d, is reached) or stopped by the 3735
operator. The named macro statement may be of any type except FDFORM. It may
not be within the range of any cyclic repetition, except that a macro statement that is
a CYCLE target may itself contain a CYCLE operand (unless the target is in a summary
block).

If you do not code the target suboperand, the macro statement immediately following
the limit statement is assumed to be the target. You can thus omit the target sub operand
when the target statement immediately follows the repeated group of macros. Examples
of cyclic processing are found following the next chart, in Figure 21, and in the sample
program in Appendix C.

Note: At the end of a cyclic repetition, the Selectric print element is positioned at the
column where the CYCLE started, in anticipation of another repetition. If the CYCLE
starting column is less than or equal to the CYCLE ending column, then each repetition
of the CYCLE must start on a new line. Thus, when a CYCLE begins in a column less
than or equal to the column in which it ends, the Selectric print element is positioned
to a new line when the CYCLE ends.

If you want to .•• Code ..• Unless you want to use
the default value of •••

Define a summary block SKIP(d) as the linenum No summary block.
to be executed at the operand of a target See the discussion
end of the CYCLE ... FDLlNE macro statement following the chart

(including conditional for more details.
GOTO targets).

Save the location of SAVE LOC = YES, if you SAVELOC = NO, which
the line so that you want to save the loca- does not save the
can make backward tion for the entire statement location.
reference to it ••• form, or Note: If SAVELOC is

SAVELOC = d, where dis coded YES or d, a
the number of backward name entry is
references you will required in the
make to this statement. FDLlNE statement.

Figure 12. Coding the FDLINE Macro Instruction (Part 2 of 2)

How To Write A Form Description Program 2S

SAVELOC = r NO 1
YES

.. d

26 IBM 3735 Programmer's Guide

If the CYCLE target is an FDLINE statement with its linenum operand coded SKIP (d),
then d lines are skipped upon exit from the cycle before the target line is processed. Con
secutive following line descriptions whose FDLINE statements also specify SKIP (d) are
processed in immediate succession. This procedure allows you to define a summary block,
which follows the last repeated line a fixed number of form lines away, and whose lines
are processed with fixed spacing. Thus, a summary block is like a fixed-format "floating"
block of data that follows the last cyclically repeated line exactly d lines away, regardless
of whether cyclic processing stops after one line or after the maximum number specified
in the CYCLE operand.

You can exit to different summary blocks from the same cycle by using the CYCLE
target plus one or more conditional FDCTRL GOTO targets. Each summary block in
such a collection (except, optionally, the last) must be closed with an unconditional
FDCTRL GOTO statement that branches outside of the summary block region of the
FDP. The contiguous summary blocks are automatically terminated by the appearance
of an FDPAGE statement, an FDEND statement, or an FDLINE statement not specify
ing SKIP (d).

Summary blocks are logically connected to the preceding cycle. Thus, the number of
lines of output that a summary block can produce, added to the number of lines that the
preceding cycle can produce, must not violate the page's bottom margin.

For example, suppose you want a line that says "THANK YOU" to follow the last line
of a 20-time CYCLE exactly two lines away, even if the CYCLE executes fewer than the
permitted maximum of 20 times, then you want to go to the end of the form and print
some control information. On a 35-line form, the code segment might look like this:

II,CYCLE = (20 ,LAST , THANKS)
LAST

FDLINE
FDFIELD 10,60, SOURCE = KBD, SINK = (PRT,TMT)

BEGIN SUMMARY BLOCK *
THANKS FDLINE SKIP (2)

*
FDFIELD

FDLINE
FDFIELD
FDFIELD
FDFIELD
FDEND

10,60, SOURCE = 'THANK YOU' , JUSTIFY = C,SINK = PRT
END SUMMARY BLOCK

35
10,12, SOURCE = FID,SINK =PRT
13,13, SOURCE = '/"SINK = PRT
14,16, SOURCE = RSN, SINK = (PRT,TMT)

The SOURCE and SINK operands illustrated in this example are described in the discussion
of the FDFIELD macro instruction.

The only branching allowed to the lines of a summary block is either from within the
preceding CYCLE or from an FDCTRL GO TO within the same summary block or a pre
ceding summary block.

The SA VELOC operand directs the FD macros to save the location of the current macro
statement within the form description, for the purpose of resolving backward references
to the statement. The coding of this operand is explained in the discussion of the FDPAGE
macro instruction.

Note: Neither CYCLE nor SA VELOC may be coded within a summary block.

The following are some examples of correctly coded FDLINE macro statements:

FDLINE I ,WIDTH = 125,HMRG = (11,115)
CYCLE 1 FDLINE CYCLE = (10, STOPMAC,GOMAC) ,SAVELOC = YES
FIRSTMAC FDLINE 35, CYCLE = (25, LASTMAC)

FDFIElD Macro Instruction

\

The FDFIELD macro instruction describes a data field within a line. You must code one
FDFIELD macro for each data field you want to defme. An FDFIELD macro may not be
coded before FDLINE has been coded. An FDFIELD macro can be coded to:

• Name the field (symbol).
• Locate the field within the line (dl, dr).
• Perform arithmetic operations with numeric field data and one or more counters (CTR).
• Set or reset indicators, or conditionally branch (when the File Storage capability is

present), based on the field data (IND).
• Provide for the repeated execution of sequences of macro statements (CYCLE).
• Provide for backward references to the macro statement (SAVELOC).
• Define the origin of the data (SOURCE).
• Validate the character-set membership of each incoming character (KIND).
• Perform self-checking of numeric data (SELFCHK).
• Validate the number of characters entered by the 3735 operator (COUNT).
• Compare the entered data with one or more fixed comparands (COMPARE).
• Describe the destination of the field data (SINK).
• Indicate what editing functions are to be performed on the data (JUSTIFY,

FILL, UL, and PICTURE).
• Flag numeric data as belonging to a particular data batch of a particular

FDP (BATCH).

Figure 13 shows the format of the FDFIELD macro instruction.

Name Operation Operands

[symbol) FDFIELD (t",,1 r . f -""T prevdr + 1 LNG (d)
dl dr
DUMMY

[,CTA = ((d, op [,FIELD 1) [, (d,op [,FIELD 1) 1 .•.
[,IND= (~ J ,Iogexp) [, (e) ,Iogexp) 1 .••) 1

:tar targ
[, CYCLE = ([d 1 [, limit I [, target I) I
[, SAVE LOC = ~ NO J I

YES
d

[,SOURCE = (origin [,qualifier 1 ..•) I

I. KINO =UN} (

L SELFCHK ~ t NO 1
-(-{~~} [, GENONLY])

I

) 1

(.COUNT-t MIN. 1 {~,}, (MAX. ({-:,no.} '} 1

[,COMPARE = ([FIELD, I comparopr ,comparand

[,{ ~~D} ,[FIELD ,I comparopr, comparand I ••.) 1

[,SINK = ([(destination[,qualifier I ...) I
[,[(destination [,qualifier I •..) II .•.) 1

[, JUSTIFY = ([justcode 1 [, [justcode I I ...) 1
[, FILL = (['char' I [, ['char' II .•.) I
I. UL= ([{NO} 1 (.[{!:!Q. } 1 I .••) I

YES YES

[, PICTURE = (['picturespec'l [,['picturespec'l I ..•) 1

[, BATCH = d I

Figure 13. Format of the FDFlELD Macro Instruction

How To Write A Form Description Program 27

symbol

[JhDn
g
d1 1]['1 comP1ng}] prevdr + 1 LNG (d)

d1 dr
DUMMY

CfR = «d,op[,FIELD])
[,(d,op[,FIELD])] •••)

28 IBM 3735 Programmer's Guide

The name entry (symbol) specifies the name of the field, if coded. A name entry is reo
quired if SA VELOC is coded, or if the macro is an explicit CYCLE limit or target, or a
branch target (that is, if the macro is referred to elsewhere).

Figure 14 is a set of charts that will help you decide how to code the FDFIELD oper·
ands. A detailed discussion of each operand follows the chart in which the operand is
introduced.

The field location operands specify the continuous character positions within the current
line in which output for this field is allowed. These positional operands usually specify
the leftmost character position (dI) and either the field length, - LNG (d), with d being
the number of character positions - or the rightmost character position - dr. The value
of dl cannot be less than the current HMRG·determined left margin, and the value of dr
cannot be greater than the current HMRG·determined right margin or less than d 1. (See
the description of the HMRG operand in the FDLINE discussion.) Similar restrictions
apply to LNG (d), since dr = dl + d·l.

You should code the field location operands only for fields that are directed
to the Selectric ® printer. If the field boundaries are coded for fields directed
to other sinks, the Selectric printer moves as though some data was directed to
it. Such unnecessary movement might confuse the 3735 operator, and result in
inefficient FDP execution at the 3735.

For example, to define a lO-character field that begins in position 11 and
ends in position 20, you can code:

FDFIELD 11,20 or FDFIELD 11 ,LNG (10)

If the left boundary operand is coded DUMMY, the FD macros create a null (dummy)
field. Such coding is permitted only in an FDFIELD macro that is a CYCLE limit. The
second operand may then be coded dr or omitted. If it is coded dr, the next available
logical position within the current line is moved rightward to the value of dr + 1. If it is
omitted, the logiCal position within the form is unchanged. Coding DUMMY ,LNG(d) is
not permitted. Dummy is normally used to define or logically extend a place·holding
field, in order to force the first Selectric output of successive cycles to be on a new line.
For example, assume that you have a cyclically repeating group of macros that begin in
position 23 of one line and end in position 22 of the next line. If you do not want to
begin the next repetition on the same print line, you can code a dummy field as the limit
of your cyclic group to logically extend the last repeated field, as follows:

LIMIT FDFIELD DUMMY ,23

This overlap forces the next cyclic repetition to begin on a new line.
If the left boundary operand is not coded, the default value is the HMRG·determined

left margin for the first field defined within the current line (hmrgd I), and the previous
dr plus one for all other fields within the line (prevdr + I). If the right boundary operand
is not coded, the default value (compIng) is obtained (if possible) from the current values
of other FDFIELD operands; such as SOURCE and COUNT.

The CTR operand provides for the performance of arithmetic operations (op) on one or
more IO·digit counters (d), with the completed numeric data for the current field as the
operand. The counter arithmetic operations are performed in all operating modes. The
operations are performed in the order in whiCh they are coded, and the result of each
operation is stored in the counter that is operated on. Each operation may be symbolized
by the assignment expression:

\

If you want to •.• Code .•• Unless you want to use
the default value of .••

Specify the location dl , dr, where dl is the dl = the dl value of
of the field within starting (left) position, HMRG (from FDLlNEI
the line ••• and dr is the ending for the first field on a

(right) position line, and the previous
(The use of DUMMY is or ••. FDFIELD dr + 1 for
discussed in the operand dl, LNG (dl, where dl is all other fields on a line.
description following the the starting (leftl position, dr = a value obtained
chart. I and d is the length of the from other FDFIELD

field. The field boundries operands, such as
must not violate the SOURCE and COUNT.
HMRG-determined
margins, nor can dr be For claritv, it is suggested
less than dl • that both dl , dr or dl, LNG

(dl be coded for all data
fields.

Use the field data in CTR = (d, operation I , No arithmetic operations
arithmetic operations with where d is the counter with the data from this
a counter ••. number (from 1 to 21 I, field. Operations may

the operation is either be performed on more
ADD, SUB, MPY, DIV, than one counter, as
or DVR, and the field described following the
data is the other chart.
arithmetic operand.
Coding the word FIELD
as shown in the format
illustration (Figure 11 I,
is optional.

such as •.•
Add the field data to the CTR = (1, ADDI In all cases, the result of
value in CTR 1 ..• the arithmetic operation
Subtract the field data CTR = (2, SUBI replaces the contents of
from the value in the cpunter.
CTR 2 •.•
Multiply the value in CTR 3 CTR = (3, MPYI
by the field data •.•
Divide the value in CTR 4 CTR = (4, DIVI, (5, DVRI
by the field data (ignore remain-
der!, then divide-and-round the
value in CTR 5 by the field data
(use remainder to round off
quotientl .••

Figure 14. Coding the FDFIELD Macro Instruction (Part 1 of 7)

(counter d) < - (counter d) (operator) (field data)

The values of the counter number (d) may range from I to 21. The 3735 does not
clear the indicated counters before performing the requested operations., If you want to
clear a counter before starting arithmetic operations on it, you should code an FDCTRL
macro statement that specifies CTR = (d,CLR). If you want to start with some specific
value in a counter, you can use an FDCTRL macro that specifies CTR = (d, CLR, ADD,
value) or, if the value can be obtained from the current field, the FDFIELD operand
SINK = CTR (d). No overflow indication is provided if the value in a counter exceeds
the capacity for the counter (± 1010_1).

The codes allowed for op in the CTR operand of the FDFIELD macro, and their
meanings, are as follows (framing apostrophes are required where shown):

ADD or ' + ' The numeric value of the field data is added to the contents of the

SUB or' -'

MPYor' *'

counter, and the sum replaces the contents of the counter.
The numeric value of the field data is subtracted from the contents of
the counter, and the difference replaces the contents of the counter.
The contents of the counter are multiplied by the numeric value of the
field data, and the product replaces the contents of the counter.

How To Write A Fonn Description Program 29

IND = «(!rg) ,logexp)

['((!rs) ,logexp)) •••)

30 IBM 3735 Programmer's Guide

DIVor' /'

DVRor' /+'

The contents of the counter are divided by the numeric value of the
field data, the remainder is discarded, and the quotient replaces the
contents of the counter. The counter is cleared to zero if an attempt
is made to divide by zero.
The contents of the counter are divided by the numeric value of the
field data, the remainder is used-to round ("half-adjust") the quotient,
and the adjusted quotient replaces the contents of the counter. The
counter is cleared to zero if an attempt is made to divide by zero.

The FIELD specification is an optional encoding allowed for its value as a memory aid,
but is not required.

When a CTR arithmetic operation is coded for a counter that is also named in a
SINK = CTR(d) specification, the counter contairts the value of the field input when the
operation begins. For example, coding

FDFIELD SOURCE = KBD,SINK = CTR (1), CTR = «(i,SUB), (2 ,SUB)

subtracts the field input from the value in counter 2 and sets the final value of counter 1
to zero.

Note: The CTR operand is not promotable. When only one counter is to be operated
on by the field data, the inner grouping parentheses may be omitted. When the CTR
operand is coded, the KIND option is forced to numeric, and any coding of KIND is
ignored. Counter operations are not permitted with SOURCE = 'string' data.

The IND operand provides for the testing of logical conditions related to the data inpu t
for the current field (logexp), and either for the modification of program logic indicators
(d) to the truth values of a logical expression, or for a conditional branch to be taken to
the named macro statement (targ) when the File Storage capability is present. The pos
sible truth values are TRUE = ON = '1' and FALSE = OFF = '0'. The affected indicators
may be tested later by an FDCTRL statement. The 3735 resets all indicators to '0' be
fore beginning to process each copy of a form. The values of the indicator number (d)
may range from 1 to 84.

If the name of a target macro statement (targ) is used instead of an indicator number
(d), the branch to the target occurs when the logical expression is evaluated as TRUE. If
the branch occurs, certain FDFIELD operations are not performed; they are to place
data in a buffered sink, print or transmit edited data, print or transmit AFTER entry,
generate SELFCHK values, and perform any other IND operations following the one
that caused the branch. All other specified FDFIELD operations, including CTR and
SINK = CTR operations, are performed unconditionally.

The format of logexp (logical expression) is as follows:

[FIELD,] comparopr, comparand [, [~:D l' [FIELD,] comparopr , comparand]

Each logical test consists of comparing the data input for the current field to some fixed
data (comparand) as specified by a comparison operator (comparopr). When the compari
son has been made, the specified indicator is set to '1' if the result is true, or '0' if the re
sult is false. The FIELD specification is an optional encoding allowed for its value as a
memory aid, but is not required.

All comparisons except numeric-only are made against character strings. If one st'ring
is shorter than the other, it is extended to the right with blanks until its length equals that
of the longer string. All string comparisons are made with the collating sequence implicit
in the transmission code of the particular 3735 (EBCDIC or ASCII).

The -allowable comparison operators (comparopr) are as follows (framing apostrophes
are required where shown):

GTor' >,
NG or ,,>,
EQ or' ='

Greater than
Not greater than
Equal to

NE or '''' =' Not equal to
LT or '<:' Less than
NL or ,'<:' Not less than
GE or ') =' Greater than or equal to
LE or '<: =' Less than or equal to

The format of comparand is either [+] decdigits or -decdigits for numeric comparison,
or 'string' for character comparison. A + is assumed if no sign is specified. All comparands
must be of the same type and appropriate to the data being processed. (You cannot, for
example, code a character comparand and a numeric comparand in the same IND operand.\

If you want to ••• Code .•• Unless you want to use
the default value of •.•

Perform logical tests on the field IND = (d, logical-express- No logical tests and no
data and set indicators that ion), which sets indicator setting of indicators.
describe the resu Its of the tests. • • d ON or OFF, depending The comparison oper-

on the results of the ators are:
testing. The value of d GT greater than
can range from 1 to 84. NG not greater than
IND = (target, logical- EO equal to
expression), which causes NE not equal to
the branch to be taken LT less than
when the evaluation of NL not less than
the logical expression GE greater than or
yields a TRU E resu It. equal to

such as •••
LE less than or

equal to or
If the field data is the character A, IND = (1, EO, 'A') their symbolic
set indicator 1 on •.•

equ ivai ents.
If the field data is a number IND = (2, GE, 10, AND,
between 10 and 20, or the LE, 20, OR, EO, 99)
number 99, set indicator 2 on ••• (As shown above, tests

may be combined by the
operators AND and OR.)

Repeat the execution of a CYCLE = (d, limit, target), No repeated execution
group of macro statements ••• where: of macro statements.

• d is a number from 1 When CYCLE is coded,
to 16383 that speci- at least one of the sub-
fies the maximum operands should be coded.
number of times the The default values are
cycle is to operate. described following

• limit is the name Figure 12 (Part 1).
entry of the last macro
in the repeated group.

• target is the name
entry of the macro to
be executed when the
cycle is finished.

and •••
Define a summary block to be SKIP (d) as the linenum No summary block. See
executed at the end of the operand of a target the discussion following
cycle ••• FDLlNE macro statement. Figure 12 (Part 2) for

more details.

Figure 14. Coding the FDFIELD Macro Instruction (part 2 of 7)

How To Write A Fonn Description Program 31

The number of characters used to encode comparands, exclusive of the framing apostrophes,
may range from 1 through a maximum number that depends on the Assembler used and on
the number of comparisons coded. In no case, however, may the net number of characters
per comparand exceed 127.

The results of the individual tests can be combined with the logical operators AND
(or '&&') and OR (or' 1 '). Evaluation and combination proceeds from left to right
through the operand terms, with AND taking precedence over OR. Grouping to force

. OR to take precedence over AND is not permitted.

The 3735 program logic indicators enable you to design an FDP that can make
delayed processing decisions while it is being used at a 3735. For example, suppose
that your FDP must make a decision at some point that depends on operator input in
the current field. One way to retain such information for later use is to set one or more
indicators that describe the current activity. Thus, if the operator could enter an "A",
"E" or ''C'' from the keyboard, you could set indicators to describe the entered data in
this way:

IND = ((1, EQ , 'A') , (2 , EQ , 'B') , (3 , EQ , 'C'))

The indicators can then be tested later by an FDCTRL macro statement to determine
which character was entered.

On the other hand, if a particular processing path is to be taken immediately when a
IUlmber falling within certain limits (say, from 2 to 10) is entered, you can cause a
branch to be taken to some other macro statement. For example:

IND = (TWOTEN, GE, 2, AND, LE, 10)

When the number entered falls within these limits, the branch to the macro statement
named TWOTEN is taken. Otherwise, no branch is taken.

Note: The IND operand is not promotable. The File Storage capability must be
present for IND branching to be allowed. When only one indicator is to be modified,
or only one target is specified, the inner grouping parentheses may be omitted.
Indicator operations are not permitted with SOURCE = 'string' or SOURCE = FlO
data.

CYCLE = ([d I [, limit I [,target» The CYCLE operand specifies a cycle count (d), delimits a group of sequential macro
statements that are to be processed repeatedly as a unit (limit), and specifies where
sequential processing is to resume after the cyclic processing ends (target). An FDFIELD
CYCLE specification can be used to advantage when you want to repeat only part of a
line. Such coding can result in more efficient mechanical motion on the Selectric ®
printer. The coding of this operand is explained in the discussion of the FDLINE macro
instruction. Note, however, that there is no facility uniquely associated with FDFIELD
which is analogous to the summary block facility of FDLINE, and that cycling cannot be
used to cause field repetition across a line.

If you want to ... Code •.. Unless you want to use
the defaultvelue of ...

Save the location of the field SAVELOC = YES, if SAVELOC = NO, which does
so thet you can make back- you want to save the not save the statement location.
ward references to it ... entire form, or Note: If SAVELOC is coded

SAVELOC = d, whare YES or d, a name entry is
d is the number of back- required in the FDFIELD
ward references you will statement.
make to this statement.

Figure 14. Coding the FDFIELD Macro Instruction (part 3 of 7)

32 IBM 3735 Programmer's Guide

SAVELOC = l~ 1 YES
d

Source Keyword Operands

The SAVELOC operand directs the FD macros to save the location of the current macro
statement within the FDP, for the purpose of resolving backward references to the state
ment. The coding of this operand is explained in the discussion of the FDPAGE macro
instruction. An example of its use is found in the discussion of the FDCTRL macro
instruction.

SOURCE = (origin[,qualifier] •••) The Source operand indicates, for each document field, the origin of the data for that
field. If this operand is not coded, a default value of SOURCE = KBD is used. Each
field may have only one data source that cannot exceed 127 characters in length. The
allowable values of origin and qualifier are described below.

SOURCE = (KBD[,OPTIONAL]

[,NUMPAD] [,AUTOEOF])

Note: When an unqualified origin is specified, the enclosing parentheses may be
omitted.

Non-Buffered Sources: The non-buffered sources are those origins of data for the field
which either do not reside in the 3735 or are of fixed length and fIXed content-type.
Data is obtained from the specified source (except for KBD) in all 3735 operating modes
(enter form, error correct, and playback). When SOURCE = KBD is coded, data is ob
tained from the keyboard in enter form and error correct modes, and from the 3735 disk
in playback mode.

The SOURCE = KBD (keyboard) specification directs the 3735 to get the data for the
current field from its Selectric keyboard (KBD).

The qualifying suboperand OPTIONAL specifies that the 3735 operator is not obliged
to enter data. If this qualifier is not coded, and if the operator enters no data, the 3735
stops, turns on an error indicator, and gives the operator another opportunity to enter
the required data.

The qualifying sub operand NUMPAD (numeric pad) directs the 3735 to treat as numeric
characters any input from an array of ten of its keys arranged like those of an adding
machine. When SOURCE = (KBD,NUMP AD) is coded, the operator may key non-numeric
characters outside the ten-key area unless KIND = N is coded.

The qualifying suboperand AUTOEOF (automatic end-of-field) specifies that the 3735
operator is not obliged to strike the "entry completed" key when the full number of char
acters allowed for the current field are entered.

Keyboard qualifiers may be coded in any order, but only once each. If you promote
a qualified SOURCE = KBD operand to a higher-authority macro instruction, then code
SOURCE = KBD in some lower-authority macro, you should be aware that any keyboard
qualifiers coded at a particular level of authority are the only ones in effect. If no quali
fiers are coded, and the macro of next-higher authority specifies SOURCE = KBD, the
qualifiers at that higher level (if any) are used. If the next-higher level does not specify
SOURCE = KBD, no qualifiers are used.

For 3735 forms that have many fIXed-length numeric fields, a specification of
SOURCE == (KBD, NUMPAD, AUTOEOF), promoted to a higher-level macro statement,
should be useful in many cases. Where some other data source is desired for a particular
field, the SOURCE specification may be modified in the FDFIELD macro defining that
field ..

If the primary data source is the Selectric ® keyboard, and the operator is not re
quired to enter data in some fields, you should use the OPTIONAL qualifier to indicate
this, by coding SOURCE = (KBD, OPTIONAL).

How To Write A Form Description Program 33

SOURCE = 'string'

34 IBM 3735 Programmer's Guide

If you want to ••• Code ••• Unless you want to use
the default value of •••

Specify the origin of the data SOURCE = origin, where SOURCE = KBD, which
for th is field ••• the origin can be one of may be qualified as follows:

the following: OPTIONAL· the 3735

• Selectric keyboard operator does not have
IKBD • the default) to enter data in this

• Card reader IRDR) field.

• Storage buffer ISTG) NUMPAD· a special set of

• Inquiry buffer IINO) 10 adding·machine-like

• Line printer buffer keys on the Selectric
ILPB) keyboard may be used to

• Read/punch buffer enter numeric data.
IRPB) AUTOEOF • the 3735

• Operafor Identification operator does not have to
Card Reader IIDR or press the "entry complete"
CCR) key when the full number

• A character string of characters for the field
I'string') have been entered.

• A counter ICTR Id), The qualifiers may be coded
where d is the numbar in any order, but only once
of the counter) each.

• The FOP number IFID)

• The record sequenca
number of the current
record IRSN)
record IRSN)

• Input/output buffer
1I0B)

• Index counters IX1
orX2)

Note: Buffered sources
should be filled with data
by some other macro
statement before being
used.

such as •••
The special numeric section of SOURCE = IKBD,
the Selectric keyboard •.• NUMPAD)
Positions 1·10 of the card reader SOURCE = IRDR, 1, 10) Note: All requests for data
buffer IRDR) ••• or •.• from a buffer IRDR, STG,

SOURCE = IRDR, 1, LNG INa, LPB, RPB, lOB, lOR,
(10)) or CCR) are made this way.

The character string "End OF SOURCE = 'END OF
INVOiCE" ••• INVOICE'
The contents of counter 3 ••• SOURCE" CTR (3)
The current form description SOURCE = FlO
program fl . ..
The sequence number of the SOURCE" RSN
current record •••

Figure 14. Coding the FDFIELD Macro Instruction (Part 4 of 7)

The SOURCE = 'string' specification defines a literal character string that the 3735 is to
get directly from the FOP. The string length may range from 1 to a maximum number of
characters that depends on the Assembler used (not counting the framing apostrophes,
which must be coded). To avoid truncation, the number of characters in the string must
not exceed the capacity of any currently active sink. If the COUNT, SELFCHK, COMPARE.
CTR, IND, FILL, or KIND operand is coded, it is ignored.

SOURCE = CfR (d)

SOURCE={~}

SOURCE=FID

SOURCE=RSN

F or example, if you want to provide a character string as data for the current field,
such as "thank you for your order, you can code:

SOURCE = 'THANK YOU FOR YOUR ORDER.'

In addition to the limitations of Assembler and sink capacity, the 3735 limits the character
string to 127 characters (not including the framing apostrophes).

Note: SOURCE = 'string' is not promotable.

The SOURCE = CTR (d) (counter) specification directs the 3735 to retrieve a signed
(+ or -) ten-digit number from the counter specified by d. A negative value is represented
in the counter by an overpunch in the units position. The overpunch is stripped off for
printing (unless a signed PICTURE specification is used), but is retained when the number
is stored right-justified in buffered sinks or stored on the disk for transmission to the CPU.
The counter is assumed to have been loaded in a previous operation. The value of d may
range from 1 to 21. If the COUNT or KIND operand is coded, it is ignored.

For example, to get the data for the current field from a lO-digit counter, such as
counter 18, you can code SOURCE = CTR (I8).

Although a SOURCE = CTR (d) specification retrieves a lO-digit number from the
counter, you may not want to use all 10 digits in subsequent operations~ Two simple ways
to adjust the number of digits are:

1. Use a PICTURE specification to define a numeric string of the desired length for some
SINK. (Examples are shown in the sample program in Figure 2 L)

2. Store all 10 digits in the storage buffer (SINK = STG), then get the desired number of
digits from the buffer with another FDFIELD macro that requests data from the
desired positions of the storage buffer (SOURCE = STG).

The SOURCE = Xl or SOURCE = X2 specification directs the 3735 to use as data the
contents of the selected index counter (Xl or X2), which are provided with the File
Storage capability. The contents of the selected index counter are then printed as three
decimal digits, varying from 000 to 255.

Note: SOURCE = Xl or X2 is not promotable. The only other operands that may
be coded or in effect through promotion are SINK = PRT and field boundaries that
allow for at least three positions. If SINK = PRT is not coded, the macros force that
specification. Any other operands are ignored.

The SOURCE = FID (FDP identification) specification directs the 3735 to supply as data
the identification of the currently active FDP, which was established at assembly time by
the FDFORM operand FID = 'ddd'. Three decimal characters are supplied by the 3735.
If the COUNT, IND, COMPARE, or KIND operand is coded, it is ignored.

The SOURCE = RSN (record sequence number) specification directs the 3735 to supply
as data the sequence number of the record now being created. This number, consisting
of three decimal digits, is automatically updated by the 3735 after each record is com
pleted. If the COUNT or KIND operand is coded, it is ignored.

The SOURCE = FID and SOURCE = RSN specifications allow you to use as data the
number of the FDP that is being used at the 3735 (FID) and the record sequence number
of the form being created at the 3735 (RSN). The FID and RSN data should be printed
somewhere on each form prepared at a 3735. Then, if corrections are required, the 3735
operator can tell immediately which FDP and record are needed. For example, the last
line of the form might be coded as follows:

FDLINE 66,SINK = PRT
FDFIELD I,3,SOURCE = FID
FDFIELD 4,4,SOURCE = 'j'
FDFIELD 5,7,SOURCE = RSN

How To Write A Form Description Program 35

36 IBM 3735 Programmer's Guide

For record sequence number 023 and FDP 061, the resulting output would appear on
the form as:

061/023

Note: The 3735 always inserts the FID number as the first field of a record that is to
be sent to the CPU.

Buffered Sources: The buffered sources are those origins of data for the field which reside
in the 3735, are of fixed length and variable content, and are byte-addressable. The coding
format for all buffered sources is:

SOURCE = (bufname[, 1.1.. l)[, 1 complng !])
prevd2+1 LNG (d)
dl d2
Xn

where:

bufname specifies a code name for the buffer to be used as the data source.

The qualifying suboperands dl (or Xn) and LNG(d) (or d2) specify the range of
contiguous character pOsitions within a buffer from which the 3735 is to get data.
These suboperands specify either the lower-numbered character position (d 1) or one of
two index counters (Xn) that should be used to determine the starting position,and
either the field length (LNG(d), with d being the number of character positions), or the
higher-numbered character position (d2); Neither dl nor d2 canbe less than 1 or greater
than a buffer-dependent value, nor can dl exceed d2: Further,the data length may not
exceed 127 (the maximum length of a 3735 field). Similar restrictions apply to LNG(d),
since d2 = dl+d-l. If dl is not coded and an index counter has not been promoted, the
default value is position 1 if the present request for data movement is the first coded
since the last encoding of certain buffer-dependent FDCTRL commands. Otherwise,
the previous d2 value plus one is used. Note, however, that you can read the same buffer
positions as many times as you wish by explicit encoding (the next dl does not have to
be greater than the previous d2).

If the starting position (dl) is omitted at the field level but the source was promoted
with an index counter starting position, then the index counter is used at the field level.
Otherwise, if the starting position is omitted and no index counter has been promoted,
then the starting position is either 1 or the last end position plus 1.

The File Storage capability must be present in order to specify and use the index
counters. When using one of the index counters (Xl or X2) to identify the starting
position in the buffer, the position is offset from character position 1 of the buffer by
the value stored in the index counter. When an index counter is used to locate the
starting position, the second qualifier (if used) must be the data length, LNG(d). In
addition, index counters may not be specified for the IDR or CCR buffer. You can
place a value in an index counter by coding the FDCTRL CTR operand. (See the
FDCTRL discussion for further details.) If d2 or LNG(d) is not coded, the default
value (compIng) is obtained (if possible) from the current values of other FDFIELD
operands, such as the field length or COUNT.

Note: The d2 (or LNG (d» specification is not promotable, since the size of a field is
not significant above the field structural level.

Numeric data from buffered sources may have a leading sign (+ or -, which may be
preceded by leading blanks), or may have an overpunch in the low-order digit position to
represent a negative number. The overpunch is stripped off for printing (uriless a signed
PICTURE specification is used), but is retained when the number is stored right-justified

SOURCE=RDR

SOURCE=STG

SOURCE = INQ

in buffered sinks or stored on disk for transmission to the CPU. Leading blanks are stripped
off for printing.

The SOURCE = RDR (card reader) specification directs the teoninal to get the data for the
current field from an internal read-only card-image buffer that has already been filled by a
READ(RDR) command (see the description of the COMMAND operand in the FDCTRL
discussion). For example, to get the data for the current field from positions 81 to 96 of
the card-image (RDR) buffer, you can code:

SOURCE = (RDR, 81, 96) or SOURCE = (RDR, 81, LNG (16))

Since the card image consists of exactly 96 characters, take care that d2 is not greater
than 96, and observe a similar limit for LNG (d). .

SOURCE = RDR cannot be coded if BUFFERS = RPB is coded in FDFORM.
SOURCE = RDR and SOURCE = RPB are mutually exclusive. The RDR buffer is not
saved at the beginning of each FDP, nor is it restored if the operator enters error correct
mode. (During error correct mode and playback mode, all data is retrieved from the disk,
since the data in the buffer may have been changed by the time a record is played back.)

The maximum values of d 1 and d2 are 96 when SOURCE = RDR is coded. The default
value of dl is reset to 1 the next time an FDCTRL READ(RDR) command.is encountered
in the FD macro assembly.

Note: You are required to anticipate when the current card image is no longer useful
and a new record from the 5496 is needed. The 3735 does not do this for you. The
discussion of the FDCTRL READ (RDR) command describes the input techniques
that should be used with the 5496.

The SOURCE = STG (storage) specification directs the 3735 to get the data for the current
field from an internal write/read character storage buffer that has already been filled by an
FDFIELD macro that specifies SINK = STG. For example, to get the data for the current
field from positions 26 to 50 of the storage buffer, you can code:

SOURCE = (STG, 26, 50) or SOURCE = (STG, 26, LNG (25))

The storage buffer (STG) is 236 bytes long, but the length of a data string requested
from it may not exceed 127 characters (the maximum length of a 3735 field).

The contents of the storage buffer are saved at the beginning of each FDP (or the re
execution of a single FDP). If the record is canceled, the storage buffer is restored to its
state at the beginnirig of the record. (During playback mode, all data is retrieved from the
disk, since the data in the buffer may have been changed by the time a record is played
back.)

The maximum values of dl and d2 are 236 when SOURCE = STG is coded. The default
value of d 1 is reset to 1 the next time an FDCTRL CLEAR (STG) command is encountered
in the FD macro assembly.

The SOURCE = INQ (inquiry) specification directs the 3735 to get the data for the current
field from an internal write/read character buffer that has already been filled by a response
transmitted from the central computer following its reception of a 3735 inquiry message.
For example, to get the data for the current field from positions 4 to 35 of the inquiry
buffer, you can code:

SOURCE = (INQ, 4, 35) or SOURCE = (INQ, 4, LNG (32))

The inquiry buffer (INQ) is 236 bytes long, but the length of a data string requested
from it may not exceed 127 characters (the maximum length of a 3735 field).

When using the inquiry buffer for inquiry operations (instead of for temporary data
. storage), you should not expect to find data in the first three positions of the buffer,
since these positions contain a message header. In addition, if the rest of the inquiry

How To Write A Fonn Description Program 37

SOURCE = LPB

SOURCE=RPB

SOURCE = lOB

38 IBM 3735 Programmer's Guide

block received from the CPU is less than 233 bytes long, an ETX character appears in tht
buffer to identify the end of the inquiry block. This ETX must not be in the buffer whe
the next inquiry message is sent. If the data for the next inquiry message will not overla~
the ETX, you should clear the inquiry buffer before starting to place data in it. See the
"System Design Considerations" section for further details on inquiry message handling.

The inquiry buffer is not saved at the beginning of each FDP, nor is it restored if the
operator enters error correct mode. During error correct mode and playback mode, all
data is retrieved from the disk, since the data in the buffer may have been changed by th,
time a record is played back.

The maximum values of d1 and d2 are 236 when SOURCE = INQ is coded. The defal
value of d 1 is reset to 1 the next time an FDCTRL SEND or CLEAR (INQ) command is
encountered in the FD macro assembly.

The SOURCE = LPB (line printer buffer) specification directs the 3735 to get the data f(
the current field from an internal write/read character buffer that has already been filled
an FDFIELD macro that specifies SINK = LPB. For example, to get the data for the cur
rent field from positions 100 to 104 of the line printer buffer, you can code:

SOURCE = (LPB, 100, 104) or SOURCE = (LPB, 100, LNG (5»

The length of a data string requested from the line printer buffer may not exceed 127
(the maximum length of a 3735 field).

During error correct mode and playback mode, all data is retrieved from the disk, sin,
the data in the buffer may have been changed by the time a record is played back.

The maximum values of dl and d2 are 132 when SOURCE = LPB is coded, unless
BUFFERS = (LPB; ddd) was coded in FDFORM. In this case, the maximum is the valu~
of ddd that was coded (up to 236). The default value of dl is reset to 1 the next time a
FDCTRL CLEAR (LPB) command is encountered in the FD macro assembly.

The SOURCE = RPB (read/punch buffer) specification directs the 3735 to get the data I
the current field from an internal 192-character write/read buffer that has already been
ftlled by an FDFIELD macro that specifies SINK = RPB. (RPB positions 1-96 can also I
filled from a 5496 by an FDCTRL READ (RDR) command, since the read/punch buffe
occupies the same internal storage as the 96-character RDR buffer and the 96-character
PCH buffer combined.) SOURCE = RPB cannot be coded unless BUFFERS = RPB was
coded in the FDFORM macro. SOURCE = RPB and SOURCE = RDR are mutually
exclusive. For example, to get the data for the current field from positions 101 to 125
of the read/punch buffer, you can code:

SOURCE = (RPB, 101, 125) or SOURCE = (RPB, 101, LNG (25»

The length of a data string requested from the read/punch buffer may not exceed 127
(the maximum length of a 3735 field).

During error correct mode and playback mode, all data is retrieved from the disk, sin,
the data in the buffer may have been changed by the time a record is played back.

The maximum values of dl and d2 are 192 when SOURCE = RPB is coded. The def~
value of dl is reset to 1 the next time an FDCTRL READ (RDR) or CLEAR (RPB) con
mand is encountered in the FD macro assembly.

The SOURCE = lOB (input/output buffer) specification (for the File Storage capability
only) directs the 3735 to get the data for the current field from an internal 236-characb
write/read buffer that has already been ftlled by an FDFIELD macro that specifies
SINK = lOB or an FDCTRL macro that specifies COMMAND = READ (ftle qualifier).

SOURCE = (f IDR J)
CCR

For example, to get the data for the current field from positions 17 through 25 of the
lOB, you could code:

SOURCE = (lOB, 17, 25)

Note that the separator characters used to format the record for the 3735 disk storage
fIle are read into the lOB along with the key and data fields when the READ command
is executed. These characters will appear as an asterisk if printed, punched, or trans
mitted. (See the SINK = lOB discussion for further details on the format of a data
record.)

The SOURCE = IDR (IDReader buffer) specification directs the 3735 to get the data for
the current field from an internal write/read character buffer that has already been filled
by an FDCTRL COMMAND = READ (IDR) specification. The SOURCE = CCR specifi
cation is similar to SOURCE = IDR except that a COMMAND = READ (CCR) is used to
fIll the character buffer. Because both SOURCE requests get data from the same physical
buffer within the 3735, you should ensure that a SOURCE instruction follows each READ
before another READ is issued.

The maximum values of dl and d2 are 39 when either SOURCE = IDR or SOURCE =
CCR is coded. The default value of dl is reset to 1 the next time an FDCTRL READ
(IDR or CCR) or CLEAR (IDR or CCR) command is encountered in the FD macro as
sembly. For SOURCE = IDR, the default value of d2 is 18 for the first SOURCE = IDR
encountered after a READ (IDR) or CLEAR (IDR) command. If a second SOURCE =
IDR is coded before a READ or CLEAR, the default values are 19 and 36. These default
values are reset to 1 and 18 when a READ (IDR) or CLEAR (IDR) command is encounter
ed. The starting position may not be specified by an index counter.

For example, to get the data for the current field from positions 1 to 10 of the IDR
buffer, you can code:

SOURCE = (IDR, 1, 10) or SOURCE = (IDR, 1, LNG (10»

The IBM Magnetic Stripe Identification Card can contain up to 18 characters; other
magnetic identification cards can contain up to 39 characters. Thus, the length of a data
string requested from the IDR buffer may not exceed 39 characters, and will usually be
either 18 or 39 characters. You can use a similar specification to get data from the credit
card reader (CCR) buffer; the length of the data string requested can be up to 39 char
acters.

Since both READ (IDR) and READ (CCR) get data from the same physical device (the
Operator Identification Card Reader), you should take care to ensure that the operator has
inserted the correct card type. The IBM Identification Card has as its first character an
OID character, which is represented as a colon (:) in the buffer. The credit card has no
such character. Thus, you can check the card type by coding a COMPARE operand to
look for a colon in the first buffer position.

When the 3735 is in error correct mode or playback mode, coding COMMAND =
READ (IDR) causes rereading of the magnetic card, while coding COMMAND = READ
(CCR) causes the 3735 to get the previously-read data from disk storage.

Note: Since the 3735 performs no longitudinal redundancy check (LRC) on data from
the ID reader, you may want to perform that function at the central computer if the
field is transmitted to it. The record formats of IBM ID cards, user ID cards, and credit
cards are shown in the IBM 3735 Programmable Buffered Terminal Concept and
Application publication, Order No. GA27-3043. Each character consists of 4 bits
(plus I bit for parity). Upon insertion into the buffer. a 3-bit zone digit is added to

How To Write A Form Description Program 39

make each character a graphic. When this data is sent to the CPU, the application
program may strip out the zones, accumulate the low-order four bits of each character,
and perform the LRC check function. The (IBM 3735 Programmable Buffered Terminal
Concept and Application) publication, Order No. GA27-3043, describes the exact char
acter representations for different character sets (including Katakana).

If you want to .•• Code .•• Unless you want to use
the default value of •••

Specify character set checking •.• KIND = A for alphabetic KIND = U (unrestricted
and blank characters. character setl

KIND = N for numeric-
only characters plus
optional leading sign.

KIND = AN for alphabetic,
numeric, and blank
characters (no sign or
other special charac-
ters).

KIND = K for Katakana
characters (for IBM
Japan terminals).

Perform self-checking procedures SELFCHK = d, where d is SELFCHK = NO (no self-
on numeric data •.. either 10 or 11. and tells checking provided)

the 3735 which procedure
to use (modulo-10 or
modulo-11).

If the seJf-checking
digit is not provided in
the input data. but you
want to generate one.
code:
SELFCHK = (d. GENONLY)
and allow space in the out-
put field for the generated
digit.

Check the number of characters COUNT = d. where d is a d1 = 1.
entered by the operator ••• fixed number of charac- d2 = a value from other

ters (up to 127). or FDFIELD operands. such
COUNT = (d1. d2). where as the field length. SINK.
d1 indicates the smallest and SOURCE.
number of characters
that can be entered. and
d2 the largest (up to 1271.

Figure 14. Coding the FDFIELD Macro Instruction (part 5 of7)

Input Data Verification Operands The input data verification operands are concerned with testing the character-set member
ship, quantity, and value of incoming data. Numeric self-checking procedures are also
included. Any violation of the requested data checking results in an operator error indi
cation.

40 IBM 3735 Programmer's Guide

The KIND operand directs the 3735 to validate the character-set membership of each in
coming character from the Selectric ® keyboard. The set codes allowed are U
(umestricted), A (alphabetic plus blank), N (numeric plus optional leading sign), AN
(alphabetic, numeric, and blank), and K (Katakana). The default is U (umestricted char
acter set). The KIND operand coding is ignored if any of the following FDFIELD operands
is coded: SOURCE = 'string', SINK = CTR (d), FILL = 'Q',PICTURE, CTR, BATCH,
SELFCHK, or COMPARE or IND using numeric comparands.

If a character that does not belong to the specified character set appears in the field
input, the 3735 operator is notified and, when SOURCE = KBD, is given an opportunity
to correct the erroneous character. If the data is from a source other than the keyboard,
a data source error indication is provided. For example, if you plan to use the data in
some field for arithmetic computations, you can code KIND = N to ensure that only
numeric characters are entered into the field.

Note: KIND = K may be coded only if DEVICES = (3735,1() or DEVICES = (3735,1(D)
was coded in FDFORM. For complete details of the Katakana support, refer to
Appendix J.

SELFCHK = r NO 1 l<f lO}l,GENONLY]) The SELFCHK operand directs the terminal to perform one of two standard accounting
il procedures (modulo-IO or modulO-II) to generate a self-check digit from numeric data

characters. The qualifying suboperand GENONLY informs the 3735 that the incoming
data contains no self-check digit against which the generated self-check digit is to be
compared.

When SELFCHK is used with GENONLY, the source character count (whether speci
fied or implied) must not allow a position for the self-check digit. Subsequent operations
(such as COMPARE and SINK) must allow one position for the self-check digit, since the
self-check digit is placed at the end of the numeric data string. When SELFCHK is coded,
KIND is forced to numeric, and any KIND specification coded is ignored.

If the SELFCHK comparison detects an error, the 3735 gives the operator an oppor
tunity to enter the correct data when SOURCE = KBD. If the data is from a source other
than the keyboard, a data source error indication is provided. If SINK = PRT is coded,
the erroneous data may be printed on the Selectric ® form. This can be avoided by
coding SINK = (PRT, AFTER).

Note: If only a modulus number is coded, the enclosing parentheses may be omitted.
Coding the qualifier GENONLY is required for the sources FID and RSN, and
SELFCHK may not be coded for SOURCE = 'string' .

The modulo-lO routine is designed primarily to detect the most common types of errors,
the incorrect keying of a single digit, and a single transposition of 2 digits. The modulo-II
routine is designed to detect single-digit keying errors, single transpositions, and double
transpositions. The algorithms used to generate the self-check digit are described in
AppendixA.

The COUNT operand directs the 3735 to validate the number of characters entered by the
operator. The suboperands can specify tests for minimum and maximum limiting counts
(SOURCE = KBD only), or else for one exact count (any SOURCE). The values of d, dI,
and d2 may range from 1 to 127. If the optional MIN and MAX suboperands are coded,
dl must be less than d2. Thus, while COUNT = (100,1) is permitted (and is interpreted
as min = 1, max = 100), COUNT = (MIN, 100, MAX, 1) is not (and will be flagged as an
error). If this operand is not coded, default values of a minimum count of 1 and a maxi
mum count (compmax) obtained from the current values of other FDFIELD operands,
such as the field length, SOURCE, and SINK are used. The COUNT operand is ignored
for the sources FID, RSN, and CTR (d), and for all buffered sources with d2 or LNG (d)
coded.

How To Write A Form Description Program 41

42 IBM 3735 Programmer's Guide

For example, if the operator can enter from two to five characters in the current field,
you can check for a number within these limits by coding:

COUNT = (2,5)

Or, if the operator must enter exactly four characters, you can code:

COUNT = 4

If the count test fails, the 3735 turns on an error indicator and, when SOURCE = KBD,
gives the operator another opportunity to enter the correct data. If the data is from a
source other than the keyboard, a data source error indication is provided.

Note: . The COUNT operand is not promotable. The MIN and MAX suboperands are
optional encodings allowed for their value as memory aids, but are not required. How

. ever, if they are coded, dl must be less than d2.

If you want to ..• Code •.. Unless you want to use
the default value of .••

Compare the field data with a COMPARE = (operator, No comparsion test of the
particular comparand ..• comparand) field data.

such as •.• The comparison operators
See if the entered data is the COMPARE = (EO, 123) are:
decimal number 123 .•. GT greater than
See if the entered data is an COMPARE = (EO, 'A', OR, NG not greater than
"A" or a "B" character .•. EO, 'B') EO equal to

NE not equal to
(Tests may be combined by LT less than
the logical operators AND NL not less than
and OR.) GE greater than or

equal to
LE less than or

equal to

Specify the destination of the data SINK = (name, name, SINK = NULL (no desti-
from this field ... · .•), which may name up nation - which is useful

to 5 destinations for the for control operations)
data, including:

• Selectric printer (PRT)

• Sent to central com-
puter (TMT)

• Card punch buffer
(PCH)

• Storage buffer (STG)

• Inquiry buffer (INa)

• Line printer buffer
(LPB)

• Read/punch buffer (RPB)

• Input/output buffer (lOB

• A counter (CTR (d),

I where d is the number
of the cou nted

such as ...
The Selectric printer and the SINK = (PRT, TMT)
central computer ..•
Positions 4 to 37 of the inquiry SINK = (INa, 4, 37) Note: All requests to
buffer ..• or •.. place data in a buffer

SINK = (INa, 4, LNG (34)) (PCH,STG,INO, LPB, RPB,
or lOB) should be made

Counter 10 ..• SINK = CTR (10) this way.

Figure 14. Coding the FDFIELD Macro Intruction (part 6 of 7)

COMPARE = ([FIELD,] comparopr,

comparand [, f:,,[FIELD ,]

comparopr,comparand] ••.)

Sink Keyword Operands

The COMPARE operand directs the 3735 to evaluate the characters entered by the operator.
Each test consists of comparing the data input for the current field to a fixed comparand
(comparand) as specified by a comparison operator (comparopr). The FIELD specification
is an optional encoding allowed for its value as a memory aid, but is not required. The
compare function is performed in all operating modes.

All comparisons except numeric-only are made against character strings. If one string
is shorter than the other, it is extended to the right with blanks (SP characters) until its
length equals that of the longer string. All string comparisons are made with the collating
sequence implicit in the transmission code of the particular 3735 (EBCDIC or ASCII). The
allowable comparison operators (comparopr) are as follows (framing apostrophes are re
quired where shown):

GTor ,>, Greater than
NGor ,...,>, Not greater than
EQ or '=' Equal to
NE or '--, =' Not equal to
LT or ,<, Less than
NLor ,..,< ' Not less than
GEor '>= ' Greater than or equal to
LE or '<= ' Less than or equal to

The format of comparand is either [+] decdigits or -decdigits for numeric comparison,
or 'string' for character comparison. A + is assumed when no sign is indicated. The sizes of
comparands may range from I through a maximum number of characters that depends on
the Assembler used and on the number of comparisons coded. In no case, however, may
the net number of characters per comparand exceed 127.

The results of the individual tests can be combined logically (logopr) with the logical
operators AND (or '&&') and OR (or 'I'). Evaluation and combination proceeds from left
to right through the operand terms, with AND taking precedence over OR. Grouping to
force OR to take precedence over AND is not permitted.

For example, if an operator must enter nothing or the character "Z" to indicate what
processing is to follow, you can code:

FDFIELD SOURCE = (KBD, OPTIONAL) ,COUNT = I ,COMPARE = (EQ, 'Z')

Thus, if data is entered, it must be only the character "Z". If you also want to set an
indicator, you could do so with the IND operand by coding:

IND = (l ,EQ, 'Z')

You can then test this indicator when the processing decision must be made later in the
program.

If the comparison fails (the entered data does not have the desired relation to the com
parand), the 3735 turns on an error indicator and, if SOURCE = KBD, gives the operator
another opportunity to enter the correct data. If the data is from a source other than the
keyboard, a data source error indication is provided. If SINK = PRT is coded, the erroneous
data may be printed on the Selectric ® form. This can be avoided by coding SINK =
(PRT, AFTER).

Note: The COMPARE operand is not promotable. Compare operations are not per
mitted with SOURCE = 'string' or SOURCE = FID data.

SINK = ([(destinati~n[,qualifier.] .••)] The SINK operand indicates, for each document field, the destination of the data from
[,[(destination[,qualifier I that field. If no SINK operand is coded, a default value of SINK = NULL (no sink) is
...) I I ...) used.

How To Write A Form Description Program 43

SINK = NULL

SINK = (PRT [,AFTER]

SINK = (TMT [,AFTER]

SINK = CTR (d)

44 IBM 3735 Programmer's Guide

From one to five destinations (sinks) may be specified for each field. The order in
which they are coded establishes a corresponding positional dependence in the editing
operands JUSTIFY, FILL, UL, and PICTURE. Only buffered sinks may be coded more
than once in any particular SINK operand. When a buffered sink is coded more than
once, the 3735 performs the specified sink operations in the indicated sequence. An ex·
ample of a SINK specification that describes more than one type of data sink is found near
the end of the "Output Data Editing Operands" discussion. The allowable values of
destination and qualifier are described in the following paragraphs.

Note: When one of several sinks is unqualified, the inner grouping parentheses for that
sink may be omitted. When only one sink is coded and it is unqualified, the outer
parentheses may also be omitted.

Non-Buffered Sinks: The non-buffered sinks are those destinations for data from the
field that are null, do not reside in the 3735, or are of fixed length and fixed content-type.

The SINK = NULL specification may be coded to override a higher-level value for the
scope of the current macro statement. It is also the default value when no sink is specified.
For example, if SINK = (PRT ,TMT) is in effect from the FDFORM level, and if you do
not want to transmit the data from the present field, then this FDFIELD macro statement
can be coded with SINK = (,NULL). This permits printing, but inhibits transmission to
the central computer.

The SINK = PRT (print) specification requests the 3735 to direct the data from the cur
rent field to the Selectric ® printer within the field space specified by dl and dr in field
location operands. The optional qualifier AFTER may be coded to prevent input data
from printing until data entry for the field is complete. Coding AFTER also suppresses
printing until the input data has successfully passed all the input data verification checks
that were coded.

If requests have been coded for editing of outgoing data, or if the qualifier AFTER is
coded, the data is printed only after the requested functions are completed. AFTER
occurs automatically if PICTURE, JUSTIFY = R or C, or FILL = 0 is specified for the
PRT sink. Data is directed to the Selectric ® printer in all operating modes.

The SINK = TMT (transmit) specification directs the 3735 to mark the data from the
current field as destined for transmission to a central computer through the transmission
interface (the line adapter) . You do not specify the range of character positions within
the data record being prepared for transmission, since this is regulated internally by the
3735. This sink is active only in enter form mode.

The qualifier AFTER requests the 3735 to delay marking the data for transmission
until all other FDFIELD operations are complete. This allows the TMT sink to become
conditional based on an IND branch. AFTER occurs automatically if PICTURE,
JUSTIFY = R or C, or FILL = 0 is specified for the TMT sink.

Two frequent destinations for field data are the Selectric printer and the central
computer. In many forms, you may find that coding SINK = (PRT,TMT) in a higher-level
macro statement saves much detailed coding at the field level. Where other data sinks are
desired, the promoted specification may be modified by coding other SINK operands in
the appropriate FDFIELD macros.

When an FDP creates a data record, the first three characters of the data record contain
the FDP identification number that was coded in the FDFORM FID operand. This identi
fication number is always sent to the CPU, whether or not any other data is sent.

The SINK = CTR (d) speCification directs the 3735 to store the data from the field in the
counter specified by d. The value of d may range from I to 21. The data may consist of

up to 10 numeric characters (plus optional sign). (A negative value is represented in the
counter by an overpunch in the units position.) If the data does not fill the counter, the
3735 pads the counter to the left by inserting high-order zeros. Data is placed in the
specified counter in all operating modes. When SINK = CTR (d) is coded, the KIND
option is forced to numeric, and any coding of KIND is ignored.

If SOURCE = 'string' is coded, SINK = CTR (d) may not be coded. To load a numeric
constant into a 3735 counter, you should code an FDCTRL macro that specifies CTR =
(d,CLR,ADD,constant).

Buffered Sinks: The buffered sinks are those destinations for data that are of fixed length
and variable content, and are byte-addressable. The coding format for all buffered sinks
is:

SINK = (bufname[{I ~] [, (COmPlng)])
prevd2+ 1 LNG (d)
d1 d2
Xn

where:

bufname specifies a code name for the buffer to be used as the data sink.

The qualifying suboperands d1 (or Xn) and LNG (d) (or d2) specify the range of contiguous
character positions within the buffer into which the terminal is to put the data. These
suboperands specify either the lower-numbered character position (d1) or one of two
index counters (Xn) that should be used to determine the starting pOSition, and either the
data field length (LNG (d), where d is the number of character positions), or the higher
numbered character position (d2). Neither d1 nor d2 can be less than 1 or greater than a
buffer-dependent value, nor can d1 exceed d2. Further, the data length may not exceed
127 (the maximum length of a 3735 field). Similar restrictions apply to LNG (d), since
d2 = d1 + d-l. If d1 is not coded and an index counter has not been promoted, the de
fault value is position 1 if the present request for data movement is the first coded since
the last encoding of certain buffer-dependent FDCTRL commands. Otherwise, the previ
ous d2 plus one is used. Note, however, that you can direct data to the same buffer posi
tions as many times as you wish by explicit encoding (the next d1 does not have to be
greater than the previous d2). You should take care, therefore, to avoid overlaying data
by mistake.

If the starting position (dl) is omitted at the field level but the sink was promoted with
an index counter starting position, then the index counter is used at the field level. Other
wise, if the starting position is omitted and no index counter has been promoted, then the
starting position is either 1 or the last end position plus 1.

The File Storage capability must be present in order to specify and use the index
counters. When using one of the index counters (Xl or X2) to identify the starting posi
tion in the buffer, the position is offset from character position 1 of the buffer by the
value stored in the index counter. When an index counter is used to locate the starting
position, the second qualifier (if used) must be the data length, LNG (d). In addition, an
index counter may not be specified for the PCH buffer. If you want to set data in this
buffer using index counters to identify the starting point, you should use SINK = RPB
instead. You can place a value in an index counter by coding the FDCTRL CTR operand.
(See the FDCTRL discussion for further details.) If d2 or LNG (d) is not coded, the de
fault value (complng) is obtained from the current values of other FDFIELD operands,
such as the field length, COUNT, and SOURCE.

Note: The d2 (or LNG (d» specification is not promotable, since the size of the field
is not significant above the field structural level.

How To Write A Form Description Program 45

SINK = PCH

SINK = STG

SINK = INQ

46 IBM 3735 Programmer's Guide

Numeric data directed to buffered sinks may have a leading sign (+ or -, which may be
preceded by leading blanks), or may have an overpunch in the low-order digit position to
represent a negative number. The overpunch is stripped off for printing (unless a signed
PICTURE specification is used), but is retained when the number is stored right-justified
in buffered sinks or stored on disk for transmission to the CPU.

The SINK = PCH (card punch) specification directs the 3735 to put the data from the
current field into an internal write-only card-image buffer that is subsequently directed
to the card punch by a PUNCH command (see the description of the COMMAND oper
and in the FDCTRL discussion). For example, to put the data from the current field into
positions 21 to 30 of the card punch buffer (PCH), you can code:

SINK = (PCH ,21 ,30) or SINK = (PCH, 21 , LNG (10))

Since the card image consists of exactly 96 characters, take care that d2 is not greater
than 96, and observe a similar limit for LNG (d).

SINK = PCH cannot be coded when BUFFERS = RPB is coded in FDFORM. SINK =
PCH and SINK = RPB are mutually exclusive. The PCH buffer is not saved at the beginning
of each FDP, nor is it restored if the operator enters error correct mode. Data is stored in
the buffer in all operating modes.

The maximum values of d1 and d2 are 96 when SINK = PCH is coded. The default
value of d1 is reset to 1 the next time an FDCTRL CLEAR (PCH) or PUNCH command
is encountered in the FD macro assembly.

The SINK = STG (storage) specification directs the 3735 to put the data from the current
field into an jnternal write/read character buffer, where it may be extracted later by a
macro statement that specifies SOURCE = STG. For example, to put the data from the
current field into positions 26 to 50 of the storage buffer, you can code:

SINK = (STG, 26, 50) or SINK = (STG, 26, LNG (25))

The storage buffer (STG) is 236 bytes long, but the length of a data string directed to
it may not exceed 127 characters (the maximum length of a 3735 field).

At the beginning of each FDP (or the re-execution of a single FDP), the contents of
the storage buffer are saved. If the record is canceled, the storage buffer is restored to
its state at the beginning of the record. During playback mode, no data is stored in the
buffer.

The maximum values of dl and d2 are 236 when SINK = STG is coded. The default
value of dl is reset to. 1 the next time an FDCTRL CLEAR (STG) command is encountered
in the FD macro assembly.

The SINK = INQ (inquiry) specification directs the 3735 to put the data from the current
field into an internal write/read buffer, where it may be transmitted later to the central
computer as a 3735 inquiry message. For example, to put the data from the current field
into positions 201 to 236 of the inquiry buffer, you can code:

SINK = (ING, 201, 236) or SINK = (INQ, 201, LNG (36))

The inquiry buffer (INQ) is 236 bytes long, but the length of a data string directed to
it may not exceed 127 characters (the maximum length of a 3735 field).

When using the inquiry buffer for inquiry operations (instead of for temporary data
storage), you should not place data in the first three positions of the buffer, since the
3735 Terminal Control Program (TCP) places a three-byte message header in these posi
tions when the inquiry is sent to the CPU. See the "System Design Considerations"
section for further details on inquiry message handling.

The inquiry buffer is not saved at the beginning of each FDP, nor is it restored if the
operator enters error correct mode. During playback mode, no data is stored in the buffer.

SINK=LPB

SINK=RPB

SINK = lOB [,DELIMIT]

The maximum values of dl and d2 are 236 when SINK = INQ is coded. The default
value of dl is reset to 1 the next time an FDCTRL CLEAR (INQ) or SEND command is
encountered in the FD macro assembly.

The SINK = LPB (line printer buffer) specification directs the 3735 to put the data from
the current field into an internal write/read character buffer, where it may be retrieved
by a SOURCE = LPB specification or printed on an attached 3286 printer by an FDCTRL
statement that specifies COMMAND = PRINT (see the description of the COMMAND
operand in the FDCTRL discussion). Data is stored in the buffer in all operating modes.

For example, to put the data from the current field into positions 100 to 104 of the
line printer buffer, you can code:

SINK = (LPB, 100,104) or SINK = (LPB, 100 LNG (5»

The maximum values of dl and d2 are 132 when SINK = LPB is coded, unless
BUFFERS = (LPB,ddd) was coded in FDFORM. In this case, the maximum is the value
of ddd that was coded (up to 236). Note, however, that only the first 132 bytes of the
buffer are moved to the 3286 printer when a PRINT command is executed. (If
BUFFERS = (LPB,ddd) was coded, and ddd is either 120 or 126, the number of bytes
moved to the 3286 printer is adjusted accordingly.) In addition, the length of a data
string directed to the buffer may not exceed 127 (the maximum length of a 3735 field).
The default value of dl is reset to 1 the next time an FDCTRL CLEAR (LPB) or PRINT
command is encountered in the FD macro assembly.

The SINK = RPB (read/punch buffer) specification directs the 3735 to put the data from
the current field into an internal 192-character write/read buffer, where it may be retrieved
by a SOURCE = RPB specification. For example, to put the data from the current field
into positions 101 to 125 of the read/punch buffer, you can code:

SINK = (RPB, 101, 125) or SINK = (RPB, 101, LNG (25))

(RPB positions 97 to 192 can also be punched on a 5496 by an FDCTRL PUNCH com
mand, since the read/punch buffer occupies the same internal storage as the RDR buffer
(96 characters) and the PCH buffer (96 characters) combined.) SINK = RPB cannot be
coded unless BUFFERS = RPB was coded in the FDFORM macro. SINK = RPB and
SINK = PCH are mutually exclusive. Data is stored in the buffer in all operating modes.

The maximum values of dl and d2 are 132 when SINK = RPB is coded. In addition,
the length of a data string directed to the read/punch buffer may not exceed 127 (the
maximum length of a 3735 field). The default value of dl is reset to 1 the next time an
FDCTRL CLEAR (RPB) or PUNCH command is encountered in the FD macro assembly.

The SINK = lOB (input/output buffer) specification (for the File Storage capability only)
directs the 3735 to put the data from the current field into an internal 236-character
write/read buffer, where it may either be written to the 3735 disk storage file by an
FDCTRL COMMAND = WRITE (file qualifier) specification or retrieved by a SOURCE =
lOB specification. When used to update the 3735 disk storage file, the data must be
organized as a key field starting in buffer position 1 and extending for up to 15 characters,
a one-byte key field delimiter (record separator), a data field, and a one-byte data field
delimiter (record separator). When the qualifier DELIMIT is used, the field delimiter is
automatically placed after the last character currently being placed in the lOB. For ex
ample, if the data portion of the output record is to be 100 bytes from the current field,
and you want the 3735 to insert the end-of-data delimiter automatically, and the starting
position in the lOB is pointed to by index counter 2, you might code:

SINK = (lOB, X2, LNG (100), DELIMIT)

Use a similar coding to insert the key and its delimiter.

How To Write A Form Description Program 47

Output Data Editing Operands

48 IBM 3735 Programmer's Guide

The 1/0 buffer (lOB) is 236 bytes long, but the length of a data string directed to it
may not exceed 127 characters (the maximum length of a 3735 field). Further, since
there are two record separator characters, the total key plus data length cannot exceed
234.

The maximum values of dl and d2 are 236 when SINK = lOB is coded. The default
value of dl is reset to 1 the next time an FDCTRL CLEAR (lOB) or WRITE command is
encountered in the FOP assembly. The fIle record organization is as follows:

I KEY I RlS I 0trA I RlSI :; IKEYI RlS I o11A IRIS I GIS
SIS s

:S 236 bytes Last record

where the key (KEY) may be up to 15 bytes long, the record separator character (RIS) is
represented by X'14', and the combined length of the key, the data, and the delimiters
can be up to 236 bytes long. The group separator character (GIS) is represented by X'lD'
and acts as an end-of·fIle indicator for the 3735 disk storage fIle records.

Note: Although there is only one physical file, several logical fIles are possible by using
unique keys or different length keys for each logical file, The terminal control program
automatically handles the position of the group separator (GIS), which also follows the
last valid data record in the fIle.

If you want to ... Code •.• Unless you want to use
the default value of ••.

Specify how the data for each sink JUSTIFY = L for left jus- JUSTIFY = L.
is to be justified •.• tification

JUSTIFY = R for right
justification
JUSTIFY = C centering

such as •.•
For SINK = (PRT, TMT) - print JUSTIFY = (R, L)
right justified, send left justified .••

Specify how unused leading spaces FILL =' 'for blanks FILL=' "
in each sink are to be filled. , FILL = '0' for zeros

Underline the data at the UL = YES, which under· UL = NO (no underlining)
Selectric sink .•. lines all field data except

blan k F ILL characters
(if any).

Specify editing of numeric data PICTURE = 'specification' No editing of numeric data.
(such as dollar sign, comma, and
decimal point insertion). , . (The PICTURE specification

symbols are shown in Figure
15, and some examples are
shown in Figure 16.)

Identify the data from this field BATCH = d where d is a No batch identification.
as belonging to a particular numberfrom 1 to 128.
data batch (for later totaling by an
FDCTRL TOTAL instruction) ...

Figure 14. Coding the FDFIELD Macro Instruction (Part 7 of 7)

The output data editing operands allow you to control the appearance of the output data.
None of the editing operands applies to SINK = NULL or SINK = CTR (d); they are
ignored if so coded.

JUSTIFY = ([justcode]
[. (justcode)] ...)

FILL = (['character']

[, ['character']] ...)

UL = ([f~ II t YES

[.[[NO 11] ...)
YE8J

PICfURE = (['picturespec']
[, ['picturespec ']] •••)

The JUSTIFY operand specifies, sink by sink, how the 3735 is to position Gustify) the
data within the data sink. The justification codes Gustcode) allowed are L (left), R (right),
and C (center). The default value is L (left) for all sinks. The justification codes specified
in a one-te-one pOSitional correspondence with the sinks. For example, the third justifi
cation code applies to the third sink.

The JUSTIFY option does not apply to SINK = NULL, SINK = CTR (d), or to any
buffered sink that is described by a PICTURE operand. Any JUSTIFY option coded for
such sinks is ignored. When no JUSTIFY option is specified (or JUSTIFY = L is coded),
the source data is placed flush left in the field, and any unused positions to the right of
the data are filled with blanks. When JUSTIFY = C is coded, the source data is centered in
the field. Any blanks in the source data are considered as characters for centering com
putations.

For JUSTIFY = L or JUSTIFY = C, if the source data is numeric and contains a
,negative sign overpunch in the low-order digit position, the overpunched digit is trans
ferred to the sink field only if the overpunch digit is stored in the rightmost sink char
acter position (that is, only if the data completely fills the sink).

When JUSTIFY = R coded, the source data is placed flush right: in the field. Any
leading zeros in the source data are filled with blanks (unless FILL = '0' is coded). If the
source data is numeric and contains a negative sign overpunch in the low-order digit posi
tion, the overpunched digit is stored in the rightmost sink character position.

The FILL operand specifies, sink by sink, strings each consisting of a single graphic char
acter (,character') with which the 3735 is to fill all unused or non-significant leading posi
tions in the source data before the data is moved to the specified sink. The specifications
allowed are' '(blank) and '0' (zero). The default value is' '(blank) for all sinks. Coding
FILL = '0' implies numeric KIND; any KIND option coded is ignored. The fill codes are
specified in a one-to-one positional correspondence with the sinks. For example, the third
fill code applies to the third sink. FILL should not be coded unless JUSTIFY = R is coded.
The FILL option does not apply to SINK = NULL, SINK = CTR (d), or to any sink that is
described by a PICTURE operand. Any FILL option coded for such sinks is ignored.

The UL operand tells the 3735 whether or not to underline the printed field data. If YES
is coded, the underlining begins at the leftmost nonblank character and ends at the right
most nonblank character. Blank fill characters (if any) are not underlined. If this operand
is not coded, or if it is coded as NO, no underlining is performed. The underlining codes
are specified in a one-to-one positional correspondence with the sinks. For example, the
third underlining code applies to the third sink.

The UL operand applies only to the Selectric ® printer, and is ignored if coded YES
for any other sink. If only one UL specification is coded, the enclosing parentheses may
be omitted.

The PICTURE operand specifies, sink by sink, the desired appearance of numeric data
directed to the sinks. The format and allowable editing characters of picturespec are a
subset of the PL/I PICTURE specification that governs decimal data output. Figure 15 is
a chart that summarizes the function of each permitted character.

The lengths of picturespec definitions, not counting the framing apostrophes (which
are required), may range from 1 to a maximum number of characters that depends on the
Assembler used and the number of specifications coded. In no case, however, may the
number of character positions implied by a single picture spec exceed 127. The picture
spec codes are specified in a one-to-one positional correspondence with the sinks. For
example, the third picture spec code applies to the third sink.

How To Write A Form Description Program 49

50 IBM 3735 Programmer's Guide

Note: The PICTURE operand is not promotable. If only one picturespec is coded, the
framing parentheses may be omitted. When PICTURE is coded, the KIND option is
forced to numeric, and any KIND specification coded is ignored. PICTURE may not
be coded when SOURCE = 'string' is coded.

A PICTURE specification always describes a character representation of a numeric
character data item - one in which the data itself can consist only of decimal digits and,
optionally, a plus or minus sign. Other characters generally associated with arithmetic
data, such as decimal points and currency symbols, can also be specified, but they are not
a part of the arithmetic value of the numeric-character data. However, the editing PICTUR
characters are considered to be a part of the character-string value of the data item. Thus,
the total number of characters in a PICTURE specification must not be greater than the
size of the output sink that is to receive the edited data.

The PICTURE characters for numeric-character specifications may be grouped into the
following categories:

• Digit specifiers.
• Zero suppression characters.
• Insertion characters.
• Signs and currency symbol.
• Credit and debit signs.

Edit
Char

9

v

z

*
y

Result

A decimal digit is accepted for output in this position.

Stops suppression of zeros and insertion characters.

The position is made blank if it contains a leading zero.

An asterisk is placed in this position if it contains a leading zero.

This position is made blank if it contains a zero.

A comma is placed in this position if zeros are not being suppressed.

A period is placed in this position if zeros are not being suppressed.

/ A slash is placed in this position if zeros are not being suppressed.

B A blank is inserted in this position.

$ A dollar sign is inserted in this position. If more than one $ is coded, only one $ is
placed to the left of the most significant digit.

S A minus sign is placed in this position if the field is less than zero; a plus sign is placed
in this position if the field is greater than zero. If more than one 5 is coded, only one
sign is placed to the left of the most significant digit.

+ A plus sign is placed in this position if the field is greater than zero. If more than
one + is coded, only one + is placed to the left of the most significant digit.

- A minus sign is placed in this position if the field is less than zero. If more than one
- is coded, only one - is placed to the left of the most significant digit.

CR CR is placed in these positions if the field is less than zero; otherwise, these positions
are left blank.

DB DB is placed in these positions if the field is less than zero; otherwise, these positions
are left blank.

Figure 1S. Summary of PICTURE Character Functions

The PICTURE characters in these groups may be used in various combinations. Con
sequently, a numeric character specification can consist of two or more parts such as a
sign specification, an integer subfield, and a fractional subfield.

A major requirement of the PICTURE specification for numeric-character data is that
each 'picturespec' must contain, in the first two positions of the 'picturespec', at least one
PICTURE character that specifies a digit position. This character, however, need not be
the digit character 9. Other PICTURE characters, such as the zero suppression characters
(Z or * or V), also specify digit positions.

The PICTURE characters 9 and V control many kinds of numeric character
specifications:

9 specifies that the associated position in the data item is to contain a decimal digit.

V stops suppression of zeros and insertion characters. The V character cannot appear more
than once in a PICTURE specification. The V is considered to be a sub field delimiter in
the PICTURE specification; that is, the portion preceding the V and the portion follow
ing it (if any) are each a sub field of the specification.

The zero suppression PICTURE characters specify conditional digit positions in the
character-string value and may cause leading zeros to be replaced by asterisks or blanks
and nonleading zeros to be replaced by blanks. Leading zeros are those that occur in the
leftmost digit positions of numeric data strings. The leftmost nonzero digit in a number
and all digits, zeros or not, to the right of it represent significant digits.

Z specifies a conditional digit position and causes a leading zero in the associated data
position to be replaced by a blank character. When the associated data position does
not contain a leading zero, the digit in the position is not replaced by a blank character.
The PICTURE character Z cannot appear in the same sub field as the PICTURE character
*, nor cim it appear to the right of a drifting PICTURE character or the PICTURE char-
acter 9. .

* specifies a conditional digit position and is used the way the PICTURE character Z is
used, except that the leading zeros are replaced by asterisks. The PICTURE character *
cannot appear with the PICTURE character Z in the same sub field , nor can it appear to
the right of a drifting PICTURE character or the PICTURE character 9.

Y specifies a conditional digit position and causes a zero digit, leading or nonleading, in
the associated position to be replaced by a blank character. When the associated posi
tion does not contain a zero digit, the digit in the position is not replaced by a blank
character.

The PICTURE characters comma (,) , point (.) , slash (/), and blank (B) are insertion
characters; they cause the specified character to be inserted into the associated position
of the numeric character data. They do not indicate digit positions, but are inserted be
tween digits. Each does, however, actually represent a character position in the character
string value, wheither or not the character is suppressed. The comma, point, and slash are
conditional insertion characters; within a string of zero suppression characters, they, too,
may be suppressed. The blank (B) is an unconditional insertion character; it always specifies
that a blank is to appear in the associated position.

, causes a comma to be inserted into the associated position of the numeric character
data when no zero suppression occurs. If zero suppression does occur, the comma is
inserted only when an unsuppressed digit appears to the left of the comma position,
or when a V appears immediately to the left of it. In all other cases when zero suppress
ion occurs, one of three possible characters is inserted in place of the comma. The
choice of character to replace the comma depends upon the first PICTURE character
that both precedes the comma position and specifies a digit position:

If this character position is an asterisk, the comma position is assigned an asterisk.

How To Write A Form Description Program 51

52 IBM 3735 Programmer's Guide

If this character position is a drifting sign or a drifting currency symbol (discussed later),
the drifting string is assumed to include the comma position, which is assigned the
drifting character.

If this character position is not an asterisk or a drifting character, the comma position is
assigned a blank character.

is used the same way the comma PICTURE character is used, except that a point (.) is
assigned to the associated position.

is used the same way the comma PICTURE character is used, except that a slash (/) is
assigned to the associated position.

B specifies that a blank character always be inserted into the associated position of the
numeric character data.

The PICTURE characters S, +, and - specify signs in numeric character data. The
PICTURE character $ specifies a currency symbol in the numeric character data.

These characters may be used in either a static or a drifting manner. A drifting char
acter is similar to a zero suppression character in that it can cause zero suppression. How
ever, the character specified by the drifting string is always inserted in the position speci
fied by the end of the drifting string or in the position immediately to the left of the first
significant digit.

The static use of these characters specifies that a sign, a currency symbol, or a blank
always appears in the associated position. The drifting use specifies that leading zeros are
to be suppressed. In this case, the rightmost suppressed position associated with the
PICTURE character will contain a sign, a blank, or a currency symbol.

A drifting character is specified by multiple use of that character in a PICTURE field.
Thus, if a field contains one currency symbol ($), it is interpreted as static; if it contains
more than one, it is interpreted as drifting. The drifting character must be specified in
each digit position through which it may drift.

Drifting characters must appear in strings. A string is a sequence of the same drifting
character, optionally containing a V and one of the insertion characters comma, point,
slash, or B. Any of the insertion characters following the last drifting symbol of the string
is considered part of the dr~fting string. However, a following V terminates the drifting
string and is not part of it. A field of a PICTURE specification can contain only one
drifting string. A drifting string cannot be preceded by a digit position. The PICTURE
characters *, Y, and Z cannot appear to the right of a drifting string in a field.

The position in the data associated with the characters slash, comma, point, and B
appearing in a string of drifting characters will contain one of the following:

• slash, comma, point or blank if a significant digit has appeared to the left.
• the drifting symbol, if the next position to the right contains the leftmost significant

digit of the field.
• blank, if the leftmost significant digit of the field is more than one position to the right.

If a drifting string contains the drifting character n times, then the string is associated
with n-1 conditional digit positions. The position associated with the leftmost drifting
character can contain only the drifting character or blank, never a digit. If a drifting
string is specified for a field, the other potentially drifting characters can appear only once
in the field, that is, the other character represents a static sign or currency symbol.

Only one type of sign character can appear in each field. Any field that has a leading
sign (+ or -) must be pictured with S, +, or - to display the sign. Otherwise, the sign is
assumed to be a leading zero. An S, +, or - used as a static character can appear to the
right or left of all digit positions of a PICTURE specification.

$ specifies the currency symbol. If this character appears more than once, it is a drifting
character; otherwise it is a static character. The static character specifies that the char
acter is to be placed in the associated position. The static character must appear either
to the left of all digit positions in a specification or to the right of all digit positions in a
specification.

BATCH=d

S specifies the plus sign character (+) if the data value is greater than 0; it specifies the
minus sign character (-) if the data value is less than o. The character may be drifting
or static. The rules are identical to those for the currency symbol.

+ specifies the plus sign character (+) if the data value is greater than 0; otherwise it speci
fies a blank. The character may be drifting or static. The rules are identical to those
for the currency symbol.

- specifies the minus sign character (-) if the data value is less than 0; otherwise it specifies
a blank. The character may be drifting or static. The rules are identical to those for the
currency symbol.

The character pairs CR (credit) and DB (debit) specify the signs of real numeric char
acter data items and are commonly used for business report forms.

CR specifies that the associated positions will contain the letters CR if the value of the
data is less than zero. Otherwise, the positions will contain two blanks. The char
acters CR can appear only to the right of all digit positions of a field.

DB is used the same way that CR is used except that the letters DB appear in the associ
ated positions when DB is coded.

Note: The PICTURE characters CR and DB cannot be used with any other sign
characters in the same field.

A full description of the PICTURE specification characters is found in the OS PL/I (F)
Language Reference Manual, Order No. GC28-820 I, or the Disk and Tape Operating
Systems PL/I Subset Reference Manual, Order No. GC28-8202. Note, however, that the
character V has no radix significance for the 3735, which performs only integer arithmetic.
The V is used only to halt the suppression of zeros and insertion characters by the 3735.
The FD macros do not permit the use of replication factors, as in '(l25) 9'. Figure 16
shows some sample PICTURE specifications.

The editing operands (JUSTIFY, FILL, UL, and PICTURE) must be coded so that
the position of each sub operand specified corresponds to the position of the SINK sub
operand to which it applies. For example, suppose you have a lO-character field that is to
be filled from the Selectric ® keyboard, and that you want the data directed to the
Selectric ® printer, the central computer, and storage buffer positions 16 to 25. At
this point, your FDFIELD macro statement would look like this:

FDFIELD SOURCE = KBD , SINK = (PRT, TMT, (STG, 16,25»

The first sink is the Selectric printer.
The second sink is the central computer.
The third sink is storage buffer positions 16 to 25.

If you now decide to specify some editing operands to handle justification and unused
character-position filling when the the operator enters fewer than 10 characters, you need
to specify them in the same pOSitional relationships as the sinks. Suppose that you want
blanks in all unused spaces for all the sinks and right justification on the Selectric printer,
but left justification for the other sinks. In this case, you would continue the FDFIELD
coding like this:

JUSTIFY = (R, L, L) , FILL = (' " , , ')

When only one sub operand is coded for any particular editing operand, it applies only to
the first sink, and the enclosing parentheses maybe omitted.

The BATCH operand instructs the 3735 to flag the data resulting from operations on the
current field as being a member of a data batch that is identified by the number d. The
value of d may be specified from 1 to 128. When this operand is coded, KIND = N is
assumed. Any KIND option coded is ignored.

Such flagged data can then be accumulated at the end of a day's operations by an FDP
designed for such processing. (The accumulations are performed by the FDCTRL TOTAL

How To Write A Form Description Program 53

>.

54 IBM 3735 Programmer's Guide

operand.) The resulting totals can serve as a cross-check for data transmitted to the central
computer (to make sure that aU records have been transmitted correctly), and can provide
the 3735 location with an up-to-date accounting of the day's activities.

Note: The BATCH operand is not promotable.

SOURCE PICTURE OUTPUT SOURCE PICTURE RESULTANT
DATA SPECIFICATION FIELD DATA SPECIFICATION OUTPUT

1234 9,999 1,234 12345 ZZZ99 12345

123456 9,999.99 1,234.56 00100 ZZZ99 bb100

1234 ZZ.ZZ 12.34 00000 ZZZ99 bbbOO

1234 ZZV.99 12.34 00100 ZZZZZ bb100

0003 ZZ.ZZ bbbb3 00000 ZZZZZ bbbbb

0003 ZZV.99 bb.03 00100 ***** **100

0000 ZZ.ZZ bbbbb 00000 ***** *****

0000 ZZV.99 bb.OO 00100 YYYYY bb1bb

123456789 9,999,999.99 1,234,567.89 10203 9Y9Y9 1b2b3b

1234567 **,999.99 12,345.67
Examples of Zero Suppression

0012345 **,999.99 ***123.45

123456789 9.999.999,99 1.234.567,89

123456 99/99/99 12/34/56

123456 99.9/99.9 12.3/45.6

001234 ZZ/ZZ/ZZ bbb12/34

000012 ZZ/ZZ/ZZ bbbbbb12

000000 ZZ/ZZ/ZZ bbbbbbbb

000000 **/**/** ********

123456 99B99B99 12b34b56

123 9BB9BB9 1bb2bb3

12 9BB/9BB 1bb/2bb

Examples of Insertion Characters

SOURCE PICTURE RESULTANT
DATA SPECIFICATION OUTPUT

12345 $999.99 $123.45

00123 $ZZZ.99 $bb1.23

00000 $ZZZ.ZZ bbbbbb

12345 $$$9.99 $123.45

00123 $$$9.99 bb$1.23

12 $$$,999 bbb$012

1234 $$$,999 b$1,234

12345 5999.99 +123.45

-12345 5999.99 -123.45

-12345 +999.99 b123.45

12345 -999.99 b123.45

00123 ++B+9.99 bbb+1.23

00123 --9.99 bbb1.23

-00123 5559.99 bb-1.23

Examples of Drifting Characters

Figure 16. Examples of PICTURE Specifications

Procedural Form
Description Macro
Instructions

FDCTRL Macro Instruction

Many of the logical functions available in the 3735 are controlled by the procedural FD
macro instruction, FDCTRL. This macro provides decision-making facilities, allows your
FDP to test and set indicators, operate on counters, branch around one or more FD macro
statements, and perform I/O and batch totalling operations. Sample programs in this sec
tion and in Appendix C illustrate some typical uses of the FDCTRL macro.

The FDLOAD macro instruction is used to define a specialized FDP that updates or
creates data records in the 3735 disk storage file from CPU-generated data when the File
Storage capability is present in the system. Such a specialized FDP may consist only of
FDFORM, FDLOAD, and FDEND macro statements, and may be used only with data
sent to the 3735 from the CPU. For further information, refer to Appendix L for some
examples of how to specify FDLOAD macros.

The FDCTRL macro instruction:

• Positions the Selectric print element at a user-specified or default location (d).
• Tests the states of the 3735 program logic and feature indicators (IF).
• Alters the states of the 3735 counters (CTR) and indicators (IND).
• Causes the accumulation of batch totals (TOTAL).
• Causes the execution of immediate commands (COMMAND).
• Provides a method of specifying nonsequential processing (GOTO).
• Provides for the repeated execution of sequences of macro statements (CYCLE).
• Provides for backward references to the macro statement (SAVELOC).

FDCTRL macro statements may be used wherever appropriate, because their functions
do not specifically relate to form structure. Figure 17 shows the format of the FDCTRL
macro instruction.

Name Operation Operands

[symbol) FDCTRl [d I
[,IF= (logterm[, {~~D} ,Iogterm I ...) I

[,CTR = (({~n}[,CLR I [,op,opnd I ..•)

[, ({~n} [,CLR I [,op,opnd I ...) I .••) I

[,IND = ((d, {ON}) [, (d,X1,compar[,X2 I) I
OFF
INV

[,d,X2,compar[,X1 I) I) I
[,TOTAL = ((d, 'fid',CTR (d))

[, (d:fid',CTR (d)) I ..•) I
[,COMMAND = ((cmndgrp) [, (cmndgrp) 1 .•.) 1
[,GOTO = target 1
[,CYCLE = ([d I [,limit 1 [,target 1) 1
[,SAVELOC = ro } I

YES
d

"

Figure 17. Format of the FDCTRL Macro Instruction

How To Write A Fonn Description Program 55

symbol

d

56 IBM 3735 Programmer's Guide

The name entry (symbol) specifies the name of the control statement, if coded. A name
entry is required if SA VELOC is coded, or if the macro is an explicit CYCLE limit or
target or a branch target (that is, if the macro is referred to elsewhere).

The position sub operand (d) specifies the column on the Selectric prillter to which the
print element is to be moved. The operand may be coded as a decimal number from 1 to
l30, but in no case should be less than the value of MRGSTOP+ 1. If this operand is
omitted, a default position of the next sequential column is derived from the preceding
macro statement.

Unnecessary motion of the Selectric print element can occur due to the placement of
FDCTRL statements in your FDP. Such motion occurs when a branch is made to the
FDCTRL statement, as shown in the following example:

FDLINE 50
FDCTRL (IF = IND (1) ,OFF) ,GOTO = IND2
FDFIELD 26,SINK = PRT,SOURCE = 'NOTE ONE'
FDCTRL GOTO = NEXT

IND2 FDCTRL (IF = IND (2) ,OFF) ,GOTO = IND3
FDFIELD 26 ,SINK = PRT,SOURCE = 'NOTE 2'
FDCTRL GOTO = NEXT

IND3 FDCTRL (IF = IND (3) ,OFF) ,GOTO = IND4
FDFIELD 26,SINK = PRT,SOURCE = 'NOTICE THREE'
FDCTRL GOTO = NEXT

IND4 FDCTRL (IF = IND (4) ,OFF) ,GOTO = CONT
FDFIELD 26,SINK = PRT,SOURCE = 'THANK YOU'

If only IND(4) is on, the print element motion is as follows: from line 50, column 1
to column 33 when IND2 is executed, then to column 31 when IND3 is executed, then
to column 37 when IND4 is executed, then to column 1, then back to column 26 to
print "THANK YOU".

The excessive print element motion occurs because each FDCTRL statement has an
implied position based upon the previous FDFORM, FDPAGE, FDLINE, or FDFIELD
statement. An FDCTRL statement that follows an FDFORM, FDPAGE, or FDLINE
statement has an implied position of column 1. An FDCTRL statement that follows an
FDFIELD statement has an implied pOSition one column beyond the end of the field.

You can minimize unnecessary print element motion in two simple ways:
1. Place an FDCTRL statement that is a branch target so that the implied position of the

statement is the left margin. Using this technique, the previous example could be
coded as follows:

INDI

IND2

FDLINE
FDCTRL
FDCTRL

FDFIELD
FDCTRL
FDFIELD
FDCTRL

50
IF = IND(1) ,GOTO = INDI
IF = IND(2) ,GOTO = IND2

26 ,SINK = PRT,SOURCE = 'NOTE ONE'
GOTO = NEXT
26,SINK = PRT ,SOURCE = 'NOTE 2'
GOTO=NEXT

With this encoding, the print element waits at the left margin of line 50 until an indi
cator is found on, then moves to column 26 to print the appropriate data.

2. When it is not convenient to code an FDCTRL statement so that its implied position
is at the left margin, you can code the position suboperand in the effected FDCTRL
statement to force the print element to any desired position. For example, you can
reduce the motion by coding the FDCTRL statement as follows:

FDCTRL GOTO = CTRL2
CTRLl FDCTRL l,IF = IND(1) ,GOTO = INDl

The position of the FDCTRL statement is not column 1 because the position sub
operand explicitly defines it to be so.

Figure 18 is a set of charts that will help you decide how to code the other FDCTRL
operands. A detailed description of each operand follows the chart in which the operand
is introduced.

If you want to •.. Code •.. Unless you want to use the
default value of .••

Test one or more logical IF = (logical expression) No logical tests.
conditions .•. where the logicel expression

specifies the test to be perf
performed.

such as: ..
To see if indicator 4 is IF = IND (4) Note: logical tests can be
on .•. CoiTibined by the operators
To see if indicator 3 or IF= (lND(3),OR,IND (4)) AND and OR.
indicator 4 is on ••.
To see if the three-minute IF= TIMEOUT
inquiry timeout indicator
has been set. The logical test terms are:
To see if the 5496 card IF = (NOT,EOF (RDR)) IND(d)
reader has more cards EOF (RDR)
to read ••. When the test resu It is true, TIMEOUT

the operations symbolized CPU DATA
by the remaining FDCTRl NDX
operands are performed: NRF
when the test result is false, 5496
control passes to the next IDR
macro statement in the FDP. CCR

NUll
Perform arithmetic oper- CTR = (d,operation[,oper- No arithmetic operations
ations on one or more 1 (). and]) where d is the counter on cou nters.
digit cou nters or a 3-digit number (from 1 to 21) or an
index counter and set the index counter specification Note: When X1 or X2 is
NDX indicator if the (X1 or X2);the operation is used, the only operations
resu It in zero •.• either ClR (sets CTR to 0), permitted are to add a signed

ADD, SUB, MPY, DIV, or decimal number, an ordinary
DV R; and the operand is counter, or other index
either an integer of up to 10 counter, to subtract a signed
digits or a cou nter. decimal number, or to clear

ordinary or index counters.
such as •.•

Clean counter 2 and add CTR = (2,ClR,ADD,100)
100 to it •..
Mu Itiply the value in CTR = (3,MPY,4)
counter 3 by the number
4 ••.
Clear all 21 counters CTR= (*,ClR)
(special case - use * instead
of a number for d) •..
Add 1 to index counter CTR = (X1,ADD,1)
X1 •.•

Figure 18. Coding the FDCTRL Macro Instruction (part 1 of 4)

How To Write A Form Description Program 57

IF = (logterm[l:D 1 ,logterm] •••)

58 IBM 3735 Programmer's Guide

The IF operand directs the 3735 to evaluate the logical expression specified in parentheses.
If the result is '1' (TRUE), execution of the activity specified by the remaining FDCTRL
operands occurs; if the result is '0' (FALSE), execution of the other operands is suppressed
and the next sequential macro statement is processed. The File Storage capability must
be present for the CPUDAT A, NDX, and NRF indicators to be specified. A combination
of File Storage and external numpad must be available for the NULL indicator to be
speCified. If the IF operand is not coded, all FDCTRL operands are execu ted uncondi
tionally. The format of logterm as used with the IF operand is as follows:

[{NOT} ,] IND (d) [, {ON}]
,.., , EOF (RDR) '1'

TIMEOUT OFF
CPUDATA '0'
NDX
NRF
5496
3286
lOR
CCR
NULL

where IND(d) is the 3735 program logic indicator specified by d, EOF (RDR) is the
simulated card reader end-of-file condition (produced by reading a card whose first two
positions contain /*), TIMEOUT is the indicator that is set when the 3735 has waited
longer than three minutes for a response to a inquiry message and has given control back
to the FDP, and CPUDATA is the condition that the 3735 operator is executing the FDP
in playback mode with CPU-generated data. When the TIMEOUT indicator is found on,
your FDP should notify the operator, then pursue some alternate processing procedure
(such as canceling the form). The EOF (RDR) indicator should be tested after every
READ (RDR) command to determine when the end of the 5496 card file is reached.

The NDX indicator is set on if the result of an arithmetic operation on an index counter
causes the counter to be set to zero. The arithmetic operation CLR does not change the
state of the NDX indicator.

The NRF (no record found) indicator is set as a result of READ (me qualifier) and
WRITE (me qualifier) commands. If the record requested in a READ command is not
found, or if the record written by a WRITE command does not replace (overlay) an
existing record in the 3735 disk storage file, the NRF indicator is set on. If the record
requested by the READ command is found, or the record written by the WRITE com
mand replaces (overlays) an existing record with the same key in the 3735 disk storage
fIle, the NRF indicator is set off. For READ or WRITE commands that use the save
pointer (such as, READ (SAVE), WRITE (SAVE), READ (FILE), or WRITE (FILE)
the NRF indicator is set when trying to gain access to data beyond the end of the file.

The logic terms 5496,3286, and lOR or CCR are used to test indicators that may be
set when the 3735 system generation function is preformed. The individual indicators
are set on when the corresponding device is included in the 3735 configuration. By
testing these indicators and processing different FDP segments depending on the results
of the tests, you can write a single FDP that can be used on 3735 terminals with different
equipment configurations.

The NULL indicator is set on if the operator fails to enter at least one character from
the Selectric keyboard numeric pad area when SOURCE = (KBD, NUMPAD) is in effect.
Otherwise, the NULL indicator is set off. The NULL indicator is supplied only with the
external keypad feature and applies to all other sources when it is attached.

The logic terms are bit variables that can have values of TRUE = ON = '1' or FALSE =
OFF = '0'. Coding a logic term without the prefIX NOT or the suffIX OFF specifies
testing for the TRUE condition of that term. PrefIXing of NOT (or '-, ') or suffIXing

of OFF (or '0') to the tenn specifies testing for the FALSE condition. The logic tenns
can be combined by AND (or '&&') and OR (or '1 '). Evaluation and combination
proceed from left to right through the operand tenns, with AND taking precedence
over OR. Grouping to force OR to take precedence over AND is not pennitted.

The operational suboperands in logterm allow you to code the same test in several
different ways. For example, all of the following specifications test for the condition that
indicator 1 is ON:

IF = IND (1)
IF = (IND (1) ,ON)
IF = (IND (1) ,'1 ')
IF = (NOT ,IND (1) ,OFF)
IF = (NOT ,IND (1) ,'0')
IF = ('...,' ,IND (1) ,OFF)
IF = ('-,' ,IND (1) ,'0')

This variety of pennitted specifications lets you choose the one that seems more
comfortable.

to set up an FDP to make a delayed decision on which processing path to follow, you
can set an indicator in some previous macro statement than test its value in an FDCTRL
statement. Suppose that when indicator lOis on, you want the,program to branch to a
statement named NEXT, and that when indicator 10 is off you want the program to
execute the next sequential macro statement. You can indicate such a test-and-branch
instruction by coding:

FDCTRL IF = (IND (10) ,ON) ,GOTO = NEXT

When indicator 10 is on, the branch to NEXT is taken; when it is off, the next instruc
tion is executed. See the description of the FDFIELD IND operand and the FDCTRL
GOTO operand for discussions of pennitted branching techniques.

Note: If the macro statement named by NEXT is a backward reference, then
SA VELOC = YES or SA VELOC = d must have been coded in that macro statement
for the correct branching code to be generated. Such a backward branch may not
imply printer movement to a line that has already been physically passed.

CTR= « {Xnd} [,CLR] [,op,opnd] The CTR operand directs the 3735 to perfonn one or more sequential arithmetic opera
tions on one or more lO-digit counters or on a 3-digit index counter .. The operations on

•••)[,({~} [,CLR] [a counter are perfonned from right to left in all cases. The special operation CLR (clear),
which may be coded only as the first operation for a given counter, replaces the previous

[,op,opnd] •••)] •••) contents of the counter with zero (+0). The other operations (op) are coded as follows
(framing apostrophes are required where shown):

ADD or '+'

SUBor'-'

MPYor' *,

DIV or' /'

DVR or' /+'

The operand is added to the contents of the counter, and the sum
replaces the contents of the counter.
The operand is subtracted from the contents of the counter, and the
difference repiaces the contents of the counter.
The contents of the counter are multiplied by the operand, and the
product replaces the contents of the counter.
The contents of the counter are divided by the operand, the remainder
is discarded, and the quotient replaces the contents of the counter. The
counter is cleared to zero if an attempt is made to divide by zero.
The contents of the counter are divided by the operand, the remainder
is used to round ("half-adjust") the quotient, and the adjusted quotient
replaces the contents of the counter. The counter is clear to zero if
an attempt is made to divide by zero.

How To Write A Form Description Program S9

60 IBM 3735 Programmer's Guide

Only an ADD or SUB operation may be coded immediately after a CLR operation;
No overflow indication is provided if the value in a counter exceeds the capacity of the
counter (+1010.1) or 255 for index c()unters.

If either of the index counters (Xl· or X2) is specified, then the only operations per·
mitted are CLR, ADD·a signed decimal number, an ordinary counter, or the other index
counter, or SUB (subtract) a signed decimal number. The maximum value permitted in
an index counter is 255. The CLR operation does not affect the NDX indicator, but
NDX is. set on if the result of an ADD or SQB operation is zero.

Note: The FUe Storage capability must be present before index counters can be
specified.

The arithmetic operand (opnd) is either a counter (CTR (d), where d is the number
of the counter),or a signed integer or an unsigned interger (considered positive) of one to
ten decimal digits. Values of the counter number (d) may range from I to 21;

The first counter number specified in a CTR operand may be coded as an asterisk (*),
meaning all counters, if it is followed only by the optional operation codeCLR. If
desired, the CLR specification may be omitted when d is coded as *, in which case the
operation is assumed to be CLR. Only the first counter may be coded as an asterisk. The
3735 never clears or otherwise modifies any counter unless specifically instructed to do so.

Note: If only one counter (including all) is to be modified, the inner grouping paren·
theses may be omitted.

The FDCTRL counter operand (CTR) differs from the FDFIELD CTR operand in that
it allows you to perform arithmetic operations on data other than the contents of a field.
It also provides you with a convenient way of setting a counter to zero before beginning
arithmetic operations. For example, to clear all counters to zero (0), you can code:

CTR = (* ,CLR)

or, more briefly:

CTR= *
If you want to set a particular counter (counter 20, for example) to a specific value

(say, +10), you can code:

CTR = (20,CLR,ADD, 10)

CLR can be followed only by ADD or SUB, and, once used, CLR may not be reused
with the same counter. . ..

To add the contents of one counter.to another (for example, add the contents of
counter 10 to the contents of counter 21), you can code:

CTR = (21,ADD,CTR (10»·

You can perform more than one operation on a single counter (and operate on more
than one counter) in a single CTR operand. For example, suppose you want to compute
a 4% sales tax on some amount that has already been placed in counter I, then add the
tax to the amount ,and put the result in counter 2. One way to code such a computation
is:

CTR= «21,ADD,CTR (l),MPY,4,DVR,IOO), (2,ADD,CTR (1) ;ADD,CTR (21»)

This example assumes that the counters used for computation have·already been cleared

by some prevoius instruction.

iNn = « d, {ON }) [, (d,
OFF

. . INV

XI,c;ompar[,x2))]
[, (d,x2,compar[,xl])])

If you want to ••• Code ••• Unless you want to use
the default value of •.•

Turn an indicator on or off, INO - (d, operation), where d No indicator manipulation.
or invert it •• '. is the indicator number (from

1 to 84), and the operation is
ON, OFF, or INV.

such as •••
To turn indicator 50 on ••• INO = (50, ON)
To turn indicator 21 off INO = ((21 , OFF), 22, on))
and. indicator 22 on •••
To. invert indicator 29 INO = (29,INV)
(that is, if it is on, turn it
off, and if it is off, turn it
on) •••
To turn all indicators off INO = (*,OFF)
(special case: \.Ise * in-
stead of a number for d) •••

Compare index counters INO = (d ,X g} ,compar No index counter compare
when File Storage is operation.
present ••• [,x {n))
Accumulate batch totals TOTAL = (d, 'fid', CTR (d)), No batch totaling.
for data marked by the where d is the number of the
FOFIELO BATCH data batch, fid is the FOP
operand ••• number in which the batch

was created, and CTR (d)
identifies the counter in
which the total is to be accumu-
lated.

such as •••
To accumulate totals TOTAL = (6, '023',CTR (2))
for data batch 6 of FOP
023 in CTR (2) •••

Figure 18. Coding the FDCTRL Macro Instruction (Part 2 of 4)

The IND operand provides for the setting, resetting, and inversion of one or more 3735
program logic indicators. The values of the indicator number (d) may range from 1 to 84.
The first indicator number specified in an IND operand may be coded as an asterisk (*),
meaning all indicators. Only the first indicator number may be coded in this way. The
allowable encodings of the indicator value are as follows:

ON or 'I' The specified indicator is set to the bit value '1'.
OFF or '0' The specified indicator is set to the bit value '0'.
INV or • -, , The specified indicator is inverted; that is, if it contains' l' it is set to '0',

and if it contains '0' it is set to '1'.

The 3735 resets all indicators to '0' before beginning to process each copy of a form.

Note: When only one indicator (including all) is to be modified, the inner grouping
parentheses may be omitted.

The FDCTRL indicator operand (IND) differs from the FDFIELD IND operand in that
it allows you to set, reset, or invert indicators unconditionally. (&etting and resetting of
indicators in the FDFIELD macro is based on a logical evalution of the field data.) For
example, if you want to turn off indicator 10, you could specify an IND operand as:

IND = (10, OFF)

In addition, this operand provides you with a means of turning all indicators on or off
by coding

IND = (*, OFF)

How To Write A Form Description Program 61

TOTAL = ((d, 'fid' , CfR (d))

[, (d, 'fid' ,CfR (d») •••)

62 IBM 3735 Programmer's Guide

to turn all 84 indicators off, and

IND= (* ,ON)

to turn all indicators on. Remember, though, that the 3735 turns all indicators off at the
beginning of each execution of any FDP.

The allowable comparison operators (compar) for comparing index counters are as
follows (framing apostrophes are required where shown):

GTor' >'
NGor' -. '
EQor '='
NE or '..,='
LT or' < '
NL or'..,<'
GEor' >='
LEor'<='

Greater than
Not greater than
Equal to
Not equal to
Less than
Not less than
Greater than or equal to
Less than or equal to

Index counters may only be used when the File Storage capability is present in the sys
tem. When index counters are compared, they may only be compared to each other.
Hence, if Xl is specified first in a compare operation, then X2 must be specified second.
If there is no second counter specified (that is, X2), X2 is assumed to be the second
counter. Likewise, if X2 is specified frrst in a compare operation and Xl is omitted as
the second counter, Xl is assumed to be the second counte(.

The TOTAL operand causes the 3735 to add to specified counters the values of numeric
data fields processed under specified FDPs and flagged (by the FDFIELD BATCH operand)
as belonging to particular data batches within the FDPs.

Note: The 3735 does not clear any counters before starting the requested accumulationl
See the description of the FDCTRL CTR operand for information on how to clear a
counter.

The first d in each sub operand group specifies the number of the batch within the FDP,
'fid' identifies the FDP, and CTR (d) specifies the counter to be used for the accumulation.
Values of the BATCH number (d) may range from 1 to 128 . Values of the counter number
(d) may range from 1 to 21.

Note: When only one total specification is coded, the inner grouping parentheses may
be omitted. When both TOTAL and COMMAND are coded in the same FDCTRL
statement, TOTAL is performed before COMMAND.

The TOTAL operand can be used to accumulate data items flagged by the FDFIELD
BATCH operand. Since the arithmetic operation used in batch totaling is simple addition,
you should make sure that the counters you will use to hold the results contain some
known value or have been cleared. For example, if you want to accumulate totals for
batch 3 ofFDP 001 in counter 21, you should first clear the counter, then specify:

TOTAL = (3,'001' ,CTR (21»

The resulting total can then be extracted from the counter and sent to the central com
puter by coding an FDFIELD macro that specifies SOURCE = CTR (21) and SINK = TMT.

COMMAND = ((cmndgrp)

[• (cmndgrp) I ...)
The COMMAND operand requests the 3735 to perform one or more immediate commands
in the sequence in which the command groups (and commands within groups, except as
noted) are coded. Each command group (cmndgrp) is a collection of commands applicable
to the same 3735 device, buffer, or function. The format of each command group is:

command [,command] ...

where command represents a single operation to be performed by the 3735. Where quali
fication is shown, such as READ (RDR) or CLEAR (PCR), it may be omitted if the buffer
type can be inferred from other commands in the same command group, or if a default is
shown. The allowable specifications of command are as follows:

READ [(RQB.)]
Causes a card-read operation to be performed on the 5496. The previous 96-character
card image in the buffer is completely replaced, and the default value for the lower
numbered character position from which source data is obtained from the card-image
buffer is reset to one. If the qualifier is omitted, and if no previous command in the

If you want to ••. Code •.. Unless you want to use
the default value of ..•

Issue one or more 3735 COMMAND = cmndgrp, No 3735 command
commands ..• where the command group requests.

may:

• Start I/O operations A complete description of
(READ (RDR, IDR, CCR, this operand follows the
or FILE); WRITE chart.

(FI LE); PURGE; GETKEY;
PUNCH; PRINT; SKIP (d);
SKIPTO (d); or SEND).

• Clear buffers (CLEAR
(bufname), where
bufname is PCH, STG,
INa, LPB, RPB, lOB,
IDR, or CCR).

• Disconnect the 3735
from a communications
line (DISC).

• Stop processing the
form (STOP).

• Cancel the form
(CANCEL).

such as •••
To punch a card on the COMMAND = (PUNCH,
5496, then clear the punch CLEAR)
buffer •.•
To print a line on the 3286, COMMAND = (PRINT,
then read a card from the READ (RDR»
5496 .•.
To stop processing the COMMAND = STOP
form ••.

Cause control to be passed GOTO = target, where No nonsequential transfer
to a macro that is not the target is the name of the of control.
next sequential macro state- macro that has control
ment in the program ••. passed to it. Note: A branch that passes

control backward can be
such as .•. made only if SAVE LOC was

To branch to a macro named GOTO = LASTLINE coded in the macro being
LASTLlNE •.• branched to.

Figure 18. Coding the FDCTRL Macro Instruction (part 3 of 4)

How To Write A Form Description Program 63

64 IBM 3735 Programmer's Guide

command group has identified a buffer, then READ (RDR) is assumed. This com
mand may also be used for card input to positions 1-96 ofRPB. The READ (RDR)
command is not exectued in error correct mode or playback mode.

Whenever you use the 5496 as an input device, you should be aware that the 5496
uses a "read-ahead" buffer to help speed up input operations. Thus, when the first
READ (RDR) command in the first FDP selected for the day's processing is
encountered, two cards are actually read; the fITst is placed in the 3735 RDR buffer,
and the next is placed in the 5496 read-ahead buffer. Succeeding READ (RDR)
commands move a card image from the 5496 read-ahead buffer to the 3735 RDR
buffer, and the 5496 then loads another card image into its read-ahead buffer. The last
card image in the me remains in the 5496 read-ahead buffer until the 3735 operator
selects a new FDP. Thus, if successive FDPs are to read successive card files at a
single loading of the 5496, each card me should be followed by a /* card and a blank
card, and the FDPs should be designed to test for, and dispose of, such blank cards.
If this technique is not practical for certain applications, the operator should be
instructed to reset the 3735 by turning the power off, then back on, or by turning
the Terminal/Manual switch on the 5496 to Manual, then back to Terminal.

READ (IDR)
Causes an Operator Identification Card read operation to be performed by the ID
reader attachment. The previous contents of the IDR buffer are replaced and the
default value of the lower-numbered character position from which source data is
obtained from the ID reader buffer is reset to one. When this command is execu ted
in error correct mode or playback mode, it requires that an ID card be inserted into
the ID reader.

READ (CCR)
This command performs the same function as READ (IDR), except that in error
correct mode or playback mode no read is performed and the SOURCE = CCR
operand gets the previously-read CCR data field from the disk.

The following commands (READ, WRITE, PURGE, and GETKEy) are supported only
when the File Storage capability is present in the system.

READ r (me qualifier)]
The file qualifiers for the READ command may be (:me of the follOwing: FILE, KEY,
SAVE, and KEYNOTE. The READ command causes the terminal control program
(TCP) to search the 3735 disk storage me and either place a record in the input/out
put buffer (lOB) with the NRF indicator set off, or set the NRF indicator on if no
record is found for a READ (KEY) or READ (KEYNOTE) or set NRF on if the file
save pointer points to the group separator character for a READ (SAVE) or READ
(FILE). If the qualifier KEY is coded, a key followed by a record sepatator (SINK =
lOB with DELIMIT) must reside in the 1/0 buffer before the issue of the Read
command. The record read will be the one matching the key found in the I/O buffer.

If the qualifier is KEYNOTE, the READ functions like the READ (KEY) command
except that the position of the next consecutive record is noted and saved by a me
save pointer.

If the qualifier is SAVE, the record read is the one pointed to by the me save
pointer set by some previous READ or WRITE command that noted the next con
secutive record. The me save pointer is not updated.

If the qualifier is FILE or the qualifier is omitted bu t FILE is implied by other
FILE or lOB commands in the same command group, the read operation is performed
like the READ (SAVE) command except that the position of the next consecutive
record is noted as is done by the KEYNOtE qualifier.

Before KEY or KEYNOTE operations, the I/O buffer must be loaded with a key
followed by a record separator X'14'. For an explanation of the format in the buffer,

refer to the SINK = lOB DELIMIT operand description. Before SAVE or FILE
operations, a KEYNOTE or FILE operation should be performed to set the file save
pointer.

Note: Use of the qualifiers KEY or SAVE does not modify the file save pointer.
Therefore, commands using these qualifiers may be intermixed with those using the
KEYNOTE and FILE qualifiers without loss of the consecutive pointer. Also, the file
save pointer is not initialized at the start of an FDP. Hence, if SA VB or FILE qualifies
are used, they should be preceded by a command specifying KEYNOTE. Refer also
to the description of the GETKEY command below.

WRITE[(me qualifier)]
The me qualifiers for the WRITE command may be one of the following: FILE, KEY,
SAVE, KEYNOTE, and KEYLAST. The WRITE command causes the terminal control
program (TCP) to write the contents of the input/output buffer (lOB) to the 3735
disk storage me and if the file qualifier was KEY, KEYNOTE, or KEYLAST either
set the NRF indicator on if no record is overlayed, or overlay a record in the I/O
buffer (lOB) with the NFR indicator set off. The write command also resets the de
fault starting position to one for I/O buffer source and sink specifications. If the
qualifier KEY is coded, a key followed by a record separator and data followed by a
record separator (SINK = lOB with DELIMIT) must reside in the I/O buffer.

If the qualifier is KEYNOTE, the WRITE functions like the WRITE (KEY) com
mand except that the position of the next consecutive record is noted and saved by
the same file save pointer as used by READ (KEYNOTE) and READ (FILE).

If the qualifier is SAVE, the record is written over the one pointed to by the file
save pointer set by some previous READ or WRITE command that noted the next
consecutive record. The file save pointer is not updated. If the file save pointer points
to the group seperator when the write is executed than the record is added to the file
and the NRF indicator is set on, otherwise the NRF indicator is set off.

If the qualifier is FILE or the qualifier is omitted but FILE is implied by other
FILE or lOB commands in the same command group, the write operation is per
formed like the WRITE (SAVE) command except that the position of the next con
secutive record is noted as is done by the KEYNOTE qualifier.

The qualifier KEYLAST functions like the KEY qualifier except that it directs the
3735 to write the end-of-group indicator after writing the current record. This
effectively purges any records that follow. For an explanation of the me format,
refer to the description of the SINK = lOB operand specification.

Before KEY, KEYNOTE, or KEYLAST operations, the I/O buffer should be loaded
with a key followed by a record separator X'14' and data followed by a record sepa
rator. For an explanation of the format of the buffer, refer to the SINK = lOB,
DELIMIT operand description. . .

Note 1: Use of the qualifier KEY or SAVE does not modify the save pointer. There
fore, commands using these qualifiers may be intermixed with those using the KEY
NOTE and FILE qualifiers without loss of the consecutive pointer. Also, the save
pointer is not initialized at the start of the FDP. Hence, if SAVE or FILE qualifiers
are used, they should be preceded by a command specifying KEYNOTE. Refer also
to the description of the GETKEY command below.
Note 2: When updating the 3735 disk storage me, you should make sure that a new
record with the same key as an existing record is no longer or shorter than the existing
record in the me. If you should replace a record in the file that is X bytes long with
one that is greater than X bytes long, the next record following the original X bytes
can no longer be found because part or all of its key has been destroyed. This also
occurs in the case of a short record.
Note 3: Records are added to the file at the end following all existing records. Thus,
during the processing of a file, any records that have been added do not appear in key
sequence within the file.

How To Write A Form Description Program 6S

66 IBM 3735 P!:ogrammer's Guide

PURGE [(FILE)]
Causes the terminal control program (TCP) to clear the 3735 disk storage me. The
TCP does this by writing a group separator character in the first data byte in the file.
For an explanation of the me format, refer to the description of the SINK = lOB
operand specification.

GETKEY ('key')
Functions like a READ (KEYNOTE) command expect that the specified key is auto
matically placed into the lOB by macro generated code. The key specified must be
the same length as the key of the desired record on the me and must have trailing
blanks or leading zeros if they are needed. This command may be used to position
the file for subsequent read operations by a READ[(FILE)] command to process a
me or portion of a file consecutively from the starting key.

PUNCH
Causes a card-punch operation to be performed on the 54% card punch. The contents
of the card image buffer are not modified, but the default value for the lower-numbered
character position into which field data is put in the card-image buffer is reset to 1. This
command may also be used for card output from positions 97-192 of RPB. The
PUNCH command is executed in all operating modes.

CLEAR (PCH)
STG
INQ
LPB
RPB
lOR
CCR

Causes the 3735 to set the contents of the card~image punch buffer (PCH), the storage
buffer (STG), the inquiry buffer (INQ), the line printer buffer (LPB), the read/punch
buffer (RPB), the Identification Reader buffer (lOR), or the Credit Card Reader buffer
(CCR) to all blanks (SP characters). The default value for the lower-numbered source
or sink character position is reset to 1. The qualifier (LPB) can be omitted when
CLEAR is coded in conjunction with SKIP (d), SKIPTO (d), or PRINT, since the
meaning can be inferred from the context. The CLEAR (PCH) and CLEAR (RPB)
specifications are mutually exclusive. For lOR and CCR, the only sequences permitted
are (CLEAR (bufname)) ,(READ (bufname)) and (CLEAR (bufname) ,READ). The
CLEAR (STG) and CLEAR (INQ) commands are not executed in error correct mode or
playback mode; all other CLEAR commands are executed in all operating modes.

PRINT
Directs the 3735 to print the current contents of the line printer buffer (LPB) on the
3286 printer. Printing begins with the first character position and continues through
the highest-numbered character position modified since the last CLEAR (LPB) operation
(up to a 132-character maximum). Unmodified higher positions are not put to the 3286,
and appear on the print line as blanks. The contents of the line printer buffer are not
modified, but the default value for the lower-numbered character position into which
field data is put in the LPB is reset to 1. After each PRINT command, a SKIP (d) or
SKIPTO (d) command should be coded. If none is, SKIP (1) is used by default. The
PRINT command is executed in all operating modes.

Note: PRINT must be coded before CLEAR if both appear in the same command group.
In this combined operation, the 3735 always prints first and then clears the line printer
buffer (LPB). The effect of the prohibited sequence (CLEAR,PRINT) can be achieved
by coding COMMAND = (CLEAR, SKIP (1) or COMMAND = (SKIP (I) ,CLEAR).

SKIP (d)
Specifies that d 3286 form lines are to be skipped before any other instructions are
executed for the 3286. Values of d may be specified from 1 to 16383, but you must
not code a value that forces skipping beyond the end of the form. The SKIP (d)
command is executed in all operating modes.

Note: You must evaluate the effects of SKIP (d), and of the skipping implied by PRINT,
to make sure that the 3286 does not attempt to print or skip beyond the end of the form.

SKIPTO (d)
Specifies that the 3286 form should be advanced to line d before any other instructions
are executed for the 3286. Note that this line number is specified in relation to the
beginning of the form, rather than in relation to the beginning of the current page (as it'
is for the Selectric printer). Values of d may be specified from 1 to 16383, but you
must not code a value that forces skipping beyond the end of the form. In addition,
you should not attempt any backward movement to a previously passed line. The
SKIPTO (d) command is executed in all operating modes. The largest value of d coded
in a SKIPTO (d) command within a given FDP is assumed to be the number of the last
physical line on the 3286 form. Before coding an FDEND macro to end the form
processing, you should code an FDCTRL macro that causes the 3286 to skip to the end
of the current form (unless the FDP prints on the last line of the form). For example,
if the last line of the form is line 66, you should code:

FDCTRL COMMAND = SKIPTO (66)

Note: In cases where an FDP segment can be reached by alternate paths that result in
different numbers of output lines on the 3286, an FDCTRL COMMAND = SKIPTO (d)
should be coded in that segment to reestablish a specific line position on the 3286 form.
This situation can occur when the 3286 is operated within a cycle. The use of SKIPTO
(d) is not allowed within a cycle.

SEND
Causes the 3735 to attempt to send the current contents of the inquiry buffer to the
central computer with which it is connected. When SEND is issued at the 3735, the
Terminal Control Program (TCP) inserts a three-byte message header (NUL I NUL) in
the first three positions of the inquiry buffer.

On a multipoint (leased) line, no terminal operator intervention is needed. On a
dial (switched) line, the 3735 suspends processing of the FDP until the terminal
operator either makes a connection with a central computer or cancels the processing
of the current record (that is, the current copy of the form). Once the operator has
made the connection, no further manual intervention is needed until after a response
to the inquiry is received at the 3735.

Once a communication link is established, the 3735 sends the message and turns
off the TIMEOUT indicator. When the 3735 receives a response, or if a three-minute
timeout occurs, FDP processing resumes where it was stopped by the SEND command.
Additional inquiry messages may be sent to the central computer (and responses
received by the 3735) until the switched-line connection is broken by issuing a DISC
command.

If no response is received within three minutes, the TIMEOUT indicator is turned
on. This indicator can be ,tested by coding an FDCTRL IF = TIMEOUT instruction.
The SEND command is not executed during error correct mode or playback mode.

DISC
Causes the 3735 to break the switched-line connection with the central computer.
This command is not normally issued until the central computer has sent its responses
to all inquiry messages initiated by a given FDP. The DISC command is not executed
during error correct mode or playback mode.

How To Write A Form Description Program 67

GOTO = target

68 IBM 3735 Programmer's Guide

Note: You need not issue a DISC command for 3735 terminals that communicate over
leased (nonswitched) lines, since the line connection is never broken; In this environ
ment, the DISC command is treated as a no-operation (NO.QP) command.

STOP
Causes the 3735 to stop processing the record (form) in progress and to advance to the
next copy of the form, if any. Any data entered up to this point is saved by the 3735
control program.

CANCEL
Causes the 3735 to discard the record (form) in progress and to advance to the next
copy of the form,if any. Any data entered up to this point is ignored,andiS not
saved by the 3735 control program.

Note: When single-copy hand-fed forms are being used,one effect of the STOP or
CANCEL command is to eject the current copy of the form from the Selectric printer.
COMMAND = STOP and COMMAND = CANCEL are mutually exclusive. When either
one is specified, it should be the last command coded in an FDCTRL macro. Neither
one is permitted if a GOTO operand is coded.

A single COMMAND operand can be coded to perform several functions; Each group
of commands must apply to the same 3735 device, buffer,or function,and a command
group must be enclosed in parentheses if it consists of more than one command. For
example, if you want to read an input data card from the 5496, punch an output data
card on the 5496, and Send an inquiry message, all you need to code (once the proper
buffers are filled by other macro statements) is: .

COMMAND = (READ (RDR) ,PUNCH, SEND)

Or, if you want to print an output line on the 3286 printer, clear th(;lline printer buffer
for further output, then read a card from the 5496, you can code:

COMMAND = ((PRINT ,CLEAR), READ (RDR))

The GOTO operand alters the terminal's normal processing sequence by causing control
to be transferred to the macro statement named by target~ The transfer of conirol (branch)
is delayed until the functions of all other FDCTRL operands have been performed, if any
were coded.

The transfer of control may not be specified to imply reverse tabulation, reverse line
feed, or reverse form feed, since these fUnctions arenotavailable. In the 3735. (However,
Ii backward branch to a macro statement in which SA VELOC = YES or SA VELQC = d
was c.oded is permitted if the restrictions described above are not violated.) In addition,
the target macro statement must not be within the range of repetition of a CYCLE oper
and unless the FDCTRL statement containing the GOTO operand is itself within the range
of repetition of the same CYCLE operand, If the GOTO is within a CYCLE and the
target is the macro that began the cycle, then the cycle continues without altering the
cycle count. If the GOTO is within a CYCLE and the target begins a different cycle, the
new cycle is initiated. You can never code a GOTO that branches into a cycle from out
side the cycle.

Note: An unconditional GOTO should not be specified i~ an FDCTRL macro state
ment that is a CYCLE limit. In such a macro statement; therefore, the IF operand
must be coded.

The GOTO operand, when combined with the logical testing capability of the IF oper
and, provides you with the ability to decide what kind of processing will be performed
when your FDP is used at a 3735. An example of such a conditional branch, using IF and
GOTO, is part of the discussion of the IF operand following Figure 18 (part 1).

CYCLE = ([d] [, limit] [,target])

SAVELOC = f ~l

In addition, the GOTO operand may be used to perform unconditional branches by
coding:

FDCTRL GOTO = macname

where macname is the name of the macro statement to which control is being passed .

. The CYCLE operand specifies a cycle count (d), delimits a group of sequential macro
statements that are to be processed repeatedly as a unit (limit), and specifies where
sequential processing is to resurne after the cyclic processing ends (target). The coding
of this operand is explained in the discussion of the FDLINE macro instruction.

The SA VELOC operand directs the FD macros to save the location of the current macro
statement within the form description, for the purpose of resolving backward references
to the statement.

For example, suppose that you want to scan through a card me that consists of both
headet and detail items, and that you want to process only the header cards. If a header
card is identified by the digit 1 in the first card column, the section of code that scans the
me might be as follows:

SCAN FDCTRL COMMAND = READ,sAVELOC = 1
FDCTRL IF = EOF (RDR), GOTO = ENDFILE
FDFIELD SOURCE = (RDR), 1, 1) , IND = (1, EQ, 1) ,sINK = NULL
FDCTRL IF = (NOT., IND(l» ,GOTO = SCAN

PROCESS [process the header card as desired. I

. The coding of the SA VELOC operand is explained in the discussion of the
FDPAGE macro instruction. Note that this coding technique does not limit
the size of the me (as CYCLE would do),

If you want to ••. Code ... Unless you want to use
the default value of ...

Repeat the execution of a CYCLE = (d,limit,targetl, No repeated execution of
group of macro statements ••. where: macro statements. When

• d is a number from 1 CYCLE is coded, at least one
to 16383 that speci· of the suboperands should
fies the maximum number becoded. The default values
of time the cycle is to are described following
operate. Figure 12 (Part 11.

• limit is the name entry of
the last macro in the
repeated group.

• target is the name entry
of the macro to be
executed when the cycle
is finished.

and; ..
Define a summary block to be SKIP (dl as the linenum oper- No summary block. See the
executed at the end of the and of a target F 0 LI N E macro discussion following Figure 12
cycle ... statement. (Part 21 for more details

Save the location of the macro SAVE lOC = YES, if you SAVElOC = NO, which does
so that you can make backward want to save the location for not save the statement loc&-
references to i~. . . the entire form, or tion.

SAVE lOC = d, where d is Note: If SA VE lOC is coded
the number of backward YES or d, a name entry is
references you will make required in the FOCTRl
to this statement. statement.

Figure 18. Coding the FDCTRL Macro Instruction (Part 4 of 4)

How To Write A Form Descriptio~ Program 69

tIl

FDLOAD Macro Instruction

symbol

KEYLEN=d

DATALEN=d

ENDCHAR = 'string'

70 IBM 3735 Programmer's Guide

The FDLOAD macro instruction allows you to write an FDP that can use CPU-generated
data to load or update the 3735 disk storage file when the File Storage capability is pre
sent. (File storage updating during normai document preparation is handied by the (
appropriate WRITE (file qualifier) commands.) The only macro statements that may
appear in a file load FDP are FDFORM, FDLOAD, and FDEND. Conversely, such a
specially-designed FDP may not be used with any other data except that received from
the CPU. Figure 18A shows the format of the FDLOAD macro instruction.

Name Operation Operands

[symbol] FDlOAD KEYlEN = d ,DATAlEN = d[,ENDCHAR = 'string']

Figure 18A. Format of the FDLOAD Macro Instruction

TheFDLOAD macro describes records that are transmitted from the CPU to the 3735
to be written in the user's data area of the 3735 disk.FDPs consisting of FDLOAD
macros must be executed at the terminal in playback mode. If an FDP is not executed
in playback mode, an error message is generated and the FDP is canceled. Each FDLOAD
macro coded in an FDP generates a loop of code that reads CPU data records and writes
them on the disk until a record with a key identical to that specified by an ENDCHAR
operand is detected. When this key is found, the next FDLOAD-generated loop gains
control for processing if more records follow. If no more records follow, the FDP ends.

The name entry (symbol) specifies the name of the macro statement, if coded. It may be
used to indicate the file' name, but is not used by the macros.

The KEYLEN operand specifies the length of the key field for each CPU-generated file
storage record. The value specified may range from 1 to 15. If FDLOAD is coded, this
operand must be coded.

The DATALEN operand specifies the length of the data field for each CPU-generated file
storage record. The specified value (d) must be a number from 1 to 233 such that the
sum of the key length (KEYLEN) and data length (DAT ALEN) values does not exceed
234. If FDLOAD is coded, this operand must be coded.

The ENDCHAR operand indicates the key of the last CPU-generated record in the record
group. When the FDP executes with appropriately prepared CPU data, each record, ex
cept the last for each FDLOAD macro, is written on the 3735 disk storage file. The key
field of the last record in the group must be the same as the character string in the
ENDCHAR operand, or the implicit default. If the ENDCHAR operand is not coded,
the default is a key field of all asterisks (*). If the ENDCHAR operand is coded, the
operand must specify a character string (within apostrophes) that is the same as the key
field of the final (dummy) record. The last record for each FDLOAD macro should
always be a dummy record because the last record is not written on the 3735 disk storage
file. For an ENDCHAR string that is longer than the keys specified by the KEY LEN
operand, the string is truncated beginning from the right. If the string is short, it is padded
to the right with blanks until its length is equal to that in the KEYLEN operand.

Note: The MODE operand of FDFORM must specify MODE = LOAD when an FDP
containing FDLOAD statements is assembled.

The data used to update the 3735 disk file storage consists of a three-digit FDP
identifier field, followed by some me storage record groups. The FDP identifier field
identifies the form 10 (FlO) of the FDP that is to be used to load the file. Each me
storage record group corresponds to, and must be defined by, an FDLOAD macro with

Delimiting Form
Description Macro
Instruction

FDEND Macro Instruction

symbol

Diagnostic Form
Description Macro
Instruction

FDSYNTAX Macro
Instruction

KEYLEN, DA T ALEN, and ENDCHAR operands coded in the corresponding FDP. Each
file storage record group consists of at least one record, and each record consists of a key
field followed by a data field. The length of the key field and data field are those specified
in the mandatory KEYLEN and DA T ALEN operands of the corresponding FDLOAD
macro. Refer to Appendix L for further explanation of using the FDLOAD macro to
load or update a file from CPU data.

The delimiting macro FDEND marks the close of each form description. Only one
FDEND macro statement may appear in an FDP.

The FDEND macro instruction marks the end of a group of macro statements that
describe a single form. You must code FDEND only once, at the end of the macro
statements for each FDP, since it indicates to the Assembler that there are no more
source statements for this FDP. It also completes code generation and prepares the
FD macros to process a possible following FDP. Figure 19 shows the format of the
FDEND macro instruction.

Name Operation Operands

[symbol] FDEND [• 1 (This macro has no operands.)

Figure 19. Format of the FDEND Macro Instruction

The name entry (symbol) specifies the name of the macro statement, if coded. If this
macro is an explicit CYCLE target or a GOTO target, a name entry is required.

You can code the FDEND macro simply as:

FDEND

The FDEND macro statement has no operands. It may be the target statement named
by a GOTO operand (see the discussion of the FDCTRL macro) or by a CYCLE operand,
but it may not be the limit statement named by a CYCLE operand. If a comment is
placed in an FDEND statement, a comma should be placed in the operand field to indi
cate that no operands appear.

The diagnostic macro instruction may be used to aid in debugging FDPs. It may be
coded at any point in an FDP without effecting form structure or function.

The FDSYNT AX macro instruction, which has no operands, may be coded before or
between any of the other FD macros. Any macro statements following the first
FDSYNT AX macro are not expanded; however, their operands are checked for syntactic
integrity by the Assembler. A subsequent FDSYNTAX macro statement causes the
macros that follow it to be expanded normally. The syntax checking performed consists
only of those checks made by the Assembler on macro source statements, such as checks
for unbalanced parentheses, invalid continuation, and undefmed keyword parameters.
The format of the FDSYNT AX macro is the same as that of the delimiting macro
FDEND.

How To Write A Form Description Program 71

II

Segments and Paths in a
Form Description Program

72 IBM 3735 Programmer's Guide

The output listing from an FOP assembly contains messages that divide the FOP into
paths and segments. This information about paths and segments can help the forms
encoder to verify the correctness of the FDP and to trace the sequence of actions should
the FDP produce unexpected results when used at the 3735.

A new path is created by (1) the start of the FOP, (2) by the coding of a SAVELOC
operand outside a CYCLE, or (3) by the joining of two paths. The segments of each
path are numbered from 1 upward. Each segment consists of a block of code that is
always executed as a unit. At the end of the segment, control is passed either to another
path or to a higher-numbered segment in the same path. The first segment of a path is
always executed if the path is entered. The remaining segments are executed con
ditionally or unconditionally, depending on the flow of control through the path. A
path terminates (1) with the start of another path, (2) with the end of the FOP, or (3)
if an unconditional STOP or CANCEL command is encountered.

The segments that make up a path are created by (1) the start of a path, (2) a branch
instruction (for example, a GOTO), (3) the creation of a CYCLE, (4) the coding of a
SAVELOC within a CYCLE, (5) the macro statement following a CYCLE limit macro,
or (6) the joining of one or more segments in the path.

At the end of each path, the actions performed on the indicators, buffers, devices,
and counters that were used in the path are summarized in detail through MNOTE
messages. Warnings describing possible erroneous use of these storage areas and devices
are listed when the potential error condition occurs (for example, moving data out of a
buffer without earlier reference to it in the path), or at the end of the path (for example,
moving data into a buffer and failing to make further use of the data before the path
ends). Messages describing the transfer of control between paths and segments are listed
when the branches are resolved.

Before going on to the discussion of assembly considerations, look at the sample form
shown in Figure 20. The check marks identify fields that should be stored for transmission
to the central computer. Figure 21 shows one way that the FD macros could be coded to
process this form at a 3735. Note that when a default is used, a comment entry specifies
what the default value should be. This sample program uses cyclic processing, but does not
require other types of conditional processing. Another sample program, found in Appendix
C, illustrates conditional branches using the FDCTRL IF and GOTO operands.

Line/Position
Jones Supply Company

INVOICE City, State INVOICE

Terms - 2% 10 days, Net 30 Date: 1,,;150~ _________ 7_2...J1

15/ Customer No. 123 :./ 33 I
18/ Sold to: 19
19
20
21

25/

53
54/
55
56

Item..!

10 18

/
65/ 110 \T 161

I
Quan~
20 24 26

Figure 20. Jones Supply Company Invoice

Description Price· ..! Amount ../

52 54 61 63 72

I

Subtotal 60 ../~ 72
Tax v,

Total V

How To Write A Form Description Program 73

FORK001

CUSTNO

* DATE

* SOLOTO
NAKE
ADDR 1

AODR2

ADDR3

*
*
*

* ITEK

* QUAN

*
OESC

FDFOR! FID='001',
PACKING=DELIKIT,
KBGSTOP=9,
KESSAGE='JONES SUPPLY
ION 1 - 03/31/72',
HTAB=53

FORM IDENTIFIER IS 001
REDUCES TRANSKITfED DATA
SET MARGIN STOP

CO. - FORM 1895 - KRGSTOP=9

x
X
X

- VERSX
X

TAE OUT OF DESCRIPTION FIELD

FDeTRL CTR=«2,CLR) ,(3,CLR» CLEAR COUNTERS 2 AND 3

FDPAGE 1,HEIGHT=66,
VMRG= (15,65) ,
WIDTH=85,
HMRG= (10,72) ,
SOURCE=(KBD,OPTIONAL) ,
SINK=PRT

FOLINE ,
PDFIELD 23,33,

SINK= (, TMT)

FDFIELD 50,72

FDLINE 18
FDFIELD 19,12
FDLINE ,
FDFIELD 19,72
FDLINE ,
FDFIELD 19,72
FDLINE ,
FDFIELD 19,72

ONE STANDARD HEIGHT PAGE X
TEST VERTICAL MARGINS AT 15 & 65X
STANDARD WIDTH LINES X
TEST HORIZ. MARGINS AT 10 AND 72X
INPUT FROK KEYBOARD X
OUTPUT TO SELECTRIC

DEFAULTS TO LINE 15
SPACE FOR CUSTOMER NUMBER
PRINT AND TRANSMIT OUTPUT

SPACE FOR DATE -- NO TRANSMIT

4 LINES FOR CUST. NAME & ADDR.
SPACE FOR CUSTOMER NAME
DEFAULTS TO LINE 19
SPACE FOR ADDRESS LINE
DEFAULTS TO LINE 20
SPACE FOR ADDRESS LINE
DEFAULTS TO LINE 21
SPACE FOR ADDRESS LINE

X

BEGIN BODY OF FORM -- USES CYCLIC PROCESSING

FDLINE 25, BEGIN ON LINE 25 X
SINK= (,TMT), TRANSMIT DATA FOR EACH LINE X
CYCLE=(28,GROSS,TOTALS) CYCLE UP TO 28 LINES

PDFIELD 10,18,
SOURC E= (, , NU MPAD) ,
JUSTIFI=R

FDPIELD 20,24,
SOURCE=("NUMPAD),
SINK= (, ,CTR (1» ,
JUSTIFY=R

FDFIELD 26,51,
SINK= (, NULL)

SPACE FOR ITEM NUMBER
FROM NUMERIC KEYS ON KEYBOARD
RIGHT-JUSTIFY SELECTRIC SINK

X
X

SPACE FOR QUANTITY ORDERED X
FROM NUMERIC KEYS ON KEYBOARD X
TO SELECTRIC, COMPUTER, & CTR(1)X
RIGHT-JUSTIFY SELECTRIC SINK

SPACE FOR DESCRIPTION OF ITEM
PRINT ONLI -- NO TRANSMIT

x

Figure 21. A Form Description Program for the Jones Supply Co. Invoice (Part 1 of 2)

74 IBM 3735 Programmer's Guide

PRICE

•
GBQSS

PDFIELD 53,61,
CTB=(1,MPY,FIELD) ,
PICTUBE='$·,·.9.99'

PDFIELD 63,72,
SOUBCE=CTB(1),
CTR=(2,ADD,FIELD),
PICTUBE=·$·.,·.9.99'

SPACE FOR PRICE EACH
MULTIPLY BY QUAN ORDEBED
PERMITS AKOUNTS TO $9,999.99

X
X

FOR PRICE TIMES QUAN EXTENSION X
GET AMOUNT FROM COUNTER X
ACCUMULATE GROSS AMOUNTS IN CTR X
PERMITS AMOUNTS TO $99,999.99

• • THIS IS THE END OF CYCLIC PROCESSING
•
TOTALS PDLINE 54,

SINK= (,TMT)
ENDCYCLE FDtIELD ,

SOURCE=····· ,
SINK= (NULL,TMT)

PDFIELD 60,72,

•
SOURCE=CTR (2) ,
PICTUBE=·$·, ••• , •• 9.99·

BEGIN TOTALS CALCULATIONS X
TRANSMIT DATA FOR LINE
FOR END CYCLE INDICATION X
END CICLEINDICATOR X
NO PRINT - TRANSKIT ONLY
SPACE FOR SUBTOTAL X
GET ACCUMULATIONS FROM COUNTER 2X
PERMITS AMOUNTS TO $9,999,999.99

• THIS FDCTRL MACRO COMPUTES 4~ TAX AND ADDS IT TO THE SUBTOTAL
TAXCOMP FDC TRL CTR= ((3 ,ADD, CTR (2) , MPI, 4, DVR, 100) , (2, ADD',CTR (3)))
•
TAX FDLINE 55,

•

SINK= (,TMT)
FDFIELD 60,72,

SOURCE=CTR (3) ,
PICTURE='$.,··.,·.9.99'

GRANDTOT FDLINE 56,

•
THANKS

SIN K= (, TMT)
FDFIELD 60,72,

SOURCE=CTR(2),
BATCH=1,
PICTURE='$., ••• ,·*9.99 t

FDLINE 60

FOR DISPLAYING TAX ON SELECTRIC
TRANSMIT DATA FOR LINE
SPACE FOB TAX AMOUNT X
GET TAX AMOUNT FBOM COUNTEB 3 X
PERMITS AMOUNTS TO $9,999,999.99

LINE FOB GRAND TOTAL X
TRANSMIT DATA FOR LINE
SPACE FOR GRAND TOTAL X
GET TOTAL FROM COUNTER 2 X
FLAG FOB BATCH TOTALS X
PERKITS AMOUNTS TO $9,999,999.99

LINE FOR KESSAGE ON INVOICE
USE ENTIRE LINE X FDFIELD 10,72,

SOURCE='THANK YOU FOR
JUSTIFI=C

YOUR ORDER -- PLEASE CALL AGAIN', X
FOR SELECTRIC ONLY

•
NUMBERSFDLINE 65

•

FDFIELD 10,12,SOORCE=FID
FDFIELD 13,13,SOORCE='/'
FDFIELD 14,16,SOOBCE=RSN,

SINK= (,TMT)

FDEND ,

LINE FOR FID/RSN DATA
FID NUKBER HERE
SLASH GOES HERE
RECORD SEQUENCE NUMBER HERE
TRANSMIT DATA FOR FIELD

END OF INVOICE

X

Figure 21. A Form Description Program for the Jones Supply Co. Invoice (Part 2 of 2)

How To Write A Form Description Program 7S

Assembling the Form
Description Macro
Instruction

76 IBM 3735 Programmer's Guide

To assemble the Form Description (FD) macro instructions, you need an operating system
(either OS or DOS) with these facilities:

• An Assembler.
• A macro library containing the FD macro definitions.
• Enough auxiliary storage to contain the results of Assembler processing.

You also need a description of the job control statements that are'required to use the
Assembler and related facilities, including the auxiliary storage media that are available for
retaining the Assembler object-module output (when you do not want to retain it in card
form).

When you examine the assembly listing, you must verify the correctness of the results
and eliminate all observed errors before you submit the Assembler output to the FD
utility. The general flow of the assembly process is shown in Figure 22.

Job Control
Set-up Cards

INPUT

PROCESSING ---

OUTPUT

Diagnostic
Listing

End of ,,,'
Job Card

(or card images)

Assembler <~=~

Figure 22. Flow of Control and Data Through the Assembler

'" '"

\

The code generated during the FDP assembly consists primarily of unpacked hexa
decimal strings that represent FDP instructions and data. The unpacking portion of the
code generation processing creates FDP strings as follows:

1. The character representation is translated to 3735 internal code. For example, the
number 123 is translated to X'313233' .

. 2. The hexadecimal string is then padded by alternating the digits 4 and 7 to create the
unpacked FDP strings. For example, the coded string X'313233' appears in the
Assembler listing, after unpacking, as X'437 143724373' .

Appendix D describes the various MNOTE messages that may be issued during the FD
macro assembly. The Assembler also issues other kinds of messages; these are described
in the Assembler Language publications referred to in the OS and DOS discussions that
follow.

Although assembly procedures for the Operating System and Disk Operating System
are similar, the following sections discuss each system separately, so that the OS user need
not be concerned with DOS requirements, and vice versa.

Operating System (OS) Assembly In most installations, you can use an OS cataloged procedure to assemble your source
Considerations statements. The installation's system programmer is responsible for defining the

necessary Job Control Language (JCL) statements so that the cataloged procedure
specifies the proper macro library and proper output data sets.

A general example of such a cataloged procedure is:

Iljobnaae JOB
Ilstepnalle
lIAS!!. SISIN

(other required parameters)
EXEC ASl'IFC
DD *

(source program statements)

1*
II

(end-of-data-set delimiter)
(end-of-job statement)

The job control statements generated by the invocation of this cataloged procedure in
a typical installation might be:

XXAsa
XXSYSLIB

. XISISUT1
II
IISISUT2
IISYSUT3
IX
XXSlSPRINT
IISYSPUNCH

EIEC
Dtr
1.ID

DD
tD

DD
tD

PGl'I=IEOASft,REGION=50K
tSNAftE=SYS1.l'IACLIB,DISP=SHR
DSNAftE=&SISUT1,UNIr=SISSQ,SPACE=(1100,(~OO,50»,
SEP= (SYSLIB)
DSNAftE=&SYSOT2,UNIT=SYSSQ,SPACE=(1700,(~OO,SO»)
tSN.ll'lE=SSISOT3,SPACE= (170:>, (~OO, 50) ,
ONIT=(SYSSQ,SEP=(SYSOT2,SYSOT1,SYS1IB»
SISOUT=l
SISOOT=B

Note: The SYSPUNCH statement names the data set that is to contain the object
module produced by the Assembler. SYSOUT = B directs the output to the card
punch. If you do not want card output, you should specify that the output be placed
in some other data set.

How To Write A Form Description Program 77

Disk Operating System (DOS)
Assembly Considerations

78 IBM 3735 Programmer's Guide

The object modules that result from the assembly begin with a CSECT named IDF 1000,
and continue through IDFlOOl, IDFlO02, and so forth, as required. You should carefully
check all MNOTE messages issued during the FD macro assembly. Many of these messages
are informational; they simply describe the values that were coded in the FD macros. You
should examine these messages to make sure that the values you coded were properly
interpreted. Other messages indicate possible errors and definite errors. You should
examine these messages to determine the cause of each error, then correct the indicated
errors (if necessary) before assembling the FDP again. Once you have an error-free
assembly, you can proceed to the next stage in preparing your programs for use at the
3735 terminal, executing the FD utility.

For further information concerning the OS Assembler and its processing, refer to the
OS Assembler Language publication, Order No. GC28·6514, and the OS Assembler (F)
Programmer's Guide, Order No. GC26-3756. The latter publication describes the various
messages (other than MNOTE indications) that may be issued during Assembler processing.

The Disk Operating System (DOS) job control statements required to execute the
Assembler are, to some extent, configuration-dependent. The installation system pro·
grammer is responsible for determining the device addresses that you should use in your
job control assignment (ASSGN) statements to indicate the input/output devices required
by the Assembler. The job control statements required are shown below in the order in
which they must be coded, where "cuu" denotes that the actual device address must be
coded in the job control statements (for example, "ODE", "192", or "280"). Many DOS
installations have standard device-address assignments for particular devices. Check with
your computing center for details.

II JOB jobname (other optional ~arameters)
II ASSGN SISIPT,X'cuu' (source program input)
II ASSGN SYSLSf,X'cuu' (program listing)
II ASSGN SIS001,X'cuu'
II ASSGN SYS002,X'cuu'
II ASSGN SIS003,X'cuu'
II ASSGN SYSPCH,X'cuu'
II OPTION DECK, •••
II EXEC ASSEMBLY

(work files)

(rEquired when DECK option is specified)
(optional -- indicates Assembler functions)
(rEquired)

(source program statements)

1*
1&

(end-of-data-set delill1ter)
(end-of-job statement)

The object modules that result from the assembly begin with a CSECT named IJLF 1000,
and continue through IJLF 1001 , IJLFlO02, and so forth, as required. You should carefully
check all MNOTE messages issued during the FD macro assembly. Many of these messages
are informational; they simply describe the values that were coded in the FD macros. You
should examine these messages to make sure that the values you coded were properly in·
terpreted. Other messages indicate possible errors and definite errors. You should examine
these messages to determine the cause of each error, then correct the indicated errors (if
necessary) before assembling the FDP again. Once you have an error·free assembly, you
can proceed to the next stage in preparing your programs for use at the 3735 terminal,
executing the FD utility.

For further information concerning the DOS Assembler and its processing, refer to the
Disk and Tape Operating Systems Assembler Language publication, Order No. GC24-3414.

What the Form Description
Utility Does

How To Use The Form Description Utility

Before the FDPs generated by the Form DeSCription (FD) macro assembly can be used at
the 3735 terminal, they must be processed by the Form Description (FD) utility. When
the utility processing is completed, the resulting FDPs are in a format that the 3735
terminal control program (TCP) can interpret. You can then use your own teleprocessing
application programs to transmit the FDPs to the 3735. Figure 23 shows the general flow
of control and data through the FD utility.

The following paragraphs describe FD utility processing. Although the utility functions
are similar for both OS and DOS, many operations and techniques are not. The discussion
is organized so that a user of either system needs to read only those sections that pertain
to his specific system. Thus the OS user need not concern himself with DOS considerations,
and vice versa.

While performing its processing functions, the FD utility generates various informational
and diagnostic messages. These messages are fully described in Appendix E (for OS systems)
and Appendix F (for DOS systems).

The FD utility is divided into three distinct processing steps: control, link-edit, and
storage.

• The control step obtains the card-image output of the FD macro assembly from an
input data set (either a card reader or some other sequential input device), and generates
the control statements that the link-edit step needs to produce the program that is
executed in the storage step.

• The link-edit step obtains the ou tpu t of the control step and combines it with
an IBM-supplied module that contains the executable code for the storage step.

• The storage step places the FDP blocks in a user-specified data set. When the
storage step has completed normal processing, you can transmit the FDPs to
the 3735 terminal.

Certain errors detected by the FD utility during execution may cause
processing to terminate abnormally, depending on the severity of the error.
The program response to errors arising from improper input (cards missing
or out of sequence) is to write a message in the diagnostic listing produced
by the control step and terminate processing. The input data following the
item in error is not processed.

Program response to errors such as insufficient space in a data set is to terminate
processing and note the condition in the diagnostic listing produced by the storage step.

How To Use The Form Description Utility 79

~
II::
o u.

Using the OS Form
Description Utility

80 IBM 3735 Programmer's Guide

The OS Form Description utility is executed as a sequence of job steps scheduled through
OS job control. Before the utility can be executed, it must be made known to the Oper
ating System either by placing it in the system library (SYS I.LINKLIB) or by placing it in
a private library and using an appropriate JOBLIB or STEPLIB DD statement.

You can execute the OS FD utility by invoking an OS cataloged procedure. The in
stallation's system programmer is responsible for defining JCL statements so that the
cataloged procedure specifies the proper input and output data sets (CTRL . SYSIN and
STG . SYSLIB). The cataloged procedure UTIL373S may be invoked by the following
JCL:

Iljobname JOB (other required and optional parameters)
IISfEP EIEC UTIL3735
IICTRL.SISIN DD (* if card input, dsnaae if not card input)
1* (needed only for card input)
IISTG.SISLIB DD (dsname of file to hold FDPs)
/I

The CTRL . SYSIN data set should contain the object modules created by the Assembler.
These modules may be in 80-column cards in the input stream, or in card images on some
auxiliary storage device. The STG . SYSLIB data set should provide enough space to hold
the output of the storage step. It should be defined as a partitioned data set (PDS). Each
member placed in this PDS by the storage step is a separate FDP.

The job control statements generated by the invocation of this cataloged procedure
are as follows:

IICTRL EXEC
IISYSPRINT DD
XXSISUT1 DD
xx
IXLKED EXEC
U
XXSISLIN DO
xxsrSUT1 DD
XXSYSPRINT DD
XXSISDD DO
XXSYSL!lOD DD
XX
XXSTG EXEC
lXSfEPLlB DD
IIsrSPRINT DD

PGM=IDFCT
SYSOUT=A,DCB=(RECF!=FB,LRECL=120,BLKSIZE=3600)
DSNAKE=&SISLIN,UNIT=SISDA,DISP=(NEI,PASS) ,
SPACE=(TRK, (7,31)
PG!=IEWL, PAlU!='LIST,OYL!, IREI' ,KAP ,DC' ,REGION=96K,
COND= (O,LT,CTRLl
DSN1~n=&SYSL IN,DISP= (OLD, DELETE)
UNIT=SISDA,SHCE= (1024, (50,20 .. 1»
SYSOUT=A
DSNAKE=srS1.1INKLIB,DISP=SHR
DSNAKI=SGOSET(GO),UNIT=SYSDA,DISP=(KOO,PASS) ,
SPACE=(1024, (50,20,2»
PG!=*.LKED.SYSLKOD,COND=«(O,LT,LKED), (O,LT,CTRL»
DSNAKI=*.LKED.SYSDO,DISP=SHR
SISOOT=A,DCB=(BECFM=FB .. LRECL=120,BLKSIZE=3600)

Much of the DCB information for the STG . SYSLIB data set is provided by a DCB
macro instruction in the module IDFST. This DCB information is described later under
"OS Storage Step Operations".

If no condition codes are specified in EXEC statements, the job is terminated if any
job step returns a nonzero completion code. You can, if you wish, use the REPLACE
option in the PARM field of the EXEC statement for the STG job step to replace any
existing FDP in your data set that has the same name as any of the FDPs you are currently
processing with the utility. Coding PARM . STG = 'REPLACE' requests that all FDPs with
duplicate names be replaced with new ones. Coding PARM . STG = 'REPLACE = (namel,
name 2, ... , name 20)' requests that up to 20 specified names be replaced if they are
found to be duplicates.

OR

INPUT

Assembled
Object
Deck

/
r-..

......

-"

Object
Module

~

System
Libraries

Legend:

UTI LlTY PROCESSING

1~ Control
Step

Link
Edit
Step

Storage
Step

End

---...... ~ control flow

c:==> data flow

Figure 23. Flow of Control and Data Through the Form Description Utility

OUTPUT

User
Data
Set

(Contains Form
Description
Programs)

How To Use The Form Description Utility 81

82 IBM 3735 .Programmer's Guide

INPUT PROCESSING OUTPUT

L..-__ S_Y_S_IN,.---...---!==::::::> • __ ID_F_CT_-.;::-~=====~ [57T I

~ 1=====::::>[57 ~~===> IEWL
L...-_____ ,

.... _____ ~=====~[57 I IDFST I-

Figure 24. Data Flow Through the OS Form Description Utility

~Y5LI~
User data set of Form
Description Programs

OS Control Step Operations

OS Link-Edit Step Operations

If an FDP in your data set has the same name as a new FDP to be added, and the
utility has not been instructed to replace the old FDP, it attempts to store the new FDP
with a temporary name from the series IDFTEMPO, IDFTEMP I, , .. , IDFTEMP9. If
these temporary names have been exhausted, the new FDP is not stored. The action
taken is noted in the diagnostic listing produced by the storage step.

The as control step (CTRL) uses three data sets during its execution:

• SYSIN, which contains the output data from the FD macro assembly.
• SYSUTl, which contains the output data from this step - one or more object modules.

each followed by its associated Linkage Editor control statements.
• SYSPRINT, which provides the programmer with a diagnostic listing describing the

results of step processing.

The SYSIN data set contains one or more object modules with a variable number of
CSECTs .. Each CSECT is composed of six 486-byte blocks. (The last CSECT may have
from one to six such blocks.) Each block in a CSECT contains an 8-byte name, a 2-byte
key, and a 476-byte data sector that contains the macro-generated object code. The 8-
byte name is the name of the FDP as specified in the name field of the FDFORM macro
instruction. This is the name by which the FDP is stored in the user's data set. The 2-
byte key begins with X'OOOO' in the first block for each FDP, and increases by one for
each succeeding block of the FDP.

The as control step examines these input CSECTs, card image by card image, and
creates output modules that have Linkage Editor control statements inserted at the end
of each module. The output is placed in the SYSUTI data set in the format shown in
Figure 25. The Linkage Editor control statements are generated when the as control
step examines the External Symbol Dictionary (ESD) card images in the SYSIN data set.
All card images placed in the SYSUT 1 data set have been checked for correct sequence
number and deck identification, and all ESD card images have been checked for proper
content.

The SYSPRINT data set contains diagnostic information of interest to the programmer.
It is normally directed to the system printer, and consists of one message line for each
error detected by the control step. The messages that may appear in the listing are
described in Appendix E.

The as Link-edit step (LKED) uses five data sets during its execution:

• SYSLIN, which contains the output from the as control step (the same data set as
CTRL . SYSUT I). This is the primary input to the Linkage Editor.

• SYSDD, which is a data set containing the IBM-supplied load module that is combined
with the primary input data set (SYSLIN) to form the program that is executed in the
as storage step.

• SYSUTl, which is a work file used by the Linkage Editor.
• SYSLMOD, which contains the output load module to be executed in the as storage step.
• SYSPRINT, which provides the programmer with a diagnostic listing describing the

results of step processing.

The SYSLIN data set should contain the sequence of records shown in Figure 25. The
control statements generated by the control step describe the Linkage Editor processing
required to create the overlay program that is executed in the storage step.

The SYSDD data set contains the IBM-supplied module IDFST, which is the executable
code for the as storage step. This module stores the new FDPs in the user's library of
FDPs and provides a diagnostic listing of processing results. When the IDFST module is
link-edited with the primary input data set (SYSLIN), it becomes the root segment in an
overlay program produced by the Linkage Editor.

How To Use The Form Description Utility 83

os Storage Step Operations

84 IBM 3735 Programmer's Guide

L. E. Control Cards

END Card

TXT Cards

ESD Cards

Figure 25. OS Control Stell Output Format

Repeated for
each object
module

The SYSUT 1 data set is a work file that is used to contain intermediate results of
Linkage Editor processing.

The SYSLMOO data set contains the executable overlay program produced by the
Linkage Editor.

The SYSPRINT data set contains the diagnostic messages produced during Linkage
Editor processing. The Linkage Editor messages that may be directed to this data set are
described in Appendix E.

Note that this step of the OS FO utility can use the smallest Linkage Editor available
in the system: that is, 15K bytes (Level E) or 44K bytes (Level F).

Further information describing the operation of the Linkage Editor can be found in
the OS Linkage Editor and Loader publication, Order No. GC28·6538.

The OS storage step (STG) uses two data sets during its execution:

• SYSLIB, which defines the user library (partitioned data set) in which the new FOPs
are to be stored .

• SYSPRINT, which provides the programmer with a diagnostic listing describing the
results of step processing.

The program executed in this step is created by the Linkage Editor in the previous
step and placed in the SYSLMOO data set. Its function is to place the new FOPs in the
SYSLIB user library, so that the user can later transmit any or all of them to the 3735
terminal. Only the 476·byte data sectors in each CSECT are placed in the user library,
and each FOP stored is identified by the 8·byte name that was specified in the name
field of the FOFORM macro statement for that FOP. This name becomes a member
name in the SYSLIB partitioned data set.

The output data control block (DC B) describes the characteristics of the SYSLIB data
set as follows:

OONAME = SYSLIB
LRECL= 476
BLKSIZE = 476
MACRF=(W)
OSORG=PO
SYNAO = SYNA02
RECFM=F

Using The DOS Form
Description Utility

The application program that retrieves the FDPs from this data set should refer to a
particular FDP by its form name (the name entry that was coded in the FDFORM macro)
via the Basic Partitioned Access Method (BP AM) macros, and should simply extract and
transmit all of the 476-byte data blocks associated with that form name (member name).
The application program can be written to obtain the membernaIlles for the data set
directory, or from some input medium (such as the SYSIN input stream or PARM fields
on an EXEC statement).

The SYSPRINT data set contains diagnostic information of interest to the programmer.
It is normally directed to the system printer, and may consist of one or more message lines
for each execution of the storage step. The messages that may appear in the listing are
described in Appendix E.

When the FD utility has completed normal processing, the FDPs are ready to be sent to
a 3735.

The DOS Form Description utility is executed as a sequence of job steps scheduled through
DOS job control. Before the utility can be executed, it must be made known to the system
by cataloging it in a relocatable library and a core-image library.

Before the DOS FD utility is executed, you must ensure that the core image library
(or private core image library) contains enough unused space to catalog all the program
blocks that will be created by the Link Edit step. The required space can be determined by
assuming that each CSECT used as input to the Control step occupies one block in the core
image library. Then add 25 blocks for the program root phaSe. For example; if your FDPs
total 10 CSECTs, then 35 blocks of core image library space will be needed. Since the FD
utility operates as a "link", load, and go" sequence of job steps, this space is freed after
the Storage step is finished.

The job. control statements that you use to execute the utility should be similar to'
those shown below, modified to suit your installation requirements. (These job control
statements assume that you are using 9-track tape work files.) To create the ISAM file:

II JOB jobname (other JOB state.ent para.eters)
II ASSGN SYSIPT.X·cUU·1
II ASSGN SISPCH.X·cuu·2
II ASSGN SYSLST.X·cuu·
II EXEC IJLPCT
II CLOSE SYSPCH,X'CUU'3
II PAUSE RELOAD OOTFOT TAP!
II RESET SYSIPT
II RESET SISPCH
II ASSGN SYSIP'l',X'cuu"
II OPTION LINK

INCLUDES
II EXEC LNKEDT
II PAUSE VALIDAfE OUTPUT
II RESET SYSIPT
II ASSGN SYSOOO.X·cuu· 6

II DLBL IJFDLIB, •••• ISC7.
II EXTENT SYSOOO,serialnu.ber,~,1, ••• •
II EITENT SISOOO,serialnu.ber,1,2, ••• •
II EXTENT SYSOOO,serialnu.ber,2.3, ••• •
II EXEC
II OP'!ICN=LOAD
II DEVICE=(2311}9

l231~

How To Use The Form Description Utility 8S

86 IBM 3735 Programmer's Guide

1*
II PAUSE
II DL5L
II EXTENT
II EXTENT
II EXTENT
II EXEC

CHECK SYSLST POR !SG IIP211I
IJPDLIB, ••• ,ISE7 •
SISOOO,serialnumber,II,1, ••• •
SYSOOO,serialnu.ber,1,2, ••• •
SISOOO,serialnu.ber,2,3, ••• •

II OPTION=L01DPST
II DEVICE=12311}9 .

L23111
1*
1&

Notes:

1 Supplies the object modules created by the Assembler.
2 Separate unlabeled work tape drive.
3 Restores normal SYSPCH assignment.
4 Same device as prior SYSPCH.
5 IJLFST, IJLFLOAD, and IJLFUPDT must be in user's relocatable library. When

'ATTN cuu' prints on the system console, respond with an EOB.
6 User's indexed sequential data set.
7 IJFDLIB is a fixed file name.
S Optional if STDLABEL or ifPARSTD was used to store label previously.
9 Device must be the same DASD device for LOAD and LOADFST options.

To update or add to the ISAM file:

II JOB jobnalle
/1 lSSGN SISIPT,X'cUU'l
II ISSGN, SYSPCH,X'cuu'z
II lSSGN SISLST,X'cuu'
II EXEC IJLPCT
II CLOSE SYSPCH,X'CUU'3
II P1USE REL01D OUTPUT TAP!
II RESET SISIPT
II RESET SYSPCH
II lSSGN SISIPT,X'cuu'·
II OPTION LINK

INCLUDE'
II EXEC LNKEDT
II PAUSE V1LIDATE OUTPUT
II RESET SYSIPT
II ASSGN SYSOOO,X'cuu'·
II DLBL IJPDLIB, ••• ,ISE7.
II EXTENT SYSOOO,serialnullber,II,1, ••• •
II EXTENT SYSOOO,serialnu.ber,1,2, ••• •
II EXTENT SYSOOO,serialnumber.2,3, ••••
II EXEC
II OPTION=UPDATI
II DEVICE={23111

23111
II RPLACI or II iPL1CE=modnalle9
1*
1&

DOS Control Step Operations

Notes:

1 Supplies the object modules created by the Assembler.

2 Separate unlabeled work tape drive.
3 Restores normal SYSPCH assignment.
4 Same device as prior SYSPCH.
5 IJLFST, IJLFLOAD, and IJLFUPDT must be in user's library. When 'ATTN cuu'

prints on the system console, respond with an EOB.
6 User's indexed sequential data set.
7 IJFDLIB is a fixed file name.
S Optional if STDLABEL or ifPARSTD was used to store label previously.
9 / / RPLACE replaces all duplicate modules; / / RPLACE = modname replaces only the

module named.

If the DOS FD utility processes an FDP with the same name as one that already exists
in the user's indexed sequential data set, the utility attempts to store the new FDP with a
temporary key (from the series IJLFTMOO to IJLFTM09) unless the RPLACE statement
is used to indicate some other action. The RPLACE statement may be coded in two ways:

/ / RPLACE = mod name or / / RPLACE

In the first case, the FDP identified by modname is replaced. Up to 20 / / RPLACE =
mod name statements are permitted. In the second case, all duplicate FDPs found are to
be replaced with new ones.

Figure 26 shows the data flow through the DOS FD utility.

The DOS control step uses three data sets during its execution:

• SYSIPT, which contains the output data from the FD macro assembly.
• SYSPCH, which contains the output data from this step - Linkage Editor control

statements for each object module, followed by the associated module.
• SYSLST, which provides the programmer with a diagnostic listing describing the results

of step processing.

The SYSIPT data set contains one or more object modules with a variable number of
CSECTs. Each CSECT is composed of three 486-byte blocks. (The last CSECT may have
from one to three such blocks.) Each block in a CSECT contains an 8-byte name, a 2-byte
key, and a 476-byte data sector that contains the macro-generated object code. The 8-byte
name is the name of the FDP as specified in the name field of the FDFORM macro in
struction. This is the name by which the FDP is stored in the user's indexed sequential
data set. The 2-byte key begins with X'OOOO' in the first block for each FDP, and in
creases by one for each succeeding block of the FDP.

The DOS control step examines these input CSECTs, card image by card image, and
creates output modules that have Linkage Editor control statements inserted at the
beginning of each module. The output is placed in the SYSPCH data set in the format
shown in Figure 27. The Linkage Editor control statements are generated when the DOS
control step examines the External Symbol Dictionary (ESD) card images in the SYSIPT
data set. All card images placed in the SYSPCH data set have been checked for correct
sequence number and deck identification, and all ESD card images have been checked for
proper content.

The SYSLST data set contains diagnostic information of interest to the programmer.
The messages that may appear in the listing are described in Appendix F.

How To Use The Form Description Utility 87

INPUT PROCESSING

0
c:::> IJLFCT

Job Control

LNKEDT

IJLFST

Figure 26. Data Flow Through the DOS Form Description Utility

88 IBM 3735 Programmer's Guide

OUTPUT

SYSLST

SYSLST

IJFDLlB

Indexed Sequential Data Set
of Form Description Programs

DOS Link-Edit Step Operations The DOS link-edit step uses five data sets during its execution:

• SYSLNK, into which Job Control has placed the output from the DOS control step
\ (the same data set as the control step data set SYSPCH). This is the primary input to

the Linkage Editor.
• Three modules included from a relocatable library. These IBM-supplied relocatable

modules (IJLFST, IJLFLOAD, and IJLFUPDT) are combined with the primary input
data set (SYSLNK) to form the program that is executed in the DOS storage step.

• SYSLST, which provides the programmer with a diagnostic listing describing the results
of step processing.

• SYSOOI, which provides a work file extent to be used by the Linkage Editor.
• Core image library space, which is used to contain the overlay program segments as they

are created.

The SYSLNK data set should contain the sequence of records shown in Figure 27.
Linkage Editor control statements generated by the control step describe the Linkage
Editor processing required to create the overlay program that is executed in the storage
step.

The relocatable library contains the IBM-supplied modules IJLFST, IJLFLOAD, and
IJLFUPDT, which are the executable code modules for the DOS storage step. These
modules store the new FDPs in the user's indexed sequential data set and provide a
diagnostic listing of processing results. The IJLFST, IJLFLOAD, and IJLFUPDT modules
are link-edited with the primary input data set (SYSLNK).

Figure 27. DOS Control Step Output Format

Repeated for
each object
module

The SYSLST data set contains diagnostic information of interest to the programmer.
The Linkage Editor messages that may appear in the listing are described in Appendix F.

The SYSOOI data set is a work file that is used to contain intermediate results of
Linkage Editor processing.

Core image library space is needed to contain the overlay program phases as they are
created. Normally, these phases are not cataloged.

Further information describing the operation of the Linkage Editor can be found in
the DOS System Control and System Service Programs publication, Order No. GC24-5036.

How To Use The Form Description Utility 89

DOS Storage Step Operations

90 IBM 3735 Programmer's Guide

The DOS storage step uses four data sets during its execution:

• SYSOOO, which defines the extent for the user's indexed sequential (ISAM) data set
(IJFDLIB) in which the new FDPs are to be stored.

• SYSLST, which provides the programmer with a diagnostic listing describing the results
of step processing.

• SYSIPT, which contains the storage-step control statements.
• Core image library space containing program overlay segments.

The DOS storage step can be executed in two ways:

1. To create the ISAM data set of FDPs.
2. To update the ISAM data set of FDPs.

The complete 486-byte CSECT entries (including the lO-byte key field) are placed in
the data set, but only the 476-byte data areas in each CSECT entry consist of data suitable
for transmission to the 3735. The first 10 bytes of each CSECT entry are used as the
indexed sequential key.

When creating the ISAM data set, the DTFIS macro operands describe the characteristics
of the IJFDLIB file as follows:

DSKEXTNT=3
IOROUT = LOAD
KEYLEN = 10
NRECDS = 1
RECFORM = FIXUNB
RECSIZE = 476
CYLOFL= 8

DEVICE = 2311 *
ERREXT = YES
HINDEX = 2311 *
IOAREAL = ISAMAREA
MODNAME= LOADMOD
WORKL = WORKAREA

When updating the ISAM data set, the DTFIS macro operands describe the characteristics
of the IJFDLIB file as follows:

DSKEXTNT= 3
IOROUT = ADDRTR
KEY LEN = 10
NRECDS = 1
RECFORM = FIXUNB
RECSIZE = 476
CYLOFL= 8
DEVICE = 2311 *
ERREXT=YES

HINDEX = 2311 *
IOAREAL = RWKAREA
IOAREAR = RWKAREA
IOSIZE =560
KEY ARG = KEYFLD
MODNAME = UPDTMOD
TYPEFLE = RANDOM
WORKL = WKAREA
WORKR = WKAREA

*Where 2311 appears, ajob control statement that specifies DEVICE = 2314 can be used
to override this.

The application program that retrieves the FDPs from the IJFDLIB file should refer to
a particular FDP by searching for the 10-byte key fields that were used to store each section
of the FDP, then simply extract the block associated with any particular indexed sequential
key using ISAM macro instructions. An example of a DOS BT AM program designed to
perform this function, then send the FDPs to a 3735, is found in Appendix G.

The SYSLST data set contains diagnostic information of interest to the programmer.
The messages that may appear in the listing are described in Appendix F.

The core image library contains the overlay program segments created by the Linkage
Editor.

When the utility has completed normal processing, the FDPs are ready to be sent to a
3735.

Telecommunications Access
Methods

System Design Considerations

This section describes some of the environmental and implementation factors that must
be evaluated in designing a teleprocessing system that uses 3735 terminals as remote
devices. These considerations are grouped under several headings, as follows:

• Telecommunications Access Methods, which describes the different access methods
that can support 3735 operations.

• Communication Procedures, which discusses the communication discipline used with
the 3735.

• Application Programs, which examines several implementation factors that must be
considered in designing programs to process the data captured at the 3735.

• System Generation Considerations and Storage Estimates, which define the system
generation and storage requirements for installing the programs that support 3735
operations.

The 3735 can communicate with System/360 (except Model 20 or Model 67 in Time
Sharing mode) or System/370 (Models 135, 145, 155, 165, or 195) central processing
units using any of three telecommunications access methods:

1. The Telecommunications Access Method (TCAM) operating under OS.
2. The Basic Telecommunications Access Method (BTAM) operating under OS.
3. The Basic Telecommunications Access Method (BTAM) operating under DOS.

These access methods control the transmission of information between remote 3735
terminals and a central computer in much the same way as other access methods control.
the transfer of information between local input/output devices and the computer. An
application programmer can design, write, and test his programs as though he is using a
local input/output device, but he performs input/output and message handling operations
by using the macro instructions provided by the telecommunications access method used
in his installation.

The 3735 terminal uses Binary Synchronous Communications (BSC) procedures to
control the flow of information between a terminal and a central system. All data in BSC
is transmitted as a serial stream of binary digits (zero and one bits). Synchronous com
munications means that the active receiving station on a communications channel operates
in step with the transmitting station through the recognition of a specific bit pattern
(sync pattern) at the beginning of each transmission.

The basic 3735 terminal configuration provides for communication over point-to-point
switched (dial·up) common-carrier facilities at speeds of 1200 or 2000 bits per second (bps),
or at 2400 bps with an IBM 3872 Modem (or equivalent). (World Trade
customers may specify a 600-bps transmission speed.) Communication over
multipoint nonswitched (leased) lines at 1200, 2000, or 2400 bps can be
provided by the addition of special features to the basic 3735 terminal.

Further information about BSC concepts can be found in the Systems
Reference Library publication General Information-Binary Synchronous
Communications, Order No. GA27·3004. Specific details concerning BSC
operations and restrictions in a particular access method are found in the
appropriate access method publications, which are referred to in the paragraphs
that discuss each access method and listed in the bibliography at the back of this book.

System Design Considerations 91

OS TCAM

os and DOS BTAM

Transmission Codes

Timeouts

92 IBM 3735 Programmer's Guide

Whichever access method you use, be aware that the FDPs are assembled in the internal
code of the 3735. They must not be translated before being sent to the terminal, regardless
of the transmission code or access method used.

Once each 3735 terminal in the teleprocessing network has been identified in the TCAM
Message Control Program (MCP), you can use TCAM facilities to transmit properly
assembled and structured FDPs to any 3735 terminal in the network, and to receive
messages and data from the 3735 terminals. Almost all TCAM facilities provided for other
BSC terminals are available to the 3735, including error detection and recovery procedures.
The only restriction placed on the 3735 in a TCAM system is that it cannot be used as a
primary or secondary operator control terminal.

For a general understanding of the facilities that TCAM can provide, see the as TCAM
Concepts and Facilities publication, Order No. GC30-2022. Specific information about
designing and building a TCAM Message Control Program and TCAM application programs
is found in the as TCAM Programmer's Guide and Reference Manual, Order No. GC30-2024.

BTAM controls terminal input/output operations initiated by READ and WRITE macro
instructions issued in a teleprocessing application program. When each 3735 terminal in
the teleprocessing system has been identified in the proper BT AM control block and
terminal list specifications, you can use the BSC facilities provided by BT AM to transmit
properly assembled and structured FDPs to any terminal in the network, and to receive
messages and data from the 3735 terminals.

An example of a DOS BT AM program that retrieves FDPs from an indexed sequential
file and sends them to a 3735 is found in Appendix G. An example of a similar OS BTAM
program is found in Appendix H.

Detailed information on the facilities that OS BTAM provides is found in the as BTAM
Systems Reference Library publication, Order No. GC30-2004. Similar information for
the DOS BT AM user is found in the DOS BT AM Systems Reference Library publication,
Order No. GC30-5001.

The transmission codes used with the 3735 are EBCDIC and ASCII. (A modified version
of ASCII is used as the internal code of the 3735.) EBCDIC characters are transmitted
low-order bit first in the following sequence: 7,6,5,4,3,2, 1, O. No parity is transmitted;
checking is provided by a 16-bit cyclic accumulation. The EBCDIC codes used by the
3735 are shown in Figure 28.

ASCII characters are transmitted low-order bit first as follows: 1,2,3,4,5,6,7,
parity. Checking is performed by a character parity check and an 8-bit longitudinal re
dundancyaccumulation. The ASCII codes used by the 3735 are shown in Figure 29.

Timeouts of different lengths are provided to control message traffic on a line. All of
these timeouts except one operate as part of the binary synchronous communication
(BSe) procedures. In addition to these BSC timeouts, the 3735 provides an additional
three-minute timeout that is used during inquiry operations to prevent the 3735 from
waiting indefinitely for a response from the CPU. When the 3735 has waited for a re
sponse to an inquiry for three minutes, it times out, sets an indicator, and returns control
to the FDP that issued the inquiry request. The FDP can then check the status of the
indicator and proceed accordingly.

Transmission checking, format checking, block counting, and I/O and buffer check
procedures are also provided to maintain orderly message traffic on the communication
line.

o

2

3

4

5

6

7

8

9

A

a

c

o

E

F

o 2 3

NUL

HT Nl IF

as

IFS

CR

IRS

4 5 6

SP & -

I

~ I

. $,

< * %

() -

+ ; >
I -.., ?

Figure 28. 3735 Character Code Chart - EBCDIC

7

:

@

,

=

n

8 9 A B c o E F

{ } 0

a j A J 1

b k 5 B K S 2

c I t C l T 3

d m u 0 M U 4

e n v E N V 5

f 0 w F 0 W 6

9 P x G P X 7

h q y H Q y 8

i r z I R Z 9

[I

±

Communication Procedures Communicate mode is entered when the 3735 operator presses the ENTER or TAB key
following the compression of operator-created data. The 3735 keyboard locks and the
COMM indicator turns on. The 3735 remains in communicate mode until communication
is terminated by a Power Down message from the CPU or by the operator.

3735-to-CPU Transmission

Except during inquiry operations, the following message sequence must be usea:

1. The 3735 must transmit its data (if any) to the CPU.
2. After receiving all 3735 data, the CPU may transmit FDPs. If FDPs are transmitted,

the entire set required to be resident at the terminal must be sent.
3. Following any FDP transmission, the CPU can transmit other data. The FDPs and data

received by the 3735 overlay, on disk, the FDPs and data that were on the disk when
communication began.

On a switched line, if the operator dials the CPU from the 3735, the initial line control
sequence is as follows:

3735 CPU

IDENQ
IDACKO

Data Block
ACK 1

EOT

System Design Considerations 93

94 IBM 3735 Programmer's Guide

Rows Columns 0 1 2 3 4 5 S

b7bSb5 000 001 010 011 100 101 110

.b4b3b2b1

0 0000 NUL SP 0 @ P

1 000 1 I 1 A Q

2 o 0 1 0 " 2 B R

3 o 0 1 1 # 3 C S

4 o 1 00 $ 4 0 T

5 o 1 o 1 % 5 E U

S o 1 1 0 & 6 F V

7 o 1 1 1
,

7 G W

8 1 000 BS (8 H X

9 1 0 0 1 HT) 9 I y

A 1 o 1 0 LF * : J Z

B 1 o 1 1 + , K [

C 1 1 00 FS , < L \

0 1 1 o 1 CR . = M I

E 1 1 1 0 RS > N A

F 1 1 1 1 I ? 0

Figure 29. 3735 Character Code Chart - ASCII

If the 3735 has no data· to send, it sends an EOT instead of the first data block.
If the CPU calls the 3735, the initial line control sequence is as follows:

CPU 3735

IDENQ
IDACKO

EOT
ENQ

ACKO
Data Block

ACK 1

EOT

If the 3735 has no data to send, it sends an EOT instead of the first data block.

7

111

I

}

All data blocks except the last consist of 476 bytes of data preceded by STX and
followed by ETB. The last block can be from 0 to 475 bytes of data preceded by STX
and followed by ETX. (Zero bytes of data result when the available data exactly ftlls the
previous disk sector.) The 3735 does not use the SOH or ITB characters in communicate
mode. Only the characters shown in Figure 28 (EBCDIC) or Figure 29 (ASCII) are sent
by the 3735 as data characters. Note, however, that the 3735 does not transmit the
carriage control characters (NL, HT, BS, LF, and CR). The 3735 retransmits a data block
acknowledged with a NAK character for an indefinite number of times. The 3735 never
transmits a TTD. It will, however, receive WACKs (and respond withENQs) for an in-

Sending Abort Conditions

CPU-to-3735 Transmission

definite number of times. If it receives an RVI, the 3735 sends a DISC sequence and
aborts transmission. If the CPU sends an EOT in response to a data block, the 3735
issues a DISC sequence and aborts the transmission.

The 3735 data transmission to the CPU is complete when an EOT is sent to the CPU.
The CPU should respond with DISC if no data is to be sent to the 3735. If this is the
case, the 3735 drops the communication line, reinitializes itself for further communications,
and waits for another connection with a CPU. The same CPU or different CPUs can con
tinue to "read" the 3735 data until data is successfully sent from the CPU to the 3735, or
until an attempt to send data to the 3735 has been aborted.

On a multipoint line, if the CPU polls the 3735 and the terminal has data to transmit,
the 3735 responds with the first data block. If it has no data to transmit, the 3735 re
sponds with EOT. If the CPU selects the 3735 and the terminal has no data to transmit,
the 3735 replies with ACK O. If the CPU selects the 3735 and the terminal does have data
to transmit, the 3735 replies with RVI. The CPU should then send EOT POLL to "read"
the data.

The data block formats are the same for multipoint networks as they are for switched
networks. The 3735 retransmits a data block acknowledged with a NAK character for an
indefinite number of times. The 3735 never transmits a TTD. It will, however, receive
WACKs (and respond with ENQs) for an indefinite number of times. If the CPU sends an
EOT in response to a block, the 3735 aborts the transmission. If it receives an RVI, the
3735 issues an EOT, waits for a subsequent polling sequence, and then continues trans
mission with the block following the one that was acknowledged with the RVI character.

The 3735 aborts the sending phase of communication if any of the following conditions
occur:

• The CPU ID is invalid (switched lines).
• An EOT is received as the response to a data block, or as the response to an ENQ

(switched or multipOint lines).
• A DISC sequence is received before the 3735 sends the EOT for end of data (switched

lines). .
• An RVI is received in response to a data block (switched lines).
• The 3735 transmits 15 ENQs to solicit a response from the CPU (switched or multipoint

lines).

In all of the above cases, the 3735 aborts transmission and reinitializes itself for further
communication. If the CPU establishes communication and requests the data again, trans
mission starts from the beginning.

Another abort condition can arise when the 3735 cannot read a data block from its
internal disk. The 3735 TCP attempts to read the disk sector 30 times. If the read is
still unsuccessful after 30 attempts, the following block is sent instead of the error block:

S N N E
TUSU 06 T
XL L X
A DISC (SWitched lines) or EOT (multipoint lines) sequence is sent following the

acknowledgment of the block. The 3735 TCP drops out of communicate mode, initiates
a data listing function, and cancels the records in error. (The 3735 cannot continue
transmission following the error block. Since the block cannot be read, the data chaining
information is destroyed and the location of the next block is unknown.) A listing of the
error records is then printed on the Selectric ® printer. The TCP then recompresses the
remaining records on the disk and reenters communicate mode. When the CPU establishes
communication again, transmission starts from the beginning.

The 3735 can receive several different types of messages. Each message type is handled
differently in terms of the ground rules that must be followed and the area of the disk
surface that is devoted to servicing and storing that message type. No FDPs or data can

System Design Considerations 95

Form Description Program
Message Format

96 IBM 3735 Programmer's Guide

be transmitted from the CPU to the 3735 unless the 3735 data records (the results of
normal document creation activity) have been transmitted to the CPU first. The message
type identifier formats are defined for these message types:

• FDP messages.
• ID List messages.
• Selectric messages.
• Terminate communicate mode messages.
• Power Down messages.
• Text messages.

These message type identifiers are described in the follOWing paragraphs. Message
blocks must begin with an STX character and end with an ETB or ETX character.
Normally, ETX is used only for the last block of a message.

FDP data bloCks must be sent to the 3735 before any other data is sent. The FDP
message blocks must be preceded by the following preliminary message:

S N N E
T U F U (up to 473 optional characters) T
XL L B

Note: Up to 473 characters may be transmitted between the second NUL and the
ETB. These optional fill characters are ignored by the 3735 except for accumulation
ofCRC or LRC, and may be used for any purpose, such as TCAM header characters.
The 476·byte block is stored on the disk and occupies one sector until transmission
is completed and the FDPs are packed and cataloged. The disk sector is then used for
packed FDPs.

Each FDP message block must be formatted as follows:

S Unpacked E
T FD Program T
X Data Block B

. Unpacked FDP data bytes are paired, and have the following format:

Even byte 0100 OXXX
Odd byte 0111 YYYY

When packed at the 3735, the data appears as PXXX YYYY, where P represents a
generated odd·parity bit.

The last FDP message block must be followed by:

S NNE
T U E U (up to 473 optional characters) T
XL L B

The FDPs received are stored on the disk, with each FDP block occupying one disk
sector. (The NUL E NUL block is not stored on the disk.) The FDPs are counted as
they are received, and if the space in the initial FDP directory is not sufficient to catalog
all the FDPs received, additional disk sectors are reserved for directory expansion. Each
disk sector can catalog 58 FDPs, and up to 17 sectors may be taken from the customer
data area for directory expansions. The initial FDP directory sector created during 3735
system generation is included in the terminal control program area.

Note: When you transmit FDPs to a 3735 terminal with ASCII code, do not send the
sector flags (3X'FFFF'), which are the last six bytes of each 476·byte FDP block. Either
transmit only the first 470 bytes of each record (framed by STX and ETB characters) or
change the X'FF' bytes to X'7F' and then transmit the entire 476·byte block. These last
six bytes, if sent, are stripped off at the terminal.

I D List Message Format

Selectric Message Format

Terminate Communicate Mode
Message Format

Power Down Message Format

The format of a"CPU ID list message sent to the 3735 is:

S NNE
T U L U ID List T
XL L B

The ID list can consist of up to 236 characters. Each ID must be delimited by a file
separator character (X'IC'), and the entire list by a record separator character (X'IE').
The IDs can consist of from one to 15 characters each. The number of IDs in the list is
limited only by the number which, with their delimiters, will fit in the 236 bytes. The
list can be padded with any valid text characters following the record separator to expand
the block size to as many as 476 characters.

When the 3735 receives the new ID list, it stores the ID list temporarily until the trans
mission is successfully completed. The 3735 replaces its old ID list with the new one only
when a power down or terminate communicate mode message has been received, or when
the operator uses the OPER key to terminate communicate mode.

the format of a Selectric message sent to the 3735 is:

S NNE
TUM U Message Text T
XL L B

The message text can consist of up to 233 characters. The 3735 performs a new line
(NL) function before starting to print the message. Other carriage control characters may
be embedded in the message data to provide further Selectric ® printer motion control, if
desired. (The carriage control characters permitted are those described in the FOFORM
MESSAGE operand discussion. Note, however, that no repetition factor is permitted with
embedded carriage control codes, since this type of message is not generated by the FO
macros.) The last message character must be followed by, a record separator (X'IE'). More
text characters may follow the record separator to expand the block size to as many as
476 bytes (including the NUL M NUL header and the record separator, but not including
the framing STX and ETB or ETX). After the transmission has been completed, the 3735
TCP prints the message on the Selectric ® printer Gust before powering down or returning
to local mode). If more than one Selectric message is sent, only the last one received is
printed.

The format of a terminate communicate mode message sent to the 3735 is:

S N N E
T U T U (up to 473 optional characters) T
XL L B

This message instructs the 3735 TCP both to pack and catalog all received FOPs and
data, and to return to local mode following the next EOT or DISC sequence received from
the CPU. .

Note: Up to 473 characters may be transmitted between the second NUL and the ETB.
These optional fill characters are ignored by the 3735 except for the accumulation of
the CRC or LRC.

The format of a power down message sent to the 3735 is:
S NNE
T U P U (up to 473 optional characters) T
XL L B

This message instructs the 3735 TCP to pack and catalog all received FOPs and data,
and to power down the 3735 following the next EOT or DISC sequence received from the
CPU.

Note: Up to 473 characters may be transmitted between the second NUL and the ETB.
These optional fill characters are ignored by the 3735 except for accumulation of the
CRC or LRC.

System Design Considerations 97

Text Message Format

Transmission Blocks

Receive Abort Conditions

98 IBM 3735 Programmer's Guide

Text transmitted from the CPU to the 3735 requires no special preliminary message. If
FDPs and text messages are sent, the FDPs must be sent first. The ID list, Selectric, or
power down messages can be sent before FDPs, after FDPs, or after text. Text trans
missions to the 3735 must be in blocks of 476 characters or less (excluding the framing
STX and ETB or ETX characters). If the last block is short, the ETB or ETX character
must immediately follow the record separator (X'IE') delimiting the record or the block
must be padded with null characters (X'OO').

One extra disk sector is used by the 3735 terminal control program (TCP) to indicate
that data is being received. This disk sector is released when the transmission has ended
and data compression begins. Only one such extra sector is used, even if multiple trans
missions occur (for example, if more than one CPU calls, or the same CPU calls to add to
data already received). The ~735 maintains a count of the data records received. If more
than 58 records are received, an additional disk sector is reserved for directory expansion.
Up to 17 additional sectors can be taken from the customer data area for directory expan
sions (for each 58 records). Each data record received from the CPU is sequentially
numbered starting with 000.

The first three characters of each form record transmitted to the 3735 must contain
the ID of the FDP that is to be used for processing the record. Each form record must end
with a record separator. Fields must contain characters for each position, or must be
terminated by a delimiter (IFS for EBCDIC, FS for ASCII; both are equivalent to hexa
decimal' 1 C'). Further information concerning text message formats is found in the
"Application Programs" ~ection.

Message blocks transmitted to the 3735 must not be longer than 476 characters (excluding
the framing STX ... ETB or ETX). Block length may be less than 476 characters; however,
during reception each block is stored as a sector of information on the magnetic disk. There
fore blocks of less than 476 characters reduce the amount of message data that can be
accomodated by the 3735 disk storage device. Following reception of a message, the term
inal control program searches the received records, removes any excess record separator
characters, and packs the blocks into contiguous blocks. This storage compaction is per
formed only after the reception of the message is completed.

The 3735 aborts the data reception phase of communication if any of the following
conditions arise:

• The CPU attempts to transmit data on a switched line before the 3735 operator-created
data has been sent to the CPU.

• An illegal character is detected in a block received from the CPU.
• The CPU sends a block of more then 476 data characters with a valid BCC or LRC

check. This causes a dynamic buffer overflow condition.
• The CPU attempts to send more FDPs and data than the 3735 disk can hold. This

causes a disk full condition.
• The CPU sends more than 1000 FDPs or more than 1000 data records. Both the FDP

directory and the data directory can catalog only 1000 records each. This causes a
directory full condition.

• The CPU sends an undefined header block of NUL X NUL (where the X represents a
character other than F,E,L,M,T,P, or I).

If any of the above conditions arise, the 3735 sends a status message to the CPU. The
line control sequences for a switched network are as follows:

CPU 3735
Error Block

EOT
EOT

ENQ
ACKO

Status Message
ACK I

DISC

Inquiry Operations

On a multipoint line, the 3735 waits to be polled following the EOT abort, then begins
transmission of the status message. If the CPU selects instead of polls, the 3735 responds
with NAK five times, then aborts communication. The status message format is:

S NNE
T U S U bb T
XL L X

The status bytes (bb) have the following meanings:

bb Meaning

00 CPU attempted to send before receiving (and 3735 data has not been read at
least once)

o I Illegal character in block
02 Dynamic buffer overflow
03 Disk full
04 Directory full
05 Undefined header (NUL X NUL)

If any of these abort conditions arises, or if a 20-second BSC timeout condition arises,
the 3735 ignores all data received from the CPU. CPU transmission must be reinitiated
from the beginning.

~.

The user creates the inquiry message to be sent to the CPU with his FDP. Before executing
the SEND command, the 3735 TCP sets a NUL I NUL header sequence in the first three
bytes of the inquiry buffer. When the message is sent, the TCP furnishes the STX and ETX
to delimit the entire message and turns off the TIMEOUT indicator. On a switched network,
the initial SEND command causes the 3735 COMM indicator to blink, thus letting the oper
ator know that a call should be placed to the CPU. The line control for handling this
inquiry sequence is a follows:

3735 CPU

IDENQ
ID ACKO

S N N E
T U I U message T
XL L X

ACK I
EOT

Following the transmission of the EOT, the 3735 waits up to three minutes for a re
sponse from the CPU. No line activity need take place during that interval. When the
CPU has the response ready, communication must continue as follows:

3735 CPU

ENQ
ACKO

S N N E
T U I U message T
XL L X

ACK 1
EOT

The inquIry block from the 3735 to the CPU is always 236 bytes long (not including
the framing STX and ETX). The CPU response can be of variable length, but no greater
than 236 bytes (including the NUL I NUL header). The CPU response must have the
indicated NUL I NUL header. Following reception of the response, the 3735 places the
data in the inquiry buffer (including the NUL I NUL header) and returns control to the
FDP. No other line activity takes place until another message is sent or until the FDP

System Design Considerations 99

Application Programs

100 IBM 3735 Programmer's Guide

issues a DISC command. The CPU should remain in receive mode waiting for another
ENQ. If another SEND command is issued, the line control is as follows:

3735 CPU

ENQ
ACKO

Inquiry
ACK 1

EOT

This procedure is repeated for each inquiry operation. It is the user's responsibility at
the CPU to limit the amount of time between inquiries, if desired. Subsequent inquiry
operations may be controlled by operator action, and thus the amount of time between
the CPU's EOT and the 3735's ENQ may be dependent on the operator.

The FDP DISC command causes a disconnect sequence to be sent to the CPU.
On a multipoint line, the 3735 waits to be polled before sending the inquiry, and also

waits up to three minutes to be selected for the response reception.
The inquiry response from the CPU must consist of fixed-length fields without any

field or record separators. Care should be taken when creating a message at the 3735,
since the CPU response is placed in the inquiry buffer. If the message data is less than
233 bytes long, the ETX received from the CPU is also placed in the inquiry buffer, and
the user must make sure that this character is removed before sending another inquiry I

(if any). An FDCTRL COMMAND = CLEAR (INQ) can be used for this purpose.

If the inquiry operation cannot be successfully completed, the TIMEOUT indicator is
turned on and control is returned to the FDP. This indicator is set if the three-minute
timeout is exceeded or if any abort conditions are encountered in the inquiry operation.
The FDP can then test this indicator by using an FDCTRL IF = TIMEOUT instruction,
and take appropriate action if necessary.

Previous sections have described how a forms encoder can write FDPs that can be used to
capture data at a 3735 terminal. The application programmer must also consider how the
3735 formats the data that is sent to the central system. The following discussions provide
information on how data from the CPU must be formatted for proper handling by the
3735, and how the 3735 formats the data for transmission to the CPU.

The output of the FD utility is 476-byte blocks containing macro-generated bit strings
that form the data portion of FDP messages. These FDPs reside in a user data set. The
user must create teleprocessing application programs to select and transmi! particular FDPs
to a 3735,just as he must create programs to process the data captured at the 3735
terminals.

In transmitting the FDPs to the individual terminals, not all programs in the user data
set need be transmitted to all 3735 terminals. The user can be selective, sending only
certain programs from the data set to certain terminals. However, when programs are
sent to a 3735, all of the FDPs that are to reside at that terminal must be transmitted
continuously. Additional programs cannot be sent to a 3735 without overlaying those
already there. The FDPs already at the terminal must be retransmitted along with any
new ones to make sure that all the desired programs are present at the 3735.

Data received from the CPU must be played back under control of the FDP specified
in the first three bytes of the record. Counter operations, editing, and so forth can be
performed when playing back CPU-generated data records.

The field formats must be defined to correspond exactly with the FDP specifications
for each field. Each field must contain characters for each position, or must be terminated
by a delimiter. For example, if the 3735 is an ASCII model, the field is 5 characters long,

and the data is the characters ABC, the hexadecimal data string (after translation to
ASCII) must appear as:

'4l4243lC' [Delimiter is X'lC' .]

or

'4142432020' [No delimiter - all field positions are filled.]

This format must be used whether or not the FOP indicates that the field is to be
transmitted.

If the batch specification is used, two blank bytes must be placed directly in front of
the affected data so that the 3735 can insert the batch indicator and batch number.

If a field definition specifies a buffered data source, the data must be included in the
CPU-generated record. In addition, no data is stored on disk or in any buffer (except the
PCH or LPB buffers) as a result of a data sink specification.

The only conditional execution flag that may be included in the data is one that term
inates cyclic processing. To terminate a cycle, you must include, in the data, some graphic
character (for example, an asterisk) that indicates the end of cyclic data. The FOP can
then be coded to test for this character during playback of the CPU data. (Note that this
technique may make your playback FOP unsuitable for creation of form records at the
3735.)

CPU data cannot be modified by the operator. The record must be terminated with
the record separator (X' IE').

Switched Network Considerations The CPU must read the 3735 data before it can transmit any data block (text, FOPs, ID
List, etc.) to the terminal. Even if the 3735 has data to send, it accepts CPU data if the
CPU has read the 3735 data at least once. Following the reception of the EOT from the
3735, the line control must be as follows:

3735 CPU

ENQ
ACKO

Data Block
ACK 1

EOT
DISC

If no data is to be sent to the 3735, the CPU should send DISC instead of ENQ. When
EOT is sent, the 3735 replies with DISC.

Data blocks can be terminated with either ETB or ETX. (Normally, ETX is used only
for the last block.) The 3735 receives data blocks and stores them on the disk until it
receives an EOT or DISC sequence. The 3735 then drops the line and tests for the recep
tion of a power down or terminate communicate mode message, or for depression of the
OPER key. If none of these conditions has occurred, the 3735 remains in communicate
mode and can accept more data if another call is placed. The data received is packed,
compressed, and cataloged if a power down or terminate communicate mode message
was received before EOT or DISC (or the OPER key was pressed). The 3735 powers
down or exits to local mode after the data is cataloged.

The 3735 accepts TTDs (and responds with NAKs) for an indefinite number of times.
The 3735 treats a received SOH as an STX. In addition, the ITB character can be sent
to the 3735. The 3735 sends WACK sequences when it cannot write a received data
block on its disk within a two-second period. The 3735 never sends an RVI on a switched
network.

System Design Considerations 101

Multipoint Network
Considerations

Relating Application Programs
to Form Data

Bypassed Fields

Form Records

lO2 IBM 3735 Programmer's Guide

Following reception of an EOT from the 3735, the line control must be as follows:

3735 CPU

Last Block
ACKOor ACK I

EOT
(EOT) SELECT

ACKO
Data Block

ACK I

EOT

Except for RVI, the data formats and procedures are the same in multipoint networks
as in switched. The 3735 accepts TTDs (and responds with NAKs) for an indefinite
number of times. The 3735 treats a received SOH as an STX. In addition, the ITB
character can be sent to the 3735. The 3735 sends WACK sequences when it cannot
write a received data block on its disk withill a two-second period. The 3735 sends an
RVI only if the CPU selects the 3735 when the terminal has data to send. When not in
communicate mode, the 3735 sends EOT in response to a poll, and NAK in response to
selection.

In addition to specifying the way in which a document is processed, the FDPs also govern
what data is stored fQr transmission to the central computer. The application program that
processes this data must consider not only the data, but also its message format.

During document creation, some fields of a form may be bypassed. The bypass may be
caused by information entered by the 3735 operator; for example, the FDP may specify
that a credit entry causes bypassing of a debit field. Or the bypass may be initiated by
the terminal operator when all repetitions of a group of fields designated for cycling are
not used. Or the operator may elect to pass an optional field because the information is
not required for the transaction being processed.

No automatic indication of fields bypassed is provided for transmission to the CPU.
Thus, the application programmer and forms encoder must consider how the fields are to
be identified. The FDPs can be written so that all fields are filled, either with input data
or with blanks. The application program can then identify each field by its position
within the record.

On the other hand, when the FDP design allows fields to be bypassed, you can reduce
transmitted message length by identifying transmitted fields with unique character strings.
This allows your application program to recognize what fields have been bypassed and to
identify the data that has been transmitted to it.

Lines and fields bypassed when an end cycle function is performed are treated in the
same way as described above; no automatic indication is provided. Thus, unique identifiers
may be required to show where cyclically-created data stops.

Fields in which the operator does not enter data are not considered bypassed fields.
These fields are transmitted with or without blanks or delimiters as specified by the
PACKING operand of the FDFORM macro instruction.

A record separator character (RS for ASCII machines, IRS for EBCDIC machines-both
X'IE') is inserted automatically at the end of each form record transmitted from the
3735 to the CPU. Each record received by the 3735 must also end with the record
separator.

On-Line Processing

The three-byte FDP identifier is supplied automatically in the first three positions of
records sent to the CPU. The data sent to the CPU consists of fixed-length fields, with
the complete record terminated by the record separator (X'IE'), or else variable-length
fields with each field terminated by the file separator (X'lC') or some other delimiter
inserted by the user's FDP. These data formats are controlled by the coding of the
FDFORM PACKING operand.

Note: When the 3735 sends its data records to the CPU, it sends the FDP number
(as specified by FID = ddd in the FDFORM macro) for every FDP that was used at
the 3735 since the last time data was sent to the CPU. Thus, regardless of whether or
not an FDP stored any data for transmission to the CPU, its FID number is stored on
the 3735 disk, and the FID number is sent to the CPU when communication takes
place. Your application program should recognize and handle these "null" FDP
records.
For example, consider the appearance of a record created by the sample program

shown in Figure 20 on an ASCII 3735 with this input data:

Customer number: 012345

Record sequence number: 007

Item Quan Price each

JONES6789
JONESABCD

2 10.00
5.99

The record sent to the CPU would appear as follows:

FDP # Customer # Item Quantity Price ~_ __ __________ _ __ --.A-.-

'3030313031323334351C4A4F4E4553363738391C20202020321C313030301C'

Gross * Item Quaptity Price Gross *
.. ~"~. ~............,... - -"--' -.,~,

'-jo3i3'030301C4A4F4E4553414243441C20202020311C3539391C303539391C'

End
Cycle Totals* Tax*

Grand
Total * RSN#

.--"- .~ ~ ~, ----~ ...-.....,.....~ ~ .: -"---.

'2A2A2A1C30323539391C30313034IC3032373033 IC303037 IC IE'

An FDP can be used for a simple inquiry consisting of a request transaction sent to the
central computer, followed by a completely formatted reply transmitted back. Or the
FDP can allow keying of abbreviated inquiries, with the terminal adding transaction codes
and other system information to complete the transaction. The reply can contain variable
data to be printed out, with appropriate headings and editing added by the FDP. This
approach makes the inquiry operation simpler, less prone to error, and less demanding of
line time, since the FDP can be designed to perform.the required editing functions.

Application programs designed to handle on-line processing requests from a 3735 need
not be active in the CPU at all times. All you need to provide is an inquiry analysis routine
that can determine what service is requested, then load and pass control to the application
program designed to provide that service. Since the 3735 can perform most of its oper
ations off-line, without requiring service by the central computer, this approach to inquiry
handling makes economical use of the computer's main storage without significantly in
creasing inquiry response time.

*All transmitted fields originating from a counter which are not edited (by PICTURE, FILL, etc.) are
transmitted as 10-digit fields; thus the fields indicated would be filled with zeros (X'30') to increase
their size to 10 digits. For the sake of brevity, these left zeros have not been shown.

System Design Considerations 103

Batch Processing

Combined Operation

System Generation
Considerations

104 IBM 373S Programmer's Guide

During inquiry operations over switched lines, the 3735 FDP may not issue a disconnect
(DISC) command until it has handled all of its inquiry requests. Thus, if the 3735 does
not send another inquiry to the CPU immediately after receiving a response to a previous
inquiry, the application program at the CPU should take action to ensure that the com
munication line remains open for some period of time. The specific time period used should
be selected jOintly by the application programmer and the forms encoder so that a balance
is struck between allowing a 3735 to monopolize use of the line, and obliging the 3735
operator to dial the CPU repeatedly while using the FDP.

The 3735 terminal can operate off-line all day in many environments. In some situations,
however, the volume of data to be accumulated at the terminal may exceed its storage
capacity. When such cases arise, the terminal needs to communicate with the central

, computer so that it can send the collected data to the application programs that process
it. From the standpoint of the central computer, the processing to be performed is what
would normally be done at some later time during the day, except that the 3735 has re
quested service ahead of schedule. Application programs should be designed to handle such
situations, as well as the normal once-a-day batch processing of 3735 data. If the central
system has limited processing resources, and cannot be set up to process this much data on
demand, the received 3735 data can easily be placed on an auxiliary storage device for
later processing.

In the normal batch processing situation, a separate application program may be re
quired to process the data collected by each FDP. The design of each application program
depends on the specific. format and type of data transmitted from the 3735. Thus close
cooperation is required between the forms encoder who writes the FD macro statements
and the application programmer who writes the programs that process the form data.

The use of the 3735 for an order entry application illustrates the interaction of off-line
data recording and on-line inquiry. In this application, the 3735 is programmed for order
entry. Input data formats and validity checks are programmed to guide the operator
through the order procedure. When an item number and quantity are entered, the 3735
operator can send an inquiry to the central computer to see if a sufficient quantity of
this item is in stock to meet the order. If it is, the price can be returned to the terminal
for a price-times-quantity extension. If not, the operator can be notified to select an
alternate quantity or item, or to indicate whether a "back ordered" status is acceptable.

The advantage of this approach is that it provides most of the functions of on-line
order entry without the additional CPU, file, multiplexer, and line costs of the on-line
approach. A single leased line with a simple inquiry program to an abbreviated inventory
file is all that is required to support several terminals.

System generation procedures for OS and DOS configurations should include a
telecommunications access method, the FD macros, and the FD utility. For further
system generation considerations and requirements, refer to the following pUblications:

OS - OS System Generation GC28-6554
OOS - DOS System Generation GC24-5033

Storage Estimates

3735 Disk Storage
Considerations

Since the FO macro instructions do not generate code that is executed in the central com
puter, the generated FDPs do not require any CPU main storage. However, auxiliary
storage must be provided for the data set containing the collection of FDPs that may be
sent to 3735 terminals. The storage requirements for the programs that support FDP
creation activities are described in the following sections. Normally, the required programs
are an Assembler, a Linkage Editor, the FO utility, and a teleprocessing access method.
User application programs that handle transmission between the CPU and 3735 terminals
also require some storage, and should be considered in designing the total system con
figuration.

An accurate estimate of storage usage on the 3735 disk cannot be obtained until the user
has actually coded and assembled his FOPs, since the FDPs will be of different lengths.
An MNOTE message (IDF 147) describes the 3735 disk storage required for the assembled
FDP. Once an FDP has been coded, you can estimate the storage required for data records
that it creates at the 3735. The number of bytes stored on the disk for each field is equal
to the maximum field size plus one. (The additional byte is for the file separator character,
X'IC'.) Additional control bytes are stored as follows:

• The FDP number (3 bytes) is stored at the beginning of each record.
• A one-byte flag is stored with each field that is not to be sent to the CPU.
• A one-byte record separator character (X'lE') is stored at the end of each created

record.
• If the FOFIELD BATCH operand was coded for a field, a one-byte batch flag (plus one

byte for the batch number-two bytes in all) is stored for each BATCH operand en
Icountered.

• If the CYCLE operand was coded, a one-byte end-cycle flag is included for each CYCLE
operand encountered. When estimating storage requirements for cyclic processing, assume
that the CYCLE will execute the full number of times specified by the cycle count.

• For each processing decision at which a branch can be taken, a one-byte branch-taken or
branch-not-taken flag is stored in the record (unless the branch occurs in an FOFIELD
IND operand, in which case no flag is stored).

• When a field that is to be sent to the CPU is edited by an FDFIELD PICTURE operand,
all the edited characters resulting from the 'picturespec' definition are included in the
record, in addition to the raw data.

• When a field that is to be sent to the CPU is right-justified with left blanks or left zeros,
or centered, the edited output is stored in addition.to the raw input data.

When creating form records at a 3735, almost all source data is stored on the 3735 disk.
Note, however, that data from the sources identified by SOURCE = FID, SOURCE = RSN,
SOURCE:: 'string', and SOURCE = CTR (d) is stored on the disk only when SINK = TMT
is in effect. Data is stored on the disk for all other source specifications, whether or not
the data is to be sent to the CPU. You should remember that the basic disk capacity is
62,832 bytes (expandable, by special features, to 146,608 bytes), and that the disk direc
tory can expand to hold entries for a maximum of 1000 records for FDPs, and 1000 records
for data. As each FDP or data record is stored, the respective disk directory is expanded at
the rate of 58 directory entries per disk sector, thus reducing the available storage on the
disk by 476 bytes per directory sector.

The File Storage feature requires an additional eight sectors of customer data storage
space to accomodate the expanded terminal control program (TCP).

When FOPs are being stored on the 3735 disk, only 234 bytes of FDP data are stored in
each sector (plus 6 bytes of chaining information). Thus, FDPs require approximately twice
as many disk sectors to store the same number of bytes as do data records, which are stored
with 476 bytes in each disk sector.

System Design Considerations lOS

OS Storage Considerations

DOS Storage Considerations

106 IBM 3735 Programmer's Guide

The FD macro instruction definitions require no main storage, but they must be included in
a macro library on some auxiliary storage device. These macros can be used to generate an
FDP with the smallest Assembler available in the system. The FD utility requires main
storage for execution, but needs only that required for the minimum Linkage Editor avail
able in the system - 15K bytes (Level E) or 44K bytes (Level F). The other two utility
steps require no more than 10 K bytes of main storage of execution.

OS BT AM and TeAM users must provide an OS MFT system with at least 128K bytes of
main storage, or an OS MVT system with at least 256K bytes of main storage. Thus the
minimum system configuration can support the 3735 terminal in a teleprocessing environ
ment under OS is a System/360 Model 40 with at least 128K bytes of main storage (or an
equivalent System/370).

The FD macro instruction definitions require no main storage, but they must be included in
a macro library on some auxiliary storage device. These macros can be used to generate
an FDP with the smallest Assembler available in the system (Assembler D). The FD
utility requires 12K bytes of main storage for execution.

DOS BTAM, however, requires a system with at least 32K bytes of main storage; thus
the minimum system configuration that can support the 3735 terminal in a teleprocess
ing environment under DOS is a System/360 Model 22 with at least 32K bytes of main
storage (or an equivalent System/370).

THIS PAGE INTENTIONALLY LEFT BLANK

System Design Considerations 107

Appendix A. 3735 Numeric Data Self-Checking Algorithms

A self-check digit is the units position of a self-checking number. The self-check digit
is developed by calculations made on the base number (the original number without the
self-check digit). The calculated digit is then included with the base number to create the
self-checkIng number. When a self-checking number is entered into the 3735, the calcula
tions originally performed are repeated, and the generated digit is compared to the self
check digit in the number that was entered. If the numbers are not the same, a self-check
error is indicated on the 3735.

When the SELFCHK. operand specifies GENONL Y, then the self-check digit is com
puted on all the digits in the number that is entered. In this case, only the base number
is present when the self-checking procedure begins, so no comparison is made when the
self-check digit is computed. Instead, the generated digit is placed at the end of the base
number. Any further operations with this number (such as COMPARE or SINK) must
include an additional character space for the self-check digit.

The 3735 calculates the self-check digit with either the Modulo-IO or Modulo-II
algorithm, depending on which was specified in the SELFCHK operand. If you calculate
your own self-checking digits, you must perform the same computations as the 3735 does,
or else the self-check digits will not be the same. The Modulo-IO algorithm operates as
follows:

I. Disregarding the self-check digit (if present), multiply the base number's units position,
and every alternate position moving leftward, by two. For example:

6
x2
12

2
x2

4

4 8
x2
16

2. Add the digits of these products to the digits of the base number which were not
multiplied by two:

1+2+1+4+4+1+6 = 19

3. Subtract this total from the next higher number ending in zero:

20
-19

4. The result of this subtraction is the self-check digit (in this example, I). Thus, the
complete self-checking number is 612481. The 3735 treats a self-check digit of 10
as a zero.

The Modulo-II algorithm operates as follows:

I. Disregarding the self-check digit (if present), multiply the units position of the base
number by two, the tens position by three, the hundreds position by four, and so
forth. Continue this procedure until you have multiplied by seven (if the number
contains that many digits), then begin multiplying by two again. For example:

5 6 6 2 8 6 5
x2 x7 x6 x5 x4 x3 x2
10 42 36 10 4 24 12

2. Add the products to each other.

10+42+36+10+4+24+12 = 138

Appendix A. 3735 Numeric Data Self-Checking Algorithms 109

11 0 IBM 3735 Programmer's Guide

3. Divide the sum of the products by 11;

12
llrTI8

11
28

..ll
6

4. Subtract the remainder of this division from 11.

11
-6

5

5. The result of this subtraction is the self-check digit (in this case, 5). Thus, the com
plete self-checking number is 56621865. The 3735 treats a self-check digit of 11 as a
zero.

Note: A number that generates a self-check digit of lOis illegal, and cannot be pro
cessed by an IBM 29 Card Punch that has the self-checking number feature. You
should not use such numbers as self-checking numbers. (If requested to generate a
self-check digit on such a number, the 3735 generates a zero.)

Appendix B. Form Description Macro Instruction Format Summary

Name Operation Operands

symbol FDFORM FID = 'ddd'

[,PACKING = [NO])
YES
DELIMIT

[,DEVICES = (3735,K[D))

',BUFFEAS -" APB", 'LPB' T32J lllli
126

[,OBJECT= (OS)) * 120
DOS d

[,MODE = (NONLOAD))
LOAD

[,MRGSTOP = [~])

T tOO" f!} 'l·1I [,MESSAGE = (rC [.(I~] I
'string 'string'

[,HTAB = (d[,d) ... 1)

[symbol) FDPAGE [pagenum) [,HEIGHT = [=6})

[,VMRG = ([f~t1) L the~~h~1) I)
[,SAVELOC = [NO 1)

YES
d

[symbol) FDLlNE [[linenum J) [,WIDTH = [851)
SKIP (d) d

I.HMRG = ([tmrgs:~p + 1J I L [W~~th} I I I
[,CYCLE = ([d) [,limit I [,target I I I

[,SAVELOC = rNO 11
YES
d

Appendix B. Form Description Macro Instruction Format Summary 111

112 IBM 3735 Programmer's Guide

Name Operation

[symbol] FDFIELD

[symbol] FDCTRL

[symbolJ FDLOAD

Operands

[)?11][
LDUMMY

[
COmPlng J]
LNG (d)
dr

[,CTR = ((d,op[, FIELD]) [, (d,op[, FIELD])] ...)]
[,IND = ((d,logexp) [, (d,logexp)] ...)]
[,CYCLE = ([d] [, limit] [, target]1]

[,SAVELOC = [NO]]
YES
d

[,SOURCE = (origin [,qualifier] ...)]

[,SELFCHK =) NO (.]

L-(- [~~1['GENONLY])5
[.COUNT - L MIN.) f!J ,[MAX.) ["m:,~' J 'I'
[,COMPARE = ([FIE LD,] comparopr,comparand

[, [~~D J ,[FIELD,] comparopr,comparand] ...)]

[, SINK = ([(destination [,qualifier] ...) I
[,[(destination [,qualifier] ...)]] ..•)]

[,JUSTIFY = ([justcode I [,[justcode 1 1 ...) 1
[,FILL=(['char'][,['char']] ...)]

[,UL = ([[NO 1] [,[[NO J]] ...)]
lYESJ YES]

[,PICTURE = (['picturespec']
[,['picturespec ' 1] ...)]

[,BATCH = d]

[d]

[,IF = (logterm[, (~~D) ,Iogterm] ...)]

[,CTR = (((~n)[,CLR] [,oP,opnd] ...)

[, ((~::i ,CLR] [,op,opnd] ...)] ...)]

[;IND=((d, ON) [,(d,X1,compar[,X2])]
OFF
INV

[, (d,X2,compar[,X1])]
[,TOTAL = ((d:fid' ,CTR (d))

[, (d, 'fid' ,CTR (d))] ..•)]
[,COMMAND = ((cmndgrp) [, (cmndgrp)] ...)]
[,GOTO = target]
[,CYCLE = ([d 1 [,limit] [,target I)]
[,SAVELOC = (NO~]

YES
d

KEYLEN = d ,DATALEN = d[,ENDCHAR = 'string']

~----~--------~---~
[symbol] FDEND [,] (This macro has no operands.)

*Default is to the system that assembled the FDP.

F026
FDFORII

*

*

*

*
* NAME1

*
*

Appendix C. Sample Form Description Macro Program

This sample program does not attempt to show all the permissible uses of the FD macros,
nor even the most concise way to write an FDP. It is presented simply to illustrate some
of the functions and coding techniques that can be used to describe the sample form
presented in Appendix A of the IBM 3735 Programmable Buffered Terminal Concept and
Application publication, Order No. GA27·3043.

TITLE 'FlO 026 -- GENERAL WHOLESALE COIIPANI SALES-INVOICE'
FDFORII FID='026', FOP NO IS 026 I

MRGSTOP=11, IIECHANICAL LEFT MARGIN STOP X
MESSAGE='USE FORII 786425. FOP 011 MUST BE PERFORMED BEFX
ORE THIS PDP.', OPERATOR INSTROCTION X
HTAB=(33,64), HORIZONTAL TAB STOP POSITIONS X
PACKING=DELIIIIT DELETE TRAILING BLANKS, ADD X

FS CHARACTER TO EACH FIELD

FDCTRL CTR=(*,CLR),
COMIIAND=R EAD (R DR)

PDCTRL IP=EOF(RDR),
COMMAND=CANCEL

PDPAGE 1,
HEIGHT=66,
VMRG= (12, 58) ,
WIDTH=85,
HMRG=(12,80)

FDLINE 12

FDFIELD 12,31,
SOURCE= (RDR,1 ,20) ,
SINK=PRT

FDLINE 13

CLEAR ALL COONTERS (*=ALL)
BEAD A CARD PROK 5496

WAS THERE A CARD AT 5496
IF NOT, CANCEL FORM

THIS IS A ONE~PAGE FORM

LINE WIDTH IS CONSTANT
HOR MARGINS ARE CONSTANT

SOLD-TO NAME LINE

NAME POSITION
GET FROM CARD IKAGE
PUT TO SELECTRIC II

SOLD-TO STREET ADDRESS LINE

x

x:

X
X
X
X

X
X

ADDRESS1 FDFIELD 12,31, STREET ADDRESS POSITION
GET FROM CARD IMAGE

X
X

*
*

SOURCE= (ROB, 21,40) ,
SINK=PRT

FDLI NE 14

ADDRESS2 FDFIELD 12,31,

* ZIPCODE1

SOURCE=(RDR,41,60),
SINK=PBT

FDFIELD 34,38,
SOURCE= (R DB, 61,65) ,
KIND=N,
SINK=PRT

PUT TO SELECTRIC II

SOLD-TO CITY/STATE/ZIP LINE

CITY/STATE POSITION x
X GET FROM CARD IMAGE

PUT TO SELECTRIC II

ZIP POSITION
GET FROM CARD IKAGE
MUST BE ALL NUMERIC
PUT TO SELECTRIC II

x
X

CHARACTERS X

Appendix C. Sample Form Description Macro Program 113

•

•

PDFIELD "
SOURCE=(KBD,OPTIONAL),
COUNT=1,
COMPARE= (FI ELD, EQ,' K') ,
IND=(1,FIELD,EQ,'K'),
SINK=NULL

CONTROL-CHARACTER INPUT
GET FROM KEYBOARD
SI NGLE CH ARACTER
IF ENTRY MADE, MUST BE 'K'
FLAG ENTRY OF 'K'
NO OUTPUT

X
I
X
X
X

PDCTRL IP=IND(1),GOTO=KSHIPTO ON MEANS OPR. WILL KEY SHIP-TO
•
CSHIPTO FDLINE 16
•
NAME2C PDFIELD 12,31~

•
ADDR3C

•
* ADDR4C

* ZIP2C

*
* KSHIPTO

* NAME2

*
* ADDRESS3

•
* ADDRESS4

*

SOURCE=(RDR,1,20),
SINK=PBT

PDLINE 17

FDPIELD 12,31,
SOURCE= (RDR,21 ,40),
SINK=PRT

FDLINE 18

PDFIELD 12,31,
SOURCE=(RDR,41,60),
SINK=PRT

PDFIELD 34,38,
SOURCE=(RDR,61,65),
SINK=PRT

FDCTRL GOTO=HEADLI HE

PDLI NE 16

FDFIELD 12,31,
SOURCE=KBD,
SINK=PRT

PDLINE 17

FDFIELD 12,31,
SOURCE=KBD,
SINK=PBT

PDL-INE 18

PDFIELD 12,31,
SQURCE=KBD,
SINK=PRT

ZIPCODE2 FDFIELD 34,38,

SHIP-TO NAME LINE (CAR~

NAME POSITION X
GET FROM CARD IMAGE (AS BEFORE)X
PUT TO SELECTRIC II

SHIP-TO STREET ADDRESS LINE

STREET ADDRESS POSITION X
GET PROM CARD IMAGE (AS BEFORE) X
PUT TO SELECTRIC II

SHIP-TO CITY/STATE/ZIP LINE

CITY/STATE POSITION X
GET FROM CARD IMAGE (AS BEPORE)X
PUT TO SELECTRIC II

ZIP POSITION (KNOWN TO BE O.K.)X
GET FROM CARD IMAGE (AS BEFORE) X
PUT TO SELECTRIC II

BRANCH OVER OPERATOR ENTRY

SHIP-TO NAME LINE (KEY)

NAME POSITION
GET FROM KEYBOARD
PUT TO SELECTRIC II

SHIp·TO STREET ADDRESS LINE

STREET ADDRESS POSITION
GET FROM KEYBOARD
PUT TO SELECTRIC II

SHIP-TO CITY/STATE/ZIP LINE

CITY/STATE POSITION
GET FROM KEYBOARD
PUT TO SELECTRIC II

ZIP POSITION

X
X

X
X

X
X

SOURCE=(KBD,CPTIONAL,AUTOEOP),
COUNT=5,

GET FROM KEYBOARD
MUST BE 5 CHARS (IF
MUST BE ALL NUMERIC
PUT TO SELECTRIC ZI

X
X

ANY) X
CHARSX KIND=N,

SINK=PRT

114 IBM 3735 Programmer's Guide

* HEADLINE FDLINE 23 HEADING LINE

* DATEFLD FDFIELD 12,19, DATE POSITION x
X
X
X

* INVNO

*
*

*

SOURCE=(STG,1,6),
SINK=PRT,
PICTURE='Y9/99/99',
KIND=N

GET FROM STORAGE (PRESET)
PUT TO SELECTRIC II
MM/DD/!'l PORMAT
NUMERIC DATA ONLY

FDFIELD 21,28, INVOICE NUMBER POSITION X
SOURCE=(STG,7,13), GET FROM STORAGE (PRESET) X
CTR=(1,ADD,PIELD), PREVIOUSL'l CLEARED X
SINK=(PRT,TMT), PUT TO SEL. II AND TMT X
PICTURE=('99B99999','99B99999') PICTURE SPECIFICATIONS

FDeTRL CTR=(1,ADD,1)

FDFIELD ,
SOURCE=CTR(1) ,
SINK= (STG,7, 13)

INCREMENT INVOICE NUMBER

RETAIN NEW NUMBER (NO POSITION) X
GET FROM COUNTER (LOW ORDER) X
PUT TO STORAGE

CUSfNO FDFIELD 30,34, CUSTOMEB NUMBER POSITION X

*

SOURCE=(RDR,66,70),
KIND=N,
SINK= (PRT, TM T)

GET FBOM CARD IMAGE X
MUST BE ALL NUMERIC CHARACTERS X
PUT TO SEL. II AND TRANSMIT

TERRITRI FDFIELD 36,38, TERRITORY NUMBER POSITION X
MUST BE ALL NUMERIC CHARACTERS X
GET FROM CARD IMAGE X
PUT TO SELECTRIC II

*

KIND=N,
SOURCE= (R DR, 71,73) ,
SINK=PRT

SALESMAN FDFIELD 40,53, SALESMAN SURNAME POSITION
GET PROM CARD IMAGE

X
X
X

•
TER!S

•

* • •
•
•

SOURCE=(RDR,14,83),
KIND=A,
SINK=PRT

MUST BE ALL ALPHABETIC CHARS
PUT TO SELECTRIC II

P'DFIELD 55,59,
SOURCE=(RDR,84,87),
KIND=N,

TERMS OF SALE POSITION X
GET FROM CARD IMAGE X
MUST BE ALL NUMERIC CHARACTERS X
PUT TO SELECTRIC II X
INSERT SLANT IN CENTER

SINK=PRT,
PICTURE=' 99/99'

PDF~ELD , OPERATOR SELECTION OF SHIP-VIA X
SOURCE=(KBD,AUTOEOF), GET FROM KEYBOARD X
COUNT=1, SINGLE CHARAC~ER X
COMPARE=(EQ,'A',OR,EQ,'D' ,OR,EQ,'P',OR,EQ,'R',OR, X
EQ,'T'), VALIDATE OPERATOR RESPONSE X
IN D= ((2, E Q, , D'» , (3, E Q, , P') , (4, E Q, , R') , (5, EQ , , T ')) , X
SINK=TMT TELL CPU WH~CH WAY

BRANCH TABLE TO CONTROL PRINTING OF SHIP-VIA FIELD

.FDCTRL IF=IND(2),GOTO=DELIVER ON IF 'D' KEYED

FDCTRL IF=IND(3),GCTO=PICKUP ON IF ' P' KEYED

FDCTRL IF=IND(4),GOTO=RREXP ON IP , R' KEYED

Appendix C. Sample Form Description Macro Program 115

* FDCTRL IF=IND(5),GOTO=TRUCK ON IF 'T' KEYED

*
* NONE ON IF ' A' KEYED, FALL THRU

* AIR FDFIELD 61,80, SHIP-VIA POSITION X
SOURCE='AIR FREIGHT' , GET LITERAL STRING X
SINK=PRT, PUT TO SELECTRIC II X
JUSTIFI=C CENTERED

* FDCTRL GOTO=BODY PROCEED TO BODY OF FOR!!

* DELIVER FDFIELD 61,80, SHIP-VIA POSITION X
SOURCE='DELIVER', GET LITERAL STRING X
SINK=PRT, PUT TO SELECTRIC II X
JUSTIFY=C CENTERED

* FDCTBL GOTO=BODY PROCEED TO BODY OF FORK

* PICKUP FDFIELD 61,80, SHIP-VIA POSITION X
SOURCE=' PICK UP', GET LITERAL STRING X
SINK=PRT, PUT TO SELECTRIC II X
JUSTIFI=C CENTERED

* FDCTRL GOTO=BODY PROCEED TO BODY OF FOR!!

* RREXP FDFIELD 61,80, SHIP-VIA POSITION X
SOURCE='RAILWAY EXPRESS' , GET LITERAL STRING X
SINK=PRT, PUT TO SELECTRIC II X
JUSTIFI=C CENTER

* FDCTRL GOTO=BODY PROCEED TO BODY OF FOR!!

* TRUCK fDFIELD 61,80, SHIP-VIA POSITION X
SOURCE='TRUCK' , GET LITERAL STRING X
SINK=PRT, PUT TO SELECTRIC II X
JUSTIFI=C CENTER

* BODY PDLINE 28,CYCLE=(28,A!!OUNT,GROSS) PROVIDES FOR LINES 28-55

* ORDERQTY FDFIELD 12,14,
SOURCE=KBD,
KIND=N,
COUNT=(1,3) ,
SINK= (PRT,CTR(2) ,CTR(3) ,TKT),
JUSTIFY=R,

ORDER QUANTITY LOCATION X
GET FRO!! KEYBOARD X
!lUST BE ALL NUMERIC CHARS X
1, 2, OR 3 CHARACTERS X
CTRS ARE QO SCR S BO SCR X
RIGHT JUSTIFY ON SEL. II X
WITH LEADING BLANKS FILL=' ,

* SHIPQTY FDFIELD 16,18,
SOURCE=(KBD,OPTIONAL),
COUNT=(1,3) ,
KIND=N,
CTR=(3, SUB) ,
SINK= (PRT ,T!!T) ,
JUSTIFY=R,
FILL=' ,

116 IBM 3735 Programmer's Guide

SHIP QUANTITY LOCATION X
GET FROM KBD (OPERATOR OPTION) X
1, 2, OR 3 CHARACTERS X
MUST BE ALL NU!!ERIC CHARACTERS X
SUBTRACT SHIP FRO!! QO X
PUT SHIP TO SEL. II S TRANS!lIT X
RIGHT JUSTIFIED X
WITH LEADING BLANKS

t1

~

"

•
BACKORD PDPIELD 20,22, BACKORDERED QUANTITY LOCATION X

•
MEASURE

•
ITEMNO

•

SOU RCE=CTR (3) ,
SINK=(PRT,TMT) ,
PICTURE=' .ZZZ'

GET COMPUTED BO QUANTITY X
PUT TO SEL. II AND TRANSMIT X
SUPPRESS LEADING ZEROS SEL. II

PDPIELD 24,25, MEASURING UNIT POSITION X
X
X

SOURCE=(KBD,AUTOEOF), GET PROM KEYBOARD
COUNT=2, EXACTLY TWO CHARACTERS
COMPARE=(EQ,'BA',OR,EQ,'DZ',OR,EQ,'GR',OR,EQ,'LB'), UNITX
SINK=PRT PUT TO SELECTRIC II

PDP IE LD 2 7 , 3 1 ,
SOURCE=(KBD,AUTOEOP),
COUNT=5,
KIND=N,
SELFCHK=10,
SINK= (PRT,TMT)

ITEM NUMBER POSITION X
GET PROM KEYBOARD X
EXACTLY PIVE CHARACTERS X
MUST ALL BE NUMERIC X
MODULO 10 TEST AGAINST 5TH CHARX
PUT TO SEL. II AND TRANSMIT

DESCRIPT FOFIELD 33,62, DESCRIPTION POSITION X

•

SOU RCE=KBD,
COUNT= (2, 30) ,
SINK=PRT

GET KEYBOARD X
2-30 CHARACTERS (ANY) X
PUT TO SELECTRIC II

PRICE PDPIELD 64,70, PRICE POSITION X

*

SOURCE=KBD,
COUNT= (2,5) ,
KIN D=N,
CTR= (2. MPI) •
SINK= (PRT ,TMT) ,
PICTURE='S***V.99'

GET KEYBOARD X
2-5 CHARACTERS X
MUST ALL BE NUMERIC X
MULTIPLY QO BY PRICE IN CENTS X
PUT TO SEL. II AND TRANSMIT X
SHOW * PILL UNDER S100

AMOUNT PDPIELD 72,80, AMOUNT POSITION X
GET COMPUTED AMOUNT IN CENTS X

* GROSS
•

SOURCE=CTR (2) ,
CTR= (4, ADD) ,
SINK= (PRT,TMT) ,
PICTURE='S*,***V.99'

PDLINE 58

ACCUMULATE AMOUNT IN CENTS X
PUT TO SEL. II AND TRANSMIT X
.SHOW * PILL UNDER $1,000

FOOTI KG LINE

GROSSAMT PDPIELD 33.43, GROSS AMOUNT POSITION X
SOURCE=CTR(4), GET ACCUMULATED AMOUNT IN CENTSX
SINK=(PRT,TMT), PUT TO SEL. II AND TRANSMIT X
PICTURE=('$***,***V.99','$***,***V.99') PICTURES

* TAXPERCT PDPIELD 45,48, TAX RATE POSITION X
GET PROM CARD IMAGE IN 1/100THSX
MUST BE ALL NUMERIC CHARACTERS X
SHOW AS PERCENT. HUNDREDTHS X
PUT TO SEL, TMT, AND CTR(5)

*
* TAX1MT

SOURCE= (RDR,88, 90) ,
KIND=N,
PICTURE=' 9.99',
SINK=(PRT,TMT,CTR(5»

PDCTRL CTR=(S,MPY,CTR(4),DVR,10000) TAX IN CENTS IN CTR(S)

POFIELD 50,58,
SOURCE=CTR(5),
CTR= (4, ADD) ,

TAX AMOUNT POSITION X
GET FROM SCRATCH COUNTER X
ADD TAX AMOUNT TO GROSS AMOUNT X

Appendix C. Sample Form Description Macro Program 117

SINK= (PRT ,TMT) , PUT TO SEL. II AND TRANSMIT X
PICTURE='S*,***V.99' SHOW * PILL WHEN UNDER S1,000

*
SHIPCHG FDFIELD60,68, SHIPPING CHARGE POSITION X

SOURCE= (KBD,OPTIONAL), GET FROM KBD (OPERATOR OPTION) X
KIND=N, MUST ALL BE NUKERIC X
COUNT=(1,6) , 1-6 CHARACTERS X
CTR=(4,ADD), ADD SHIP CHARGE TO GROSS+TAX X
SINK=(PRT,TltTl, PUT TO SEL. II AND TRANSMIT X
PICTURE='S*,***V.99' SHOW * FILL WHEN UNDER S1,000

*
INVTOTAL FDPIELD 10,80, INVOICE TOTAL POSITION X

SOURCE=CTR(4), GET FROK ACCUMULATOR X
SINK=(PRT,TMT) , PUT TO SEL. II AND TRANSMIT X
PICTURE='S***,***V.99' SHOW * FILL WHEN UNDER S100,000

*
FDLINE 60

FIDNO F D FIE LD 1 2, 14 , FOP IDENTIFICATION X
SOURCE=FID, RETRIEVE FlO X
SINK=PRT TO SELECTRIC ONLY

*
FDFIELD 15,15,SOURCE='/', EMIT SLASH TO SEPARATE X

SINK=PRT TO SELECTRIC ONLY
*
RECSEQNO FOFIELD 16,18, RECORD SEQUENCE NUMBER X

SQURCE=RSN, GET RECORD SEQUENCE NUKBER X
SINK=(PRT,TMT), PUT TO SEL. II AND TRANSMIT X
PICTURE='999' ONL! THE THREE DIGITS

*
FDENO ,FlO 026 -- GENERAL WHOLESALE COMPANY SALES INVOICE

118 IBM 3735 Programmer's Guide

Appendix D. Form Description Macro Instruction MNOTE Messages

The MNOTE messages issued by the Form Description macros during the assembly of a
form description program (FDP) are of three types. The first type have severity codes of
asterisk (*) and are informative in nature. They describe FDP parameters such as page
height, line margins, and so forth. These MNOTEs should be analyzed to ensure that the
FDP was assembled with the desired parameters. Also included in this type are FDP
logic MNOTEs that describe the beginning and end of paths and segments. These MNOTEs
may be used to trace the logical flow of execution within the FDP if unusual or incorrect
results are observed at the terminal.

The second type of MNOTEs have severity codes of zero (0) and are warnings that some
unusual condition or parameter has been found. These MNOTEs should be carefully
analyzed to ensure that the condition or parameter is actually what is desired. Used in
conjunction with the path and segment MNOTEs, these warnings may be used to find
oversights and possible logic errors in the FDP. If the action indicated is desired, the
FDP does not need to be reassembled.

The third type of MNOTEs have severity codes of eight (8) and indicate that a severe
error has been encountered and further code generation for the FDP is suppressed. Al
though actual assembly is ended, syntax checking of operands continues as though no
error had been found. These MNOTEs report invalid codings of operands, parameters
not within allowable ranges, and so forth. If an MNOTE with severity code of eight is
issued during assembly of an FDP, the FDP is flagged as invalid, and if used as input to
the Form Description utility, the FDP will be rejected. All errors associated with severity
eight MNOTEs must be corrected and the FDP assembled again before a valid FDP can be
generated.

There is one macro generated message that may appear during execution of a me load
FDP:

FDP: nnn NOT PLAYBACK MODE FILE LOAD FDP CANCELED

This message is issued at the 3735 terminal when a me load FDP is not executed in
playback mode; nnn indicates the form ID of the FDP.

Note: The DOS FD macros replace the prefix IDF with IJLF for each MNOTE
message.

*,IDF101 FORM NAME IS name

Explanation: This message reports the name entry that was coded on the FDFORM
macro for this FDP. The name is the identifier by which the FDP will be stored in
your data set when the FDP is processed by the FD utility.

System Action: None. Assembly continues.

Programmer Response: Make sure that the name described is desired and correct.

* ,IDF 102 FORM ID IS ddd

Explanation: This message reports the value coded in the FDFORM FID operand for
this FDP. The number (ddd) is the FDP identifier that the 3735 operator uses to
request the FDP at the terminal.

System Action: None. Assembly continues.

Programmer Response: Make sure that the FID value described is desired and correct.

*,IDFI03 TABS SET AT COLUMNS

Explanation: This message reports the setting of tabs at the specified columns.

System Action: None. Assembly continues.

Appendix D. Form Description Macro Instruction MNOTE Messages 119

120 IBM 3735 Programmer's Guide

Programmer Response: Make sure that the tabs described are desired and correct.

·,IDF104 PAGE pp INCLUDES LINE n1
• THROUGH n2 WITHIN THE FORM

Explanation: This message reports the cumulative starting (n1) and ending (n2) line
of each page (pp) in the FDP, relative to the entire form, so that you can verify proper
page positioning.

System Action: None. Assembly continues.

Programmer Response: Make sure that the lines described are desired and correct.

·,IDFlOS FDEND NOT NEEDED

Explanation: A superfluous FDEND macro has been found and is ignored. This error
may occur if the FDFORM macro was missing or incorrect.

System Action: None. Assembly continues.

Programmer Response: Remove the extra FDEND if you have to assemble the
program again because of other errors.

·,IDF106 CTR (d) USED AS ACCUMULATOR

Explanation: The specified counter was used to accumulate data in FDFIELD or
FDCTRL counter operations.

System Action: None. Assembly continues.

Programmer Response: Make sure that the counter described is desired and correct.

·,IDFI07 CTR (d) USED AS GENERATOR

Explanation: The specified counter was used as a data source in FDCTRL counter
operations.

System Action: None. Assembly continues.

Programmer Response: Make sure that the counter described is desired and correct.

·,IDF108 STARTING PATH P

Explanation: This message reports the beginning of the specified logical path.

System Action: None. Assembly continues.

Programmer Response: None.

·,IDFI09 STARTING SEGMENT s

Explanation: This message reports the beginning of the specified logical segment.

System Action: None. Assembly continues.

Programmer Response: None.

• ,IDF 110 END OF SEGMENT s

Explanation: This message reports the end of the specified logical segment.

System Action: None. Assembly continues.

Programmer Response: None.

*,IDFl11 ENDOFPATHp

Explanation: This message reports the end of the specified logical path.

System Action: None. Assembly continues.

Programmer Response: None.

·,IDFI12 INDICATORS USED IN PATH P

Explanation: This message heads a list of the indicators used in the specified path.
Each indicator identified in the list was set, reset, or tested in this path.

System Action: None. Assembly continues.

Programmer Response: None.

*,IDF1l3 IND (d)

Explanation: This message repeats as often as necessary to report all the indicators
used in the path specified in message IDF 112.

System Action: None. Assembly continues.

Programmer Response: Make sure that the indicators described are desired and correct.

*,IDF1l4 COUNTERS USED IN PATH P

Explanation: This message heads a list of the counters used in the specified path. Each
counter identified in the list was used as a data SOURCE or SINK in FDFIELD oper
ations, or was used for arithmetic computations in FDCTRL counter operations.

System Action: None. Assembly continues.

Programmer Response: None.

*,IDFll5 CTR (d)

Explanation: This message repeats as often as necessary to report all the counters used
in the path specified in message IDFl14.

System Action: None. Assembly continues.

Programmer Response: Make sure that the counters described are desired and correct.

*,IDFl16 BUFFERS USED IN PATH P

Explanation: This message heads a list of the buffers used in the specified path. Each
buffer identified in the list was used as a data SOURCE or SINK in this path.

System Action: None. Assembly continues.

Programmer Response: None.

*,IDF1l8 THIS SEGMENT ENTERED FROM SEGMENT s

Explanation: This message repeats as often as necessary to report all entries to this
segment from other segments. This information is useful when analyzing FDP logic if
unusual or incorrect operation occurs at the 3735.

System Action: None. Assembly continues.

Prognimmer Response: Make sure that the entry described is desired and correct.

*,IDFl19 THIS PATH ENTERED
* FROM SEGMENT s OF PATH P

Explanation: This message repeats as often as necessary to report all entries to this
path from previous paths and segments. This information is useful when analyzing
FDP logic if unusual or incorrect FDP operation occurs at the 3735.

System Action: None. Assembly continues.

Programmer Response: Make sure that the entry described is desired and correct.

*,IDFl20 macrol LEVEL ATTRIBUTES

* CHANGED FROM macro2

Explanation: This message heads a list of parameters that were changed when the
transition was made from macro I to macro2.

System Action: None. Assembly continues.

Programmer Response: None.

* ,IDF 122 param IS dd

Explanation: This message describes the values of WIDTH, HEIGHT, and MRGSTOP.

System Action: None. Assembly continues.

Appendix D. Form Description Macro Instruction MNOTE Messages 121

122 IBM 3735 Programmer's Guide

Programmer Response: Make sure that the values described are desired and correct.

*,JDFI23 margin MARGIN IS dd

Explanation: This message describes the values of the LEFT, RIGHT, TOP, and
BOTTOM margins.

System Action: None. Assembly continues.

Programmer Response: Make sure that the margins described are desired and correct.

*,IDFI24 KIND IS kind

Explanation: This message describes the KIND attribute associated with the current
SOURCE.

System Action: None. Assembly continues.

Programmer Response: Make sure that the attribute described is desired and correct.

*,IDFI25 SINK d IS type [,d] [DELIMIT]

Explanation: This message describes the assignment of each SINK (type). For bufferec
sinks, the message also reports the starting position (either absolute or index counter)
in the buffer where data will be stored (d). For the I/O buffer, DELIMIT indicates
that a record separator is to be added to the characters being placed in the buffer.

System Action: None. Assembly continues.

Programmer Response: Make sure that the sink described is desired and correct.

*,IDFI26 param FOR SINK d IS value

Explanation: This message describes the FILL, JUSTIFY, and UNDERLINE, options
for each SINK.

System Action: None. Assembly continues.

Programmer Response: Make sure that the options described are desired and correct.

*,IDFI27 SELF-CHECK OPTION IS option

Explanation: This message describes the self-check option associated with the current
SOURCE.

System Action: None. Assembly continues.

Programmer Response: Make sure that the option described is desired and correct.

*,IDFI28 SOURCE IS type [,option] ...

Explanation: This message describes the current SOURCE (type) and its options, if
any (option). For buffers, the option specifies the starting position in the buffer where
data is located.

System Action: None. Assembly continues.

Programmer Response: Make sure that the value described is desired and correct.

* ,IDF 129 IND d operation

Explanation: This message reports that the specified indicator (d) was SET, TESTED,
or INVERTED.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action described is desired and correct.
(Note that SET means to set ON or to set OFF.)

* ,IDF 130 buffer

Explanation: This message repeats as often as necessary to report all the buffers used
in the path specified in message IDF116.

System Action: None. Assembly continues.

Programmer Response: Make sure that the buffers described are desired and correct.

*,IDFI32 AT END OF CYCLE PRINT ELEMENT WAS
* POSITIONED ON LINE dd OF FORM

Explanation: This message reports the line on which the Selectric ® print element
was positioned when the current CYCLE ended. This information is useful for verify
ing that the pcsition was as intended.

System Action: None. Assembly continues.

Programmer Response: Make sure that the value described is desired and correct.

*,IDF133 NO TERMINATING ERRORS FOUND IN THIS FDP

Explanation: This message indicates that this FDP assembled without an FD macro
detected error. If no Assembler errors are noted, the FDP may be used as input to the
Form Description utility program.

System Action: None. Assembly continues.

Programmer Response: None.

*,IDF134 SINK d OUTPUT COUNT IS digits

Explanation: This message describes the count of output characters (digits) for the
current sink (d). The count is useful for verifying that the results are as intended.

System Action: None. Assembly continues.

Programmer Response: Make sure that the count described is desired and correct.

*,IDF135 PICTURE WAS USED FOR FORMATTING
* OUTPUT OF SINK d

Explanation: This me~sage indicates that the PICTURE speciflCation that was used
to format the indicated sink (d).

System Action: None. Assembly continues.

Programmer Response: Make sure that the action described is desired and correct.

*,IDF136 THIS SEGMENT BRANCHES TO SEGMENT ss OF PATH pp

Explanation: This message describes the logic flow as FDP control leaves this code
segment, as defined by the values of ss and pp. This information is useful when you
are trying to locate logic errors in your FDP.

System Action: None. Assembly continues.

Programmer Response: Make sure that the branch described is desired and correct.

*,IDF137 type FEATURE INDICATOR TESTED

Explanation: This message describes the feature indicator that was tested (5496, 3286,
IDR, or CCR).

System Action: None. Assembly continues.

Programmer Response: Make sure that the indicator tested is desired and correct.

*,IDF138 PACKING OPTION IS option

Explanation: This message describes the packing option selected.

System Action: None. Assembly continues.

Programmer Response: Make sure that the option described is desired and correct.

*,IDF139 LINE NUMBER IS dd

Explanation: This message identifies the current line number within the form.

System Action: None. Assembly continues.

Programmer Response: Make sure that the line number described is desired and correct.

Appendix D. Form Description Macro Instruction MNOTE Messages 123

124 IBM 3735 Programmer's Guide

*,IDFl40 ind SPECIAL INDICATOR SET OR TESTED

Explanation: The specified indicator (ind) was set or tested in the current path.

System Action: None. Assembly continues.

Programmer Response: Make sure that the indicator set or tested is desired and correct.
(Note that SET means to set ON or to set OFF.)

*,IDF141 POSITION LIMITS FOR LPB ARE 1 AND n

Explanation: This message describes the limits that were specified for the line printer
buffer (LPB) in the BUFFERS operand of the FDFORM macro instruction.

System Action: None. Assembly continues.

Programmer Response: Make sure that the limits described are desired and correct.

*,IDF142 SOURCE/SINK OPTION FOR 5496 IS RPB

Explanation: This message confirms that RPB was coded in the BUFFERS operand
of the FDFORM macro instruction.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action described is desired and correct.

*,IDFI43 SELECTRIC II PRINT REGION BEGINS AT
* COLUMN a, ENDS AT COLUMN b

Explanation: The printing region for the Selectric ® printer begins at column a and
ends at column b. When field processing is complete, the print element is positioned in
column b+l.

System Action: None. Assembly continues.

Programmer Response: Make sure that the limits described are desired and correct.

*,IDF144 TMT DATA FORMAT IS [ZERO OR] [a TO] b CHARACTERS
* [DELIMITED BY SEPARATOR]

Explanation: This message describes the number of characters that will be transmitted
to the CPU. The options appear according to the way in which the field, source, data
count, and PACKING operand were specified.

System Action: None. Assembly continues.

Programmer Response: Make sure that the values described are desired and correct.

*,IDF145 SOURCE CHARACTER COUNT IS [ZERO OR] [a TO] b

Explanation: This message describes the number of characters that are expected from
the current SOURCE. The options appear according to the way the SOURCE and
COUNT operands were specified.

System Action: None. Assembly continues.

Programmer Response: Make sure that the values described are desired and correct.

*,IDF146 FORM DESCRIPTION PROGRAM SPECIFIED SELECTRIC II FORM
* HAVING nn LINES [AND 3286 FORM HAVING mm LINES]

Explanation: This message describes the total number of Selectric ® printer lines and
3286 printer lines (if any) in this form.

System Action: None. Assembly continues.

Programmer Response: Make sure that the values described are desired and correct.

*,IDF147 SUMMARY OF FDP-GENERATED DATA

Explanation: This message begins a description of the number of host operating system
(OS or DOS) disk storage blocks required for this FDP, and the required 3735 disk
storage (in sectors).

System Action: None. Assembly continues.

Programmer Response: None.

*,IDF148 OBJECT OUTPUT IS sys FORMAT

Explanation: This message reports the object output format as either CS or DOS for
input to the appropriate FD utility.

System Action: None. Assembly continues.

Programmer Response: None.

* ,IDF 149 INDEX COUNTERS USED IN PATH P

Explanation: This message is the heading for the reporting of the index counters used
in the previous path p.

System Action: None. Assembly continues.

Programmer Response: None.

* ,IDFI 50 ctr] AND X2]

Explanation: This message reports the index counters, Xl and/or X2, used in the
previous path and may aid in verifying the correct analysis of counter coding.

System Action: N<:>ne. Assembly continues.

Programmer Response: None.

*,IOF151 KEYLEN IS nn

Explanation: This message indicates the valid key length for the me records described
by an FDLOAD macro.

System Action: None. Assembly continued.

Programmer Response: None.

*,IDF152 DATALEN IS nn

Explanation: This message indicates the valid data length for the me records described
by an FDLOAD macro.

System Action: None. Assembly continues.

Programmer Response: None.

*,IDF153 INDEX COUNTER Xn USED AS A GENERATOR
* IN CTR SUB OPERAND n

Explanation: The specified index counter (Xl or X2) has been used as a source of
numeric information in the CTR operand of an FDCTRL macro.

System Action: None. Assembly continues.

Programmer Response: None.

* ,IDF154 formname IS A FILE LOAD FDP

Explanation: The displayed form name identifies the current FDP as a me load FDP
as specified by a MODE = LOAD operand of an FDFORM macro.

System Action: None. Assembly continues.

Programmer Response: None.

* ,IOFI 55 INDEX COUNTERS Xl AND X2 COMPARED

Explanation: This message reports that the index counters Xl and X2 have been
compared in the FOCTRL IND operand. If the compare condition is set, the specified
indicator will be set on.

Appendix D. Ponn Description Macro Instruction MNOTE Messages 125

126 IBM 3735 Programmer's Guide

System Action: None. Assembly continues.

Programmer Respones: None.

0,IDF400 FDFORM MUST START FORM

Explanation: The first macro encountered either at the beginning of the assembly or after
a previous FDEND was not FDFORM. The current macro is ignored.

System Action: None. Assembly continues.

Programmer Response: Start each FDP with an FDFORM macro.

0,IDF401 ELEMENT n OF HTAB OPERAND INVALID

Explanation: The specified element of the HTAB operand is non-decimal. The non
decimal element is ignored.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again.

0,IDF402 CTR (d) MAY NOT HAVE BEEN USED AS
0, OUTPUT SINCE PRIOR INPUT

Explanation: The preceding operation in this path on the specified counter was not
output, but the current operation is input. If two consecutive input operations are
being performed, the current contents of the counter may be destroyed inadvertently.

System Action: None. Assembly continues.

Programmer Response: Make sure that the counter is used for output in a previous path,
that its contents are of no value at this point in processing, or that it is being used as an
accumulator.

0,IDF403 CTR (d) MAY NOT HAVE BEEN PROPERLY WADED
0, BEFORE CURRENT OUTPUT

Explanation: The specified counter is used for output in this path, but the preceding
operation on it in this path was not input. The contents of the counter may be
erroneous.

System Action: None. Assembly continues.

Programmer Response: Make sure that the counter is loaded in this path or in a previous
path.

0,IDF404 IND d MAY NOT HAVE BEEN TESTED SINCE SET

Explanation: The specified indicator is set in this path,but it may not have been tested
since it was last set. The indicator status may be destroyed.

System Action: None. Assembly continues.

Programmer Response: Make·~ure that the indicator is tested in a previous path or that
its status is of no value at this point in processing.

O,IDF40S IND d MAY NOT HAVE BEEN SET BEFORE TEST

Explanation: The specified indicator is tested in this path, but the preceding operation
in this path did not set it. The indicator status may be erroneous.

System Action: None. Assembly continues.

Programmer Response: Make sure that the indicator is set in this path or a previous
path.

0,IDF406 CTR (d) MAY NOT HAVE BEEN CLEARED
0, BEFORE FIRST INPUT

Explanation: The specified counter is used in this path as an accumulator, but it may
not have been cleared previously.

System Action: None. Assembly continues.

Programmer Response: Make sure that the counter is properly cleared before beginning
the accumulation.

O,IDF407 MESSAGE USED VERTICAL SPACING

Explanation: Vertical spacing has been specified in the operator message, and form
positioning at the 3735 has changed as a result.

System Action: None. Assembly continues.

Programmer Response: Make sure that the 3735 operator will make any necessary
adjustments to the form position before processing the form.

O,IDF408 MESSAGE USED HORIZONTAL TABS

Explanation: Horizontal tabs were specified in the operator message, but the 3735
tab setting routine has not been performed yet.

System Action: None. Assembly continues.

Programmer Response: Make sure that the proper tabs will be set at the 3735 before
this operator message is printed, or remove the horizontal tab specifications.

O,IDF409 CHAINING IN EFFECT, op OPERAND IGNORED

Explanation: Chaining of a preceding operand is in effect. The operand specified (op)
is ignored.

System Action: None. Assembly continues.

Programmer Response: Locate and correct the error before assembling the program a
again.

O,lDF41O op IGNORED FOR DUMMY FIELD/LOAD MODE/SOURCE XI/X2

Explanation: The specified operand (op) is ignored because the current field is coded
as a DUMMY field or because the MODE and SOURCE specifications dictate that
operands are not required.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

O,IDF411 SUBOPERANDS AFTER SUBOPERAND n OF
0, opOPERANDIGNORED

Explanation: The specified operand (op) has too many suboperands coded. Those
coded after the indicated suboperand (n) are ignored.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again.

O,IDF412 EXCESS CHARACTERS OF op
0, SUBOPERAND n IGNORED

Explanation: Excess characters have been found in the specified sub operand (n). The
excess characters are ignored.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again.

O,IDF413 POSSIBLE DUPLICATION OF EARLIER parmI
0, IN THIS parm 2

Explanation: This message reports the possible duplication of a PAGE within the FORM,
or of a LINE within the PAGE. This situation may occur when two or more pages or
lines have the same page or line number. This may not be an error if, for example, a

Appendix D. Form Description Macro Instruction MNOTE Messages 127

128 IBM 3735 Programmer's Guide

line is defined with the same line number twice, but only one of the duplicate lines is
executed in a single execution of the FDP.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action described is desired and correct. If it
is not, correct the error before assembling the program again.

0,IDF414 { IND/CTR} d MAY NOT HAVE BEEN UNCONDITIONALLY
0, SET IN FIRST OPERATION

Explanation: The specified indicator or counter is being tested or used for output in
this path, but it is possible that no setting has been performed.

System Action: None. Assembly continues.

Programmer Response: Make sure that the indicator or counter was set in a previous
path or perform the setting in this path.

0,IDF415 UNPRINTABLE CHARACTER IN CHARACTER STRING

Explanation: A character that cannot be printed on any 3735 has been found in a
character string. The unprintable characters are the logical NOT symbol (--.), the
logical OR symbol (I), and the cent symbol (¢).

System Action: None. Assembly continues.

Programmer Response: Make sure that the character in question is desired and correct.
If it is not, correct the error before assembling the program again.

0,IDF416 CHARACTER NOT PRINTABLE ON ASCII 3735
0, FOUND IN CHARACTER STRING

Explanation: A character that cannot be printed on an ASCII 3735 has been found in
a character string. (The unprintable character is the plus-minus.)

System Action: None. Assembly continues.

Programmer Response: Make sure that the character in question is desired and correct.
If it is not, correct the error before assembling the program again.

O,IDF417 CHARACTER NOT PRINTABLE ON EBCDIC 3735
0, FOUND IN CHARACTER STRING

Explanation: A character that cannot be printed on an EBCDIC 3735 has been found
in a character string. (The unprintable characters are the circumflex and the reverse
slash.)

System Action: None. Assembly continues.

Programmer Response: Make sure that the character in question is desired and correct.
If it is not, correct the error before assembling the program again.

0,IDF418 DEAD CODE, CYCLE IGNORED

Explanation: A CYCLE has been found in code that cannot be executed. The CYCLE
is ignored. This situation may occur when code following an unconditional GOTO
does not have a name entry on some macro that can be used as an entry point.

System Action: None. Assembly continues.

Programmer Response: Either remove the dead code or provide some entry to it
before assembling the program again.

0,IDF419 CYCLE WITHIN A CYCLE OR SUMMARY BLOCK IGNORED

Explanation: A CYCLE has been detected within another CYCLE or within a
summary block. Cycles may not be nested or coded within a summary block.
(A summary block is considered to be an extension of a CYCLE.) The second
CYCLE is ignored.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again.

0,IDF420 EXCESS CHARACTERS OF FIELD LNG (d) IGNORED

Explanation: Excess characters have been found in the length specification for the
current field. The excess characters are ignored.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again.

0,IDF421 buffer BUFFER MAY NOT HAVE BEEN USED AS

0, OUTPUT SINCE PRIOR INPUT
Explanation: The specified buffer is used for input in this path, but it may not have
been used for output since it was previously loaded. The buffer contents may be
destroyed.

System Action: None. Assembly continues.

Programmer Response: Make sure that the buffer was used for output in a previous
path or that the contents are of no value at this point in processing.

0,IDF423 COUNT PREDETERMINED, COUNT OPERAND IGNORED

Explanation: For sources of FID, RSN, CTR, or buffers with length specified, the
count is set by the source type. The COUNT operand coded is ignored.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

0,IDF424 SELFCHK IGNORED FOR EMITTED SOURCE

Explanation: The SELFCHK operand is ignored for emitted data (SOURCE = 'string').

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

0,IOF425 SOURCE = RDR, SINK = PCH, AND 5496 COMMANDS
0, MAY BE INVALID ON A KATAKANA 3735

Explanation: The FDP has specified that Katakana code is supported and 5496
support is excluded.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

0,IFD426COMP ARE IGNORED FOR SOURCE FlO OR EMITTED

Explanation: Comparisons with SOURCE = FID or SOURCE = 'string' data are not
permitted. The COMPARE operand is ignored for such data sources.

System Action: None, Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

0,IDF427 KIND SET TO NUMERIC BY COMPARAND

Explanation: The comparand of a COMPARE operand is numeric and has forced the
KIND option for the source to numeric. The KIND option that was coded is ignored.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

Appendix D. Form Description Macro Instruction MNOTE Messages 129

130 IBM 3735 Programmer's Guide

O,IDF428 CTR IGNORED FOR EMITTED SOURCE

Explanation: Counter operations are not permitted with emitted source data
(SOURCE = 'string'). The counter operation specified is ignored.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again. If
operations involving constants and counters are desired, use the CTR operand of the
FDCTRL macro.

O,IDF429 KIND SET TO NUMERIC BY COUNTER OPERAND

Explanation: A counter operation has caused the KIND option to be set to numeric.
The KIND option that was coded is ignored.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

O,IDF430 lNDOPERAND IGNORED WITH SOURCE FID OR EMITTED

Explanation: Indicator operations are not permitted with SOURCE = FID or
SOURCE = 'string' data. The indicator operations are ignored.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again. If
operations involving explicit setting of indicators are desired, use the IND operand of
the FDCTRL macro.

O,IDF431 COMMAND GROUP n, APPARENT RETROGRADE SKIPTO

Explanation: A SKIPTO command in the specified command group (n) has referred
to the same 3286 line or a lower-numbered line. Backwards motion is not permitted.
This may not be an error if only one of the SKIPTO commands is executed in a single
execution of the FDP.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action described is desired and correct. If
it is not, correct the error before assembling the program again.

O,IDF432 BRANCH WITHIN SUMMARY BLOCK IGNORED

Explanation: A branch within a summary block is not permitted. The branch is ignored.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again.

O,IDF433 BRANCH INTO CYCLE OR SUMMARY BLOCK IGNORED

Explanation: A branch into .a CYCLE or summary block from outside the CYCLE or
summary block is not permitted. A branch within a CYCLE or out of a CYCLE or
summary block is permitted.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again.

O,IDF434 MAX COUNT CONSIDERED EXACT FOR
0, NON-KEYBOARD SOURCES

Explanation: A maximum count specified for any SOURCE other than the Selectric ®
keyboard is assumed to be the exact count. Maximum counts are applicable to
SOURCE = KBD only.

System Action: None. Assembly continues.

Programmer Response: Make sure that the count described is desired and correct. If
it is not, correct the error before assembling the program again.

O,lDF435 MIN COUNT IGNORED FOR NON·KEYBOARD SOURCE

Explanation: A minimum count may be specified only for SOURCE = KBD. The
minimum count is ignored for all other SOURCE types.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again.

O,IDF436 KIND OPTION FORCED TO NUMERIC WITH BATCH OR SELFCHK

Explanation: The coding of a BATCH or SELFCHK operand implies a numeric
SOURCE. KIND = N is assumed, and any coding of KIND is ignored.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

0,IDF437 KIND OPTION FORCED TO NUMERIC WITH
0, UNCONDITIONALLY NUMERIC SOURCE

Explanation: A numeric SOURCE implies numeric KIND. KIND = N is assumed, and
any coding of KIND is ignored.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

0,lDF438 KIND OPERAND IGNORED WITH EMITTED SOURCE

Explanation: Emitted source data (SOURCE = 'string') cannot have any KIND attribute
associated with it. The KIND operand is ignored. .

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

0,IDF439 NUMERIC KIND OPTION FORC;ED BY CTR (d) SINK

Explanation: A specification of SINK = CTR (d) implies numeric KIND. KIND = N
is assumed, and any coding of KIND is ignored.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

0,lDF440 FILL OPERAND IGNORED WITH EMITTED SOURCE

Explanation: Filling of emitted source data (SOURCE = 'string') is not permitted. The
FILL operand is ignored.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

0,IDF441 FILL OPTION IGNORED FOR SINK d

Explanation: This type of the specified sink does not allow fill options. The FILL
specification for this sink is ignored. The sinks that do not allow a FILL specification
are SINK:= NULL, SINK = CTR (d), and any sink that is described by a PICTURE
operand.

System Action: None. Assembly continues.

Appendix D. Form Description Macro Instruction MNOTE Messages 131

132 IBM 3735 Programmer's Guide

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

0,IDF442 NUMERIC KIND OPTION FORCED BY ZERO FILL

Explanation: Zero FILL implies numeric KIND. KIND = N is assumed, and any
coding of KIND is ignored.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

0,IDF443 JUSTIFY OPTION IGNORED FOR SINK d

Explanation: The specified sink is one that cannot be justified. The JUSTIFY
specification for this sink is ignored. The sinks that do not allow a JUSTIFY
specification are SINK = NULL, SINK = CTR (d), and any buffered sink that is
described by a PICTURE operand.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

0,IDF444 UNDERLINE OPTION IGNORED FOR SINK n

Explanation: The specified sink is one that cannot be underlined. The UL specification
for this sink is ignored. Only PRT sinks may be underlined.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

O,IDF44S KIND SET TO NUMERIC BY IND OPERAND

Explanation: An indicator operation has forced the KIND specification for the current
source to numeric; any encoding of KIND is ignored.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

0,IDF446 PICTURE OPERAND IGNORED, SINK d NULL OR CTR

Explanation: NULL and CTR sinks may not be associated with a PICTURE. The
PICTURE associated with the sink is ignored.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

0,IDF447 POSSIBLE OVERLAY OF SINK d

Explanation: The current starting position for the specified sink is less than a previous
ending position; data may be overlaid.

System Action: None. Assembly continues.

Programmer Response: This may not be an error if the sink is being processed non
sequentially. Make sure that the action taken is desirable and correct. If it is not,
correct the error before assembiing the program again.

0,lDF448 FIRST OPERATION ON buffer BUFFER MAY NOT HAVE
0, BEEN UNCONDITIONAL CLEAR OR INPUT

Explanation: The specified buffer is used in this path, but its contents may not be
valid.

System Action: None. Assembly continues.

Programmer Response: Make sure that the buffer was cleared or loaded in a previous
path, or load it in this path.

0,IDF449 buffer BUFFER MAY HAVE BEEN CLEARED
0, OR INPUT WITHOUT PRIOR OUTPUT

Explanation: The specified buffer is cleared or used for input in this path, but it may
not have been used for output.

System Action: None. Assembly continues.

Programmer Response: Make sure that the buffer was used for output in a previous
path, or that its contents are of no value at this point in processing.

0,IDF450 buffer BUFFER MAY HAVE BEEN OUTPUT
0, WITHOUT PRIOR INPUT

Explanation: The specified buffer is used for output in this path, but it may not have
been properly loaded.

System Action: None. Assembly continues.

Programmer Response: Make sure that the buffer was loaded in some previous path,
or load it in this path.

0,IDF451 FIRST OPERATION AFFECTING ind INDICATOR
0, WAS NOT UNCONDITIONAL CLEAR OR SEND

Explanation: The specified indicator is tested in this path, but it may not have been
set previously.

System Action: None. Assembly continues.

Programmer Response: Make sure that a CLEAR or SEND command is issued
before the test on this indicator.

0,IDF452 ind INDICATOR MAY HAVE BEEN
0, CLEARED WITHOUT PRIOR TEST

Explanation: The specified indicator (ind) is used in this path, but its prior status may
not have been tested. Its status may have been destroyed.

System Action: None. Assembly continues.

Programmer Response: Make sure that the indicator was tested in a previous path or
that its status is of no value at this point in processing.

0,IDF453 SA VELOC IN SUMMARY BLOCK IGNORED

Explanation: A SA VELOC operand may not be coded in a summary block. The
SA VELOC is ignored.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again.

0,IDF454 NAME OMITTED, SAVELOC IGNORED

Explanation: A SA VELOC operand was coded in the current macro, but the name entry
(symbol) was not coded for the macro. The SAVELOC is ignored.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again (a name
entry must be coded with SA VELOC).

0,IDF455 SAVELOC COUNT NOT BETWEEN dl AND d2
0, ASSUME SA VELOC = YES

Appendix D. Fonn Description Macro Instruction MNOTE Messages 133

134 IBM 3735 Programmer's Guide

Explanation: The value coded for SA VELOC was not within the pennitted range
defined by d I and d2. A value of SA VELOC = YES is assumed.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

0,IDF456 command COMMAND MAY HAVE BEEN ISSUED
0, WITHOUT PRIOR TEST OF ind INDICATOR

Explanation: The expected logical sequence of commands and indicator tests may
not have been followed possibly causing an execution time error.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action described is desired and correct. If
it is not, correct the error before assembling the program again.

0,IDF457 {EOF (RDR)/TIMEOUT} INDICATOR MAY HAVE BEEN TESTED
0, WITHOUT PRIOR {READ/SEND} COMMAND

Explanation: The action described may have occurred. The no-record-found indicator
(NRF) should be preceded by a READ or WRITE command. The index indicator
(NDX) should be preceded by an index counter operation in an FDCTRL CTR operand.
The null indicator (NULL) should be preceded by a source operation.

System Action: None. Assembly continues.

Programmer Response: Make sure that the action described is desired and correct. If
i~ is not, correct the error before assembling the program again.

0,IDF458 KIND SET TO NUMERIC BY PICTURE OPERAND

Explanation: Coding a PICTURE operand implies numeric KIND. KIND = N is
assumed, and any coding of KIND is ignored.

System Action: None, Assembly continues.

Programmer Response: Make sure that the action taken is desired and correct. If it is
not, correct the error before assembling the program again.

O,IDF459 MACRO name CONTAINS n USED SAVELOC REFERENCES

Explanation: The named macro was coded with SA VELOC = d, but only n references
were made to it. Such coding is inefficient and wastes macro resources.

System Action: None. Assembly continues.

Programmer Response: Correct the SA VELOC encoding, if desired. The correction is
not mandatory unless message IDF737 is issued as well.

O,IDF460 OBJECT OPERAND INVALID, sys ASSUMED

Explanation: Either the OBJECT operand of an FDFORM macro is coded but is not
DOS or OS, or in a multiple FDP assembly the OBJECT parameters specified for
different FDPs are not the same.

System Action: The object deck is prepared for the specified system (OS or DOS).
Assembly continues.

Programmer Response: Correct the error before assembling the program again.

0,IDF461 CHAINING IN EFFECT, FDCTRL POSITION IGNORED

Explanation: The pOsitioning parameter of an FDCTRL macro has been coded, but
an operand is being chained. The position parameter is ignored.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again.

0,IDF462 FDCTRL POSITION INY ALID, DEFAULT TAKEN

Explanation: The position parameter of an FDCTRL macro is not between 1 and 130
or is not a decimal number. The default position is the column at which the preceding
macro left the print element positioned.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again.

0,IDF463 SELFCHK GENERATE AND CTR OPERATIONS
0, ARE PERFORMED BEFORE IND BRANCHING

Explanation: Either a SELFCHK generate or a CTR operation (CTR operand or
SINK = CTR specification) has been coded in an IND operand that specifies a branch.
These operations are independent of any branch to be taken and are performed before
the analysis of the IND specification.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again.

0,IDF464 macro IGNORED IN LOAD MODE

Explanation: The displayed macro has been coded in an FDP that has MODE = LOAD
specified on the FDFORM macro. This FDP can contain only FDFORM, FDLOAD,
and FDEND macros.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again.

0,IDF465 INDEX COUNTER ctr MAY HAVE BEEN USED
0, WITHOUT PRIOR VALUE ASSIGNED

Explanation: This message reports that an index counter has been used as the starting
position for a source or sink operation and may not have a known value.

System Action: None. Assembly continues.

Programmer Response: Analyze the logic of the FDP to verify that a value was assigned
to the index counter before the counter was used.

0,IDF466 KEY AND/OR DELIMITER MAY NOT HAVE
0, BEEN PLACED INTO lOB BEFORE CURRENT OPERATION

Explanation: The current operation is a file command that may be using the KEY,
KEYNOTE, or KEYLAST fIle qualifier without there being either a previous sink
operation with DELIMIT or a GETKEY operation that placed the key and a delimiter
into the I/O buffer.

System Action: .None. Assembly continues.

Programmer Response: Verify that the key and delimiter are placed into the I/O
buffer before such operations occur.

0,IDF467 FILE SAVE PTR MAY HAVE BEEN ALTERED
0, WITHOUT PRIOR USE

Explanation: The file save pointer to the next consecutive file record may be altered
unintentionally because the preceding operation updated the pointer while the cur
rent operation sets it again.

System Action: None. Assembly continues.

Programmer Response: Verify that the flle save pointer is not changed due to
non-sequential macro processing or is of no value.

Appendix D. Form Description Macro Instruction MNOTE Messages 135

136 IBM 3735 Programmer's Guide

0,IDF468 FILE SAVE PTR MAY HAVE BEEN USED
0, WITHOUT PRIOR SET

Explanation: The value of the me save pointer may be erroneous because the current
operation begins at the record indicated by the pointer even through the preceding
operation was not a set or update to the pointer.

System Action: None. Assembly continues.

Programmer Response: Verify that the me save pointer was actually set or correct the
error and reassemble the program.

0,IDF469 EXCESS SUBOPERANDS OF KEYLEN IGNORED

Explanation: The key length parameter of an FDLOAD macro has been coded with
superfluous suboperands that are ignored.

System Action: None. Assembly continues.

Programmer Response: None.

0,IDF470 EXCESS SUB OPERANDS OF DATALEN IGNORED

Explanation: The data length parameter of an FDLOAD macro has been coded with
superfluous sup operands that are ignored.

System Action: None. Assembly continues.

Programmer Response: None.

0,IDF471 EXCESS SUB OPERANDS OF ENDCHAR IGNORED

Explanation: The end character parameter of an FDLOAD macro has been coded
with superfluous sub operands that are ignored.

System Action: None. Assembly continues.

Programmer Response: None.

0,IDF472 ENDCHAR TOO LONG, TRUNCATED TO nn CHARACTERS

Explanation: The characters specified in the ENDCHAR operand of the FDLOAD
macro are longer than the KEYLEN operand specified. The end character parameter
is truncated to the length specified in the key length parameter.

System Action: None. Assembly continues.

Programmer Response: None.

0,IDF473 ENDCHAR TOO SHORT, PADDED TO nn BY mm BLANKS

Explanation: The characters specified in the ENDCHAR operand of the FDLOAD
macro do not meet the length requirement specified in the KEYLEN operand. The
end characters are padded with the number of blanks needed to equal the key length
specified.

System Action: None. Assembly continues.

Programmer Response: None.

0,IDF474 DEFAULT ENDCHAR IS nn ASTERISKS

Explanation: The ENDCHAR operand on the FDLOAD macro has been omitted.
When the ENDCHAR operand is omitted,the end characters are asterisks, the same
number as specified in the KEYLEN operand.

System Action: None. Assembly continues.

Programmer Response: None.

0,IDF475 FDLOAD IGNORED FOR NON LOAD FDP

Explanation: This message indicates that art FDLOAD macro has been specified in
an FDP without a companion FDFORM macro specifying MODE = LOAD.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again.

0,IDF476 SOURCE XI/X2 FORCES SINK OF PRT

Explanation: A source of either of the index counters, Xl or X2, has been coded
without the mandatory SINK = PRT specification in the FDFIELD macro.

System Action: None. Assembly continues.

Programmer Response: Correct the error before assembling the program again.

0,IDF477 INDEX COUNTER Xn MAY NOT HAVE BEEN LOADED OR CLEARED
0, PRIOR TO CURRENT OPERATION

Explanation: The specified index counter has been used as a generator in FDCTRL
CTR operations arid may not have been cleared or loaded before this use.

System Action: None. Assembly continues.

Programmer Response: Verify that the index counter was properly loaded or cleared;
or correct the error and reassemble the program.

8,IDF700 MANDATORY FlO OPERAND OMITTED

Explanation: The FID operand must be coded, but was not found.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Code the FlO operand in the FDFORM macro before
assembling the program again.

8,IDF701 FORM NAME INVALID OR OMITTED; subname USED

Explanation: The form name is not a valid symbol or has been omitted. A generated
name is substituted to permit syntax checking for the rest of the FDP. (The name
field of the FDFORM macro must be coded and must comply with Assembler naming
conventions.)

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program agaiit.

8,IDF702 INVALID BRANCH

Explanation: The branch generated as the result of a GOTO or CYCLE target is to a
point too far from the branch point to resolve. A branch may not be made to a target·
more than 15K unpacked bytes from the branch pOint.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Restructure the FDP to reduce the number of unpacked bytes
between the branch and its target.

8,IDF703 PREVIOUS FORM NOT PROPERLY TERMINATED

Explanation: The previous FDP did not end with an FDEND macro. The current
FDFORM macro causes the FDEND functions to be performed for the previous FDP.

Appendix D. Form Description Macro Instruction MNOTE Messages 137

138 IBM 3735 Programmer's Guide

System Action: Processing of the current form proceeds normally, but the previous
form is flagged as invalid.

Programmer Response: Correct the error before assembling the program again.

8,IDF704 PAGE WITHIN CYCLE IGNORED

Explanation: Cyclic processing may include FDLINE, FDFIELD, and FDCTRL
macros only. The FDPAGE macro is ignored.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF705 FORM ENDED BEFORE CYCLE LIMIT ENCOUNTERED

Explanation: An FDEND macro was found before the limit of the current CYCLE
was found.

System Action: Further code generation is suppressed; the rest ·of the source program
is checked for syntax errors.

Programmer Response: Make sure that the CYCLE limit appears before or at the
FDEND macro. After·the error is corrected, assemble the program again.

8,IDF706 EXPECTED CHAINING OF PRECEDING MACRO
0, NOT FOUND, CHAINING TERMINATED

Explanation: The preceding macro was chained, but the current macro is not the
required continuation. The current macro causes termination of the chaining
function.

System Action: Further code generation is suppressed; the chained macro is simulated
(without operands) and the rest of the source program is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF707 COMMAND GROUP n, ILLEGAL USE OF CLEAR

Explanation: The buffer to be cleared has not been specified.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF708 SKIPTO COMMAND ILLEGAL IN CYCLE OR SUMMARY

Explanation: The SKIPTO command is not permitted in a CYCLE or a summary block.
The SKIP command should be used instead.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF709 COMMAND GROUP n, SKIP OR SKIPTO NONDECIMAL

Explanation: A SKIP command or a SKIPTO command was coded with a non-decimal
number.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF711 COMMAND GROUP n, PRINT ILLEGAL AFTER CLEAR

Explanation: The PRINT command is not permitted following the CLEAR(LPB)
command. CLEAR followed by SKIP may be used to obtain blank lines.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF712 COMMAND GROUP n, ILLEGAL CLEAR OR READ

Explanation: A CLEAR or READ command in the specified command group (n)
specifies an invalid buffer or device.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF713 COMMAND GROUP n, ILLEGAL DUE TO
0, SPECIFICATION OF m DEVICE TYPES

Explanation: The parameters of the specified command group (n) should all refer to
the same device. Either m different devices were referred to or no device was
identifiable (m=O).

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF714 EXPECTED CHAINING OF op OPERAND
0, NOT FOUND, CHAINING TERMINATED

Explanation: A preceding operand was being chained, but no continuation was found.
The chaining function is terminated.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF715 CHARACTER NEAR POSITION p OF op
0, [SUB] OPERAND [n] IS ILLEGAL

Explanation: An illegal character has been found in the named operand (op) or sub·
operand near the specified position (p). The character is not a valid 3735 character.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the character in error or substitute a valid 3735 char·
acterbefore assembling the program again.

8,IDF716 macro1 MUST FOLLOW macr02

Explanation: This message reports that the required sequence of macros has not been
found. macrol is the expected macro and macro 2 is the previous macro.

System Action: Further code generation is suppressed; the missing macro is simulated
(without operands) and the rest of the source program is checked for syntax errors.

Programmer Response: Correct the macro sequence before assembling the program
again.

8,IDF717 op OPERAND INVALID

Explanation: The specified operand (op) has been coded in an invalid manner. This
may be caused by coding non·decimal characters in a decimal parameter, or by not
coding one of the required parameters of an operand. For the SOURCE operand, this
message may indicate that SOURCE = 'string' was coded in some macro other than
FDFIELD. For the PAGE NUMBER operand, this message is issued if the product of
the page number and the page height exceeds 16,383 (indicating that there are too
many lines in the form).

Appendix D. Form Description Macro Instruction MNOTE Messages 139

140 IBM 3735 Programmer's Guide

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF718 op OPERAND OMITTED

Explanation: The specified operand (op) is required, but has been omitted.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Supply the missing operand before assembling the program
again.

8,IDF7190p [SUB] OPERAND [n]
0, NOT BETWEEN a AND b

Explanation: The specified operand parameter (op) is not within the permitted range
defined by a and b.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF720 BATCH FOR op SUBOPERAND n INVALID

Explanation: The BATCH number for the specified operand (op) is invalid.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF721 FID FOR op SUBOPERAND n INVALID

Explanation: The FID parameter for the specified operand (op) is invalid.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF722 CTR FOR op SUBOPERAND n INVALID

Explanation: The counter parameter for the specified operand (op) is invalid.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program a~ain.

8,IDF723 IND FOR op SUBOPERAND n INVALID

Explanation: The indicator parameter for the specified operand (op) is invalid.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF724 EOF FOR op SUBOPERAND n INVALID

Explanation: The EOF parameter for the specified operand (op) is invalid.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF725 OPERATOR FOR op SUBOPERAND n INVALID

Explanation: The arithmetic operator for the specified operand (op) is invalid.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF726 EMIT FOR op SUBOPERAND n INY ALID

Explanation: The emitted ('string') data for the specified operand (op) is invalid.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF727 BATCH FOR op SUBOPERAND n NOT
0, BETWEEN a AND b

Explanation: The BATCH parameter for the specified operand (op) is not within the
expected limits defined by a and b.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF728 FID FOR op SUBOPERAND n NOT
0, BETWEEN a AND b

Explanation: The FID parameter for the specified operand (op) is not within the
expected limits defined by a and b.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF729 CTR FOR op SUBOPERAND n NOT
0, BETWEEN a AND b

Explanation: The CTR parameter for the specified operand (op) is not within the
expected limits defined by a and b.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF730 IND FOR op SUBOPERAND n NOT
0, BETWEEN a AND b

Explanation: The IND parameter for the specified operand (op) is not within the
expected limits defined by a and b.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF731 EOF FOR op SUBOPERAND n NOT
0, BETWEEN a AND b

Explanation: The EOF parameter for the specified operand (op) is not within the
expected limits defined by a and b.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF732 SKIP FOR op COMMAND GROUP n NOT
0, BETWEEN a AND b

Explanation: The SKIP parameter for the specified operand (op) in the command
group is not within the expected limits defined by a and b.

Appendix D. Form Description Macro Instruction MNOTE Messages 141

142 IBM 3735 Programmer's Guide

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF733 INVALID CHARACTER IN MESSAGE SUBOPERAND n

Explanation: A character that is invalid on the 3735 has been found in the specified
MESSAGE sub operand (n). .

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Remove the character in error or substitute a valid character
before assembling the program again.

8,IDF734 ATTEMPTED MOVEMENT TO A PREVIOUSLY
0, DEFINED LINE INVALID

Explanation: A reference that implies backward motion to a previously-defmed line
has been made. Backward motion is not permitted. This situation may arise when a
GOTO target is found in a lower-numbered line than the one in which the GOTO is
issued.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF735 CYCLE COUNT INVALID, COUNT OF 1 ASSUMED

Explanation: The count parameter of the CYCLE operand is invalid. A count of 1
is assumed so that operand checking may continue.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF736 CYCLE COUNT NOT BETWEEN a AND b,
0, COUNT OF 1 ASSUMED

Explanation: The cycle count is not within the limits defined by a and b. If coded in
FDCTRL, the limits are 1 and 16383. If coded in FDLINE or FDFIELD, the count
specified will cause the cycle to exceed the length of the page. A count of 1 is assumed
so that the operand checking may continue.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF737 TOO MANY UNRESOLVED BRANCHES

Explanation: There are too many GOTOs and CYCLEs with targets that have not been
resolved by finding the target names.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Restructure the FOP so that fewer GOTO and CYCLE target
references are outstanding at anyone time, then assemble the program again.

8,IDF738 INVALID FORM DESCRIPTION PROGRAM

Explanation: One or more severe errors (MNOTE level 8) have been detected in this
FOP, and the FOP has been flagged as invalid. If this FOP is used as input to the
Form Description utility, it will be rejected.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors. .

Programmer Response: Correct all noted errors before assembling the program again.

8,IDF739 DOCUMENT FIELD LNG(d) IS NONDECIMAL

Explanation: A non-decimal character has been found in the length specification for
the current field. Only decimal digits are permitted in a LNG (d) specification.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF740 DEAD CODE, MACRO IGNORED

Explanation: The current FDFIELD macro is located in such a position that it can
never be executed. This may happen when the macro follows an unconditional GOTO,
has no name, and has no named macro preceding it that can be used as an entry point.

System Action: Further code generation is suppressed; the rest ofthe source program
is checked for syntax errors.

Programmer Response: If the macro is not required, remove it. If the macro is
required, establish some path by which the macro can be reached. When corrections
are complete, assemble the program again.

8,IDF741 SOURCE KEYBOARD OPTIONS INVALID

Explanation: The specified source keyboard option is not one of the permitted
options, or was coded more than once.

System Action: Further code generation is suppressed; the rest ofthe source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF742 SOURCE START OR END POSITION INVALID

",Explanation: The specified source start or end position is non-decirnal. The source start
or end position cannot be properly determined.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,lDF743 SOURCE START OR END POSITION NOT
0, BETWEEN a AND b

Explanation: The specified source start or end position is not within the permitted
range defined by a and b.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,lDF744 SOURCE LENGTH SPECIFICATION INY ALlD/INADEQUATE

Explanation: The specified source length is non-decirnal. The source length cannot be
properly determined.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF745 SOURCE LENGTH NOT BETWEEN a AND b

Explanation: The specified source length is not within the permitted range defined by
a and b. The source length cannot be properly determined.

Appendix D. Form Description Macro Instruction MNOTE Messages 143

144 IBM 3735 Programmer's Guide

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF746 MAX/EXACT COUNT NOT BETWEEN a AND b

Explanation: The maximum (or exact) count is not within the permitted range defined
by a and b. The maximum/exact count cannot be properly determined.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF747 MINIMUM COUNT NOT BETWEEN a AND b

Explanation: The minimum count is not within the permitted range defined by a and b.
The minimum count cannot be properly determined.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF748 START POSITION FOR SINK d INVALID

Explanation: The starting position for the specified sink (d) is non-decimal or is not a
valid index counter. The starting position cannot be properly determined.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF749 START POSITION FOR SINK d
0, NOT BETWEEN a AND b

Explanation: The starting position for the specified sink (d) is not within the permitted
range defined by a and b.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF7S0 LNG (d) FOR SINK d INVALID

Explanation: The length for the specified sink (d) is non-decimal. The length cannot
be properly determined.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF7S1 LNG (d) FOR SINK d NOT BETWEEN a AND b

Explanation: The length for the specified sink (d) is not within the permitted range
defined by a and b.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF7S2 END POSITION FOR SINK d INVALID

Explanation: The end position for the specified sink (d) is non-decimal or has been
specified with a starting position determined by an index counter that requires a LNG
(d) specification instead of an end position. The end position cannot be properly
determined.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF753 END POSITION FOR SINK d
0, NOT BETWEEN a AND b

Explanation: The end position for the specified sink (d) is not within the permitted
range defined by a and b.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF754 NUMBER OF EMITTED 'STRING' CHARACTERS
0, NOT BETWEEN a AND b

Explanation: The number of emitted 'string' characters is not within the permitted
range defmed by a and b.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF755 NUMBER OF CHARACTERS IN COMPARAND OF COMPARE
0, SUBOPERAND n NOT BETWEEN a AND b

Explanation: The number of characters in the specified comparand is not within the
permitted range defined by a and b. The COMPARE sub operand cannot be properly
evaluated.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the comparand in error before assembling the program
again.

8,IDF756 INVALID ARITHMETIC OPERATION IN CTR
0, SUBOPERAND n

Explanation: An arithmetic operator in the specified CTR sub operand (n) is invalid.
(The permitted arithmetic operators are described in the discussion of the CTR operand.)
The arithmetic expression cannot be properly evaluated.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Locate and correct the operator in error before assembling
the program again.

8,IDF757 INVALID COMP ARAND LENGTH IN IND OPERAND

Explanation: The comparand length in the IND operand is not valid. The IND operand
cannot be properly evaluated.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Locate and correct the comparand length in error before
assembling the program again.

8,IDF758 UNRESOLVED BRANCH TO MACRO 'name'
0, FROM PATH P SEGMENT s

Explanation: The target specified in a GOTO or a CYCLE could not be found. Correct
branching code cannot be generated.

Appendix D. Form Description Macro Instruction MNOTE Messages 145

146 IBM 3735 Programmer's Guide

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Make sure that the target name specified in the GOTO or
CYCLE appears on or before the FDEND macro. Correct the error before assembling
the program again.

8,IDF759 LOGICAL OPERATOR NEAR POSITION p OF
0, IND SUBOPERAND n INVALID

Explanation: The logical operator specified is not AND or OR. The specified IND
sub operand (n) cannot be properly evaluated.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Locate and correct the operator in error before assembling
the program again.

8,IDF760 COMPARISON OPERATOR NEAR POSITION P OF
0, IND SUBOPERAND n INVALID

Explanation: The comparison operator specified is not valid. (The permitted com
parison operators are described in the discussion of the IND operand.) The specified
IND sub operand (n) cannot be properly evaluated.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Locate and correct the operator in error before assembling
the program again.

8,IDF761 COMPARAND CHARACTER NEAR POSITION P OF
0, IND SUBOPERAND n INVALID

Explanation: Either the character must be decimal and is not, or the character is not
a valid 3735 character. The specified IND suboperand (n) canpot be properly evaluated.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Locate and correct the character in error before assembling
the program again.

8,IDF762 IND COMPARAND LENGTH NOT BETWEEN I AND 127

Explanation: The length of an indicator comparand was found to be outside the
permitted range (from I to 127 characters).

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the comparand in error before assembling the program
again.

8,IDF763 PICTURE ILLEGAL WITH EMITTED SOURCE

Explanation: Editing with a PICTURE operand is not permitted with SOURCE =
'string' (emitted string).

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF764 PICTURE ILLEGAL WITH NON-NUMERIC COMPARISONS

Explanation: A PICTURE has been coded for a field that is used in a non-numeric
comparision. Non-numeric fields may not be associated with a picture operand.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Determine what the comparison in question should be, then
correct the error before assembling the program again.

8,IDF765 LENGTH SPECIFICATION FOR SINK d IS INADEQUATE

Explanation: The length of the specified sink (d) was not explicitly coded, and the
information provided by other parameters is not sufficient to determine the sink length.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Provide some explicit encoding that specifies the length of the
indicated sink before assembling the program again.

8,IDF766 PICTURE SUBOPERAND n IMPROPERLY FRAMED

Explanation: Each PICTURE suboperand must be framed in apostrophes, for example:
'$**9.99'.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax. errors.

Programmer Response: Correct the framing error before assembling the program again.

8,IDF767 CHARACTER c OF PICTURE SUBOPERAND n IS
0, INVALID, MUST BE ONE OF THE FOLLOWING
0, characters

Explanation: The character at position c (not counting the starting apostrophe) of the
speCified PICTURE sub operand (n) is either an invalid PICTURE character or a valid
character that has been used improperly. The characters printed in the third line of'
the message are the only characters which are permitted in the specified position. The
possible characters are:

9YZ*$+-SVCDB.! .

If any of these characters is not in the character set of the printer that printed the FOP
listing, the appropriate substitution is used. For example, the FDP listing may have @

printed in places where a $ should appear. In this case, any appearance of an @ should
be interpreted as the $ sign.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Identify the error and correct it before assembling the program
again.

8,IDF768 PICTURE SUBOPERAND n NOT PROPERLY TERMINATED

Explanation: Either a terminating oCR' or 'DB' is in error or excess characters are
present in the PICTURE specification.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the PICTURE specification in question before
assembling the program again.

8,IDF769 SINK COUNT NOT BETWEEN a AND b

Explanation: The sink count is not within the range specified by a and b.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

Appendix D. Form Description Macro InstructionMNOTE Messages 147

148 IBM 3735 Programmer's Guide

8,IDF770 PRINT ELEMENT POSITION CANNOT BE DETERMINED
0, DUE TO INADEQUATE SOURCE COUNT SPECIFICATION

Explanation: The information provided is not sufficient to determine proper print
element positioning.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Code a correct value of the COUNT operand in the FDFIELD
macro that describes the field in question before assembling the program again.

8,IDF771 PRINTING SINK EXCEEDS FIELD MARGINS

Explanation: The current sink length exceeds the allowable field margins.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Check the sink and field in question and correct the error
before assembling the program again.

8,IDF772 op OPERAND, SUBOPERANDn, FORMAT INVALID

Explanation: The indicated sub operand (n) is specified in an invalid manner.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF773 op OPERAND, SUBOPERAND n, NOT AN ALLOWED EXACT VALUE
0, OR NOT BETWEEN a AND b

Explanation: The specified suboperand (n) does not contain a proper value.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF774 COMMAND GROUP n, INVALID FORMAT OR COMMAND

Explanation: The specified command group (n) is coded with an invalid format or
command.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF775 COMMAND GROUP n, SKIP OR SKIPTO VALUE
0, NOT BETWEEN a AND b

Explanation: The value of a SKIP or SKIPTO command in the specified command
group (n) does not fall within the permitted range defined by a and b.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF777 MODE OPERAND INVALID

Explanation: This message indicates that the MODE operand on an FDFORM macro
has been specified incorrectly with neither LOAD nor NOLOAD code.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF778 MANDATORY KEYLEN OPERAND OMITTED

Explanation: The mandatory key length specification for the records to be loaded by
the FDLOAD macro has been omitted.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF779 KEYLEN OPERAND IS CODED NON-NUMERIC

Explana,tion: The KEYLEN operand on the FDLOAD macro has not been specified
as a decimal number.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF780 KEY PARAMETER OF GETKEY COMMAND NOT
0, BETWEEN I AND 15 CHARACTERS LONG

Explanation: The key specified in a GETKEY command in an FOCTRL macro is not
within the correct range. All keys for the File Storage capability must be from 1 to
15 characters long.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF782 KEYLEN NOT BETWEEN 1 AND 15

Explanation: The key length for records to be loaded into the file by the FDLOAD
macro is not between the valid length specifications of 1 and 15, inclusive.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF783 MANDATORY DATALEN OPERAND OMITTED

Explanation: The mandatory DATALEN operand on the FDLOAD macro for the
records to be loaded in the file has been omitted.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF784 DATALEN OPERAND IS CODED NON-NUMERIC

Explanation: The DATALEN operand on the FDLOAD macro has not been specified
as a decimal number.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF785 DATALEN PLUS KEYLEN NOT BETWEEN n AND m

Explanation: The sum of the key and data lengths specified on the FDLOAD macro
is not within the range determined by a minimum of KEYLEN+ I and a maximum of
234 characters.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Appendix D. Form Description Macro Instruction MNOTE Messages 149

150 IBM 3735 Programmer's Guide

Programmer Response: Correct the error before assembling the program again.

8,IDF786 NUMBER IN CTR SUBOPERAND d NOT BE1WEEN I AND 255

Explanation: A signed decimal number is being added to or subtracted from an index
counter in FDCTRL CTR operations and the number is not withi!l the valid range of
I to 255.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF787 MORE mAN ONE SINK DELIMIT INVALID

Explanation: The FD macros have detected multiple SINK operands specifying
DELIMIT when only one SINK operand in each FDFIELD macro may specify
DELIMIT.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF788 DELIMIT/QUALIFIER FOR SINK n INVALID

Explanation: The fourth parameter of a SINK = lOB operand has been coded, but is
not DELIMIT.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF789 IND OPERATOR OR INDEX COUNTER FOR IND SUBOPERAND d INVALID

Explanation: The second parameter of an IND suboperand is not ON, OFF, INV, XI,
orX2.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF790 INDEX COUNTER COMPARISON OPERATOR INVALID

Explanation: The comparison operator for an index counter compare operation is not
GT, LT, GE, LE, EQ, NE, NL, NG, or one of their symbolic equivalents.

System Action: Further code generation is suppressed; the rest of the source program
is checked for syntax errors.

Programmer Response: Correct the error before assembling the program again.

8,IDF999 FDM SYSTEM ERROR

Explanation: A severe FD macro internal error has occurred, such as the exhaustion of
the internal work space.

System Action: The assembly is terminated.

Programmer Response: If the error persists after all other noted errors have been
eliminated, do the following before calling IBM for programming support:

• Have the job stream and program listing available.

Any data following the message line is printed to help the IBM program systems repre
sentative locate the error. Some of these additional data lines are:

DESTINATION QUEUE IS EMPTY - The first element on the destination queue is
placed there during initialization and should never be removed.

UNRESOLVED IMPLICIT ELEMENT ON ORIGIN QUEUE - All implicit elements
are resolved by end control, so none should remain at FDEND.

INVALID CALL OF INNER MACRO name [MESSAGE CALL PARAMETER = m 1 -
The parameters passed to the specified macro are invalid. For calls to message macros,
the call parameter is the message call number.

Appendix D. Form Description Macro Instruction MNOTE Messages 1Sl

OS Control Step Messages

Appendix E. OS Form Description Utility Diagnostic Messages

This appendix describes the messages that may be issued to the programmer during OS
PD utility processing, These messages provide diagnostic information of interest to the
programmer adding members to (or creating) a library of FDPs. The listing provided
consists of a header line, several blank lines, and one or more detail lines for each of the
three utility steps (control, link-edit, and storage).

If the SYSPRINT data set is not opened, or if an error condition arises in writing to
the SYSPRINT data set, one of these messages is directed to the system console:

IDF0191 SYSPRINT CANNOT BE OPENED

Return Code: 4.

System Action: Processing is terminated.

Routing Code/Descriptor Code: 11 (Programmer Information)/7
(Application Program/Processor).

Programmer Response: Provide the missing CTRL.SYSPRINT or
STG.SYSPRINT DD statement and execute the job again.

IDF020I I/O ERROR SYSPRINT

Return Code: 4.

System Action: The message supplied by the SYNADAF routine is printed
at the consol~ on the following line and processing is terminated.

Routing Code/Descriptor Code: 4, 10, II (Direct Access Poll, System/Error
Maintenance, Programmer Information)/4 (System Status).

Programmer Response: Correct the error condition and execute the job again.
The appropriate system utility (IEHLIST or IEBPTPCH) may be needed to
determine the status of the library if the error occurred in the STG step.

If the SYSPRINT data set is open and no error is encountered in writing to it, all
messages are directed to it. The messages that may be issued during each of the three
utility steps are described in the following sections.

IDFOOll SYSIN CANNOT BE OPENED

Return Code: 4.

System Action: Processing is terminated.

Explanation/Programmer Response: The SYSIN data set cannot be opened
because the DD statement is missing (and the Operating System did not
generate one) or specified incorrectly. Provide a correct DD statement and
execute the job again.

IDF002I SYSUT I CANNOT BE OPENED

Return Code: 4.

System Action: Processing is terminated.

Explanation/Programmer Response: The SYSUTI data set cannot be opened
because the DD statement is missing or specified incorrectly. Provide a
correct DD statement and execute the job again.

Appendix E. OS Form Description Utility Diagnostic Messages 153

154 IBM 3735 Programmer's Guide

IDF004I ESD CARD TYPE CODE ERROR LAST DECK ID x:xxx NO yyyy

Return Code: 4.

System Action: Processing is terminated.

Explanation/programmer Response: xxxx is the identification (columns 73-76),
and yyyy is the sequence number (columns 77-80), of the last valid ESD card
image in the object module. The control routine has detected an error in the
ESDtype code field. A type code of '00' (indicating SD) should be present,
but is not. Check the field in question and correct the error before executing
the job again.

IDF005I ESD CARD ADDRESS FIELD ERROR LAST DECK ID xxxx NO yyyy

Return Code: 4.

System Action: Processing is terminated.

Explanation/programmer Response: xXxx is the identification (columns 73-76)
and yyyy is the sequence number (columns 77-80), of the last valid ESDcard
image in the object module. The control routine has detected an error in the
ESD address field. Check the field in question and correct the error before
executing the job again.

IDF0061 ESD CARD LENGTH FIELD ERROR LAST DECK ID xxxx NO yyyy

Return Code: 4.

System Action: Processing is terminated.

Explanation/Programmer Response: xxxx is the identification (columns 73-76)
and yyyy is the sequence number (columns 77-80) of the last valid ESD card
image in the object module. The control routine has detected an error in the
ESD length field. Check the field in question and correct the error before
executing the job again.

IDF007I ESD CARD NAME FIELD ERROR LAST DECK IS xxxx NO yyyy

Return Code: 4.

System Action: Processing is terminated

Explanation/Programmer Response: xxxx is the identification (columns 73-76)
and yyyy is the sequence number (columns 77-80), of the last valid ESD card
image in the object module. The control routine has detected an error in the
ESD name field. Check the field in question and correct the error before
'executing the job again.

IDF008I CARD OUT OF SEQUENCE LAST DECK ID xxxx NO yyyy

Return Code: 4.

System Action: Processing is terminated.

Explanation/Programmer Response: xxxx is the identification (columns 73-76;
and yyyy is the sequence number (columns 77-80), of the last valid card image
in the object module. The control routine has detected a card image out of
sequence. Check the card image in question and correct the error before
executing the job again.

IDFOO9i DECK ID FIELD ERROR LAST DECK ID xxxx NO yyyy

Return Code: 4.

System Action: Processing is terminated.

Explanation/Programmer Response: xxxx is the identification (columns 73-76:
and yyyy is the sequence number (columns 77-80), of the last valid card image

in the object module. The control routine has detected a card image with an
invalid object module (deck) identification. Check the card image in question
and correct the error before executing the job again.

IDFOIOI I/O ERROR ON SYSIN

Return Code: 4.

System Action: Processing is terminated.

Explanation/programmer Response: An uncorrectable I/O error occurred
while the SYSIN data set was being read. If the error persists, do the following
before calling IBM for programming support:

• Have the job stream and program listing available.
• Have the master console sheet available.

IDFOllI I/O ERROR ON SYSUTI

Return Code: 4.

System Action: Processing is terminated.

Explanation/Programmer Response: An uncorrectable I/O error occurred
while the SYSUTI data set was being read. If the error persists, do the following
before calling IBM ofr programming support:

• Have the job stream and program listing available.
• Have the master console sheet available.

IDF0121 SUCCESSFUL COMPLETION LAST DECK ID xxxx NO yyyy

Return Code: 4.

System Action: None.

Explanation/programmer Response: xxxx is the identification (columns 73-76),
and yyyy is the sequence number (columns 77-80), of the last valid card image
in the object module. The control routine has finished processing. The output
from this step has been passed to the link-edit step.

IDF0131 OBJECT DECK IS INCOMPLETE

Return Code: 4.

System Action: Processing is terminated.

Explanation/Programmer Response: An incomplete object deck has been
detected. A check was made at EOF (SYSIN) to see if an END card was read,
and no END card was found. Check the object deck in question and correct
the error before executing the job again.

as Link-Edit Step Messages IEWOOOO (control statement)

Severity Code: o.
System Action: Not applicable.

Explanation/Programmer Response: The control statement is printed as a
result of the LIST option. No programmer response is required.

IEW0254 ERROR - TABLE OVERFLOW - TOO MANY EXTERNAL SYMBOLS IN
ESD

Severity Code: 4.

System Action: The load module is marked "not executable."

Explanation/programmer Response: The capacity of the Linkage Editor has
been exceeded. Link-edit the object modules in a larger main storage environ
ment or prepare fewer FDPs for linkage editing.

Appendix E. OS Form Description Utility Diagnostic Messages ISS

OS Storage Step Message

156 IBM 3735 Programmer's Guide

IEW0284 ERROR - DDNAME PRINTED CANNOT BE OPENED

Severity Code: 4.

System Action: The load module is marked "not executable." The data
data definition name in the name field of the DD statement for the data set
is printed after the message code.

Explanation/Programmer Response: The specified data set cannot be opened
because the DD statement defining the data set is missing or specified incor
rectly. Provide a DD statement that correctly defmes the data set and execute
the job again.

IEW0294 ERROR - DDNAME PRINTED HAD SYNCHRONOUS ERROR

Severity Code: 4.

System Action: Processing is terminated. The data definition name in the
name field of the DD statement for the data set is printed after the message
code. If an input/output error occurred, the information provided by the
SYNADAF macro instruction is printed after the message code in the followin~
format: SYNAD EXIT, jobname, stepname, unit address, device type, ddname
operation attempted, error description, block count or BBCCHHR, and access
method.

Explanation/Programmer Response: Either (1) an uncorrectable physical
input/output error occurred, (2) an object module is missing an END card as
the last card, or (3) if the data definition name printed is for a DD statement
that defines a blocked input data set of fixed format, an input record larger
than the specified block size or logical record length was found. For any
flXed format data set, specify the correct block size. If the proper block size
was specified, have the computing system checked.

IEW0324 ERROR - MAXIMUM NUMBER OF SEGMENTS EXCEEDED

Severity Code: 4.

System Action: The load module is marked "not executable."

Explanation/Programmer Response: The capacity of the Linkage Editor has
been exceeded. Link-edit the object modules in a larger main storage environ
ment or prepare fewer FDPs for linkage editing.

Errors detected in the storage step (except for I/O errors) require that the FDP in error be
reassembled.

IDF021I SYSLIB CANNOT BE OPENED

Return Code: 4.

System Action: Processing is terminated.

Explanation/Programmer Response: The SYSLIB data set cannot be opened
because the DD statement is missing or specified incorrectly. Provide a correct
DD statement and execute the job again.

IDF022I ERROR IN PARM FIELD

Return Code: O.

System Action: Processing continues.

Explanation/Programmer Response: The user has provided an incorrect
parameter to the storage routine. The storage routine will process as if no
parameter had been specified. Correct the parameter and execute the job
again.

IDF0231 I/O ERROR ON SYSLIB

Return Code: 4.

System Action: Processing is terminated.

Explanation/Programmer Response: An uncorrectable I/O error occurred on
the SYSLIB data set. If the error persists, do the following before calling
IBM for programming support:

• Have the job stream and program listing available .
• Have the master console sheet available.

IDF0241 XXXXXXXX HAS AN INVALID NAME

Return Code: 4.

System Action: Processing continues. The form is not added to the user's data
set.

Explanation/programmer Response: The storage routine has detected an error
in the name field of a sector. The form name is XXXXXXXX. Correct the
problem before executing the job again.

IDF02S1 XXXXXXXX IS AN INCOMPLETE FORM

Return Code: 4.

System Action: Processing continues.

Explanation/Programmer Response: The storage routine has detected a flag in
a sector indicating that the form is incomplete. The form name is XXXXXXXX.
This form is not added to the SYSLIB data set. Correct the problem before
executing the job again.

IDF0261 XXXXXXXX IS AN INVALID FORM

Return Code: 4.

System Action: Processing continues.

Explanation/programmer Response: The storage routine has detected a flag in
a sector indicating that the form is invalid. The form name is XXXXXXXX.
This form is not added to the SYSLIB data set. Correct the problem before
executing the job again.

IDF0271 NO SPACE LEFT IN DIRECTORY

Return Code: 4.

System Action: Processing is terminated.

Explanation/programmer Response: The library defined by SYSLIB has no
more directory space available. Restructure the data set to provide more
directory space before executing the job again.

IDF0281 I/O ERROR READING SYSLIB DIRECTORY

Return Code: 4.

System Action: Processing is terminated.

Explanation/Programmer Response: A return code indicating a permanent
I/O error was returned from a STOW macro that attempted to stow a member
on the SYSLIB data set. If the error persists, do the following before calling
IBM for programming support:

• Have the job stream and program listing available .
• Have the master console sheet available.

Appendix E. OS Form Description Utility Diagnostic Messages 157

1S8 IBM 3735 Proarammer'sGuide

IDF0291 XXXXXXXX HAS BEEN ADDED TO SYSLIB DATA SET

Return Code: None.

System Action: Processing continues.

Explanation/programmer Response: The form named by XXXXXXXX has
been successfully stored on the SYSLIBdata set. No programmer action is
required.

IDF030I NO TEMPORARY NAMES AVAILABLE

Return Code: None.

System Action: Processing continues.

Explanation/programmer Response: All temporary names in the series
IDFTEMPO·IDFTEMP9 have been used. Rename or delete the temporary
forms, or rename the form before executing the job again.

IDF0311 XXXXXXXX STOWED AS TEMPORARY IDFTEMPn

Return Code: None.

System Action: Processing continues.

Explanation/programmer Response: The form named by XXXXXXXX is
a duplicate of an existing name in the SYSLIB data set. No REPLACE oper·
ation was specified in the EXEC statement of the STG job step, so the form
was stored with the temporary name IDFTEMPn. (Values of "n" may range
from 0 to 9.)

IDF0321 XXXXXXXX HAS AN INVALID COUNT

Return Code: 4.

System Action: Processing is terminated.

Explanation/Programmer Response: The storage routine detected an error in
the count field of a sector. Correct the error before executing the job again.

IDF0331 END OF STORAGE PROCESSING

Return Code: o.
System Action: Control is returned to the Operating System.

Explanation/Programmer Response: The storage routine has completed.
normal processing. Check all messages issued during this processing step to
make sure that the FD programs were stored properly. If necessary, make
corrections and execute the job again.

Appendix F. DOS Form Description Utility Diagnostic Messages

This appendix describes the messages that may be directed to the programmer during
DOS FD utility execution. These messages provide diagnostic information of interest to
the programmer making additions to an indexed sequential data set of FDPs. The listing
provided consists of a header line, several blank lines and one or more detail lines for each
of the three utility steps (control, link-edit, and storage).

DOS Control Step Messages 4FOlI OBJECT DECK INCOMPLETE

System Action: Processing is terminated.

Explanation/Programmer Response: An incomplete object deck has been detected.
A check was made at EOF (SYSIPT) to see if an END card was read, and no END
card was found. Check the object deck in question and correct the error before
executing the job again.

4F03I ESD CARD OUT OF SEQUENCE

System Action: Processing is terminated.

Explanation/Programmer Response: The FD utility control step has detected a
sequence error in an object module. Correct the input sequence and execute the
job again.

4F04I ESD CARD TYPE CODE ERROR

System Action: Processing is terminated.

Explanation/Programmer Response: The control step has detected an error in
the ESD type code field. A type code of '00' (indicating SD) should be present,
but is not. Check the field in question and correct the error before executing
the job again.

4FOSI ESD CARD ADDRESS FIELD ERROR

System Action: Processing is terminated.

Explanation/programmer Response: The control step has detected an error in
the ESD address field. Check the field in question and correct the error before
executing the job again.

4F06I ESD CARD LENGTH FIELD ERROR

System Action: Processing is terminated.

Explanation/Programmer Response: The control step has detected an error in
the ESD length field. Check the field in question and correct the error before
executing the job again.

4F07I ESD CARD NAME FIELD ERROR

System Action: Processing is terminated.

Explanation/Programmer Response: The control step has detected an error in
the ESD name field. Check the field in question and correct the error before
executing the job again.

4F08I CARD OUT OF SEQUENCE

System Action: Processing is teminated.

Explanation/Programmer Response: The control step has detected a card image
out of sequence. Check the card image in question and correct the error before
executing the job again.

Appendix F. DOS Form Description Utility Diagnostic Messages 159

4F091 DECK ID FIELD ERROR

System Action: Processing is teminated.

Explanation/Programmer Response: The control step has detected a card image
with an invalid object module (deck) identification. Check the card image in
question and correct the error before executing the job again.

4FlOI I/O ERROR ON SYSIPT

System Action: Processing is terminated.

Explanation/Programmer Response: An uncorrectable I/O error occurred while
the SYSIPT data set was being read. If the error persists, do the following before
calling IBM for assistance:

• Have the job stream and program listing available.
• Have the console sheet available.

4F III I/O ERROR ON SYSPCH

System Action: Processing is terminated.

Explanation/Programmer Response: An uncorrectable I/O error occurred on
SYSPCH while the control step was attempting to punch a deck. If the error
persists, do the following before calling IBM for assistance:

• Have the job stream and program listing available.
• Have the console sheet available.

4F 121 SUCCESSFUL COMPLETION. LAST DECK ID XXXX NO. YYYY

System Action: None.

Explanation/Programmer Response: XXXX is the deck identification (columns
73-76), and YYYY is the sequence number (columns 77 -80), of the last valid
card image in the object module. The control step has finished processing. The
output of this step is on SYSPCH, and should be passed to the link-edit step with
the aid of DOS Job Control.

DOS Link-Edit Step Messages The messages that may be issued during the execution of the DOS link-edit step are described
in the DOS System Control and Service Programs publication, Order No. GC24-5036.

DOS Storage Step Messages 4F131 CONTROL CARD name INCORRECT - JOB TERMINATED

System Action: Processing is terminated.

160 IBM 3735 Programmer's Guide

Explanation/Programmer Response: The control card named (one of // OPTION =,
// RPLACE, // DEVICE =,or //RPLACE =) is incorrect. Correct the control card
and execute the job again.

4F141 NUMBER OF RPLACE CARDS EXCEEDS TWENTY - JOB TERMINATED

System Action: Processing is terminated.

Explanation/Programmer Response: The number of / / RPLACE = control cards
is greater than twenty. Only twenty // RPLACE= cards are allowed. Remove the
excess cards and execute the job again.

4F151 ERROR IN SECTOR NAME FIELD - JOB TERMINATED

System Action: Processing is terminated.

Explanation/Programmer Response: The storage step has detected an error in the
name portion of the 1 a-byte key field of a 486-byte sector. Check the name fields
in the first module to be loaded on the ISAM file and correct the error before
executing the job again.

4F16I ERROR IN FDPSECTOR· RECOMPILE FDP· JOB TERMINATED

System Action: Processing is terminated.

Explanation/Programmer Response: An error has been detected in the first
module to be loaded. Check the FDP assembly and correct the error before
executing the job again.

4F17I SECTOR INCOMPLETE· RECOMPILE FDP· JOB TERMINATED

System Action: Processing is terminated.

Explanation/Programmer Response: The first module to be loaded is incomplete.
Check the FDP assembly and correct the error before executing the job again.

4F18I ERROR IN SECTOR COUNT FIELD· RECOMPILE FDP· JOB TERMINATED

System Action: Processing is terminated.

Explanation/Programmer Response: The count portion of the lO·byte key field
of a 486·byte sector is incorrect or out of sequence. Check the FDP assembly
and correct the error before executing the job again.

4Fl9I PRIME DATA AREA FULL OR OVERFLOW· ENLARGE DASD EXTENTS·
JOB TERMINATED

System Action: Processing is terminated.

Explanation/programmer Response: Not enough room has been allocated for
the ISAM file. Enlarge the DASD extents to allow more space and execute the
job again.

4F2OI CYLINDER INDEX AREA FULL· ENLARGE DASD EXTENTS· JOB
TERMINATED

System Action: Processing is terminated.

Explanation/Programmer Response: Not enough room has been allocated for
the ISAM index area. Enlarge the DASD extents to allow more space and execute
the job again.

4F21I ATTEMPT TO ADD DUPLICATE RECORD· JOB TERMINATED

System Action: Processing is terminated.

Explanation/Programmer Response: An attempt has been made to load the
ISAM file with a record already existing on the file. Check the DLBL statement
to ensure that ISC has been specified and execute the job again.

4F221 SEQUENCE ERROR· JOB TERMINATED

System Action: Processing is terminated.

Explanation/Programmer Response: The record being loaded is not in sequential
order. Check the sequence in the count portion of the key field and correct the
error before executing the job again.

4F231 UNRECOVERABLE I/O ERROR· JOB TERMINATED

System Action: Processing is terminated.

Explanation/Programmer Response: An unrecoverable 1/0 error has occurred
on the ISAM file while trying to write a record. If the error persists, do the
following before calling IBM for assistance:

• Have the job stream and program listing available .
• Have the console sheet available.

Appendix F. DOS Form Description Utility Diagnostic Messages 161

162 IBM 3735 Programmer's Guide

4F241 SUCCESSFUL COMPLETION OF LOAD PHASE

System Action: None.

Explanation/programmer Response: The storage step LOAD phase is complete.
To complete the loading of the ISAM file, IJLFST must be executed again with
ISE specified in the DLBL card and / / OPTION = LOADFST specified.

4F2SI FORM name CONTAINS A NAME ERROR - FORM NOT ADDED

System Action: The form named is not added to the file. An attempt is made
to add the next form.

Explanation/programmer Response: The name indicated is the user's form name.
An error has been detected in the name portion of the 10-byte key field of a ~
486-byte sector. Check the name fields in the form named and correct the error
before executing the job again.

4F26I FORM name CONTAINS AN ERROR - FORM NOT ADDED

System Action: The form named is not added to the file. An attempt is made
to add the next form.

Explanation/Programmer Response: The name indicated is the user's form name.
An error has been detected in the form being added to the file. Check the FDP
assembly and correct the error before executing the job again.

4F27I FORM name INCOMPLETE - FORM NOT ADDED

System Action: The form named is not added to the file. An attempt is made
to add the next form.

Explanation/Programmer Response: The name indicated is the user's form name.
The sector being added is incomplete. Check the FDP assembly and correct the
error before executing the job again.

4F281 EOF ON IJFDLIB

System Action: Processing is terminated.

Explanation/Programmer Response: An EOF condition has been encountered
while attempting to replace a form in the ISAM file. If the error persists, do the
following before calling IBM for assistance:

• Have the job stream and program listing available.
• Have the console sheet available.

4F291 FORM name NOT FOUND

System Action: None.

Explanation/Programmer Response: An attempt was made to locate a form in
order to replace it, but the form was not found. If the error persists, do the
following before calling IBM for assistance:

• Have the job stream and program listing available.
• Have the console sheet available.

4F3OI DATA AREA OVERFLOW ON IJFDLIB

System Action: Processing is terminated.

Explanation/Programmer Response: Not enough room has been allocated for
the ISAM file. Enlarge the DASD extents to allow more space and execute the
job again.

4F31I UNRECOVERABLE I/O ERROR ON IJFDLIB

System Action: Processing is terminated.

Explanation/programmer Response: An unrecoverable I/O error has occurred on
the ISAM ftle. If the error persists, do the following before calling IBM for
assistance:

• Have the job stream and program listing available.
• Have the console sheet available.

4F321 FORM name ADDED

System Action: None.

Explanation/programmer Response: The form named has been added to the
ISAM ftle.

4F33I FORM name ASSIGNED TEMPORARY NAME IJLFTMOn

System Action: None.

Explanation/programmer Response: The form name indicated is the user's form
name. IJLFTMOn is the temporary name assigned the form when a duplicate
name is detected and / / RPLACE = name or / / RPLACE is not coded. The "n"
value in the temporary name may range from 0 to 9.

4F351 FORM name NOT ADDED· NO TEMPORARY NAMES LEFT

System Action: The form named is not added to the ISAM ftle. An attempt is
made to add the next form.

Explanation/programmer Response: The form name indicated is the user's form
name. The storage step has discovered that all temporary names (IJLFTM()()..()9)
have been used. The form named can be added only by replacing the form of the
same name in the ISAM ftle.

4F36I COMPLETION OF STORAGE STEP

System Action: None.

Explanation/programmer Response: The storage step has completed processing.

4F37I SECTOR COUNT ERROR IN FORM NAME

System Action: The form named is not added to the ISAM ftle. An attempt is
made to add the next form.

Explanation/Programmer Response: The count portion of the 100byte key field
of the 486·byte data sector is incorrect or out of sequence. Check the FDP
as~mbly and correct the error before executing the job again.

Appendix F. DOS Form Description Utility Diqnostic MesSllles 163

PGTEST

PDUMPW

BTAKOPEN

CKBTAM

CKDUMP

DUMP
EOJ
GETISA M

GETRCD

EOFCHK

BAL

CSECT
BALR
USING
OPEN
LA
LA
BAL
CLI
BE
LA
LA
BAL
CLI
BNE
OI
B
EQU
OI
OPEN
B
EQU
TM
BO
LA
LA
BAL
CLI
BNE
CUrtP
EOJ
EQU
LA
LA
EAL
MVC
SETL
EQU
MVI
GET
L
Tll
BO
TK
BO
BAL
B

Appendix G. DOS BTAM Sample Program

This DOS BTAM sample program reads data from the 3735, dumps it on the system printer
if requested to do so, then sends FDPs (if any) to the 3735. When through, the program
sends the terminate communicate mode message to the 3735, issues a Write Disconnect
macro, and concludes processing.

R11,RO
*,R11
IJFDLIB
R5,L'OPNMSG
R4,OPNMSG
B6,GETLOG
WTOIN, IESCHA R
BTAliOPEN
R5, L' PDMSG
R4, PDMSG
R6,GETLOG
WTOIN, YESCHAR
CKBTAM
TSTFLAG,TEST2
GETISAM

* TSTFLAG,TEST1
SRDTF

PDUMPW

* TSTFLAG,TESTl
GETISAM
R5,L'NOBTli
R4, NOBTM
B6,GETLOG
WTOIN,YESCHAR
EOJ

*

ESTABLISH CSECT ADDRESSABILITI AND
DEFINE BASE REGISTER
OPEN IJFDLIB FILE
SET UP TO WRITE 'IJPDLIB OPEN - BTAM
NEEDED?' MESSAGE TO CONSOLE

IS RESPONSE LOWERCASE 'I'?
IF SO, OPEN BTAM DTFBT
SET UP TO WRITE 'DUMPS WANTED?'
MESSAGE TO CONSOLE

IS RESPONSE LOWERCASE 'Y'?
IF NOT, GO SEE IF BTAli IS WANTED
IF PDUMPS WANTED, SET PDUliP FLAG
'GO TO SET UP FOR FDP RETRIEVAL

TURN ON BTAM FLAG
OPEN BTAK DTFBT
CHECK FOR PDUMPS

WAS BTAM SELECTED?
IF SO, GET IS All RECORDS
IF NOT, SET UP TO WRITE 'EOJ- DUMP
WANTED?' llESSAGE TO CONSOLE

IS RESPONSE LOWERCASE ttl?
IF NOT, GO TO EOJ
IF SO, DUMP
END OF JOB

R5,L'ENTER SET UP TO REQUEST FIRST FORM
R4,ENTER NAME FROM CONSOLE
R6,GETLOG
KEIFLD(TEN),WTOIN SET UP KEIARG FIELD
IJFDLIB,GKEY SET STARTING ADDRESS FOR FILE

* IJFDLIBC,NULCHAR SET X'OO' IN IJFDLIBC
IJFDLIB,WKAREA GET A RECORD
R5,ADRDLIE GET DTF ADDRESS
THIRTY (R5),TESTl DASD ERROR?
DASDERR IF SO, GO RETRY THE READ
THIRTY(R5),TEST3 END OF FILE?
EOF IF SO, GO PREPARE TO STOP TRANSMISSION
Bl0,BTAM GO TO BTAli SECTION TO TRANSliIT
GETRCD GET ANOTHER RECORD ON RETURN FROM BTAM

Appendix G. DOS BTAM Sample Program 165

DISDBII

BOF

IOU
BJlIT
Tit
BZ
LI
LI
BIL
B
IOU

* RETII IETII THE READ OPERATION
THIITY (R5) , TEST 1 A NOTHE R DASD EIROI?
EOFCHK IF NOT, GO CHECK POI EOP
R5,L'UNIEC IF SO, PREPARE TO WRITE 'UNRECOVERABLE
14, UNREC I/O EBBOR' ·MESSAGE TO CONSOLE
16,GETLOG
CKDUIt~ GO CHECK FOI 'DUMP WANTED' IESPONSE

*
TK TSTFLAG,TEST1 BTAK OPEN?
BZ EOP1 IP NOT, DONT CLOSE
Tit TSTPLAG,TEST7 IS END-OP-PILE PLAG SET?
BO EOP12 IF SO, EXIT
01 TSTPLAG,TEST7 SET END OP PILE FLAG
LA R2,ENDMSG GET ADDRESS OP 'END' MESSAGE
B TXTSEND GO TO SEND 'END OF FDPS' MESSAGE

EOP12 EOU *
WIITE SIDECB,TR,MF=E NO MORE DATA TO SEND - WRITE EOT
BNE DUMP CHECK FOR GOOD SIO
WAIT ECB=SRDECB WAIT FOR I/O COMPLETION
CLI SRDECB,NORMCOMP NORMAL COMPLETION?
BE CHKEOTD IF SO, GO CHECK FOR EOT RESPONSE
BAL R6,ERRCHK IF NOT, GO CHECK FOR ERROR TIPE

CHKEOTD BQU *
TM SRDECB+EOTSPOT,TEST2 EOT RECEIVED?
BO DISCONT IF SO, GO WRITE DISCONNECT
TM SRDECB+EOTSPOT,TBST3 DLE-EOT RECEIVED?
BO CLOSE IF SO, GO WRITE DISCONNECT & CLOSE

DISCONT EQU *
WRITE SRDECB,TD,MF=E WRITE DISCONNECT SEQUENCE
BNE DUMP CHECK FOR GOOD SIO
WAIT ECB=SRDECB WAIT FOI I/O COMPLETION
B EOF1 GO SET UP TO SHUT DOWN PROGRAM

CLOSE EOU *
CONTROL SRDECB,TD,MP=E DISCONNECT THE LINE
WAIT ECB=SRDECB WAIT FOR I/O COMPLETION
CLOSE SRDTF CLOSE BTAM DTFBT

EOF1 EOU *
ESETL IJPDLIB END SETL SPECIFICATION FOR IJFDLIB
CLOSE IJPDLIB CLCSE IJFDLIB FILE
LA R5,L'EOFMSG PREPARE TO WRITE 'EOF ON IJPDLIB'
LA R4,EOPMSG MESSAGE TO CONSOLE
BAL R6,GETLOG
B CKDUMP GO CHECK FOR 'DUMP WANTED' RESPONSE

BTAM EQU *
TM TSTPLAG,TEST1 BTAM REQUESTED?
BZ PDUKP IF NOT, PD UMP
TM TSTFLAG,TBST3 LINE CONNECTED AND DATA READ
BO SENDFDP GO CHECK IF WRITE INITIAL NEEDED
READ SRDECB,TI,MF=E ISSUE PIRST REAt OPEBATION
BNZ DUMP
WAIT ECB=SRDECB WAIT POR I/O COMPLETION
PDUKP SRDBCB,SRDECB+FORTY DUMP DECB INFOBMATION
CLI SRDECB,NORHCOMP NORMAL COMPLETION?
BB CHKEOT IF SO, GO CHECK FOR EOT RESPONSE
BAL B6,ERRCHK IF NOT, GO CHECK FOB EIROR TYPE

166 IBM 373S Programmer's Guide

TIOK

NOFDUMP

CHKEOT

SENDFDP

WRITETT

ERRCHK

CHKAK

*

CHKID

PDUMP

EQU
TI!
BZ
PDUMP
BEAD
BNZ
WAIT
CLI
BE
BAl
TM
BO
TM
BO
B
EQU

01
TM
BO
01
WRITE
BNE
WAIT
CLI
BE
BAL
EQU
LA
TM
BZ
MVI
WRITE
BNE
WAIT
ClI
BE
EQU
CLI
BNE
PDUMP
B
EQU
CLI
BNE
WRITE

WAIT
CLI
BNE
BR
EQU
PDUMP
PDtJMP
B
TM
BZ
PDUMP

* TSTFlAG,TEST2 PDUMP WANTED?
NOPDUMP IF NOT, GO READ NEXT BLOCK
IOAREA,IOAREA+FIVEC IP SO, DUMP CONTENTS OF IOABEA
SRDECB,TT,SBDTF,IOABEA,PIVEC,MP=E READ NEXT BLOCK
DUMP
ECB=SRDECB WAIT FOR I/O COMPLETION
SRDECB,NORMCOMP READ OK?
CHKEOT IF SO, GO CHECK FOR EOT RESPONSE
R6,ERRCHK IF NOT, GO CHECK FOR ERROR TIPE
SRDECB+EOTSPOT,TEST2 EOT RECIEVED?
SENDFDP IF SO, GO SET UP TO WRITE FDPS
SRDECB+EOTSPOT,TEST3 DLE-EOT RCVD?
CLOSE IF SO, GO SET UP TO CLOSE
TIOK IF NOT, GO ISSUE ANOTHER READ

*
TSTFLAG,TEST3 SET SEND crCLE FLAG
TsTFLAG,TEsT8 IS WRITE INITIAL NEEDED?
WRITETT IF NOT, ISSUE WRITE TT
TSTFLAG,TEST8 SET WRITE TT FLAG
SRDECB,TQ,sRDTF,IOAREA,FIVEC,INLIST,ZERO,MF=E
DUMP
ECB=SRDECB WAIT FOR I/O COMPLETION
sRDECB,NORMCOMP NORMAL COMPLETION?
WRITETT IF 50, GO SET UP TO SEND FDP HEADER
R6,ERRCHK IF NOT, GO CHECK FOB EBROR TYPE

* R2,FDPMSG GET ADDRESS OF 'FOP HEADER' MESSAGE
~STFLAG,TEST4 HAS 'FDP HEADER' MESSAGE BEEN SENT?
TXTSEND IF NOT, GO SEND IT
STXsPOT,STXCHAi IF SO, SET UP STX
sRDECB,TT,SRDTF,sTXSPOT,MSGLEN,MF=E SEND AN FOP BLOCK
DUMP
ECB=SRDECB WAIT FOR I/O COMPLETION
SRDECB,NORMCOMP NORMAL COMPLETION?
PDUMP IF 50, GO CHECK FOR PDUMP REQUEST

* SRDECB,ERRCO!P EBROR COMPLETION INDICATED?
CHKAK IF NOT, GO CHECK FOR WRONG ACK
SRDECB,SRDECB+FORTY IP SO, DUMP DRCB INFORMATION, THEN
EOF GO TO CHECK FOB EOF

* SRDECB,WRONGACK WRONG ACK RECEIVED?
CHKID IF NOT, GO CHECK FOR WRONG ID
SRDECB,TQ,SRDTF,IOAREA,MSGLEN,INLIST,MF=E IF SO,
SEND FDP BLOCK AGAIN
ECB=sRDECB WAIT FOR I/O COMPLETION
SRDECB,NORMCOMP NORMAL COMPLETION?
ERRCHK IF NOT, GO CHECK FOR ERROR TIPE
R6 RETURN VIA REGISTER 6

* SRLIST,SRLISTND DUMP DFTRMLST INFORMATION
SRDECB,SRDECB+FORTI DUMP DECB INFORMATION
CLOSE GO SET UP TO CLOSE
TSTFLAG,TEST2 PDUMP REQUESTED?
BTAM1 IF NOT, GO SET UP TO GET NEXT FDP BLOCK
WKAREA,WKAREA+LASTONE IF SO, DUMP WKAREA CONTENTS

Appendix G. DOS BTAM Sample Program 167

BTAK1 EQU *'
BR R10 GO TO GET ANOTHER PDP BLOCK

TXTSEND EQU *
01 TSTPLAG,TEST4 SET 'PDP HEADER' PLAG ON
WRITE SRDECB,TT,SRDTF,(2),PIVE,SRLIST,ZERO,KP=E SEND 'FDP
BNE DUKP HEADER' MESSAGE
WAIT ECB=SRDECB WAIT FOR 1/0 COMPLETION
CLI SRDECB,NORKCOKP NORKAL COMPLETION?
BE CHKEOPl IF SO, GO CHECK FOR EOF
BAL R6, ERRCHK IF NOT, GO CHECK FOR ERROR TYPE

CHKEOP 1 EQU *
TM TSTFLAG,TEST7 IS EOP FLAG SET?
BO EOF123 IF SO, GO TO EXIT ROUTINE
B WRITETT IP NOT, GO TO WRITE ANOTHER FDP BLOCK

EOP123 EQU *
WRITE SRDECB,TT"TCMMSG,FIVE",KP=E SEND 'TERMINATE COKKUNI·
BNE DUMP CATE MODE' MESSAGE
WAIT ECB=SRDECB WAIT FOR 1/0 COMPLETION
CLI SRDECE,NOBMCOMP NORMAL COMPLETION?
BE EOF12 IF SO, GO TO EXIT ROUTINE
BAL R6,ERRCHK IF NOT, GO CHECK FOR ERROR TIPE
B EOP12 GO TO EXIT ROUTINE

GETLOG EQU *
OUTLOG BUFFER=(4),COUNT=(5),RETURN=NO COMMUNICATE WITH
MVI WTOIN,BLANK CONSOLE SET UP FOR RESPONSE
MVC WTOIN+ONE(SEVEN) ,WTOIN
LA R4, WTOIN
INLOG BUFFER= (4) ,ceu NT= (8)
BR R6 GO TO ANALYZE RESPONSE
EJECT

**** DCB'S, DC'S, & ETC. **********

WTOIN DS 8X WORK AREA POR CONSOLE RESPONSE

INAREA

KEfFLD
WKAREA

IOAREA
TSTFLAG
EOFMSG
OPNMSG
PDMSG
UNREC
ENTER
NOBTK
FDPMSG
ENDKSG
TCKKSG

INLIST

DC X' 0000'
DS OF
DS 500X INPUT AREA
DS OF
DS 10X KEf FIELD
DS 486X WORK AREA FOR SENDING
DC X'03' ETX CHARACTER
CC 500X'OO' 1/0 AREA FOR RECEIVING
DC X'OO' FLAGS BfTE
DC C'EOP ON IJFDLIB - DUMP WANTED?'
DC C'IJFDLIB OPEN - IS BTAM NEEDED?'
DC C'PDUMPS WANTED?'
DC C'UNRECOVERABLE 1/0 ERROR - DUMP WANTED?'
DC C'ENTER FIRST FORM NAKE'
DC C'NO ETAM = NO PDUMPS = EOJ - DUMP WANTED?'
DC X'0200C60003' 'BEGIN FDP TRANSMISSION' MESSAGE
DC X'0200C50003' 'END OF FDPS' MESSAGE
DC X'020CE30003' 'TERKINATE COKMUNICATE KODE' MESSAGE
DS OF '
DC A (IOAREA, 50)
READ SRDECB,TI,SRDTF,IOAREA,500,SRLIST,O,MF=L CREATE DECB

SRLIST DFTRKLST IDLST,O,6,C1C1C1C1C12D,5,C1C1C1C1Cl
SRLISTND EQU *

168 IBM 3735 Programmer's Guide

SRDTF DTFBT LINELST=(004),CO=2701,DEVICE=BSC2,FEATURE=(BSC,SIW,RIW),-
MODNAME=SBMOD,CTLCHAR=EBCDIC,MODELST=(O)

IJFDLIB DTFIS DSKXTNT=3,IOROUT=BETBVE,KEILEN=10,NBECDS=1,BECFOBft=FIXUN
B,BECSIZE=476,CYLOFL=S,DEVICE=2311,ERBEXT=YES,HINDEX=231~
1,IOAREAR=INAREA,IOREG=(3),KEIARG=KEIFLD,!ODNAftE=BD!OD, -
TYPEFLE=RANSEQ,IOAREAS=INAREA,WORKS=YES

**** EQUATES - REGISTERS **********

RO EQU 0 REGISTER 0
R2 EQU 2 REGISTER 2
R4 EQU 4 REGISTER 4
R5 EQU 5 REGISTER 5
R6 EQU 6 REGISTER 6
R10 EQU 10 REGISTER 10
Rll EQU 11 REGISTER 11

**** EQUATES - CONSTANTS **********

ZERO EQU 0 NUMERIC CONSTANT
eNE EQU 1 NUMERIC CONSTANT
FIVE EQU 5 NUMERIC CONSTANT
SEVEN EQU 7 NUMERIC CONSTANT
TEN EQO 10 NUMERIC CONSTANT
EOTSPOT EQU 24 DECB FLAGS LOCATION
THIRTY EQU 30 NUMERIC CONSTANT
FORTI EQU 40 NUMERIC. CONSTANT
MSGLEN EQO 47S NUMERIC CONSTANT - MESSAGE LENGTH
LASTONE EQU 4S7 NUMERIC CONSTANT
FIVEC EQU 500 NUMERIC CONSTANT
STXSPOT EQU WKAREA+9 SPOT WHERE STX IS INSERTED IN DATA
ADBDLIB EQU A (IJFDLIB) ADDRESS CONSTANT
NORMCOMP EQU X'7F' NORMAL COMPLETION
ERRCOMP EQU X'41' ERBOR COMPLETION
WRONGACK EQU X'60' WRONG ACK RECEIVED
NULCHAR EQU X'OO' 'NULL' CHARACTER
BLANK EQU X'40' BLANK CHARACTER
STXCHAR EQU X'02' STX CHARACTER
YESCHAR EQU X'AS' LOWER CASE 'Y'
'fEST 1 EQU X'SO' TEST FLAG 1
TESl2 EQU X'40' TEST FLAG 2
TEST3 EQU X'20' TEST FLAG 3
TEST4 EQU X'10' TEST FLAG 4
TEST7 EQU X'02' TEST FLAG 7
TESTS EQU X'Ol' TEST FLAG 8

END

Appendix G. DOS BTAM Sample Program 169

Appendix H. as BTAM Sample Program

This OS BTAM sample program reads data from the 3735, places it in the data set that
has the ddname PRINT, then sends FDPs (if any) to the 3735. When through the program
sends the power down message to the 3735 and concludes processing.

PG3135 CSECT
PRINT NOGEN
SAVE (14,12) SAVE CALLER'S REGISTERS

ENTRI BALR BASEREG,RO ESTABLISH CSECT ADDRESSABILITI
USING *,BASEREG AND BASE REGISTER
USING IECTDECB,DECEREG
Sf SAVEREG,SAVESPOT SAVE CALLER'S SAVEAREA ADDRESS
LA SAVEREG,SAVE LOAD ADDRESS OF MI SAVEAREA
WTO 'PG3735 HAS BEGUN EXECUTION'
LA DECBREG,MIDECB
OPEN (PRINT, (OUTPUT»
OPEN (SNAPDCB, (OUTPUT)
OPEN (MYDCB)
TM OPENCHK,GOODCHK DID OPEN COMPLETE SUCCESSFULLI
BO BEGIN IF SO ISSUE READ CONNECT
WTO 'OPEN ERROR NO EXECUTION'
B EXIT

EBRBLOCK LERB 1
BEGIN EQU •

LA CTREG,TWO
BEAD MYDECB,TI,MF=E
BAL R9,TIO CHECK SIO CONDITION CODE

CKEOT EQU *
CLI ABEA,EOT HAS EOT BEEN RECEIVED
BE WTQ
PUT PRINT,AREA PRINT DATA LINE
MVI AREA, BLANK BLANK FIRST CHARACTER
MVC AREA+ONE(1LL),AREA CLEAR FIRST 256 CHARACTEBS
MVC AREA+ALL(LAST),AREA CLEAR LAST 230 CHARACTERS
LA CTREG,TWO
READ MYDECB,TT,MF=E
BAL R9,TIO CHECK SIO CONDITION CODE
B CK.EOT

WTQ WRITE MIDECB,TQ,MF=E WRITE ENQ
BAL R9, TIO
CLOSE PRINT
OPEN (DISK, INPUT)
MVI AREA,STX .

*. IF NO FDP HAS TO BE SENT CODE
** DISCO DO DUMMI
** THE FOLLOWING GET CAUSES A BRANCH TO ENDMEMB

GET DISK,DIREC FOB ONE DIRECTORI BLOCK
GET DISK,DIREC2

ENDDII EQU *
CLOSE DISK
eLC DIREC,DIIEC2
BE CLOSDIS NO FOP SENDING

Appendix H. OS BT AM Sample Program 171

LA Rl1,DIREC BEGINNING OF 256-BITE DATA AREA
AH R11,DIREC USE COUNT TO FIND END OF DATA AREA
S Rl1,LENGTH SUBTRACT LENGTH OF COUNT FIELD
MVC tIREC,DIREC+TWO
MVC ZERO(254,R11),DIREC2+TWO
LA CTREG,TWO

WTFOP WRITE MIDECB,TT,MIDCB,SENDFDP,5,MF=E PREPARE FOP SENDING
BAL R9, TIO CECK SIO CONDITION CODE
OPEN (DISKPO,INPUT)
LA R3,DIREC

FINDA MVC FINDNAME,ZERC(R3)
FIND DISKPO,FINDNAME,D

LL READ DATA,SF,DISKPO,AREA+ONE
CHECK DATA
LA CTREG,TWO
MVI AREA+477,ETB INSERT ETB CHARACTER

WTT WRITE MIDECE,TT"AREA,478,MF=E
BAL R9,TIO CHECK 510 CONDITION CODE
B LL

fNDMEMB EQU *
SR Rll,Rl1
IC R11,ELEVEN(R3) LENGTH IN HALFWORD
N R11,A31
LA R11,TWELVE~11,R11) LENGTH IN BYTE
AR R3,R11
CLC FFFF,ZERO(R3)
BNE FINDA

CLOSDIS CLOSE DISKPO
LA CTREG,TWO
WRITE MYDECB,TT,MYDCB,SENDTXT,5,MF=E END OF FOP'S
BAL R9,TIO
LA CTR EG ,TWO
WRITE MIDECB,TT,MYDCB,PWRDOWN,5,MF=E POWER DOWN TERMINAL
BAL R9,TIO
LA CTREG,TWO
WRITE MYDECE,TR,MF=E WRITE EOT
BAL R9, TIO

WTD WRITE MYDECB,TD,MF=E
BAL R9,TIO CHECK SIO CONDITION CODE
WTO 'PG3735 HAS SUCCESFULLY COMPLETED'

CLOSE EQU *
CLOSE (MYDCE) CLOSE LINE DCB
CLOSE (SNAPDCB) CLOSE THE SNAP DCB

EXIT EQU *
L SAVEREG,SAVESPOT RESTORE SAVEAREA ADDRESS
RETURN (14,12) RESTORE CALLER'S REGISTERS

TIO LTR R15,R15 EXCP ISSUED
BZ WAIT ISSUE WAIT IF GOOD SIO
WTO 'SIO WAS NOT GOOD'
SNAP ID=4,MF=(E,SDUMF) LOOK AT DEC~LAGS

B CLOSE
WAIT EQU *

WAITR 1,ECB=(DECBREG) WAIT FOR COMPLETION
TM DECTIPE+ONE,READCHK IS THIS A READ OPERATION
BZ WRTRTN IF NOT,GO TO WRITE
EJECT

172 IBM 3735 Programmer's Guide

•••••••••••••••••••••••••••••• *.** ••• *.*.
*... READ ERRORS *.*************.
****.*.***.*.****************************

TM DECSDECB,NORMAL WAS ECB POSTED NORMALLY
BNO COMPL~1 IF NOT CHECK ERROR
CLI DECFLAGS,NULL ARE ALL FLAGS ZERO
BE ZERO(R9) IF SO, CONTINUE NORMALLI
SN AP DCB=SNAPDCB, 10=5, PDATA= (REGS) , STORAGE= (ANSRLIST ;SD)
CLI DECFLAGS,GOODCHK WAS AN INVALID 10 RECEIVED
BNE WTD IF NOT DISCONNECT LINE
WTO 'AN INVALID ID WAS RECEIVED'
B WTD

COMPL41 EQU •
SNAP DCB=SNAPDCB,ID=6,PDATA=(REGS),S~ORAGE=(ANSRLIST,SD)

• DECSENSO=01 TEXT TIME-OUT IP TP OP CODE = '11'
• DECSENSO=01 NON-TEXT TIME-OUT IP TP OP CODE = '07'

TM DECSENSO,PLAGCHK WAS ERROR DATA CHECK
BNO PINISH IP NOT,PRINT ERROR MESSAGE
BCT CTREG,REPEAT FIRST DATA CHECK
B FINISH SECOND DATA CHECK

REPEAT EQU *
TM DECERRST,PLAGCHK LINE DISABLED BY ERP
BO FIN ISH
READ MYDECB,TP,MF=E
B TIO

*******************************.*******.*
**** WRITE ERRORS **********.**.*.
*************************.*.*******.****.
WRTRTN TM DECSDECB,NORMAL WAS ECB POSTED NORMALLY

*

FIN1

WRERR

FINISH

AGAIN

SDUMP

BNO WRERR IF NOT CKECK ERROR
CLI DECFLAGS,NULL ALL PLAGS ZERO
BE ZERO(R9) IF SO, CONTINUE NORMALLI
CLI DECTYPE+ONE,OPTYPE IS OPERATION WRITE ENQ
BNE WTD IF NOT, DISCONNECT THE LINE

WRONG ACK RECEIVED
CLI
BNE
BCT
EQU
SNAP
B
EQU
SNAP
CLI
BNE
TM
BO
BCT
WTO
B
WRITE
B
SNAP.
EJECT

DECFLAGS, WACKCHK
FIN1
CTREG,WTQ

*

WAS WACK RECEIVED

IES, RETRI 1 TIME

DCB=SNAPDCB,ID=7,PDATA=(REGS) ,STORAGE=(ANSRLIST,SD,
WTD

* DCB=SNAPDCB,ID=8,PDATA=(REGS),STORAGE=(ANSRLIST,SD)
DECSENSO,ERRCHK WAS ERROR TIME OUT
FINISH IF NOT PRINT ERROR MSG
DECERRST,FLAGCHK LINE DISABLED BI.ERP
PIN ISH
CTREG,AGAIN RETRI 1 TIME
'ERROR CANNOT BE HANDLED BY PROGRAM'
CLOSE
MYDECB,T,MF=E REISSUE LAST WRITE
TIO
DCB=SNAPDCB,ID=1,PDATA=(REGS),STORAGE=(ANSRLIST,SD),MF=L

Appendix H. OS BT AM Sample Program 173

•••
•••• EQUATES - REGISTERS •••••••••• ••••••••••••••••• * •••••••••••••••••••••••
RO EQU 0 REGISTER 0
R3 EQU 3 REGISTER 3
DECBREG EQU 7 REGISTER 7 - DECB REGISTER
R9 EQU 9 REGISTER 9
CTREG EQU 10 REGISTER 10 - COUNTER REGISTER
Rl1 EQU 11 REGISTER 11
BASEREG EQU 12 REGISTER 12 - BASE REGISTER
SAVEREG EQU 13 REGISTER 13 - SAVE AREA REGISTER
815 . EQO 15 REGISTER 15
•••
•••• EQUATES - CONSTANTS ••••••••••
•••
ZERO EQO 0 NOMERIC CONSTANT
ONE EQU 1 NOMERIC CONSTANT
TWO EQO 2 NUMERIC CONSTANT
ELEVEN EQO 11 NUMERIC CONSTANT
TWELVE EQU 12 NUMERIC CONSTANT
ALL EQO 256 NOMERIC CONSTANT
LAST EQO 230 NOMERIC CONSTANT
NOLL EQU X'OO' FLAG CHECK BYTE
ERRCHK EQO X'Ol' FLAG CHECK BITE
STX EQU X'02' STX CHARACTER
FLAGCHK EQU X'08' FLAG CHECK BYTE
GOODCHK EQU X'10' FLAG CHECK BITE
OPTYPE EQU X'16' FLAG CHECK BYTE
ETB EQO X'26' ETB CHARACTER
EOT EQO X'37' EOT CHARACTER
BLANK EQU X'40' SPACE CHARACTER
NORMAL EQUX'?F' FLAG CHECK BYTE
WACKCHK EQU X'CO' FLAG CHECK BITE
SAVES POT EQO SAVE+4 ADDRESS CONSTANT
OPENCHK EQU MIDCB+48 ADDRESS CONSTANT
•••
•••• DCB'S, DC'S, & ETC. • •••••••••
•••
SNAPDCB DCB DSORG=PS,RECFM=VBA,MACRF=W,BLKSIZE=1632,LRECL=125, •
PRINT DCB

DDNAME=SNAPSW,DEVD=PR
DSORG=PS,
MACRF=PM,
DDNAME=PRINT
DSORG=PS,

PHISICAL SEQUENTIAL ORGANZATION •
PUT MOVE IIACROS •

DISK DCB

DISKPO DCB

MACRF=GM,
DDNAME=DISCO,
EODAD=ENDDIR,
SINAD=DUMP2,
RECFM=U,
BLKSIZE=256
DSORG=PO,
MACRF=R,
EO DAD=EN DMEMB,
DDN AME=DISCO,
SYNAD=DOKP2

174 IBM 3735 Programmer's Guide

NAME OF DD CARD
SEQUENTIAL ORGAN~ZATION
GET MOVE
NAME OF DD CARD
END OF DIRECTORY
I/O ERROR
UNDEFINED RECORD

PARTITIONED ORGANIZATION
READ ONL I
END OF DATA SET ADDRESS
NAME OF DD CARD
I/O ERROR ADDRESS

• • • • • •
• • • •

DUMP2 ABEND 2,DUMP
DS OD

ANSRLIST DFTRMLST BSCLST,0,6,C1C1C1C1C12D,2,1010
READ MYDECB,TI,MYDCB,AREA,480,ANSRLIST,1,MP=L

KIDCB DCB DSORG=CX,DEVD=BS,KACRF=(R,W),DDNAME=TERMINAL, *
LERB=ERRBLOCK,EROPT=TC

AREA DC 4CL 120 1 I
SD DS OF
SAVE DC 18p 1 0'
DIEEC DC CL256"
DIREC 2 DC CL2 56 I I
SENDTXT DC X'0200C50026 1 SEND TEXT TO 3135 SN NE
SENDFDP DC X' 0200C60026' SEND OBJECT FDP TO 3135 *TU UT*
PWRDOWN DC XI 0200E30003 I END OF TRANSMISSION XL LB
FINDNAKE DS D (BUT LEAVE TERMINAL UP)
LENGTH DC F 1 2'
A31 DC F'31'
FFFF DC XIFFFFFFFFFFFFFFFF'
READCHK DC X'01'

LTORG
* DCBD DEVD=BS,DSORG=CX

I ECTDECB
END

Appendix H. OS BTAM Sample Program 175

Appendix I. Summary of 3735 Operating Procedures

This chart is a condensation of basic 3735 operating procedures. Complete details of
3735 operations are contained in the 3735 Operator's Guide, Order No. GA27-3061.

OPERATION SELECTION

is on and you want to:

1. Playback a record created with active FOP:
a. Press PLAYBACK.
b. Position form for its first print line.
c. Refer to II under PLAYBACK MODE.

2. Create or playback a form created with a different FOP:
a. Press LOCAL.
b. Begin ENTER FORM MODE or PLAYBACK MODE

procedure at the beginning.

3. Perform a request function:
a. Press LOCAL.
b. Refer to REQUEST MODE.

REQUEST MODE

h '*:'·."'1:';. ~~ .
. ~ LOCAL;·
~!~i.,,;'~~1'.

Key 10 of Desired
Function

Description ~:::::";'"
of. Function li~J;~::;:"
Pnnts ::::." ~-----r----~

Hold CODE Depr~
and Press CNCL FORM

No

START FROM
LOCAL MODE

Hold CODE Depressed
and press REQ

Press ENTER and
Perform Function

Appendix I. Summary of 3735 Operating Procedures 177

178 IBM 3735 Programmer's Guide

PLAYBACK MODE

Press ENTER

Three digit 10 of
first record desired.

STARTING FROM

LOCAL MODE To clear tabs: tab to
Clear Tabs If Not .,;~:::::: right margin. Hold
Already Set Correctly ';:'::::::::jj CLR depressed, and ;:====:c====:: press RETURN .

.... : Set tab and press OPER .
.,.::::::~~~~~~~~ Carrier spaces to next stop.

L.. ____ -r ____1 .. ·:··::::l After all tabs have been set,
carrier returns.

~{j\lllllll):-;··-------.,
Enter 1-__ < Do you want playback

of all records created
with this FOP?

Do you also want
all records of the
FOP which follow
Record # ?

No

Press ENTER

~. ~

J). SELECT ~
t: MODE)
~ ,-' '"r. ';; ;~

Press:
LINE to cause a I.ine
to print.
FIELD to cause a
field to print.
CHAR to cause a
character to print.
OPER to start or stop
continuous printing.

Continuous printing begins.
Press OPE R to stop.

ENTER FORM MODE

Press ENTER

Hold CODE Depressed
and Press END FORM

No

/ '//' '.
l'SELECT

f MODE 'A

V.-;,·/. ·N

STARTING FROM
LOCAL MODE

Clear Tabs If Not
Already Set Correctly

To clea r tabs: tab to
.... ::::::; right margin. Hold

.. :::::::::~:~~ CLR depressed, and
'------r------' press RETURN.

Refer to Operation
Selection on Reverse
Side

Enter three digits.
Nothing prints.

Message prints; carrier
returns and, if tabs
must be set, spaces
to first tab stop.

Set tab and press OPE R.
Carrier spaces to next stop.
After a II tabs have been
set, carrier returns.

Process each field
of the form as
required by FOP.

Form may be ended
automatically by FOP
or manually by the
END FORM key.

Yes

IBM 3735 Programmable Buffered Terminal Condensed Operating Instructions.

Appendix 1. Summary of 3735 Operating Procedures 179

INDICATED ERRORS (Keyboard is locked and a check light is on)

.-
;ALPHAI

"NUMERIC . /. "

-:
;'PROCE- ~
~. DURAL .•
.:~. .,"/y,

:.SELF
. CHECK

ILENGTH
)- ,y-AVO' •• "y.;,-

Press OPER.
Key correct character.

Press OPER.
Continue with correct operating
procedure.

Press OPER.
Verify check-digit
Re-key field.

Press OPER.
Complete entry of field. or
press FIE LD and re-key field.

; RANGE
~ .•. j"''''''';'f,'~''

,t BUFFER.
:: FULL "
>.(.n."'" ,'." u., ~

.(........
f' MACHINE!
?CHECK .: ~, •...... ,

~JI""""A!'" ·d.U.'

r"YNPUT
'f OUTPUT

Press OPER.
Re-key field.

Complete form then refer to
your Operator's Guide: Request
Mode. Communicate Mode.

Refer to your Operator's Guide:
Problem Determination.

Correct I/O device condition.

NON-INDICATED ERRORS (You have. noticed the errors)

180 IBM 3735 Programmer's Guide

In field being processed.

In a previous field on
the same line.

On a previous line (for
correction of forms already
stored, use the second
procedure I.

Use either of the following:
1. Re-key field:

a. Press FIELD.
b. Re-key.

2. Backspace for correction:
a. Backspace to error.
b. Re-key.
c. Use ADV key to reach original point.

a. Press LINE.
b. Use FIELD and CHAR keys to advance to error.
c. Re-key.
d. Press LINE.

Use either of the following:
1. Cancel form and start again:

a. Hold CODE depressed and Press CNCL FORM.
b. Insert next form.
c. Press OPER.

2. Complete form and playback for correction:
a. Complete form.
b. Insert next form.
c. Press PLA YBACK.
d. Key three digit record number.
e. Press Enter.
f. Use LINE, FIELD and CHAR to advance to error.
g. Key correction.
h. Press OPER.

Appendix J. Katakana Support Information

This appendix provides detailed information on use of the Katakana character set options
in the Form Description macros. The areas affected are:

• FDFORM macro instruction: DEVICES operand; MESSAGE operand .
• FDFIELD macro instruction: SOURCE, KIND, UL, COMPARE, IND, and PICTURE

operands.

The following paragraphs discuss the coding of each affected operand.

DEVICES = (3735 ,K [D])

The DEVICES operand is an optional operand that may be specified in the FDFORM macro.
If it is not coded, the FD macros treat all other operands as applying to the domestic 3735.
Ifit is coded as either DEVICES = (3735,K) or DEVICES = (3735,KD), the FD macros
treat all other operands as applying to the Katakana 3735. Coding the qualifier D also
causes the FD macros to display in the Assembler listing the phonetic results of character
string translation in the string-handling operands described later (MESSAGE, SOURCE,
COMPARE, and IND).

MESSAGE" (i :~1~1) 1 [, t1~ Ill}])
If Katakana has not been specified (through coding the DEVICES operand), then the
MESSAGE operand is coded as explained in the operand description in the body of this
publication. If Katakana has been specified, then the rules for encoding 'string' are
changed as follows:

1. The characters that can be printed at the 3735 are restricted to the kana characters (48
characters and the currency symbol), the arabic digits (0 through 9), the graphics
(asterisk, comma, period, and space), and the Roman alphabetic characters (A through
Z, uppercase only).

2. Doubled apostrophes in the 'string' do not signify the graphic apostrophe, but instead
divide the 'string' into alternating k-strings and r-strings, as follows:

Ok-string' 'r-string' Ok-string' 'r-string' ...

A k-string is always the first, third, or other odd-numbered division in 'string'. An
r-string is always the second, fourth, or other even-numbered division in 'string'. This
division of 'string' into k-strings and r-strings allows the FD macros to distinguish be
tween Katakana characters encoded in Roman letters (Romaji) and actual Roman
characters.

3. Kana characters will appear in the message at the 3735 if they are encoded in a k-string.
Kana characters may be coded as their assigned EBCDIC codes (that is, multi-punched),
or may be encoded in Roman letter (Romaji). The use of Romaji characters is explained
in detail in the "Character Aids" section later in this Appendix.

4. Arabic digits will appear in the message at the 3735 if they are encoded in either a k
string or an r-string. The graphic characters will appear if they are encoded in either a
k-string or an r-string, with one exception. The exception is that the first blank char
acter following a Romaji encoding in a k-string is not translated, in keeping with stan
dard practice for English transliteration of Japanese.

For example, coding MESSAGE = 'KOKOIPEIPIRASSHAI.' produces a string of 10
characters, including the period, in the 3735 message. The standard Japanese practice
of writing kana characters without spaces between words is observed. Coding
MESSAGE = 'KOKOIPIPEIPIPIRASSHAL.' produces a string of 12 characters, including
the period and the blank characters between the three words.

Appendix J. Katakana Support Information 181

182 IBM 3735 Programmer's Guide

5. Roman characters will appear in the message at the 3735 if they are encoded in an
r-string. If the message is to contain Roman characters only, then a null k-string is
required (that is, two adjacent apostrophes immediately following the left framing
apostrophe). For example, coding MESSAGE = 'BATTERII' causes the 3735 message
to produce the six kana characters that signify the Japanese word battery. Coding
MESSAGE =" 'BATTERY' produces the English word battery.iI); uppercase Roman
letters. Coding MESSAGE = ' , , BATTERY IS WRITTEN' , BATTERII' produces the
3735 message BATTERY IS WRITTEN kkkkkk, where the letters kkkkkk represent the
generated kana characters.

SOURCE = 'string'

If Katakana has not been specified, then the KIND operand is coded as explained in the
operand description in the body of this publication. If Katakana has been specified, and
SOURCE = 'string' is coded, then 'string' must follow the rules previously described for
the MESSAGE operand of FDFORM.

If Katakana has not been specified, then the KIND operand is coded as explained in the
operand description in the body of this publication. KIND may not be coded as K unless
Katakana was specified in the DEVICES operand of FDFORM, since this encoding would
erroneously request that a Katakana check be performed on a non-Katakana 3735. If
Katakana has been specified, any encoding of KIND is permitted. Coding KIND = K
restricts the incoming characters to the 49 recognized kana characters and the blank
character.

UL = ([NO] [, f NO J] ...)
[YES LYES

If Katakana has been specified in the DEVICES operand of FDFORM, any coding of the
UL operand is ignored, since the character set for the Katakana 3735 does not include the
underscore character.

COMPARE = ([FIELD,] comparopr,comparand

[, f ~=D] ,[FIELD,] comparopr ,comparand] ...)

If Katakana has not been specified, then the COMPARE operand is coded as explained in the
operand description in the body of this publication .. If Katakana has been specified, then
the format of the comparand remains the same, except that 'string' comparands must
follow the coding rules previously described for the MESSAGE operand of FDFORM.

When Katakana has been specified, and the COMPARE operand is coded, the characters
allowed in 'string' must be restricted to the valid characters permitted as input to the field
when the FDP is executed at the 3735. The permitted character sets are determined
by the coding of the KIND operand. Thus, if KIND = K is in affect, the only character
allowed in an r-string is the blank character. If KIND = A is in affect, the only character
allowed in a k-string is the blank character. If KIND = AN is in affect, the only characters
allowed in a k-string are the Arabic digits and the blank character.

IND = ((d, logexp) [,(d,logexp)] ...)

If Katakana has not been specified, then the IND operand is coded as explained in the
operand description in the body of this publication. If Katakana has been specified, then
the coding of each logical expression (logexp) must follow the rules and restrictions
defined previously for the COMPARE operand.

PICTURE = (['picture spec'] [,['picture spec']] ...)

Character Coding Aids

Katakana Display MNOTEs

Romaji Character Coding

If Katakana has not been specified, then the PICTURE operand is coded as explained in
the operand description in the body of this-publication: If Katakana has been specified,
'picturespec' must not include the characters / , + , or S. Other valid PICTURE characters
may be used normally.

The encoding (multi-punching) of Katakana characters in the EBCDIC code defined for
those characters may be diffcult for customers who lack either Katakana-featured key
punches or Katakana-featured printers on which to print the assembly listing. Without a
Katakana printer, customers will not be able to see, in the listing, the characters they
have multi-punched in their source statements. The FD macros provide two aids to
overcoming the difficulties: MNOTE messages that display the contents of each Katakana
string, and use of Romajito avoid multi-punching the Katakana characters.

These coding aids allow the forms encoder to verify the correctness of the Katakana
translation performed in processing character-string operands. If DEVICES = (3735,KD)
is coded in the FDFORM macro, then MNOTE messages describing the string are pro
duced for each character string processed in the MESSAGE operand of FDFORM, or the
SOURCE, COMPARE, or IND operands ofFDFIELD.

For example, the MNOTES might display such information as:

IDF397 START OF STRING
IDF398 DIGIT 0
IDF398 DIGIT 5
IDF399 END OF STRING

IDF397 START OF STRING
IDF398 GRAPHIC *
IDF399 END OF STRING

IDF397 START OF STRING
IDF398 ROMAN A
IDF398 ROMAN B
IDF399 END OF STRING

IDF397 START OF STRING
IDF398 HA
IDF398 N
IDF398 TO
IDF398 DATUKEN (HARD VOWEL)
IDF398 RU
IDF399 END OF STRING

The last example would result from coding SOURCE = 'HANDORU' in the FDFIELD
macro.

These coding aids remove the need for multi-punching Katakana characters, by allowing
the use of Romaji in k-strings within 'string'. The Romaji system in the FD macros is
similar to other Romaji systems, except that slight modifications have been made to
reduce ambiguities present in other systems. The following chart represents the common
Romaji and the Romaji used in the FD macros for the 49 Katakana characters permitted
with the 3735 terminal.

Appendix J. Katakana Support Information 183

184 IBM 3735 Programmer's Guide

Common Romaji FDM Romaji Common Romaji FDM Romaji

a A ha HAorWA
i I hi HI
u U fu FU.
e E or (E) he HE or E
0 0 ho HO
ka KA ma MA
ki KI mi MI
ku KU
ke KE mu MU
ko KO me ME
sa SA mo MO
shi SHI ya YA
su SU yu YU
se SE yo YO
so SO ra RA
ta TA ri RI
chi CHI ru RU
tsu TSU re RE
te TE ro RO
to TO wa WAor (WA)
na NA n NorM
ni NI (hard vowell n. a.
nu NU (soft vowell n. a.
ne NE (currency) YEN
no NO (long vowel- (YI)

"ichi")

Notes:

1. If E is coded as a separate word, with a blank character preceding and following, it is
translated as HE. You can code (E) to force translation of the other E as a separate
word.

2. If WA is coded as a separate word, with a blank character preceding and following,
it is translated as HA. You can code (JI A) to force translation of the other WA as a
separate word.

3. YEN is used to represent the currency symbol.
4. You can code (YI) to force the generation of the long vowel symbol ("ichi").
5. The hard vowel and soft vowel symbols and the terminal "n" (sometimes written as

"m" are generated in the translation of the FD macro Romaji. To force their genera
tion, you CilO encode them using the defined EBCDIC codes (multi-punching).

An additional 63 Romaji encodings are translated into two or three output characters.
These are hard and soft derivatives of the basic syllabic set presented in the previous
chart, the so-called kana compounds (syllables ending in -ya, -yu, and -yo), and the
syllables "fo" and "fa". In the following chart, "hv" represents the hard vowel symbol,
and "sv" represents the soft vowel symbol.

Common FOM Expansion Common FOM Expansion
Romaji Romaji Romaji Romaji

98 GA KA+hv kya KYA KI+YA
gi GI KI+hv kyu KYU KI+YU
gu GU KU+hv kyo KYO KI+YO
ge GE KE+hv sha SHA SHI+YA
90 GO KO+hv shu SHU SHI+YU
za ZA SA+hv sho SHO SHI+YO
ji JI SHI+hv cha CHA CHI+YA
zu ZU SU+hv chu CHU CHI+YU
ze ZE SE+hv cho CHO CHI+YO
zo ZO SO+hv nya NYA NI+YA
da OA TA+hv nyu NYU NI+YU
ji 01 CHI+hv nyo NYO NI+YO
zu OU TSU+hv hya HYA HI+YA
de DE TE+hv hyu HYU HI+YU
do DO TO+hv hyo HYO HI+YO
ba BA HA+hv my a MYA MI+YA
bi BI HI+hv myu MYU MI+YU
bu BU FU+hv myo MYO MI+YO
be BE HE+hv rya RYA RI+YA
bo BO HO+hv ryu RYU RI+YU

PI PA HA+sv ryo RYO RI+YO
pi PI Hl+sv gya GYA KI+hv+YA
pu PU FU+sv gyu GYU KI+hv+YU
pe PE HE+sv gyo GYO Kl+hv+YO
po PO HO+sv ja JA SHI+hv+YA

ju JU SHI+hv+YU
fo FO FU+O jo JO SHI+hv+YO
fa FA FU+A ja OYA CHl+hv+YA

ju OYU CHl+hv+YU
jo OYO CHl+hv+YO .. bya BYA HI+hv+YA
byu BYU HI+hv+YU
byo BYO HI+hv+YO
pya PYA HI+sv+YA
pyu PYU HI+sv+YU
pyo PYO HI+sv+YO

Notes:

1. The encodings DI, DU, DYA, DYU, andDYO are used to prevent occurrences of what
are ambiguities in common Romaji.

2. FO is expanded into FU+O, FA into FU+A.

If the Romaji encoding contains any of the doubled consonants PP, TT, KK, SS, BB,
DD, GG, or TC, the FD macros generate the character STU to represent the doubled
consonant. If N or M is doUbled, the terminal N is generated in the expansion of the
preceding syllable.

The long vowels are represented by coding a hyphen (-) after a, e, 0, and u, or by
doubling i. Coding a long vowel causes the output of the long vowel character ("ichi"),
except for the long 0, for which the output character is U.

Appendix J. Katakana Support Information 185

Appendix K. Summary of 3735 Data and Command Functions

The chart in this appendix should be helpful in pointing out where data is actually obtained
and what operations are actually performed in the three main modes" of 3735 operation
(Enter,Form, Error Correct, and Playback). The word source indicates that the data is
obtained from the source specified in the FDP. The word disk indicates that the data is
obtained from the data records on the customer area of the 3735 disk file.

Function 3735 Operating Mode

Enter Form Error Correct Playback

SOURCE

1. FlO, RSN, 'string', CTR, source source source
lOR

2. STG source source disk

3. INa, RDR, LPB, CCR source disk disk

SINK

1. STG, INa stored stored not stored

2. PCH, LPB stored stored stored

FUNCTION PERFORMED

Counter operations yes yes yes
Indicetor operations yes yes yes
Selectric print (sink) yes yes yes
Clear STG, INa yes no no
Clear PCH, LPB, lOR, CCR yes yes yes
Send (Inquiry operation) yes no no
Read RDR yes no no
Read IDR yes yes yes
Read CCR yes no no
Punch 5496 cards yes yes yes
Print 3286 data yes yes yes
Skip (3286) yes yes yes
Skipto (3286) yes yes yes

Appendix K. Summary of 3735 Data and Command Functions 187

Appendix L. CPU Data File Load or Update

The FDLOAD macro allows you to write an FDP that can use CPU-generated data to
load or update the 3735 disk storage file when the File Storage capability is present. To
load or update the file from CPU data you must have (1) data records in a standard for
mat that have been transmitted from the CPU and (2) an FDP with only FDFORM,
FDLOAD, and FDEND macros to load the file with the data records. You may transmit
these data records to the 3735 with the same program that transmits FDPs provided the
records follow the FDP transmission immediately. You may also transmit these records
with a separate transmitting program. For more information concerning transmitting
programs, refer to the sample BT AM program in Appendix G and Appendix H.

The CPU-generated data records should be in the following format for transmission to
the 3735:

I" ~ 476 Bytes ·1
Ir-T-X-T-I F-'-Dl-'--Ke-y-1"TI-D-a-ta-1"TI-K-e-y2-'Ir-Da- ta-2......-41 ; : I Keyn 1 Datan 1 Keye 1 Datae 1 ETX

1 TX 1 Keyl Datal I Key2 I Data2 1 : f f 1 Keyn 1 Datan 1 Keye 1 Datae 1 RS 1 ETX I

I TX I FID2 Keyl 1 Datal 1 Keye 1 Datae 1 RS 1 FID31 Keyl 1 Datal 1 Key2 1 ETX 1

ITX 1 Data2 :: 1 Keyn I Datan 1 Keye 1 Datae 1 RS I ETX I
where

FID

Keyn - Datan
Keye - Datae

RS
ETX

is the 3-digit form ID of the FDLOAD FDP that is to read the data records
and write them on the 3735 disk storage file.
represents the la~t record of a logical file.
represents the dummy record whose key matches the string ~ecified in
the ENDCHAR operand of the corresponding FDLOAD macro and signals
the end of the logical file.
represents the record separator character X' 1 E '.
is the end-of-text control character.

To load or update the file with the preceding data would require three FDLOAD
FDPs, assuming that each FID is different. The first FDP (FIDl) would have two
FDLOAD macros, one for each logical fIle. The following two FDPs (FID2 and FID3)
would have only one FDLOAD macro each.

Example:
Suppose that you have the following data records:

1. a month-by-month table look-up file and a customer name file.
2. an inventory file.
3. an employee file.

I STX 1 570 1 01 1 January 1 02 1 February I ;: 112 I December 19919 J'1f'kS 1 ETX I

ISTX 111231 ABC Company 123691 XYZ Company 145131 PTR, Inc. I ZZZZ 1 ETX I

Appendix L. CPU Data File Load or Update 189

190 IBM 3735 Programmer's Guide

I STX I Diane I * .. I 25 Blar~ Characters I X· 1 E' I ETX I
, The section of code for the FDPs that load the ftle might be as follows:

FILELOAD FDFORM FID = '570' ,MODE = LOAD

CUSFILE

INVLOAD
INVFILE

EMPLOAD

EMPFILE

FDLOAD KEYLEN = 2 ,DATALEN = 9 ,ENOCHAR = ' 99 '
FDLOAD KEYLEN = 4 ,DATALEN = 124 ,ENOCHAR =' ZZZZ'
FDEND
FDFORM FID = ' 680 ' ,MODE = LOAD
FDLOAD DATALEN = 40 ,KEYLEN = 5 ,ENOCHAR = ' 11111 '
FDEND
FDFORM FlD = ' 158 ' ,MODE = LOAD ,MESSAGE = (' EMPLOYEE

FILE LOAD FDP ')
FDLOAD KEYLEN = 3 ,DATALEN = 25
FDEND

If this is the first load operation to the ftle since the last ftle purge or terminal control
program system generation, the data records are written to the ftle in the order that they
are processed. If a record being loaded has the same key as a record already existing in
the file, the old record is overlayed with the new one. Both of these records should be
the same length. All new records (without matching keys) being added to an already
existing ftle are written follOwing the last existing record in the ftle.

*

**

**

**

**

**

Appendix M. 3735 Supported Graphic Charactan

SEL 5496 3286 XMIT SEL 5496 3286
KEY PUNCH PRINT HEX KEY PUNCH PRINT

00 q Q Q
05 r R R
00 ± SP -
15 s 5 5
16 t T T
1C u U U
1E v V V
25 w W W

SP SP SP 40 x X X
4A y Y Y
4B z Z Z
4C [SP -

(((40] SP -
+ + + 4E A A A

4F B B B
& & & 50 C C C
! ! I SA 0 0 0
$ $ $ 5B E E E
* * * 5C F F F
))) 50 G G G
i i i 5E H H H

SF I I I
- - - 60 **
/ / / 61 J J J
, , , 6B K K K
% % % 6C L L L
- - - 60 M M M

6E N N N
? ? ? 6F 0 0 0

iI iI
7A

7B
P P P
Q Q Q

@ @ @ 7C R R R
I I I 70 5 5 5
= = = 7E T T T
" " " 7F U U U
a A A 81 V V V
b B B 82 W W W
c C C 83 X X X
d 0 0 84 Y Y Y
e E E 85 Z Z Z
f F F 86 0 0 0
9 G G 87 1 1 1
h H H 88 2 2 2
i I I 89 3 3 3
i J J 91 4 4 4
k K K 92 5 5 5
I L L 93 6 6 6
m M M 94 7 7 7
n N N 95 8 8 8
0 0 0 96 9 9 9
p P P 97

*Valid text transmission characters without associated graphics.

**See 5496 Read.

EBCDIC Code

XMIT 5496 SEl 3286 XMIT
HEX READ PRINT PRINT HEX

98 ¢ - ¢ 4A
99 < - < 4C
9E II - " 4F
A2, - -, 5F
A3 > - > 6E
A4
A5

) - - DO

A6
A7
A8
A9
AD
BO
C1
C2
C3
C4
C5
C6
C7
C8
C9
DO
01
02
03
04
05
06
07
08
09
E2
E3
E4
E5
E6
E7
E8
E9
FO
F1
F2
F3
F4
F5
F6
F7
F8
F9

Appendix M. 3735 Supported Graphic Characters 191

*

SEL 5496 3286 XMIT SEL 5496 3286 XMIT 5496
KEY PUNCH PRINT HEX KEY PUNCH PRINT HEX READ

00
08

= = = 3D

> > > 3E)
09 ? ? ? 3F --,
OA @ @ @ 40 ~
OD A A A 41
1C B B B 42
IE C C C 43

SP SP SP 20 D D D 44
! ! ! 21 E E E 45

" " " 22 F F F 46
23 G G G 47
$ $ $ 24 H H H 48
% % % 25 I I I 49
& & & 26 J J J 4A
I I I 27 K K K 4B
(((28 l l l 4C
))) 29 M M M 4D
* * * 2A N N N 4E
+ + + 2B 0 0 0 4F
, , , 2C P P P 50
- - - 2D Q Q Q 51

2E R R R 52
/ / / 2F S S S 53
0 0 0 30 T T T 54
1 1 1 31 U U U 55
2 2 2 32 V V V 56
3 3 3 33 W W W 57
4 4 4 34 X X X 58
5 5 5 35 Y Y Y 59
6 6 6 36 Z Z Z SA
7 7 7 37 [SP [5B
8 8 8 38 \ SP \ 5C
9 9 9 39 J SP] 5D
: : : 3A 1\ SP 1\ 5E
; ; ; 3B - - - SF
< < < 3C ** - 7D

Notes:

1. ASCII transmission code is available for the Unites States and Canada only.

2. ASC II transmission code supports alphabetic upper case only. If lower
case characters are received from the line, they are folded to upper case.

3. A mono case print element for the Selectric is provided as standard with
ASCII transmission code. A dual case element is available as a special
feature. The dual case element differs from the mono case as follows:

Dual case has upper and lower case alphabetic characters.
Dual case does not have the \ character.

*Valid text transmission characters without associated graphics.

**See 5496 Read.

ASCII Code

192 IBM 3735 Programmer's Guide

SEL 3286 XMIT
PRINT PRINT HEX

- - 5C
- - 7D
- - 2D
- - 2D

Glossary

The following terms are defined as they are used in this manual. If you do not find the
term you are looking for, refer to the Index or to the IBM Data Processing Glossary,
Order No. GC20-1699.

IBM is grateful to the American National Standards Institute (ANSI) for permission to
reprint its definitions from the American National Standard Vocabulary for Information
Processing (Copyright © 1970 by American National Standards Institute, Incorporated),
which was prepared by Subcommittee X3.S on Terminology and Glossary of American
National Standards Committee X3.

Access lines: The communication lines that join the central computer and the remote
terminal to common-carrier exchange equipment.

Access method: Any of the data management techniques available to the user for trans
ferring data between main storage and an input/output device.

Application program: Any program written by a user that applies to his own work.

Assemble: To prepare a machine language program from a symbolic language program by
substituting absolute operation codes for symbolic oper~on codes and absolute or
relocatable addresses for symbolic addresses. * \

Assembler: A computer program that assembles. *

Batch terminal: A terminal that accumulates and groups a number of input items to be
sent to a central computer at one time for processing.

Binary synchronous communications (BSC): Data transmission in which character
synchronization is controlled by timing signals generated by the device that originates
a message (and the device that obtains the message recognizes the sync pattern at the
beginning of the transmission - the devices are locked in step with one another).

Branch: (1) A set of instructions that are executed between two successive decision
instructions. (2) To select a branch as in (1). (3) A direct path joining two nodes of a.
network or graph. (4) Loosely, a conditionaljump.*

BSC: See binary synchronous communications.

Buffer: A routine or device used to compensate for difference in rate of flow of data, or
time of occurrence of events, when transmitting data from one device to another. *

Central processing unit: (ISO). A unit of a computer that includes.circuits controlling
the interpretation and execution of instructions. (Synonymous with "main frame".)*

Common carrier: A company which furnishes communications services to the general
public, and which is regulated by appropriate local, state, or federal agencies.

Communication lines: A medium over which data signals are transmitted.

Control character: A character whose occurence in a particular context initiates, modifies,
or stops a control operation - for example, a character to control carriage return. *

CPU: see central processing unit.

"'American National Standard definition.

Glossary 193

194 IBM 3735 Programmer's Guide

Data set: (1) The major unit of data storage and retrieval in the operating system, con
sisting of a collection of data in one of several prescribed arrangements and described by
control information to which the system has access. (2) A device which performs the
modulation/demodulation and control functions necessary to provide compatibility
between business machines and communication facilities.

Delimiting macro: The FDEND Form Description macro statement that closes the des
cription of each form and prepares for a form description that may follow.

FD macro: see Form DeSCription macro.

FD utility: see Form DeSCription utility.

FDP: see form description program.

File: A collection of related records treated as a unit. For example, one line of an invoice
may form an item, a complete invoice may form a record, a complete set of such records
may form a file, the collection of inventory control files may form a library, and the
libraries used by an organization are known as its data bank. *
Form Description macro: One of a set of specialized macro instructions with which a
forms encoder can describe symbolically the structure of a data processing form, the
characteristics of each field on the form, and the processing to be done on each field by
the 3735 terminal and its operator.

Form description program: A set of control information interpreted or executed by the
3735 terminal or other processor as the complete set of instructions for processing one
type of form.

Form Description utility: A computer program that. restructures one or more object
modules obtained from the assembly of FD macro statements into program blocks and
writes the blocks into a user-specified data set.

Forms encoder: A person who designs and defines forms by coding Form Description
macro statements.

Identification (ID) characters: Characters sent by a BSC terminal on a switched line to
identify the terminal.

Keyword operand: An operand whose functions and meaning are known by its use of a
special word (the keyword).

Linkage Editor: A processing program that prepares the output of language translators
for execution. It combines separately produced object or load modules; resolves symbolic
cross references among them; replaces, deletes, and adds control sections, and generates
overlay structures on request; and produces executable code (a load module) that is ready
to be fetched into main storage.

Macro instruction: An instruction in a source language that is equivalent to a specified
sequence of machine instructions. *
MNOTE message: A message appearing on the diagnostic listings that result from the
assembly of macro statements. The message provides diagnostic information regarding
coding errors in the macro statements and provides descriptive information for verifying
the correctness of each macro specification.

Modulo: The remainder after any division has been performed.

Multipoint line: A communication line or circuit that connects more than one terminal;
also known as multidrop line.

*American National Standard dermition.

Nonswitched line: A communication line that connects a terminal aDd the computer for
a continuous period or for regularly recurring periods of time at stated hours for the
exclusive use of one installation; also known as a private, leased, or dedicated line.

Object module: A module that is the output of an assembler or compiler and is input to a
linkage editor. *

Operand: That which is operated upon. An operand is usually identified by an address
part of an instruction. *

Point-ta-point line: A communication line that connects a single remote terminal to the
computer. It may be either switched or nonswitched.

Positional operand: An operand whose function and meaning are known by its position
in relation to other operands.

Procedural macro: The FDCTRL Form Description macro that enables the checking of
terminal control program status.

Promotability: The ability of a keyword operand to be coded in some particular macro
instruction and also to be coded in one or more macros of higher authority.

Resource: Any facility of the computing system or operating system required by a job or '
task, and including main storage, input/output devices, the central processing unit, data
sets, and control processing programs.

Scope: The extent of a structural FD macro instruction through the form description
until the same type of macro statement (or a macro statement of a higher level) appears
later in the description.

Sink: Pertaining to the destination of field data in a form description program.

Source: Pertaining to the origin of field data in a form deSCription program.

Structural macro: One of four Form Description macro statements (FDFORM, FDPAGE,
FDLINE, or FDFIELD) that define the structural organization of a form and the process
ing required by each field in the form.

Suboperand: A sub field of an operand.

Summary block: A group of form lines that are specified so as to follow a cyclically
repeated group of FD macros a fIXed number of form lines beyond the end of the repeated
group.

Switched line: A communication line on which the connection between the computer and
a remote terminal is established by dialing; also known as a dial or dial-up line.

TCP: see terminal control program.

Telecommunications: Pertaining to the transmission of signals over long distances, such as
by telegraph, radio, or television. *

Teleprocessing: A form of information handling in which a data processing system utilizes
communication facilities. (Originally an IBM trademark.)

Terminal: A point in a system at which data can enter, leave, or enter and leave.*

Terminal control program: The microcoded program recorded in the terminal control
unit during manufacture of the 3735 that interprets FD programs as a set of directions
for processing one type of form and provides detailed terminal control.

Transmission: The electrical transfer of a signal, message, or other form of intelligence
from one location to another.

*American National Standard definition.

Glossary 195

Bibliography

The following are publications referred to in the body of this programmer's guide. This
list is annotated to refer readers who need further information about 3735 operation~,
telecommunications access methods, or System/360 and System/370 data processing
techniques to the appropriate manuals.

General Information - Binary Synchronous Communications, Order No. GA27-3004.
This publication describes the Binary Synchronous Communication (BSC) procedures
in general terms. The major topics covered are: BSC concepts (including transmission
codes and data-link operation), message formats, additional data-link capabilities, and
planning considerations. Readers should be familiar with the concepts presented in
this publication before attempting to establish a teleprocessing network that includes
3735 terminals as remote stations.

IBM 3735 Programmable Buffered Terminal:

Concept and Application, Order No. GA27-3043. This publication provides an intro
duction to the 3735. Readers should be familiar with the concepts presented in it
before attempting to use this programmer's guide to design and implement form
description programs that support 3735 operations.

Operator's Guide, Order No. GA27-3061. This publication contains detailed operating
instructions for the 3735.

Operating System (OS):

PL/I Reference Manual, Order No. GC28-820l. This publication describes the rules for
writing PL/I programs fOr compilation under the OS F-Ievel compiler. While some
application programs designed to process 3735-collected data may be written in PL/I,
the sections in this publication of primary interest to the user of this programmer's
guide will be the discussion of the PL/I PICTURE specifications.

Assembler Language, Order No. GC28-6514. This publication contains specifications
for the OS Assembler Language (including macro instructions and conditional assembly
facilities). Although knowledge of Assembler Language is not required to code the
Form Description macro instructions, BTAM application programs are written in
Assembler Language. In addition, this publication describes the Assembler listing
control instructions that may be used to control the appearance of FD macro output
listings.

Assembler (F) Programmer's Guide, Order No. GC26-3756. This publication provides
information on program assembling, linkage editing, executing, interpreting listings,
and assembler programming.

Linkage Editor and Loader, Order No. GC28-6538. This publication describes the
operation of the Linkage Editor and Loader programs under the System/360 and
System/370 Operating System. Readers will find this publication useful when they
want to establish or modify a library of application programs to support the 3735
data gathering operations.

TCAM Programmer's Guide and Reference Manual, Order No. GC30-2024. This
publication is a reference manual and coding guide for the programmer who must
construct or modify a TCAM Message Control Program (MCP), or who must write a
TCAM-compatible application program. Readers should be familiar with the concepts
and macro instructions in this publication before attempting to use TCAM to control
teleprocessing between a CPU and a 3735.

Bibliography 197

198 IBM 3735 Programmer's Guide

Basic Telecommunications Access Method, Order No. GC30·2004. This publication
describes the Basic Telecommunications Access Method (BTAM) used with the
System/360 and System/370 OS control program. BTAM provides the READ/WRITE
level macro instructions for the assembler-language programmer who is implementing
programs for telecommunications applications. Readers should be familiar with the
contents of this publication before attempting to use BT AM to control teleprocessing
activity between a CPU and a 3735.

Disk Operating System (DOS):

PL/I Subset Reference Manual, Order No. GC28·8202. This publication describes the
rules for writing PL/I subset programs for compilation under the DOS D-Ievel compiler.
While some application programs designed to process 3735-collected data qlay be
written in PL/I, the sections in this publication of primary interest to t4e user of this

. programmer's guide will be the discussions of the PL/I PICTURE specifications.

Assembler Language, Order No. GC24-3414. This publication contains specifications
for the DOS Assembler Language (including macro instructions and conditional
assembly facilities). Although knowledge of Assembler Language is not required to
code the Form Description macro instructions, BTAM application programs are
written in Assembler Language. In addition, this publication describes the Assembler
listing control instructions that may be used to control the appearance of FD macro
outpuflistings.

System Control and Service Programs, Order No. GC24-5036. This publication
describes the set of control programs and processing programs that make up the Disk
Operating System. Readers should be especially fartliliar with the sections in this
publication that discuss multiprogramming and telecommunications.

Basic Telecommunications Access Method, Order No. GC30-500 1. This publication
describes the Basic Telecommunications Access Method (BTAM) used with the
System/360 and System/370 DOS control program. BTAM provides the READ/WRITE

. level macro instructions for the assembler-language programmer who is iinplementing
programs for telecommunications applications. Readers should be familiar with the
contents of this publication before attempting to use BT AM to control teleprocessing
activity between a CPU and a 3735.

Data Management Concepts, Order No. GC24-3427. This publication describes the file
formats, labeling procedures, and access methods available in DOS. Readers should be
familiar with the concepts presented in this publication before attempting to use the
DOS FD utility to create their ISAM file of form description programs.

A
abort conditions

receive 98
sending' 95

access lines. defined 193
access method, defined 193
access methods, telecommunications
accumulations

in counters 29
FOCTRL 60

of batch totals 62
ADD (addition) operations

FDCTRL 60
FDFIELO 29

addition (see ADD 9perations)
algorithms. self-checking 109
alphabetic characters

defined 7
in names 7

application program. defined
application programs 100

for batch processing 104
for inquiry operations 103
relating to form 102
teleprocessing 6

arithmetic operations
FDCTRL 59
FDFIELD 28

ASCII code chart 94

119

ASCII graphic character chart 192
assemble. defined 193
assembled FOPs. checking of
assembler. defined 193

76

6

assembler character-handling limitations
assembling. form description macros 76
assembly

of macros
DOS JCL for 78
OS JCLfor 77

assembly considerations
DOS 78
OS 77

authority. of macros 8
Automatic Answer feature 2

B
backward references

specifying. with GOTO 68
with SA VELOC 20

9

Basic Partitioned Access Method (BPAM) 85
basic storage capacity. IBM ·3735 Programmable

Buffered Terminal 2
batch data

accumulating 62
specifying 53

BATCH operand. FDFIELD 53
batch processing 104
batch terminal, defined 193
batch totals. accumulating 62
bibliographic references 197
binary synchronous communication. use of 91
binary synchronous communication (BSC) 4

defined 193
blanks

leading, control of 49
trailin~. elimination of 14
use of In macro coding 8

block counting 92
blocks

FOP unpacked
DOS 87
OS 83

transmission 98
BPAM (Basic Partitioned Access Method) 85
branch

defined 193
example of 22

branch (continued)
with GOTO

use of 23
68

branches, specifying 68
BSC (see binary synchronous communication)
BTAM 92
BT AM sample program

DOS 165
OS 171

buffer, defined
buffered sinks
buffered sources
buffers

193
45

36

clearing 66
defining'limits of 14

BUFFERS operand, FDFORM
bypassed fields 102

C

14

calculation, of numeric self-check digit 109
CANCEL command 68
card files, successive, in 5496 64
card format, macros 7
carriage control 16

in Selectric message 97
repetition factor 16

carriage control characters. transmission of
cataloged procedure

for assembly 76
for OS utility 80

cataloging FOPs, at 3735
CCR buffer 39

96

central processing unit, defined
chained operands 9

example 9
chaining, of operands 9
character codes. 3735 93

193

character set checking 41
character-handling limitations. assembler
characters

carriage control
coding special

checking
assembled FOPs

16
II

76
character set 41
CPU ID 95
DOS utility 87
for count hmits 41
for particular characters
format 92
OS utility 83
transmission 92

CLEAR command 66
clearing buffers 66
clearing counters 59
code generation, assembly
codes. transmission 92

43

76

coding aids, Katakana 183
coding conventions 7
coding special characters
column 16, significance of
column 72. significance of

II
7
7

combined operations 104
COMMAND operand, FDCTRL
COMMAND suboperands

CANCEL 68
CLEAR 66
DISC 67
GETKEY 66
PRINT 66
PUNCH 66
PURGE 66
READ 64
SEND 67
SKIP 67
SKIPTO 67
STOP 68
WRITE 65

63

9

94

Index

Index 199

commands, use of 63
commas, use of in macro codin, 8
comments, use of in macro codlOg 8
common carrier, defined 193
communication

multipoint 91
point-to-point 91
procedures 93
special features 91
with IBM System/360 2
with IBM System/370 2

communication line
defined 193
holding open 104

COMPARE operand, FDFIELD 43
comparing data strings 43
completion of transmission 95
compression. of received data 98
condensation. of transmitted data 13
condensing transmitted data 13
condition codes, use of 80
configuration, IBM 3735 Programmable Buffered

Terminal 2
considerations

multipoint network 102
storage

DOS 106
OS 106
3735 105

switched network 101
system generation 104

continuation characters. macro coding 7
control

carriage 16
during assembly 78
during utility execution 81'
of IBM 3286 printer output 15

control character. defined 193
control stee

DOS utility 87
introduction 5
OS utility 83

controllin~ excessive print element motion 56
controls. listing 7
core image library space. for DOS utility 85
count. CYCLE 24
count limits. setting and checking 41
COUNT operand. FDFlELD 42
counter operations

FDCTRL 59
FDFlELD 28

counters
as data sinks 44
as data sources 35
clearing 59
maximum values 60
using in arithmetic operations 59

counting. block 92
CPU (see central processing unit)
CPU data

example 189
file load or update 189
read format 189

CPU to 3735 transmission 95
CSECTs

input to DOS utility 87
input to OS utility 83

CTR operand
FDCTRL
FDFlELD 28

CYCLE
count 24
limit 24
target 25

CYCLE operand
FDCTRL 69
FDFlELD 32
FDLlNE 24

cyclic repetition. of lines 24

D
data batch

accumulating 62

200 IBM 3735 Programmer's Guide

data batch (continued)
specifying 53

data condensation 13
data destinations 43
data flow

through Assembler 78
through DOS utility 88
throu~h OS utility 82

data origms 33
data set, defined 194
data sinks 43
data sources 33
DCB information, for STG.SYSLIB 84
decisions, making 57
delimiting macro 71

defined 194
design

form 7
system

considerations in 91
introduction 6

destinations, of data 43
DEVICES operand, FDFORM 14
diagnostic macro 5
diagnostic messages

DOS utility 159
OS utility 153

directory expansion, 3735 disk 98
DISC command 67
disk read errors, 3735 95
disk use, 3735, when receiving 98
DIV (divide) operations

FDCTRL 59
FDFIELD 30

division (see DIV and DVR operations)
DOS utility

diagnostic messages 159
JCLfor

create a file 85
update a file 86

use of 85
DOS utility control step 87
DOS utility link-edit step 89
DOS utility storage step 90
DTFIS information, DOS utility 90
dummy pages 18
duplicate FOP numbers 12
duplicate names

in DOS 87
in OS 80

DV~ (divide-and-round) operations
FDCTRL 59
FDFIELD 30

E
EBCDIC code chart 93
EBCDIC graphic character chart 191
editing

of numeric data 49
of output data 48

editing operands 49
positional dependence 49

efficient branching, with SA VELOC 20
emitted data source 35
entry

name 5
operation 5

EOF condition on 5896, testing for 58
errors

checking for in form description utility 79
3735 disk read 95

estimates, storage 105
excessive print element motion. controlling 56
expansion, directory, 3735 disk 98
extended storage capacity. IBM 3735 Programmable

Buffered Terminal 2

F
FD macros (see form description macros)
FD utility (see form description utility)
FDCTRL

coding 57
format of 112

fdctrl, introduction 5
FDCTRL

operands
. COMMAND 63
CTR 59
CYCLE 69
GOTO 68
IF 58
IND 61
SAVELOC 69
TOTAL 62

FDEND
coding 71
format of 112

fdend, introduction 5
FDFIELD

coding 29
format of 112

fdfield. introduction 5
FDFIELD

operands
BATCH 53
COMPARE 43
COUNT 41
CTR 28
CYCLE 32
field location 28
FILL 49
IND 30
JUSTIFY 49
KIND 41
PICTURE 49
SAVELOC 33
SELFCHK 41
SINK 43
SOURCE 33
UL 49

FDFORM
coding 13
format of 12

fdform, introduction 5
FDFORM

operands
BUFFERS 14
DEVICES 14
FID 12
HTAB 17
MESSAGE 16
MODE 15
MRGSTOP 16
OBJECT 15
PACKING 13

required operands 12
FDLINE

coding 21
format of 21

fdline, introduction 5
FDLINE

operands
CYCLE 24
HMRG 23
line number 21
SAVELOC 26
SKIP(d) 23
WIDTH 23

FDLOAD, format of 112
fdload, introduction 5
FDLOAD

operands
DATALEN 70
ENDCHAR 70
KEYLEN 70

fdm
delimiting, fdend 5
diagnostic, fdsyntax 5
introduction 5
procedural 5

fdetrl 5
fdload 5

structural 5
fdfield 5
fdform 5

fdm (continued)
fdline 5
fdpage 5

type!! 5
FDP (see form description program)
FDPAGE

coding 19
format of 18

fdpage, introduction 5
FDPAGE

operands
HEIGHT 19
page number 18
SAVELOC 20
VMRG 19

FDPs, cataloging at 3735 96
FDSYNT AX. coding 71
fdsyntax, introduction 5
fdu

introduction 5
steps 5

feature indicators 58
features

IBM 3735 Programmable Buffered Terminal 2
optional

conditional branching 30
CPU data load or update 189
File Storage 4
File Storage with numpad 4
index counters 35,45

FID operand, FDFORM 12
field formats, for text transmission 100
field location, defining 28
field location operands, FDFIELD 28
fields, bypassed 102
file; defined 194
file load of CPU data 189
File Storage capabilities 4
file update of CPU data 189
FILL operand, FDFlELD 49
form, relating application program to \02
form description macro, defined 194
form description program

defined 194
writing a 7

form description program message format 96
form description utility

defined 194
operations 79
use of 79

form design
general 7
3286 15

form records \02
example \03

format
message

form description program 96
ID list 97
inquiry 99
power down 97
Selectric 97
terminate communicate mode 97
text 98

of text sent to 3735 100
output of DOS utility control step 89
output of OS utility control step 84

format checking 92
format conventions, macros \0
format summary, macros III
forms encoder, defined 194

G
generation of code, assembly 76
GETKEY command 66
GOTO operand. FDCTRL 68
graphic characters

ASCII 192
EBCDIC 191

Index 20]

H
header

inquiry message
format 99
in INQ buffer 46
inserted by SEND 67

height, specifying 19
HEIGHT operand, FDPAGE 19
HMRG operand, FDLlNE 23
horizontal margins, setting 23
horiz.ontal tabular stops 17
HTAB operand, FDFORM 17

I
IBM 3286 Printer adapter feature 2
IBM 3286 Printer Model 3

form design IS
platens IS

IBM 3735 Programmable Buffered Terminal
configuration 2
features 2
functions 1
interaction with CPU 4
introduction 1
operating environment 2
storage capacity

basic 2
extended 2

transmission speeds 2
IBM 5496 Data Recorder adapter feature 2
10 list message format 97
10 reader (see Operator Identification

Card Readerfeature)
identification characters, defined 194
identifiers. message type 96
lOR buffer 39
IF operand, FDCTRL 58
IND operand

FDCTRL 61
FDFIELD 30

index counters
sinks 45
sources 35

Indexed Sequential Access Method (ISAM) 90
indicators

feature 59
program logic. in FDFIELD 30
setting of 61

input data verification 41
INQ buffer

as sink 46
as source 37

inquiry message biock, length 99
inquiry message format 99
inquiry operations 99

application programs for 103
three-minute timeout 67
user responsibilities 100

interaction. IBM 3735 and CPU 4
invalid CPU 10 95
I/O buffer (lOB)

as sink 47
as source 38

I/O buffer record format
I/O operations; performing 64
ISAM (Indexed Sequential Access Method) 90

J
JCL

for DOS assembly 78
for DOS form description utility

create a file 85
update a file 86

for OS assembly 77
for OS form description utility 80

JUSTIFY operand. FDFIELD 49

K
Katakana code. specifying 14
Katakana support. detailed information 181
keyboard. as data source 33

202 IBM 3735 Programmer's Guide

keylock feature 2
keyWord operand, defined t 94
keyword operands 7

sink 43
source 33

KIND operand, FDFlELD 41

L
levels, of program control
levels of authority, macros
limit, CYCLE 24

4
8

line numbers, specifying 21
line printer buffer (LPB) ·14
linenum operand, FDLlNE 21
lines

coding out of sequence
maximum number of

linkage editor, defined
link-edit step

DOS utility 89
introduction 6
OS utility 83

listing controls 7

21
21

194

loading CPU data into a file
logic indicators

189

program
in FDFIELD 30
setting in FDCTRL
testing in FDCTRL

logie path, FDP 72
logic segment, FOP
logic terms

FDCTRL
EOF(RDR)
IND(d) 57
TIMEOUT

LPB buffer
as sink 47

38 as source

M
macro

delimiting 71
diagnostic 5

macro chaining 9

72

58

58

61
59

macro format summary III
macro instruction, defined 194
macros

assembly of 76
FD (see fdm)
form description, format summary III
procedural SS
structural II

making decisions S8
margin stop, setting 16
meaning, of status bytes 99
message

operator
controlling format of 15
defining 15

reducing transmitted length 102
message format

form description program 96
10 list 97
inquiry 99
power down 97
Selectric 97
terminate communicate mode 97
text 98

message length, reducing 102
MESSAGE operand, FDFORM 16
message type identifiers 96
messages .

diagnostic
DOS utility 159
OS utility 153

error, form description macros (see MNOTEs)
MNOTE 119
status 98

minimizing excessive print element motion 56
MNOTE message. defined 194
MNOTE messages, form description macros 119

MNOTES 119
MODE operand, FDFORM 15
modulo, defined 194
modulo-IO checking algorithm 109
modulo-II checking algorithm 109
MPY (multiply) operations

FDCTRL 59
FDFIELD 29

MRGSTOP operand. FDFORM 16
multiplication (see MPYoperations)
multipoint communication feature 2
multipoint line. defined 194
multipoint network considerations 102

N
name entry, macro statement 5
nonblank characters. for continuation 7
non-buffered sinks 44
non-buffered sources 33
nonsequential processing

control of
with GOTO 68
with IF 58

specifying
with GOTO 68
with IF 58

with CYCLE 24
with lines out of sequence 21
with SAVELOC 20

nonswitched line. defined 195
null FDFIELD statement 57
NULL sink 44
numeric self-checking algorithms 109

o
object module. defined 195
OBJECT operand. FDFORM 15
on-line processing 103
operand. defined 195
operand chaining 9
operand entry. macro statement 5
operand promotion 8

use of 8
operands

editing 48
input data verification 40
keyword 7
output data editing 48
positional 7
promotable 8
sink 43
source keyword 33

operating environment. IBM 3735 2
operating procedures. 3735 177
operation entry. macro statement 5
operations

arithmetic. on counters 59
combined 104
form description utility 79
inquiry 99

Operator Identification Card Reader feature
optional features

conditional braching 30
CPU data load or update 189
File Storage 4
File Storage with numpad 4
index counters 35,45

origins. of data 33
OS utility

diagnostic messages 153
JeL for 80
use of 80

OS utility control step 83
OS utility link-edit step 83
OS utility storage step 84
output data editing 48
output format

DOS utility control step 87
OS utility control step 83
3286 15

2

P
PACKING operand, FDFORM 13
page height, maximum 19
page numbers, specifying 18
pagenum operand, FDPAGE 18
pages, maximum) 8
path, in an FDP 72
PCH buffer 46
PICTURE characters

drifting 52
insertion 5)
required 50
sign 53
summary of 50
zero suppression 5)

PICTURE operand. FDFIELD 49
platens. 3286 15
point-to-point line, defined 195
positional operand. defined 195
positional operands 7
positional significance. of sinks 44
power down message format 97
PRINT command 66
print element motion. excessive. control of
printing data 66
procedural macros 55

defined 195
procedures, communication 93
processing

batch 104
nonsequential

with CYCLE 24
with lines out of sequence 21

on-line 103
program control. levels 4
program logic indicators

in FDCTRL
setting 61
testing 59

in FDFIELD 30
program support. for IBM 3735 Programmable

Buffered Terminal 4
programs

application 100
relating to form 102

promotability, defined 195
promotable operands 8
promotion. of operands 8
PUNCH command 66
PURGE command 66

Q
qualifiers

sink 44
source 33

R
RDR buffer 37
READ command 63
read/punch buffer. specifying 14
received abort conditions 98
record format, I/O buffer 48
record sequence number. use of 36
records. form 102
references. bibliographic) 97
repeating lines. with CYCLE 24
repetition factor·

carriage control 15
restriction 97

REPLACE option. OS utility 80
replacing FDPs

at 3735 93
in DOS file 87
in OS file 80

required operands. FDFORM 12
resource. defined 195
response

inquiry 99
in INQ buffer 46
within three minutes 67

56

Index 203

RomaJi character coding 183
rounding-off (see DVR operations)
RPB buffer

as sink 47
as source 38

RPLACE option, DOS utility 87

S
sample program

DOSBTAM 165
OSBTAM 171

sample programs
DOS BTAM 165
FD macros 113
OSBTAM 171

SAVELOC operand
FDCTRL 69
FDFIELD 33
FDLlNE 26
FDPAGE 20

scope, defined 195
segment, in an FOP 72
Selectric message format 97
Selectric print element motion, controlling 56
Selectric printer-keyboard 1
Selectric sink 44
self-check digit, generating 109
self-checking, numeric data 41
self-checking algorithms 109
SELFCHK operand, FDFIELD 41
SEND command 67
sending abort conditions 95
setting count limits 41
setting indicators 30
severity codes, MNOTEs 119
sink. defined 195
sink keyword operands 43
SINK operands, FDFlELD 43
sink qualifiers 44
sinks

buffered 45
non-buffered 44
positional significance 44

SKIP(d) operand, FDLlNE 23
SKIP command 67
SKIPTO command 67
source. defined 195
source keyword operands 33
SOURCE operands, FDFIELD 33
source qualifiers 33
source. restriction 33
sources

buffered 36
non-buffered 33

special characters
ASCII graphic 192
coding II
EBCDIC graphic 191

speeds. transmission. IBM 3735 Programmable
Buffered Terminal 2

status messages 98
STG.SYSLIB DCB information 84
STG buffer

as sink 46
as source 37

STOP command 68
stops, tabular 17
storage capacity

basic terminal 2
extended 2

storage considerations
DOS 106
OS 106
3735 105

storage estimates 105
storage step

DOS utility 90
introduction 6
OS utility 84

structural macro. defined 195
structural macros II
SUB (subtract) operations

FDCTRL 59

204 IBM 3735 Programmer's Guide

SUB (subtract) operations (continued)
FDFIELD 29

suboperand, defined 195
subtraction (see SUB operations)
successive card files, in 5496 64
summary

macro formats 111
of FD macro formats 111
Gf 3735 data and command functions 187
of 3735 operating procedures 177

summary block
defined 195
defining 26
example of 26

switched line, defined 195
switched network considerations 101
synchronous clock feature 2
system design

considerations in 91
in,troduction 6

system generation 104

T
tabular stops. setting 17
target. CYCLE 25
TCAM 92
TCP (see terminal control program)
telecommunications

access methods 91
defined 195

teleprocessing, defined 195
temporary keys, use of. in DOS utility 87
temporary names, use of, in OS utility 83
terminal, defined 195
terminal control program. defined 195
terminate communicate mode message format 97
text message, format 98
text transmission 100
three-minute timeout 67
TIMEOUT condition. testing for 58
timeouts 92

three-minute 92
TMTsink 44
TOT AL operand, FDCTRL 62
totals, batch 53
trailing blanks, eliminating 14
transmission

checking 92
codes 92
completion of 95
CPU to 3735 95
defined 195
text 100
3735 to CPU 93

transmission blocks 98
transmission codes

ASCII 94
EBCDIC 93

transmission speeds, IBM 3735 Programmable
Buffered Terminal 2

U
UL operand, FDFIELD 49
unpacked code, assembly of 77
updating a CPU-data file 189
user responsibilities. during inquiry operations 100
utility. form description (see form description utility)

V
verification, of input data 40
vertical margins

maxima 19
setting 19

VMRG operand, FDPAGE 19

W
WIDTH, specifying 23
WIDTH operand, FDLlNE 23
WRITE command 65

J S
3286 (see IBM 3286 Printer Model 3) 5496 (see IBM 5496 Data Recorder)
3735 (see IBM 3735 Programmable Buffered Terminal)
3735 disk use, when receiving 98
3735 to CPU transmission 93

Index 205

• • • •
READER'S COMMENT FORM

IBM 3735 Programmer's Guide
(OS and DOS System)

• How did you use this publication?

As a reference source
As a classroom text
As.·

o o
o

• Based on your own experience, rate this publication ...

As a reference source:
Very Good Fair
Good

As a text:
Very Good Fair
Good

Poor

Poor

Order No. GC30-300l-2

Very
Poor

Very
Poor

• What is your occupation?•.....................

• We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address .

• Thank YOU for your coooeration. No DOstal!e necessary if mailed in the U.S.A.

GC30-3001-2

YOUR COMMENTS, PLEASE. . •

Your answers to the questions on the back of this form, together with your comments,
help us produce better publications for your use. Each reply is carefully reviewed by the
persons responsible for writing and publishing this material. All comments and sugges-

. tions become the property of IBM.

Please note: R.equests for copies of publications and for assistance in using your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY •••

I BM Corporation
P. O. Box 12275
Research Triangle Park
North Carolina 27709

Attention: Publications Center, Dept. E01

n
<:: ...
»
0"
:::l

'" c:
:::l
CD

I
I
I
I

Fold I ___ .J

FIRST CLASS
PERMIT NO. 569
RESEARCH TRIANGLE PARK
NORTH CAROLINA

.,---

I
I
I

I
I
I
I
I
I
I

----.----- - - - - - -------- - ------------ --- - ----I
Fold

International B ne .. Machines Corporation
Data Proc ng DiYIBIon
1133 Weatch r Avenue, White Plains, New York 10804
(U.s.A. only)

IBII World Trade Corporation
821 United Nellons Plaza, New'York, New York 10017

. (I IonaO

Fold

GC30-3001 -2

International Business Machines COqK)ration
Data Processing Division -
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

co
s:
W
-...J
W "-"'" CJ'1
-0 -.
0

<.0 -.
OJ

3
3
(t)

-'.

'" G)
c
0:
(t)

-0
~.
:l
~
(t)

a.
:l

C
en
l>

G)
('")
w
9 w
0
0
-'

~

