
Systems

GC30-3003-2
File No. 5360/5370-30

IBM 3704 and 3705
Communications Controllers
Assembler Language

Preface

This publication is a reference manual for the systems pro
grammer, the systems engineer and the applications program
mer coding in the IBM Communications Controller Assem
bler Language. This language is slmilar to the language
associated with the operating system assemblers (OS, DOS,
OS/VS, DOS/VS) upon which the communications con
troller assembler is based.

Chapter 1 introduces the assembler language and de
scribes the major differences between the language and the
operating system assembler language. Chapter 2 presents
basic assembler language concepts. Chapter 3 describes
instruction alignment, machine instruction mnemonics,
machine formats and briefly describes the extended
mnemonics. Chapter 4 discusses the instructions to the
assemblers, including symbol definition, data definitions,
program sectioning and linkages, symbolic linkages, base
register instructions, listing control and program control
instructions. Chapter 5 describes the macro language and
conditional assembly language.

Third Edition (May 1975)

Appendixes A through E contain a summary of assem
bler language features and usage. Appendix F describes
the job control language and the storage requirements
necessary to produce an assembly, and Appendixes G, H,
and I contain messages and codes helpful in debugging a
source program.

Before using this publication, the reader should be
familiar with basic programming concepts and techniques.
The prerequisite publication is Introduction to the IBM
3704 and 3705 Communications Controllers, GA27-30S 1.
Corequisite to this publication is the IBM 3704 and 3705
Communications Controllers Principles of Operation,
GC30-3004.

The contents of this publication apply to OS, OS/VS,
DOS and DOS/VS users except as noted in the text.

This is a major revision of, and obsoletes, GC30-3003-1. Refer to the Summary of
Amendments in this manual for a list of changes.

Changes are periodically made to the information herein; before using this publica
tion in connection with the operation of IBM systems, consult the latest IBM
System/370 Bibliography (Ge20-0001) and associated technical newsletters
for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

This manual has been prepared by the IBM System Communications Division, Publica
tions Center, Department EOl, P.O. Box 12195, Research Triangle Park, No~th
Carolina 27709. A form for reader's comments is provided at the back of this publi
cation. If the form has been removed, comments may])e sent to the above address.
Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972, 1973, 1975

Chapter 1: Introduction .
The Assembler Program
The As,sembler Language .

Machine Operation Codes.
Auxiliary Functions and Programmer Aids
Macro Instructions. .
Uses of the Assembler .

Chapter 2: Assembler Language Coding and Structure
Assembler Language Coding Conventions
Assembler Language Structure
Terms.

Symbols. .
Self-defining Terms. . .
Location Counter Reference . .
Symbol Length Attribute Reference .
Terms in Parentheses

Expressions . .
Evaluation of Expression
Absolute and Relocatable Expressions

Chapter 3: IBM Communications Controller Machine
Instructions •.• • •

Instruction Alignment and Checking .
Operand Fields and Subfields. . .
Machine Instruction Mnemonic Cod~s
Machine Instruction Examples

RR Format .
RS Format .
RSA Format.
RT Format .
RI Format
RA Format .
RE Format
EXIT Format

Extended Mnemonic Codes

Chapter 4: IBM Communications Controller Assembler
Instructions •

Program Sectioning. .•....
Communication Between Parts of a Program.

The Source Module .. .
The Beginning of a Source Module
The End of a Source Module

COpy (Copy Predefined Source Code) Instruction.
END (End Assembly) Instruction.

Defining a Control Section. .
Types of Control Sections. .
Control Section Location Counter
First Executable Control Section.
Optional Instructions That Must Precede First Control

Section. •
START (Start Assembly) Instruction . .
CSECT (Identify Control Section) Instruction
Unnamed First Control Section
DSECT (Identify Dummy Section) Instruction .
COM (Defme Blank Common Control Section)

Instruction.
Defining External Dummy Sections (OS/VS Only) .

DXD (Define External Dummy Section)
. Instruction. . . . • • . •
CXD (Reserve Storage for External Dummy Section

Length) Instruction

1:-1
1-1
1-1
1-1
1-1
1-2
1-2

2-1
2-1
2-1
2-1
2-1
2-2
2-3
2-3
2-3
2-4
2-4
2-4

3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-3
l·3
3-3
3-3
3-4
3-4
3-4

4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-2

4-3
4-3 •
4-3
4-4
4-4

4-5
4-5

4-5

4-5

Contents

Addressing
Addressing Within a Source Module: Establishing

Addressability . .
USING (Use Base Register) Instruction .
DROP (Drop Base Register) ~ .

Addressing Between Source Modules: Symbolic Linkage
ENTRY (Identify Entry-Point Symbol) Instruction
EXTRN (Identify External Symbol) Instruction
WXTRN (Identify Weak External Symbol)

Instruction .
Symbol and Data Definition . . .

Defining Symbols
EQU (Equate Symbol) Instruction
EQUR (Equate Symbol to Register Expression)

Instruction .
Defining Data

DC (Define Constant) Instruction
Operand Sub field 1: Duplication Factor
Operand Subfield 2: Type
Operand Subfield 3: Length .
Operand Subfield 4: Constant
Complex Relocatable Expressions
DS (Define Storage) Instruction .
Using the Duplication Factor to Force Alignment .
CW (Define Control Word) Instruction .

Controlling the Assembler Program ;
Structuring a Program .

ORG (Set Location Counter) Instruction
CNOP (Conditional No Operation) Instruction .

Determining Statement Format and Sequence .
ICTL (Input Format Control) Instruction
ISEQ (Input Sequence Checking) Instruction

Listing Format and Output. •.
PRINT (Print Optional Data) Instruction
TITLE (Identify Assembly Output) Instruction.
EJECT (Start New Page) Instruction.
SPACE (Space Listing) .

Punching Output Cards. .
PUNCH (punch a Card) Instruction .
REPRO (Reproduce Following Card) Instruction .

Redefining Symbolic Operation Codes (OS/VS Only) .
OPSYN (Defme Symbolic Operation Code)

Instruction . .
Saving and Restoring Programming Environments

(OS/VS Only). . . . •
PUSH (Save Cwrent PRINT/USING Status)

Instruction. . . •
POP (Restore PRINT/USING Status) Instruction .

Chapter 5: The Communications Controller Assembler Macro

4-6

4-6
4-6
4-6
4-6
4-7
4-7

4-7
4-8
4-8
4-8

4-8
4-8
4-8
4-9
4-9
4-9
4-10
4-11
4-il
4-12
4-12
4-13
4-13
4-13
4-14
4-14
4-14
4-14
4-15
4-15
4-15
4-16
4-16
4-16
4-16
4-16
4-17

4-17

4-17

4-17
4-17

Facility • 5-1
Introduction. 5-1

The Macro Instruction Statement . 5-1
The Macro Definition 5-1
The Macro Library (System Source Statement Library) 5-1
Varying the Generated Statements 5-1
Variable Symbols 5-2

Types of Variable Symbols 5-2
Assigning Values to Variable Symbols 5-2
Global SET Symbols 5-2

The Macro Definition • .•••.. 5-2
Macro Definition Header (MACRO) Instruction 5-2
Macro Definition Trailer (MEND) Instruction . 5-2

Contents iii

Prototype Statement 5-2 ~CLA, LCLB, LCLC (Declare Local SET Symbol)
Alternate Statement Format 5-3 Instructions 5-18

Symbolic Parameters 5-3 GBLA, GBLB, GBLC (Declare Global SET Symbol)
Positional Parameters 5-4 Instructions 5-18
Keyword Parameters 5-4 Using Local and Global SET Symbols 5-19
Concatenating Symbolic Parameters 5-5 Subscripted SET Symbols . S-21

Model Statements 5-5 Assigning Values to SET Symbols 5-21
Name Field 5-6 SET A (Set Arithmetic) Instructions 5-21
Operation Field . 5-6 Evaluation of Arithmetic Expressions 5-22
Operand Field 5-6 Using SETA Symbols 5-22
Comments Field. 5-6 SETC (Set Character) Instruction. 5-23

Processing Statements 5-6 Type Attribute 5-23
Conditional Assembly Instructions 5-6 Character Expression 5-23
Inner Macro Instructions 5-6 Substring Notation . 5-24
COpy Instruction . 5-6 Using SETCSymbois 5-24
MNOTE (Request Macro Error Message) Instruction 5-7 SETB (Set Binary) Instruction 5-25
MEXIT (Macro. Defmition Exit) 5-7 Evaluation of Logical Expressions 5-25

Comments Statements . 5-8 Using SETB Symbols 5-26
System Variable Symbols 5-8 Branching 5-26

&SYSDATE-Current Date (OS and OS/VS Only) . 5-8 AIF (Conditional Branch) Instruction 5-26
&SYSECT -Current Control Section . 5-9 AGO (Unconditional Branch) Instruction 5-27
~SYSLIST -Macro Instruction Operand . 5-9 ACTR (Conditional Assembly Loop Counter)
&SYSNDX-Macro Instruction Index . . . 5-10 Instruction . 5-28
&SYSPARM-Pass System Parameter (OS/VS and ANOP (Assembly No Operation) Instruction 5-28

DOS/VS Only) . 5-10 Conditional Assembly Elements 5-29
&SYSTIME-Current Time of Day (OS and OS/VS

Only) 5-11
Listing Options (OS/VS Only). 5-11 Appendix A: Communications Controller Assembler

LIBMAC Option 5-11 Feature Comparison A-I
MCALL Option . 5-11

The Macro Instruction . 5-11 Appendix B: Instruction Formats B-1
Statement Format 5-11

Alternate Statement Format 5-11 Appendix C: Summary of Constants C-1
Macro Instruction Operands 5-11
Omitted Operands 5-12 Appendix 0: Assembler Instructions 0-1
Operand Sublists 5-13
Nesting in Macro Instructions . 5-13 Appendix E: Macro Language Summary £01

Inner and Outer Macro Instructions 5-13
Levels of Nesting 5-14 .Appendix F: Job Control Statements and

The Conditional Assembly Language . 5-14 Storage Requirements F-1
Elements and Functions 5-14
Conditional Assembly Instructions 5-14 Appendix G: Communications Controller

SET Symbols 5-1S Assembler Messages-OS and DOS G-1
Declaring SET Symbols 5-15
Using Variable Symbols 5-15

Appendix H: Communications Controller Data Attributes . 5-16
Type Attribute (T') • 5-16 Assembler Messages-DOS/VS H-1
Length Attribute (L') 5-16
Count Attribute(K') 5-17 Appendix I: Communications Controller
Number Attribute (N~) . 5-17

Assembler Messages-OS/VS • Sequence Symbols 5-17 I-I

iv Contents

Illustrations

Figure Title Page Figure Title Page

3-1 Meanings of Instruction Operand Fields 3-2 5-1 MACRO Instruction 5-2
3-2 Register-to-Register (RR) Format. 3-2 5-2 MEND Instruction 5-2
3-3 Register-to-Storage (RS) Format 3-2 5-3 Macro Instruction Prototype Statement 5-2
3-4 Register-to-Storage with Additional Operation 5-4 COpy Instruction 5-6

(RSA) Format 3-3 5-5 MNOTE Instruction 5-7
3-5 Branch Operation (RT) Format 3-3 5-6 MEXIT Instruction . 5-7
3-6 Register-to-Immediate-Operand (RI) Format. 3-3 5-7 Macro Instruction Format 5-11
3-7 Register-to-Immediate-Address (RA) Format. 3-3 5-8 LCLA, LCLB, LCLC Instructions. 5-18

3-8 Register-to-External-Register (RE) Format 3-4 5-9 GBLA, GBLB, GBLC Instructions 5-18

3-9 Exit Format . 3-4 5-10 SET A Instruction 5-21

3-10 Extended Mnemonics 3-4 5-11 SETC Instruction 5-23
5-12 SETB Instruction 5-25

4-1 COpy Instruction 4-1 5-13 AIF Instruction . 5-27

4-2 END Instruction 4-2 5-14 AGO Instruction 5-27

4-3 ST AR T Instruction . 4-3 5-15 ACTR Instruction 5-28

4-4 CSECT Instruction 4-3 5-16 ANOP Instruction 5-28

4-5 DSECT Instruction 4-4 5-17 Elements of Conditional Assembly

4-6 COM Instruction 4-5 Instructions 5-29

4-7 DXD Instruction 4-5

4-8 CXD Instruction 4-6 B-1 Instruction Formats B-1

4-9 USING Instruction 4-6

4-10 DROP Instruction 4-6 C-l Summary of Constants . C-l

4-11 ENTR Y Instruction . 4-7

4-12 EXTRN Instruction . 4-7 D-l Assembler Statements D-2

4-13 WXTRN Instruction 4-7

4-14 EQU Instruction 4-8 E-l Macro Language Elements E-l

4-15 EQUR Instruction 4-8 E-2 Conditional Assembly Expressions E-2

4-16 DC Instruction 4-8 E-3 Data Attributes . E-2

4-17 Type Codes for Constants 4-9 E-4 Variable Symbols E-3

4-18 DS Instruction 4-12
4-19 CW Instruction 4-13 F-I Job Control Statements for Assembly

4-20 ORG Instruction 4-13 under OS . F-l

4-21 CNOP Instruction 4-14 F-2 Job Control Statements for Assembly

4-22 ICTL Instruction 4-14 under DOS and DOS/VS F-2

4-23 ISEQ Instruction 4-14 F-3 Job Control Statements for Assembly

4-24 PRINT Instruction 4-15 under OS/VS F-3

4-25 TITLE Instruction 4-15 F-4 The Assembler Options (OS/VS) F-4

4-26 EJECT Instruction 4-16 F-5 Assembler Data Set Characteristics-OS/VS F-7

4-27 SP ACE Instruction 4-16 F-6 Work Space for Assembly under OS and

4-28 PUNCH Instruction . 4-16 OS/VS F-9

4-29 REPRO Instruction. 4-16
4-30 OPSYN Instruction . 4-17
4-31 PUSH Instruction 4-17
4-32 POP Instruction . 4-17

IBM Communications Controller programs' are written in a
symbolic language. Source program statements coded in
this language must be translated into communications con
troller machine language before program execution. The'
communications controller assemblers are available to
assemble programs written In communications controller
assembler language. In their" external structure, the com-

o munications controller assemblers are very similar' to the
IBM {)S,DOS, OS/VS, and DOS/VS assemblers referred
to collectively in this book as operating sys~em assemblers.
Some of the major differences between the communications
controller assembler and the operating system assemblers
are:

• no literals are permitted.

• no floating point arithmetic· instructions are permitted.

• new machine operation codes are provided.'

(See Appendix A for a detailed comparison of IBM assem
bler features, and Appendix B for a listing of the Com
munications Controller mnemonics.)

THE ASSEMBLER PROGRAM

The assemblers translate source statements into machine
language, assign storage locations to instructions and other
elements of the program, and perform auxiliary assembler
functions that you can designate. These functions parallel
the types of functions performed by the OS and DOS as
semblers. The output of the assembler program is the
object module. The object module is in the input format
required by the linkage editor or loader component of
the operating system.

THE ASSEMBLER LANGUAGE

The assembler language is based on a collection of mne
monic symbols that represent:

• IBM Communications Controller machine-language
operation codes.

• Auxiliary functions to be performed by the assemblers.

This language is augmented by other symbols which you can
use to represent storage addresses or data. The assembler
language also enables you to define and use macro
instructions.

Chapter 1: Introduction

Machine Operation Codes

The assembler language contains 51 machine instructions.
These are represented to the assembler by mnemonic opera
tion codes, usually followed by one or more operands. It
also provides extended mnemonic codes for certain Branch
and certain Store instructions.

The majority of the machine instructions are register
oriented. 'That is, they represent operations involving two
registers, a register and immediate data, or a register and a
storage 'area. The assembler converts the machine instruc
tions into two or four bytes of object code, depending on
the length assigned to the particular operation code ..
Chapter 3 gives the machine instruction mnemonic codes,
examples of machine instructions for each instruction
format, and a list of extended mnemonics for certain
Branch and certain Store instructions. Appendix B lists
all of the machine instructions and gives the format code,
mnemo'nic, and operand format for each.

Auxiliary Functions and Programmer Aids

The assembler language contains mnemonic assembler
instruction operation codes by which you may instruct
the assembler program to perform auxiliary functions; these
functions will have no effect on the machine language object
program produced.

Instructions to the assembler are written as assembler
pseudo operation codes, with or without operands. These
instructions perform such functions as delimiting the
beginning and end of sections of code, defining data areas,
and specifying base registers. (See Chapter 4 for a detailed
description and Appendix D for a summary.)

In addition, the instructions to the assembler provide the
following auxiliary functions to aid you in writing your
programs:

• Variety in data representation: In writing source state
ments, you may use decimal, binary, hexadecimal or
character representation of machine language binary
values. (See Chapter 4 and Appendix C for more detail.)

• Relocatability: The assemblers allow symbols to be
defined in one assembly and referred to in another, thus
linking separately assembled programs. This permits both
reference to data and transfer of control between pro
grams. (See Addressing Between Source Modules:
Symbolic Linkage in Chapter 4.)

Introduction 1-1

• Program listings: The assemblers produce a listing of
the source program statements and the resulting object
program statements it assembles. You can partially
control the form and the content of each listing. (See
Listing Format and Output in Chapter 4.)

• Error indications: The assembler analyzes each source
program for actual and potential errors in the u&e of the
language. Detected errors are indicated in the program
listings. (See Appendixes G, H, and I for messages pro
duced as a result of error.)

Macro Instructions

The macro language provides a convenient way to generate -
a desired sequence of assembler language statements that
may be needed at more than one point in a program.

The macro language simplifies the coding of programs,
red uces the chance of programming errors, and ensures that
standard instruction sequences are used to accomplish
desired functions.

Another facility of the macro language is called condi
tional assembly. This allows you to include in your source
program some statements that mayor may not be assem
bled, depending upon conditions evaluated at the time the
program is assembled. These conditions are usually values
that may be defined, set, changed, and tested during the
assembly process. You may code conditional-assembly
statements both within source program statements and
within macro definitions. (See Chapter 5 for a more
detailed description and Appendix E for a summary of
the macro language.)

1-2 IBM 3704 and 3705 Assembler Language

Uses of the Assembler

The uses of the communications controller assembler include:
(1) preassembling user-written block handling routines, and
(2) assembling the control program ge~eratiOfl macros and
application-dependent modules during the control program
generation procedure.

The assembler enables you to add, to the IBM-supplied
Network Control Program (NCP) modules, block handling
routines (BHRs) that are unique to your applications. Using
the controller assembler language, you code BHRs to process
the data in message blocks going to or coming from start-stop
and/or BSe stations. Then you use the assembler to create
object modules that are stored in the same library with the
IBM-supplied NCP obj~ct modules. At NCP generation time,
if you J.1ave coded the appropriate macros, the BHRs you have
written are lin~-edited together with the IBM modules to
form the NCP loa~ module.

The assembler is also used to assemble emulation program
modules during the generation procedure. While the emulation
program does not require alteration to perform its function,
you could assemble and link-edit your code into the emula
tion program using this assembler.

ASSEMBLER LANGUAGE CODING CONVENTIONS

The coding conventions for the communications controller
assembler language are the same as for the operating system
assembler languages. For a review of these conventions, see
OS Assembler Language, GC28-:6514 or OS/VS-DOS/VS
VM/370 Assembler Language (GC334010).

ASSEMBLER LANGUAGE STRUCTURE

The basic structure of the language is as follows:

A source statement comprises:

• A name entry (usually optional). Must begin in column
one and end before column nine. The name entry must
begin with an alphabetic character.

• An operation entry (required). Must be preceded and
followed by a blank.

• An operand entry (usually required). Must be preceded
and followed by a blank.

• Comments entry (optional).

A name entry is:

• A symbol.

An operation entry is:

• A mnemonic operation code representing a machine,
assembler, or macro instruction operation.

An operand entry is:

• One or more operands, each comprising one or more
expressioI\s which, in turn, contain a term or an arithmetic
combination of terms.

TERMS

This chapter explains how you can use terms and arithmetic
combinations of terms in instruction operands.

Every term represents a value. The assembler may assign
this value (symbols, symbol length attribute, location counter
reference) or the value may be inherent in the term itself
(self-defining term). The communications controller assem
blers do not permit the use of literals.

The assemblers reduce an arithmetic combination of
terms to a single value.

The types of terms and the rules for their use are described
in the following text.

Chapter 2: Assembler Language Coding and Structure

Symbols

A symbol is a character or a combination of characters used
to represent locations or arbitrary values. Symbols, through
their use in name fields and in operands, provide you with an
efficient way to name, and to refer to, a program element.

The three types of symbols are: ordinary, variable, and
sequence.

• Ordinary symbols are used as name entries or operands;
they must conform to these rules:

The symbol must not consist of more than eight char
acters. The first position must be an alphabetic
character; the other positions may be any combina
tion of alphameric representation.
A symbol can have no special character or blanks.

ill the following text, the unqualified word symbol refers to
an ordinary symbol.

• Variable symbols are used within the source program or
macro definition to assign different values to one symbol.
Begin Variable symbols with an ampersand (&), followed
by one to seven alphameric characters, the first of which
must be alphabetic. A complete description of variable
symbols appears in Chapter 5: The IBM Communications
Controller Assembler Macro Facility.

• Sequence symbols consist of a period (.), followed by
one to seven letters and/or numbers, the first of which
must be alphabetic. Use sequence symbols to indicate
the position of statements within the source program or
macro definition. Through their use you can vary the
sequence in which the assembler processes statements.
A complete discussion of sequence symbols appears in
Chapter 5: The IBM Communications Controller
Assembler Macro Facility.

Defining Symbols: The assemblers assign a value to each
symbol appearing as a name entry in a source statement. The
values assigned to symbols naming storage areas, instructions,
constants, and control sections are the addresses of the left
most bytes of the storage fields containing the named items.
Since the addresses of these items may change with program
relocation, the symbols naming them are relocatable terms.

A symbol used as a name entry in the Equate Symbol
(EQU) assembler instruction is assigned the value designated
in the operand entry of the instruction. Since the operand
entry may represent a relocatable value or an absolute (that
is, unchanging) value, the symbol is considered a relocatable
term or an absolute term, depending upon the value it is
equated to.

Assembler Language Coding and Structure 2-1

A symbol used as a name entry in the Equate Symbol
to Register Expression (EQUR) assembler-instruction is
assigned the value of the grouping in the operand field. A
register expression defines a particular byte of a register.
The symbol is considered to be neither absolute nor relocat
able. Its occurrence in an expression is governed by the
special rules described under EQUR (Equate Symbol to
Register Expression) Instruction, in Chapter 4.

The value of a symbol may not be negative and may not
exceed 218 _1, or 262,143.

Note: The assembly program always verifies that
the value of a symbol is not negative and not larger
than 218 -1. However, for 3704s and models of the
3705, without extended addressing, 218 _1 exceeds
the addressable storage range. The difference between
the limit of storage and the maximum address allowable
in the register (218_1) is an area which will cause an
addressing exception. See Introduction to the IBM
3704 and 3705 Communications Controllers,
GA27-3051 for a discussion of models and storage
capacities by model. For a discussion of extended
addressing, storage addressing, and address exception,
see IBM 3704 and 3705 Communications Controllers
Principles of Operation, GC30-3004.

A symbol is said to be defined when it appears as the
name of a source statement.

Symbol definition also involves the assignment of a
length attribute to the symbol. (The assembler maintains
an internal table-the symbol table-in which the values
and attributes of symbols'are kept. When the assembler
encounters a symbol in an operand, it refers to the
assembler tables for the value associated with the symbo1.)
The length attribute of a symbol is the length, 'in bytes,
of the storage field whose address is represented by the
symbol. There are exceptions to this rule: for example, in
the case where a symbol has been defined by an EQU
instruction to location counter value (EQU*) or to a self
defining term, the length attribute of the. symbol is 1.
These and other exceptions are noted under the applicable
instructions. Regardless of the number of tim~s the con
stant is generated, the length attribute is never affected.

General Restrictions on Symbols: A symbol may be
defined only once in an assembly. That is, each symbol
used as the name of a statement must be unique within
that assembly. However, a symbol may be used in the
name field more than once as a control section name (that
is, defined in the START, CSECT, or DSECTassembler
statements) because the coding of a control section may
be suspended and then resumed at any subsequent point.
The CSECT or DSECT statement that resumes the section
must be named by the same symbol that initially named
the section; thus, the symbol that names the section must
be repeated. Such usage is not considered to be a dupli
cation of a symbol definition.

2-2 IBM 3704 and 3705 Assembler Language

Self-Defining Terms

A self-defining term is one whose value is inherent in the
term. It is not assigned a value by the assemblers. For
example, the decimal self-defining term 15 represents a
value of 15. The length attribute of a self-defining term
is always 1.

The four types of self-defining terms are: decimal, hexa
decimal, binary, and character. Use of these tenns is spoken
of as decimal, hexadecimal, binary, or character representa
tion of the machine-language binary value or bit configura
tion they represent.

Self-defining terms are absolute terms since the values
they represent do not change upon program relocation.

Using Self-Defining Terms: Self-defining terms are the
means of specifying machine values or bit configurations
without equating the values to symbols and using the
symbols.

Self-defining terms may be used to specify such program
elementsas immediate data, masks, registers, addresses, and
address increments. The type of term selected (decimal,
hexadecimal, binary, or character) depends on what is being
specified.

The use of a self-defining term is distinct from the use
of data constants. When a self-defining term is used in a
machine-instruction statement, its value is assembled into
the instruction. When a data constant is referred to in the
operand of an instruction, its address is assembled into the
instruction. Self-defining terms are always right-justified;
truncation or padding with zeros, if necessary, occurs on
the left.

Decimal Self-Defining Term: A decimal self-defining term
is an unsigned decimal number written as a sequence of
decimal digits. High-order zeros may be used· (for example,
007). A decimal self-defining term is assembled as its binary
equivalent. A decimal self-defining term may not consist of
more than six digits or exceed 262,143 (218_1); (Note that
this limit is lower than that imposed by the operating sys
tem assemblers.) Some examples of decimal self-defining
terms are: 8, 147,4092, and 00021.

Note: For the 3704 and models of the 3705 without
.extended addressing, a decimal self~defining term may
not consist of more than four digits or exceed 65,535
(216_1). See also Extended Addressing, Storage
Addressing, and Address Exception in the publication,
IBM Communications Controller Principles a/Operation,
GC30-3004.

Hexadecimal Self-Defining Term: A hexadecimal self
defining term consists of one to five hexadecimal digits
enclosed by apostrophes and preceded by the letter X:
X'C49'. A hexadecimal term may not exceed X'3FFFF'
(2 18 _1).

Note: For models without extended addressing, a hexa
decimal term may not exceed X'FFFF' (216 _1).

Binary Self-Defining Term: A binary self-defining term is
written as an unsigned sequence of Is and Os enclosed in
apostrophes and preceded by the letter B, as follows:
B'10001101'. This term would appear in storage as shown,
occupying one byte. A binary term may have up to 18 bits
represented, or as noted above, 16 bits for machines with
out extended addressing.

Character Self-Defining Term: A character self-defining
term consists of one or two characters enclosed by apos
trophes. It must be preceded by the letter C. All letters,
decimal digits, and special characters may be used. In
addition, any of the remainder of the 256 EBCDIC charac
ters may be designated in a character self -defining term.
Examples of character self-derming terms are as follows:

C'/, C" (blank) (apostrophes are a 5-8 punch)
C'AB' C'13'

Because of the use of both apostrophes in the assembler
language and ampersands in the macro language as syntactic
characters, observe the following rule when using these charac
ters in a character term.

For each apostrophe or ampersands desired in a character
self-defining term, you must write two apostrophes or amper
sands. For example, you code the character value A' as 'A"';
for an apostrophe followed by a blank, you code '" '. Code
two ampersands-&&-in order for one & to be a self-defining
term.

Each character in the character sequence is assembled as
its eight-bit code equivalent. The two apostrophes or amper
sands that must be used to represent an apostrophe or amper
sand within the character sequence are assembled as one
apostrophe or ampersand.

Location Counter Reference

The Location Counter: A location counter is used to assign
storage addresses to program statements. As each machine
instruction or data area is assembled, the location counter is
first adjusted to the proper boundary for the item, if adjust
ment is necessary, and then incremented by the length of the
assembled item. Thus, it always points to the next available
storage location. If the statement is named by a symbol, the
value attribute of the symbol is the value of the location
counter after boundary adjustment, but before addition of
the length.

The assembler maintains a location counter for each con
trol section of the program and manipulates each location
counter as previously described. Source statements for
each section are assigned addresses from the location
counter for that section. The location counter for each
successively declared control section assigns locations in
consecutively higher areas of storage. Thus, if a program
has multiple control sections, all statements identified as
belonging to the first <;ontrol section will be assigned from
the location counter for section 1, the statements for the
second control section will be assigned from the location
counter for section 2, etc. This procedure is followed
whether the statements from different control sections are
interspersed or written in control section sequence.

The location counter setting can be controlled by using
the START and ORG assembler instructions. The counter
affected by either of these assembler instructions is the
counter for the control section in which they appear. The
maximum value for the location counter is 218 _1.

You may refer to the current value of the location
counter at any place in a program by using an asterisk as a
term in an operand. The asterisk represents the location of
the first byte of currently available storage (that is, after
any required boundary adjustment). Using an asterisk as
the operand in a machine-instruction statement is the same
as placing a symbol in the name field of the statement and
then using that symbol as an operand of the statemen t.
Because a location counter is maintained for each control
section, a location counter reference designates the location
counter for the section in which the reference appears. A
location counter reference may not be used in a statement
which requires the use of a predefined symbol, with the
exception of the EQU and ORG assembler instructions.

Symbol Length Attribute Reference

The length attribute of a symbol (the length in bytes) may
be used as aterm. Reference to the attribute is made by
coding L', followed by the symbol, as in:

L'BETA

The length attribute of BETA will be substituted for the
term.

Note: The length attribute of * is equal to the length of
the instruction in which it appears, except inEQU to *,
in which case the length attribute is 1.

Terms in Parentheses

Terms in parentheses are reduced to a single value; thus, the
terms in parentheses, in effect, become a single term.

Arithmetically combined terms, enclosed in parentheses,
may be used in combination with terms outside the par
entheses, as follows:

14+BETA-(GAMMA-LAMBDA}

Assembler Language Coding and Structure 2-3

When the assembly program encounters terms in paren
theses in combination with other terms, it first reduces the
combination of terms inside the parentheses to a single
value that maybe absolute or relocatable, depending on the
combination of terms. This value is then used in reducing
the rest of the combination to another single value.

Terms in parentheses may be included within a set of
terms in parentheses:

A+E-(C+D-(E+F)+10)

The innermost set of terms in parentheses is evaluated
first. Five levels of parentheses are allowed; a level of par
entheses is a left parenthesis and its corresponding right
parenthesis. Parentheses that occur as part of an operand
format do not count in this limit.

EXPRESSIONS

This section describes the expressions used in coding oper
and entries for source statements. Two types of expres
sions, absolute and relocatable, are presented together with
the rules for determining these attributes of an expression.

An expression is composed of a single term or an arith
metic combination of terms.

The rules for coding expressions are:

1. An expression cannot start with an arithmetic operator
(+-/*); therefore, the expression -A+BETA is invalid,
but the expression O-A+BETA is valid.

2. An expression must not con tain two terms in succession
(Invalid: 15B'101 ')

3. No blanks are allowed between an operator and a term
nor between two successive operators.

4. An expression can contain up to:

16 terms, 15 operators (unary and binary), 5 levels
of parentheses (for as, DOS, and DOS/VS)

20 terms, 19 operators (unary and binary), 6 levels
of parentheses (for OS/VS)

(parentheses that are part of an operand specifica
tion do not count toward this limit)

5. A single relocatable term is not allowed in a multiply or
divide operation. (paired relocatable terms have absolute
values and can be multiplied and divided if they are
enclosed in parentheses.)

The following are examples of valid expressions:

*
AREA 1+X'2D'
*+32
N-25
FIELD+332
FIELD
(EXIT -ENTRY+1)+GO

BETA*10
B'101'
C'ABC'
29
L'FIELD
LAMBDA+GAMMA
TEN/TWO

ALPHA-BETA/(10+AREA*L'FIELD)-'-100

2-4 IBM 3704 and 3705 Assembler Language

Evaluation of Expression

A single-term expression (for example; 29, BETA,*,
L'SYMBOL) takes on the value of the term involved.

A multi term expression (for example, BETA+I0,
ENTRY -EXIT,25*1 O+A/B) is reduced to a single value,
as follows:

• Each term is evaluated.

• Every expression is computed to 32 bits and then trun
catedto the rightmost 18 bits, for machines with
extended addressing, or to 16 bits, for machines without
extended addressing.

• Arithmetic operations are performed from left to right
except that multiplication and division are done before
addition and subtraction (for example, A+B*C is evalu
ated as A+(B*C), not (A+B)*C). The computed result
is the value of the expression.

• Division always yields an integer result; any fractional
portion of the result is dropped. For example, 1/(2*10)
yields a zero result, whereas (10*1)/2 yields 5.

• Division by zero is permitted and yields a zero result.

The innermost level of parenthesized expressions is processed
before the rest of the terms in the expression. For example,
in the expression A+BETA*(CON-I0), the term CON-lO
is evaluated first, and the resulting value is used in computing
the final value of the expression. Final values of expressions
must be in the range of 0 through 218 _1(21

:6 -1 for machines
without extended addressing) although intermediate results
may lie within the range of _231 through 231 _1.

Note: In A-type address constants, the full 32-bit final
expression result is truncated on the left to fit the
specified or implied length of the constant.

Absolute and Relocatable Expressions

An expression is absolute if its value is unaffected by
program relocation. . ~

An expression is relocatable if its value depends upon
program relocation.

The two types of expressions, absolute and relocatable,
take on these characteristics from the term or terms compos
ing them.

Absolute Expressions: An absolute expression can be an
absolute term or any arithmetic combination of absolute
terms. An absolute term can be a non-relocatable symbol
or any of the self-defining terms or the length attribute '
reference. All arithmetic operations are permitted between
absolute terms.

An expression is absolute, even though it contains
relocatable terms.(RT), under the following conditions:

• The relocatable terms must be paired. Each pair of
terms must have the same relocatability; each pair must
consist of terms with opposite signs. The paired terms
do not have to be contiguous (for example: relocatable
term + absolute term - relocatable term).

• No relocatable term can enter into a multiply or divide
operation; thus, relocatable term - relocatable term *10
is invalid, but (relocatable term - relocatable term) *10
is valid.

The pairing of relocatable terms (with opposite signs
and the same relocatability) cancels the effect of relocation,
since both symbols would be relocated by the same amount.
Therefore, the value represented by the paired terms remains
constant, regardless of program relocation. For example, in
the absolute expression A-Y + X,A is an absolute term, and
X and Yare relocatable terms with the same relocatability.
If A equals SO, Y equals 25, and X equals 10, the value of
the expression is 35. If X and Yare relocated by a factor
of 100, their values are then 125 and 110; however, the
expression ~ould still be evaluated as 35 (50-125+110=35).

An absolute expression reduces to a single absolute
value. The following examples illustrate absolute expres
sions. A is an absolute term. X and Yare relocatable terms
with the same relocatability.

A-Y+X
A
A*A
X-Y+A
*-Y

(A reference to the location counter must be paired with
another relocatable term from the same control section;
that is, with the same relocatability.)

Relocatable Expressions: A relocatable expression is one
whose value changes by n if the program in which it ap
pears is relocated n bytes away from its originally assigned
area of storage. All relocatable expressions must have a
positive value.

A relocatable expression can be a relocatable term. A
relocatable expression can contain relocatable terms alone
or in combination with absolute terms, under the following
conditions:

• All relocatable terms but one must be paired. Pairing is
described above under Absolute Expressions.

• When using the communications controller assembler
under OS or DOS, the unpaired term must not be
directly preceded by a minus sign; -Y+X-Z is invalid.
(This restriction does not apply when assembling under
OS/VS or DOS/VS.)

• No relocatable term can enter into a multiply or divide
operation.

A relocatable expression reduces to a single relocatable
value. This value is the value of the odd relocatable term,
adjusted by the values represented by the absolute terms
and/or paired relocatable terms associated with it. The
relocatable value is that of the odd relocatable term.

For example, in the expression W,-X+W-10, Wand X
are relocatable terms with the same relocatable value. If,
initially W equals 10 and X equals 5, the value of the
expression is 5; however, upon relocation, this value will
change. If a relocation factor of 100 is applied, the value
of the expression is 105. Note that the value of the paired
terms, W-X, remains constant at 5, regardless of reloca
tion. Thus, the new value of the expression, 105, is the
result of the value of the odd term (W), adjusted by the
values ofW-X and 10.

The following examples illustrate relocatable expres
sions. A is an absolute term; Wand X are relocatable terms
with the same relocatable value; Y is a relocatable term with
a different relocatable value.

Y-32*A W-X+*
W-X+Y A*A+W-W+Y
* (reference to W-X+W

location counter) Y

Assembler Language Coding and Structure 2-5

Chapter~: IBM Communications Controller Machine I nstructions

Machine instructions request the Communications Control
ler to perform a sequence of operations during program
execution time. Machine instructions may be represented
symbolically as assembler language statements. The sym
bolic fqrmat of each varies according to the actual ma
chine-instruction format. Within each basic format, further
variations are possible. See Machine Instruction Examples
following, and Chapter 4 of IBM Communicationr
Controller Principles of Operation, GC30-3004.

A mnemonic operation code is written in the opera
tion field, and one or more operands are written in the
operand field.

Any machine-instruction statement may be named by a
symbol, which assembler statements can use as an operand.
The value attribute of the symbol is the address of the left
most byte assigned to the assembled instruction. The
length attribute <;>f an instruction having the RA format is
4. All other instructions have length attributes of 2.

INSTRUCTION ALIGNMENT AND CHECKING

The assembler aligns all machine instructions automatically,
on half word boundaries. The byte skipped due to align
ment is filled with hexadecimal zeros. Expressi<;ms spec
ifying storage addresses are checked to ensure that they
refer to appropriate boundaries for instruction~ in whi~h
they are used. Register numbers are also checked for cor
rectness (for example, odd-numbered registers in byte
instructions). Displacements are checked to ensure proper
alignment.

OPERAND FIELDS AND SUBFIELDS

Some symbolic operands are written as a single field, and
, other operands are written as a field followed by one or two
sub fields. In instructions containing two operand fields, a
comma must separate the two. Subfield(s) of an operand
field must be enclosed within parentheses.' When two sub
fields are contained within parentheses,they must 'be sepa
rated by commas.

Fields and sub fields in a symbolic operand may be re
presented either by absolute or by relocatable expressions,
depending on what the field requires. (As defmed earlier,
an expression consists of one term or a series of arithmeti
cally combined terms.) In addition, each operand field
containing a byte selection may be represented with a sym
bolic register expression. Symbolic register expressions

allow symbolic representation of specific register bytes. See
EQUR (Equate Symbol to Register Expression) Instruction
in Chapter 4.

Note: Blanks may not appear in an operand unless they
are provided by a character self-defining term. Thus,
blanks may not intervene between fields and their com
ma separation or between parentheses and fields.

MACHINE INSTRUCTION MNEMONIC CODES

The mnemonic operation codes are designed to be easily
remembered codes that indicate the functions of the Com
munications Controller instructions.

The first character generally specifies the function:

A-Add N-And
B-Branch O-OR
C-Compare
I-Insert
L-Load

S-Subtract
T-Test
X-Exclusive OR

There are four exceptions. The store function is repre
sented by the first two characters, ST. Three functions,
input, output, and exit are represented by IN, OUT, and
EXIT.

The data length-C for character (8 bits) or H for half
word (16 bits)-appears next in some instructions. Exam
ples are:

LH Load halfword
STH Store halfword

IC Insert character
STC Store character

The letter R represents register notation. For instance:

AR Add register
CCR Compare character register
XHR Exclusive OR halfword register

In-three instructions the letter 0 represents offset:

LOR Load with offset register
LCOR Load character with offset register
LHOR Load halfword with offset register

T (in ICT and STCT) or CT (in BCT) represents count.

Min TRM (test register under mask) represents mask.

In addition to the preceding machine instructions, the
assembler converts a number of extended mnemonic codes
into corresponding machine instructions. See Figure 3-10,
Extended Mnemonics.

When assembling under QS/VS, an error in a machine
instruction generally causes the instruction field to be
replaced by zeros.

IBM Communications Controller Machine Instructions 3-1

MACHINE-INSTRUCTION EXAMPLES

The examples that follow are grouped according to machine
instruction format. They illustrate the various symbolic
operand formats. (Assume that all symbols used in the
examples are defined elsewhere in the same assembly.)

Figure 3-1 explains the symbols used in the assembler
operand field formats that appear in Figures 3-2 through
3-9.

Implied addressing and the function of the USING assem
bler instruction are discussed further under Base Register
Instructions.

Operand
Field

A

B

D

Meaning

A relocatable or absolute expression whose value may
be from 0 to 216 -1 (controllers without extended
addressing) or from 0 to 218 -1 (controllers with
extended addressing).

An absolute expression specifying a base register;
valid register numbers are 0 through 7.

An absolute expression specifying a displacement;
valid range is 0-127.

Note: Displacement for LH and STH instructions
must be a multiple of 2; displacement for Land ST

instructions must be a multiple of 4.

E An absolute expression specifying an external
register; valid range is 0-127.

An absolute expression specifying immediate data.
Value of expression: 0-255.

M An absolute expression specifying a bit of the byte
specified by N. Value of expression: 0-7.

N, N1, N2 Absolute expressions specifying a byte. Value of
expression: 0 or 1. 0 indicates the high-order or

R,R1,R2

S

T

leftmost byte; 1 indicates the low-order or rightmost

byte.
Note: For ACR, SCR, ARI, SRI, and BCT instruc
tions, a value of 1 for N 1 or N implies both bytes 0 and
1 rather than just the rightmost byte.

Symbolic register expressions that specify a register
byte combination. (See EOUR I nstruction in Chapter
4.)

Absolute expressions specifying general registers; valid
register numbers are 0 through 7. (Only the odd
numbered registers are valid for instructions that allow
byte sele~ion.)

An absolute or relocatable expression specifying an
implied address used with a USING instruction. The
assembler selects a proper base and displacement based
on the symbol value and the USING information.

A relocatable expression specifying a transfer address.
The assembler determines the proper displacement
based upon the transfer address value and the location
counter value. The relocatability of the transfer
address must be the same as that of the instruction
which refers to it as an operand; that is, both must be
associated with the same control section.

Figure 3-1. Meanings of Instruction Operand Fields

3-2 IBM 3704 and 3705 Assembler Language

RR Format

The RR instruction format (Figure 3-2) denotes a register
to-register operation.

Basic
Machine
Format

RR

Assembler
Operand Field
Format

{
RHN1)} ,{R2(N2)}
01. 02

R1, R2

Applicable
Instructions

LCR ACR SCR CCR
XCR OCR NCR LCOR

LHR AHR SHR CHR
OHR NHR XHR LHOR
LR AR SR CR
XR OR NR LOR
BALR

Figure 3-2. Register-to-Register (RR) Format

Examples of RR Instructions:

ALPHA1 LHR 1,2
ALPHA2 LHR REG1,REG2
BETA1 CR 3,5
BETA2 CR THREE, FIVE
GAMMA ACR 3(0),5(1)
GAMMA ACR HITHREE, LOFIVE

The operands of ALPHA 1 , BETA1 , and GAMMA1 are
decimal self-defining values, which are absolute expressions.
The operands of ALPHA2 and BETA2 are symbols that are
equated elsewhere to absolute values. The operands of
GAMMA2 are symbols that are equated elsewhere to sym
bolic register expressions.

RS Format

The RS instruction format (Figure 3-3) denotes a register
to-storage operation.

Basic Assembler
Machine Operand Field Applicable
Format Format Instructions

RS {~(N)} '{~(B)} ICSTC

LST LH STH

Figure 3-3. Register-to-Storage (RS) Formal

Note: Register 0 implies direct addressable storage when
used as a base register for RS-format instructions (10,
STe, LH, STH, L, and ST). Use of D (displacement)
without B (base) implies register O.

When 0 is used for the R operand in STH and ST, a
constant of zeros is stored.

Examples of RS-Format Instructions:

ALPHA1 L 1,12(4)
ALPHA2 L REG1, ZETA(4)
BETA1 L 2, PI
BETA2 L REG2, PI
GAMMA1 IC 3(1),12(4)
GAMMA2 IC HITHREE,12(4)

Both ALPHA instructions specify explicit addresses;
REGI and ZETA are absolute symbols. Both BETA instruc
tions specify implied addresses; PI represents a relocatable
value. The assembler will determine the proper register and
displacement values, based upon USING information. The
first operand of GAMMA2 is a symbol that is equated else
where to a symbolic register expression.

RSA Format

The RSA instruction format (Figure 3-4) denotes a register
to-storage with additional operation instruction.

Basic Assembler
Machine Operand Field Applicable
Format Format Instructions

RSA {~(N)}, B ICTSTCT

Figure 3-4. Register-to-Storage with Additional Operation (RSA)
Format

Examples of RSA -Format Instructions:

ALPHA ICT 3(0),6
BETA ICT HITHREE, SIX
GAMMA STCT 3(0), SI X
DELTA STCT HITHREE, FIVE

SIX has been equated to an absolute value elsewhere in
the program. IDTHREE has been equated to a symbolic
register expression elsewhere in the program.

RT Format

The RT instruction format (Figure 3-5) denotes a branch
operation.

Basic
Machine
Format

RT

Assembler
Operand Field
Format

{
R(N, M)}, T
OeM)

T

Figure 3-5. Branch Operation (RJ') Format

Applicable

Instructions

BB

BCT

B BCL BZL

Examples of RT-Format InstrJlctions:

ALPHA BB 3(0,6), AD DR
ALPHA1 BCT CTR(1), ADDR1
GAMMA BZL ADDR3
GAMMA1 BB LOFIVE(4), ADDR

In ALPHAI , CTR is a symbol which has been equated
to an absolute value elsewhere in the program. In GAMMA I ,
LOFIVE is a symbol that is equated elsewhere to a symbolic
register expression.

RI Format

The RI instruction format (Figure 3-6) denotes a register
to-immediate operand operation.

Basic
Machine
Format

RI

Assembler
Operand Field
Format

Applicable
Instructions

LRI ARI SRI CRI
NRI ORI TRM XRI

Figure 3-6. Register to Immediate Operand (RJ) Format

Examples of RI-Format Instructions:

ALPHA1 NRt 3(0), X'04'
ALPHA2 SRI 3(0), FOUR
ALPHA3 ARI REG(O), FOUR
BETA 1 CRI 3(1), C'6'
GAMMA1 ARI LOSEVEN,·22

FOUR and REG have been equated to absolute values
elsewhere in the program. LOSEVEN has been equated to
a symbolic register expression elsewhere in the program.

RA Format

The RA instruction format (Figure 3-7) denotes a register
to-immediate address operation.

Basic
Machine
Format

RA

Assembler
Operand Field
Format

R,A

Applicable
Instructions

BAL LA

Figure 3-7. Register to Immediate Address (RA) Format

Examples of RA -Format Instructions:

ALPHA1 LA 3,1000
ALPHA2 LA 3, ADDR1
BETA 1 BAL 4, X'240'
BETA2 BAL 4,ADDR2

In the examples, the ALPHAl and BETA! instructions
specify absolute addresses. The addresses in th~ ALPHA2
and BETA2 instructions can be absolute or relocatable.

IBM Communications Controller Machine Instructions 3-3

RE Format

The RE instruction format (Figure 3-8)denotes a register
to-external register operation. An external register is a reg
ister in the communications controller that the resident con
trol pr9gram must access through input and output instruc
tions.(See External Registers in IBM 3704 and 3705 Com
munications Controllers Principles of Operation
(GC30-3004).)

Basic
Machine
Format

RE

Assembler
Operand Field
Format

R,E

Applicable
Instructions

IN OUT

Figure 3-8. Register to External Register (RE) Format

Examples of RE-Format Instructions:

ALPHA1 IN 2,10
ALPHA2 IN REG2, EXTREG10
BETA 1 OUT 2, X'3F'
BETA2 OUT REG2, EXTREG96

In the examples, the operands of the ALPHA1 and'
BETA1 instructions are decimal self-defining values. The
operands of ALPHA2 and BETA2 are symbols that are
equated elsewhere to absolute values. '

EXIT Format

The EXIT instruction format (Figure 3-9) denotes an exit
from the active program level.

Note: When assembling under OS/VS, any operands
coded in this instruction are treated as comments (not
flagged as errors).

Basic
Machine
Format

EXIT

Assembler
Operand Field
Format

Figure 3-9. Exit Format

Applicable
Instructions

EXIT

See Chapter 4: Instruction Set, in IBM 3704 and 3705
Communications Controllers Principles of Operation
(GC30-3004).

EXTENDED MNEMONIC CODES

For the convenience of the programmer, the assembler pro
vides extended mnemonic codes. The codes are not part of
the setof machine instructions, but are translated by the
assembler into the corresponding operation and condition
combina tiohs. ' .

The allowable extended mnemOIl.ic codes', their operand
formats, and their machine-instruction equivalents are shown
in Figure 3-10.

3-4 IBM 3704 and 3705 Assembler Language

Extended Code

BR R2
NOP
BNO O(B)
BNO 5
BLG A
BBE R(P), T

5TZ O(B)
5TZ 5
5THZ 0 (B)

5THZ5

BE T

BL T

BO T

Meaning

Branch Register
No Operation
Branch Indirect
Branch Indirect
Branch Long
Branch on Bit

Extended
or

Store Zeros
Store Zeros
Store Ha If word

Zeros
Store Ha If word

Zeros

Used After
Compare
instructions:

Branch on
Equal

B ranch on Low
(that is, branch
if the first oper
and is less than
second operand)

Used after Add
instructions:

Branch on
OverflOW

Figure 3-10. Extended Mnemonics

Equivalent
Machine Instruction

LR 0,R2
B *+2
L O,O(B)
L 0,5
BAL O,A
BB R(O,P),

Tfor P<S
BB R(1,P-8),

T for P~S
5T O,O(B)
5T 0,5
5TH O,O(B)

5TH 0,5

BZL T

BCL T

BCL T

Note: In the BBE extended code, P represents an abso
lute expresston that specifies a bit in byte 0 or 1 of a
register. The value of the expression must be between
o and 15. All other operand values have the same mean
ing, as in the standard machine instruction format.

Chapter 4: IBM Communications Controller Assembler Instructions

Assembler instructions are requests to the assembler to per
form certain operations during the assembly. Assembler
instruction statements, in contrast to machine-instruction
statements, do not cause machine instructions to be included
in the assembled program. Some statements, such as DS
and OC, generate no machine instructions but cause stQrage
areas to be set aside for .constants and other data. Others,
such as EQU and SPACE, are effective only at assembly
time; they generate nothing in the assembled program and
have no effect on the location counter.

PROGRAM SECTIONING

You may write a program for the communications control
ler as a single source module or you may divide it into two
or more source modules. Each module is assembled into a
separate object module. These object modules are then
combined by the linkage editor into a load module tlutt
constitutes the executable program.

A source module may comprise one or more control
sections. Each control section is assembled as part of an
object module. By writing the proper linkage editor con
trol statements, you can select an entire object module or
any of its individual control sections for inclusion in the
load module.

Each .control section should not exceed 4096 bytes (the
largest sequence of source statements that c~ be accom
modated by one base register).

The total number of control sections, dummy sections,
and set symbols in a source module must not exceed 255.

Communication Between Parts of a Program

When writing a program, you must arrange for proper com
munication (1) between control sections within the same
source module, and (2) between different source modules.
This communication is described under Addressing, later in
this chapter.

The Source Module

A source module consists of a sequenceof source statements
in the assembler language., You may include these source
statements in the source module in two ways.

1. Write them on a coding form and enter them as input
through a terminal or (in punched card form) through a
card reader.

2. Write one or more COPY instructions among the source
statements being entered. Upon encountering a COPY
instruction, the assembler replaces it with a predetermined
set of source statements from a library on which the set
has previously been placed. These statements then
become part of the source module just as if they had been
individually entered as in (1) above.

The Beginning of a Source Module

The first statement of a source module can be any assembler
language statement, except MEXIT or MEND, that is
described in this manual. You can initiate the first control
section of a source module by using the START instruction.
However, you can-or must-write some source statements
before the beginning of the first control section, as described
under Defining a Control Section, later in this chapter.

Note: No R-type address constant can be assembled in
the first two bytes of any control section (CSECT).

The End of a Source Module

A source module assembled under DOS or DOS/VS ends
with a s~ngle END instruction. Any END instructions
following the first one are ignored.

A source module assembled under OS or OS/VS ordi;.
narily ends with a single END instruction. However, you
can code several END instructions and use conditional
assembly instructions (described in Chapter 5) to determine
which one of the END instructions the assembler is to
process~

COpy (Copy Predefined Source Code) Instruction

The COpy instruction obtains source-language code from
a library and includes it in the program currently being
assembled. See Figure 4-1 for the COpy instruction format.

Name

blank

Operation

COpy

Figure 4-1. COPY Instruction

Operand

. one symbol

The operand is a symbol that. identifies a partitioned data
set member to be copied from either the system macro
library or a user library concatenated to it.

The assembler inserts the requested code immediately
after the COpy instruction is encoun{ered. The requested
code may not contain any COPY, END, ICTL, ISEQ,
MACRO, or MEND instructions. (DOS/VS: COPY,
MACRO, and MEND are allowed inside the copied
source code.)

IBM Communications Controller Assembler Instructions 4-1

If identical COpy statements are encountered, the code
they request is brought into the program each time. All
statements included in the program via the copy function
are processed using the standard format, regardless of any
ICTL instructions in the program.

END (End Assembly) Instruction

The End instruction terminates the assembly of a program.
It may also designate a point in the program or in a sepa
rately assembled program to which control may be trans
ferred after the program is loaded. The END instruction
must always be the last statement in the source program.
If an external symbol is used in the expression, the value of
the expression must be O. See Figure 4-2 for the END
statement format.

Name Operation

a sequence symbol END
orblank

Figure 4-2. END Instruction

Operand

a relocatable expression
or blank

The operand specifies the point to which control may be
transferred when loading is complete. This point is usually
the first machine instruction in the program.

Note: Editing errors in system macro definitions (macro
definitions included in a macro library) are discovered
when the macro definitions are read from the macro
library. This occurs after the END instruction has been
read. They will therefore be flagged after the END
instruction. If the programmer does not know which
system macros causedan error, it is necessary to punch
all system macro defmitions used in the program, includ
ing inner macro definitions, and insert them in the
source program as programmer macro definitions, since
programmer macro definitions are flagged in-line. To aid
in debugging, it is advisable to test all macro definitions
as programmer macro definitions, before incorporating
them in the libary as system macro definitions.

Defining a Control Section

A control section is the smallest subdivision of a program
that can be relocated as a unit. The assembled control
sections contain the object code for machine instructions,
data constants, and storage areas.

A control section is a block of code that -can be relocated,
independently of other control sections, when the program
is loaded without altering or impairing the operating logic of
the program.

The beginning of a control section is normally identified
by a CSECT instruction. However, if you wish to specify
a tentative starting location, you may' use the START
instruction to specify the start address of the first control
section of the source module. If you use neither a CSECT
nor a START instruction to begin a control section, the
entire source module is considered to be a single, unnamed
control section.

4-2 IBM 3704 and 3705 Assembler Language

Types of Conuol Secilons

A control section is either an executable ora reference con
trol section. An executable control section contains machine
instructions and begins with a START or CSECT instruction
that names the control section. (Alternatively, the START
or CSECT instruction may be omitted, resulting in an
unnamed control section that begins with the first machine
instruction. However, you should name the control section
with a CSECT or START instruction so that you can refer
to it symbolically from other control sections within the
same source module or from other source modules.)

A reference control section is one you initiate by a
DSECT, COM, or (OSjVS only) DXD instruction and is not
assembled into object code. You can use a reference con
trol section to reserve storage areas or to describe data to
which you can refer by executable control sections. These
reference control sections are considered to be empty at
assembly time; the actual binary data to which they refer is
not entered until program execution.

Note: No R-type address constant can be assembled in
the first two bytes of any control section (CSECT).

Control Section Location Counter

The assembler maintains a separate location counter for
each control section in a source module being assembled.
The location counter setting for a control section starts at
O. The location values assigned to the instructions and other
data in a control section are therefore relative to the loca
tion counter setting at the beginning of that control section.

However, for executable control sections assembled
under OS or OSjVS, the location values that appear in the
assembly listings do not restart at 0 for each subsequent
control section. They continue from the end of the previ
ous control section. For executable control sections
assembled under DOS or DOSjVS, the location values in
the assembly listings always begin at 0, except location set
tings initiated by a START instruction with a non-zero
operand.

For reference control sections, the location values in the
listings always start with location O.

First Executable Control Section

Any instruction that affects the location counter or uses its
current value establishes the beginning of the first execut
able control section. These instructions are:

Any machine instruction

CW CSECT DROP
CNOP CXD OS
COpy* DC END

EQU
EQUR
ORG

START
USING

*statements copied by this instruction determine whether
COPY will begin the control section.

Note: The DSECT, COM, and (OSjVS only) DXD
instruction begin reference control sections and do not
establish the first executable control section.

Optional Instructions That Must Precede First Control
Section

The following instructions, if used, must appear at the
beginning of the source module, preceding the first control
section:

• The ICTL instruction (must be the fIrst instruction in
the source module, if used). (An invalid ICTL statement
[under OS/VS only] will cause all subsequent statements
to be printed and interpreted as comments.)

• The OPSYN instruction (OS/VS only) (must precede any
source macro defInitions)

• Any source macro defInitions

• The COpy instruction, if the code to be copied contains
only OPSYN instructions or complete macro defmitions.
Any instructions copied by a COpy instruction or gen
erated by the processing of a macro instruction before
the first control section must belong exclusively to one
of the following groups of instructions:

COpy, DXD, EJECT, ENTRY, EXTRN, ISEQ,
PRINT, PUNCH, REPRO, SPACE, TITLE, WXTRN

Comments statements
Common control sections
Dummy control sections
External dummy control sections
Any conditional assembly instruction
Macro instructions

• EJECT, ISEQ, PRINT , SPACE, TITLE instructions and
comments statements must follow the ICTL instructions,
if specifIed. However, they can precede or appear
between macro defmitions.

• All other assembler instructions must follow any source
macro defInitions specifIed.

START (Start Assembly) Instruction

The START instruction can be used to give a name to the
fIrst (or orily) control section of a program. It·· can also be
used to specify an initial location counter value foi the pro
gram. This location counter value is ignored by the linkage
editor. See Figure 4-3 for the format of the START
statement.

Name

any symbol or
blank

Operation

START

Figure 4-3. START Instruction

Operand

a self-defining term or
blank

If a symbol names the START instruction, the symbol
is established as the name of the control section. If not, the
control section is considered to be unnamed. All subsequent
statements are assembled as part of that control section
until a CSECT instruction identifying a different control
section or a DSECT instruction is encountered. A CSECT

instruction named by the same symbol that names a START
instruction is considered to identify'the continuation of the
control section fIrst identifIed by the START. Similarly,an
unnamed CSECT that occurs in a program initiated by an
unnamed START is considered to identify the continuation
of the unnamed control section .

The symbol in the name fIeld is a valid relocatable sym
bol whose value represents the address of the fIrst byte of
the control section. It has a length attribute of 1.

The assembler uses the self-defIning term specified by
the operand as the initial location counter value of the pro
gram. This value should be divisible by eight. For example,
either of the following statements could be used to assign
the name PROG2 to the first control section and to indicate
an initial assembly location of 2040. If the operand is omit
ted, the assembler sets the initial location counter value of
the program at zero. The location counter is set at the next
double-word boundary when the value of the START oper
and is not divisible by eight. The following is an example
of the START statement.

PROG2 START 2040
PROG2 START X'7F8'

Note: The START instruction may not be preceded by
any code that will cause an unnamed control section to
be assembled (see Unnamed First Control Section
below).

CSECT (Identify Control Section) Instruction

The CSECT instruction identifIes the beginning or the con
tinuation of a control section. The format is given in
Figure 44.

Name

any symbol or
blank

Operation

CSECT

Figure 4-4 .. CSECT Instruction

Operand

not used; should be
blank

If a symbol names the CSECT instruction, the symbol is
established as th~ name of the control section; otherwise,
the section is considered to be unnamed. All statements
following the CSECTare assembled as part of that control
section until a statement identifyiqg a different control
section is encountered (that is, another CSECT or a DSECT
instruction).

The symbol in the name field is a valid relocatablesym
bol whose value represents the address of the fIrst byte of
the control section. It has a length attribute of 1.

Several CSECT statements with the same name may
appear within a program. The first statement is considered
to identify the beginning of the control section; the rest of
the statements identify the resumption of the section. Thus,
statements from different control sections may be inter
spersed. They are properly assembled (assigned contiguous
storage locations) as long as the statements from the various
control sections are identifIed by the appropriate CSECT
instructions. (DOS/VS: Each CSECT starts at location zero.)

IBM Communications Controller Assembler Instructions 4-3

. Unnamed First Control Section

All machine instructions and many assembler instructions
must belong to a control section. If such an instruction
precedes the first CSECT instruction, the assembler considers
it to belong to an unnamed control section (also referred
to as private code), which will be the first (or only) control
section in the module.

The following instructions will not cause this to happen,
since they are not required to belong to a control section:

Common Control Sections (COM)
Dummy Control Sections (DSECT)
Macro Definitions
Conditional Assembly Instructions
Comments
COpy (depends upon the copied code)
EJECT
ENTRY
EXTRN
ICTL
ISEQ
PRINT
PUNCH
REPRO
SPACE
TITLE
WXTRN

No other assembler or machine instructions can precede
a START instruction .

. Resumption of an unnamed control section at later
points can be accomplished through unnamed CSECT
instruction. A program can contain only one unnamed con
trol section. It is possible to write a program that does not
contain CSECT or START instruction, in which case the
program will be assembled as one unnamed control section.

OSEer (Identify Dummy Section) Instruction

A dUl11mY section represents a control section that isassem
bled but isnof part 'of the object program. A dummy sec
tion is a convenient means of describiflg the layout of an
area of storage without actually reserving the storage. (It
is assumed that the storage is reserved, either by some
other part of the same assembly or by another assembly.)
See Figure 4 .. 5 for the fo:rmatofthe DSECT instruction.

(

Name Operation

variable symbol DSECT
or ordinary
symbol
(DOSNS: . B lank name field allowed)

Figure 4-5. DSECT'nstruction

Operand

not used; should be blank

TIle DSECT instruction identifies the beginning or
resumption of a dummy section. More than one dummy
sectipn may be defined in this assembly, but each must
be named ..

4-4 IBM 3704 and 3705 Assembler Language

The. symbol in the name field is a valid relocatable
symbol whose value represents the fust byte of the sec
tion. It has a length attribute of 1.

Program statements belonging to dummy sections may
be interspersed throughout the program or may be written
as a unit. In either case, the appropriate DSECT instruc
tion should precede each set of statements. When multiple
DSECT instructions with the same name are encountered,
the first is·considered to initiate the dummy section, and
the rest to continue it.

All assembler language instructions may occur within
dummy sections.

Symbols that name statements in a dummy section may
be used in USING instructions~ Therefore, they may be used
in program elements (for example: machine-instructions
and data definitions) that specify storage addresses.

Note: A symbol that names a statement in a dummy sec
tion may be used in an A-type address constant only if it
is paired with another symbol (with the opposite sign)
from the same dummy section.

Dummy Section Location Assignment:, A location counter
is used to determine the relative locations of named pro
gram elements in a dummy section. The locationcounter
is always set to zero at the beginning of the dummy section,
and the location values assigned to symbols that name
statements in the. dummy section are relative. to the initial
statement in the section.

Addressing Dummy Sections:. You may wish to. describe
. the format of an area whose storage location will not be
determined until the program is executed. You.can de
scribe the format of the area in a dummy section and use
symbols defined in the dummy section as the operands of
machine instructions. References to the storage area may
be made as follows:

1. Provide a USING statement specifying both a general
register that the assembler can assign to the machine
instructions asa b3:s~ register and a value from the dum
my section that the assembler may assume the register
contains. . . . ' .

2. Ensure thatthe same re'gister is lqaded with the actual
address of the storage area.

The values assigned to symbols defined in a dummy sec
tion are relative to the initial statement of the section.
Thus~'allmachine instructions which refer to names,defined
in the dummy section will, at execution time, refer to
storage locations relative to the address loaded into the
register.

COM (Define Blank Common Control Section) Instruction

The COM assembler instruction identifies and reserves a
common area of storage that may be referred to by inde
pendent assemblies that have been linked and loaded for
execution as one object program.

Appearances of a COM statement after the initial one
indicate the resumption of the blank common control
section.

When several assemblies are loaded, each designating
a common control section, the amount of storage reserved
is equal to the longest common control section. See Figure
4-6 for the format of the COM instruction.

Name Operation

sequence symbol COM
or blank

Figure 4-6. COM Instruction

Operand

blank

The common area may be divided into subfields, through
use of the DS and DC assembler instructions. Names of sub
fields are defined relative to the beginning of the common
section, as in the DSECT control section.

No instructions or constants appearing in a common con
trol section are assembled. Data can be placed in a common
control section only through execution of the program. A
blank common control section may include any as~embler
language instructions.

If the assignment of common storage is done in the same
manner by each independent assembly, reference to a loca
tion in common by any assembly results in the same location
being referred to. When assembled, blank common location
assignment starts at zero.

Defining External Dummy Sections (OS!VS Only)

An external dummy section is a reference control section
that allows you to des:cribe storage areas for one or more
source modules, to be used as:

• work areas for each source module; or

• communication areas between different source modules

To generate and use external dummy sections, you must
specify a combination of the following:

• DXD or DSECT instruction

• Q-type address constant

• CXD instructions

The generation and use of external dummy sections is
explained in detail in OS/VS~DOS/VS-VM/370 Assembler
Language (GC3340 1 0).

DXD (Define External Dummy Section) Instruction

The DXD instruction allows you to identify and define an
external dummy section that can be referred to by one or
more source modules. This instruction may appear any
where within a source module (after the leTL instruction,
if any) or after any source macro definitions you may
specify within the source module. The format of the DXD
instruction appears in Figure 4-7.

Note: The DSECT instruction also defines an external
dummy section, but only if the symbol in its name field
appears in a Q-type address constant in the same source
module. Otherwise, the DSECT instruction defines a
dummy section that cannot be referred to externally,
that is, from a different source module.

The symbol in the name field of the DXD instruction
must appear in the operand of a Q-type address constant.
This symbol represents the address of the first byte of the
external dummy section defined by the DXD instruction and
has a length attribute value of 1.

The sub fields in the operand field are specified in the
same way as in the DS instruction. The assembler computes
the amount of storage arid the alignment required for an
external dummy section from the area specified in the oper
and field.

The linkage editor or loader uses the information pro
vided by the assembler to compute the total length of stor
age required for all external dummy sections specified 'in a
program.

Note: If two or more ,external dummy sections for
different source modules have the same name, the link
age editor uses the most restrictive alignment and, com
putes the total length on the basis of the largest section.

Name Operation,

a symbol OXO

Figure 4-7. DXD Instruction

Operand

same format as operand
ofa OS instruction

CXD (Reserve Storage for External Dummy Section
length) Instruction

The CXD instruction allows you to reserve a fullword area
in storage into which the linkage editor or loader inserts the
total length oiall external dummy sections specified in the
source modules that are assembled and linked into one "
object program.

The CXD instruction can appear in any of the source
modules that are to be assembled and linked together.
Figure 4-8 shows the format of this instruction.

IBM Communications Controller Assembler Instructions 4-5

The symbol in the name field, if specified, represents the
address of a fullword area aligned on a fulhvord boundary.
The symbol has a length attribute of 4.

Name

a symbol
or blank

Operation

CXD

Figure 4-8. CXD Instruction

ADDRESSING

Operand

(none)

This section.describes the assembler instructions used in
symbolic addressing within a source module and between
source modules.

Addressing Within a Source Module: Establishing
Addressability

By establishing the addressability of a control section, you
can refer to the symbolic addresses defined within the con
trol section in the operands of machine instructions. The
assembler converts these symbolic addresses into explicit
addresses required for the assembled object code of the
machine instructions. To do so, the assembler requires (1)
a base address from which it can compute displacements to
the addresses within the control section, and (2) a base
register to hold this address. The USING and DROP'
assembler instructions convey this information to the
assembler.

USING (Use Base Address Register) Instruction

The USING instruction indicates that one or more general
registers are available for use as base registers. This instruc
tion also states the base address value that the assembler
can assume will be in the registers at object time. A USING
instruction does not load the registers specified. It is your
responsibility to see that the specified base address values
are placed into the registers. A reference to any name in a
control section cannot occur in a based machine instruction
before the USING instruction that makes that name address
able. See Figure 4-9 for the format of the USING
instruction.

Name Operation

sequence symbol USING
or blank

Figure 4-9. USING Instruction

Operand

from two to eight
expressions of the form
v, r1, r2, r3, ..•• r7

Operand v must be an absolute or relocatable expression.
Operand v specifies a value that the assembler can use as a
base address. The other operands must be absolute expres
sions, with values between 1 and 7. The operand r 1 speci
fies the general register that can be assumed to contain the

4-6 IBM 3704 and 3705 Assembler Language

base address represented by operand v. Operands r2
through r7 specify registers that can be assumed to contain
v+128, v+256, v+384, ... , respectively.

If you change the value in a base register currently being
used and wish the assembler to compute displacement from
this value, you must tell the assembler the new value by
another USING statement. In the following example, the
assembler first assumes that the value of ALPHA is .in reg
ister 7. The second statement then causes the assembler to
act as though ALPHA+I000 is the value in register 7.

USING
USING

ALPHA,7
ALPHA+1000,7

DROP (Drop Base Register) Instruction

The DROP instruction specifies a previously available reg
ister that may no longer be used as a base register. See
Figure 4-10 for the format of the DROP instruction.

Name Operation

sequence symbol DROP
or (DOS/VS onlv)
blank

Figure 4-10. DROP Instruction

Operand

up to seven absolute expres
sions of the form r1,
r2, .•• ,r7

The expressions indicate general registers previously
named in a USING statement that are now unavailable for
base addressing. The register values may range from 1
through 7. The following statement, for example, prevents
the assembler from using registers 5 and 7:

DROP 5,7

It is not necessary to use a DROP statement when the
base address being used is changed by a USING statement;
nor are DROP statements needed at the end of the source
program. '

A register made unavailable b.ya DROP instruction can
be made available again by a subsequent USING instruction.
(OS!VS and DOSjVS: A blank operand is allowed and
causes all registers to be dropped.)

Addressing Between Source Modules: Symbolic Linkage

Symbols may be defined in one program and referred to in
another, thus effecting symbolic linkages between indepen
dently assembled programs. The linkages can be completed
only if the assembler is able to provide information about
the linkage symbols to the linkage editor, which resolves
these linkage references at load time. The assembler
places theriecessary information in the control dictionary
on the basis of the linkage symbols identified by the
ENTRY, EXTRN and WXTRN instructions.

In the program where the linkage symbol is defined
(that is, used as a name), it must also be identified to the
assembler by means of the ENTRY assembler instruction.

It is identified as a symbol that names an entry point, which
means that another program may use that symbol in order
to branch or reference data. The assembler places this
information in the control dictionary.

Similarly, the program that uses a symbol defined in
some other program must identify it by the EXTRN and
WXTRN.assembler instructions. It is identified as an exter
nally defined symbol (that is, defined in another program)
that is used to link to the point of definition. The assembler
places this information in the control dictionary.

Another way to obtain symbolic linkage is by using the
V-type address constant. Information on writing V-type
constants appears later in this chapter under Defining Data.
It is sufficient here to note that this constant may be con
sidered an indirect linkage point. The constant is created
from an externally defiDed symbol, but that symbol need
not be identified by an EXTRN or WXTRN instruction.

The BAL and BALR instructions may be used with
ENTRY, EXTRN and WXTRN instructions to branch
between separately assembled control sections. The BAL
instruction operand is coded in an EXTRN or WXTRN
instruction in the assembly in which the BAL appears. The
BALR instruction is used by loading the branch register
with a V-constant or an A-constant whose operand is
identified with an EXTRN or WXTRN instruction. In both
cases, the branch label must be identified by an ENTRY
instruction in the assembly where it appears.

ENTRY (Identify Entry-Point Symbol) Instruction

The ENTRY instruction identifies linkage symbols that are
defined in this program but may be used by some other
program. See Figure 4-11 for the format of the ENTRY
instruction.

Name

sequence symbol
or blank

Operation

ENTRY

Figure 4~ 11. ENTRY Instruction

Operand

one or more relocatable
symbols separated by
commas, that also
appears as ::' statement
name

An assembly may contain a maximum of 100 ENTRY
symbols. ENTRY symbols that are not defined (not appear
ing as.statement names), although invalid, will also count
towards this maximum of 100 ENTRY symbols.

The symbols in the ENTRY operand field may be used
as operands by other programs. An ENTRY statement
operand may not contain a symbol defined in a dummy
section or blank common control section.

Note: The name of a control section need not be
identified by an ENTRY instruction· when another
program uses it as an entry point. The assembler auto
matically places information on control section names
in the control dictionary.

EXTRN (Identify External Symbol) Instruction

The EXTRN instruction identifies linkage symbols that are
used by one source module but which are defmed in some
other source module. Each external symbol must be identi
fied; this includes symbols that name control sections. See
Figure 4-12 for the format of the EXTRN instruction.

Name

sequence symbol
or blank

Operation

EXTRN

Figure 4-12. EXTRN Instruction

Operand

one or more relocatable
symbols, separated by
commas

The symbols in the operand field may not appear as
names of statements in this program.

A V-type address constant need not be defined by an
EXTRN instruction.

When external symbols are used in an expression, they
may not be paired. Each external symbol must be con
sidered as having a unique relocatability attribute.

The total number of control sections, dummy sections,
and external symbols in an assembly must not exceed 255.

WXTRN (Identify Weak External Symbol) Instruction

The WXTRN instruction (not valid for DOS) has the same
format as the EXTRN instruction. It is used to identify
weak external references. The only difference between a
weak (WXTRN) and a strong (EXTRN or V-type constant)
~xternal reference is that the automatic library call mech
anism of the linkage editor or loader is not effective for
symbols that are identified in WXTRN instructions.

The automatic library call mechanism searches the call
library for any umesolved external references. If it finds
any of these references, it includes the module where the
reference occurs in the load module produced by the link
age editor or loader. Refer to OS Loader and Linkage
Editor for a full description of the automatic library call
mechanism.

See Figure 4-13 for the format oftheWXTRN
instruction.

Name

sequence symbol
or blank

Operation

WXTRN

Figure 4-13. WXTRN Instruction

Operand

one or more relocatable
symbols, separated by
commas

(DOS: This instruction is not available in the assembler.)

Note: If a V-type address constant is identified by a
WXTRN instruction, the automatic library callmech
anism is suppressed for it.

ffiM Communications Controller Assembler Instructions 4-7

SYMBOL AND DATADEFINITION

This section describes the assembly-time facilities you can
use to (1) define and assign values to symbols, (2) derme -
constants and storage areas, and (3) define control words.

Defining Symbols

eau (Equate Symbol) Instruction

The EQU instruction is used to define a symbol by assign
ing to it the length, value, and relocatability attributes of an
expression in the operand field. See Figure 4-14 for the
format of the EQU statement.

Name

variable symbol
or ordinary
symbol

Operation Operand

EQU expression (OS, DOS,

Figure 4-14. EQU Instruction

DOSIVS)

1
expression 1 I
expression 1, expression 2
expressi~n 1, expression 2"

expression 3
expression 1 " expression 3

(OS/VS)

The expression(s) in the operand field may be absolute
or relocatable. Any symbols appearing in the expression
must be previously defined.

The symbol in the name field is given the same value
attribute as the expression in the operand field. The
length and relocatability attributes are the same as for
the expression unless specified differently (in OS/VS
only) in expression 2 and expression 3. The length at
tribute of the symbol is that of the leftmost (or only)
term of the expression. In the case of EQU to * or to
a self-defining term the length attribute is 1.

The EQU instruction is the means of equating symbols
to register numbers, immediate data, and other arbitrary
values. The following examples illustrate how this might
be done:

REG2 EQU 2
TEST EQU X'3F'

(general register)

(immediate data)

The va1ue of the expression must be in the range
0_218 -1. further information on the use of expres
sion 2'and expre~sion 3 appears in the publication
OS/VS-DOS/VS- VM/370 Assembler Language
(GC33-4010).

EaUR (Equate Symbol to Register Expression) Instruction

The EQUR instruction is used to assign a symbol to a reg
ister expression. A register expression defines a particular
byte of a register. The symbol defined in the EQURstate
ment may be used in a symbolic machine instruction in
place of an explicitly dermed byte. See Figure 4-15 for the
format of the EQUR instruction.

4-8 IBM 3704 and 3705 Assembler Language

Name Operation

symbol EQUA

Operand

an expression grouping
of the form R (N) or a

Figure 4-15. EQUR Instruction

R is an absolute expression of value 1,3,5, or 7, and N
is an absolute expression of value zero or one. Any symbols
appearing in the expressions must be previously defined. Q
is a previously dermed symbolic register expression.

The symbol in the name field is given the value of the
grouping in the operand field. The symbolic register expres
SiOII is allowed only in the operands of machine instructions
or other EQUR instructions. Mixed expressions-that is,
arithmetic combinations of symbolic register expressions
with other symbolic register expressions or with absolute or
relocatable expressions-are not allowed. The following
examples are valid definitions and usages of symbolic reg
ister expressions:

CTR EQUR
BCT
BB
BB

CTR2 EQUR

Defining Data

3(0)
CTA,DONE
CTA(2),DONE
CTA(BIT2),DONE
CTA

There are three assembler instructions for defining data:
Define Constant (DC), Define Storage (DS), and Define
Control Word (CW).

These instructions are used (I) to enter data constants
into storage, (2) to define and reserve areas of storage, and
(3) to specify the contents of control words. The state
ments can be named by symbols so that other program
statements can refer to the generated fields.

DC (Define Constant) Instruction

The DC instruction is used to enter constant data into stor
age. It can specify one constant or a series of constants.
A variety of constants can be specified: fixed-point,
hexadecimal, character, and storage addresses. (Data
constants are generally called constants unless they are
created from storage addresses, in which case they are called
address constants.) See Figure 4-16 for the format of the
DC instruction.

Name

any symbol
blank

Operation

DC

Figure 4-16. DC Instruction

Operand

one or more operands,
'separated by commas,
written in the format
described in the text.
(DOS: only one oper
and permitted)

Each operand consists of foursubfields: the first three
describe the constant, and the fourth subfield provides the

nominal value(s) for the constant(s).The first and third
sub fie Ids can be omitted, but the second and fourth
must be specified. Nominal value(s) for more than one
constant can be specified in the fourth subfield, for most
types of constants. Each constant so specified must be
of the same type; the descriptive subfields that precede
the nominal value apply to all of them. No blanks can
occur within any of the sub fields (unless provided as
characters in a character constant or a character self
defining term), nor can they occur between the sub
fields of an operand. Similarly, blanks cannot occur
between operands and the commas that separate them
when multiple operands are being specified.

The sub fields of each DC instruction operand are written
in the following sequence:

Duplication
Factor

2
Type

3
Length

4
Nominal Values

Although the constants specified within one operand
must have the same characteristics, each operand can specify
a different type of constant. For example, in a DC instruc
tion with three operands, the frrst operand might specify
four fixed-pointconstants; the second, a hexadecimal con
stant; and the third, a character constant.

The symbol that names the DC instruction is the name
of the constant (or first constant if the instruction speci
fies more than one). Relative addressing (for example,
SYMBOL+2) can be used to address the various constants
if more than one has been specified, because the number
of bytes allocated to each constant can be determined.

The value attribute of the symbol naming the DC instruc
tion is defined as the address of the leftmost byte (after
alignment) of the first, or only, constant. The length attri
bute depends upon (1) the type of constant being defmed,
and (2) the presence of a length specification. Implied
lengths are assumed for the various types of constants in
the absence of a length specification. If more than one
constant is defmed, the length attribute is the length 'in
bytes (specified or implied) of the first constant.

Boundary alignment also varies according to the type of
constant being specified and the presence· of a length speci
fication. Some types of constants are aligned only to a
byte boundary ,but the DS instruction can be used to force
half word or fullword boundary alignment for them. This
is explained under DS (Define Storage) Instruction below.
Other constants are aligned on halfword or' fullword bound
aries in the absence of a length specification. If length is
specified, no boundary alignment occurs for such constants.

Bytes that must be skipped to align the field at the
proper boundary are not considered to be part of the con
stant. In other words, the location counter is incremented
to reflect the proper boundary (if any increment is neces
sary) before the address value is established. Thus, the
symbol naming the constant will not receive a value attri
bute that is the location of a skipped byte.

Any bytes skipped in aligning instructions (such as DS)
that do not cause information to be assembled are not
zeroed. However, bytes skipped to align a DC instruction
are zeroed.

Operand Subfield 1: Duplication Factor

The duplication factor may be omitted. If specified, it
causes the constant(s) to be generated the number of times
indicated by the factor. The factor may be specified, either
by an unsigned decimal self-defining term or by an abso
lute expression that is enclosed by parentheses. The dupli
cation factor is applied after the constant is assembled~ All
symbols in the expression must be previously defined.

A duplication factor of zero is permitted and achieves
the same result as it would in a DS instruction. A DC in
struction with a zero duplication factor does not produce
control dictionary entries. See Forcing Alignment under
DS (Define Storage) Instruction below.

Note: If duplication is specified for an address con
stant containing a location counter reference, the value
of the location counter used in each duplication is in
cremented by the length of the operand.

Operand Subfield 2: Type

The type sub field defmes the type of constant being speci
fied. From the type specification, the assembler determines
how it is to interpret the constant and translate it into the
appropriate machine format~

Figure 4-17 lists the type codes for constants.

Code Type of Constant Machine Format

C Character 8-bit code for each character
X Hexadecimal 4-bit code for each hexadecimal

digit
B Binary Binary format
F Fixed-point F ixed-point binary format;

normally a fullword
H Fixed-point Fixed-point binary format;

normally a halfword
A Address value of address; normally a

fullword
y Address value of address; normally a

halfword
R Address value.of address; normally a

halfword
V Address space reserved for external.

symbol address; each address
is normally a fullword

Q Address space reserved for external
dummy section offset

Figure 4-17. Type Codes for Constants

Operand Subfield 3: Length

The length subfield is written as Ln, where n is an unsigned
decimal self-defming term or an absolute expression en
closed by parentheses. Any symbols in the expression must
be previously defined. The value of n represents the number

IBM Communications Controller Assembler Instructions 4-9

of bytes of storage that are assembled for the constant. An
implied length is used if a length modifier is not present. A
length modifier may be specified for any type of constant,
but no boundary alignment will be provided when a length
modifier is given.

Operand Subfield 4: Constant

This sub field supplies the constant (or constants) described
by the subfields that precede it. A data constant (C, X, B,
F, H) is enclosed by apostrophes. An address constant (A, Y,
R, V, Q) is enclosed by parentheses. Two or more constants
in the sub field must be separated by commas, and the
entire sequence of constants must be enclosed by the appro
priate delimiters (apostrophes or parentheses).

All types of constants except character (C), hexadecimal
(X), and binary (B) are aligned on the proper boundary
unless a length modifier is specified. In the presence of a
length modifier, no boundary alignment is performed. If an
operand specifies more than one constant, any necessary
alignment applies to the first constant only. Thus, for an
operand that provides five fullword constants, the fust
would be aligned on a fullword boundary; and the rest
would automatically fall on fullword boundaries.

The total storage requirement of an operand is the pro
duct of the length times the number of constants in the
operand times the duplication factor (if present) plus any
bytes skipped for boundary alignment of the constant. If
more than one operand is present, the total storage require
ment is the sum of the requirements for each operand.

If an address constant contains a location counter refer
ence, the location counter value that is used is the storage
address of the first byte that the constant will occupy. Thus,
if several address constants in the same instruction refer to
the location counter, the value of the location counter
varies from constant to constant. Similarly, if a single con
stant is specified (and it is a location counter reference)
with a duplication factor, the constant is duplicated with a
varying location counter value.

The types of constants are discussed below.

Character Constant (C): Any of the valid 256 EBCDIC
characters can be designated in a character constant. Only
one character constant can be specified per operand.

Special consideration must be given to representing
apostrophes and ampersands as characters. Each single
apostrophe or ampersand desired as a character in the con
stant must be represented by a pair of apostrophes or am
persands. Only one apostrophe or ampersand appears in
storage.

The maximum length of a character constant is 256
bytes. No boundary alignment is performed. Each char
acter is translated into one byte. Double apostrophes or
double ampersands count as one character. If no length
modifier is given, the size in bytes of the character con
stant is equal to the number of characters in the constant.

4-10 IBM 3704 and 3705 Assembler Language

If a length modifier is provided, the result varies as follows:

• If the number of characters in the constant exceeds the
specified length, -as many bytes as necessary are dropped
from the right.

• If the number of characters is less than the specified
length, the excess bytes are filled with blanks on the
right.

Hexadecimal Constant (X): A hexadecimal constant con
sists of one or more of the hexadecimal digits, which are
0-9 and A-F. Only one hexadecimal constant can be speci
fied per operand. The maximum length of a hexadecimal
constant is 256 bytes(512 hexadecimal digits). No bound
ary alignment is performed.

Constants that contain an even number of hexadecimal
digits are translated as one byte per pair of digits. If an odd
number of digits is specified, the leftmost byte has the
leftmost four bits filled with a hexadecimal zero, and the
rightmost four bits contain the odd (first) digit.

If no length modifier is given, the implied length of the
constant is half the number of hexadecimal digits in the
constant (assuming that a hexadecimal zero is added to an
odd number of digits). If a length modifier is given, the
constant is handled as follows:

• If the number of hexadecimal digit pairs exceeds the
specified length, the necessary bits (and/or bytes) are
dropped from the left.

• If the number of hexadecimal digit pairs is less than the
- specified length, the necessary bits (and/or bytes) are

added to the left and filled with hexadecimal zeros.

Binary Constant (B): A binary constant must be written,
using 1 s and Os enclosed in apostro1?hes. Only one binary
constant can be specified in an operand. Duplication and
length can be specified. The maximum length of a binary
constant is 256 bytes.

The implied length of a binary constant is the number
of bytes occupied by the constant, including any padding
necessary. Padding or truncation takes place on the left.
The padding bit used is a O.

Fixed-Point Constants (F and H): A fixed-point constant
is written as an unsigned decimal integer. The assembler
converts the decimal integer to a binary number. If the
value of the number exceeds the length specified or implied,
as many bits as necessary are dropped (truncated) from
the left. Any duplication factor present is applied after
the constant is assembled.

An implied length of four bytes is assumed for a full
word (F) and two bytes for a Iialfword (H), and the constant
is aligned to the proper fullwordor halfword boundary if a
length is not specified. However, any length up to, and
including, eight bytes may be specified for either type of
constant by a length modifier, in which case no boundary
alignment occurs.

Address Constants.: An address constant is a storage ad
dress that is translated into a constant. An address con
stant, unlike data constants, is enclosed in parentheses.

There are five types of address constants: A, Y, R, V,
and Q.

Complex Relocatable Expressions

A complex relocatable expression can be used only to
specify an A-type, R~type,or V-type (but not a V-type)
address constant. These expressions contain two or more
unpaired relocatable terms and/or negative relocatable terms
in addition to any absolute or paired relocatable terms
that may be present. A complex relocatable expression may
consist of external symbols and designate an address in an
independent assembly that is to be linked and loaded with
the assembly containing the address constant.

A -Type Address Constant: This constant is specified as an
absolute, relocatable, or complex relocatable expression.
(An expression may be single-term or multi-term.) The
value of the expression is calculated to 32 bits; the expres
sion may range from _231 to 231 _1. The implied length
of an A-type constant is four bytes, and the alignment is to
a full word boundary unless a length is specified, in which
case no alignment will occur. The length that may be
specified depends on the type of expression used for the
constant; a length of one to four bytes may be used for an
absolute expression, while a length of only three or four
bytes may be used for a relocatable or complex relocatable
expression.

y-Type Address Constant:
Caution: Relocatable V-type constants must not be specified
in programs destined to be executed at addresses above
65,535 in communications controller storage. Relocatable
Y -type address constants cannot be handled by the linkage
editor.

A Y -type address constant has much in common with
the A-type constant. It, too, is specified as an absolute
relocatable or complex relocatable expression. The value
of the expression is also calculated to 32 bits. The maxi
mum value of the expression is 215 -1. The value is then
truncated, if necessary, to the specified or implied length
of the field and assembled into the rightmost bits of the
field.

The implied length of a Y -type constant is two bytes,
and alignment is to a halfword boundary unless a length is
specified, in which case no alignment will occur. The maxi
mum length of a V-type address constant is two bytes. If
length specification is used, a length of two bytes may be
designated for a relocatable or complex expression and one
or two bytes for an absolute expression.

R-Type Address Constant:
Caution: Relocatable, R-type constants must not be speci
field in programs destined to be ex~cuted at addresses above
65,535 in communications controller storage.

An R-type address constant has much in common with
the V-type constant. It is specified as an absolute, relocat
able, or complex relocatable expression. The value of the
expression is calculated to 32 bits. The maximum value of
the expression is 21 6 -1. The implied length of an R -type
constant is two bytes, and alignment is to a halfword bound
ary unless a length is specified, in which case no alignment
will occur. If length specification is used, a length of two
bytes must be designated for a relocatable or complex expres
sion and one or two bytes for an absolute expression.

The primary function of the R-type constant is to pro
vide a two-byterelocatable address constant that can be
processed by the OS or OS/VS linkage editor. The linkage
editor record (RLD) generated for the R-type constant
indicates a length of three (rather than two), and points to
the byte preceding the constant. During linkage editing,
the high-order byte (the byte preceding the R-type con
stant) is not disturbed as long as the constant is not relocated
to a value above 65,535. Note that no R-type constant can
be assembled in the first two bytes of any control section
(CSECT).

v-Type Address Constant: This constant is used to reserve
storage for the address of an external symbol that is used for
branching to other programs. The constant may not be used
for external data references within an overlay program.
The constant is specified as one relocatable symbol, which
need not be identified by an EXTRN statement. Whatever
symbol is used is assumed to be an external symbol because
it is supplied in a V-type address constant.

Note that specifying a symbol as the operand of a V -type~
constant does not constitute a definition of the symbol for
this assembly. The implied length of a V-type address con
stant is four bytes, and boundary alignment is to a fullword.
A length modifier may be used to specify a length of either
three or four bytes, in which case no boundary alignment
occurs. It must be emphasized that a V-type address con
stant length of less than four can and will be processed by
the Communications Controller Assembler but cannot be
handled by the linkage editor.

DS (Define Storage) Instruction

The DS instruction is used to reserve areas of storage and to
assign names to those areas. The use of this instruction is
the preferred way to symbolically define storage for work
areas, input/output areas, etc. The size of a storage area
that can be reserved by using the DS instruction is limited

IBM Communications Controller Assembler Instructions 4-11

only by the maximum value of the location counter. See
'Figure 4-18 for the format on the DSinstruction.

Name

any symbol or
blank

Operation

OS

Figure 4-18. DS Instruction

Operand

one or more operands,
separated by commas,
written in the format
described in the text.
(DOS: only one
operand allowed)

The format of the DS operand is identical'to that of
the DC operand; exactly the same subfields are employed,
and they are written in exactly the same sequence as they
are in the DC operand. Although the formats are identical,
there are two differences in the specification of die
subfields:

• The specification of data (subfield 4), though mandatory
in a DC operand, is optional in a DS instruction. If the
constant is specified, it must be valid.

• The maximum length that may be specified for char
acter (C) and hexadecimal (X) field types is 65,535
bytes, rather than 256 bytes.

If a DS operand specifies a constant in subfield 4, and
no length is specified in sub field 3, the assembler determines
the length of the data and reserves the appropriate amount
of storage. It does not assemble the constant. The ability
to specify data and have the assembler calculate the stor-
age area that would be required for such data is a conve
nience to the programmer. If you know the general format
of the data that will be placed in the storage area during
program execution, all you need do is show it as the fourth
subfield in a DS operand. The assembler then determines
the correct amount of storage to be reserved,thus relieving
you of length considerations.

If the DS instruction is named by a symbol, its value
attribute is the location of the leftmost byte of the re
served area. The length attribute of the symbol is the length
(implied or explicit) of the type of data specified. Should

the DS instruction have a series of operands, the length
attribute for the symbol is developed from the first item in
the first operand. Any positioning required for aligning the
storage area to the proper type of boundary is done before
the address value is determined. Bytes skipped for align
ment are not set to zero.

Each field type (for example,hexadecimal, character,
binary) is associated with certain characters, as shown in
Appendix C: Summary of Constants. These characters '
will determine which field-type code should be selected for
the operand of the DS instruction and whether length or
duplication factor information should be included.

For example, the F-type field has an implied length of
four bytes; the leftmost byte is aligned to a fullword bound
ary. Thus, you could specify an F-type field, without a

4-12 IBM 3704 and 3705 Assembler Language

length modifier, in order to reserve four bytes aligned to a
fullword boundary. For an eight·byte field similarly
aligned, you could specify an F-type field with a length
modifier of eight. However, to reserve an F-type field
larger than eight bytes (the largest you can specify with a
length modifier alone), you would specify a duplication
factor. Remember, however, that boundary alignment is not
automatic if you specify a length modifier. See Using the
Duplication Factor to Force Alignment, following.

Data constants of types C, X, and B have an implied
length of one byte unless the data charcters are specified, in
which case the assembler calculates the length (but does
not assemble the data). If you wish to define a field of
more than one byte, without specifying the data, you must
include a length modifier.

Although no alignment occurs, field types Cand X per
mit large data areas of up to 65,535 bytes to be defined,
using the length Illodifier .

Note: A DS instruction causes the storage area to be
reserved but not set to zeros. No assumption should be
made as to the contents of the reserved area.

Using the Duplication Factor to Force Alignment

The location counter can be forced to a fullword or half
word boundary by using the appropriate field type (for
example, F or H) with a duplication factor of zero. This
method may be used to obtain boundary alignment that
otherwise would not be provided. For example, the follow
ing statements would set the location counter to the next
halfword boundary and then reserve storage space for a
128-byte field (whose leftmost byte would be on a half
word boundary).

os OH
AREA OS CL128

ON (Define Control Word) Instruction

The CW instruction provides a convenient way to define
and generate a four-byte control word. Control words in
the Communications Controller, although fullwords in
length, must be aligned on hallword boundaries. The CW
automatically performs this alignment and cauSes any
skipped bytes to be zeroed. The internal machine format
for a control word for a type 2 or type 3 channel adapter is
as follows:

Byte Bits Use

0-1 Command code
1 2-3 Flags
1-2 4-13 Count
2-4 14-31 Data Address

See Figure 4-19 for the format of the CW instruction.

Name Operation Operand

any symbol or CW
blank

four operands, separated
by commas, specifying
the contents of the con
trol word in the format
described in the text.

Figure 4-19. CW Instruction

All four operand.s must appear. They are written, from
left to right, as follows:

1. An absolute expression that specifies the command code.
The value of this expression is placed in bits 0-1 of the
control word.

2. An absolute expression that specifes the flags set in bits
2-3.

3. An absolute expression that specifies the count. The
value of this expression is right-justified in bits 4-13.

4. An expression specifying the data address. This value
is treated as a three-byte, A-type constant. The value of
this expression is placed in bits 14-31. The data address
must be halfword-aligned.

The following is an example of a CW instruction:

ANYNAME CW 2,B'01',50,READAREA

If you code a symbol in the name field of the CWinstruc
tion, it is assigned the address value of the leftmost byte of
the control word. The length attribute of the symbol is 4.

CONTROLLING THE ASSEMBLER PROGRAM

This section describes the assembler instructions that request
the assembler to perform certain functions that it would
otherwise perform in a standard, predetermined way. You
can use these instructions to:

• Change the standard coding format for writing your
source statements.

• Control the final structure of your assembled program.
r

• Alter the format of the source module and object code
printed on the assembly listings.

• Produce punched card output' in addition to the object
deck.

• Substitute your own mnemonic operation codes for the
standard codes of the assembler language (OS/VS only)
via the OPSYN assembler instruction.

• Save and restore programming environments, such as the
status of the PRINT options and the USING base register
assignment.

Structuring a Program

The ORG and CNOP assembler instructions affect the loca
tion counter and thereby the structure of a control section.
You can use them to interrupt the normal flow of assembly
and redefine portions of a control section and to align data
on any desired boundary.

ORG (Set Location Counter) Instruction

The ORG instruction is used to alter the setting of the loca
tion counter for the current control section. See Figure
4-20 for the ORG instruction format.

Name

sequence symbol
or blank
(OS/VS: any
symbol or blank)

Operation

ORG

Figure 4-20. ORG Instruction

Operand

a relocatable expression
or blank

Any symbols in the expression must have been previously
defined. The unpaired relocatable symbol must be defined
in the same control section in which the ORG instruction
appears.

The location counter is set to the value of the expression
in the operand. If the operand is omitted, the location
counter is set to the next available (unused) location for
that control section.

An ORG instruction must not be used to specify a loca
tion below the beginning of the control section in which it
appears. Example: The following is invalid if it appears
less than 500 bytes from the beginning of the current con
trol section:

ORG *-500

To reset the location counter to the next available byte in
the current control section, the following statement is used:

ORG

If previous ORG statements have reduced the value of the
location counter for the purpose of redefining a portion of
the current control section, an ORG statement with an
omitted operand can then be used to terminate. the effects
of such statements and restore the location counter to its
highest setting plus one.

Note: By using the ORG statement, two instructions
may be given the same location counter values. In such
a case, the second instruction will not always eliminate
the effects of the first instruction. Consider the follow
. ing examples:

ADDR· DC A(LOC)
ORG*4

B DC C'BETA'

In this example, the value of B (BETA) will be destroyed
by the relocation of ADDR during linkage editing.

IBM Communications Controller Assembler Instructions 4-13

CNOP (Conditional No Operation) Instruction

The CNOP instruction lets you align an instruction at a
specific halfword boundary. If any bytes must be skipped
in order to align the instruction properly, the assembler
ensures an unbroken instruction flow by generating no
operation instructions. (If the CNOP is coded on an odd
boundary, one byte of zero padding is generated to force
the CNOP to an even boundary.)

The CNOP instruction ensures the alignment of the loca
tion counter to a halfword, fullword, or doubleword bound
ary. If the location counter is already properly aligned, the
CNOP instruction has no effect. If the specified alignment
requires the location counter to be incremented, one to
three no-operation instructions are generated, each of
which occupies two bytes. See Figure 4-21 for the CNOP
instruction format.

Name

sequence symbol
or blank
(OS/VS: any
symbol or blank)

Operation

CNOP

Figure 4-21. CNOP Instruction

Operand

two absolute expressions
of the form b, w

Any symbols used in the expressions in the operand field
must have been previously defined.

Operand b specifies at which byte in a fullword or
doubleword the location counter is to be set· b can be 0 2
4, or 6. Operand w specifies whether byte b'is in a fullw~rd
(w=4) or doubleword (w=8). The following pairs of band
ware valid:

b,w

0,4
2,4
0,8
2,8
4,8
6,8

Specifies

Beginning of a fullword
Middle of a fullword
Beginning of a doubleword
Second halfword of a doubleworc;l
Middle (third halfword) of a doubleword
Fourth halfword of a doubleword

Determining Statement Format and Sequence

You can change the standard coding conventions for the
assembler language statements or check the sequence of
source statements with the ICTL and ISEQ instructions.

ICTt (Input Format Control) Instruction

The ICTLinstruction permits altering the normal format
of source program statements (see Figure 4-22). The ICTL
statement must precede all other statements ih the source
program and can be used only once.

Name Operation

blank ICTL

Figure 4-22. ICTL Instruction

Operand

one to three decimal
self-defining values of the

, formb, e, c

4-14 IBM 3704 and 3705 Assembler Language

Operand b specifies the beginning column of the source
statement. It must always be specified and must be within
140, inclusive.

Operand e specifies the end column of the source state
ment. The end column, when specified, must be within
41-80, inclusive; when not specified, it is assumed to be 71.
The end column must not be less than the begin column
+5. (DOS: begin column +4). The column after the end
column is used to indicate whether or not the next card is
a continuation card.

Operand c specifies the continue column of the source
statement. The continue column, when specified, must be
within 240 and must be greater than b. If the continue
column is not specified, or if column 80 is specified as the
end column, the assembler assumes that there are no contin
uation cards, and all statements are contained on a single
card.

Note: An invalid ICT:L statement (under OS/VS only)
will cause all subsequent statements to be printed and
interpreted as comments.

The operand forms b"c (no end column), and b, (no
comma allowed) are invalid.

If no ICTL statement is used in the source program, the
assembler assumes that 1, 71, and 16 are the begin, end,
and continue columns, respectively.

Example: ICTL 25 designates the begin column as 25;
since the end column is not specified, it is assumed to be
71. No continuation codes will be recognized because no
continue column is specified.

ISEQ (Input Sequence Checking) Instruction

The ISEQinstruction is used'to check the sequence of input
cards. (A sequence error is considered seriolis, but the
assembly is not terminated.) See Figure 4-23 for the format
of the ISEQ instruction.

Name Operation

blank ISEQ

Figure 4-23. ISEQ Instruction

Operand

two decimal self
defining values of the
form 1,r; or blank

The operands 1 and r, respectively, specify the leftmost
, and rightmost columns of the field in the input cards to be
checked. Operand r musreqlial or exceed operand 1. Col
umns to be checked must not be between the begin and end
columns.

,Sequence checking begins with the first card following
the ISEQ statement. Comparison of adjacent cards makes
use of the eight-bit internal collating sequence. Each card
checked must have a sequence number higher than that of
the preceding card.

An ISEQ statement with a blank operand terminates the
operation. (Note that this ISEQ statement is also sequence
checked.) Checking may be resumed with another ISEQ
statement.

Sequence checking is performed only on statements
contained in the source program. Statements inserted by
the COpy assembler instruction are not checked for correct
sequence; macro definitions in a macro library also are not
checked.

listing Format and Output

The PRINT, TITLE, EJECT, and SPACE instructions
request the assembler to produce listings and identify out
put cards in the object deck according to your special needs.
They allow you to determine printing and page formatting
options other than the ones the assembler program assumes
by default. Among other things, you can introduce your
own page headings, control the line spacing, and suppress
unwanted detail.

Note: TITLE, SPACE, and EJECT do not appear in the
source listing unless the statement is continued onto
another card. Then the first card of the statement is
printed. However, none of these three types of instruc
tions, if generated as macro instruction expansion, will
ever be listed, regardless of continuation.

PR INT (Print Optional Data) Instruction

The PRINT instruction is used to control printing of the
assembly listing; see Figure 4-24.

Name

sequence symbol
or blank

Operation

PRINT

Figure 4-24. PRINT Instruction

Operand

one to three operands

The one to three operands may include an operand from
each of the following groups,in any sequence:

• ON - A listing is printed;

• OFF - No listing is printed.

• GEN - All statements generated by macro instruc-
tions are printed

• NOGEN - Statements generated by macro instructions
are not printed; however, the macro
instruction itself will appear in the listing,
with the exception of MNOTE, which will
print regardless of NOGEN.

• DATA - Constants are printed out in full in the
listing.

• NODATA - Only the leftmost eight bytes are printed
on the listing.

A program may contain any number of PRINT instruc
tions. A PRINT instruction controls the printing of the
assembly listing until another PRINT instruction is encoun ..
teredo Each option remains in effect until the correspond
ing opposite option is specified.

Until the first PRINT instruction (if any) is encountered,
PRINT, ON, NODATA, GEN is assumed.

The hierarchy of print control statements is:

1. ON and OFF
2. GEN and NOGEN
3. DATA and NODATA

Thus, with the following statement nothing would be
printed:

PRINT OFF,DATA,GEN

Note: For OS/VS only, the PUSH and POP instructions,
described under Saving and Restoring Programming
Environment later in this chapter, also influence the
PRINT options by saving and restoring the PRINT status.

TITLE (Identify Assembly Output) Instruction

The TITLE instruction enables the programmer to identify
the assembly listing and assembly output cards. SeeFigure
4-25 for the format of the TITLE instruction.

Name

special sequence
or variable symbol
or blank

Operation

TITLE

Figure 4-25. TITLE Instruction

Operand

a sequence of characters .
enclosed in apostrophes

The name field can contain a special symbol of from one
to four (OSIVS: one to eight) alphabetic or numeric char
acters, in any combination. The contents of the name field
is punched into columns 73-76 (OS/VS: 73-80) of all out
put cards for the program except those produced by the
PUNCH and REPRO assembler instructions. Only the first
TITLE statement in a program may have a special symbol
or variable symbol in the name field. The name field of all
SUbsequent TITLE statements must contain either a
sequence symbol or a blank. (Exception: For OS/VS, the
name field may contain an alphameric character string, or a
variable symbol, or a combination of the two. Any of these
options has significance only when coded in the first valid
TITLE instruction in the program. If coded in subsequent
TITLE instructions, they are accepted but are ignored.)

The operand field can contain up to 100 characters
enclosed in apostrophes. The contents of this operand
field is printed at the top of each page of the assembly
listing.

IBM Communications Controller Assembler Instructions 4-15

Special consideration must be given to representing
apostrophes and ampersands as characters. Each single
apostrophe or ampersand desired as a character in the con
stant must be represented by a pair of apostrophes or
ampersands. Only one apostrophe or ampersand appears in
storage (DOS/VS: two apostro'phes (") are allowed.)

A program may contain more than one TITLE state
ment. Each TITLE statement provides the heading for
pages in the assembly listing that follow it, until another
TITLE statement is encountered. Each TITLE statement
causes the listing to be advanced to a new page (before the
heading is printed.)

EJECT (Start New Page) Instruction

The EJECT instruction causes the next line of the listing to
appear at the top of a new.page. This instruction provides
a convenient way to separate routines inthe program listing.
See Figure 4-26 for the format of the EJECT instruction.

Name

sequence .symbol
or blank

Operation

EJECT

Figure 4-26. EJECT Instruction

Operand

not used; should be
blank

If the line before the EJECT instruction appears at the
bottom of a page, the EJECT instruction has no effect.
Two EJECT instructions may be used in succession to
obtain a blank page. A TITLE instruction followed imme
diately by an EJECT instruction will produce a page with
nothing but the operand entry (if any) of the TITLE
instruction. Text following the EJECT instruction will
begin at the top of the next page.

SPACE (Space Listing) Instruction

The 'SPACE instruction is used-to insert one or more blank
lines in the listing; see Figure 4-27.

Name

sequence symbol
or blank

Operation

SPACE

Figure 4-27. SPACE Instruction

Operand

a decimal value or blank

A decimal value is used to specify the number of blank
lines to be inserted in the assembly listing. Ablank operand
causes one blank line to be inserted. If this v3J.ue exceeds
the number of lines remaining on the listing page, the state
ment will have the same effect as an EJECT statement.

Punching Output Cards

The PUNCH and REPRO instructions allow you to pro
duce punched cards as output from the assembly in addi
tion to those produced for the object module (object
deck).

4-16 IBM 3704 and 3705 Assembler Language

PUNCH (Punch a Card) Instr~ction

T.hePUNCH assembler.instruction causes th~ data in the
operand to be punched into a card. As many PUNCH
statements as are necessary may be used. See Figure 4-28
for the PUNCH instruction format.

Name

sequence symbol
or blank

OPeration

PUNCH

Figure 4-28. PUNCH Instruction

Operand

1 toaO characters en
closed in apostrophes

Using' c~racter representation, the operand is written as
a string of up to 80 characters enclosed in apostrophes. All
characters, including blank, are valid. The position imme
diately to the right of the left apostrophe is regarded as
column one of the card to be punched. Substitution is
performed for variable symbols in the operand.

Special consideration must be given to representing
apostrophes and ampersands as characters. Each apostro
phe or ampersand desired as a character in the constant
must be represented by a pair of apostrophes or ampersands.
Only one apostrophe or ampersand appears in storage.

PUNCH statements may occur anywhere within a pro
gram except before macro definitions. They may occur
within a macro definition, but not between the end of a
macro definition and the beginning of the next macro def
inition. If a PUNCH statement occurs before the first con
trol section, the resultant card will precede all other cards
in the object program card deck; otherwise, the card will be
punched in place. No sequence number or identification
is punched in the card.

REPRO (Reproduce Following Card) Instruction'

The REPRO assembler instruction causes data on the fol
lowing statement line to be punched into a card. The data
is not processed; it is punched in a card, andno substitution
is performed for variable symbols. No sequence number or
identification is punched on the card. One REPRO instruc
tion produces one punched card. The REPRO instruction
may not appear before a macro definition. REPRO instruc
tions that occur before all statements composing the first
or only control section will punch cards which precede all
other cards of the object deck. See Figure 4-29
for the REPRO instruction format.

Name

sequence symbol
or blank

Operation

REPRO

Figure 4-29. REPRO Instruction

Operand

blank

The line to be reproduced may contain any combination
of up to 80 valid characters. Characters may be entered
starting in column 1 and continuing through column 80 of
the line. ,Column 1 of the line corresponds to column 1 of
the card to be punched.

Redefining Symbolic Operation Codes (OS/VS Only)

The OPSYN assembler instruction is provided for defming
machine and assembler instruction operation codes.

OPSVN (Define Symbolic Operation Code) Instruction

The OPSYN instruction allows you to define your own
symbols to represent (1) machine and extended mnemonic
branch instructiOI}.s and (2) assembler instructions (including
conditional assembly instructions).

You may also use the OPSYN instruction to prevent the
assembler from recognizing a symbol that represents a cur
rent operation code.

Figure 4-30 gives the format of the OPSYN instruction.
Within a source module, the OPSYN instruction must

appear after the ICTL instruction (if used) and can be pre
ceded only by EJECT, ISEQ, PRINT , SPACE, and TITLE
instructions. Also, OPSYN must precede any source macro
definitions.

The OPSYN instruction can be used to assign to the sym
bol or operation code in the name field the meaning of the
operation code in the operand field (see Figure 4-30[a]).
Example: NEW OPSYN AR causes the meaning of the AR
operation code to be assigned to the symbol NEW.

The operand of the OPSYN instruction must represent
either the operation code of one of the machine or assembler
instructions contained within this manual or an operation
code defined by a previous OPSYN instruction.

The OPSYN instruction can also be used to prevent the
assembler from recognizing a current operation code (see
Figure 4·30 [b]). In this case the operand field must be
blank. Example: AR OPSYN. This instruction causes the
AR instruction to lose its properties as an operation code.

A third use of the OPSYN instruction is for assigning the
properties of one instruction to two different operation
codes. Example: L OPSYN LR. This instruction assigns to
the rrmemonic code L the properties of mnemonic code LR;
Land LR thus possess the same properties.

When the same symbol appears in the name field of suc
cessive OPSYN instructions, the latest definition is the
effective one. Example: Given the sequence

STORE
STORE

OPSYN
OPSYN

ST
STH

the operation code STORE represents the STH instruction,
not the ST instruction.

Name Operation Operand

(a)

any symbol or OPSYN an operation code
operation code

(b)

an operation OPSYN blank
code

Figure 4-30. OPSYN Instruction

Saving and Restoring Programming Environments (OS/VS
Only)

The PUSH and POP assembler instructions can be used to
save and restore the status of PRINT options and the base
register assignment of your program.

PUSH (Save Current PRINT/USING Status) Instruction

The PUSH instruction allows you to save the current PRINT
or USING status in "push-down" storage on a last-in, first
out basis. You can restore the status later, also on a last-in,
first-out basis, by using a corresponding PQP instruction.
Figure 4-31 shows the format of the PUSH instruction.

Name

a sequence
symbol or blank

Operation

PUSH

Figure 4-31. PUSH Instruction

PRINT
USING

Operand

Options:

2
PRINT,USING 3
USING,PRINT 4

Specify one of the four options shown in the operand
field. The PUSH instruction does not change the status of
the current PRINT or USING instructions; the status is only
saved.

Note: When the PUSH instruction is used in combina
tion with the POP instruction, a maximum of four nests
of PUSH PRINT -POP PRINT or PUSH USING-POP
USING are allowed.

POP (Restore PRINT/USING Status) Instruction

The POP instruction allows you to restore the PRINT or
USING status saved by the most recent PUSH instruction.
Figure 4-32 shows the format of the POP instruction.

Name Operation Operand

Options:
a sequence POP PRINT 1
symbol or blank USING 2

PRINT,USING 3
USING,PRINT 4

Figure 4-32. POP Instruction

Specify one of the four options shown in the operand
field. The POP instruction causes the status of the current
PRINT or USING instruction to be overridden by the PRINT
or USING status saved by the last PUSH instruction.

Note: When the POP instruction is used in combination
with the PUSH instruction, a maximum of four nests of
PUSH PRINT -POP PRINT or PUSH USING-POP
USING are allowed.

IBM Communications Controller Assembler Instructions 4-17

Chapter 5: The Communications Controlle.r Assembler Macro Facility

INTRODUCTION

The IBM Communications Controller macro facility is an
extension of the Communications Controller assembler
language. The facility provides a convenient way to gen
erate a desired sequence of assembler language statements
many times, in one or more programs. The macro definition
is written only once, and a single statement, a macro in
struction statement, is written each time you want to gen
erate the desired sequence of statements.

This facility simplifies the coding of programs, reduces
the chance of programming errors, and ensures that standard
sequences of statements are used to accomplish desired
functions.

An additional Jacility , called conditional assembly, al
lows you to code statements which mayor may not be as
sembled, depending upon conditions evaluated at assembly
time. These conditions are usually tests of values, which
may be defined, set, changed, and tested during assembly.
The conditional assembly facility may be used without
using mac~o instruction statements.

The Macro I nstruction Statement

A macro instruction statement (hereafter called a "macro
instruction") is a source program statement. The assembler
generates a sequence of assembler language statements for
each occurrence of the same macro instruction. The gen
erated statements are then processed like any other assem
bler language statement.

Macro instructions can be tested by placing them before
the assembly cards of a test program.

Three types of macro instructions may be written: posi
tional, keyword, and mixed-mode macro instructions. Posi
tional macro instructions require you to write the operands
of a macro instruction in a fIxed order. Keyword macroin
structions permit you to write the operands of a macroin
struction in a variable order. Mixed-mode macro instructions
permit you to use the features of both positional and key
word macro instructions in the same macro instruction.

The Macro Definition

A macro definition is a set of statements that provides the
assembler with: (1) the mnemonic operation code and the
format of the macro instruction, and (2) the sequence of
statements the assembler generates when the macro instruc
tion appears in the source program.

Every macro definition consists of (I) a macro defini
tion header statement, (2) a macro instruction prototype
statement, (3) zero or more model statements and (4) a
macro definition trailer statement.

The macro defmition header and trailer statements indi
cate to the assembler the beginning and end of a macro
definition.

The macro instruction prototype statement specifies
the mnemonic operation code and the type of the macro
instruction.

The model statements are used by the assembler to
generate the assembler language statements that replace
each occurrence of the macro instruction.

Within the definition you can code COPY, MEXIT,
MNOTE, or conditional assembly instructions.

The COpy instruction can be used to copy model state
ments and MEXIT, MNOTE or conditional assembly instruc
tions from a system library into a macro definition.

The MEXIT instruction can be used to terminate process
ing of a macro definition.

The MNOTE instruction can be used to generate an error
message when the rules for writing a particular macro
instruction are violated.

The conditional assembly instructions can be used to
vary the sequence of statements generated for each occur
rence of a macro instruction. Conditional assembly instruc
tions may also be used outside macro defmitions; that is,
among the assembler language statements in the program.

The Macro Library (System Source Statement Library)

The same macro definition may be made availab"le to more
than one source program by placing the macro defmition in
the macro library (DOS, DOS/VS: System source statement
library). The library is a collection of macro definitions
that can be used by all assembler language programs in an
installation .. Once a macro definition has been placed in the
library, it may be used by writing its corresponding macro
instruction in a source program. Macro defInitions must be
in the system macro (or source statement) library under the
same name as the prototype. The procedure for placing
macro definitions in the macro library is described in:

For DOS: DOS System Control and Services
(GC24-5036). (DOS macros are placed in the
"A" sublibrary of the system source state
ment library.)

For OS: OS Utilities (GC28-6586).
For DOS/VS: DOS/VS System Control Statements

(GC33-5376).
For OS/VS: OS/VS Utilities (GC35-0005).

Varying the Generated Statements

Each time a macroinstruction appears in the source pro
gram, it is replaced by the same sequence. of assembler
language statements. Conditional assembly instructions,

The Communications Controller Assembler Macro Facility 5-1

however, may be used to vary the number and format of
the generated statements.

Variable Symbols

A variable symbol is a type of symbol that is assigned dif
ferent values by you or the assembler. When the assembler
uses a macro defmition to determine what statements are
to replace a macro instruction, variable symbols in the
model statements are replaced with the values assigned to
them. By changing the values assigned to variable symbols,
you can vary parts of the generated statements. . .

Avariable symbol is written as an ampersand, followed
by from one through seven letters and/or digits, the first
of which must be a letter. Elsewhere, two ampersands
must be used to represent an ampersand.

Types of Variable Symbols

There are three types of variable symbols: symbolic param
eters, system variable symbols, and SET symbols. The SET
symbols are further broken down into SETA symbols,
SETB symbols, and SETC symbols.

Assigning Values to Variable Symbols

Symbolic parameters are assigned values by you each tLrne
you write a macro instruction.

System variable symbols are assigned values by the as
sembler each time it processes a macro instruction.

SET symbols are assigned values by you by means of
conditional assembly instructions.

Global SET Symbols

The values assigned to SET symbols in one macro defini
tion may be used to vary the statements that appear in
other macro definitions. All SET symbols used for this
purpose rilUst be defined by you as global SET symbols.
A symbol is global when it has the same meaning through
out the entire program and ·all its segments. All Qther
SET symbols (that is, those which may be used to vary
statements that appear in the' same macro definition)
must be· defined by you as local SET symbols. Local
SET symbols and the otller variable symbols (that is,
symbolic parameters and system. variable symbols) are
local variable symbols. Global SET symbols are global
variable symbols.

THE MACRO DEFINITION

A macro definition consists of (in the order shown):

1. A macro definition header statement (MACRO)
2. A macro instruction prototype statement
3. Zero or more model statements; COPY, MEXIT,

MNOTE, or conditional assembly instructions
4. A macro definition trailer statement (MEND)

5-2 IBM 3704 and 3705 Assembler Language

Macro definitions appearing in a source program must
appear before all PUNCH and REPRO instructions and all
statements that pertain to the first control section. Speci
fically, only the listing control instructions (EJECT, PRINT,
SPACE, and TITLE), ICTL and ISEQ instructions, and
comment statements can occur before the macro defmi
tions. All but the ICTL instruction can appear between
macro definitions if there is more than one defmition in
the source program.

A macro definiti<;>n cannot appear within a macro defmi
tion, and the maximum number of continuation cards for a
macro defmition statement is two (DOS: one continuation
card). .

Macro Definition Header (iViACRO) Instruction

The macro definition header instruction indicates the
beginning of a macro definition. It must be the first instruc
tion in every macro definition. The format of this instruc
tion shown in Figure 5-1.

Name Operation

Blank MACRO

Figure 5-1. MACRO Instruction

Operand

Blank

Ma~ro Definition Trai~er (MEND) !nstn.!cteon

The macro defmition trailer instruction indicates the end of
a macro defmition. It can appear only once within a macro
definition and must be the last instruction in every macro
defmition. The format of this instruction is shown in
Figure 5-2.

Name

A sequence symbol
or blank

Operation

MEND

Figure 5-2. MEND Instruction

Prototype Statement

Operand

Blank

The macro instruction prototype statement (hereafter called
the prototype statement) specifies the mnemonic operation
code and the format of all macro instructions that refer to
the macro defmition. It must be the second statement of
every macro definition. The format of this statement is
shown in Figure 5-3.

Name

A symbolic param
eter or blank

Operation

A symbol

Operand

o to 200 (DOS: 0 to
100) symbolic (posi"
tional.and/or keyword)
parameters separated
by commas (OS/VS:
no fixed maximum .
number of parameters)

Figure 5-3. Macro Instruction Prototype Statement

The symbolic parameters are used in the macro defmi
tion to represent the name field and operands of the cor
responding macro instruction. Symbolic parameters may
be either positional or keyword parameters. Parameters are
described under Symbolic Parameters.

The name field of the prototype statement may be
blank, or it may contain a symbolic parameter.

The symbol in the operation field is the mnemonic opera
tion code, which must appear in all macro instructions that
refer to the macro defInition. The mnemonic operation
code must not be the same as the mnemonic operation code
of another macro defmition in the source program or of a
machine or assembler instruction (unless, for OS!VS only,
operation codes have been changed by an OPSYN
instruction).

The operand field may contain 0 to .200 (DOS: 0 to. 1 00)
symbolic parameters, separated by commas (OSjVS: no
fixed maximum number of parameters). If there are no
symbolic parameters, comments may not appear.

The following are examples of a prototype statement:

&NAME
&NAMi::

MOVE
MOVE

&TO,&FROM
& TO=AREA2,&F ROM=AR EA 1

Alternate Statement Format

The prototype statement may be written in either normal
assembler language format (all symbolic parameters precede
any remarks) or in a format different from that used for
assembler language statements. The alternate format
described here allows you to write an operand on each line
and allows the interspersing of operands and comments in
the statement.

In the alternate format,as in the normal format, the
name and,operation fields must appear on the first line of
the statement, and at least one blank must follow the opera
tion field on that line. Both types of statement formats
may be used in the same prototype statement.

The rilles for using the alternate statement format are:

• If an operand is followed by a comma and a blank and
the column after the end column contains a nonblank
character, the operand field may be continued on the
next line, starting in the continue column. More than
one operand may appear on the same line.

• Comments may appear after the blank that indicates the
end of an operand, up to and including the end column.

• If the next line starts after the continue column, the
information entered on the next line is considered com
ments and the operand field is considered terminated.
Any subsequent continuation lines are considered
comments.

Note: A prototype statement may be written on as
many continuation lines as necessary. When using nor
mal format, the operands of a prototype statement must
begin on the first statement line or in the continue col.;
umn of the second line.

The following examples illustrate (1) the normal state
ment format, (2) the alternate statement format,and (3)
the combination of both statement formats.

Name Operation Operand Comments

&NAMEl OPl &OPD1,&OPD2,&OPD3
&OPD8,&OPD9 THIS IS THE
NORMAL STATEMENT FORMAT

&NAME2 OP2 &OPD1, THIS IS THE
&OPD2,&OPD3, ALTERNATE
&OPD4 STATEMENT

FORMAT

&NAME3 OP3 &OPD1, THIS IS A
&OPD2,OPD3, COMB-
&OPD4,
&OPD9 INATION OF

BOTH
STATEMENT
FORMATS

Symbolic Parameters

A symbolic parameter is a type of variable symbol that is
assigned values when you write a macro instruction~

X
X

X
X
X

X

X

X
X

Symbolic parameters allow you to pass values into the
body of a macro defmition from the calling macro instruc
tion. You declare these parameters in the macro prototype
statement. They can serve as points to s~bstitution in the
body of the macro definition and are replaced by the values
assigned to them by the calling macro instruction. You may
vary the statements that are generated for each occurrence
of a macro instruction by changing the values of the sym
bolic parameters each time you code the macro instruction
in the source program.

By using symbolic parameters with meaningful names
you can indicate the purpose for which the parameters (or
substituted values) are used.

Symbolic parameters must be valid variable symbols.
They have a local scope; that is, the values they are assigned
apply only to the macro definition in which they have been
declared. The value of the parameter remains constant
throughout the processing of the macro defmition.

There are two kindsof~ymbolic parameter: positional
and keyword. Each positional or keyword parameter used
in the body of a macro defmition must be declared in the
prototype statement.

The Communications Controller Assembler Macro Facility 5-3

Positional Parameters

You should use a positional' parameter in a macro definition
if you wish tocha.nge the value of the parameter each time
you call the macro deftnition. ThiS is because it is easier,
when coding the corresponding macro instruction, to supply
the value for a positional ' parameter than for.akeyword
parameter. You need only write the desired value in the
proper operand position within the macro instruction.

Values are assigned to positional parameters by the cor
responding positional operands coded in the macro instruc
tion that calls the macro definition.

A positional parameter consists of an ampersand followed
by from one ,through seven letters and/or digits, thefirst of
which must bea letter. Elsewhere, two ampersands must
be used to represent an ampersand.

You should not use &SYS as the first four characters of
a positional parameter.

Examples of valid positional parameters:

&READER
&A23456
&X4F2

&LOOP2
&N
&$4

Examples of invalid positional parameters:

CARDAREA
&256B
&AREA2456

&BCD%34

&IN AREA

(first character is not an ampersand)
(first character after ampersand is not a letter)
(mQre than seven characters after the
ampersand)

(contains a special character other than initial
ampersand)

(contains a special character (blank) other than
initial ampersand)

Any positional parameters in a model statement must
appear in the prototype statement of the macro definition.

The following is an example of a macro definition using
positional parameters. Note that the positional parameters
in the model statements appear in the prototype statement.

Header MACRO

Prototype &NAME· MOVE &TO,&FROM
Model &NAME ST 2,SAVE
Model L 2,&FROM
Model ST 2,&TO
Model L 2,SAVE
Trailer MEND

In the following example, the characters HERE,
FIELDA, and FIELDB of the MOVE macro instruction cor
respond to the positional parameters &NAME, &TO, and
&FROM, respectively, of the MOVE prototype statement:

HERE MOVE FIELDA,FIELDB

Any occurrence of the symbolic parameters &NAME,
&TO, and &FROM in a model statement will be replaced
by the characters HERE, FIELDA, and FIELDB, respec;.
tively. If the preceding macro instruction were used in a

5-4 IBM 3704 and 3705 Assembler Language

source program, the. following assembler language statements
would be generated:

·HERE ST 2,SAVE
L 2,FIELDB
ST 2,FIELDA
L 2,SAVE

The following example illustrates another use of the
MOVE macro ·instruction, using operands different from
those in the preceding example:

Macro LABEL MOVe IN,OUT

Generated LABEL ST 2,SAVE
Generated L 2,OUT
Generated ST 2,IN
Generated L 2,SAVE

If a positional parameter appears in the comments field
of a model statement, it is not replaced by the correspond
ing parameter of the calling macro instruction.

Keyword Parameters

You should use a keyword parameter in a macro definition
for a value that changes infrequently from one call of the
macro definition to another. By specifying a standard
default value to be assigned to the keyword parameter, you
can omit the corresponding keyword operand from the call-

Keyword parameters are particularly appropriate when
the macro definition requires many parameters, only a few
of which need be changed from their standard default values
for any given call of the macro defmition. Thus, when writ
ing the macro instruction, you need code only those oper
ands that correspond to the values to be changed.

A keyword parameter comprises (in order, without inter
vening blanks): (1) an ampersand (&), (2) a keyword of one
to seven alphameric characters (the first must be ampha
betic), (3) an equal sign; and optionally (4) a standard
(default) value. (The standard value mustnot include a
keyword.)

Anything that may be used as an operand in a macro
instruction, except variable symbols, may be used as a
standard value in a keyword parameter statement.

Examples of valid keyword parameters:

&READER=
& LOOP2=SYMBO L

(standard value omitted)
(standard value supplied)

Examples of invalid keyword parameters:

CARDAREA::;;
&TYPE
&AREA=X'189A'

(& omitted)
(= omitted)
(standard value does not immediately
follow =)

Any keyword parameters in a model statement must
appear in the prototype statement of the macro definition.

The following is an example of a macro definition using
keyword parameters. Note that the keyword parameters
in the model statement also appear in the prototype
statement.

Header MACRO
Prototype &NAME MOVE &TO=~FROM=M5GAREA

Model &NAME 5T 2,5AVE
Model L 2,&FROM=
Model 5T 2,&TO=
Model L 2,5AVE
Trailer MEND

Concatenating Symbolic Parameters

If a symbolic parameter (positional or keyword) in a model
statement is immediately preceded or followed by other
characters or by another symbolic parameter, the characters
that correspond to the symbolic parameter are combined in
the generated statement with the other characters or the
characters that correspond to the other symbolic parameter.
This process is called concatenation.

The macro definition, macro instruction, and generated
statements in the following example illustrate these rules:

Header

Prototype &NAME
Model &NAME
Model
Model
Model
Trailer

Macro HERE

Generated HER E
Generated
Generated
Generated

MACRO

MOVE
5T&TY
L&TY
5T&TY
L&TY
MEND

MOVE

5TH
LH
5TH
LH

&TY,&P,&TO,&FROM
2,5AVEAREA
2,&P&FROM
2,&P,&TO
2,5AVEAREA

H,FIELD,A,B

2,5AVEAREA
2,FIELDB
2,FIELDA
2,5AVEAREA

The symbolic parameter &TY is used in each of the four
model statements to vary·to mnemonic operation code of
each of the generated statements. The character H in the
macro instruction corresponds to symbolic parameter &TY.
Since &TY is preceded by other.characters (that is, ST and
L) in the model statements,the character that corresponds
to &TY (that is, H) is concatenated with the other characters
to form the operation fields of the generated statements.

The symbolic parameters &P, &TO, and &FROM are
used in two of the model statements to vary part of the
operand fields of the corresponding generated statements.
The characters FIELD, A, and B correspond to the sym
bolic parameters &P, &TO, and &FROM, respectively.
Since &p·is followed by &FROM in the second model
statement, the characters that correspond to them (that is,
FIELD and B) are concatenated to form part of the oper
and field of the second generated statement. Similarly,
FIELD and A are concatenated to form part of the operand
field of the third generated statement.

If you wish. to concatenate a symb()lic parameter with a
letter, digit, left parenthesis, or period following the sym
bolic parameter, a period is required directly follOWing. the
parameter. A period is optional if the symbolic parameter
is to be concatenated with (1) another symbolic parameter
or (2) a special character other than a left parenthesis or
another period that follows it.

If a symbolic parameter is immediately followed by a
period, then the symbolic parameter and the period are
replaced by the characters that correspond to the symbolic
parameter. A period that immediately follows a symbolic
parameter does not appear in the generated statement.

The following macro definitions, macro instruction, and
generated statements illustrate these rules:

Header

Prototype
Model (1)
Model (2)
Model (3)
Model (4)
Trailer

&NAME
&NAME

Macro HERE

Generated (1) HERE
Generated (2)
Generated (3)
Generated (4)

MACRO

MOVE
5T
L
5T
L
MEND

MOVE

5T
L
5T
L

&P,&5,&R1,&R2
&R 1 ,&5.(&R2)
&R1,&P:B
&R1,&P.A
&R 1,&5.(&R2)

FIELD,5AVE,2,4

2,5AVE(4)
2,FIELDB
2,FIELDA
2,5AVE(4)

The symbolic parameter &P is used in model statements
(2) and (3) to vary part of the operand field of each of the
corresponding generated statements. The characters FIELD
of the macro instruction correspond to'" &P. Since &P is to
be concatenated with a letter (that is, B and A) in each of
the statements, a period immediately follows &P in each of
the model statements. The period does not appear in the
generated statements.

Similarly, the symbolic parameter &S is used in the
model statements (1) and (4) to vary the operand fields of
the corresponding generated statements (1) and (4). &S is
followed by a period in each of the model statements
because it is to be concatenated with a left parenthesis. The
period does not appear in the generated statements.

Model Statements

Model statements are the macro definition statements from
which assembler language statements are generated at pre
assembly time. They allow you to determine the form of
the statements to be generated. By specifying variable sym
bols as points of substitution in a model statement, you can
vary the contents of the statements generated from that
model statement. Youean also use model statements into
which you substitute values in open code.

The Communications Controller Assembler Macro Facility 5-5

Zero or more·modelstatements may follow the proto
type statement. A model statement consists of from one to
fourfields,separatedbyone or more bianks~ They are,
from left to right: the name, operation; operand, and com
ments fields. The fields in the model statement must cor
respond to the fields in the generated statement.

Model statement fields must follow the rules for paired
apostrophes, ampersands; and blanks as macro instruction
operands (see Macro Instruction Operands under The
Macro Instruction, later in this chapter.

Though model statements must follow the normal con
tinuation card conventions, statements generated from
model statements may have more than two continuation
lines. Substituted sta.tements may not have blanks in any
field except between paired apostrophes. They may not
have leading blanks in the name or operand fields.

Name Field

The name field may be blank, or it may contain an ordinary
symbol, a variable symbol, or a sequence symbol. It may
also contain an ordinary symbol concatenated with a vari
able symbol or a variable symbol concatenated with one or
more other variable symbols.

Variable symbols may not appear in the name field of
ACTR, COPY, END. ICTL, or ISEQ instructions. The
characters * and. * may not be substituted for C;l variable
symbol.

Operation Field

The operation field may contain (lJmachine instruction
(2) any assembler instruction listed in Chapter 4 (except
END, ICTL, ISEQ, or PRINT), (3) a macro instrllction, or
(4) a variable symbol. It may also contain an ordinary sym
bol concatenated with a variable symbol or a variable symbol
concatenated with one or more other variable symbols.

Variable symbols may not be used to generate:

• Macro instructions

• Conditional assembly instructions

• ICTL, ISEQ, MACRO, MEND, OPSYN, PRINT, or
REPRO instructions

• END (DOS, DOS!VS restriction only)

Variable symbols may also be used outside of macro
definitions to generate mnemonic operation codes, with the
preceding restrictions.

The use of COpy instructions is described under Copy
Instructions, below.

Variable symbols in the line following a REPRO instruc
tion will not be replaced by their values.

5-6 IBM3704 and 3705 Assembler Language

Operand Field

The operand field may contain' ordinary' symbols' or variable
symbols, but variable symbols may not be used in the oper
and field of COPY, END, ICTL, ISEQ, or OPSYN.
instructions.

Comments Field.

The comments field may contain any combination of char
acters. No substitution is performed for variable symbols
appearing in the comments field. Only generated statements
will be printed in the listing.

Processing Statements

The body of a macro defmitio'n can contain processing state
ments'that, for example, can alterthe content and sequence
of the statements generated, or issue error messages within
macro assembly expansions. Processing statements include
conditional assembly instructions, inner macro instructions,
and the COPY, MNOTE, and MEXIT instructions.

Conditional Assembly Instructions

Conditional assembly instructions allow you to determine at
pre-assembly time the content of generated statements and
thesequencei...ll which they are generated. These instructions
are:

GBlA, GBlB, GBlC,
lClA, lClB, lCLC

SETA, SETB, SETC

AIF, AGO, ANOP

ACTR

(declaration of initial values of global
and local SET symbols)

(assignment of new values to SET
symbols)

(branching .instructions)

(setting loop counter)

These instructions are discussed under Conditional
Assembly Instructions later in this chapter.

Inner Macro. I nstructions

Macro instructions can be "nested" inside macro defmitions,
allowing you to call other macro definitions from within
your own defmitions. Nesting of macro instructions is
described under The Macro Instruction; later ih this chapter .

COpy Instruction

COpy instructions maybe used to copy model statements
and MEXIT, MNOTE, and conditional assembly instructions
into a macro defmition, just as they ma.y be used outside
macro defmitions to copy source statements into an assem
bler limgtiage program. The format of the COpy instruction
is shown ~n Figure 5-4.

Name Operation

Blank COpy

Figure 5-4. COpy Instruction

Operand

A symbol

The operand is a symbol that identifies (for OS, OS/VSj
a partitioned data set member to be copied from either the
system macro library or a user library concatenated to it or
(for DOS, DOS/VSj a book to be copied from the private
source statement library. The symbol must not be the same
as the operation mnemonic of a definition in the library.
Any statement that may be used in a macro definition may
be part of the copied coding, except MACRO, MEND, and
COpy instructions, and prototype statements.

When considering statement positions within a program,
the code included by a COpy instruction should be con
sidered, rather than the COpy instruction itself. For exam
ple, if a COpy instruction in a macro defmition brings in
global and local definition statements, it may appear imme
diately after the prototype statement. However, global
defmition statements must precede local defmition state
ments must precede local defmition statements if global
and local defmition statements are also specified explicitly
in the macro defmition that contains the COpy instructions.
The COpy instruction must occur between the explicit
global defmition statements and the explicit local defmition
statements.

MNOTE (Request Macro Error Message) Instruction

The MNOTE instruction may be used to request the assem~
bIer to generate an error message in the source program
listing. The format of this instruction is shown in Figure
5-5.

Name

A sequence symbol,
variable symbol or
blank

Operation Operand

MNOTE A severity code, followed
by a cOJ1lma, followed by
any combination of
characters enclosed in
single apostrophes
(DOS/VS: Two apostro
phes (") allowed.)

Figure 5-5. MNOTE Instruction

The operand of the MNOTE instruction may 31so be
written using one of the following forms:

MNO
MNP
MNQ

MNOTE
MNOTE
MNOTE

severity code, , message'
'message'

'message'

The MNOTE instruction may be used only in a macro
defmtion. Variable symbols may be used to generate the
MNOTE mnemonic operation code, the severity code, and
the message.

The severity code may be a decimal integer from 0
through 255 or an asterisk. If it is omitted, 1 is assumed.
The severity code indicates the severity of the error, a higher
severity code indicating a more serious error. (In DOS the
severity code is for your information only. It is not used
by the DOS assembler or control program.)

When MNOTE * occurs, the statement in the operand
field will be printed as a comment.

Two apostrophes must be used to represent an apos
tr'ophe enclosed in apostrophes in the operand field of an
MNOTE instruction. One apostrophe is listed for each pair
of apostrophes in the operand field. If any variable sym
bols are used in the operand field of an MNOTE instruction,
they are replaced by the values assigned to them. Two
ampersands must be used to represent an ampersand that is
not part of a variable symbol in the operand field of an
MNOTE instruction. One ampersand is listed for each pair
of ampersands in the operand field.

The following example illustrates the use of the MNOTE
instruction:

&NAME

2
3 &NAME

4 .M1

5 .M2

MACRO
MOVE
MNOTE
AIF
AIF
ST
L
ST
L
MEXIT
MNOTE
MEXIT
MNOTE
MEND

&T,&F
* ,'MOVE MACRO GEN'
(T'&T NE T'&F) .M1
(T'&T NE·'F'). M2
2,SAVEAREA
2,&F
2,&T
2,SAVEAREA

'TYPE NOT SAME'

'TYPE NOT F'

Statement 1 is used to determine if the type attributes
of both macro instruction operands are the same. If they
are, statement 2 is the next statement processed by the
assembler. If they are not, statement 4 is the next state
ment processed. Statement 4 causes an error message to be
printed in the source program listing indicating that the type
attributes are not the same.

Statement 2 is used to determine if the type attribute of
the first macro instruction operand is the letter F. If so,
statement 3 is the next statement processed by the assem
bler. If not, statement 5 is the next statement processed.
Statement 5 causes an error message {indicating' that the
type attribute is not F) to be printed in the source program
listing.

ME'XIT (Macro Definition Exit)

The MEXIT instruction causes the assembler to terminate
processing of a macro definition .. The format of this
instruction is shown in Figure 5-6.

Name

A sequence symbol
or blank

Operation

MEXIT

Figure 5-6. MEXIT Instruction

Operand

Blank'

The Communications Controller Assembler Macro Facility 5-7

The MEXIT instruction may be used only in a macro
defInition.

If the assembler processes . a MEXIT instruction that is in
a macro defmition corresponding to an outer macro instruc
tion,the next statement processed by the assembler is the
next statement outside macro definitions.

If the assembler processes a MEXIT instruction that is
within a macro defInition corresponding to an inner macro
instruction, the next statement processed by the assembler
is the next stafemen t after the inner macro instruction in
the macro defmition.

MEXIT should not be confused with MEND. MEND
indicates the end of a macrodefmition. MEND must be. the
last statement of each macro·definition, including those
that contain one or more MEXIT instructions.

The following example illustrates the use of the MEXIT
instruction:

MACRO
&NAME MOVE &T,&F

1 AIF (T'&T EQ 'F') .OK
2 MEXIT
3 OK ANOP

&NAME ST 2,SAVEAREA
L 2,&F
ST 2,&T
L 2,SAVEAREA
MEND

Statement 1 is used to determine if the type attribute of
the first macro instruction operand is the letter F. If so,
the assembler processes the remainder of the macro defini
tion, starting with statement 3. If not, the next statement
processed is statement·2. Statement 2 causes the assembler
to terminate processing of the macro definition.

Comments Statements

A model statement may be a comments statement. A com
ments statement consists of an asterisk in the begin column,
followed by comments. The comm~ntsstatement is used
by the assembler to generate an assembler language com
ments statement,just as other model statements are used
by the assembler to generate assembler language statements.
No variable symbol substitution is performed.

You may also write, in a macro d~fmition, comments
statements that are not to be generated. These statements
must have a period in the begin column, immediately fol
lowed by an asterisk and the comments.

The first statement in the following example will be used
by the assembler to generate a comments statement; the
second statement will not.

*THIS STATEMENT WI LL BE GENERATED
*THIS ONE WI LL NOT BE GENERATED

5-8 IBM 3704 and 3705 Assembler Language

To get a truly representative sampling of the various lan
guage components used effectively in writing macro, you
may list all or selected macroinstructions as follows:

For OS: See OS Utilities (GC28-6S86) for using
IEBPTPCH utility to list macros from the
SYS1.GENLIB or SYS1.MACUB library.

For DOS: See DOS Syst,em Control. and Service
(GC24-S036) for using SSERV utility to list
macros from the system source statement
library. (DOS system macros appear in the
"A" sublibrary of this library.)

For OS/VS: See OS/VS Utilities (GC3S-000S) for listing
macros from macro libraries.

For OOS/\,S: See DOS/VS System Control Statements
(GC33-S376) for usingthe SSERV or
ESERV utility to list macros from the
system source statement library.

Note: The macros listed from the operating system
libraries will include System/370 machine instruction
codes instead of 3704/370S machine codes; however, the
use of the assembler language components in writing
macro defmitions is the same.

System Variable Symbols

System variable symbols are local variable symbols that are
assigned values automatically by the assembler. There are
six system variable symbols:

&SYSDATE (OS/VS only)
&SYSECT
&SYSLIST
&SYSNDX
&SYSPARM (OS/VS, DOS/VS only)
&SYSTIME (OS/VS only)

System variable symbols may be used in the name, opera
tion and operand fields of statements in macro defmitions,
but not in statements outside macro UefInitions. They may
not be defined as symbolic parameters or SET symbols, nor
may they be assigned values by SETA, SETB, and SETC
instructions ..

&SYSDA TE - Current Date (OS and OS/VS Only)

The global system variable symbol &SYSDATE can be used
to obtain the date on which your source module is assem
bled. The date is printed in the page heading of assembly
listings.

The symbol &SYSDATE is assigned a read-only value of
the :format mm/dd/yy (mm = month, dd =day,yy=
year).

Note: The value of the type attribute of &SYSDATE
(T'&SYSDATE) is always U and the value of the count
attribute (K'&SYSDATE) is always eight.

&SYSECT - Current Control Section

The system variable symbol &SYSECT may be used to
represent the name of the control section. in which a macro
instruction appears. For each inner and outer macro instruc
tion processed by the assembler, &SYSECT is assigned a
value that is the name of the control section in which the
macro instruction appears. (Inner and outer macro
instructions are discussed under Nesting in Macro Definitions,
later in this chapter.)

When &SYSECT is used in a macro definition, the value
substituted for &SYSECT is the name of the last CSECT,
DSECT, or START instruction that occurs before the
macro instruction. If no named CSECT, DSECT, or
START instructions occur before a macro instruction,
&SYSECT is assigned a null character value for that
macro instruction.

CSECT or DSECT instructions processed in a macro
defmtion affect the value for &SYSECT for.any subsequent
inner macro instructions in that defmition, and for any
other outer and inner macro instructions.

Throughout the use of a macro defmition, the value of
&SYSECT may be considered a constant, independent of
any CSECTor DSECT instructions or inner macro instruc
tions in that defmition.

In the example that follows; statement 8 is the last
CSECT, DSECT, or START instructions processed before
statement 9 is processed. Therefore, &SYSECT is assigned
the value MAINPROG for macro-instruction OUTERI in
statement 9. MAINPROG is substituted for &SYSECT
when it appears in statement 6.

Statement 3 is the last CSECT, DSECT,or START
instruction processed before statement 4 is processed.
Therefore, &SYSECT is aSSigned the value CSOUTI for
macro-instruction INNER in statement 4. CSOUTI is sub
stituted for &SYSECT when it appears in statement 2.

Statement 1 is used to generate a CSECT instruction
for statement 4. This is the last CSECT, DSECT, or START
instruction that appears before statement 5; therefore,
&SYSECT is assigned the value INA for macro-instruction
INNER in statement 5. INA is substituted for &SYSECT
when it appears in statement 2.

Statement 1 is.usedto generate a CSECT instruction for
statement 5. This is the last CSECT, DSECT, or START
instruction that appears before statement 10. Therefore,
&SYSECT is assigned the value INB for macro-instruction
OUTER2 in statement 10. INB is substituted for &SYSECT
when it appears in statement 7.

Name Operation

MACRO
INNER

1 &INCSECT CSECT
2 DC

MEND

MACRO
OUTERl

3 CSOUTl CSECT
OS

4 INNER
5 INNER
6 DC

MEND

MACRO
7 OUTER2

DC
MEND

8 MAINPROG CSECT
OS

9 OUTER1
10 OUTER2

MAINPROG CSECT
OS

CSOUTl CSECT
DS

INA CSECT
DC

INB CSECT
DC
DC
DC

Operand

&INCSECT

A(&SYSECT)

100C
INA
INB
A(&SYSECT)

A(&SYSECT)

200C

200C

100C

A(CSOUT1)

A(INA)
A(MAINPROG)
A(lNB)

&SYSLIST - Macro Instruction Operand

The system variable symbol &SYSUST provides you with
an alternative to symbolic parameters for referring to posi
tional macro instruction operands.

&SYSLIST and symbolic parameters may be used in the
same macro definition.

&SYSLIST(n) may be used to refer to the nth positional
macro instruction·operand. In addition, if the nth operand
is a sub list, then &SYSUST (n,m) may be used to refer to
the mth operand in the sublist, where n and m may be any
arithmetic expressions allowed in the operand field of a
SETA statement. m may be equal to, or greater than, 1
and n has a range of from 1 to 200. (DOS: 1 to 100).

The type, length, and count attributes of &SYSLIST(n)
and &SYSLIST(n,m) and the number attributes of
&SYSLIST(n) and &SYSLIST may be used in conditional
assembly instructions. N' &SYSI1ST may be used to refer
to the total number of positional operands in a macro
instruction statement. N'&SYSLIST(n) may be used to
refer to the number of operands in a sublist. If the nth
operand is omitted, N' is zero; if the nth operand is not a
sublist, N' is one.

The Communications .Controller Assembler Macro Facility 5-9

The following procedure is used to evaluate
N' &SYSLIST:

1. A sub list is considered to be one operand..
2. The count includes specifically omitted (by means

of commas j operands.

Examples:

Macro Instruction N'&S YSL 1ST

MAC K1=DS 0
MAC, K1=DC 1
MAC FULL"F('l','2'),K1=DC 4
MAC," 2
MAC 0

&SYSNDX - Macro Instruction Index

The system variable symbol &SYSNDX may be concatenated
with other characters to create unique names for statements
generated from the same model statement.

&SYSNDX is assigned the four-digit number 0001 for the
fust macro instruction processed by the assembler, and it is
incremented by one for each subsequent inner and outer
macro instruction processed.

If &SYSNDX is used in a model statement, SETC or
MNOTE instruction, or a character relation in a SETB or
AIF instruction, the value substituted for &SYSNDX is the
four-digit number of the macro instruction being processed,
including leading zeros.

If &SYSNDX appears in arithmetic expressions (for
example, in the operand field of a SETA instruction), the
value used for &SYSNDX is an arithmetic value.

Throughout one use of a macro definition, the value of
&SYSNDX may be considered a constant, independent of
any inner macro instruction in that defmitiori.

The example in the next column illustrates these rules.
It is assumed that the first'macro instruction processed,
OUTER 1, is the 106th macro instruction processed bY,the
assembler.

Statement 7 is' the ,,106th macro instrubtion processed.
Therefore, &SYSNDX is assigned the number. 01 06 for
that macroinstruction. The number 0106is substituted for
&SYSNPX when it is used instaterh~nts 4 and 6. State
ment 4 is used to assign the character value 0106 to the
SETC symbol &NDXNUM. Statement 6 is used to create
the unique name BO 1 06.

MACRO
INNER'
GBLC

A&SYSNDX SR
CR

2 BZL"

3' B'

'MEND

MACRO
&NAME OUTER1

GBLC

&NDXNUM
2,5
2,5"
B&NDXNUM

A&SYSNDX

&NDXNUM

5-10 IBM 3704 and 3705 Assembler Language

4

5
6.

7
8

&NDXNUM
&NAME

B&SYSNDX

ALPHA
BETA,

ALPHA

A0107

B0106
BETA
A
A0109

B0108

SETC
SR
AR
INNER:1
LA

, MEND

OUTER 1
OUTER1

SR
AR
SR
CR
BZL
B
LA
SR
AR
SR
CR
BZL
B
LA

, '~SYSNDX'.
2,4
2,6

2,1.00

2,4
2,6
2,5
2,5
B0106
A0107
2,1000
2,4
2,6
2,5'
2,5
B0108
A0109
2, 1000

Statement 5 is the 107th macro instruction processed.
Therefore, &SYSNDX is assigned the number 0107 for that
macroinstruction. The number 0107 is substituted for
&SYSNDX when it is used in statements 1 and 3. The num
ber 0106 is substituted for the global SETC symbol
&NDXNUM in statement2.

Statement 8 is the 108th macro instruction processed.
Therefore, each occurrence of &SYSNDX is replaced by the
number 0108. For example, statement 6 is used to create
the unique name B0108.

When statement 5 is used to process the 108th macro
instruction, statement 5 becomes the 109th macro instruc
tion processed. Therefore, each occurrence of &SYSNDX
is replaced by the number 0109. For example, statement 1
is used to create the unique name A0109.

&SYSPARM - Pass System Parameter (OS/VS and DOS/VS
Onry)

The global system variable symbol &SYSP ARM can be used
to communicate with an assembly source module through
the job control language. Through &SYSPARM, you pass a
character string into the source module from ajob control
language EXEC statement or from a program that dynam~
ically invokes the assembler. Thus, you can set a character
value from ou tside' a source module and then examine it as
part of the source module at pre-assembly time during con
ditional assembly processing:

The symbol &SYSPARM is assigned a read-only value in
a job control statement or in a field established by a program
that dynamically invokes the assembler. It is treated within
the source program as a global SETC symbol except that
its value cannot be changed. The largest value &SYSP ARM
can hold, for OS/VS, is 255 characters, which can be speci
fied by a program invoking the assembler. However, if the

PARM field of the EXEC statement is used to specify the
value, the PARMfield restrictions limit its maximum pos
sible length to 57 characters. The largest value &SYSP ARM
can hold for DOS/VS is eight characters.

For further detail on the use of &SYSPARM, see OS/VS
DOS/VS- VM/370 Assembler Language (GC334010).

&SYSTIME - Current Time of Day (OS and OS/VS Only)

The global system variable symbol &SYSTIME can be used
to obtain the time of day at which your source module is
assembled. The time is printed in the page heading of
assembly listings.

The symbol &SYSTIME is assigned a read-only value of
the format hh.mm (hh = hours, mm = minutes) in the
24-hour system. (Example: 10.15 = 10:15 a.m.; 22.15 =
10:15 p.m.)

Note: The value of the type attribute of &SYSTIME
(T' &SYSTIME) js always U and the value of the count
attribute (K'&SYSTIME) is always five.

Listing Options (OS/VS Only)

In addition to the print options that can be set from inside
a source module, you can set other listing options from out~
side the module by means of the P ARM parameter of the
EXEC job control statement or by a program that dynam
ically invokes the assembler. The two options available
(only under OS/VS) are LIBMAC and MCALL.

LI BMAC Option

The UBMAC option allows you to print, in the assembly
listings, (1) the library macro defmitions called from your
source module and(2) any statements in open code follow
ing the first END statement (coded or generated) process'ed
by the assembler.

The option NOUBMAC, which is the default option,
suppresses the listing of the foregoing items.

MCALL Option

The MCALL option allows you to list all the inner macro
instructions that the assembler processes. The option
NOMCALL, which is the default option, suppresses the
listing of inner macro instructions.

THE MACRO INSTRUCTION

The macro instruction provides the assembler with:

• The name of the macro definition to be processed.

• The values to be passed to the macro defmition.The
assembler uses the information either in processing the
macro definition or for substituting values into model
statements within the definition ..

The output from a macro defmition can be:

• A sequence of statements generated from the model
statements for fur.ther processing at assembly time.

• Values assigned to global SET symbols. These values
can be used in other macro instructions and in open
code.

Statement Format

The format of a macro instruction is shown in Figure 5-7.

Name

Any symbol or
blank

Operation

Mnemonic
operation
code

Figure 5-7. Macro Instruction Forma t

Operand

0-200 operands (DOS:
0-100 operands),
separated by commas.

The name field of the macro instruction may contain a
symbol. The symbol will not be defined unless a symbolic
parameter appears in the name field of the prototype and
the same parameter appears in the name field of a generated
model statement.

The operation field contains the mnemonic operation
code of the macro instruction. The mnemonic operation
code must be the same as the mnemonic operation code of
a macro defmition (OS, OS/VS:) in the source program or
in the macro library, or (DOS, DOS/VS:) in the source pro
gram or in the private source statement library.

The macro defmition with the same mnemonic operation
code is used by the assembler to process the macro instruc
tion. If a macro defmition in the source program and one in
the macro (or source statement) library have the same
mnemonic operation code, the macro defmition in the
source program is used.

The placement and order of the operands in the macro
instruction corresponds to (DOS: 127 characters) the
placement and order of the symbolic parameters in the
operand field of the prototype statement.

Alternate Statement Format

You may write macro instructions using the same alternate
format that can be used to write prototype statements. If
you use this format, a blank does not always indicate the
end of the operand field. The alternate format is described
earlier in this chapter under Prototype Statement.

Macro Instruction Operands

Any combination of up to 255 characters (DOS: 127 char
acters) may be used as a macro instruction operand, pro
vided that the following rules concerning apostrophes,
parentheses, equal signs, ampersands, commas, and blanks
are observed.

The Communications Controller Assembler Mapro Facility 5-11

Paired Apostrophes: An operand-may contairl. one Or more
quoted strings. A quoted string is any sequence of char
acters that begins and ends with an apostrophe and contains
an even numb~r of apostrophes.

The fitst quoted string starts with the first apostrophe in
the operand. Subsequent quoted strings start with the first
apostrophe after the apostrophe that ends the previous
quoted string.

A quoted string ends with the first even-numberea"apos
trophe that is not "immediately followed by another
apostophe.

The first and last apostrophes ofa quoted string are
called paired apostrophes. The following example contains
two quoted strirtgs. The first and fourth and the fifth and
sixth apostrophes are each paired apostrophes.

'A"B'C'D'

An apostrophe not within a quoted stmg, immediately
followed' by a letter and immediately preceded by the letter -
L (when L is preceded by any special character other than
an ampersand), is not considered irt determirting paired
apostrophes. For irtstance, in the following example, the
apostrophe is not considered:

L'SYMBOL
'AL'SYMBOL' is an invalid operand.

Paired Parentheses: There must be an equal number of left
and right parentheses. The nth left parenthesis IJ.1ust appear
to the left of the nth right parenthesis.

Paired parentheses are a left parenthesis and a following
right parenthesis without any other parentheses intervening.

If there is more. than one pair, each additional pair is
determined.by removing any pairs already recognized and
reapplyirtg the above rule for paired parentheses. For
instance, in the following example the first and fourth, the
second and third, and the fifth and sixth parentheses are
each paired parentheses:

(A(B)C)D(E)

A parenthesiS that appears between paired apostrophes
is not considered in determining paired parentheses. For
instance, irt theJollowing example, the middle parenthesis
is not considered.

(')')

Equal Signs: An equal sign can occur only between paired
apostrophes or paired parentheses. The following examples
illustrate these rules:

'C=D'
E(F=G)

Ampersands: Except as noted under Inner and Outer Macro
Instructions, each sequence of consecutive ampersands must
be an even number of ampersands. The following example
illustrates this rule:

&&123&&&&

5·12 IBM 3704 and 3705 Assembler Language

Commas.- A comma indicates the end of an operand, unless
it is placed between paired apostrophes Or paired paren
theses .. The following example illustrates this rule:

(A,B)C','

Blanks: Except asnoted under Statement Format, a blank
indicates the end o'f the operand field, unless it is placed
between paired apostrophes. The following example
illustrates this rule:

'ABC'

The following examples are valid macro instruction
operands:

SYMBOL
123
X'189A'
L'NAME
'TEN = 10'
'QUOTE I S III

A+2
(TO(S),FROM)
0(2,3)
AB&&9
'PARENTHESIS IS)'
'COMMA IS.'

The followirtg examples are invalid macro instruction
operands:

W'NAME
5A)B

(15 B)

'ONE' IS '1'

Omitted Operands

(odd number of apostrophes)
(number of left parentheses does not equal

number of right parentheses)
(blank not placed between paired

apostrophes)
(blank not placed between paired

apostrophes)

If a positional operand that appears in the prototype state
ment is omitted from the macro instruction, then the comma
that would have separated it from the next operand must be
present. If the last operand(s) is omitted from a macro
instruction, then the comma(s) separatirtg the last operand(s)
from the next previous operand may be omitted.

If a keyword operand that appears in the prototype
statement is omitted from the macro instruction, no comma
is required to irtdicate its omission. The default value
specified in the prototype statement will be used when the
macro is expanded.

The followirtg example shows a macro instruction pre
ceded by its corresponding prototype. statement. The posi
tional operands that correspond to the third and sixth oper
ands of the prototype statement are omitted irt this
example.

EXAMPLE &A, &B, &C, &0, &E, &F
EXAMPLE 17, *+4"AREA, FIELO(S)

If the symbolic parameter that corresponds to an omitted
operand is .used in a model statement, a null character value
replaces the symbolic parameter in the generated statement;
that is, in effect, the symbolic parameter is removed. For
example, the first statement followirtg is a model statement
that contairts the symbolicparameter&C. If the operand
that corresponds to' &C was omitted from the macro

instruction, the second statement would be generated from
the model statement:

L
L

Operand Subl ists

THERE&C.25,THIS
THERE25,THIS

A sublist may occur as the operand of a macro instruction.
Sublists provide the programmer with a convenient way

to refer (1) to a collection of macro instruction operands as
a single operand or (2) to a single operand in a collection of
operands.

A sublist consists of one or more operands,separated by
commas and enclosed in paired parentheses. The entire
sublist, including the parentheses, is considered to be one
macro instruction operand.

If a macro instruction is written in the alternate state
ment format, each operand of the sublist may be written
on a separate line; the macro instruction may be written on
as many lines as necessary.

If &PI is a symbolic parameter in a prototype statement,
and the corresponding operand of a macro instruction is a
sublist, then &PI(n) may be used in a model statement to
refer to the nth operand of the sub list , where n may have a
value greater than or equal to 1. N may be specified as a
decimal integer of any arithmetic expression allowed in a
SETA instruction. If the nth operand is omitted, then
&PI (n) would refer to a null character value.

If the sublist notation is used but the operand is not a
sublist, then &PI (1) refers to the operand, and &PI (2),
&PI (3), ... refer to a null character value. If an operand
has the form (), it is treated as a character string and not as
a sublist.

For example, consider the following macro definition,
macro instruction, and generated statements:

Header MACRO

Prototype &NAME ~DD &NUM,®,&AREA
Model LA ®.(1), &NUM (1)
Model LA ® (2), &NUM (2)
Model LA ® (3), &NUM (3)
Model AR ® (1), ® (2)
Model AR ® (1),® (3)
Model ST ® (1), &AREA

Trailer MEND

Macro ADD (A,B,C),(R1,R2,R3),SUM
Generated LA R1,A
Generated LA R2,B
Generated LA R3,C
Generated AR R1, R2
Generated AR R1, R3
Generated ST R1, SUM

The operand of the macro instruction that corresponds
to symbolic parameter &NUM is a sublist. One of the oper
ands in the sublist is referred to in the operand field of
three of the model statements. For example, &NUM(1)
refers to the first operand in the sublist corresponding to

symbolic parameter &NUM. The first operand of the sub
list is A. Therefore, A replaces &NUM(1) to form part of
the generated statement.

When referring to an operand in a sublist, the left paren
thesis of the sublist notation must immediately follow the
last character of the symbolic parameter; for example,
&NUM(1). A period should not be placed between the left
parenthesis and the last character of the symbolic parameter.

A period may be used between these two characters
only when you wish to concatenate the left parenthesis with
the characters that the symbolic parameter represents. The
follOWing example shows what would be generated if a
period appeared between the left parenthesis and the last
character of the symbolic parameter in the first model
statement of the above example.

Prototype &NAME
Model
Macro
Generated

ADD
L
ADD
L

&NUM,®,&AREA
®,&NUM.(1)
(A,B,C),R1,SUM
R1,(A,B,C)(1)

The symbolic parameter &NUM is used in the operand
field of the model statement. The characters (A,B,C) of
the macro instruction correspond to &NUM. Since &NUM
is immediately followed by a period, &NUM and the period
are replaced by (A,B,C). The period does not appear in the
generated statement. The resulting generated statement is
an invalid assembler language statement.

Nesting in Macro Instructions

A "nested" macro instruction is a macro instruction that
you specify as one of the model statements within the body
of a macro definition. Use of the nesting technique allows
you to call for the expansion of a macro defmition from
within another macro defmition.

Inner and Outer Macro Instructions

Any macro instruction you write in the open code of a
source module is an outer macro instruction or call. Any
macro instruction that appears within a macro defmition is
an inner macro instruction.

The rule for inner macro instruction parameters is the
same as that for outer macro instructions. Any symbolic
parameters used in an inner macro instruction are replaced
by the corresponding parameters of the outer macro instruc
tion. An operand of an outer macro instruction sublist
cannot be passed as a sublist to an inner macro instruction.

The macro definition corresponding to an inner macro
instruction is used to generate the statement that replaces
the inner macro instruction.

The ADD macro instruction of the previous example is
used as an inner macro instruction in the example
following.

In this example, the inner macro instruction contains
two symbolic parameters, &S and &T. The characters
(X,Y;l) and J of the macro instruction correspond to &S

The Communications Controller Assembler Macro Facility 5-13

and &T, respectively. Therefore, these characters replace
the symbolic parameters in the operand field of the inner
macro instruction.

The assembler then uses the macro defmition that cor
responds to the inner macro instruction to generate state
ments to replace the inner macro instruction. The fifth
through the tenth generated statements have been generated
for the inner macro instruction. See Operand Sublists
above for a description of the inner macro instruction ADD.

1 Header MACRO
2 Prototype COMP &Rl, &R2, &S, &T, &U
3 Model SR &Rl,&R2 ~

4 Model lA &R2,&T
5 Model CR &R1,&R2
6 Model BZl &U
7 Inner ADD &5,(5,6,7), &R2
8 Model &U AR &Rl,&R2
9 Trailer MEND

Macro K COMP 3,4(X,Y,Z) ,J,K

Generated SR 3,4
2 Generated LA 4,J
3 Generated CR 3,4
4 Generated BZl K
5 Generated lA 5,X
6 Generated lA 6,Y
7 Generated lA 7,Z
8 Generated AR 5,6
9 Generated AR 5,7

10 Generated ST 5,4
11 Generated K AR 3,4

Further relevant limitations and differences between
inner and outer macro instructions are covered under Data
Attributes.

Levels of Nesting

The code generated by a macro definition called by an
inner macro call is nested inside the code generated by the
macro definition that contains the inner macro call. In the
called macro defmition you can include a macro call to
another macro defmition. Thus, you can nest macro calls
at different levels.

The zero level includes other macro calls (calls that
appear in open code). The first level 'of nesting includes
inner macro calls that appear inside macro definitions called
froni the zero level; the second level of nesting includes
inner macro caIls inside macro definitions called from the
first level; and so' on up to the nesting limit.

The number of levels of macro instructions that may be
used depends upon the complexity of the macro definition
and the amount of storage available.

THE CONDITIONAL ASSEMBLY LANGUAGE

The conditional assembly language allows you to perform
general arithmetic and logical computations, as weIl as many
of the other functions you can perform with any other pro
gramming language. In addition, by writing conditional

5-14 IBM 3704 and 3705 Assembler Language

assembly. instructions in combination with other assembler
language statements you can:

• Select sequences of these source statements, called model
statements, from which machine and assembler instruc
tions are generated.

• Vary the contents of these model statements during
generation.

The assembler processes the instructions and expressions
of the conditional assembly language atpre-asseinbly time.
Then, at assembly time, it processes the generated instruc
tions. Conditional assembly instructions, however,' are not
processed after pre-assembly time.

Thecoriditional assembly language is most versatile when
used to interact with symbolic parameters and the system
~ariable symbols inside a macro defmition. However, you
can also use the conditional assembly instructions in open
code.

Elements and Functions

The elements of the conditional assembly language are:

• SET symbols that represent data.

• Attributes that represent different characteristics of
data.

• Sequence symbols that act as labels forbranching to
statements at pre-assembly' time.

The functions of the conditional ~ssembly language are:

• Declaring SET symbols as variables for use by the con
ditional assembly language in its computations.

• Assigning values to the declared SET symbols.

• EvClluating conditional assembly expressions used as
values for substitutic:>n, as subscripts for variable sym
bols, or as condition tests for branch instructions.

• Selecting characters from strings for substitution in and
concatenation to other strings, or for inspection in
condition tests.

• Branching and exiting from conditional assembly loops.

Conditional'Assembly Instructions

The conditional assembly instructions allow you to: (1)
defme and assign values to SET symbols that can be used
to vary parts of generated statements, and (2) vary the
sequence of generated statements. Thus, you can use these
instructions to generate many' different sequences' of state
ments from the same macro defmition,

There are 13 conditional assembly instructions:

LClA
lClS
lClC

GBlA SETA
GBlB SETS
GBlC SETC

AIF ACTR
AGO
ANOP

The primary use of the conditional assembly instructions
is in macro definitions, although any of them may also be '
used in an assembler language source program (open code).

Where the use of an instruction in open code differs from
its use within macro defmitions, the difference is described
in the text.

The LeLA, LCLB, LCLC, GBLA, GBLB, and GBLC
instructions may be used to define and assign initial values
to SET symbols.

The. SETA, SETB, and SETC instructions may be used
to assign arithmetic, binary, and character values, respec
tively, to SET symbols. The SETB instruction is described
after the SETA and SETC instructions,because the operand
field of the SETB instruction is a combination of the
operand fields of the SETA and SETC instfUctions.

The AlF, AGO, and ANOP instructions may be used
with sequence symbols to vary the sequence in which state
ments are processed by the assembler . You may test attrib
utes assigned by the assembler to symbols Or macro instruc
tion operands to determine which statements are to be
processed. The ACTR instruction may be used to vary the
maximum number of AlF and AGO branches.

Examples illustrating the use of conditional assembly
instructions are included throughout this discussion. A
chart summarizing the elements that can be used in each
instruction is shown in Figure 5-1 7.

SET Symbols

SET symbols are one type of variable symbol. The sym
bolic parameters are another type of variable symbol. SET
symbols differ from symbolic parameters in three ways: (1)
where they can be used in an assembler language source pro
gram, (2) how they are assigned values, and (3) whether or
not the values assigned to them can be changed.

Symbolic parameters can be used only in macro defini
tions, whereas SET symbols can be used inside and outside
macro definitions.

Symbolic parameters are assigned values when you write
a macro instruction, whereas SET symbols are assigned
values when you write SETA, SETB, and SETC conditional
assembly instructions. "

Each. symbolic parameter is assigned a single value for
one use of a macro defmition, whereas the values assigned
to each SETA, SETB, and SETC symbol can change during
one use of a macro definition.

Declaring SET Symbols

You must 'declare SET symbols before using them. When a
SET symbol is declared, it is assigned an initial value. SET
symbols may be assigned new values by means of the SET A,
SETB, and SETCinstructions. A SET symbol is declared
when it appears in the operand field of an LCLA, LCLB,
LCLC, GBLA, GBLB, or GBLC instruction.

Using Variable Symbols

The SETA, SETB, and SETC instructions may be used to
change the values initially aSSigned to SET symbols by local
or global declarations. When a SET syinbol appears in the
name, operation, or operand field of a model statement, the
current value of the SET symbol' (that is, the last value
assigned to it) replaces the SET symbol in the statement.

SET symbols and symbolic parameters may be contrasted
as follows. If &A is a symbolic parameter, and the corre
sponding characters of the macro instruction are the sym
bol HERE, then HERE replaces each occurrence of &A in
the macro defmition. On the other hand, if &A is a SET
symbol, the value assigned to &A can be changed, and a
different value can replace each occurrence of &A in the
macro defmition.

The same variable symbol may not be used as a sym-.
bolic parameter and as a SET symbol in the same macro
defmitidn.' ,

The following example illustrates this rule:

&NAME MOVE &TO,&FROM

If the preceding statement is a prototype statement,
then &NAME, &TO, and &FROM may not be used as SET
symbols in the macro definition.

The same variable symbol may not be uS,ed as two dif
ferent types of SET symbols in the same macro definition.
Similarly, the same variable symbol may not be used as two
different types of SET symbols outside macro definitions
(that is, within open code).

For example, if &A is a SETA symbol in a'macro defmi
tion, it cannot be used as a SETCsymbol in that defmition.
Similarly, if &A is a SET A symbol ,outside macro defmi
tions, it cannot be used as a SETC symbol in open code.

The same variable symbolmay be used in two or more
macro defmitions and outside macro defmitions. If such is
the case, the variable symbol is considered a different vari
able symbol each time it is used.

For example, if &A is a variable symbol (either SET sym
bol or symbolic parameter) in one macro defmition, it can
be used as a variable symbol (either SET symbol or sym
bolic parameter) in another definition. Similarly, if &A is a
variable symbol (SET symbol or symbolic parameter) in a
macro defmition, it can be used as a SET symbol outside
macro definitions.

All variable symbols may be concatenated with other
characters,in the same way that symbolic parameters may
be coricatenated with other characters. The rules for con
catenating symbolic parameters with other characters are
described earlier in this chapter under Symbolic Parcimeters.

Variable symbols in macro instructions are replaced by
the values assigned to them immediately prior to the start
of processing the defnHtion. If a SET symbol is used in the
operand field of a macro instruction, and the value assigned
to the SET symbol is equivalent to the sub list notation, the
operand is not considered a sublist.

The Communications Controller Assembler Macro Facility 5-15

Data Attributes

The assembler assigns. four attributes to macroinstruction
operands and to symbols in the prqgram: .thetype of
operand or symbol; the !ength-bytes Qr bits; the count- ,
number of charact~rs comprising a symbol; and the num
ber-th~ number of operands in a sub list .. These attrjb
utes may be referred to only in conditional assembly
instructions or expressions.

tf an outer macro instructi~n operand is a symbol before
substitution, then the attributes of the op~rand are the
same as the corresponding attributes of the symbol. The
symbol must appear in the name field of an assembler lan
guage statement or in the operand field ofan EXTRN
statement inthe program. The statement must be outside
macro defmitions and must not contain any variable
symbols.

If an inner macro instruction operand is a symbolic
parameter, then the attributes of the operand are the same
as the attributes of the corresponding outer macro instruc
tion operand. A symbol appearing as an inner macro
instruction is not assigned the same attributes as the same
symbol appearing as an outer macro instruction.

If a macro instruction operand is a sublist, you may refer
to the attributes of either the sub list or each operand in the
sublist. The type and length attributes of a sublist are the
same as the corresponding attributes of the fIrst operand in
the sub list.

All the attributes of macro instruction operands may be
referred to in conditional assembly instructions within
macro defmitions. However, only the type and length
attributes of symbols may be referred to in conditional
defmitions. Symbols appearing in the name field of gener
ated statements are not assigned attributes.

Each attribute is represented by a notation, as follows.

Attribute Notation

Type T'
Length L'
Count K'
Number N'

You may refer to an attribute in the following ways:

1. In a statement that is outside macro defmitions (that is,
in open code), you may write the notation for the attribute
immediately followed by a symbol. For example, T'NAME
refers to the type attribute of the symbol NAME.

2. In a statement that is within a macro defmition, you may
write the notation for the attribute. immediately followed
by a symbolic parameter. For example, L' &NAME
refers to. the length attribute of the characters in the
macro instruction that correspond to symbolic parameter

. &NAME; L'NAME (2) refers to the length attribute of
the second operand in the sub list that.corresponds to
symbolic parameter &NAME.

5-i6 IBM 3704 and 3705 Assembler Language

Type Attribute (T')

The type attribute of a macro instruction operand or a
symbol is a letter.

The following l¢tters are used for sym.bolsthat name DC
and DS statements and for outer macro instruction operands
that are symbols that name DC or DSinstructions:

A A-type address constant, implied length, aligned
B Binary constant
C. Character constant
F Full-word fixed-point constant, implied length,

aligned
G Fixed~point constant, explicit length
H Half-word fixed-point constant, implied length~

aligned
a . a-type address constant (OS!VS only)
R A-, V-, R-or V-type (orQ-type [OS!VS]) address

constant, explicit length
V V-type address constant, implied length, aligned
X Hexadecimal constant
V V-type or R-type address constant, implied length,

aligned

The following letters are used for symbols (and outer
macro instruction operands that are symbols)-that name
statements other than DC or DS instructions or that appear
in the operand field of an EXTRN or WXTRN instruction:

I Machine instruction
J Control section name
M Macro instruction
T External symbol
W cW assembler instruction

The following letters are used for inner and outer macro
instruction operands only:

N Self-defining term
. 0 Omitted operand

The following letter is used for inner and outer macro
instruction operands that cannot be assigned any of the
above letters. This includes inner macro instruction oper
ands that are symbols.

This letter is also assigned to symbols that name EQU
and EQUR instructions, to any symbols occurring more than
once in the name field of Source statements, and to all sym
bols naming statements with expressions as modifiers.

U Undefined

You may refer to a type attribute in the operand fIeld of
a SETC instruction or to a type attribute in character
relations in the operand fields of SETB or AlFinstructions.

Length Attribute (L')

The length attribute.ofmacro instruction operands and
symbols is a numeric value .

The length attribute of a symbol (or of a macro instruc
tion operand that is a symbol) is as described in Chapter 2
of this publication. Reference to the length attribute of a
variable symbol is invalid except for symbolic parameters
in SETA, SETB and AIF statements.

ConditioIlal assembly instructions must not refer to the
length attributes of symbols or macro instruction operands
whose type attributes are the letters M, N, 0, T, orD.

You may refer to the· length attributes in the operand
field of a SETA instruction or to the length attributes in
arithmetic relations in the operand fields of SETB or AlP
instructions ..

Count Attribute (K')

You may refer to the count attribute of macro instruction
operands only.

The value of the count attribute is equal to the number
of characters in the macro instruction operand. It includes
all characters in the operand, excluding the delimiting com
mas. If the operand is a sublist, that operand includes the
beginning and ending parentheses and the commas within
the sublist. The count attribute of an omitted operand is
zero. These rules are illustrated by the following examples:

Operand

ALPHA
(JUN E,JU L Y ,AUGUST)
2(10,12)
A(2)
'A"B'

Coun t Attribute

5
18
8
4
6
3
2

If a macro instruction operand contains variable symbols,
the characters that replace the variable symbol, rather than
the variable symbols, are used to determine the count
attribute.

You may refer to the count attribute in the operand
field of a SETA instruction or to the count attribute in
arithmetic relations in the operand fields of SETB and AlP
instructions that are part of a macro defmition.

Number Attribute (N')

You may refer to the number attribute of macro instruc
tion operands only.

The number attribute is a value equal to the number of
operands in an operand sublist. The number of operands
in an operand sub list is equal to one plus the number of
commas that indicate the end ofan operand in the sublist.

The following examples illustrate this rule:

(A, B, C, 0, E) 5 operands
(A, ,C, 0, E) 5 operands
(A, B, C, D) 4 operands
(,B, C, 0, E) 5 operands
(A, B, C, 0,) 5 operands
(A, B, C, 0, ,) 6 operands

If the macro instruction operand is not a sublist, the num
ber attribute is one. If the macro instruction operand is .
omitted, the number attribute is zero.

You may refer to the number attribute in the operand
field of a SETA instruction orto the number. attribute in
arithmetic relations in the operand fields of SETB and AlP
instructions that are part of a macro defmition.

Sequence Symbols

The name field of a statement may contain a sequence sym
bol. Sequence symbols allow you to vary the sequence in
which statements are processed by the assembler.

A sequence symbol is used in the operand field of an
AlP or AGO instruction to refer to·the statement named by
the sequence symbol.

A sequence symbol is considered to be local to a macro
definition.

A sequence symbol may be used in the name field of
any statement that does not contain a symbol or SET sym
bol except a prototype statement, or a MACRO, LCLA,
LCLB, LCLC, GBLA, GBLB, GBLC, ACTR, ICTL, ISEQ,
or COpy instruction.

A sequence symbol consists of a period, followed by one
through seven letters and/or digits, the first of which must
be a letter.

Examples of valid sequence symbols:

.READER

.LOOP2

.N

.A23456

.X4F2

.S4

Examples of invalid sequence symbols:

CARDAREA
.246B
.AREA2456
.BCD%84

.IN AREA

(first character is not a period)
(first character after period is not a letter)
(more than seven characters after period)
(contains a special character other than initial
period)

(contains a special character [blank) other
than initial period)

If a sequence symbol appears in the name field of a
macro instruction, and the corresponding prototype state
ment contains a symbolic parameter in the name field, the
sequence symbol does not replace the symbolic parameter
wherever it is used in the macro definition.

The following example illustrates this rule:

Name

&NAME
2 &NAME

3 .SYM

4

Operation

MACRO
MOVE
ST
L
ST
L
MEND

MOVE

ST
L
ST
L

Operand

&TO,&FROM
2,SAVEAREA
2,&FROM
2,&TO
2,SAVEAREA

FIELDA,FIELDB

2,SAVEAREA
2,FIELDB
2,FIELDA
2,SAVEAREA

The Communications Controller Assembler Macro Facility 5-17

The'symbolic parameter &NAME is used in the name
field'of the prototype statement (statement 1) 'and the
frrstmodei statement (statement 2)~ In the macro instruc
tion (statement 3), sequence symbol (.SYM) corresponds'
to the symbolic parameter &NAME. &NAME is not replaced
by .SYM and therefore, the generated statement (state-'"
ment 4) does not contain an entry in the name field.

5-18 IBM 3704 and 3705 Assembler Language

lClA, lC·LB, LClC(Declarelocal SET Symbol)
Instructions'

The LCLA, LCLB, ,and 'LCLC instructi~)fls declare (assign
initialvalJ.les to) 1~~alSETA, SETB, and SETC symbols,
respectively . The SETA, SETH, and SETC symbols are
assigned the initial values of 0,0, and null character value,
respectively.

The format of these instructions is shown in Figure 5-8.

Name

Blank

Operation

lCLA,
lClB, or
lClC

Operand

One or more variable
symbols that are to be
used as SET symbols,
separated by commas.

Figure 5-8. LCLA, LCLB, LCLC Instructions

You should not declare any SET symbol whose fust four
characters are &SYS.

All LCLA, LCLB, or LCLC instructions in a macro
definition must appear immediately after the prototype
statement and GBLA, GBLB, or GBLC instructions. All
LCLA, LCLB, or LCLC in'structions outside macro defmi
tions (that is, in open code) must appear after all GBLA,
GBLB, and GBLC instructions outside macro definitions,
before all conditional assembly instructions and PUNCH
and REPRO instructions outside macro defmitions, and
before the first control section of the program.

GBlA, GBlB, GBle (Declare Global SET Symbol)
Instructions

The GBLA, GBLB, and GBLC instructions declare (assign
initial values to) global SET symbols, just as the LCLA,
LCLB, and LCLC instructions declare local SET symbols.

The format of these instructions is shown in Figure 5-9.

Name

Blank

Operation

GBlA,
GBlB, or
GBlC

Operand

One or more variable
symbols that are to be
used as SET symbols,
separated by commas.

Figure 5-9. GBLA, QBLB, GBLC Instructions

The GBLA, GBLB,and GBLC instructions declare
(assign initial values to) global SETA, SETB, and SETC sym
bols respectively, and assign the same initial values (0, 0, and
null, respectiv~ly), as the corresponding types of local
instructions (LCLA, LCLB, LCLC). However, a global SET
symbol is assigned an initial value by only the first GBLA,
GBLB, or GBLC instruction processed in which the symbol
appears. Subsequent GBLA, GBLB, orGBLC instructions
processed by the assembler do not affect the value assigned
to the SET symbol.

You should not declare any global SET symbols whose
fust four characters are &SYS.

GBLA, GBLB, or GBLC instructions within a macro
defmition must immediately follow (l) the prototype state
ment, or (2) another GBLA, GBLB, or GBLC instruction.
GBLA, GBLB, and GBLC instructions outside macro defini
tions must appear (1) after all macro defmitions in the
source program, (2) before all conditional assembly
instructions and PUNCH and REPRO instructions outside

,macro definitions, and (3) before the fIrst control section
of the program.

Within a macro definition, all GBLA, GBLB, and GBLC
instructions must appear before any LCLA, LeLB, and LeLe
instructions. The same is true when these instructions
appear in open code.

Using Local and Global SET Symbols

The following examples illustrate the use of global and
local SET symbols. Each example consists of two parts. The
fIrst part comprises the source statements (macro defmi
tions and open code). The second part shows the state
ments that would be generated by the assembler after it
processed the source statements.

Example 1: This example illustrates how the same SET
symbol can be used to communicate: (1) values between
statements in the same macro defmitions, and (2) different
values between statements outside macro definitions.

Source statements:

MACRO
&NAME LOADA

1 LCLA &A
2 &NAME LR 5,&A
3 &A SETA &A+1

MEND

4 LCLA &A
FIRST LOADA

5 LR 5,&A
'LOADA

6 LR 5,&A
END FIRST

Generated code:

FIRST LR 5,0
LR 5,0
LR 5,0
LR 5,0
END FIRST

&A is declared as a local SETA symbol in a macro defmi
tion (statement 1) and outside the mac'ro defmltion (state
ment 4). &A is used twice within the macro defInition
(statements 2 and 3) and twice outside macro defmitions,
(statements 5 and 6). .

Since &A is a IpcalSETA symbol in the macro defmition
and outside macro defmitions, it is one SETA symbol in
the macro definition, and another SETA symbol oll:tside
the macro defmition. Therefore, statement 3 (which is
within the macro definition) does not affect the value used

for &A in statements 5 and 6 (which are outside the defIni
tion). Moreover, the use of LOADA between statements 5
and 6 alters &A from ,its previous value as a local symbol
within that macro defmition since the fIrst act of the macro
definition is to set &A to zero.

Example 2: This example illustrates how a SET symbol
can be used to communicate values between statements
that are part of a macro defmition and statements outside
macro definitions.

Source statements:,

MACRO
&NAME LOADA

1 GBLA &A
2 &NAME LR 5,&A
3 &A SETA &A+1

MEND

4 GBLA &A
FIRST LOADA

5 LR 5,&A
LOADA

6 LR 5,&A
END FIRST

Generated code:

FIRST LR 5,0
LR 5,1
LR 5,1
LR 5,2
END FIRST

&A is declared as a global SETA symbol within a macro
definition (statement 1) and outside the macro defInition
(statement 4). &A is used twice within the macro defmi
tion (statements 2 and 3) and twice outside the macro
definition (statements 5 and 6).

Since &A is a global SETA symbol both within the
macro definition and outside the defmition, it is the same
SETA symbol in both cases. Therefore, statement 3 (within
the macro defmition) affects the value used for &A in
statements 5 and 6 (outside the macro defmition).

Example 3: This example illustrates how the same SET
symbol can be used to communicate: (1) values between
statements in one macro definition, and (2) different
values between statements in a different macro defmition.

&A is declared as a local SETA symbol in two different
macro defmitions (statements 1 and 4). &A is used twice
within each macro defmition (statements 2, 3, 5, and 6).

Since &A is a local SETA symbol within each macro
defmition, the value of &A may differ in the two defmi
tions. Therefore, statement 3 (within one macro defmition)
does not affect the value used for &A in statelnent5 (within
the other macro defmition). Simila.rly, statement 6 does
not affect the value used lor &A in statement 2.

The Communications Controller Assembler Macro Facility 5-19

Source statements:

&NAME

2 &NAME
3 &A

4
5
6 &A

FIRST

Generated code:

FIRST

MACRO
lOADA
lClA
lR
SETA
MEND

MACRO
lOADB
lCLA
lR
SETA
MEND

lOADA
lOADB
lOADA
lOADB
END

lR
lR
lR
lR
END

&A
5,&A
&A+1

&A
5,&A
&A+1

FIRST

5, °
5,0
5,0
5,0
FIRST

Example 4: This example illustrates how a SET symbol
can be used to communicate values between statements that
are part of two different macro defmitions.

Source statements:

MACRO
&NAME lOADA

1 GBlA &A
2 &NAME lR 5,&A
3 &A SETA &A+1

MEND

MACRO
lOADB

4 GBlA &A
5 lR 5,&A
6 &A SETA &A+1

MEND

FIRST lOADA
lOADB
lOADA
LOADB
END FIRST

Generated code:

FIRST lR 5,0
lR 5,1
lR 5,2
lR 5,3
END FIRST

&A is declared as a global SETA symbol in two different
macro definitions (statements 1 and 4). &A is used twice
within each macro definition (statements 2,3,5, and 6).

Since &A is a global SETA symbol in each macro defllli
tion, it is the same SETA symbol in each macro definition.

5-20 IBM 3704 and 3705 Assembler Language

Therefore, statement 3 (within one macro defmition)
affects the value used for &A in statement 5 (within the
other macro defmition). Similarly, statement 6 affects the
value used for &A in statement 2.

ExampleS: This example~illustrates how the same SET
symbol can be used to communicate: (1) values between
statements in two different macro defmitions, and (2) dif
ferent values between statements outside macro defmitions.

.source statements:

&NAME
1
2 &NAME
3 &A

4
5
6 &A

7
FIRST

8

9

Generated code:

FIRST

MACRO
lOADA
GBlA
lR
SETA
MEND

MACRO
lOADB
GBlA
lR
SETA
MEND

lClA
lOADA
lOADB
lR
lOADA
lOADB
lR
END

lR
.lR
lR
lR
lR

&A
&A
5,&A
&A+1

&A
5,&A
&A+1

&A

5,&A

5,&A
FIRST

5,0
5, 1
5,0
5,2
5,3

lR 5,0
END FIRST

&A is declared as a global SETA symbol in two differen t
macro defmitions (statements 1 and 4), but it is declared as
a local SET A symbol outside these macro definitions (state
ment 7). &A is used twice within each macro definition
and twice outside the macro defmitions (statements 2, 3, 5,
6,8 and 9).

Since &A is a global SETA symbol in each macro defmi
tion, it is the same SETA symbol in each defmition. How
ever, since &A is a local SETA symbol outside the macro
definitions, it is a different SETA symbol outside the macro
defmitions.

Therefore, st'atement 3 (within one macro definition)
affects the value used for &A in statement 5 (within the'
other macro defmition), but it does not affect the value
used for &A in statements 8 and 9 (which are outside the
macro definitions). Similarly, statement 6 affects the value
used for &A in statement 2, but it does not affect the value
used for&A in statements 8 and 9.

Subscripted SET Symbols

Both global and local SET symbols may be declared as sub
scripted SET symbols. The local SET symbols declared
previously were all nonsubscripted SET symbols.

Subscripted SET symbols provide a convenient way to
use a single SET symbol plus a subscript to refer to many
arithmetic, binary, Or character values.

A subscripted SET symbol consists of a SET symbol
immediately followed by a subscript that is enclosed in
parentheses. The subscript may be any arithmetic expres
sion that is allowed in the operand field of a SET A state
ment. The subscript may not be 0 or negative.

The following are valid subSCripted SET symbols:

&READER (17)

&A23456(&S4)
&X4F2(25+&A2)

The follOWing are invalid subscripted SET sym.bols:

&X4F2
(25)
&X4F2 (25)

(no subscript)
(no SET symbol)
(subscript does not immediately follow
SET symbol)

Declaring Subscripted SET Symbols: To use a subscripted
SET symbol, you must declare (by a GBLA, GBLB, GBLC,
LCLA, LCLB, or LCLC instruction), a SET symbol imme
diately followed by a decimal integer enclosed in paren
theses. The decimal integer, called a dimension, ifldicates
the number of SET variables associated with the SET sym
bol. Every variable associated with a SET symbol is assign
ed an initial value identical to the initial value assigned. to
the corresponding type of nonsubscript SET symbol.

If a subscripted SET symbol is global, the same dimen
sion must be used with the SET symbol each time it is
declared as global.

The maximum dimension that can be used with a SETA
SETB, or SETC symbol is as follows: '

DOS: 255
DOS/VS: 255
OS: 2500
OS/VS: 32,767

A subscripted SET symbol maybe used only if the dec
laration was subscripted; a nonsubscripted SET symbol may
be used only if the declaration had no subscript.

Example: The following statements declarethe global
SET symbols &SBOX, &WBOX, and &PSW, and the local
SET symbol &TSW. &SBOX has 50 arithmetic variables
associated with it, &WBOX has 20 character variables, &PSW
and &TSW each have 230 binary variables.

GBlA
GBlC
GBlB
lClB

&SBOX (50)
&WBOX (20)
&PSW (230)
&TSW (230)

Using Subscripted SETSymbols: After you have associated
a number of SET variables with a SET symbol, you may
assign values to each of the variables and use them in other
statements.

If the statements in the previous example were part of a
macro definition (and &A was declared as a SET A symbol
in the same defmition), the follOWing statements could be
part of the same macro defmition:

1 &A SETA 5
2 &PSW (&A) SETS (6 lT2)
3 &TSW (9) SETB (&PSW (&A»
4 L 3, &SBOX (45)
5 l 4, &WBOX (17)

6 l 5,AREA
7 AR 2,3
8 CR 5,4

Statement 1 assigns the arithmetic value 5 to the non
subscripted SETA symbol &A. Statements 2 and 3 then
assign the binary value 0 to subscripted SETB symbols
&PSW (5) and &TSW (9), respectively. Statements 4, 5
and 6 generate statements that load registers 3, 4, and 5
with the values in storage represented by &SBOX (45),
&WBOX (17) and AREA, respectively. Statements 7 and 8
generate statements that add register 3 to register 2 and
compare the contents of register 4 with the contents of
register 5.

Assigning Values to SET Symbols

The SETA, SETe, and SETB instructions are used for
assigning new values to local and global SET symbols
initially declared by LeLA, LCLB, LCLe, GBLA, GBLB, "
and GBLC instructions.

SET A (Set Arithmetic) Instruction

The SET A instruction may be used to assign an arithmetic
value to a SET A symbol. The format of this instruction is
shown in Figure 5-10.

Name Operation Operand

A SETA symbol SETA An arithmetic expression

Figure 5-10. SETA Instruction

The expression in the operand field is evaluated as a
signed 32-bit arithmetic value that is assigned to the SETA
symbol.in the name field. The minimum and maximum
allowable values of the expression are _2 31 and +231 _1,
respectively.

The expression may consist of one term or an arithmetic
combination of terms~ The terms that may be used alone
or in combinatipn with each other are self-defming terms,

The Communication Controller Assembler Macro Facility 5-21

-variable: .symbols, and-the length, count, and number attrib
utes. Self~defming terms are described in Chapter 2 of this
publication.

Note: A SETC variable symbol may appear in a SETA
expressi9n orJy if the value of 1:1\e SETC variable·is one
to eight decimal digits. The decimal digits are converted
to a positive arithmetic value.

The arithmetic operators that may be used to combine
the terms of an ~xpression are + (addition), - (subtraction),
* {multiplication)~.m.d / (division).

An expression may not contain two terms or two oper
ators in succession, nor may it begin with an operator.

The following· are valid operand fields of SET A
instructions:

&AREA + X'2D' &N/25
&BETA*10 &EXIT-K'&ENTRY+1
L'&H ER E+32 29

The following are invalid operand fields of SET A
instruc tions:

&AREAX'C'
&FIELD+
·-&DELTA*2
*+32

NAME/15

(two terms in succes~ion)
(two operators in succession)
(Begins with an operator)
(begins with an operator; two operators in

succession)
(NAME is not a valid term)

Evaluation of Arithmetic Expressions

The procedure used to evaluate the arithmetic expression
in the operand field of a SETA instructionis the same as
that used to evaluate arithmetic expressions in assembler
language statements. The only difference betw~en the two
types of arithmetic expressions is the terms that are allowed
in each expression.

The following evaluat~on procedure is used:

1. Each term is given its numerical value.
2. The arithmetic operations are performed, moving from

left to right, with multiplication and/or division being
performed before addition and subtraction.

3. The computed result is the value assigned to the SETA
symbol in the name field.

The arithmetic expression in the operand field of a SETA
instruction may contain one or more sequences of arithmet
ically combined terms that are enclosed in parentheses. A
sequence of parenthesized terms may appear within another
parenthesized sequence. Five-levels of parentheses are
allowed (OS/VS: 6 levels) and an expression may not con
sist of more than 16 terms {OS/VS: 20 terms}. Parentheses
required for sublfstnotation, substring notation, and sub
script notation count toward this limit. A counter:is main
tained for each SETA statement and increased by one for
each occurrence of a variable symbol, as well as for the
operation entry. The maximum value this counter may
attain is 35.

5-22 IBM3704 and 3705 Assembler Language

The following are examples of SETA instruction oper-
and fields,that contain parenthesized sequences9f terms:

(L~&HERE+32)*39

&AR EA+X'2D'/(&EXIT -K'&ENTRY+1)
&BETA*10*(&NI25/(&EX!T -K'&ENTRY+1))

The parenthesized portion or p()rtions of an arithmetic
expression are evaluatedbeforethe remainder of the terms
in the expression is evaluated. If a sequence of parenthe
sized terms appears within another parenthesized sequence,
the innermost sequence is evaluated first.

Using SETA Symbols

The arithmetic value assigned to a SET A symbol is sub
stituted for the SETA symbol when it·is used in an arith
metic expression. If the SETA symbol is not used in an
arithmetic expression, the arithmetic value is converted to
an unsigned integer, with leading zeros removed. If the
value is zero, it is converted to a single zero.

The following example illustrates this rule:
Source statements:

MACRO

&NAME MOVE &TO, &FROM
LCLA &A, &B, &C, &D

1 &A SETA 10
2 &8 SETA 12
3 &C SETA &A-&B
.4 &D SETA &A+&C

&'NAME ST 2,SAVEAREA
5 L 2,&FROM&C
6 ST - 2,&TO&D

L 2,SAVEAREA
MEND

HERE MOVE FIEI;.DA,FIELDB

Generated code:

HERE ST 2,SAVEAREA
L 2,FIELDB2
ST 2,FIELDA8
L 2,SAVEAREA

Statements 1 and 2 assign to the SET A symbols &A and
&B the arithmetic values +10 and +12, respectively. There
fore, statement 3 assigns the SETA symbol &C. The arith
metic value -2 is converted to the unsigned integer 2. When
&C is ~sed in state~ent 4, however, the arithmetic value -2
is used. Therefore, &D is assigned the arithmetic value +8.
When &D is·used in statemeni-6, the arithmetic value +8 is
converted to the unsigned integerS.

The following example shows how· the value assigned to
a SETA symbol may be changed in amacrodefmition:

Source statements:

MACRO
&NAME MOVE &TO,&FROM

LCLA &A
&A SETA. 5
&NAME ST 2,SAVEAREA

2 L 2,&FROM&A.

3 &A SETA 8
4 ST 2,&TO&A

L 2,SAVEAREA
MEND

HERE MOVE FIELDA,FIELDB

Generated code:

HERE. ST 2,SAVEAREA
L 2,FIELDB5
ST 2,FIELDA8
L 2,SAVEAREA

Statement 1 assigns the arithmetic value +5 to SETA
symbol &A. In statement 2, &A is converted to the unsigned
integer 5. Statement 3 assigns the arithmetic value +8 to
&A. In statement 4, therefore, &A is converted to the
unsigned integer 8, instead of 5.

A SEtA symbol may be used with a symbolic parameter
to refer to an operand in an operand sub list. If a SETA
symbol is used for this purpose, it must have been assigned
a positive value.

Any expression that may be used in the operand field of
a SETA instruction may be used to refer to an operand in
an operand sub list.

The following macro definition may be used to add the
last operand in an operand sublist to the first operand in an
operand sub list and store the result at the first operand. A
sample macro instruction and generated statements follow
the macro defmition.

Source statements:

2 &LAST

3

Generated code:·

MACRO
ADDX
LeLA
SETA
L
L

AR
ST
MEND

ADDX

&NUMBER,®
& LAST
N'&NUMBER
®(1),&NUMBER(1)
®(2),&NUMBER

(&LAST)
®(1),®(2)
®(1),&NUMBER(1)

(A, B, C, D, E), (3,4)

L 3,A
L 4, E
AR 3,4
ST 3,A

&NUMBER is the first symbolic parameter in the oper
and field of the prototype statement (statement 1). The
corresponding characters (A, B, C, D, E) of the macro
instruction (statement 4) are a sublist. Statement 2 assigns
to &LAST the arithmetic value +5, which is equal to the
number of operands in the sub list. Therefore, in statement
3, &NUMBER (&LAST) is replaced by the fifth operand of
the sub list.

SETC (Set Character) Instruction

The SETC instruction is used to assign a character value to
a SETC symbol. The format of this instruction is shown in
Figure 5-11.

Name Operation

A SETC symbol SETC

Figure 5-11. SETC Instruction

Operand

One operand, of the form
described in the following
text.

The operand field may consist of the type attribute, a
character expression, a substring notation, or a concatena
tion of substring notations and character expressions. A
SETA symbol may appear in the operand of a SETC state
ment. The result is the character representation of the
decimal value, unsigned, with leading zeros removed. If the
value is zero, one decimal zero is used. .

Type Attribute

The character value assigned to a SETC symbol may be a
type attribute. If the type attribute is used, it must appear
alone in the operand field. The following example assigns
to the SETe symbol &TVPE the letter that is the type attrib
ute of the macro instruction operand corresponding to the
symbolic parameter &ABC. .

&TYPE SETC T'&ABC

Character Expression

A character expression consists of any combination of up
to 255 characters (DOS: up to 127 characters) enclosed in
apostrophes.

The first eight characters in a character value enclosed. in
apostrophes in the operand field are assigned to the SETC
symbol in the name field.·· A maximum of eight characters
can be assigned to a SETC symbol.

Evaluation o/Character Expressions: The following state
ment assigns the character value AB%4 to the SETC symbol
&ALPHA:

&ALPHA SETC 'AB%4'

More than one character expression may be concatenated
into a single character expression by placing a period
between the terminating apostrophe of one character expres
sion and the opening apostrophe· of the next character
expression. For example, either of the following statements
may be used to assign the character value ABCDEF to the
SETC symbol &BETA:

&BETA
&BETA

SETC
SETC

'ABCDEF'
'ABC'.'DEF'

Two apostrophes must be used to represent an apostro
phe that is part of a character expression.

The Communications Controller Assembler Macro Facility 5-23

The following statement assigns the character value
L'SYMBOL to the SETCsymbol &LENGTH:

,&LENGTH S~TC 'L' 'SYMBOL'

Variable symbols-may be concatenated with other char
acters in the operand field of a SETC instruction, according
to the general rules for concatenating symbolic parameters
with other chat:acters. . _ _

If&ALPHA has been assigned the character value AB%4,
the following statement may be used to assign the character
value AB&4RST to the variable symbol ~GAMMA:

&GAMMA SETC 'A&ALPHA.RST'

Two ampersands must be used to represent an ampersand
that is not part of a variable symbol. Both ampersands
become part of the character value assigned to the SETC
symbol. They are not replaced by a single ampersand.

The follOWing statement assigns the character value
HALF&& to the SETC symbol &AND:

&AND SETC 'HALF&&'

Substring Notation

The chanictervalue assigned to a SETC symbol may be a
substring character value. Substring character values permit
you to assign part of a character value to a SErC symbol.

If you wish to assign part of a character value to a SETC
symbol, you must indicate to the assembler in the operand
field of a SETC instruction: (1) the character value itself,
and (2) the part of the character value you wish to assign to
the SETC symbol. The combination of (1) and (2) in the
operand field of a SETC instruction is called a-substring
notation. The character value that is assigned to the SETC
symbol in the name field is called a substring charac ter
value.

Substring notation consists of a character expression,
immediately followed by two aritlunetic _ expressions that
are separated from each other by a comma and are enclosed
in parentheses. The two arithmetic expressions may each
be any expression that is allowed in the operand field of a
SET A instruction.

The first expression indicates the fust character in the
character expression to be assigned to the SETC symbol
in the name field. The second expression indicates- the
number of consecutive characters in the character expression
(starting with the character indicated by the fust expression)
that are to be assigned to the SET~ symbol. If a substring
asks for more characters than are in the character string,
only the characters in the string will be assigned ~

The maximum size substring character value that can be
assigned toa SETC symbol is eight characters. -The maxi
mum size character expression the substring character value
can be chosen from is255 characters(DOS: 127 characters).
If a value greater than 8 is specified, the leftmost 8 char
acters will be used.

5-24 IBM 3704 and 3705 Assembler Language

The following are valid substring notations:

'&ALPHA' (2,5)
'AB%4(&AREA+2, 1}
'&ALP'HA.RST' (6, &A)
, ABC&GAMMA' (&A, &AREA+2)-

The following are invalid substring notations:

'&BETA' (4,6)
(blanks between character values and arithmetic expressions)

'L"SYMBOL' (142-EXYZ)
(only one arithmetic expression)

'AB&4'&ALPHA' (8&FIELD*2)
(arithmetic expressions not separated by a comma)

'BETA' 4,6
(arithmetic expressions not enclosed in parentheses)

Using SETC Symbols

The character value assigned to a SETC symbol is substi
tuted for the SETC symbol when it is used in the name,
operation, or operand field ofa statement.

For example, corisider the following macro definition,
macro instruction, and generated statements:

Source statements:

MACRO
&NAME MOVE &TO,&FROM

LCLC &PREFIX
&PREFIX SETC 'FIELD'
&NAME ST 2,SAVEAREA

2 L 2,&PREFIX&FROM
3 ST 2,&PREFIX&TO

L 2,SAVEAREA
MEND

HERE MOVE A,B

Generated code:

HERE ST 2,SAVEAREA
L 2,FIELDB
ST2,FIELDA
L 2,SAVEAREA

Statement I-assigns the character value FIELD to the
SETC symbol &PREFIX. In statements 2 and 3, &PREFIX
is replaced by FIELD.

The following example shows how the value assigned to
a SETC symbol may be changed in a macro definition:

Source statements:

MACRO
&NAME MOVE &TO,&FROM

LCLC &PREFIX
&PREFIX SETC 'FIELD'
&NAME ST 2,SAVEAREA

2 L 2,&PREFIX&FROM
3 &PREFIX SETC 'AREA'
4 ST 2,&PREFIX&TO

L 2,SAVEAREA
MEND

HERE MOVE A,B

Generated code:

HERE ST 2,SAVEAREA
L 2,FIELDB
ST 2,AREA
L 2,SAVEAREA

Statement 1·' assigns the character value FIELD to the
SETC symhol&PREFIX; therefore, &PREFIX is replaced
by FIELD in statement 2. Statement 3 assigns the character
value AREA to &PREFIX; therefore, &PREFIX is replaced
by AREA, instead of FIElD, in statement 4.

The following example illustrates the use of a substring
notation as the operand field of a SETC instruction:

Source statements:

2

&NAME

&PREFIX
&NAME

HERE

. Generated code:

HERE

MACRO
MOVE
LCLC
SETC
ST
L
ST
L
MEND

MOVE

ST
L
ST
L

&TO,&FROM
&PREFIX
'&TO'(1,5)
2,SAVEAREA
2,&PREFI X&FROM
'2,&TO
2,SAVEAREA

FIELDA,B

2,SAVEAREA
2,FIELDB
2,FIELDA
2,SAVEAREA

Statement 1 assigns the 'substring character value FIELD
(the first five characters corresponding to' symbolic param
eter &TO) to the SETC symbol &PREFIX; therefore, FIELD
replaces &PREFIX in statement 2.

SETB (Set Binary) Instruction

The SETB instruction may be used to assign the binary
value 0 or 1 to a SETB symbol. . The format of this instruc
tion is shown in Figure 5-12.

Name Operation

A SETB symbol SETB

Figure 5-12. SETB Instruction

Operand

A 0 or a 1 enclosed or not
enclosed in parentheses, or
a logical expression enclosed
in parentheses.

The operand field may contain a 0 or a 1 or a logical
expression enclosed in parentheses. A logical expression is
evaluated to determine if it is true or false; the SETB sym
bol in the name field is then assigned the binary value 1 or
0, corresponding to true or false, respectively.

A logical expression consists of one term or a logical
combination of terms. The terms that may be used alone or
in combination with each other are arithmetic relations,
character relations, and SETB symbols. The logical oper
ators used to combine the terms of an expression are AND,
OR,andNOT.

An expression may not contain two terms in succession.
A logical expression may contain two operators in succes
sion only if the first operator is either AND or OR and the
second operator is NOT. A logical expression may begin
with the operator NOT. It may not begin with the operators
AND or OR.

An arithmetic relation consists of two arithmetic expres
sions, connected by arelational operator. A character
relation consists of two character values connected by a
relational operator. The relational operators are EQ (equal),
NE (not equal), LT (less than),GT (greater than),
and GE (greater than or equal).

Any expression that may be used in the operand field of
a SETA instruction may be used as an arithmetic expression
in the operand field of a SETB instruction. Anything that
may be used in the operand field of a SETC instruction may
be used as a character value in the operand field of a SETB
instruction. This includes substring and type attribute
notations. The maximum size of the character values that
can be compared is 255 characters (DOS: 127 characters).

The relational and logical operators must be immediately
preceded and followed by at least one b1ank or other special
character. Each relation mayor may not be enclosed in
parentheses. If a relation is not enclosed in parentheses, it
must be separated from the logical operators by at least one
blank or other special character.

The following are valid operand fields of SETB instructions:

(&AREA+2 GT 29)
(' AB%4' EQ '&A LPHA')
(T'&ABC NE T'&XYZ)
(T'&P12 EQ' F')
(&AREA+2 GT 29 OR &B)
(NOT &B AND &AREA+X'2D' GT 29)
('&C' EQ' MD')
(0)

The following are invalid operand fields of SETB
instructions:

&B (not enclosed in parentheses)
(T'&P12 EQ 'F' &B) (two terms in succession)

('AB%4' EQ 'ALPHA' NOT &B) (the NOT
operator must be preceded by AND or OR)

(AND T'&P12 EQ 'F') (expression begins with AND)

Evaluation of Logical Expressions

The assembler evaluates a logical expression in the operand
field of a SETB instruction as follows:

1. Each term (that is, arithmetic relation, character relation,
or SETB symbol) is evaluated and given its logical value
(true or false).

2. The logical operations are performed by moving from
left to right, with NOTs being performed before ANDs,
and ANDs being performed before ORs.

3. The computed result is the value assigned to the SETB
symbol in the name field.

The logical expression in the operand field of a SETB
instruction may contain one or more sequences of logically
combined terms that are enclosed in parentheses. A
sequence of parenthesized terms may appear within another
parenthesized sequence.

The Communications Controller Assembler Macro Facility 5-25

The following are,e){amples of SErB instruction operand
fields tha,tcontain parenthesized sequences of terms.

(NOT (&B AND &AREA+X'2D' GT29)) "
(&B AND (T'&P12 EO'F' OR &B»

The parenthesized portion or portions of a logical expres
sion are evaluated before the rest of the terms in the expres
sionare evaluated. If a sequence of parenthesized terms
appears within another parenthesized sequence, the ilmer
most sequence' is evaluated first. Five levels of parentheses
are permissible (OS/VS: 61evels).

Using SETBSymbo/s

The logical value assigned to a SETB 'symbol is used' for the
SETB symbol appearing in the operand field of lln AlF
instruCtion or anotijer SETB instruction.

If a SETB symbol is used in the operand field of a SETA
instruction or in arithmetic relations in the operand fields
of AlF and SETB instructions, the binary values 1 (true)
and o (fcilse) are converted to the arithmetic values ±l and
0, respectively.

If a SETB symbol is used in the operand field of SETC
instruction, in character relations in the operand fields of
AlF and SETB instructions, or in any other statement, the
binary values 1 (true) and 0 (false), are converted to the
character values 1 and 0, respectively.

The following example illustrates these rules. It is
assumed that L'&TO EQ 4 is true, and K'&TO EQ 0 is false.

Source statements:

&NAME

1 &B1
2 &B2
3 &A1
4 &C1

HERE

Generated code:

HERE

MACRO
MOVE
LCLA
LCLB
LCLC
SETB
SETB
SETA
SETC
ST
L
ST
L
MEND

MOVE

ST
L
ST
L

&TO,&FROM
&A1
&B1, &B2
&C1
(L'&TO E04)
(K'&TO EOO)
&B1
'&B2'
2,SAVEAREA
2,&FROM&A1
2,&TO&C1
2,SAVEAREA

FIELDA,FIELDB

2,SAVEAREA
2,FIELD.B1
2,FIELDAO
2,SAVEAREA

Bec8;use the operand field of statement listrue, &BI is
assigned the binary value 1; therefore, the arithmetic value
+ 1 is substituted for &BI in statement 3. Because the
operand field 'o{statement 2 is false, &B2 is assigned the
biparyvalue 0; therefore, the character value 0 is substituted
for &B2in statement 4.' '

5-26 IBM 3704 and 370.5 Assemble.r Language

ConcatenatingSubs.tring Notations and Character,
Expr~ssions: Substring notations may beconca,tenated with
cha.racter expressions in -the, op~rand. fie~d .of a SETC instruc
tion. If a substriQ.g notation follows a character expression,
the two may be conca,tenated by placing a period between
the terminating apostrophe of. the character expression and
the opening apostrophe. of the. substring notation.

For example, if &AIPHA has been assigned the character
value AB%4, and &BETA has been assigned the character
value ABCDEF, then the followmg statement assigns
&GAMMA the character value AB%4BCD:

&GAMMA SETC 'ALPHA'.'&BETA' (2,3)

Ifasubstring notation precedes a character expression or
another substringrrotation, the two may be concatenated
by writing the opening apostrophe of the second item
immediately after the closing parenthesis of the substring
notation.

You may optionally place a period between the closing
parenthesis of a substring notation and the opening apos
trophe of the next item in the operand field.

If &AIPHA has been assigned the character value AB%4,
and &ABC has been assigned the character value 5RS,
either of the following statements may be used to assign
&WORD the character vaue AB%45RS:

&WORD SETC '&A1..PHA'(1,4) '&ABC'
&WORD SETC '&ALPHA' (1,4) '&ABC' (1,3)

If a SETC symbol is used in the operand field of a SETA
mstruction, the character value assigned to the SETe sym
bol must be one to eight decimal digits.

If a SET A symbol is usedin the operand field .of a SETC
statement, the arithmetic value is converted to an unsigned
integer with leading zeros removed. If the value is zero, it
is converted to a single zero.

Branching

Four conditional assembly branching instructions are avail
able for use within macro definitions or open code.

AI F (Conditional Branch) Instruction

The AlF mstruction is used to conditionally alter the
sequence in which the assembler processes source program
statements or macro definition statements. The assembler
assigns a maximum count of 4096 (DOS: 150) AIF and
AGO branches that may be executed in the source program
or in a macro defmition.Whena macro defmition calls an
inner. macro defmition, the current value of the count is
saved and a new count of 4096 (DOS: 150) is set up for
the inner macro defmition. After processing the inner
definition and returning to the higher definition, the assem
bler restores the saved count.

The format of this instruction is shown in Figure 5-13.

Name Operation

A sequence sym- AIF
bol or blank

Figure 5-13. AIF Instruction

Operand

A logical expression
enclosed in parentheses,
immediately followed by
a sequence symbol.

Any logical expression that may be used in the operand
field of a SETB instruction may be used in the operand
field of an A1F instruction. Tqe sequence symbol in the
operand field must immediately follow the closing paren
thesis of the logical expression.

The logical expression in the operand field is evaluated
to determine if it is true or false. If the expression is true,
the statement named by the sequence symbol in the operand
field is the next statement processed. If the expression is
false, the next sequential statement is processed.

The statement named by the sequence symbol may pre
cede or follow the AlP instruction.

If an A1F instruction is within a macro defmition, then
the sequence symbol in the operand field must appear in the
name field of a statement in the definition. If an A1F
instruction appears outside macro defintions, then the
sequence symbol in the operand field must appear in the
name field of a statement outside macro defmitions.

The following are valid operand fields of A1F
instructions:

(&AREA+X'2D' GT 29). READER
(T'&P12 EQ 'F').THERE
('&FIELD3'EQ' ').N03

The following are invalid operand fields of A1F
instructions:

(T'&ABC NET'&XYZ) (no sequence symbol)
X4F2 (no logical expression')

(T'&ABC NE T'&XYZ).X4F2
(blanks between logical expression and sequence symbol)

The following macro definition may be used· to generate
the statements needed to move a fullword fIXed-point num
ber from one storage area to another. The statements will
be generated only if the type attribute of both storage areas
is the letter F.

&N

2
3 &N

4 END

MACRO
MOVE
AIF
AIF
ST
L
ST
L
MEND

&T,&F
(T'&T NE T'&F). END
(T'&T NE 'F'). END
2,SAVEAREA
2,&F
2,&T
2,SAVEAREA

The logical expression in the operand field of statement
1 has the value true if the type attributes of the two macro
instruction operands are not equal. If the type attributes
are equal, the expression has the logical value false.

Therefore, if the type attributes are not equal, statement
4 (the statement named by the sequence symbol .END) is
the next statement processed by the assembler. If the type
attributes are equal, statement 2 (the next sequential state
ment) is processed.

The logical expression in the operand field of statement
2 has the value true if the type attribute of the fIrst macro
instruction operand is not the letter F. If the type attribute
is the letter F, the expression has the logical value false~

Therefore, if the type attribute is not the letter F, state
ment 4 (the statement named by the sequence symbol
.END) is the next statement processed by the assembler.
If the type attribute is the letter F, statement 3 (the next
sequential statement) is processed.

AGO (Unconditional Branch) Instruction

The AGO instruction is used to unconditionally alter the
sequence in which source program or macro definition
statements are processed by the assembler. The assembler
assigns a maximum count of 4096 (DOS: 150) AIF and
AGO branches that may be executed in the source program
or in a macro definition.

When a macro definition calls an inner macro defmition,
the current value of the count is saved and a new count of
4096 (DOS: 150) is set up for the inner macro definition.
When processing in the inner defmition is completed and a
return is made to the higher definition, the saved count is
restored.

The format of this instruction is shown in Figure 5-14.

Name Operation Operand

A sequence sym- AGO A sequence symbol
bol or blank

Figure 5-14. AGO Instruction

The statement named by the sequence symbol in the
operand field is the next statement processed by the
assembler.

The statement named by the sequence symbol may pre
cede or follow the AGO instruction.

If an AGO instruction is part of a macro defmition, then
the sequence symbol in the operand field must appear in
the name field of a statement within that definition. If an
AGO instruction appears outside macro defmitions, then
the sequence symbol in the operand field must appear in the
name field of a statement outside macro defmitions.

The following example illustrates the use of the AGO
instruction:

1
2

&NAME

3 .FIRST
&NAME

4 .END

MACRO
MOVE
AIF
AGO
AIF
ST
L
ST
L
MEND

&T,&F
(T'&T &Q'F'). FIRST
.END
(T'&T NE T'&F).END
2,SAVEAREA
2,&F
2,&T
2, SAVEAREA

The Communications Controller Assembler Macro Facility 5-27

Statem~nt j determinesjf the type attribute of the first
macro instruction operand is the letter F. If so, statement 3
is the next statement processed by the assembler. If nO,t,
statement 2 is the next statement processed.

Statement 2 indicates to the assembler that the next state
ment to be processed is statement 4 (the statement named
by sequence symbol .END).

ACTR (Conditional Assembly Loop Counter) Instruction

The ACTRinstruction is used to assign a maximum count,
different from the standard count of 4096 (DOS: 150), to
the number of AGO and AlF branches executed within a
macro definition or within the source program.

The format of this instruction is shown in Figure
5-15.

Name Operation Operand

Blank ACTR Any valid SETA expression

Figure 5-15. ACTR Instruction

This statement, which can occur only immediately after
the global and local declarations, causes a counter to be set
to the value in the operand field. The counter is checked
for zero or a negative value; if not zero or negative, the
counter is decremented by one each time an AGO or AIF
branch is executed. If the count is zero before decrement
ing, the assembler will take one of two actions:

1. If processing inside a macro definition, the assembler
terminates the entire nest of macro definitions and con
tinues processing with the next source statement.

2. If processing the source program, the assembler generates
an END card.

An ACTR instruction in a macro definition affects only
thatdefmition; it has no effect on the number of AlF and
AGO branches that may be executed in other macro defini
tions called.

(DOS/VS: The assembler halves the ACTR counter
value when it encounters serious syntax errors in conditional
assembly instructions.)

ANOP (Assembly No Operation) Instruction

The ANOP instruction facilitates conditional and uncondi
tional branching to statements named by symbols or vari -
able symbols.

5-28 IBM 3704 and 3705 Assembler Language

The format of this instruction is shown iIi 'Figure 5·16.

Name

A sequence
symbol

Operation

ANOP

Figure 5-16. ANOP Instruction

O"erand

Blank

If you wish to use an AlF or AGO instruction to branch
to another statement, you must place a sequence symbol in
the name field of the statement'to which you wish to
branch. -However, if you have already entered a symbol or
variable symbol in the name field of that statement, you
cannot place a sequence symbol in the name field. Instead,
you must place an ANOP instruction before the statement
and then branch to the ANOP instruction. This has the
same effect as'branching to the statement immediately
after the ANOP instruction.

The following example illustrates the use of the ANOP
instruction:

MACRO
&NAME MOVE &T,&F

LCLC &TYPE
1 AIF (T'&T EQ 'F'). FTYPE
2 &TYPE SETC 'H'
3 .FTYPE ANOP
4 &NAME ST&TYPE 2, SAVEAREA

L&TYPE 2,&F
ST&TYPE 2,&T
L&TYPE 2, SAVEAREA
MEND

Statement 1 determines if the type attribute of the first
macro instruction operand is the letter F. If so, statement
2 is the next statement processed. If not, statement 4 should
be processed next. However, since there is a variable sym
bol (&NAME) in the name field of statement 4, the required
sequence symbol (.FTYPE) cannot be placed in the name
field. Therefore, an ANOP instruction (statement 3) must
be placed before statement 4.

Then, if the type attribute of the first operand is the
letter F, the next statement processed by the assembler is
the statement named by sequence symbol.FTYPE. The
value of &TYPE retains its initial null character value
because the SETC instruction is not processed. Since
.FTYPE names an ANOP instruction, the next statement
processed is statement 4, the statement following the
ANOP instruction.

Conditional· Assembly Elements

Figure 5-17 summarizes the elements that can be used in
each conditional assembly instruction. Each row in this
chart indicates which elements can be used in a single con
ditional assembly instruction. Each column indicates the
conditional assembly instructions in which a particular
element can be used.

The intersection of a column and a row indicates
whether an element can be used in an instruction, and if so,
in what fields of the instruction the element can be used.
For example, the intersection of the Hrst row and the first
column indicates that symbolic parameters can be used in
the operand field of SET A instructions.

Variable Symbols
SET Symbols Attributes

S.P SET A SETS SETC T' L' K' N' S.S.
SETA 0 N,O 0 0 0 3 0 0
SETS 0 0 N,O 0 0 1 0 2 0 2 0 2

SETC 0 0 0 N,O 0
AtF 0 0 0 0 0 1 0 2 0 2 0 2 N.O
AGO N,O
ANOP N
ACTRO 0 0 0 3 0 0 0

10nly in character relations N = name field
2 Only in arithmetic relations 0 = operand field
3 Only if one to eight decimal d~gits

Figure 5-17. Elements of Condi tiona! Assembly lnstrue tions

The Communications Controller Assembler Macro Facility 5-29

Appendix A: Communications Controller Assembler Feature Comparison

This appendix summarizes the differences between the OS, DOS, OS/VS, and DOS/VS versions of the Communications Con
troller assembler. Features, options, and instructions that do not appear in the comparison are the same for all four versions.

Version of Communications
Assembler Language Feature Controller Assembler

DOS DOS/VS OS OS/VS

Maximum number of continuation cards per statement 1 2 2 2

Maximum number of external symbol dictionary (ESD) 255 255 255 399
entries

Maximum Location Counter Value 218 -1 218 -1 218 -1 218 -1

All control sections initiated by CSECT start at location
coun ter value of 0 No Yes No .No

Maximum number of characters per symbol 8 8 8 8

SELF-DEFINING TERMS:

Binary: maximum number of bits 18

Decimal: maximum decimal value 262,143

Hexadecimal: maximum hex value 3FFFF

Character: maximum number of characters 2

EXPRESSIONS (ABSOLUTE & RELOCAT ABLE):

Maximum number of binary (+-*/) operators within 15 15 15 19
expression

Unary operators allowed within expression No Yes No Yes

Maximum number of terms within expression 16 16 16 20

Maximum levels of parentheses 5 5 5 6

ASSEMBLER INSTRUCTIONS:

ACTR-allowed within open code No Yes No Yes

AlF -maximum number of branches in source program or 150 4096 4096 4096
macro defmition

AGO-maximum number of branches in source program 150 4096 4096 4096
or macro defmition

CNOP-kind of name entry allowed sequence sequence sequence any
symbol symbol symbol symbol
or blank or blank or blank or blank

COPY-
copying of macro definitions allowed No Yes No Yes

nesting depth allowed none 3 none 5

CSECT -always starts at location counter value of 0 No Yes No . No

CXD-valid instruction No No No Yes

Appendix A: Communications Controller Assembler Featwe Comparison A-I

DOS DOS/VS OS OS/VS

DC-
Expressions allowed as modifiers Yes Yes Yes Yes

Number of operands allowed I Multiple Multiple Multiple

Multiple nominal values allowed in constant No Yes Yes Yes

Length (incl. bit length) modifier allowed No Yes No Yes

Scaling modifier allowed (F and H constants only) No Yes No Yes

Exponent modifier allowed (F and H constants only) No Yes No Yes

Types allowed CXBFHAYVQ* *OS/VS only

Types not allowed EDLP Z S

DROP-blank operand entry allowed No Yes No Yes

DS-
Number of operands allowed I Multiple Multiple Multiple

Multiple nominal values allowed in constant No Yes Yes. Yes

Length (excl. bit length) modifier allowed Yes Yes Yes Yes

Maximum length modifier allowed 65,535 65,535 65,535 65,535

Bit length modifier allowed No Yes No Yes

Scaling modifier allowed (F and H constants only) No Yes No Yes

Exponent modifier allowed (F and H constants only) No Yes No Yes

Types allowed CXBFHAYVQ* *OS/VS only

Types not allowed EDLPZS

DSECT -blank name entry allowed No Yes No Yes

END-generated or copied END statement allowed within No Yes No Yes
macro definition

EQU-
second operand (length attribute) allowed No No No Yes

third operand (type attribute) allowed No No No Yes

ICTL-end column required to be no further left than Yes No No No
begin column +4

MNOTE-allowed in open code No No No Yes

OPSYN-valid instruction No No No Yes

ORG-kind of name entry allowed sequence sequence sequence any
symbol symbol symbol symbol
or blank or blank or blank or blank

POP-valid instruction No No No Yes

PRINT -allowed inside macro defmition No Yes No Yes

PUSH-valid instruction No No No Yes

START-generation of START instruction within macro No Yes No Yes
definition allowed

TITLE-maximum number of characters in name (if not a 4 4 4 8
sequence symbol)

WXTRN-valid instruction No Yes Yes Yes

A-2 IBM 3704 and 3705 Assembler Language

DOS DOS/VS OS OS/VS ..
ASSEMBLER PROGRAM OPTIONS:

ALOGIC No No No Yes
BUFSIZE No No No Yes
CATAL Yes Yes No No

DECK Yes Yes Yes Yes
EDECK No Yes No No
ESD No No No Yes

F,LAG No No No Yes
LIBMAC No No No Yes
UNECOUNT No No Yes Yes

liNK Yes Ye§ No No
UST Yes Yes Yes Yes
LOAD No No Yes No

MCALL No No No Yes
MLOGIC No No No Yes
OBJ No No No Yes

RENT No No Yes Yes
RID No No No Yes
SYSPARM No Yes No Yes

XREF Yes Yes Yes No
XREF (Full) No No No Yes
XREF (Short) No No No Yes

MACRO FACILITY FEATURES:
(see also conditional assembly features below)

Maximum number of operands or symbolic parameters 100 200 200 No fixed
allowed in macro instruction Maximum

Maximum number of characters in operand 127 255 255 255
Positional and keyword operands can be mixed No No No Yes

System variable symbols available:
Global

&SYSDATE No No Yes Yes
&SYSPARM No Yes No Yes
&SYSTIME No No Yes Yes

Local
&SYSECT Yes Yes Yes Yes
&SYSUST Yes Yes Yes Yes
&SYSNDX Yes Yes Yes Yes

SET SYMBOLS:

Type (T') and Count (K') attributes allowed in open code No No No Yes

SET Symbol Declaration-mixture of global and local No No No Yes
allowed

Within macro defmition, global and local declarations Yes Yes Yes No
required to immediately follow macro prototype statement

Within open code, global and local declarations required Yes Yes Yes No
to follow any source macro defmitions and precede first
control section

SETC instruction-duplication factor allowed in operand No No No Yes

SubSCripted SET symbols-maximum array dimension 255 255 2500 32,767

Appendix A: Communications Controller Assembler Feature Comparison A-3

DOS DOSNS OS OS/VS

CONDITIONAL ASSEMBLY FEATURES:
(see also Macro Facility Features above)

Arithmetic expressions-
Maximum number of unary and binary operators allowed 16 16 16 25

Maximum number of terms 15 15 15 25

Maximum levels of parentheses 5 5 5 11

Length attribute (L') allowed No Yes No Yes

Integer (I') attribute allowed No Yes No Yes

Scaling attribute (S') allowed No Yes' No Yes

A-4 IBM 3704 and 3705 Assembler Language

Appendix B: Instruction Formats

Instruction .fi'ormat Code Mnemonic Operand Field Format*

Branch RT B T
Branch on C Latch RT BeL T
Branch on Z Latch RT BZL T
Branch on Bit RT BB R(N,M),T
Branch on Count RT BCT R(N), T
Branch and Link RA BAL R,A
Branch and Link Register RR BALR Rl,R2
Add Register RR AR Rl,R2
Add Halfword Register RR AHR Rl,R2
Add Character Register RR ACR Rl (Nl), R2 (N2)
Add Register Immediate RI ARI R(N), I
Subtract Register RR SR Rl,R2
Subtract Halfword Register RR SHR Rl,R2
Subtract Character Register RR SCR Rl (Nl), R2 (N2)
Subtract Register Immediate RI SRI R(N), I
Insert Character RS IC R(N), D (B)
Insert Character and Count RSA ICT R(N), B
Load RS L R, D (B)
Load Halfword .RS LH R, D (B)
Load Register RR LR Rl,R2
Load Halfword Register RR LHR Rl,R2
Load Character Register RR LCR Rl (Nl), R2 (N2)
Load Register Immediate RI LRI R(N), I
Load Address RA LA R,A
Load with Offset Register RS LOR Rl,R2
Load HaIfword with Offset Reg. RR LHOR Rl,R2
Load Character with Offset Reg. RR LCOR Rl (Nl), R2 (N2)
Store RS ST R, D (B)
Store Halfword RS STH R, D(B)
Store Character RS STC R (N), D (B)
Store Character and Count RSA STCT R(N), B
Compare Register RR CR Rl,R2
Compare Halfword Register RR CHR Rl,R2
Compare Character Register RR CCR Rl (Nl), R2 (N2)
Compare Register Immediate RI CRI R(N), I
AND Register RR NR Rl,R2
AND Halfword Register RR NHR Rl,R2
AND Character Register RR NCR Rl (Nl), R2 (N2)
AND Register Immediate RI NRI R(N), I
OR Register RR OR Rl,R2
OR Halfword Register RR OHR Rl,R2
OR Character Register RR OCR Rl (Nl), R2 (N2)
OR Register Immediate RI ORI R(N), I
Exclusive OR Register RR XR Rl,R2
Exclusive OR ,Half word Register RR XHR Rl,Rl

Figure B-1. Instruction Formats (Part 1 of 2)

. Appendix B: Instruction Format B-1

Instruction

Exclusive OR Register Immediate
Exclusive OR Character Register
Test Register Under Mask
Exit
Input
Output

Notes:

*Operand Field Symbol

A

B
D
E
I
M
N

Q

R

S

T

Figure B-1. Instruction Formats (part 2 of 2)

B-2 IBM 3704 and 3705 Assembler Language

Format Code Mnemonic Operand Field Format*

RI
RR
RI
EXIT
RE
RE

XRI R(N), I
XCR Rl (Nl), R2 (N2)
TRM R (N), I
EXIT
IN R,E
OUT R,E

Description

An absolute or relocatable expression that
specifies an address.
An absolute expression that specifies a base register.
An absolute expression that specifies a displacement.
An absolute expression that specifies an external register.
An absolute expression that provides immediate data.
An absolute expression that specifies a bit.
N, Nl, and N2 are absolute expressions that specify a byte.

The value may be either 0 or 1.
Q, Ql , and Q2 are symbolic register expressions that specify

a register-byte combination. (See EQUR.)
R, Rl, and R2 are absolute expressions that specify general

registers. Registers are numbered 0 through 7.
Either an, absolute or relocatable expression specifying an

implied address (used in conjunction with a USING
statement).

A relocatable expression that specifies a transfer address.

Appendix C: Summary of Constants

Length Modifier
Number of

Implied Length Specified Constants Per Truncation/Padding
Type (Bytes) Alignment Range By Operand Side

C as needed byte 1 to 256* characters one right

X as needed byte 1 to 256* hexadecimal one left
digits

B as needed byte 1 to 256 binary digits one left

F 4 fullword 1 to 8 decimal multiple left
digits

H 2 half word 1 to 8 decimal multiple left
digits

A 4 fullword 1 to 4** any multiple left
expression

V 4 fullword 30r4 relocatable multiple left
symbol

R 2 half word 2 only any mUltiple left
expression

y 2 half word 1 to 2 any multiple left
expression

*In a DS assembler instruction, C and X type constants may have a length specification up to 65535.

**Errors will be flagged if significant bits are truncated or if the value specified cannot be contained
in the implied length of the constant.

Figure C-l. Summary of Constants

Appendix C: Summary of Constants C-l

OPERATION

ACTR

AGO

AIF

ANOP

CNOP

COM

COpy

CSECT

CW

CXD

DC

DROP

DS

DSECT

DXD

EJECT

END

ENTRY

EQU

EQUR

EXTRN

GBlA

GBlB

GBlC

ICTl

ISEQ

lCLA

lClB

lClC

MACRO I

MENO l

MEXITl

MNOTE l

NAME ENTRY

Omit

A sequence symbol or blank

A sequence symbol or blank

A sequence symbol

A sequence symbol or blank

A sequence symbol or blan k

Omit

Any symbol or blank

Any symbol or blank

Any symbol or blank

Any symbol or blank

A sequence symbol or blank

Any symbol or blank

A variable symbol or an ordinary symbol
(OOS/VS - can be blank)

Any symbol

A sequence symbol or blank

A sequence symbol or blank

A sequence symbol or blank

A variable symbol or an ordinary symbol

. A variable symbol or an ordinary symbol

A sequence symbol or blank

Omit

Omit

Omit

Omit

Omit

Omit

Omit

Omit

Omit

A sequence symbol or blank

A sequence symbol or blank

A sequence symbol, a variable symbol, or blank

Appendix D: Assembler Instructions

OPERAND ENTRY

An arithmetic SETA expression

A sequence symbol

A logical expression enclosed in parentheses, immediately
followed by a sequence symbol

Omit

Two absolute expressions, separated by a comma

Omit

A symbol

Omit

Four operands, separated by commas

Omit

One or more operands, separated by commas

One to sixteen absolute expressions, separated by
commas (OS/VS and DOS/VS: can be blank)

One or more operands, separated by commas

Omit

One or more operands, separated by commas

Omit

A relocatable expression or blank

One or more relocatable symbols, separated by commas

An absolute or relocatable expression (OS, DOS, OOS/VS)
One to three absolute or relocatable expressions (OS/VS)

An expression grouping of the form R(N) or a.
One or more relocatable symbols, separated by commas

One or more variable symbols that are to be used as SET
symbols, separated by commas2

One or more variable symbols that are to be used as SET
. symbols', separated by commas2

One or more variable symbols that are to be used as SET
symbols, separated by commas2

One to three decimal values, separated by commas

Two decimal values, separated by a comma

One or more variable symbols that are to be used as SET
symbols, separated by commas2

One or more variable symbols that are to be used as SET
symbols, separated bycommas2

One or more variable symbols separated by commas

Omit

Omit

Omit

A severity code, followed by a comma,followed by any
combination of characters enclosed in apostrophes
(DOS/VS: two apostrophes allowed)

Appendix D: Assembler Instructions D-l

OPERATION

OPSYN

NAME ENTRY OPERAND ENTRY

ORG

POP

PRINT

PUNCH

PUSH

REPRO

SETA

SETS

SETC

Any symbol or operation code

A sequence symbol or blank
A sequence symbol or blank

A sequence symbol or blank

A sequence symbol or blank

A sequence symbol or blank

A sequence symbol or blank

A SETA symbol

A SETS symbol

A SETC symbol

A sequence symbol or blank

Any symbol or blank

A relocatable expression or blank

One of four options

One to three operands

One to eighty characters, enclosed in apostrophes

One of four options

Omit

An arithmetic expression

A 0 or a 1, or I ()gical expression, enclosed in parentheses

A type attribute, a character expression, a substring
notation, or a concatenation of character expressions and
substring notations

A decimal self-defining term or blank

A self-defining term or blank

SPACE

START

TITLE3 A special symbol (0 to 4 characters [OS/VS: 0 to 8]),
a sequence symbol,a variable symbol, or blank

One to 100 characters, enclosed in apostrophes (DOS/VS:
two apostrophes allowed)

USING

WXTRN

Notes:

A sequence symbol or blank

A sequ~nce symbol or blank

An absolute or relocatable expression followed by 1 to 16
absolute expressions, separated by commas

One or more relocatable symbols, separated by commas

lMay be used only as part of a macrodefinition.
2SET symbols may be defined as subscripted SET symbols.
3See Chapter 4 for a description of the name entry.·

Instruction

Model Statements3 ,4

Prototype Statementl

Macro Instruction Statement!

Assembler Language Statement 4

Notes:
IMay be used only as part of amscro definition.

Name Entry

An ordinary symbol, a variable symbol,
sequence variable symbol, a combination
of variable symbols and other characters
equivalent to a symbol, or blank

A symbolic parameter or blank

An ordinary symbol, a variable symbol,
a sequence symbol, a combination of
variable symbols and other characters
equivalent to a symbol, 2 or blank

An ordinary symbol, a variable symbol,
a sequence symbol, a combination of
variable symbols and other characters
equivalent to a symbol, or blank

Oper{Jnd Entry

Any combin~tionof characters (includ
ing variable symbols)

Zero or more operands that are symbolic
parameters, separated by commas,
followed by zero or more operands
(separated by commas) of the form sym
bolic parameter, equal sign, optional
standard value

Zero or more positional operands,
separated by commas, followed by zero
or more keyword operands (separated
by commas) of the form keyword,
equal sign, value2

Any combination of characters
(including variable symbols)

2Variable symbols appec;lring ina macro instruction,are replaced by their values before the macro instruction is processed.
3Variable symbols ~ay be used to generate assembler language mnemonic operation codes as I isted in Chapter 4, except ACTR, COPY, ENP,

ICTL, CSECT, DSECT, ISEQ, PRINT, REPRO, and START. Variable symbols may not be used in the name and operand entries of the fol
lowing instructions: COPY, END, ICTL, and ISEQ. Variable symbols may not be used in the name entry of the ACTR instruction.

4No substitution for variables in the line following a REPRO instruction is performed.

Figure D-l. Assembler Statements

D-2 IBM 3704 and 3705 Assembler Language

Figure E-l through E-4 in this appendix,surnrnarize the
macro language.

Figure E-l indicates which macro language elements
may be used in the name and operand entries of each
statement.

Figure E-2 is a summary of the expressions that may

Variable S)1IIbals

Global SET Symbols Loc:al SET S)'IIIbols

Symbolic
Statement Parameter SETA SETB SETC SETA SETB SETC

MACRO

Prototype Name
Statement Operand

GBLA Operand

GBlB Operand

GBlC Operand

lCLA Operand

lCLB Operand
"

lClC Operand

Model Name Name 'Name Name Name Name Name
Statement Operation Operation Operation Operation Operation Operation Operation

Operand Operand Operand Operand Operand Operand Operand

SErA
Operand2

Name
Operand3 Operanl

'Name
Operand

3
Operand

9
Operand Operand

SETB
Operanl'

Name
Operanl' Operane/>

Name
Operand6 Operand Operand OperanJl

SETC
Operand7 OperandS

Name
Operand7 OperandS

Name
Operand Operand Operand

AIF
Operan~ Operant Operand Opera~ Operane/> Operand Operanl'

AGO

ACTR Operand2 Operand Operand3 Operani Operand Operand3 Ope rani

ANOP

MEXIT

MNOTE Operand Operand Operand Operand Operand Operand Operand

MEND

Outer Name Name Name Name Name Name
Macro Operand Operand Operand Operand Operand Operand

Inner Name Name Name Name Name Name Name
Macro Operand Operand Operand Operand Operand Operand Operand

Assembler Name Name Name Name Name Name
Language Operation Operation Operation Operatian Operation Operation
Statement Operand Operand Operand Operand Operand Operand

1. Variable s)1llbols in macro-instructions are replaced by their values before processing.
2. Only if value is self-defining tenn.
3. Converted to arithmetic +1 or-tO.
4. Only in character relations.
5. Only in arithmetic relations.
6. Only in arithmetic or character relations.
7. Converted to unsigned number.
S., Converted to character 1 or O.
9. Only If one to eight decimal digits.

Figure E-l. Macro Language Elements

Appendix E: Macro Language Summary

be used in macro instruction statements.
Figure E-3 is a summary of the attributes that may be

used in each expression.
Figure E-4 is a summary of the variable symbols that

may be used in each expression.

System Variable Symbols Attributes

&SYSNDX &SYSECT &SYSLIST Type Length
Sequence

Count Number S)1IIbol

Name Name Name Name
Operation Operation Operation

' Operand Operand Operand

Operond Operand2 Operand Operond Operand

Operanl' Operand'* Operand6 Operani Operan; OperandS OperandS

Operand Operand Operand Operand

Operan~ Operancr4 Operan" Operanct Operan; Operan; OperaJ
Name
Operand

Name
Operand

Operand Operand2 Operand Operand Operand

Name

Name

Operand Operand Operand Name

Name

Name

Name Name Name Name
Operand Operand Operand

Name

Appendix E: Macro Language Summary E-l

,;
~pression

May contain:

Operators are:

Range of values is:

May be used in:

Adthmetic Expressions Character Expressions

I. Self-defining terms I. Any combination of characters
enclosed in apostrophes 2. length, count, and number

attributes 2. Any variable symbol encl~d
in apostrophes 3. SETA and SETa symbols

4. SETC symbols whose value 3. A concatenation of variable
symbols and other characters
enclosed in apostrophes

is 1-8 decimal digits
5. Symbolic parameters if the

co~responding operand is a self- 4. A request for a type attribute
defihing term

6. &SYSlIST(n) if the corresponding
operand is a self-defini~ term

7. &SYSlIST(n,m) if the corresponding
operand is a self-defining term

8. &SYSNpX

+,"'"., * ,and /.
parentheses permitted

_2 31 to +2 31 -I

I. SETA operands
2. Arithmetic .relations
3. Subscripted SET symbols
4. &SYSlIST
5. Substring notation
6. Sublist notation

....

concatenation, with a period (.)

o through 255 characters 3

I • SETC operands 3

2. Character relations 2

) An arithmetic relation consists of two arithmetic expressions related by the operators GT ,LT," EQ, NE, GE, or LE.

logical Expressions

I.
2.
3.

SETa symbols
Arithmetic relations 1

Character relations 2

AND, OR, and NOT parentheses
permitted

o (false) or) (true)_,

I. SETa operands
2. AIF operands

2A character relation consists of two character expressions related by the operator GT, LT, EQ, NE, GE, or LEi The type attribute
notation and the substring notation may also be used in character relations. The maximum size of the character expressions that can be
compared is 255 characters (127 characters for DOS); see chapter 5 under SETC - SET CHARACTER. If the" two character expr:essions
are of unequal size, then the smaller one will always compare less than the larger.

3Maximum of eight characters will be assigned.

Figure E-2. Conditional Assembly Expressions

Attribute Notation May be used with: MJ y be used onl y if type MJy be used in
attribute is:

Type T' Symbols outside macro (MJy always be used) 1. 'SEre operand fields
definitions; symbolic parameters, 2. Character relations
&SYSLlST(n), and &SYSLlST(n,m)
inside macro definitions

Length L' Symbols outside macro Any leter except M, N, 0, Arithmetic expressions
definitions; symbol ic parameters, T, and U
&SYSLlST(n), and &SYSLlST(n,m)
inside macro definitions

Count K' Symbolic parameters corresponding Any letter I Ari thmeti c expressi ons
to macro instruction operands,
&SYSLlST(n), and &SYSLlST(n,m)
inside macro definitions

Number N' Symbolic parameters, &SYSLlST, Any letter Arithme!ic expressions
and &SYSlIST(n) inside macro
definitions

*NOTE: There are definite restrictions in the use of these attributes. Refer to text, Chapter 5, under D.,. Attribu,. ..

Figure E-3. Data Attributes

E·2 IBM 3704 and 3705 Assembler Language

Variable Symbol Defined by: Initialized, or set to: Va lue changed by: May be used in:

Symbolic
1

Prototype Corresponding macro (Constant throughout 1. Arithmetic expressions, if
parameter statement instruction operand definition) operand is self-defining term

2. Character expressions

SeTA LCLA or GBLA 0 SETA 1. Arithmetic expressions
instruction instruction 2. Character expressions

SETS LCLS or GBLS 0 SETS 1. Arithmetic expressions
instruction instruction 2. Character express ions

3. Logical expressions

SETC LCLC or GBLC Null character value SETC 1. Arithmetic expressions, if
instruction instruction value is self-defining term

2. Character expressions

&SYSNDX
1

The assembler Macro instruction index (Constant throughout 1. Arithmetic expressions
definition; unique for 2. Character expressions
each macro instruction)

&SYSECT
1

The assembler Control section in (Constant throughout Character expressions
which macro instruction definition; set by
appears CSECT, DSECT, and

START)

&SYSLlST
1

The assen'lbler Not applicable Not applicable N' &SYSLI ST in arithmetic
expressions

&SYSLlST(n)l The assembler Corresponding macro (Constant throughout 1. Arithmetic express:ons if

1 instruction operand definition) operand is self-defin ing term
&SY,SlIST(n,m) 2. Character expressi ons
&SYSPARM 1,2

&SYSDATE The assembler Current date CPU Clock
&SYSTIME The assembler Time of day CPU Clock

1
May be used only in macro definitions

2 DOS/VS only with a null character value-/ /option /1-.-.

Figure E-4. Variable Symbols

Appendix E: Macro Language Summary E-3

Appendix F: Job Control Statements and Storage Requirements

JOB CONTRO L STATEMENTS-OS

Figure F·1 shows the control statements necessary to assem·
ble a communicatiot;ls controller program under OS.

l/lASM EXEC PGM=IFKASM, REGION=50K

2/1SYSLIB

3//SYSUT1

/I

//SYSUT2

//SYSUT3
/I

4/1SYSPRINT

S//SYSPUNCH

•
•
•

//SYSIN

•
•
•

Program to be assembled

•
•
•

/*

DD

DD

DO

DD

DD

DD

DD

DSNAME=SYS1.MAC3705,DISP=SHR

DSNAME=&SYSUT1, UNIT=SYSSQ, SPACE=(1700, (400,50)),
SEP=(SYSLlB)

DSNAME=&SYSUT2, UNIT=SYSSQ, SPACE=(1700, (400,50))

DSNAME=SYSUT3, SPACE=(7200, (400,50)), UNIT=(SYSSQ,
SEP=(SYSUT2, SYSUT1, SYSLI B))

SYSOUT=A

SYSQUT=B

IpARM= or COND= parameters may be added to this statement by the EXEC statement that calls the procedure. The system name IFKASM
identifies the IBM Communications Controller Assembler.

2This statement identifies the macro library data set. The data set name SYSl.MAC370S is an IBM designation.
3SYSUT1, SYSUT2, and SYSUT3 specify the assembler utility data sets. The device classname SYSSQ represents either a direct access device
or a tape drive. The I/O units assigned to the classnames are specified by your installation during system generation. A unit name (for exam·
pIe, 2311) may be substituted for SYSSQ. The DSNAME parameters guarantee use of dedicated work data sets if this feature is supported by
your installation.
The SEP= subparameter in statement 5 and the SPACE= parameter in statements 3, 4, and 5 are effective only if SYSSQ is a direct-access
device. The space required depends on the source program. The publication IBM System/360 Operating System: Job Control Language
Re!erence(GC28-6704) explains space allocation.

4This statement defines the standard system output class, SYSOUT=A, as the destination for the assembler listing.
5This statement describes the data set that will receive the punched object module.

Figure F-l. Job Control Statements for Assembly Under as

You may catalog the procedure to simplify your assem
bly; see the IEBUPDTE Program, in the publication as
Utilities, GC28·6586.

OS Assembler Options

You may select the portions of the output desired by
specifying them in the PARM= field of the EXEC state·
ment. The options are as follows:

DECK-The object module is placed in the device
specified in the SYSPUNCH DD statement.

LOAD-The object module is placed on the device
specified in the SYSGO DD statement.

liST -An assembler listing is produced.

XREF-The assembler produces across-reference table
of symbols as part of the listing.

RENT -The assembler checks for a possible coding
violation of program re-enterability.

LINECNT=nn-This parameter specifies the number of
lines to be printed between headings in the listing. The
permissible range is 01 to 99 lines.

Use the prefix NO (for example, NOLIST) with the above
options to indicate which options are not wanted.

If an option is not specified, the assembler assumes the
following default entry:

PARM='NOLOAD,DECK,LlST,XREF,LlNECNT=55,NORENT'

Appendix F: Job Control Statements and Storage Requirements F-1

JOB CONTROL STATEMENTS~DOS,' DOS/VS

Figure F-2lists the control cards necessary to assemble a
Communications Controller program under DOS or
DOS/VS. The card groups are listed in the order in which
they must appear. All job control cards enter the system
via SYSRDR; all others, via SYSIPT. The same device may
be assigned for both SYSRDR and SYSIPT. If the device is
a disk file, the combined file must be designated as SYSIN.

Card Group Card Arrangement

Job Control II JOB. ; ..

II ASSGN SYSSLB, l
..

II ASSGN SYSIPT, ..

II ASSGN SYSLST, ..

II ASSGN SYS001, ...
II ASSGN SYS002; ...
II ASSGN SYS003, ...

/I ASSGN SYSPCH, ...

II ASSGN SYSLNK, ..

II OPTION DECK, ...

II EXEC IFTASM or,
/I EXEC IFZASM

Assembler Input Source Deck

1*

Job Control 1&

1 SYSSLB is assigned to a private source statement library.

Job control statements are described in DOS System Con
trol and Service (GC24-5036).

Note 1: Only those assignments and options not already
in effect are required.

Note 2: Assignments for SYSIN and/or SYSOUT must
be accomplished by permanent a.ssignments.'· For 'detail
see DOS System Control and Service" (GC24-5036).

Comments

First card in group; always required

Required for macros and copy code

Sou rce program input

Program listing

Work files

Required when DECK option is specified

Required when assemble-and-execute is specified

Optional; used to indicate desired assembler functions

Required for DOS I use the
Required for DOS/VS appropriate statement

Source statements (machine, assembler, and macro instructions)

Indicates end-of-data set

End of job statement

Figure F-2. Job Control Statements for Assembly Under DOS and DOS/VS

DOS and DOS/VS Assembler Options

You may select those portions of the output desired by
specifying them on the option statement. The options are
as follows:

DECK-The object module is placed in the. device speci
fied in the ASSGN SYSPCH statement.

LINK-The object module is placed on the device speci
fied in the ASSGN SYSLNK. statement.

LIST-An assembler listing is produced.

XREF -The assembler produces a cross-reference table
of symbols as part of the listing.

DOSjVS only: EDECK:--th~ source macros in the 'pro
gram are punched in edited format on the output device

F-2 IBM 3704 and 3705 Assembler Language

assigned to SYSPCH. This option is used to punch the
macros for later catalogmg into the F sublibrary of a
source statement library'.

Use the prefix NO (for" example , NOLlST) with the
ab.ove options to indicate which options are not wanted.

If no options are specified, the assembler assumes the
following default entry:

II OPTION DECK, NOLlNK" LIST, XREF (for DOS)
II OPTION NOEDECK, NOLlNK, DECK,LIST, XREF
(for DOS/VS)

See the publicatiol1, Guide to the DOSj VS Assembler,
GC33-4024, for more inform~tion concerning the assembler
options.

JOB CONTROL STATEMEN'TS-OS/VS

Figure F~3 shows the control statements necessary to
assemble a communications controller program under
OS/VS.

l//jobname

2//stepname

3/1SXSLlB

4/1SYSUT1

JOB

EXEC

DO

DO

accounting information, MSGLEVEL=1

PGM=CWAXOO,REGION=128K,PARM=(assembler options)

DSN=SYS1.MAC3705,OISP=SHR

DSN=&&SYSUT1,UNIT=SYSSQ,SPACE=(1700, (600, 100»,
/I
/ISYSUT2 DO

SEP=(SYSLI B)
DSN=&&SYSUT2,UNIT=SYSSQ,SPACE=(1700, (300,50)),

/I SEP=(SYSLI B,SYSUT1)
IISYSUT3 DO DSN=&&SYSUT3,UN IT=SYSSQ,SPACE=(1700, (300,50))

S/ISYSPRINT DO SYSOUT=A,DCB=BLKSIZE=1089

6//SYSPUNCH DO SYSOUT=B
/ISYSIN DO

•
•
•

Program to be assembled

•
•
•

/*

1 This statement names the job.
2This statement specifies that the program to be executed is CW AXOO, which is the name of the assembler.
The REGION parameter specifies the virtual storage region that gives best performance. It is possible to run the assembler in 64K, in which
case you must change the region size parameter. You can also addCOND and PARM parameters.

3This statement identifies the macro library data set. The data set name SYSl.MACLIB is an IBM designation.
4SYSUTl, SYSUT2, and SYSUT3 specify the assembler work data sets. The device classname SYSSQ represents either a direct access device

or a tape drive. The I/O units assigned to the classnames are specified by your installation during system generation. Instead of a classname
you can specify a unit name, such as 2314. The DSN parameters guarantee dedicated work data sets, if this is supported by your installation.
The SEP and SPACE parameters are effective only if SYSSQ is a direct access device. The space required depends on the source program.

sThis statement defines the standard system output class as the destination of the assembler listing. You can specify any blocksize that is a
multiple of 121. -

6This state~ent describes the data seUhat will receive the punched object module.

Figure F-3. Job Control Statements for Assembiy under OS/VS

OS/VS Assembler Options

Assembler options are functions of the assembler that you,
as an assembler language programmer, can select. For
example, you can use assembler options to specify whether
or not you want the assembler to produce an object deck;
whether or not you want it to print certain items in the
listing; and whether or not you want it to check your pro
gram for reenterability.

The assembler options can be divided in to three
categories:

• Listing control options, which determine the informa
tion to be included in the program listing.

• Output control options, which specify the device on
which the assembler object module is to be written and
the contents of the module. -

• Other assembler options, which specify miscellaneous
functions and values for-the assembler.

Figure F-4lists all the assembler options. The under
lined values are the standard or default values. These
values are used by the assembler for options that you
do not specify.

The options fall into two format types:

• Simplepa.irs of keywords: a positive form (for example,
DECK) that requests a function, and an alternative
negative form (for example, NODECK) that rejects the
function.

• Keywords that permit you to assign a value to a function
(for example, LINECOUNT(40)).

How to Specify Assembler Options

You use the P ARM field of the. EXEC statement calling
the assembler to specify the assembler options. Code
PARM= followed by a list of options that you have selected.
For example;

/ISTEPA .EXEC PGM-CWAXOO,PARM='NODECK,FLAG(5).,
NORLO'

Appendix F: Job Control Statements and Storage Requirements F-3

CWAXOO is the name of the assembler; three options are
specified for the execution of it. Default values are used
for other options.

The PARM field is coded according to the following
rules:

• Single quotes or parentheses must surround the entire
PARM value if you specify two or more options.

• The options must be separated by commas. You may
specify as many options as you wish, and in any order.

,PARM=DECK

,PARM='LlNECOUNT(40)'

,PARM=(DECK,NOOBJECT)
or

,PARM='DECK,NOOBJECT'

,PARM='DECK,NOLlST,SYSPARM(PARAM)'
or

,PARM=(DECK,NOLlST,'SYSPARM(PARAM)')
or

,PARM=(DECK,'NOLlST,SYSPARM(PARAM)')

,PARM= (DECK,NOLlST,'LlNECOUNT (35)',NOALlGN,
MCALL;'BUFSIZE(MIN)',NORLD)

Listing Control Options

However, the length of the option list must not exceed
100 charac ters, including separating commas.

• The BUFSIZE,FLAG~UNECOUNT,or SYSPARM
options must appear within single quotes.

• If you need to continue the PARM field onto another
card, the entire PARM field must be enclosed in paren
theses. However, any part of the P ARM field enclosed
in quotes must not be continued on another card .

The following examples illustrate these rules:

Only one option specified.

LlNECOUNT, BUFSIZE, FLAG, and SYSPARM must be surrounded by
quotes.

More than one option specified. None of them requires quotes.

More than one option specified. SYSPARM must appear within quotes.

The whole field must be enclosed by parentheses, because it is continued
onto another card. The LlNECOUNT and BUFSIZE options must be
within quotes, and the portions of the field that are enclosed within quotes
cannot be continued onto another card.

ALOGIC

NOALOGIC

ESD

NOESD

Conditional assembly statements processed in open code are listed.

The ALOGIC option is suppressed.

FLAG {(nnn»)

(Q)

i..INECOUNT

~
NOLIST

MCALL

NOMCALL

MLOGIC

NOMLOGIC

BkQ
NORLD

LlBMAC

The external symbol dictionary (ESD) is listed.

No ESD listing is printed.

Diagnostic messages and MNOTE messages below severity code nnn will not appear in the listing. Diagnostic
messages can have severity codes of 4, 8, 12, 16, or 20 (20 is the most severe), and MNOTE severity codes can
be between 0 and 255. For example, FLAG(8) suppresses diagnostic messages with a severity code of 4 and
MNOTE messages with severity codes of 0 through 7.

{
(nn)} nn specifies the number of lines to be listed per page.
(55)

An assembler listing is produced.

No assembler listing is produced. This option overrides ESD, RLD, and XREF.

Inner macro instructions encountered during macro generation are listed following their respective outer macro
instructions. The assembler assigns statement numbers to these instructions. The MCALL option is implied by
the MLOGIC option; NOMCALLhas no effect if MLOGIC is specified.

The MCALL option is suppressed.

All stateme~ts of a macro definition processed during macro generation are listed after the macro instruction.
The assembler assigns statement numbers to them.

The MLOGIC option is suppressed.

The assembler produces the relocation dictionary as part of the listing.

The R LD is not printed.

The macro definitions read from the macro libraries and any assembler statements following the logical END
statement are listed after the logical END statement. The logical END statement is the first END statement
processed during macro generation. It may appear in a macro or in open code; it may even be created by sub·
stitution. The assembler assigns statement numbers to the statements that follow the logical END statement.

Figure F-4. The Assembler Options (OS/VS) (part 1 of 2)

F-4 IBM 3704 and 3705 Assembler Language

. '

Listing Control Options (continued)

NOI!IBI\'I1IiC

XREF (FULL)

XREF (SHORt)

NOXREF

Output Control Options

~
NODECK

Other Assembler Options

BUFSIZE (MIN)

BUFSIZE (STD)

RENT

NORENT

{

(string) }
SYSPARM

()

The LI BMAC option is suppressed .

The assembler listing will contain a cross reference table of all symbols used in the assembly. This includes
symbols that are defined but never referenced .

The assembler listing will contain a cross reference table of all symbols that are referenced in the assembly.
Any symbols defined but not referenced are not included in the table.

No cross reference tables are printed.

The object module is written on the device specified in the SYSPUNCH DD statement.

The DECK option is sl.!ppressed.

The assembler uses the minimum buffer size (790 bytes) for each of the utility data sets (SYSUT1, SYSUT2, and
SYSUT3). Storage normally used for buffers is allocated to work space. Because more work space is available,
more complex programs can be assembled in a given region; but the speed of the assembly is substantially
reduced.

The buffer size that gives optimum performance is chosen. The buffer size depends on the size of the region or
partition. Of the assembler working storage in excess of minimum requirements, 37% is allocated to the
utility data set buffers, and the rest to macro generation dictionaries.

See OS/VS Storage Requirements later in this Appendix for a more complete description of the effects of
BUFSIZE.

The assembler checks your program for a possible violation of program reenterability. Code that makes your
program non-reentrant is identified by an error message.

The RENT option is suppressed.

'string' is the value assigned to the system variable symbol &SYSPARM. Due to JCL restrictions, you cannot
specify a SYSPARM value longer than 56 characters (as explained In Note 1 following this figure). Two quotes
are needed to represent a single quote, and two ampersands to represent a single ampersand. For example,

PARM::'OBJECT,SYSPARM((&&AM,"BO).FY)'
assigns the following value to &SYSP ARM:
(&AM ,'BO) .FY.

Any parentheses inside the string must be paired. If you call the assembler from a problem program
(dynamic invocation), SYSPARM can be up to 256 characters long.

Figure F 4. The Assembler Options (OS/VS) (Part 2 of 2)

Note 1: The restrictions imposed upon the P ARM field
limit the maximum length of the SYSPARM value to 56
characters. Consider the following example:

/I EXEC ASMFC,PARM.ASM= (OBJECT,NODECK,
II 'SYSPARM (ABCD ..•......••.............•.............•...)')

tt t
88 56 bytes

Since SYSPARM uses parentheses, it must be sur
rounded by quotes. Thus, it cannot be continued onto
a continuation card. The leftmost column that can be
used is column 4 on a continuation card. A quot~ and
the keyword must appear on that line as well as the

t
co
co

"8

closing quotes. In addition, either a right parenthesis,
indicating the end of the PARM field, or a comma,
indicating that the PARM field is continued on the
next card, must be coded before or in the last column
of the statement field (column 71).

Appendix F: Job Control Statements and Storage Requirements F-5

Note 2: Even though the formats of some of the options
previously supported by the OS version of the controller
assembler have been changed, you can use the old for
mats for the following options:ALGN (now AI1GN) ,
NOALGN (NOAIlGN), LlNECNT=nn (liNECOUNT
(nn)),LOAD (OBJECT), and NOLOAD (NOOBJECT).
This support may not be continued indefmitely, soyou
should change to the new options as soon as possible.

Dynamic Invocation of the Assembler (OS/VS)

You can invoke the assembler from your problem program
when it is executed, by using the CALL, liNK, XCTL, or
ATTACH macro instruction. If you use the XCTL instruc
tion, you cannot specify any assembler options. The
assembler will use the standard or default options. If you
use CALL" LINK, or ATTACH, you can specify both the
assembler options and DDnames of the data sets to be
used by the assemhler. The formats of these macros are:

Name Operation Operand

[symbol] CALL CWAXOO, (optionlist
[,ddnamelist]),VL

J liNK I EP=CW AXOO,
1 ATTACH P ARAM=(optionlist

[,ddnamelist]),VL=1

EP-specifies the symbolic name of the assembler
(CWAXOO).

PARAM-specifies, as a sublist, address parameters to be
passed from the problem program to the assembler. The
first word in the address parameter list contains the
address of the option list. The second word contains
the address of the ddname list.

optionlist~specifies the address of a variable length list
cont$ing;, the options. This address must be' written
even if no option list is provided.

The option list must begin on a halfword boundary.
The first two bytes contain a count of the number of
bytes in the remainder of the list. If no options are

F-6 IBM 3704 and 3705 Assembler Language

specified, the ·count must be zero. J11.e option list is free
form with each field separated from the next by a com
ma~ ·Noblanks or zeros shollld appear in the ~,j""

ddnamelist-specifiesthe aadress of a variable length
list containing alternate ddnames for the data sets used
during assembler proces~ing. If standard ddnrupes are
used, this. operand can be omitted.

The ddname list must begin on a half word boundary .
. The first two bytes contain a count of the number of

bytes in the remainder of the list. Each name of less

".'

than eight bytes must be left~justified and padded with
blanks. If an alternate ddname is omitted, the standard
name will be assumed. If the name is omitted within the
list, the eight-byte entry must contain binary zeros.
Names can be omitted from the end merely by shortening
the list. The sequence of the eight-byte entries in the
ddname list is as follows:

Entry

1
2
3
4
5
6
7
8
9

10

Standard Name

not applicable
not applicable
not applicable
SYSLIB
SYSIN
SYSPRINT
SYSPUNCH
SYSUTI
SYSUT2
SYSUT3

VL-specifies that the high-order bit is to be set to 1 in
the last word of the list of address parameters in the
macro expansion. The assembler checks this bit to fmd
out if a ddname list is specified or not.

Note: If you invoke the assembler more than once from
the same program, make sure that RECFM=S is not
specified for the SYSPRINT data set.

ASSEMBLER STORAGE REQUI REMENTS

OS..- OS/VS Storage Requirements

The primary storage requirement for the assembler under
OS when operating in an MFT partition is a minimum of
48K bytes. The assembler under OS requires a minimum
of 50K bytes when operating in anMVT region. The
minimum virtual st<>rage partition or region under
OS/VSl or OS/VS2 is 64K bytes. However, better per
formance is generally achieved if a partition or region of
128K bytes is used.

Assembfer Data Set Characteristics and Buffer Sizes

If more storage is allocated to the assembler, the size of
buffers and work space can be increased. The amount of
storage allocated to buffers and work space determines
assembler speed and capacity. Generally, as more storage
is allocated to buffers, a given assembly will run faster; as
more storage is allocated to work space, larger and more
complex macro definitions can be handled.

You can control the buffer sizes of SYSIN,SYSLIB,
SYSPRINT, SYSPUNCH by specifying the blocksize

SYSIN SYSLIB

LRECL Fixed at 80 Fixed at 80

RECFM You must specify in You must specify in
(Note 1) LABEL or DD card: LABEL or DD card:

F ,FS,FBS,FB, F ,FS,FBS,FB,
FBST,FBT FBST,FBT

BLKSIZE You must specify in ' Youmustspecify in
(Note 2) LABEL or DD card; LABEL or DD card;

must be a multiple must be a multiple
ofLRECL ofLRECL

BUFNO Optional; if omitted Set by assembler
2 is used to 1

..

(BIKSIZE) and number of buffers (BUFNO) as shown in
Figure F-5.

You can control the buffer sizes for the assembler
utility data sets (SYSUTl, SYSUT2, and SYSUT3) and the
size of the work space used during macro processing,by
specifying the BUFSIZE assembler option. Of the storage
given to the assembler, the assembler first allocates storage
for the SYSIN and SYSLIB buffers according to the speci
fications in the DD statements or the labels of the data
sets. It then allocates storage for the mpdules of the
assembler. The remainder of the partition Qr region is
allocate~ to utility data set buffers and macro generation
dictionaries according to the BUFSIZE option specified;

BUFSIZE(STD): 37% is allocated to buffers, and 63%
to work space. This is the default chosen, if you do not
specify any BUFSIZE option.

BUFSIZE(MIN): Each ut~itydata set is allocated a sin
gle 790.byte buffe·r. The remaining storage is allocated
to work space. This allows relatively complex macro
de fmitionsto be processed in -a given.region or partition
size, but the speed of the assembly is substantially_
reduced.

SYSUT1
SYSUT2

SYSPRINT SYSPUNCH SYSUT3

Fixed at 121 Fixed at 80 Not applicable

F and A set by F set by assembler, Set by assembler to U
assembler. B set by you may specify B
assembler except and! or J T in label or
when F is specified DDcard
and BLKSIZE is not F ,FB,FT,FBT
specified. You may
add S or T:

FA,FAB,FAS,FAT,
FABS,FABT

Optional, but mlist Optional, but must If BUFSIZE (STD) in
be a multiple of be a multiple of effect, a value between
LRECL; if omitted, LRECL; if omitted, 790 and 8192 is chosen.
BLKSIZE=LRECL BLKSIZE=LRECL If BUFSIZE (MIN) in

effect, 790 is chosen

Optional; if'omitted Optional; if omitted Set by assembler to
2 is used 3 is used for unit either lor 2

record and 2 for
other devices

Note 1: U = undefIned, F = fIxed length records, B= blocked records, S= standard blocks,
T = track overflow, A = ASCII code carriage control

Note 2: Blocking is not allowed on unit record devices. Blocking on other direct access devices cannot exceed the track size unless T is
specifIed on RECFM. If the BLKSIZE specifIed is not a multiple of LRECL, the assembler truncates it to a multiple. For example,
ifLRECL = 80, a BLl(~IZE of 850 is truncated to 800.

Figure F -5. Assembler Data Set Characteristics-OS!VS

Appendix F: Job Control Statements and Storage Requirements F-7

Auxiliary Storage Requirements

The residence requirements are as follows:

Tllree Directory records

Device Tracks
type needed

2301; 8
2302 29
2303 32
2311 40
2314 22

The work space requirements are shown in Figure F-6.

Dictionary Capacities

The capacity of the general dictionary (global dictionay and
all local dictionaries) is up to 64 blocks of 1024 bytes each.
The division of the dictionary into global and local sections
is done dynamically; as the global dictionary becomeslar
ger, it occupies blocks taken from·the local dictionary area.
Thus, the global dictionary is always core-resident. As it
expands into the local dictionary area, the local dictionaries
may overflow onto a utility fIle. The size of the dictionaries
in storage depends upon storage availability. The minimum
allocation is three blocks for the global and two blocks for
each local dictionary.

If an assembly is terminated, at collection time, with
either a GLOBAL DICTIONARY FULL message or a
LOCAL DICTIONARY FULL message, you can take one
or more of the following steps:

1. Split the assembly into two or more.partsand assemble
each separately.

2. Allocate more storage for the assembler (the global and
local dictionaries together can occupy up to 64K bytes).

3. Specify a smaller SYSliB blocksize and try the assembly
again.

4 .. Specify a smaller blocksize for the utility files (normal
minimum is 1700 bytes).

If the assembly is terminated, at generation time, with a
GENERATION TIME DICTIONARY AREA OVERFLOW
message, you shoUld allocate more storage to the assembler
and reassemble: your program.

The assembler can usually handle 400 ordinary symbols
without overflow in its minimum main storage. Theassem
bIer can process one additional symbol for each. 18 bytes
above minimum storage.

DOS Storage Requirements

The primary storage requirement for the assembler under
DOS is a minimum of 12K bytes.

F-8 IBM 3704 and 3705 Assembler Language

Auxiliary'Storage Requirements

The auxiliary storage requirements are as follows:

• Residence requiremerits:

Device Blocks
Type Needed

Core Image Library:

2311 46
2314 23

Relocatable Library:

2311 68
2314 40

• Work me requirements:

The number of bytes per statement is as follows:

SYSLNK: 15
SYSOOl: 150
SYS002: 150
SYS003: 36

To determine the approximate member of tracks
required,multiply the number of statements by the
values directly above, then divide the number of bytes
that are required by 3000 for a 2311, or by 6000 for a
2314file. These numbers represent the approximate
number of text bytes, per track, for a 2311 fIle and a
2314 fIle, respectively.

For assemblies with macros, you must count the num
.ber of statements in the macro defmitions and use the
procedure just described.

Note: Only three files are required for an assembly
SYSOOl, SYS002, and SYS003;SYSLNK would be used
when you specify liNK on the OPTION card. Each
statement places a space requirement on each fue, for
example, a 10 statement source program with a call to
one macro containing 20 statements will need the follow
ing bytes on each rue. Assume that a 2311 is used.

SYSLNK:

15(10) + 15(20) = 15(30) = 450 bytes
450/3000 = .15 = 1 track

SYSOO 1 and SYS002:

150(10) + 150(20) = 150(30) = 4500
4500/300 = 1.5 = 2 tracks .

SYS003:

36(10) + 36(20) = 36(30) ::i: 1080
1080/3000 =.36 = 1 track

DOS/VS Storage Requirements

The primary storage requirement for the assembler under
DOSjVS is a minimum of 20K bytes.

Number of Tracks Required
Number of Assembler

Data Set Source Cards Operating In 2301 2302 2303 2311 2314 2321 2305·1 2305·2 3330
Drum Disk Drum Disk Disk Data Drum Drum Disk

Cell

50K 2 6 6 8 5 14 3 3 3
150 100K 2 8 8 8 8 15 3 3 3

200K 2 8 8 8 8 15 3 3 3

50K 4 15 15 20 11 35 6 6 6
SVSUT1 500 100K 5 19 19 20 19 37 6 6 6

200K 5 19 19 20 19 37 6 6 6

50K 7 29 29 38 29 67 10 10 11
1000 100K g 34 34 37 34 68 10 10 11

200K 9 34 34 37 34 68 10 10 11

50K 2 6 6 7 6 13 2 2 3
150 100K 2 7 7 7 7 13 2 2 3

200K 2 7 7 7 7 13 2 2 3

50K 4 14 14 18 14 32 5 5 5
SVSUT2 500 100K 5 17 17 18 17 33 5 5 6

200K 5 17 17 18 17 33 5 5 6

50K 7 26 26 34 26 60 9 9 10
1000 100K 8 30 30 33 30 60 9 9 10

200K 8 30 30 33 30 60 9 9 10

50K 1 3 3 3 3 6 1 1 1
150 100K 1 3 3 3 3 6 1 1 1

200K 1 3 3 3 3 6 1 1 1

50K 1 4 4 5 4 9 2 2 2
SVSUT3 500 100K 2 5 5 5 5 10 2 2 2

200K 2 5 5 5 5 10 2 2 2

50K 2 -6 6 8 6 14 3 2 3
1000 100K 2 8 8 8 8 15 3 3 3

200K 2 8 8 8 8 15 3 3 3

Note: These estimates are based on the assumption that no macro instructions are used in the source program. The storage required for
SYSUT3 increases when macro instructions are used, and it is approximately equal to the storage required for SYSUT1, for a 100
card program.

Figure F-6. Work Space for Assembly Under OS and OS!VS

Auxiliary Storage Requirements

The auxiliary storage requirements are as follows:

• Residence Requirements:

Device Type Tracks Needed

Core Image Library:

2314
2319
3330

Relocatable Library:

2314
2319
3330

20
20
11

38
38
23

• Work File Requirements:

SYSOO 1: MAX (60 x ITXT + 60, SM + 60 x LM)
SYS002: MAX (40 x ETXT, 60 x ITXT +.60 x SM)
SYS003: 60 x OTXT if option NOXREF

100 x OTXT if option XREF

where: .
ITXT= Total number of statements on SYSIPT
OTXT= Total number of statements on SYSLST (with

PRINT GEN)
SM= Number of source macro statements
ETXT= (OTXT -number of comments-SM)
LM= Number of statements in library macros used

by the program.

Appendix F: Job Control Statements and Storage Requirements F-9

Appendix G-: Communications Controller Assembler Messages
OS and DOS

Component Name IFK = OS
1FT = DOS

Program Producing Message IBM Communications Controller Assembler program during assembly of
assembler instructions (under OS or DOS)

Audience and Where Produced For programmer: Assembler listing in SYSPRINT data set

For operator: Console

Message Format ss, ***IFKnnn text (in SYSPRINT)
(on console) " xx IFKnnn text

ss
Severity code indicating effect of error on execution of program being
assembled:

nnn

*
o
4

8

12

16

20

Informational message; no effect on execution

Informational message; normal execution is expected

Warning message; successful execution is probable

Error; successful execution is possible

Serious error; successful execution is improbable

Critical error; successful execution is impossible

Critical error; further assembly impossible; assembler
program terminated abnormally

Message serial number

text
Message text

xx
, Message reply identification (absent, if operator reply not required)

Note: 1FT messages ending with an "I" are printed
on both SYSLST and SYSLOG unless one of the
"messages indicates that SYSLST or an unidentifiable
unit is defective, in which case they will appear on
SYSLOG only. The messages appearing on SYSLOG
will be prefaced by an "A". 11 OLand 1111 errors
can be detecte.d at any point during assembly.

IFK001 DUPLlC'ATION FACTOR ERROR
IFT001

Explanation: A duplication factor is not an absolute expression.
There is an * in duplication factor expression. There is invalid
syntax in expression.

Severity Code: 12

Programmer Response: The duplication factor must .be
specified by an absolute expression enclosed in parentheses or
by an unsigileddecirilal self-defining term. (See DefiningData
in Chapter 4.)

IFK002 RELOCATABLE DUPLICATION FACTOR
IFT002

Explanation: A relocatable expression has been used to
specify the duplication factor.

Severity Code: 12

Programmer Response: The duplication factor must be speci
fied by either an unsigned decimal self-defining term, or by an
absolute expression that is enclosed within parentheses.

1121 through 1151 errors are detected immediately
upon assembly attempt-no assembly listing is printed.
In either case the assembly is terminated, the source is
bypassed to a /* or EOF, and control is returned to the
supervisor via EOJ. The subsequent steps of a multiple
step JOB are not bypassed unless they also are defective.

IFK003 LENGTH ERROR
IFT003

Explanation: The length specification is out of permissible
range or specified invalidly; *in length expression; invalid
syntax in expression; no left-parenthesis delimiter for
expression.

Severity Code: 12

Programmer Response: Ensure that the length specification is
within permissible range and that the syntax is valid. "

IFK004 RELOCATABLE LENGTH
IFT004

Explanation: A relocatable expression has been used to specify
length.

Severity Code: 12

Programmer Responses: The length specification must be either
an unsigned decimal self-defining term, or an absolute expression
enclosed within parentheses.

Appendix G: Communications Controller Assembler Messages-OS and DOS G-1

IFK005 INVALID SYNTAX IN OPERAND
IFT005

Expla1Ultion: Syntax invalid (for example, symbolic register
expression combined with another term).

Severity Code: 12

Programmer Response: Ensure that the syntax in the operand
of the particular instruction used is correct.

IFK006 INVALlD ORIGIN
IFT006

Explanation: The location counter has been reset to a value
less than the starting address of the control section; ORG
operand is not a simply relocatable expression or specifies an
address outside the control section.

Severity Code: 12

Programmer Response: Ensure that the use of the ORG instruc
tion does not reset the location counter to an address outside
the control section.

IFK007 LOCATION COUNTER ERROR
IFT007

Explanation: Either the location counter has exceeded 218:"1,
or it has passed out of the control section in the negative
direction.

Severity Code: 12

Programmer Response: This control section is too large. It
must be broken into several smaller control sections and
reassembled. Possibly an error was made in coding an ORG
or DS instruction. Ensure that the instruction is free from
error and reassemble. (See Location Counter Reference under
Terms, in Chapter 2.)

IFK008 INVALID DISPLACEMENT
IFT008

Explanation: The transfer address of a branch instruction is
outside the allowable range or the displacement of a base
register instruction is outside the allowable range.

Severity Code: 8

Programmer Response: Ensure that either the transfer address,
or the displacement of a base register instruction is inside the
allowable range. (See Location Counter Reference under Terms
in Chapter 2 and USING Instruction under Addressing, in
Chapter 4.)

IFK009 MISSING OPERAND
IFT009

Explanation: Statement requires an operand entry and none is
present.

Severity Code: 12

Programmer Response: Insert operand entry where indicated
and reassemble program.

G-2 IBM 3704 and 3705 Assembler Language

I.F.K010 INCORRECT REGISTER SPECIFICATION
IFT010

Expla1Ultion: The value specifying the register is not an
absolute value within the range 0-7, an even register is speci
fied where an odd register is required, or a register was used
where none can be specified.

Severity Code: 12

Programmer Response: Ensure that the registers used are within
the range of 0-7 and that the use of a register is permissible in
the operation. -

IFK011 INVALID ORIGIN FOR RELOCATABLE R-TYPE
CONSTANT

IFT011

Explanation: An R-type address constant is assembled at
location O.

Severity Code: 8

Programmer Response: Probable user error. Ensure that the
instruction is not assembled at location O.

IFK012 (No message is assigned to this number.)
IFT012

I FK013 (No message is assigned to this number.)
IFT013

I FK014 (No message is assigned to this number.)
IFT014

IFK015 (No message is assigned to this number')
IFT015

IFK016 INVALID NAME
IFT016

Explanation: A name entry is incorrectly specified; for
example, it contains more than eight characters, it does not
begin with a l~tter, or it has a special character imbedded.

Severity Code: 8

Programmer Response: Ensure that all name entries contain
no more than eight characters, that they begin with a letter,
and that they do not have any stecial characters imbedded.

I FK017 . DATA ITEM TOO LARGE
IFT017

Explanation: The constant is too large for the data type or
for the explicit length.

Severity Code: 8

"Programmer Response: Lower the value or reduce the length
of the constant to within permissible range. See Chapter 4 for
a discussion of values for the various data types.

IFK018 INVALID SYMBOL
IFT018

Explanation.~ The symbol specification is invalid; for example,
it has more than eight characters, or it has an imbedded special
character.

Severity Code: 8

,Programmer Response: Ensure that symbols have no more
than eight characters and that they contain no imbedded special
characters.

IFK019 EXTERNAL NAME ERROR
IFT019

Explanation: A CSECf and a DSECf statement have the same
name: a symbol is used more than once in an EXTRN.

Severity Code: 8

Programmer Response: Replace the duplicate CSECT or DSECT
name or symbol name in EXTRN.

IFK020 INVALID IMMEDIATE FIELD
IFT020

Explanation: The value of the immediate operand exceeds 255;
the operand requires more than one byte of storage; the operand
is not an acceptable type.

Severity Code: 8

Programmer Response: Ensure that the immediate operand
value does not exceed 255, and that it does not require more
than one byte of storage. Also ensure that the operand type
is acceptable.

IFK021 SYMBOL NOT PREVIOUSLY DEFINED
IFT021

Explanation: An expression requiring that all symbols be
previously defined contains at least one symbol not predefined.

Severity Code: 8

Programmer Response: Define the symbol requiring definition
and reassemble the program.

IFK022 ESD TABLE OVERFLOW
IFT022

Explanation: The combined number of control sections and
dummy sections plus the number of unique symbols in EXTRN
statements and V-type constants exceeds 255.

Severity Code: 12

Programmer Response: Ensure that the combined number of
CSECTs and DSECfs plus the number of unique symbols in
EXTRN statements and V-type constants do not exceed 255.

IFK023 PREVIOUSLY DEFINED NAME
IFT023

Explanation: The symbol which appears in the name field has
appeared in the name field of a previous statement.

Severity Code: 8

Programmer Response: Redefine the duplicate symbol in the
name field and reassemble the program.

IFK024 UNDEFINED SYMBOL
IFT024

Explanation: A symbol being referred to has not been defined
in the program.

Severity Code: 8

Programmer Response: Ensure that all symbols being referred
to have been dermed. (See Symbols under Terms, in
Chapter 2.)

IFK025 RELOCATABI LlTY ERROR
IFT025

Explanation: A relocatable expression, a complex relocatable
expression, or a symbolic register is specified where an absolute
expression is required; an absolute expression, symbolic register,
or complex relocatable expression is specified where a relocatable
expression is reqUired; a relocatable term 1s involved in multipli
cation or division.

Severity Code: 8

Programmer Response: Ensure that where absolute expressions
are required, only absolute expressions are specified. Ensure
that where relocatable expressions are required, only relocatable
expressions are specified. Ensure that relocatable terms are not
involved in multiplication or division. (See Absolute and
Relocatable Expressions under Expressions, in Chapter 2.)

IFK026 TOO MANY LEVELS OF PARENTHESES
IFT026

Explanation: An expression specifies more than 5 levels of
parentheses.

Severity Code: 12

Programmer Response: Ensure that no expression contains
more than 5 levels of parentheses. (See Terms in Parentheses
under Terms, in Chapter 2.)

IFK027 TOO MANY TERMS
IFT027

Explanation: More than 16 terms are specified in an
expression.

Severity Code: 12

Programmer Response: Ensure that no more than 16 terms are
specified in an expression.

IFK028 REGISTER NOT USED
IFT028

Explanation: A register specified in a DROP statement is not
currently in use.

Severity Code: 4

Programmer Response: Execution is probable; the DROP
statement was probably not needed. (See DROP Instruction
under Addressing in Chapter 4.)

Appendix G: Communications Controller Assembler Messages-OS and DOS G-3

IFK029 CW ERROR
IFT029

Explanation':The cQmmand 'CO' de Qr FLAG (value exceeds 3,
Qr the CQunt exceeds 1023 in a CW InstructiQn.

Severity Code: 8

Programmer Response: Ensure that the command cQdeQr '
FLAG value'dO'es nQt exceed 3 arid that the cQuntdQes nQt
exceed 1023. (See CW Instruction under Defining Data in
Chapter 4.)

IFK030 INVALID CNOP
IFT030

Explanation.~ An invalid combination of Qperands is specified.

Severity Code: 12
','

Programmer ResPQflSe; Ensure that the CNOPst.atement
Qperands are prQperly specified. (See CNOP under Controlling
the Assembler Program in Chapter 4.)

IFK031 UNKNOWN TYPE
IFT031

Explanation: IncQrrect type designatiQn is specified in a
DC Qr DSinstructiQn.

Severity Code: 8'

Programmer Response: Ensure that the type designatiQns
specified in a DC Qr OS instructiQn are CQrrect.

IFK0320P.,...CODE NOT ALLOWED TO BE GENERATED
IFT032

Explanation: Variable symbQls may nQt be used to'
generate:

• . MacrO' instructions.

• Assembler instructiQns nQt appearing in Chapter 4.

• END, ICTL, ISEQ, PRINT, Qr REPRO instructiQns.

Severity Code: 8

Programmer Response: PrQbable user error. Make sure
SQurce is CQrrect and reassemble if necessary. If the prQblem
recurs, dO' the fQllQwing befQre calling IBM:

• Have the user source prQgram, user macrO' definitiQns, and
assQciated listings available. ' .

• If the COpy statement was used, execute the OS IEBPTPCH
ut~lity prQgram to' Qbtain a CQPy Qftlle PDS member speci
fied in the COpy statement. FQr DOS-execute the DOS
SSERV prQgram fQr a CQPy Qf the bQQk specified in the
COpy statement.

IFK033 ALIGNMENT ERROR
IFT033

Explanation: The address referred to' is riQt aligned to' the
prQper bQundary fQr this instructiQn, fQr example, the START
Qperand is nQt a multiple Qf 8, Qr the RS instructiQn displace
ment is nQt divisible by 2 Qr 4.

Severity Code: 4

Programmer Response: Make sure that the address referred to'
is aligned to' the prQper bQundary fQr this instructiQn.

G-4 IBM 3704 'and: 3705 Assembler Language

IFK034 INVALID OP-CODE
IFT034

Explanation:, Syntax errot-;:fQr example, there are- more than
eight characters; Qr the operatiQn field is not follQwed bya blank.

Severity Code: 8

Programmer Response: Ensure that syntax is cOrrect; that is, a
blank separates the QperatiQn field frQmthe Qperand field, and
that there is a CQmma between Qperands.

IFK035 ADDRESSABILITY ERROR
IFT035

Explanation: The address referred to' dQes nQt fall within the
range Qf a USING instruction.

Severity Code: 8

Programmer Response: Make sure the address referred to' falls
within the range Qf a· USING instructiQn, and reassemble if
necessary. If the prQblem recurs~ dO' the fQllQwing befQre
calling IBM:

• Have the user sQurceprQgram, user macrO' definitiQns, and
assQciated listings available.

• If the Copy statement was used, execute the OS IEBPTPCH
utility pr()gram to' Qbtain a CQPYQf the PDS member specified
in the COpy statement. FQr DOS-execute the DOS SSERV
prQgram fQr a CQPy Qf the bQQk specified in the COPY
statement.

IFK036 (NO' message is assigned to' this number.)
IFT036 OPERAND FIELD MUST BE BLANK

Explanation: Operand fQund fQr an Qperation cQde which dQes
nQt allQW Qperands. (This message may be prQducedby the
assembler if an Qperand is present in a COM Qr EJECT statement
when the QperatiQn field has been created by variable symbQI
substitutiQn. Operands in these statements are nQt used but are
nQt in errQr) •.

Severity Code: Variable

Programmer Response: RemQve the invalid operand; if necessary,
and reassemble.

IFK037 MNOTE STATEMENT
IFT037

Explanation: This indicates that an MNOTE statement has been
generated frQm a macrO' defmitiQn. The text and severity cQde
Qf the MNOTE statement will be fQund in line in the listing.

Severity Code: Variable

Programmer Response: .' Ensure that the errQr nQted has been
corrected, and reassemble.

IFK038 ENTRY ERROR
IFT038

Explanation: There might be mQre than 100 ENTRY Qperands
in this prQgram. AsymbQI in the Qperand of ari ENTRY state
ment appears in mQre than Qne ENTRY statement; it is unde
fined; it is defined in a dummy sectiQn Qr in blankcQmmQn;
Qr it is equated to' a symbQI defined by an EXTRN statement.

Severity Code: 8

Programmer Response: Ensure that all ENTRY Qperands are
defined, nQt duplicated in anQther ENTRY statement.

IFK039 INVALID DELIMITER
IFT039

Explanation: . This message can be caused by any syntax error;
for example; missing delirniter;special charact~r used which is
not a valid .delimiter, delimiter used illegally,: operand .missing
(that is, nothing between delimiters), unpaired parentheses,
imbedded blank in expression.

SeverityCode: i 2

Programmer Response: Ensure that any of t.he conditions
listed is corrected and reassemble.

IFK040 GENERATED RECORD TOO LONG
IFT040

Explanation:' There are more than 236 characters in a generated
statement (DOS - more than187 characters).

Severity Code: 12

Programmer Response: Ensure that there are no more than the
maximum number of characters in a generated statement.'

IFK041 UNDECLARED VARIABLE SYMBOL
IFT041

Explanation: A variable symbol is not declared in a defined
SET symbol statement or in a macro prototype.

Severity Code: 8

Programmer Response: Probable user error. Make sure source
is correct and reassemble if necessary. If the problem recurs,
do the following before calling IBM:

• Have the user source program, user macro definitions,
and associated listings available.

• If the COpy statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the POS
member specified in the COPY statement. For DOS-execute
the DOS SSER V program for a copy of the book specified in
the COPY statement.

IFK042 SINGLE TERM LOGICAL EXPRESSION IS NOT A
SETB SYMBOL

IFT042

Explanation: The single term logical expression has not been
declared. as SETB symbol. A single term logical explanation is
valid only for a SETB symbol.

Severity Code: 8

Programmer Response: Make sure that the single term logical
expression in question is declared as a SETB symbol. (See
SETB Instruction Imder Assigning Values to SET Symbols
in Chapter 5.)

IFK043 SET SYMBOL PREVIOUSLY DEFINED
IFT043

Expklnation: A SET symbol has been previously defmed.

Severity Code: 8

Programmer Response: Probable user error. Make sure source
is correct and reassemble if necessary. If the problem recurs,
do the following before calling IBM:

• Have the user source program, user macro definitions, and
associated listings available.

• If the COpy statement was used, execute the OS IEBPTPCH
utility program to obtain a copy of the PO"S member speci
fied in the COpy statement. For DOS-execute the
DOS SSERV program for a copy of the book specif~ed in
the COpy statement.

IFK044 SET SYMBOL USAGE INCONSISTENT WITH
DECLARATION

IFT044

Explanation: A SET symbol has been declared undimensioned,
but is subscripted, or has been declared dimensioned, but is
unsubscripted.

Severity Code: 8

Programmer Response: Ensure that SET symbol usage is con
sistent with SET symbol declarations. If the problem recurs,
do the following before calling IBM:

• Have the user source program, lJser macro definitions and
associated listings available.

• If the COpy statement was used, execute the OSIEBPTPCH
utility program to obtain a copy of the PDS member speci
fied in the COpy statement. For DOS-execute the DOS
SSER V program for a copy of the book specified in the
COPY statement.

IFK045 ILLEGAL SYMBOLIC PARAMETER
IFT045

Explanation: An attribute has been requested for a variable
symbol which is not a legal symbolic parameter.

Severity Code: 8

Programmer Response: Probable user error. Make sure source
is correct and reassemble if necessary. If the problem recurs,
do the following before calling IBM: .

• Have the user source program, user macro definitions, and
associated li~tings available.

• If the COpy statement was used, execute the OS IEBPTPCH
utility program to obtain a copy of the POS member speci
fied in the COpy statement.

Appendix G: Communications Controller Assembler Messages-OS and DOS G-5

IFK046 AT LEAST ONE Y TYPE OR R TYPE CONSTANT
IN ASSEMBLY

IFT046

Explanation: One or more relocatable Y-type or R·type constants
in assembly; relocation may result in an address greater than two
bytes in length.

Severity Code: 4

Programmer Response: Use an A-type constant if your program
will be link edited above 64K bytes.

IFK047 SEQUENCE SYMBOL PREVIOUSLY DEFINED
IFT047

Explanation: Invalid use of sequence symbol. This error results
from erroneously coding the same sequence symbol more than
once in a single macro definition.

Severity Code: 12

Programmer Response: Ensure that there is no duplication of
sequence symbols in a single macro definition. (See Sequence
Symbols under The Conditional Assembly Language in
Chapter 5.)

IFK048 SYMBOLIC PARAMETER PREVIOUSLY DEFINED
OR SYSTEM VARIABLE SYMBOL DECLARED AS
SYMBOLIC PARAMETER

IFT048

Explanation;- A symbolic parameter has been previously
defined, or a system variable symbol has been declared as a
symbolic parameter_

Severity Code: 12

Programmer R esponse: See Variable Symbols under
Introduction in Chapter 5, and Symbolic Parameters under
The Macro Definition, also in Chapter 5. Make sure source
statements are correct and reassemble if necessary. If the
problem recurs, do the following before calling IBM:

• Have the user source program, user macro definitions, and
associated listings available.

• If the COpy statement was used, execute the OS IEBPTPCH
utility program to obtain a copy of the PDS member speci
fied in the COpy statement.

IFK049 VARIABLE SYMBOL MATCHES A PARAMETER
IFT049

Explanation: A variable symbol is identical to a parameter
resulting in a doubly defmed symbol.

Severity Code: 12

Programmer Response: Probable user error. Make sure source
is correct and reassemble if necessary. If th€; problem recurs,
do the following before calling IBM:

• Have the user source program, user macro definitions, and
associated listings available.

G-6 IBM 3704 and 3705 Assembler Language

IFK050 INCONSISTENT GLOBAL DECLARATIONS
IFT050

Explanation: A global SET variable symbol (that is,defined in
more than one macro definition, or in a macro definition and in
the source program) is inconsistent in SET-type or dimension.

Severity Code: 8

Programmer ResponJe: Make sure all SET symbols, global or
local, are consistent in type or dimension, and reassemble if
necessary~ IUhe problem recurs, db the folloWing before
calling IBM:

• Have the user source program, user macro definitions, and
associated listings available.

• If the COpy statement was used, execute the OS IEBPTPCH
utility program to obtain a copy of thePDS member specified
in the COpy statement. For DOS-executethe DOS SSERV
program for a copy of the book specified in-the COpy state
ment.

IFK051 MACRO DEFINITION PREVfOUSLY DEFINED
IFT051

Explanation: A prototype operation field is the same as a
.machine or assembler instruction or a previous prototype. This
message is not produced when a programmer macro matches a
system macro. The programmer macro will be assembled with no
indication of the corresponding system macro.

Severity Code: 12

Programmer Response: Ensure that the programmer macros are
not previously defined and also that the operation field of the
macro prototype is not identical to a machine or assembler
operand. If the problem recurs, do the following before calling
IBM:

• Have the user source program, user macro defInitions, and
associated listings available.

IFK052 NAME FIELD CONTAINS ILLEGAL SET SYMBOL
IFT052

Explanation: SET symbol in name field does not correspond
to the SET statement type.

Severity Code: 8

Programmer Response: Ensure that SET symbols in the name
fields correspond to SET statement types, and reassemble if
necessary. If the problem recurs, db the following before
calling IBM:

•. Have the user source program, user macro definitions, and
associated listings available.

• If the COpy statement was used, execute the OS IEBPTPCH
utility program to obtain a copy of the PDS member speci
fied in the COpy statement. For DOS-execute the
DOS SSERV program for a copy of the book specified in ,
the COpy statement.

IFK053 GLOBAL DICTIONARY FULL
IFT053

Explanation: The global dictionary is full; assembly is terminated.

Severity Code: 12

Programmer Response: Probable user error. Do one or more of
the following:

1. Split the assembly into two or more parts and assemble each
separately.

2. . Allocate more core for the assembler (OS -the global and
local dictionaries, together, Can occupy up to 64K).

3. (OS only) Specify a smaller SYSLIB blocksize. Thus, if
BLKSIZE=3600, try BLKSIZE=1800, or BLKSIZE=1200.
Reblock the library to the size chosen, and try the assembly
again.

IFK054 LOCAL DICTIONARY FULL
IFT054

Explanation: The local dictionary is full; current macro is
aborted or if the operation is in open code, assembly is terminated.

Severity Code: 12

Programmer Response: Probable user error. Do one or more of
the following:

1. Split the as sembi} into two or more parts, and assemble
each separately.

2. Allocate more storage for the assembler (OS-the global
and local dictionaries, together, can occupy up to 64K).

3. (OS only) Specify a smaller SYSLIB blocksize. Thus, if
BLK(OS only) SIZE=3600, try BLKSIZE=1800 or
BLKSIZE=1200. Reblock the library to the size chosen,
and try the assembly again.

IFK055 INVALID ASSEMBLER OPTION(S) ON THE EXECUTE
CARD

IFT055 (No message is assigned to this number.)

Explanation: An assembler option specified on the EXECUTE
card is invalid (OS only).

Severity Code: 8

Programmer Response: Make sure all assembler options specified
are correct and reassemble if necessary. If probleI11 recurs, do
the following before calling IBM:

• Make sure that MSGLEVEL=(1, 1) was specified in the JOB
statement.

•. Have the user source program, user macro definitions, and
associated listings available. (See Appendix F: Storage
Requirements and Job Control Language.)

IFK056 ARITHMETIC OVERFLOW
IFT056

Explanation: The intermecUate or final result of an expression
is not within the range of -231 to 231.1.

Severity Co.de: 8

Programmer Response: Ensure thatthe intermediate or final
result of expression is within the range of _231 to 231.1.

IFK057 SUBSCRIPT EXCEEDS MAXIMUM DIMENSION
IFT057

Explanation: &SYSLlSTor symbolic parameter subscript
exceeds 200 (DOS: exceeds 100) or is negative or zero; or
SET symbol subscript exceeds dimension.

Severity Code: 8

Programmer Response: Ensure that the &SYSLIST or
symbolic parameter subscript does not exceed the maxi
mum allowable number and that it is a positive number.

IFK058 RE-ENTRANT CHECK FAI LED
IFT058 (No message is assigned to this number.)

Explanation: An instruction has been detected which, when
executed, might store data into a control section or a common
area. This message is generated only when requested by con
trol cards and it simply indicates a possible re-entrant error.

Severity Code: 4

Programmer Response: Ensure that the detected instruction
does not store data in a control section or a common area.

Note: The DOS assembler does not check for reentry; there
fore, there is no DOS message.

IFK059 UNDEFINED SEQUENCE SYMBOL
IFT059

Explanation: An operand sequence symbol does not appear
as a sequence symbol in a name field.

Severity Code: 12

Programmer Response: Ensure that the operand sequence
symbol in question appears in a name field. (See Sequence
Symbols under The Conditional Assembly Language in
Chapter 5.)

IFK060 ILLEGAL ATTRIBUTE NOTATION
IFT060

Explanation: L' was requested for a parameter whose type
attribute does not allow these attributes to be requested.

Severity Code: 8

Programmer Response: Remove the L' request for the
parameter in equestion and reassemble if necessary. If the
problem recw:s, do the following before calling IBM:

• Have the user source program, user macro definitions, and
associated listings available .. (See Data Attributes under
The Conditional Assembly Language in Chapter 5.)

Appendix G: Communications Controller Assembler Messages-OS and DOS G-7

IFK061 ACTR COUNTER EXCEEDED
IFT061

Explanation: Conditional assembly loop counter has been
exceeded; conditional assembly has been terminated.

Se)Jerity Code: 12

Programmer Response: Ensure that the number of Ado and
AIF statements do not exceed the standard value of 4096 'for
as, 150 for])OS or the value' assigned by you through the
ACTR instruction. Make sure source is correct and reassemble
if necessary. If the problem recurs, do the following before
calling IBM: ' . .

• Have the user source program, user macro definitions, and
" associatedlistingsayailable. (See ACTR Instruction under

Branching in Cha,pter 5.), .

IFK062 GENERATED ST~ING GREATER THAN 2.5.5
CHARACTERS ' ' .

IFT062 GENERATED STRING GREATER THAN 127
CHARACTERS

Explanation: The maximum size character expression from
which the character value can be chosen is 255 characters for
as, 127 for DOS.

Severity Code: 8

Programmer Response: Probable user error. Make sure source
statements are correct and reassemble if necessary. If the
problem recurs, do the Jollowing beforecaIIing IBM:

• Have the user source program, user macro defimtions, and
associated listings available.

IFK063 EXPRESSION 1 OF SUBSTRING IS ZERO OR MINUS
IFT063

Explanation: Expression 1 of the substring notation indicates
the fIrst character in the character expression that is to be
assigned. It, therefore, must be a positive value.

Severity Code: 8

Programmer Response: Probable user error. Make sure source
is correct and reassemble if necessary; If the problem recurs, do
the following before calling IBM:

• Have the user source program,user macro definitions, and
associated listings available. (See SubstringNotation under
SETC Instruction in Chapter 5.)

IFK064 EXPRESSION 2 OF SUBSTRING I.S ZERO OR MINUS
IFT064

Explanation: Expression 2 in substring notation indicates the
number of consecutive characters in the character expression
that are to be assigned to the SETC symbol. It, therefore,
must have a positive value.

Severity Code: 8

Programmer Response: Probable user error. Make sure source
is correct and reassemble if necessary. If the problem recurs, do
the following before calling IBM:

• Have the user source program, user macro definitions, and
associated listings available. (See Substring Notation
under SETC Instruction, in Chapter 5.)

G-8 IBM 3704 and 3705 AsserriblerLangUage

IFK06.5 INVALID OR ILLEGAL TERM IN.ARITHMETIC
EXPRESSION

IFT065

Explanation: The value of a SETC symbol used in the arithmetic
expression is not composed of decimal digits~ or the parameter
is nota·self-defining term.

Severity Code: 8

Programmer Response: Ensure that the value of a SETC
symbol used in the arithmetic expression is composed of
decimal digits and that the pa,rameter is a self-defining term.
If the problem recurs,do the following before ~llirigIBM:

• Have the user source program, user macro definitions, .and
associated listings a:vailable.

IFK066 UNDEFINED OR DUPLfCATE KEY WORD OPERAND
OR EXCESSIVE POSITIONAL OPERANDS

IFT066

Explanation: The same keyword operand occurs more than
once in the macro instruction; a keyword is not defined in a
prototype statement; in a mixed mode macro instruction, more
positional operands are specified than are specified in the
prototype.

Severity Code: 12

Programmer Response: Ensure that there are ~o duplicate or
underfined keyword operands, and that there are no more
positional 'operands than are specified in the prototype.

IFK067 EXPRESSION 1 OF SUBSTRING GREATER THAN
LENGTH OF CHARACTER EXPRESSION..

IFT067

Explanation: EXPression 1 of the substring must not be
greater than the length of the character expression to which it
refers.

Severity Code: 8

Programmer Response: Ensure that expression I' of'the sub
string is not greater than the length of the character expression
to which it refers. (See Substring Notation under SETC
InstructiQn, in Chapter 5.)

IFK068 GENERATioN TIME DICTIONARY AREA
OVERFLOWED

IFT068

Explanation: Not enough storage allocated to the assembler; (or,
for OS only), the blocksize is too large.

Severity Code: 12

Programmer Response: Probable user,error. Do one or more of
the following before caIling IBM for programming support:

1. Split the assembly into two or more parts and assemble each
separately~ , ' ,; . '. .

2. Allocate more co):,e to·tbe assembler (the global and local
dictionaries, together, can occupy up to 64K).

3. (For as only) Specify a smaller SYSLIB bldcksize. Thus,
ifBLKSIZE=3600, tryBLKSIZE=18000rBLKSIZE=1200,
reblock the library to, the size i chosen, and try the assembly
again.

4. Have the user source program, user macro definitions, and
associated listings available.

IF K069 EXPRESSION 2 OF SUBSTRING GREATER THAN
8 CHARACTERS

IFT069

Explanation: Expression 2 of substring must not be greater
than 8.

Severity Code: 8

Programmer Response..~ Respecify the value of expression 2
to some value not greater than eight 'characters, and reassemble
if necessary. If the problem recurs, do the following before
calling IBM:

• Have the user source program, user macro definitions, and
associated listings available.

IFK070 (No message is assigned to this number.)
IFT070

IFK071 ILLEGAL OCCURRENCE OF LCL, GBL, OR ACTR
STATEMENT

IFT071

Explanation': Local or global declaration; or the ACTR
statement is not in proper place in the program.

Severity Code: 8

Programmer Response: Ensure that the local or global
declaration or ACfR statement is in the proper place, and
reassemble if necessary. If the problem recurs, do the follow
ing before calling IBM:

• Have the user source program, user macro definitions, and
associated listings available.

IFK072 ILLEGAL RANGE ON ISEQ STATEMENT
IFT072

Explanation: One or more columns to be sequence-checked
are between the "begin" and "end" columns of the statement.

Severity Code: 4

Programm~r Response: Ensure that any column to be
sequence-checked falls outside the range of the "begin" and
"end" columns of the statement.

• Have the user sOurCe program, user macro definitiolls, and
associated listings available.

IFK073 ILLEGAL NAM'E FIELD
IFT073

Explanation: Either a statement which requires a name has
been written without a name; ora statement which has a
name is not allowed to have a name; or a name entry required
to be a sequence symbol is not a sequence sYmbol.

Severity Code: 8

Programmer Response: Ensure that statements requiriflg a
name have one; that any statement having an iD.egal naine be
corrected by removing the naine; and that any name required
to be a sequence symbol is a sequence symbol.

IFK074 ILLEGAL STATEMENT IN COpy CODE OR
SYSTEM MAGRO.

IFT074

Explanation: A statement being copied was Ii COPY, END"
ICTL, ISEQ, MACRO, MEND, or a model statement in Ii '
macro containing an END, PRINT, COPY, ISEQ, ICTL.

Severity Code: 8

Programmer Response: Check statements to be copied to
ensure that they are not illegal.

IFK075 ILLEGA'L STATEMENT OUTSIDE OF A MACRO
DEFINITION

IFT075

Explanation: A statement that is allowed only in a macro
definition was encountered in open code; for example,
period asterisk (. *), MNOTE statement.

Severity Coie: 8

Programmer Response: Ensure that statements that are
allowed only in macro definitions are not used in open code.

IFK076 SEQUENCE ERROR
IFT076

Explanation: A statement with a sequence number lower than
the preceding statement was found when using the ISEQ
instruction.

Severity Code: 12

Programmer Response: Ensure that all statements with sequence
numbers after the ISEQ instruction are in proper sequence. (See
ISEQ Instruction under Controlling the Assembler Program in
Chapter 4.)

IFK077 I LLEGAL CONTINUATION CARD
IFT077

Explanation: Either there are too many continuation cards; or
there are non-blanks between the "begin" and "continue" .
columns on the continuation card; or a card not intended as a
continuation was treated as such because of a punch in the con
tinuation column of the preceding card.

Severity Code: 8

Programmer Response: ,Ensure that the rules for the use of
continuation cards are observed:

1. A non-blank character must be in column 72.
2. A continuation card begins in column 16.
3. The limit on the number of continuation cards must be

observed. (See ICTL' Instruction under Controlling the
Assembler Program in Chapter 4.)

Appendix G: Communications Controller Assembler Messages-OS and DOS ·G-9

IFK078 (No message is assigned to this llumb~rJ'"
IFT078 MACRO MNEMONIC OP-CODE TABLE OVERFLOW

Explanation: Not enough storage has been allocated to the
assembler; or there is an unusually J:arge number of macro
mnemonic op-codes,causing the table to overflow •. (See
Appendix F.)' .

Severity Code: 12

Programmer Response: Probable'usererror. Do one or more
of the following:

1. Split the assembly into two ormore parts and assemble each
separately.

2. Allocate more core to the assembler.

IFK079 .ILLEGALSTATEMENT IN MACRO DEFINITION
IFT079

Explanation: This operation is not allowed within a macro
defmition.

Severity Code: 8

Programmer Response: Probable user error. Make sure
source is correct and reassemble if necessary. If the problem
recurs, do the following before calling IBM:

• Have the user source program, user macro definitions,
and associated listings available.

• If the COPY statement was used, execute the OS IEBPTPCH
utility program to obtain a copy of the PDS member speci
fied in the COPY statement. For DOS-execute the DOS
SSERV program for a copy of the book specified in the
COPY statement.

IFK080 ILLEGAL START CARD
IFT080

Explanation: Statements affecting, or depending upon, the
location counter have been encountered before a START
statement.

Severity Code: 8

Programmer Response: Ensure that there is no statement
affecting, or depending upon, the location counter before a
START statement. (See START Instruction in Chapter 4.)
For DOS-execute the DOS SSERV program for a copy of
the book specified in the' COpy statement.

IFK081 ILLEGAL FORMAT IN GBL or LCL STATEMENTS
IFT081

Explanation: An operand is not a variable symbol

Severity Code: 8

Programmer Response: Ensure that the format in GBL or LCL
statements is correct; that is, that all operands are variable
symbols.

G-lQ IBM 3704 and 3705 Assembler Language

IFK082 ILLEGAL DIMENSION·SPECIFICATION'IN GBL OR.
LCLSTATEMENT

IFT082

Explanation: Dimension is other than'l to 2500.

Severity Code: 8

Programmer Response: Ensure that the dimension specification
in each global or local statement is withintberange ofl to
2500 for OS, 1 to 255 for DOS.,

IFK083 SET STATEMENT NAME FIELD NOT A VARIABLE
SYMBOL

IFT083

Explanation: The name field in a SET statement is not a
variable symbol.

Severity Code: 8

Programmer Response.; Ensure that the name field in the SET
statement is a variable symbol.

IFK084 ILLEGAL OPERAND FIELD FORMAT IN CONDI
TIONAL ASSEMBLY STATEMENT

IFT084

Explanation: Syntax is invalid (for example, AIF statement
operand does not start with, a left parenthesis); operand of
AGOis not a sequence symbol; operanq of PUNCH, TITLE,
MNOTE is not enclosed in quotes. .

Severity Code: 8

Programmer Response: Ensure that the syntax in conditional
assembly statements is valid. The preceding explanation gives
examples.

IFK085 INVALID SYNTAX IN EXPRESSION
IFT085

Explanation: Invalid delimiter; too many terms in the
expression; too many levels of parentheses; two operators in
succession; two terms in succession; or illegal character.

Severity Code: 8

Programmer Response: Ensure that the syntax in expression
is valid. The preceding explanation gives examples.

IFK086 ILLEGAL USAGE OF SYSTEM VARIABLE SYMBOL
IFT086

Explanation: A system variable symbol appears in the name
field of a SET statement, is used in a mixed mode or keyword
macro definition, is declared in a GBL or LCL statement, or is
an unsubscripted &SYSLIST in a 'context other than
N'&SYSLIST. .

Severity Code: 4

Program11lerResponse: Ensure truit systemvariabl~ symbots'
do not appear illegally. The pr~ceding explanation 8ives some
examples. '

IFK087 NO ENDING APOSTROPHE
IFT087

Explanation: There is an unpaired apostrophe or ampersand
in the statement.

Severity Code: 8

Programmer Response: Ensure that each apostrophe or
ampersand is paired, where necessary.

IFK088 UNDEFINED OPERATION CODE
IFT088

Explanation: A symbol in the operation code field does not
correspond to a validmachlne or assembler operation code or to
any operation code in a macro prototype statement.

Severity Code: 12

Programmer Response: Ensure that the proper operation codes
are used in every instance.

IFK089 INVALID ATTRIBUTE NOTATION
IFT089

Explanation: Syntax error inside a macro definition; for example,
the argument of the attribute reference is not a symbolic parameter.

Severity Code: 8

Programmer Response: Probable user error. Make sure source is
correct and reassemble if necessary. If the problem recurs, do the
following before calling IBM:

• Have the user source, program, user macro definitions, and
associated listings available.

• If the COPY statement was used, execute the OS IEBPTPCH
utility program to obtain a copy of the PDS member speci
fied in the COpy statement. For DOS, execute the DOS
SSERV program to obtain a copy of the book specified in
the COPY statement.

IFK090 INVALID SUBSCRIPT
IFT090

Explanation: Syntax error (for example, double subscript
where a single subscript is required, or vice versa; there is no
right parenthesis after subscript).

Severity Code: 8

Programmer Response: Ensure that the syntax of subscripts
used is correct. The preceding explanation gives examples.

IFK091 INVALID SELF-DEFINING TERM
IFT091

Explanation: Value is too large or is inconsistent with the data
type; that is, one byte of immediate data is greater than X'FF'.

Severity Code: 8

Programmer Response: Ensure that the value is consistent with
the data type.

IFK092 . INVALID FORMAT FOR V.(RIABLE SYMBOL
IFT092

Explanation: The first·character after the ampersand is not
alphabetic; or the variable symbol contains more than eight
characters, or a double ampersand was not used in a TITLE
card or a character self-defining term.

Severity Code: 8

ProgrammerResponse: Ensure that the format for variable
symbols is correct; for example, that there are no more than
eight characters and that the first character after the ampersand
is alphabetic.

IFK093 UNBALANCED PARENTHESIS OR EXCESSIVE
LEFT PARENTHESES

IFT093

Explanation: End of statement encountered before all
parenthesis levels are satisfied; may be caused by an imbedded
blank or other unexpected terminator, or by failure to have a
punch in the continuation column.

Severity Code: 8

Programmer Response: Ensure that there is both a left and a
right parenthesis. Some examples of unbalanced parentheses are
provided in the preceding explanation.

IFK094 INVALID OR ILLEGAL NAME OR OPERATION IN
PROTOTYPE STATEMENT

IFT094

Explanation: Name is not blank or is not a variable symbol, or
variable symbol in name field is subscripted, or there is a violation
of rules for forming a variable symbol (must begin with an
ampersand (&) and be followed by from one to seven letters
and/or numbers, the first of which must be a letter); or state
ment following th~ MACRO statement is not a valid prototype
statement.

Severity Code: 12

ProgrammerResponse: Ensure that the name or operation in the
prototype statement is valid.

IFK095 ENTRY TABLE OVERFLOW
IFT095

Explanation: Number of ENTRY symbols (that is, ENTRY
instruction operands) exceeds 100.

Severity Code: 8

Programmer Response: Make sure that the number of ENTRY
symbols does not exceed 100.

Appendix G: Communications Controller Assembler Messages..;;.()S aildDOS G-ll

IFK096 MACRO INSTRVCTION-OR PROTOTYPE OPERAND
EXCEEDS 255 CHARACTERS

IFT096 MACRO INSTRUCTION OR PROTOTYPE OPERAND
EXCEEDS 127 CHARACTERS

Explanation: Macroinstruction or prototype operand exceeds
the maximum length allowed: 255 for OS or 127 for DOS.

Severity Code: 12

Programmer Response: Ensure that the macroinstruction or
prototype operand does not exceed the maximum number of
characters allowable.

IFK097 INVALID FORMAT IN MACRO INSTRUCTION
OPERAND OR PROTOTYPE PARAMETER

IFT097

Explanation: This message can be caused by:
1. Invalid "=".-
2. A single "&" appears somewhere in th~ standard value

assigned to a prototype keyword parameter.
3. First character of a prototype parameter is not "&".
4. Prototype parameter is a subscripted variable symbol.
5. Invalid use of alternate format in prototype statement;

for example:
10 16 72
PROTO &A,&B,

PROTO &A,&B
&C

or
x

6. Unintelligible prototype parameter; for example, "&A *"
or "&A&&".

7. Invalid (non-assembler) character appears in prototype
parameter or macro instruction operand.

Sever!ty Code: 12

Programmer Response: Probable user error. Make sure source
is correct and reassemble if necessary. The preceding
explanation gives some examples. If the problem recurs, do
the following before calling IBM:

• Ha~e the user source program, user macro definitions, and
associated listings available.

IFK098 EXCESSIVE NUMBER OF OPERANDS OR
PARAMETERS ,

IFT098

Explanation: Either the prototype has more than 200 param
eters (DOS: more than 100 parameters) or the macro instruc
tion.has more than 200 operands (DOS: more than 100

'operands).

Severity Code: 12

Programmer Response: Ensure that the prototype contains no
more than 200 parameters for OS (100 for DOS), or that the
macro instruction contains no more than 200 operands for
OS (100 f<?r DOS).

G-12 ,·IBM 3:704· and 3705 Assetnbler:tangilage .•

IFK099 POSITIONAL MACROi'NST.RUQTIONOPERAND,
PROTOTYPE PARAMETER, EXTRA COMMA
FOLLOWS KEYWORD

IFT099

Explanation: A keyword macro has been improperly coded.

Severity Code: 12

Programmer Response: EnsureJhat ~he proper operapd is used
after a keyword.

IFK100 STATEMENT COMPLEXITY EXCEEDED
IFT100

Explanation: For OS, more tha~ 50 op~rands in an ~$sembler
instruction (32 for DC and DS statements) or niore than 50
terms in a statement; for DOS, more than 35 operands in an
assembler instruction (1 for DC and 1 for DS) or more than
50 terms in a statement.

Severity Code: 8

Programmer Response:Ensure that the complexity of each
statement is not exceeded ..

IFK101 EOD ON SYSIN
IFT101 EOD ON SYS'''! OR SYSIPT

Explanation: EOD card was encountered before END card.

Severity Code: 12
"

Programmer Response: Ensure that there is ,an END card in
the deck. Make sure /* does not precede the END card.

IFK102 INVALID OR ILLEGAL ICTL
IFT102

Explanation: The operands of the leTL instruction are out of
range, or the leTL is not the first statement in the input deck.

Severity Code: 16

Programmer Response: Ensure that the ICTL instruction is the
first statement in the input deck and that the operands are in
the proper range. (See ICTL Instruction in Chapter 4.)

IFK103 ILLEGAL NAME IN OPERAND FIELD OF COpy CARD
IFT103

Explanation: Syntax error; for example, symbol has more than
eight characters or has an invalid character.

Severity Code: 12

Programmer Response: Ensure that the operand of the copy
statement conforms to the rules for names. Probable user error.

IFK104 COpy CODE NOT FOUND
IFT104

Explanation: The operand of a COPVstatement specified COpy
text which cannot be found in the library.

Severity Code: 12

Programmer Response: Ensure that the correct name was used
for COpy text in the library. Also ensure that the COpy code
really exists in the library, if the correct name was specified.
Probable user error.

• Have the user source program, user macro definitio~s,and
associated listings available.

• ..If the COP,¥, statement was used,execute the OS IEBPTPCH
utility program to obtain a copy of the PDS me~ber speci
fied in the COpy statement.

IFK105 EOD ON SYSTEM MACRO LIBRARY
IFT105 EOD ON SOURCE STATEMENT LIBRARY

Explanation: EOD card was encountered before MEND card;
MEND statement missing from macro definition; COPY code
not found while editing a macro; macro defInition is truncated;
or EOF was encountered while reading a macro or copy code.

Severity Code:-12

Programmer Response: Probable user error. Make sure source
program is correct and reassemble if necessary; If the problem
recurs,do the following before calling IBM:,

• Have the user so.urce program, user macro deimitions, and
associated listings available.

• If the COpy statement was used, execute the OS IEBPTPCH
utility program to obtain a copy of the PDS member speci
fied in the COpy statement.

IFK106 (No message is assigned to this number.)
IFT106

IFK107 INVALID OPERAND
IFT107

Explanation: Invalid'syntax in DC operand (for example, invalid
hexa<iecimalcharacler in hexadecimal DC); operand string too
long for X, B, C,DC instructions; operand unrecognizable (con
tains invalid value, or incorrectly specified).

Se.verity Code: 4

Programmer Response: Make sure that syntax in .the DC operand
is corr,ect. The preceding ~xplanation gives examples of what may
be incorrect. (See'DC !nstrudi~n in Cha~ter 4.) ,

IFK108 PREMATUREEOD
IFT108

•

Explanation: Indicates an internal assembler error or a machine
error.

Severity Code: 16

Programmer Responge: Reassemble; if the problem recurs, do the
following before calling IBM:

• Have the user source program, user macro defInitions, and
associated listings avaitable.

• If the COpy statement was used, execute the OS IEBPTPCH
utility program to obtain a copy of the PDS member speci
fied in the COpy statement.

• Make sure that MSGLEVEL= (1, 1) was specified iD. the JOB
statement.

IFK109· (No message is assigned to this number.)
IFT109

IFK110 EXPRESSION VALUE TOO LARGE
IFT110

Explanation: Value of expression is greater than 262,143 •.
Expressions in EQU and ORG statements are flagged if (1) they
include terms previously defined as negative val~s,or (2) posi
tive terms give a result of more than 18 bits in magnitude.

Severity Code: 8

Programmer Response: Probable user error. Make sure source
is correct and reassemble if necessary. If the problem recurs,
do . the following before calling IBM:

• Have the user source program, user macro definitions, and
associated listings available.

• If the COpy statement was used, execute the OS IEBPTPCH
utility program to obtain a copy of the PDS member speci
fied in the COpy statement. ' .

IFK111 SYSGO DO CARD MISSING NOLOAD OPTION USED

Explanation: DD statement for SYSGO is incorrect or missing;
NOLOAD option is. taken.

Severity Code: 16

Programmer Responst:: Probable user error. If necessary, supply
the missing DD statement or make sure that thein{orination on
the DD statement is correct and reassemble. If the problem
recurs, do the followin,.g before calling IBM:

• Have the user source program, user ~acro defmitions, and ..•.
associated listings available~

• If the COpy statement was used, execute the OS IEBPTPCH
utility program to optaina copy of the PDS member sVeci-
fied in the COpy statement. ' .

• Make sure that MSGLEVEL=(1, 1) was specified in the JOB
statement.

Appendix G: Communications Controller AssemblerMessages~OS and DOS G-13

•

IFT1111 ABORT-UNEXPECTED EOF OR SYSxxx

Explanation: EOF (end of file) condition has occurred on an
assembler ·wotkfile that does not support mUltivolume files.
It usually results from a short tape, or from reading a tape
reflective marker. Probable user error.

System Re~p'qnse~: The job step is termi1lated.

Programmer Response: If the problem recurs, have the system
log, printer output·, and the job stream available to complete
your problem determinationactio,n.

Operator R:esponse~' .(1) If SYSxJqC is assigned. toa tape, mount
a lo~er tape or use a 1600 BPI tapedriw uisteaci of an 800 BPI
drive, or (2) rea~sign the workfil~s to disk arid rerun thejob,
or (3) if SYSxxx is assigned to a disk, submit larger extents and
rerun the job. '

IFK112 SYSPUNCH DO CARD MISSING NODECK
OPTION USED

Explanation: DD statement for SYSPUNCH is incorrect or
missing; NODECR option is taken.

Severity Code: 16

Programmer Response: Probable user error. If necessary,
supply the missing DD statement or make sure that information
on DD statement is cotrectand reassemble . .If the problem
recurs, do the following before calling IBM:

• Have the user source program, user macro delmitions, arid
associated listings available.

• If the COpy statement was used, execute the OS IEBPTPCH
utility program to obtain a copy of the PDSmember speci
fied in th~ COpy statement.

• Make sure that MSGLEVEL=(I, 1) was specified in the JOB
statement.

IFK113 INVALID BYTE SELECTION
IFT113

Explanation: Byte specification is not an absolute expression
of value O. or 1.

Programmer Response: Make sure that: byte selection is an
absolute expression of value of 0 or 1.

Operator R esponse: Issue. the LISTIO command to check the
. 'assignments, and enter the correct wOl;kfileassjgnlnentsif

.. - possible. . '.

IFT1141 ABORT-NOUNITASSIGNED FOR SYSPCH

Explanation: The OPTION [DECK] is in effect and
SYSPCHis not assign.ed.Probable ijsererror.

System ResPonse: The job step is terminated.

G-f4 IBM 3704 and3}05 Assenibler:Language

Programmer Response: Submit a:n-assignment for SYSPCH, or
specify OPTION [NODECK] and resubmit the job.

If the problem recurs, do the following to complete your
problem determination action:

1. Retain the LISTIO"listing.
2. Have the job stream, program listing, and system log

available.

Operator Response:·' Execute, theLISTIOcommand and verify
assignments. Submit an ASSGN statement for SYSPCH and
rerun the job.

IFT115 ABO'RT~PERMANENT 110 ERROR ON SYSxxx

Expliination: . An unrecovera.ble error oil the named file prevents
further processing: if the named file is SYSxxx, the unit code of
the DTF that cuased the error does riot match any valid unit.
This is usually the result of an accidental overlap that destroys
the DTF. This is probably a haidware error.

System Response: The job step is terminated.

Programmer Response: Rerun .the job, using another disk pack
or tape reel, or use another unit for the disk pack or tape reel.

If the problem recurs, do the following to complete your
problem determination action:

1. Execute the ROD command and EREP, and retain the
output.

2. Have the job strea~ and system log available.

Operator Response: Execute the LISTIO command for
SYSxxx to determine the physical unit to which it is assigned.
Move the diskpack or tape reel to an()therphysical device
and reassign SYSxxx to that unit, or mount another disk
pack or tape reel and rerun the job.

IFT1151 ABORT-INVALID DUAL ASSGN SYSPCH-SYSIPT
(SYSLST)

Explanation: SYSPCH and SYSIPT are both assigned to the
same unit, which is not a 1442N 1 or 1520B Icard reader, or
SYSPCH and SYSLST are both assigned to the same unit,
which is not a disk. Probable user error.

System Response: The job, step is terminated.

Programmer Response: Check the LISTIO listing,to determine
the dual assignments. Reassign the indicated logical units to
separate devices or the required device type .

If the problem recurs, retain the LISTIO output, the job
stream, system log, and supervisor listing to complete your
problem determination actions.

Operator Response: :ExecuteL!STIO to d~termine, the
current assignments.' Reassign the two indicated logical units
to separate devices or to the required device type.

IFT1161 ABORT-INVALID PHYSICAL UNIT FOR SYSxxx

Explanation: The assignment for a work file(s) is not valid:

• The device type is not valid, or the assembler is link edited
for devices different from those assigned.

• The UA (unassign) or IGN (ignore) option was specified
for the assembler.

• The specified mode setting is not valid.

• For the assembler, the work file device types are not
consistent. (SYS003 is correct.)

Only the fIrst invalid unit is named in the message. Probable
user error.

System Response: The job step is terminated.

Programmer Response: Use the LlSTIO output to determine
the cause for the message. Use CSERV to display the phase
named "ASSEMBLY" and check byte X'lC', bits 5, 6, and 7
for the device type specified at link-edit time as work filed.

Bit 5: 1=2400
Bit 6: 1=2314
Bit 7: 1=2111

Correct the assignment and resubmit the jo b.
If the problem recurs, do the following to complete your

problem determination action:

1. Have the LlSTIO and CSERV output available.
2. Have the job stream and system output available.

Operator Response: Issue the LlSTIO command to check the
assignments and enter the correct work file assignments if
possible.

IFK 116 (No message is assigned to this number.)
IFT116

IFK117 (No message is assigned to this number.)
IFT117

IFK118 (No message is assigned to this number.)
IFT118

IFK119 ILLEGAL EXTERNAL REGISTER
IFT119

Explanation: External register specification is not an absolute
expression from 0 to 127.

Programmer Response: Respecify the register, using an absolute
expression from 0 to 127.

IFT120 INVALID BIT SELECTION
IFK120

Explanation: Bit specification is not an absolute expression
from 0 to 7.

Programmer Response: Respecify the bit selection using bits
starting with 0 through 7.

IFT12"1 INVALID USE OF SYMBOLIC REGISTER
IFK121

Explanation: A symbolic register expression is specified where '
an absolute, relocatable, or complex relocatable expression is
required, or a symbolic register expression appears in a multi
term expression.

Programmer Response: Replace the invalidly. specified symbolic
register expression with the appropriate absolute, relocatable or
complex relocatable expression required for reassemble. See
EQUR Instruction in Chapter 4 for a discussion of symbolic
registers.

IFK997 SYSPRINT DO CARD MISSING NOLIST OPTION
USED

I FT997 I (No message is assigned to this number)

Explaliation:' DD statement for SYSPRlNT is iricorrector mis-
sing; NOLIST option taken. ; .

System Response: 'Printed 'on console tyPewriter.

Severity Code: 0

Programmer Response: Probable user error. If necessary,
supply the missing DD statement or make sure that information
on the DD statement is correct; reassemble. If the problem
recurs, do the following before calling IBM:

• Have the user source program, user macro definitions,
and associated listings available.

• If the COpy statement was used, execute the OS IEBPTPCH
utility program to obtain a copy of the PDS member speci
fied in the COpy statement.

• Make sure that MSGLEVEL=(l, 1) was specified in the
JOB statement.

IFK998 ASSEMBLY TERMINATED MISSING DATA SET FOR
(dd name)

IFT9981 (No message is assigned to this number.)

Explanation: DD statement(s) for data set(s), SYSIN,
SYSUTl, SYSUT2, SYSUT3, and/or SYSPRINT is incorrect
or missing.

System Response: Printed on SYSPRINT, if possible; other
wise, printed on the console typewriter.

Severity Code: 20

Programmer Response: Probable user error. Supply the missing
DD statement(s) or make sure that information on DD state
ment(s) is correct; reassemble. If the problem recurs, do the
following before calling IBM:

• Have the user source program, user macro definitions, and
associated listings available.

• If the COpy statement was used, execute the OS IEBPTPCH
utility program to obtain a copy of the PDS member specified
in the COpy statement.

• Make sure that MSGLEVEL=(1,1) was specified in the JOB
statement.

Appendix G: Communications Controller Assembler· Messages-OS and DOS G-15

IFK999 ASSEMBLVrERMINATED, JOBNAME i STEPNAME~

UNIT ADDRESS, DEVICE DDNAME, OPERATION
ATTEMPTED, ERROR DESCRIPTION.

I FT999 I (No message is ass;gned:to this number.)

Explanation: > Indicates a permanent I/O error. ,This message is
produced by the SYNADAF macro instruction.

System Response:" Printed on SYSPRINT ,if possible; other
wise, printed un'the· console typewriter. '

Severit~Code: 20~' ,

Programmer Response: Reas~emble. If the problem recurs, do
the following before calling IBM:

• Have the useI' source program, user macro definitions, and
associated listings available.

• If the COpy statement was used, execute the OS IEBPTPCH
"utility program to:Qbtaina .cop}"of the PDS :t;n~mbe.I:,~peci-
, fled in the COpy statement~ " ,," "',

• Make sure that, MSGLEVEL=(1,1) was st>e~fied in the JOB
statement.

0-16 IBM 3704 and 3705 Assembler"Language, "

Component Name-.

Program Producing Message

Audience and Where Produced

Message Format

IFZ001 END STATEMENT IN MACRO OR COpy
CODE

Appendix H: Communications Controller Assembler Messages:
DOS/VS' .

IFZ = DOS/VS

IBM Communications Controller Assembler program, during assembly
of assembler instructions

For programmer: Assembler listing in SYSPRINT data set

For operator: Console

ss, ***IFZnnn text
xx IFZnnn text

(in SYSPRINT)
(on console)

ss
Severity code indicating effect of error on execution of program being
assembled:

* Informational message; no effect on execution

o Informational message; normat execution is
expected

4 Warning message; successful execution is probable

8 Error; successful execution is possible

12 Serious error; successful execution is improbable

16 Critical error; successful execution is impossible

20 Critical error; further assembly impossible; assembler
program terIrtina ted abnormallY

nnn
Message serial number

text

xx

Message text

Message reply identification (absent, if operator reply not required)

internal macro comments (. *) statement appears in open code.
These statements are allowed only in macro definitions.

Explanation: An END statement is found in a macro definition
or in code that is inserted by means of the COpy instruction.

Assembler Action: The statement is processed as comments.

Programmer Response: Remove the statement, or put it in a
macro de-finition.

Assembler Action: The statement is processed as comments.

Programmer Response: Remove the END statement from the
macro defmition or the copy book. Make sure that an END
statement is included at the end of your source module ..

IFZ002 ICTL NOT FIRST STATEMENT

Explanation: The ICTL statement is used in a statement that
is not the lust statement in the source module.

Assembler Action: The statement is proceSsed as comments.

ProgrammerResponse: Remove theICTL statement, or make
it the lust statement of the program.

IFZ003 STATEMENT INCORRECTLY PLACED,
MUST BE IN MACRO DEFINITION

Explanation: A MEND, MEXIT, MNOTE, or

IFZ004 COMMENTS BETWEEN MACRO AND
PROTOTYPE STATEMENTS

Explanation: The macro header (MACRO) instruction is
followed by a comments statement (. * or *). The macro header
must be immediately follo\Ved by a .macro prototype statement.

Assembl~r Action: The comments statement is ignored. It is
not generated when the macro is generated.

Programmer Response: Put the comments statement after the
prototype statement.

IFZ005 STATEMENT INCORRECTLY PLACED

Explanation: One of the following errors has occurred:

• A macro header (MACRO) instruction appears too late in
the program. It can only be used to identify the beginning

Appendix H: Communications Controller Assembler Messages-DOS/VS R-1

of a macro defmition, a~d the macro:,defmitio,ns ~ust all
be placed at the begi~ing of the source modul~.'·The " ~
only instructions that can precede them are: ICTL, ISEQ,~
EJECI', PRINT, TITLE, SPACE, and comments statements.

• A GBLx or LCLx instruction in the macro defmition does
not immediately follow the macro prototype statement.

• A GBLx instruction is preceded by an LCLx instruction.

• A GBLx or LCLx instruction in open code does not
precede the first control section.

Assembler Actiorz: The statement is processed as comments;'

. Programmer Response: Make sure your MACRO, GBLx, and
LCLx, instructions are placed according to the rules given in
the explanation.

IFZ006 ILLEGAL NAME FIELD

Explanation:" The nanw fi~ld is, nota sequel1ce,symbQI,or
blank, which is required by this instruction. '

Assembler Action: The name field is igllored.

Programmer Response: Make sure the llame field is, either a
sequence symbol or blank. '

IFZ007 SOURCE RECORD OUT OF SEQUENCE

Explanation: The input sequence-checking specified by the
ISEQ instruction' has determin.ed that this record is out of
sequence. The sequence field of this record is not higher
than the sequence field of the preceding record.

Assembler Action: The statement is flagged and assembled.
The sequence of the rest of the statement is checked relative
to the sequence of the statement before this statement.

Programmer Response: Put the record in the proper sequence.

IFZ008 UNPAIRED APOSTROPHE

Explanation~'An ending apostrophe is missing in this state
mtmt, or an invalid attribute reference is found in the
statement.

Assembler Action: The statement is processed as comments.
,. , '

Programmer Response.; Supply a terminatingapostrophe or
correct the attribute reference. An opening or ending apostro
phe must be single, that is, it must be immediately followed or
preceded by another single apostrophe. Double apostrophes
are used to specify the character tn a quoted :stririg (between
the opening and terminating apostrophes).

IFZ009 TOO MANY CONTINUATION LINES

Explanation: This statement occupies more than three records.

Assembler Action: The excessive continuation lines aretteated
as comments.

Programmer Response: Check for an unintentionalcoritinuation
indicator in the column after the end column (usually in column
72). Do not use more than two continuation lines for a
statement.

IFZ010 OP CODE MISSING

Explanation: The first or only record of a statement does not
contain any operation code, followed by at least one blank.

H-2 ·IBM 3704 and 3705 Assembler Language,

Assembler Action: The statement is processed as comments.

Itogrammer Response: If this record is intended to be a com
ments statement, supply an asterisk in the begin column. If the
record is intended to be an instruction, supply an op code fol
lowed by at least 1 blank in the first record of the statement.

IFZ011 INVALID OP CODE

Explartatiott:The sPeCified operation code does not consist of
1-8 alphameric characters, the first of which is alphabetic.

. 'As~~mbler Action: The'sta'temeniiS prore~sed as comments.

Programmer Response: Make~ure the'operation code is a valid
()tdinary symbol as' described' ih the explanation.

IFZ012 MEND NOT PRECEDED BYMACRO IN THIS
'COpy BOOK

Explanation: In code inserted by means of the COpy instruc
tion,a MEND instruction is encountered for which there is no
'corresponding MACRO instruction in this copy book.

Assembler Action: The statement is processed as comments.

Programmer Response: Make sure that a macro, always starts
and ends in the same copy book. If a MACRO statement is
found in a copy book, the corresponding MEND statement
must also be in that copy book.

IFZ013 CONTINUATION LINE MISSING

Explanation: End of fIle condition was encountered When the
assembler was trying to read an expected continuation line.

Assembler Action: The statement is processed as if no con
tinuation 'mark has been indicated in the continuation column.

Programmer Response: Add the missing continuation line(s),
or remove the erroneous continuation mark, whichever is
applicable.

IFZ014 SYMBOLIC PARAMETER 'xxxxxxxx'TOO LONG

Explanation: The specified symbolic parameter in a macro
prototype statement is too long. It must not consist of more
than eight characters. The first eight characters of the invalid
symbolic parameter are identified 'in the message.

Assembler Action: The rest of the macro definition is checked
for errors, but the macro is considered undefined.

ProgrammerResponse: 'Make sure that all symbolic parameters
consist of an ampersand followed by 1 to 7 alphameric char
acters, the first of which is alphabetic.

IFZ015 SYMBOLIC PARAMETER 'xxxxxxxx'
DOES NOT START WITH AMPERSAND

Explanation: The specified symbolic parameter does not start
with ,an ampersan,d (&).

Assembler Action: The rest of the macro definition is checked
for errors, but the macro is considered undefined ..

Programmer Response: Make sure that all symbolic parameters
consist of an amperSand followed by l·falphameric characters,
the first of which is alphabetic. '

1F.:?016SECOND.CHA.RACTER OF SYMBOLIC
PARAMETEH 'xxxxxxxx' NOT A ~ETTER

Expla!Ulti~n: Th,~ .second character of the specified symbolic
parameter is not alphabetic.

Assembler Action: The rest of the macro defmition is checked
for errors, but the macro is considered undefined.

Programmer Response: Make sure that all symbolic parameters
consistof an ampersap.d followed by 1-7 alphameric characters,
the ~irst of which is alphabetic. .

. . .
IFZOP SYMBOLIC pARAMETER 'xxxxxxxx' CONTAINS

NON-ALPHAM ER IC CHARACTER

Explanation: The specified symbolic parameter contains an
invalid character. Only alphameric characters (A through Z, @,

#, $, 0 through 9}are allowed in symbolic parameters.

Assembler Action: The rest ofthe'macro defmition is checked
for errors, but the macro is considered undefined.

Programmt:r .Response: Make sure that all symbolic parame~ers
consist of an ampersand followed by 1-7 alphameric characters,
the fust of which is alphabetic.

IFZ018 INVALID OPCODE IN PROTOTYPE STATEMENT

Explanation: The mnemonic operation code of a prototype
statement is (a) not a valid symbol, (b) is the same as the opcode
of another macro definition in the source program, (c) is the
same as the opcode of a machine instruction or assembler
instruction.

Assembler Action: The macro definition will be checked for
errors just as if the opcode were correct; but when the macro is
called, it is treated as undefined.

Programmer Response: Make sure that the prototype opcode
consists of 1-8 alphameric characters starting with an alpha
betic character, and that the prototype opcode is different from
other prototype, machine, and assembler opcodes.

IFZ019 KEYWORD OPERAND PRECEDES POSITIONAL
OPERAND 'xxxxxxxx'

Explanation: In a macro prototype statement ora macro defini
tion, a keyword operand has been placed before the positional
operand identified in the message. All positional operands must
appear before the keyword operands in the statement. If no
operand is identified in the message, a comma indicating an
omitted positionai operand has been found after the first key
word operand.

Assembler Action: If the error is found in a prototype state
ment, all positional operands after the first keyword operand
are considered undefined. The rest of the macro definition is
then checked for errors, but the macro is considered .undefined.
If the error is found in a macro instruction, the macro is not
generated.

Programmer Response: Make sure all positional operands in a
macro prototype statement or macro instruction precede all
keyword operands.

IFZ020 TOO MANY LEVELS OF PARENTHESES IN
OPERAND 'xxxxxxxx'

Explanation: The.operandexpre~sion identified in the message
contains. more than five levels of parentheses. The text inserted
in the message is . limited to eight characters.

Assembler Action: If the error is found in a prototype state
ment, the rest of the macro definition is checked for errors, but
the macro is considered undefined. If the error is found in a
macro instruction, th~ In&cro is not generated.

. Prdgrammer Response: Change the expression to delete one or
more levels of parentheses.

IFZ021 UNPAIRED PARENTHESES IN OPERAND
'xxxxxxxx'

Explanation: The keyword parameter default value specified
in a macro prototype or a macro instruction operand value
contains an unpaired left or right parentheses not surrounded
by apostrophes. Only the first eight charactersof the operand
value are inserted in the message.

Assembler Action: If the error is. found in a .prototype state
ment, the rest of the macro definition is checked for errors,
but the macro is considered undefined. If the error is found in
a macro instruction, the macro is not gener~ted.

Programmer Response: If you want to specify an unpaired
parentheses, make sure it appears with apostrophes. Otherwise
make sure a left parenthesis is always followed by a right paren
thesis with which it is paired.

IFZ022 INVALID SUBLIST 'xxxxxxxx' IN ALTERNATE
STATEMENT FORMAT

Explanation: The termination of a macro prototype or macro
instruction sublist written in the alternate statement format
for sublists is invalid, either because the closing right parenthe
sis is missing, or because something other than a comma or a
blank follows the closing right parenthesis; only the fust eight
characters of the sub list are inserted in the message list.

Assembler Action: If the error is found in a prototype state
ment, the rest of the macro is checked for errors,but the macro
is considered undefined. If the error occurs in a macro instruc
tion, the macro is not generated.

Programmer Response.~ ·If asublist is intended, make sure that
the sub list is terminated by a right parenthesis followed by a
comma or a blank .. If a character string is intended, use the
normal statement format instead. /-"

IFZ023 PARAMETER VALUE 'xxxxxxxx' EXCEEDS
255 CHARACTERS

Explanation: The specified value is too long. The parameter
value specified in a macro prototype statement (as a keyword
parameter default value) or a macro instruction is limited to
255 characters. The text inserted in the message contains
only the fust eight characters.

Assembler Action: If the error is found in a macro' prototype
statement, the rest of the macro definition.ischecked for errors,
but the macro is considered undefined. If the errorjs found in
the macro instruction, the macro is not generated.

Programmer Response: Limit the length of the parameter to 255
characters, or separate the value into two or more parameters.

Appendix H: Communications Controller Assembler Messages-DOS/VS H-3

IFZ024 UNPAIRED APOSTROPHE

Explanation: An unpaired apostrophe is found in a parameter
, value specified;in ainacro piototyptntatement (asa'ke~word
parameter defaulfvalue)ora macro instruction. Singh~ apos
trophes in parameter values rritrst be specified' witltdouble
l:!,postropl'\es appearing, illside, paired apostrophes; unless they
are used to specifyattribute,,xefere.Ilcesin arithmetic expressions.

A$sembler Action: If tHe errbr isfoUIia in'a macro' prototype
statement, the rest ofthe macro is'checkedfor errot's; but the
~a~~i$ considered unqei1:ped. If theerror':is.found ina macro
instruction, the macro is not generated.

Programmer Response: Make sure all apostrophes are paired or
double, or belong to attribute references.

IFZ025 TOO MANY OPERANDS

Explanation: Too many 'operands found in a macro prototype
statement or a macro instruction or too many sub-operands in
a sublist; 'The maximum number allowed is 200. '

Assembler Action: If the error is 'found in a macro prototype
statement, the rest of the macro definition is checked for errors,
but the macro is considered undefined. If the erroris found
in a macro instruction, the macro is not generated. Only the
flIst eight characters of the default value are inserted in the
message.

Programmer Response: ,Reduce the nUmber of operands or
include some of the operands in sublists or, if too many sub
operands, split the sublist into two or more.

IFZ026 INVALlO'NAME FIELD 'xxxxxxxx'

Explanation: The name field of a macro prototype statement
or a macro instruction is invalid. The name field of a prototype
statement must either J>e blank or cohtaina variable symbol
specifying a name field parameter. The name field of a macro
instruction must either be blank,or contitm a sequence symbol,
or'a valid ordiriary symbol, or one or mote variable symbols
that resultin a'valid ordinary symbol after substittitionand
concatentipn.' Only the flIst eight characters of the default
val ue are inserted in the .message.

Assemble~ Action: If the error is found in a macro prototype
statement; the rest of the macro definition is checked for errors,
but the macro is considered undefined. If the error is found in
a macroinstruction, the macro is not generated.

Progriz'mmer Response: Supply a valid name field as described
in the explanation.

IFZ027 NON-BLANK CHARACTER FOUND BEFORE
CONTINUE COLUMN

Explanation: On a continuation record, that is, a tecord follow
ing after'the flIst record of a 'statement occupying several records
(lines), 'one or more characters have been encountered m the

. begin column or in the column between the begin column
(usually column 1) and the continue column (usually column
16). These columns, must be blank.

AssemblefAction.:The characters appearing before the'continue
, 'column'are ignored.'

H-4 IBM 3704 and 3705 Assembler Language

Programmer ResPonse: If the record is intended' as a continua
tion record,make sure thestatemeritis continuoo in the correct
col umn. If the record is not meant to be a continue record,
check for an 'unintentional eontiiluation indicator ,in the\'pre~
ceding record (usually in column72)~

IFZ028 INVALID KEYWORD PARAMETER DEFAU.LT
VALUE 'xxxxxxxx'

Explanation: The default value specified for a keyword param
eter in a macro prototype statement is invalid. 'The vaiue must
notcontain variable symbols, a~d any ampersands must be
dOUble, 'that is, each sequency of cons.ecutive ampersands must
contain an even number of ampersands. OlIly the first eight
characters of the default value are inserted in the message.

,<

',' Assembler Action: The res~ of the macro definitiQn is checked
for errors, but the macro is considered undefined.

Programmer Response: . Delete variable symbol~from the
default value; make ampersands dpuble.

IFZ029 INVALID KEYWORD IN MACRO INSTRUCTION,
'xxxxxxxx'

Explanation: A keyword of a macro instruction does not con
sist of 1-7 alphameric characters, the first of which is alphabetic,
or a macro instruction operand contains an equal sign outside
quotes or parentheses.

Assembler Action: The rest of the macro is checked for errors,
but the macro is considered undefined.

Programmer Response: Make sure that all keywords consist of
a letter followed by 0-6 alphameric characters.

IFZ031 NAME FIELD NOT BLANK

Explanation: The name field is not blank, which is required by
this instruction.

Assembler Action: The statement is processed as comments.

Programmer Response: Remove the statement from the macro
definition. Make sure all your macro definitions end with a
MEND instruction.

IFZ032 STATEMENT INCORRECTLY PLACED,
MUST NOT BE IN MACRO DEFINITION

Explanation: A statement has been fQund in a macro defini
tion which is not allowed to appear in a macro definition.

Assembler Action: The statement is processed as comments.

Programmer Response: Remove the statement from the macro
definition. Make sure all your macro defmitions end with a
MEND instruction.

IFZ033 INVALID ISEa OR ICTL OPERAND

Explanation: One of the following errors has occurred:

• The operand field of an ISEQ instruction is invalid. It must
either be a blank or consist of two decimal self-defining
terms that do not fall between the begin and end columns,
and the first value must not be greater than the second.

• The operand field of the IcrL statement is invalid. It must
consist of one to three decimal self"<iefming terms, the first
of which must be in the range 1-40, the second in the range
41-80, and the third must be in the range 2-40 and greater
than theflIst.

Assembler Action: The statement is processed as comments.

Programmer Response: Correct the operand field according to
the rules given in the explanation.

IFZ034 INVALID COpy OPERAND

Explanation: The operand of a COpy instruction is 'not an
ordinary symbol.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply a valid ordinary symbol that
corresponds to the name of a book in the,copy code library.
Ordinary symbols consist of 1-8 alphameric characters, the
frrst of which is alphabetic.

IFZ035 TOO MANY COPY NEST LEVELS

Explanation: More than three nesting levels of COpy instruc
tions have been coded. Nesting occurs when a COPy,iristruc
tion is coded in a book that is inserted by means of another
COPY instruction. '

Assembler Action: The last COPY instruction is processed as
comments.

Programmer Resp()nse: Reduce the number of nesting levels by
including some of the COpy books physically in the source
module.

IFZ036 COpy BOOK NOT IN LIBRARY

Explanation: The ordinary symbol specified in the operand of
this COpy instructipnis not the name,of a copy book in the
source statement library that is assigned to this job.

Assembler Action: The statement is processed as comments.
, , .

Programmer Response;' Checkthat the operand is correct,
assign thei?roper source statement library, or catalog the
missing 'copy book.

IFZ037 UNEXPECTED END-OF-FILE ON SYSSLB

Explanation: End-of-file was encountered' iri the source state
ment library before the end of a book has been reached. Since
the end-of-file indicator is normally found only at the end ~f

, the COpy code library, the message indicates that the source
statement h'brary has' been destroyed.

Assembler Action: Processing of the copy book is terminated.
If the error occurs inside a source macro definition, a MEND
instruction is generated.

Programmer Response; Reconstruct the source statement
library.

IFZ038 MEND STATEMENT MISSING, HAS BEEN ADDED

Explanation: End-of-file occurred on SYSIPT d~ring the pro
cessing of a macro definition, or a MEND instruction termi
nating a macro definition is missing.

Assembler Action.~ A ~END and an END instruction are
inserted.

Programmer Response: Insert the missing MEND instruction
or check for an unintentional end-of-file indica~or in the
source module.

IFZ039 ENOSTATEMENT NOT IMMEDIATELY FOLLOWED
BY END-OF-FILE

Explanation: The END statement identifying the end of the
source module is not immediately followed by an end-of-data
'mdicator statement (/*).

Assembler Action: The records appearing between the END
statement and the end-of-data indicator are not processed by
the assembler.

Programmer Response: Move the END statement, or make
sure your JCL statements are properly placed.

IFZ040 END STATEMENT MISSING, HAS BEEN ADDED

Explanation: ' No END statement was found in the source
module.

. Assembler Action: An END statement is inserted at the end
of the input.

ProgrammerResponse: Supply an END statement at the end
of your source module, or make sure that no end-of-data indi
cator (/*) has been placed inside your source module.

IFZ041 MEND STATEMENT MISSING IN COPY BOOK,
HAS BEEN ADDED

Explanation: ,:A source macro definition was coded in a copy
book, but the macro trailer (MEND) statement to indicate
the end of the macro definition was not found in the copy
book. The whole macro definition must be coded within one
copy book.

Assembler Action: The MEND instruction is inserted at the
end of the copy book.

Programmer Response: Make sure that a macro always starts
and ends in the same copy book. Ifa MACRO statement is
found in a copy book, the corresponding MEND statement
must also be in that copy book.

IFZ042 STATEMENT COMPLEXITY EXCEEDED

Explanation: A conditional a~sembly.statement of a macro
instruction operand has more than 50 variable symbols.

Assembler Action: A conditionalassembly statement is treated
as comments. A macro instruction operand in error will stop
the generation of the macro. ' , ,

Programmer Response: Do not use more than 50 variable sym
bol references in the same statement or a macro instruction
operand.

IFZ043 OPERAND MISSING

Explanation: This statement requires an operand, but none is
found.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply a valid operand.

Appendix H: Communications Controller Assembler Messages-DOS/VS H-5

IFZ044 INVALID SYNTAX IN SET SYMBOL
DECLARATION 'xxxxxxxx'

Explanation: In a SET symbol declaration, a variable symbol
is invalid, a comma separating two symbols is missing, or a
character other than a blank terminates the field. The text
inserted in the message gives eight characters, starting with
the character at which the error is found.

Assembler Action: The symbol in which the error is found and
the rest of the statements are ignored.

Programmer Response: , Make sure the operand fielcl~ontains
only valid variable symbols (possibly dimensioned),separated
by commas.

IFZ045 INVALID DIMENSION 'xxxxxxxx'

Explanation: The dimension of ' a SET symbol is incorrectly
specified. The dimension specification must follow imme
diately after the variable symbol and be an unsigned decimal
value in the range 1-255 enclosed in parentheses.

Assembler Action: The symbol with the invalid dimension and
the rest of the statements are ignored.

Programmer Response: Correct the subscript according to the
rules given in the explanation.

IFZ046 DIMENSION TOO LARGE, 'xxxxxxxx'

Explanation: A SET symbol declaration specifies a dimension
that is greater than 255. The string inserted in the message
contains up to eight characters, starting with the dimension
value.

Assembler Action: The symbol with the invalid dimension is
ignored.

ProgramJ?'ler Response: Break up the SET symbol array into
two or more arrays by using additional SET symbols.

IFZ047 VARIABLE SYMBOL DUPLICATES SYSTEM
VARIABLE SYMBOL OR PREVIOUS
DEFINITION, ·xxxxxxxx'

Explanation: The first or only variable symbol in the specified
string is either:

• a symbolic parameter, which is identical to a system variable
symbol or another symbolic parameter specified in the same
macro prototype statement; or

• a SET symbol, which is identical to a system variable sym
bol, a symbolic parameter specified in the same macro
definition, or another SET symbol declared in the same
macro definition or open code.

Assembler Action: The flagged defmition of the variable sym
bol is ignored, as well as any further operands in the statement.
All references to the symbol are treated as references to the
flIst defmition of the variable.

Programmer Response: Make sure that all variable symbols
within a macro definition or open code are unique within that
scope. Do not defme system variable symbols or symbolic
parameters or SET symbols. The system variable symbols are:

&SYSECT
&SYSNDX

&SYSLIST'
&SYSPARM

H-6 IBM 3 704 and 3705 Assembler Language

IFZ048INVAL.ID SYNTAX IN·CONDITIONAL
ASSEMBLY STATEMENT 'xxxxxxxx'

Explanation: A conditional assembly statement or a statement
with variable symbol substitution contains a syntax error, for
example: .

• Invalid or~ispla~ed characters in an expression.

• The statement is terminated before its logical end. This
could be caused by an unintentional blank inside an
expression.

• The sequence symbol in an AGO or AIF operand does not
consist of a p:eiiod, followed by a letter and 1-6 letters or
digits; or both. The string in the message contains up to
eight characters starting where an error is found.

A ssembler Action: The statement is processed as comments.

Programmer Response: The first character of the string in the
message tells you where the syntax error was found. Correct
the error.

IFZ049 'xxxxxxxx' IS AN INVALID VARIABLE SYMBOL

Explanation: The specified variable symbol does not consist
of ampersand followed by 1-7 alphameric characters the first
of which is alphabetic.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply a valid variable symbol..

IFZ050 INVALID ATTRIBUTE REFERENCE 'xxxxxxxx'

Explanation: The attribute reference is invalid for the type of
attribute in this context; for example:

• A reference inside a macro definition refers to an ordinary
symbol

• An attribute reference refers to a SET symbol

• A K or N attribute reference refers to an ordinary symbol.

Assembler Action: The statement is processed as comments.

Programm.er Response: Make sure the attribute reference is
correct, that this type or attribute can refer t() this type of
symbol, that the reference is properly placed,etc.'

IFZ051 INCORRECT VARIABLE SYMBOL IN
,NAME FIELD

Explanation:

• This symbol is declared to be of a type different from the
type specified by the operation code in this statement; or

• a system variable symbol or symbolic parameter appears in
the name fidd of the SETxinstructio,n.

Assembler Action: The statement is processed as comments.

Programmer Response: Make'sure the decbiration is correct,
or change the operation code of this statement. Do not use
system variable symbols in the name field of SETx instructions.

IFZ052 NAME FIELD MISSING

Explanation: This statement requires a name field, but none
is found.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply the proper symbol in the name
field.

IFZ053 NAME FIELD NOT A SEQUENCE SYMBOL

Explanation: This statement requires a sequence symbol in the
name field, but no valid sequence symbol is found.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply a valid sequence symbol.

IFZ054 INVAUD NAME FIELD, MUST NOT CONTAIN
SEQUENCE SYMBOL OR BLANK

Explanation: The name field of this statement does not con
tain an ordinary symbol or one or more variable symbols that
result in a valid ordinary symbol.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply a valid ordinary symbol, or make
sure that the result of variable symbol substitution and conca
tenation is a valid ordinary symbol.

IFZ055 UNPAIRED LEFT PARENTHESIS

Explanation: A left parenthesis in this statement does not have
a corresponding right parenthesis.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply the missing right parenthesis,
or delete the superfluous left parenthesis.

IFZ056 TOO MANY LEVELS OF PARENTHESES

Explanation: This expression has more than five levels of
parentheses.

Assembler Action: The statement is processed as comments.

Programmer Response: Reduce the number of levels of paren
theses. Use additional SET A instructions, if necessary.

IFZ057 COUNT OR NUMBER ATTRIBUTE IN
OPEN CODE

Explanation: A count (K') or number (N') attribute has been
encountered in open code. These attributes can only appear
in macro definitions.

Assembler Action: The statement is processed as comments.

Programmer Response: Do not use the count or number attri
bute in open code.

IFZ05R INVALID SUBSTRING NOTATION 'xxxxxxxx'

Explanation: The comma, or ending right parenthesis in a
substring notation is missing~ The string in the message consists
of up to eight characters, starting where the error is found.

Assembler Action: The statement is processed as comments.

Programmer Response: Make sure the substring notation con
sists of two arithmetic expressions, separated by commas and
enclosed in parentheses.

IFZ059 ILLEGAL USE OF SYSTEM VARIABLE SYMBOL

Explanation: The specified system variable symbol is invalid
in this context.

Assembler Action: The statement is processed as comments.

Programmer Response: Make sure that &SYSLIST, and
&SYSNDX are not used in open code.

FZ060 SINGLE TERM IN LOGICAL EXPRESSION
NOT SETB

Explanation: A single term in this logical expression is invalid.
A logical term must be either an arithmetic relation, a char
acter relation, or a SETB variable. Logical terms are combined
into logical expressions by logical operators (AND, OR, and
NOT).

Assembler Action: The statement is processed as comments.

Programmer Response: Check the logical expression for omitted
relational terms (EQ, LT, etc.) or mispunched characters or
terms.

IFZ061 INCOMPLETE LOGICAL EXPRESSION 'xxxxxxxx'

Explanation: An expression in this statement ended prematurely
because of one of the following errors:

• Unpaired parenthesis; or

• Invalid character; or

• Invalid operator; or

• Operator not followed by a term

Assembler Action: The statement is treated as comments.

Programmer Response: Correct the logical expression.

IFZ062 INVALID SELF-DEFINING TERM, 'xxxxxxxx'

Explanation: A self-defining term is incorrectly specified. It
must be:

• 1-6 decimal digits whose value is in the range 0-262,143; or

• 1-18 binary digits, enclosed by apostrophes and preceded by
the character B; or

• 1-5 hexadecimal digits whose value is in the range X'OO -
X'3FFFF', enclosed by apostrophes and preceded by the
character X; or

• 1-2 characters, enclosed by apostrophes and preceded by the
character C.

The string in the message is up to eight characters start-
ing with the invalid self-defining term.

Assembler Action: The statementis processed as comments.

Programmer Response: Correct the term according to the
rules given in the explanation.

IFZ063 VALUE OF SELF"-DEFINING TERM TOO
LARGE, 'xxxxxxxx'

Explanation: The value of a decimal self-defining term in this
, statement is not in the range 0-262,143.

Assembler Action: The statement'is processed as comments.

Programmer Response: Specify a value in the range specified,
in the explanation.

IFZ064 OPEN CODE ATTRIBUTE REFERENCE TO
'xxxxxxxx', WHICH IS NOT A VALID
ORDINARY SYMBOL

Explanation: This attribute reference does not specify a valid
ordinary symbol. Any attribute reference used outside macro
definitions must specify an ordinary symbol.

Appendix H: Communications Controller Assembler Messages-DOS/VS H-7

Assembler Action: The statement is processed as comments.

Programmer Response: Supply a valid ordinary symbol that is
defined in the program.

IFZ06S SETSYMBOL USE INCONSisTENT WITH ITS
DECLARATION,'xxxxxxxx'

Explanation: Either the declaration specifies this symbol as
dimensioned, but in this statement the symbol is used as undi
mensioned, or the declaration specified this symbol as undimen
sioned, but in this statement the symbol is used as dimensioned.
The string in the message consists of up to eight characters'
starting with the symbol in error.

Assembler Action: The statement is processed as comments.

Programmer Response: Make sure that your use of SET sym
bols is consistent with its declaration.

IFZ066 PREVIOUSLY DEFINED SEQUENCE SYMBOL

Explanation: The sequence symbol specified in the name field
of this statement has already been defined within the macro
definition or open code.

Assembler Action: The name field is ignored.

Programmer Response: Supply a sequence symbol that is
unique within this macro definition or open code.

IFZ067 UNPAIRED RIGHT PARENTHESIS

Explanation: An expression in this statement contain~ a right
parenthesis that is not matched by a preceding left parenthesis.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply the missing left parenthesis, or
delete the right parenthesis.

IFZ068 VARIABLE SYMBOL UNDEFINED, 'xxxxxxxx'

Explanation: The first or only variable symbol in the string
inserted in the message has not been declared as a global or
local SET symbol within,this macro definition or open code,
has not been defined as a symbolic parameter within this
macro definition, and is not a valid system variable symbol.

Assembler Action: The statement is processed as comments.

Programmer Response: Define the symbol as a symbolic param-.
eter or a SET symbol. Remember that any global variable sym
bols used in macro definitions must be declared within the
definition.

IFZ069 SOURCE MACRO PREVIOUSLY DEFINED

Explanation: The operation code specified in the prototype
statement is identical to the operation code of another source
macro defined earlierin~ the program.

Assembler Action: The flagged macro definition has been
checked for errors. It cannot be generated.

Programmer Response: Supply a unique operation code for
this definition.

H-8 IBM 3704 and 3705 Assembler Language

IFZ070 UNDEFINED SEQUENCE SYMBOL

Explanation/. The sequence symbol used in this instruction is
not defined within this macro definition or ope~ code.

Ass~mbler Action: No conditional assembly branch is taken.

Programmer Response: pef'me the symbol in the name. field
within the macro definition or open code (depending on where
it is used), or use a sequence symbol that is already defined.

IFZ071 ILLEGAL LENGTH ATTRIBUTE REFERENCE

Explanation: .

• The symbol specified in a length attribute reference (1:) is
not the name of a valid machine instruction,control section
definition, CW instruction, DS instruction, or DC instruction.

• The symbol specified in a length attribute reference is the
name of a DC or DS instruction containing variable sym
bols in the modifier field.

Assembler Action: The length attribute reference is set to one.

Programmer Response: ,Make sure the length attribute refer
ences a symbol for which length attribute references are valid.

IFZ072 ILLEGAL SCALE ATTRIBUTE REFERENCE

Explanation: The symbol referenced by a scale attribute refer
ence (S) is not found in the name field of a valid fixed-point
DC or DS instruCtion.

Assembler Action: 11le scale attribute reference is set to zero.

Programmer Response: Make sure the scale attribute references
a symbol for which scale attribute references I!!e valid.

IFZ073 ILLEGAL INTEGER ATTRIBUTE REFERENCE

Explanation: The symbol referenced by an integer attribute
reference (I) is not found in the name field of a valid, fixed
point, DC, or DS instruction.

Assembler Action.: The integer attripute reference is set to
zero.

Programmer Response: Make sure the integer attribute refer
ences a symbol for which attribute references are valid.

IFZ074 OVERFLOW DURING ADDITION IN
ARITHMETIC EXPRESSION

Explanation: During the evaluation of an arithmetic expression
the addition of two terms produces a result that falls outside
the range<5f ~231 through 231 _1.

Ass!!mbler Adion: 'The result of t:h~ addition is set to zero.

Programmer Response: Make sure al~the values in this expres
sion are valid. Try to avoid overflow by adjusting the sequence
in which the terms are placed in the expression. If necessary,
separate the expression into two or more expressions' (using
SETA instructions), so that each of them is evaluated individ
ually before they are combined.

IFZ075 OVERFLOW DURING SUBTRACTION IN
ARITHMETIC EXPRESSION

Explanation: During the evaluation of an arithmetic expression,
the subtraction of two terms produces a result that falls outside
the range of _231 through 131 _1.

Assembler Action: The result of the subtraction is set to zero.

Programmer Response: Make sure that all values in the expres
sion are valid. Try to avoid overflow by adjusting the sequence
in which the terms are placed in the expression. If necessary ,
separate the expression into two or more expressions (using
SET A instructions), so that each of them is evaluated separately
before they are combined.

IFZ076 OVERFLOW DURING MULTIPLICATION
IN ARITHMETIC EXPRESSION

Explanation: During the evaluation of an arithmetic expression
the multiplication of two terms produces a result that falls
outside the range of -231 through 231 _1.

Assembler Action: The result of the multiplication is set to
zero.

Programmer Response: Make sure all the values in the expres
sion are valid. Try to avoid overflow by adjusting the sequence
in which the terms are placed in the expression. If necessary,
separate the expression into two or more expressions (using
SETA instructions), so that each of them is evaluated separately
before they are combined.

IFZ077 CHARACTER STRING USED IN ARITHMETIC
EXPRESSION TOO LONG

Explanation: The character string used as an arithmetic term
is longer than eight characters.

Assembler Action: The value of the SETC variable is replaced
by zero in the arithmetic expression.

Programmer Response: Make sure that any variable symbols
used arithmetic expressions have a value of 1-8 characters.

IFZ078 CHARACTER STRING USED IN ARITHMETIC
EXPRESSION CONTAINS NON-DECIMAL
CHARACTER

Explanation: A non-decimal character is found in the value of
a parameter or SETC symbol used in arithmetic term.

Assembler Action: The value of the parameter or SETC variable
is replaced by zero in the arithmetic expression.

Programmer Response: Make sure that any parameter orSETC
symbols used in arithmetic expressions have a value of 1-8
decimal characters.

IFZ079 NULL CHARACTER STRING USED IN ARITHMETIC
EXPRESSION

Explanation: The value of a SETC symbol used as an arithmetic
term is a null string.

Assembler Action: The values of the SETC symbols used in
arithmetic expressions have a value of 1-8· decimal characters.

Programmer Response: Make sure that any SETC symbols used
in arithmetic expressions have a value ·of 1-8 decimal characters.

IFZ080 PARAMETER SUBSCRIPT OUT OF RANGE

Explanation: A symbolic parameter subscript value is outside
the range 1-200.

Assembler Action: The reference is treated as a reference to an
omitted operand; that is, the value of a null string js assigned
to it.

Programmer Response: Supply a subscript value in the range
1-200.

IFZ081 LENGTH OF CONCATENATED STRING
EXCEEDS 255 CHARACTERS

Explanation: During the concatenation of strings, an interme
diate string exceeding 255 characters i$ g~nerated.

Assembler Action: The [1Ist 255 characters are used as the
intermediate result.

Programmer Response: Make sure that the total length of two
strings concatenated with each other does not exceed 255
characters. If needed, change the sequence of string evaluation
by performing substring operation before concatenation.

IFZ082 SUBSCRIPT EXCEEDS DECLARED DIMENSION

Explanation: An arithmetic expression used to specify the
subscriptof a SET symbol has a value that exceeds the value
specified in the declaration of the:symbol.

Assembler Action: If the error is found in a conditional assem
bly statement, the statemenfis processed as comments. The
error is found during substitution in one of the fields (name,
operation, or operand) of a model statement. The whole field
is replaced by a null value. If the error is found during substi
tution in a macro instruction operand, the operand is set to null
value, but any other operands in the operand field are generated.

Programmer Response: Make sure .. the arithmetic expression has
a value in the range of 1 through the declared dimension of the
SET symbol.

IFZ083 SUBSCRIPT ZERO OR NEGATIVE

Explanation: An arithmetic expression used to specify the
subscript of a SET symbol has a value thatis zero or negative.

Assembler Action: If the error is found in a conditional assem
bly statement, the statement is processed as comments. If the
error is found during substitution in one of the fields (name,
operation, and operand) of a model statement, the whole field
is replaced by a null value. If the error is found duringsubsti
tution in a macro instruction operation, the operand is setto a
null value, but any other operands in the operand field are
generated.

Programmer Response~· Make sure that the arithmetic expres
sion has a value in the,range of 1 through the declared dimension
of the SET symbol.

IFZ084 ACTR LIMIT EXCEEDED

Explanation: The number of AIF and AGO branches within
the macro definition or open code 'exceeds the vali,le specified
in the ACTR instruction or the conditional assembly loop
counter default value.

Assembler Action: If a macro is being generated, its generation
is terminated. If open code is being processed, all remaining
statements are processed as comments.

Appendix H: Communications Controller Assembler Messages-DOS/VS H-9

Programmer Response: Correct the conditional assembly loop
that caused the loop counter to be exceeded, or set the counter
limit to be exceeded, or set the counter to a higher value.

IFZ085 FIRST SUBSTRING EXPRESSION ZERO OR
NEGATIVE

Explanation: The arithmetic expression used to specify the
starting character for a substring operation has a zero or nega
tive value.

Assembler Action: The result of the substring operation is a
null string.

Programmer Response: Make sure the arithmetic expression
used to specify the starting character of the substring has a
positive value not exceeding the length of the character string.

IFZ086 FIRST SUBSTRING EXPRESSION EXCEEDS
STRING LENGTH

Explanation: The arithmetic expression used to specify the
starting character for a substring operation has a value greater
than the length of the string.

Assembler Action: The result of the substring operatjon is a
null string.

Programmer Response: Make sure the arithmetic expression
used to specify the starting· character of the substring has a
positive value not exceeding the length of the character string.

IFZ087 SECOND SUBSTRING EXPRESSION NEGATIVE

Explanation: The arithmetic expression used to specify the
length of a substring has a negative value.

Assembler Action: The result of the substring operation is a
null string.

Programmer Response: Make sure the arithmetic expression
used to specify length has a zero positive value, and that the
specified length does not extend beyond the end of the char
acter string.

IFZ089 SETC OPERAND TOO LONG

Explanation: The character string value in a SETC operand
contains more than eight characters.

Assembler Action: Only the first eight characters are assigned
to the SETC symbol.

Programmer Response: Make sure that the value of the SETC
expression contains no more than eight characters.

IFZ090 SYSLIST SUBSCRIPT NEGATIVE

Explanation: The arithmetic expression used to specify a
&SYSLIST subscript has a negative value.

Assembler Action: The reference is treated as a reference to an
omitted operand; that is, the value of a null string is assigned
to it.

ProgrammerResponse: Supply a non-negative value in the
&SYSLIST subscript.

H-I0 IBM 3704 and 3705 Assembler Language

IFZ091 PARAMETER VALUE INVALID FOR LENGTH
ATTRIBUTE REFERENCE

Explanation:

• A length attribute reference specified a symbolic parameter
whose value is not the name of a machine instruction, con
trol section definition, CW instruction, DS instruction, or
DC instruction; or

• A length attribute reference specified a symbolic parameter
whose value is the name of a DS or DC instruction contain
ing variable symbols in the modifier field.

Assembler Action: The length attribute refer~nce is set to one.

Programmer Response: Make sure that the referenced macro
instruction operand is a symbol for which length attribute
references are valid, or delete the length attribute reference
from the macro definition.

IFZ092 PARAMETER VALUE INVALID FOR SCALE
ATTRIBUTE REFERENCE

Explanation: A scale attribute reference specified a symbolic
parameter whose value is not the name of a fixed-point DC or
DS instruction.

Assembler Action: The scale attribute reference is set to zero.

Programmer Response: Make sure that the referenced macro
instruction operand is a symbolfor which scale attribute refer
ences are valid, or delete the scale attribute reference from the
macro definition.

IFZ093 PARAMETER VALUE INVALID FOR INTEGER
ATTRIBUTE REFERENCE

Explanation: An integer attribute reference specifies a sym
bolic parameter whose value is not the name of a fixed-point
DC or DS instruction.

Assembler Action: The integer attribute reference is set to zero.

Programmer Response: Make sure that the referenced macro
instruction operand is a symbol for which integer attribute
references are valid, or delete the integer attribute reference
from the macro definition.

IFZ094 PARAMETER VALUE INVALID IN
AR ITHMETICEXPR ESSION

Explanation: The value ofa symbolic parameter used in an
arithmetic expression is not a valid self-defining term, or 1-8
decimal characters created by variable symbol substitution in
the macro instruction.

Assembler Action: The symbolic parameter is replaced by the
value of zero in the arithmetic expression.

Programmer Response: Make sure the referenced macro instruc
tion operand is a valid self-defining term or 1-8 decimal char
acters created by substitution, or remove the symbolic param
eter from the arithmetic expression in the macro definition.

IFZ095 TOO MANY ERRORS IN THIS STATEMENT

Explanation: During the processing of a conditional assembly
statement or a statement with variable symbol substitution,
more than five errors are detected. Messages are issued only
for the first five errors.

Assembler Action: If more errors are found, they will not be
flagged.

Programmer Response: Correct the indicated errors, and check
for further errors beyond the point indicated by the fifth error
message. Any additional errors will be detected in the next
assembly.

IFZ096 GENERATED STATEMENT TOO LONG

Explanation: The total length of the statement exceeds 248
characters after generation.

Assembler Action: The statement is processed as comments. If
any part of the remarks field falls outside the space allowed for
this statement, no part of the remarks field is listed.

Programmer Response: Make sure that the total length of a
statement after generation does not exceed 248 characters.

IFZ097 UNDEFINED OP CODE, OR MACRO NOT FOUND

Explanation: The operation code of this statement does not
correspond to any of the following:

• A machine instruction operation code

• An assembler instruction operation code

• The operation code of a valid library macro or a valid
source macro

Assembler Action: The statement is processed as comments.

Programmer Response: Change the operation code to a valid
machine, assembler, or macro operation code, or correct the
corresponding macro definition. If the error occurred for a
library macro, make sure the correct source statement library
is assigned.

IFZ09S KEYWORD PARAMETER 'xxxxxxxx'
DUPLICATED OR NOT DEFINED

Explanation: A keyword parameter appears more than once
in a macro instruction, or a keyword parameter appears in a
macro instruction in whose definition it is not defined as a
keyword parameter. The message will also be given if an
equal sign not enclosed in a quoted string or within parenthe
ses appears in a positional parameter.

Assembler Action: If the keyword parameter is duplicated,
the first parameter value is accepted. If the parameter is
undefined, it is ignored.

Programmer Response: Delete the keyword. from the macro
instruction, define the parameter in the macro definition, or
enclose the equal sign within apostrophes or parentheses.

IFZ099 TOO MANY MACROS CALLED

Explanation: The dictionary space available to the assembler
is not large enough to generate all the different macros that
are called in the source module.

Assembler Action: The whole assembly is processed as
comments.

Programmer Response: Increase the siie of the partition allo
cated to the assembly, or separate the module into smaller
modules to be assembled separately.

IFZ100 TOO MANY MACROS CALLED OR TOO
MANY VARIABLE SYMBOLS

Explanation: The dictionary space available to the assembler
is not large enough to contain all the different macros, local
variable symbols in open code, and global variable symbols
that are used in this source module.

Assembler Action: The whole assembly is processed as
comments.

Programmer Response: Increase the size of the partition allo
cated to assembly, or separate the module into smaller source
modules to be assembled separately, making sure that references
to a variable symbol all remain in the same module.

IFZ101 DICTIONARY SPACE FOR VARIABLE
SYMBOLS EXHAUSTED 'xxxxxxxx'

Explanation: The dictionary space available to the assembler
is not enough to contain all the different macros and global
variable symbols of the entire assembly, plus all the local SET
symbols and symbolic parameters used in the macro being
generated.

Assembler Action: The generation of the macro is terminated.

Programmer Response: Increase the size of the partition allo
cated to assembly, reduce the number of local variable symbols,
or separate the module into smaller source modules to be
assembled separately.

IFZ102 SEQUENCE SYMBOL UNDEFINED

Explanation: A sequence symbol used in the operand of an
AGO or AIF instruction is not defined in the name field of an
instruction in the same macro definition or open code.

Assembler Action: The next sequential instruction is processed.

Programmer Response: Define the sequence symbol in the
macro, or use a sequence symbol that is already defined.

IFZ103 REFERENCE TO GLOBAL VARIABLE
SYMBOL WITH INCONSISTENT DECLARATION
OF TYPE OR DIMENSION

Explanation: A global variable symbol is used whose declara
tion within this macro or open code is inconsistent with a
previous declaration of the same global symbol. The inconsis
tency occurred in either the type or the dimension specification.

Assembler Action: The statement is processed as comments.
If any part of the remarks field falls outside the space allowed
for this statement, no part of the remarks field is listed.

Programmer Response: Make sure that all declarations of a
global variable symbol are identical; for example, a global sym
bol cannot be declared as a SETB symbol in one macro and a
SETA symbol in another; and it cannot be declared as dimen
sioned in one macro and undimensioned in another, or as
having a dimension of 50 in one macro and 85 in another.

IFZ104 OP CODE 'xxxxxxxx' GENERATED

Explanation: One of the following assembler operation codes
has been created by substitution: COPY, END, ICTL, ISEQ,
PRINT, REPRO, MACRO, MEND, MEXIT, ANOP, SETA,
SETB, SETC, AIF, AIFB, AGO, AGOB, GBLA, GBLB,
GBLC, LCLA, LCLB, and LCLC. These operation codes
are not allowed to be generated.

Appendix H: Communications Controller Assembler'Messages-DOS/VS H-ll

Assembler Action: The generated statement is processed as
comments.

Programmer Response: Make sure that none of the operation
codes listed in the explanation is created by substitution;

IFZ105 GENERATED OP CODE 'xxxxxxxx'
UNDEFINED OR INVALID

Explanation: The operation code created by substitution is
not a valid machine or assembler instruction operation code
(macro instructions are not allowed to be generated).

Assembler Action: The generated statement is processed
as comments.

Programmer Response: Make sure that the generation in the
operation field results in a valid operation code.

IFZ106 GENERATED OP CODE IS BLANK

Explanation: The operation code created by substitution con
tains no characters or only blank characters.

Assembler Action: The generated statement is processed as
comments.

Programmer Response: Make sure that substitution results in a
valid machine or assembler operation code.

IFZ107 MACRO 'xxxxxxxx' NOT EXPANDABLE
DUE TO ERROR IN DEFINITION

Explanation:

Source Macro: The prototype statement of the macro
definition contains errors.

Library Macro: The library macro contains an error
defined by another error message
(of the type that has no statement
number).

Assembler Action: The statement is processed as comments.

Programmer Response:

Source Macro:

Library Macro:

Correct the prototype statement.

Edit and catalog the macro again.

IFZ108 MACRO 'xxxxxxxx' NOT EXPANDABLE
DUE TO ERROR IN MACRO INSTRUCTION

Explanation: An error has been found in a substitution expres
sion in a macro instruction operand.

Assembler Action: The statement is processed as comments.

Programmer,Response: Check the other error messages on this
macro instruction and correct the error(s).

IFZ109 INVALID OR I.LLEGAL NAME FIELD.

Explanation: Either the name field is not bla~k and does not
contain a valid ordinary symbol, that is, one to eight alpha
meric characters the fIrst of which is alphabetic, or there is an
ordinary symbol in a name field that should only contain a
sequen~e·symbol or blank (CNOP, ORG, END, USING,
DROP).

Assembler Action: The name field is ignored.

H-12 IBM 3704 and 370S(Assembler Language

Programmer Response: Supply a valid Qrdinary symbol,
delete the characters from the name field, or, if you want to
write a comments statement, supply an asterisk in the begin
column, or remove entries in name field.

IFZ110 NAME FIELD TOO LONG

Explanation: The symbol in the name field exceeds eight
characters.

Assembler Action: The name field is ignored.

Programmer Response: Make sure the name field is blank or
contains a valid ordinary symbol, that is 1-8 alphameric
characters the first of which is alphabetic.

IFZ111 GENERATED SEQUENCE SYMBOL

Explanation: A period is found in the name field of a generated
statement.

Assembler Action: The name field is ignored.

Programmer Response: Make sure the value generated in the
name field is either a valid ordinary symbol or blank.

IFZ112 INVALID CHARACTER IN CONSTANT, 'xxxxxxxx'

Explanation: Subfield 4 (constant) of a DC or DS instruction
contains characters that are invalid for the type of constant
specified in subfield 2.

Assembler Action: The DS or DC instruction is processed as
comments.

Programmer Response: Make sure the characters used to specify
the value of the constant are valid for this type of constant.
Change either the type or the value specification.

IFZ113 SYMBOL 'xxxxxxxx'TOO LONG

Explanation: The specified symbol contains more than eight
characters. Only the first eight characters of the symbol are
identified in the message.

Assembler Action: The operand is checked for further errors,
but this operand and any further operands are ignored when
the object code is generated.

Programmer Response: Supply a valid symbol.

IFZ114 RIGHTPARENTHESIS MISSING, 'xxxxxxxx'

Explanation: In the operand indicated in the message, a left
parenthesis not matched by a right parenthesis has been found,
or the parentheses have been incorrectly placed in the operand,
for example, MVC (1, 2), 3(4) will cause this message to be
issued. The first character in the string inserted in the message
indicates where the right parenthesis was expected. If only a
blank appears in the string the right parenthesis was expected
at the end of the operand.

Assembler Action: The operand and the rest of the operand
field is ignored.

Programmer ResPonse: Make sure the parentheses are paired
and correctly placed.

IFZ115 UNPAIRED APOSTROPHE

Explanation:'No termin~tingapostroph~ has been found to
end the quoted string in this statement.

Assembler "Action: The statement is ignored .. ·

Programmer Response: Supply the missing apostrophe.

IFZ116 INVALID SELF-DEFINING TERM, 'xxxxxxxx'

Explanation: The first or only self-defming term specified in
the text inserted in the message cQntains invalid characters or
a null value (for ~xample, B'l02',X").

Assembler Action: The op.erand in which the term appears.is
ignored.

Programmer Response: Supply a yalid decimal, binary, hexa
decimal, or character self-definingterm.

IFZ117 VALUE OF SELF-DEFINING TERM
'xxxxxxxx'TOO LARGE

Explanation:' The value of the specified self-defining term is
either too long or too large. Valid symbols are:

• 1-6 decimalidigits whose value is in the range
0-262,143 or

• 1-18 binary digits, enclosed by apostrophes and preceded
by the character B; or

• 1-5 hexadecimal digits whose value is in the range
X'00'-X'3FFFF', enclosed by apostrophes and preceded
by the character X; or

• 1-2 charact~rs., enclosed byapostrophesand preceded by
the character C.

Assembler Action: The operand in which the term appears is
ignored.

Programmer Response: Correct the term according to the
rules given in the explanation.

IFZ118 ILLEGAL ATTRIBUTE REFERENCE, 'xxxxxxxx'

Explanation: The length attribute reference does not specify
a valid ordinary symbol or location counter referen.ce (*).
The flrst character of the inserted string indicates the point
where the invalid attribute reference was found.

Assembler Action: The operand is jgnored.

Programmer Response: Supply a valid ordinary symb()l or
location counter reference.

IFZ119 TOO MANY OPERATORS, 'xxxxxxxx'

Explanation: More than IS' operators have been found in the
operand specified by the message. The first character of the
inserted string indicates the point where too many operat.ors have
been encountered.

Assembler Action: The operand is ignored.

Programmer Response: limit the number of operators. If
necessary, useEQU instructions to break up the expression into
smaller expressions.

IFZ120 TOO MANY LEVELS OF PARENTHESES, 'xxxxxxxx'

Explanation: More than five levels of parentheses are used in
an expression in the operand specified by the message. The

first character in the string indicates the point where too
many levels of parentheses have been encountered.

Assembler Action: The operand is ignored.
~ ,

Programmer Response: limit the number of levels of paren-
theses. If necessary,' use EQU instructions to break up the
expression into smaller expressions, each of which is evaluated
separately.

IFZ121 I LLEGAL CHARACTER IN EXPRESSION, 'xxxxxxxx'

Explanation: In an expression an invalid character has been
found in or instead of a term. Thefirst character of the text
inserted in the message identifies the invalid character.

Assembler Action: The operand in error and the rest of the
statement are ignored.

Programmer Response: Supply a ,valid term.

IFZ122 INVALID DELIMITER, 'xxxxxxxx'

Explanation: An operand or sub-operand is not delimited by
a comma, a left or right parenthesis, or a blank. The first
character of the text inserted in the message identifies the
invalid delimiter.

Assembler Action: The operand in error and the rest ot the
statement areignored:

Programmer Response: Make sure all the delimiters in the
statement are correct.

IFZ123 INVALID TYPE SPECIFICATION, 'xxxxxxxx'

Explanation: The type specified in sub field 2 of a DC or DS
instruction is invalid or missing. The text inserted in the mes
sage consists of up to eight characters, starting at the point
where a valid type specification is expected.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply. a valid type specification .
(A, B, C, F, H, R, V, X, or Y).

IFZ124 INVALID SYMBOL IN ENTRY, ENTRN, OR
WXTRN STATEMENT

Explanation: An ENTRY, EXTRN, or WXTRN instruction
contains an invalid symbol. The operand field of these state
ments must consist of one or more ordinary symbols, separated
by commas. Any ordinary symbols defined by the ENTRY
instruction must also appear in the name field of an instruc
tion in this source module.

Asse1flbler Action: The operand in error and the rest of the
stat.ement are. ignored.

Programmer Response: Make sure that the operand field
follows the 1:ules given in. the explanation.

IFZ126.EXPONENTMODIFIER USED
I LLEGALL Y, 'xxxxxxxx'

Explanation: An exponent modifier is specified for a DC or DS
instruction operand that is not a fixed-point type constant.
The character string inserted iIi the message consists of up to
eight characters starting with the invalid exponent modifier.

Assembler Action: The statement is processed as comments.

Programmer Response: Delete the exponent modifier or change
the type specification.

Appendix H: Communications Controller Assembler Messages-DOS/VS H;,.l3

IFZ127 SCALE MODIFIER USED ILLEGALLY 'xxxxxxxx'

Explanation: The scale modifier is specified fo~ a DC or DS
instruction operand which is not a fixed-point type Constant.

Assembler /fction: The statementis processed as comments.

Programmer Response: Delete the scale modifier or change
the type specification.

IFZ128 CONSTANT FIELD MISSING OR PRECEDED BY
INVALID FIELD, 'xxxxxxxx'

Explanation: Ina DCinstructionoperand, either invalid char
acters are found between the modifier and constant subfield,
or the constant subfield does not contain any nominal value.
The first character in the string indicates the point where
the invalid constant value was found.

Assembler Action: The statement is processed as comments.

Programmer Response: Delete the invalid characters, or supply
a nominal value, or change the operation code to DS if you
wish only to specify a data area.

IFZ129 INVALID DUPLICATION FACTOR OR
MODIFIER, 'xxxxxxxx'

Explanation: A syntax error was found in the duplication fac
tor subfield (sub field 1) or the modifier sub field (subfield 3) of
this DC or DS instruction operand. The first character in the
string indicates the point where the invalid constant value was
found.

Assembler Action: The statementis processed as comments.

Programmer Response: Make sure the syntax in the expression
is correct.

IFZ133 TOO MANY SYMBOLS IN STATEMENT

Explanation: More than 50 symbols have been specified in an
ENTRY, EXTRN, or WXTRNinstruction.

Assembler Action: Thefllst 50 symbols are processed.

Programmer Response: Place the excessive operands in addi
tional ENTRY, EXTRN, or WXTRN instructions.

IFZ134 STATEMENT COMPLEXITY EXCEEDED, 'xxxxxxxx'

Explanation:

• More than. one operand has been specified in a DC Of DS
instruction; or

• The constant subfield of a DC or DS operand contains too
many symbols or terms or both. The maximum number
of symbols and terms that can be handled by the assembler
is around 30.

The first character in the string indicates the point where
the invalid character was found.

Assembler Action: The statement is 'processed as comments.

Programmer Response: Make sure only one period is coded,
or break up the constant subfield into two or more statements.

IFZ135 SYMBOL 'xxxxxxxx' PREVIOUSLY DEFIN ED

Explanation: The ordinary symbol defined in this instruction
either by appearing in the name field, or by appearing in the
operand field of an EXTRN or WXTRN instruction, has already
been defined within the source module.

H-14 IBM 3704 and 3705 Assembler Language

Assembler Action: The second definition is ignored.

Programmer Response: Supply a name that (toes not conflict
with any other symbols in the.program.

IFZ136 ARITHMETIC OVERFLOW (IN OPERAND n)

Explanation: DurIng the ~valuation of an expression, a value
has been reached which is outside the range of -231 through
231 _1:

Assembler Action: The expression-is ignored.

Programmer Response: Rearrange the terms or expression to
avoid overflow. If necessary, useEQU statements to separate
the expression into smaller expressions that can be evaluated
separately and then combined.

IFZ137 EXPRESSION COMPLEXLY RELOCATABLE
(IN OPERAND n)

Explanation: A complexly relocatable expression is used in
the operand field of an EQU, CNOP, or ORG instruction or in
the modifier subfield of a DC or DS instruction operand.

Assembler Action: The statement is processed as comments.

Programmer Response: Correct the expression so that it is
simply relocatable (EQU, ORG) or absolute (EQU, CNOP,
modifiers).

IFZ138 TOO FEW OPERANDS

Explanation: This statement requires more operands than are
supplied.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply the missing operand(s).

IFZ139 INVALID DUPLICATION FACTOR (IN OPERAND n)

Explanation: The duplication factor is relocatable.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply an absolute value.

IFZ140 INVALID LENGTH MODIFIER (IN OPERAND n)

Explanation: The length modifier is either too large, zero, or
relocatable. The maximum value allowed for the length
modifier varies with the type specified for this operand.

Assembler Action: The statement is processed as comments.

Programmer Response: Make sure the length modifier is an
absolute value in the range allowed for this type of constant.

IFZ141 INVALID SCALE MODIFIER (IN OPERAND n)

Explanation;' The expression used to specify the scale modifier
is relocatable.

Assembler Action.~ Zeros are generated in the object module.

Programmer Response: Make sure the scale modifier expression
specifies an absolute value, and that any symbols used in it
have been previously defined.

IFZ142 INVALID EXPONENT MODIFIER (IN OPERAND n)'

Explanation: The expression used to specify the exponent
modifier is relocatable.

Assembler Action: Zeros are generated in the object module.

Programmer Response: Make sure the exponent modifier
expression specified an absolute value, and that any symbols
used in it have been previously defined.

IFZ143 INVALID CNOP OPERAND

Explanation: One or both of the operands in this CNOP
instruction are invalid. Only the following combinations are
allowed: 0 and 4, 2 and 4, 0 and 8,2 and 8,4 and 8, and
6 and 8.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply one of the combinations listed
in the explanation.

IFZ144 INVALID END OPERAND

Explanation: The operand of the END instruction is invalid.
It must be a simply relocatable expression whose value repre
sents an 'address within an ordinary control section (that is,
not a dummy or common control section) in this source
module, or an external reference.

Assembler Action: The operand field is ignored.

Programmer Response: Supply a valid operand as described
in the expla.nation.

IFZ145 RELOCATABLE TERM IN DIVIDE OR MULTIPLY
OPERATION (IN OPERAND n)

Explanation: A relocatable term is used in a multiply or divide
operation in an expression in this statement.

Assembler Action: The statement is processed as comments.

Programmer Response: Use only absolute terms in divide or
multiply operations.

IFZ146 NAME MISSING

Explanation: The name is missing in this EQU or EQUR
instruction.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply a valid name field.

IFZ147 'INVALID START STATEMENT

Explanation:

• The operand field is not blank or an absolute value; or

• The START instruction does not identify the beginning of
the rust control section in this source module; it was pre
ceded by another START instruction, a CSECT instruction,
or a statement that' causes an unnamed control section
(private code) to be initiated.

Assembler Action: The statement is processed as a CSECT
statement.

Programmer Response: Make sure any operand specified is an
absolute value, and that the START instruction initiates the
first control section in the soUrce module.

IFZ148 ILLEGAL SYMaOl'XXXXXXXX' IN
IN ENTRY STATEMENT

Explanation: The specified symbol is not defmed as a relocat
able symbol within an ordinary control section (not a dummy
or common control section,) or is defined as an EXTRN sym
bol or has already appeared as an entry statement.

Assembler Action: The symbol is ignored.

Programmer Response: Make sure the ENTRY operand is a
valid external name as' defined in the explanation.

IFZ149 SYMBOL 'xxxxxxxx' NOT PREVIOUSLY DEFINED

Explanation: The specified symbol appears in an EQU, ORG,
or CNOP operand or in the modifier subfield of a DC or DS
instruction, but has not been defined prior to this use. These
fields require that any symbols used in them are previously
defined.

Assembler Action: The statement is processed as comments.

Programmer Response: Make sure the definition of this symbol
precedes this statement.

IFZ150 VALUE OF ORG OPERAND LESS THAN CONTROL
SECTION STARTING ADDRESS

Explanation: The operand of an ORG instruction results in
a value less than the starting address of the control section.

Assembler Action: The statement is processed as comments.

Programmer Response: Make sure the operand of the ORG
instruction is a positive relocatable expression, greater than the
starting address in the control section.

IFZ151 LOCATION COUNTER OVERFLOW

Explanation: The location counter value is greater than or equal
to X' 3FFFF'.

Assembler Action: The location counter is carried in three
bytes. When overflow occurs, the location counter will not be
updated and every statement that causes overflow will be
flagged.

Programmer Response: The probable cause of the error is a
high ORG instruction value or a high START instruction value.
Correct the value or divide the control section.

IFZ152 ORG OPERAND VALUE NOT WITHIN THIS
CONTROL SECTION

Explanation: The operand of an ORG instruction is not a sim
ply relocatable expression whose value falls within tJ:te current
control section.

Assembler Action: The statement is processed as 'comments.

Programmer Response: Make sure the resulting value of the
expression in the operand field falls within the control section
where the ORG is coded. Any relocatable symbols defined in
other control sections must be paired (that is, each such term
must be matched by another term from the same control
section with the opposite sign).,

Appendix H: Communications Controller Assembler Messages-DOS/VS H·15

IFZ153 ILLEGAL USE,.OFiLOCATIONCOUNTERREFEBENC.E

Explanation: A location counter reference (*) is used in the
modifier subfield of a DC Qr·,DSinstruct~on or lit~r<l:ls orin,
the operand of a CNOP instruction.

Assem'bler Action: ,'the statement is processed as comments.

Programmer Response.: Remove the inva1idl~cati~n counter
reference.

IFZ154 TOO MANY ENTRY SYMBOLS

Explanf!tiQn: The number of ENTRY operand§ specified in this
source module exceeds 10.

Assembler Action: ENTRY operands encountered in the rest
of the assembly are ignored.

Programmer Re~ponse: Reduce the number of ENTRY.oper
ands, or separate the module into two or more modules.

IFZ155 iOO MANY EXTERNAL SYMBOLS

Explanation: Too many entries have been made in the external
symbol dictionary. Only 255 entries can be made for the
following: control sections, dummy sections, common control
sections, and externalreferences (EXTRN, WXTRN, V-type
constants). ENTRY operands are not counted towards this
maximum, but the number of entry operands must not exceed
100.

Assembler Action: No more symbols are entered in the external
symbol dictionary. The rest of the source module is assembled
as part of the control ~ction currently being processed.

Programmer Response: Reduce the number of ESO items, or
separate the source module into two or more modules.

IFZ156 SYMBOL 'xxxxxxxx' UNDEFINED

Explanation: The specified symbol has not been defined within
the module; that is, it has not appeared in the nam~, field of an
instruction or in the operand field of an EXTRN or wXTRN
instruction.

Assembler Action: Zeros are generated in the object module.

Programmer Response:, Make sure the symbolis def~ned,or
use a symbol.that has already been defined.

IFZ158 TOO MANY OPERANDS

Explanation: Too many operands have been coded for this
statement.

Assembler Action: If the statement is an assembler inStruction,
the excessive operands are ignored.

If the statement is a machine instruction, zeros are generated
in thepbject module.

Programmer Response: Delete the excessive operands, make
sure tha.t the format. of the operand field is correct.,

IFZl59 TOO FEW OPERANDS

Explanation: This instruction requires more operands than
are specified.

Assembler Action: Zeros are generated in the object module.

Programmer Response: Supply the right number of operands;
make sure that the format of the operand field is correct.

H-16 IBM 3704 and 3705 Assembler Langu(lge

IFZ1.60 .COMPLEXLY RELOCATABLE EXPRESSION
IN OPERAND n

Explanation: A complexly relocatable expr~s~ionha.sbeen
used in an operand where a simply relocatable or absolute
expression is required. .' : . ' .

Assembler Actio 11;.; Zeros are genera:ted in the o~ject module.

Programmer Response: ,Supply a valid simply relocatable or
absolute expression.

IFZ161 OPERAND n NOT A CURRE;NT BASE REGISTER

Explanation: Tpe registerspecif~edin the operand: of this,
DROP instruption is not a current base register, either because
it has not been specified as a ba~ register by a' preVious .
USING instruction, or because it has been encountered in a
previous DROP instruction.

Assembler Action: The openirid is ignored.

Programmer Response: Make sure the operand is currently
being used as a base register.

IFZ162 ADDR,ESS OPt=RAND.OUT OF RANGE

Explanation: The address operand in a RAtype instruction
must be an absolute or relocatable expressionJn the range 0
to 218_1. . ' .

Assembler Action.: Zeros are generated in the o~ject module.

Programmer Response: Supply a valid address oper~d.

IFZ163 ADDRESSABILITY ERROR IN OPERAND n

Explanation: An address sp,.ecified in the operand of this
statement is not covered by any base register, that is, it does
not appear in the range of a U~ING instructiop, or relocat
ability of transfer address not the sa1)1e as that of the instruc-
tion which makes reference. '

Assembler Action: Zeros are generated instead of the instruc
tion In the object module.

Programmer Response: Make sure the address of the symbol in
the operand falls within the ranges of a address instruction; it
must be within the first 127 bytes of the address specified in
the USING instruction. ,

IFZ164 INVALID USE OF SYMBOLIC REGISTER IN.
OPERAND n

Explanation: A symbolic register expression is specified when
absolute relocatable, or :compltlxly relocatableexpression is
required, or a symbolic register expression appears in a multi
term expression.

AssemblerAction: Zerosare generatedinthe object module.

Programmer Respons~: Supply an expression. that is not a sym
bolic register expression.

IFZ165 R·EGISTER VALUE IN OPERAND n NOT ODD

Expian,ation: The indicated operand dpes not specify an odd
register va'tue.

Assembler Action:.,Zeros are gener~ted instead o~ the instruc
. tionin the object 'I?odule." ,

Programmer Respons~: Specify an odd-numbered register in
the range 1-7.

IFZ166 REGISTER VALUE IN OPERAND nOUT OF RANGE

Explanation: The register number specified in this operand is
not in the range required by this instruction.

Assembler Action: Zeros are generated instead of the instruc
tion in the object module.

Programmer Response: Specify a register value in the range
range 0-7.

IFZ167 REGISTER VALUE IN OPERAND n NOT ABSOLUTE

Explanation: The register number specified in this operand is
not an absolute value.

Assembler Action: Zeros are generated instead of the instruc
tion in the object module.

Programmer Response: Specify an absolute value.

IFZ168 EXTERNAL REGISTER VALUE IN OPERAND n
OUT OF RANGE

Explanation: External register specification is not a value from
o to 127.

Assembler Action: Zeros are generated in the object module.

Programmer Response: Supply a value in the valid range.

IFZ169 EXTERNAL REGISTER VALUE IN
OPERAND n NOT ABSO LUTE

Explanation: External register specification is not an absolute
expression.

Assembler Action: Zeros are generated in the object module.

Programmer Response: Supply an absolute value.

IFZ170 IMMEDIATE VALUE IN OPERAND n OUT
OF RANGE

Explanation: The value specified as an immediate value is
negative or too high. The allowable range is 0-255.

Assembler Action: Zeros are generated instead of the instruc
tion in the object module.

Programmer Response: Supply an absolute value in the range
described in the explanation.

IFZ171 IMMEDIATE VALUE IN OPERAND n NOT
ABSOLUTE

Explanation: The immediate value specified asan absolute
value is relocatable.

Assembler Action: Zeros are generated instead of the instruc
tion in the object module.

Programmer Response: Supply an absolute value in the range
0-255.

IFZ172 DISPLACEMENT VALUE IN OPERAND n
OUT OF RANGE

Explanation: The displacement value in the specified operand
is not in the rangeO-127.

Assembler Action: Zeros are generated instead of the instruc
tion in the object module.

Programmer Response: Make sure the displacement is specified
as an absolute value in the range 0-127.

IFZ173 DISPLACEMENT VALUE IN OPERAND n
NOT ABSO LUTE

Explanation: The displacement value in the specified operand
is relocatable.

Assembler Action: Zeros are generated instead of the instruc
tion in the object module.

Programmer Response: Make sure the displacement is specified
as an absolute value in the range 0-127.

IFZ174 BIT SELECTION VALUE IN OPERAND n
OUT OF RANGE

Explanation: Bit specification is not an expression with a value
from 0 to 7.

Assembler Action: Zeros are generated in the object Dlodule.

Programmer Response: Supply a value in the valid range.

IFZ175 BIT SELECTION VALUE IN OPERAND n
NOT ABSOLUTE

Explanation: Bit specification is not an absolute expression.

Assembler Acticm: Zeros are generated in the object module.

Programmer Response: Supply an absolute value from 0 to 7.

IFZ176 BASE REGISTER VALUE IN OPERAND n
OUT OF RANGE

Explanation: The value specified in the base register sub field
of this operand is not in the range 0-7. .

Assembler Action: Zeros are generated instead of this instruc
tion in the object module.

Programmer Response: Make sure the base register is specified
as an absolute value in the range 0-7.

IFZ177 BASE REGISTER VALUE IN OPERAND n
NOT ABSO LUTE

Explanation: The value specified in the base register subfield
of this operand is not absolute.

Assembler Action: Zeros are generated instead of the instruc
tion in the object module.

Programmer Response: Make sure the base register is specified
as an absolute value in the range 0-7.

IFZ178 BYTE SELECTION VALUE IN OPERAND n
OUT OF RANGE

Explanation: Byte specification is not a value of 0 or 1. In
the case of the extended mnemonic BBE the value should be
in the range 0 to 15.

Assembler Action: Zeros are generated in the object module.

Programmer. Response: Supply a value in the valid range.

IFZ179 BYTE SELECTION IN OPERAND n
NOT ABSO LUTE

Explanation: Byte specification is not an absolute expression.

Assembler Action: Zeros are generated in the object module.

Programmer Response: Supply an absolute value.

Appendix H: Communications Controller Assembler Messages-DOS/VS H-17

IFZ180 SUBFIELD MISSING IN OPERAND n

Explanation: An operand that should contain two sub fields
has only one, or all operand that should contain three s~b
fields has .only one or two. This error can be caused by speci
fying an expression that is not a symbolic register in a position
where a symbolic register was.intended.

Assembler Action: Zeros are generated in the object module.

ProgrammerResponse: Supply a valid operand.

IFZ181 REGISTER VALUE 0 SPECIFIED AS BASE
REGISTER

Explanation: Register 0 has been specified as a base register
in a USING or DROP instruction. Only register values f!'<?m
1 to 7 are permitted.

Assembler Action: The operand is ignored.

Programmer Response: Supply a valid register value.

IFZ182 ALIGNMENT ERROR IN OPERAND n

Explanation: This operand refers to a storage location that is
not on the boundary required by this instruction.

Assembler Action: Zeros are generated in the object module.

Programmer Response: Corlect the address specification.

IFZ183 SUBFIELD SPECIFIED ILLEGALLY IN OPERAND n

Explanation: Three sub fields have been specified in an operand
where only two are allowed, or three or two specified where
only one is allowed.

Assembler Action: Zerosare generated in the object module.

Programmer Response: Supply a correct operand.

IFZ184 EXPONENT MODIFIER'OUT OF RANGE
IN CONSTANT n (OPERAND m)

Explanation: The value of the exponent modifier is too large
or too small. The sum of the exponent modifier and the expo
nent specification in the constant must be in the range -85
through +75.

Assembler Action: Zeros are generated in the object module.

Programmer Response: Make sure the total value of the expo
nent in the constant subfield and the exponent modifier in the
modifier subfield is in the range of -85 through +75.

IFZ185 SCALE MODIFIER OUT OF RANGE IN CONSTANT n
(OPERAND m)

Explanation: T1).e SCale modifier is either too large or too
small. For'afixed-poinfconstant, the allowed range is -187
through +346.

Assembler Action: Zeros are generated in the object module.

Programmer Response: . Make sure the scale modifier value
falls in the range described in the explanation.

H-18 IBM 3704 and ,3705 Assembler Language

IFZ186 ABSOLUTE TRANSFER ADDRESS IN OPERAND n

Explanation: The transfer address specified is an absolute
expression.

Assembler Action: Zeros are generated in the o~ject module.

Programmer Response: Supply a relocatable expression for
transfer address.

IFZ187 TRANSFER ADDRESS IN OPERAND n
OUT OF RANGE

Explanation: The transfer address specified is out of the avail
able displacement range which is +1024 to -1022 halfwords
for BCL, BZL, B and +64 to -62 halfwords for BB and BCT, as
counted from the instruction location.

Assembler Action: Zeros are generated in the object module.

Programmer Response: Supply a transfer address within the
valid range.

IFZ188 INVALID SYNTAX IN DATA FIELD OF
CONSTANT n (OPERAND m)

Explanation: The syntax is invalid in the present constant sub
field of this operand. For instance, an E is present to designate
an exponent, but no exponent is found.

Assembler Action: Zeros are generated in the source module.

Programmer Response: Correct the syntax of the statement.

IFZ189 DATA ITEM TOO LARGE IN CONSTANT n
(OPERAND m)

Explanation: The constant specified in the constant subfield
of this DC or DS instruction operand is toolarge for the data
type or for the length specified explicitly in the length modifier.

Assembler Action: Thevalue is truncated· on the left.

Programmer Response: Change the type specification or the
length modifier.

IFZ190 LENGTH MODIFIER i"LLEGAL WITH CONSTANT n
(OPERAND m)

Explanation: An A-, R-, or Y-type address constant has been
specified with an explicit length which is correct for absolute,
but not for relocatable expressions.

Assembler Action: Zeros are generated in the object module.

Programmer Response: Change length modifier to allow expres
sion to be relocatable or make the expression absolute.

IFZ191 ILLEGAL EXPRESSION IN ADDRESS
CONSTANT n (OPERAND m)

Explanation: Only a simple expr~ssion is allow~d in an address
constant (no subfields).

Assembler Action: Zeros are generated in the object module.

Programmer Response: Supply a simple expression..

IFZ192 ILLEGAL EXPRESSION IN OPERAND n

Explanation: Only a simple expression is allowed as a CW
operand (nosubfield allowed).

Assembler Action: Zeros are generated in the object module.

'Programmer Response: Supply a simple expression.

IFZ193 ALIGNMENT ERROR IN OPERAND 4

Explanation: Operand 4 of a CW instruction does not contain
an even address.

Assembler Action: The operand is accepted asitis specified.

Programmer Response: Supply an operand 4 value that is even.

IFZ194 TOO FEW OPERANDS

Explanation: Fewer than four operands found in a CW
instruction.

Assembler Action: Zeros are generated in the object module.

Programmer Response: Supply the missing operand(s).

IFZ195 OPERAND n NOT ABSOLUTE

Explanation: The value specified in operands 1, 2, or 3 is not
an absolute value.

Assembler Action: Zeros are generated instead of the CW in
the object module.

Programmer Response: Make sure the values of the expressions'
in operands 1,2, and 3 are absolute.

IFZ196 TOO MANY OPERANDS

Explanation: More than four operands have been found in CW
instruction.

Assembler Action: Zeros are generated in the object module.

Programmer Response: Delete the excessive operand(s).

IFZ197 VALUE OF OPERAND n OUT OF RANGE

Explanation: The value specified for the operand identified in
the message is too high or negative. The value of operand 1
must be in the range 0-3, the value of operand 2 must be in
the range 0-3, and the value of operand 3 must be in the range
0-1023.

Assembler Action: Zeros are generated instead of the CW in
the object module.

Programmer Response: Make sure the operand specifies an abso
lute value in the range described in the explanation:

IFZ198 SYMBOL IN ADDRESS OPERAND DEFINED IN
DUMMY SECTION

Explanation: A symbol in a CWaddress operand or in a RA
machine instruction is defmed in a dummy section. If a sym
bol in an expression in the address operand is defined in a
dummysection, the symbol must be paired with another sym
bol with the opposite sign defined in the same dummy section.

Assembler Action: Zeros are generated in the object module.

Programmer Response: Delete any symbols in a CW address
operand defined in dummy sections, or make sure they are
paired with other symbols defined in the same dummy section.

IFZ199 DUMMY SECTION SYMBOLUSED ILLEGAl.LY
IN CONSTANT n (OPERAND m)

Explanation: A dummy section symbol appearing in the con
stant sub field of this address constant is defined in a dummy
section. If a symbol in an expression in the constant subfield
is defined in the dummy section, the symbol must be paired
with another symbol with the opposite sign defined in the
same dummy section.

Assembler Action: Zeros are generated in the object module.

Programmer Response: Delete any dummy section symbols,
or make sure they are paired with other symbols defmed in the
same dummy section.

IFZ200 NAME FIELD TOO LONG

Explanation: The length of the symbol in the name field
exceeds eight characters.

Assembler Action: The name field is ignored.

Programmer Response: Make sure the name field is not longer
than eight characters.

IFZ201 NAME FIELD NOT SEQUENCE SYMBOL OR BLANK

Explanation: The name field contains something other than a
valid sequence symbol or blank. The following instructions
must have a blank or a sequence symbol in the name field:
EJECT, PRINT, SPACE, MNOTE, PUNCH, REPRO, and
TITLE (except the first TITLE statement in the module).

Assembler Action: The name field is ignored.

Programmer Response: Supply a valid sequence symbol, or
leave the name field blank.

IFZ202 TITLE NAME TOO LONG

Explanation: The name field of the first TITLE instruction in
the program contains more than four characters that are used
to specify a valid sequence symbol.

Assembled Action: The name field is ignored.

Programmer Response: Supply up to four alphameric characters
in ,the name field, or leave the name field blank.

IFZ203 TITLE NAME CONTAINS NON-ALPHAMERIC
CHARACTER

Explanation:· A non-alphameric character was encountered in
the name field of the first TITLE statement in 'the program.

Assembler Action: The name field is ignored.

Programmer Response: Supply one to four alphameric char
acters, or leave the name field blank.

IFZ204 OPERAND MISSING

Explanation: The operand field of a PRINT, PUNCH, or
TITLE statement is blank.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply a valid operand field.

Appendix H: Communications Controller Assembler Messages-DOS/VS H-:19

IFZ205 FIRST APOSTROPHE MISSING

Explanation: The first apostrophe in the operand of an
MNOTE, PUNCH, or TITLE mstruction is· missing.

Assembler Action.~TI,le statement is p:rocessed as comments.

ProgrammerResponse: Make.sure the operand is a character
combination enclosed in apostrophes.

IFZ206 SINGLE AMpERSAND IN OP~RAND

Explanation.; A single ampersand that is not partOfavariable
symbol appears in the MNOTE, PUNCH, or TITLE operand.

Assembler Action: The statement is processed as comments.

Programmer Response: Make sure that an ampersand that is
meant to be part of the operand rather than of a variable symbol
in the operand is coded as a double ampersand.

IFZ207 LAST APOSTROPHE. MISSI NG

. Explanation: The operand of an MNOTE, PUNCH, or TITLE
instruction does not end with a single apostrophe.

Assembler Action: The statement is processed as comments;

Programmer Response: Supply the closing apostrophe.

IFZ208 TITLE OR PUNCH OPERAND TOO LONG

Explanation: The operand of a TITLE or PUNCH instruction
is too long. The maximum length of the TITLE operand is 100
characters, excluding the enclosing apostrophes, and the maxi
mum length of the PUNCH operand is 80 characters, excluding
the enclosing apostrophes.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply an operand that does not exceed
the length described in the explanation.

IFZ209 OPERAND FI ELD ILLEGALLY TERMINATED

Explanation: The closing apostrophe of an MNOTE, PUNCH,
or TITLE operand is not immediately followed by a blank.
This message can be caused by a single apostrophe coded or
generated inside the enclosing apostrophes or by a missing
blank between the operand field and the remarks field.

Assembler Action: The' statement is processed as comments.

Programmer Response: Make sure all apostrophes inside the
enclosing apostrophes are coded as double apostrophes, or
supply the missing blank between the operand and the remarks
field.

IFZ211. NON.DECIMAL CHARACTER IN OPERAND

Explanation: The operand of a SPACE instruction contains
non-decimal characters or the severity code operand of an
MNOTE instruction contains characters that are not decimal
or an asterisk.

Assembler Action: The statement is processed as comments.

Programmer Response: Suppiy a decimal value or (for MNOTE
only) an asterisk.

H-20 IBM 3'704ilrid 3705 Assembler Language

IFZ212 INVALID PRINT OPERAND

Explanation: The operand of a PRINT instruction does not
specify one or more of the following values: ON, OFF, GEN,
NOGEN,DATA,NODATA.

Assembler Action: The statemtmt is processed as comments.

Programmer Response: Supply from one to three operands
that do not conflict with each other. The operands are listed
in the explanation.

IFZ213 CONFLICTING PRINT OPERANDS

Explanation: Conflicting operands have been specified in .a
PRINT statement. Only one value from each of the following
three pairs can be specified: ON/OFF, GEN/NOGEN, and
DATA/NODATA.

Assembler Action: The statement is processed as comments.

Programmer Response: Delete conflicting values.

IFZ214 'x' IS AN INVALID DELIMITER

Explanation: An operand in a PRINT statement is not imme
diately followed by a comma or a blank.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply' the correct delimiter.

IFZ215 OPERAND FIELD INCOMPLETE

Explanation: A PRINT instruction ends with a comma followed
by a blank, or an MNOTE instruction contains a severity code
operand but no message operand.

Assembler Action: The statement is processed as r.omments.

Programmer Response: Delete the comma or supply the addi
tional operand.

IFZ216MNOTE GENERATED

Explanation: An MNOTE statement specified with a severity
code, or an explicitly omitted (by means of a comma) severity
code has been encountered.

Assembler Action: Processing continues.

Programmer Response: Determine the cause of the message by
refetring to the source statements seciion of the listing. The
MNOTE message is written at the state merit number supplied
with the message.

IFZ217 MNOTE SEVERITY VALUE TOO HIGH

Explanation: The severity code specified in the first operand
of an MNOTE instruction is greate'rthan255.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply a severity code in the range
0-255, or omit the first operand.

IFZ218 NULL STRING IN PUNCH OPERAND

Explanation: The operand field of a PUNCH statement contains
only two apostrophes placed immediately after each other.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply 1-80 characters inside the
apostrophes.

IFZ220 TOO MANY SUBFIELDS SPECIFIED IN
EaUR OPERAND

Expla11lltion: Operand in EQUR statements can only be of two
kinds: R(N) and Q.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply a valid operand as described
in the explanation.

IFZ221 REGISTER SPECIFIED IN EaUR OPERAND
IS NOT 1, 3, 5 OR 7.

Explanation:' An EQUR operand can be of two kinds: R(N),
or Q. The R must be an odd register: 1, 3, 5 or 7.

Assembler Action:. The statement is processed as comments.

Programmer Response: Supply a valid odd register.

IFZ222 RELOCATABLE EXPRESSION IN eaUR OPERAND

Explanation: Only absolute expressions are allowed in
EQUR operands.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply an absolute expression.

IFZ223 BYTE SELECTION SUBFIELD MISSING

Explanation: Operand in EQUR statements can only be of
two kinds: R(N) and Q.

Assembler Action: Statement processed as comments.

Programmer Response: Supply a valid operand as described
in explanation.

IFZ224 INVALID USE OF SYMBOLIC REGISTER

Explanation: A symbolic register expression is specified where
an absolute, relocatable,or.complexly relocatable expression
is required, or a symbolic register expression appears in a
multi-term expression.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply an expression which is not a
symbolic register expression.

IFZ225 TOO MANY OPERANDS IN EaUR INSTRUCTION

Explanation: EQUR can oilly have one operand.

Assembler Action: The statement is processed as comments.

Programmer Response: Make sure only one operand is specified.

IFZ226 INVALID BYTE SELECTION IN EaUR OPERAND

Explanation: Byte specification is not an expression of the
value 0 or 1. '

Assembler Action: The statement is processed as comments.

Programmer Response: Supply a valid byte specification.

IFZ227 INVALID ORIGIN FOR RELOCATABLE R-TYPE
CONSTANT

Explanation: A relocatable R-type constant is assembled
at location O.

Assembler Action: No RLD is produced for this constant.

Programmer Response: Move the constant to a location other
than zero.

IFZ230 PERMANENT I/O ERROR ON SYSOOx

Explanation: An unrecoverable I/O error occurred on the
device to which this file is assigned.

Assembler Action: The assembly is terminated. No listing is
produced.

Programmer Response: Re-assemble the program.

Operator Response: Rerun the job using a different device for
the. me indicated in the message.

IFZ231 INVALID DEVICE FOR SYSOOx

Explanation: The device assigned for this file cannot be used
as a work file by the assembler.

Assembler Action: The assembly is terminated. No listing is
produced.

Programmer Response: If you have supplied an ASSGN state
ment for this work file, correct the ASSGN statement so that it
specifies a direct-access device that can be used by the assem
bler. If you have not supplied any ASSGN statement, rerun
the job, making sure that the work files are assigned to direct-
access storage devices. '

Operator Response: Use the ASSGN command to .assign the
indicated file to a direct-access storage device, and rerun the job.

IFZ232 SYSxxx NOT ASSIGNED

Explanation: This file is required by the assembler, either
because it is a work file, or because it is required by an option
specified in the OPTION statement, but the me is not assigned
or the IGNORE option is specified for the file. The IGN option
is valid only for SYSPCH and SYSLST.

Assembler Action: The assembly is terminated. No listing is
produced.

Programmer Response: Rerun the job, making sure that the
indicated file is assigned, or change the corresponding option
on the OPTION statement. Or: Execute the LISTIO command
and verify the assignments. Submit an ASSGN command for
the file indicated in the message, and rerun the job.

IFZ233 ASSEMBLER PARTITION TOO SMALL/DE-EDITOR
PARTITION TOO SMALL

Explanation: The number of bytes allocated for the assembler
are not enough. The assembler must not be loaded into less
than 20K bytes. Note that in a foreground partition the
assembler is always loaded immediately after the save area.

Assembler Action: The assembly is terminated. No listing is
produced. '

Programmer Response: Specify a larger partition for the job
and rerun it.

Operator Response: 'Use the ALLOC command to increase the
size of the partition and rerun the job.

Appendix H: Communications Controller Assembler Messages-DOS/VS H-21

IFZ234 END OF EXTENT FOR SYSOOx

Explanation: The dire.ct access storage extent assigned for this
file is not large enough. Note that. multiple extents are not
used for an assembler work. file .

Assembler Action: The assembly is terminated. No listing is
produced.

Programmer Response: If you have supplied DLBL and
EXTENT statements for the me in your job, increase the extent
specified ~ the EXTENT statement and rerun the job. If not,
check the LSERVoutput to make sure that the standard assign
ment for this file specifies an extent that IS large enough. If
you do not wish to change the EXTENT size, separate the pro-·
gram into two or more source modules and assemble each
module separately. Or: If the standard assignment for the
file indicated in the message was used by this job, execute
LSERV, and return the output to the programmer.

IFZ236 ASSEMBLER CANNOT CONTINUE!
DE-EDITOR CANNOT CONTINUE

Explanation:

• If this message is preceded by other messages, the preceding
message explains the reason why the assembler cannot
continue.

• If the message is not accompanied by other messages, an
error in the logic of the assembler has been encountered.

Assembler Action: Assembly is terminated. No listing is pro
duced. If the message is caused by an error in the assembler,
a main storage dump of the assembler area is given.

Programmer Response: If the message is caused by another
error message, perform the actions indicated in the description
of that message. Otherwise, save your job stream, SYSLOG
listing and SYSLST listing to aid in problem determination,
before calling IBM.

Operator Response: If the message is preceded by another error
message, ignore this message, and perform the actions indicated
for this message. If this message appears alone, consider the
preceding job as terminated.

IFZ240 TOO MANY MACROS

Explanation: The capacity of the assembler is exceeded.

Assembler Action: All statements will be treated as comments.

Programmer Response: Separate the source module into
smaller modules, and assemble each module separately.

lFZ241 TOO MANY GLOBAL VARIABLE SYMBOLS

Explanations: The partition allocated to the assembler is not
large enough to process the source module because too many
global symbols have been used.

Assembler Action: All statements will be treated as comments.

Programmer Response: Increase the size of the partition, or
reduce the number of global symbols by grouping them together
in SET symbol arrays (subscripted SET sfmbols).

H·22 IBM 3104 and 3705 Assembler Language

IFZ242 INCONSISTENT TYPt; OF GLOB.AL VARIABLE
SYMBOL 'xxxxxxxx' IN 'yyYVyyyy'

Explanation: The type of variable symbol specified in the
declaration is inconsistent with.the type specified in another
macro or in open code. For example, if a global symbol is
declared as a: SETA symbolin one macro definition, it must
be declared as a SETA symbol in all macro defmitions where
it is used.

Assembler Action: All declarations incQnsistent with the fust
declaration are considered invalid. The macro definitions are
processed in the order in which they appear in the source
deck, with all outer macros fust, follo';Wd by the inner macros
of the first level, inner macros of .the second level, etc. Open
code is processed last. .

Programmer Response: Make sure all global declarations are
consisteIi t.

IFZ243 INCONSISTENT DIMENSION OF GLOBAL
VARIABLE SYMBOL 'xxxxxxxx' IN 'yyyyyyyy'

Explanation: Either the dimensions specified in declaration
of global variable symbols are different in different macros
and/or open code, or a global symbol is declared as dimen
sional in one macrodefmition and undimensional in another.

Assembler Action: All declarations inconsistent with the
fust declaration encountered are ignored. The macro defini
tions are processed in.the order in which they appear in the
source, with all outer macros frrst, followed by all,inner macros
of the fust level, all inner macros of the second level, etc. Open
code is processed last.

Programmer Response: Make sure all global declarations are
consisten t.

IFZ244 SYSSLB RECORD 'nnn' IN MACRO 'xxxxxxxx'
NOT IN SEQUENCE

ExpZtlnation: This library macro definition was not in the
proper order when it was cataloged; the specified record was
out of sequence.

Assembler Action: The macro is not generated.

Programmer Response: Catalog the macro defmition again,
making sure that all the records are Hi the rigiit sequence.

IFZ245 MACRO 'xxxxxxxx' CATALOGED UNDER
DIFFERENT NAME 'yyyyVYyy'

Explanation: This library macro defmition was not cataloged
under the right name; the name under which a macro is cata
loged must always be identical to the operation code of the
macro as it is specified in the macr"o prototype statement.

Assembler Action: The macro is not generated.

Programmer Response: Catalog the macro under its own name
(operation code), or change the operation to match the book
name.

IFZ246 UNEXPECTED END-OF-FILE ON SYSSLB AT
RECORD 'nnn' IN MACRO 'xxxxxxxx'

Explanation: End-of-file was encountered in the source state
ment library before the end of a book had been reached, or
record length is greater than 80 bytes. Since the end-of-file
indicator is normally only found at the end of the sublibrary,
the message indicates that the source statement library has
been destroyed.

Assembler Action: The macro is not generated.

Programmer Response: Reconstruct the source statement
library.

IFZ247 UNEXPECTED END OF BOOK AT RECORD 'nnn'
IN LIBRARY MACRO 'xxxxxxxx'

Explanation: Some cards at the end of this definition were
missing in this macro defmition when it was cataloged.

Assembler Action: The macro is not generated.

Programmer Response: Catalog a complete version of the
macro definition.

IFZ248 'xxxxxxxx' NOT AN EDITED MACRO

Explanation: The macro library book that corresponds to the
soecified operations code is not recognized as an edited macro.

Assembler Action: The macro is not generated.

Programmer Response: Catalog an edited version of the macro
definition.

IFZ250 ERRORS FOUND IN MACRO 'xxxxxxxx'
EDECK NOT PUNCHED

Explanation: Since errors were found in this macro definition,
no edited macro is punched, even though that is requested by
means of the EDECK option.

Programmer Response: Correct the errors in the macro defmi
tion and assemble again.

Appendix H: Communications Controller Assembler Messages-DOS/VS H-23

Appendix I: Communications Controller Assembler Messages-OS/VS

Component Name CWA= OS/VS

Program Producing Message IBM Communications Controller Assembler program during assembly of assembler
instructions (under OS/VS)

Audience and Where Produced For programmer: Assembler listing in SYSPRINT data set

For operator: Console

Message Format ss,***CWAnnn text
xx CW Annn text

(in SYSPRINT)
(on console)

ss
Severity code indicating effect on execution of program being assembled:

nnn

*
o
4

8

12

16

20

Informational message; no effect on execution

Informational message: normal execution is expected

Warning message; normal execution is probable

Error; successful execution is possible

Serious error; successful execution is improbable

Critical error; successful execution is impossible

Critical error; further assembly impossible; assembler program
execution terminated abnormally

Message serial number
text

Message text
xx

Message reply identification (absent, if operator reply notrequired)

CWAOOO UNDEFINED ERROR CODE I FOxxx

Explanation: An error code has been generated by the assembler
for which no message has been defined. This is ~aused by a log
ical error in the assembler.

Assembler Action: Assembly continues.

Programmer Response: Perform the actions described under
"Recurring Errors" above before calling IBM.

Severity Code: 16

Module Originating Message: CWAXIA·

CWAOO1 SYSTEM VARIABLE SYMBOL xxxxxxxx USED AS
SYMBOLIC PARAMETER IN MACRO PROTOTYPE

Explanation: A variable symbol used as a symbolic parameter
on a macro prototype statement has the same characters as a
system variable symbol. The system variable symbols are:

&SYSECT
&SYSUST
&SYSNDX

&SYSPARM
&SYSTIME
&SYSDATE

Assembler Action: Editing of the macro definition is terrninated.
All statements in the macro defmition are processed as
comments.

Programmer Response: Redefine the parameter with a variable
symbol other than &SYSPARM, &SYSDATE, &SYSTIME,
&SYSLIST, &SYSECT, or &SYSNDX.

Severity Code: 8

Module Originating Message: CWAXlJ

CWA002 SYMBOLIC PARAMETER xxxxxxxx IS DUPLICATED
IN SAME MACRO PROTOTYPE

Explanation: Two identical symbolic parameters have been
specified in the same macro prototype statement.

Assembler Action: Editing of the macro definition is terminated.
All statements in the macro definition are processed as
comments.

Programmer Response: Redefine one of the symbolic param
eters ~vith a variable symbol that is unique to that particular
macro defmitlon. "

Severity Code: 8

Module Originating Message: CWAXlJ

CWA003 SYSTEM VARIABLE SYMBOL xxxxxxxx USED IN"
OPERAND OF GLOBAL OR LOCAL DECLARATION

Explantion: A system variable symbol has been used in the
operand of a global or local declaration. The system variable
symbols are:

&SYSECT
&SYSLIST
&SYSNDX

-&SYSPARM
&SYSTIME
&SYSDATE

Appendix I: Communications Controller Assembler Messages-'-OS/VS 1-1

Assembler Action: The declaration conflicting with the system
variable symbol is ignored. All subsequent references to the
variable symbol in error are treated as references to the system
variable symbol.

Programmer Response: Redefme the variable symbol using
character combinations other than those listed above in the
explanation.

Severity Code: 8

Module Originating Message: CWAXlJ

CWA0004 GLOBAL OR LOCAL VARIABLE xxxxxxxx
DUPLICATES A SYMBOLIC PARAMETER IN SAME
MACRO DEFINITION

, Explanation: A variable symbol that appears in the operand
field of a global or local declaration is identical to a symbolic
parameter defmed on the macro prototype earlier in the macro
defmtion.

Assembler Action: The declaration conflicting with the symbolic
parameter is ignored. All subsequent references to it are treated
as references to the symbolic parameter that it duplicates.

Programmer Response: Redefme the global or local variable with
a variable symbol that is unique to the macro defmition.

Severity Code: 8

Module Originating Message: CWAXlJ

CWAOO5 GLOBAL OR LOCAL VARIABLE SYMBOL xxxxxxxx
DUPLICATES PREVIOUS DEFINTION

Explanation: A global or local variable symbol was declared
twice in the same macro defmition or in open code.

Assembler Action: The second declaration of the variable
symbol is ignored. All subsequent references to it are treated as
references to the first declaration.

Programmer Response: If the second declaration is LCLx,
redeclare it using a variable symbol unique to the macro defmi
tion or to open code. If the second declaration is GBLx,
redeclare it as for LCLX, but be sure that all. declarations of that
global variable elsewhere in the program are identical.

Severity Code: 8

Module Originating Message: CWAXlJ

CWA006 UNDEFINED VARIABLE SYMBOL xxxxxxx

Explanation: A variable symbol has been referenced in this
statement that is not a system vanable symbol; has not been
defmed within the macro delmition as a symbolic parameter, a
local variable, or a global variable; or has not been defmed in
open code as a local or global variable.

Assembler Action: The statement is processed as a comment,
unless the error has occurred in a macro instruction parameter.
If the macro instruction parameter contains an undefmed vari
able symbol, the parameter is assigned the value of a null string.

Programmer Response: . Defme the variable symbol as a symbolic
parameter, a local variable, or aglobalvariable; or, if desired,
reference a previously-defmed variable symbol of the appropriate
type. This message may be issued if an ampersand erroneously
appears as the first character of an ordinary symbol, and thus
creates an unintended variable symbol.

Severity Code: 8

Module Originating Message: CWAXlJ

1-2 IBM 3704 and 3705 Assembler Language

CWAOO7 USAGE OF xxxxxxxx IS INCONSISTENT WITH ITS
DECLARATION

Explanation: A global or local variable symbol was defined as
dimens~oned but was used without a subscript, or a global or
local variable symbol was defmed as undimensioned but was
used with a subscript.

Assembler Action: Editing of the statement that contains the
inconsistent usage is terminated, and the statement is processed
as a comment.

Programmer Response: Make the usage of the SET symbol con
sistent with its global or local declaration, or make the declara
tion of the SET symbol consistent with its usage.

Severity Code: 8

Module Originating Message: CW AXlJ

CWA008 CIRCULAR OPSYN STATEMENTS

Explanation: The assignment of a synonym in the operand field
of an OPSYN statement to the established mnemonic in the
name field results in the mnemonic being its own synonym. For
example:

ADD
PLUS
XYZ
ADD

OPSYN A
OPSYN ADD
OPSYNPLUS
OPSYN XYZ

The fmal OPSYN statement in the above sequence is flagged.

Assembler Action: The flagged OPSYN statement is processed as
a comment.

Programmer Response: Remove any OPSYN statement that
results in a circular defmition, or alter such an OPSYN statement
by respecifying the synonym or the mnemonic.

Severity Code: 8

Module Originating Message: CWAXlJ

CWAOO9 EDIT DICTIONARY SPACE EXHAUSTED

Explanation: The work space available is not sufficient to con
tain the dictionaries that are required to edit.the macro defIni
tion or open code.

Assembler Action: If a macro defInition is being edited, the
remaining statements up to the MEND statement are processed
as comments, and editing resumes. If open code is being edited,
the remaining statements up to the end-oi-fIle are processed as
comments.

Programmer Response: Increase the size of the region or parti
tion that is allocated to assembly, or allocate more dictionary
space via the BUFSIZE assembler option.

Severity Code: 12

Module Originating Message: CWAXI J

CWA010 SOURCE MACRO xxxxxxxx HAS BEEN PREVIOUSLY
DEFINED

Explanation: The mnemonic in the macro instruction prototype
of a source macro duplicates a mnenwnic already defmed as a
source macro.

Assembler Action: All statemellts in this macro definition are
processed as comments. Allsubsequent references to the
mnemonic are treated as references to the first defmition
associated with that op code.

Programmer Response: Provide a unique mnemonic op code for
the flagged macro prototype.

Severity Code: 8

Module Originating Message: CWAX1A

CWA012 ICTL OR OPSYN STATEMENT APPEARS TOO LATE
IN THE PROGRAM

Explanation:

• The ICTL statement does not precede all other statements in
the source module; or

• The OPSYN statement does not appear before source macro
definitions and open code statements. The only statements
that can precede an OPSYN statement are: ICTL,ISEQ,
TITLE, PRINT, EJECT, SPACE, OPSYN, COpy (unless the
member copied contains any other than the statements listed
here), and comments statements. "

Assembler Action: The ICTL or OPSYN statement is processed
as a comment.

Programmer Response: Place the ICTL or OPSYN statement at
the beginning of your program as described in the explanation
above.

Severity Code: 8

Module Originating Message: CWAXIA

CWA013 OPSYN NAME FIELD NOT ORDINARY SYMBOL, OR
OPSYN OPERAND FIELD NOT ORDINARY SYMBOL
OR BLANK

Explanation: The name or operand field of an OPSYN instruc
tion contains more than 8 alphanumeric characters or does not
begin with an alphabetic character.

Assembler Action: The OPSYN statement is processed as a
comment.

Programmer Response: Correct the invalid name field or operand
field.

Severity Code: 8

Module Originating Message: CWAX1A

CWA014 INVALID OPCODE IN OPSYN OPERAND OR NAME
FIELD

Explanation:

• The name field of an OPSYN instruction with a blank oper
and field does not specify a machine instruction operation
code, an extended machine instruction operation code, or an
assembler operation code; or

• The operand field of an OPSYN instruction does not specify
a machine instruction operation code, an extended machine
instruction operation code, or an assembler operation code.

Assembler Action: The OPSYN statement is treated as a comment.

Programmer Response: Make sure that ~e name field contains
a valid operation code, or supply a valid operation code in the
operand.

Severity Code: 8

Module Originating Message: CW AXlJ

CWA015 EXPRESSION VALUE EXCEEDS 262143 NEAR
OPERAND COLUMN nn

Explanation:

• An expression has been detected whose value exceeds
262143, near column nn.

Assembler Action: The statement is set to zero.

Programmer Response: Correct the expression so that its value
will be equal to or less than 262,143.

Severity Code: 8

Module Originating Message: CXAXsV

CWA016 ILLEGAL OR INVALID NAME t=IELD

Explanation: One of the following errors was detected.

• No name was found where one is required.

• A name was supplied where none is allowed.

• An invalid character was found in the name field.

Assembler Action: The statement is processed as a comment,
unless the error has occurred in the name field of a macro
instruction. If the macro name field parameter contains an
error, the parameter is assigned the value of a null string.

Programmer Response: C)upply a name if one is required, omit
the name if one is not allowed, or correct the invalid character.

Severity Code: 12

Modules Originating Message: CWAXIA, CWAX3A

CWA017 *COMMENT STATEMENT IS ILLEGAL OUTSIDE
MACRO DEFINITION

Explanation: An internal macro comments statement (.*) appears
outside macro defmitions (in open code).

Assembler Action: The statement is printed.

Programmer Response: Remove the. * comments statement. If
you want a comment, put an * in the begin column and follow
it by the comment.

Severity Code: 4

Module Originating Message: CW AXIA

CWA018 MORE THAN 5 ERRORS ON THIS STATEMENT,
ERROR ANALYSI~ OF THIS STATEMENT IS
TERMINATED

Explanation: The maximum number of error messages issued
during editing to each statement is s. The sixth error causes this
message. ,..
Assembler Action: Error analysis for this statement is terminated.

Programmer Response: Correct the indicated errors and
reassemble. Any additional errors on this statement will,be
detected in the next assembly.

Severity Code: 4

Module Originating Message: CWAXIA

Appendix I: Communications Controller Assembler Messages-OS/VS 1·3

'"

CWA019 INVALID OPERAND ON ICTL OR ISEQ STATEMENT

Explanation:

1. The value of one or more operands in an ICTL statement is
incorrect. The begin column must be within columns 1 to
40; the end column must be within columns ~1 to 80 and at
least 5 columns away from the begin column; and the con
tinue column must be within columns 2 to 40.

2. One of the following errors has occurred in an ISEQ
statement:

• The operand has an illegal range; the operand value
cannot fall between the begin and end columns, and the
second operand must not be less than the first.

• The operand field is invalid. The operand field must con
tain two valid decimal self-deiming terms, separated by
a comma or be blank.

Assembler Action: If a program contains an ICTL error, the
whole program is processed as comments. If one of the ISEQ
errors has occurred, no sequence checking is performed.

Programmer Response: Supply valid operand(s).

Severity Code: 8

Module Originating Message: CWAXIA

CWA020 INVALID BRANCH ADDRESS-DISPLACEMENT
EXCEEDS 2046

Explanation: A machine instruction with a 'T field' has a dis
placement which is greater than 2046 or less than -2046.

Assembler Action: The machine instruction is set to zero.

Programmer Response: Make sure that the displacement (in
respect to the address of the next sequential instruction after
the branch instruction) is less than or equal to 2046 or greater
than or equal to -2046.

Severity code: 8

Module Originating Message: CWAX5M

CWA021 INVALID TERM IN OPERAND

Explanation: An invalid term has been used in an expression of
the operand.

Assembler Action: The statement is processed as a comment.

Programmer Response: Make sure the operand is a character
relation, an arithmetic relation, a logical relation, a SETx sym
bol, a symbolic parameter, or a decimal self-deiming term.

Severity Code: 8

Module Originating Message: CWAXIA

.ICWA022 ICTL STATEMENT IS I LLEGAL IN COpy CODE

Explanation: An ICTL statement appears in code that is
inserted in the program by a COPY instruction.

Assembler Action: The ICTL statement is processed as a
comment.

Programmer Response: Make sure the ICTL instruction is not
in code inserted by the COpy instruction. If used, the ICTL
instruction must always be the iust instruction in your source
module.

Severity Code: 8

Module Originating Message: CWAXIA

1-4 IBM 3704 and 3705 Assembler Language

CWA023 ILLEGAL MACRO, MEND, OR MEXIT STATEMENT
MAY APPEAR ONLY WITHIN MACRO DEFINITIONS

Explanation: MACRO, MEND, or MEXIT statements are not
allowed in open code. They can be used only in macro defini -
tions. This message will be issued if an instruction other than
ICTL, ISEQ, OPSYN, TITLE, PRINT, EJECT, SPACE, or
COpy appears before any macro definitions in your program.
Of course, any such COpy instruction cannot copy any other
statements than ISEQ, OPSYN, TITLE, PRINT, EJECT, or
SPACE. This message will also be issued, if an undeimed opera
tion code appears before your macro deimitions.

Assembler Action: The invalid MACRO,MEND~or MEXIT
statement is processed as a comment.

Programmer Response: Remove the statement from open code
or place it within a macro deimition. Make sure that all your
macro deimitions are placed at the beginning, before open code.

Severity Code: 8

Module Originating Message: CW AXIA

CWA024 UNPAIRED PARENS, OR BLANK FOUND INSIDE
PAIRED PARENS

Explana tion:

• Unpaired parentheses appear in the operand field; or

• A blank appears inside paired parentheses in the operand
field of a macro instruction. This may be an error in sublist
structure; or

• A blank appears inside parentheses of an arithmetic
expression; or

• A term is missing in a logical expression.

Assembler Action: The operand in error is ignored.

Programmer Response: If unpaired parentheses appear, be sure
that there is a right parenthesis for every left parenthesis. Remove
illegal blanks inside paired parentheses.

Severity Code: 8

Module Originating Message: CWAXIA

CWA025 STATEMENT OUT OF SEQUENCE

Explanation: The input sequence checking specified by the
ISEQ instruction has determined that the flagged statement is
out of sequence.

Assembler Action: The statement is flagged and assembled,
however, the sequence number of the following statements will
be checked relative to this statement and not relative to the
sequence of previous statements.

Programmer Response: Put the statement in the proper
sequence.

Severity Code: 4

Module Originating Message: CW AXIA

CVVA026 CHARACTERS APPEAR BETWEEN THE BEGIN AND
CONTINUE COLUMNS ON CONTINUATION CARD

Explanation: On a continuation card, the begin column and all
columns between the begin column and the continue column
(usually column 16) must be blank.

Assembler Action: Characters that appear between the begin
column and the continue column are ignored.

Programmer Response: Determine whether the operand started
in the ~rong continue colUmn or whether the preceding card
contained an erroneous continue punch in column 72.

Severity Code: 4

Module Originating Message: CWAX1A

CWA027 ICTL.ISEO, MACRO, OR OPSYNSTATEMENT
APPEARS IN MACRO DEFINITION

Explanation: One of the specified operations is used within a
macro defmition, which is invalid.

Assembler Action: The illegal operation is ignored and the
statement is processed as a comment.

Programmer Response: Remove all ICTL, ISEQ, MACRO, and
OPSYN statements from within macro defmitions. Make sure
your ICTL and OPSYN instructions precede your macro defm
itions, and that each macro defmition ends with a MEND
statement.

Severity Code: 8

Module Originating Message: CWAXIA

CWA028 ILLEGAL PROTOTYPE KEYWORD PARAMETER
DEFAUtT VALUE

Explanation: A variable symbol is used as the default value of a
keyword parameter.

Assembler Action: The statement is ignored.

Programmer Response: Supply a valid default value for the key
word parameter.

Severity Code: ·8

Module Originating Message: CWAX1A

CWA029 xxxxxxxx IS AN ILLEGAL OPERAND IN A GLOBAL
OR LOCAL DECLARATION

Explanation: In a global (GBLx) or local (LCLx) SET symbol
declaration, the indicated operand does not consist of one or
more variable symbols that are separated by commas and termi
nated with a blank.

Assembler Action: The attempted global or local SET symbol
declaration is processed as a comment. Recovery is made in
certain circumstances and some valid variable symbols in the
declaration are recognized and defined correctly.

Programmer Response: Supply the operand with valid variable
symbols and delimiters. Check all global and local declarations.

Severity Code: 8

Module Originating Message: tw AX1A

CWA030 DECLARED DIMENSION OF xxxxxxxx IS ILLEGAL

Explanation: The declared dimension, which appears in the
error message, must be a nonzero,unsigned decimal integer, not
greater than 32,767, and enclos~d in parentheses.

Assembler Action: If the declared dimension was a decimal
self-defining term greater than 32,767, a default dimension of
32,767 is as~igned to the variable symbol. In all other cases, the
variable symbol declaration is ignored.

Programmer Response: Supply a valid dimension.

Severity Code: 8

Module OriginatingMessage: CWAX1A

CWA031 SET STATEMENT NAME NOT AVARIABLE SYMBOL,
OR SET STATEMENT NAME INCONSISTENT WITH
DECLARED TYPE

Explanation:

1. The name field of a SET statement does not consist of an
ampersand followed by from 1 to 7 alphameric characters,
the first of which is alphabetic.

2. The symbol does not match its previously declared type. For
instance, the symbol might have been previously defined as
LCLA, but the flagged statement may have tried to assign a
SETC character string to it.

3. A system variable symbol appears in the name field of a
SETx instruction. The system variable symbols are &SYSECT,
&SYSLIST, &SYSNDX, &SYSPARM, &SYSDATE, and
&SYSTIME.

Assembler Action: The flagged statement is processed as a
comment.

Programmer Response: Assign a valid variable symbol to the
name field of the SET statement (the symbol must be previously
defined as a global or local variable), or be sure that the usage
of the symbol corresponds to its previously declared type.

Severity Code: 8

Module Originating Mes~age: CWAX1A

CWA032 xxxxxxxx APPEARS IMPROPERLY IN THE OPERAND
OF THIS STATEMENT

Explanation: The specified operand part is invalid.

Assembler Action: The statement is processed as a comment.

Programmer Response: Check the syntax required for the oper
and field of this statement, and supply a valid operand.

Severity Code: 8

Module Originating Message: CWAXIA

CWA033 xxxxxxxx IS AN INVALID LOGICAL OPERATOR

Explanation: The specified character string was found where a
logical operator (AND or OR) was expected.

Assembler Action: The statement is processed as a comment.

Programmer Response: Use either AND or OR, as appropriate,
for the logical operator.

Severity Code: 8
Module Originating Message: CWAX1A

CWA034 INVALID BRANCH ADDRESS-DISPLACEMENT
EXCEEDS 126

Explanation: A machine instruction with a 'T field' has a dis
placement which is greater than 126 or less than -126.

Assembler Action: The machine instruction is set to zero.

Programmer Response: Make sure that the displacement (in
respect to the address of the next sequential itistruction after
the branch instruction)is less than or equal to 126 or greater
than or equal to -126.

Severity Code: 8

Module Originating Message: CWAXSM

Appendix I: Communications Controller Assembler Messages-OS/VS 1-5

CWA035 QUOTES NOT PAIRED~ OR ILLEGAL TERMINATION
. OF QUOTEDSTRING

Explanation: The quotes in the operand field of this statement
are unpaired, or the string is invalidly terminated.

Assembler Action: The statement Is processed as a comment.

Programmer Response: Supply any missing quotes.

Severity Code: 8

Modules Originating Message: CWAXIA, CWAX5D

CWA036 ATTRIBUTE REFERENCE FOR xxxxxxxx IS INVALID

Explanation: The flagged statement has attempted to reference
a symbol that is not a valid ordinary or variable symbol. The
attributes referenced were one or more of the following: type
(T'), length (L'), scaling (S'), integer (I'), count (K'), and
number (N').

Assembler Action: The attribute referenced is ignored, and/or
the statement is ignored, and/or default values for type, length,
and scaling attributes are supplied.

Programmer Response: Determine if a clerical error was made
in coding either the reference or the definition of the symbol
that appears in the message text; or supply a valid ordinary or
variable symbol where necessary.

Severity Code: 8

Module Originating Message: CWAXIA

CWA037 xxx xxx xx IS AN I LLEGAL SUBSCRIPT

Explanation: The subscript that appears in the message text
either is not enclosed by paired parentheses, or is an invalid
subscript.

Assembler Action: The statement that contains the invalid
subscript is processed as a comment.

Programmer Response: Be sure the parentheses are paired, and
that a valid subscript appears inside them.

Severity Code: 8

Module Originating Message: CWAXIA

CWA038 xxxxxxxx IS AN INVALI D SELF~DEFINING TERM

Explanation: The characters specified in the message are invalid
in the operand field of a binary (type B), character (type C),
decimal, or hexadecimal (type X) self-defming term.

Assembler Action: The statement that contains the invalid self
defming term is processed as a comment.

Programmer Response: Make sure that the characters used for a
self-defming term are consistent with the type of term.

Severity Code: 8

Module Originating Message: CWAXIA

CWA039 xxxxxxxx IS AN INVALID VARIABLE SYMBOL

Explanation: The specified symbol does not consist of an
ampersand followed by from 1 to 7 alphameric characters, the
first of which is alphabetic.

Assembler Action: The statement that contains the invalid
variable symbol is processed as a comment. If the statement is a
macro prototype statement, all statements in the macro defmi
tion are treated as comments.

1-6 IBM 3704 and 3705 Assembler Language

Programmer Response: Supply a valid variable symbol, or check
that a single ampersand is not used where a double ampersand is
needed.

Se.ver(ty Code: 8

Module Originating Message: CWAXIA

CWA040 INVALID M·FIELONEAR OPERAND COi..UMN nn

Explanation: The binary value of the three-bit n-field in the
Branch-on-Bit instruction (BB) did not specify bits 0-7.

Assembler Action: The instruction is set to zero.

Programmer Response: Correct the m-field designator to
indicate bits 0 to 7 only.

Severity Code: 8

Module Originating Message: CW AXSM

CWA041 M·FIELD GREATER THAN 7 NEAR OPERAND
COLUMN nn

Explanation: The binary value of the three-bit n-field in the
Branch-on-Bit instruction (BB) is greater than 7.

Assembler Action: The statement is set to zero.

Programmer Response: Correct the m-field designator to indicate
bits 0 to 7 only.

Severity Code: 8

Module Originating Message: CW AXSM

CWA042 PARAMETER IN MACRO PROTOTYPE OR MACRO
INSTRUCTION EXCEEDS 255 CHARACTERS

Explanation: A parameter value that appears in the operand
fields of either a macro prototype or a macro instruction exceeds
255 characters in length.

Assembler Action: The first 255 characters of the parameter are
deleted. The remaining characters are used as the parameter
value.

ProgrammerResponse: Limit the parameter to 255 characters
or separate it into two or more parameters.

Severity Code: 8

Module OriginatingMessage: CWAXIA

CWA043 MACRO INSTRUCTION PROTOTYPE STATEMENT
HAS I NVALI D OP CODE

Explanation:

• The operation code of a macro prototype statement is pre
viously defmed as the operation code of a machine, assem
bier, or macro instruction; or

• The operation code of a macro prototype statement is not a
valid ordinary symbol; that is, it does not consist of a letter,
followed by 0 to 7 letters or digits or both.

Assembler Action: The entire macro defmition is processed as
comments.

Programmer Response:· Supply a valid ordinary symbol that
does not conflict with any machine, assembler, or macro
instruction operation code.

Severity Code: 8

Module Originating Message;' CWAXIA

CWA046 STATEMENT COMPLEXITY EXCEEDED

Explanation: The expression evaluation work area has overflowed
because the expression is too complex. The complexity of an
expression is determined by the number of nested operators and
levels of parentheses. Up to 35 operators and levels of parenthe
ses are allowed. For logical expressions, this total allows 18
unary and binary operators, and 17 levels of parentheses. For
arithmetic expressions in conditional assembly, the total ,allows
24 unary and binary operators, and 11 levels of parentheses.

Assembler Action:- The statement is processed as a comment.

Programmer Response: Simplify the expression to the limits
described in the explanation.

Severity Code: 8

Module Originating Message: CWAX1A

CWA047 UNEXPECTED END OF FI LE ON SYSTEM INPUT
(SYSIN)

Explanation:

• A continuation record was expected when an end-of-flle
occurred on SYSIN (the source program ended); or

• End-of-flle immediately follows a REPRO statement; or

• End-of-flle occurs before an END card has been read.

Assembler Action: An END statement.is generated and assembly
continues.

Programmer Response: Determine if any statements were omit
ted from the program.

Severity Code: 4

Module Originating Message: CW AX1A.

CWA048 ICTL STATEMENT HAS NO OPERAND

Explanation: The ICTL statement requires an operand, but none
is present.

Assembler Action: The entire source module is processed as
comments.

Programmer Response: Supply from 1 to 3 decimal self-defming
terms to indicate respectively the begin, end, and continue col
umns. If the ICTL statement is omitted, columns 1, 71, and 16,
respectively, are the default values.

Severity Code: 8

Module Originating Message: CWAX1A

CWA049 COpy STATEMENT OPERAND NOT A VALID
ORDINARY SYMBOL

Explanation: The operand of a COpy statement is not a symbol
of 1 to 8 alphameric characters, the fIrst of which is alphabetic.

Assembler Action: The COpy request is processed asa comment.

Programmer Response: Supply a valid ordinary symbol in the
operand m~ld.

Severity Code: 8

Module Originating Message: CWAX1A

CWA050 COpy STATEMENT DOES NOT HAVE, AN OPERAND

Explanation: No operand found on this COPY statement.

Assembler Action: The statement is processed as a comment.

Programmer Response: Place the name of a member to be
copied in the operand fIeld, or remove the COpy statement.

Severity Code: 8

Module Originating Message: CWAX1A

CWA051 UNEXPECTED END OF DATA ON SYSTEM LIBRARY
(SYSLlB)

Explanation: An end-of-flle occurred on the input from a sys
tem llbrary before a MEND statement terminating a macro
defmition was encountered.

Assembler Action: The missing MEND statement is generated.

Programmer Response: Determine if the MEND statement was
omitted from the library macro, or if the library contains an
otherwise incomplete macro defmition, or if a macro call has
been made to a non-macro definition.

Severity Code: 4

Module Originating Message: CWAX1A

CWA052 UNARY OPERATOR NOT A PLUS OR MINUS SIGN

Explanation: An operator other than a plus or minus sign appears
as a unary operator. Except for unary operators, which are
limited to plus and minus signs, only one operator can appear
between two terms. .

Assembler Action: The statement is processed as a comment.

Programmer Response: Supply the missing term or a correct
operator.

Severity Code: 8

Module Originating Message: CWAX1A

CWA053 OP CODE NOT FOUND ON FIRST OR ONLY CARD

Explanation: The complete statement name (if one is used) and
the operation code, each followed by a blank, do not appear
before the continuation indicator column on the first card of a
continued statement.

Assembler Action: The entire statement is processed as a
comment.

Programmer Response: Make sure that both the name and opera
tion code of the statement appear on the flIst card. Check for
Syntactic errors.

Severity Code: 8

Module Originating Message: CWAX1A

CWA054 INVALID OPERATION CODE

Explanation:

• The operation code specifIed is not a valid ordinary symbol;
or

• A variable symbol in the operation field is invalid; or

• The resulting oPeration code after substitution with or with
out concatenation is not a valid ordinary symbol.

Assembler Action: The statement is processed as a comment.

Appendix I: Communications Controller Assembler Messages-OS/VS 1-7

Programmer Response: Make sure that ordinary or variable
symbols used in the operation field arevalld. If you use variable
symbols with or without concatenation, make sure the resulting
symbol is a valid ordinary symbol.

Severity Code: 8

Module Originating Message: CWAXIA

CWA055 MEND STATEMENT GENERATED

Explanation: An end-of-fIle occurred on the input from the
system input device (SYSIN) or the system library.(SYSUB)
before a MEND statement terminating a macro defmition was
encountered.

AssemblerAction: A MEND statement is generated.

Programmer Response: Supply a MEND statement to terminate
the macro definition.

'Severity Code: 8

Module Originating Message: CWAXIA

CWA057 DUPLJCAT/ON FACTOR xxxxxxxx IN SETC
EXPRESSION NOT TERMINATED BY ARIGHT
PARENTHESIS

Explanation: A SETC operand begins with a left parenthesis, but
a comma, a period, or a blank appears before the closing right
parenthesis.

Assembler Action: The statement is processed as a comment.

Programmer Response: Supply a right parenthesis.

Severity Code: 8

Module Originating Message: CWAXIA

CWA058 NO ENDING QUOTE ON SETC EXPRESSION

Explantion: The character expression in the operand field of a
SETC statement must be enclosed in quotes. The statement ends
before a delimiting quote.

Assembler Action: The statement is processed as a comment.

Programmer Response: Supply any missing quotes.

Severity Code: 8

Module Originating Message: CW AXIA

CWA059 INVALID TERM IN LOGICAL EXPRESSION

Explanation: One of the terms in the logical expression is
invalid in the context.

Assembler Action: The statement is processed as a comment.

Programmer Response: Make sure that the terms in the logical
expression are valid.

Severity Code: 8

Module Originating Message: CWAXIA

CWA060 END STATEMENT GENERATED

Explanation: One of two errors occurred.

1. End-of-file occurred on the system input device (SYSIN)
before' an END card was read.

2. The ACTR limit was exceeded in opellcode.

Assembler Action: An END statement is generated.

1-8 IBM 3704 and 3705 Assembler Language

Programmer Response:

1. Supply a valid END statement; or
2. Either correct the conditional assemblr, loop in open code

so that the ACTR lim~t is not exceeded, or set. the ACTR
limitfu o~n' code to a higher va1u~~ .

Severity Code: 4

Modules Originating Message: CWAXIA~ CWAX3A, CWAXSA
"

CWA061 COpy NEST GREATER THAN FIVE'

Explanation: The maximum limit of five' nested levels of COpy
statements is exceeded.

Assembler Action: COPY processing terminates.

Programmer Response: Eliminate excessive levels of COpy
statements.

Severity Code: 8

Module Originating Message: CWAXIA

CWA062 REQUIRED OPERAND FIELD MISSING

Explanation: This statement requires an operand in the operand
field and none is present.

Assembler Action: The statement is processed as a comment.

Programmer Response: Supply the missing operand.

" Severity Code: .8

Modules Originating Message: CWAXIA, CWAXSD

CWA063 VALUE OF EQO MUST BE POSITIVE-VALUE SET TO
ZERO

Explanation.~ The expression to the EQU has the high.order bit
turned on. The value of the EQU can only be 0-262,143
(2 18_1).

Assembler Action: The statement is processed as an EQU O.

Programmer Response: Make the absolute value or the relocat
able value of the expression positive.

Severity Code: 8

Module Originating Message: CWAXSA

CWA064 INTERLUDE DICTIONARY SPACEE"XHAUSTED

Explanation: The work space available is not sufficient to con
tain the dictionaries required to build either:

1. The skeleton dictionary for a macro deimition or all of open
code, or

2. The ordinary'symbol attribu,te,reference dicti~nary.

This message is always logged against statement number O.

Assembler Action: If a macro is be'ing processed, building. of the
skeleton dictionary for that macro deimition is terminated and
the macro will not be expanded.: If open code is being pro
oossed, the. building of the open code skeleton dictionary is
terminated and the program is processed as 'commentS. If space
for the ordinary symbol attribute reference dictionary is
exhausted, the building ofit is abandoned.

Programmer Response: Within the:'partitio:ii'~inci:ease the size of
the region that is allocated to assembly, or allocate more of the
partition to dictionary space via the BUFSIZE assembler option.

Severity Code: 12

Module Originating Message: CWAX2A

CWA065 EXPRESSION 2 OF EQU SYMBOL xxxxxxxx NOT IN
RANGE 0-65535

Explanation: The value of the expression specified in the second
operand of the EQU instruction where this symbol is defmed is
not in the range 0-65535.

This message is always logged against statement number O.

Assembler Action: The length attribute of the symbol is set to 1.

Programmer Response: Make sure the value of the second oper
and of the EQU instruction is in the range 0-65535, or delete the
second operand.

Severity Code: 8

Module Originating Message: CWAX2A

CWA066 EXPRESSION 3 OF EQU SYMBOL xxxxxxxx NOT IN
RANGE 0-255

Explanation: The value of the expression specified in the third
operand of the EQU instruction where this symbol is defmed is
not in the range 0-255.

This message is always logged against statement number O.

Assembler Action: The type attribute of the symbol is set to U.

Programmer Response: Make sure .. the value of the third operand
of the EQU instruction is in the range 0-255, or delete the third
operand.

Severity Code: 8

Module Originating Message: CWAX2A

CWA067 DECLARED DIMENSION FOR GLOBAL VARIABLE
xxxxxxxx IN xxxxxxxx xxxxxxxx IS INCONSISTENT

Explanation: The declared dimension of a global variable
defmed in a macro defmition orin open code is not consistent
with the declared dimension of the same global variable in
another macro defmition or in open code.

This message is always logged against statement-number O.
The message text identifies the macro (or open code) where the
error is found.

Assembler Action: All references to the global variable in the
macro definition or in open code where the inconsistency was
detected result in a null (zero) value.

Programmer Response: Be sure that all defmitions of a given
global variable have the same declared dimension.

Severity Code: 4

Module Originating Message: CWAX2A

CWA068 COpy MEMBER xxxxxxxx NOT FOUND IN LIBRARY

Explantion: The COPY member shown in the message text was
not found in the library.

Assembler Action: The COpy statement is processed as a
comment.

Programmer Response: Determine whether the library member
name is misspelled or whether an incorrect member name was
referenced. Make sure the proper macro library is assigned in
your JCL statements.

Severity Code: 8

Module Originating Message: CWAXIA

CWA069 TOO MANY CONTINUATION CARDS, TWO ALLOWED

Explanation: Only two continuation cards are allowed for each
statement, except for macro defmition prototype and macro
call statements.

Assembler Action: Excess continuation cards are processed as
comments.

Programmer Response: Restructure the statement so that it
can be contained on a total of three cards. Extensive remarks
may be recorded as comment statements by coding an asterisk
in column 1 and eliminating the continuation indicators.

Severity Code: 4

Module Originating Message: CWAXIA

CWA070 SUBSTRING NOTATION IS NOT DELIMITED BY
COMMA OR RIGHT PARENTHESIS

Explanation: Two SETA expressions used in substring notation
are not separated by a comma or enclosed in parentheses.

Assembler Action: The statement is processed as a comment.

Programmer Response: Supply the missing delimiter, or check
for other syntax errors that make this appear as substring
notation.

Severity Code: 8

Module Originating Message: CWAXIA

CWA073 AGO OR AIF OPERAND NOT A SEQUENCE SYMBOL

Explanation: The symbol in the operand field of an AlF or
AGO statement is not a period (.}.followed by from 1 to 7
alphameric characters, the first of which is alphabetic.

Asssembler Action: The statement is processed as a comment.

Programmer Response: Supply a valid sequence symbol.

Severity Code: 8

Module Originating Message: CWAXIA

CWA074 SEQUENCE SYMBOL xxxxxxxx IS MULTIPLY
DEFINED IN xxxxxxxx xxx xxx xx

Explanation: The sequence symbol in: the name field has been
used in the name field of a previous statement within the same
macro defmition or open code.

This message is always logged against statement number O.
The message text identifies the macro (or open code) where the
error is found.

Assembler Action: All defmitions of the sequence symbol after
the first one are ignored. All references to the sequence symbol
are treated as references to the first definition.

Programmer Response: Provide unique sequence symbols for
the macro definition or open code.

Severity Code: 4

Module Originating Message: CWAX2A

CWA076 SEQUENCE SYMBOL xxxxxxxx IS UNDEFINED IN
xxxxxxxx xxx xxx xx

Explanation: A sequence symbol appears in the operand of an
AlF or AGO statement, but does not appear in the name field of
another statement in the same macro defmition or open code.

Appendix I: Communications Controller Assembler Messages-OSNS 1-9

This message. is always logged against statement number O.
The message text identifies the macro "(or open code) where the
error is found.

Assembler Action: All statements which reference the undefined
sequence symbol are processed as comments.

Programmer Response: Define the sequence symbol at the
appropriate point, or reference a sequence symbol that is
already defined.

Severity Code: 4

Module Originating Message: CWAX2A

CWA078 UNDEFINED OP CODE

Explanation: The mnemonic operation code of this statement
does not correspond to any of the following:

• a machine instruction operation code

• an extended machine instruction operation code

• an assembler instruction operation code

• a macro instruction operation code

• an operation cQde that has been defined by an OPSYN
instruction.

This message is also issued for operation codes that have
been deleted by OPSYN instructions.

Assembler Action: The statement is treated as a comment. If
the statement appears before open code, all statements follow
ing it are considered to belong to open code. This means that
any macro defmitions following the error are treated as errors.

Programmer Response: Either make sure you use a valid
mnemonic operation code, or make sure that the proper OPSYN
instructions are included in your program.

Severity Code: 12

Module Originating Message .. CWAX3A

CWA080 ATTRIBUTE REFERENCE TO UNDEFINED SYMBOL

Explanation: The symbol specified in a length (1'), scaling (S'),
or integer (I') attribute reference is either an undefined symbol
or a symbolic parameter (or a &SYSLIST specification) repre
senting an undefmed symbol.

Assembler Action:

• The ltmgth attribute, if specified, is set to 1.

• The integer or scaling attribute, ifspecified,is set to O.

Programmer Response: Make sure the symbol is defmed.

Severity Code: 4

Module Originating Message: CWAX3A

CWA081 DECLARED TYPE FOR GLOBAL VARIABLExxxxxxxx
IN xxxxxxxx xxxxxxxx IS INCONSiSTENT

Explanation: The type (GBLA, GBLB, or GBLC) of a global
variable declared in a macro defmition or in open code is no't
consistent with the type of the same global variable declared in
another macro' defmition or in open code.

This message is always logged against statement number O.
The message text identifies the macro (or open code) where the
error is found.

Assembler Action: All references to the global variable in the
macro definition or in open code where the inconsistency was
detected result in a null (zero) value.

1-10 IBM 3704 and 3705 Assembler Language

Programmer Response: Make all declarations of the same global
variable consistent.

Severity Code: 4

Module Originating.Message: CWAX2A

CWA085 MACRO HEADER MISSING, MACRO NOT
EXPANDABLE

Explanation: The first statement of a libarary macro defmition
was not a MACRO statement, and the search for the macro
definition is terminated.

Assembler Action: The macro call is processed as a comment.

Programmer Response: Be sure that the lib~ary macro defmi
tion begins with a MACRO statement.

Severity Code: 8

Module Originating Message: CWAX3A

CWA087 INVALID MACRO DEFINITION PROTOTYPE, MACRO
NOT EXPANDABLE

Explanation: A comment statement appears immediately after
a macro header (MACRO statement).

Assembler Action: All the statements of the macro definition
are processed as comments.

Programmer Response: Make sure that the statement immediately
following the macro header is a macro prototype statement. No
comments or any other statements.are permitted between the
macro header and the prototype of a macro defmition.

Severity Code: 8

Modules Originating Message: CWAXIA, CWAX3A

CWA088 LIBRARY MACRO PROTOTYPE DOES NOT MATCH
MEMBER NAME-MACRO NOT EXPANDABLE.

Explanation"~ The mnemonic operation code in the macro pro
totype in a library macro defmition does not match the entry in
the macro library.

Assembler Action: The macro instruction is processed as a
comment.

Programmer Response: Enter the macro definition in the library
under the same name as the mnemonic opcode that appears on
the macro prototype.

Severity Code: 8

Module Originating Message;" CWAX3A

CWA089 GENERATION-TIME DICTIONARY SPACE
EXHAUSTED

Explanation: The workspace available is not sufficient to con
tain the dictionaries required to expand the macro, to extend a
SETC variable, or to contain the basic global dictionaries.

AssemblerAction: If the global dictionary workspace is insuffi
cient, the· text is processed as comments. If there is insufficient
space to extend the SETC variable, expansion of the macro that
contains the variable is terminated. If the space for macro defin
ition dictionaries is insufficient, calls to those macros are not
expanded.

Programmer Response: Wit~ the partition, increase the size of
the region that is allocated to assembly, or allocated more of the
partition to dictionary space via the BUFSIZE assembler option.

Severity Code:·· 12 .

Module Originating Message: CW AX3N

CWA090 UNDEFINED SEQUENCE SYMBOL ENCOUNTERED
DURING CONDITIONAL ASSEMBLY

Explanation: A sequence symbol referenced in the operand
field of this statement is undefmed in the macro defmition or
open code. This statement has been encountered during condi
tional assembly.

Assembler Action: The statement is processed as a comment.

Programmer Response: Defme the sequence symbol at an
appropriate point, or reference a sequence symbol that is already
defined.

Severity Code~' 8

Module Originating Message: CWAX3A

CWA091 KEYWORD PARAMETER xxxxxxxx IS DUPLICATED
ON SAME MACRO CALL

Explanation: A keyword parameter has appeared more than
once on the same macro instruction.

Assembler Action: The last value assigned to the parameter is
used, the othervalue(s) are ignore.d.

Programmer Response: Derme only one value for each
parameter.

Severity Code: 8

Module Originating Message: CWAX3N

CWA092 KEYWORD PARAMETER xxxxxxxx UNDEFINED IN
MACRO DEFINITION

Explanation: A keyword parameter has been used in the macro
instruction that is not a keyword parameter in the macro pro
totype, or an/equal sign not surrounded by quotes is found in a
positional parameter.

Assembler Action: The extra keyboard parameter in the macro
instruction is ignored ..

Programmer Response:

1. Delete the keyword paranieter and its value from the macro
instruction; or

2. make the keyword parameter in the macro call correspond to
one of the keyword parameters in the macro prototype; or

3. defme the keyword parameter in the operand field of the
macro prototype; or

4. if you wish to include an equal sign in a positional parameter,
enclose the parameter within single quotes.

Severity Code: 8

Module OriginaffngMessage: CWAX3N

CWA100 DICTIONARY SPACE EXHAUSTED, NO SKELETON
DICTIONARY BUI LT

Explanation:

• If the message is given for a macro definition or for open
code: no available space is left to build the skeleton diction
ary after space has been used for the definition of global
symbols.

• If the message is given for a macro instruction; dictionary
space was exhausted during the editing of a library macro.

Assembler Action: The macro is not considered defined, and any
calls to it are processed as comments. If the error occurs in open
code, the entire assembly is processed as comments.

Programmer Response: Within the partition, increase the size of
the region that is allocated to assembly, or allocate more of the
partition to dictionary space via the BUFSIZE assembler option.

Severity Code: 8

Module Originating Message: CW AX3A

CWA101 GENERATED OP CODE INVALID OR UNDEFINED

Explanation: The operation code created by substitution is not
a valid ordinary symbol or is not a valid machine, assembler, or
macro instruction, or is not defined by an OPSYN instruction.

Assembler Action: The generated statement is treated as a
comment.

Programmer Response: Be sure that substitution results in a
valid ordinary symbol that consists of froml to 8 alphameric
characters, the first of which is alphabetic, and that the resulting
symbol is a defined operation code.

Severity Code: 8

Module Originating Message;' CWAX3A

CWA102 GENERATED OP CODE IS BLANK

Explanation: The op code created by' substitution contains no
characters, or from 1 to 8 blank characters.

Assembler Action: The generated statement is processed as a
comment.

Programmer Response: Be sure that substitution results in a
valid ordinary symbol that consists of from 1 to 8 alphameric
characters, the first of which is alphabetic.

Severity Code: 8

Module Originating Message: CWAX3A

CWA104 MORE THAN ONE TITLE STATEMENT NAMED

Explanation: This is at least the second TITLE statement that
contains something other than a sequence symbolor blanks in
the name field.

Assembler Action: The name field is ignored.

Programmer RespOnse: Be sure that the name fields of all but
one TITLE statement contain only sequence symbols or bianks.

Severity Code: 4

Module Originating Message: CWAX3A

CWA105 GENERATED FIELD EXCEEDS 255 CHARACTERS

Explanation: As a result of substitution, a character string that
is longer. than 255 characters has been generated.

Assembler Action: The first 255 characters are used.

Programmer Response: Limit the generation of any character
string to 255 characters, minus the number of rion-substituted
characters. (Limit substitution in the name and operation fields
to 8 characters, in the operand field to 255 characters.)

Severity Code: 8

Module Originating Message: CWAX3A

Appendix I: Communications Controller Assembler Messages-OS/VS 1-11

CWA107 CHARACTER STRING USED AS AN ARITHMETIC
TERM EXCEEDS 10 CHARACTERS

Explanation: A character string used in a SET A expression or in
an arithmetic relation in a SETB expression is longer than 10
characters. Ten is the maximum number of characters permitted
in a decimal self-deiming term.

Assembler Action: The character string is replaced by an
arithmetic value of zero.

Programmer Response: Be sure that all character strings used as
described in the explanation are from 1 to 10 decimal digits
with a value in a range of 0 to 2,147,483,647. Also be sure that
the values of all variables that contribute tQ the generation of the
character string are valid for their type.

Severity Code: 8

Module Originating Message: CW AX3A

CWA108 CHARACTER STRING USED AS AN ARITHMETIC
TERM CONTAINS NON-DECIMAL CHARACTERS

Explanation: A character string used in a SETA expression or in
an arithmetic relation ina SETB expression contains characters
other than 0 through 9.

Assembler Action: The character string is replaced by an
arithmetic value of zero.

Programmer Response: Be sure that all character strings used in
a SETA expression or as an arithmetic relation in a. SETB
expression contain from 1 to 10 decimal digits with a value in
the range of 0 to 2,147,483,647. Also be sure thlilt the values of
all variables that contribute to the generation of the character
string are valid for their type.

Severity Code: 8

Module Originating Message: CWAX3A

CWA109 CHARACTER STRiNG USED AS AN ARITHMETIC
TERM IS A NULL STRING

Explanation: A character string used in a SETA expression or
in an arithmetic relation in a SETB expression is zero characters
in length.

Assembler Action: The character string is replaced by an arith
metic value of zero.

Programmer Response: Be sure that all character strings used in
an arithmetic con text are from 1 to 10 decimal digits with a
value in a range of 0 to 2,147,483,647. Also make sure that the
values of aJl variables that contribute to the generation of the
character string are valid.

Severity Code: 8

Module Originating Message: CWAX3A

CWA110 ARITHMETIC OVERFLOW IN INTERMEDIATE
RESULT OF SETA EXPRESSION

Explanation: During the evaluation of a SETA expression, an
intermediate value was produced that was outside the range of
_231 to 231 _1. . .

Assembler Action: The intermediate result is replaced by an
arithmetic vaiue of zero. .

1-12 IBM 3704 and 3705 Assembler Language

Programmer Response: Be sure that the values of all variables
that contribute to the intermediate result are valid. No ex~ression
should ever attempt a value outside the range of _231 to 2 1_1.

Overflow may be avoided if you adjust the sequence of expression
evaluation, or if you separate components of the expression and
evaluate them individually (perhaps by additional SET state
ments) before combining them.

Severity Code: 8

Module Originating Message: CWAX3A

CWA 111 SUBSCRIPT EXPRESSION HAS A ZERO OR
NEGATIVEVALUE

Explanation: A term or a SETA expression ~sed as the sub
script on a dimensioned global or local variable symbol results
in a zero .or negative value.

Assembler Action: Any such reference to the dinlensioned
variable results in a null (zero) value.

Programmer Response: Be: sure that the values Of all the vari
ables that contribute to the subscript are valid. Expressions
that are used as subscripts must have a value in the range of 1
through the declared dimension of the global or local variable;
A zero subscript is allowed only on the system variable
&SYSLIST.

Severity Code: 8

Module Originating Message: CW AX3A

CWA112 SUBSCRIPT EXPRESSION EXCEEDS DECLARED
DIMENSION

Explanation: A term or a SETA expression used as the sub
script on a dimensioned global or local variable results in a value
greater than the declared dimension of the variable.

Assembler Action: Any such reference results in a null (zero)
value.

Programmer Response: Be sure that all terms and variables that
contribute to the subscript have. valid values. Be sure that a term
or a SETA expression used .as a subscript has a value in the range
of 1 through the declared dimension of the global or local
variable.

Severity Code: 8

Module Originating Message: CWAX3A

CWA113 ILLEGAL REFERENCE MADE TO A PARAMETER
THAT IS A SUBLIST

Explanation: A reference has been made in a SETA or SETB
expression (that is, in an arithmetic context) to a parameter
that is a sub list.

Assembler Action: The reference to the parameter results in an
arithmetic value of zero.

Programmer Response: Check to see that the proper parameter
is being referenced. Be sure that an appropriate value is assigned
to a parameter that is referenced in a SETA or SETB expression.
Check for a missing subscript.

Severity Code: 8

Module Originating Message: CWAX3A

CWA114 NEGAtiVE DUPLICATION FACTOR IN CHARACTER
STRING

Explanation: A term or a SETA expression that is used as the
duplication factor m a SETC operand'results in a negative value.

Assembler Action: The duplication factor is set to an arithmetic
value of zero.

Programmer Response: Be sure that any term or expression
used ,as a duplication factor has ~ positive value" and tl1at the
values brall variables that contribute to the duplication factor
are valid.

Severity Cod~: 8

Module Originating Message: CWAX3A

CWA115 fiRST EXPRESSION IN SUeSTRING,NOTATION HAS
ZERO OR NEGATIVE VALUE

Explanation: A territor SETA expression that is used to'specify
the starting character for a substring operation has a zero or
nega tivevallle.

Assembler Action: The assembler assigns the value of null to
the substring.

Programmer Response: A term, a SETA expression, or a com
bination of variables used to produce the first expression in a
substring notation must result in a positive, nonzero value, not
exceeding the length of the character string.

Severity Code: 8

Module Originating Message: CWAX3A

CWA116 SECOND EXPRESSION IN SUBSTRING NOTATION
H.AS ,I\IEGATIVE VALUE

Explanation: A term or SET A expression that is used to specify
, the number of characters affected by a substring operation has
a negative vlllue. ','

Assembler Action: The· value of the second expression of the
substring notation is set to 0, that is, the assembler assigns ~
value of null to the substring.

Programmer Response: A term,a SETA expression, or a com
bination of variables u'sed to produce the second expression in a
su"string notation must result in, a non-negative value.

Severity Code: 4

Module Originating Message: CW AX3A

CWA117 FIRST EXPRESSION IN SUBSTRING NOTATION
EXCEEDS THE LENGTH OF THE STRING

Explanation: A term or SETA expression that specifies the
starting character for a substring operation specifies a character
beyond the end of the string.

Assembler Action: The assembler assigns the value of null to
the substring.

Programmer Response: Make sure the term, SETA expression, or
combination of variables used to produce the first expression in
a substring notation results in .. a value in the range of 1 through
the length of the character string.

Severity Code: 8

Module Originating Message: CWAX3A

CWA118 ACTR LIMIT HAS BEEN EXCEEDED

Explanation: The number of AIF and AGO branches within the
text segment exceedsthe value specified in the ACTR instruc
tion or the conditional assembly loop counter default value.

Assembler Action: If a macro is being expanded, the expansion
is terminated. If open code is processed, all remaining statements
are processed as comments.

Programmer Response: Correct the conditional assembiy loop
that caused the ACTR limit to be exceeded, or set the ACTR
value to a higher number.

Severity Code: 8

Module Originating Message: CWAX3A

CWA119 ILLEGAL TYPE ATTRIBUTE REFERENCE

Explanation: A type attribute reference is made to a symbol
defined by an EQU instruction with an invalid third operand.

Assembler Action: The type attribute value is set to U.

Programmer Response: Correct the third operand on the EQU
instruetion. It must be a self-defining term in the range 0-255.

Severity Code: 4

Module Originating Message: CW AX3A

CWA120 ILLEGAL LENGTH ATTRIBUTE REFERENCE

Explanation:

• A length attribute reference specifies a SETx symbol; or

• A length attribute reference specifies a symbolic parameter
(or a &SYSLIST representation) that does not represent an
ordinary symbol; or

• The ordinary symbol referenced by a length or integer
attribute reference is defined by an EQU instruction, and the
value of the second operand of that instruction is not in the
range 0-65535; or

• The ordinary symbol referenced by a length or integer
attribute reference is defined in a DC or DS instruction, and
the instruction contains a length modifier that is not a self
defining term.

Assembler Action: The length attribute is set to 1.

Programmer Response: Review the use of the length attribute
and Iecode.

Severity Code: 4

Modules Originating Message: CWAX3A, CW AXSU

CWA121 ILLEGAL COUNT (K') ATTRIBUTE REFERENCE
"

Explanation:

• The count attribute references a non-macro instruction
operand; or

• The count attribute reference is not -used in an arithmetic
expression.

Assembler Action: The count attribute is set to zero.

Programmer Response: Review the use of the count attribute and
recode.

Severity Code: 4

Module Originating Message: CWAX3A

Appendix I: Communications Controller Assembler Messages-OS/VS 1-13

CWA122 ILLEGAL NUMBER (N') ATTRIBUTE REFERENCE

Explanation::

• The number attribute references anon-macro instruction
operand; or .

• The number attribute is not used in an arithmetic expression.

Assembler Action: The number attribute is set to zero.

Programmer Response: Review the use of the number attr~bute
andrecode.

Severity Code: 4

Module Originating Message: CW AX3A

CWA123 !LLEGAL SCALE ATTRIBUTE REFEREN'CE

Explanation:

• A scaling attribute reference specifies a SETx symbol; or

• A scaling attribute reference specifies a symbolic param
eter (or a &SYSLIST representation) that does not represent
an ordinary symbol; or

• A scaling attribute reference is made to an ordinary symbol
whose type attribute is not H, F, G, E, D, L, K, P, or Z; or

• The ordinary symbol referenced by a scaling or integer attrib
ute reference is defined in a DC or DS instruction containing
a scaling modifier that is not a self~defining term.

Assembler Action: The scale attribute is set to O.

Programmer Response: Review the use of the scale attribute and
recode.

Severity Code: 4

Module Originating Message: CWAX3A

CWA124 ILLEGAL INTEGER ATTRIBUTE REFERENCE

Explanation:

• An integer attribute reference specifies a SETx symbol; or

• An integer attribute'!eference specifies a symbolic param
eter(or a &SYSLIST representation) that does not represent
an ordinary symbol; or

• An integer attribute reference is made to an ordinary symbol
whose type j;lttribute is not H, F, G" or K.

Assembler Action: The integer attribute is set to O.

Programmer Response: Review the use of the integer attribute
and recode.

Severity Code: 4

Module Originating Message: CW AX3A

CWA125 INVALID NAME-ILLEGAL EMBEDDED CHARACTER
OR NON-ALPHABETIC FIRST CHARACTER

Explanation:

• The symbol generated in the name field does not begin with
an alphabetic character or it contains a special character or
an embedded blank after substitution; or

• for the TITLE instruction: th~ name field contains a special
character.

Assembler Action: The name field is ignored.

1-14 IBM 3704,and 3705 Assembler Language

Programmer Response: Be sure th~t t1J.e symbol generated in the
name field conforms to the rules for forming vaJ,id ordinary
symbols, or is a valid TITLE name field entry. Also check to
make sure that the values of all variables that contribute to the
generation of the symbol in the name field are valid.

Severity Code: 8

Module Originating Message: CWAX3A

CWA126 MORE THAN 5 ERROR$IN THIS STATEMENT,
PROCE,SStNG OFJHE.STATEMENTi"STERMINATED

Explanation: Six or more errors were detected in processing this
statement. The maximum number of error messages issued by
the processor to each statement is five.

Assembler Action: The sixth error causes this message to be
issued, and messages arertotissued for· any further errors in
this statement.

Programmer Response: Correct the indicated errors and check
carefully for ,errors beyond tlte point inclicated by the fifth
error message. Assemble again. Any additional errors. will be
located in the next assembly.

Severity Code: 8

Module Originating Message: CWAX3A

CWA127 VAL,.UEOF CHARACTER STRING USED IN
ARITHMETIC CONTEXT EXCEEDS 2, 147,483, 647

Expla1lation: A character string used in a SETA expression or in
an arithmetic relation in a SETB expression exceeds a value of
2, 147,483,647, which is the maximum value allowed for a
decimal self-defining .term.

Assembler Action: The character string is replaced by an
arithmetic value of zero.

Programmer Response: Be sure that all character' strings used in
an arithmetic context are from 1 to 10 decimal digits and have a
value in the range of 0 to 2, 147,483,647. Be sure that the
values of all variables that contribute to the generation of the
character string are valid.

Severity Code: 8

Module Originating Message: CWAX3A

CWA128 GENERATED OP CODE EXCEEDS 8 CHARACTERS

Explanation: The syntax for mnemonic operation codes must
follow the same rules as ordinary symbols; that is, they must
be from 1 to 8 alphanumeric characters long and th~ first charac
ter must be. alphabetic.

Assembler Action: The statement that contains the illegal op
code is processed as a comment. Only the .first 8 characters of
the generated op code appear in the printed statement.

Programmer Response: Be sure that the values of all variables
that contribute to the generation of the op code are valid, and
be sure that no attempt is made to generate an op code of more
than 8 characters.

Severity Code.; 8

Module Originating Message: CW AX3A

CWA129 'GENERATED SYMBOL IN NAME FIELD EXCEEDS
8 CHARACTERS '

Explanation: A generated symbol that appears in the nam~ field
exceeds 8 characters. It should be from 1 to 8 alphameric charac
ters ~ length, and the first character should be alphabetic.

Assembler Action: The name field is ignored. Only the first
eight characters of the generated symbol appear in the printed
statement.

Programmer Re$ponse: Be sure that the values of all variables
that contribute,to the generation of the symbol in the name
field are valid. Be sure that no attempt is made to generate a
symbol of more than 8 characters.

Severity Code: 8

Module Originating Message: CWAX3A

CWA130 FIRST SUBSCRIPT OF &SYSLIST REFERENCE IS
NEGATIVE

Explanation: A term or an arithmetic (SETA) expression that
is used as the lust subscript of a &:.SYSLIST reference has
resulted in a negative value.

Assembler Action: The parameter reference is treated as a
reference to an omitted operand.

Programmer Response: Be sure that the values of all variables
that contribute to the generation of the fust subscript are
valid.

Severity Code: 8

Module Originating Message: CW AX3A

CWA131 INCONSISTENT GLOBAL VARIABLE DECLARATION,
SETx INSTRUCTION IGNORED

Explanation: Global variable declaration is inconsistent with a
previous definition ,of the variable in another macro definition or
in open code.

Assembler Action: The value of the global variable remains the
same and the SETx instruction is ignored.

Programmer Response: Correct all inconsistencies between global
variable declarations regarding dimension and type.

Severity Code: 8

Module Originating Message: CWAX3N

CWA 132 REFERENCE TO INCONSISTENTLY DECLARED
GLOBAL VARIABLE RESULTS IN ZERO VALUE

Expla.nation: An attempt to obtain a value from a global
variable has been ignored because the declaration of the global
variable was inconsistent with a previous declaration of the
same variable in another macro definition or in open code.
Either the dimension or the type does not agree.

Assembler Action: The reference to the global variable is
replaced bya null or zero value; "

Programmer ResPonse: Correct all inco~sistencies among
declarations of the same global variable~

Severity Code: 8

Module Originating Message: CW AX3N

CWA133 NOWORKSPACEFOR OPEN CODE SKELETON"
DICTIONARY

Explanation: The allotted dictionary work space is insuf
ficient to build the skeleton diction~y f~r open code. Since'
the generation process requires the open code dictionary,
generation is not attempted. '

Assembler Action: The entire assembly is processed as
comments.

Programmer Response: Within the partition, increase the
size of the region that is allocated to assembly, or allocate
more of the partition to dictionary space via the BUFSIZE
assembler option.

Severity Code: 12

Module Originating Message: CWAX3N

CWA134 BRANCH ADDRESS LESS THAN 0

Explanation:

• The branch address of an RT machine instruc~ion is ~utside
the current CSECTj or

• T~e branch address of an RA machine instruction is negative.

Assembler Action: The machine instruction is set to zero.

Programmer Response: Review the format of the RT- or RA-type
machine instructions and recode.

Severity Code: 8

Module Originating Message: CW AX5M

CWA136 IMMEDIATE FIELD NEGATIVE NEAR OPERAND
COLUMN nn

Explanation: The immediate field "In of the RI machine
instruction is negative.

Assembler A ction: The machine instruction is set to zero.

Programmer Response: Review the format of the RI-type
machine instruction and recode.

Severity Code: 8

Module Originating Message: CW AX5M

CWA136 ABSOLUTE BRANCH ADDRESS NEAR OPERAND
COLUMN nn

Explanation: The "T" field of an RT machine instruction is
not arelocatable expression.

Assembler Action: The machine instruction is set to zero.

Programmer Response: Review the format of the RT~type
machine instruction and recode.

Severity Code: 8

Module Originating Message: CWAX5M

CWA137 BRANCH ADDRESS OUTSIDE CURRENT CSECT

Explanation: The branch address of an RT machine instruction
is outside of the current CSECT.

Assembler Action: The machine instruction is set to zero.

Appendix I: Communications Controller Assembler Messages-OS/VS 1-15

Programmer Response: Jlevi~wthe forl11atof th~ RTt'typ~ ,
machine instruction andrecode. ,_. . . "'"

Severity Code: 8

Mod~/e OfiginatingMe~~ge.; civ~xs~{
'; e,"' .' '. '';'

CWA 138/'M-~1 ELD FOR:BB'E'GREA1ERT:HAN 1'S.NEAR
OPERAND COLUMN nn ~ ~,> "-. " +,

Explanation: The mask field "M" in the BBE machine'instruc
tion is greater, .than 15 (the field :~~ only 4: 9!ts long) •.. '

Assembler Action: The machine instruction is set to zero.

Prograinmer Respons~:' Revie~ th~ 'format ~f the"~" field' in
the BBE extended machine instruction and recode.

Severity Code: 8

Module Originating Message: CWAX5M

CWA149 DISPLACEMENT GR~ATER THAN 127 NEAR
OPERAND COLUMN nn

Explllnation: In an RS machine instruction (IC, STC) the
displacement was greater than 127 bytes.

Assembler ACtion.;' The machine instruction is set' to zero.

Programmer Response: Review the format of the IC or STC
machine instruction atldrecode.

Severity Code: 8

Module Originating Message: CWAX5M

CWA150 DISPLACEMENT GREATER THAN 126 NEAR
,OPERAND COLUMN nn

Explanation: In an RS machine instruction (LH, STH, STHZ)
the displacement was greater than 126 bytes .•

Assembler Action: The machine instruction is set to zero.

Programmer Response: Review the format of the LH, STH or
STHZ machine instruction and, reeode.

Severity Code: 8

Module Originating Message: CWAX5M

CWA151 DISPLACEMENT GREATER THAN 124 NEAR
OPERANDCPLUMN nn

Explanation: In an RS machine instruction (L, ST, BND, STZ)
the dlsp1acemen~ wasgreaterthan 124 bytes~ .

Assembler Action: The machine instruction is set to zero.

Programmer Response: Review the format of the L, ST, BND or
STZ machine instruction,and.r~code ..

Severity Code: 8

Module Originating Message: CWAX5M

CWA152 DISPLACEMENT IS NEGATIVE NEAR OPERAND
COLUMN nn

Explanation: .In an RS machine instruction the displacement
was found to be negative.

Assembler Action: The··machine instruction is set to zero.

1,16 IDM:3704and 3705 Assembler Language

P1:(Jgram1rlerR(!spol1~e: . Revie}\' ,the format of ~he failing RS-type
machine instruction and recode.

Severity Code: 8

CWA 15~ '~DISpLACEM'ENT IS N()T A Mt}[TIPLE OF 2 NEAR
OPERAN DCOLlJMNnn

Explanation: In an RS machine instruction (LH, STH, STHZ)
the displacement di,dAot):eference a half)yord boundary~ .

Assembler Action.; The'machine instruction is set to zero.

Prog;.ammer Response: Review th~loimat of .the failing RS~type
machine instruction and recode. .. . " " .

Severity Code: 8

Module Originating Mes..sage:' CWAXSM

CWA154 DISPLACEMENT IS NOT A MULTIj)LEOF 4 NEAR
OPERAND COLUMN nn

~. . .
Explanation: ,In an RS machine mstruction (L, ST, BND, ,STZ)
the displacement did not reference a fullword poundary.

Assembler Act~on: ,The mac~ine instruction is .. set to zero.

Programmer Response: Review the format of the failing RS .. type
machine instruc.tion a.nd reco<ie.

Severity Code:,. 8

Module Originating Message: CW AX5M

CWA 155 BYTE DESIGNATOR IS NOT AN ABSOLUTE VALUE
NEAR OPERAND COLUMN nn '

Explanation: In a'niachlne'~nstruction whi~hrequiies at least
one of its operands to have the format R(N), the byte designator
"N" was not,a,n absolute va!ue.

A ssembler) A ction: The machine -instruction is set to zero;, .

Programmer Response: Review the format of the failing
ma.chine instruction and recode.

Severity Code: 8

Mddule Originating Message: CWAX5M

CWA157 DC OPERAND VALUE TOO LONG·

Explanation: The specified 'value of an operani m' a' DC instruc
tionis too long. ,The lJ1aximum length ora DC ,operand is
16,777,215.b,Y;tes.. '. ,". .' . . "

Assembler Action: The specified value is ignored.

Programmer ResPonse:' Make' the ~oristant shorter, \>rbreak it
up into two constants.

Severity Code: S".

Module Originating'Message: CWAX5D

CWA158 NAME OF STATEMENT lNPSEP,.,U$EDIN
RELOCATABLE ADDRESS CONSTANT

Explanation: A non-paire:d reloca.t!tble term u;&d iti an 'A-tyPe,
R-type, or V-type address constant is defined in~'dt!!!uny
section.

Assembler Action: The constant is ignored.

Programmer Response:

• Make sure therelocatable term is not defined in a dummy
section; or

• Make surethe term defined in t;he dummy section is paired
with another term (with the opposite sign)from the same
dummy section.

Severity Code: 8

Module Originating Message: CWAX5A

CWA161 INVALID EQUR SYMBOLIC REGISTER EXPRESSION

Explanation: The EQUR assembler instruction has:

• An invalid format; or

• An invalid register "R" value; or

• An invalid byte "N" value.

Assembler Action: The value of the EQUR instruction is set to
zero.

Programmer Response: Correct the format and/or insert correct
values for register and byte andrecode.

Severity Code: 8

Moduie Originating Message: CWAX2A

CWA163 MISSING OR INVALID SYMBOL IN NAME FIELD

Explanation: One of two errors has occurred:

• A symbol is missing in the name field where one is required.

• The symbol in the name field in invalid.

Assembler Action: The statement is processed as a comment.

Programmer Response: Supply a valid name.

. ,Severity Code: 4

Module Originating Message: CWAX5A

CWA164 INVALID OR ILLEGAL START STATEMENT

Explanation: The START statement did not start the first con
trol section in the assembly, or the operand on the START state
ment was not an absolute value.

Assembler Action: .The START statement is treated as a CSECT
statement.

Programmer Response: Be sure that the START statement has
an absolute operand and that it begins the first control section in
the assembly. .

Severity Code: 4

Module Originating Message: CWAX5A

CWA165 NULL PUNCH OPERAND OR PUNCH OPERAND
EXCEEDS 80 CHARACTERS .

Explanation;· The operand of aPUNCH instruction either sped·
fies only a null string surrounded by quotes, or is more than 80
characters long.

Assembler Action: The 'PlJNCH statement is processed as a
comment.

Programmer Response: Be sure that the operand of a PUNCH
statement consists of from 1 to 80 characters surrounded by
quotes.

Severity Code: 4

Module Originating Message: CWAX5A

CWA167 SYMBOL FILE OUT OF STEP

Explanation: The symbol file, which is an internal data file, has
got out of step with the rest of the assembly process because of
error recovery on a user error.

Assembler Action: A soft recovery is attempted by continuing
the assembly. Assembly results subsequent to the point of error
may not be valid.

Programmer Response: This message will always be accompanied
by user errors. Correct them and reassemble the program.

If the problem recurs, do the following before calling IBM:

• Have your source program, macro definitions, and associated
listings available.

• If a COpy statement was use, execute the IEBPTPCH utility
to obtain 'a copy of the partitioned data set member speci
fied in the COpy statement.

• Make sure that MSGLEVEL=(l,l) was specified in the JOB
statement.

Severity Code: 16

Module Originating Message: CWAX5C

CWA168 AN ARITHMETIC EXPRESSION NOT USED IN
CONDITIONAL ASSEMBLY CONTAINS MORE THAN
20 TERMS

Explanation: An arithmetic expression used in a macro defini
tion or in open code, but not in a conditional assembly state
ment, contains more than 19 unary and binary operators and 6
levels of parentheses. The maximum number of terms this com
bination allows is 20.

Assembler Action: The value of the expression is set to O.

Programmer Response: Be sure that this arithmetic expression
does not contain more than 19 operators (unary and binary) and
6 levels of parentheses. If greater complexity is necessary, use
EQU statements to evaluate intermediate results.

Severity Code: 8

Module Originating Message: CWAX5V

CWA169 INVALID SELF-DEFINING TERM NEAR OPERAND
COLUMN nn

Explanation: A self-defining term was invalidly specified.

Assembler Action:' -The value of the term is'set to zero.

Programmer Respon~e: Check the syntax and correct the error.

Severity Code: 8

Module Originating Message: CW AX5V

CWA170 TWO ADJACENT BINARY OPERATORS, OR BINARY
OPERATOR EXPECTED BUT NOT FOUND, NEAR
OPERAND COLUMN nn

Explanation: One of two errors has .occurred.

1. Two binary operators appear consecutively near the column
specified in .the message text. This applies only to "*,,
(multiply) and "/" (divide). . .

2. A binary op~fa'tor was expected near the column specified in
the message text, but none was found.' A single binary opera
tor must occur between all terms of an expression.

Assembler Action: The expression that contains the absent or
illegal operator is set to zero.

Appendix I: Communications Controller Assembler Messages-OS/VS 1-17

Programmer Response:

1. Eliminate one of the binary operators.
2. Provide a binary operato],'.

Severity Code: 8

Module Originating Message: CWAX5V

CWA171 TITLE STATEMENT OPERAND EXCEEDS 100
CHARACTERS

Explantion: The operand of a, TITLE instruction contains more
than 100 chara91;ers. .

Assembler Action: The character string in the operand is
truncated to 100 characters.

Programmer Response: Be sure that the length of th.e character
string in the operand of a TITLE statement does not exceea 100
characters.

Severity Code: 4

Module Originating Message: CWAX5A

CWA 172 VALUE OF ORG OPERAND IS LESS THAN THE
CONTROL SECTION STARTING ADDRESS

Explanation: The operand of anORG statement results in a
value less than the starting address of the control section.

Assembler Action: The ORG statement is processed as a com
mentand has no effect on the value of the location counter.

Programmer Response: Be sure that the operand of the ORG
statement is a positive relocatable expression, greater than the
starting address of the control section, or blank.

Severity Code: 8

Module Originating Message: CWAX5A

CWA 173 ONE OR MORE SYMBOLS IN AN ORG OPERAND DO
NOT BELONG TO THE CURRENT CSECT, DSECT, OR
COM

Explanation: One or more of the symbols used in the operand of
an ORG statement. are not defined in the current control section
(dummy; common or ordinary).

Assembler Action: The ORG statement is processed as a com
ment .and the value of the location counter remains unchanged.

Programmer Response~' Be sllIe that all symbols used in the
operal1d field of an ORG statement belong to (are defined by
appearing iti the name fieldo! a statement within) the current
control section.

Severity Code: 8

Module Originating Message: CWAXSA

CWA174 ORG OPERAND IS ABSOLUTE. MUST BE
RELOCATABLE

Explanation: Anabs<>lute term or expression used in the operand
of an ORG statement must be a relocatable term, arelocatable
expression, or·a blank.

,Assembler Action: The ORG instruction is processed as a com
. ment and· the value of the l()cation counter remains unchanged.

1-18 IBM 3704 and 3705 Assembler. Language·

Programmer Response: Be sure that the operand of an ORG
statement is a relocatable term, arelocatable expression, or a
blank. An ORG to an absolute address is not possible because
the assembler assumes thatalllocation ref~J,'ences are relocatable.
A common error is an ORG to O. Since the ~tart of the program
is not absolute machine location 0 but relocatable 0, replace the
o with a symbol or expression that makes reference to the labeled
program start.

Severity Code: 8

Module Originating Message: CWAX5A

CWA175 OPERAND SHOULD BEGIN WITH A QUOTE_

Explanation: A quote was expected to begin a character string
in the operand field, but was not found.

Assembler Action: The invalid character string is ignored.

Programmer Response: Supply the missing leading quote in the
character string of the operand.

Severity Code: 8

Module Originating Message:· CWAX5A

CWA 176 UNPAIRED AMPERSAND NEAR OPERAND
COLUMN nn

Explanation: AsingkampersandJollowed by a blank was
found in a quoted character string. If an ampersand is desired as
a character in a quoted character string, two ampersands must
be coded. Ampersands must be either paired or part of a valid
variable symbol.

Assembler Action: The character string that contains the illegal
ampersand is ignored.

Programmer Response: Determine whether the ampersand is
desired as a character in a quoted character string or whether the
ampersand is intended as the beginning of a valid variable symbol,
and correct the error.

Severity Code: 8

Modules Originating Message: CWAX5A, CWAX5D

CWA 177 MISSING OPERAND

Explanation: This statement requires an operand, but none is
found.

Assembler Action: The statement which lacks the operand is
processed as a comment.

Programmer Reponse: Supply a valid operand.

Severity Code: 12

Module Originating Message: CWAX5A

CWA178 SYNTAX ERROR NEAR OPERAND COLUMN nn

Explanation: A syntax error has occurred in the operand of this
statement.

Assembler Action: The statement which contains the invalid
operand is processed as a comment., .

Programmer R.esponse: Correct the syntax of the operand.
There are a large number of syntactic errors that can produ"ce
this diagnostic. All of them require careful checking of the
syntax of the specific type of statement being processed. The
error is logged at the point where the syntax becomes ambiguous
or unrecognizable, not necessarily at the point where the actual
ernor occurs.

Severity Code: S

Modules OtiginatingMessage: CWAXSA, CWAX5D, CWAXSM

CWA1790PERAND'SUSFIELO NEAROPERAND COLUMN nn
MUST BE ABSOLUTE

Explanation: All terms and expressions used in the operand
field of !h.is stateIH~nt must result in an absolute value.

Assembler Action: The O!perand is'processedas a comment.

Programme~ Response: ,Be sure that each term or expression
used in the operand field of this statement has art absolute value.
No relocafable expressions are allowed.

Severity Code: S

Modules Originating Message: CWAXSA, CWAXSD, CWAJ{5M

CWA180 OPERAND 2 OF CNOP MUST BE EITHER 4 OR 8

Explanation: The second operand of a CNOP' statement must be
either 4 or 8.

Assembler Action:' The CNOP s~atement is processed as a com-
ment and no alignment is perjorm~d. . , ,

Programmer Response: Be sure th~t the second operand of a
CNOP statement is either a 4 or anS.

Severity Code: J2
Module Originating Message: CWAXSA

CWA 181 OPERAND 1 OF CNOP MUST BE 0, 2,4, OR 6

Explanation: The first operand of a CNOP statement must be 0,
2,4, or 6.

Assembler Action: The CNOP statement is ignored and no
alignment is performed.

Programmer Response: Be sure that the first operand of a CNOP
statement is Ii 0,2,4, or 6.

Severity, Code: 12

Module Originating Message: CWAX5A

CWA182 OPERAND 1 OF CNOP IS NOT LESS THAN
OPERAND 2

Explanation: The value of the first operand Of a CNOP, state
ment must be less than the value of the second operand.

Assembler Action: The CNOP statement is processed as a com
ment and no alignment is performed.

Programmer Response: Check the validity of each operand of
the CNOP statement to be sUre that the value of the second oper
and is greater than the value of the first operand.

Severity Code: 12

Module Originating Message: CWAX5A

CWA 183 MNOTE OPERAND EXCEEDS 255

Explanatiim: The value of an operand used as an MNOTE
severity exceeds 255. '

Assembler Action: The MNOTE.ispr~cessed as a comment.

Programmer Response: Check the validity of the operand.

SeverityC:ode:· 12

Module Originating Message: CWAXSA

CWA 184 INVALID COUNT ON CW NEAR OPERANO
COLUMN nn, 1023 IS MAXIMUM VALUE

Explanation: The value of the th~d operand of a define control
word'has exceeded X'3FF' (1023).

Assembler Action: Space is allocated for the CW, but the value
of the flagged operand is set to O.

Programmer Response: Check the validity of the third operand
of the define control word.

Severity Code: 12

Module Originating Message: CWAXSA

CWA 185 BLANK EXPECTED AS A DELIMITER NEAR
OPERAND COLUMN nn

Explanation: A blank was expected as a delimiter but none was
found. Subsequent characters have no syntactic meaning, and
the statement is ambiguous.

Assembler ACtion: The statement that contains the invalid
delimiter is processed as a comment.

Programmer Response: Supply a blank delimiter.

Severity Code: S

Module Originating Message: CWAXSA, CWAX5M

CWA186 INVALID SYMBOL NEAR OPERAND COLUMN nn OF
ENTRY, EXTRN, ORWXTRN

Explanation: An improperly constructed symbol was found in
the operand field of an ENTRY, EXTRN, or WXTRN statement.

Assembler Action: The statement that contains the invalid sym
bol is processed as a comment.

Programmer Response: Be sure that the symbol in the operand
field of EXTRN, WXTRN, or ENTRY statements contain from
1 to S alphanumeric characters,' the ,first of whiCh is alphabetic.

Severity Code: S

Module Originating Message: CWAXSA

CWA187 SYMBOL LONGER THAN 8 CHARACTERS NEAR
OPERAND COLUMN nn

Explanation: A symbol that is more than 8 characters in length
has appeared in the operand field of this statement.

Assembler Action: The invalid symbol in the operand field is
replaced by a zero.

Programmer Response: Be sure that symbols do not exceed S
characters in length.' A missing or misplaced delimiter or oper
ator may caUse a symbol to appear longer than intended.

Severity Code: S

Module Originating Message: CWAX5A, CWAXSD, CWAX5V

Appendix I: Communications Controller Assembler Messages-'-OS/VS 1-19

CWA188 xxxxxxxx IS AN UNDEFINED SYMBOL

ExplalUltion: The symbol that appears in the message text has
not appeared in the name field of another statement, or as an
operand of an EXTRN or WXTRN statement.

Assenibler Action: Refere~c~ to the undefined symboir~sults
in a zero value.

Programmer Response: Define the symbol in the program.

Severity Code: 8

Module OrigilUlting Message: CW AXSV

CWA189 INVALID ENTRY OPERAND,L.INKAGE CANNOT BE
PERFORMED

ExplalUltion: The symbol iIi the operand field of an ENTRY'
statement is invalid because' it is either undefined or improperly
defuned. '

Assembler Action: The invalid symbol iti the operand field is
processed as a comment, and no linkage is provided if another
program references it.

Programmer Response: . Define the symbol at an appropri(ite.
place in this~rogram, or correct it. A valid symbol consists of
from 1 to 8 alphameric characters, the first of which is blank.

Severity Code: 8

Module OrigilUltingMessage: CWAX5A

CWA190 OPERAND OF PUSH STATEMENT.IS NOT USING OR
PRINT NEAR OPERAND COL.UMN nn

ExplalUltion: The only symbols allowed in the operand field of
a PUSH or POP statement are PRINT and USING, in anYOJ:der,
separated by commas.

Assembler Action: The PUSH instruction is processed as a
comment.

Programmer Response: .Be sure the operand of the PUSH
statement is either PRINT or USING or both.

Severity Code: 4
",

Module OrigilUlting Message: CWAX5A

CWA191 PUSH LEVELS EXCEEDS 4 NEAR OPERAND
COLUMN nn

ExplalUltion: More than 4 levels of PUSH and POP statements
were attempted for either PRINT or USING.

Assembler Action: The PUSH instruction is processed as a _
comment.

. ~
Programmer Response: Rework the program logic to require no
more· than 4 levels of PUSH and' POP for USING-and 4 for
PRINT.

Severity Code: 8

Module OrigilUlting Message: CWAX5A

CWA192 OPERAND OF POP STATEMENT IS NOT'USING OR
PRINT NEAR OPERAND COL.UMN nn

Ex-pla1'.atian: The:orJy symbols·allowed.m. the operand of a
PUSH or POP statement are USINGandPRJNT,in any order,
separated by commas.

AssemQler Action: The POP instruction ~s pr,ocessed as a
comment., .

1-20 IBM::3704and3705Assembler,Language',

Programmer Response: Be sure the operand of the POP state- '
mtmt is either PRINT or USING or both. . .. '," ,., .. ", .. ' /'" , .',' '"

Severity.,'Code: 4

Module Origi'!!lting Messag~~;- CWAXSA .

CWA 193 POP REQUEST NOTBAL.ANCED BY PREVIOUS PUSH

ExplalUltion: No PUSH request was issued: prior to this POP
. request, or. more POP sta,~ementsha"e been issued than,PUSH

statements. A POP statement restores the USING or PRINT
status saved by the mpst rece~t PUSH statement,on a o~e for
one basis. , ",

Assembler Action: The POP instruction is processed as a
comment.

Progralnmer Response: Check for erro;s in biilancmg pUSH and
POP statements, or rework theprogratn logic to request balanced
PUSH and :POP statements. Repetition of a given operand (i.e.,
USlNGQr PRINf) on(l,~ngle,PUSH orPOPsta.tement is treated
as multipie statements, and could causeunbalanced.PUSHiand
POP statements.' ",

Severity Code: 8

Module OrigilUlting Message: CWAXSA

CWA194 INVALID OPTION IN PRINT STATEMENT NEAR
OPERAND COLUMN nn .

ExplalUltion: An option appear$in the operand field of a PRINT
statement that is not oneOfthefollowing: ON, OFF, GEN,
NOGEN, DATA, and NODATA. .'

Assembler Action: The fuvalid operand is igno!~d.

Programmer Response: Be sure that only the options listed m
the explanation above appear in the operand field of a PRINT
statement. .

Severity Code: :4-

Module OrigilUlting Message: CWAX5A

CWA195 INVALID USING OR DROP STATEMENT NEAR
OPERAND COLUMN nn

Explanation: One of three errors has occurred:

1. register 0 is specified for other than the second operand of a
USING statement; or

2. a register number outside the range oiO t07 has been used; or
3. a DROP statement has been issu~d for a register that was

never assigned for use by a USING statement.

Assembler Action: . The invalid register specification is set to
zero .

Programmer Response: The second and following operands of a
USiN9.or DROP instruction must bed~9imal terms 0 to 7.
Register 0 may only be specified as the second operand of a
USING statement.

Severity Code: 12

Module OrigInating Me~sage: CWAX5!'-

CWA196 xxxxxx~xx HAS BE·ENPRE\1I0USL.Y DEFI-NED

ExplalUltion: The specifiedsymbg~ has previously appeared in
the name field of a statement or in the operand field of an
EXTRN or WXTRN instruction.

Assembler Action: All references to the symbol are interpreted
as references to the flIst definition of the symbol.

Programmer Response: A given symbol must be defined only
once. Determine which occurrence of the symbol you want to
use, and· cha'itge"all others. " '

Severity Code.~ 8:'

Module Orig;nating Mes~age: CWAXSA, CWA.XSC

CWA197 ***MNOTE***

Explanation: An MNOTE statement has been encountered dur
ing the generation of a macro or open code. The text of the
MNOTE message appears in-line in the listing at the pOint where
it is encountered. (Refer to OS/VS-DOS/VS- VM/370 Assem
bier Language (GC33-4010) fora description of theMNOTE
instruction.)

Assembler Action: None.

Programmer Response: Investigate the reason for the MNOTE.
Errors flagged by MNOTE will often cause unsuccessful execu
tio~\of the program, depending upon the severity code.

Severity Code: An MNOTE is assigned a severity code of 0 to
255 by the writer of the MNOTE statement.

Module Originating Message: CW AXSA

CWA198 INVALID TYPE DECLARED ON DC/DS/DXD
CONSTANT NEAR OPERAND COLUMN nn

Explanation: Operand sub field 2 is not a valid type for a DC,
DS, or DXD'statement; Valid types are the following: A, B, C,
F, H, Q, R, V, X, and Y.

Assembler Action: The statement t4at contains the invalid type
declaration is processed· as a' comment.

Programmer Response: Supply a valid type in operand
subfield 2. •

Severity'Code: 8

Module Originating Message: CWAXSD

CWA199 INVALID LENGTH MODIFIER NEAR OPERAND
COLUMN nn

Explanation: The length modifier 'in operand sub field 3 of this
statement is invalid. , The ~~ngth ,attribute of a symbol is not ,
allowed as a tenD. in, tlielength modifier expression for thefifst
operand of the DC, DS, or DXD statement in which the symbol
is defined. For example, SY~ DCCL(L'.SYM) 'AA' is invalid.

Assembler Action: Th~ state~ent that contait:ts the invalid
length,modifier is ;processed as a comment., .. , '

Programmer Response: Supply a valid)ength ffl,9difier,.or
eliminate the explicit length modifier.

Severity Code: 8

Module Originating Message.: CWAXS:O

CWA200 INVALID SCALE MODIFIER NEAR OPERAND
COLUMN nn

Explanation: The scale modifier in operand sub field 3 of a DC,
DS, or DXD statement is invalid. The scale modifier should be
either a decimal value or an absolute expression enclosed in
parentheses.

Assembler Action: The statement that contains the invalid scale
modifier is processed as a comment.

Programmer Response: Supply a valid scale modifier for the type
of constant used.

Severity Code: 8

Module Originating Message: CWAX5D

CWA201 ILLEGAL OR INVALID EXPONENT MODIFIER IN
DC/DS/DXD CONSTANT NEAR OPERAND
COLUMN nn

Explanation: An exponent modifier used in a DC, DS, or DXD
constant is not a decimal self-defining term, an absolute
expression enclosed in parentheses, or produces a value outside
the range allowed for that constant type.

Assembler Action: The invalid or illegal operand is ignored.

Programmer Response: Be sure that the exponent modifier used
conforms to the rules for exponent modifiers for each type of
DC, DS, or DXD constant.

Severity Code: 8

Module Originating Message.~ CWAXSD

CWA202 ILLEGAL USE OF SYMBOLIC REGISTER IN
EXPRESSION NEAR OPERAND COLUMN nn

Explanation:' An expression contained an invalid value which was
a Symbolic Register notation R(n).

Assembler Action: The machine instruction is set to zero.

Programmer Response: Review the expression causing the error
and recode.

Severity Code: 12

Modules Originating Message: CWAXSA, CWAX5D, CWAX5M,
CWAXSV

CWA203 F-, H-, R-, OR Y-TYPE CONSTANT· TRUNCATED,
HIGH ORDER DIGITS LOST NEAR OPERAND
COLUMN nn

Explanation: The high order digits of an P-, H-, R-, or Y-type
constant were lost because the designated field was too small
to contain the whole constant.

A~sembler Action: . Pr~cessing continues ushlg the truncated
constant. ' ,

Programmer Response: Modify the explicit or implicit length of
the constant, so that the value may be contained within the area
designated for it.

Severity Code: 4

Module Originating Message: CW AXSD

CWA204 RELOCATABLE EXPRESSION IN A-, R-, OR Y-TYPE
<ADDRESS CONSTANT WITH BIT LENGTH .
SPECIFICATION NOT ALLOWED

Explanation: A .relocatable expression in used to specify a con
stant for which bit length' specification is u'Sed. This is not
allowed.

Assembler Action: The value of the operand is set to 0 and no
entry for this constant is made in the relocation dictionary.

Appendix I: Communications Controller Assembler 'Messages~OS/VS 1-21

Programmer R~sponse:' Converi,the,op:erand to an absolqte
expression, or use a length of 3 or 4 bytes for A-type or 2 bytes
for Y-type andR-type-constants.

Severity Code: 8

Module Originating Message: CWAX5D

CWA206 DUPLICATION FACTOR ERROR

Explanation: The duplication factor in a DC, DS, or DXD
statement is negative.

Assembler Action: No storage is reserved for the operand, but
alignment is performed as required by the type of constant ,used.

PrDgrammer Response.: Supply a" non-negative dUplication factor.

Severity Code: 8

Module Originating Message: CWAX5D

CWA207 OPERAND OF Q-TYPE CONSTANT DOES NOT NAME
A DSECT OR DXD

Explanation: The symbol in the operand field of a Q-type con
stant must have been previously defined as the name of a DSECT
or DXD section.

Assembler Action: The value of the consta!lt is set to O.

Programmer Response: Define the symbol as the name of a
DSECT or DXD section. The symbol must be defined before
being used in the constant.

Severity Code: 8

Module Originating Message: CWAXSD

CWA209 ADDRESSABILITY ERROR-BASE AND
DISPLACEMENT CANNOT BE RESOLVED AND ARE
SET TO 0

Explanation: The assembler cannot resolve the address of this
statement or the address referenced by this statement because
no USING registers are available.

Assembler Action: The base and displacement fields of the
machine instruction are set to O.

Programmer Response: Make sure you have correctly set up
base registers with the USING instruction. Be sure the referenced
address can be specified by the value in a USING register plus a
diSplacement in the range of 0 throl1g.b 127.

Severity Code: 8

Module Originating Message: CWAXSM

CWA210 TOO FEW OPERANDS

Explanation: More operands are required for this statement,
but they were not found.

Assembler Action: The vaJue of allY missing, operand is set to O.

Programmer Response: Supply the necessary operands.

Severity Code: 12

Modules Originating jl,{essage:CWAX5A, CWAXSM

1 .. 22 IBM 3704 and 3705 Assembler Language

CWA211 TOO MANY OPERANDS

Explanation:

• More than 255 operands on a DC,DS, or DXD inStruction; or

• Too many operands on a machine instruction~

Assembler Action: The ext,ra opex~nds are ignored.

Programmer Response: Delete the extra operands. Refer to
Principles of Operation for details on operands required for
individual machine instructions.

Severity Code: 12

Module Originating Message: CW AXSA

CWA213 COMPLEXLY RELOCATABLE EXPRESSION NEAR
OPERAND COLUMN nn

Explanation: The indicated operand contains a complexly
relocatable expression. The expression should be absolute or
simply relocatable.

Assembler Action: The value of the complexly relocatable
expression is set to O.

Programmer Response: Be sure that only absolute and simply
relocatable expressions are used in the operand field of this
statement.

Severity Code: 8

Modules Originating Message: CWAXSA, CWAX5M

CWA214 COMMA EXPECTED AS DELIMITER NEAR OPERAND
COLUMN nn

Explanation: A machine instruction:

• did not have a comma separating two sub-operands; or

• had one operand when two sub-operands were expected.

Assembler Action: • The value of the machine instruction is set
to zero.

Programmer Response: Review the format of the failing machine
instruction and recode.

Severity Code: 12

Module Originating Message:, CWAX5M

CWA215 ,ILLEGAL DEkllV!lTER FUG!;:IT P86J;NTHESIS
EXPECTED NEAR OPERAND COLUMN nn

Explanation: A right parenthesis was expected as a delimiter,
but none was found.

Assembler Action: The value of the operand that is lacking a
right parenthesis is set to O.

Programmer Response: Supply a right parenthesis.

Severity Code: 8

Module Originating Message: CW AXSM

CWA216 ILLEGAL OPERAND FORMAT NEAR OPERAND
COLUMN nn

Explanation: The operand of this statement is illegally
constructed.

Assembler Action: The value of the operand is set to O.

Programmer Response: Supply a valid operand.

Severity Code: 12

Modules Originating Message; CW AXSA, CWAXSM

CWA217 RELOCATABILITY ERROR NEAR OPERAND
COLUMN nn

Explanation: One of the following fields contains a relocatable
value. All values in these fields must be absolute.

• Immediate field in an RI instruction

• Mask field

• Register specification

• Length modifier

Assembler Action: If any of the above fields contains a relocat
able value, the value of the field is set to O.
Programmer Response: Be sure that the field contains an
absolute value.

Severity Code: 12

Modules Originating Message: CWAXSA, CWAX5M, CWAXSV

CWA218 INVALID REGISTER SPECIFICATION-ODD
NUMBERED REGISTER REQUIRED

Explanation: An even-numbered regbter .was specified in a
context that requires an odd-numbered register.

Assembler Action: The invalid operand is set to O.

Programmer Response: Specify an available odd-numbered
register.

Severity Code: 12

Module Originating Message: CWAXSA'

CWA219 REGISTER OR IMMEDIATE FIELD OVERFL,.OWNEAR
OPERAND COLUMN nn

Explanation:

• The value of the immediate. field uS€(d in an RI instruction is
greater than 255; or

• A register number was specified that was greater than 7.

Assembler Action: 'IheviUue of the field where the overflow
occurred is set to 0.'

Programmer Response; Be sure the value of an immediate field
does not exceed 255 and that no register number greater than
15 is specified.

Severity Code: 8

Module Originating Message; CWAXSM

CWA220 AUGNMENT'ERROR NEAR OPERANDCOI.UMN nn

Explanation: The operand of this instruction refers to a main
storage location that is hot em the boundary required by the
instruction.

Assembler Action: The faulty alignment is unchanged.

Programmer Response: Align the main storage location
referenced in the operand field.

Severity Code: 4

Module Originating Message; CWAXSA

CWA221 REGISTER NUMBER 0 NOT ALLOWED NEAR
OPERAND COLUMN nn

Explanation: Specification of register 0 is not allowed at this
" ·pointin'the-epei'afld ..

Assembler Action; The machine instruction is set to zero.

Programmer Response: Review the format of the invalid
instruction and recode.

Severity Code: 12

Module Originating Message: CWAXSM

CWA222 REGISTER NUMBER LESS THAN 0 NEAR OPERAND
COLUMN nn

Explanation: A register was given a negative value.

Assembler Action: The machine instruction is set to zero.

Programmer Response; Review the invalid machine instruction
and recode.

Severity Code: 12

Module Originating Messag~,; CWAXSM

CWA223 EXTERNAL REGISTER GREATER THAN 127

Explanation: An RE-type machine instruction has a register
specified that is not within the range of 0;,.127.

AssemblerAction: The machine instruction is set to zero.

'Programmer Response; . Review the format of the RE-type
machine instruction and recode. '

Severity Code: 12

Module Originating Message; CWAXSM

CWA224 LENGTH ER~OR NEAR OPERAND COLUMN nn

Explanation;

• The length modifier of a constant is invalid for that type of
constant; or

• A constam of type C, X, or B is too long; or

• A relocatable address constant has an invalid length.

Assembler Action:' The operand in error and any following
operands of the DC, DS, or DXD statement are processed as
comments. An address constant with an invalid length is
truncated. .

Programmer Response: Supply a valid length modifier or
decrease the length of the operand.

Severity Code: 8

Module Originating Message: CWAX5D

Appendix I: Communications Controller Assembler Messages-OS/VS 1 ... 23

.CWA226BAS~ RE(J'ST~R OF MACHINEJN~TR.uCTl.oN NOT
ABSOLUTE NEAR OPERAND COLUMN nn

\, ~ . : ..: ' " '" :

Expltmlltion: .An e~plicitbase regist~r~aspe~n $pecifitXi as a
relocatable value; an absolute term or expression is J;eq1,lired.,

AssemblerA.cti~m: . The operand in· erro~ (base and displacement)
is assembled to O.

Programmer Response: Use an absolutet~rm or ~xpression to
specify the base register. '

Severity Code: 12

Module Originating Message: CWAXSM

CWA228 RELOCATABLE DISPLACEIVIENT IN MACI:'ilNE
INSTRUCT!ON NEAR OPERAND COLUMN iiii

Explanation: In a machine instruction that has an explicit base
register specification, the specification for the displacement field
is relocatable. As' this would imply a second base registet~ the
combination is invalid.

Assembler Action: . The displacement field of the machine
instruction is a$sembled to O.

Programmer Response: Either specify the displacement as an
absolute term or expression, or delete the explicit base register.

Severity Code: 8

Module Originating Message: CWAXSM

CWA229 POSSIBLE REENTERABILITY ERROR

Explanation: . This machine instruction ,could store data into a
control section or common area that is not dynamically acquired.

This message is produced only when the.RENT assembler
option is specified in the P AR,-M field of the EXEC sta~ement.

Assembler Action: The stat~menf is assembled as writte~.
Programmer Response: If you want reentrant oode, correct the
instruction so that it references a DSECT or other dynamically
acquired $Pace .. Otherwise you can suppress reentrant.checking
by specifying the NOREm· assembler option.

Note: Absence'of this message does not guarantee reentrant
code, aSJhe assembler has no control oy~r a~dresses a~ually
loaded into base arid index,regi;tersat pip'~.am·~~e·~ution
time. . . ,.'~.. .',

Severity Code: 4

~dttlt: 8r igiltuti"g Message. eWAXsivf

CWA230 BASE REGISTER NUMBERGREATERTHAN "1 NEAR
OPERAND COLUMN nn

Explanation: An explicit base registedn a machirie instruction
is greater than 7.

Assembler Action: The base register field of the machine
instruction is assembled to O.

Programmer Response: Specify the base register in the range of
Ot07.

Severity Code: 12

Modules Originating Message: CW AXSA, CW AXSM

1-24 IBM 3704 and370sIembier Language

CWA23.1 . SYMBOL. NOTPR~¥fOUSL. Y:DEFfNE[),""'X~~xxxxx ,

Explanation: A symbol in this statement is used in away that
requires 'pr~viousde.fin~i()n,J>ut,~t ha~; noJbeen previously :.
defined. For example, a symbol in a duplication factor expr.es
sion of a DC statement must be prev .. iou. ,sly defined.

-<' I(';1. (-,,', .,' ,.I

Assembler Action: Th~ value of the symbol orJhe expression
that contains it issetto' 0.' ." ~', ' "

Programmer Response: Define the symbol earlier in the"pro~
gram. Add,adefining'statement if it does not'exist,'ot:place'the
existing defining statement ahead of the statement that
references it.: ,.

Severity Code: 8

'ModuleOriginqting Messag~; CWAX5.1;>, ~.fi.X5y,

CWA233 MORE THAN 6 LEVELS OF PARENTHESES NEAR
OPERAND COLUM'N'nn

Explanation: An expression in this statement contains morethan
6 nested levels of parentheses. .

Assembler Action: The value of the expression is settoO.

Programme~lrespo~,se: Rewriteth~expressionto reduce the
number of levels of parentheses, or use a preiiminary statement
(such as an EQU) to partially evaluate the' expression.

Severity Code: 8

Mocfule Originating Message: CWAXSV

CWA234 PREMATURE END OF EXPRESSION NEAR OPERAND
COLUMN:~n:' '.

.. :t ; ~ \.r".·

Explanation: An expression in this statement,ended prematurely
due to one Ofihe'following errors: '

• Unpaired parenthesis ", " .'

• Invalid character

• ' I~~alid op~~~tor
• Operator not followed by a term

Assembler Action: The value of ~he exp~essi~n ~sset toO.

Programmer Response: Check the expression for omitted or
,mispuhthedcharactersbr terms., ' '

Severity Code: 8

Module Originating Meysoge' CW A.XSV

CWA235 ARITHMETic OVERFLOW NEAR, OP~~AND
COLUMN nn

Explanation: TJ.1e in,termi~iate value ~fl a term Or ~·,~x.pres-,
sion is not in the range -2 through 2 -1., '"

, Asser,nblerAction: The valueofJhe,expressionis\s~t to 0,

Prog,ammer Response: Rewrite the expression or term. The
assembler computes all values using fixed-point full~word~ktith
metic. Or, perform arithmetic operations ina different sequence
to avoid overflow.

Severity Code: 8

Module Originating Message: CW AXSV

CWA236 ILLEGAL CHARACTER IN EXPRESSION NEAR
, OPERAND COLUMN nn

Explanation: Syntax error. A character ~ ~n expression has
no synitactic.meaning in the context used; the assembler cannot
determine if it is a symbol, in operator, or a delimiter.

Assembler Action: The value of the expression is set to O.

Programmer Response: Check the expression for unpaired
parentheses, invalid delimiter, invalid operator, or a character
(possibly unprintable) that is not recognized by the assembler.
The 51 characters recognized by the assembler are:

Letters: A through Z and $ # @

Digits: 0 through 9
Special CharacterS: + -, = . * () , / &
Blank

SeverityCode::'S' ...

Modules Originating Message: CW AX5D, CW AX5V

CWA237 CIRCULAR DEFINITION

Explanation: The value of the first expression in the operand
field of an EQU statement is dependent upon the value of the
symbol being defined fit the name field.

Assembler Action: The value of the expression defaults to the
'current location'counter value.

Programmer Response: Remove circularity in the definition.

Severity Code: 8

Module Originating Message: CW AX5A

CWA238 ILLEGAL AMPERSAND IN SELF-DEFINING TERM
NEAR OPERAND COLUMN nn

Explanation: An ampersand in a self-defining term is unpaired
and/or not part of a quoted character string.

Assembler Action: The-value of the expression containing,the
self-defining term is set to O.

Programmer Response: Check that all ampersands in the term
are paired and part of a quoted character string. (The only valid
use of a single ampersand is as the first character of a variable
symbol.) Note that ampersands produced by substitution must
also be paired.

Severity Code: 8

Module Originating Message: CWAX5V

CWA240 CHARACTER STRING OR SELFDEFINING TERM
TERMINATED BEFORE ENDING QUOTE FOUND

Explanation: The assembler has found' what appears to be a
quoted character string or a self-defining term, but the closing
quote is missing, or an illegal character is fOUIId before the Clos-
ing quote. .

Assembler Action: The term or expression i~ ignored.

Programmer Response: Supply the missing quote or check for
other syntax errors.

Severity Code: 8

Modules Originating Message: CWAX5A, CWAX5V

CWA241 FOURTH OPERAND OF CW NOT BETWEEN 0 AND
X'3FFFF'

Explanation: The fourth operand of a CW instruction, which
specifies the data address, is outside the range of 0 to X'FFFF'.

Assembler Action: The low-order three bytes of the operand
are used. .

Programmer Response: Supply a correct term or expression for
the second operand.

Severity Code: 12

Modules Originating Message: CWAXSA

CWA242 SPACE OPERAND NOT A SINGLE POSITIVE
DECIMAL SELFDEFINING TERM

ExpJana.tion: The. ~p-eIaruLoLa.sPACE_instm.~tioD iSI)Qt ,il zero
or positive decimal self-defining term.

Assembler Action: The SPACE statement is processed as a
comment.

Programmer Response: Use a single decimal self-defining term.
with a zero or positive value. .

Severity Code: 4

Module Originating Message: CWAX5A

CWA234 CW OPERAND SUBFIELD NEAR OPERAND
COLUMN nn IS MISSING

. Explanation: One of the required sub fields ofthe CW operand
is missing.

Assembler Action: The value of the CW instruction is set to '0.

Programmer Response: Review the format of the CW instruction
and recode.

Severity Code: 12

Module Originating Message: CWAX5A

CWA244 INVALID BRANCH ADDRESS-NOT HALF WORD
ALIGNED

Explanation.: An RA or RT maClulle instr~ction has a branch
address that was not on a half-word boundary.

Assembler Action: The value of the instruction i~setto zero.

Programmer Response: Review the format of failing RA or RT
machinejnstruction and recode. .

Severity Code:: 12

Module ()'iginating Message: CWAX5M

CWA245 CW OPERAND VALUEEXCEEDS3NEAR OPERAND
COLUMN nn

Explanation:

• The first sub field of the CW operand (Command Code) is not
in the range of 0-3; or

• The second subfield of the CW operand (Flags) is n()t in the
range of 0-3.

Assembler Action: The instruction is set to zero.

Appendix I: Communications Controller Assembler Messages-OS/VS 1-25

Programmer Response: Review thef~r~at of the failing CW
instruction and recode.

SeverityCode: ·12

Module Originating Message: cwAXSA

CWA246 LOCATION COUNTER OVERFLOW

Explanation.;' The location counter is greater than X'3P'FFF'
218_1. '

Assembler Action: The location counter is 4 bytes long. The
overflow is carried into the high-order byte and the assembly
continues. However, the resulting code will probably not execute
correctly. ,

Programmer Response: The probable cause of the eiTor is a high
ORG statement value or a high START statement value. Correct
the value or split up the control section.

Severity Code: 8

Modules Originating Message: CWAX5A, CWAX5M

CWA247 INVALID LOCATION FOR RELOCATABLE R-TYPE
CONSTANT

Explanation: A relocatable R-type constant was found within
the first two bytes of a control section.

Assembler Action: This is an informational message, The value
of the R-type constant, if valid, otherwise is accepted;

Programmer Response: ,Review the description and use of the
R-type constant and recode.

,Severity Code.~ 4

Module Originating Message: CWAX5D

CWA248 INVALID EaUR OPERAND FORMAT

Explanation: An EQUR expression was found that did not have
the format R(N).

Assembler, Action: The value of the EQUR expression is setto
zero.

Programmer Response~' Reyiew the form~t of the invalid EQUR
expression andrecode. ~; "

Sever~t)' .9o~e:"p

Modtd~ Originating Message: C;Wi\X5A

CWA249 REGISTER/BYTE DESIGI,V~TdR;OFEaUR
EXPRESSION IS NOT AN ABSOLUTE VALUE·

Explanation: An EQUR instructi~n was det~~'t~d where either
t4e register va1~eor the byte d~signator Was not absolute.

Assembler Action: The value of the EQUR expression is set to
zero.

Programmer Response: Review the format of the invalid EQUR
and expression recode.

Severity Code: 8

Module'Originating Message: CWAXSA

1.;.26 IBM 3704 and 3705 Assembler Language

CWA250 REGI~TER DESIGNATd,R IS NOTAN ABSOLUTE
VALUE NEAR OPERAND COLUMN nn

, Explanation: A mac1,line instrupiion·that haS an operand sub
field of the format R(N) specified an'R' that did not have an
absolute value. ,,'

AssemblerAction: The value of the ihktructioil is set to zero.

Programmer Respiinse,~ Review the format of the invalid
.instruction and .recode.

Severity Code: 8,

Module Originating Message: CWAXSM

CWA251 BYTE DESI~NATOR IS A SYMBOLIC REGISTER
EXPRESSION NEAR OPERAND COLUMN nn

Explanation: An instruction that uses the format R(N) ih its
operand was found to have a non-absolute value for 'N'.

Assembler Action: The value of the instruction is set to zero.

Programmer Response: Review the invalid instruction and recode.

Severity Code: 8

Modules OriginatingMessage: CWAX5A, CW AX5M

CWA252 BYTE DESIGNATOR IS NOTO OR 1 NEAR OPERAND
COLUMN nn

Explanation: An instruction that uses the format R(N) in its
operand did not have the 'n' value in the range 0~1. This value
designates which (of the two) bytes in the register is being
addressed.

Assembler Action:' The instruction is set to zero.

Programmer Response: Review the invalid instruction and
recode.

Severity Code: 8 '

MbdulesOriginatingMessage: CWAXSA, CWAX5M

CWA253 RELOCATABLE R~TYPE ADDRESS CONSTANT IN
THIS ASSEMBLY.

Explanation: This is aninforrnational message only indicating
that at least one relocatable R-type address constant exists in
this assembly.

A gsembler .4ctUJ1I' Ng"e hl1;formatieaa! me~sag0 o~r.

Programmer Response: Review the requirements for an R-type
address constant."

Severity Code;" 4

Module Or.iginating Message: CWAX6B

CWA254 ILLEGAL FORMAT OF SECOND OPE'RAND OF END
. STATEMENT' '

Expla&1iin:c Secbnaoperand of END' instruction is inconsistent
with the form~t ,I;equired. ,i

Assembler Action: Second operand is ignored.

Programmer Response: Correct the operand. .',

Severity Code: '<4'
Module OriginatingW[:ssage: CW AX5A

CWA255 FIXED-POINT EXPRESSION ERROR NEAR OPERAND
COLUMN nn

Explanation: An error occurred during conversion of a decimal
number into a fixed-point number. '

Assembler Action: The number is assembled as zeros.

Programmer Response: Check the scale and exponent modifier
of the number for validity.

Severity Cod~: 8

Module Originating Message: CWAXSD

CWA256 SYSGO DO CARD MISSING-NOOBJECT OPTION USED

Explanation: A DDstatement for the'SYSGO data set is not
included in the JCL for this assembly. The SYSGO data set
normally receives the object module output of the assembler
when it is to be used as input to the linkage editor or loader,
executed in the same job.

Assembler Action: The program is assembled using the
NOOBJECT option. No output is written on SYSGO. If the
DECK option is specified, the object module will be written on
the device specified in the SYSPUNCH DD statement

Programmer Response: Optional. If the assembly is error free
and the object module has been produced on SYSPUNCH, you
can.execute it without reassembling. Otherwise, reassemble the
program and include a SYSGO DD statement in the JCL or use
a cataloged procedure that includes it.

Severity Code: 16

Module OriginatingMessage: CW AX6B

CWA257 SYSPUNCH DO CAR.D MISSING~NODECK OPTION
USED

Explanation: A DD statement for the SYSPUNCH data set is
not included in the JCL for this assembly. The SYSPUNCH data
set is normally used when the object'module of the assembly is
directed to the card punch.

Assembler Action:' The prbgram is assembled uShlgthe'
NODECK option. No deck is punched onSYSPUNCH. If the
OBJECT option has been specified, the object module will be
written on the device specified in the SYSGO DD statement.

ProgrammerResponse: Optional. The object module can be
link edited and executed from'SYSGO instead of SYSPUNCH by
adjusting JCL. Otherwise, if you want a punch data set,
reassemble the program with a SYSPUNCH DD statement.

Severity Code: 16

Module Originating Message:' CWAX6B

CWA258 INVALID ASSEMBLER OPTION ON EXE;C CARD
OPTION IGNORED

Explanation: Olle or more a(ihe assembler options specified in
the PARM field of the EXEC statement are iilValid. T~e error
may be caused by use of the wrong option; a misspeU;d option,
or syntax errors in coding the options. .'

Assembler Action: Invalid options are ignored. The assembly is
performed using the valid options.

Programmer Response: Check the spelling of the options, the
length of the option list (100 characters maximum), and the
syntax of the option list. The options must be separated by
commas, and parentheses in the option list (including SYSPARM)
must be paired •. Two quotes or ampersands are needed to
represent a single quote or ampersand in a SYSPARM character
string.

Severity Code: 16

Module Originating Message: CWAX6B

CWA259 RELOCATABLE Y-TYPE ADDRESS CONSTANT IN
THIS ASSEMBLY

Explanation: This is an informational message only indicating
that a least one relocatable Y -type address constant exists in
this assembly.

Assembler Action: None-informational message only.

Programmer Response: Review the requirements for a Y-type
address constant.

Severity Code: 4

Module Originating Message: CWAX6B

CWA260 ASSEMBLY TERMINATED-DD CARD MISSING FOR
SYSxxx

Explanation: This assembler job step cannot be executed because
a DD statement is missing for one of the following assembler
data sets: SYSUT1, SYSUT2, SYSUT3, or SYSIN. The missing
DD statement is indicated in the message text.

Assembler Action: The assembly is terminated before any
statements are assembled. No assembler listing is produced, so
this message is printed on the system output unit following the
job control language statements for the assembly job step and on
the operator's console.

Programmer Response: Supply the missip.g DD statement and
reassemble the program. The cataloged procedures supplied by
IBM contain all the required DD statements.

If the problem do the following before calfirig IBM:

,r, • .."..,.,..-,c-.'. ' .. J11acro definitions, and.associated

• If a COpy statement was used, execute the IEBPTPCH
utility toobtainia~opy,of the partitioned data set member
specified in the.:,CdPY statement. .

~ . - " ;

• Make sure t~at MSGLEVEL=(l, 1) was specified.in the JOB

Operator Response: If possible, supply the missing DD state
men~.intJl,.eJCL statement~ fo~ the assembly and run the job
again.

Severity Code: 20

Modules Originating Message: CWAXOD, CWAXOI

CWA261 ASSEMBLy TERMINATED-PERM I/O ERROR

jobname, stepname, unit address, device type, ddname,
operation attempted, error description

Explanation: A permanent I/O error occurred on the assembler
data set indicated in the message text. This message, produced
by a SYNADAF macro instruction, also contains more detailed
information about the cause of the error and where it occurred.

Appendix I: Communications Controller Assembler Messages-OS/VS 1-27

Assembler Action: The assembly:is terminated. Depending on
where, the err9r occurred~ the aSSembly listing up to the point
of the I/O error may be produced .. If the listing isproduced~

. this message appears on It. If the listmg is not prQduced~ this
message ap,pears on the operator's console and on the system

'output unit following the job control language statements for
the assembler lob step. '

Programmer Response: If the I/O error is o~ SYSIN or
SYSLIB, you may have concatenated the input or library data
sets incorrectly. Make sure the DD statement for the data set
with th~ largest blocksize (BLKSIZE) is placed in the JCi. before
the DD statements of the data sets concatenated to it. Also,
make sure that all input or library data sets have the same device
class (all DASi:> or all tape).

In any case, reassemble the program; it may assemble cor
rectly. If the problem recurs, do the following before calling
IBM:

• Have your source program, macro definitions,and associated
listings available.

• If a COpy statement was used, execute the IEBPTPCH
utility to obtain a copy of the partitioned data set member
specified in the COpy statement.

• Make sure that MSGLEVEL=(1,l) was specified in the JOB
statement.

Operator Response: If the I/O error is on SYSUTI, SYSUT2,
or SYSUT3, allocate the data set to a different volume and rerun
the job. If the I/O error' is on tape, check the tape for errors.

Severity Code: 20

Modules Originating Message: CWAXOC, CWAXOE, CWAXOG,
CWAXOI

CWA262 ASSEMBL Y T~RMINATED-INSUFFICIENT MEMORY

Explanation: The assembler was unable to get at least 32K
bytes of main storage for working storage, utility file buffers, and
assembler tables and constants.

Assembler Action: Theassembly~~~,,}'~!!,~,~ ted before any state-
ments are assembled. No duced, so this
message is printed on foilo~rtn~l'·"·'
JCL statements for the assembler on the operator's
console~

Progfainrher Response: Increaseth~"si~e9f Uleregion or
.partition allocated to the assembler. Reassemble the program.

. If the problem recurs, do the followirig>before calling IBM:

• Have your source program, macro definitions,'and associated
listings available. " ,

• Make sure that MSGLEVEL=(1,t) was specified'in'the JOB
statement.

Operator Response:

• Increase the size of the region allocated on the JOB card or
on the EXEC card for the assembler job step and rerun the

)ob;or, .

• Run the job in' a larger partition.

Severity Code: '20

Mod~les Ori~nating Message: C'YAXOB, CWAXOI'

1-2ff lBM3704;and3705Assembler Language

CWA263 ASSEMBLY TERMINATED-PROGRAM LOGIC ERROR

Explanatio.n: The asseIl1blyh;lS beeIlabnormally terminated
because of a logic error withiIl the assembler!

Assembl(!rAction: Abnormal tennination. No assembler listing
is produced; the assembler prints this message on the system out
put device following the JCL statements for the assembler job
step.

Programmer Response: Do the following before calling IBM:

• Have your source program, macro definitions, and associated
listings available.

• If a COpy statement was used, execute the IEBPTPCH
utility program to o,btain a copy, of the partitioned data set
member specified in the operand field of the COpy
statement.

• Make sure that MSGLEVEL=(1,l) was specified on the JOB
statement.

Severity Code: 20

Module Originating Message: CWAXOI

CWA264 TOO MANY ESD ENTR I ES

Explanation: More than 399 entries have been made in the
External Symbol Dictionary. Entries in the External Symbol
Dictionary are made for the following: control sections, dummy
sections, external references (EXTRN and' WXTRN), ENTRY
symbols, and external dummy sections.

Assembler Action: Entries over the 399 limit are not added to
the dictionary and linkage is not provided for them.

Programmer Response: Subdivide your potgram and reassemble
each section individually. Be sure that there are not more than
399 ESD entries in each assembly.

Severity Cod~: .16 .. ' .

Module Originating M~~~~~.: CW AX6B

CWA265 SYMBOL ~ESOLUTI9~ATA AREA HAS BEEN
EXHAUSTED

Explanation:

\~, Too manyJiterals lu~ve been ,encountere,d since a LTORG
statement vras encoulltered,-ai..,t the assembl~r has filled
aVll#a.bl~, \\;'9!k space with literals; or

• The assembled~as filled'available work space with ESD
entries.

Assembler Action: No a~seIpb,Iy. is perrormest

Programmer Response:

• Inserfmore LTORG st~tementsin the so~rcedeck or allocate
more working storage to the assembler; or

• If there are. more than ,399 ESD entries in your source mod
ul~, segment ,it, into several modules.

'Severity Code:' 16

Module Originating Message: CWAX6B

CWA266 LAST ASSEMBLER PHASELOADED WAS xxxxxxxx

Explanation: This message is issued by the aport routine when
the assembly is abnormally terminated.

Assembler Action: Abnormal termination.

Programmer Response: Correct problems indicated by other
error messages and reassemble.

Severity Code: 4

Module Originating Message: CW AXOI

CWA267 SYSPRINT DD CARD MISSING-NOLIST OPTION
USED

Explanation: The LIST option is specified, but the DD state
ment for the SYSPRINT data set is not included in the JCL for
this assembly. The SYSPRINT data set holds the object module
output of the assembly normally directed to the printer.

Assembler Action: The program is assembled using the NOLIST
option. The message is printed on the system output device
following the JCL statements for the assembler job step and on
the operator's console.

Programmer Response: If you want a listing, reassemble the pro
gram with a SYSPRINT DD statement. Otherwise, do not
specify the LIST option.

Operator Response: Supply, if possible, a SYSPRINT DD card
for the assembler job step and rerun the job.

Severity Code: 16

Module Originating Message: CWAX6B

CWA268 SYSTERM DD CARD MISSING-NOTERMINAL
OPTION USED

Explanation: The TERMINAL option is specified, but the DD
statement for the SYSTERM dataletis not included in the

JCL statements for this assembly. The SYSTERM data set con
tains diagnostic information output of the assembly, normally
directed to a remote terminal. .

Programmer Response: If you want a SYSTERM listing,
reassemble the program with a SYSTERM DD statement.
Otherwise, do not specify the TERMINAL option.

Operator Response: Supply, if possible, a SYSTERM DD card
for the assembly step and rerun the job.

Severity Code: 16

Module Originating Message: CWAX6B

CWA269 SYSLIB DD CARD MISSING

Explanation:

• A COPY instruction appears in the assembly, but no
SYSLIB DD statement is included in the JCL statements; or

• An operation code that is not a machine, assembler, or source
macro instruction operation code appears in the assembly,
but no SYSLIB DD statement is included in the JCL state
ments. The assembler assumed the operation code to be a
library macro operation code.

Assembler Action:

• The COPY instruction is ignored; or

• The operation code is treated as an undefined operation
code.

Programmer Response: Supply the missing DD statement or
correct the invalid operation code.

Severity Code: 16

Module Originating Message: CWAX6B

Appendix I: Communications Controller Assembler Messages-OS/VS 1-29

&SYS, avoiding use of in global
declarations 5-18

&SYSDATE system variable symbol 5-8
&SYSECf system variable symbol 5~9
&SYSLIST system variable symbol 5-9
&SYSNDX system variable symbol 5-10
&SYSPARM system variable symbol 5-10
&SYSTIME system variable symbol 5-10

A
absolute expression 2-4
absolute terms 2-1
ACTR instruction

defined 5-28
format 5-28

address constant
A-Type 4-11
R-Type 4-11
V-Type 4-11
Y-Type 4-11

addressing
dummy sections 4-4
external control control sections 4-7

AGO instruction
examples 5-27
format 5-27

AIF instruction
examples 5-27
format ,5-27
maximum count 5-26
rules for use 5-27

alignment, forcing with duplication fac • .,.... 4':'12
ampersand, rules for use 2-3 "':;,
ampersands in operands 5-12
ANOP instruction

example 5-28
format 5-28
use of 5-28

apostrophe, rules for use 2-3
arithmetic expression

evaluation of 5-21
parenthesized terms in 5-22
set (SETA) 5-21
SETB 5-25

assembler
auxiliary storage requirements

DOS F-8
DOS/VS F-8, F-9
OS F-7, F-9 f
OS/VS F-7, F-9

dictionary capacities F-7
DOS options F-2
DOS/VS options F-2
messages

DOS G-1
DOS/VS H-1
OS G-1
OS/VS 1-1

OS options F-I;
OS/VS options ':'F-3
primary storage requirements

DOS F-8
DOS/VS F-8
OS F-7
OS/VS 'F-7

assembler instructions D-1
assembler mnemonics
assembly no operation
attributes, summary of
A-Type address constan}_

B
binary constant 4-11
binary self-defining term 2-3
blank common control section 4-5
blanks in operands 5-12
boundary alignment 2~3, 4-9

C
character constant 4-11
character self-defining term 2-3
CNOP instruction

defined 4-14
examples 4-14
format 4-14

COM instruction
defined 4-5
format 4-5

commas in operands 5-12
comments entry 2-1
common area 4-5
complex relocatable expressions 4-11
concatenating symbolic parameters 5-5
conditional assembly elements 5-29
conditional assembly expressions E-1
conditional assembly language 5-14
conditional assembly instructions

examples 5:-14
primary use of 5-14

conditional assembly loop counter 5-29
conditional branch instructions 5-26
constant

address 4-11
binary 4-11
character 4-11
fixed-point 4-11
hexadecimal 4-11

constants, summary of C-1
control section 4-2
CO PY instruction

defined 4-1
format 4-1

COpy statements 5-6
count attribute ,5~17
CSECT instruction'-2~2, 4-3

format 4-3'''''-------.
unnamed first control section 4-4

current_control section I,
CW instruction

boundary alignment 4.:'11
example 4-13
format 4-13
rules for use 4-13

CXD instruction 4-5

D
data attribute

count 5-17
how referred to 5-16
length 5-16
notation 5-16
number 5-17
operand sublists 5-16
summary of E-2
symbols 5-16
type 5-16
types of 5-16

Intlex

Index X-1

DC instruction
format 4-9
operand subfields 4-9
sub fields 4-9,4-10

blanks 4-9
constant 4-10
duplication factor 4-9
length 4-9
type 4-9

decimal self-deIming term 2-2
declaring SET symbols 5-15
defining symbols 2-1
dictionary capacities, OS and OS/VS F-8
DOS assembler options F-2
DOS/VS assembler options F-2
DROP instruction

example 4-6
format 4-6

DS instruction
format 4-11
maximum length 4-12

DSECT
location' assignment 4-4
rules for addressing 4-4

DSECT instruction 2-2,4-4
defined 44
format 44

dummy section
addressing 4-4
external (OS/VS only) 4-5
location assignment 4-4

DXD instruction (OS/VS only) 4-5

E
EJECT instruction

defined 4-16
format 4-16

END instruction
defined 4-2
format 4-2

. entry
comments 2-1
name 2-1
operand 2-1
operation 2-1

ENTRY instruction, defined 4-7
EQU isntruction

example 4-8
format. 4-8

equal signs in operands 5-12
EQUR instructiQ.!]

example 4-81
format 4-8

error messages, requesting 5-7
evaluation of logical expressions 5-25
expressions

absolute 2-4
evaluation of 2-4
relocatable 24
summary of E-2

extended addressing, controllers without 2-2
extended mnemonic codes 3-4
EXTRN instruction

F

format 4-7
limitations 4-7

fixed-point constant 4-11
forcing alignment with duplication factor 4-12
format 4-7

maximum allowed 4-7

X-2 IBM "3704 and 3705 Assembler Language

G
GBLA instruction 5-18
GBLB instruction 5-18
GBLC instruction 5-18
global SET symbols 5-2
global variable symbols 5:18

H
hexadecimal constant 4-11
hexadecimal self-defining term 2~3

ICTL instruction
begin column 4-14
end column 4-14
format 4-14
rules for use 4-14

inner macro instruction 5-6
input format control 4-14
instruction alignment 3-1
ISEQ instruction

format 4-14
rules for use 4-14

J
job control statements

DOS F-2
DOS/VS F-2
OS F-1
OS/VS F-3

K
K (count) attribute ,_,~17
keyword macro instrUc~lttn, defined 5-1

L
L (length)attribute 5-16
~-g111attribute 5-16
LIBMAC option (OS/VS) 5-11
local SET symbols 5-18
local variable symbols 5:)8
location counter .

and boundary alignment 2-3
defined 2-3
maximum value 2-3
setting value of 2-3

location counter reference 2-3

M
machine instruction.

examples 3-2 "'"
formats 3-2

EXIT ~

~ ~j
RI 3-3
RR 3-2
RS 3-2
RSA 3-3

mnemonic codes 3-1
macro definition

comments field 5-6
COpy statements in ~
defined 5-1
header 5-2
MACRO instruction •
model statement 5-3
parts of 5-2
prototype 5-2

macro definition header 5-2
macro instruction

alternate statement format 5-11
format 5-11
inner 5-6,5-13
levels of 5-6,5-13
operand sublist 5-13
operands 5-11
statement format 5-11

macro instruction index (&SYSNDX) 5-10
macro instruction operand (&SYSLIST) 5-9
macro instruction prototype

alternate format 5-3
example 5-3
format 5-2

macro language summary E-1
macro library 5-2
MCALL option (OS/VS) 5-11
MEND instruction 5-2

format 5-2
macro definition trailer 5-2

messages, assembler
DOS G-1
DOS/VS H-1
OS G-1
OS/VS 1-1

MEXIT
defined 5-7
format 5-7

MEXIT instruction
contrasted with MEND instruction 5-8
examples 5-8

mixed-mode macro instruction, defined 5-1
mnemonic operation code C-1
MNOTE instruction

ampersands in 5-7
apostrophes in 5-7
examples 5-7
format 5-7
severity code 5-7

model statement 5-5,5-6
multisection program 4-3

N
N (number) attribute 5-17
name entry 2-1
number attribute 5-17

o
omitted operands 5-12
operand entry 2-1
operand sub field 3-1
operand sublists

defined 5-13
example 5-13

operation entry 2-1
operator

arithmetic 5 -19
relational 5-25

ordinary symbols }~
ORG instruction ~4-13

defined 4-13 ' ,

;::~le 4~-j ~
OS assembler option0.".-1
OS/VS assembler ~"'.'

dynamic invocation of F~
options F-':t.,

P
paired apostrophes in operands 5-12
paired parentheses in operands 5-12
parenthesized terms 2-3
POP instruction (OS/VS only) 4-17
positional macro instruction

defined 5-1
omitted operands 5-13

primary storage requirements (see assembler)
PRINT instruction

format 4-15
operands 4-15

program sectioning 4-1
defined 4-1

programmer aids 1-1
PUNCH instruction

defined 4-16
format 4-16
rules for use 4-16

PUSH instruction (OS/VS only) 4-17

Q
quotation marks (see apostrophes)
quoted strings in operands 5-12

R
RA format

defined 3-3
examples 3-3

RE format
defined 3-3
examples 3-3

relational operators 5-25
relocatable expressions 2-4
REPRO instruction

defined 4-16
format 4-16

request for error message 5-7
residence requirements (see assembler)
RI format

defined 3-3
examples 3-3

RR format
defined 3-3,
examples 3-2

RS format
defined j-2~_~.,.,

examples 3~!;i;i4..
RSA format··_·,·

defined 3-3
examples 3-3

RTformat
defined 3-3
examples 3-3

R-Type address constant 4-11

S
sequence checking 4-14
sequence symbols

examples 5-17
name field 5-17
use of 5-17

SET arithmetic insturction 5-22
SET character instruction 5-23
set location counter 4-13
SET symbols 5-2

global 5-2

Index X-3

SETA instruction
allowable values 5-21
arithmetic operators 5-19
evaluation of operators 5-22
examples 5-22,5-23
format 5-21
parenthesized terms 5-22
use of 5-22, 5-23

SETB instruction
examples 5-25,5-26
format 5-25
parenthesized terms 5-26
relational operators 5-25
rules for use 5-25
use of 5-26

SETC instruction
concatenating character expressions 5-23
evaluation of 5-23
format 5-23
substring notation 5-24
type attribute 5-23
use of 5-24

SPACE instruction
defined 4-16
format 4-16

START instruction 2-2,2-3,4-3
examples 4-3
format 4-3

storage, common 4-5
storage requirements (see assembler)
substring notation

defined 5-24
examples 5-24
first expression 5-24
maximum size 5 -24
second expression 5-24

symbolic parameters
concatenation of 5-5
example 5-4,5-5

symbols
defining 2-1,2-2
ordinary 2-1
restrictions on 2-2
sequence 2-1
variable 2-1

system source statement library 5-1
system variable symbo~ 5-2

T
T (type) attribute 5-16
terms 2-1

absolute 2-1
in parentheses 2-3
relo ca table 2-5
self-defining 2-2

binary 2-3
character 2-3
contrasted from data constants 2-2
decimal 2-2 .
hexadecimal 2-3
using 2-2

TITLE instruction
defined 4-15
format 4-15
rules for use 4-15

type attribute 5-16
type codes for constant 4-9

X4 IBM 3704 and 3705 Assembler Language

U
unconditional branch 5-27
unsectioned program 4-3
using global SET symbols 5-19
USING instruction

defined 4-6
example 4-6
format 4-6

using local SET symbols 5-19
using variable symbols' 5-15

V
variable symbols 2-1

assigning values to 5-2
restriction on use 5-15
types of 5-2

V-Type address constant 4-11

W
WXTRN instruction 4-7

y
Y-Type address constant 4-11

