L

VS Pascal SC26-4320-1
Language Reference

Release 2

VS PaSCaI 5C26-4320-1

Language Reference

Release 2

Second Edition (December 1988)
This edition replaces and makes obsolete the previous edition, SC26-4320-0.

This edition applies to Release 2 of VS Pascal, Program Number 5668-767 (Compiler and Library) and
5668-717 (Library only) and to any subsequent releases until otherwise indicated in new editions or
technical newsletters.

The changes for this edition are summarized under “Summary of Changes” in Appendix A. Specific
changes are indicated by a vertical bar to the Ieft of the change. These bars will be deleted at any
republication of the page affected. Editorial changes that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370, 30xx, 4300, and 9370 Processors
Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM’s program may be used. Any functionally
equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be delayed
because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Programming Publishing, P. O. Box 49023, San Jose,
California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you. © Copyright International Business Machines
Corporation 1987, 1988. All rights reserved.

© Copyright International Business Machines Corporation 1987, 1988. All rights reserved

Preface

This book provides definition of the VS Pascal programming language and its
syntax. No information other than that contained in this book should be considered
definition of the VS Pascal programming language and syntax.

When used in conjunction with VS Pascal Application Programming Guide, this
book can help you in writing, debugging, and maintaining VS Pascal applications.

This manual is not a learner’s guide. It is to be used by people who are involved in
the task of creating or maintaining applications, and who are already familiar with
Pascal and with programming in high-level languages. Some helpful Pascal
textbooks are listed in the “Bibliography” on page 280.

How This Manual Is Organized

If you are unfamiliar with VS Pascal you may want to read the first three
introductory chapters. If you are an experienced VS Pascal user you can turn
directly to the chapter that interests you.

In general, reference chapters begin with a “quick-reference” chart that presents
keywords and topics in functional groupings. Explanations of individual keywords
and topics then follow in alphabetic order.

Chapter 1, “How to Read Syntax Diagrams” on page 2, explains how to read
VS Pascal syntax diagrams.

Chapter 2, “VS Pascal Program Elements” on page 8, introduces some basic
elements of VS Pascal programs.

Chapter 3, “Structure of VS Pascal Programs” on page 18, describes the two
types of compilable units (the program unit and the segment unit) and how VS
Pascal programs are structured.

Chapter 4, “Declarations” on page 24, explains VS Pascal declarations in
alphabetic order.

Chapter 5, “Constants” on page 36, explains VS Pascal constants.

Chapter 6, “Data Types” on page 44, provides a chart of VS Pascal data types
in functional order. Explanations of each data type follow in alphabetic order.

Chapter 7, “Variables” on page 92, discusses some general principles of VS
Pascal variables and explains how different types of variables are referenced.

Chapter 8, “Routines” on page 102, discusses some general principles of VS
Pascal routines and provides, in alphabetic order, explanations of the VS
Pascal predefined routines. In addition, explanations are provided for some
non-predefined VS Pascal library routines.

Chapter 9, “Expressions” on page 194, defines what constitutes an
expression in VS Pascal and explains the various types of expressions.

Chapter 10, “Statements” on page 208, provides a chart of VS Pascal
statements. Explanations of each statement follow in alphabetic order.

Preface il

Chapter 11, “Compiler Directives” on page 230, provides a chart of VS Pascal
compiler directives in functional order. Explanations of each directive follow in
alphabetic order.

Appendix A, “Summary of Changes” on page 242, summarizes the additions
and enhancements VS Pascal Release 2 makes to VS Pascal Release 1.

Appendix B, “Predefined Identifiers” on page 246, provides an all-inclusive
reference chart of VS Pascal predefined identifiers: constants, data types,
routines, and variables.

Appendix C, “Options for Opening Files” on page 252, provides a brief
description of the options used for opening files.

Appendix D, “Syntax Diagrams” on page 254, groups together, in alphabetic
order, all of the syntax diagrams used in this manual.

Appendix E, “Migration Considerations” on page 270, summarizes points to
consider when migrating from VS Pascal Release 1 to Release 2, as well as
migration considerations from Pascal/VS Release 2.2 to VS Pascal Release 1.

“Glossary” on page 277, defines some important terms used in this manual.

“Bibliography” on page 280, lists the IBM VS Pascal publications, as well as
related text books that provide information on the Pascal programming
language.

Industry Standards

The VS Pascal Compiler and Library, Release 2, supports the specifications of the
American National Standard Pascal Computer Programming Language
(ANSV/IEEE770X3.97-1983). This standard is reterred to in this manual as the ANSI
Standard, or simply Standard Pascal.

The VS Pascal Compiler and Library, Release 2, also supports the specifications of
the International Standards Organization Programming Language - Pascal (ISO
7185-1983) at Level 0. This standard is referred to in this manual as the ISO
standard.

The VS Pascal Compiler and Library, Release 2, also supports the Federal
Information Processing Standard Publication (FIPS PUB} 109.

Typographical Considerations

VS Pascal Language Reference helps you recognize important terms and features
in three ways:

IBM Extensions To Standard Pascal Are Printed In Blue
This helps you distinguish Standard Pascal keywords and features from the
keywords and features that IBM has added to make VS Pascal more powerful and
easier to use.

iv VS Pascal Language Reference

Keywords Appear in Capitals
To help you recognize keywords that must be coded exactly as presented, the
following appear in all capital letters:

* Pascal reserved words
s Predefined identifiers
s User-defined identifiers.

Keywords used in a generic sense appear in lowercase. For example, the
reserved word TYPE appears in capitals, but general references to data type are
always in lowercase.

Double-Byte and Single-Byte Characters Are Clearly Represented
Throughout VS Pascal Language Reference, double-byte character set (DBCS)
characters and some single-byte character set (SBCS) characters are represented
as follows:

¢ Each dot/letter combination, as in “.A”, represents one DBCS character.

e The “<” and the “>" represent the shift-out and shift-in characters,
respectively.

* “b” represents one SBCS blank.

¢ "“b” represents one DBCS blank.

Preface

v

Contents

Chaptler 1. How to Read Syntax Diagrams e 2
No Parameters 2
Required Parameters L 2
Optional Parameters 3
Multiple Parameters 4
Default Parameters L 5
Chapter 2. VS Pascal Program Elements L 8
Identifiers 8
Reserved Words o 9
Special Symbois 10
Comments oM
Double-Byte Character Set (DBCS) Comments12
Literals . o 12
Hexadecimal and Binary Literals, 14
Double-Byte Character Set (DBCS) Literals 15
Double-Byte Character Set (DBCS) Mixed Literals 15
Chapter 3. Structure of VS Pascal Programs . L18
Program Units o 18
SegmentUnits 20
Linking Units to Form a Program - 22
Chapter 4. Declarations 24
Lexical Scope of Identitiers 24
DeclarationOrder e 27
VS Pascal Declarations L . .27
CONST Declaration C e e 27
DEF Declaration 28
LABEL Declaration o e 28
REF Declaration 29
STATIC Declaration o . 30
TYPE Declaration e 30
VALUE Declaration 31
VAR Declaration 31
Chapter 5. Constants e .. 36
Types of Constants e 36
Predefined Constants, N Y 4
Structured Constants e 37
Chapter 6. Data Types L. 44
The Basic Data Types 44
Simple Data Types 44
Pointer Data Type 44
String Pointer Data Type . 45
Structured Data Types 45
Creating Your Own Data Types _ 45
Type Compatibitity 46
Implicit Type Conversion 46
Same Data Types 47
Compatible Data Types L. 47

Contents Vii

Assignment Compatibility
Storage, Packing, and Alignment of Variables
VS Pascal Data Types

ALFA Data Type

ALPHA Data Type

ARRAY Data Type

BOOLEAN Data Type

CHAR DataType

DBCS Fixed String Data Type

Enumerated Scalar Data Type

FILE Data Type

GCHAR Data Type

GSTRING Data Type

INTEGER Data Type

Pointer Data Type

REAL Data Type

RECORD Data Type

SBCS Fixed String Data Type

SET Data Type

SHORTREAL Data Type

SPACE Data Type

STRING Data Type

STRINGPTR Data Type

Subrange Data Type

TEXT Data Type

Chapter 7. Variables
Predefined Variables
Subscripted Variables
Array Variables
STRING Variables
GSTRING Variables
Error Checking
Field Referencing
Pointer Referencing
File Referencing
Space Referencing

Chapter 8. Routines
Routine Declarations
Routine Parameters
Pass-by-Value Parameters
Pass-by-VAR Parameters
Pass-by-CONST Parameters
Formal Routine Parameters
Routines That Can Be Passed as Parameters
Function Results
Routine Directives
EXTERNAL Routine Directive
FORTRAN Routine Directive
FORWARD Routine Directive
GENERIC Routine Directive
MAIN Routine Directive
REENTRANT Routine Directive
Predefined Routines
ABS Function

vili VS Pascal Language Reference

ADDR Function

ARCTAN Function

CHR Function
CLOCK Function
CLOSE Procedure
COLS Function
COMPRESS Function . ..
COS Function
DATETIME Procedure

DELETE Function L
DISPOSE Procedure

DISPOSEHEAP Procedure

EOF Function
EOLN Function S
EXP Function
FLOAT Function
GET Procedure

GSTR Function

GTOSTR Function e
HALT Procedure

HBOUND Function

HIGHEST Function
INDEX Function

LBOUND Function

LENGTH Function

LN Function

LOWEST Function

LPAD Procedure
LTOKEN Procedure

LTRIM Function

MARK Procedure

MAX Function

MAXLENGTH Function
MCOMPRESS Function .
MDELETE Function
MIN Function
MINDEX Function
MLENGTH Function

MLTRIM Function

MRINDEX Function
MSUBSTR Function
MTRIM Function

NEW Procedure

NEWHEAP Procedure . .
ODD Function
ORD Function C
PACK Procedure
PAGE Procedure
PARMS Function
PDSIN Procedure
PDSOUT Procedure

PRED Function
PUT Procedure
QUERYHEAP Procedure
RANDOM Function

READ Procedure (for Record Files)

Contents

ix

READ and READLN Procedures (for Text Files) 155

READSTR Procedure 160
RELEASE Procedure e 162
RESET Procedure 163
RETCODE Procedure 163
REWRITE Procedure 163
RINDEX Function e 164
ROUND Function 165
RPAD Procedure L, 165
SEEK Procedure 166
SIN Function O, 167
SIZEOF Function 167
SQR Function A, 167
SQRT Function 168
STOGSTR Function 168
STR Function o 169
SUBSTR Function o 170
SUCC Function 171
TERMIN Procedure e e 171
TERMOUT Procedure 171
TOKEN Procedure 172
TRACE Procedure 173
TRIM Function 174
TRUNC Function 174
UNPACK Procedure e 175
UPDATE Procedure 176
USEHEAP Procedure 177
WRITE Procedure (for Record Files) B N A 4
WRITE and WRITELN Procedures (for Text Files) 178
WRITESTR Procedure 184
Additional Routines 186
CMS Procedure 186
ITOHS Function 187
LPAD Procedure o L . 187
ONERROR Procedure 188
PICTURE Function 189
RPAD Procedure N
Chapter 9. Expressions e e 194
Operators 197
The NOT Operators e 197
The Multiplication Operators, 197
The Addition Operators e 198
The Relational Operators e S 199
BOOLEAN Expressions s 199
Constant Expressions S o ... 201
Logical Expressions e .. 202
FunctionCalls e 203
Ordinal Conversions C .. 203
Set Constructors e 204
Chapter 10. Statements . e 208
VS Pascal Statements R 209
ASSERT Statement o . 209
Assignment Statement e 209
CASE Statement e 211

X VS Pascal Language Reference

Compound Statement L . . 214

CONTINUE Statement L 215
Empty Statement . . S . C 215
FOR Statement L ... 216
GOTO Statement e T, 219
IF Statement L 220
LEAVE Statement e T 222
Procedure Call L o S 223
REPEAT Statement 223
RETURN Statement s 224
WHILE Statement 225
WITH Statement : S e o 225
Chapter 11. Compiler Directives C 230
VS Pascal Compiler Directives o231
%CHECK Directive o L oL .. 231
%CPAGE Directive : K)
%ENDSELECT Directive 233
%INCLUDE Directive e ... 233
%LIST Directive S 234
%MARGINS Directive 235
%PAGE Directive, 235
%PRINT Directive e 235
%SELECT Directive L S 236
%SKIP Directive e ... 236
%SPACE Directive e 236
%TITLE Directive 237
%UHEADER Directive o o 237
%WHEN Directive . . . T, L 238
%WRITE Directive e . .. 240
Appendix A. Summary of Changes - 242
Appendix B. Predefined ldentifiers 246
Appendix C. Options for Opening Files o 252
Appendix D. Syntax Diagrams o ... 254
Appendix E. Migration Considerations 270
From VS Pascal Release 1to VS Pascal Release2 270

From Pascal/VS Release 2.2 to VS Pascal Release1 273

Glossary . L : ... 277
Bibliography S - o . . o . . 280
Index o - 2 B

Contents Xi

Figures

NN~

O OO S bbb bbb DDA DB OWWOWWOWWWWWWMNNNNNNMNDNODMMNODNDN =S 2 a2 a3
PREOORNDNRONZLTOOOISPNRON 200D NP RON=SOO0OORNDORON =200

Syntax of a VS Pascal Identifier
Examples of Valid and Invalid Identifiers
VS Pascal Reserved Words
Summary of VS Pascal Special Symbols
Symbols That Are Reserved Words e
Example of a Nested Comment
Examplie of DBCS Commentso
Syntax of Literals e
Examples of Literals
Example of a DBCS Literal
Example of a DBCS Mixed Literal
Syntax of Valid Mixed Strings e
Syntax of Canonical Mixed Strings
Syntax of a Program Unit C
Structure of a Program Unit
Example of a Program Unit
Syntax of a Segment Unit e
Structure of a Segment Unit L.
Example of a Segment Unit,
Linking a Program Unit with Segment Units
Summary of VS Pascal Declarations
Scope of ldentifiers L
Nesting Structure of a Program
Syntax of the CONST Declaration
Syntax of the DEF Declaration
Syntax of the LABEL Declaration
Syntax of the REF Declaration
Syntax of the STATIC Declaration C e .
Syntax of the TYPE Declaration
Syntax of the VALUE Declaration

Syntax of the VAR Declaration
Examples of VS Pascal Declarations S
Categories of Constants e
Syntax of Constants
Syntax of Structured Constants
Example of an Array Constant
Example of a Record Constant
Examples of Structured Constants with Variant Record Fields
Example of a Combination of an Array and Record Constant

Syntax ofa DataType
Implicit Type Conversions Performed by VS Pascal
Examples of Type Compatibility
Summary of VS Pascal Data Types
Operators and Predefined Functions for Type ALFA
Operators and Predefined Functions for Type ALPHA
Syntax of the ARRAY Data Type
Examples of ARRAY Declarations
Predetined Routines for Type ARRAY
Operators and Predefined Functions for Type BOOLEAN . ..
Relational Operators on Type BOOLEAN
Operators and Predefined Functions for Type CHAR
Operators and Routines for the DBCS Fixed String Data Type

Xii VS Pascal Language Reference

10

11
12
12
13
14
15
16
16
16

. 18

19
19
21
21
21
22
24
25
26
27
28
29
29
30
31
31
32
33
36

. 36

38
39
39
40
41
45

. 46

48
49

. 50

51
51
52
52
53
54
55

. 56

53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.

91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.

Syntax of the Enumerated Scalar Data Type
Examples of Enumerated Scalar Data Types
Predefined Functions for Enumerated Scalar Data Type

Syntax of the FILE Data Type S e

Examples of FILE Dectarations o

Routines for Record File Variables o

Operators and Predefined Functions for Type GCHAR -
Syntax of the GSTRING Data Type e
Operators and Predefined Routines for Type GSTRING

How to Apply Binary Operators to DBCS Characters, DBCS Fixed Strings,

and DBCS Strings
How to Convert DBCS Strings on Assignment
Operators and Predefined Functions for Type INTEGER
Syntax of the Pointer Data Type
Example of Pointer Declarations
Operators and Predefined Routines for the Pomter Data Type
Operators and Predefined Functions for Type REAL
Syntax of the RECORD Data Type - S
Examples of Simple RECORD Declarations

Example of a Record Declaration with a Tag Field e
Storage of a Record witha Tag Field
Example of a Record Declaration with a Back Reference Tag Field
Storage of a Record with a Back Reference Tag Field S
Example of a Record Variant with No Tag Field
Storage of a Record Variant with No Tag Field
Example of a Record with Offset Qualified Fields C
Example of an Offset Qualifierona Tag Field
Predefined Functions for Type RECORD C
Operators and Routines for the SBCS Fixed String Data Type
Syntax of the SET Data Type . e
Example of SET Declarations
Operators and Functions for Type SET S
Operators and Predefined Functions for Type SHORTREAL
Syntax of the SPACE Data Type

Functions for the SPACE Data Type o . o
Syntax of the STRING Data Type
Operators and Routines for Strings (Byte-Oriented)
Functions for Strings (Character-Oriented)

How to Apply Binary Operators to SBCS Characters, SBCS Fixed Strings,

and SBCS Strings S
How to Convert Strings on Assignment

Example of the Type STRINGPTR

Operators and Predefined Routines for the STRINGPTR Data Type
Syntax of the Subrange Data Type
Examples of Subrange Scalars e
Examples of Subranges with the Same Base Type o
Predefined Functions for Type Subrange Scalar
Procedures and Functions for Type TEXT
Syntax of a Variable Reference e
Example of Variables Used in Their Entirety o
Example of Array Indexing
Examples of Valid and Invalid Subscripting for a STRING Data Type

Example of GSTRING Indexing

Example of Field Referencing e
Example of Pointer Referencing
Example of File Referencing

Figures

. 63
.. 64
.. 64
.. 66
.. 66
.. 67
.. 68
.. 69
.. 10
.72

.72
.73
.73
.74
. 74
. 75

76
76
77

.77
. 78
.79
. 80

81

. 81
. 81
. 82
. 83

xiii

107.
108.
109.
110.
111,
112.
113.
114,
115.
116.
117.
118.

119.
120.
121,
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.

Examples of Space Referencing L o

Example of Invalid Space Referencing

Syntax of Routine Declarations

Examples of Routine Dectarations . e
Example of Conformant String Parameters

Predefined Routines That Can Be Passed as Pararneters
Routines That Can Be Passed as Parameters

Example of a Recursive Function . .
Example of a Function Returning a Record e

Example of the EXTERNAL Directive . . e e

Example of the GENERIC Routine Directive

Example of Coding Before Development of the GENERIC Routine

Directive
Summary of Conver5|on Routines e
Summary of Data Inquiry Routines
Summary of Data Movement Routines
Summary of General Routines . . .
Summary of Input/Output Routines o
Summary of Mathematical Routines .

Summary of Storage Management Routines

Summary of String Routines for SBCS and DBCS Stnngs

Summary of String Routines for Mixed Strings

Summary of System Access Routines
Definition of the ABS Function L
Definition of the ADDR Function o
Definition of the ARCTAN Function
Definition of the CHR Function

Definition of the CLOCK Function .. S
Definition of the CLOSE Procedure

Definition of the COLS Function

Definition of the COMPRESS Function
Examples of the COMPRESS Function
Definition of the COS Function S
Definition of the DATETIME Procedure
Example of the Date and Time Format
Definition of the DELETE Function .
Example of the DELETE Function

Definition of the DISPOSE Procedure

Definition of the DISPOSEHEAP Procedure -
Definition of the EOF Function
Example of Testing for End-of-File Condition
Definition of the EOLN Function S
Example of Copyinga TextFile

Definition of the EXP Function

99

. 99

103
104
106

107

107
108
108
109
111

111
113
114
114
114
114
115
116
116
117

117

118
118
118
119
119
119
120
120
120
121
121
121

. 122

Definition of the FLOAT Function

Definition of the GET Procedure o
Definition of the GSTR Function
Example of the GSTR Function
Definition of the GTOSTR Function

Example of the GTOSTR Function o

Definition of the HALT Procedure . . o
Definition of the HBOUND Function C
Example of the HBOUND Function S
Definition of the HIGHEST Function
Example of the HIGHEST Function
Definition of the INDEX Function

Xiv VS Pascal Language Reference

122
123
123
124
124
125
125
125
126
126
127
127
127
128
128
128
129
129
129
130

162.
163.
164.
165.
166.
167.
168.
169.
170.
171,
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
208.
210.
211,
212,
213.
214,
215,
216.
217.

Example of the INDEX Function

Definition of the LBOUND Function . . o
Example of the LBOUND Function L .
Definition of the LENGTH Function
Exampies of the LENGTH Function
Definition of the LN Function
Definition of the LOWEST Function
Example of the LOWEST Function . . o
Definition of the LPAD Procedure
Examples of the LPAD Procedure
Definition of the LTOKEN Procedure
Example of the LTOKEN Procedure e
Definition of the LTRIM Function
Examples of the LTRIM Function
Definition of the MARK Procedure
Example of Using MARK and RELEASE within a Single Heap
Definition of the MAX Function e
Definition of the MAXLENGTH Function S e
Example of the MAXLENGTH Function
Definition of the MCOMPRESS Function
Example of the MCOMPRESS Function
Definition of the MDELETE Function
Example of the MDELETE Function
Definition of the MIN Function
Definition of the MINDEX Function
Example of the MINDEX Function
Definition of the MLENGTH Function
Example of the MLENGTH Function
Definition of the MLTRIM Function
Example of the MLTRIM Function
Definition of the MRINDEX Function e
Example of the MRINDEX Function o
Definition of the MSUBSTR Function
Example of the MSUBSTR Function
Definition of the MTRIM Function
Example of the MTRIM Function
Definition of the NEW Procedure
Example of the NEW Procedure (Form 1)
Example of the NEW Procedure (Form2)
Example of the NEW Procedure (Form3)
Definition of the NEWHEAP Procedure
Example of the NEWHEAP Procedure
Definition of the ODD Function
Definition of the ORD Function
Definition of the PACK Procedure
Example of the PACK Procedure e
Definition of the PAGE Procedure
Definition of the PARMS Function o
Definition of the PDSIN Procedure
Definition of the PDSOUT Procedure
Definition of the PRED Function
Example of the PRED Function
Definition of the PUT Procedure
Definition of the QUERYHEAP Procedure
Definition of the RANDOM Function
Definition of the READ Procedure (for Record Files)

Figures

Xv

xvi

218.
219,
220.
221.
222.
223.
224.
225,
226.
227.
228.
229.
230.
231,
232.
233.
234.
235.
236.
237.
238.
239.
240.
241,
242.
243.
244,
245,
246.
247.
248.
249,
250.
251.
252.
253.
254,
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272,
273.

Example of the READ Procedure for Record Files 154
Example ot Multipie Variables on READ . . e e .. . 1585
Definition of the READ and READLN Procedures (for Text Files) 155
Example of the READLN Procedure 156
Example of Multiple Variables on READ and READLN 157
Example of the READLN Procedure with Lengths 158
Example of Reading GCHAR and GSTRING Data 159
Example of Reading Mixed StringData 160
Definition of the READSTR Procedure . .. o 161
Example of the READSTR Procedure e 161
Example ot Code Equivalents to READSTR 162
Definition of the RELEASE Procedure Lo 162
Definition of the RESET Procedure 163
Definition of the RETCODE Procedure . .. e 163
Definition of the REWRITE Procedure 164
Definition of the RINDEX Function 164
Examples of the RINDEX Function 164
Definition of the ROUND Function 165
Example of the ROUND Function L 165
Definition of the RPAD Procedure 166
Example of the RPAD Procedure 166
Definition of the SEEK Procedure e 166
Definition of the SIN Function 167
Definition of the SIZEOF Function 167
Definition of the SQR Function 168
Definition of the SQRT Function 168
Definition of the STR Function 168
Example of the STOGSTR Function 169
Definition of the STR Function 169
Example of the STR Function 169
Definition of the SUBSTR Function 170
Example of the SUBSTR Function 170
Definition of the SUCC Function 171
Example of the SUCC Function 171
Definition of the TERMIN Procedure 171
Definition of the TERMOUT Procedure 172
Definition of the TOKEN Procedure 172
Example of the TOKEN Procedure 173
Definition of the TRACE Procedure 173
Definition of the TRIM Function 174
Example of the TRIM Function 174
Definition of the TRUNC Function 174
Example of the TRUNC Function 175
Definition of the UNPACK Procedure 175
Example of the UNPACK Procedure 176
Definition of the UPDATE Procedure 176
Example of the UPDATE Procedure 177
Definition of the USEHEAP Procedure S e
Definition of the WRITE Procedure (for Record Files) 177
Example of the WRITE Procedure for Record Files 178
Example of Multiple Expressions on WRITE 178
Definition of the WRITE and WRITELN Procedures (for Text Files) 179
Example of Multiple Expressions on WRITE and WRITELN 179
Default Field Widths on WRITE and WRITELN 180
Examples of Writing Boolean Data 181
Examples of Writing CHAR Data 181

VS Pascal Language Reference

274.
275,
276.
277.
278.
2789.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.

Examples of Writing DBCS Fixed StringData
Examples of Writing GCHAR Data e

Examples of Writing GSTRING Data
Examples of Writing IntegerData

Examples of Writing Real Data,

Examples of Writing SBCS Fixed StringData

Examples of Writing StringData, ...
Examples of Writing Mixed StringData

Definition of the WRITESTR Procedure U

Example of the WRITESTR Procedure, -
Example of Code Equivalents to WRITESTR
Definition of the CMS Procedure

Example of the CMS Procedure

Definition of the ITOHS Function

Example of the ITOHS Function

Declaration of the ONERROR Procedure o

Definition of the PICTURE Function

Examples of the PICTURE Function
Syntax of VS Pascal Expressions
Examples of Using Signs in Simple Expressions

Examples of VS Pascal Expressions e

NOT Operators

Multiplication Operators
Addition Operators
Relational Operators
Example of a Boolean Expression
Predefined Functions Permitted in Constant Expressions
Examples of Constant Expressions
Logical Operators for Integer Operands
Examples of Logical Operations
Syntax of a FunctionCall
Example of a FunctionCall
Syntax of an Ordinal Conversion
Examples of the Ordinal Conversion Function C
Syntax of a Set Constructor o
Example of a Set Constructor e
Syntax of VS Pascal Statements L

Summary of VS Pascal Statements,

Syntax of the ASSERT Statement
Example of the ASSERT Statement
Syntax of the Assignment Statement

Example of the Assignment Statement

Syntax of the CASE Statement
Example of the CASE Statement
Example of the CASE Statement with the OTHERWISE Keyword

Syntax of the Compound Statement

Example of the Compound Statement,
Syntax of the CONTINUE Statement
Example of the CONTINUE Statement and Its Equivalent
Syntax of the Empty Statement
Example of the Empty Statement
Syntax of the FOR Statement
Example of the Equivalent of a FOR-TO Statement
Example of the Equivalent of a FOR-DOWNTO Statement
Examples of the FOR Statement
Syntax of the GOTO Statement

Figures

xvili

330.
331.
332.
333.
334.
335.
336.
337.
338.
3390.
340.
341.
342.
343.
344.°
345,
346.
347.
348.
349.
350.
351.
352.
353.
354,
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.

Example of Using the GOTO Statement to Leave a Function

Example of Valid and Invalid GOTO Statements

Syntax of the IF Statement
Examples of Simple IF Statements
Example of Nested IF Statements

Example of Nested IF Statements with the Empty Statement

Syntax of the LEAVE Statement
Example of the LEAVE Statement
Example of the LEAVE Statement and Its Equivalent

Syntax of the Procedure Call

Example of Procedure Calls
Syntax of the REPEAT Statement
Example of the REPEAT Statement
Syntax of the RETURN Statement

Example of the RETURN Statement

Syntax of the WHILE Statement

Example of the WHILE Statement, .
Syntax of the WITH Statement
Example of the WITH Statement
Example of WITH Statement Evaluation
Example of Nested WITH Statement and ldentifier Scoping
Summary of VS Pascal Compiler Directives
Syntax of the % CHECK Directive
Syntax of the % CPAGE Directive
Example of the % CPAGE Directive
Syntax of the %ENDSELECT Directive
Syntax of the %INCLUDE Directive
Example of the %INCLUDE Directive
Syntax of the %LIST Directive
Syntax of the %MARGINS Directive
Syntax of the %PAGE Directive
Syntax of the % PRINT Directive
Syntax of the %SELECT Directive
Syntax cf the %SKIP Directive
Syntax of the %SPACE Directive
Syntax of the %TITLE Directive
Syntax of the %UHEADER Directive
Example of the %UHEADER Directive
Syntax of the %WHEN Directive
Example of Conditional Compilation
Syntax of the %WRITE Directive
Predefined ldentitiers
Syntax of Options for Opening Files
Exceptions in VS Pascal Release 2 Support of Release1

Exceptions to VS Pascal Release 1 Support of Pascal/VS Release 2.2

VS Pascal Language Reference

Chapter 1. How to Read Syntax Di-agrams

Chapter 1. How to Read Syntax Diagrams

Read syntax diagrams from left to right, top to bottom.

»——— indicates the beginning of the diagram.

— indicates that the syntax is continued on the next line.
»— indicates that the syntax is continued from the previous line.
— < jndicates the end of the diagram.

Keywords appear in all capital letters. For example: VAR, BEGIN, END. When
writing code, enter keywords exactly as shown, either in all caps or in lowercase.

Variables appear in lowercase in a special typeface. For example: label-dcl.

Special Symbols such as “>", “=", and so forth must be entered as part of the
code.

No Parameters

A keyword that requires no parameter is diagrammed this way:

\
A

»»——STATEMENT

Remember that you must code keywords (those in capital letters) exactly as
shown, or in lowercase. In this example, you can code

STATEMENT
or

statement

Required Parameters

All required keywords and variables appear on the diagram’s main path. In this
example,

»»—STATEMENT PARM1 PARM2)

you must code both parameters. Always separate parameters with one or more
blanks.

STATEMENT PARM1 PARMZ

Parentheses around parameters, like all special symbols, must be coded exactly
as shown. In this example,

p—————STATEMENT—(-PARM1—) —(—PARM2-) >

you must code:
STATEMENT (PARM1) (PARMZ2)

2 VS Pascal Language Reference

When there is a vertical list of parameters, one of which is on the main path, you
must choose only one of them. In this example,

Y
A

—PARM2

»»—STATEMENT PARMI:‘
—PARM3

you must code:
STATEMENT PARM1
or
STATEMENT PARM2
or

STATEMENT PARM3

Optional Parameters

A single optional parameter appears below the main path. In this example,

A\
A

»»—————STATEMENT
L j
PARM1

you must code either:
STATEMENT

or
STATEMENT PARM1

When you can choose only one optional parameter from a list of two or more, the
choices appear in a vertical list below the main path. In this example,

»»——————STATEMENT >
[:PARMlj
PARM2

A

you must code:
STATEMENT

or
STATEMENT PARM1

or
STATEMENT PARM2

Chapter 1. How to Read Syntax Diagrams 3

Multiple Parameters

The repeat symbol

P

indicates that you can specity more than one parameter or a single parameter
more than once. In this example,

-

»»———STATEMENT parm —>

A

parm, shown in small letters, represents a variable parameter. If the values you
can substitute for parm include PARM1 and PARMZ2, then you can code:

STATEMENT parml

or

STATEMENT parml parm2

and so forth.

This diagram

> STATEMENT——PARM1 -
PARMZﬂ
PARM3

indicates that you can code:

STATEMENT PARM1

or
STATEMENT PARM1 PARM3

or
STATEMENT PARM1 PARMZ PARM3

and so forth.

When the repeat symbol contains a comma,
.

you must separate muitiple parameters with commas. In such cases, parameters
need not be separated by blanks. In this example,

4 VS Pascal Language Reference

——

»»——STATEMENT |:PARM1:‘

A 4
A

PARMZ
PARM3

you can code:
STATEMENT PARM1
or
STATEMENT PARM1, PARM3
or
STATEMENT PARM1,PARM2 PARM3

and so forth.

Default Parameters

Default parameters are underscored. Omitting a parameter with a defauit value
produces the same result as actually coding the default. In this example,

»»———STATEMENT

L
PARM—T—YES
[NO

coding
STATEMENT PARM

is equivalent to coding
STATEMENT PARM YES

Chapter 1. How to Read Syntax Diagrams 5

Chapter 2. VS Pascal Program Elements

Chapter 2. VS Pascal Program Elements

VS Pascal provides several features, or basic elements, that are found in most VS
Pascal programs. The following sections define these program elements and
discuss the conventions governing their use.

Identifiers

Identifiers are the names given to variables, data types, procedures, functions,
named constants, and units. VS Pascal, you can also associate an identifie

There are two types of identifiers in VS Pascal:
¢ Predefined identifiers, which VS Pascal supplies
e User-defined identifiers, which you supply.

VS Pascal identifiers must:

¢ Be no longer than 100 characters
e Start with a letter or dollar siqi
¢ Be completely contained on one source code line.

Figure 1 shows the syntax of VS Pascal identifiers.

J

»»——1 etter >4
digit—
letter

Where Represents

letter “A” through “Z", “a” through "z", o

digit “0" through “9"

Figure 1. Syntax of a VS Pascal |dentifier

VS Pascal makes no distinction between lowercase and uppercase letters within an
identifier. For example, the identifiers “ALPHA", "alpha”, "Alpha”, and even
“alPha” are equivalent.

Figure 2 on page 9 shows examples of valid and invalid identifiers.

8 VS Pascal Language Reference

Valid Identifiers

1

KS
New_York
AMOUNT$

Invalid Identifiers

5K (starts with a number)

NEW JERSEY (has a blank between the words)

Figure 2. Examples of Valid and Invalid Identifiers

Reserved Words

Reserved words are tokens that express the syntax of VS Pascal. You cannot
redeclare reserved words for other uses. Reserved words must be separated from
other reserved words and identifiers by a special symbol, a comment, or at least

one blank. VS Pascal makes no distinction between uppercase and lowercase for

reserved words.

Figure 3 lists the VS Pascal reserved words.

AND END
ARRAY FILE
ASSERT FOR
BEGIN FUNCTION
CASE GOTO
CONST IF
CONTINUE IN
DEF LABEL
DIV LEAVE
DO MOD
DOWNTO NIL
ELSE NOT

OF

OR
OTHERWISE
PACKED
PROCEDURE
PROGRAM
RANGE
RECORD
REPEAT
RETURN

SET

Figure 3. VS Pascal Reserved Words

Note to Figure 3: The reserved words highlighted in color are IBM extensions to

Standard Pascal, and as such they are reserved only when the

LANGLVL(EXTENDED) compile-time option is in effect. These words can be
redefined when compiling Standard Pascal.

Chapter 2. VS Pascal Program Elements

9

Special Symbols

Special symbols are nonalphabetic characters or groups of characters used to
express VS Pascal syntax. Special symbols are used to represent such syntax
elements as operators and variable qualifiers. Figure 4 describes the VS Pascal

special symbols.

Symbol

Represents

+

Addition, concatenation, and set union operator

Subtraction and set difference operator

Muitiplication and set intersection operator

Division operator, real result only

Boolean NOT operator, one's complement on integer, and set

Boolean OR operator, and logical OR on integer

Boolean AND operator, and logical AND on integer

Boolean XOR operator, logical XOR on integer, and set symmeiric

diffe

ence

Equality operator

Less than operator

Less than or equal to operator, and set subset operator

Greater than or equal to operator, and set superset operator

Greater than operator

AlV IV I|IA|IA
It

Not equal operator

Left logical shift operator on integer

Right logical shift operator on integer

Concatenation operator

Assignment symbol

Period to end a unit, and a field separator in a record

Comma, used as a list separator

Colon, used to specify a definition

Semicolon, used as a statement separator

Subrange notation

Quote, used to begin and end string constants

Pointer symbol

Left parenthesis, used for parameter lists and mathematical grouping

Right parenthesis, used for parameter lists and mathematical
grouping

[or{.

Left square bracket, used for subscripts and set constructors

Figure 4 (Part1of 2). Summary of VS Pascal Special Symbols

10 vS Pascal Language Reference

Symbol Represents

Jor.) Right square bracket, used for subscripts and set constructors
{or(" Comment left brace (standard)

Yor™) Comment right brace (standard)

42 Comment left brace (alternate form)

o Comment right brace (alternate form)

Figure 4 (Part2 of 2). Summary of VS Pascal Special Symbols

The special symbols in Figure 5 can also be written as reserved words

Symbol Reserved Word
— NOT
OR
& AND
> < or XOR
&&

Figure 5. Symbols That Are Reserved Words

Comments

Comments are written statements that annotate source code by explaining or
describing some aspect of the code. Comments do not affect the execution of a
program. A comment can be placed in a unit anywhere a blank is acceptable.

Because the compiler bypasses comments, you can use them to temporarily
“comment out,” or exclude, code lines from compilation.

You must enclose comments with “{...}" or "/*.."/". The compiler recognizes
these as two different forms of comment. However, the compiler considers the
symbols “(*" and "*)” to be identical to the left and right braces.

When the compiler encounters “{”, it bypasses all characters that follow until it
encounters the “}” symbol. Likewise, the compiler bypassas all characiers
following “/*" until it encounters “*/"., As a result, either form can enclose the
other. Far example, the compiler considers /*...{...}..."/ to be one comment

You can use the two different sets of comment delimiters to nest comments. You

might, for example, use one comment form for ordinary comments and use t}
other to block out temporary sections of code (perhaps debugging statem
illustrated in Figure 6 on page 12.

m

Chapter 2. VS Pascal Program Elements

1

/’*

IF A = 10 THEN (* this statement is
for program
debugging only *)

WRITE('A IS EQUAL TO TEN'):
b5

Figure 6. Example of a Nested Comment

Note: Comments contained within a %WHEN block that evaluates to FALSE must
not contain "%" follawed by blanks and "when". The compiler will interpret this
statement as the beginning of a new %WHEN block.

Note for MVS balch: Do not use a “/*" comment delimiter in the first character
position of a line.

Double-Byte Character Set (DBCS) Comments

Double-byte character set (DBCS) portions of comments must be enclosed by a
beginning shift-out (X'0E"') character and an ending shift-in (X'0F') character.

Restriction: DBCS portions of comments cannot span multiple lines.

VS Pascal recognizes the shift-out and shift-in characters only when the GRAPHIC
compile-time option is in effect.

Figure 7 shows an example of mixed single-byte and double-byte portions of
comments.

("ABCDE < .A.B>FGHIJ*)

Figure 7. Example of DBCS Comments

Literals

Literals are values that define and represent no cother value but themseives.
Literals are not assigned to represent other values. Figure 8 on page 13 defines
the syntax of VS Pascal literals.

12 VS Pascal Language Reference

Unsigned Integer

A 4
A

Unsigned Real Number

P P

digit . digit >4
n E digit
3
String
characte
Where Represents
digit “0" through “9”
character Any EBCDIC character

Figure 8. Syntax of Literals

The symbol “E” or "e” when used in a real number expresses “ten to the power
of.”

Chapter 2. VS Pascal Program Elements 13

If you want a single quote to be recognized in a string, then you must write the
character twice. For example, for the string SQUARE'S_SIDES, you must type
'SQUARE''S_SIDES'.

VS Pascal is case sensitive with regard to the characters in string literals,
uppercase and lowercase letters are considered different. Also, string literals
written in VS Pascal cannot extend past the end of a line in the code. |f you must
use a string literal that extends past the end of a line, then concatenate shorter
strings together. Figure 9 shows some examples of literals.

Constant Matches Standard Type
0 * INTEGER
-500 INTEGER
1.0 REAL
314159E-5 REAL
0EO REAL
1.0E10 REAL
TRUE BOOLEAN
YFRX INTEGER
"A! CHAR
<A@ GCHAR
'ABC' STRING
'<,AB.C>'G GSTRING
'C1C2C2'XC STRING
"4EB00000FFFFFFFF'XR REAL
'42C142C2'XG STRING
'abe' STRING
o STRING
reet CHAR

b CHAR
o STRING
'That''s all’ STRING

Figure 9. Examples of Literals

Hexadecimal and Binary Literals
Integer Hexadecimal Literals: These are enclosed in single quotes and suffixed
with an “X"” or "x"—for example, 'FF'X. Hexadecimal literals can be used
anywhere an integer literal is appropriate. If you specity fewer than eight digits (4
bytes), VS Pascal assumes the digits not supplied are zeros on the left. For
example, 'F'X is the value 15,

14 vs Pascal Language Reference

Integer Binary Literals: These are enclosed in single quotes and suffixed with a
“B" or "b"—for example, '00000110'b. Binary literals can be used anywhere an
integer literal is appropriate. If you specify fewer than 32 binary digits (4 bytes), VS
Pascal assumes the digits not supplied are zeras on the lett. For example, '1111'B
is the value 15.

Floating-Point Hexadecimal Literals: These are enclosed in quotes and suffixed
with an “XR" or "xr". Such literals can be used anywhere a real literal is
appropriate. If you specify fewer than 16 hexadecimal digits (8 bytes), VS Pascal
assumes the digits not supplied are zeros on the right. For example, '4110'xr is
the same as '4110000000000000 " xr.

String Hexadecimal Literals: These are enclosed in quotes and suffixed with an
“XC" or “xc". Such literals can be used anywhere a string literal is appropriate.
All characters in the string must be specified fully; that is, there must be an even
number of digits, For example, 'C1C2C2'XC is a valid string hexadecimal literal,
but 'C1C12' generates an error, because the compiler cannot make assumptions
about the placement of the missing character. DBCS validity checking is not dane
on string hexadecimal literals.

DBCS Hexadecimal Literals: These are enclosed in quotes and suffixed with an
“XG" or “xg". VS Pascal performs a code point check to ensure that the code
ranges of all DBCS hexadecimal literals are from '41'X to 'FE'X for either the first
or second byte, or '4040'X. VS Pascal also performs a length check to ensure that
DBCS hexadecimal literal strings are a multiple of four. VS Pascal considers
anything other than a multiple of four to be an error, because it cannot make
assumptions about the placement of any missing digits. An example of a valid
DBCS hexadecimal literal is 'H1H2H3H4'XG, where 'H1' is a single hexadecimal
digit. Shift-out and shift-in characters are not needed in DBCS hexadecimal string
literals.

Double-Byte Character Set (DBCS) Literals

These are enclosed in quotes and suffixed with a “G" or “g". Within the quotes,
there must be only a shift-out character, a string of DBCS characters, and a shift-in
character. Figure 10 shows an example of a DBCS literal.

'< AB.CDEF>'G

Figure 10. Example of a DBCS Literal

Double-Byte Character Set (DBCS) Mixed Literals

VS Pascal character strings can contain both DBCS characters and single-byte
character set (SBCS) characters in what is called a DBCS mixed literal.

DBCS portions of the string must be enclosed by a beginning shift-out (X'0E")
character and an ending shift-in (X'OF') character. VS Pascal operators and most

predefined routines manipulate DBCS strings in a byte-oriented manner.

Figure 11 on page 16 shows an example of a DBCS mixed literal.

Chapter 2. VS Pascal Program Elements 15

‘ABCDE < .A.B>FGHIJ’

Figure 11. Example of a DBCS Mixed Literal

Figure 12 shows the syntax of valid mixed strings.

.’,_I I_H
L character J
< >
BCS-character
Figure 12. Syntax of Valid Mixed Strings
Figure 13 shows the syntax of cancnical mixed strings.
1 1 "

J

< —PBCS-character—

J IL:‘!GFGCEE!]’
— >

Figure 13. Syntax of Canonical Mixed Strings

16 VS Pascal Language Reference

Chapter 3. Structure of VS Pascal Programs

17

Chapter 3. Structure of VS Pascal Programs

All VS Pascal programs are comprised of separately compilable units that are
link-edited together at run time. A compilable unit, or simply unit, consists of
declarations (such as data, procedure, and function declarations) and statements.
Because a unit can be compiled independently from the rest of the program,
programmers can logically organize their code. There are two types of units in VS
Pascal: the program unit and the segment unit.

Program Units

The program unit initially gains control control when you invoke a compiled
program from the operating system. It is a procedure invoked by the operating
system. A program unit must contain the keyword PROGRAM. Figure 14 shows
the syntax of a program unit.

»—PROGRAM—idT(—prog—par;l)j-; compound-stmt—— TN
—label-dcl b

—~constant-dcl—
—type-dcl
var-dcl

—def-dcl

—ref-del—
—static-dcl—
—value-dcl
—routine-dcl—

Program Unit

Where Represents

PROGRAM Keyword

id A unique external name

prog parm An optional list of program parameters that specify links to external
names

del A LABEL, CONST, TYPE, VAR, DEF, REF, STATIC, VALUE, or routine
declaration

compound-stmt A compound statement

Figure 14. Syntax of a Program Unit

Figure 15 on page 19 shows the structure of a program unit. The various kinds of
declarations in VS Pascal are optional and can appear in any order. The only
required items are the program header and the main program block.

18 vsS Pascal Language Reference

(@)

PROGRAM HEADER; Program Header

LABEL DECLARATIONS; Label Declarations

CONSTANT DEFINITIONS;
TYPE DEFINITIONS; Data Descriptions

VARIABLE DECLARATIONS;

PROCEDURE DECLARATIONS;
Routine Declarations
FUNCTION DECLARATIONS;

BEGIN
STATEMENTS

Main Program Biock

STATEMENTS
END.

Figure 15. Structure of a Program Unit

Figure 16 shows an example of a program unit.

PROGRAM EXAMPLE;
VAR

[: INTEGER;
BEGIN

FOR 1:=0 TO 1000 DO

IF 1 MOD 7 = O THEN
WRITELN{ I:5,
' IS DIVISIBLE BY SEVEN');

END.

Figure 16. Example of a Program Unit

The program parameter list must specify all external bindings with Pascal
variables. There are separate considerations for Standard and VS Pascal.
Program Parameters For Standard Pascal:

* |f your program uses the predefined files INPUT and OUTPUT, you must specify
them in the program parameter list.

¢ Specifying INPUT as a program parameter opens that file for INPUT(RESET).

¢ Specifying OUTPUT as a program parameter opens that file for
OUTPUT(REWRITE).

¢ |f you specify INPUT or OUTPUT as program parameters, you cannot redefine
them as global variables in your program.

Chapter 3. Structure of VS Pascal Programs 19

¢ You cannot specify duplicate identifiers in the program parameter list. For
example,

PROGRAM USER(OQUTPUT,F,F);
is invalid because F is specified twice.

* Any identifier specified in the program parameter list (except INPUT and
OUTPUT) must be defined as a variable identifier in the program biock. For
example,

PROGRAM USER(OUTPUT,F,G);
CONST

G = 3;

VAR

BEGIN

END.
is invalid because G is declared as a constant rather than as a variable and F
is not declared at all.

Program Parameters For VS Pascal: All of the program parameters for Standard
Pascal also apply to VS Pascal, with these exceptions:

* INPUT and QUTPUT are predefined, and therefore you need not specify them in
the program parameter list when they appear in a program.

* |f you want, you can redefine INPUT and QUTPUT in your program,

Note: Because program parameters are used to specify external bindings, their
identifiers must conform to the same rules as external identifiers of the type
specified on the program parameter’s variable declaration.

Segment Units

A segment unit is any unit that can be compiled independently of the program unit.
It consists of routines to be linked into the final program before execution.
Segments are useful in breaking up large VS Pascal programs into smaller units.
Figure 17 on page 21 shows the syntax of a segment unit.

20 VS Pascal Language Reference

«

Segment Unit

'

—SEGMENT—id— ;

Where Represents
SEGMENT Keyword

id A unique external name

—constant-dcl—
—type-dcl
—var-del

—def-dcl——
—ref-dcl—————
—static-dcl
—value-dcl
—routine-dcl

i

def A CONST, TYPE, VAR, DEF, REF, STATIC, VALUE, or routine declaration

Figure 17. Syntax of a Segment Unit

The various kinds of declarations in VS Pascal are optional and can appear in any
order, The only required item is the segment header. Figure 18 shows the

structure of a segment unit.

SEGMENT HEADER;

CONSTANT DEFINITIONS;
TYPE DEFINITIONS;

VARIABLE DECLARATIONS;

PROCEDURE DECLARATIONS;

FUNCTION DECLARATIONS;

Segment Header

Data Descriptions

Routine Declarations

Figure 18. Structure of a Segment Unit

Data is passed to routines through parameters and external variables. A segment
unit can access the global automatic variables of the program unit (see “VAR
Declaration” on page 31 for more information). Figure 19 shows an example of a

segment unit.

SEGMENT COSINE;

FUNCTION COSINE (X : REAL)

FUNCTION COSINE;

VAR

St REAL;
BEGIN

S 1= SIN(X);

COSINE := SQRT(1.0 - S*S);

END; .

: REAL; EXTERNAL;

Figure 19. Example of a Segment Unit

Chapter 3. Structure of VS Pascal Programs 21

Linking Units to Form a Program

A VS Pascal program is formed by linking a program unit to:

* Segment units (if any)
¢ The VS Pascal run-time library
* Any libraries that you might supply.

Figure 20 iliustrates the relationship between program and segment units, the VS
Pascal run-time library, and additional user-supplied libraries.

Executable Program

- |
=
Program Unit ——-——l_s-em_—J
|
[_J___}ﬁ

User Libraries —

L1 Run-Time Library

Figure 20. Linking a Program Unit with Segment Units

22 VS Pascal Language Reference

» Chapter 4. Declarations

23

Chapter 4. Declarations

Declarations associate names with objects, such as data types, variables, and

routines, that are used in a program.

Figure 21 summarizes the types of declarations available in VS Pascal. The rest of
this chapter provides descriptions of each declaration type in alphabetic order.

The PROCEDURE and FUNCTION declarations are discussed in
Chapter 8, “Routines” on page 102.

Declaration See

Type Function Page

LABEL Declares labels to be referenced by a GOTO statement 28

CONST Assigns identifiers to be used as synonyms for constant 27
expressions

TYPE Declares data types 30

VAR Declares automatic variables (those allocated when a routine is 31
invoked and then deallocated when the routine is exited)

DEF Declares external variables 28

REF Declares external variables 29

STATIC Declares static variables 30

VALUE Specifies Initial values for static and DEF variables 3

PROCEDURE Defines routines that may or may not pass a result back to the 102
invoker (discussed in Chapter 8, “Routines” on page 102)

FUNCTION Defines a routine that passes a result back to the invcker 102

through the routine name (discussed in Chapter 8, “Routines”
on page 102)

Figure 21 Summary of VS Pascal Declarations

The syntax of VS Pascal requires that all identifiers be predefined or declared

before you can use them. There is one exception to this rule: a pointer definition
can refer to an identifier before that identifier is declared. The identifier must be
declared later, or VS Pascal generates a compiler diagnostic message.

Lexical Scope of Identifiers

The lexical scope, or simply scope, of an identifier is the area of a unit where the

24

identifier can be referenced. The scope of an identifier can be either local or

global:

* A local identifier is an identifier declared in a function or procedure. A local
identifier has no effect on an outside function or procedure.

* A global identifier is an identifier declared in the main program. A global
identifier can be used, referenced, or changed anywhere in the program,

including any functions or procedures.

For example, in Figure 22 on page 25, any identifier declared in Program A will be

global. If Program A declares Procedure B and Function C, Procedure B and

VS Pascal Language Reference

-

o«

Function C can reference the global identifiers declared in Program A. If
Procedure B declares an identifier, it will be a local identifier to Procedure B, and
Program A or Function C cannot access that identifier.

Program A

Procedure B

Function C

Figure 22. Scope of identifiers

The scope of any particular identifier depends on the structure of the routine
declarations within the unit in which it appears. An identifier's scope extends to
the entire routine (or unit) in which it is declared, including all other routines
nested within the routine. Because routines can be nested within other routines,
each routine has an associated /exical level. Record declarations also define a
lexical scope for their fields.

Within a lexical level, an identifier can be defined only once. A program unit is at
lexical level 0, routines defined within level 0 are at level 1, and so forth. In

general, a routine defined in level i is at level (i + 1).

Figure 23 on page 26 illustrates a nesting structure.

Chapter 4. Declarations 25

PROGRAM M (Yevel 0)

PROCEDURE A (Tevel 1)

PROCEDURE B (level 2)
TYPE
R =
RECORD
R1:...
R2:...
END

FUNCTION € (Tevel 3)

PROCEDURE D (level 2)

FUNCTION X {(level 1)

PROCEDURE Y (level 2)

PROCEDURE Z (level 2)

Identifiers Declared In Are Accessible In
PROGRAM M M,A,B,R, C,D XY, Z
PROCEDURE A A, B, R CD
PROCEDURE B B
TYPE R B
FUNCTION C C
D
X
Y
z

B, R
R, C
C (see note)

PROCEDURE D
FUNCTION X

PROCEDURE Y
PROCEDURE Z

Y, Z

Figure 23. Nesting Structure of a Program

Note to Figure 23: The scope of a field identifier is limited to the scope of the
record in which it is defined. The field identifiers of a record can be accessed
either by reterencing the field or by using the WITH statement.

When an identifier is declared within the scope of an existing identifier of the same
name, the new identifier is the one recognized when the name appears in the
routine. For example, in Figure 23, function C is nested in procedure B, procedure
B is nested in procedure A, and procedure A is nested in program M. If both
program M and procedure B declared an identifier X, a conflict could arise. The
conflict is resolved by using the most recent declaration of X. Thus, in program M
and procedure A, the identifier X declared in program M would be used, while in
procedure B and function C, the identifier X declared in procedure B would be
used.

26 VS Pascal Language Reference

The VS Pascal compiler inserts a prelude of declarations at the beginning of every

unit it compiles. These declarations consist of predefined types, constants,

routines, and variables. See Appendix B, “Predefined Identifiers” on page 246

for a list of all predefined identifiers. The scope of the prelude encompasses the

entire unit. You can, if you want, redeclare any of these predefined identifiers,
although this is not recommended.

Declaration Order

Standard Pascal declarations must be made in this order:

LABEL
CONST

TYPE

VAR
PROCEDURE
FUNCTION

oA

VS Pascal declarations can be made in any order, but this is the typical order:;

LABEL
CONST

TYPE

VAR

DEF

REF

STATIC
VALUE
PROCEDURE
FUNCTION

SRR

SCom~No

Because VS Pascal allows declarations to be made in any order, source code
included during compilation can be independent of any ordering already
established in the unit.

VS Pascal Declarations

CONST Declaration

CONST assigns identifiers to be used as synonyms for constant expressions. The

type of a constant identifier is determined by the type of the expression in the
declaration. Figure 24 shows the syntax of the CONST declaration.

'

»»——CONST id = constant ;
L constant -ex,orJ

\é
A

Where Represents

CONST The Standard Pascal keyword

id An identifier assigned to a constant or constant expression
constant Any constant

constant-expr Any constant expression

Figure 24. Syntax of the CONST Declaration

Chapter 4. Declarations

27

See Figure 32 on page 33 for an example of a CONST declaration.

DEF Declaration
DEF declares external variables that are allocated before execution and that can
be accessed from mare than one unit. When several units declare an external
variable with the same name, the program loader associates a single common
storage location with that variable name. Figure 25 shows the syntax of a DEF
declaration.

]

Where Represenis

DEF The VS Pascal keyword

id An identifier for the DEF variable
type The type of the variable

Y
A

: —type H

Figure 25. Syntax of the DEF Declaration

DEF variable names are governed by the same scoping rules that apply to other
declared identifiers. However, when a DEF variable name in one scope or unit
matches an external variable name in another scope or unit, both occurrences of
the variable reference the same storage.

Data in external variables that are local to a routine will be preserved over
separate calls to the routine. Recursive calls to such a routine access the same
value of the external variable.

DEF variables can be initialized at compile time with a VALUE declaration. See
“VALUE Declaration” on page 31.

Restrictions:
* Programs that modify DEF variables are not reentrant.

* External variables of the same name must have identical data types in all
units. You must ensure that the types are the same; the compiler cannot verify
this.

* External variables whose names have the first eight characters in common are
allocated the same storage location. If you want two external variables to
occupy different storage locations, you must ensure that the first eight
characters of their names are unique; the compiler cannot verify this.

See Figure 32 on page 33 for an example of a DEF declaration.

LABEL Declaration
LABEL declares labels that are referenced by a GOTO statement within a routine.
All labels defined within a routine must be declared in a LABEL deciaration within
the routine. Figure 26 on page 29 shows the syntax of the LABEL declaration.

28 VS Pascal Language Reference

¢ . | :

»———LABEL—[unsigned—integer ; —»4
fd——‘

Where Represents

LABEL The Standard Pascal keyword

unsigned-integer A name assigned to a label which must be in the range 0 to 9999
id A name assigned to a label

Figure 26. Syntax of the LABEL Declaration

See Figure 32 on page 33 for an example of a LABEL declaration.

REF Declaration
REF declares external variables that are allocated before execution and that can
- be accessed from more than one unit. Storage for the variables is defined in
C another unit. If the same external variable name is declared in several units, the
program loader associates a single common storage location with that variable
name. Figure 27 shows the syntax of the REF declaration.

]

fd— i type : >
\ Where Represenis
‘) REF The VS Pascal keyword
id An identifier for the REF variable

type The type of the variable

Figure 27. Syntax of the REF Declaration

REF variables are governed by the same scoping rules that apply to other declared
identifiers. However, when a REF variable name in one scope or unit matches an
external variable name in another scope or unit, both occurrences of the variable

" . reference the same storage.

Data in external variables that are local to a routine will be preserved over
separate calls to the routine. Recursive calls to such a routine access the same
value of the external variable.

REF-declared variables remain unresolved until the encompassing unit is linked
with a unit in which the variable is declared. The variable must be declared as a
DEF variable, defined in a non-Pascal CSECT, or declared in an assembler
language COM. Use REF variables to access external data declared in non-VS
Pascal programs, such as those written in assembler ianguage,

Restrictions:

* Programs that modify REF variables are not reentrant.

units. You must ensure that the types are the same; the compiler cannot verify

{ : * External variables of the same name must have identical data types in all
this.

Chapter 4. Declarations 29

* External variables whose names have the first eight characters in common are
allocated the same storage location. If you want two external variables to
occupy different storage locations, you must ensure that the first eight
characters of their names are unique; the compiler cannot verify this.

See Figure 32 on page 33 for an example of a REF declaration.

STATIC Declaration
STATIC declares static variables that are variables whose memory is allocated
betore execution of the program. This memory allocation exists while the program
is being executed. Figure 28 shows the syntax of the STATIC declaratian.

¢ 1
»——5TATIC de j =

: —typ‘f ' >4
Where Represents
STATIC The VS Pascal keyword
id An identitier for a static variable

type The type of the variable

Figure 28. Syntax of the STATIC Declaration

Static variable names are governed by the same scoping rules that apply to other
declared identifiers. Even when two static variables in different scopes have the
same name, VS Pascal considers them to be different variables.

Data in static variables that are local to a routine will be preserved over separate
calls to the routine. Recursive calls to such a routine access the same value of the
static variable.

Static variables can be initialized at compile time with the VALUE declaration. Ses
“"WALUE Declaration" on page 31.

Resfiriction: Programs that modify static variables are not reentrant.

See Figure 32 on page 33 for an example of a STATIC declaration.

TYPE Declaration
TYPE defines a data type and associates a name with that type. Once declared,
such a name can be used in the same way as a predefined data type name.
Figure 29 on page 31 shows the syntax of the TYPE dectaration.

30 VS Pascal Language Reference

J

Po——TYPE———id— = —type— ;

A 4
A

Where Represents

TYPE The Standard Pascal keyword
id An identifier for a type

type The type

Figure 29. Syntax of the TYPE Declaration

See Figure 32 on page 33 for an example of a TYPE declaration.

VALUE Declaration

VAR Declaration

VALUE specifies initial values for static and DEF variables. The declarations
consist of assignment statements, separated by semicolons, in the same form as
the assignment statements in the body of a routine, with one exception—all
subscripts and expressions must be constant expressions. See

Chapter 5, “Constants” on page 36 for more information on constants.

Figure 30 shows the syntax of the VALUE declaration.

—YALUE variagble— := constant-exp 4'—«

Ls tructured-cons t~] ‘

Where Represents

VALUE The VS Pascal keyword

variable A variable to be assigned a value
constant-expr Any constant expression

structured-const Any structured constant

Figure 30. Syntax of the VALUE Declaration

Once a DEF variable is initialized with a VALUE declaration, it cannot be
reinitialized with VALUE, either in the same unit or in a different unit. Although the
compiler does not check for this violation, the system loader generates a
diagnostic message when you combine units into a single load module. A static
variable can be initialized with a VALUE declaration only once in a routine.

See Figure 32 on page 33 for an example of a VALUE declaration.

VAR declares automatic variables that are allocated when the routine in which they
occur is invoked. The variabies are dealiocated when the corresponding return is
made. Figure 31 on page 32 shows the syntax of the VAR declaration.

Chapter 4. Declarations 31

oo

»—VAR id

A
A

t ——type ;
Where Represents

VAR The Standard Pascal keyword

id An identifier for a VAR variable

type The type of the variable

Figure 31. Syntax of the VAR Declaration

When a routine containing VAR declarations is invoked a second time before the
initial invocation is complete {for example, in a recursive call), the local automatic
variables are aliocated again in a stack-like manner. The variables allocated for
the first invocation become inaccessible until the recursive call is completed.

Variables should be declared as DEF variables if they are to be accessed across
units. (See "DEF Declaration” on page 28.) However, if reentrancy is required, VS
Pascal provides a method of sharing variables across units that does not rely on
storage allocated at link-edit time.

Global automatic variables are those variables declared with VAR in the outermost
nesting level of the main program. The global automatic variables of the main
program can be accessed from a segment unit. Automatic variables declared in
the outermost level of a segment are mapped directly on top of the main program'’s
global variables. Therefore, to access the main program’s global variables, a
segment unit must have an identical copy of the main program's variable
declarations. This mechanism is not as safe or as convenient as using DEF
variables.

Note: Unpredictable errors can occur when the variables declared in a segment do
not match those in the associated main program. The compiler has no way of
checking their integrity. Use the %INCLUDE compiler directive to insert identical
copies of the variables' declarations in all units (see "%INCLUDE Directive"” on
page 233).

Caution: Storage overlays can occur if you link units that contain global autematic
variables to units written in different languages.

See Figure 32 on page 33 for an example of a VAR declaration.

Figure 32 on page 33 combines examples of the LABEL, CONST, TYPE, VAR, DEF,
REF, STATIC, and VALUE declarations.

32 vs Pascal Language Reference

PROGRAM DATAEXAMPLES(INPUT, OUTPUT, TRACEFILE);

LABEL
10,
LABELA;

CONST

ONEBLANK = ' ';
LOTSOFBLANKS = '
FIFTY = 50;

A = FIFTY
B = FIFTY
CSQUARED

’

* 10/(3+2)3

= A*A + B*B;

ORDOFZ = ORD('Z');
MASK = '800@'X | '0400'X;

ALPHALEN

= 16;

LETTERS = ['A'..'Z", 'a'..'z'];

CARDSUIT = (SPADE, HEART, CLUB, DIAMOND);

TYPE
CARDVALUE = 1..13;
CARDTYPE = RECORD
FACEUP :
END;
GAMEHAND =
VAR
I . INTEGER;
TRACEFILE : TEXT;
X,Y,Z : REAL;
FLIP : RECORD
DENOMINATION :
END;
DEF
C : INTEGER;
R : REAL;
MYHAND : GAMEHAND;
BEGIN
10 :
LABELA
END.

RANK : CARDVALUE;
SUIT : CARDSUIT;

BOOLEAN;

ARRAY[1..13] OF CARDTYPE;

(PENNY, NICKEL, DIME, QUARTER);

UPSIDE : (HEADS, TAILS);

Figure 32 (Part 1 of 2). Examples of VS Pascal Declarations

Chapter 4. Declarations

33

SEGMENT S;

CONST
PI = 3.14159265358;

VAR

I : INTEGER;

TRACEFILE : TEXT;

X,Y,Z : REAL;

FLIP : RECORD
DENOMINATION : (PENNY, NICKEL, DIME, QUARTER);
UPSIDE : (HEADS, TAILS);
END;

REF
C : INTEGER;
R : REAL;
MYHAND : GAMEHAND;

STATIC

J : INTEGER;

K'

L : REAL;

VALUE
J

K
k

i &
PI:
PI / f);

"

PROCEDURE P;
BEGIN

END; .

Figure 32 (Part2 of 2). Examples of VS Pascal Declarations

34 vs Pascal Language Reference

. Chapter 5. Constants

35

Chapter 5. Constants

VS Pascal uses a number of different constants. The following sections explain
what constants are and discuss the various types of constants.

Types of Constants

Constants are values that are either literals or identifiers associated with literals
{unsigned constants) in CONST declarations. Figure 33 shows the categories into
which constants can be grouped according to their predefined type.

Category Predefined Type

Unsigned integers Conform to types REAL, SHOHRTREAL, or INTEGER.

Strings Conform to types STRING, SBCS fixed string, GSTRING, or DBCS
fixed string.

Note: A string one character long conforms to type CHAR or

GCHAR.
TRUE and FALSE Predefined in the language and are of type BOOLEAN.
NIL A special type that conforms to any pointer type.

Note: NIL represents a unique pointer value that is not a valid
address.

Figure 33. Categories of Constants

Figure 34 defines the syntax of VS Pascal constants and unsigned constants.

Constant

> unsigned-number)
k + *‘ Lid—constant4

y
y

string
MIL

Unsigned Constant

unsigned-number >4
id-constant
string

NTL

Unsigned Number

»—Eunsigned—intege: rJ

unsigned-real-numbe

A\
A

o

Figure 34. Syntax of Constants

Note to Figure 34: In "Constant,” if the constant identifier has a sign, the identifier
must represent a numeric value.

36 VS Pascal Language Reference

VS Pascal permits constant expressions in places where Standard Pascal permits
only constants. Constant expressions are evaluated and replaced by a single
result at compile time. See “"Constant Expressions” on page 201 for more
information.

Predefined Constants

Predefined constants are identifiers that are already defined within VS Pascal. The
compiler inserts a prelude of declarations at the start of every compilable unit; the
predefined constants are among the declarations, so there is no need to define
these identifiers. {Although it is not recommended, you can redefine these
identifiers if you prefer.)

ALFALEN Length of type ALFA; value is 8.

ALPHALEN Length of type ALPHA; value is 16.

EPSREAL Smallest number such that 1.0 + EPSREAL > 1.0:
'3310000000000000' XR.

FALSE Constant of type BOOLEAN; FALSE < TRUE.

MAXINT Maximum value of type INTEGER: 2147483647.

MAXCHAR Maximum value of type CHAR: 'FF'XC.

MAXREAL Maximum value of type REAL: '7TFFFFFFFFFFFFFFF' XR.

MININT Minimum value of type INTEGER: -2147483648.

MINREAL Minimum nonzero value of type REAL: '0010000000000000"' XR.

TRUE Constant of type BOOLEAN; TRUE > FALSE.

Structured Constants

Structured constants provide a convenient means of specifying a structured data
element. The type of the constant is determined by the type identifier in the
constant's definition. Structured constants can be used in value declarations, other
constant declarations, or in executable expressions.

Restriction: A type containing a file cannot be used as the type name of a
structured constant.

The syntax of structured constants is illustrated in Figure 35 on page 38.

Chapter 5. Constants 37

Structured constant . o
»—[r‘ecard-structur:
r‘ray-str‘u*t:tnrre4

Array structure

 J
A

p—id- type—(——ronstant-expr—[:—repetitiou | J >4

Record structure

—

»—id- type——-(——rconstanr-exp; I)

L 4
a

Repetition (must evaluate to a positive integer)

»»———constant-expr >4

Where Represents
constant-expr Any constant expression
id-type An array or record type that does not contain a file

Figure 35. Syntax of Structured Constants Q
There are two types of structured constants: array constants and record constants.

Array Constants: These are specified by a list of constant expressions, each
expression defining one element of the array. For a description of constant
expressions, see "Constant Expressions” on page 201.

To omit an element in the middle of an array constant, you specify nothing between

the commas. You can omit an element either within the list or at the end of the

array. In either case, the value of that element is not defined. You can follow the Q
constant expression with a colon and a repetition expression, indicating that the

constant expression's value will be placed in the specified number of array

elements. Figure 36 on page 39 shows an example of an array constant.

38 VS Pascal Language Reference

TYPE

VECTOR = ARRAY[1..7] OF INTEGER;

TETRA = ARRAY[1..3,1..2,1..4] OF INTEGER;
CONST

(*Structured Constants *)

VECTOR_1 = VECTOR(7,0:5,1)

VECTOR 2 = VECTOR(2,3,,4);

ZERO_TETRA = TETRA(((0:4):2),

((0:4), (0:4)),
((0,0,0,0), (0,0,0,0)));

Figure 36. Example of an Array Constant

Record Constants: These are specified by a list of constant expressions, each
expression defining one field of the record in the order declared. You can omit a
field of the record within the list by specifying nothing between two commas, in
which case the value of that field is not defined. Figure 37 shows an example of a
record constant.

TYPE
COMPLEX = RECORD
RE,IM: REAL
END;
CONST

(*Structured Constants *)
THREEFOUR = COMPLEX(3.0,4.0);

Figure 37. Example of a Record Constant

Values within the list can correspond to fields of a record'’s variant part. The tag
field value must be specified immediately before the values to be assigned to the
variant fields. (See Figure 38 on page 40.) When only a tag type is specified, the
tag field must be specified even though it does not exist as a field. If the tag field is
a back reference tag field (see Figure 73 on page 73), it must be specified twice in
the list: once to be assigned a value, and again to identify the variant being
referenced. If these two tag field specifications do not match, unpredictable results
can occur.

Figure 38 on page 40 shows examples of structured constants with variant record
fields.

Chapter 5. Constants 39

TYPE
FORM = (FCHAR, FINTEGER, FREAL, FSTRING):
KONST =
RECORD _
SIZE : INTEGER;
CASE F : FORM OF
FCHAR : {C : CHAR):
FINTEGER : (I : INTEGER):
FREAL : (
CASE SIZE : OF
4 : (S : SHORTREAL);:
8 (R : REAL));
FSTRING - (
CASE BOOLEAN OF
TRUE: (
LEN : PACKED 0..32767;
A 1 ALPHA);
FALSE: (ST : STRING(16)));

END;

CONST
A
INT
SHORT
PI
STARS
BARS

KONST(L,FCHAR,'A');
KONST(4,FINTEGER,3);
KONST(4,FREAL,4,1.2345);
KONST(8,FREAL,8,3.14159) ;
KONST(4,FSTRING, TRUE, 4, '****1),
KONST (4,FSTRING, FALSE, '~---");

"

0o

Figure 38. Examples of Structured Constants with Variant Record Fields

The type identifier that begins a structured constant can be omitted if the structured
constant is imbedded within another structured constant. This simplifies the syntax
for structured constants that are multidimensional arrays or records with
structured fields.

Figure 39 on page 41 shows an example of an array and a record constant
combined.

40 Vs Pascal Language Reference

TYPE

COMPLEX = RECORD
RE,IM: REAL
END;
CARRAY = ARRAY[0..9] OF COMPLEX;
CONST

(*The following two declarations

are eguivalent 3|
VECTOR 3 = CARRAY(
COMPLEX(1.0,0.0),
COMPLEX(1.0,1.0):8,
COMPLEX(0.0,0.0));
VECTOR 4 = CARRAY(
(1.0,0.0),
(1.0,1.0):8,
(0.0,0.0));

Figure 39. Example of a Combination of an Array and Record Constant

Chapter 5. Constants

41

Chapter 6. Data Types

43

Chapter 6. Data Types

VS Pascal requires that every variable be declared and assigned a data type, or
type, before it is used. The compiler checks each variable to ensure correct usage.
This enables the programmer and the compiler to easily detect and prevent errors.

The Basic Data Types

Variables can be assigned one of four basic data types:

e Simple

¢ Pointer

e String pointer
¢ Structured.

Simple Data Types

Boolean A true or false value

Character All the values of the EBCDIC character set

DBCS Character All the values of the double-byte character set (DBCS)
Enumerated An ordered set of values defined by listing the identifiers

that denote the values; for example, in an enumerated type,
you can specify the days of the week to be Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday, and

Sunday
Integer A positive or negative whole number
Real A positive or negative double-precision floating-point
number
Shortreal A positive or negative single-precision floating-point number
Subrange A subset of a previously defined type formed by specitying

the minimum and maximum allowable values.

Any of these simple data types can fall under one, or both, of the following general

categories:

Scalar A type whose values contain only one element; all simple data types
are scalars

Ordinal A scalar type whose values are mapped to a continuous range of
integers; all scalars are ordinal except real, shortreal, and DBCS
characters

Pointer Data Type

44

A pointer data type is used to reference a dynamic variable. A dynamic variable is
a variable whose storage is allocated at run time.

VS Pascal Language Reference

String Pointer Data Type
A string pointer data type defines a pointer to a dynamic string variable. The
maximum length of a string pointer is determined at run time.

Structured Data Types

Array An indexed list of elements of the same data type

DBCS String

to a compile-time specified maximum

An array of DBCS characters whose length varies at run time up

File A sequence of components of the same data type

Record A named list of fields that can be of different data types

Set A collection of objects of an ordinal type

Space A variable whose components can be positioned at any byte in the
total space of the variable

String An array of characters whose length varies at run time up to a

compile-time specified maximum

Figure 40 shows the syntax of a data type.

»»—id-type

Y
A

——array
—Boolean
—character
—DBCS character

—DBCS string——
—enumerated——— |
—file
—integer
—pointer
—real
—record
+—set
—shortreal
—space
—string
+——string pointer
—subrange

Figure 40. Syntax of a Data Type

Creating Your Own Data Types

Using the TYPE declaration, you can create your own data types. The identifiers

for these new data types can then be used in type declarations for variables. For
example, you can define data type COLOR as having the values RED, WHITE, and

BLUE, and then define variable FLAG as being of type COLOR. A type identifier

such as'COLOR can be used anywhere a type definition is needed:

In a variable declaration (VAR, STATIC, DEF, or REF)
In a formal parameter declaration

As a result type in a function header

In a field declaration within a record definition

In another TYPE declaration.

Chapter 6. Data Types

45

Type Compatibility

VS Pascal supports strong typing of data, which puts strict rules on what data
types are considered to be the same. These rules for type compatibility require
that you declare data carefully. The strong typing permits VS Pascal to check the
validity of many operations at compile time, helping to produce reliable programs
at run time.

Implicit Type Conversion

In general, VS Pascal does not perform implicit type conversions on data.
Figure 41 summarizes the only implicit conversions that VS Pascal performs.

A Value Is Converted
Of Type To Type When
INTEGER REAL or * One operand of a binary operation is an integer and the other is a real or
SHORTREAL shortreal.
* Assigned to a real or shortreal variabie.
* Used in a floating-point divide operation (/).
* Passed to a parameter requiring a real or shorireal value.
Note: The type is converted only when non-VAR (pass-by value and
pass-by-CONST) parameters are passed.
SHORTREAL REAL * One operand of a binary operation is a shortreal and the other is a real.
* Assigned to a real variable.
* Passed to a parameter requiring a real value.
Note: The type is converted only when non-VAR (pass-by value and
pass-by-CONST) parameters are passed.
REAL SHORTREAL * Assigned to a shortreal variable.
* Passed to a parameter requiring a shortreal value.
Note: The type is converted only when non-VAR (pass-by value and
pass-by-CONST) parameters are passed.
STRING SBCS * Assigned: The string is padded with blanks on the right if it is shorter than
Fixed the array to which it is being assigned. Truncation produces a run-time
String error when checking is enabled.

Passed to a formal parameter: The string is padded with blanks on the
right if it is shorter than the array to which it is being passed. Truncation
produces a run-time error when checking is enabled.

Note: The type is converted only when non-VAR (pass-by value and
pass-by-CONST) parameters are passed.

Figure 41 (Part 1 of 2). Implicit Type Conversions Performed by VS Pascal

46 VS Pascal Language Reference

| A Value Is Converted
| Of Type To Type When

Figure 41 (Part2 of 2). Implicit Type Conversions Performed by VS Pascal

Same Data Types
Two variables are said to be of the same type when the declarations of the
variables:

* Refer to the same type identifier

* Refer to different type identifiers that have been defined as equivalent by a
type definition of the form:
TYPE T1 = T2;
* Appear in the same identifier list of a variable declaration or in the same

formal parameter section of a routine heading. For example:

VAR V1, V2 : QINTEGER;

Variables declared with a type that is not a type identifier are said to have an
anonymous type.

Compatible Data Types
Operations can be performed between two values that are of compatible types.
Two types are compatible when:

* Both types are the same.
¢ One type is a subrange of the other.
* Both types are subranges of the same type.

* Both are set types with compatible base types, and both are either packed or

unpacked. In VS Pascal, matching packing of the sets is required.
¢ Both are either SBCS or DBCS fixed strings with the same number of
characters. In VS Pascal, the number of character not required t

Any object of type SET is compatible with the empty set. Any object thatis a
pointer type is compatible with the value NIL. String constants are compatible with
character, fixed string, or variable-length string values, assuming that ail length
requirements are met.

Chapter 6. Data Types 47

Assignment Compatibility
A value can be assigned to a variable if the types are assignment compatible. An
expression E is said to be assignment compatible with variable V if:

* The types are the same type, and neither type is a file nor contains a file.
» Visof type REAL and E is of type SHORTREAL

* Vis of type SHORTREAL and E is of type REAL.

* Vs of type REAL or SHORTREAL and E is compatible with type INTEGER.

* V is a compatible subrange of E and the value to be assigned is within the
allowable subrange of V.

* V and E have compatible set types and all members of E are permissible
members of V.

e Vis an SBCS or DECES fixed string and E is an SBCS or DECS string and the
length of E is less than or equal to the length of V.

b

= VandE are both SBCS or DBCS variable-length strings and the length of E is

less than or equal to the maximum length of V

Figure 42 shows examples of type compatibility.

TYPE
X = ARRAY[1..10] OF
INTEGER;
Y = X;
DAYS = (MON, TUE, WED, THU,
FRI, SAT, SUN):
WEEKDAY = MON .. FRI;
VAR

A : ARRAY[1..10] OF
INTEGER;

B : ARRAY[1..10] OF
INTEGER;

C,
D : ARRAY[1..10] OF

CHAR;
E X
F:X;
G:VY;
¥l: DAYS;

WZ: WEEKDAY;

Variable: Is compatible with: Has the same type as:

A A A

B B B

C c, D c, D

D D, C D, C

E E, F, G E, F, G

F F, E, G F, E, G

G G, E, F G, E, F

W1 W1, W2 W1

W2 W2, Wl W2

Figure 42. Examples of Type Compatibility

48 VS Pascal Language Reference

Storage, Packing, and Alignment of Variables

For each variable declared with a particular type, VS Pascal allocates a specific

amount of storage on a specific alignment boundary. VS Pascal Application
Programming Guide describes implementation requirements and defaults.

When structured types are declared with the reserved word PACKED, data in the

structure is not required to be aligned on the default boundaries. This may

increase the run time of the program. Not all data types are affected by declaring
them as PACKED.

VS Pascal Data Types

Figure 43 lists the data types by function. Descriptions of each data type, in

alphabetical order, start on page 50.

Data Associated See
Type Subtypes Consists of Page
Enumerated scalar A list of permitted values 57
Subrange scalar A subset of consecutive values of a previously defined ordinal 86
type
Predefined scalars BOOLEAN The values FALSE and TRUE 53
CHAR All the values of the EBCDIC character set 55
GCHAR All the values of the double-byte character set (DBCS) 60
INTEGER The subset of whole numbers from MININT (-2147483648) to 64
MAXINT (2147483647)
REAL Double-precision floating-point data 67
SHORTREAL Single-precision floating-point data 79
ARRAY A collection of homogeneous elements 51
RECORD A collection of heterogeneous elements 69
SET A collection of values taken from the same ordinal type 77
FILE A one-dimensional sequence of components of the same type 59
Pointer The address of a dynamic variable 66
Predefined structures ALFA An SBCS fixed string of 1 to 8 charac 50
Ja L_"r:’H.L\. An SBCS fixed string of 1 to 18 characters 50
GSTRING A DBCS fixed string whose length variaes up to a specified 61
maximum
STRING An SBCS fixed string whose length varies up to a specified 81
maximum
TEXT A FILE of CHAR 88
STRINGPTR A predefined pointer to a variable of type STRING 84
SPACE A storage allocation for variable-length data &

Figure 43. Summary of VS Pascal Data Types

Chapter 6. Data Types

49

ALFA Data Type
The predefined type ALFA is defined as:

CONST
ALFALEN = 8;

TYPE
ALFA = PACKED
ARRAY[1..ALFALEN] OF
CHAR;

Figure 44 describes the operators and predefined functions that apply to the ALFA
data type. See “Predetined Routines" on page 113 for further information about
these predefined functions.

Operalor or

Function Form Description

= Binary Compares for equality

<> or—= Binary Compares for inequality

< Binary Compares for left less than right

<= Binary Compares for left less than or equal to right

> = Binary Compares for |eft greater than or equal to right
> Binary Compares for left greater than right

ADDR Function Heturns the location in storage of a variable
HBOUND Function Returns ALFALEN

LBOUND Function Always returns the value 1

SIZEOF Function Returns the number of bytes required for a value aof type

ALFA, which is always 8

STR Function Converts type ALFA to type STRING

Figure 44. Operators and Predefined Functions for Type ALFA

ALPHA Data Type
The predefined type ALPHA is defined as:

CONST
ALPHALEN = 16;

TYPE
ALPHA = PACKED
ARRAY[1..ALPHALEN] OF
CHAR;

Figure 45 on page 51 describes the operators and predefined functions that apply
to the ALPHA data type. See "Predefined Routines"” on page 113 for further
information about these predefined functions.

50 vs Pascal Language Reference

ARRAY Data Type
The ARRAY data type defines a list of homogeneous elements; each element is
paired with one value of the index. The index can be any ordinal type. An element
of the array is accessed through its subscript. To subscript a variable, you must
specify an index. The number of elements in the array is the number of values
potentially assumable by the index. Each element of the array is of the same type,
which is called the element type of the array. Entire arrays can be assigned if they
are of the same type.

Figure 46 shows the syntax of the ARRAY data type.

»—E—-]—-ARRAY—[enumerated-scalar- typeTL]—OF—type—N
PACKED Fid—typc {

—subrange-type— =

Where Represents
enumerated-scalar-type An enumerated scalar data type
id-type An ordinal type name
Subrange-type A subrange data type

type Any type

Figure 46. Syntax of the ARRAY Data Type

VS Pascal uses square brackets, “[" and "]”, in the declaration of arrays. Because
these symbols are not directly available on many 1/O devices, the symbols “(." and

“)" can be used as an alternative to square brackets.

VS Pascal aligns each element of the array, if necessary, to make each element
fall on an appropriate boundary. A packed array will not observe the boundary

Chapter 6. Data Types 51

requirements of its elements. Standard Pascal does not allow elements of packed
arrays to be passed by VAR to user-defined procedures.

An array defined with more than one index is said to be a multidimensional array.
A multidimensional array is exactly equivalent to an array of arrays.

In short, an array definition of the form:

ARRAY[i,j,...] OF T

is an abbreviated form of
ARRAY[i] OF
ARRAY[j] OF
T

where i and j are ordinal type definitions.

Figure 47 shows examples of ARRAY deciarations.

TYPE
MATRIX = ARRAY[1..10, 1..10] OF REAL;

MATRIXO = ARRAY[1..10] OF (* An alternative declaration *)
ARRAY[1..10] OF REAL; (* for MATRIX, above. *)

ABLE = ARRAY[BOOLEAN] OF INTEGER;
COLOR = (RED, YELLOW, BLUE};
INTENSITY = PACKED ARRAY [COLOR] OF REAL;

ALFA = PACKED ARRAY [1..ALFALEN] OF CHAR;

Figure 47 Examples of ARRAY Declarations

Figure 48 describes the predefined routines that apply to the ARRAY data type.
See “Predefined Routines” on page 113 for further information about these
predefined routines.

Rouline Form Description

ADDR Function Returns the location in storage of an array variable

HBOUND Function Determines the upper bound of a dimension in an
array

LBOUND Funetion Determines the lower bound of a dimension in an array

PACK Procedure Copies an array starting at a given point to a packed
array

SIZEOF Function Returns the number of bytes required for an array

UNPACK Procedure Copies a packed array to an array starting at a given
point

Figure 48. Predefined Routines for Type ARRAY

52 VS Pascal Language Reference

BOOLEAN Data Type

The predefined data type BOOLEAN is defined as an ordinal type whose values are
FALSE and TRUE, as though declared with the following type declaration:

TYPE
BOOLEAN=(FALSE,TRUE) ;

Variables of this type occupy 1 byte of storage and are aligned on a byte boundary.
Figure 49 describes the operators and predefined functions that apply to the

BOOLEAN data type. See “Predefined Routines” on page 113 for further
information about these predefined functions.

Operator or

Function Form Description
NOT or — Unary Returns TRUE if the operand is FALSE; otherwise, it
returns FALSE

AND or & Binary Returns TRUE if both operands are TRUE

OR ar | Binary Returns TRUE if either operand is TRUE
or XOR or && Binary Returns TRUE if only one of the operands is TRUE

= Binary Compares for equality

<P Or = Binary Compares for inequality

< Binary Compares for left less than right

< = Binary Compares for left less than or equal to right

> = Binary Compares for left greater than or equal to right

> Binary Compares for left greater than right

ADDR Function Returns the location in storage of a Boolean varijable
{EST ction Returns TRUE by definition

LOWEST Function Returns FALSE by definition

M Function ds are FALSE; otherwise
W | lon are TRUE: otherwise, |
ORD Function Returns 0 if an expression is FALSE, and 1 if an
expression is TRUE
EOF Function Returns the number of bytes 1 ue o

type BOOLEAN, which is

Figure 49. Operators and Predefined Functions for Type BOOLEAN

Chapter 6. Data Types 53

The relational operators form valid Boolean functions as shown in Figure 50.

Name Operator Resulit
= ({Equivalence) FALSE=FALSE TRUE
FALSE = TRUE FALSE
TRUE =FALSE FALSE
TRUE=TRUE TRUE
<> or—= FALSE < >FALSE FALSE
(Exclusive OR)
FALSE < > TRUE TRUE
TRUE < > FALSE TRUE
TRUE < >TRUE FALSE
< FALSE <FALSE FALSE
FALSE <TRUE TRUE
TRUE < FALSE FALSE
TRUE <TRUE FALSE
< = (Implication) FALSE < =FALSE TRUE
FALSE < =TRUE TRUE
TRUE < =FALSE FALSE
TRUE < =TRUE TRUE
>= FALSE> =FALSE TRUE
FALSE> =TRUE FALSE
TRUE > =FALSE TRUE
TRUE> =TRUE TRUE
> FALSE > FALSE FALSE
FALSE > TRUE FALSE
TRUE > FALSE TRUE
TRUE > TRUE FALSE
AND or & FALSE&FALSE FALSE
FALSE&TRUE FALSE
TRUE&FALSE FALSE
TRUE&TRUE TRUE
OR o FALSE|FALSE FALSE
FALSE|TRUE TRUE
TRUE |FALSE TRUE
TRUE|TRUE TRUE

Figure 50 (Part 1 of 2).

54 vs Pascal Language Reference

Relational Operators on Type BOOLEAN

CHAR Data Type

Name Operator Result

or XOR or && FALSE > <FALSE FALSE
FALSE > <TRUE TRUE
TRUE FALSE TRUE
TRUE > <TRUE FALSE

Figure 50 (Part 2 of 2). Relational Operators on Type BOOLEAN

For information on the 2valuation of Boolean expressions, see “BOOLEAN
Expressions” on page 199.

The predefined data type CHAR is an ordinal whose values represent the EBCDI

C

character set. Variables of this type occupy 1 byte of storage and are aligned on a

byte boundary.

A single-character string constant will be regarded as a CHAR constant if the
context so dictates. For example, this assignment statement:

VAR

C: CHAR;
BEGIN

C = IAI ;
END;

sets variable C to the EBCDIC code for the letter A.

Figure 51 describes the operators and predefined functions that apply to the CHAR

data type. See "Predefined Routines” on page 113 for further information about
these predefined functions.

Operator or

Function Form Description

= Binary Compares for equality

<> or—= Binary Compares for inequality

< Binary Compares for left less than right

<= Binary Compares for left less than or equal to right

> = Binary Compares for left greater than or equal to right
> Binary Compares for left greater than right

ADDR Function Returns the location in storage of a variable

Function Returns CHR(255)

Figure 51 (Part 1 of 2). Operators and Predefined Functions for Type CHAR

Chapter 6. Data Types

55

|
‘!
|
|

Operator or

Function Form Description

LOWEST Function Returns CHR(0)

MAX Function Returns the maximum value of one or more operands

MIN Function Returns the minimum value of one or more aperands

ORD Function Converts a character to an integer based on the ordering
sequence of the underlying character set

PRED Function Returns the preceding character in the ordering sequence of
the underlying character set

SIZEOF Function Returns the number of bytes required for a value of type
CHAR, which is always 1

STR Function Converts either a CHAR or an SBCS fixed string to a STRING

SUCC Function Returns the succeeding character in the ordering sequence

of the underlying character set

Figure 51 (Part 2 of 2). Operators and Predefined Functions for Type CHAR

See Figure 90 on page 84 to see how binary operators are applied to SBCS
characters. See Figure 91 on page 84 to see how to convert SBCS strings on

assignment.

DBCS Fixed String Data Type

A DBCS fixed string is defined as a PACKED ARRAY [1..n] OF GCHAR, where nis a

positive integer constant

byte-oriented manner.

All operations on DBCS data are handled in a

Figure 52 describes the operators and predefined routines that apply to the DBCS
fixed string data type. See "Predetined Routines"” on page 113 for further
information about these predefined routines.

Operator or

Routine Form Description

= Binary E:omﬁares for_eq_uality’ E——

i > or—= Bl'r'ra; Comparesl:" inequality!

< N) Bi?‘rary Compare_s for left less than right1.2

== o B B;;r; _Cc;pare:ror left less than or equal to right1.2

= Binary Compares for left greater than or egual to right.2

> Binary Compares for left greater than right*.2

ADDR Function IgtumsIhe location in storage o_f a_DBC_SEed e._tring_
GSTR Function Converts a DBCS fixed string to a GSTRING

HBOUND Function Detefmme;s the u;per h_f;undzf a_DBCS fixea string

Flgure 52 (Part1 of 2). Operators and Routines for the DBCS Fixed String Data Type

56 VS Pascal Language Reference

Operator or

Routine Form Description

LBOUND Function Determines the lower bound of a DBCS fixed string

PACK Procedure Copies an array starting at a given point to a packed
array

SIZEOF Function Returns the number of bytes required for a DBCS fixed
string

UNPACK Procedure Copies a packed array to an array starting ai a given
point

Figure 52 (Part 2 of 2). Operators and Routines for the DBCS Fixed String Data Type

Notes to Figure 52:

1. If two strings being compared are of different lengths, the shorter is assumed
to be padded with blanks on the right until the lengths match.

n

Relative magnitude of two DBCS fixed strings is based upon the binary value of
DBCS codes.

See Figure 62 on page 63 to see how binary operators are applied to DBCS fixed
strings. See Figure 63 on page 64 to see how to convert DBCS strings on
assignment

Enumerated Scalar Data Type
An enumerated scalar is formed by listing each value permitted for a particular
type of variable. This allows a meaningful name to be associated with each value.
Figure 53 shows the syntax of the enumerated scalar data type.

(rzd_‘

Where Represents
id An identifier that is treated as a self-defining constant

e

Figure 53. Syntax of the Enumerated Scalar Data Type

An enumerated scalar type definition declares the identifiers in the enumeration
list as constants of the same type as the enumerated scalar that is being defined.
The lexical scope of the newly defined constants is the same as that of any other
identifier declared explicitly at the same lexical level.

These constants are ordered such that the first value is less than the second, the
second less than the third, and so forth. For example, in the first of the following
examples, MON < TUE < WED < ... < SUN; there is no value less than the first
or greater than the last.

Chapter 6. Data Types 57

Figure 54 shows examples of enumerated scalar data types.

TYPE
DAYS

(MON, TUE, WED, THU,
FRI, SAT, SUN});

MONTHS = (JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC);

VAR
SHAPE : (TRIANGLE, RECTANGLE,
SQUARE, CIRCLE);
REC : RECORD
SUIT: (SPADE, HEART,
DIAMOND, CLUB);
WEEK: DAYS
END;
MONTH : MONTHS;

Figure 54. Examples of Enumerated Scalar Data Types

Note: Two enumerated scalar type definitions must not have any elements of the
same name in the same lexical scope.

Figure 55 describes the predefined functions that apply to the enumerated scalar
data type. See “Predefined Routines” on page 113 for further information about
these predefined functions.

Function Description
—n =T 15 th ation in stc umer
Gt T R r th mu | nurr ted |
3 R I th 1m e ol numera
1A the | r mi I
ons
th wum valu I num
ORD Converts an ordinal expression to an integer
PRED Returns the predecessor of an ordinal expression

ieiurns the number of bytes reguired for a valus W an anumerated

SUCC Returns the successor of an ordinal expression

Figure 55. Predefined Functions for Enumerated Scalar Data Type

58 VS Pascal Language Reference

FILE Data Type

Input and output in VS Pascal is usually done through afile. A file is a structure
consisting of a sequence of components in which each component is of the same
type. Variables of this type reference the components with pointers called file
pointers. A file pointer can be thought of as a pointer into an input/output buffer.

Figure 56 shows the syntax of the FILE data type.

vy
A

> FILE—O0F——type
\—PACKED——‘

Where Represents
type Any data type that does not contain a file

Figure 56. Syntax of the FILE Data Type

Note to Figure 56: A file declared like this is called a record file. You can declare
a file to be PACKED, but the declaration has no effect on the file's storage
requirements.

The association of a file variable to an actual file of the system is
implementation-dependent and will not be described in this manual. See the VS

Pascal Application Programming Guide for further information.

Figure 57 shows examples of FILE declarations

TYPE
TEXT = FILE OF CHAR;
LINE = FILE OF

PACKED ARRAY[1..80] OF CHAR;
PFILE = FILE OF

RECORD

NAME : PACKED
ARRAY[1..25] OF CHAR;

'ERSON_NO ¢ INTEGER;
DATE _EMPLOYED : DATE;
WEEKLY SALARY : INTEGER;

Figure 57. Examples of FILE Declarations

Reslriclions:
s A file cannot be contained within a file.

¢ A file or a structure containing a file cannot be used in an assignment
statement.

* A file or a structure containing a file cannot be passed by value; it must be
passed by VAR or CONST.

VO E

You access file variables using predefined functions.

Chapter 6. Data Types 59

\
|
|
|

Figure 58 describes the routines that apply to vecord file variables. See
“Predefined Routines” on page 113 for further information about these functions.

Routine Form Description

ADDR Function Returns the location in storage of a variable

CLOSE Procedure Closes a file

EOF Function Tests a file for end-of-file condition N
GET Procedure Reads the current element of a file and advances the

file pointer to the next element in the input file

PDSIN Procedure Opens a file for input, specifying the open options and
the member name of the PDS

PDSOUT Procedure Opens a file tor output, specifying the open options and
the member name of the PDS

PUT Procedure Writes the file bufter to a file and advances the file
pointer to the next etement in the output file

READ Procedure Reads from a file into a variable

RESET Procedure Opens a file for input with the open options

REWRITE Procedure Opens a file for output with the open options

SEEK Procedure Positions a file to a specified component

SIZEQF Function Returns the number of bytes required for a value of type
FILE

UPDATE Procedure Opens a file for both input and output with the open
options

WRITE Procedure Writes the value of an expression to a file

Figure 58. Routines for Record File Variables

GCHAR Data Type

60

The predefined data type GCHAR is a scalar that represents one double-byte
character set (DBCS) character. GCHAR variables occupy 2 bytes of memory and
are aligned on a halfword boundary.

Because values of GCHAR are not mapped on consecutive integers, GCHAR is not
an ordinal type. Therefore, the GCHAR type cannot be used in certain
circumstances, For example:

* |n subranges or sets of GCHAR

* As an array index type

* As a CASE selector

* As the type name of an ordinal conversion routine

* As the type of variable in a FOR loop index

* As atype of variant selector

* |In the predefined functions SUCC, PRED, ORD, HIGHEST, and LOWEST.

VS Pascal Language Reference

C

L

A DBCS string constant will be regarded as a GCHAR constant if the context so
dictates. For example, this assignment statement:

VAR

C: GCHAR;
BEGIN

C := "<, A>'Gy
END;

sets variable C to the DBCS code for the letter A.

Figure 59 describes the operators and predefined functions that apply to the
GCHAR data type. See "Predefined Routines” on page 113 for further information
about these predefined functions.

Operator or

Description

Compares for equality

Compares for inequality

Compares for left less than right

Compares for left less than or equal to right

Compares for left greater than or equal to right

Compares for left greater than right

Returns the location in storage of a GCHAR variabie

Converts a GCHAR to a GSTRING

Returns the maximum value of one or more operands

Returns the minimum value of one or more operands

Function Form

= Binary
<> 0 —= Binary
< Binary
<= Binary
> = Binary
> Binary
ADDR Function
GSTR Function
MAX Function
MIN Function
SIZEOF Function

Returns the number of bytes required for a value of type
GCHAR, which is always 2

Figure 59. Operators and Predefined Functions for Type GCHAR

See Figure 62 on page 63 to see how binary operators are applied to DBCS
characters. See Figure 63 on page 64 to see how to convert DBCS strings on
assignment,

GSTRING Data Type
The predefined data type GSTRING is defined as:

TYPE

GSTRING = PACKED ARRAY[1..N] OF GCHAR;

A variable declared as GSTRING(n) cccupies 2'n bytes for data, plus 2 bytes for a
length field. The maximum length is 16,382 DBCS characters.

Chapter 6. Data Types 61

Figure 60 shows the syntax of the GSTRING data type.

v
A

p»—GSTRING——(——constaont-expr——)

Where Represents
constant-expr Any constant expression

Figure 60. Syntax of the GSTRING Data Type

The length of a GSTRING variable varies at run time from 0 up to its declared
maximum, which is fixed at compile time. In this example,

A : GSTRING(10);

variable A can, at run time, be any length from 1 to 10 characters. Variable A's
maximum length of 10 characters was fixed at compile time.

The length of a GSTRING variable is managed implicitly by the operators and
functions that apply to strings. For example, to obtain the actual length of a
GSTRING at run time, use the LENGTH function (see "LENGTH Function"” on
page 131). To obtain the maximum length at run time, use the MAXLENGTH
function (see "MAXLENGTH Function” on page 137).

Figure 61 describes the operators and predefined routines that apply to the
GSTRING data type. See "Predefined Routines" on page 113 for further
information about these routines.

Operator or

Routine Form Description

= Binary Compares for equality’

<> or—== Binary Compares for inequality’

< Binary Compares for left less than right.2

<= Binary Compares for left less than or equal to right1.2

= Binary Compares for left greater than or equal to right'.2

> Binary Compares for left greater than right1.2

+or || Binary Concatenates the operands

ADDR Function Returns the location in storage of a variable

COMPRESS Function Returns a DBCS string with all occurrences of multiple
blanks replaced by a single blank

DELETE Function Returns a DBCS string with a portion removed

GSTR Function Converts a GCHAR or a DBCS fixed string to a GSTRING

GTOSTR Function Converts a GSTRING to a STRING, adding shift-out and
shift-in characters to the STRING

INDEX Function Locates the first occurrence of a DBCS string in anciher
DBCS string

LENGTH Funection Returns the length of a DBCS string

Figure 61 (Part1 of 2). Operators and Predefined Routines for Type GSTRING

62 VS Pascal Language Reference

Operator or

Routine Form Descriplion

LPAD Procedure Pads or truncates a DBCS string on the left

LTRIM Function Returns a DBCS string with leading blanks removed

MAXLENGTH Function Returns the declared length of a DBCS string

RINDEX Function Locates the last occurrence of a DBCS string in another
DBCS string

RPAD Procedure Pads or truncates a DBCS string on the right

SIZEOF Function Returns the number of bytes required for a value of type
GSTRING

SUBSTH Function Returns a specified portion of a DBCS string

TRIM Function Returns a DBCS string with trailing blanks removed

Figure 81 (Part 2 of 2). Operators and Predefined Routines for Type GSTRING

Notes to Figure 61:

1. If two GSTRINGs being compared are of different lengths, the shorter is
assumed to be padded with blanks on the right until the lengths match.

2. Relative magnitude of two GSTRINGSs is based upon the binary value of DBCS

codes.

Figure 62 shows how binary operators are applied to DBCS characters, DBCS
fixed strings, and DBCS strings.

Left Operand Right Operand Result
GCHAR GCHAR Allowed
DBCS Fixed String Use GSTR on both operands
GSTRING Use GSTH on the GCHAR
DBCS Fixed String GCHAR Use GSTR on both operands

DBCS Fixed String

Allowed If the types are
compatible

GSTRING

Use GSTR on the array

GSTRING

GCHAR

Use GSTRH on the GCHAR

DBCS Fixed String

Use GSTR on the array

GSTRING

Allowed

Figure 62. How to Apply Binary Operators to DBCS Characters, DBCS Fixed Strings, and
DBCS Strings

Chapter 6. Data Types 63

able Source Expressior

INTEGER Data Type
The predefined data type INTEGER represents the subset of whole numbers as
defined below:

TYPE
INTEGER =MININT . . MAXINT;
where MININT is a predefined integer constant whose value is -2147483648 and
MAXINT is a predefined integer constant whose value is 2147483647: The

predefined type INTEGER represents 32-bit values in 2's complement notation.
Variables of this type occupy 4 bytes of storage and are aligned on a fullword
boundary. See "Subrange Data Type"” on page 86 for a discussion of integer
subranges.

Figure 64 describes the operators and predefined functions that apply to the
INTEGER data type. See “Predefined Routines” on page 113 for further
information about these functions.

Operator or

Function Form Description

+ Unary Returns the unchanged result of the operand
+ Binary Forms the sum of the operands

- Unary Negates the operand

Figure 64 (Part 1 of 2). Operators and Predefined Functions for Type INTEGER

64 vs Pascal Language Reference

Operator or

Function Form Description
- Binary Forms the difference of the operands
: Binary Forms the product of the operands
/ Binary Converts the operands to reals and produces the real
quotient
Div Binary Forms the integer quotient of the operands
MOD Binary Forms the integer modulus of the operands (same as
remainder if the arguments are positive)
= Binary Compares for equality
<> Binary Compares for inequality
< Binary Compares for left less than right
< = Binary Compares for left less than or equal to right
> = Binary Compares for left greater than or equal to right
> Binary Compares for left greater than right
NOT o Unary Jeturns one mpl nt of 1l verand
OR I 1] ¢ rands
1 turns th id of I
‘OR leturns it cal r of th [
atury aft I u ifted |e e rig
na turns t I | fte th
- right i -
ABS Function Returns the absolute value of a number
ADD Returns the location in storage of a variable
CHR Function Returns a character corresponding to an integer
rts an integer to a real number
HIGHEST ti [MAXINT
i s MININT
M e = = 1t i) | q M |
MIt incti Returns the minimum value of one or more operands
OoDD Function Returns TRUE if an expression is odd, returns FALSE
otherwise
ORD Function Returns the value of a passed expression
PRED Function Subtracts 1 from an integer
12 u Ret number of bytes required for an integet
SQR Function Returns the square of a number
SuUCC Function Adds 1 to an integer

Figure 64 (Part 2 of 2). Operators and Predefined Functions for Type INTEGER

Chapter 6. Data Types

65

Notes to Figure 64 on page 64:

¢ The operations of DIV and MOD are defined as:
A DIV B = TRUNC(A/B), B<>0

A MOD B = A-B*(A DIV B), A>=0,8>0
A MOD B = B-ABS{A) MOD B, A<0,B>0

{1

1l

If B=0 when doing a DIV operation, or if B< =0 when doing a MOD operation
you will get a run-time error message.

* The following operators perform logical operations:
shift lTeft logical
shift right logical
one's complement

or OR logical inclusive or
& or AND logical and
< or XOR or && logical exclusive or

he operands are treated as unsigned strings of binary digits. See “Loglcal

168
Expressions” on page 202 for more detalls on logical expressions

Caution: Intermediate result overflow may or may not be caught when performing
certain arithmetic operations on integers.

Pointer Data Type
Using the predefined procedure NEW, you can allocate storage for dynamic
variables at run time. These dynamic variables are allocated in an area of storage
called a heap. Pointer variables keep track of these dynamic variables by
maintaining their addresses in storage. Figure 65 shows the syntax of the pointer
data type.

@ id-ty, <
SO I

Where Represents
id-type Any type

Figure 65. Syntax of the Pointer Data Type

The pointer declaration must specify the data type of the dynamic variable to be
created. Figure 66 provides an example of pointer declarations.

TYPE
PTR = Q@ELEMENT;
ELEMENT = RECORD
PARENT : PTR;

CHILD : PTR;
SIBLING: PTR;
END;

Figure 66. Example of Pointer Declarations

Note to Figure 66: The identifier ELEMENT is used before it is declared. Although
referencing an identifier before it is declared is generally not permitted in VS
Pascal, one exception is a type identifier used as the base type in a pointer
declaration.

66 VS Pascal Language Reference

REAL Data Type

Figure 67 describes the operators and predefined routines that apply to the pointer
data type. See “Predefined Routines” on page 113 for further information about
these routines.

Operator or

Routine Form Description

= Binary Compares for equality

_-: > 0r = Binary Compares for inequality

ADDR Function Hetl.n.ns]?u'- location in storage of a variable

DISPOSE Procedure Deallocates a dynamic variable pointed to by a pointer
DISPE)SEl-iEAP Procedure Deallocates a heap

MARK Procedure Creales a subheap in the current heap

NEW Procedure Allocates a dynamic variable in the current heap and

sets the pointer to point to the dynamic variable

NEWHEAP Procedure Allocates a new heap

ORD Function Converts a pointer to an integer equal to the address of
the dynamic variable pointed te by the pointer (see
note)

QUERYHEAP Procedure Sets the pointer to the current heap

RELEASE Procedure Frees all subheaps created after a specified subheap in

the heap containing the specified subheap

SIZEOF Function Returns the number of bytes required lor a pointer

USEHEAP Procedure Changes the current heap

Figure 67. Operators and Predefined Routines for the Pointer Data Type

Note to Figure 67: There is no function in VS Pascal to convert an integer into a
pointer

The predefined data type REAL represents floating-point data. Variabies of this
type occupy 8 bytes of storage and are aligned on a doubleword boundary. All real
arithmetic is done using double-precision floating-point instructions.

MAXREAL is a predefined constant whase value is the largest floating-point
number representable on the machine. MINREAL is a predefined constant whose
value is the smallest positive nan-zero floating-point number representable on the
machine. EPSREAL is a predefined constant whose value is the smallest number
representable on the machine such that 1.0 + EPSREAL > 1.0.

Chapter 6. Data Types 67

Bec
For

Figure 68 describes the operators and predefined functions that apply to the REAL

ause the REAL type is not ordinal, it cannot be used in certain circumstances.
example:

In subranges or sets of REAL

As an array index type

As a CASE seiector

As the type of variable in a FOR loop index

As a type of variant selector

In the predefined functions SUCC, PRED, ORD, HIGHEST, and LOWEST.

data type. See “Predefined Routines” on page 113 for further information about
these functions.

Operator or

Function Form Description

+ Unary Returns the unchanged result of the operand
+ Binary Forms the sum of the operands

- Unary Negates the operand

- Binary Forms the difference of the operands

- Binary Forms the product of the operands

/ Binary Forms the floating-point quotient of the operands
= Binary Compares for equality

< > Binary Compares for inequality

< Binary Compares for left less than right

<= Binary Compares for left less than or equal to right

> = Binary Compares for left greater than or equal to right
> Binary Compares for left greater than right

ABS Function Returns the absolute value of a number

ARCTAN Function Returns the trigonometric arctangent (in radians) of a real
argument

CcOoSs Function Returns the trigonometric cosine of a real argument (in
radians)

EXP Function Returns the value of the natural log base raised to the power
of a real argument

LN Function Returns the natural logarithm of a real argument

value of one

ROUND Function Returns a value rounded to an integer

SIN Function Returns the trigonometric sine of a real argument (in radians)

Figure 68 (Part 1 of 2). Operators and Predefined Functions for Type REAL

68 VS Pascal Language Reference

Operator or

Function Form Description
=0} Funcltior Hetu the number of byte el
Iy
SQR Function Returns the square of a number
SQRT Function Returns the square root of a real argument
TRUNC Function Returns a value truncated to an integer

Figure 68 (Part 2 of 2). Operators and Predefined Functions for Type REAL

RECORD Data Type

A record is a data structure composed of heterogeneous components; each
element can be a different type. Components of a record are called fields.

Figure 69 shows the syntax of the RECORD data type.

Record type

»—L—JfRECORD—fi eld-list—END
PACKED

\ 4
A

Field-list
»w———fixed-part— ; —variant-part
—fixed-part I— H J

—variant-part

Fixed-part

A\
A

e |
> field type

Variant-part

»»—CASE id— : —id-type OF
Eid—typc

v

A 4
A

v

range : —(—field-list—)

Figure 69 (Part 1 of 2). Syntax of the RECORD Data Type

Chapter 6. Data Types

69

Field

pr—i >4
|* onstant-expr Zl—‘

Range

»—I:nonstant ———pd
CONSLant=exgor _‘ I_ 5 tL=exp —,

Where Represenis

constant Any constant

constant-expr Any constant expression

type Any type

id An identifier name

id-type A type name

fd-field

A field name

Figure 69 (Part 2 of 2). Syntax of the RECORD Data Type

Naming a Field
A field is referred to by the name it has been assigned. The scope in which a field
name is valid is within the record in which the field is declared. Every field name
within a record must be unique, even if that name appears in a variant part.

In such a

A field of a record need not be named; the field identifier can be missing

. i e &
Ldo .II‘.?uuli!::

erves only as padding and cannot be refe

Figure CORD declarations

70 shows examples of simple RE

TYPE
REC = RECORD
A,
B : INTEGER;
CHAR: (*unnamed*)
C : CHAR;
END;
DATE = RECORD
DAY o 1..31;
MONTH : 1..12;
YEAR : 1900..2100
END;

PERSON = RECORD

AST NAME
3T NAME + ALFA;
MIDDLE INITIAL : CHAR;
AGE : 0..99;
EMPLOYED : BOOLEAN;
END;

Figure 70. Examples of Simple RECORD Declarations

70

VS Pascal Language Reference

Fixed Part

Variant Selector

Variant Part

The fixed part of a record is a series of fields that exists in every variable declared
to be of that record type. The fixed part, if present, is always before the variant
part.

The variant selector follows the reserved word CASE in the variant part of a
record. This is an ordinal type that indicates which variant of the record is active.

When the variant selector is followed by a colon, a new field cailed the tag field is
defined. For example,

CASE I: [INTEGER OF

results in | being a tag field of type INTEGER.

If the type identifier is missing, the tag field name must be one previously defined
within the record. This allows you to place the tag field anywhere in the fixed part
of the record. For example,

CASE 1: OF

means that | is the tag field, and it must have been declared in the fixed part. The
type of | is as given in the field definition of |.

The variant part of a record need not have a tag field at all. In this case, only a
type identifier is specified in the case construct. For example,

CASE INTEGER OF

means no tag field is present; the variants are denotec by integer values in the
variant declaration. You must still refer to the variant fields by their names, but it
is your responsibility to keep track of which variant is "active” (that is, contains
valid data) at run time.

You use the variant part of a record to define an alternative structure in the record.
The record structure adopts one of the variants at a time.

All variant tags must be assignment compatible with the variant selector type.
Also, in Standard Pascal, all possible values of a variant selector must correspond
to a variant. With VS Pascal, you can omit those tag constants that will not be

used

Figure 71 on page 72 illustrates how to declare a record with a tag field.

Chapter 6. Data Types 71

TYPE

SHAPE = (TRIANGLE, RECTANGLE,
SQUARE, CIRCLE);

COORDINATES =
(*fixed part: *)
RECORD
X, Y : REAL;
AREA . REAL;

CASE S : SHAPE OF
(*variant part:*)
TRIANGLE:
(SIDE : REAL;
BASE : REAL);

RECTANGLE :
(SIDEA,SIDEB : REAL);

SQUARE :
(EDGE : REAL);

CIRCLE:
(RADIUS : REAL);
END;

Figure 71. Example of a Record Dectaration with a Tag Field

In Figure 71, the record defined as COORDINATES contains a variant part. The tag
field is S, its type is SHAPE, and its value (whether TRIANGLE, RECTANGLE,
SQUARE, or CIRCLE) indicates which variant is in effect. The fields SIDE, SIDEA,
EDGE, and RADIUS will all occupy the same offset within the record. Figure 72
shows how the record will look in storage.

Fixed part:
X
Y
AREA
Tag field: S

Variant part:
SIDE | SIDEA | EDGE | RADIUS

BASE | SIDEB

Figure 72. Storage of a Record with a Tag Field

Each column in the variant represents one alternative for the variant.

VS Pascal Language Reference

COQRDINATES =
RECORD
5 : SHAPE;
XY . REAL;
AREA : REAL;
CASE S : QF

(*variant part:

TRIANGLE:
(SIDE : REAL;
BASE : REAL):

RECTANGLE:

(SIDEA,SIDEB : REAL);

SQUARE:
(EDGE : REAL);

CIRCLE:
(RADIUS : REAL);
END;

Figure 73. Example of a Record Declaration with a Back Reference Tag Field

Figure 74 shows how the record will look in storage.

Fixed part:
Tag field :)
X
Y
AREA
Variant part:
SIDE | SIDEA | EDGE | RADIUS
BASE | SIDER

Flgure 74. Storage of a Record with a Back Reference Tag Field

It you preter the tag field to be absent altogether, define the record as shown in

Figure 75 on page 74.

Chapter 6. Data Types

73

COORDINATES =

RECORD
X,Y . REAL;
AREA : REAL;

CASE SHAPE OF
(*variant part:*)

TRIANGLE:
(SIDE : REAL;
BASE : REAL);
RECTANGLE :

(SIDEA,SIDEB : REAL);

SQUARE:
(EDGE : REAL):

CIRCLE:
(RADIUS : REAL):
END;

Figure 75. Example of a Record Variant with No Tag Field

Figure 76 shows how the record will look in storage.

Fixed part:

Variant part: i

! SIDE | SIDEA | EDGE | RADIUS i

BASE | SIDEB J

Figure 76. Storage of a Record Variant with No Tag Field

Packed Records

The fields in a record are normally assigned offsets sequentially and padded
where necessary for boundary alignment. In packed records, however, no such
padding is done, and fields are aligned on a byte boundary. This might save
storage within the record, but might also degrade performance of the program.

Standard Pascal does not allow elements of packed records to be passed by VAR

to user-defined procedures.

74 VS Pascal Language Reference

C

Offset Qualification of Fields
With VS Pascal you can force the fields of a record to begin at a specified byte
offset in the record. A field name can be followed by an integer constant
expression enclosed in parentheses. This expression represents the byte offset
within the record where the field begins. All fields so specified must be in
consecutive order according to offsets. If the offset is not specified, the field will be
assigned the next offset required for boundary alignment. If an offset specification
attempts to assign an incorrect boundary for a field and the record is not packed, a
compile-time error will be issued.

For example, a large control block of 100 bytes is needed in which four fields at
various offsets must be referenced. The fields of the control block, and how the
control block might be represented in VS Pascal, are shown in Figure 77

Byte Displacement Information

0 Field A (integer)

36 Field B (8 characters)

80 Field C (4 flags)

92 Field D (integer)
TYPE

FLAGS = SET OF (F1,F2,F3,F4);
PADDING = PACKED ARRAY[1..4] OF CHAR;:

CB = PACKED RECORD
A : INTEGER;
B(36) : ALFA;

C(80) : FLAGS;
D(92) : INTEGER;
: PADDING
END;
VAR
BLOCK : CB;

Figure 77. Example of a Record with Offset Qualified Fields

You cannot use an offset qualifier on the variant part tag field. If you want the tag
field to be at a certain offset, make the tag field a backward reference, make the
last identifier of the fixed part have the same name as the tag field, and put the
offset qualifier on this last identifier. Figure 78 on page 76 illustrates this point.

Chapter 6. Data Types 75

Figure 78 Example of an Offset Qualifier on a Tag Field

Figure 79 describes the predefined functions that apply to the RECORD data type.
See “Predefined Routines” on page 113 for further information about these

functions.

Function Form Description

ADDR Function Returns the location in storage of a record variable
SIZEOF Function Returns the number of bytes required lor a value of type

RECORD

Figure 79. Predefined Functions for Type RECORD

SBCS Fixed String Data Type

An SBCS fixed string is defined as a PACKED ARRAY [1..n] OF CHAR. In Standard

Pascal, n must be greater than 1, and any two strings that are compared or
assigned must have the same length. In VS Pascal, n can equal 1, and the strings
need not be the same length.

Double-byte character set (DBCS) data is allowed in an SBCS fixed string when it
is surrounded by shift-in and shift-out characters. The GRAPHIC compile-time
option has no effect on this support. All operations on DBCS data are handled in a
byte-ariented manner

Figure 80 on page 77 describes the operators and predefined routines that apply

to the SBCS fixed string data type. See “Predefined Routines” on page 113 for
turther information about these predefined routines.

76 VS Pascal Language Reference

Operator or

Routine Form Description

= Binary Compares for equality!

<>ar - Binary Compares for inequality*

< Binary Compares for left less than rightt.2

<= Binary Compares for left less than or equal to right1.2

> = Binary Compares for left greater than or equal to rightt.2

> Binary Compares for left greater than rightt.2

\DDR Funclion Returns the location in storage of an SBCS fixed siring

I \ s ot the U r bound of BCS f t |

E N[O) aetermis W } E d string
hich is 1

PACK Procedure Copies an array starting at a given point to a packed
array

SIZEOF inction Returns the number of bytes required for an SBCS

STH Function Converts an SBCS fixed string to a STRING

UNPACK Procedure Copies a packed array to an array starting at a given
point

Figure 80. Operators and Routines for the SBCS Fixed String Data Type

Notes to Figure 80:

ympared are of different ler

dded with blanks on the right until the lengths

2. Relative magnitude of two strings is based upon the collating sequence of
EBCDIC.

SET Data Type

A variable of type SET can contain any combination of values taken from the base
scalar type. A value is either in the set or it is not in the set. VS Pascal sets can
be used in many of the same ways as bit strings (which often tend to be machine
dependent). Each bit corresponds to one element of the base type and is set to a
binary one when that element is a member of the set. For example, a set operation
such as intersection (the operator is “*") is the same as taking the “Boolean AND”
of two bit strings.

Figure 81 shows the syntax of the SET data type.

»» |_ _J SET-0F enumerated-scalar-type >4
PACKED \:id—typc
subrange-type
Where Represents
enumerated-scalar-type An enumerated scalar data type
id-type An ordinal type name
subrange-type A subrange data type

Figure 81. Syntax of the SET Data Type

Chapter 6. Data Types 77

Given a SET type of the form
SET OF a..b

where a and b express the lower and upper bounds of the base scalar type, the
following conditions must hold:

ORD(a) »= 0
ORD(b) <= 255.

The storage and alignment required for a set variable depends on the ordinal type
on which the set is based. The amount of storage required for a packed set is the
minimum number of bytes needed so that every member of the set can be
assigned a unique bit. Given a set definition:

TYPE
S = SET OF BASE;

where BASE is a scalar type that is not a subrange.

The ordinal value of the last member M that can be contained in the set is:

M ¢= ORD(HIGHEST(BASE)).

The mapping of a set variable as a function of M would be as follows:

Range of M Size in Bytes Alignment
0 <=M<=17 1 Byte

8§ <= M<=15 2 Halfword
16 <= M <= 23 3 Byte

24 <= M <= 31 4 Fullword
32 <= M <= 255 MDIV 8+ 1 Byte

A set can therefore have at most 32 bytes of storage.

The stocrage required for an unpacked set of a subrange is the same as that
required for a set of the subrange's base type. For example. given:

TYPE
T = SET OF t;
S = "SET OF s3

where s is a subrange of t. The types T and S have identical storage mappings.

Figure 82 shows an example of SET declarations.

TYPE .
DAYS (MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY);

CHARS = SET OF CHAR;

DAYSOFMON = PACKED SET OF 1..31;

DAYSOFWEEK = SET OF MONDAY..FRIDAY;

FLAGS SET OF

(A,B,C,D,E,F,G,H);

It

Hn

Figure 82. Example of SET Declarations

78 Vs Pascal Language Reference

Figure 83 describes the operators and functions that apply to the SET data type.
See “Predefined Routines” on page 113 for further information about these

functions.

Operator or

Function Form Description

NOT or — Unary Returns the complement of the operand

= Binary Compares for equality

<> or—= Binary Compares for inequality

< = Binary Returns TRUE if first operand is subset of second
operand

> = Binary Returns TRUE if first operand is superset of second
operand

IN Binary Returns TRUE if first operand (a scalar) is a member
in the set represented by the second operand

+ Binary Forms the union of two sets

. Binary Forms the intersection of two sets

- Binary Forms the difference between two sets

> < or XOR or && Binary

Forms the symmetric difference of two sets

ADDR Function

Returns the |location in storage of a set variable

SIZEOF Function

Returns the number of bytes required for a value of
type SET

Figure 83. Operators and Functions for Type SET

Notes to Figure 83:

* Set complement produces a set that has all of the elements not in the set being

complemented.

e Set union produces a set that contains all of the elements that are members of

the two operands.

* Set intersection produces a set that contains only the elements common to

both sets.

* Set difference produces a set that includes all elements from the left operand
except those elements in the right operand.

* Set symmetric difference produces a set that contains all elements from the
two operands except the elements common to both operands.

* The IN operator tests for membership of a scalar within a set; if the scalar is
not a permissible value of the set, FALSE is returned.

SHORTREAL Data Type

The predefined data type SHORTREAL represents floating-point data. Variables of
this type occupy 4 bytes of storage and are aligned on a word boundary. All
shortreal arithmetic is done using single-precision floating-point instructions.

Operations between data of type REAL and SHORTREAL are performed using
double-precision floating-point instructions. The shortreal operand is implicitly
converted to a real (see "Implicit Type Conversion” on page 46).

Chapter 6. Data Types 79

Because the SHORTREAL type is not ordinal, it cannot be used in certain
circumstances. For example:

¢ [n subranges or sets of SHORTREAL
* As an array index type

* As a CASE selector

* As the type of variable in a FOR loop index
* As a type of variant selector
* |n the predefined functions SUCC, PRED, ORD, HIGHEST, and LOWEST.

Figure B4 describes the operators and predefined functions that apply to the
SHORTREAL data type. See “Predefined Routines” on page 113 for further
information about these functions.

Operator or

Function Form Description

i Unary Returns the unchanged result of the operand

+ Binary Forms the sum of the operands

- Unary Negates the operand

- Binary Forms the difference of the operands

* Binary Forms the product of the operands

/ Binary Forms the floating-point quotient of the operands

= Binary Compares for equality

<>o0or—= Binary Compares for inequality

< Binary Compares for left less than right

<= Binary Compares for left less than or equal to right

5= Binary Compares for left greater than or equal to right

> Binary Compares for left greater than right

ABS Function Returns the absolute value of a number

ADDR Function Returns the location in storage of a variable

ARCTAN Function Returns the trigonometric arctangent (in radians) of a
shortreal argument

Ccos Function Returns the trigonometric cosine of a shortreal argument (in
radians)

EXP Function Returns the value of the natural log base raised lo the power
of a shortreal argument

LN Function Returns the natural logarithm of a shortreal argument

MAX Function Returns the maximum value of one or more operands

MIN Function Returns the minimum value of one or more operands

ROUND Function Returns a value rounded to an integer

SIN Function Returns the trigonometric sine of a shortreal argument (in
radians)

SIZEOF Function Returns the number of bytes required for a value of type

SHORTREAL, which is always 4

Figure 84 (Part1 of 2). Operators and Predefined Functions for Type SHORTREAL

80 VS Pascal Language Reference

Operator or

Function Form Description

SAR Function Returns the square of a number

SART Function Returns the square root of a shortreal argument
TRUNC Function Returns a value truncated to an integer

Figure 84 (Part2 of 2). Operators and Predefined Functions for Type SHORTREAL

SPACE Data Type

Sometimes, the need arises to represent data within storage areas that do not
have the same fixed offset. One example is a directory in which each entry can be
of variable-length. Another example is the processing of variable-length records
from a buffer. VS Pascal provides the space structure to solve these problems.
Figure 85 shows the syntax of the SPACE data type.

v
'y

»>—SPACE—[——constant-expr—]—0F—type

Where Represents
constant-expr Size of the storage area (in bytes)
type Any type

Figure 85. Syntax of the SPACE Data Type

A variable of type SPACE occupies the number of bytes indicated in the length
specifier of the type definition and is aligned on a byte boundary.

Figure 86 describes the functions that apply to the SPACE data type. See
“Predefined Routines" on page 113 for further information about these functions.

Function Description

ADDR Returns the location in storage of a variable

HBOUND Returns the declared maximum byte value of a variable
LBOUND Returns the value 0; spaces always have a lower bound of zero
SIZEOF Returns the number cf bytes required for a value of type SPACE

Figure 86. Functions for the SPACE Data Type

STRING Data Type

The predefined data type STRING is defined as a PACKED ARRAY[1..n] OF CHAR
whose length varies at run time up to a compile-time specified maximum given by
a constant expression. Figure B7 shows the syntax of the STRING data type.

»»——STRING——(——constant-expr—)

A\
A

Where Represents
constant-expr Any integer constant expression

Figure 87. Syntax of the STRING Data Type

Chapter 6. Data Types 81

The value of the expression must be in the range 0..32767. The length of a string
variable is initially determined when the variable is assigned a value. This length
can be changed by string operators and routines. The assignment of one string to
another can cause a run-time error if the actual length of the source string is
greater then the maximum length of the target. VS Pascal will never automatically
truncate strings.

Any variable of type STRING is compatible with any other variable of type STRING;
that is, the maximum length field of a type definition has no bearing in type
compatibility tests.

Note: The STRING data type manipulates both pure SBCS data and mixed
SBCS/DBCS data. However, pure DBCS data is best manipulated with the
GSTRING data type.

Figure 88 describes the operators and routines that apply to the STRING data type.

See Figure B9 on page 83 for the functions that apply to mixed strings. The
operators and routines manipulate SBCS and mixed strings in a byte-oriented
manner. See "Predefined Routines" on page 113 for further information about
these routines.

Operator or

Routine Form Description

= Binary Compares for equality*

<> 0r—= Binary Compares for inequality’

< Binary Compares for left less than right1.2

<= Binary Compares for left less than or equal to right1.2

> = Binary Compares for left greater than or equal to right1.2

> Binary Compares for left greater than right1.2

+ or || Binary Concatenates the operands

ADDR Function Returns the location in storage of a variable

COMPRESS Function Returns a string with all occurrences of multiple blanks
replaced by a single blank

DELETE Function Returns a string with a portion removed

INDEX Function Locates the first occurrence of a string in another string

LENGTH Function Returns the length of a string

LPAD Procedure Pads or truncates a string on the left

LTRIM Function Returns a string with leading blanks removed

MAXLENGTH Function Returns the declared length of a string

READSTR Procedure Reads a list of variables from a string

RINDEX Function Locates the last occurrence of a string in another string

RPAD Procedure Pads or truncates a string on the right

SIZEOF Function Returns the number of bytes required for a value of type
STRING

Figure 88 (Part 1 of 2). Operators and Routines for Strings (Byte-Oriented)

82 Vs Pascal Language Reference

Operator or

Routine Form Description

STR Function Converts either a CHAR or an SBCS fixed string to a
STRING

STOGSTR Function Converts a STRING to a GSTRING

SUBSTR Function Returns a specified portion of a string

TRIM Function Returns a string with trailing blanks removed

WRITESTR Procedure Writes a list of expressions to a string

Figure 88 (Part 2 of 2). Operators and Routines for Strings (Byte-Oriented)

Notes to Figure 88:

1. If two strings being compared are of different lengths, the shorter is assumed
to be padded with blanks on the right until the lengths match.

2. Relative magnitude of two strings is based upon the collating sequence of
EBCDIC.

The predefined functions listed in Figure 89 operate on mixed strings in a
character-oriented manner. Character strings are validated before the operation.
Adjacent shift-in/shift-out character pairs and DBCS nulls are removed from the
result. This simplified string is known as a canonical mixed string.

Function Description

MCOMPRESS Returns a string with sequences of SBCS blanks replaced by one SBCS
blank, and seguences of DBCS blanks replaced by one DBCS blank

MDELETE Returns a mixed string with a specified part removed

MINDEX Locates the first occurrence of a string in another string, manipulating
SBCS and DBCS characters separately

MLENGTH Returns the length of a mixed string

MLTRIM Returns a string with leading SBCS and DBCS blanks removed

MRINDEX Locates the last occurrence of a string in another string, manipulating
SBCS and DBCS characters separately

MSUBSTR Returns a specified portion of a mixed string

MTRIM Returns a string with trailing SBCS and DBCS blanks removed

Figure 89. Functions for Strings (Character-Oriented)

Figure 90 on page 84 shows how binary operators are applied to SBCS
characters, SBCS fixed strings, and SBCS strings.

Chapter 6. Data Types 83

Left Operand

Right Operand

CHAR

CHAR

Allowed

SBCS Fixed String

Use STR on both operands

STRING

Use STR on the CHAR

SBCS Fixed String

CHAR

Use STR on both operands

SBCS Fixed String

Allowed if the types are
compatible

STRING

Use STR on the fixed string

STRING

CHAR

Use STR on the CHAR

SBCS Fixed String

Use STR on the fixed string

STRING

Allowed

Figure 90. How to Apply Binary Operators to SBCS Characters, SBCS Fixed Strings, and

SBCS Strings

Figure 91 shows how to convert strings on assignment.

Target Variable

Source Expression

CHAR

CHAR

Allowed

SBCS Fixed String

Index the fixed string to
obtain a CHAR

STRING Index the string to obtain a
CHAR
SBCS Fixed String CHAR Use STR

SBCS Fixed String

Allowed if the types are
compatible

STRING

Allowed; if truncation is
required, an error results

STRING

CHAR

Use STR to convert CHAR to
a STRING

SBCS Fixed String

Use STR to convert the fixed
string to a STRING; if
truncation is required, an
error results

STRING

Allowed,; if truncation is
required, an error results

Figure 91. How to Convert Strings on Assignment

STRINGPTR Data Type
The STRINGPTR data type defines the pointer to a dynamic string variable.

STRINGPTR is equivalent to:

TYPE
STRINGPTR = @STRING;

The procedure NEW allocates storage for the STRING pointed to by the
STRINGPTR. An integer expression is passed to procedure NEW in order to

84 Vs Pascal Language Reference

O

specify the maximum length of the allocated string. (See “NEW Procedure” on

page 143.)

Variables of type STRINGPTR have two lengths associated with them:

¢ The current length that defines the number of characters in the string at any
instant in time

* The maximum length that defines the storage required for the string.

Figure 92 shows an example of the predefined type STRINGPTR.

VAR
[
.a
I
BEGIN

[1= 230;

NEW(P, 1);

: STRINGPTR;
: STRINGPTR;
. 8. 327673

WRITELN(MAXLENGTH(P@));
(*writes '30' to output*)

NEW(Q,5);

Q@ := '1234567890';
(*causes a truncation*)
(*error at execution *)

END;

Figure 92. Example of the Type STRINGPTR

Figure 93 describes the operators and predefined routines that apply to the
STRINGPTR data type. See “Predefined Routines” on page 113 for further
information about these routines.

Operator or

Routine Form Description

- Binary Compares for equality

<> or—o= Binary Compares for inequality

ADDR Function Returns the location in storage of a variable

DISPOSE Procedure Deallocates a dynamic string variable pointed to by a
pointer

DISPOSEHEAP Procedure Deallocates a heap

MARK Procedure Creates a subheap in the current heap

NEW Procedure Allocates a dynamic string variable with a maximum
length in the current heap and sets the pointer to point
to the string

NEWHEAP Procedure Allocates a new heap

ORD Function Converts an operand to an integer and returns the

address of the string pointed to by a pointer

Figure 93 (Part 1 of 2). Operators and Predefined Routines for the STRINGPTR Data Type

Chapter 6. Data Types 85

Operator or

Routine Form Description
QUERYHEAP Procedure Sets the pointer to the current heap
RELEASE Procedure Frees all subheaps created after a specified subheap

in the heap containing the specified subheap

SIZEOF Function Returns the number of bytes required for a value of
type STRINGPTR

USEHEAP Procedure Changes the current heap

Figure 93 (Part 2 of 2). Operators and Predefined Routines for the STRINGPTR Data Type

Subrange Data Type
The subrange data type is a subset of consecutive values of a previously defined
ordinal. Any operation permissible on an ordinal is also permissible on any
subrange of it. Figure 94 shows the syntax of the subrange data type.

4
A

> LPACKED—I Lgonstant—[—constant _J

. —constant-expr

RANGE——constant-expr— .. —constant-expr——
Where Represents
constant Any ordinal constant

constant-expr Any ordinal constant expression

Figure 94. Syntax of the Subrange Data Type

A subrange is defined by specifying the minimum and maximum values that will be
permitted for data declared with that type. For subranges that are packed, VS
Pascal assigns the smallest number of bytes required to represent a value of that

type.

Type definitions representing integer subranges can be prefixed with the reserved
word PACKED. VS Pascal assigns the smallest number of bytes required to
represent a PACKED value. Given a type definition T as:

TYPE
T = PACKED 7..];

the number of bytes required for different ranges of integers would be as follows.
For ranges other than those listed, use the first range that encloses the desired

range.
Range of i..J Size Alignment
0..255 1 byte Byte
-128..127 1 byte Byte
-32768..32767 2 bytes Hal fword
0..65535 2 bytes Halfword
-8388608. .8388607 3 bytes Byte
0..16777215 3 bytes Byte
Otherwise 4 hytes Fullword

If the reserved word RANGE is used in the subrange definition, both the minimum
and maximum values can be any expression that can be computed at compile time.
If the reserved word RANGE is not used, the minimum value of the range must be a

86 VS Pascal Language Reference

C

simple constant, while the maximum value can still be any expression that can be
computed at compile time.

Figure 95 shows examples of subrange scalars.

CONST
SIZE

TYPE
DAYS

MONTHS

UPPERCASE
HUNDRED
CODES

INDEX

VAR
WORKDAY
SUMMER
SMALLINT
YEAR

1000;

(Su, Mo, TuU, WE,

TH, FR, SA);

(JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC);

R A
0 .. 99;
RANGE

CHR(O)..CHR(255);
PACKED 1 .. SIZE+1;

: MO .. FR;

: JUN .. AUG;

: PACKED 0, .255;
: 1900 .. 2000;

Figure 95. Examples of Subrange Scalars

Figure 96 illustrates that two subrange types can be defined over the same base

type. Operations are permitted between these two variables because they have

the same base type.

VAR
NEG
POS

: MININT .. -1;
;1 .. MAXINT;

Figure 96. Examples of Subranges with the Same Base Type

Restrictions:

* A subrange of type GCHAR, REAL, or SHORTREAL is not permitted.

* The number of values in a subrange of type CHAR is determined by the

collating sequence of the EBCDIC character set.

Figure 97 on page 88 describes the predefined functions that apply to the

subrange scalar data type. See “Predefined Routines” on page 113 for further
information about these procedures and functions.

Chapter 6. Data Types

87

Function Description

HIGHEST Returns the maximum value of a subrange type

LOWEST Returns the minimum value of a subrange type

MAX Returns the maximum value of one or more scalar expressions
MIN Returns the minimum value of one or more scalar expressions
ORD Converis an ordinal expression to an integer

PRED Returns the predecessor of an ordinal expression

SUCC Returns the successor of an ordinal expression

Figure 97. Predefined Functions for Type Subrange Scalar

TEXT Data Type
In Standard Pascal, the predefined data type TEXT is defined as:

TYPE
TEXT = FILE OF CHAR;

VS Pascal predefines the two TEXT variables INPUT and OUTPUT. Because they
are predefined, they do not need to be explicitly declared in your program. You do
not need to include the files INPUT and OUTPUT in the program header even if they
are used in the program.

In addition to the routines that allow character input and output operations, there
are several routines that perform line-oriented input and output, as well as
conversions between character and internal (binary) representations.

Figure 98 describes the predefined routines that apply to the TEXT data type. See
“Predefined Routines” on page 113 for further information about these routines.

Routine Form Description

ADDR Function Returns the location in storage of a variable
CLOSE Procedure Closes a file

COLS Function Returns the current column of a file

EOF Function Tests a file for end-of-file condition

EOLN Function Tests a file for end-of-line condition

GET Procedure Reads the current character of a file and advances

the file pointer to the next character in the input file

PAGE Procedure Skips to the top of the next page

PDSIN Procedure Opens a file for input, specifying open options and
the PDS member name

PDSOUT Procedure Opens a file for output, specifying open options and
the PDS member name

PUT Procedure Writes the file buffer to a file and advances the file
pointer to the next character in the output file

Figure 98 (Part 1 of 2). Procedures and Functions for Type TEXT

88 VS Pascal Language Reference

Routine Form Description

READ Procedure Reads from a file into a variable

READLN Procedure Reads a variable and then skips to end-of-line of a
text fite

RESET Procedure Opens a file for input with the open options

REWRITE Procedure Opens a file for output with the open options

SIZEOF Function Returns the number of bytes required for a value of
type TEXT

TERMIN Procedure Opens a file for input from the terminal with the
open options

TERMOUT Procedure Opens a file for output for the terminal with the open
options

WRITE Procedure Writes a value to a file

WRITELN Procedure Writes a value and then writesb an end-of-line to a

text file

Figure 98 (Part 2 of 2). Procedures and Functions for Type TEXT

Chapter 6. Data Types 89

Chapter 7. Variables

91

Chapter 7. Variables

VS Pascal divides variables into five groups, according to how they are declared:

* Automatic (VAR variables)

¢ Dynamic (pointer-qualified variables)

e Static (static variables)

e External (DEF/REF variables)

¢ Parameter (declared in a routine header).

A variable can be referenced in several ways depending on its type. You can
always refer to the entire variable by specifying its name. You can refer to a
dynamic variable or a component of a structured variable by using the syntax
shown in Figure 99. Assignments of entire records or arrays are allowed.

P> ——1id-var <

P
[[—éxpr%]
—id-field

Where Represents

id-var ~ Name of variable

@ Pointer or file reference

expr Subscripted variable reference (index expression)
id-field Field reference

Figure 99. Syntax of a Variable Reference

Figure 100 shows an example of variables used in their entirety.

VAR
LINEL,
LINE2 : PACKED
ARRAY[1..80] OF

CHAR;
BEGIN
(*assign all 80 characters *)
(*of the array *)
LINEL := LINEZ;
END;

LJ

Figure 100. Example of Variables Used in Their Entirety

92 VS Pascal Language Reference

Predefined Variables

VS Pascal has two predefined variables:

¢ [NPUT, the default input file
e OUTPUT, the default output file.

Subscripted Variables

Array Variables

An element of an array is selected by placing an indexing expression, enclosed
within square brackets, after the name of the array. The indexing expression must
be assignment compatible with the data type deciared in the array’s index
definition. See "Compatible Data Types” on page 47 for further information on
compatibility.

A multidimensional array can be referenced as an array of arrays. For example,

let variable A be declared as follows:
A: ARRAY [a..b,c..d] OF T

As explained in “ARRAY Data Type” on page 51, this declaration is equivalent to:

A: ARRAY [a..b] OF
ARRAY [c..d] OF T

A reference of the form A[l] is a variable of type:
ARRAY [c..d] OF T

and represents a single row in array A. A reference of the form A[l]{J] is a variable
of type T and represents the Jth element of the Ith row of array A. This latter
reterence is customarily abbreviated as:

A[I,J]
Any array reference with two or more subscript indexes can be abbreviated by
writing the subscripts in order, separated by commas. That is, A[l][J]... can be

written as A[l,J,...].

Figure 101 on page 94 shows an example of array indexing.

Chapter 7. Variables 93

TYPE

MATRIX = ARRAY[1..10, 1..10] OF REAL;

MATRIXO =

COLGR

INTENSITY
VAR

M

HUE

BEGIN

(* An alternative declaration *)
(* for MATRIX, above. *)

ARRAY[1..10] OF
ARRAY[1..10] OF REAL;

(RED, YELLOW, BLUE);

= PACKED ARRAY [COLOR] OF REAL;

MATRIX;
INTENSITY;

(*assign ten element array*)

M[1]

1= M[2];

(*assign one element of a two*)
(*dimensional array two ways *)

M[1,1]
M[1] (1]

(*this is a reddish orange

1= 3.14159;
1= 3.14159;

*)

HUE [RED] = 6.7;

HUE[YELLOW] := 0.7;

HUE [BLUE] 1= 0.7;
END;

Figure 101. Example of Array indexing

STRING Variables
A variable of type STRING can be subscripted with an integer expression to
reference individual characters. The value of the subscript must not be less than 1
or greater than the length of the string. Subscripting a STRING returns a CHAR.

Because strings are not true arrays, you must use the long form of subscripting
with arrays of type STRING. Figure 102 shows examples of valid and invalid
subscripting for a STRING data type.

VAR
A ¢ ARRAY [1..10] OF STRING;
C : CHAR:
BEGIN
€ := A[5,1]; (* Not legal *)
C := A[5][1]; (* Legal *)
END;

Figure 102. Examples of Valid and Invalid Subscripting for a STRING Data Type

94 VS Pascal Language Reference

GSTRING Variables

Error Checking

A variable of type GSTRING can be subscripted with an integer expression to
reference individual characters. The value of the subscript must not be |less than 1
or greater than the length of the string. Subscripting a GSTRING returns a GCHAR.

A variable of type GSTRING is indexed in a character-oriented manner; that is, an
index is expressed in terms of DBCS characters. Because GSTRINGs, like strings,
are not true arrays, you must use the long form of subscripting with arrays of
GSTRINGs. Figure 103 shows an example of GSTRING indexing.

VAR
A : ARRAY [1..10] OF GSTRING:
C : GCHAR:

BEGIN

é := A[5,1]; (* Not legal *)
C := A[5I[1]; (* Legal *)

END;

Figure 103. Example of GSTRING Indexing

When the % CHECK SUBSCRIPT option is enabled, VS Pascal checks the index
expression at run time to ensure its value lies within the subscript range of the
array or string. VS Pascal issues a run-time error message if the value lies outside
of the prescribed range. (For a description of the CHECK feature, see “%CHECK
Directive” on page 231.)

Field Referencing

To select a field of a record, write:

* The record variable name
* A period
* The name of the field.

Figure 104 on page 96 shows an example of field referencing.

Chapter 7. Variables 95

VAR
PERSON:
RECORD
FIRSTNAME,
LASTNAME: STRING(15);
END;

DATE :
RECORD
DAY: 1..31;
MONTH: 1..12;
YEAR: 1900..2000
END;

I: INTEGER;
DECK:
ARRAY[1..52] OF
RECORD
CARD: 1..13;
SUIT:
(SPADE, HEART,
DIAMOND, CLUB)
END;
BEGIN
I :=1;
PERSON.FIRSTNAME := 'STEVE';

PERSON.LASTNAME := 'MUELLER';
DATE.YEAR = 1978;
DECK[I].CARD = 2;

DECK[I].SUIT = SPADE;

END;

Figure 104. Example of Field Referencing

Pointer Referencing

A dynamic variable is created by the predefined procedure NEW or by an
implementation-provided routine that assigns an address to a pointer variable.
You can refer either to the pointer or to the dynamic variable; referencing the
dynamic variable requires pointer notation, also called “dereferencing” the
pointer.

For example, given the declaration:

VAR P : @R;

P refers to the pointer
Pe refers to the dynamic variable

a reference to P is a reference to the pointer, and a reference to P@ is a reference
to the dynamic variable.

Figure 105 on page 97 shows an example of pointer referencing.

96 VS Pascal Language Reference

TYPE
INFO = RECORD
AGE: 1..99;
WEIGHT: 1..400;
END;

FAMILY =
RECORD
FATHER,
MOTHER,
SELF: @INFO;
KIDS: 0..20
END;

VAR
FAMILYPOINTER : QFAMILY;
BEGIN
NEW(FAMILYPOINTER) ;
FAMILYPOINTER@.KIDS := 2;
NEW(FAMILYPOINTER@.FATHER) ;
FAMILYPOINTER@.FATHER@.AGE := 35;
END;

Figure 105. Example of Pointer Referencing

When the % CHECK POINTER option is enabled, VS Pascal issues a run-time error
message when an attempt is made to reference a pointer that has the value NIL.
(For a description of the CHECK feature, see “%CHECK Directive” on page 231.)

File Referencing

A component of a file is selected from the file buffer by a pointer notation. The file
variable is assigned by using the predefined procedures GET and PUT. Each call
of these procedures moves the current component to the output file (PUT) or
assigns a new componrent from the input file (GET). For a description of GET and
PUT, see “GET Procedure” on page 126 and “PUT Procedure” on page 153.

Figure 106 on page 98 shows an example of file referencing.

Chapter 7. Variables 97

VAR

INPUT . TEXT;
QUTPUT . TEXT;
LINE1 : ARRAY [1..80] OF CHAR;
I . INTEGER;
(*scan off blanks *)
(*from a file of CHAR *)
GET(INPUT);
WHILE INPUT@G = ' ' DO
GET (INPUT) ;
(*transfer a line to the *)
(*OUTPUT file *)
FOR' I := 1 TO 80 DO
BEGIN
OUTPUT® := LINE1[I];
PUT (OUTPUT) ;
END;

Figure 106. Example of File Referencing

Space Referencing

A variable declared with the SPACE data type has a component that can "float"
over a storage area in a byte-oriented manner. A component of a spacs is
selected by placing an index expression, enclosed within square brackets, after the
space variable (just as in array references). The indexing expression must be an
INTEGER type or a subrange of INTEGER. The value of the index is the offset
within the space where the component is to be accessed. The unit of the index is
the byte. The index is always based upon a zero origin; the index range of the
space is from zero to one less than the value of the constant expression in the
space declaration. The component is the space base type.

VS Pascal allows you to pass an element of a space by VAR, but it does issue a
warning message when you do so.

Figure 107 on page 99 shows examples of space referencing.

98 VS Pascal Language Reference

VAR
(*declare a space variable
with index range 0..99 *)
S: SPACE[100] OF
RECORD
A,B: INTEGER;
END;

BEGIN
(*base record begins
at offset 10 within

space *)
S[10].A := 26;
s{10].B := 0;
END;

Figure 107. Examples of Space Referencing

When the %CHECK SUBSCRIPT option is enabled, VS Pascal checks the index
expression at run time to ensure that the computed address lies within the storage
occupied by the space. VS Pascal issues a run-time error message if the value is
invalid. (For a description of the CHECK feature, see "%CHECK Directive” on
page 231).

No check is made for values extending past the end of a space; VS Pascal can act
unpredictably when such an assignment or reference is attempted.

Figure 108 shows an example of invalid space referencing.

VAR

S: SPACE[100] OF INTEGER;

I: INTEGER;
BEGIN

s[98] :=I; (* Invalid-extends past end of space *)
END;

Figure 108. Example of Invalid Space Referencing

Chapter 7. Variables 99

Chapter 8. Routines

101

Chapter 8. Routines Y
L 4
Procedures and functions, known collectively as routines, are the building blocks of
a VS Pascal program. Procedures and functions define blocks of statements to be
executed as a unit each time the procedure or function is invoked.
Procedures can be thought of as adding new statements to VS Pascal. These
statements help you program more quickly because they are tailored to your
needs.
Functions can be thought of as adding new operators to VS Pascal. These
operators help you program more quickly by manipulating data exactly as you
want.
Procedures and functions return data:
¢ Through the function results _-—
Note: A function should return data only through its result, and not through
VAR parameters or global assignments.
¢ Through VAR parameters
¢ By assigning values to variables outside the Iexical scope of the routine
making the assignment.
Note: These variables can also be said to be global to the routine.
You can nest routines up to eight levels deep (including the main program). e
The following sections describe routine declarations, parameters and directives,
and every VS Pascal routine in alphabetical order.
Routine Declarations
You must declare routines before they are used. A routine declaration consists of: =
* A routine heading J
¢ Declarations of local labels and identifiers
* A compound statement.
The heading defines the name of the routine and binds the formal parameters to
the routine. The heading of a function declaration also binds the function name to
the type of value returned by the function. Formal parameters specify data to be
passed to the routine when it is invoked. The declarations are described in
Chapter 4, “Declarations” on page 24. The compound statement will be executed
when the routine is invoked.
Figure 109 on page 103 shows the syntax of routine declarations.
-

102

VS Pascal Language Reference

Routine Declaration

v
A

[»— procedure-heoding H routine-block

\ function-heading

| procedure-id

' function-id

——T—procedure-heading ; —directive— ;
—funct ion-headingj

Procedure Heading

‘ ' ;

»—PROCEDURE—id——r(—formal—parameter—sect ion——)—’——><

Function Heading

*)

»—FUNCTION—id—[—(—formal-parameter—sect ion——)—|———:—id— type—><

Procedure-id

v
A

»»——PROCEDURE—id

Function-id

\é
A

»»——FUNCTION id

Routine Block

A4
v

; ——compound-statement— ; ——»

—label-dcl
—constant-dcl—-
—type-dcl

| —var-dcl
| —def-dcl
| —ref-del
[—static-dcl
—value-dcl
—routine-dcl

Figure 109 (Part 1 of 2). Syntax of Routine Declarations

Chapter 8. Routines

103

Directive

EXTERNAL
F{]RTRAN—‘
FORWARD—
GENERIC—
MAIN
EENTRANT

Formal Parameter Section

v
A

o
> id :

: —id- type
i:VAR—
CONST—

procedure-heading

-function-heading

\é
A

Figure 109 (Part 2 of 2). Syntax of Routine Declarations

Examples of routine declarations are shown in Figure 110.

STATIC
C: CHAR;

FUNCTION GETCHAR:CHAR;
EXTERNAL;

PROCEDURE EXPR(VAR VAL: INTEGER);
EXTERNAL;

PROCEDURE FACTOR(VAR VAL: INTEGER);
EXTERNAL;

PROCEDURE FACTOR;
BEGIN
C := GETCHAR;
IF C = '(' THEN
BEGIN
C := GETCHAR;
EXPR (VAL)
END
ELSE

END;
PROCEDURE EXPR (*VAR VAL: INTEGER*);

BEGIN
FACTOR(VAL) ;

END;

Figure 110. Examples of Routine Declarations

104 VS Pascal Language Reference

Routine Parameters

When a routine is defined, formal parameters are bound to it. Formal parameters
define the way and the type of data that will be passed to a routine when it is
invoked. A procedure or function can be passed to a routine as a formal
parameter. Within the called routine, the formal parameter can be used as if it
were a procedure or function.

When the routine is invoked, a parameter list is built. At the point of invocation, the
parameters are called the actual parameters. Actual and formal parameters
cannot be declared as anonymous types.

VS Pascal permits parameters to be passed in the following ways:

e Pass-by-value

e Pass-by-read/write-reference (VAR)

e Pass-by-read-only-reference (CONST)
e Formal routine parameter.

Pass-by-Value Parameters
Pass-by-value parameters can be thought of as local variables initialized by the
caller. The called routine can change the value of this kind of parameter, but the
change is never reflected back to the caller. Any expression, variable, or constant
can be passed with this mechanism. The exception is that the parameter cannot
be of type FILE, or of any type that even indirectly contains a FILE type. Actual
parameters must be assignment compatibie with the formal parameters.

Pass-by-VAR Parameters
Pass-by-VAR (variable) parameters are also called pass-by-read/write reference
parameters. Parameters passed by VAR reflect modifications to the parameters
back to the caller. Therefore, you can use this parameter type as both an input and
output parameter. The use of the VAR symbol in a parameter indicates that the
parameter is to be passed by read/write reference. Only variables can be passed
by this mechanism; expressions and constants cannot be passed in this way.

Fields of a packed record or elements of a fixed string can be passed as VAR
parameters in VS Pascal (even though this is not allowed in Standard Pascal).

Actual scalar and set VAR parameters need only have compatible types of the
same size in VS Pascal (in Standard Pascal they must have the same type). These
parameters will be checked for assignment compatibility.

It is often desirable to call a procedure or function and pass in a string whose
declared length does not match that of the formal parameter. The conformant
string parameter is used for this purpose.

The conformant string parameter is a pass-by-VAR parameter with a type specified
as STRING without a length qualifier. Strings of any declared length will conform
to such a parameter. You can use the MAXLENGTH function to obtain the declared
length (see "MAXLENGTH Function” on page 137). See Figure 111 on page 106
for an example of conformant string parameters.

Chapter 8. Routines 105

Pass-by-CONST Parameters

Pass-by-CONST parameters cannot be altered by the called routine. Also, you
must not modify the actual parameter value until the call is completed. If you
attempt to alter the actual parameter while it is being passed by CONST, VS Pascal
can act unpredictably. This method is called pass-by-read-only-reference. The
parameters appear to be constants from the called routine's point of view, Any
expression, variable, or constant can be passed by CONST (fields of a packed
record and elements of a packed array can also be passed). The use of the CONST
reserved word in a parameter indicates that the parameter is to be passed by this
mechanism. With parameters that are structures (such as strings), passing by
CONST is usually more efficient than passing by value. Actual parameters must be
assignment compatible with the formal parameters.

It is often desirable to call a procedure or function and pass in a string whose
declared length does not match that of the formal parameter. The conformant
string parameter is used for this purpose.

The conformant string parameter is a pass-by-CONST parameter with a type
specified as STRING without a length qualifier. Strings of any declared length will
conform to such a parameter. Figure 111 shows an example of conformant string
parameters.

PROCEDURE TRANSLATE

(VAR § : STRING;

CONST TABLE :STRING;
VAR

I 0..32767;

J ; 1..0RD(MAXCHAR) + 1;
BEGIN

FOR I := 1 TO LENGTH(S) DO

BEGIN

J := ORD(S[I]) + 1;
IF J > LENGTH(TABLE) THEN
S[I] :='"
ELSE
S[1] := TABLE[J];
END;
END;

Figure 111. Example of Conformant String Parameters

Formal Routine Parameters

A procedure or function can be passed to a routine as a formal parameter. Within
the called routine, the formal parameter can be used as if it were a procedure or
function.

When using actual and formal routine parameters, both routines must be either
procedures, or functions with the same result type. In addition, the formal
parameter lists of the actual and formal routine parameters must be congruous.
Parameter lists are congruous when:

* Both lists contain the same number of formal parameter sections
* Formal parameter sections in corresponding positions have the same number
of matching formal parameters.

106 VS Pascal Language Reference

In VS Pascal, formal parameter sections are ignored. Parameter lists need only
have the same number of formal parameters, and formal parameters in
corresponding positions must match. In VS Pascal, formal parameters match when
both are:

* Value parameters with the same type

* VAR parameters with the same type

* CONST parameters with the same type

® Procedural parameters with congruous parameter lists

® Functional parameters with congruous parameter lists an the same result type.

Routines That Can Be Passed as Parameters

Standard Pascal does not allow any predefined routines to be passed as
parameters.

VS Pascal allows some predefined routines to be passed as parameters to another
routine. These routines are listed in Figure 112,

ARCTAN cos HALT PARMS SIN TRACE
CLOCK DATETIME LN RANDOM SQRT
COoLS EXP LTOKEN RETCODE TOKEN

Figure 112. Predefined Routines That Can Be Passed as Parameters

VS Pascal allows other routines (which are not predefined) to be passed as
parameters to another routine. These routines are listed in Figure 113.

CMS ONERROR
ITOHS PICTURE

Figure 113. Routines That Can Be Passed as Parameters

Note to Figure 113: ITOHS and PICTURE can be passed as parameters only when
the %INCLUDE CONVERT form is not used, and a type name for STRING(x) is
defined.

Restriction: GENERIC procedures and FORTRAN functions or subroutines cannot
be passed as parameters to a VS Pascal routine.

Function Results

A value is returned from a function by assigning the value to the name of the
function before leaving the function. This value is inserted within the expression at
the point of the call. The value must be assignment compatible with the declared
function type.

If the function name is used on the right side of an assignment, it will be

interpreted as a recursive call. Figure 114 on page 108 shows an example of a
recursive function.

Chapter 8. Routines 107

FUNCTION FACTORIAL (X: INTEGER): INTEGER;

BEGIN

IF X <= 1 THEN

FACTORIAL
ELSE

FACTORTIAL :

END;

=1

X * FACTORIAL(X-1)

Figure 114. Example of a Recursive Function

Standard Pascal permits a function to return only a scalar or pointer value. In VS
Pascal, a function can return any type except a file or any type containing a file.
This means that you can write a VS Pascal function that returns a record structure
as its result (you might wish to do this for implementing a complex arithmetic
library). A function can also return a string. However, you must specify the
maximum length of the string to be returned.

Figure 115 shows an example of a function returning a record.

TYPE
COMPLEX = RECORD
R,T : REAL
END;

FUNCTION CADD (CONST A,B : COMPLEX) : COMPLEX;

VAR

€ : COMPLEX;

BEGIN

C.R := A.R + B.R;
A1 + B.I

Figure 115. Example of a Function Returning a Record

Routine Directives

Routine directives allow you to declare routines that have special properties.
There are three categories of routine directive:

108

ldentified

Unidentified

Contextual

VS Pascal Language Reference

There must be a routine identification specifying the routine's
block within the immediately enclosing routine.

The FORWARD, MAIN, and REENTRANT routine directives are
identified.

There must not be a routine identification specifying the routine's
block within the immediately enclosing routine.

The FORTRAN and GENERIC routine directives are unidentified.

The routine assumes different properties depending on whether
the routine identification specifying the routine's block is within
the immediately enclosing routine.

The EXTERNAL routine directive is contextual.

EXTERNAL Routine Directive

EXTERNAL identifies a procedure or function that can be invoked from outside of

its lexical scope (such as another unit). The EXTERNAL routine directive is used to

specify the heading of such a routine directive. While many units can call an

EXTERNAL routine, only one unit will actually contain the body of the routine. The

formal parameters defined in the EXTERNAL routine declaration must match those

in the unit where the routine is defined. An EXTERNAL routine declaration can

refer to a VS Pascal routine located later in the same unit, or located in another
unit, or it can refer to code produced by other means (such as assembler code).

If an EXTERNAL routine is identified, the body of the routine must be declared in

the outermost nesting level of a unit; that is, it must not be nested in another
routine. Such a routine is an entry point in the unit.

Figure 116 illustrates two units (a program unit and a segment unit) that share a

single EXTERNAL routine. Both units can invoke the routine, but only one unit

contains the definition of the routine.

PROGRAM TEST;

FUNCTION SQUARE(X : REAL) : REAL;

EXTERNAL;
BEGIN

WRITELN(SQUARE(44));
END .

SEGMENT S;

FUNCTION SQUARE(X : REAL) : REAL;

EXTERNAL,
~— FUNCTION SQUARE;
BEGIN
SQUARE := X * X;
END: .

Figure 116. Example of the EXTERNAL Directive

See VS Pascal Application Programming Guide 1

EXTERNAL routine directive.

FORTRAN Routine Directive

FORTRAN, like EXTERNAL, identifies a routlnev
In addition, it specifies that the routi
the conventions of FOHTRANT !
ou must obey the restrictions listed

compiled.
Therefore, you must use
requirements of FORTRAN, ¥

Restrictions:

« All paramet
parameter by CON
FORTRAN routine

s Ifthe FORTRAN routin l
includes real and shortred Y

ines cannot be pa

¢ Rout
. Multidimenslonal arraysMn
An element ot an array Al

RorC
ers can be only VA
STtoa FORTRAN r

does not alter the

eisa function, itcan ret

ssed to a FOHTRAN routine.

are not remapp

m]in pascal

ne is not written in pascal.

below.

ONST parameters. If you pass a
outine, you must ensur
ontents of the parameter.

urn only @ scalar result

ed 10 conf
will be element Alm,n

Chapter 8. Rou

or more information on the

defined outside the unit being

In order to meet the

e that the

(this

fnes

FORTRAN indexing-
e) in FORTRAN.

109

i Restrictions:
* Only procedures can be dectared as GENEP'”

* Pass-by-value parameters canpr* -

¢ A GENERIC routine c~-
? (GENERIC rot
of routi=

REENTR.

112 ¢ Pase e " nou““” of ﬁﬂ : _—
% Langug ine g alle
ge Refe,-e, Rou‘ T’]pe g {1.5:’{]5 d ll o
Name Aol Jpapuit™

1 =
o= E'Jw[,i-}rill”ﬂ - sl

EXTERNAL Routine Directive

EXTERNAL identifies a procedure or function that can be invoked from outside of
its lexical scope (such as another unit). The EXTERNAL routine directive is used to
specify the heading of such a routine directive. While many units can call an
EXTERNAL routine, only one unit will actually contain the body of the routine. The
formal parameters detfined in the EXTERNAL routine declaration must match those
in the unit where the routine is defined. An EXTERNAL routine declaration can
refer to a VS Pascal routine located later in the same unit, or located in another
unit, or it can refer to code produced by other means (such as assembler code).

If an EXTERNAL routine is identified, the body of the routine must be declared in
the outermost nesting level of a unit; that is, it must not be nested in another
routine. Such a routine is an entry point in the unit.

Figure 116 illustrates two units (a program unit and a segment unit) that share a
single EXTERNAL routine. Both units can invoke the routine, but only one unit
cantains the definition of the routine.

PROGRAM TEST;
FUNCTION SQUARE(X : REAL} : REAL;

EXTERNAL;
BEGIN
WRITELN(SQUARE(44));
END .
SEGMENT S
FUNCTION SQUARE(X : REAL) : REAL;
EXTERNAL;
FUNCTION SQUARE;
BEGIN
SQUARE := X * X;
END; .

Figure 116. Example of the EXTERNAL Directive

See VS Pascal Application Programming Guide for more information on the
EXTERNAL routine directive.

FORTRAN Routine Directive

FORTRAN, like EXTERNAL, identifies a routine defined outside the unit being
compiled. In addition, it specifies that the routine is not written in Pascal.
Therefore, you must use the conventions of FORTRAN. In order to meet the
requirements of FORTRAN, you must obey the restrictions |isted below.

Resirictions:

* All parameters can be only VAR or CONST parameters. If you pass a
parameter by CONST to a FORTRAN routine, you must ensure that the
FORTRAN routine does not alter the contents of the parameter.

e |f the FORTRAN routine is a function, it can return only a scalar result (this
includes real and shortreal).

* Routines cannot be passed to a FORTRAN routine.

* Multidimensional arrays are not remapped to conform to FORTRAN indexing.
An element of an array A[n,m] in Pascal will be element A(m,n) in FORTRAN.

Chapter 8. Routines 109

* The body of a FORTRAN routine cannot be written in Pascal.

See VS Pascal Application Programming Guide for more information on the
FORTRAN routine directive.

FORWARD Routine Directive
FORWARD identifies a routine whose head is being declared in advance of its
body. The declaration consists only of the routine heading, followed by the
FORWARD routine directive. To declare the routine’'s body, once again declare the
routine heading, but omit the formal parameter list. f the routine being declared is
a function, you must also omit the function resuit type.

Declaring a routine FORWARD lets you call that routine before actually defining it.
This is particularly useful when two routines are mutually recursive and reside at
the same nesting level; one of the two must be declared FORWARD.

GENERIC Routine Directive

\

\ GENERIC identifies routines from other software products, such as IMS, that can be
l called by VS Pascal. This allows calls to routines that allow multiple parameter list
| formats. This includes routines that require different data types depending on the

| function being performed and routines that allow varying numbers of parameters.

Like FORTRAN and EXTERNAL, GENERIC identifies a routine defined outside the
| unit being compiled. The routine declaration cannot contain formal parameters. A
i GENERIC routine's parameters are "declared” only when the routine is called.
Therefore,

| PROCEDURE P; GENERIC;
! is a legal declaration, but
PROCEDURE Q(VAR I : INTEGER); GENERIC;

is not because the declaration contains a formal parameter list.

To pass an actual parameter to a GENERIC procedure, specify:

1. The parameter-passing mechanism in the form of a formal parameter list
2. The actual parameter to be passed.

| Figure 117 on page 111 shows how a GENERIC routine is declared and then called
| within the body of a program. Note that the call to the GENERIC procedure P

| contains the parameter-passing mechanism, followed by the actual parameter to

| be passed.

110 VS Pascal Language Reference

PROGRAM POLYMORPHIC;

TYPE
FUNCTIONS = (DEVICE QUERY, PAINT SCREEN, DRAW_LINE, DRAW POLY):
COLORS = (RED, GREEN, BLUE, YELLOW, ORANGE, PURPLE);

VAR
ROWS, COLS : INTEGER;

PROCEDURE DRAW; GENERIC;
BEGIN
DRAW(CONST DEVICE_QUERY, VAR ROWS, VAR COLS);

DRAW(CONST PAINT_SCREEN, CONST BLUE);
END.

Figure 117. Example of the GENERIC Routine Directive

Figure 118 shows an example of the coding required before development of the
GENERIC routine directive. The same function is obtained by declaring the
procedure being called with different parameter lists in two different routines.

PROGRAM POLYMORPHIC:

TYPE
FUNCTIONS = (DEVICE_QUERY, PAINT_SCREEN, DRAW_LINE, DRAW_POLY);
COLORS = (RED, GREEN, BLUE, YELLOW, ORANGE, PURPLE);

VAR
ROWS, COLS : INTEGER;

PROCEDURE DEV_QUERY(VAR ROWS, COLS : INTEGER);
PROCEDURE DRAW(CONST FUNC : FUNCTIONS;
VAR ROWS, COLS : INTEGER);
FORTRAN;
BEGIN
DRAW(DEVICE_QUERY, ROWS, COLS);
END:

PROCEDURE PAINT_SCR(CONST COLOR : COLORS);
PROCEDURE DRAW(CONST FUNC : FUNCTIONS:
CONST COLOR : COLORS):
FORTRAN;
BEGIN
DRAW (PAINT _SCREEN, COLOR);
END;

BEGIN
DEV_QUERY (ROWS, COLS);

PAINT SCR(BLUE);
END.

Figure 118. Example of Coding Before Development of the GENERIC Routine Directive

Chapter 8. Routines 111

Restrictions:
¢ Only procedures can be declared as GENERIC.
¢ Pass-by-value parameters cannot be passed to GENERIC routines.

¢ A GENERIC routine cannot be passed as a parameter to another routine.
(GENERIC routines do not have fixed-format parameter lists, which is required
of routines passed to other routines.)

¢ The body of a GENERIC routine cannot be written in Pascal.

See VS Pascal Application Programming Guide for more information on the
GENERIC routine directive.

MAIN Routine Directive
MAIN identifies a Pascal procedure that can be invoked as if it were a main
program. It is sometimes desirable to invoke a VS Pascal procedure from a
non-Pascal routine, such as FORTRAN or assembler language. In this case, itis
necessary for certain initializing operations to be performed before actually
executing the Pascal procedure. The MAIN directive specifies that the appropriate
actions are to be performed.

Restrictions:
¢ The execution of a MAIN procedure cannot be reentrant.
* Only procedures can have the MAIN directive.
* A MAIN procedure's declaration and body must be in the same unit.

¢ The MAIN directive can be applied only to procedures in the outermost nesting
level of a unit.

* Because the MAIN directive simulates a program invocation, a MAIN
procedure must not reference a unit's global variables. Unpredictable results
can occur if a MAIN procedure references a unit's global variables.

See VS Pascal Application Programming Guide for more information on the MAIN
routine directive.

REENTRANT Routine Directive
REENTRANT identifies a Pascal procedure that can be invoked as if it were a main
program, like a MAIN procedure. In addition, invocations of these procedures will
be reentrant.

In order to achieve a reentrant invocation the first parameter of a procedure
defined with the REENTRANT directive must be an INTEGER passed by VAR.
Before the first call from a non-VS Pascal program, you must initialize this variable
to zero. On subsequent calls, you must pass the same variable back unaltered (VS
Pascal sets the variable on the first call and needs that value on the subsequent
invocations). You need not call the same procedure each time; you can call
different procedures as long as you continue to pass this variable on each call,

112 vS Pascal Language Reference

Predefined Routines

Reslrictions:
= Only procedures can have the REENTRANT directive,
* A REENTRANT procedure's declaration and body must be in the same unit.

* The REENTRANT directive can be applied only to procedures in the outermost
nesting level of a unit.

* Because the REENTRANT directive simulates a program invocation, a
| REENTRANT procedure must not reference a unit's global variables.
| Unpredictable results can occur if a REENTRANT procedure references a unit's
[global variables.

Note: All VS Pascal internal procedures and tunctions are reentrant. The
REENTRANT directive identifies a procedure that is reentrant and that can be
invoked from outside the VS Pascal run-time environment.

See VS Pascal Application Programming Guide for more information on the
REENTRANT routine directive.

Predefined Routines

VS Pascal provides a wide range of predefined functions and procedures. The
following sections describe these routines in detail.

Figure 119 through Figure 128 present all predefined routines by function, with a
briet explanation of each. The descriptions of all functions follow in alphabetic

order, starting on page 118.

Conversion Routines

Routine Routine See
Name Type Description Page
CHR Function Converts an integer to a character value 119
FLOAT Function Converts an integer to a floating-point value 126
! GSTR Function Converts a GCHAR or DBCS fixed string to a 126
! GSTRING
| GTOSTR Funetion Converts a GSTRING to a STRING 127
ORD Function Converts an ordinal expression or pointer to an 150
integer
ROUND Function Converts a floating-point number to an integer by 165
rounding
STOGSTR Function Converts a STRING to a GSTRING 168
STR Function Converts a CHAR or lixed siring o a STRING 169
TRUNC Function Converts a floating-point number to an integer by 174
truncating

Figure 119. Summary of Conversion Routines

Chapter 8. Routines 113

Predefined Routines

Data Inquiry Routines

Routine Routine See
Name Type Description Page
ADDR Function Returns the address of a variable 118
HBOUND Function Returns the upper bound of a fixed string 128
%HEST Function Returns the maximum value of an ordinal type 129
LBOUND Function Returns the lower bound of a fixed string 130
LOWEST Function Returns the minimum value of an ordinal type 132
MAX Function Returns the maximum value of a list of scalars 137
MIN Function Returns the minimum value of a list of scalars 139
OoDD Function Returns TRUE if the integer argument is odd 149
PRED Function Obtains the predecessor of an ordinal type 152
SIZEOF Function Returns the storage size of a variable or type 167
SUCC Function Obtains the successor of an ordinal type 171

Figure 120. Summary of Data Inquiry Routines

Data Movement Routines

Routine Routine See
Name Type Description Page
PACK Procedure Copies an array to a packed array 150
UNPACK Procedure Copies a packed array to an array 175

Figure 121. Summary of Data Movement Routines

General Routines

Routine Routine See
Name Type Description Page
TRACE Procedure Writes the routine return stack 173
HALT Procedure Stops program execution 128

Figure 122. Summary of General Routines

Input/Output Routines

Routine Routine Record See

Name Type or TEXT Description Page

CLOSE Procedure Both Closes afile 119

CoLs Function TEXT Returns the current column of the output 119
line

EOF Function Both Tests for end-of-file condition 124

Figure 123 (Part 1 of 2). Summary of Input/Output Routines

114 vS Pascal Language Reference

Predefined Routines

Routine Routine Record See
Name Type or TEXT Description Page
EOLN Function TEXT Tests for end-of-line.condition 125
GET Procedure Both Moves the file pointer to the next element 126

of the input file

PAGE Procedure TEXT Skips to the top of the next page 151

PDSIN Procedure Both Opens a member of a partitioned data set 151
for input

PDSOUT Procedure Both Opens a member of a partitioned data set 152
for output

PUT Procedure Both Advances the file pointer to the next 163
element of the output file

READ Procedure Both Reads data from a file 154

155

READLN Procedure TEXT Reads data from a file and advances the 155
file pointer to the next line

RESET Procedure Both Opens a file for input 163

REWRITE Procedure Both Opens a file for output 163

SEEK Procedure Record Positions an open file at a specific record 166

TERMIN Procedure TEXT Opens a file for input from the terminal 171

TERMOUT Procedure TEXT Opens a file for output to the terminal 171

UPDATE Procedure Record Opens a file for input and output 176

WRITE Procedure Both Writes data to a file 177

178
WRITELN Procedure TEXT Writes data to a file and advances the file 178

pointer to the next line

Figure 123 (Part 2 of 2). Summary of Input/Output Routines

Mathematical Routines

Routine Routine See
Name Type Description Page
ABS Function Computes the absolute value of a number 118
ARCTAN Function Returns the arctangent of the real argument 118
CcOSs Function Returns the cosine of the real argument 121
EXP Function Returns the base of the natural log (e) raised to the 125
power of the real argument
LN Function Returns the natural logarithm of the real argument 132
RANDOM Function Returns a pseudo-random number 154
SIN Function Returns the sine of the real argument 167
SQR Function Returns the square of a number 167

Figure 124 (Part1 of 2). Summary of Mathematical Routines

Chapter 8. Routines 115

Predefined Routines

Routine Routine See
Name Type Description Page
SQRT Function Returns the square root of the real argument 168
Figure 124 (Part2 of 2). Summary of Mathematical Routines

Storage Management Routines

Routine Routine See
Name Type Description Page
DISPOSE Procedure Deallocates a dynamic variable 123
DISPOSEHEAP Procedure Frees a previously allocated heap 123
MARK Procedure Marks the beginning of a new subheap 136
NEW Procedure Allocates a dynamic variable from the current heap 143
NEWHEAP Procedure Creates a new heap 146
QUERYHEAP Procedure Identifies the current heap 153
RELEASE Procedure Deallocates one or more subheaps 162
USEHEAP Procedure Makes another heap the current heap 177
Figure 125. Summary of Storage Management Routines

String Routines for SBCS and DBCS Strings

Routine Routine See
Name Type Description Page
COMPRESS Function Replaces multiple blanks in a string with one blank 120
DELETE Function Returns a string with a portion removed 122
INDEX Function Finds the first occurrence of one string in another 130
LENGTH Function Returns the current length of a string 13
LPAD Procedure Pads or truncates a string on the left 133
L?OKEN Procedure Extracts tokens from a string 134
LTRIM Function Returns a string with leading blanks removed 135
MAXLENGTH Function Returns the maximum length of a string 137
READSTR Procedure Converts a string to values assigned to variables 160
RINDEX Function Finds the last occurrence of one string in another 164—
RPAD Procedure Pads or truncates a string on the right 165
SUBSTR Function Heturns a portion of a string 170
TOKEN Procedure Extracts tokens from a string 172
TRIM Function Returns a string with trailing blanks removed 174
WRITESTR Procedure Converts a series of expressions into a string 184

Figure 126. Summary of String Routines for SBCS and DBCS Strings

Note to Figure 126: These routines manipulate both SBCS and mixed strings in a
byte-oriented manner. These routines manipulate DBCS strings in a double-byte
oriented manner.

116 VS Pascal Language Reference

Predefined Routines

String Routines for Mixed Strings

Routine Routine See
Name Type Description Page
MCOMPRESS Function Replaces sequences of SBCS blanks with a single 138
SBCS blank, and replaces sequences of DBCS
blanks with a single DBCS blank
MDELETE Function Returns a mixed string with a portion removed 138
MINDEX Function Finds the first occurrence of ene mixed string in 140
another
MLENGTH Function Returns the length of a mixed string 140
MLTRIM Function Returns a mixed string with leading SBCS and DBCS 141
blanks removed
MRINDEX Function Finds the last occurrence of one mixed string in 141
another
MSUBSTR Function Returns a specific portion of a mixed string 142
MTRIM Function Returns a mixed string with trailing SBCS and DBCS 143

blanks removed

Figure 127. Summary of String Routines for Mixed Strings

Note to Figure 127: These routines manipulate mixed strings in a
character-oriented manner. Some of these routines return canonical mixed strings
(strings with adjacent shift-out/shift-in pairs and adjacent shift-in/shift-out pairs

removed).

System Access Roulines

Routine Routine See
Name Type Description Page
CLOCK Function Returns the number of microseconds of execution 119
DATETIME Procedure Returns the current date and time of day 121
PARMS Function Returns the system dependent invocation 1561
parameters

RETCODE Procedure Sets the system dependent return code 163
Figure 128. Summary cf System Access Routines

Chapter 8. Routines 117

ARCTAN Function

ABS Function

ADDR Function

ABS returns the absolute value of its parameter, which can be any numeric type.

Figure 129 shows the definition of the ABS function.

FUNCTION ABS{ i : INTEGER)
: INTEGER;

FUNCTION ABS(r : REAL)
: REAL;

FUNCTION ABS(s : SHORTREAL)
: SHORTREAL;

Where Represents

i An integer expression
r A real expression

s A shortreal expression

Figure 129. Definition of the ABS Function

ADDR returns the location in storage of a given variable. Variables can be
qualified variables, such as dereferenced pointers, subscripted variables, and
fields of records.

Figure 130 shows the definition of the ADDR function.

FUNCTION ADOR(v : any-type)
: INTEGER:

Where Represents
v An identifier declared as a variable

Figure 130. Definition of the ADDR Function

ARCTAN Function

ARCTAN computes the arctangent of a floating-point number. The result is
expressed in radians.

Figure 131 shows the definition of the ARCTAN function.

FUNCTION ARCTAN(x : REAL)
: REAL;

Where Represents
X An expression that evaluates to a real value

Figure 131. Definition of the ARCTAN Function

Real functions will accept integer and shortreal arguments. See "Type
Compatibility” on page 46 for more information.

118 vS Pascal Language Reference

CHR Function

CLOCK Function

COLS Function

CHR returns the EBCDIC character corresponding to a given integer value. (Think
of it as the inverse of ORD for characters.) Thus, ORD(CHR(l))=1if | is in the
subrange:

0..0RD{MAXCHAR)
If the operand is outside this range when checking is enabled, VS Pascal issues a
run-time error message. If the operand is outside this range when checking is

disabled, VS Pascal can act unpredictably.

Figure 132 shows the definition of the CHR function.

FUNCTION CHR(i : INTEGER)
: CHAR;

Where Represents
i An integer expression that is to be interpreted as a character

Figure 132. Definition of the CHR Function

CLOCK returns the number of microseconds the program has been running.
Figure 133 shows the definition of the CLOCK function.

FUNCTION CLOCK : INTEGER;

Figure 133. Definition of the CLOCK Function

Note: In an MVS system, the time is “task” time; in a CMS system, the time is
“CPU virtual" time.

CLOSE Procedure

COLS Function

CLOSE closes a specific file. You must reopen the file before you can use it again.
Figure 134 shows the definition of the CLOSE procedure.

PROCEDURE CLOSE(VAR f : filetype);

Where Represenis
f A file variable

Figure 134. Definition of the GLOSE Procedure

COLS returns the current column number (position of the next character to be
written) on the designated output file.

Figure 135 on page 120 shows the definition of the COLS function. COLS has no
file name default.

Chapter 8. Routines 119

COMPRESS Function

FUNCTION COLS(CONST f : TEXT) : INTEGER:

Where Represents
f A text file opened for output

Figure 135. Definition of the COLS Function

Note: You can force the output to a specific column with:

IF TAB > COLS(F) THEN
WRITE(F,' ':TAB-COLS(F));

COMPRESS Function

COMPRESS replaces sequences of SBCS blanks in an SBCS string with a single
SBCS blank. and sequences of DBCS blanks in a DBCS string with a single DBCS
blank.

Figure 136 shows the definition of the COMPRESS function.

FUNCTION COMPRESS(CONST source : STRING)
: STRING;

FUNCTION COMPRESS(CONST source : GSTRING)
: GSTRING;

Where Represents
source A string expression to be compressed

Figure 136. Definition of the COMPRESS Function

Note: Although COMPRESS is better suited to pure SBCS or DBCS strings, it can
be used for mixed strings. COMPRESS manipulates mixed strings in a
byte-oriented manner. However, MCOMPRESS is usually used for mixed strings.

Figure 137 shows examples of the COMPRESS function.

COMPRESS('A B CD ') (* yields 'A B CD ')
COMPRESS('<.A.b> B CD ') (* yields '<.Ab> B CD ' *)
COMPRESS('<.b.b.A.b.b>'G) (* yields '<.b.A.b>'G *)

Figure 137. Examples of the COMPRESS Function

120 Vs Pascal Language Reference

COS Function

DATETIME Procedure

COS computes the cosine of a floating-point number representing an angle in
radians. Figure 138 shows the definition of the COS function.

FUNCTION COS(x : REAL)
: REAL;

Where Represents
X An expression that evaluates to a real value

Figure 138. Definition of the COS Function

Real functions will accept integer and shortreal arguments. See "Type
Compatibility” on page 46 for more information.

DATETIME Procedure

DATETIME returns the current date and time of day as two ALFA arrays.
Figure 139 shows the definition of the DATETIME procedure.

PROCEDURE DATETIME(VAR date,time : ALFA };

Where Represents
date The returned date
time The returned time

Figure 139. Definition of the DATETIME Procedure

Figure 140 shows an example of the date and time format.

mm/dd/yy
hh:mi:ss
Where Represents
mm The month expressed as a two-digit value
dd The day of the month
vy The last two digits of the year
hh The hour of the day expressed in a 24-hour clock
mi The minute of the hour
8§ The second of the minute

Figure 140. Example of the Date and Time Format

Note to Figure 140: At installation time, you can choose an alternate version of
DATETIME that returns the date in this format:

dd/mm/yy

For information on how to install this alternative format, see VS Pascal Installation
and Customization for MVS, or VS Pascal Installation and Customization for VM.

Chapter 8. Routines 121

DELETE Function

DELETE Function

122

DELETE returns a string with a specified portion removed.

Figure 141 shows the definition of the DELETE function.

FUNCTION DELETE(COMNST scurce
start
len

FUNCTION DELETE(CONST source

start
len

Where Represents

source A string expression from which a portion will be deleted.
start An integer expression thal specifies the starting position within the source where
characters are to be deleted. The first character of the source string is at position

1-

len An optional Integer expression that specifies the number of characters to be
deleted. If len is omitted, it defaults to LENGTH(s) - start + 1; in other words, all
remaining characters are deleted. (The string is truncated beginning at position

start.)

: STRING;
: INTEGER;
. INTEGER)

: GSTRING;
: INTEGER;
+ INTEGER)

: STRING:

: GSTRING;

Figure 141. Definition of the DELETE Function

Note: Although DELETE is better suited to pure SBCS or pure DBCS strings, it can
be used for mixed strings. DELETE manipulates the strings in a byte-oriented
manner. However, MDELETE is usually used for mixed strings.

Usage: To avoid an error message at run time:

e start must be greater than 0

* [en must be greater than or equal to 0; if len is 0, the whole string is returned
s start + len - 1 must be less than or equal to the current length of the string.

Figure 142 shows an example of the DELETE function.

DELETE('ABCDE',2,3)
DELETE('ABCDE',3)
DELETE('ABCDE",3,1)
DELETE('ABCDE',1)
DELETE('ABCDE',6,0)
DELETE('ABCDE',2,5)

DELETE('<.A.B>CDE',2,2)
DELETE('AB=<.C.D.E>',3)

DELETE('<.A.B.C.D.E>'G,2,3)

‘k
(*
(*
{\k
(w
{k

(*
"w

(i{

yields
yields
yields
yields
yields
yields

yields
yields

yields

IA.EI i-}
'ABI t)
' ABDE' *)
1 «J
'ABCOE" *)
an error *)
'<,B>CDE' *)
IABI ’-)
<, AL E>'G *)

Figure 142. Example of the DELETE Function

VS Pascal Language Reference

e

v

-’

DISPOSEHEAP Procedure

DISPOSE Procedure

DISPOSE frees storage allocated for a single dynamic variable and, if the pointer is
a variable, sets the pointer to NIL. DISPOSE always returns storage to the heap
from which it was allocated. Figure 143 shows the definition of the DISPOSE
procedure.

PROCEDURE DISPOSE(pl : pointer);
PROCEDURE DISPOSE{p2 : pointer: tl1,t2...: ordinal-type);

PROCEDURE DISPOSE(p3 : STRINGPTR;
len : INTEGER);

Where HRepresents

p1 A pointer expression returned from a cail to NEW

p2 A pointer expression to a record returned from a call to NEW
t1, t2 Ordinal constants representing tag fields

p3 A string pointer expression returned from a call to NEW

len An expression with an integer value

Figure 143. Definition of the DISPOSE Procedure

DISPOSE frees only the storage for a single dynamic variable; it does not
recursively free any storage referenced by the dynamic variable (or any fieid of
that dynamic variable). Thus, when you DISPOSE of an element of a linked list,
you free storage only for that single element. If you intend to free storage for the
entire list, you must DISPOSE every element in the list. It is your responsibility to
ensure that a freed dynamic variable is not referenced by other pointers.

Note: Itis an error to pass to DISPOSE a pointer that was not allocated by a call to
NEW.

See "DISPOSEHEAP Procedure” for informaticn on freeing an entire collection of
dynamic variables within a separate heap. See "RELEASE Procedure" on
page 162 for information on freeing an entire subheap.

See Figure 203 on page 148 to see how DISPOSE is used in conjunction with
NEWHEAP and DISPOSEHEAP.

DISPOSEHEAP Procedure
DISPOSEHEAP deallocates a heap created by the NEWHEAP routine.
DISPOSEHEAP returns all storage associated with the heap to either the VS Pascal
run-time environment or to the operating system, depending upon the DISP option
specified when the heap was created with NEWHEAP. Deallocating a heap with
DISPOSEHEAP frees all dynamic variables and subheaps contained within that
heap.

Figure 144 shows the definition of the DISPOSEHEAP procedure.

PROCEDURE DISPOSEHEAP(VAR p : pointer);

Where Represents
p A pointer returned from a call to NEWHEAP

Figure 144. Definition of the DISPOSEHEAP Procedure

Chapter 8. Routines 123

EOF Function

EOF Function

After you deallocate a heap with DISPOSEHEAP, the heap-id is set to NIL. If you
deallocate the current heap, a current heap no longer exists; an error will not be
returned.

Note: It is an error to pass to DISPOSEHEAP a pointer that was not allocated by a
call to NEWHEAP.

See Figure 203 on page 148 to see how DISPOSEHEAP is used in conjunction with
NEWHEAP, QUERYHEAP, and USEHEAP.

EOF tests a file for the end-of-file condition. EOF returns TRUE when the end-of-file
condition is true for the file; otherwise, it returns FALSE. The EOF condition occurs
on any attempt to read an input file past the last record element of the file. EOF
also returns TRUE when the file is open for output. Figure 145 shows the definition
of the EOF function.

FUNCTION EOF(f : filetype) : BOOLEAN;

Where Represents
f An optional file variable; the default is the predefined file INPUT

Figure 145. Definition of the EOF Function

Figure 146 shows an example of testing for end-of-file condition. All of the records
are read from SYSIN and written to SYSOUT.

TYPE
FREC = RECORD
A,B : INTEGER
END;
VAR
SYSIN,

SYSOUT: FILE OF FREC;

BEGIN
RESET(SYSIN);
REWRITE (SYSOUT) ;
WHILE NOT EOF(SYSIN) DO
BEGIN
SYSOUT@ := SYSIN@;
PUT(SYSOUT) ;
GET(SYSIN);
END;
END;

Figure 146. Example of Testing for End-of-File Condition

124 vs pPascal Language Reference

EOLN Function

EXP Function

EXP Function

EOLN tests a text file for the end-of-line condition. EOLN returns TRUE if the file is
positioned at an end-of-line; otherwise, it returns FALSE. Figure 147 shows the
definition of the EOLN function.

FUNCTION EOLN(f : TEXT)} : BOOLEAN;

Where Represents
f An optional file variable of type TEXT, the default is the predefined file INPUT

Figure 147. Definition of the EOLN Function

If EOLN is TRUE, the file pointer will point to a blank. Although the blank is notin
the file, it appears as if it were. Usually, the extra blank will not affect your results,
but if the physical layout of the data is important, use EOLN with care.

Figure 148 shows an example of copying a text file. The file is copied from SYSIN
to SYSOUT.

VAR
SYSIN,
SYSOUT : TEXT;

BEGIN

RESET(SYSIN) ;

REWRITE (SYSOUT);

WHILE NOT EOF(SYSIN) DO

BEGIN
WHILE NOT EOLN(SYSIN) DO
BEGIN

SYSOUT@ := SYSING;
PUT(SYSOUT);
GET(SYSIN);

END;
WRITELN(SYSOUT);
READLN{SYSIN);

END;
END;

Figure 148. Example of Copying a Text File

EXP computes the value of the base of the natural logarithm, e, raised to the power
expressed by a floating-point number.

Figure 149 shows the definition of the EXP function.

FUNCTION EXP{ x : REAL)
: REAL;

Where Represents
X An expression that evaluates to a real value

Figure 149. Definition of the EXP Function

Chapter 8. Routines 125

GSTR Function

Real functions will accept integer and shortreal arguments. See “Type
Compatibility” on page 46 for more information.

FLOAT Function
FLOAT converts an integer value to a floating-point value. Use FLOAT when you
need to make this conversion explicit in the program. VS Pascal implicitly converis
an integer to a real value when one operand of an arithmetic or relational cperator
is a real type and the other is an integer type. Conversion is also done on
parameter passing. See "Type Compatibility” on page 46 for more information.

Figure 150 shows the definition of the FLOAT function.

FUNCTION FLOAT(i : INTEGER)
¢ REAL;

Where Represents
i An expression that has an integer value

Figure 150. Definition of the FLOAT Function

GET Procedure
GET positions the file pointer of a file (previously opened for input) to the next
component in the file. For example, if the file is defined as a FILE OF INTEGER,
each GET returns the next INTEGER. A GET on a file of type TEXT returns a single
character. Figure 151 shows the definition of the GET procedure.

PROCEDURE GET(f : filetype);

Where Represents
f A file variable

Figure 151. Definition of the GET Procedure

Restriction: GET cannot read pure DBCS data from a text file.

GSTR Function
GSTR converts a GCHAR or a DBCS fixed string to a GSTRING. GSTR can also be
applied to a GSTRING, but no operation is performed. Figure 152 on page 127
shows the definition of the GSTR function.

126 VS Pascal Language Reference

GTOSTR Function

FUNCTION GSTR({ x : GCHAR)
: GSTRING;

FUNCTION GSTR{ x : PACKED ARRAY[1..n] OF GCHAR)
: GSTRING;

FUNCTION GSTR{ x : GSTRING)
¢ GSTRING;

Where Represents
X A DBCS character, DBCS fixed string, or DBCS string expression

Figure 152. Definition of the GSTR Function

Figure 153 shows an example of the GSTR function.

VAR
GC : GCHAR;
GA : PACKED ARRAY[1..4] OF GCHAR;
G4 : GSTRING(4);

BEGIN
GC := '<.A>'G: (* .A is stored in GC ¥)
G4 := GSTR(GC); (* .A is stored in G4 *)
GA := '<.A.B>'G: (* .A.B is stored in GA *)
G4 := GSTR(GA); (* .A.B is stored in G4 *)
END;

Figure 153. Example of the GSTR Functlion

GTOSTR Function
GTOSTR converts a GSTRING to a STRING, adding a shift-out character at the
beginning of the STRING and a shift-in character at the end of the STRING.
Figure 154 shows the definition of the GTOSTR function.

FUNCTION GTOSTR(x : GSTRING)
: STRING;

Where Represenis
X A DBCS string expression

Figure 154. Definition of the GTOSTR Function

Figure 155 on page 128 shows an example of the GTOSTR function.

Chapter 8. Routines 127

HBOUND Function

VAR
G : GSTRING(4);
S : STRING(10);

BEGIN
G :='<,A.B>'G; (* .A.B is stored in G *)
S := GTOSTR(G); (* <.A.B> is stored in § *)
END;

Figure 155. Example of the GTOSTR Function

HALT Procedure
HALT stops execution of a VS Pascal program. Consider it a return from the main
program. Figure 156 shows the definition of the HALT procedure.

PROCEDURE HALT;

Figure 156. Definition of the HALT Procedure

HBOUND Function
HBOUND returns the upper bound of an array’s index. You can specify the array in
two ways:

* As an identifier declared as an array via the type construct
* As avariable that is of type ARRAY.

The type of the value returned is the same as the type of the index. The second
parameter defines the dimension of the array for which the upper bound is
returned.

HBOUND also works on SPACE types.

Figure 157 shows the definition of the HBOUND function.

FUNCTION HBOUND(a : array-type:
i : integer-const)
: ordinal-type;

Where Represents
a An identifier declared as an array type or variable
i An optional constant expression that has a positive integer value; the default is 1

Figure 157. Definition of the HBOUND Function

Figure 158 on page 129 shows an example of the HBOUND function.

128 vs Pascal Language Reference

o |

HIGHEST Function

TYPE
GRID = ARRAY[-10..10,-5..5] OF REAL;

VAR
A ¢ GRID;
B : ARRAY[1..100] OF
ARRAY[0..9] OF CHAR;

HBOUND (

A) (* IS 19%)
HBOUND (GRID) (* IS 10 *)
HBOUND(B, 2) (* IS & *)
HBOUND(B[1]) (= 18 g)

Figure 158, Example of the HBOUND Function

HIGHEST Function

HIGHEST returns the highest value that can be represented by the operand. The
operand can be a type identifier or a variable. If the operand is a type identifier,
HIGHEST returns the highest value that can be assigned to a variable of that type.
If the operand is a variable, HIGHEST returns the highest value that can be
assigned to that variable. Figure 159 shcws the definition of the HIGHEST function.

FUNCTION HIGHEST(s : ordinal-type)
¢ ordinal-type;

Where Hepresenis
s An identifier declared as an ordinal type or variable

Figure 159. Definition of the HIGHEST Function

Figure 160 shows an example of the HIGHEST function.

TYPE

DAYS = (SUN, MON, TUE, WED,
THU, FRI, SAT):

SMALL =0 .. 31;

VAR
I : INTEGER;
J 0 .. 255;
HIGHEST (DAYS) (* IS SAT *)
HIGHEST(BOOLEAN) (* IS TRUE *)
HIGHEST (SMALL) (* 1s 31)
HIGHEST(I) (* IS MAXINT *)
HIGHEST(J) (* 1S 255 *)

Figure 160. Example of the HIGHEST Function

Chapter 8. Routines 129

LBOUND Function

INDEX Function
INDEX returns the position of the first occurrence of the second string within the
first. If the second string does not exist in the first string, INDEX returns a zero. If
the second string is null, a 1 will always be returned.

Figure 161 shows the definition of the INDEX function.

FUNCTTION INDEX(CONST source : STRING:
CONST Tookup : STRING)
: 0..32767;

FUNCTION INDEX(CONST source : GSTRING;
CONST Tookup : GSTRING)
: 0..16382;

Where Represenls
source A string expression to which lookup is compared
lookup A string expression which will be compared to source

Figure 161, Definilion of the INDEX Function

Note: Although INDEX Is better suited to pure SBCS or pure DBCS strings, it can
be used for mixed strings. INDEX handles the strings in a byte-oriented manner.
However, MINDEX is usually used for mixed strings.

Figure 162 shows an example of the INDEX tunction.

VAR
INDEX ('ABCABCABC', 'BC') (* yields 2 *)
INDEX ('ABCABCABC','X") (* yields @ *)
INDEX('<.A.B>CABCABC', '<.A.B>C"') (* yields 1 *)
INDEX('<.A.B.C>'G, '<.B>G) (* yields 2 *)
Figure 162. Example of the INDEX Function
LBOUND Function
LBOUND returns the lower bound of an array's index. The array can be specified
in two ways:

¢ As an identifier declared as an array via the type construct
* As avariable that is of type ARRAY.

The type of the value returned is the same as the type of the index. The second
parameter defines the dimension of the array for which the lower bound is
returned.

LBOUND also works on SPACE types.

Figure 163 on page 131 shows the definition of the LBOUND function.

130 vs Pascal Language Reference

LENGTH Function

0 FUNCTION LBOUND(& : array-type;
i : integer-const)
: ordinal-type;

Where Represents
a An identifier declared as an array type or variable
i An optional constant expression that has a positive integer value; the default is 1

Figure 163. Definition of the LBOUND Function

Figure 164 shows an example of the LBOUND function.

TYPE
GRID = ARRAY[-10..10,-5..5] OF REAL;
VAR

A : GRID;
B : ARRAY[1..100 1 OF

ARRAY[0..9] OF CHAR;

LBOUNO(A) (* IS -10 *)
LBOUND(GRID) (* IS -10 *)
LBOUND(B, 2) (*150 *)
LBouND(B[1]) (*150 *)
o Figure 164. Example of the LBOUND Function

LENGTH Function

LENGTH returns the current length of a specified string. For SBCS strings, the
| value will be in the range 0 to 32767. For DBCS strings, the value will be in the
l range of 0 to 16382 characters.

Figure 165 shows the detinition of the LENGTH function.

FUNCTION LENGTH(s : STRING)

:8..32767;
| FUNCTION LENGTH(s : GSTRING)
| : 0..16382;
Where Represenis
s An expression with a string value

Figure 165. Definition of the LENGTH Function
| Note: Although LENGTH is better suited to pure SBCS or pure DBCS strings, it can

| be used for mixed strings. LENGTH handles the strings in a byte-oriented manner.
! However, MLENGTH is usually used for mixed strings.

Chapter 8. Routines 131

LOWEST Function

Figure 166 shows examples of the LENGTH function.

LENGTH('ABCD') (* yields 4 *)
LENGTH('<.A.B.C.D>'G) (* yields 4 *)

Figure 166. Examples of the LENGTH Function

LN Function
LN computes the natural logarithm of a floating-point number. Figure 167 shows
the definition of the LN function.

FUNCTION LN({ x : REAL)
: REAL;

Where Represents
X An expression that evaluates to a real value

Figure 167. Definition of the LN Function

Real functions will accept integer and shortreal arguments. See “Type
Compatibility” on page 46 for more information.

LOWEST Function
LOWEST returns the lowest value that can be represented by the operand. The
operand can be a type identifier or a variable. If the operand is a type identifier,
LOWEST returns the lowest value that can be assigned to a variable of that type. If
the operand is a variable, LOWEST returns the lowest value that can be assigned
to that variable. Figure 168 shows the definition of the LOWEST function.

FUNCTION LOWEST(s : ordinal-type)
: ordinal-type;

Where Represents
§ An identifier declared as an ordinal type or variable

Figure 168. Definition of the LOWEST Function

132 VS Pascal Language Reference

LPAD Procedure

Figure 169 shows an example of the LOWEST function.

TYPE
DAYS

(SUN, MON, TUE, WED,

THU, FRI, SAT);

| SMALL =0 .. 31;

VAR
I : INTEGER;
J 100 . 255%
‘ LOWEST (DAYS) (* IS SUN)
LOWEST (BOOLEAN) (* IS FALSE *)
| LOWEST (SMALL) {* 15 © ¥)
LOWEST(T) (* IS MININT *)
LOWEST(J) (* IS @ *)
7
v Figure 169. Example of the LOWEST Function
|
LPAD Procedure
| LPAD pads or truncates a string on the left. LPAD manipulates pure SBCS or pure
' DBCS strings.

| Figure 170 shows the definition of the LPAD procedure.

PROCEDURE LPAD(VAR s : STRING;

1 : INTEGER;
¢ : CHAR);
| PROCEDURE LPAD{ VAR s : GSTRING;
| 1 & INTEGER:
| c : GCHAR);
Where Represents
‘ = s The string to be padded
c / The tinal length of s
| ¢ The pad character

Figure 170. Definition of the LPAD Procedure
Note to Figure 170: If LENGTH(s) is greater than /, then the characters are

truncated on the left. If LENGTH(s) is less than /, then s is extended with the
character c on the left.

Chapter 8. Routines 133

LTOKEN Procedure

Figure 171 shows examples of the LPAD procedure.

S 1= 'ABCDEF";
LPAD(S,: 19, '$"): {* yields '$$$SABCDEF' in S *)
S := 'ABCDEF';
LPAD(S, 5, '$'); (* yields 'BCDEF' in S x)

G := '<,A.B.C.D.E.F>'G;
LPAD(G, 18, '<.$>'G); (* yields '<.$.5.$.8.A.B.C.D.E.F>'G in G *)

G := '<.A.B.C.D.E.F>'G;
LPAD(G, 5, '<.$>'G); (* yields '<.B.C.D.E.F>'G in G *)

Figure 171. Examples of the LPAD Procedure

Note: Because LPAD is now a predefined routine, %INCLUDE STRING is no longer
required to invoke the LPAD function.

LTOKEN Procedure

Starting from a given position, LTOKEN scans a string for a token, and returns the
token in a string. Figure 172 shows the definition of the LTOKEN procedure.

PROCEDURE LTOKEN(VAR pos : INTEGER;
CONST source : STRING;
VAR result : STRING);

Where Represenls

pos An integer corresponding to the position in the source string where the search for
the token begins. The value of this integer gets updated to reflect the starting
position for subsequent calls to LTOKEN.

source A string expression that contains the data from which a token is to be extracted.

result The resulting token.

Figure 172. Definition of the LTOKEN Procedure

When LTOKEN scans a string, it ignores leading, multiple, and trailing blanks. If
there is no token in the string, the value of the first parameter pos is set to
LENGTH(source) + 1, and the result parameter is set to one blank. If the token is
longer than the result variable, an error will result.

134 vs Pascal Language Reference

P

LTRIM Function

LTRIM Function

A token can be any of the following:

* A VS Pascal identifier, any number of alphanumeric characters, “$", or an
underscore. The first letter must be alphabetic or a “$".

s A VS Pascal unsigned integer. (See “Types of Constants” on page 36.)
* The following special symbols:

+ = * / - @ ¢
= < < = S > !
: S £ 1 v 2 5
| & & || = -= #
{1 ¢ oy
e ¢ < >

* Any other single character not listed above,

Figure 173 shows an exampie of the LTOKEN procedure.

I :=2;
LTOKEN(I,', Token+', RESULT) (* I is set to 8 *)
(* RESULT is set to 'Token' *)

Figure 173. Example of the LTOKEN Procedure

Note to Figure 173: LTOKEN would return the same if | were set to 3; that is,
leading blanks are ignored.

LTRIM returns the specified parameter's value with all leading blanks removed.

Figure 174 shows the definition of the LTRIM function.

FUNCTION LTRIM{ CONST source : STRING)
. STRING;

FUNCTION LTRIM{ CONST source : GSTRING)
: GSTRING;

Where Represents
source A string expression

Figure 174. Definition of the LTRIM Function
Note: Although LTRIM is better suited to pure SBCS and pure DBCS strings, it can

be used for mixed strings. LTRIM manipulates mixed strings in a byte-oriented
manner. However, MLTRIM is usually used for mixed strings.

Chapter 8. Routines 135

MARK Procedure

Figure 175 shows examples of the LTRIM function.

MARK Procedure

LTRIM(' A B ') (* yields 'AB ¢ ¥)
LTRIM(" ‘) (* yields " *)
LTRIM(® <.A> B ') (* yields '<.A>B ' *)

LTRIM('<.b.b.b.A>'G) (* yields '<.A>'G)

Figure 175. Examples of the LTRIM Function

MARK creates a logical "bookmark” in the current heap, allowing all subsequently

allocated dynamic variables in that heap to be deallocated quickly with a single
call to the RELEASE procedure.

Figure 176 shows the definition of the MARK procedure.

PROCEDURE MARK(VAR p : pointer);

Where Represents
p A pointer to any type

Figure 176. Definition of the MARK Procedure

In this simple example,

MARK (X)
NEW(A)
NEW(B)

MARK (Y)
NEW(C)

the call RELEASE(Y) would deallocate only the dynamic variable pointed to by C.
The call RELEASE(X) would free the dynamic variables pointed to by A, B, and C.

The pointer passed to MARK is called a subheap pointer. It must not be used as
the base of a dynamic variable or unpredictable results can occur.

Figure 177 on page 137 shows an example of using MARK and RELEASE within a

single heap. See Figure 203 on page 148 for an example using multiple heaps.

136 VS Pascal Language Reference

MAX Function

MAXLENGTH Function

TYPE
MARKP = @INTEGER;
LINKP = BLINK;

LINK = RECORD
NAME: STRING(30);
NEXT: LINKP
END;
VAR
p : MARKP;
Q1,
q2,
Q3 : LINKP;
BEGIN

I‘:1ARK(P);

P;EW{QI):
NEW(Q2) ;
NEW(Q3);

RELEASE(P); (* Frees Q1, Q2 and Q3 *)

END;

Figure 177. Example of Using MARK and RELEASE within a Single Heap

MAX returns the maximum value of one or more expressions.

The parameters for MAX can be a mixture of integer, real, and shortreal
parameters. If the parameters are mixed and one of them is a real, a real value
will be returned. If the parameters are mixed and do not include a real, a shortreal
value will be returned. Otherwise, MAX will return a value compatible with the
types of the parameters. Figure 178 shows the definition of the MAX function.

FUNCTION MAX(expr,expr.. : scalar-type)
: scalar-type;

Where Represents
expr A scalar expression, including DBCS character, real, and shortreal

Figure 178. Definition of the MAX Function

MAXLENGTH Function

MAXLENGTH returns the maximum length of a specified string. It works on either
STRING or GSTRING data types. For SBCS strings, the value will be in the range 0
to 32767. For DBCS strings, the value will be in the range 0 to 16382.

Figure 179 on page 138 shows the definition of the MAXLENGTH function.

Chapter 8. Routines 137

MCOMPRESS Function

FUNCTION MAXLENGTH(s : STRING)

1 0..32767;
FUNCTION MAXLENGTH{ s : GSTRING)

: 0..16382;
Where Represents
s An expression with a string value

Figure 179. Detinition of the MAXLENGTH Function

Figure 180 shows an example of the MAXLENGTH function.

VAR
S : STRING (8);

G : GSTRING (4);
BEGIN o

MAXLENGTH (S): (* yields 8 *)
MAXLENGTH (G): (* yields 4 =)
END;

Figure 180. Example of the MAXLENGTH Function

| MCOMPRESS Function

| MCOMPRESS returns a string with sequences of SBCS blanks replaced with a

I single SBCS blank, and sequences of DBCS blanks replaced with a single DBCS
blank. Figure 1B1 shows the detinition ot the MCOMPRESS function.

FUNCTION MCOMPRESS(CONST msource : STRING)
¢ STRING;

Where Represenis
msource A mixed string expressian to be compressed

Figure 181. Definition of the MCOMPRESS Function

MCOMPRESS manipulates mixed strings in a character-oriented manner, treating
SBCS characters and DBCS characters as distinct. It returns a canonical mixed
string.

Note: If the mixed string contains no DBCS portions, the results are the same as
those obtained when COMPRESS is used on pure SBCS strings.

Figure 182 shows an example of the MCOMPRESS function.

§ :='bb<.b.b.b.b>bbbb<.b.b.b><.b.b>bb"
MCOMPRESS (S) (* yields 'b<.b>b<.b>b' *)

Figure 182. Example of the MCOMPRESS Function

138 VS Pascal Language Reference

MIN Function

| MDELETE Function

MIN Function

MDELETE returns a mixed string with a specified portion removed. Figure 183
shows the definition of the MDELETE function.

FUNCTION MDELETE(CONST msource : STRING;
start : INTEGER:
len : INTEGER) : STRING;

Where Represents

msource A mixed string expression from which a portion will be deleted.

start An integer expression that specifies the starting position within the source where
characters are to be deleted. The first character of the source string is at position
il

len An optional integer expression that specifies the number of characters toc be
deleted. If len Is omitted, it defaults to MLENGTH(s) - start + 1, in other words,
all remaining characters are deleted. (The string Is truncated beginning at
position starl.)

Figure 183. Definition of the MDELETE Function

Usage: To avoid an error message at run time:

* start must be greater than 0.
* len must be greater than or equal to 0. It len is 0, the whole string is returned.

e start + len -1 must be less than or equal to the current character length of the
string.

MDELETE manipulates mixed strings in a character-oriented manner, treating
SBCS characters and DBCS characters as distinct, It returns a canonical mixed
string.

Note: If the mixed string contains no DBCS portions, the results are the same as
those obtained when DELETE is used on pure SBCS strings.

Figure 184 shows an example of the MDELETE function.

MDELETE('a<.B.C>d',1,2) (* yields '<.C>d' *)
MDELETE('<.A.B><.C>',2,1) (* yields '<.A.C>' ; adjacent SI/SO pair removed *)
MDELETE('<.A.B><><,(>',2,1) (* yields '<.A.C>' ; adjacent SO/SI pairs removed *)

Figure 184. Example of the MDELETE Function

MIN returns the minimum value of one er more expressions.

The parameters for MIN can be a mixture of integer, real, and shortreal
expressions. If the parameters are mixed and one of them is a real, a real value
will be returned. If the parameters are mixed and do not include a real, a shortreal
value will be returned. Otherwise, MIN will return a value compatible with the
types of the parameters.

Figure 185 on page 140 shows the definition of the MIN function.

Chapter 8. Routines 139

|
|
|
l
I
|

MLENGTH Function

FUNCTION MIN{ expr,expr.. : scalar-type)
: scalar-type;

Where Represents
expr A scalar expression, including DBCS character, real, and shortreal

Figure 185. Definition of the MIN Function

MINDEX Function
MINDEX returns the position of the first occurrence of the second mixed string
within the first mixed string. If the second mixed string does not exist in the first
mixed string, MINDEX returns a zero. If the second mixed string is null, a 1 will
always be returned. Figure 186 shows the definition of the MINDEX function.

FUNCTION MINDEX(CONST msource : STRING;
CONST mlookup : STRING)
: 0..32767;

Where Represents
msource A mixed string expression to which mlookup is compared
miookup A mixed string expression which will be compared to msource

Figure 186. Definition of the MINDEX Function

MINDEX manipulates mixed strings in a character-oriented manner, treating SBCS
characters and DBCS characters as distinct.

Note: If the mixed string contains no DBCS portions, the results are the same as
those obtained when INDEX is used on pure SBGCS strings.

Figure 187 shows an example of the MINDEX function.

MINDEX('<.A.B>','<.A>") (* yields 1 *)
MINDEX('<.A.B>','A") (* yields @ because an SBCS 'A' *)
(* is not the same as a DBCS 'A' #)

Figure 187. Example of the MINDEX Function

MLENGTH Function

MLENGTH returns the character length of a mixed string. Figure 188 shows the
definition of the MLENGTH function.

FUNCTION MLENGTH(m : string)
¢ Q..327671

Where Represents
m A mixed string expression

Figure 188. Definition of the MLENGTH Function

140 vs Pascal Language Reference

MRINDEX Function

MLENGTH manipulates mixed strings in a character-oriented manner, treating
SBCS characters and DBCS characters as distinct.

Note: If the mixed string contains no DBCS portions, the results are the same as
those obtained when LENGTH is used on pure SBCS strings.

Figure 189 shows an example of the MLENGTH function.

MLENGTH('a<.B.C>d"') (* yields 4 *)

Figure 189. Example of the MLENGTH Function

MLTRIM Function

MLTRIM returns a string with leading SBCS and DBCS blanks removed.
Figure 190 shows the definition of the MLTRIM function.

FUNCTION MLTRIM(CONST msource : STRING)
¢ STRING;

Where Represents
msource A mixed string expression

Figure 190. Definition of the MLTRIM Function

MLTRIM manipulates mixed strings in a character-oriented manner, treating SBCS
characters and DBCS characters as distinct.

Note: If the mixed string contains no DBCS portions, the results are the same as
those obtained when LTRIM is used on pure SBCS strings.

Figure 191 shows an example of the MLTRIM function.

MLTRIM('b<.b.b>b") (* yields "' *)
MLTRIM('b<.b.b>AB<.C>') (* yields 'AB<.C>' *)

Figure 191. Example of the MLTRIM Function

MRINDEX Function

MRINDEX returns the position of the last occurrence of the second mixed string
within the first mixed string. |f the second mixed string does not exist in the first
mixed string, MRINDEX returns a zero. |f the second mixed string is null,
MLENGTH(s) + 1 will always be returned. Figure 192 on page 142 shows the
definition of the MRINDEX function.

Chapter 8. Routines 141

I

MSUBSTR Function

FUNCTION MRINDEX(CONST msource : STRING;
CONST mlookup : STRING)
r Q4 32768

Where Represents
msource A mixed string expression to which mfookup is compared
milookup A mixed string expression which will be compared to msource

Figure 192. Definition of the MRINDEX Function

MRINDEX manipulates mixed strings in a character-oriented manner, treating
SBCS characters and DBCS characters as distinct,

Note: If the mixed string contains no DBCS portions, the results are the same as
those obtained when RINDEX is used on pure SBCS strings.

Figure 193 shows an exampie of the MRINDEX function.

MRINDEX('<.A.B.C.A>','<.A>") (* yields 4)
MRINDEX('<.A.B.C.A>','A") (* yields 0, because an SBCS 'A' *)
(* is not the same as a DBCS 'A' *)

Figure 193. Example of the MRINDEX Function

MSUBSTR Function 0

MSUBSTR returns a specified portion of a mixed string. Figure 194 shows the
definition of the MSUBSTR function.

FUNCTION MSUBSTR(CONST msource : STRING;
start : INTEGER;
len : INTEGER) : STRING;

Where Represents
msource A mixed string expression from which a substring will be returned. r
start An integer expression that specifies the starting position within the source from o
which the substring is to be extracted. The first character of the source string is
at position 1.
len An optional integer expression that determines the length of the substring. If len
is omitted, it defaults to MSUBSTR(s) - start + 1; in other words, the substring
returned will be the remaining portion of the source string from position start.

Figure 184. Definition of the MSUBSTR Function

Usage: To avoid an error message at run time, be sure that:

* start must be greater than 0.
* Jen must be greater than or equal to 0. If len is 0, a null string is returned.
* start + len - 1 must be less than or equal to the character length of the string.

MSUBSTR manipulates mixed strings in a character-oriented manner, treating _
SBCS characters and DBCS characters as distinct. It returns a canonical mixed o
string.

142 VS Pascal Language Reference

("".

MTRIM Function

NEW Procedure

NEW Procedure

Note: If the mixed string contains no DBCS portions, the results are the same as
those obtained when SUBSTR is used on pure SBCS strings.

Figure 195 shows an example of the MSUBSTR function.

MSUBSTR('a<.B.C>d',2,3)
MSUBSTR('a<.B.C>d',1,3)

(* yields '<.B.C>d' *
(* yields 'a<.B.C>' *

)
)
MSUBSTR('a<.B.C>d"',3) (* yields '<.C>d' *)
MSUBSTR('a<.B.C>d',1) (* yields 'a<.B.C>d' *)
MSUBSTR('a<.B.C>d',5,0) {(* yields "' *)
MSUBSTR('a<.B.C>d',2,5) (* is an error *)

Figure 195. Example of the MSUBSTR Function

MTRIM returns a string with trailing SBCS and DBCS blanks removed.

Figure 196 shows the definition of the MTRIM function.

FUNCTION MTRIM(CONST msource : STRING)
: STRING;

Where Represents
msource A mixed string expression

Figure 196. Definition of the MTRIM Function

MTRIM manipulates mixed strings in a character-oriented manner, treating SBCS
characters and DBCS characters as distinct.

Note: If the mixed string contains no DBCS portions, the results are the same as
those obtained when TRIM is used on pure SBCS strings.

Figure 197 shows an example of the MTRIM function.

MTRIM('b<.b.b>b')
MTRIM('AB<.C>b<.h.b>")

(* yields ' ")
(* yields 'AB<.C>' ¥)

Figure 197. Example of the MTRIM Function

NEW allocates storage for a dynamic variable from the current heap and sets the
pointer to point to the dynamic variable. Figure 198 on page 144 shows the
definition of the NEW procedure.

Chapter 8. Routines 143

NEW Procedure

Form 1:
PROCEDURE NEW(VAR pl : pointer);

Form 2:

PROCEDURE NEW(VAR p2 : pointer;

tl,t2... : ordinal-type);

Form 3:

PROCEDURE NEW(VAR p3 : STRINGPTR;

Ten : INTEGER);

Where Represents
p1 A pointer
p2 A pointer to a record that contains a variant part
t1, t2 Ordinal constants representing tag fields
p3 A string pointer
len An expression with an integer value

Figure 198. Definition of the NEW Procedure

Form 1 allocates the storage necessary to represent a value of the type to which
the pointer refers. If the type of the dynamic variable is a record with a variant

part, the space allocated is the amount required for the record when the largest
variant is active. Figure 199 shows an example of the NEW procedure (form 1).

TYPE
LINKP = @LINK;
LINK = RECORD
NAME : STRING(30);
NEXT : LINKP;
END;
VAR
P,
HEAD : LINKP;

BEGIN

NEW(P);
WITH P@ DO
BEGIN

NAME :

NEXT :
END;

HEAD := P;

]

MIKI WALTER';
HEAD;

END;

Figure 199. Example of the NEW Procedure (Form 1)

Form 2 allocates a variant record when it is known which variants will be active.
The amount of storage allocated is no larger than necessary to contain the
specified variants. The ordinal constants are tag field values. The first one
indicates which variant in the record is active; the second one represents which
variant in the first variant is active, and so on.

144 vs Pascal Language Reference

NEW Procedure

Note: The NEW procedure does not set tag fields. The tag list serves only to
indicate the amount of storage required; it is your responsibility to set the tag fields
after the record is allocated.

Figure 200 shows an exampie of the NEW Procedure (form 2).

TYPE
AGE = 0..100;
RECP = @REC;
REC =
RECORD
NAME: STRING(30);
CASE HOWOLD: AGE OF
0..18:
(FATHER: RECP);
19..100:
(CASE MARRIED: BOOLEAN OF
TRUE: (SPOUSE: RECP);

FALSE: ()
)
END;
VAR
P : RECP;
BEGIN
NEW(P,18);
WITH P@ DO
BEGIN
NAME := 'PAUL FEHDER, JR';
HOWOLD := 18;

NEW(FATHER,54,TRUE) ;
WITH FATHER@ DO

BEGIN
NAME := 'PAUL FEHDER';
HOWOLD := 54;

MARRIED := TRUE;
NEW (SPOUSE, 50, TRUE) ;

END (*with father@*);
END (*with p@*);

END;

Figure 200. Example of the NEW Procedure (Form 2)
Form 3 allocates a string whose maximum length is known only during program

execution. The amount of storage to be allocated for the string is defined by the
required second parameter.

Chapter 8. Routines 145

NEWHEAP Procedure

Figure 201 shows an example of the NEW procedure (form 3).

VAR
P : STRINGPTR;
0 : STRINGPTR;
I 1 0..32767;
BEGIN

I = 30;
NEW(P, I);
WRITELN(MAXLENGTH(P@));

(*writes '30' to output*)

NEW(Q,5);
Q@ := '1234567890';
(*causes a truncation*)
(*error at execution *)
END;

Figure 201. Example of the NEW Procedure (Form 3)

NEWHEAP Procedure

NEWHEAP reserves a block of storage in the VS Pascal run-time environment from
which dynamic variables can be allocated. This block of storage is called a heap,
and is referred to by the heap-id returned from NEWHEAP. Characteristics of a
heap include initial size, extension size, location, and disposition. These
characteristics can be specified with the NEWHEAP procedure. Figure 202 on
page 147 shows the definition of the NEWHEAP procedure.

146 Vs Pascal Language Reference

NEWHEAP Procedure

0 | PROCEDURE NEWHEAP(VAR p : pointer; CONST s : string);
| Where Represents
| p A pointer to any type
| s An optional string containing any combination of the following options,
|

separated by commas:

| INIT=nnn

I Specifies the number of kilobytes initially allocated for the new heap,
| where nnn is a positive integer. VS8 Pascal always uses this value

| regardless of any initial heap size you might specify on the HEAP

| run-time option. If you do not specify an initial size on NEWHEAP, VS
I
|

Pascal defaults to the initial size you specify on HEAP. If you do not
specify an initial size on either NEWHEAP or HEAP, VS Pascal defaults
to 12 kilobytes.

| INCR = nnn
| Specifies the number of kilobytes the heap is extended if necessary,
H | where nnn is a positive integer. If you do not specify an increment size
| @ | on NEWHEAPR, VS Pascal defaults to the increment size you specify on
| the HEAP run-time option. If you do not specify an increment size on
| either NEWHEAP or the HEAP run-time option, VS Pascal defaults to 12
J kilobytes.

‘ I LOC = ANY|BELOW
| Specifies where the heap is located in memory.

| * ANY lets VS Pascal allocate the heap anywhere in storage.
| « BELOW forces the heap into the 24-bit address space.

‘ Default: ANY.
c/ l DISP = KEEP|FREE

I Specifies how the heap is disposed.

| * KEEP lets VS Pascal retain the memory space for possible future

| use. A DISPOSEHEAP on such a heap returns the memory to the

| VS Pascal environment, where it can be used by another heap with
| similar characteristics.

| * FREE forces VS Pascal to immediately return storage to the
‘ | operating system. A DISPOSEHEAP on such a heap issues an

. l immediate FREEMAIN.
C | Default. KEEP.

| Figure 202. Definition of the NEWHEAP Procedure

| The pointer passed to NEWHEAP is called a heap-id. It must not be used as the
! base of a dynamic variable or unpredictable results might occur,

Chapter 8. Routines 147

NEWHEAP Procedure

Figure 203 shows an example of the NEWHEAP procedure.

PROGRAM MULTIPLE_HEAPS;

TYPE
DUMMY_TYPE = INTEGER;
HEAP _POINTER = @DUMMY TYPE; (* This creates an *
(* identifier type for *)
MARK_POINTER = @DUMMY_TYPE; (* heaps and for marks. *)
PHRASE_POINTER = @PHRASE;
PHRASE = STRING(30);
VAR
DEFAULT_HEAP,
FIRST_HEAP: HEAP_POINTER;
MARK_ONE : MARK_POINTER;
PHRASE_A,
PHRASE B,
PHRASE C,
PHRASE_D: PHRASE_POINTER;
BEGIN
QUERYHEAP (DEFAULT _HEAP) ; (* Saves the heap identifier.*)
NEWHEAP (FIRST_HEAP) ; (* Allocates a heap. %)
NEW(PHRASE_A) ; (* Allocates a phrase in *)
(* the default heap.)
PHRASE_A@ := 'Now is the time ';
MARK (MARK_ONE) ; (* Creates a mark in the *)
(* default heap. %)
NEW(PHRASE_B) ; (* Allocates another phrase *)
(* in the default heap. *)
PHRASE_B@ := 'for all good men ';
USEHEAP (FIRST_HEAP); (* Makes FIRST_HEAP the *)
(* current heap. %)
NEW(PHRASE_C) ; (* Allocates a phrase in *)
(* FIRST_HEAP.)

PHRASE_C@ := 'to come to the aid ';

Figure 203 (Part 1 of 2). Example of the NEWHEAP Procedure

148 VS Pascal Language Reference

(-:\

ODD Function

ODD Function

NEW(PHRASE D)
PHRASE_D@ := 'of their party.';

RELEASE (MARK_ONE) ;

DISPOSE (PHRASE D);

DISPOSEHEAP(FIRST HEAP);

END,

Allocates a phrase in
FIRST HEAP.

Frees everything in the
heap containing MARK ONE
(the default heap) since
MARK_ONE was done; thus,
this frees PHRASE B.

Frees PHRASE D from
FIRST_HEAP.

Frees everything in
FIRST_HEAP; note that
disposing of the entire

heap made the DISPOSE on
the previous line
unnecessary.

* % % * ¥ #*
e e e Nt e i et s

*

*

Figure 203 (Part 2 of 2). Example of the NEWHEAP Procedure

Notes to Figure 203:

* The NEWHEAP creating FIRST_HEAP did not make FIRST_HEAP the current

heap. To allocate dynamic variables from a heap created by a call to
NEWHEAP, that heap must be made the current heap by calling USEHEAP.

¢ Atthe end of the program, PHRASE_A is the only dynamic variable not

deallocated.

ODD returns TRUE if an integer is odd, or FALSE if it is even. Figure 204 shows

the definition of the ODD function.

FUNCTION ODD(i : INTEGER)
: BOOLEAN;

Where Represents
i An integer expression

Figure 204. Definition of the ODD Function

Chapter 8. Routines

149

PACK Procedure

ORD Function

ORD returns an integer that corresponds to an ordinal value. ORD also works with
pointers.

Figure 205 shows the definition of the ORD function.

FUNCTION ORD(s : ordinal-type)
. INTEGER;

Where Represents
s An ordinal type or pointer expression

Figure 205. Definition of the ORD Function

If the operand is of type CHAR, the value returned is the position in the EBCDIC
character set for the character operand. If the operand is an enumerated scalar,
ORD returns the position in the enumeration (beginning at zero). For example, if
COLOR = (RED, YELLOW, BLUE), then ORD(RED) is 0 and ORD(BLUE) is 2. If the
operand is a pointer, the function returns the machine address of the dynamic
variable referenced by the pointer.

Note: Although pointers can be converted to integers, there is no function provided
to convert an integer to a pointer.

PACK Procedure
PACK copies elements from the unpacked source array to the packed target array,
starting with the specified element of the source array. The types of the elements
of the two arrays must be identical. However, in LANGLVL(EXTENDED), if the
array elements are subranges, they need only have identical bounds. Figure 206
shows the definition of the PACK procedure.

PROCEDURE PACK(CONST source : array-type;
index : index-of-source;
VAR target : pack-array-type);

Where Represents

source An array

index An expression that is compatible with the index of source
target A packed array variable

Figure 206. Definition of the PACK Procedure

Itis an error if the number of elements in the packed target array is greater than
the number of elements used in the source array. See Figure 207 on page 151.

150 vs Pascal Language Reference

PDSIN Procedure

Assuming:

A : ARRAY[M..N] OF T;
Z : PACKED ARRAY[U..V] OF T;

Then:
PACK(A, I, Z);
is equivalent to:
K :=1;
FOR J := LBOUND(Z) TO HBOUND(Z) DO
BEGIN
Z[3] := A[K];
IF J <> HBOUND(Z) THEN
K:= SUCC(K);
END;

where J and K are temporary variables.

Figure 207. Example of the PACK Procedure

PAGE Procedure

PAGE causes a skip to the top of the next page when a text file is printed.
Figure 208 shows the definition of the PAGE procedure.

PROCEDURE PAGE(VAR f : TEXT);

Where Represents
f Optional variable of type TEXT; the default is the standard file variable OUTPUT

Figure 208. Definition of the PAGE Procedure

PARMS Function

PARMS returns a string that was associated with the invocation of the VS Pascal
main program. Figure 209 shows the definition of the PARMS function.

FUNCTION PARMS : STRING;

Figure 209, Definition of the PARMS Function

PDSIN Procedure

PDSIN opens a member in a library (partitioned) file for input. This procedure is
semantically equivalent to doing a RESET on a member of a specified library.
Figure 210 on page 152 shows the definition of the PDSIN procedure.

Chapter 8. Routines 151

PRED Function

PROCEDURE PDSIN(VAR f : filetype;
CONST s : STRING);

Where Represenis

H A file variable

s An optional string of file dependent options to be used in opening the file (see
Appendix C, "Options for Opening Files” on page 252 for information about
these options)

Figure 210. Definition of the PDSIN Procedure

PDSOUT Procedure

PDSOUT opens a member in a library (partitioned) file for output. This procedure
is semantically equivalent to doing a REWRITE on a member of a library.
Figure 211 shows the definition of the PDSOUT procedure.

PROCEDURE PDSOUT(VAR f : filetype;
CONST s : STRING);

Where Represents

f A file variable

s An optional string of file dependent options to be used in opening the file (see
Appendix C, "Options for Opening Files” on page 252 for information about
these options)

Figure 211. Definition of the PDSOUT Procedure

PRED Function

PRED returns the predecessor value of an ordinal expression. Figure 212 shows
the definition of the PRED function.

FUNCTION PRED(s : ordinal-type)
: ordinal-type;

Where Represents
S An ordinal expression

Figure 212. Definition of the PRED Function

The PRED of the first element of an ordinal type is an error. The PRED of an
integer is equivalent to subtracting one from the value of the integer.

152 VS Pascal Language Reference

PUT Procedure

QUERYHEAP Procedure

Figure 213 shows an example of the PRED function.

TYPE
NEPHEWS = (HUEY, DUEY, LOUIE);

PRED(DUEY) (* yields HUEY *)
PRED(HUEY) (* is an error ¥)
PRED(TRUE) (* yields FALSE *)
PRED('B’) (* yields ‘A’ *)
PRED(I) (* yields I-1 ¥)
PRED(3.0) (* is an error ¥)

Figure 213. Example of the PRED Function

PUT places the contents of the file pointer into the current position and positions
the file to its next element. The file must have been previously opened for output.
Figure 214 shows the definition of the PUT procedure.

PROCEDURE PUT(VAR f : filetype);

Where Represents
f A file variable

Figure 214. Definition of the PUT Procedure

Restriction: PUT cannot write DBCS data to a text file.

QUERYHEAP Procedure

QUERYHEAP returns the heap-id of the current heap. Figure 215 shows the
definition of the QUERYHEAP procedure.

PROCEDURE QUERYHEAP(VAR p : pointer);

Where Represenis
p Any pointer

Figure 215. Definition of the QUERYHEAP Procedure

After invocation, p contains the current heap-id. If an active heap does not exist,
QUERYHEAP returns NIL.

See Figure 203 on page 148 to see how QUERYHEAP is used in conjunction with
NEWHEAP, USEHEAP, and DISPOSEHEAP.

Chapter 8. Routines 153

READ Procedure

RANDOM Function

RANDOM returns a pseudo-random number in the range >0.0 and <1.0.
Figure 216 shows the definition of the RANDOM function.

FUNCTION RANDOM(s : INTEGER) : REAL;

Where Represents
s An integer seed expression

Figure 216. Definition of the RANDOM Function

If you pass a seed value of 0, RANDOM generates the next number from the
previous seed. Thus, the general way to use this function is to pass it a non-zero
seed on the first invocation and a zero value thereafter. RANDOM always returns
the same value when passed a non-zero seed.

READ Procedure (for Record Files)

READ reads data from record files. Each cail to READ reads one record from the
specified file into each variable in the call. Figure 217 shows the definition of the
READ procedure (for record files).

PROCEDURE READ(VAR f : FILE OF t;
vi,v2...: t;
Where Represents
f A record file variable
vi,v2... List of variables whose type matches the file component type of f

Figure 217. Definition of the READ Procedure (for Record Files)

Figure 218 shows an example of the READ procedure for record files.

Coding:
READ(S,v)
is equivalent to this compound statement:

BEGIN
v := f@;
GET(f);
END;

Figure 218. Example of the READ Procedure for Record Files

You can use more than one variable on each call by separating each variable with
a comma. The effect is the same as multiple calls to READ. This implies that the
variables are read in a left-to-right order. Figure 219 on page 155 shows an
example of multiple variables on READ.

154 vsS Pascal Language Reference

READ and READLN Procedure

Coding:
READ(f,v1,v2);
is equivalent to:

BEGIN
READ(f,vl1);
READ(f,v2);

END;

Figure 219. Example of Multiple Variables on READ

Data in the file is expected to be in its internal representation.

READ and READLN Procedures (for Text Files)
READ and READLN read data from a text file.

READ reads character data from a text file and converts the character data to
conform to the type of the operand(s). The file parameter is optional; the default
file is INPUT.

READLN reads data (if any variables are specified) the same way as READ, and
then moves the file pointer to the beginning of the next line.

Figure 220 shows the definition of the READ and READLN procedures (for text
files).

PROCEDURE READ(VAR f : TEXT;
VAR v : see below);

PROCEDURE READLN(VAR f : TEXT;
VAR v : see below);

PROCEDURE READLN{ VAR f : TEXT);

Where Represents
f An optional text file; the default is the predefined file INPUT
v List of variables (optional for READLN}):
CHAR (or subrange)
DBCS fixed string
GCHAR
GSTRING
INTEGER (or subrange)
REAL
SBCS fixed string
SHORTREAL
STRING

Figure 220. Definition of the READ and READLN Procedures (for Text Files)

Chapter 8. Routines 155

READ and READLN Procedure

Figure 221 shows an example of the READLN procedure.

Assume the data is:
36 24 ABCDEFGHIJKLMNOPQRSTUVWXYZ

With the following example:

VAR
I,J: INTEGER;
S: STRING(100);
CH: CHAR;
CC: PACKED ARRAY[1..10] OF CHAR;
F: TEXT;
BEGIN
READLN(F,I,J,CH,CC,S);
END;

The variables would be assigned:

I 36

J 24

CH v

cC "ABCDEFGHIJ'

) "KLMNOPQRSTUVWXYZ'

LENGTH(S) 16

Figure 221. Example of the READLN Procedure
You can use more than one variable on each call by separating each variable with
a comma. The effect is the same as multiple calls to READ. This implies that the

variables are read in a left-to-right order.

Figure 222 on page 157 shows an example of multiple variables on READ and
READLN.

156 VS Pascal Language Reference

READ and READLN Procedure

Coding:
READLN(f,v1,v2,v3);

is equivalent to:

BEGIN
READ(f,v1);
READ(f,v2);
READ(f,v3);
READLN(f) ;

END;

Coding:

READ(f,v1,v2);

is equivalent to:
BEGIN

READ(f,v1);

READ(f,v2);
END;

Figure 222. Example of Multiple Variables on READ and READLN

Reading Variables with a Length: You can qualify a READ variable with a field
length expression; for example,

READ(f,v:n)

where v is the variable being read and n is the field length expression. This
expression specifies the number of characters in the input line to be processed for
the variable v.

If during a read operation the field ends before the field length is completed, the
reading operation stops. The next read operation begins at the first character
following the field.

If a read operation ends before processing all characters of the field, it skips the
rest of the field.

If the specified field length is negative, the absolute value of the length is used. If
the specified field length is zero, the read is done as if no field length were used.

Figure 223 on page 158 shows an example of the READLN procedure with lengths.

Chapter 8. Routines 157

READ and READLN Procedure

Assume the data is:
36 24 ABCDEFGHIJKLMNOPQRSTUVWXYZ

With the following example:

VAR
I,J: INTEGER;
S: STRING(100);
CH: CHAR;
CC: PACKED ARRAY[1..10] OF CHAR;
F: TEXT;
BEGIN
READLN(F,I:4,J:10,CH:J,CC,S);
END;

The variables would be assigned:

I 36

dJ 4

CH 1L

cc 'MNOPQRSTUV!
S "WXYZ!

LENGTH(S) 4

Figure 223. Example of the READLN Procedure with Lengths

Reading CHAR Data: A variable of type CHAR is assigned the next character in the
file.

Reading DBCS Fixed String Data: If the variable is declared as a PACKED
ARRAY[1..N] OF GCHAR, or DBCS fixed string, a sequence of DBCS characters is
read. To begin reading, the file pointer must point to a byte that is a shift-out
character, or to two bytes that are a DBCS character. If the field width is smaller
than the length of the string, or if the string is not filled, it will be padded with
blanks.

Reading GCHAR Data: When reading GCHAR data, one DBCS character is read.
To begin reading, the file pointer must point to a byte that is a shift-out character or
to two bytes that are a DBCS character. You will get an error message if any SBCS
character, excluding shift-in and shift-out pairs, are found before the field width is
exhausted.

Reading GSTRING Data: When reading GSTRING data, a sequence of DBCS
characters is read. To begin reading, the file pointer must point to a byte that is a
shift-out character or to two bytes that are a DBCS character. Reading stops when:

¢ The variable is filled.

» A shift-in character is followed by the end-of-line condition; it is an error if the
shift-in character is missing.

* A shift-in character is followed by an SBCS character; it is an error if the
shift-in character is missing.

* The field width is exhausted; it is an error if any SBCS characters are found,
excluding shift-out and shift-in characters, before the field width is exhausted.

Figure 224 on page 159 shows an example of reading GCHAR and GSTRING data.

158 VS Pascal Language Reference

C

C

READ and READLN Procedure

VAR
F i TERTs
C : GCHAR;
Gl, G2 : GSTRING(3);

BEGIN
RESET(F);
READLN(F,C,G1,62:2);
END;

If the input file contains:

<.A.B.C.D.E.F.G>

then:

C = '<.A>'G (* yields .A stored in C *)

Gl = '<,B.C.D>' (* yields .B.C.D stored in Gl *)
G2 = '<.E.F>' (* yields .E.F stored in G2 *)

If the input file contains:

<. A>< . B><. C>xxx

then:
L ="' A>'G (* yields .A stored in C *)
Gl ='<.B.C>'G (* yields .B.C stored in G *)

Error reading G2 because the file had no DBCS characters.

If the input file contains:
<.A><.B.C.D.E>xxx

then:
C = '<.A>'G (* yields .A stored in C *)
Gl = '<.B.C.D>'G (* yields .B.C.D stored in G *)

Error reading G2 because DBCS characters ended before the field length
ended.

Figure 224. Example of Reading GCHAR and GSTRING Data

Reading Integer Data: Integer data is read by skipping leading blanks and
end-of-lines, reading an optional sign followed by one or more numeric characters
until a non-numeric character is found. If the characters read do not form a valid
integer, a run-time error will occur.

Reading Real and Shortreal Data: Real and shortreal data is read by skipping
leading blanks and end-of-lines. VS Pascal reads characters until it finds one that
cannot be in a real or shortreal number. If the characters read do not form a valid
real or shortreal, a run-time error will occur.

Reading SBCS Fixed String Data: If the variable is declared as a PACKED
ARRAY[1..N] OF CHAR, or SBCS fixed string, characters are stored into each
element of the array. This is equivalent to a loop ranging from the lower bound of
the array to the upper bound, performing a read operation for each element. If the

Chapter 8. Routines 159

READSTR Procedure

end-of-line condition becomes true before the variable is filled, the rest of the
variable is filled with blanks.

Reading String and Mixed String Data: Characters are read into a string variable
until the variable has reached its maximum length or until the end of the line is
reached.

When reading mixed string data, a specified field width applies only to the number
of SBCS characters to be read from the file. READ does not check for valid DBCS
characters.

Figure 225 shows an example of reading mixed string data.

VAR
51, 52, S3 : STRING(10);:
F o TEXT;

BEGIN
RESET(F) ;
READLN(F,S1:4,52:3,53);

END;

It the input file contains:
abc<.A.B>xyz
then:

Sl (* yields 'abc<' *)
S2 (* yields '.A.' *)
S3 (* yields 'B>xyz' *)

Figure 225. Example of Reading Mixed String Data

For more information on READ and READLN, see VS Pascal Application
Programming Guide.

READSTR Procedure

READSTR reads character data from a source string into one or more variables.

The actions of READSTR are identical to those of READ except that the source data
is extracted from a string expression instead of a text file. See "READ and
READLN Procedures (for Text Files)" on page 155. READSTR is especially useful
for converting a string to a different type.

Figure 226 on page 161 shows the definition of the READSTR procedure.

160 vS Pascal Language Reference

READSTR Procedure

PROCEDURE READSTR(CONST s : STRING;
VAR v : see helow);

Where Represents
s A string expression that is to be used for input
v A list of one or more of these variable types:
CHAR (or subrange)
DBCS Fixed String
GCHAR
GSTRING
INTEGER (or subrange)
REAL
SBCS Fixed String
SHORTREAL
STRING

Figure 226. Definition of the READSTR Procedure

As in the READ procedure, variables can be qualified with a field length expression
(see Figure 227).

VAR
I,J: INTEGER:
S : STRING(100);
S1 : STRING(100);
CH : CHAR;
CC : PACKED ARRAY [1..10] OF CHAR;

BEGIN
S = '36 245ABCDEFGHIJK';
READSTR(S,I,J:3,CH,CC:5,51);
END;

The variables would be assigned:

I 36

d 24

CH -

cc 'ABCDE ’
51 'FGHIJK';

LENGTH(SL) 6

Figure 227. Example of the READSTR Procedure

Figure 228 on page 162 shows an example of coding that has the same effect as
READSTR.

Chapter 8. Routines 161

RELEASE Procedure

Coding:
READSTR(s,v1,v2);
has the same effect as coding:

WRITE(f,s);
READ(f,vl,v2);

where f is an optional text file.

Figure 228. Example of Code Equivalents to READSTR

Note: An error results if all the string characters are read before all the variables
are filled.

RELEASE Procedure

RELEASE deallocates groups of dynamic variables delimited by the MARK routine.

When a pointer returned from MARK is passed to RELEASE, all dynamic variables
allocated in the heap containing the mark, and allocated since that call to MARK,
are deallocated (as though a call to the DISPOSE routine were made for each
variable). RELEASE then sets the pointer variable to NIL.

Figure 229 shows the definition of the RELEASE procedure.

PROCEDURE RELEASE(VAR p : pointer);

Where Represents
p A pointer returned from a call to MARK

Figure 229. Definition of the RELEASE Procedure

In this simple example,

MARK (X)
NEW(A)
NEW(B)

MARK(Y)
NEW(C)

the call RELEASE(Y) would deallocate only the dynamic variable pointed to by C.
The call RELEASE(X) would free the dynamic variables pointed to by A, B, and C.

After you free a subheap with RELEASE, all of the pointers that once referenced
dynamic variables in that subheap are undefined. If you try to reference these
pointers later, VS Pascal can act unpredictably.

Figure 177 on page 137 shows how to use MARK and RELEASE within a single
heap. See Figure 203 on page 148 to see how RELEASE is used with multiple
heaps.

162 VS Pascal Language Reference

REWRITE Procedure

RESET Procedure
RESET opens a file for input. RESET positions the file pointer to the beginning of
the file and prepares the file to be used for input. After you invoke RESET, the file
pointer is pointing to the first data element of the file. This procedure can be
thought of as:

Closing the file (if open)

Rewinding the file

Opening the file for input

Getting the first component of the file.

AN =

Figure 230 shows the definition of the RESET procedure.

PROCEDURE RESET(VAR f : filetype;
CONST s : STRING);

Where Represents

f A file variable

s An optional string of file dependent options to be used in opening the file (see
Appendix C, "Options for Opening Files" on page 252 for further information
about the options for opening files)

Figure 230. Definition of the RESET Procedure

RETCODE Procedure
RETCODE returns a return code to the caller of the VS Pascal program. The value
of the operand will be returned to the system when an exit is made from the main
program. If this routine is called several times, only the last value specified will be
passed back to the system.

Figure 231 shows the definition of the RETCODE procedure.

PROCEDURE RETCODE(retvalue : INTEGER);

Where Represents
retvalue The return code to be passed to the caller of the VS Pascal program; the value is
system dependent

Figure 231. Definition of the RETCODE Procedure

The VS Pascal run-time environment will set the return code when a run-time error
occurs. The return code passed back will be the maximum of either the error
return code or any previous setting.

Restriction: Passing a negative value to RETCODE can have unpredictable results.

REWRITE Procedure
REWRITE opens a file for output and erases the previous contents of the file. The
procedure positions the file pointer to the beginning of the file and prepares the file
to be used for output. This procedure can be thought of as:

1. Closing the file (if open)
2. Rewinding the file
3. Opening the file for output.

Chapter 8. Routines 163

RINDEX Function

RINDEX Function

Figure 232 shows the definition of the REWRITE procedure.

PROCEDURE REWRITE(VAR f : filetype;
CONST s : STRING):

Where Represents
f A file variable

s An optional string of file dependent options to be used in opening the file (see
Appendix C, "Options for Opening Files" on page 252 for further Information

about the options for opening files)

Figure 232. Definition of the REWRITE Procedure

RINDEX returns the position of the last occurrence of the second string within the
first string. If the second string does not exist in the first string, RINDEX returns a
zero. If the second string is null, LENGTH(s) + 1 will always be returned.

Figure 233 shows the definition of the RINDEX tunction.

FUNCTION RINDEX(CONST source : STRING;
CONST lookup : STRING)
; 0, B27ER;

FUNCTION RINDEX(CONST source : GSTRING;
CONST Tookup : GSTRING)
: 0..16383;

Where Represents
source A string expression to which lookup is compared
lookup A string expression which will be compared to source

Figure 233. Definition of the RINDEX Function
Note: Although RINDEX is better suited to pure SBCS and pure DBCS strings, it
can be used for mixed strings. RINDEX treats mixed strings in a byte-oriented

manner. However, MRINDEX is usually used for mixed strings.

Figure 234 shows examples of the RINDEX function.

5 = '"ABCABCABC'

RINDEX(S, 'BC') (* yields B *)
5 = '"ABCABCABC'

RINDEX(S,'X") (* yields 0 *)
S = '<.A.B.C.A.B.C>ABC'

RINDEX(S,'<.8.C>") (* yields 5 *)
§= '<,A.B.C.A.B.C>ABC"

RINDEX(S,'C') (* yields 9 *)

S = '<.A.B.A>'G
RINDEX(S, '<.A>'G) (* yields 3 *)

Figure 234. Examples of the RINDEX Function

164 VS Pascal Language Reference

RPAD Procedure

ROUND Function

ROUND converts a real expression to an integer expression by rounding the
opearand. This function is equivalent to:

IF R > 0.0 THEN

ROUND := TRUNC(R + 0.5)
ELSE
ROUND := TRUNC(R - 0.5)3

Figure 235 shows the definition of the RGuWD function,

FUNCTION ROUNG{ r : REAL)}

: INTEGER;
FUNCTION ROUND(s : SHORTREAL)
: INTEGER;
Where Hepresenis
r An expression with a real vaiue
s An expression with a shortreal value

Figure 235. Definition of the ROUND Function

Figure 236 shows an example of the RCUND function.

ROUND(1.0) {(* 1§ 1%
ROUND(1.1} (= I§ 1%
ROUND(1.5) (* I8 2'¥)
ROUND(1.9) (518 2"
ROUND(0.0) (*15 0*)
ROUND(-1.0} (* 15 -1 #)
ROUND(-1.1) (* 15 -1 ¥)
ROUND(-1.5) [* 15 =2 %)
ROUND(-1.9) (% 18 <2' %)

Figure 236. Example of the ROUND Function

RPAD Procedure
RPAD pads or truncates a string on the right. RPAD manipulates pure SBCS and
pure DBCS strings.

Figure 237 on page 166 shows the definition of the RPAD procedure.

Chapter 8. Routines 165

SEEK Procedure

PROCEDURE RPAD(VAR s : STRING;

1 : INTEGER;
¢ : CHAR):

PROCEDURE RPAD(VAR s : GSTRING;
1 : INTEGER;
¢ : GCHAR);

Where Represents

s The string to be padded

/ The final length of s

& The pad character

Figure 237. Definition of the RPAD Procedure

Note to Figure 237: If LENGTH(s) is greater than /, the characters are truncated on
the right. If LENGTH(s) is less than /, s is extended with the character ¢ on the
right.

Figure 238 shows an example of the RPAD procedure.

S := 'ABCDEF';

RPAD(S, 10, '$'): (* yields 'ABCDEF$$$$' in S *)
S := 'ABCDEF';

RPAD(S, 5, '$'); (* yields 'ABCDE' in § *)

G :='<.A.B.C.D.E.F>'G;
RPAD(G, 10, '<.$>'G) (* yields '<.A.B.C.D.E.F.$.$.8.5>'G in G *)
G :='<.A.B.C.D.E.F>'G;
RPAD(G, 5, '<.$='G) (* yields '<.A.B.C.D.E>'G in G)

Figure 238. Example of the RPAD Procedure

Note: Because RPAD is now a predefined routine, %INCLUDE STRING is no longer
required to invoke RPAD.

SEEK Procedure
SEEK positions a file pointer to a specified element after the file has been opened
by the RESET, REWRITE, or UPDATE routines. SEEK specifies the number of the
next file component that GET or PUT will operate on. File components have an
origin of 1.

Figure 239 shows the definition of the SEEK procedure.

PROCEDURE SEEK(VAR f : filetype:

n : INTEGER);
Where Represents
f A record file variable
n Component number of the file

Figure 239. Definition of the SEEK Procedure

166 VS Pascal Language Reference

o

SIN Function

SIZEOF Function

SQR Function

SQR Function

Restriction: SEEK can be used only with record files.

Note: The file buffer value is undefined after calling SEEK.

SIN computes the sine of a floating-point number representing an angle in radians.

Figure 240 shows the definition of the SIN function.

FUNCTION SIN(x : REAL)
: REAL;

Where Represents
X An expression that evaluates to a real value

Figure 240. Definition of the SIN Function

Real functions will accept integer and shortreal arguments. See “Type
Compatibility” on page 46 for more information.

SIZEOF returns the amount of storage (in bytes) needed to contain a variable of the
type specified. Figure 241 shows the definition of the SIZEOF function.

FUNCTION SIZEOF(s : any-type)
: INTEGER;

FUNCTION SIZEOF(s : record-type;

tl,t2,... : ordinal-type)
: INTEGER;
Where Represents
s A type or variable identifier
t1, t2 Ordinal constants representing tag fields

Figure 241. Definition of the SIZEOF Function

If the parameter s refers to a record that has a variant part, and if no tag values are
specified, then the storage required for the record with the largest variant will be
returned.

If s is a record variable or a type identifier of a record, it can be followed by a tag
list that defines a particular variant configuration of the record. In this case, the
function will return the amount of storage required to contain the record with the
specified variants active.

SQR computes the square of the argument. The function returns the same type as
the argument. Figure 242 on page 168 shows the definition of the SQR function.

Chapter 8. Routines 167

STOGSTR Function

SQRT Function

FUNCTION SQR(i : INTEGER)
: INTEGER;

FUNCTION SQR{ r : REAL)
: REAL;

FUNCTION SQR(s : SHORTREAL)
: SHORTREAL;

Where Represents

i An integer expression
r A real expression

s A shortreal expression

Figure 242. Definition of the SQR Function

SQRT computes the square root of a number. If the argument is less than zero, a

run-time error is produced.

Figure 243 shows the definition of the SQRT {function.

FUNCTION SQRT(r : REAL)
. REAL;

Where Represents
r A real expression

Figure 243. Definition of the SQRT Function

Real functions will accept integer and shortreal arguments. See "Type
Compatibility” on page 46 for more information.

STOGSTR Function

STOGSTR converts a STRING to a GSTRING. STOGSTR removes one shift-out

from the beginning of the STRING, and one shift-in from the end of the STRING.

the STRING contains any SBCS characters, VS Pascal raises an error.

Figure 244 shows the definition of the STR function.

It

FUNCTION STOGSTR(s : STRING)
: GSTRING;

Where Represenis
s A string containing only DBCS characters and shifts

Figure 244. Definition of the STR Function

Figure 245 on page 169 shows an example of the STOGSTR function.

168 Vs Pascal Language Reference

STR Function

STR Function

VAR
G : GSTRING(4);
S : STRING(10);

BEGIN
S 1= '<.A.B>' (* <.A.B> is stored in §)
G := STOGSTR(S); (* .A.B is stored in G *)
S := '<.A>he! (* <.A>bc is stored in S *)
G := STOGSTR(S); (* Error (S contains SBCS characters) *)
END;

Figure 245. Example of the STOGSTR Function

STR converts a CHAR or an SBCS fixed string to a STRING. STR can also be
applied to a STRING, but no operation is performed. Figure 246 shows the
definition of the STR function.

FUNCTION STR(x : CHAR)

: STRING;
FUNCTION STR(x : PACKED ARRAY[1..n] OF CHAR)
: STRING;
FUNCTION STR(x : STRING)
: STRING;
Where Represents
X An SBCS character, SBCS fixed string, or SBCS variable-length
string

Figure 246. Definition of the STR Function

Figure 247 shows an example of the 8TR function.

VAR
SC : CHAR;
SA : PACKED ARRAY[1..4] of CHAR;
S4 : STRING;
BEGIN
SC = 'A'; (* 'A' is stored in SC *)
S4 := STR(SC); (* 'A' is stored in S4 *)
SA = 'AB'; {* 'AB' is stored in S5A *)
S& := STR(SA): (* 'AB' is stored in S4 *)
END;

Figure 247. Example of the STR Function

Chapter 8. Routines

169

SUBSTR Function

SUBSTR Function

SUBSTR returns a specified portion of the source string.

Figure 248 shows the definition of the SUBSTR function.

FUNCTION SUBSTR{ CONST source : STRING;
start : INTEGER;
len : INTEGER) : STRING;

FUNCTION SUBSTR(CONST source : GSTRING;
start : INTEGER);
Ten : INTEGER) : GSTRING;

Where Represents
source A string expression from which a substring will be returned.

start An integer expression that specifies the starting position within the source from
which the substring is to be extracted. The first character of the source string is
at position 1.

len An optional integer expression that determines the length of the substring. If len

is omitted, it defaults to LENGTH(s) - start + 1; in other words, the substring
returned will be the remaining portion of the source string from position start.

Figure 248. Definition of the SUBSTR Function

Note: Although SUBSTR is better suited to pure SBCS and pure DBCS strings, it
can be used for mixed strings. SUBSTR manipulates mixed strings in a
byte-oriented manner. However, MSUBSTR is usually used for mixed strings.

Usage: To avoid an error message at run time:

* start must be greater than 0.
* [/en must be greater than or equal to 0. If len is 0, a null string is returned.
* start + len - 1 must be less than or equal to the current length of the string.

Figure 249 shows an example of the SUBSTR function.

SUBSTR('ABCDE',2,3) (* yields 'BCD' *)
SUBSTR('ABCDE',1,3) (* yields 'ABC' %)
SUBSTR('ABCDE' ,4) (* yields 'DE' *)
SUBSTR('ABCDE',1) (* yields 'ABCDE')
SUBSTR('ABCDE',6,0) (* returns '' *)
SUBSTR('ABCDE',2,5) (* is an error)
SUBSTR('<.A.B=CDE',1,6) (* yields '<.A.B>')
SUBSTR('<.A.B.C>'6,2,2) (* yields '<.B.C>'G *)

Figure 249. Example of the SUBSTR Function

170 VS Pascal Language Reference

SUCC Function

TERMOUT Procedure

SUCC returns the successor value of an ordinal expression. Figure 250 shows the
definition of the SUCC function.

FUNCTION SUCC(s : ordinal-type)
: ordinal-type;

Where Represents
s An ordinal expression

Figure 250. Definition of the SUCC Function

The SUCC of the last element of an enumerated scalar is an error. The SUCC of an
integer is equivalent to adding one to the value of the integer.

Figure 251 shows an example of the SUCC function.

TYPE
NEPHEWS = (HUEY, DUEY, LOUIE);

SUCC (DUEY) (* yields LOUIE *)
SUCC (LOVIE) (* is an error *)
SUCC (FALSE) (* yields TRUE *)
SUCC('B*) (* yields 'C' *)
SUCC(1) (* yields I+l *)
SUCC(3.0) (* is an error *)

Figure 251. Example of the SUCC Function

TERMIN Procedure

TERMIN opens the designated file for input from your terminal. Figure 252 shows
the definition of the TERMIN procedure.

PROCEDURE TERMIN(VAR f : TEXT;
CONST s : STRING);

Where Represenls

f A text file variable

s An optional string of file dependent options to be used in opening the file (see
Appendix C, "Options for Opening Files" on page 252 for further information
about the options for opening files)

Figure 252. Definition of the TERMIN Procedure

TERMOUT Procedure

TERMOUT opens the designated file for output to your terminal. Figure 253 on
page 172 shows the definition of the TERMOUT procedure.

Chapter 8. Routines 171

TOKEN Procedure

PROCEDURE TERMOUT(VAR f : TEXT;
CONST s : STRING);

Where Represents

f A text file variable

s An optional string of file dependent options to be used in opening the file (see
Appendix C, "Options for Opening Files" on page 252 for further Information
about the options for opening files)

Figure 253. Definition of the TERMOUT Procedure

TOKEN Procedure

Starting from a given position, TOKEN scans a string for a token, and returns the
token in an ALPHA array. Figure 254 shows the detinition of the TOKEN
procedure.

PROCEDURE TOKEN(VAR pos : INTEGER;
CONST source : STRING;
VAR result : ALPHA);

Where Represents

pos An integer corresponding to the position in the source string where the search
for the token begins. The value of this integer gets updated to reflect the starting
position for subsequent calls to TOKEN.

source A string expression thal contains the data from which a token is to be extracted.

result The resulting token.

Figure 254. Definition of the TOKEN Procedure

When TOKEN scans a string, it ignores leading, multiple, and trailing blanks. If
there is no token in the string, the value of the first parameter pos is set to
LENGTH(s) + 1, and the result parameter is set to one blank.

If the token is longer than ALPHALEN, only the first ALPHALEN characters are
returned, but pos is updated to point past the entire token and any trailing blanks.

172 VS Pascal Language Reference

TRACE Procedure

A token can be any of the following:

* VS Pascal identifier, any number of alphanumeric characters, "$", or an
underscore, The first letter must be alphabeticora "§".

¢ VS Pascal unsigned integer. (See "Types of Canstants” on page 36.)

* The following special symbols:

+ - N / -> @ ¢

= < < o= D= > !

c ¥ L 3 * ™ =&

| & & || -~ = #
: 1= 5 3 =<

i } i* *) }* */

{s o) << >>

* Any other single character not listed here.

Figure 255 shows an example of the TOKEN procedure.

I = 2
TOKEN(I,', Token+', RESULT) (* 1 is set to 8 *}
(* RESULT js set to 'Token I k)

Figure 255. Example of the TOKEN Procedure

Note to Figure 255: TOKEN would return the same value if | were set to 3; that is,
the leading blanks are ignored.

TRACE Procedure

TRACE writes the current list of procedures and functions pending execution (the
save chain). Each line of the listing contains:

* The name of the routine

s The statement number where the call took place

® The return address in hexadecimal

e The name of the unit that contained the calling procedure.

Figure 256 shows the definition of the TRACE procedure.

PROCEDURE TRACE(VAR f : TEXT);

Where Represents
f A text file that will receive the trace listing

Figure 256. Definition of the TRACE Procedure

Chapter 8. Routines 173

TRUNC Function

TRIM Function

TRIM returns the value of the specified parameter with all trailing blanks removed.

Note: Although TRIM is better suited to pure SBCS and pure DBCS strings, it can
be used for mixed strings. TRIM manipulates mixed strings in a byte-oriented
manner. However, MTRIM is usually used for mixed strings.

Figure 257 shows the definition of the TRIM function.

FUNCTION TRIM(CONST source : STRING)
: STRING;

FUNCTION TRIM(CONST source : GSTRING)
: GSTRING;

Where Represents
source A string expression

Figure 257. Definition of the TRIM Function

Figure 258 shows an example of the TRIM function.

TRIM(' A B ") (* yields ' A B' *)
TRIM(®) (* yields ‘' %)
TRIM('<.A.b.b.b>'G) (* yields '<.A>'G ¥)

Figure 258. Example of the TRIM Function

TRUNC Function
TRUNC converts a real expression to an integer expression by truncating the
operand toward zero. Figure 259 shows the definition of the TRUNC function.

FUNCTION TRUNC(r : REAL)
: INTEGER;

FUNCTION TRUNC(s : SHORTREAL)

: INTEGER;
Where Represents
r An expression with a real value
S An expression with a shortreal value

Figure 259. Definition of the TRUNC Function

174 VS Pascal Language Reference

UNPACK Procedure

Figure 260 shows an example of the TRUNC function.

TRUNC(1.0) (* IS 1 *)
TRUNC(1.1) (* IS 1 %)
TRUNC(1.5) (* IS 1 *)
TRUNC(1.9) (* IS 1 %)
TRUNC(0.0) (* IS 0 %)
TRUNC(-1.0) (* IS -1 *)
TRUNC(-1.1) (* IS -1 %)
TRUNC(-1.5) (* 1S -1 *)
TRUNC(-1.9) (* IS -1 *)

Figure 260. Example of the TRUNC Function

UNPACK Procedure

UNPACK copies elements from the packed source array to the unpacked target
array, starting with the specified element of the target array. The types of the
elements of the two arrays must be identical. However, in LANGLVL(EXTENDED),
if the array elements are subranges, they need only have identical bounds.
Figure 261 shows the definition of the UNPACK procedure.

PROCEDURE UNPACK(CONST source : pack-array-type;
VAR target : array-type;
index : index-of-target);

Where Represents

source A packed array

target An array variable

index An expression that is compatible with the index of target

Figure 261. Definition of the UNPACK Procedure

It is an error if the number of elements in the packed source array is greater than
the number of elements used in the target array.

Chapter 8. Routines 175

UPDATE Procedure

Figure 262 shows an example of the UNPACK procedure.

Assuming the following declarations:

A : ARRAY[M..N] OF T;
Z : PACKED ARRAY[U..v] OF T;

The example:
UNPACK(Z, A, I);
is equivalent to:

K:=1;
FOR J := LBOUND(Z) TO HBOUND(Z) DO
BEGIN
ALK] := Z[J];
IF J <> HBOUND(Z) THEN
K:= SUCC(K);
END;

where J and K are temporary variables.

Figure 262. Example of the UNPACK Procedure

UPDATE Procedure
UPDATE opens a record file for both input and output (updating). A PUT operation
replaces a file component obtained from a preceding GET operation. The
execution of UPDATE causes an implicit GET of the first file component (as in
RESET).

Figure 263 shows the definition of the UPDATE procedure.

PROCEDURE UPDATE(VAR f : filetype;
CONST s : STRING);

Where Represents

f A record file variable.

s An optional string of file dependent options to be used in opening the file (see
Appendix C, “Options for Opening Files” on page 252 for further information
about the options for opening files)

Figure 263. Definition of the UPDATE Procedure

176 vS Pascal Language Reference

WRITE Procedure

Figure 264 shows an example of the UPDATE procedure.

VAR
FILEVAR : FILE OF RECORD
CNT : INTEGER;

END;

BEGIN
UPDATE(FILEVAR); (*open and get *)
WHILE NOT EOF(FILEVAR) DO
BEGIN
FILEVAR@.CNT := FILEVAR@.CNT+1;
PUT(FILEVAR): (*update last element*)
GET(FILEVAR); (*get next element*)
END;
END:

Figure 264. Example of the UPDATE Procedure

USEHEAP Procedure

USEHEAP sets the current heap using a previously set heap-id. Figure 265 shows
the definition of the USEHEAP procedure.

PROCEDURE USEHEAP(p : pointer);

Where Represents
p A heap-id

Figure 265. Definition of the USEHEAP Procedure

Figure 203 on page 148 shows how USEHEAP is used in conjunction with
NEWHEAP, QUERYHEAP, and DISPOSEHEAP.

WRITE Procedure (for Record Files)

WRITE writes data to record files. Each call to WRITE writes the value of each
expression in the call to a new record in the specified file. Figure 266 shows the
definition of the WRITE procedure (for record files).

PROCEDURE WRITE(VAR f : FILE OF t;
el,e2...: t);

Where Represents
f A file variable
e1, e2... Alist of expressions whose types match the file component type of f

Figure 266. Definition of the WRITE Procedure (for Record Files)

Chapter 8. Routines 177

WRITE and WRITELN Procedure

Figure 267 shows an example of the WRITE procedure for record files.

Coding:
WRITE(f,e)

is equivalent to the compound statement:

BEGIN
f@ := e;
PUT(f);
END;

Figure 267. Example of the WRITE Procedure for Record Files

You can output more than one expression on each call by separating each
expression with a comma. The effect is the same as multiple calls to WRITE. This
implies that the variables are read in a left-to-right order. Figure 268 shows an
example of multiple expressions on WRITE.

Coding:
WRITE(f,el,e2);
is equivalent to:

BEGIN
WRITE(f,el);
WRITE(f,e2);

END;

Figure 268. Example of Multiple Expressions on WRITE

Data is written to the file in its internal representation.

WRITE and WRITELN Procedures (for Text Files)
WRITE and WRITELN write data to a text file.

WRITE writes character data to a text file. The data is obtained by converting the
expression to appropriate output form. The file parameter is optional; the default

file is OUTPUT.

WRITELN writes out data (if any expressions are specified) the same way as
WRITE, and then moves the file pointer to the beginning of the next line.

Figure 269 on page 179 shows the definition of the WRITE and WRITELN
procedures (for text files).

178 VS Pascal Language Reterence

WRITE and WRITELN Procedure

PROCEDURE WRITE(VAR f : TEXT;
e : see below);

PROCEDURE WRITELN(VAR f : TEXT;
e : see below);

PROCEDURE WRITELN(VAR f : TEXT);

Where Represents

f An optional text file; the default is the predefined file OUTPUT
e List of expressions (optional for WRITELN):
BOOLEAN

CHAR (or subrange)
DBCS Fixed String
GCHAR

GSTRING

INTEGER (or subrange)
REAL

SBCS Fixed String
SHORTREAL

STRING

Figure 269. Definition of the WRITE and WRITELN Procedures (for Text Files)
You can output more than one expression on each call by separating each
expression with a comma. The effect is the same as multiple calls to WRITE. This

implies that the variables are read in a left-to-right order.

Figure 270 shows an example of multiple expressions on WRITE and WRITELN.

Coding:
WRITELN(f,el,e2,e3);
is equivalent to:

BEGIN
WRITE(f,el);
WRITE(f,e2);
WRITE(f,e3);
WRITELN(f);

END;

Coding:
WRITE(f,el,e2);
is equivalent to:

BEGIN
WRITE(f,el);
WRITE(f,e2);

END;

Figure 270. Example of Multiple Expressions on WRITE and WRITELN

Chapter 8. Routines 179

WRITE and WRITELN Procedure

Writing Expressions with a Length: You can control the length of the resuiting
output to text files by specifying parameters on WRITE and WRITELN. Each
expression in the procedure call can be represented in one of these forms:

Form 1: expr
Form 2: expr : TotalWidth
Form 3: expr : TotalWidth : FracDigits

Expr represents the data to be placed in the file. The data is converted to
character representations from its internal form.

TotalWidth and FracDigits must evaluate to an integer value. In Standard Pascal,
TotalWidth and FracDigits must be greater than 0;in VS Pascal, any integer can be
used.

The expression TotalWidth supplies the length of the field into which the data is
written. If TotalWidth specifies a positive number, the data is placed in the field
justified to the right edge of the field. If TotalWidth specifies a negative value, the
data is justified to the left within a field whose length is ABS(TotalWidth). If
TotalWidth is O;

* No characters are written for character and Boolean data
* All characters are written for integer data
* The format of floating-point data is unpredictable.

If TotalWidth is unspecified, as in Form 1, a default value is used. See Figure 271.
FracDigits, as in Form 3, can be specified only for expressions of type REAL or
SHORTREAL. FracDigits controls the number of decimal places that will appear in

the output.

Figure 271 shows the default field widths on WRITE and WRITELN.

Type ot Expression Detault Value of TotalWidth
BOOLEAN 10

CHAR 1

DBCS fixed strings Length of array

Fixed strings Length of array
GCHAR 1

GSTRING LENGTH(expression)
INTEGER 12

REAL 20 (scientific notation)
SHORTREAL 20 (scientific notation)
STRING LENGTH(expression)

Figure 271. Default Field Widths on WRITE and WRITELN

Writing Boolean Data: Boolean data is written exactly the same as the character
strings TRUE or FALSE would be (depending on the value of the expression). The
data is placed in the field and justified according to the previously stated rules. |f
TotalWidth is zero, then no characters are written. Figure 272 on page 181 shows
examples of writing Boolean data.

180 VS Pascal Language Reference

WRITE and WRITELN Procedure

Call Result
WRITE(TRUE:10) 'bbbbbbTRUE"
WRITE(TRUE:-10) 'TRUE'
WRITE(FALSE:2) "FA'
WRITE(FALSE:0) o

Figure 272. Examples of Writing Boolean Data

Writing CHAR Data: The value of Tota/Width is used to indicate the width of the
field in which the character is to be placed. The character is placed in the field
given by TotalWidth. If TotalWidth is zero, no characters are written. Figure 273
shows examples of writing CHAR data.

Call Resull
WRITE('A':6) 'bbbbbA'’
WRITE('A':-6) 'Abbbbb'
WRITE('A':0) il

Figure 273. Examples of Writing CHAR Data

Writing DBCS Fixed String Data: |f ABS(Total/Width) is too small to hold the data,
the string is truncated on the right. If Tota/Width is zero, no characters are written.
When writing DBCS fixed string data, VS Pascal includes the shift-out and shift-in
characters.

Figure 274 shows examples of writing DBCS fixed string data.

Call Result
WRITE('<.A.B.C.D>'G:6) '<.b.b.AB.CD>'
WRITE('<.A.B.C.D>'G:-6) '<.A.B.CD.b.b>"
WRITE('<.A.B.C.D>'G:2) ‘<AB>'
WRITE('<.A.B.C.D>'G) '<.AB.C.D>'
WRITE('<.A.B.C.D>'G:0) Jy

Figure 274. Examples of Writing DBCS Fixed String Data

Writing GCHAR Data: When writing GCHAR data, the field width is the number of
characters written to the file. If the field width is zero, no characters are written.

VS Pascal creates a DBCS string, enclosed by a shift-out/shift-in pair, of the same
length as specified on the field width.

Figure 275 on page 182 shows examples of writing GCHAR data.

Chapter 8. Routines 181

WRITE and WRITELN Procedure

Call

Result

WRITELN('<.A>'G:1)

WRITELN('<.A>'G:-1)

N

I‘{-A}I

WRITELN('<.A>'G:0)

WRITELN('<.A>'G:2)

- W e B,

WRITELN('<.A>'G:-2)

'<.bA>'

Figure 275. Examples of Writing GCHAR Data

Writing GSTRING Data: When writing GSTRING data, the field width is the number
of characters written to the file. If the field width is zero, no characters are written.

Figure 276 shows examples of writing GSTRING data.

Result

WRITELN('<.B.C.D>'G:1)

WRITELN('<.B.C,D>'G:4)

i
| '<.B>"
i '< B.C.D.b>"

WRITELN('<.B.C.D>'G:0)

WRITELN('<.B.C.D>'G:-4)

|
]"f.b.B,C.DI>'

Figure 276. Examples of Writing GSTRING Data

Writing Integer Data: The expression Total/Width represents the minimum width of
the field in which the integer is to be placed. The value is converted to character
format and placed in a field of the specified length. If the field is shorter than the
size required to represent the value, the length of the field will be extended. |f
TotalWidth is zero, all digits are written.

Figure 277 shows examples of writing integer data.

Call

Result

WRITE(1234:6)

'bb1234"

WRITE(1234:-6)

'1234bb'

WRITE(1234:1})

'1234"

WRITE(1234)

'bbbbbbbb1234"'

WRITE(1234:-3)

'1234'

WRITE(1234:0)

'1234'

Figure 277. Examples of Writing Integer Data

Writing Real and Shorireal Data: Real and shortreal expressions can be written
with any one of the three operand formats. If Tota/Width is not specified (form 1),
the result will be in scientific notation in a 20-character field.

If TotalWidth is specified and FracDigits is not (form 2}, the result will be in
scientific notation, but the number of characters in the field will be the value of
TotalWidth. One decimal place is always generated, and the result is rounded to

182 VS Pascal Language Reference

WRITE and WRITELN Procedure

the last displayed decimal place. The exception is when Total/Width is zero, in
which case the result is unpredictable.

If both TotalWidth and FracDigits are specified (form 3), the data will be written in
fixed-point notation in a field with the length of TotalWidth. If FracDigits is positive,
the specified number of digits to the right of the decimal point are written. |f
FracDigits equals zero, a decimal point is written, but no decimal places are
written. If FracDigits is negative, the number is written using scientific notation as
if FracDigits were not specified.

If TotalWidth is not large enough to fully represent the number, it will be extended
appropriately. The real expression is always rounded to the last digit to be written.

Figure 278 shows examples of writing real data.

Call Result

WRITE(3.14159) 'b3.1415900000000E + 00'
WRITE(3.14159:10) 'b3.142E+ 00’
WRITE(3.14159:1) ‘b3.1E+ 00"
WRITE(3.14159:0) unpredictable results
WRITE(3.14159:10:4) 'bbbb3.1416"
WRITE(3.14159:-10:4) '3.1416bbbb’
WRITE(3.14159:10:0) 'bbbbbbbb3."
WRITE(3.14159:10:-1) 'b3.142E+00'

Figure 278. Examples of Writing Real Data

Writing SBCS Fixed String Data: If ABS(7otal/Width) is too small to hold the data,
the string is truncated on the right. If TotalWidth is zero, no characters are written.

Figure 279 shows examples of writing SBCS fixed string data.

Call Result
WRITE('ABCD':6) 'bbABCD'
WRITE('ABCD':-6) 'ABCDbb'
WRITE('ABCD':2) 'AB'
WRITE('ABCD':-2) 'AB'
WRITE('ABCO') 'ABCD'
WRITE('ABCD':0) Al

Figure 279. Examples of Writing SBCS Fixed String Data
Writing String and Mixed String Data: When writing string data, if ABS(Tota/Width)

is too small te hold the data, the string is truncated on the right. If TotalWidth is
zero, then no characters are written.

Chapter 8. Routines 183

WRITESTR Procedure

Figure 280 shows examples of writing string data.

Call Result
WRITE('ABCD':6) 'bbABCD'
WRITE('ABCD':-6) 'ABCDbb'
WRITE('ABCD':2) 'AB'
WRITE('ABCD':-2) 'AB'
WRITE('ABCD') 'ABCD'

WRITE('ABCD':0) Wl

Figure 280. Examples of Writing String Data

| When writing mixed string data, the field width is the number of SBCS characters
I written to the file. If the field width is zero, no characters are written.

| Figure 281 shows examples of writing mixed string data.

-

| call Result

i WRITE('<.A.B>c':2) ['<.!

| WRITE('<.A.B>c':0) | "'

Figure 281. Examples of Writing Mixed String Data

For more information on the WRITE and WRITELN procedures (for text files), see
the VS Pascal Application Programming Guide.

WRITESTR Procedure

WRITESTR converts expressions into character data and stores the data into a
string variable.

The actions of WRITESTR are identical to those of WRITE, except that the target of
the data is a string rather than a text file. (See "WRITE and WRITELN Procedures
(for Text Files)" on page 178.) WRITESTR is especially useful for converting data
into strings.

Figure 282 on page 185 shows the definition of the WRITESTR procedure.

184 VS pPascal Language Reference

C

WRITESTR Procedure

PROCEDURE WRITESTR(VAR s : STRING;
e : see below);

Where Represenis

s A string variable
e A list of one or more of these expression types:
BOOLEAN

CHAR (or subrange)
DBCS Fixed String
GCHAR

GSTRING

INTEGER (or subrange)
REAL

SBCS Fixed String
SHORTREAL

STRING

Figure 282. Definition of the WRITESTR Procedure

If the string variable s appears in the expression list of WRITESTR, the value of s

will be unpredictable.

As in the WRITE procedure, the expressions being converted can be qualified with

a field length expression.

Figure 283 shows an example of the WRITESTR procedure.

VAR
1,J: INTEGER;
S : STRING(100);
R : REAL;
CH : CHAR;
BEGIN
1 :=10;
J = -123;
R := 3.14159;
EHi z= Toeky
WRITESTR(S,I:3,J:5,'ABC',CH,
R:5:2):
END;

The variable S is assigned:
' 10 -123ABC* 3.14!

Figure 283. Example of the WRITESTR Procedure

Figure 284 on page 186 shows an example of coding that has the same effect as

WRITESTR.

Chapter 8. Routines

185

CMS Procedure

Coding:
WRITESTR(s,el,e2);
has the same effect as coding:

WRITELN(f,el,e2);
READ(f,s);

where { is an optional text file.

Figure 284. Example of Code Equivalents to WRITESTR

Note: An error results if all variables are filled before all expressions are written.

Additional Routines

CMS Procedure

The routines in this chapter, with the exception of LPAD and RPAD, are not
predefined and can be passed as parameters to other routines. You can access
these routines by coding a %INCLUDE compiler directive in your source. The
routines are:

CMS ONERROR
ITOHS PICTURE
LPAD RPAD

CMS issues a CMS command.

Figure 285 shows the definition of the CMS procedure.

PROCEDURE CMS(CONST s : STRING;
VAR rc & INTEGER);

EXTERNAL;
Where Represents
s A string that is to be executed
rc The return code

Figure 285. Definition of the CMS Procedure

The string specified by s is passed to CMS (via SVC 202 or 204) to be executed.
The command must not overlay the Pascal program (at X'20000' in VM/SP, for
example), or issue a storage initialization (STRINIT). The command can run in the
nucleus or transient area, or run as a nucleus extension. See the appropriate CMS
manuals.

You must code the declaration as shown in Figure 286 on page 187, or use the
%INCLUDE member named "CMS" provided in the VS Pascal library. This
procedure can be used under CMS only.

Figure 286 on page 187 shows an example of the CMS procedure.

186 VS Pascal Language Reference

«

«

ITOHS Function

LPAD Procedure

LPAD Procedure

%INCLUDE CMS

CMS('CP Q T', RET);

Figure 286. Example of the CMS Procedure

Note: If you want to execute a CP command or an EXEC, the command string must
begin with CP or EXEC, respectively.

ITOHS returns a string containing the hexadecimal representation of an integer.

Figure 287 shows the definition of the ITOHS procedure.

FUNCTION ITOHS(i : INTEGER)
: STRING(8);
EXTERNAL;

Where Represents
f An integer expression

Figure 287. Definition of the ITOHS Function

You must code the declaration as shown in Figure 287, or use the %INCLUDE
member named "CONVERT" provided in the VS Pascal library.

Figure 288 shows an example of the ITOHS function.

%INCLUDE CONVERT

WRITELN('The value ',1:0,
¥ s "y ITOHSLLY,
' in hexadecimal.'):

Figure 288. Example of the ITOHS Function

LPAD pads or truncates a string on the left. It only works with string data; you must
use the predefined LPAD procedure to manipulate DBCS string data.

The non-predefined LPAD procedure is a program interface intended to be used
only when migrating from VS Pascal Release 1 to Release 2, and for no other
purposes,

For further information on the LPAD procedure, see “"LPAD Procedure" on
page 133.

Chapter 8. Routines 187

ONERROR Procedure

ONERROR Procedure

ONERROR provides a way for you to gain control when run-time errors occur.
When a run-time error occurs, the ONERROR procedure is called to perform any
necessary action before generating an error message.

You must code the declaration as shown in Figure 289 or use the %INCLUDE
member named "ONERROR"” provided in the VS Pascal library.

Figure 289 shows the declaration of the ONERROR procedure.

(***W*ti****1’*!\‘******ﬂ*z'{**i**ir******W‘l*IWt***t*****************ﬂ**w**)
(* *)
(* RUNTIME ERROR INTERCEPTION ROUTINE %)
(* *)

{****l-*****t**it**x***\k*****i***\lnhk**********t*********t**t************}

TYPE

ERRORTYPE = 1 .. 999; (*number of execution errors *)
ERRORACTIONS = ((*action to be performed)
XHALT, (*terminate program *y
XPMSG, (*print pascal diagnostic *)
XUMSG, (*print user's message *
XTRACE, (*produce a trace back *)
XDEBUG, (*invoke the debugger)
XDECERR, (*decr error counter *)
XRESERVEDG, (*RESERVED ®])
XRESERVED7, (*RESERVED *)
XRESERVEDS, (*RESERVED *)
XRESERVEDS, (*RESERVED %y
XRESERVEDA, (*RESERVED)
XRESERVEDB, (*RESERVED *)
XRESERVEDC, (*RESERVED)
XRESERVEDD, (*RESERVED %)
XRESERVEDE, (*RESERVED *)
XRESERVEDF) ; (*RESERVED *)

ERRORSET = SET OF ERRORACTIONS;

PROCEDURE ONERROR(

CONST FERROR ¢ ERRORTYPE; (*ERROR NUMBER %}
CONST FMODNAME : STRING; (*MODULE NAME WHERE OCCURRED *)
CONST FPROCNAME : STRING; (*PROCEDURE WHERE OCCURRED *)
CONST FSTMTNO : INTEGER; (*STATEMENT NO *)
VAR FRETMSG : STRING; (*RETURNED USER'S MESSAGE *)
VAR FACTION : ERRORSET): (*ACTIONS TO BE PERFORMED .y

EXTERNAL;

Figure 289. Declaration of the ONERROR Procedure

See VS Pascal Application Programming Guide for further information about the
ONERROR procedure.

188 VS Pascal Language Reference

PICTURE Function

PICTURE Function

PICTURE returns the string representation of a real number formatted according to
a "picture" specification. The characters that make up the picture specification are
similar to those found in PL/| and COBOL. Figure 290 shows the definition of the
PICTURE function.

FUNCTION PICTURE(CONST p : STRING;
r : REAL): STRING(100);

EXTERNAL;
Where Represents
p A picture specification
r A real expression

Figure 290. Definition of the PICTURE Function

You must code the declaration as shown in Figure 290, or use the %INCLUDE
member named "CONVERT" provided in the VS Pascal library.

A picture specification consists of two fields: a decimal field and an exponent field.
The latter is optional, but the first one is always required.

The decimal field can consist of two subfields: the integer part and the fractional
part. The latter is optional, but the first one is always required.

Picture characters can be specified in lowercase. A picture character can be
grouped into the following categories:

* Digit and decimal-point specifiers

9 specifies that the associated position in the data item is to contain a
decimal digit.

V divides the decimal field into two parts: the integer part and the fractional
part. This character specifies that a decimal point is assumed at this
position in the associated data item.

Note: However, V does not specify that an actual decimal point is to be
inserted. The integer and fractional parts of the assigned value are aligned
on the V character. Therefore, an assigned value can be truncated or
extended with zeroes at either end. If no V character appears, aV is
assumed at the right end of the decimal field.

* Zero-suppression characters

Z specifies a conditional digit position in the character string value and
causes a leading zero to be replaced with a blank.

specifies a conditional digit position in the character string value and
causes a leading zero to be replaced with an asterisk (“*").

Leading zeros are those that occur in the left-most digit positions of the integer
part of floating-point numbers.

Chapter 8. Routines 189

PICTURE Function

Insertion characters

Insertion characters are added into corresponding positions in the output string
provided that zero suppression is not taking place. If zeros are being
suppressed when an insertion character is encountered, a blank or an asterisk
will be inserted in the corresponding place in the output string, depending on
whether the zero-suppression character is a Z or an asterisk (*).

, causes acomma to be inserted into the associated position of the output
string.

. causes a point (.) to be inserted into the associated position of the output
string. The character never causes point alignment in the number. That
function is served solely by the character V.

B causes a blank to be inserted into the associated position of the output
string.

Signs and currency symbol

The sign and currency characters (“S", “+", “-", "$") can be used in either a
static or a drifting manner. The static use specifies that a sign, a currency
symbol, or a blank always appears in the associated position. The drifting use
specifies that leading zeros are to be suppressed.

A drifting character is specified by multiple use of that character in a picture
field.

+ specifies a plus sign character (+) if the number is > =0, otherwise it
specifies a blank.

- specifies a minus sign character (-) if the number is <0; otherwise it
specifies a blank.

S specifies a plus sign character (+) if the number is > =0, otherwise it
specifies a minus sign character (-).

$ specifies a dollar sign character ($).
Exponent specifiers.

The characters “E" and "K” delimit the exponent field of a picture
specification. The exponent field must always be the last field.

E specifies that the associated position contains the letter E, which indicates
the start of the exponent field.

K specifies that the exponent field appears to the right of the associated
position. It does not specify a character data item.

See Figure 291 on page 191 for examples of using the PICTURE function,

190 vS Pascal Language Reference

-

P

RPAD Procedure

R R PICTURE(P,R)
'99999" 123.0 '00123'
22779 123.0 S
Ly 123.0 *%123"
YIZzg’ 0.0 ! 0
Iz 0.0 ' :
‘****9' O.G |****0|
lhkkdhk | G'G I devdedk ek |
'$9999' 123.0 '+0123"
*+9999" 123.0 '+0123"
'+9999" -123.0 ' 0123’
'999.99' -123.456 '001.23'
'999v.99' 123.456 '123.46'
'227,117,119' 123456.0 : 123,456’
T ey 123456.0 tiekw] 23 456"
'=71,211,719' —123456.0 ‘- 123,456'
i =i —123456.0 ' -123,456'
F§k Sk wxQV /99! 123456.78 '§***123,456.78'
'$$$,$9%,589v.99' 123456.78 " $123,456.78'
'S9V.9999ES99' 1.23456 '+1.2346E+00'
'S9V.9999KS99' 1.23456 '+1.2346+00'
'-999.999,v99" 1234.567 ' 001.234,57'
'-9.999E9' -1234.567 '-1,235E0'
'9B9B9B9IBIBY' 123456.0 '12 34 56
'9.9,9.9.9.9" 12345.0 '0.1.2.3.4.5'
'99999s" —12345.0 '12345~"
'999+' —123.45 "123
'999+! +123.45 i b ol
'717Z.V99' 0.12 ' 12"
'Z27IV.99' 0.12 R 7'
'—9V.999ES9’ 1.23€4 " 1.230E+4'
'S9999VESZ9' —-123456.0 '=3235E% 2
'—V.999E-99' 123456.0 " .123E 06'

Figure 291. Examples of the PICTURE Function

| RPAD Procedure

‘ RPAD pads or truncates a string on the right. It only works with string data; you

| must use the predefined RPAD procedure to manipulate DBCS string data.

| The non-predefined RPAD procedure is a program interface intended to be used
l only when migrating from VS Pascal Release 1 to Release 2, and for no other

| purposes.

| For further information on the RPAD procedure, see “RPAD Procedure” on
| page 165.

Chapter 8. Routines 191

. Chapter 9. Expressions

193

Chapter 9. Expressions

VS Pascal expressions are similar in function and form to expressions found in
other high-level programming languages. Expressions permit you to combine data
according to specific computational rules. The type of computation to be
performed is directed by four classes of operators. These four classes, according
to precedence, are:

1. The NOT operator (highest)

2. The multiplication operators

3. The addition operators

4. The relational operators (lowest).

An expression is evaluated by applying the operators of highest precedence first,
operators of the next precedence second, and so forth. Operators of equal
precedence are applied in a left to right order. If an operator has an operand that
is a subexpression enclosed within parentheses, the subexpression is evaluated
before applying the operator.

The operands of an expression can be evaluated in either order; therefore, do not
expect the left operand of a dyadic operator to be evaluated betore the right
operand. For example, if one operand contains a function call which modifies a
variable used by the other operand, the value used for the variable is
unpredictable. The only exception to this evaluation order is with Boolean
expressions involving the logical operations of AND (or &) and OR (or |). In these
operations, the right operand is not evaluated if the result can be determined from
the left operand. See “BOOLEAN Expressions” on page 199 for further
information.

Figure 292 on page 195 shows the syntax of VS Pascal expressions.

194 VS Pascal Language Reference

Constant Expression or Expression
»»——simple-expression |

A\
A

]

= simple-expression
L oes]

e

Simple Expression

> term
—]]

A\
A

A\
A

-factor

Factor

»—'—funct icn-call

—variable

——set-~constructor
(—expr-)

Es tructured-constant

\ 4
A

|

NOT-factor
unsigned-constant

Figure 292. Syntax of VS Pascal Expressions
Note to Figure 292: Because simple-expressions are prefaced with signs,

confusion can arise when using signs on the operands. Figure 293 on page 196
shows examples of valid and invalid usage of signs in simple expressions.

Chapter 9. Expressions 195

C = -7;

X = (MOD 4; (* yields 1

Y = -7 MOD 4; (* yields -3 because it is treated
(* as -(7 MOD 4)

Z = 7 DIV -4; (* Error: -4 must be in parentheses

* * X

— e e e

Figure 293. Examples of Using Signs in Simple Expressions

Figure 294 shows examples of VS Pascal expressions.

Assume the Following Declarations:

CONST
ACME = 'ACME';

TYPE
COLORS = (RED, YELLOW, BLUE);
SHADES = SET OF COLORS;
DAYS = (SUN, MON, TUES, WED, THUR, FRI, SAT);
MONTHS = (JAN, FEB, MAR, APR, MAY, JUN,
JuL, AUG, SEP, OCT, NOV, DEC);

BOOL AND 0DD(I)

VAR

COLOR : COLORS;

SHADE : SHADES;

BOOL : BOOLEAN;

MON : MONTHS

I,

J . INTEGER;

Factors:
I Variable
15 Unsigned constant
(I*8+J) Parenthetical expression
[RED] Set of one element
[1] Empty set
0DD(I*J) Function call
NOT BOOL Complement expression
COLORS(1) Ordinal conversion
ACME Constant reference
Terms:

I Factor
I *J Multiplication
I DIV J Integer division
SHADE * [RED] Set intersection
I & '"FFOO'X Logical AND on integers

Boolean AND

Figure 294 (Part 1 of 2). Examples of VS Pascal Expressions

196 VS Pascal Language Reference

Simple Expressions:

L+
I+

I | '80000000'X
SHADE + [BLUE]
-1

ACME || ' TRUCKING'

Expressions:

I+J
RED = COLOR
RED IN SHADE

Term

Addition

Logical OR on integers
Set union

Unary minus on an integer
Catenation

Simple expression
Test for equality
Test for set inclusion

Figure 294 (Part 2 of 2). Examples of VS Pascal Expressions

Operators

Operators are the special symbols (such as “ + ", for addition) and words (such as
DIV, tor integer division) that represent algebraic or logical processes to be
performed on a value or pair of values. Operands are the values manipulated by
operators. Operators manipulate operands to produce results.

Figures 295, 296, 297, and 298 are organized by precedence, with the NOT
operators taking highest precedence. The names for the operators are given
according to the main operators in each group.

The NOT Operators

The Multiplication Operators

Operator Operation Operands Result
NOTor — Boolean NOT BOOLEAN BOOLEAN
NOT or — Logical one's complement INTEGER INTEGER
NOT or — Setcomplement SET OF t SET OF t
Figure 295. NOT Operators
Operator Operation Operands Result
: Multiplication INTEGER INTEGER
SHORTREAL SHORTREAL
REAL REAL
Mixed REAL
) Set intersection SET OF t SET OF t

Figure 296 (Part 1 of 2). Multiplication Operators

Chapter 9. Expressions

197

Operator Operation Operands Result

/ Real division INTEGER REAL
SHORTREAL SHORTREAL
REAL REAL
Mixed REAL

DIV Integer division INTEGER INTEGER

MOD Modulo INTEGER INTEGER

AND or & Boolean AND BOOLEAN BOOLEAN

AND or & Logical AND INTEGER INTEGER

< < Logical left shift INTEGER INTEGER

> > Logical right shift INTEGER INTEGER

Figure 296 (Part2 of 2). Multiplication Operators

The Addition Operators

Operator Operation Operands Resulit

+ Addition INTEGER INTEGER
SHORTREAL SHORTREAL
REAL REAL
Mixed REAL

+ Set union SET OF t SET OF t

+ or || String concatenation STRING STRING
GSTRING GSTRING

- Subtraction INTEGER INTEGER
SHORTREAL SHORTREAL
REAL REAL
Mixed REAL

- Set difference SET OF t SET OF t

OR or | Boolean OR BOOLEAN BOOLEAN

OR or | Logical OR INTEGER INTEGER

> 0T Boolean XOR BOOLEAN BOOLEAN

XOR or

&&

> < or Logical XOR INTEGER INTEGER

XOR or

&&

> < or Set symmetric SET OF t SET OF t

XOR or difference

&&

Figure 297. Addition Operators

198 VS Pascal Language Reference

The Relational Operators

Operator Operation Operands Result

= Compare equal Any set, scalar, pointer or string BOOLEAN
<> or Not equal Any set, scalar, pointer or string BOOLEAN
< Less than Scalar type or string BOOLEAN
gL= Compare < or = Scalar type or string BOOLEAN
<= Subset SET OF t BOOLEAN
> Compare greater Scalar type or string BOOLEAN
> = Compare > or = Scalar type or string BOOLEAN
> = Superset SET OF t BOOLEAN
IN Set membership tand SET OF t BOOLEAN

Figure 298. Relational Operators

Note to Figure 298: Relational operators manipulate DBCS and mixed strings in a
byte-oriented manner.

BOOLEAN Expressions

Pascal assigns higher precedences to logical operators than to relational
operators. This means that the expression:

is

A<B AND C<D
evaluated as:
(A < (B AND C)) < D.

Thus, it is advisable to use parentheses when writing expressions of this sort.

VS Pascal optimizes the evaluation of Boolean expressions involving AND and OR
so that the right operand of the expression is not evaluated if the result of the
operation can be determined by evaluating the left operand. For example, if A, B,
and C are Boolean expressions and X is a Boolean variable, the evaluation of:

is

IF A OR B OR C
THEN S;

performed as:

IF A
THEN S
ELSE
IF B
THEN S
ELSE
IF C
THEN S;

Chapter 9. Expressions

199

The evaluation of:

IF A AND B AND C
THEN S;

is performed as:

IF NOT A
THEN
ELSE
IF NOT B
THEN
ELSE
IF C
THEN S;

This type of evaluation is called short circuiting or anchor pointing. The evaluation
of the expression is always from left to right.

Usage:

¢ |f you use a function in the right operand of a Boolean expression, the function
might not be evaluated. If you rely on a side effect of that function, your
program might not work. Note that relying on such side effects denotes an
undesirable programming practice; functions should not modify global
variables or contain VAR parameters.

e Not all Pascal compilers support this interpretation of Boolean expressions. To
ensure portability between VS Pascal and other Pascal implementations, write
the compound tests in a form that uses nested IF statements.

Figure 299 demonstrates logic that depends on the conditional evaluation of the
right operand of the AND operator. If both operands in the WHILE statement were
always evaluated, a NIL pointer checking error would occur when P had the value

of NIL.
TYPE
RECPTR = GREC;
REC = RECORD
NAME: ALPHA;
NEXT: RECPTR;
END;
VAR
P : RECPTR;

LNAME : ALPHA;
BEGIN
WHILE (P<>NIL) AND
(P@.NAME <> LNAME)

0o
P 1= P@.NEXT;

END;

Figure 299. Example of a Boolean Expression

200 vs Pascal Language Reference

Constant Expressions

Constant expressions are expressions that can be evaluated by the compiler and
replaced with a result at compile time. By its nature, a constant expression cannot
contain a reference to a variable or to a user-defined function. Constant
expressions can appear in constant declarations, record variant tag lists, and
CASE constant lists.

Figure 300 shows the predefined functions permitted in constant expressions.

Function Description

ABS Returns the absolute value of a number

CHR Returns the EBCDIC character of an expression

FLOAT Converts an integer to a floating-point value

GSTR Converts a GCHAR or a DBCS fixed string to a GSTRING
HBOUND Returns the upper bound of a dimension of an array
HIGHEST Returns the maximum value of an expression

LBOUND Returns the lower bound of a dimension of an array

LENGTH Returns the current length of a string

LOWEST Returns the minimum value of an expression

MAX Returns the maximum value of a list of expressions
MAXLENGTH Returns the maximum length of a string

MIN Returns the minimum value of a list of expressions

OobD Returns TRUE if an expression is odd

ORD Converts a value to an integer, scalar, or pointer expression
PRED Obtains the predecessor of an expression

ROUND Converts a floating-point expression to an integer by rounding
SIZEOF Returns the storage size of a value

SQR Returns the square of a number

STR Converts a CHAR or an SBCS fixed string to a STRING
SuUcCcC Obtains the successor of a type

TRUNC Converts a floating-point expression to an integer by truncating

Figure 300. Predefined Functions Permitted in Constant Expressions

Figure 301 shows examples of constant expressions.

Constant Expression Type
ORD{'A") INTEGER
SUCC(CHR(15"16)) CHAR
256 DIV 2 INTEGER

Figure 301 (Part 1 of 2). Examples of Constant Expressions

Chapter 9. Expressions

201

Constant Expression Type

'TOKEN'[|STR(CHR(0)) STRING
'8000'X | '0001'X INTEGER
['0'..'9"] SET OF CHAR
32768*2-1 INTEGER

Figure 301 (Part 2 of 2). Examples of Constant Expressions

Logical Expressions

Many of the integer operators provided in VS Pascal perform logical operations on
their operands; the operands are treated as unsigned strings of binary digits
instead of signed arithmetic quantities. For example, if the integer value of -1 is an
operand of a logical operation, it is viewed as a string of binary digits with a
hexadecimal value of 'FFFFFFFF'X.

The logical operations are defined to apply to 32-bit values. Such an operation on
a subrange of an integer can possibly yield a result outside the subrange.

Figure 302 shows those operators which perform logical operations on integer

"y

operands.

Operator Operation

& or AND Performs a bit-wise AND

| or OR Performs a bit-wise inclusive OR -

> < or XOR or && Performs a bit-wise exclusive OR

— or NOT Performs a one’s complement

< Shifts the left operand value |eft by the number of bits indicated
(zeros are shifted in trom the right)

> > Shifts the left operand value right by the number of bits

indicated (zeros are shifted in from the left)

Figure 302. Logical Operators for Integer Operands

Figure 303 shows examples of logical operations.

257 & 'FF'X (* yields 1 *)
2148 (* yields 14 *)
4 << 2 (* yields 16 *)
-4 << 1 (* yields -8 *)
8 >>1 (* yields 4 *)
-8 >>1 (* yields '7FFFFFFC'X *)
'FFFF'X >> 3 (* yields 'LFFF'X *)
-1 & 'FF'X (* yields 'FE'X %)
-0 (* yields -1 *)
'FF'X 8& 8 (* yields 'F7'X *)

Figure 303. Examples of Logical Operations

202 vs Pascal Language Reference

(./

Function Calls

A function returns a value to the invoker. A call to a function passes the actual
parameters to the corresponding formal parameters. Parameter compatibility
rules are defined in “Routine Parameters” on page 105.

If a user-declared function requires no parameters, an empty set of parentheses
can be used on a function call to distinguish the function call from a variable or
constant reference. Figure 304 shows the syntax of a function call.

A

»——id-function (| expr) —

Figure 304. Syntax of a Function Call

Figure 305 shows an example of a function call.

VAR
A,B,C: INTEGER;

FUNCTION SUM(A, B : INTEGER) : INTEGER;
BEGIN

SUM := A + B;

END;

BEGIN
C := SUM(A, B) * 2;

END;

Figure 305. Example of a Function Call

Ordinal Conversions

The predefined function ORD converts any ordinal value into an integer. The
ordinal conversion functions convert an integer into a specified ordinal type. An
integer expression is converted to another ordinal type by enclosing the
expression within parentheses and prefixing it with the type identifier of the
desired ordinal type. The conversion is performed in such a way as to be the
inverse of the ORD function. See "ORD Function" on page 150.

Figure 306 on page 204 shows the syntax of an ordinal conversion.

Chapter 9. Expressions 203

p——id-type——(—expr—) ><

Figure 306. Syntax of an Ordinal Conversion

By definition, the expression CHAR(x) is equivalent to CHR(x), INTEGER(x) is
equivalent to x, and ORD(type(x)) is equivalent to x. Also, REAL(x) is equivalent to
FLOAT(x) for real numbers, and SHORTREAL(x) is equivalent to FLOAT(x) for
shortreal numbers.

Note: Although REAL and SHORTREAL are not ordinal types, they can be used as
ordinal conversion functions.

Figure 307 shows examples of the ordinal conversion function.

TYPE

DAYS = (SUN, MON, TUE, WED,

THU, FRI, SAT);

DAYS(0) (* IS SUN *)
DAYS(3) (* IS WED *)
DAYS(6) (* IS SAT *)
DAYS(7) (* IS AN ERROR *)
BOOLEAN(0) (* IS FALSE %)
BOOLEAN(1) (* IS TRUE *)

Figure 307. Examples of the Ordinal Conversion Function

Set Constructors

A set constructor is used to compute the value of a SET within an expression.
Figure 308 shows the syntax of a set constructor.

i ,

»— expr L_

A\
A

]]

..—expr

Figure 308. Syntax of a Set Constructor

The set constructor is either a list of expressions separated by commas or groups
of expression pairs within square brackets. An expression pair designates that all
values from the first expression through the last expression are to be included in
the resulting set; if the value of the first expression is greater than the value of the
second expression, no values are designated. All expressions must be of
compatible types. This type becomes the base scalar type of the set. If the set
specifies INTEGER expressions, then there is an implementation restriction of 256
elements permitted in the set. Figure 309 on page 205 shows an example of a set
constructor.

204 vs Pascal Language Reference

(‘\

TYPE
DAYS = SET OF

{SUN,MON,TUE ,WED,THU, FRT, SAT) ;
CHARSET= SET OF CHAR;

VAR
WORKDAYS,
WEEKEND: DAYS;
NONLETTERS: CHARSET;

BEGIN

WORKDAYS := [MON..FRI];
WEEKEND := — WORKDAYS;
NONLETTERS :=

2 T L 5 A) -

END;

Figure 309. Example of a Set Constructor

Chapter 9. Expressions

205

Chapter 10. Statements °

Statements direct the compiler to perform specific operations on data. Statements
also control the execution of a program. Statements can be simple, as in an
assignment statement, or structured, as in a compound statement including BEGIN
and END keywords. VS Pascal statements are similar to those found in most
high-level programming languages. Figure 310 shows the syntax of VS Pascal
statements.

v
A

Pp statement
L-*-*Zabel—- : —J

Where Represents
fabel Optional [abel
statement Any VS Pascal statement

Figure 310. Syntax of VS Pascal Statements o
Note to Figure 310: The label must be declared in the routine that contains the
statement. The occurrence of a label before a statement is said to “define"” the

label.

Figure 311 summarizes the VS Pascal statements.

See

Statement Description Page °
ASSERT Checks for a condition and signals a run-time error if the 209

condition is not met
Assignment Assigns a value to a variable 209
CASE Permits a program to execute one member of a list of 211

possible statements based upon the evaluation of an

expression
Compound Brackets a series of statements that are to be executed 214

sequentially o
CONTINUE Causes a jJump to the loop-continuation portion of the 215

innermost enclosing FOR, WHILE, or REPEAT

Empty Serves as a place holder and has no effect on the execution 215
of the program

FOR Causes a statement to execute a specified number of times 216
GOTO Changes the fiow of control within a program 219
IF Specifies that one of two statements is to be executed 220

depending on the evaluation of a Boolean expression

LEAVE Causes an immediate, unconditional exit from the 222
Innermost enclosing FOR, WHILE, or REPEAT

Procedure call Invokes a procedure 223

Figure 311 (Part 1 of 2). Summary of VS Pascal Statements °

208 Vs Pascal Language Reference

See
Statement Description Page

REPEAT Causes statements between the statement delimiters 223
HEPEAT and UNTIL to be executed until the control
expression is true

RETURN Permits an exit from a procedure or a function 224

WHILE Causes a statement to be executed as long as a control 225
expression evaluates to true

WITH Simplifies references to a record variable by eliminatingan 225
addressing description on every reference to a field

Figure 311 (Part2 of 2). Summary of VS Pascal Statements

VS Pascal Statements

ASSERT Statement

ASSERT checks for a specific condition and signals a run-time error if the condition
is not met. The condition is specified by an expression that must evaluate to a
Boolean value. If the condition is not true, the error is issued. The compiler might
remove the statement from the object program if it can be determined that the
assertion is always true. Figure 312 shows the syntax of the ASSERT statement.

p»——ASSERT expr >4
Where Represents

ASSERT Statement keyword

expr A Boolean expression

Figure 312. Syntax of the ASSERT Statement

Figure 313 shows an exampie of the ASSERT statement.

ASSERT A >= B

Figure 313. Example of the ASSERT Statement

Note to Figure 313: If A is greater than or equal to B, the expression is true and no
action is taken; otherwise, an error will be indicated.

Assignment Statement
The assignment statement assigns a value to a variable or a function result. This
statement is composed of a reference to a variable followed by the assignment
symbol (“:="), followed by an expression that, when evaluated, is the new value.
The value must be assignment compatible with the variable. The rules for
assignment compatibility are given in “Type Compatibility” on page 46.
Figure 314 on page 210 shows the syntax of the assignment statement.

Chapter 10. Statements 209

A\
A

»—Evariable J = expr

id-function

Where Represenis

variable Any variable

id-function Any user-defined function name
expr Any expression

Figure 314. Syntax of the Assignment Statement

When you make array assignments (assign one array to another array) or record
assignments (assign one record to another), the entire array or record is assigned.

A result is returned from a function by assigning the result to the function name
before leaving the function. See “Function Results” on page 107.

Resiriclions:
* You cannot assign a value to a pass-by-CONST parameter.

e You cannot assign a value to an object of type FILE or of a type that contains,
even indirectly, a file.

210 vs Pascal Language Reference

Figure 315 shows an example of the assignment statement.

TYPE
CARD = RECORD

SUIT : (SPADE,
HEART,
DIAMOND,
CLUB);

RANK : 1..13

END;

VAR
X, Y, Z : REAL;

LETTERS,
DIGITS,
ALPHANUMERICS

1 SET OF CHAR;
I, J, K : INTEGER;

DECK : ARRAY[1..52 1 OF

CARD;
BEGIN
I :=1;
J = 1;
K :=1;
X = Y*Z;
LETTERS =LA L2]
DIGITS = ['6" .. 9" 1;
ALPHANUMERICS = LETTERS + DIGITS;
DECK[{ I].SUIT = HEART;
DECK[J 1] = DECK[K 1;
END.

Figure 315. Example of the Assignment Statement

CASE Statement
CASE provides the option of having your program execute one member of a list of
possible statements based upon the evaluation of an expression. This statement
consists of an expression called the selector and a list of statements. The selector
must be an ordinal type. Each statement is prefixed with one or more ranges of
the same type as the selector; each range is separated by a comma. Each range
designates one or more values called case labels. Figure 316 on page 212 shows
the syntax of the CASE statement.

Chapter 10. Statements 211

»——CASE expr OF range : statement——»

IS L J END——————»

THERWISE——s5 1‘.r;rl‘,en':\=.nrrt—J
Range

PP—[COI‘IStht | L '

constant-expr—

. —constant-expr —|

Where Represents

CASE Statement keyword
expr Any ordinal expression
OF Staterment keyword
statement Any statement
OTHERWISE Statement keyword
END Statement keyword
constant Any ordinal constant

constant-expr Any ordinal constant expression

Figure 316. Syntax of the CASE Statement

The range values of a CASE statement can be written in any order. However, you
cannot designate the same CASE label more than once in the CASE statement.

VS Pascal evaluates the selector and executes the statement whose CASE label
equals the value of the selector. When no CASE label equals the value of the
selector, the OTHERWISE statement, if present, is executed. When no CASE label
equals the value of the selector and there is no OTHERWISE statement, a run-time
error will result when the % CHECK CASE compiler directive is enabled. If
%CHECK CASE is not enabled, VS Pascal can act unpredictably.

Figure 317 on page 213 shows an example of the CASE statement.

212 vS Pascal Language Reference

TYPE
SHAPE = (TRIANGLE, RECTANGLE,
SQUARE, CIRCLE);

COORDINATES =
RECORD
X, Y : REAL;
AREA : REAL;
CASE S : SHAPE OF
TRIANGLE:

(SIDE : REAL;
BASE : REAL);

RECTANGLE:
(SIDEA,SIDEE : REAL);
SQUARE:
(EDGE : REAL);
CIRCLE:
(RADIUS : REAL);
END;
VAR
COORD : COORDINATES;
BEGIN
WITH COORD DO
CASE S OF
TRIANGLE :
AREA := 0.5 * SIDE * BASE;
RECTANGLE:
AREA := SIDEA * SIDEB;
SQUARE:
AREA := SQR(EDGE);
CIRCLE:
AREA := 3.14159 * SQR(RADIUS);
END;
END;

Figure 317. Example of the CASE Statement

Figure 318 on page 214 shows an example of the CASE statement with the

OTHERWISE keyword.

Chapter 10. Statements

213

TYPE

RANK = (ACE, TwO, THREE, FOUR,
FIVE, SIX, SEVEN, EIGHT,
NINE, TEN, JACK, QUEEN,
KING) ;
SUIT = (SPADE,HEART,DIAMOND,CLUB);
CARD = RECORD
R : RANK;
S : SUIT;
END;
VAR
POINTS : INTEGER;
ACARD : CARD;
BEGIN
CASE ACARD.R OF
ACE:
POINTS := 11;
TWD..TEN:
POINTS := ORD(ACARD.R)+1;
OTHERWISE
POINTS := 10;
END;

Figure 318. Example of the CASE Statement with the OTHERWISE Keyword

Compound Statement
The compound statement serves to bracket a series of statements to be executed
sequentially. The reserved words BEGIN and END delimit the statements.
Figure 319 shows the syntax of the compound statement.

—_—

o

pe——BEGIN————statement END)
Where Represents

BEGIN Statement keyword

Statement Any statement

END Statement keyword

Figure 319. Syntax of the Compound Statement

Figure 320 shows an example of the compound statement.

IF A > B THEN
BEGIN { SWAP A AND B }
TEMP = A;
A := B
B ;= TEMP;
END;

Figure 320. Example of the Compound Statement

214 vs Pascal Language Reference

CONTINUE Statement
CONTINUE causes a jump to the loop-continuation portion of the innermost
enclosing FOR, WHILE, or REPEAT statement. In other words, it is a GOTO to the
end of the loop. Figure 321 shows the syntax of the CONTINUE statement.

M

»»——CONTINUE

Figure 321. Syntax of the CONTINUE Statement

Figure 322 shows an example of the CONTINUE statement and its equivalent.

This portion of code with a CONTINUE statement:

WHILE expr DO
BEGIN

IF expr THEN
CONTINUE;

END;

is equivalent to:

WHILE expr DO
BEGIN

IF expr THEN
GOTO Tlabel;

label: (* Continue jumps to here *)
END;

Figure 322. Example of the CONTINUE Statement and Its Equivalent

Empty Statement
The empty statement is a place holder and has no effect on the execution of the
program. This statement is often useful when you want to place a label in the
program but do not want it attached to another statement. For example, at the end
of a compound statement. Figure 323 shows the syntax of the empty statement.

v
L 4
¥
A

Figure 323. Syntax of the Empty Statement

The empty statement is also useful for avoiding the ambiguity that arises in nested
IF statements. You can force an ELSE clause to be paired with an outer nested IF
statement by using an empty statement after an ELSE clause in the inner nested IF
statement (see Figure 324 on page 216 for a sample).

Chapter 10. Statements 215

I[F bl THEN
I[F b2 THEN
51
ELSE
(*empty statement*)
ELSE
52

Figure 324, Example of the Empty Statement

FOR Statement
FOR is used to execute a statement a specified number of times. The FOR loop
begins with an identifier initialized to the first control expression. With each
iteration of the loop, the value of the identifier is either incremented or
decremented, depending upon how the statement is coded.

Figure 325 shows the syntax of the FOR statement.

»——FO0R—id-var— := —expr TO0————expr—D0—statement————»+
—DOWNTO-—

Where Represents

FOR Statement keyword

id-var An ordinal variable identifier

expr Any ordinal expression

TO Increments the value of the control variable

DOWNTO Decrements the value of the control variable

DO Statement keyword

Statement Any statement

Figure 325. Syntax of the FOR Statement

To increment the value of the identifier, TO is used between control expressions.
The new value of the identifier is computed automatically before the statement is
executed. lterations will continue as long as the value of the identifier is less than
or equal to the value of the second control expression.

To decrement the value of the identifier, DOWNTO is used between control
expressions. The new value of the identifier is computed automatically before the
statement is executed. Iterations will continue as long as the value of the identifier
is greater than or equal to the value of the second control expression.

VS Pascal computes the value of the second expression at the beginning of the
FOR statement and uses the result for the duration of the statement. Thus, the
value of the second control expression is computed once and cannot be changed
during the FOR statement. The value of the control variable after the FOR
statement is executed is undefined. Do not expect the control variable to contain
any particular value.

216 Vs Pascal Language Reference

Hesirictions:

¢ The control variable must be an automatic ordinal variable declared in the
immediately enclosing routine.

* The control variable cannot be subscripted, field qualified, or referenced
through a pointer.

* The executed statement must not alter the control variable. If the control
variable is altered within the loop, the resultant loop execution is not
predictable.

* In the statement contained by the FOR loop, and in any routine declared in the
routine immediately enclosing the FOR loop, the control variable cannot be
used:

~ In an assignment statement

— As a control variable of another FOR statement

— As an actual VAR parameter

— Inan input routine (READ, READLN, and so forth).

‘in the following statement,

FOR I := exprl TO expr2 DO statement

| is an automatic scalar variable; expr? and expr2 are scalar expressions that are
type-compatible with I, and statement is any arbitrary statement.

The compound statement shown in Figure 326 is functionally equivalent to the FOR
statement. TEMP1 and TEMP2 are compiler-generated temporary variables.

BEGIN
TEMP1 := exprl;
TEMP2 := expr2;
IF TEMP1 <= TEMPZ THEN
BEGIN
1 := TEMPI;
REPEAT
statement;
IF I = TEMP2 THEN
LEAVE;
I := Succ(1);
UNTIL FALSE; (* forever *)
END;
END;

Figure 326. Example of the Equivalent of a FOR-TO Statement

In the following statement,

FOR I := exprl DOWNTO expr2 DO statement

I is an automatic scalar variable, expr? and expr2 are scalar expressions that are
type-compatible with I, and statement is any arbitrary statement.

The compound statement shown in Figure 327 on page 218 is functionally

equivalent to the FOR statement. TEMP1 and TEMP2 are compiler-generated
temporary variables.

Chapter 10. Statements 217

BEGIN
TEMP1 := exprl;
TEMP2 := exprZ;
IF TEMP1 >= TEMP2 THEN
BEGIN
I := TEMP1;
REPEAT
statement;
IF I = TEMP2 THEN
LEAVE;
I := PRED(I);
UNTIL FALSE; (* forever *)
END;
END;

Figure 327. Example of the Equivalent of a FOR-DOWNTO Statement

Figure 328 shows examples of the FOR statement.

(* Find the maximum integer in an array of integers. *)
MAX := A[1];
LARGEST := 1;
FOR I := 2 TO ASIZE DO
IF A[I] > MAX THEN
BEGIN
LARGEST := I;
MAX := A[I];
END;

(* Matrix multiplication: C<-A*B *)
FOR' I :=1TO N DO
FOR J:= 1 TO N DO
BEGIN
X :=0.0;
FOR K := 1 TO N DO
X := A[L,K] * B[K,J] + X:
CLI,J] := X
END;

(* Sum the hours worked this week *)
SUM := 0;
FOR DAY := MON TO FRI DO

SUM := SUM + TIMECARD[DAY];

Figure 328. Examples of the FOR Statement

218 vsPascal Language Reference

GOTO Statement

GOTO changes the flow of control within the program. Figure 329 shows the
syntax of the GOTO statement.

»»——G0OTO label »<
Where Represents

GOTO Statement keyword

label A label

Figure 329. Syntax of the GOTO Statement

If a GOTO to a non-local label causes a function to be exited, the function result will
not be checked. Figure 330 shows an example of using the GOTO statement to
leave a function.

LABEL 1;

FUNCTION F : BOOLEAN;
BEGIN

GOTO 1;

F := TRUE;

END;

BEGIN

WRITELN(F);

1: (* No function check is done *)
END;

Figure 330. Example of Using the GOTO Statement to Leave a Function

Restrictions:

The GOTO statement must be contained by the routine that declared the label.
You cannot branch into a compound statement from a GOTO statement.

You cannot branch into the THEN clause or the ELSE clause from a GOTO
statement that is outside an IF statement. Further, you cannot branch between
the THEN clause and the ELSE clause.

You cannot branch into a CASE alternative from outside the CASE statement or
between CASE alternative statements in the same CASE statement.

You cannot branch into a FOR, REPEAT, or WHILE |loop from a GOTO statement
that is not contained within the loop.

You cannot branch into a WITH statement from a GOTO statement outside of
the WITH statement.

For a GOTO statement that specifies a label defined in an outer routine, the
target label cannot be defined within a compound statement or loop.

Figure 331 on page 220 shows examples of valid and invalid GOTO statements.

Chapter 10. Statements 219

IF Statement

PROCEDURE EXAMPLE;
LABEL
1, 2, 3, 4

PROCEDURE INNER;

BEGIN
GOTO 4; (* permitted *)
GOTO 3; (* not permitted *)
END;
BEGIN
GOTO 3; (* not permitted *)
BEGIN
3:
GOTO 4; {(* permitted *)
GOTO 3: {* permitted *)
END;
4: IF EXPR THEN
1: GOTO 2 {* not permitted *)
ELSE
2: GOTO 1; (* not permitted *)
END;

Figure 331. Example of Valid and Invalid GOTO Statements

IF provides the option to specify that one of two statements is to be executed
depending on the evaluation of a Boolean expression. Each clause contains one
statement. Figure 332 shows the syntax of the IF statement.

»»—IF expr THEN statement T >4
L g1se statement—

Where Represents

IF Statement keyword

expr Any Boolean expression

THEN Statement keyword

Statement Any statement

ELSE Statement keyword

Figure 332. Syntax of the IF Statement

The expression must evaluate to a Boolean value. If the result of the expression is
TRUE, the statement in the THEN clause is executed. If the expression evaluates
to FALSE and there is an ELSE clause, the statement in the ELSE clause is
executed, if there is no ELSE clause, control passes to the next statement.

Figure 333 on page 221 shows examples of simple IF statements.

220 vs Pascal Language Reference

IF A == B THEN
A= (A + 1.8) / 2.0:

TF ODO(T) THEN
Ji=J+1

ELSE

J = J 0V 2+ 1;

Figure 333. Examples of Simple IF Statements

VS Pascal always assumes an ELSE clause is paired with the innermost IF
statement that does not have an ELSE clause. Mesting an IF statement within an IF
statement could be interpreted with two different meanings if only one statement
had an ELSE clause.

Figure 334 (llustrates this condition, which resulis in two interpretations:

IF bl THEN IF b2 THEN stmtl ELSE stmtZ

Interpretation 1 (assumed by VS Pascal)

IF bl THEN
BEGIN
1F b2 THEN
stmtl
ELSE
stmt?2
END

Interpretation 2 (incorrect interpratation)

IF bl THEM
BEGIN
1IF b2 THEN
stmtl
END
ELSE
stmt2

Figure 334. Example of Nested IF Statemeants

It you prater the second interpretation, code it as shown, or take advantage of the
emply statement, as ilfustrated in Figure 335.

IF bl THEM
IF b2 THEN
stmtl
ELSE
(*empty statement*)
ELSE
stmt2

Figure 335. Example ol Meslad IF Statamenis with the Empty Statement

Ghapter 10. Statements 221

LEAVE Statement

LEAVE causes an immediate, unconditional exit from the innermost enclosing FOR,
WHILE, or REPEAT loop. Figure 336 shows the syntax of the LEAVE statement.

w—| EAVE

L
'

Figure 336. Syntax of the LEAVE Statement

Figure 337 shows an example of the LEAVE statement.

P := FIRST;
WHILE P<=NIL DO
IF P@.NAME = 'JOE SMITH' THEN
LEAVE
ELSE
P o:= PR._NEXT:
(*P either points to the desired*)
(*data ar is NIL *)

Figure 337. Example of the LEAVE Statement

Figure 338 shows an example of the LEAVE statement and its equivalent.

This portion of code with a LEAVE statement:

WHILE expr DO
BEGIN

IF expr THEN
LEAVE;

END;

is equivalent to:

WHILE =xpr DO
BEGIN

IF expr THEN
GOTO label;

END;
label: ;

Figure 338. Example of the LEAVE Statement and Its Equivalent

222 VS Pascal Language Reference

Procedure Call

A procedure call invokes a procedure. When a procedure is invoked, the actual
parameters are substituted for the corresponding formal parameters. For
parameter compatibility rules, see “Routine Parameters” on page 105.

If a user-declared procedure requires no parameters, an empty set of parentheses

can be used on a procedure call to distinguish the procedure call from a statement
Figure 339 shows the syntax of the procedure call

»>——id-procedure (= r_'Xp;|_') »<

|
| NAR—
CONST
Where Represents
id-procedure Any predefined or user-defined procedure name
expr Any expression

Figure 339. Syntax of the Procedure Call

Note to Figure 339: The use of VAR and CONST before expressions is applicable
only to GENERIC procedures.

Figure 340 shows an example of procedure calls.

TRANSPOSE (MATRIX,
ROWS,
COLUMNS) ;

MATRIXADD (A,
B,
C,
N,M};

XYZ(I+d, K*L);

Figure 340. Example of Procedure Calls

REPEAT Statement

The statements contained between the statement delimiters REPEAT and UNTIL
are executed until the control expression evaluates to true. The control expression
must be of type BOOLEAN. Because the termination test is at the end of the loop,
the body of the loop is always executed at least once. Because it can contain a list
of statements, the REPEAT can act as a compound statement. Figure 341 on

page 224 shows the syntax of the REPEAT statement.

Chapter 10. Statements 223

*7 ;

»———REPEAT statemant UNTIL expr >4

Where Represents

REPEAT Statement keyword

statement Any statement

UNTIL Statement keyword

expr Any Boolean expression evaluated after each execution of the statement

Figure 341. Syniax of the REPEAT Statement

Figure 342 shows an example of the REPEAT statement, in which the greatest
common factor of } and J is stored in i.

REPEAT
K :=1MIDJ;
I:=J;
J = K;
UNTIL J = 0;

Figure 342. Example of the REPEAT Statement

RETURN Statement

RETURN permits an exit from a procedure or function. This statement is effectively
a GOTO to an imaginary label atter the last statement within the routine being
executed.

Figure 343 shows the syntax of the RETURN statement.

H—FRETURN

Figure 343. Syntax of the RETURN Statement
When the %CHECK FUNCTION compiler directive is enabled, VS Pascal checks to
ensure that a tunction has been assigned a value before the return from the

function. A run-lime errar message will cccur if no value has been assigned.

Figure 344 shows an example of the RETURN statement.

PROCEDURE P
BEGIN

IF expr THEM RETURN;

END,

Figure 344. Example of the RETURN Statement

224 vs Pascal Language Reference

WHILE Statement

WITH Statement

WHILE allows you to specify a statement to be executed as long as a control
expression evaluates to true. The condition is tested before the first execution of
the statement. Figure 345 shows the syntax of the WHILE statement.

—WHILE expr DO statement <

Where Represents

WHILE Statement keyword

expr Any Boolean expression evaluated before each execution of the statement
DO Statement keyword

statement Any statement

Figure 345. Syntax of the WHILE Statement

The example in Figure 346 computes the decimal size of N assuming N > = 1.

I :=0;
J :=1;
WHILE N > 10 DO
BEGIN
I f

I+1;
J * 10,
N DIV 10;

(o)
n

N -

(*I is the power of ten of the
{(* original N

(*J is ten to the I power

(*1 <= N <=9

Figure 346. Example of the WHILE Statement

WITH simplifies references to a record variable by eliminating an addressing
description on every reference to a field. The WITH statement makes the fields of a
record available as if the fields were variables within the nested statement.

Figure 347 shows the syntax of the WITH statement.

—

»»—WITH—variable——1D00 statement >4
Where Represents

WITH Statement keyword

variable Any record variable

DO Statement keyword

statement Any statement

Figure 347. Syntax of the WITH Statement

Figure 348 on page 226 shows an example of the WITH statement.

Chapter 10. Statements 225

TYPE
EMPLOYEE =
RECORD
NAME & STRING(20):
BADGE : 0..999999;
SALARY : INTEGER;

1D : 0..699999;
END;
VAR
FATHER : @ EMPLOYEE;
BEGIN
NEW(FATHER);
WITH FATHER@ DO
BEGIN
NAME := 'LUIS TAN';
BADGE := 666666;
SALARY := STARTING;
ID = BADGE;
END;
END;

The WITH statement is equivatent to:

BEGIN
FATHER@. NAME := 'LUIS TAN';
FATHER@.BADGE = 666666,
FATHER@.SALARY ;= STARTING;
FATHER@.ID = FATHER®@.BADGE;
END;

Figure 348. Example of the WITH Statement

Nole to Figure 348: The variable FATHER is a pointer to a dynamic variable of
type EMPLOYEE; thus, FATHER must be dereferenced to access the EMPLOYEE
record.

The WITH statement effectively computes the address of a record variable upon
executing the statement. Any modification to a variable that changes the address
computation will not be reflected in the precomputed address during the execution
of the WITH statement. Figure 349 illustrates this point.

VAR
A : ARRAY[1..10] OF
RECORD
FIELD : INTEGER;
END;
BEGIN
I :=1;
WITH A[T] DO
BEGIN
K := FIELD; (*K:=A[1] .FIELD*)
I :=2;
K := FIELD; (*K:=A[1] .FIELD*)
END;
END;

Figure 349. Example of WITH Statement Evaluation

226 VS Pascal Language Reference

The comma notation of a WITH statement is an abbreviation of nested WiTH
statments. The names within a WITH statement are scoped such that the last WITH
statement will take precedence. A locat variable with the same name as a field of
a record becomes unavailable in a WITH statement that specifies the record.
Figure 350 shows an example of a nested WITH statement and identifier scoping.

VAR
V : RECORD
V1 : RECORD
A . REAL:
END;
V2 : INTEGER;
A INTEGER;
END;
A : CHAR;
BEGIN
WITH V,V1 DO
BEGIN
V2 =1 (*v.v2 := 1
A = 1.0; (*V.V1.A :=
V.A = 1; (*v.A =1
(*CHAR A is
(*available
END;
A= 'A'; (*CHAR A is
(*available
END;

Figure 350. Example of Nested WITH Statement and Identifier Scoping

Chapter 10. Statements

227

Chapter 11. Compiler Directives

Compiler Directives

Chapter 11. Compiler Directives

VS Pascal compiler directives enable or disable a number of compile-time options
and features. The VS Pascal compiler recognizes these directives by the %
symbaol that precedes them.

The compiler checks these directives for proper syntax. For directives that take
suboptions, the compiler reads and validates the option list; it ignores everything

past the end of the option list. Thus, you can insert a commeant without comment
delimiters after an option list. For example,

%CHECK SUBRANGE OFF This turns subrange checking off

compiles without error, and “This turns subrange checking off” is treated as a
comment,

Directives that take an optional character string accept everything on that line as

part of the directive. Therefore, use comments on these lines anly if you intend for
them to be part of the directive. For example, use

%TITLE The following are TYPE declarations. (* As of 5/17 *)

only if you want the comment "(* As of 5/17 *)" to appear in your title.

Figure 351 summarizes VS Pascal compiler directives by function. Detailed
explanations are given in alphabetic order, starting on page 231.

Associaled
Compiler See
Function Directive Option Description Default Page
Compiler Y% CPAGE SOURCE Forces a conditional page break - 232
Listing
Format
Y LIST LIST Controls whether the Oon 234
pseudo-assembler listing is
included
%PAGE SOURCE Forces a skip to the next page of - 235
the listing
%% PRINT SOURCE Controls whether or not source On 235
stalements are printed
%SKIP SOURCE Inserts one or more blank lines in 1 238
the listing
% SPACE SOURCE Inserts one or more blank lines in - 1 236
the listing
%TITLE SOURCE Forces a page break and prints a No litle 237
title at the lop of the following
page

Figure 351 (Part1of 2). Summary of VS Pascal Compiler Directives

230 vS Pascal Language Reference

%CHECK Compiler Directive

Associated
Compiler See
Function Directive Option Description Default Page
Compiler YaCHECK CHECK Controls run-time checking On 231
Instructions features
% INCLUDE LiB Specifies that source rom a — 233
itorary file Is 1o be Inserted
YaMARGINS - Redefines the laft and righl — 235
margins of the compiler inpii
% UHEADER HEADER Placas a user header after avary Mo user header 237
routine header
% WHITE WRITE Writes a message o the terminal Mo message 240
during the compilation of the unit
Conditional %ENDSELECT — Marks the end of a section of code — 233
Cornpilation to be selectively compiled
Y SELECT = Marks the start of a section of = 236
code 1o be selectively complled
Yo WHEN CONDPARM Gonltrols which sections of code — 238

are selectively compiled

Figure 351 (Part2 of 2). Summary of VS Pascal Compiler Directivas

VS Pascal Compiler Directives

%% CHECK Directive

% CHECK controls the run-time checking features ot VS Pascal. You can enable

checking for part or all of a program.

Note: The %% CHECK directive warks cnly when the CHECK compile-time option is
in effect. When the CHECK compiie-time option is on, all checks are applicable
uniess a % CHECK directive specifies otherwise. For example, when the CHECK
option is on and %CHECK POINTER OFF |s specified, pointer references will not be

checked.

Figure 352 on page 232 shows the syntax of the % CHECK directive.

Chapter 11. Compiler Directives

23

%CPAGE Compiler Directive

re——L——(HECK] QM ,_I e
—CASE —0FF
F—FUNCT ION-—"
—FOINTER
—PTR -
——SUBRANGE——
F—SUBSCRIPT—
—TRUNCATE——
Where Instructs the Compiler lo
CASE Flag the value of a CASE statemen! seleclor that is not equal to any of the
CASE labels
FUNCTION Flag the lack ot an assignment of a value to a function betore exiting from the
function
POINTER Flag the dereferencing of a pointer whose value is MIL
PTR Flag the dereferencing of a pointer whose value is NIL {synonymous with
POINTER)

SUBRANGE Flag the assignment of a value that (s not in the proper range for the target
variable or parameter; also flag the values passed to some predefined
routines if they are nol In certain ranges

SUBSCRIPT Flag the use af a subscript out of range for the array

TRUMCATE Flag the value of a string that will not fit into the target string on an

assignmeant
OM Turn checking on; this is the default
OFF Turn checking off

Figure 352. Syntax of the % CHECK Directlve

% CHECK, like all compiler directives, is an instruction to the compiler. Its effect
depends only on where it appears in the text. It is not subject to any structuring
established by the program.

It % CHECK SUBRANGE is enabled, the following predefined routines will have the
following values checked;

* CHR will be flagged If the actual parameter does not yield a valid EBCDIC
character.

* WRITE and WRITELN will be flagged if the field widths specified are less than 1
(in LANGVL(ANSI83) only).

%CPAGE Directive
% CPAGE forces a page eject If less than a specified number of lines are left on the

current page of the output listing. Use this directive to ensure a unit of code is not
split across two pages.

Note: The %% CPAGE directive works only when the SOURCE compile-time option is
in effect.

Figure 353 shows the syntax of the % CPAGE directive.

L 4
-

»e——5—{PAGE——unsigned-integer

Where Represenls
unsigned-integer The number of lines that must remain on the page for a page
aject not to take place

Figure 353. Syntax of the % CPAGE Directive

232 VS Pascal Language Reference

%INCLUDE Compiler Directive

Figure 354 on page 233 shows an example of the % CPAGE directive.

%CPAGE 30

Figure 354, Example of the % CPAGE Directive

| %ENDSELECT Directive

| TENDSELECT marks the end of a section to be selectively compiled. The section
| begins with a %SELECT directive. Figure 355 shows the syntax of the

| %ENDSELECT directive.

E e— % —ENDSELECT

v
'Y

| Figure 355. Syntax of the %ENDSELECT Directive

{ See “%WHEN Directive” on page 238 to see how %ENDSELECT is used in
i conjunction with %SELECT and %WHEN.

% INCLUDE Directive

%INCLUDE instructs the compiler to start reading text from the specified library
file. After the compiler has read the entire member, the compiler resumes reading
from the line immediately following the %INCLUDE directive.

Figure 356 shows the syntax of the % INCLUDE directive.

p——5—INCLUDE Library-ngme=—=—member-name=) —>4
_Emember-numc |
Where Relerences

library-name (member-name) A library file and a specific member |n the file. Under
VYM/CMS and MVS, the specified library name is the
ddname of a partitioned data set {which might be
concalenated).

member-name The member of the first library in the search order that has
a member with the name member-name.

Figure 356. Syniax of the %INCLUDE Directive

When a %INCLUDE is encountered, an implicit %MARGINS 1 72 js performead for
the member being included.

Figure 357 on page 234 shows an example of the %INCLUDE directive.

Chapter 11. Compiler Directives 233

%LIST Compiler Directive

%LIST Directive

PROGRAM ABC:
CONST

%INCLUDE CONSTS
TYPE

SINCLUDE TYPES
VAR

SINCLUDE VARS
%INCLUDE L1BL(PROCS)
BEGIN

END.

Figure 357. Example ol the % INCLUDE Directive

See VS Pascal Application Programming Guide for compile-time considerations for
programs that use %INCLUDE.

% LIST enables and disables the pseudo-assembler listing of the V5 Pascal
compiler.

Note: The %LIST directive works only when the LIST compile-time option is in
effect.

Figure 358 shows the syntax of the %LIST directive.

—%—| I5T | an 1
—OF

Where Instructs the Compiler 1o

ON List pseudo-assembler code; this is the default

OFF Cease lisling pseudo-assembler code

Figure 358. Syntax of the % LIST Directive
Using % LIST for a Small Section of a Unit: It you want to view the
pseudo-assembler listing for only a small section of a unit, follow these steps:
1. Insert
5LIST OFF
at the beginning of the unit.

2. Insert
sLIST ON

at the beginning of each section of code for which you want an assembler
listing.

3. At the end of each code section insert:
%LIST OFF

4. Compile the unit with the LIST compile-time option.

234 VS Pascal Language Reference

%PRINT Compiler Directive

%MARGINS Directive

Y=MARGINS redefines the left and right margins of the compiler input. The
compiler skips all characters that lie outside the margins. Figure 359 shows the
syntax of the % MARGINS directive,

B —MARGING

irmtegarl integer?]

Where Represents
integer? An unsigned integer 1o Indlcate the new lell margin
infeger? An unsigned integer o Indicate the new right margin

Figure 359. Syntax of the % MARGINS Directive

It a “%MARGINS directive appears in a library member being inserted by a
%“:INCLUDE directive, the new margins are used only in that library member. When
the compiler reaches the end of the library member, the margin settings revert to
their previous values.

% PAGE Directive

% PAGE forces a skip to the next page on the output listing of the source program.

Note: The “:PAGE directive works only whan the SOURCE compile-lime option is
in effect,

Figure 360 shows the syntax of the % PAGE direct/ve.

r——4%—PAGE

v
&

Figure 360. Syntax of the % PAGE Directive

“PRINT Directive

YPRINT contrals whether or not source statements are printed in the output listing.
The compller prints the line containing the %PRINT OFF directive, than stops
printing until a %PRINT or %PRINT ON directive is processed.

Note: The %PRINT directive works only when the SOURCE compile-time cplion is
in effect.

Figure 361 shows the syntax of the %PRINT directive.

¥
s

——s—PRINT—ON
-

Whare Instructs the Compller lo
ON Print source stalements, this is the default
OFF Cease printing source statements

Figure 361. Syntax of the %PRINT Directive

Chapter 11. Compiler Directives 235

|
1
J

% SPACE Compiler Directive

%SELECT Directive

% SKIP Directive

% SELECT marks the beginning of a section of code to be selectively compiled
The selection is based on the values of parameters passed with the CONDPARM
compile-time option, Figure 362 shows the syntax of the %SELECT directive.

L 3
&

—5—SELECT——

Flgure 362. Syntax ol tha % SELECT Directlve
Restriction: You cannot nest %SELECT —%ENDSELECT groups.

See "%WHEN Directive” on page 238 for an explanation of how %SELECT warks
in conjunction with %WHEN and % ENDSELECT,

% SKIP inserts one or more blank lines in the source listing.

Note: The %SKIP directive works only when the SOURCE compile-time option is in
effect.

Figure 363 shows the syntax of the % SKIP directive.

r—5—SKIP 1 4
I—-Err teger—l

Whera Represents
infeger An unsigned integer to indicate the number of blank lines: the default is to skip
one line

Figure 363. Syntax of the %SKIP Directive

% SPACE Directive

% SPACE inserts one or more blank lines in the source listing, just as the %SKIP
directive does.

Note: The %SPACE directive works only when the SOURCE compile-time option is
in eftect.

Figure 364 shows the syntax of the %SPACE directive.

L d
&

H—5—3PACE 1
I—integﬂ—]

Where Represants
nteger An unsigned integer to indicate the numbar of blank lines; the defaull is to skip
one line

Figure 364, Syntax of the Y% SPACE Directiva

236 vs Pascal Language Reference

%UHEADER Compiler Directive

% TITLE Directive

% TITLE places a title in the listing and causes a page skip, The title prints exactly
e ! as you type i1 in, with na change fram lowercase to uppercase. |f the GRAPHIC
! compile-time cption is In eflect, DBCS portions of the directive are checked for
| validity.

Note: The %TITLE directive works only when the SOURCE compile-time optian is
in effect.

Figure 365 shows the syntax of the % TITLE directive.

L]

T TLE———chgractar-string "

Where Represenis
character-siring Any character siring; the default is no 1itle

Figure 365, Syntax of the Y% TITLE Diractive

, %UHEADER Directive

! ¥UHEADER places a charactar siring (a "user header”) in an opilanal field

| tollowing the routine header in the generated object code. The header will appear
1 exacily as you type it in, with na change from lowercase to uppercase. DBCS

] portions of the %UHEADER directive are never checked tor validity.

I Note: The “%UHEADER directive works only when the HEADER compile-time
| optian |8 in eftect,

| Figure 366 shows the syntax of the % UHEADER directive.

[% —AIHEADER—————character-string »

| Where Represenis
| character-string Any charactar string

i Figure 386. Syntax of the %UHEADER Diractive

| The compiler always uses the last %UHEADER directive in effect befare the
i declaration of a routine. If you want a user header on your maln program, place
| tUHEADER ahead of the reserved word PROGRAM.

[it you specity “UHEADER with no character string following, no user header will
! appear in the routine header,

| Figure 367 on page 238 shows an example of the “%UHEADER directive.

Chapter 11. Compiler Directives 237

%WHEN Compiler Directive

%UHEADER COPYRIGHT 1981, 1987 BY IBM; Cbject Code Only

PROGRAM P;

PROCEDURE P;

BEGIN

END; (* P has ‘COPYRIGHT 1681, 1987: Object Code Only' in user header *)

%UHEADER COPYRIGHT 1983 BY IEM
PROCEDURE 10;

BEGIN
END; (* 0 has 'COPYRIGHT 1983 BY IBM' in user header *)
PROCEDCURE R;
BEGIN
END; {* R has 'COPYRIGHT 1983 BY IEM' in user header *)
PROCECURE 5;
BEGIN
SUHEADER COPYRIGHT 1987 BY 1BM
SUMEADER
END; {* S has 'COPYRIGHT 1983 BY IBM' in user header *)
PROCEOURE T;
BEGIN
END; {* T has no user header *)

LUHEADER COPYRIGHT 1982 BY 1BM

BEGIN

END. (* Main program has ‘COPYRIGHT 1981, 1987 *)
(* BY IBM: Object Code Only' in user header *)

Figure 367. Example of the % UHEADER Directive

%WHEN Directive
%WHEN determines which block of code delimited by the % SELECT and
% ENDSELECT directives is to be compiled. Figure 368 shows the syntax of the
% WHEN directive.

p—— L ——WHEN Boolean-expression (=

Where Represents

Boolean-expression A Boclean expression similar to any valild VS Pascal Boolean
expression except that it may not contain VS Pascal identifiers, and
may contain conditional parameters passed to the compiler with the
CONDPARM compile-time option

Figure 368. Syntax of the %WHEN Directive

Inside each portion of code enclosed by a %SELECT — %ENDSELECT pair, you
can include any number of “%WHEN directives, each followed by source code.
During compilation, the Boolean expression associated with a % WHEN statement
is evaluated using the values specified with the CONDPARM compile-time option.
If the expression evaluates to TRUE, the source code following the %WHEN is
compiled until another %WHEN or a % ENDSELECT is encountered.

238 vs Pascal Language Reference

% WHEN Compiler Directive

If the expression evaluates to FALSE, the compiler bypasses all statemenis uniil
another %WHEN or a %.ENDSELECT is encountered. Only those statemeants
following the first TAUE % WHEN directive are complled.

Figure 368 shows an example of conditional compilation.

BROGRAM ADD_TWO_NUMBERS ;

VAR
XY, Z: INTEGER;
BEGIN
READLN(X); (*Statement 1%*)
READLN{Y); (*Statement 2Z*)
SSELECT
LWHEN TRACE = 'XONLY"®
WRITELM(The variable X has value ',X): (*Statement 3*)
LWHEN TRACE = 'YONLY®
WRITELN{'The variable Y has value ',¥): (*Statement 4*)
SWHEN TRACE = 'XANDY®
WRITELN("The variable ¥ has valus ',X); (*Statement 5%}
WRITELN{ "and the variahle ¥ has value ',Y); (*Statement 6*)
%ENDSELECT
o=+ ¥ {(*Statement 7%)
WRITELM{'The sum of two numbers is ',Z): {*Statement 8%)
END:

When you apply various settings of the CONDPARM compile-time option
to this example, you receive these results:

CONDPARM Optian Statements Compiled
CONDPARM({ Trace = 'XONLY'} 1, 2,3, 71,8
CONDPARM{ Trace = 'YOMLY') 1. 2,4, 7. 8
COMDPARM{ Trace = 'XANDY') 1, 2,5, 6.7,38
CONDPARM{ Trace = 'DUMMY'} 1, 2,78

Figure 369. Example of Conditional Compilation

%SELECT can be thought of as starting a comment that is closed by a %WHEN
directive that evaluates to TRUE or by a “:ENDSELECT directive. The first
%WHEN directive tollowing a block of compiled code can be thought of as
starting a comment that is closed by the % ENDSELECT directive.

Qnly code following the first true %2WHEN directive will be compiled. When the
end of this %WHEN group is found, nothing will be compiled until a
Y%ENDSELECT directive is found.

It you want an OTHERWISE capacity, use a %WHEN TRUE as the last %WHEN
directive of the % SELECT—%ENDSELECT group.

If a %= WHEN references a conditional parameter not specified with
CONDPARM, the compiler assumes a blank. You can use this as a default.

If you place any statements between “%SELECT and the first %WHEN, the
compiler ignoras them and |ssues a warning massage.

Chapter 11. Compiler Directives 239

% WRITE Compiler Directive

%WRITE Directive

%WRITE allows a message to be written to the terminal at a specified location in
the program during compilation. If the GRAPHIC compile-time option is in effect, .
DECS portions of the directive are checked for validity.

Note: The %WRITE directive works only when the WRITE complle-time option is In
effect.

Figure 370 shows the syntax of the %WRITE directive.

e ——WRITE——chorocter-string e

Where Represanis
character-sfring Any characier string

Figure 370. Syntax of the % WRITE Directive

240 vS Pascal Language Reference

Appendix A. Summary of Changes

241

Appendix A. Summary of Changes

VS Pascal Release 2 provides the following additions and enhancements to VS
Pascal Release 1 that are directly related to defining the VS Pascal programming
language and its syntax.

System Flexibllity

VS Pascal now allows communication with other IBM licensed programs, such
as IMS, using the GENERIC routine directive.

Compiler Fealtures
Users now have the option to:

~ Compile only selected portions of a source program. This “conditional
compilation” feature can simplity debugging and help support multiple
operating environments.

— Place headers in generated code. Headers include the name of the
compiled routine, the compiler name, and the date and time of compilation.
Users can also insert a customized header after the compiler header.

Error Handling
VS Pascal Release 2 now:
— Checks compiler directives for syntax, semantic, and limit errors.

— Finishes printing its cross-reference and statistics listing when it
encounters a severe error. Previously, severe errors caused the listing to
abort immediately.

— Flags invalid compile-time oplions, synlax, and suboptions that were
previously ignored.

Storage Considerations

VS Pascal allows users to tune programs by adding multiple heap support.
This helps alleviate storage fragmentation problems. A component of a large,
multicomponent program can now create and manage its own heap
independent of heaps associated with other components.

Double-Byte Character Set (DBCS) Data
Among many new DBCS features, Release 2 supports:

— A predefined scalar data type, GCHAR, which represents one DBCS
character.

— A predefined structured data type, GSTRING, which represents a DBCS
string.

— Hexadecimal graphic data.

Existing string manipulation routines were revised for DBCS support, and
special DBCS routines for handling mixed strings were added:

— Many existing string routines now work with GSTRING data in a
character-oriented manner (two bytes at a time).

— New string routines work with SBCS and DBCS STRING data in a
character-oriented manner (one byte at a time for SBCS data, and two
bytes at a time for DBCS data).

242 VS Pascal Language Reference

Proposed ANSI/IEEE Extended Pascal
VS Pascal Release 2 adds support for:

— The EPSREAL predefined constant

— The MAXCHAR predefined constant

— A plus sign (+) for string concatenation (||)
— A set symmetric difference operator (> <).

National Language Support
VS Pascal Release 2 also:

— Adopts the Syntactic Graphic Character Set (GCSGID 640) as its standard
character set. VS Pascal programs never require characters outside this
set, establishing a standard that makes programs easily transportable
among different sites.

— Allows customization of character translation and uppercase tables during
installation. This eases compiler recognition of tokens and characters due
to national programming standards and allows the creation of uppercase
rules.

Appendix A. Summary of Changes 243

Appendix B. Predefined Identifiers

Appendix B. Predefined ldentifiers

A predefined identifier is the name of a constant, type, variable or routine that is
predetined in VS Pascal. The name is declared in every unit prior to the start of
your program. You can redefine the name if you wish; however, il is better to use
the name according to its predefined meaning.

Identifier Form Description

ABS Function Compules the absolute value of a number

ADDR Function Relurns the address of a variable

ALFA Type Array of B characters, indexed 1 .."I.L.l-'r;LI:'h'
ALFALEN Constant | HBOUND of type ALFA, value is B

ALPHA Type Array of 16 characters, indexed 1..ALPHALEN
.-'-‘-.—IF‘;P.I. EN | Constant HBOUND of typa ALPHA, value is 16

ARCTAN 1 Function "qu;ur;s the arctangent of the argument

BOOLEAN Type Data type composed of the values FALSE and TRUE
CHAR Type Character data lype

CHR Fu;crtion Converis an integer 10 a character value

CLOCK Function | Returns the number of microseconds of execution
CLOSE Procedure | Closes a file

COLS Function | Returns currant column on autput ling

f.},;)MrJHESS ‘Ell'nﬂ.l'lll Replaces multiple blanks in a ::!ri?g with one blank
E:OS Function | Returns the cosine of the argument

DATETIME | Procedure | Returns the currant date and time of day

DELETE :LI-I.-F-:T'nn Heturns a string with a portion removed

DISPOSE | Procedure Deallocates a dynamic variable

DISPOSEHEAP 1 Procedure Dealiocates a heap

rEfOF Funrction Test file for end of_file condition

EOLN Function Test file for end of line condition

EPFSHEAL Constanl Real constant such that 1.0 + EPSREAL = 1.0
EXP Function Returns the base of the nalur;I log (e) raised to the powt;r ol the argument
FALSE Constant Constant of type BOOLEAN, FALSE < TRUE
FLOAT Function - Converis an Integer to a fioating-point value
GCHAR Type | DBCS character data type

Figure 371 (Part 1 of 4). Predeflned Identlfiers

246 VS Pascal Language Reference

Identifier Form Description

GET Procedure Advances file pointer to next element of input file

GSTR Function Converts a GCHAR or DBCS fixed string to a GSTRING

GSTRING Type An array of DBCS characters whose length varies during execution up to a
maximum langth

GTOSTR Function Conve r; a GSTRING to a STRING

HALT Procedure Halts the programs execution

HBOUND Function Returnsa the upper bound of an array

HIGHEST Function Returns the maximum value of an ordinal type

INDEX Function Finds the tirst occurrence of one string in anothear

INPUT Variable Detault input file |

INTEGER Type Integer data type

LBOUND Function ’ Returns the lower bound of an array

LENGTH Function ! Returns the current length of a string

LN Function Returns the natural logarithm of the argument

LOWEST Function Returns the minimum value of an ordinal type

LPAD Procedure Pads strings on the left

LTOKEN Procedure Extracts tokens from a strmg

LTRIM Function Returns a string with leading blanks removed

MARK Procedure Creates a new subheap

MAX Function Returns the maximum value of a list of scalars

MAXCHAR Constant Constant equal to 'FF'XC

MAXINT Constant Maximum value of type INTEGER

MAXLENGTH Function Returns the maximum length of a string

MAXREAL Caonstant Maximum value of type REAL

MCOMPRESS Function Replaces multiple blanks in a mixed string with ane blank

MDELETE Function HAeturns a mixed string with a portion removed

MIN Function Returns the minimum value of a list of scalars

MINDEX Function Finds the first occurrence of one mixed string in another

MIMINT Constant Minimum value of type INTEGER

MINREAL Constant Minimum value of type REAL {smallest non-zero floating-point number)

MLENGTH Function ﬂeth;sThc length of a mixed string

MLTRIM Function o

Returns a mixed string with the leading blanks removed

Figure 371 (Part 2 of 4). Predefined Identifiers

Appendix B. Predefined ldentifiers

247

j

Identifier Form Description

MRINDEX Function Locates the last occurrence of one mixed string in anather
MSUBSTR Function Returns a specific portion of a mixed string

MTRIM Function Returns a mixed string with trailing blanks removed
NEW Procedure Allocates a dynamic variable from the current heap
NMEWHEAP Procedure Allocates a new heap

obb Function Returns TRUE if integer argument is odd

ORD Function Converts an ordinal value or peointer to an integer
OUTPUT Variable Default output file

PACK Procedure Copies an array to a packed array

PAGE Procedure Skips to the top of the next page

PARMS Function Returns the system dependent invocation parametars
PDSIN Procedure Opens a file for input from a partitioned data set
PDSOUT Procedure : Opens a file for output to a partitioned data set
PRED Function Obtains the predecessor of an ordinal type

PUT Procedure Advances file pointer to next element of output file
QUERYHEAP Procedure Identifies the current heap

RANDOM Function Returns a pseudo-random number

READ Procedure Reads data from a file

READLN Procedure Reads one line of a text file

READSTR Procedure Converts a string to values assigned to variables
REAL Type Filoating-point represented in 370 long floating-point
RELEASE Procedure Releases storage in a subheap

RESET Procedure Opens a file for input

RETCODE Procedure Sets the system dependent return code

REWRITE Procedure Opens a file for output

RINDEX Function Finds the last occurrence of one string in another
ROUND Function Converts a floating-point number to an integer by rounding
RPAD Procedure Pads a string on the right

SEEK Procedure Positions an opened file at a specific record
SHORTREAL Type Floating-point represented in 370 short floating-point
SIN Function Returns the sine of the argument

SIZEOF Function Returns the storage size of a variable or type

Figure 371 {(Part 3 of 4). Predefined ldentifiers

248 VS Pascal Language Reference

Identifier Form TDescription

SQR Function Returns the square of the argument

SQRT Function Returns the square root of the argument

STOGSTR Function Converts a STRING to a GSTRING

STR Function Converts a CHAR or SBCS fixed string to a STRING

STRING Type An array of characters whose length varies during execution up to a
maximum length

STRINGPTR Type A type for dynamically a!locéted strings of an execution determined length

SUBSTH Function Returns a portion of a string

SucCcC Function Obtains the successor of an ordinal type

TERMIN Procedure Opens a file for input from the terminal

TERMOUT Procedurea Opens a file for output to the terminal

TEXT Type File of CHAR

TOKEM Procedure Extracts tokens from a string

TRACE Procedure Writes the routine return stack

TRIM Function Returns a string with trailing blanks removed

TRUE Constant Constant of type BOOLEAN, TRUE > FALSE

TRUNC Function Converts a floating-point number to an integer by truncating

UNPACK Procedure Copies a packed array to an array

UPDATE Procedure Opens a file for both input and output

USEHEAP Procedure Changes the current heap

WRITE Procedure Writes data to a file

WRITELN Procedure Writes one line to a text file

WRITESTR Procedure Converts a series of expressions into a string

Figure 371 (Part 4 of 4). Predefined Identifiers

Appendix B. Predefined Identifiers 249

Appendix C. Options for Opening Files

251

Appendix C. Options for Opening Files

252

All VS Pascal procadures that open files are delined with an optional string
parameter that contains aptions pertaining to the file being opened. File opening
options determine how the file will be opened and what attributes it will have.

These options are valid for the tollowing /O routines:

POSIN
PDSOUT
RESET
REWRITE
TERMIN
TERMOUT
UPDATE

Mot all of the options apply to all open procedures. If an Invalid option Is specified
for a procedure, the option will be ignored.

Figure 372 shows the syntax of the options string for opening files.

]

P——ASIS >

—BLKSIZE = —
—OONAME = nome—
——INTERACTIVE—
—LRECL = n
—MEMBER = nome—
—NAME = fin. ft.
—MNOCL————
—RECFM = ¢
—{ICASE

Figure 372. Syntax of Options for Opening Files

See VS Pascal Application Programming Guide for more information concerning
these options for opening files,

VS Pascal Language Reference

. Appendix D. Syntax Diagrams

253

Appendix D. Syntax Diagrams J

ARRAY Data Type

;

»—[———ijRRAY— [——-enumerated-scalor-type 1—0F—type——»
PACKED Ld-type

-—subrange-type

Array Structure

wW—id-type—|\—7constant-expr _| —repetitipn——F——|———»4

ASSERT Statement

H——ASSERT——expr S :

Assignment Statement

»—I:vari oble = expr —>
id—function—]

A

Canonical Mixed Strings

—TEnaracter==y |

—DOBCS-choracter -| » ‘

A
g

254 vS Pascal Language Reference

CASE Statement

»»——CASE expr 0F range—— : statement—————»
> I_ | END e
; — |
—O0THERWISE——statement—-

% CHECK Directive
p——%—CHECK | N
—(CASE —0
FUNCTION
—POINTER
PTR
+—SUBRANGE——
——SUBSCRIPT——
L—TRUNCATE :

A

:'}2
L]
Y

Compound Statement

.

statement END >

»»—BEGIN

CONST Declaration

A 4
A

»>——CONST id = constant ;
I—.:cms tan r—emr‘J

Constants

A\
A

| TTunsigned-number
E + jl Lid-constant4

string

NIL

Appendix D. Syntax Diagrams 255

Constant Expression or Expression

»»——simple-expression

CONTINUE Statement

»»——(CONTINUE

% CPAGE Directive

&
—"

Data Type

»————id-type

DBCS String Literal

B

simple-expression

]

A4
A

v
A

CPAGE

unsigned-integer

v
A

F—array

—Boolean

—character
—DBCS character
—DBCS string
F—enumerated

—file

—integer

—pointer

—real

—record

—set
—short real

——Space

—string
——string pointer

subrange

A\
A

J

DBCS-character———

'

>

— ' —hex-digit

256 VS Pascal Language Reference

'XG

A J
A

DEF Declaration

A

»——DEF

Empty Statement

id—— 1 ——tipe

a

% ENDSELECT Directive
»»——%——ENDSELECT

\é
A

Enumerated Scalar Data Type

>

(rzd_‘

Factor

A 4
A

-function-call
variable
set-constructor
(-expr-)
structured-constant—
NOT-factor

unsigned-constant

Field

P—id

\ 4
A

|_(—constant—expr‘——) _

A 4
A

Appendix D. Syntax Diagrams

L 4
A

257

Field-list

A\
A

»w——fixed-part— ; —variant-part
—fixed-part I— ; J
—variant-part

FILE Data Type

A 4
A
\d
A

FILE—OQF type
—[—PACKEDJ

Fixed-part

A 4
A

field type

[

FOR Statement

»»—FOR—id-var— := —expl_[TO expr—D0—statement—»<
DOWNTO

Formal Parameter Section

ol

ad i : —id-type >
i:VAR——
CONST—

procedure-heading
-function-heading

Function Call

»——id-function

258 vs Pascal Language Reference

Function Heading

* H

»»——FUNCTION——id——(-formal-parameter-section——) i—id-type——>4
T

Function-id

A
A

»>——FUNCTION——id

GOTO Statement

Y
A

»—G0OT0 label

GSTRING Data Type

p=——GSTRING (—constaont-expr—) ——

Identifier

»—Iletter — >
digit———
letter
underscore—

IF Statement

\ 4
A

»w—IF expr THEN Statement L _J
ELSE statement

%INCLUDE Directive
m——"L——INCLUDE r—Library-name— —(—member-name \J ; —————————»4
—member-naome—————

Appendix D. Syntax Diagrams

259

LABEL Declaration

PP—LABEL—[

LEAVE Statement

»»—{EAVE

unsigned-integer [;

[}

\ 4
A

id

v
A

%LIST Directive

% LIST

Y
A

OFF—‘
%MARGINS Directive
p——5—MARGINS integerl integer? >a
Mixed Strings
— —

.

Ordinal Conversion

»»—id-type

%PAGE Directive

character J
>

(—expr—)

—

DBCS-character

L 4
A

v
A

p——%—PAGE

260 vs Pascal Language Reference

Pointer Data Type

»— -t
[N

%PRINT Directive

o

—OFF—

Procedure Call

PRINT|—Q_N—- —

A 4
A

v
A

»»——id-procedure—r—(I_ —1 expr—r—)
VAR

Procedure Heading

\
A

'

»——-——PROCEDURE—id—r-(——formal—parameter«section——)—r-N

Procedure-id
»»——PROCEDURE—1id

Program Unit

g

»—PROGRAM-id—E(-prog-par)j;

\4
A

J

—label-dcl
—constant-dcl—
—type-dcl
—var-dcl
—def-dcl—
—ref-dcl
—static-dcl
mvalue-decl

—routine-dcl—

compound-s tthN

Appendix D. Syntax Diagrams 261

Range

v
A

»—Econstant | L | _J

constant-expr— . ——constant-expr

Record Structure

Vet

»—id-type—— {——s-constanbexpr—l —]= —>4
Record Data Type
> L _I RECORD—/field-1ist—END >4
PACKED

REF Declaration

»——REF '{ ;dl: - |

—type ;

v
A

262 VS Pascal Language Reference

REPEAT Statement

Repetition

RETURN Statement

Routine Block

Routine Declaration

Routine Directive

»»—REPEAT

P

statement———UNTIL——expr

»—————constant-expr

o

—RETURN———

v
A

A 4
a

A4

A 4

|

5

—Llabel-dcl
—constant-dcl—
—type-dcl———
—var-dcl
—def-del——
~ref-del
mstatic-dcl—
—value-dcl

—routine-dcl

procedure-heading
function-heading

procedure-id
function~id

procedure-headin
function-heading

v
A

; ——compound-statement— ; ——————————»4

T

R routine-block

; —directive—

A\
A

EXTERNAL
FORTRAN—
FORWARD—
GENERIC—
MATN
REENTRANT—

Appendix D.

A\
A

Syntax Diagrams

263

Segment Unit

%SELECT Directive

Set Constructor

SET Data Type

Simple Expression

e——5EBMENT—1d— ;

»—5%—SELECT

»— expr I_

..mexpr

e

'

.!—r:onsr’anr—dcl—
—type-dcl
—var-dcl

—def-dcl

—ref-dcl—
!—stotic—dd
—value-del-
—routine-dcl

b4
A 4

|
LPACKEDJ

SET-0F

Y
A

subrange-type

enumerated-scalar-type
tid—typc

\ 4
A

e

264 VS Pascal Language Reference

+ —T—term

v
A

¥
F 3

% SKIP Directive

L 4
&

»—5—SKIP LL r_‘

intege

SPACE Data Type

»»—SPACE—[——constant-expr—]—0F—type

%SPACE Directive

Y
A

»——%—SPACE :
!—integer—‘

Statements

v
A

> statement
L—label— : J

STATIC Declaration

Wl

A 4
A

»——STATIC

: —type

String Literal

L 4
A

|'character]-\
! —hex-digit:l—‘XCW

STRING Data Type

\
A

»»—STRING——(——constant-expr—)

v
A

Appendix D. Syntax Diagrams

265

Structured Constant

»e———record-structure T
L array-structure

Subrange Scalar Data Type

4
a

. ——constant-expr
RANGE——constant-expr— .. —constant-expr——

»>- LPM_KEDJ Lz.onstant L:.—constant _J

»»—factor

)

T * factor
/ 1
DIV—
—MOD——

s

<c—
EAND—
& —

%TITLE Directive

rp——E—TITLE character-string - — —_—

TYPE Declaration

W»—TYPE———id— = —type— ;

v
A

% UHEADER Directive

-

A\
A

%——UHEADER——character-string

266 vS Pascal Language Reference

v
&

Unsigned Constant

I

»»— unsigned-number
id-constant
string
NIL

Unsighed Number

\4
A

»—I:unsigned—integer J

unsigned-real-number

Unsigned Integer Literal

—

digit

Y |

'—binary-digit—'B——

i .

—'—hex-digit—'X—

Y
A

Unsigned Real Number Literal

v P

digit . digit —

A

T :

'—hex-digit—'XR

VALUE Declaration

;

»»—VALUE

A

variagble— := i_'fonstant—e,wr J g >
structured-const

VAR Declaration

o

»—7VAR id

A

: —type ; —

Appendix D. Syntax Diagrams 267

Variable Reference

\ 4
A

»»—id-var

[f_‘]
S i

Variant-part

»»—CASE id— : —id-type OF >
Eid-typc
id-fieldq— ; ———
» rangc:T : —(—field-list—) >
%WHEN Directive
p—5%—WHEN Boolean-expression L

WHILE Statement

I

»»—UWHILE expr DO statement

WITH Statement

—

»»——WITH variable DO statement

\ 4
A

% WRITE Directive

268

]
A

»—%—WRITE character-string

VS Pascal Language Reference

Appendix E. Migration Considerations

269

Appendix E. Migration Considerations

From VS Pascal Release 1 to VS Pascal Release 2
VS Pascal Release 2 supports all existing Release 1 functions with full upward
compatibility at both the source and object levels, with the exceptions noted in

Figure 373.
Release 2 Message
Change to ... Issued Nature of Change
Debugged — Release 1 object decks compiled with DEBUG
Object Decks must be recompiled for use with Release 2. This
allows the debugger to work with larger
programs.
Compile-Time AMPXS802S In Release 2, routines compiled with the HEADER
Limits compile-time option, which places header
information in the code space, might exceed 8K.
To correct the error:
e Compile routines with the NOHEADER
compile-time option
¢ |ssue a % UHEADER OFF before the routine if
a user header is being used.
Compiler Messages Release 2 now flags some invalid compiler
Option in the options that were ignored in Release 1. This
Checking Range affects only those users who invoke the compiler
7 XX with their own commands.
Compiler — Release 2 now flags some invalid compiler
Directive directives that were ignored in Release 1.
Checking
Hex String 819 Release 2 flags hex string literals containing an
Checking odd number of hex digits (for example, '404'XC)

as errors. Release 1 added a zero to the right of
hex string literals that contained an odd number of
hex digits.

Figure 373 (Part 1 of 4). Exceptions in VS Pascal Release 2 Support of Release 1

270 vsS Pascai Language Reference

Release 2 Message

Change to ... Issued Nature of Change
DBCS — The GRAPHIC compile-time option now causes VS
Checking Pascal to check double-byte character set (DBCS)
literals and comments and the %TITLE and
%WRITE compiler directives to ensure that:
¢ A shift-out (' OE'X) character and shift-in
('OF'X) character are paired before the end of
a source record. (This is the only check done
by Release 1.)
e Every shift-in is preceded by a shift-out.
¢ There are an even number of bytes between a
shift-out and shift-in.
¢ Only valid DBCS characters occur between a
shift-out and shift-in.
Structured — As defined in the proposed ANSI/IEEE Extended
Constant Pascal Standard, Release 2 now flags as errors
Checking structured constants containing files.
VAR — Release 2 now flags as errors VAR parameters
Parameter that do not have the same size.
Checking
Writing — As defined in the proposed ANSI/IEEE Extended
Character Pascal Standard, when a character variable or
Data constant is written with a field width of zero, no
data will be written.
= — Compile-time and run-time options no longer
Operator accept “=". In Release 2 you must specify

optname = optvalue as optname(optvalue).

Note: Only the ERRCOUNT, ERRFILE, STACK,
and HEAP run-time options, and the LINECOUNT
and PAGEWIDTH compile-time options, are
affected.

Figure 373 (Part 2 of 4). Exceptions in VS Pascal Release 2 Support of Release 1

Appendix E. Migration Considerations 271

Release 2 Message
Change to ... Issued Nature of Change
New “> <" — When the characters “> <" are passed in a string
Operator to TOKEN or LTOKEN, they are now returned as
one token rather than two, unless the “>" was
returned as part of another token.
Note: The characters “> <” can now be used as
a set operator for symmetric difference as defined
in the proposed ANSI/IEEE Extended Pascal
Standard. As an IBM extension to the Standard,
these characters can also be used as Boolean
exclusive or. Release 2 still supports XOR and
“&&" so that existing code need not be updated.
However, new code should use only “> <,
MAIN and — Release 2 now flags as errors MAIN and
REENTRANT REENTRANT routines that do not have their
Routine bodies declared.
Directives
ONERROR AMPX600 As part of National Language Support, ONERROR
Routines AMPX601 routines that caused message AMPX047 in
AMPX602 Release 1 now cause messages AMPX600-602 in
AMPX700 Release 2. Routines that caused message
AMPX701 AMPX057 in Release 1 now cause messages
AMPX702 AMPX700-702 in Release 2. Routines that caused
AMPX081 message AMPX089 now cause message AMPX081
AMPX082 in Release 2. Routines that caused messages
AMPX083 AMPX086 through AMPX088 in Release 1 now
AMPX084 cause messages AMPX082-084 in Release 2.
LPAD and — You should delete any %INCLUDE STRING
RPAD directives from your source code if you want to
Procedures use LPAD and RPAD with DBCS data.
Note: If you have declared LPAD or RPAD in a
higher scope than the one in which the
%INCLUDE STRING was deleted, you must use
different names in order to be able to access the
predefined LPAD and RPAD routines.
READSTR — When a fieldwidth of READSTR is equal to zero,
Procedure the length of the string will be used as the

fieldwidth; if the fieldwidth is less than zero, the
absolute value of the fieldwidth will be used as the
fieldwidth. This makes READSTR consistent with
READ.

Figure 373 (Part 3 of 4). Exceptions in VS Pascal Release 2 Support of Release 1

272 VS Pascal Language Reference

Release 2
Change to ...

Message
Issued

Nature of Change

PROLOG Macro
in Assembler
Routines

Any code using the PROLOG macro should be
re-assembled. This allows assembler routine
errors to generate an error trace-back report
rather than error message AMPX902S, and
improves error checking.

The new parameter FPARMS should be added to
the PROLOG macro of any assembler code that
contains local variables as well as formal
parameters. This helps the PROLOG macro
generate code compatible with compiler-
generated code, and might prevent certain
memory errors.

Figure 373 (Part 4 of 4). Exceptions in VS Pascal Release 2 Support of Release 1

From Pascal/VS Release 2.2 to VS Pascal Release 1
VS Pascal Release 2 supports all functions that are in Pascal/VS Release 2.2 (the
Program Offering that preceded the VS Pascal Release 1 Licensed Program) with
full upward compatibility at the source level except for some minor enhancements.
Recompilation of the Pascal/VS source code under VS Pascal Release 2 is

required.

The main differences between Pascal/VS Release 2.2 and VS Pascal Release 1 are
listed in the following section; the main differences between VS Pascal Release 1
and VS Pascal Release 2 are listed in the preceding section.

Changes in

Change

Source
Language
Statements

Threatened FOR loop indexes are now always flagged with a

warning.

Value parameters may no longer be control variables for FOR

loops.

Figure 374 (Part 1 of 4). Exceptions to VS Pascal Release 1 Support of Pascal/VS Release

2.2

Appendix E. Migration Considerations 273

Changes in

Change

Compiler
Options

The WARNING | NOWARNING compiler options are no longer
supported. They have been replaced by the FLAG compiler
option.

VS Pascal supports only two language level compiler options:
ANSI83 and EXTENDED. Pascal/VS supported three compiler
options: STANDARD, STDRES, and EXTENDED. When
LANGLVL(ANSI83) is specified, all standard violations will be
flagged as compiler errors. It warnings (instead of errors) are
desired, STDFLAG(W) must be specitied. This is equivalent to
LANGLVL(STDRES).

You cannot specify only the option, such as EXTENDED for
LANGLVL. You must specify the complete option, such as
LANGLVL(EXTENDED).

Run-Time
Library Routines

The component types of the arrays passed to the PACK and
UNPACK routines must have equal ranges if they are subrange
data types.

Range checking will now be done on the integer-to-character
conversion function (CHR).

Function
Declarations

Function results must now be identifier types. This will only
prevent subrange specifications whose first value is a constant
identifier.

Each function must now contain an assignment to the function
result.

Figure 374 (Part?2 of 4). Exceptions to VS Pascal Release 1 Support of Pascal/VS Release

274 Vs Pascal Language Reference

2.2

Changes in

Change

1/0 Routines

Output of some real numbers will be changed to conform to the
1983 ANSI/IEEE standard. Pascal/VS always writes a real
number with a value of zero as “0.0” or “0.” The ANSI/IEEE
standard makes no such distinction between zero and other
real numbers. In VS Pascal, real zero is now handled just like
any other real number. If the Pascal/VS behavior is required, a
statement such as:

IF R=0.0
THEN WRITELN (R : LENGTH1 : 1)

should produce results equivalent to those in Pascal/VS.

Parameters for the 110 routines READ, READLN, READSTR,
WRITE, WRITELN, and WRITESTR are now evaluated in
left-to-right order.

When writing REAL data: in the case where length1 and /ength2
are specified and /ength2 equals zero, then a decimal point is
written, but no decimal place is written. If length2 is negative.
the number is written using the floating point form. If the
Pascal/VS Release 2.2 behavior is required, a statement such
as:

IF (LENGTH2 = 0) AND (ABS(R) >= 1)
THEN WRITELN(ROUND(R) : LENGTH1)
ELSE WRITELN(R : LENGTH1 : LENGTH2);

will replace WRITELN(R : LENGTH1 : LENGTH2).

The CLOSE procedure no longer accepts open options.

Program
Parameters

Duplicate program parameters are now flagged.

Program parameters (other than INPUT or OUTPUT) that are not
declared as global variables are now flagged.

If INPUT is specified as a program parameter, a RESET(INPUT)
will be issued. If this behavior is not desired, remove INPUT
from the program parameter list.

If OUTPUT is specified as a program parameter, a
REWRITE(OUTPUT) will be issued. If this behavior is not
desired, remove OUTPUT from the program parameter list.

Figure 374 (Part 3 of 4). Exceptions to VS Pascal Release 1 Support of Pascal/VS Release

2.2

Appendix E. Migration Considerations 275

Changes in

Change

Operating
Systems

The OS/VS 1 and VM/PC operating systems are not supported.
Although VS Pascal and its generated programs may work on
these systems, any problems on these systems must be
reproduced on a supported operating system. The IBM Support
Center will not accept problem reports using these operating
systems.

Other ltems

lllegal use of file variables (embedded files) not flagged by
Pascal/VS will now be diagnosed by VS Pascal. There were
situations in which file variables occurred illegally, and
Pascal/VS did not flag such occurrences as illegal. lliegal
occurrences of file variables include: files within files,
assigning files, files in value parameters, and files in function
results.

Variables preceded by a unary plus and variables in
parentheses are no longer allowed as actual VAR parameters.

Range checking is now done on all pass-by-value and
pass-by-constant actual expression parameters.

Fields in records may no longer have the same name as the
domain type of a new pointer type being referenced in the
record.

Invalid values for value assignments are now flagged as errors.

Global labels in segment units are now flagged with a warning
message because they can’t be branched to.

All tag constants in a variant record must be legal values for the
tag type of the record.

Figure 374 (Part4 of 4). Exceptions to VS Pasca! Release 1 Support of Pascal/VS Release

276 VS Pascal Language Reference

2.2

Glossary

actual parameter. The actual value passed to a
routine. See formal parameter.

anonymous type. A type, specified on a variable
declaration, that does not use a type name.

array type. The structured type that consists of an
indexed list of elements , of the same data type.

assignment compatible. The term used to indicate
whether a value may be assigned to a variable.

automatic variable. A variable allocated on entry to a
routine and deallocated on the subsequent return. An
automatic variable is declared with the VAR
declaration.

base scalar type. The data type on which another type
is based.

bit. One binary digit.

byte. The unit of addressability on the System/370, its
length is 8 bits.

canonical mixed string. A string in which adjacent
shift-in/shift-out character pairs and DBCS nuils have
been removed.

case label. A value or range of values that comes
before a statement in a case statement branch. When
the selectcr evaluates to the value of a case label, the
statement following the case label is executed.

compatible types. The term that is used to indicate that
operations between values of those types are
permitted.

compilable unit. An independently compilable piece of
code. There are two types of unit: the program unit
and the segment unit.

component. The name of a value in a structured type.

constant. A value that is either a literal or an identifier
that has been associated with a value in a CONST
declaration.

constant expression. An expression that can be
completely evaluated by the compiler at compile time.

current heap. The area of storage in the VS Pascal
run-time environment where dynamic variables
allocated by calls to NEW will reside. While many
heaps can exist at one time, there is only one current
heap.

DBCS. See double-byte character set.

dereference. Accessing a dynamic variable pointed to
by a pointer.

double-byte character set (DBCS). A set of characters
where each character requires 2 bytes. Languages
such as Kanji require such double-byte
representations.

double-byte character set (DBCS) fixed string. A
PACKED ARRAY [1..n] OF GCHAR.

dynamic variable. A variable that is allocated under
programmer control. Explicit allocations and
deallocations are required; the predefined procedures
NEW and DISPOSE are provided for this purpose.

EBCDIC. See extended binary-coded decimal
interchange code.

element. The component of an array.

entry routine. A procedure or function that can be
invoked from outside the unit in which it is defined. The
routine is called an entry point in the program in which
itis defined. An entry routine cannot be imbedded in
another routine; it must be deciared in the outermost
level of a unit.

enumerated scalar type. A scalar that is defined by
enumerating the elements of the type. Each elementis
represented by an identifier.

executable program. Consists of object code from your
main program that is link-edited with the object code
from the run-time library and any segments needed by
the main program.

extended binary-coded decimal interchange code
(EBCDIC). The underlying character set used in VS
Pascal.

external routine. A procedure or function whose body
is not contained in the unit being compiled.

external variable. A variable that can be referenced
from other units and scopes than the one in which it
was declared.

field. The component of a record.

file pointer. May be thought of as a pointer into an
input/output buffer.

FILE type. A data type that is the mechanism to do
input and output in VS Pascal.

277

Glossary

fixed part (of a record). That part of a record that exists
in all instances of a particular record type.

fixed string. See single-byte character set (SBCS) fixed
string and double-byte character set (DBCS) fixed
string.

floating-point number. A subset of the set of real
numbers.

formal parameter. A parameter as declared in the
routine heading. A formal parameter is used to specify
what is permitted to be passed to a routine. See
“actual parameter”

function. A routine that is invoked by coding its name
in an expression. The routine passes a result back to
the invoker through the routine name.

GENERIC routine. A routine whose parameter count,
types, and passing mechanism are specified by the call
to the routine.

heap. An area of storage where dynamic variables are
created.

hexadecimal digits. A digit that is a member of the set
of sixteen digists: 0 through 9, and then A through F
used in a number system of Base 16.

hexadecimal graphic data. Hexadecimal digits used in
DBCS data. The number of hexadecimal digits must be
a multiple of four.

identifier. The name of a declared item.

index. The selection mechanism applied to an array to
identify an element of the array.

integer. The set of positive and negative whole
numbers.

internal routine. A routine that can be used only from
within the lexical scope in which it was declared.

invoker. That piece of code that calls another function,
procedure, or unit.

lexical scope. |dentifies the portion of a unit in which a
name is known. An identifier declared in a routine is
known within that routine and within all nested
routines. If a nested routine declares an item with the
same name, the outer item is not available in the
nested routine.

mixed string. A string consisting of a mixture of DBCS
and SBCS characters.

offset. The selection mechanism of a space. An

element is selected by placing an integer value in
brackets. The origin of a space is based on zero.

278 VS Pascal Language Reference

operand. The data that is being manipulated by an
operator.

operator. A mathematical or logical process that is
used to manipulate data.

ordinal type. A scalar type whose values are mapped
to a continuous range of integers.

partitioned data set. A file (sometimes referred to as a
library) containing logical files that are called
members.

pass-by-CONST. The parameter passing mechanism
by which an expression, variable, or constant is passed
to the called routine. The called routine is not
permitted to modify the formal parameter. If the actual
parameter is an expression, a temporary parameter
will be created and its address will be passed to the
called routine.

pass-by-read-only-reference. See “pass-by-CONST.”
pass-by-read/write-reference. See “pass-by-VAR.”

pass-by-value. The parameter passing mechanism by
which a copy of the value of the actual parameter is
passed to the called routine. If the called routine
modifies the formal parameter, the corresponding
actual parameter is not affected.

pass-by-VAR. The parameter passing mechanism by
which the address of a variable is passed to the called
routine. If the called routine modifies the formal
parameter, the corresponding actual parameter is
changed. Only variables may be passed by this means.
Fields of a packed record or elements of a packed
array may not be passed as VAR parameters in
standard Pascal.

pointer. A variable that contains the address of a
dynamic variabte.

procedure. A rcutine, invoked by coding its name as a
statement, that does not pass a result back to the
invoker.

program. See executable program.

program unit. The name of the compilable unit of code
that represents the first unit executed.

record type. The structured data type that contains a
series of fields. Each field can be a different data type.
A field is selected by the name of the field.

reserved word. An identifier whose use is restricted by
the VS Pascal compiler.

routine. A unit of a VS Pascal program that may be
called. The two types of routines are functions and
procedures.

scalar type. A type whose values contain only one
element.

SBCS. See single-byte character set.

segment unit. A compilable unit in VS Pascal that is
used to contain entry routines.

selector. The term in a CASE statement that, once
evaluated, determines which of the possible branches
the CASE statement will execute.

SET type. Used to define a variable that represents all
combinations of elements of some ordinal type.

shift-in character. Indicates the end of DBCS data and
is denoted by X'0F'.

shift-out character. Indicates the beginning of DBCS
data and is denoted by X'0E".

single-byte character set (SBCS). A set of characters
where each character requires one byte.

single-byte character set (SBCS) fixed string. A
PACKED ARRAY [1..N] OF CHAR.

SPACE type. Used to define a variable whose
components may be positioned at any byte in the total
space of the variable.

statement. The executable code in a VS Pascal
program.

string. Represents an ordered list of characters whose
size may vary at run time. There is a maximum size
for every string.

string constant. A string whose value is fixed by the
compiler.

structured type. Any one of several data type
mechanisms that defines variabies that have multiple
values. Each value is referred to generally as a
component.

subrange type. Used to define a variable whose value
is restricted to some subset of values of a base ordinal
type.

subheap. An area in a heap delimited by a call to
MARK. Subheaps are treated in a stack-like manner
within a heap.

tag field. The field of a record that defines the structure
of the variant part.

type. Defines the permissible values a variable may
assume.

type definition. The specification of a data type. The
specification may appear in a type declaration or in the
declaration of a variable.

type identifier. The name given to a declared type.
unit. See compilable unit.

variant part (of a record). That portion of a record that
may vary from one instance of the record to another.

The variant portion consists of a series of variants that
may share the same physical storage.

Glossary 279

Bibliography

VS Pascal Publications

These books provide additional information about VS
Pascal.

Evaluation

o VS Pascal General Information, GC26-4318,
provides an overview of VS Pascal.

* VS Pascal Licensed Program Specifications,
GC26-4317, contains warranty information for VS
Pascal.

Application Programming

* VS Pascal Application Programming Guide,
SC26-4319, explains how to compite, execute, and
debug VS Pascal programs.

* VS Pascal Reference Summary, SX26-3760,
provides quick-reference charts of VS Pascal
language rules and processing/debugging options.

Installation

e V8§ Pascal Installation and Customization for VM,
S5C26-4342, explains how to install VS Pascal under
VM/SP and VM/XA.

e VS Pascal Installation and Customization for MVS,
SC26-4321, explains how to install VS Pascal under
MVS/SP, MVS/XA and MVS/ESA.

Diagnosis

* VS Pascal Diagnosis Guide and Reference,
LY27-9525, explains how to diagnose, report, and
request information on VS Pascal-related
problems.

Related Publications

Many text books are avatlable on Pascal. The following
list does not reflect any preference and is not
exhaustive; it is merely provided to start the reader in
the right direction. You may wish to check your library
for other books or more recent editions.

280 vsS Pascal Language Reference

Standard Pascal User Reference Manual by Doug
Cooper, W. W, Norton & Company, Inc., 1983, 176
pages.

Oh! Pascal! by Doug Cooper and Michael Clancy,
W. W. Norton & Company, Inc., 1985, 607 pages.

PASCAL: An Introduction to Methodical
Programming by W. Findlay and D. Watt, Computer
Science Press, 1978, 306 pages; UK Edition by
Pitman International Text, 1978.

Pascal for the 80s by Samuel Grier, Brooks/Cole
Pubiishing Company, 1985, 540 pages.

Programming in PASCAL by Peter Grogono,
Addison-Wesley, Reading Mass., 1978.

Pascal Users Manual and Report by K. Jensen and
N. Wirth, Springer-Verlag, New York, 1978.

Structured Programming and Problem-Solving with
Pascal by R.B. Kieburtz, Prentice-Hall Inc., 1978.

Programming via Pascal by J.S. Rohl and Barrett,
Cambridge University Press.

An Introduction to Programming and
Problem-Solving with Pascal by G.M. Schneider,
S.W. Weingart and D.M. Periman, Wiley & Sons
Inc., New York, 394 pages.

The Pascal Handbook, by Jacques Tiberghien,
SYBEX Inc., 1981.

Introduction to Pascal by J. Welsh and J. Eider,
Prentice-Hall Inc., Englewood Cliffs, 220 pages.

A Practical Introduction to Pascal by |.P. Wilson
and A.M. Addyman, Springer-Verlag New York,
1978, 145 pages; MacMillan, London, 1978.

Paradigms and Programming with Pascal by
Derrick Wood, Computer Science Press, Inc., 1984.

Index

Special Characters

operator 199
< < operator 197
< > operator 199
< = operator 199
+ operator 198
| operator 198
|| operator 198
&& operator 198
* operator 197
— operator 197, 199
- operator 198
/ operator 197
% directives
see compiler directives
operator 199
< operator 198
> operator 197
= operator 199
= operator 199

vV V.V V

A
ABS function 118
actual parameters 105
addition operators 198
additional routines
CMS procedure 186
ITOHS function 187
LPAD procedure 187
ONERROR procedure 188
PICTURE function 189
RPAD procedure 191
ADDR function 118
ALFA data type 50
applicable operators and predefined functions 50
ALFALEN constant 37
ALPHA data type 50
applicable operators and predefined functions 50
ALPHALEN constant 37
AND operator 197
ARCTAN function 118
array constants 38
ARRAY data type 51
applicable predefined functions 52

arrays
multidimensional 51, 93
packed 51

referencing 93

subscripting 93
ASSERT statement 209
assignment compatibility 48

assignment statement 209
restrictions on usage 210
automatic variables 31

basic data type 44
BOOLEAN data type 53
applicable operators and predefined functions
applicable relational operators 54
BOOLEAN expressions 199
order of evaluation 199
short circuiting 200
boundary alignments of variables 49

C

canonical mixed strings 83, 117
case labels 212
case sensitivity
identifiers 8
literals 14
reserved words 9
CASE statement 211
labels 212
selectors 211
CHAR data type 55
applicable operators and predefined functions
CHECK compiler directive 231
CHR function 119
CLOCK function 119
CLOSE procedure 119
CMS procedure 186
COLS function 119
comments 11
double-byte character set (DBCS) 12
nested 12
restrictions with %WHEN 12
restrictions with MVS batch 12
compatible data types 47
compilable unit 18
compiler directives 230
%CHECK 231
%CPAGE 232
%ENDSELECT 233
%INCLUDE 233
%LIST 234
%MARGINS 235
%PAGE 235
%PRINT 235
%SELECT 238
%SKIP 236
%SPACE 236
%TITLE 237

Index

53

55

281

compiler directives (continued)
%UHEADER 237
%WHEN 238
%WRITE 240
list and summary 230
used for conditional compilation 239
compound statement 214
COMPRESS function 120
conditional compilation

using %SELECT, %WHEN, and %ENDSELECT 239

conformant string parameters 105, 106
CONST declaration 27
constant expressions 201
applicable predefined functions 201
relation to VS Pascal and Standard Pascal
constants 36
categories
NIL 36
strings 36
TRUE and FALSE 36
unsigned integers 36
predefined
list and summary 37
relation to VS Pascal and Standard Pascal
structured 37
CONTINUE statement 215
conversion routines
CHR function 119
FLOAT function 126
GSTR function 126
GTOSTR function 127
listand summary 113
ORD function 150
ROUND function 165
STOGSTR function 168
STR function 169
TRUNC function 174
COS function 121
CPAGE compiler directive 232

D

data inquiry routines
ADDR function 118
HBOUND function 128
HIGHEST function 129
LBOUND function 130
list and summary 114
LOWEST function 132
MAX function 137
MIN function 139
ODD function 149
PRED function 152
SIZEOF function 167
SUCC function 171

data movement routines
listand summary 114
PACK procedure 150

282 vs Pascal Language Reference

36

36

data movement routines (continued)
UNPACK procedure 175
data type compatibility 46
and empty set 47
and NIL 47
assignment compatibility 48
compatible types 47
implicit conversions 46
same types 47

data types

ALFA 50

ALPHA 50

ARRAY 51

basic 44

BOOLEAN 53

CHAR 55

DBCS fixed string 56

enumerated 57

FILE 59

GCHAR 60

GSTRING 61

INTEGER 64

listand summary 49

pointer 44, 66

REAL 67

RECORD 69

SBCS fixed string 76

SET 77

SHORTREAL 79

simple 44

SPACE 81

STRING 81

STRINGPTR 45, 84

structured 45

subrange 86

TEXT 88

user-defined 45
DATETIME procedure 121
DBCS (double-byte character set) comments 12
DBCS fixed string data type 56

applicable operators and predefined routines 56
declarations 24

CONST 27

DEF 28

LABEL 28

list and summary 24

order of declaration 27

REF 29

STATIC 30

TYPE 30

VALUE 31

VAR 31
DEF declaration 28

DEF variables 28

used in VALUE declarations 31

DELETE function 122
directives

see routine directives

directives, compiler functions (continued)

see compiler directives CLOCK 119
DISPOSE procedure 123 COoLS 119
DISPOSEHEAP procedure 123 COMPRESS 120
DIV operator 66, 197 COS 121
double-byte character set (DBCS) comments 12 DELETE 122
dynamic variables 66, 96 EOF 124

EOLN 125
EXP 125
E FLOAT 126
empty set 47 GSTR 126
empty statement 215 GTOSTR 127
ENDSELECT compiler directive 233 HBOUND 128
enumerated data type 57 HIGHEST 129

applicable predefined functions 58 INDEX 130
EOF function 124 ITOHS 187
EOLN function 125 LBOUND 130
EPSREAL constant 37, 67 LENGTH 131
EXP function 125 LN 132
expressions 194 LOWEST 132

BOOLEAN 199 LTRIM 135

constant 201 MAX 137

logical 202 MAXLENGTH 137

order of evaluation 194 MCOMPRESS 138
EXTERNAL routine directive 109 MDELETE 139
external variables 28 MIN 139

MINDEX 140
F MLENGTH 140
MLTRIM 141

FALSE BOOLEAN constant 37

i MRINDEX 141
field referencing 95

MSUBSTR 142

fields 69 MTRIM 143
naming 70 ODD 149
offset qualification 75 ORD 150

FILEda‘tatype 59, ordinal conversion 203
applicable functions 60 PARMS 151
restrictions on usage 59 PICTURE 189

file pointers 59 PRED 152

file referencing 97 RANDOM 154

fixed string data types RINDEX 164
DBCS 56 ROUND 165
SBCS 76 SIN 167

FLOAT function 126 SIZEOF 167

FORsta.tement 216 SQR 167
restrlctFons on usage 217 SQRT 168
used w!th DOWNTO 216 STOGSTR 168
used with TO 216 STR 169

formal pargmeters 105 SUBSTR 170

formal routmeparar.nete.rs 106 sucC 171

FORTRAN routine directive 109 TRIM 174
restrictions on usage 109 TRUNC 174

FORWARD routine directive 110
function calls 203
function results 107
functions 102
ABS 118
ADDR 118
ARCTAN 118
CHR 119

Index 283

G

GCHAR data type 60
applicable operators and predefined functions 61
general routines
HALT procedure 128
list and summary 114
TRACE procedure 173
GENERIC routine directive 110
communication with other products 110
restrictions on usage 112
GET procedure 126
restrictions on usage 126
global automatic variables 32
global identifiers 24
GOTO statement 219
restrictions on usage 219
GSTR function 126
GSTRING data type 61
applicable operators and predefined functions 62
binary operators applied 63
indexing 95
GSTRING subscripting 95
GTOSTR function 127

H

HALT procedure 128
HBOUND function 128
heap 66

HIGHEST function 129

I/0O routines
CLOSE procedure 119
COLS function 119
EOF function 124
EOLN function 125
GET procedure 126
list and summary 114
PAGE procedure 151
PDSIN procedure 151
PDSOUT procedure 152
PUT procedure 153
READ procedure (record files) 154
READ procedure (text files) 155
READLN procedure (text files) 155
RESET procedure 163
REWRITE procedure 163
SEEK procedure 166
TERMIN procedure 171
TERMOUT procedure 171
UPDATE procedure 176
WRITE procedure (record files) 177
WRITE procedure (text files) 178
WRITELN procedure (text files) 178
identifiers 8
case sensitivity 8

284 vsS Pascal Language Reference

identifiers (continued)
global 24
lexical scope 24
local 24
restrictions on format 8
IF statement 220
nesting 221
implicit type conversions 46
IN operator 199
INCLUDE compiler directive 233
INDEX function 130
INPUT file 88
usage requirements 19
INTEGER data type 64
applicable operators and predefined functions 64
DIV and MOD operators 66
MAXINT and MININT constants 64
ranges of integers 86
storage mapping 64
ITOHS function 187

L

LABEL deciaration 28
in statements 208
used with GOTO statement 219
LBOUND function 130
LEAVE statement 222
LENGTH function 131
lexical scope
of identifiers 24
of nested routines 25
tinking units to form a program 22
LIST compiler directive 234
used with small sections of units 234
literals 12
case sensitivity 14
double-byte character set (DBCS) hexadecimal 15
double-byte character set (DBCS) mixed 15
floating-point hexadecimal 15
integer binary 15
integer hexadecimal 14
string hexadecimal 15
LN function 132
local identifiers 24
logical expressions 202
and INTEGERs 202
applicable logical operators 202
LOWEST function 132
LPAD procedure 133, 187
LTOKEN procedure 134
LTRIM function 135

M operators {continued)
NOT 197
relational 199
OR operator 198
ORD function 150, 203
ordinal conversion functions 203
QUTPUT file 88
usage requirements 19

MAIN routine directive 112
communication with other languages 112
restrictions on usage 112
MARGINS compiler directive 235
MARK procedure 136
mathematical routines
ABS function 118
ARCTAN function 118
COS function 121 P

EXP function 125 PACK procedure 150

list and summary 115 PACKED ARRAY OF CHAR data type 81
LN function 1:}2 packed arrays 51

RANDOM function 154 packed records 74

SIN function 167 PAGE compiler directive 235

SORfunctiqn 167 PAGE procedure 151
SQRT function 168 parameters

MAX function 137 actual 105

MAXCHAR constant 37 conformant string 105, 106
MAXINT constant -37, 64 formal 105

MAXLENGTH function 137 formal routine 106

MAXREAL constant 37, 67 non-predefined routines as parameters 107

MCOMPRESS 1gnction 138 pass by read-only reference 106
MDELETE function 139 pass-by-CONST 106

migration'considerations 273 pass-by-reference 105

MIN function ' 139 pass-by-value 105

MINDEX function 140 pass-by-VAR 105

MININT constant 37, 64 predefined routines as parameters 107
MINREAL CONSTQM 37, 67 restrictions on routines as parameters 107
MLENGTH function 140 parameters, program

MLTRIM function 141 see program parameters 19
MOD operator 66, 197 PARMS function 151
MF"NDE_X functlpn 141 Pascal/VS, migration considerations 273
MSUBSTR 1u.nctlon 142 pass by read-only reference parameters 106
MTRIM function 143 pass-by-CONST parameters 106
mult'tdl.menlsuonal arrays 51,93 pass-by-reference parameters 105
multiplication operatorg 197 pass-by-value parameters 105
mutually recursive routines 110 pass-by-VAR parameters 105
PDSIN procedure 151
N PDSOUT procedure 152
PICTURE function 189
pointer data type 44, 66
applicable operators and predefined routines 67
declaring 66
used with NEW procedure 66
pointer referencing 96
checking errors 97
pointer variables 66
PRED function 152

nesting of programs 25
NEW procedure 143
used with pointer data type 66
used with STRINGPTR data type 84
NEWHEAP procedure 146
NIL 47
NOT operator 197

0 predefined constants 37
ODD function 149 predefined variables 93
ONERROR procedure 188 PRINT compiler directive 235
operators 197 procedure call 223

addition 198 procedures 102

and operands 197 CLOSE 119

four classes by precedence 194 CMS 186

multiplication 197 DATETIME 121

index 285

procedures (continued)
DISPOSE 123
DISPOSEHEAP 123
GET 126
HALT 128
LPAD 133,187
LTOKEN 134
MARK 136
NEW 143
NEWHEAP 146
ONERROR 188
PACK 150
PAGE 151
PDSIN 151
PDSOUT 152
PUT 153
QUERYHEAP 153
READ (record files) 154
READ (text files) 155
READLN (text files) 155
READSTR 160
RELEASE 162
RESET 163
RETCODE 163
REWRITE 163
RPAD 165, 191
SEEK 166
TERMIN 171
TERMOUT 171
TOKEN 172
TRACE 173
UNPACK 175
UPDATE 176
USEHEAP 177
WRITE (record files) 177
WRITE (text files) 178
WRITELN (text files) 178
WRITESTR 184
program elements
comments 11
identifiers 8
literals 12
reserved words 9
special symbols 10
program parameters
for Standard Pascal 19
for VS Pascal 20
program unit 18
structure 18
PUT procedure 153
restrictions on usage 153

286 VS Pascal Language Reference

Q

QUERYHEAP procedure 153

R

RANDOM function 154
READ procedure (record files) 154
READ procedure (text files) 155
reading
CHAR data 158
DBCS fixed string data 158
GCHAR data 158
GSTRING data 158
integer data 159
real and shortreal data 159
SBCS fixed string data 159
string and mixed string data 160
variables with a length 157
reading
CHAR data 158
DBCS fixed string data 158
GCHAR data 158
GSTRING data 158
integer data 159
real and shortreal data 159
record file data 154
SBCS fixed string data 159
string and mixed string data 160
text file data 155
variables with a length 157
READLN procedure (text files) 155
reading
CHAR data 158
DBCS fixed string data 158
GCHAR data 158
GSTRING data 158
integer data 159
real and shortreal data 159
SBCS fixed string data 159
string and mixed string data 160
variables with a length 157
READSTR procedure 160
REAL data type 67
and EPSREAL constant 67
and MAXREAL constant 67
and MINREAL constant 67
applicable operators and predefined functions
record constants 39
RECORD data type 69
applicable predefined functions 76
declaring 70
record files 59
records 69
fields 69
naming 70
offset qualification 75
fixed part 71
packed 74

68

records (continued)
storage mapping 74
tag field 71
variant part 71
variant selector 71
recursive function 107
REENTRANT routine directive 112
restrictions on usage 113
REF declaration 29
REF variables 29
restrictions on usage 29
referencing
field 95
file 97
pointer 96
space 98
relational operators 199
and DBCS and mixed strings 199
RELEASE procedure 162
REPEAT statement 223
reserved words 9
case sensitivity 9
list and summary 9
special usage 9
RESET procedure 163
RETCODE procedure 163
restrictions on usage 163
RETURN statement 224
REWRITE procedure 163
RINDEX function 164
ROUND function 165
routine declarations 102, 105
parameters
see parameters
routine directives 108
EXTERNAL 109
FORTRAN 109
FORWARD 110
GENERIC 110
MAIN 112
REENTRANT 112
routines 102
returning data 102
see also
additional routines
conversion routines
data inquiry routines
data movement routines
general routines
I/0 routines
mathematical routines
storage management routines
string routines
system access routines
RPAD procedure 165, 191

S

same data types 47
SBCS fixed string data type 76

applicable operators and predefined routines 76

SEEK procedure 166

segment unit 20

SELECT compiler directive 236
restrictions on usage 236

selectors 211

set constructors 204

SET data type 77

applicable operators and functions 79

packed set 78

storage mapping 78
short circuiting 200
SHORTREAL data type 79

and floating-point data 79

applicable operators and predefined functions 80

simple data type 44
SIN function 167
SIZEOF function 167
SKIP compiler directive 236
SPACE compiler directive 236
SPACE data type 81
applicable functions 81
space referencing 98
checking errors 99
special symbols 10
list and summary 10
special usage 11
SQR function 167
SQRT function 168
statements 208

ASSERT 209
assignment 209
CASE 211

compound 214

CONTINUE 215

empty 215

FOR 216

GOTO 219

\F 220

LEAVE 222

list and summary 208

procedure call 223

REPEAT 223

RETURN 224

WHILE 225

WITH 225
STATIC declaration 30

static variables 30

restriction on usage 30
used in VALUE declarations

STOGSTR function 168
storage allocation of variables 49
storage management routines

DISPOSE procedure 123

DISPOSEHEAP procedure 123

31

Index

287

storage management routines (continued) subrange data type 86

list and summary 116 applicable predefined functions 87
MARK procedure 136 packed 86
NEW procedure 143 ranges of integers 86
NEWHEAP procedure 146 restrictions on usage 87
QUERYHEAP procedure 153 subscripting
RELEASE procedure 162 arrays 93
USEHEAP procedure 177 errors, checking 95
STR function 169 GSTRING variables 95
STRING data type 81 string variables 94
and PACKED ARRAY OF CHAR 81 SUBSTR function 170
and subscripted string arrays 94 SUCC function 171
applicable byte-oriented operators and routines 82 syntax diagrams
applicable character-oriented operators and how to read
routines 83 default parameters 5
binary operators applied 83 multiple parameters 4
compatibility 82 no parameters 2
used with DBCS data 82 optional parameters 3
used with LENGTH function 82 required parameters 2
used with MAXLENGTH function 82 system access routines
used with mixed data 82 CLOCK function 119
used with SBCS data 82 DATETIME procedure 121
string routines listand summary 117
COMPRESS function 120 PARMS function 151
DELETE function 122 RETCODE procedure 163
INDEX function 130
LENGTH function 131
list and summary T
for mixed strings 117 tag field 71
for SBCS and DBCS strings 116 TEBRMIN procedure 171
LPAD procedure 133 TERMOQUT procedure 171
LTOKEN procedure 134 TEXT data type 88
LTRIM function 135 applicable routines 88
MAXLENGTH function 137 INPUT and QUTPUT file 88
MCOMPRESS function 138 TITLE compiler directive 237
MDELETE function 139 TOKEN procedure 172
MINDEX function 140 TRACE procedure 173
MLENGTH function 140 TRIM function 174
MLTRIM function 141 TRUE BOOLEAN constant 37
MRINDEX function 141 TRUNC function 174
MSUBSTR function 142 type compatibility 46
MTRIM function 143 TYPE declaration 30
READSTR procedure 160
RINDEX function 164 U

RPAD procedure 165
SUBSTR function 170
TOKEN procedure 172
TRIM function 174
WRITESTR procedure 184
string subscripting 94
STRINGPTR data type 45, 84
applicable operators and predsfined routines 85
used with NEW procedure 84
structured constants 37
array 38
record 39
structured data type 45

UHEADER compiler directive 237
units
linking to form a program 22
program 18
segment 20
UNPACK procedure 175
UPDATE procedure 176
USEHEAP procedure 177

288 VS Pascal Language Reference

'}

VALUE declaration 31
and STATIC and DEF variabies 31
VAR declaration 31
errors in usage 32
variables 92
automatic 31
boundary alignments 49
DEF variables
restrictions on usage 28
when to specify 32
external 28
global automatic 32
static 30
storage allocation 49
variant part of a record 71
variant selector of arecord 71
VS Pascal
migration considerations 273

w

WHEN compiler directive 238
notes on usage 239
WHILE statement 225
WITH statement 225
WRITE compiler directive 240
WRITE procedure (record files) 177
WRITE procedure (text files) 178
writing
Boolean data 180
CHAR data 181
DBCS fixed string data 181
expressions with a length 180
GCHAR data 181
GSTRING data 182
integer data 182
real and shortreal data 182
SBCS fixed string data 183
string and mixed string data 183
WRITELN procedure (text files) 178
writing
Boolean data 180
CHAR data 181
DBCS fixed string data 181
expressions with a length 180
GCHAR data 181
GSTRING data 182
integer data 182
real and shortreal data 182
SBCS fixed string data 183
string and mixed string data 183
WRITESTR procedure 184
writing
Boolean data 180
CHAR data 181
DBCS fixed string data 181
expressions with a length 180

writing (continued)
GCHAR data 181
GSTRING data 182
integer data 182
real and shortreal data 182
record file data 177
SBCS fixed string data 183
string and mixed string data 183
text file data 178

X

XOR operator 198

Index

289

Staples can couse problems with automatic mait-sarting equipment.
Please use pressure-sensitive or other gummed tape to seal this form.

Nate:

VS Pascal Reader’s
Language Reference Comment

Form
SC26-4320-1

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM systems.
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the under-
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author’s department for whatever review and action, if any, are deemed appro-
priate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not stocked at
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for assislance in using

your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Comments (please include specific chapter and page references) :

If you want a reply, please complete the following information:

Name Date
Company Phone No. ()
Address

Thank you for your cooperation. No postage is necessary if mailed in the U.S.A. (Eilsewhere, an IBM office or representative will be
happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.)

5C26-4320-1

Reader’s Comment Form

Fold and tape Please do not staple Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Programming Publishing
P.O. Box 49023

San Jose, CA 95161-9023

Fold and tape Please do not staple Fold and tape

[
(Al
I
1T
.||Ii
oIl

Staples can cause problems with outomatic mail-sorting equipment.

Note:

Please use pressure-sensitive or ather gummed tape to seal this form.

VS Pascal Reader’s
Language Reference Comment

Form
SC26-4320-1

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of (BM systems.
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the under-
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author’s department for whatever review and action, if any, are deemed appro-
priate.

Note: Do not use this form to request IBM publications. It you do, your order will be delayed because publications are not stocked at
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for assistance in using

your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Comments (please include specific chapter and page references) :

If you want a reply, please complete the following information:

Name Date
Company Phone No. {)
Address

Thank you for your cooperation. No postage is necessary if mailed in the U.S.A. (Eisewhere, an IBM office or representative will be
happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.)

S5C26-4320-1

Reader’s Comment Form

Fold and tape Please do not staple Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Programming Publishing
P.O. Box 49023

San Jose, CA 95161-9023

Fold and tape Please do not staple Fold and tape

olI"

Program Number Eaa File Number

: 5668-767 S370-40
5668-717

The VS Pascal Library

Application Programming Guide SC26-4319
Diagnosis Guide and Reference LY27-9525
General Information GC26-4318

Installation and Customization for MVS SC26-4321
Installation and Customization for VM SC26-4342
Language Reference __8026—4320
Supplementary Publications S

Licensed Program Specifications GC26-4317
Reference Summary] SX26-3760

SC26-4320-1

i RO

