

--------- -------- - --- VS Pascal SC26-4319-1 - -- ---___ w_

--_.-

Application Programming Guide

Release 2

--------- -------- - --- VS Pascal SC26-4319-1

- -- ----------_.-
Application Programming Guide

Release 2

Second Edition (December 1988)

This edition replaces and makes obsolete the previous edition, SC26-4319-0.

This edition applies to Release 2 of VS Pascal, Program Number 5668-767 (Compiler and Library) and
5668-717 (Library only) and to any subsequent releases until otherwise indicated in new editions or
technical newsletters.

The changes for this edition are summarized in Appendix A, "Summary of Changes" on page 259.
Specific changes are indicated by a vertical bar to the left of the change. These bars will be deleted at any
republication of the page affected. Editorial changes that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM Systeml370, 30xx,4300, and 9370 Processors
Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM"s program may be used. Any functionally
equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be delayed
because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Programming Publishing, P. O. Box 49023, San Jose,
California, U.S.A. 95161-9023. IBM may use or distribute wt:latever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1987, 1988. All rights reserved.

Second Edition (December 1988)

This edition replaces and makes obsolete the previous edition, SC26-4319-0.

This edition applies to Release 2 of VS Pascal, Program Number 5668-767 (Compiler and Library) and
5668-717 (Library only) and to any subsequent releases until otherwise indicated in new editions or
technical newsletters.

The changes for this edition are summarized in Appendix A, "Summary of Changes" on page 259.
Specific changes are indicated by a vertical bar to the left of the change. These bars will be deleted at any
republication of the page affected. Editorial changes that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM Systeml370, 30xx,4300, and 9370 Processors
Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM"s program may be used. Any functionally
equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be delayed
because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Programming Publishing, P. O. Box 49023, San Jose,
California, U.S.A. 95161-9023. IBM may use or distribute wt:latever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1987, 1988. All rights reserved.

{.., Preface

VS Pascal Application Programming Guide describes how to use the VS Pascal
compiler and explains how to compile, link-edit, run, and debug VS Pascal
programs. It provides information about how to use registers, storage, input/output
facilities, and how to communicate with other programming languages.

This book contains no definition of the VS Pascal programming language and its
syntax. For information about this subject matter, see VS Pascal Language
Reference.

How to Use this Manual
VS Pascal Application Programming Guide is divided into two major parts: Guide
and Reference. Of the first three chapters in the Guide section, you need read only
the chapter that pertains to your operating environment. The rest of the chapters
in the Guide, along with the Reference chapters, are relatively self-contained, and
you can consult them as the need arises. Before you consult the Reference
chapters, you might want to read about syntax diagrams in Appendix B, "How to
Read Syntax Diagrams" on page 263.

Part I. Guide

Chapter 1, "How to Run a Program under VM" on page 3, explains how to
compile, link-edit, and run a program under VM.

Chapter 2, "How to Run a Program under MVS/TSO" on page 13, explains
how to compile, link-edit, and run a program under MVSITSO.

Chapter 3, "How to Run a Program In an MVS Batch Environment" on
page 23, explains how to compile, link-edit, and run a program in MVS batch
mode using cataloged procedures.

Chapter 4, "How to Read VS Pascal Listings" on page 33, describes how to
read VS Pascal source, cross-reference, and other listings.

Chapter 5, "How to Use the Input/Output Facilities" on page 45, describes
how VS Pascal passes data to files.

Chapter 6, "VS Pascal Run-Time Error Handling" on page 73, describes
run-time error handling in VS Pascal and explains how you can write a routine
to control run-time error handling.

Chapter 7, "How to Debug Your Program" on page 83, describes how to use
the VS Pascal Interactive Debugging Tool, using debugging output from a
sample program.

Chapter 8, "How to Use Interlanguage Communication" on page 97,
describes how VS Pascal can call and be called by programming languages
such as PLlI, COBOL, and FORTRAN.

Chapter 9, "Interfacing With IMS" on page 121, explains how to use the
GENERIC directive to interface with IMS.

Preface iii

{.., Preface

VS Pascal Application Programming Guide describes how to use the VS Pascal
compiler and explains how to compile, link-edit, run, and debug VS Pascal
programs. It provides information about how to use registers, storage, input/output
facilities, and how to communicate with other programming languages.

This book contains no definition of the VS Pascal programming language and its
syntax. For information about this subject matter, see VS Pascal Language
Reference.

How to Use this Manual
VS Pascal Application Programming Guide is divided into two major parts: Guide
and Reference. Of the first three chapters in the Guide section, you need read only
the chapter that pertains to your operating environment. The rest of the chapters
in the Guide, along with the Reference chapters, are relatively self-contained, and
you can consult them as the need arises. Before you consult the Reference
chapters, you might want to read about syntax diagrams in Appendix B, "How to
Read Syntax Diagrams" on page 263.

Part I. Guide

Chapter 1, "How to Run a Program under VM" on page 3, explains how to
compile, link-edit, and run a program under VM.

Chapter 2, "How to Run a Program under MVS/TSO" on page 13, explains
how to compile, link-edit, and run a program under MVSITSO.

Chapter 3, "How to Run a Program In an MVS Batch Environment" on
page 23, explains how to compile, link-edit, and run a program in MVS batch
mode using cataloged procedures.

Chapter 4, "How to Read VS Pascal Listings" on page 33, describes how to
read VS Pascal source, cross-reference, and other listings.

Chapter 5, "How to Use the Input/Output Facilities" on page 45, describes
how VS Pascal passes data to files.

Chapter 6, "VS Pascal Run-Time Error Handling" on page 73, describes
run-time error handling in VS Pascal and explains how you can write a routine
to control run-time error handling.

Chapter 7, "How to Debug Your Program" on page 83, describes how to use
the VS Pascal Interactive Debugging Tool, using debugging output from a
sample program.

Chapter 8, "How to Use Interlanguage Communication" on page 97,
describes how VS Pascal can call and be called by programming languages
such as PLlI, COBOL, and FORTRAN.

Chapter 9, "Interfacing With IMS" on page 121, explains how to use the
GENERIC directive to interface with IMS.

Preface iii

Part II. Reference

Chapter 10, "VM EXECs" on page 127, describes the syntax and valid options .~
for the VM EXECs that compile, link-edit, and run VS Pascal programs.

Chapter 11, "MVS CLiSTs and the CALL Command" on page 131, describes
the MVS CLiST and TSO CALL command syntax and valid options to compile,
link-edit, and run VS Pascal programs.

Chapter 12, "MVS Batch Cataloged Procedures" on page 137, gives a
complete I,isting of cataloged procedures that compile, link-edit, and run VS
Pascal programs in MVS batch mode.

Chapter 13, "Compile-Time Options" on page 155, provides a quick-reference
chart of VS Pascal compile-time options. Detailed explanations of each option
follow in alphabetic order.

Chapter 14, "Run-Time Options" on page 167, provides a quick-reference
chart of VS Pascal run-time options. Detailed explanations of each option
follow in alphabetic order.

Chapter 15, "Interactive Debugging Tool Commands" on page 173, provides a
quick-reference chart of VS Pascal Interactive Debugging Tool commands.
Detailed explanations of each command follow in alphabetic order.

Chapter 16, "VS Pascal Register and Storage Usage" on page 185, discusses
how VS Pascal uses registers and storage. It also describes storage mapping
and boundary alignments for variables and data types.

Chapter 17, "VS Pascal Parameter Passing" on page 195, lists the various
methods VS Pascal uses to pass parameters and describes the declaration,
invocation, and contents of the parameter list for each method.

Chapter 18, "Managing Storage" on page 199, details storage management
methods and practices in VS Pascal.

Chapter 19, "Performance Considerations" on page 205, explains code
optimizations performed by VS Pascal.

Chapter 20, "VS Pascal Messages" on page 215, lists VS Pascal messages,
with explanations of what they mean and how to correct the problems that
caused them.

Appendix A, "Summary of Changes" on page 259, lists the additions and
enhancements in VS Pascal Release 2.

Appendix B, "How to Read Syntax Diagrams" on page 263, explains how to read
VS Pascal syntax diagrams.

Appendix C, "Run-Time Error Default Actions" on page 267, lists the default
actions taken for each run-time error passed to ONERROR in FACTION.

Appendix D, "VS Pascal and the 1983 ANSI/IEEE Pascal Standard" on page 271,
describes some implementation-defined features of VS Pascal, how VS Pascal
handles errors as listed in Appendix D of the 1983 ANSI/IEEE Pascal standard, and
features that VS Pascal does not flag.

Appendix E, "Implementation Specifics" on page 277, lists some data type
implementation details, compiler limits, and other factors that affect programming
in VS Pascal.

iv VS Pascal Application Programming Guide

Part II. Reference

Chapter 10, "VM EXECs" on page 127, describes the syntax and valid options
for the VM EXECs that compile, link-edit, and run VS Pascal programs.

Chapter 11, "MVS CLiSTs and the CALL Command" on page 131, describes
the MVS CLIST and TSO CALL command syntax and valid options to compile,
link-edit, and run VS Pascal programs.

Chapter 12, "MVS Batch Cataloged Procedures" on page 137, gives a
complete listing of cataloged procedures that compile, link-edit, and run VS
Pascal programs in MVS batch mode.

Chapter 13, "Compile-Time Options" on page 155, provides a quick-reference
chart of VS Pascal compile-time options. Detailed explanations of each option
follow in alphabetic order.

Chapter 14, "Run-Time Options" on page 167, provides a quick-reference
chart of VS Pascal run-time options. Detailed explanations of each option
follow in alphabetic order.

Chapter 15, "Interactive Debugging Tool Commands" on page 173, provides a
quick-reference chart of VS Pascal Interactive Debugging Tool commands.
Detailed explanations of each command follow in alphabetic order.

Chapter 16, "VS Pascal Register and Storage Usage" on page 185, discusses
how VS Pascal uses registers and storage. It also describes storage mapping
and boundary alignments for variables and data types.

Chapter 17, "VS Pascal Parameter Passing" on page 195, lists the various
methods VS Pascal uses to pass parameters and describes the declaration,
invocation, and contents of the parameter list for each method.

Chapter 18, "Managing Storage" on page 199, details storage management
methods and practices in VS Pascal.

Chapter 19, "Performance Considerations" on page 205, explains code
optimizations performed by VS Pascal.

Chapter 20, "VS Pascal Messages" on page 215, lists VS Pascal messages,
with explanations of what they mean and how to correct the problems that
caused them.

Appendix A, "Summary of Changes" on page 259, lists the additions and
enhancements in VS Pascal Release 2.

Appendix B, "How to Read Syntax Diagrams" on page 263, explains how to read
VS Pascal syntax diagrams.

Appendix C, "Run-Time Error Default Actions" on page 267, lists the default
actions taken for each run-time error passed to ONERROR in FACTION.

Appendix D, "VS Pascal and the 1983 ANSIIIEEE Pascal Standard" on page 271,
describes some implementation-defined features of VS Pascal, how VS Pascal
handles errors as listed in Appendix D of the 1983 ANSI/IEEE Pascal standard, and
features that VS Pascal does not flag.

Appendix E, "Implementation Specifics" on page 277, lists some data type
implementation details, compiler limits, and other factors that affect programming
in VS Pascal.

iv VS Pascal Application Programming Guide

Appendix F, "Double-Byte Character Set (DBCS) Support" on page 281, describes
how VS Pascal supports double-byte character set (DBCS) data.

Appendix G, "Migration Considerations" on page 283, details the migration
considerations (1) between VS Pascal Release 1 and Release 2 and (2) between
PascallVS and VS Pascal Release 1.

Consult the "Bibliography" on page 295 for other useful publications.

Industry Standards
The VS Pascal Compiler and Library, Release 2, supports the specifications of the
American National Standard Pascal Computer Programming Language
(ANSI/IEEE770X3.97-1983). This standard is referred to in this manual as the ANSI
Standard, or simply Standard Pascal. For more information on VS Pascal and
Standard Pascal, see Appendix D, "VS Pascal and the 1983 ANSI/IEEE Pascal
Standard" on page 271.

VS Pascal supports the specifications of the ISO Programming Language standard
(ISO 7185-1983) at level O. This standard is referred to as the ISO standard in this
manual. VS Pascal also supports the Federal Information Processing Standard
Publication (FIPS PUB) 109.

Preface V

Appendix F, "Double-Byte Character Set (DBCS) Support" on page 281, describes
how VS Pascal supports double-byte character set (DBCS) data.

Appendix G, "Mlgrallon Considerations" on page 283, details the migration
considerations (1) between VS Pascal Release 1 and Release 2 and (2) between
PascallVS and VS Pascal Release 1.

Consult the "Bibliography" on page 295 for other useful publications.

Industry Standards
The VS Pascal Compiler and Library, Release 2, supports the specifications of the
American National Standard Pascal Computer Programming Language
(ANSI/IEEE770X3.97-1983). This standard is referred to in this manual as the ANSI
Standard, or simply Standard Pascal. For more information on VS Pascal and
Standard Pascal, see Appendix D, "VS Pascal and the 1983 ANSI/IEEE Pascal
Standard" on page 271.

VS Pascal supports the specifications of the ISO Programming Language standard
(ISO 7185-1983) at level O. This standard is referred to as the ISO standard in this
manual. VS Pascal also supports the Federal Information Processing Standard
Publication (FIPS PUB) 109.

Preface V

J

Contents

Part I. Guide

Chapter 1. How to Run a Program under VM . , , , , , , , 3
Step 1: How to Compile a Program ' , , , , , , , , , , , ,. , .. ," 3

For Programs that Use the %INClUDE Compiler Directive ",.'" 3
Passing Compile-Time Options " ,'., ,... 4
The Compiler Listing .. " ... , ,., , ... ,' 5
Compiler Diagnostics ,." ,... . . , 5
Cross-System Compilation , ,., ,. . . , 6

Step 2: How to Build a load Module (Link-Editing) 7
Combining Release 1 and Release 2 Code ,..... ..,',.. 7

Step 3: How to Define Files .. , 8
Step 4: How to Invoke the load Module ,.,....... , 9

Invoking the Module Using PASCRUN . , , ,. "', ,... 9
Transient Run-Time Considerations , , . , .. , 9

Sample VM Session: Compiling, Link-Editing, and Running a Program 10
31-BitAddressingMode ... ,..... , ' .,.".. 11
Sample VM Session to Invoke 31-Bit Addressing Mode , 12

Chapter 2. How to Run a Program under MVS/TSO , .. ,', .. ,... 13
Step 1: How to Compile a Program , .. ,.... 13

For Programs that Use the %INClUDE Compiler Directive .,', ,., 14
Passing Compile-Time Options . , 15
The Compiler Listing " .. ,., , , .. , . , 15
Compiler Diagnostics .,.... . .. , . . . , , ... , 15
Cross-System Compilation .. , ,. " .. ,., ,. 16

Step 2: How to Build a Load Module (Link-Editing) .,..... . , , 16
Combining Release 1 and Release 2 Code 18

Step 3: How to Define Files ,...... 18
Step 4: How to Invoke the load Module .,.,.... , , . , . , 19

Transient Run-Time Considerations , .. ,.... 19
Sample TSO Session: Compiling, Link-Editing, and Running a Program 20
31-Bit Addressing Mode , .. " ,.. 21
Sample TSO Session to Invoke 31-Bit Addressing Mode .',. 22

Chapter 3. How to Run a Program in an MVS Batch Environment , , .. 23
Job Control language 23

Compiling a Program that Uses the %INClUDE Compiler Directive 23
Passing Compile-Time Options , ... 24
The Compiler Listing . , .. , , ... , , 24
Cross-System Compilation ,.,., , ..

Using Cataloged Procedures
Combining Release 1 and Release 2 Code
How to Compile a Program Using PASCC ,
How to Link-Edit a Program Using PASCl .. ,........ . . , ,

24
25
26
26
26

How to Run a Program Using PASCG "', .. , ,', ,., 26
How to Compile and Link-Edit a Program Using PASCCL . , , .. , 27
How to Link-Edit and Run a Program Using PASCLG , , , . , ,
How to Compile, load, and Run a Program Using PASCCG
How to Compile, Link-Edit, and Run a Program Using PASCCLG

28
28
28

Contents vii

Contents

Part I. Guide

Chapter 1. How to Run a Program under VM 3
Step 1: How to Compile a Program 3

For Programs that Use the %INCLUDE Compiler Directive 3
Passing Compile-Time Options 4
The Compiler Listing 5
Compiler Diagnostics 5
Cross-System Compilation 6

Step 2: How to Build a Load Module (Link-Editing) 7
Combining Release 1 and Release 2 Code 7

Step 3: How to Define Files 8
Step 4: How to Invoke the Load Module 9

Invoking the Module Using PASCRUN 9
Transient Run-Time Considerations 9

Sample VM Session: Compiling, Link-Editing, and Running a Program 10
31-Bit Addressing Mode 11
Sample VM Session to Invoke 31-Bit Addressing Mode 12

Chapter 2. How to Run a Program under MVS/TSO 13
Step 1: How to Compile a Program 13

For Programs that Use the %INCLUDE Compiler Directive 14
Passing Compile-Time Options 15
The Compiler Listing 15
Compiler Diagnostics . 15
Cross-System Compilation 16

Step 2: How to Build a Load Module (Link-Editing) 16
Combining Release 1 and Release 2 Code 18

Step 3: How to Define Files 18
Step 4: How to Invoke the Load Module 19

Transient Run-Time Considerations 19
Sample TSO Session: Compiling, Link-Editing, and Running a Program 20
31-Bit Addressing Mode 21
Sample TSO Session to Invoke 31-Bit Addressing Mode 22

Chapter 3. How to Run a Program in an MVS Batch Environment 23
Job Control Language 23

Compiling a Program that Uses the %INCLUDE Compiler Directive 23
Passing Compile-Time Options 24
The Compiler Listing 24
Cross-System Compilation 24

Using Cataloged Procedures 25
Combining Release 1 and Release 2 Code 26
How to Compile a Program Using PASCC 26
How to Link-Edit a Program Using PASCL 26
How to Run a Program Using PASCG 26
How to Compile and Link-Edit a Program Using PASCCL 27
How to Link-Edit and Run a Program Using PASCLG 28
How to Compile, Load, and Run a Program Using PASCCG 28
How to Compile, Link-Edit, and Run a Program Using PASCCLG 28

Contents vii

How to Modify the Cataloged Procedures for the DEBUG and TRANLIB
Options .. 28

How to Access Data Sets 29
Examples of Batch Jobs 29

31-Bit Addressing Mode 32

Chapter 4. How to Read VS Pascal Listings 33
Compiler Options Summary 33
Source Listing ... 34
Cross-Reference Listing 36
Assembler Listing .. 40
External Symbol Dictionary Listing 42
Instruction Statistics .. 43

Chapter 5. How to Use the Input/Output Facilities 45
DDNAME Association 46
Data Set DCB Attributes 46
Types of Files ... 47

Text Files .. 47
Record Files .. 48

Opening a File .. 48
Opening a File for Input (RESET) 48
Opening a File for Interactive Input 49
Opening a File for Output (REWRITE) 49
Opening a File for Updating (UPDATE) 50
Opening a Partitioned Data Set For Input (PDSIN) 51
Opening a Partitioned Data Set For Output (PDSOUT) 52
Opening a File for Terminal Input (TERMIN) 53 c,
Opening a File tor Terminal Output (TERMOUT) 53 """""
Options for Opening a File 54

Processing a TEXT File 58
Reading Data from a TEXT File (GET) 58
Writing Data to a TEXT File (PUT) 59
Reading Data from a TEXT File (READ) 60
Reading Data from a TEXT File (READLN) 61
Writing Data to a TEXT File (WRITE) 62
Writing Data to a TEXT File (WRITELN) 62
The PAGE Procedure 63
End-ot-Line Condition 64
End-ot-File Condition 65

Processing a Record File 65
Reading Data from a Record File (GET) 65
Writing Data to a Record File (PUT) 66
Reading Data from a Record File (READ) 67
Writing Data to a Record File (WRITE) 67
Accessing a Record File Randomly 68
End-of-File Condition 70

Closing a File ... 70
Appending Data to a File 71
Unpredictable Actions 71

Chapter 6. VS Pascal Run-Time Error Handling 73
Reading a VS Pascal Trace-Back Report
Run-Time Checking Errors

How VS Pascal Handles Run-Time Errors

73

J 76
76

How You Handle Run-Time Errors with the ONERROR Procedure 78

viii vs Pascal Application Programming Guide

How to Modify the Cataloged Procedures for the DEBUG and TRANLIB
Options

How to Access Data Sets
28 J 29

Examples of Batch Jobs 29
31-Bit Addressing Mode 32

Chapter 4. How to Read VS Pascal Listings 33
Compiler Options Summary 33
Source Listing 34
Cross-Reference Listing 36
Assembler Listing 40
External Symbol Dictionary Listing 42
Instruction Statistics 43

Chapter 5. How to Use the Input/Output Facilities 45
DDNAME Association 46
Data Set DCB Attributes 46
Types of Files .. . 47

Text Files 47
Record Files 48

Opening a File 48
Opening a File for Input (RESET) 48
Opening a File for Interactive Input 49
Opening a File for Output (REWRITE) 49
Opening a File for Updating (UPDATE) 50
Opening a Partitioned Data Set For Input (PDSIN) 51
Opening a Partitioned Data Set For Output (PDSOUT) 52
Opening a File for Terminal Input (TERMIN) 53
Opening a File for Terminal Output (TERMOUT) 53
Options for Opening a File 54

Processing a TEXT File 58
Reading Data from a TEXT File (GET) 58
Writing Data to a TEXT File (PUT) 59
Reading Data from a TEXT File (READ) 60
Reading Data from a TEXT File (READLN) 61
Writing Data to a TEXT File (WRITE) 62
Writing Data to a TEXT File (WRITELN) 62
The PAGE Procedure 63
End-of-Line Condition 64
End-of-File Condition 65

Processing a Record File 65
Reading Data from a Record File (GET) 65
Writing Data to a Record File (PUT) 66
Reading Data from a Record File (READ) 67
Writing Data to a Record File (WRITE) 67
Accessing a Record File Randomly 68
End-of-File Condition 70

Closing a File ... 70
Appending Data to a File 71
Unpredictable Actions 71

Chapter 6. VS Pascal Run-Time Error Handling 73
Reading a VS Pascal Trace-Back Report 73
Run-Time Checking Errors 76

How VS Pascal Handles Run-Time Errors 76
How You Handle Run-Time Errors with the ONERROR Procedure 78

viii vs Pascal Application Programming Guide

Part II. Reference

Symbolic Variable Dump 81

Chapter 7. How to Debug Your Program 83
Using the Interactive Debugging Tool 83

Using the Debugging Tool under VM 83
Using the Debugging Tool under MVS/TSO 84
Using the Debugging Tool under MVS Batch 84
Qualification .. 84
Listing the Debugging Commands 85
About Breakpoints 85
About Statement Counting 85

Sample Debugging Terminal Session 86

Chapter 8. How to Use Interlanguage Communication 97
VS Pascal and Assembler 99

VS Pascal as the Caller to Assembler 99
Assembler as the Caller to VS Pascal 104

VS Pascal and FORTRAN 109
VS Pascal as the Caller to FORTRAN 109
FORTRAN as the Caller to VS Pascal 110

VS Pascal and COBOL 113
VS Pascal as the Caller to COBOL 113
COBOL as the Caller to VS Pascal 114

VS Pascal and PLII
VS Pascal as the Caller to PLII
PLII as the Caller to VS Pascal

116
116
117

Data Type Comparisons 118

Chapter 9. Interfacing With IMS 121

125

Chapter 10. VM EXECs 127
VSPASCAL EXEC ... 127
PASCMOD EXEC ... 128
PASCRUN EXEC .. 130

Chapter 11. MVS CLlSTs and the CALL Command 131
VSPASCAL CLIST ... 131
PASCMOD CLIST ... 134
CALL Command .. 136

Chapter 12. MVS Batch Cataloged Procedures 137
Data Set Descriptions 137
Cataloged Procedures 139

PASCC Procedure 139
PASCL Procedure 141
PASCG Procedure 143
PASCCL Procedure 144
PASCLG Procedure 147
PASCCG Procedure 149
PASCCLG Procedure 152

Chapter 13. Compile-Time Options
CHECK Option, .. .

155
157

Contents ix

Part II. Reference

Symbolic Variable Dump 81

Chapter 7. How to Debug Your Program 83
Using the Interactive Debugging Tool 83

Using the Debugging Tool under VM 83
Using the Debugging Tool under MVS/TSO 84
Using the Debugging Tool under MVS Batch 84
Qualification 84
Listing the Debugging Commands 85
About Breakpoints 85
About Statement Counting 85

Sample Debugging Terminal Session 86

Chapter 8. How to Use Interlanguage Communication 97
VS Pascal and Assembler 99

VS Pascal as the Caller to Assembler 99
Assembler as the Caller to VS Pascal 104

VS Pascal and FORTRAN 109
VS Pascal as the Caller to FORTRAN 109
FORTRAN as the Caller to VS Pascal 110

VS Pascal and COBOL 113
VS Pascal as the Caller to COBOL
COBOL as the Caller to VS Pascal

VS Pascal and PLII
VS Pascal as the Caller to PLII

113
114
116
116

PLII as the Caller to VS Pascal 117
Data Type Comparisons .. 118

Chapter 9. Interfacing With IMS 121

125

Chapter 10. VM EXECs 127
VSPASCAL EXEC ... 127
PASCMOD EXEC 128
PASCRUN EXEC 130

Chapter 11. MVS CLiSTs and the CALL Command 131
VSPASCAL CLiST ... 131
PASCMOD CLiST ... 134
CALL Command 136

Chapter 12. MVS Batch Cataloged Procedures 137
Data Set Descriptions 137
Cataloged Procedures 139

PASCC Procedure 139
PASCL Procedure 141
PASCG Procedure 143
PASCCL Procedure
PASCLG Procedure

144
147

PASCCG Procedure 149
PASCCLG Procedure 152

Chapter 13. Compile-Time Options 155
CHECK Option, 157

Contents ix

CONDPARM Option .. 159\
DDNAME Option .. 160 ."",
DEBUG Option ... 161
FLAG Option .. 161
GOSTMT Option .. 161
GRAPHIC Option ... 162
HEADER Option .. 162
LANGLVL Option 162
LANGUAGE Option .. 163
LlNECOUNT Option .. 163
LIST Option ... 163
MARGINS Option ... 164
OPTIMIZE Option ... 164
PAGEWIDTH Option 164
PXREF Option ... 164
SEQUENCE Option .. 165
SOURCE Option .. 165
STDFLAG Option ... 165
WRITE Option .. 166
XREF Option .. 166

Chapter 14. Run-Time Options 167
COUNT Option ... 168
DEBUG Option ... 168
ERRCOUNT Option .. 168
ERRFILE Option .. 168
HEAP Option .. 169 "'\
LANGUAGE Option .. 170 'IfIIfIII!II
MAINT Option . 170
NOCHECK Option ... 170
NOSPIE Option ... 170
SETMEM Option .. 170
STACK Option 171

Chapter 15. Interactive Debugging Tool Commands 173
BREAK Command ... 174
CLEAR Command 176
CMS Command .. 176
DISPLAY Command 177
DISPLAY BREAKS Command 177
DISPLAY COUNTS Command
DISPLAY EQUATES Command

177
178

END Command ... 178
EQUATE Command .. 178
GO Command ... 179
HELP Command .. 179
LlSTVARS Command 180
QUAL Command .. 180
QUIT Command
RESET Command

180
181

SET ATTR Command 181
SET COUNT Command 182
SET TRACE Command 182
TRACE Command ... 183
Viewing Storage .. 183
Viewing Variables ... 183

x VS Pascal Application Programming Guide

CONDPARM Option
DDNAME Option
DEBUG Option

159

J 160
161

FLAG Option 161
GOSTMT Option 161
GRAPHIC Option 162
HEADER Option 162
LANGLVL Option 162
LANGUAGE Option 163
L1NECOUNT Option 163
LIST Option 163
MARGINS Option .. . 164
OPTIMIZE Option 164
PAGEWIDTH Option 164
PXREF Option .. . 164
SEQUENCE Option 165
SOURCE Option 165
STDFLAG Option .. . 165
WRITE Option 166
XREF Option 166

Chapter 14. Run-Time Options 167
COUNT Option 168
DEBUG Option .. . 168
ERRCOUNT Option 168
ERRFILE Option 168
HEAP Option 169
LANGUAGE Option 170
MAINT Option 170
NOCHECK Option 170
NOSPIE Option 170
SETMEM Option 170
STACK Option 171

Chapter 15. Interactive Debugging Tool Commands 173
BREAK Command 174
CLEAR Commanq 176
CMS Command 176
DISPLAY Command 177
DISPLAY BREAKS Command 177
DISPLAY COUNTS Command 177
DISPLAY EQUATES Command 178
END Command .. . 178
EQUATE Command 178
GO Command 179
HELP Command 179
L1STVARS Command 180
QUAL Command 180
QUIT Command 180
RESET Command 181
SET ATTR Command 181
SET COUNT Command 182
SET TRACE Command 182
TRACE Command .. . 183
Viewing Storage 183
Viewing Variables .. . 183

x VS Pascal Application Programming Guide

WALK Command 184

Chapter 16. VS Pascal Register and Storage Usage 185
Linkage Conventions 185
Register Usage .. 185
Routine Invocation .. 186
Procedure and Function Format 188
Storage Mapping 188

Storage for Automatic Variables 188
Storage for Static Variables 188
Storage for DEF Variables 189
Storage for Dynamic Variables 189
Record Fields .. 189

Data Size and Boundary Alignment of the VS Pascal Data Types 189
The Predefined Data Types 189
Enumerated Scalar Data Types 190
Subrange Data Types 190
RECORD Data Types 191
ARRAY Data Types 191
FILE Data Types 192
SET Data Types .. 192
SPACE Data Types 193

Chapter 17. VS Pascal Parameter Passing 195
Passing by Read/Write Reference 195
Passing by Read-Only Reference 196
Passing by Value ... 197
Passing Procedure or Function Parameters 197
Function Results .. 197
FORTRAN Routines .. 198
GENERIC Procedures

Chapter 18. Managing Storage
Storage Management

Dynamic Variables
Subheaps
Heaps .. .
Using Storage Intelligently

Chapter 19. Performance Considerations
Optimizations Performed by VS Pascal .,

Constant Folding
In-Line Code for Predefined Routines
Expression Simplification
Boolean Short-Circuiting
Cascaded Branches
Partial Dead Code Elimination
Set Operations .. .
Strength Reduction
Array References
Unnesting of Function Calls
Common Subexpression Elimination
Memory References
Range Checki ng

Making Your Programs More Efficient
Variable Declaration

Contents

198

199
199
199
200
200
203

205
205
205
205
205
206
207
208
208
208
209
209
210
211
212
213
213

xi

WALK Command 184

Chapter 16. VS Pascal Register and Storage Usage 185
Linkage Conventions 185
Register Usage .. 185
Routine Invocation .. 186
Procedure and Function Format 188
Storage Mapping ... 188

Storage for Automatic Variables 188
Storage for Static Variables 188
Storage for DEF Variables 189
Storage for Dynamic Variables 189
Record Fields .. 189

Data Size and Boundary Alignment of the VS Pascal Data Types 189
The Predefined Data Types 189
Enumerated Scalar Data Types 190
Subrange Data Types 190
RECORD Data Types 191
ARRAY Data Types 191
FILE Data Types 192
SET Data Types 192
SPACE Data Types 193

Chapter 17. VS Pascal Parameter Passing 195
Passing by Read/Write Reference 195
Passing by Read-Only Reference 196
Passing by Value ... 197
Passing Procedure or Function Parameters 197
Function Results .. 197
FORTRAN Routines 198
GENERIC Procedures 198

Chapter 18. Managing Storage 199
Storage Management 199

Dynamic Variables 199
Subheaps .. 200
Heaps 200
Using Storage Intelligently 203

Chapter 19. Performance Considerations 205
Optimizations Performed by VS Pascal .•......................... 205

Constant Folding 205
In-Line Code for Predefined Routines 205
Expression Simplification 205
Boolean Short-Circuiting 206
Cascaded Branches 207
Partial Dead Code Elimination 208
Set Operations ... 208
Strength Reduction 208
Array References 209
Unnesting of Function Calls 209
Common Subexpression Elimination 210
Memory References 211
Range Checking .. 212

Making Your Programs More Efficient 213
Variable Declaration 213

Contents xi

Array Bounds .. 213
Record Field Accessing 213
Program Parameters 214
File Closing ... 214
Use of Value and Constant Parameters 214
VALUE Initializations 214

Chapter 20. VS Pascal Messages 215
Compiler Messages-Source Code Processing 216
Compiler Messages-Intermediate Code Optimization 240
Compiler Messages-Object Code Generation 241
Run-Time Messages 243
Interactive Debugging Tool Messages 251
EXEC Messages .. 255
CLiST Messages . 257

Appendix A. Summary of Changes 259

Appendix B. How to Read Syntax Diagrams 263
No Parameters ... 263
Required Parameters 263
Optional Parameters 264
Multiple Parameters 265
Default Parameters .. 266

Appendix C. Run-Time Error Default Actions 267

Appendix D. VS Pascal and the 1983 ANSI/IEEE Pascal Standard
Implementation-Defined Features of VS Pascal

" 271 J
271

Error Handling in VS Pascal 273
Extension Handling 275
Implementation-Dependent Features Not Flagged 275

Appendix E. Implementation Specifics 277
Routines That May Not Be Passed As Parameters 277
Data Types 277

INTEGER Data Type 277
Floating-Point Arithmetic 278
SET Data Type .. . 278

Compiler Limits 278
Routine Nesting 278
Identifiers 278
Size Limitations 279

Appendix F. Double-Byte Character Set (DBCS) Support 281

Appendix G. Migration Considerations 283
From VS Pascal Release 1 to VS Pascal Release 2 283
From PascallVS Release 2.2 to VS Pascal Release 1 286

Glossary .. . 291

Bibliography
VS Pascal Publications

295 ~ 295
Related Publications 295

Job Control Language 295

xii vs Pascal Application Programming Guide

Array Bounds
Record Field Accessing
Program Parameters

213

J 213
214

File Closing .. . 214
Use of Value and Constant Parameters 214
VALUE Initializations 214

Chapter 20. VS Pascal Messages 215
Compiler Messages-Source Code Processing 216
Compiler Messages-Intermediate Code Optimization 240
Compiler Messages-Object Code Generation 241
Run-Time Messages 243
Interactive Debugging Tool Messages 251
EXEC Messages 255
CLiST Messages 257

Appendix A. Summary of Changes 259

Appendix B. How to Read Syntax Diagrams 263
No Parameters 263
Required Parameters 263
Optional Parameters 264
Multiple Parameters 265
Default Parameters 266

Appendix C. Run-Time Error Default Actions 267

Appendix D. VS Pascal and the 1983 ANSI/IEEE Pascal Standard 271
Implementation-Defined Features of VS Pascal 271
Error Handling in VS Pascal 273
Extension Handling 275
Implementation-Dependent Features Not Flagged 275

Appendix E. Implementation Specifics 277
Routines That May Not Be Passed As Parameters 277
Data Types 277

INTEGER Data Type 277
Floating-Point Arithmetic 278
SET Data Type 278

Compiler Limits 278
Routine Nesting 278
Identifiers .. 278
Size Limitations 279

Appendix F. Double-Byte Character Set (DBCS) Support 281

Appendix G. Migration Considerations 283
From VS Pascal Release 1 to VS Pascal Release 2 283
From PascalIVS Release 2.2 to VS Pascal Release 1 286

Glossary ... 291

Bibliography 295
VS Pascal Publications 295
Related Publications 295

Job Control Language 295

xii vs Pascal Application Programming Guide

TSO .. 295
Assembler .. 295
COBOL .. 295
PUI
FORTRAN

296
296

Linkage Editor and Loader 296
Principles of Operation 296

Index 297

Contents xiii

TSO 295
Assembler .. 295
COBOL .. 295
PLII .. 296
FORTRAN .. 296
Linkage Editor and Loader 296
Principles of Operation 296

Index 297

Contents xiii

Figures

1.

2.
3.
4.
5.
6.

7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.

VS Pascal Program Containing an Error and Corresponding Compiler
Diagnostic 6
Sample File Declarations with Complementary CMS FILEDEF Commands 8
Compiling, Link-Editing, and Executing a Program under VM ... 10
AMODE and RMODE Specifications 11
Compiling, Link-Editing, and Running a Program under VM/XA 12
VS Pascal Program Containing an Error and Corresponding Compiler
Diagnostic 16
Sample File Declarations and Complementary TSO ALLOC Commands .. 18
Compiling, Link-Editing, and Executing a Program under MVS 20
AMODE and RMODE Specifications 21
Compiling, Link-Editing, and Running a Program under MVS/XA 22
Sample JCL to Perform Multiple Compiles and a Link-Edit . . . 27
Sample Batch Job Using PASCCG 30
Sample Batch Job Using PASCC and PASCCLG 31
AM ODE and RMODE Specifications 32
Sample Compiler Options Summary 33
Sample Source Listing .. 34
Sample Cross~Reference Listing 37
Sample Assembler Listing 40
Sample ESD Table 42
Sample Instruction Statistics Table 43
Example of Using the RESET Procedure on a TEXT File 48
Example of Opening a File for Interactive Input 49
Example of Opening a TEXT File with the REWRITE Procedure 50
Example of Opening a Record File with the REWRITE Procedure 50
Example of Opening a Record File for Updating 51
Example of Terminal Input and Output 53
VS Pascal Generated ddnames 55
Example of Using the Open Options 58
Example of Using the GET Procedure on a TEXT File 59
Example of Using the PUT Procedure for a TEXT File 60
Example of Using the READLN Procedure 61
Example of Using the WRITELN Procedure 63
Example of Using the PAGE Procedure 64
Example of Using the EOLN Function 64
Example of Using the EOF Function on a TEXT File 65
Example of Using the GET Procedure on a Record File 66
Example of Using the PUT Procedure on a Record File 67
Example of Using the READ and WRITE Procedures on Record Files 68
Example of Using the SEEK Procedure 69
Example of Using the CLOSE Procedure 70
TRACE Routine Called by a User Program 73
TRACE Routine Call Due to a Program Error 74
TRACE Routine Call Due to a Checking Error 74
TRACE Routine Call Due to an 1/0 Error 75
Run-Time Checking Errors 76
Contents of ONERROR Include File
Example of an Error Handling Routine Using ONERROR

78
80

Sample Program for a Debugging Session 86
Compiling, Link-Editing, and Executing a Program with the DEBUG Option 87
The HELP Command of the Interactive Debugging Tool 87

Figures XV

Figures

1. VS Pascal Program Containing an Error and Corresponding Compiler
Diagnostic 6

2. Sample File Declarations with Complementary CMS FILEDEF Commands 8
3. Compiling, Link-Editing, and Executing a Program under VM 10
4. AM ODE and RMODE Specifications 11
5. Compiling, Link-Editing, and Running a Program under VM/XA 12
6. VS Pascal Program Containing an Error and Corresponding Compiler

Diagnostic 16
7. Sample File Declarations and Complementary TSO ALLOC Commands .. 18
8. Compiling, Link-Editing, and Executing a Program under MVS 20
9. AMODE and RMODE Specifications 21

10. Compiling, Link-Editing, and Running a Program under MVS/XA 22
11. Sample JCL to Perform Multiple Compiles and a Link-Edit 27
12. Sample Batch Job Using PASCCG 30
13. Sample Batch Job Using PASCC and PASCCLG 31
14. AMODE and RMODE Specifications 32
15. Sample Compiler Options Summary 33
16. Sample Source Listing . 34
17. Sample Cross~Reference Listing 37
18. Sample Assembler Listing 40
19. Sample ESD Table 42
20. Sample Instruction Statistics Table 43
21. Example of Using the RESET Procedure on a TEXT File 48
22. Example of Opening a File for Interactive Input 49
23. Example of Opening a TEXT File with the REWRITE Procedure 50
24. Example of Opening a Record File with the REWRITE Procedure 50
25. Example of Opening a Record File for Updating 51
26. Example of Terminal Input and Output 53
27. VS Pascal Generated ddnames 55
28. Example of Using the Open Options 58
29. Example of Using the GET Procedure on a TEXT File 59
30. Example of Using the PUT Procedure for a TEXT File 60
31. Example of Using the READLN Procedure 61
32. Example of Using the WRITELN Procedure 63
33. Example of Using the PAGE Procedure 64
34. Example of Using the EOLN Function 64
35. Example of Using the EOF Function on a TEXT File 65
36. Example of Using the GET Procedure on a Record File 66
37. Example of Using the PUT Procedure on a Record File 67
38. Example of Using the READ and WRITE Procedures on Record Files .. 68
39. Example of Using the SEEK Procedure 69
40. Example of Using the CLOSE Procedure 70
41. TRACE Routine Called by a User Program 73
42. TRACE Routine Call Due to a Program Error 74
43. TRACE Routine Call Due to a Checking Error 74
44. TRACE Routine Call Due to an I/O Error 75
45. Run-Time Checking Errors 76
46. Contents of ONERROR Include File 78
47. Example of an Error Handling Routine Using ONERROR 80
48. Sample Program for a Debugging Session 86
49. Compiling, Link-Editing, and Executing a Program with the DEBUG Option 87
50. The HELP Command of the Interactive Debugging Tool 87

Figures XV

51. Setting and Displaying Breakpoints 88
52. Entering CMS Mode 88 J
53. The GO and WALK Debugging Commands 89
54. Listing Variables in a Debugging Session 89
55. Executing with Trace Mode On 90
56. Displaying a Statement Counting Summary 91
57. Using the TRACE Debugging Command to Get a Trace-Back Report 92
58. Using Equates in a Debugging Session 93
59. Removing Breakpoints 93
60. Effects of BREAK Command Options 94
61. Statement Counting Summary 96
62. VS Pascal Communication with Other Languages . 97
63. Minimum Interface to an Assembler Routine (Skeletal Code to be

Invoked from VS Pascal) 100
64. Example of VS Pascal as the Caller to an Assembler Routine Using the

Minimum Interface 101
65. PROLOG Macro Syntax Diagram 102
66. EPILOG Macro Syntax Diagram 103
67. General Interface to an Assembler Routine 104
68. Sample Assembler Routine 105
69. Example of Assembler as the Caller to a VS Pascal Procedure 106
70. Example of Calling a VS Pascal Program from an Assembler Routine .. 107
71. Example of VS Pascal as the Caller to a FORTRAN Routine 109
72. Example of FORTRAN as the Caller to a VS Pascal Procedure 111
73. Example of FORTRAN as the Caller to a VS Pascal Procedure 111
74. Example of VS Pascal as the Caller of a COBOL Routine 113
75. Example of COBOL as the Caller to a VS Pascal Procedure Using the

MAIN Directive 114
76. Example of COBOL as the Caller to a REENTRANT VS Pascal Procedure 115
77. Example of PLII as the Caller to a VS Pascal Procedure 116
77. Example of VS Pascal as the Caller of a PUI Routine 116
78. Example of PLII as the Caller to a VS Pascal Procedure Using the

79.

80.
81.

82.
83.
84.
85.
86.
87.
88.
89.

REENTRANT Directive 117
Example of PLII as the Caller to a VS Pascal Procedure Using the
REENTRANT Di rective 118
Data Type Equivalences between Different Languages ..
Example of a VS Pascal Program with Procedures That Can Call and Be
Called by IMS
VS Pascal EXECs
MVS CLlSTs and the CALL Command

119

122
127
131

MVS Batch Cataloged Procedures 137
Data Set Descriptions for Cataloged Procedures 137
PASCC Procedure 139
PASCL Procedure 141
PASCG Procedure 143
PASCCL Procedure 144

90. PASCLG Procedure 147
91. PASCCG Procedure 149
92. PASCCLG Procedure 152
93. Summary of Compile-Time Options 155
94. Example of Using CONDPARM for Conditional Compilation 160
95. Summary of Run-Time Options 167
96. Summary of Debugging Commands 173
97. Snapshot of Stack and Relevant Registers at Start of Routine 187
98. Routine Format , 188
99. Storage Mapping of Data for Predefined Types 189

xvi vs Pascal Application Programming Guide

J

51. Setting and Displaying Breakpoints 88
52. Entering CMS Mode 88
53. The GO and WALK Debugging Commands 89
54. Listing Variables in a Debugging Session 89
55. Executing with Trace Mode On 90
56. Displaying a Statement Counting Summary 91
57. Using the TRACE Debugging Command to Get a Trace-Back Report 92
58. Using Equates in a Debugging Session 93
59. Removing Breakpoints 93
60. Effects of BREAK Command Options 94
61. Statement Counting Summary 96
62. VS Pascal Communication with Other Languages 97
63. Minimum Interface to an Assembler Routine (Skeletal Code to be

Invoked from VS Pascal) 100
64. Example of VS Pascal as the Caller to an Assembler Routine Using the

Minimum Interface 101
65. PROLOG Macro Syntax Diagram 102
66. EPILOG Macro Syntax Diagram 103
67. General Interface to an Assembler Routine 104
68. Sample Assembler Routine 105
69. Example of Assembler as the Caller to a VS Pascal Procedure 106
70. Example of Calling a VS Pascal Program from an Assembler Routine .. 107
71. Example of VS Pascal as the Caller to a FORTRAN Routine 109
72. Example of FORTRAN as the Caller to a VS Pascal Procedure 111
73. Example of FORTRAN as the Caller to a VS Pascal Procedure 111
74. Example of VS Pascal as the Caller of a COBOL Routine 113
75. Example of COBOL as the Caller to a VS Pascal Procedure Using the

MAIN Directive 114
76. Example of COBOL as the Caller to a REENTRANT VS Pascal Procedure 115
77. Example of PLII as the Caller to a VS Pascal Procedure 116
77. Example of VS Pascal as the Caller of a PUI Routine 116
78. Example of PLII as the Caller to a VS Pascal Procedure Using the

REENTRANT Directive 117
79. Example of PLII as the Caller to a VS Pascal Procedure Using the

REENTRANT Directive 118
80.
81.

82.
83.

Data Type Equivalences between Different Languages
Example of a VS Pascal Program with Procedures That Can Call and Be
Called by IMS
VS Pascal EXECs
MVS CLiSTs and the CALL Command

119

122
127
131

84. MVS Batch Cataloged Procedures 137
85. Data Set Descriptions for Cataloged Procedures 137
86. PASCC Procedure 139
87. PASCL Procedure 141
88. PASCG Procedure 143
89. PASCCL Procedure 144
90. PASCLG Procedure 147
91. PASCCG Procedure 149
92. PASCCLG Procedure 152
93. Summary of Compile-Time Options 155
94. Example of Using CONDPARM for Conditional Compilation 160
95. Summary of Run-Time Options 167
96. Summary of Debugging Commands 173
97. Snapshot of Stack and Relevant Registers at Start of Routine 187
98. Routine Format 188
99. Storage Mapping of Data for Predefined Types 189

xvi vs Pascal Application Programming Guide

J

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.

Storage Mapping of Subrange Scalars
Alignment of Records
Storage Mapping of SET Data Types
Managing Individual Dynamic Variables Using NEW and DISPOSE
Managing a Subheap Using MARK and RELEASE
Managing Storage Using Two Heaps
Saving and Restoring the Current Heap
Example of the Differences Between Optimized and Unoptimized Code
VS Pascal Message Summary
Defaults for Messages Passed to ONERROR in FACTION
Characteristics of System/370 Floating-Point Arithmetic
Exceptions in VS Pascal Release 2 Support of Release 1
Exceptions to VS Pascal Release 1 Support of PascalIVS Release 2.2 ..

190
191
193
199
200
201
203
210
215
267
278
283
286

Figures xvii

100. Storage Mapping of Subrange Scalars 190
101. Alignment of Records . 191
102. Storage Mapping of SET Data Types 193
103. Managing Individual Dynamic Variables Using NEW and DISPOSE 199
104. Managing a Subheap Using MARK and RELEASE 200
105. Managing Storage Using Two Heaps 201
106. Saving and Restoring the Current Heap 203
107. Example of the Differences Between Optimized and Unoptimized Code 210
108. VS Pascal Message Summary 215
109. Defaults for Messages Passed to ONERROR in FACTION 267
110. Characteristics of System/370 Floating-Point Arithmetic 278
111. Exceptions in VS Pascal Release 2 Support of Release 1 283
112. Exceptions to VS Pascal Release 1 Support of PascallVS Release 2.2 .. 286

Figures xvii

Part I. Guide

Part I. Guide 1

Part I. Guide

Part I. Guide 1

Chapter 1. How to Run a Program under VM

This chapter describes how to run a VS Pascal program under VM. If you are not
using VS Pascal under VM, you can skip this chapter.

There are four steps to running a VS Pascal program under VM:

1. Compile the program to produce an object module.
2. Generate a load module from the object module.
3. Define all files used within the program.
4. Invoke the load module.

VS Pascal requires a virtual machine of at least 1 M to compile a program.
Execution of a compiled program can be performed in an 864K CMS machine.

Step 1: How to Compile a Program
The standard method of invoking the VS Pascal compiler under VM is by using the
VSPASCAL EXEC. See "VSPASCAL EXEC" on page 127 for the full description of
the VSPASCAL EXEC.

To compile a VS Pascal program, the EXEC can be invoked in its simplest form by
the command:

VSPASCAL fn ft fm

Where Represents

fn The file name of the program.

ft The file type. This is optional; when you do not specify a file type, VS
Pascal assumes the file type is PASCAL.

fm The file mode. This is also optional; VS Pascal assumes a default file
mode of "*".

The compiler translates a source program into object code, which is stored in a
file. The name of this file is identical to the name of the source program. Its file
type is TEXT.

For example, to compile a program residing in a file called SORT PASCAL, issue
the command:

VSPASCAL SORT

If the program compiles without error, the file named SORT TEXT contains the
object code.

For Programs that Use the % INCLUDE Compiler Directive
The %INCLUDE directive in a source program identifies a member from a macro
library (MACLlB) and directs the compiler to search for that member. When found,
that MACLIB member becomes the input stream for the compiler. After the
compiler has read the entire member, it returns to the previous input stream, at the
point immediately after the %INCLUDE directive.

Chapter 1. How to Run a Program under VM 3

Chapter 1. How to Run a Program under VM

This chapter describes how to run a VS Pascal program under VM. If you are not
using VS Pascal under VM, you can skip this chapter.

There are four steps to running a VS Pascal program under VM:

1. Compile the program to produce an object module.
2. Generate a load module from the object module.
3. Define all files used within the program.
4. Invoke the load module.

VS Pascal requires a virtual machine of at least 1 M to compile a program.
Execution of a compiled program can be performed in an 864K CMS machine.

Step 1: How to Compile a Program
The standard method of invoking the VS Pascal compiler under VM is by using the
VSPASCAL EXEC. See "VSPASCAL EXEC" on page 127 for the full description of
the VSPASCAL EXEC.

To compile a VS Pascal program, the EXEC can be invoked in its simplest form by
the command:

VSPASCAL fn ft fm

Where Represents

fn The file name of the program.

ft The file type. This is optional; when you do not specify a file type, VS
Pascal assumes the file type is PASCAL.

fm The file mode. This is also optional; VS Pascal assumes a default file
mode of "*".

The compiler translates a source program into object code, which is stored in a
file. The name of this file is identical to the name of the source program. Its file
type is TEXT.

For example, to compile a program residing in a file called SORT PASCAL, issue
the command:

VSPASCAL SORT

If the program compiles without error, the file named SORT TEXT contains the
object code.

For Programs that Use the %lNCLUDE Compiler Directive
The %INCLUDE directive in a source program identifies a member from a macro
library (MACUB) and directs the compiler to search for that member. When found,
that MACUB member becomes the input stream for the compiler. After the
compiler has read the entire member, it returns to the previous input stream, at the
point immediately after the %INCLUDE directive.

Chapter 1. How to Run a Program under VM 3

At compile time, you must use the LIB parameter of the VSPASCAL EXEC to tell the
compiler which MACLIBs it must search to find members named by a %INCLUDE.
(See "VSPASCAL EXEC" on page 127.)

The order in which MACLIBs are identified using the LIB parameter of the
VSPASCAL EXEC can affect program results. The %INCLUDE directive can
identify a MACLIB member in one of two ways:

• By naming both the MACUB ddname, and the member. In this case, before
compiling the program, you must use the FILEDEF command to associate the
ddname of the MACLIB with the MACLIB. This way, the compiler searches
only the MACLIB named.

• By naming only the member. In this case, the compiler searches the default
library, SYSLIB, which contains all the MACLIBs in the order that you listed
them on the LIB parameter of the VSPASCAL EXEC. When a %INCLUDE
identifies a member name that exists in two or more MACLIBs, the compiler
uses the first so-named member that it encounters.

As an example, suppose the LIB option of the VSPASCAL EXEC lists, in order,
LlB1, LlB2, and LlB3. Both LlB2 and LlB3 contain a member named CONSTANTS.
When the compiler encounters a %INCLUDE CONSTANTS (without an
accompanying MACLIB name), it first searches LlB1. Not finding CONSTANTS in
LlBi, it goes to LlB2, where it finds and uses CONSTANTS. If the program must
use CONSTANTS from LlB3 instead, you must either (1) change the %INCLUDE
directive in the source to specify both the ddname of the MACLIB and the member
name or (2) list LlB3 before LlB2 in the LIB option of the VSPASCAL EXEC at
compile time.

The IBM-supplied default library is VSPASCAL, which you can think of as residing
at the "bottom" of SYSUB. Therefore, VSPASCAL is always the last MACUB
searched for any member named on a %INCLUDE, and you do not need to specify
it on the VSPASCAL EXEC or define it with FILEDEF.

Note: When a %INCLUDE specifically names VSPASCAL, you must define it with
the FILEDEF command before compile time.

Passing Compile-Time Options
Compile-time options (see Chapter 13, "Compile-Time Options" on page 155) are
parameters passed to the compiler specifying whether or not a particular feature is
to be active. You can specify a list of compile-time options with the VSPASCAL
EXEC (see "VSPASCAL EXEC" on page 127). You must precede the options list
with a left parenthesis.

For example, to compile the program TEST PASCAL with the Interactive Debugging
Tool enabled (DEBUG) and without a cross-reference table (NOXREF), issue the
following command:

VSPASCAL TEST (DEBUG NOXREF

4 VS Pascal Application Programming Guide

At compile time, you must use the LIB parameter of the VSPASCAL EXEC to tell the
compiler which MACLIBs it must search to find members named by a %INCLUDE.
(See "VSPASCAL EXEC" on page 127.)

The order in which MACLIBs are identified using the LIB parameter of the
VSPASCAL EXEC can affect program results. The %INCLUDE directive can
identify a MACLIB member in one of two ways:

• By naming both the MACLIB ddname, and the member. In this case, before
compiling the program, you must use the FILEDEF command to associate the
ddname of the MACLIB with the MACLIB. This way, the compiler searches
only the MACLIB named.

• By naming only the member. In this case, the compiler searches the default
library, SYSLlB, which contains all the MACLIBs in the order that you listed
them on the LIB parameter of the VSPASCAL EXEC. When a %INCLUDE
identifies a member name that exists in two or more MACLlBs, the compiler
uses the first so-named member that it encounters.

As an example, suppose the LIB option of the VSPASCAL EXEC lists, in order,
LlB1, LlB2, and LlB3. Both LlB2 and LlB3 contain a member named CONSTANTS.
When the compiler encounters a %INCLUDE CONSTANTS (without an
accompanying MACLIB name), it first searches LlB1. Not finding CONSTANTS in
LlB1, it goes to LlB2, where it finds and uses CONSTANTS. If the program must
use CONSTANTS from LlB3 instead, you must either (1) change the %INCLUDE
directive in the source to specify both the ddname of the MACLIB and the member
name or (2) list LlB3 before LlB2 in the LIB option of the VSPASCAL EXEC at
compile time.

The IBM-supplied default library is VSPASCAL, which you can think of as residing
at the "bottom" of SYSLIB. Therefore, VSPASCAL is always the last MACLIB
searched for any member named on a %INCLUDE, and you do not need to specify
it on the VSPASCAL EXEC or define it with FILEDEF.

Note: When a %INCLUDE specifically names VSPASCAL, you must define it with
the FILEDEF command before compile time.

Passing Compile-Time Options
Compile-time options (see Chapter 13, "Compile-Time Options" on page 155) are
parameters passed to the compiler specifying whether or not a particular feature is
to be active. You can specify a list of compile-time options with the VSPASCAL
EXEC (see "VSPASCAL EXEC" on page 127). You must precede the options list
with a left parenthesis.

For example, to compile the program TEST PASCAL with the Interactive Debugging
Tool enabled (DEBUG) and without a cross-reference table (NOXREF), issue the
following command:

VSPASCAL TEST (DEBUG NOXREF

4 VS Pascal Application Programming Guide

The Compiler Listing
The compiler generates a listing of the source program with such information as
the lexical nesting structure of the program and cross-reference tables. The listing
is placed in a file fn LISTING, where fn is the file name of the unit being compiled.

For a detailed description of the information in the source listing, see "Source
Listing" on page 34.

Compiler Diagnostics
Any compiler-detected errors in your program are displayed on your terminal, or
written to a disk file named fn CONSOLE (where fn is the file name of the unit being
compiled) if the CONSOLE option is specified. The errors are also indicated on
your source listing at the lines where the errors were detected. The diagnostics
are summarized at the end of the listing.

When an error is detected, the source line being scanned by the compiler is
displayed on your console. Below the printed line, a plus sign (+) is placed at
each location where an error was detected. This symbol serves as a pointer to the
approximate location where the error occurred within the source record.

Accompanying each error indicator is an error number. Beginning with the
following line of your console listing, a diagnostic message is produced for each
error number.

For a list of compiler-generated messages, see "Compiler Messages-Source
Code Processing" on page 216.

Chapter 1. How to Run a Program under VM 5

The Compiler Listing
The compiler generates a listing of the source program with such information as
the lexical nesting structure of the program and cross-reference tables. The listing
is placed in a file fn LISTING, where fn is the file name of the unit being compiled.

For a detailed description of the information in the source listing, see "Source
Listing" on page 34.

Compiler Diagnostics
Any compiler-detected errors in your program are displayed on your terminal, or
written to a disk file named fn CONSOLE (where fn is the file name of the unit being
compiled) if the CONSOLE option is specified. The errors are also indicated on
your source listing at the lines where the errors were detected. The diagnostics
are summarized at the end of the listing.

When an error is detected, the source line being scanned by the compiler is
displayed on your console. Below the printed line, a plus sign (+) is placed at
each location where an error was detected. This symbol serves as a pointer to the
approximate location where the error occurred within the source record.

Accompanying each error indicator is an error number. Beginning with the
following line of your console listing, a diagnostic message is produced for each
error number.

For a list of compiler-generated messages, see "Compiler Messages-Source
Code Processing" on page 216.

Chapter 1. How to Run a Program under VM 5

Figure 1 shows an example of a VS Pascal program and the corresponding
compiler diagnostic. The WRITELN statement contains an error, so that you can see
how the compiler diagnostic flags and records an error.

VS Pascal Program Containing an Error

PROGRAM COPY;
VAR

INFILE,
OUTFILE
BUFFER

BEGIN

TEXT;
STRING(1000) ;

RESET(INFILE) ;
REWRITE(OUTFILE);
WHILE NOT EOF(INFILE) DO

BEGIN
READLN(INFILE,BUFFER);
WRITELN(OUTFILE BUFFER)

END;
END.

VS Pascal Compiler Diagnostic

INVOKING VS PASCAL RELEASE 2.0
STARTING LANGUAGE ANALYSIS PASS ...

WRITELN(OUTFILE BUFFER)
+41

ERROR 41: COMMA "," EXPECTED
NUMBER OF ERRORS REPORTED: 1

SOURCE LINES: 14; COMPILE TIME: 0.13 SECONDS; COMPILE RATE: 6462 LPM

R(00008);

Figure 1. VS Pascal Program Containing an Error and Corresponding Compiler Diagnostic

Cross-System Compilation
You can compile a VS Pascal program under VM and link-edit and run the object
deck under MVS provided you do not use system-specific features such as the eMS
procedure or the NAME file opening option.

6 vs Pascal Application Programming Guide

Figure 1 shows an example of a VS Pascal program and the corresponding
compiler diagnostic. The WRITELN statement contains an error, so that you can see
how the compiler diagnostic flags and records an error.

VS Pascal Program Containing an Error

PROGRAM COPY;
VAR

INFILE,
OUTFILE
BUFFER

BEGIN

TEXT;
STRING(1000) ;

RESET(INFILE) ;
REWRITE(OUTFILE);
WHILE NOT EOF(INFILE) DO

BEGIN
READLN(INFILE,BUFFER);
WRITELN(OUTFILE BUFFER)

END;
END.

VS Pascal Complier Diagnostic

INVOKING VS PASCAL RELEASE 2.0
STARTING LANGUAGE ANALYSIS PASS ...

WRITELN(OUTFILE BUFFER)
+41

ERROR 41: COMMA "," EXPECTED
NUMBER OF ERRORS REPORTED: 1

SOURCE LINES: 14; COMPILE TIME: 0.13 SECONDS; COMPILE RATE: 6462 LPM

R(00008);

Figure 1. VS Pascal Program Containing an Error and Corresponding Compiler Diagnostic

Cross-System Compilation
You can compile a VS Pascal program under VM and link-edit and run the object
deck under MVS provided you do not use system-specific features such as the eMS
procedure or the NAME file opening option.

6 vs Pascal Application Programming Guide

Step 2: How to Build a Load Module (Link-Editing)
The PASCMOD EXEC generates load modules from VS Pascal object code. It
link-edits text decks (a main program unit and any segment units of file type TEXT)
together with text libraries (the VS Pascal run-time library and any other libraries
of compiled code with the file type TXTLlB). The VS Pascal run-time environment
resides in the VSPASCAL and AMPLANG TXTLlBs, which are included by the
PASCMOD EXEC. Link-editing produces a load module whose file name matches
the file name of the main program unit and whose file type is MODULE.

If your program consists of just one source unit (that is, you have no segment
units), you generate a load module by invoking PASCMOD with the name of the
program. For example, to generate a load module for a compiled program named
SORT TEXT, enter:

PASCMOD SORT

The resulting load module is SORT MODULE.

If your program consists of two or more source units, list the name of the main
program unit, followed by the names of all needed segment units and text libraries.
For example, to build a load module for a compiled program that resides in three
text decks (program unit MAIN TEXT, segment unit ASEG TEXT, and segment unit
BSEG TEXT) and calls routines in a text library called UTILITY TXTLlB, use:

PASCMOD MAIN ASEG BSEG UTILITY

The resulting load module is MAIN MODULE.

For a description of the syntax and options available with PASCMOD, see
"PASCMOD EXEC" on page 128.

For programs to be executed with the DEBUG option, the VS Pascal run-time
debugging library PASDEBUG TXTLIB must be present. (For information on the
Interactive Debugging Tool, see Chapter 7, "How to Debug Your Program" on
page 83.)

For programs to be executed under transient run-time: Any program that you
intend to run with the transient library option must be link-edited with the TRANLIB
option specified on the PASCMOD EXEC.

For example, to compile the program TEST PASCAL for execution with the
transient run-time library, use:

PASCMOD TEST (TRANLIB

The default is NOTRANLlB, which statically link-edits the load module for standard
execution.

Combining Release 1 and Release 2 Code
When combining units compiled with VS Pascal Release 1 and VS Pascal Release
2, you must link-edit the modules with the VS Pascal Release 2 libraries.

Because some debugger tables have been changed to allow larger programs to be
debugged, units compiled with DEBUG under Release 1 must be recompiled using
Release 2.

Chapter 1. How to Run a Program under VM 7

Step 2: How to Build a Load Module (Link-Editing)
The PASCMOD EXEC generates load modules from VS Pascal object code. It
link-edits text decks (a main program unit and any segment units of file type TEXT)
together with text libraries (the VS Pascal run-time library and any other libraries
of compiled code with the file type TXTLlB). The VS Pascal run-time environment
resides in the VSPASCAL and AMPLANG TXTLlBs, which are included by the
PASCMOD EXEC. Link-editing produces a load module whose file name matches
the file name of the main program unit and whose file type is MODULE.

If your program consists of just one source unit (that is, you have no segment
units), you generate a load module by invoking PASCMOD with the name of the
program. For example, to generate a load module for a compiled program named
SORT TEXT, enter:

PASCMOD SORT

The resulting load module is SORT MODULE.

If your program consists of two or more source units, list the name of the main
program unit, followed by the names of all needed segment units and text libraries.
For example, to build a load module for a compiled program that resides in three
text decks (program unit MAIN TEXT. segment unit ASEG TEXT, and segment unit
BSEG TEXT) and calls routines in a text library called UTILITY TXTLlB, use:

PASCMOD MAIN ASEG BSEG UTILITY

The resulting load module is MAIN MODULE.

For a description of the syntax and options available with PASCMOD, see
"PASCMOD EXEC" on page 128.

For programs to be executed with the DEBUG option, the VS Pascal run-time
debugging library PASDEBUG TXTLIB must be present. (For information on the
Interactive Debugging Tool, see Chapter 7, "How to Debug Your Program" on
page 83.)

For programs to be executed under transient run-time: Any program that you
intend to run with the transient library option must be link-edited with the TRANLIB
option specified on the PASCMOD EXEC.

For example, to compile the program TEST PASCAL for execution with the
transient run-time library, use:

PASCMOD TEST (TRANLIB

The default is NOTRANLlB, which statically link-edits the load module for standard
execution.

Combining Release 1 and Release 2 Code
When combining units compiled with VS Pascal Release 1 and VS Pascal Release
2, you must link-edit the modules with the VS Pascal Release 2 libraries.

Because some debugger tables have been changed to allow larger programs to be
debugged, units compiled with DEBUG under Release 1 must be recompiled using
Release 2.

Chapter 1. How to Run a Program under VM 7

Step 3: How to Define Files
Before you invoke the generated load module, you must define the files that your
program requires. You do this with the CMS command FILEDEF. See the
appropriate VM publication for a description of the FILEDEF command ("VM" on
page 295).

The first parameter of the FILEDEF command is the file's ddname. The ddname to
be associated with a particular file variable in your program is normally the name
of the file variable itself, truncated to eight characters.

For example, the ddnames for the variables declared within the VS Pascal
declaration in Figure 2 are SYSIN, SYSPRINT, and OUTPUTFI, respectively.
Figure 2 also shows the FILEDEF commands required for each of the three file
variables, along with INPUT and OUTPUT.

File Declarations As They Appear in a VS Pascal Program:

VAR
SYSIN,
SYSPRINT TEXT;
OUTPUTFILE FILE OF INTEGER;

FILEDEF Commands Required for Those Declarations:

FILEDEF SYSIN DISK INPUT DATA
FILEDEF SYSPRINT PRINTER (LRECL 133 RECFM VA
FILEDEF OUTPUTFI DISK OUTPUT DATA (RECFM F LRECL 4
FILEDEF OUTPUT TERMINAL (RECFM F LRECL 80
FILEDEF INPUT TERMINAL (RECFM V LRECL 80

Figure 2. Sample File Declarations with Complementary CMS FILEDEF Commands

If a particular file is to be opened for input, attributes such as LRECL, BLKSIZE,
and RECFM are obtained from the (presumably) already eXisting file.

For files that need to be opened for output, the LRECL, BLKSIZE, or RECFM are
assigned default values if not specified. For a description of the defaults, see
"Data Set DCB Attributes" on page 46.

8 vs Pascal Application Programming Guide

Step 3: How to Define Files
Before you invoke the generated load module, you must define the files that your
program requires. You do this with the CMS command FILEDEF. See the
appropriate VM publication for a description of the FILEDEF command ("VM" on
page 295).

The first parameter of the FILEDEF command is the file's ddname. The ddname to
be associated with a particular file variable in your program is normally the name
of the file variable itself, truncated to eight characters.

For example, the ddnames for the variables declared within the VS Pascal
declaration in Figure 2 are SYSIN, SYSPRINT, and OUTPUTFI, respectively.
Figure 2 also shows the FILEDEF commands required for each of the three file
variables, along with INPUT and OUTPUT.

File Declarations As They Appear In a VS Pascal Program:

VAR
SYSIN,
SYSPRINT
OUTPUTFILE

TEXT;
FILE OF INTEGER;

FILEDEF Commands Required for Those Declarations:

FILEDEF SYSIN DISK INPUT DATA
FILEDEF SYSPRINT PRINTER (LRECL 133 RECFM VA
FILEDEF OUTPUTFI DISK OUTPUT DATA (RECFM F LRECL 4
FILEDEF OUTPUT TERMINAL (RECFM F LRECL 80
FILEDEF INPUT TERMINAL (RECFM V LRECL 80

Figure 2. Sample File Declarations with Complementary CMS FILEDEF Commands

If a particular file is to be opened for input, attributes such as LRECL, BLKSIZE,
and RECFM are obtained from the (presumably) already existing file.

For files that need to be opened for output, the LRECL, BLKSIZE, or RECFM are
assigned default values if not specified. For a description of the defaults, see
"Data Set DCB Attributes" on page 46.

8 vs Pascal Application Programming Guide

l'

~

Step 4: How to Invoke the Load Module
After creating the load module and defining the files it needs, you are ready to run
the program. You do this by invoking the module.

Invoking the Module Using PASCRUN
The PASCRUN EXEC invokes a precompiled module and issues a GLOBAL TXTUB
AMPLANG and a GLOBAL LOADUB AMPXLVEC PASRTUB. AMPLANG TXTUB is
needed for the LANGUAGE run-time option, PASRTUB LOADUB is needed for the
XA and TRANUB link-edit options, and AMPXLVEC LOADUB is needed for the
TRANLIB link-edit option.

PASCRUN modname options / parameters

Where Represents

PASCRUN The name of the command.

modname The name of the load module.

options The run-time options.

parameters The parameters (if any) being passed.

Run-time options are also passed as a parameter list. To distinguish run-time
options being passed to the VS Pascal environment from parameters that your
program reads (via the PARMS function), you must end the run-time option list with
a slash. The program parameters, if any, must follow the slash as shown below.

PASCRUN modname options / parameters

For a description of run-time options, see Chapter 14, "Run-Time Options" on
page 167.

For a description of PASCRUN, see "PASCRUN EXEC" on page 130.

Transient Run-Time Considerations
Before invoking a program that was link-edited with the TRANLIB option, you must
make sure that the run-time libraries referenced in the program have been
identified.

Ensure the GLOBAL LOADLIB CMS command is issued to identify the AMPXLVEC
and PASRTLIB LOADLIBs.

Chapter 1. How to Run a Program under VM 9

Step 4: How to Invoke the Load Module
After creating the load module and defining the files it needs, you are ready to run
the program. You do this by invoking the module.

Invoking the Module Using PASCRUN
The PASCRUN EXEC invokes a precompiled module and issues a GLOBAL TXTLIB
AMPLANG and a GLOBAL LOADLIB AMPXLVEC PASRTLIB. AMPLANG TXTLIB is
needed for the LANGUAGE run-time option, PASRTLIB LOADLIB is needed for the
XA and TRANLIB link-edit options, and AMPXLVEC LOADLIB is needed for the
TRANLIB link-edit option.

PASCRUN modname options / parameters

Where Represents

PASCRUN The name of the command.

modname The name of the load module.

options The run-time options.

parameters The parameters (if any) being passed.

Run-time option!; are also passed as a parameter list. To distinguish run-time
options being passed to the VS Pascal environment from parameters that your
program reads (via the PARMS function), you must end the run-time option list with
a slash. The program parameters, if any, must follow the slash as shown below.

PASCRUN modname options / parameters

For a description of run-time options, see Chapter 14, "Run-Time Options" on
page 167.

For a description of PASCRUN, see "PASCRUN EXEC" on page 130.

Transient Run-Time Considerations
Before invoking a program that was link-edited with the TRANLIB option, you must
make sure that the run-time libraries referenced in the program have been
identified.

Ensure the GLOBAL LOADLIB CMS command is issued to identify the AMPXLVEC
and PASRTLIB LOADLIBs.

Chapter 1. How to Run a Program under VM 9

Sample VM Session: Compiling, Link-Editing, and Running a
Program

Figure 3 shows how to compile, link-edit, and execute an existing source module.
The commands you enter from the terminal are preceded with =>.

READY;

=> VSPASCAL LANDER (PRINT LIST

INVOKING VS PASCAL RELEASE 2.0
STARTING LANGUAGE ANALYSIS PASS ...
STARTING OPTIMIZATION PASS .•.
STARTING CODE GENERATION PASS ...
NO COMPILER DETECTED ERRORS

SOURCE LINES: 47; COMPILE TIME: 0.19 SECONDS; COMPILE RATE: 15032

READY;

=> PASCMOD LANDER
READY;

=> FILEDEF INPUT TERM
READY;

=> FILEDEF OUTPUT TERM
READY;

=> LANDER PARMS GO HERE

Figure 3. Compiling, Link-Editing, and Executing a Program under VM

10 vs Pascal Application Programming Guide

Sample VM Session: Compiling, Link-Editing, and Running a
Program

Figure 3 shows how to compile, link-edit, and execute an existing source module.

The commands you enter from the terminal are preceded with =>.

READY;

=> VSPASCAL LANDER (PRINT LIST

INVOKING VS PASCAL RELEASE 2.8
STARTING LANGUAGE ANALYSIS PASS ...
STARTING OPTIMIZATION PASS ...
STARTING CODE GENERATION PASS ...
NO COMPILER DETECTED ERRORS

SOURCE LINES: 47; COMPILE TIME: 8.19 SECONDS; COMPILE RATE: 15832

READY;

=> PASCMOD LANDER
READY;

=> FILEDEF INPUT TERM
READY;

=> FILEDEF OUTPUT TERM
READY;

=> LANDER PARMS GO HERE

Figure 3. Compiling, Link-Editing, and Executing a Program under VM

10 vs Pascal Application Programming Guide

31-Bit Addressing Mode
Programs compiled by VS Pascal can execute in the 31-bit addressing mode of the
VM/XA operating system. With 31-bit addressing, you have more freedom to define
or reference larger data areas, files, and tables, and to create a larger overall
program. Your program and its data are no longer constrained to fit in a
16-megabyte address space. However, no single record or array can be greater
than 16 megabytes.

Modules that are link-edited together must also reside in the same address space
(either above or below the 16-megabyte address line).

To take advantage of 31-bit addressing, you must either:

• Generate your load module using the XA option in the PASCMOD EXEC

• Use the AMODE and RMODE options when loading your program and
generating your load module.

Every program that executes in VM/XA is assigned two attributes: AMODE
(addressing mode) and RMODE (residence mode). AMODE is the attribute of an
entry point into a load module that specifies the addressing mode in effect when
the load module is entered at run-time. RMODE is the attribute of a load module
that specifies the residence mode of a load module when it is loaded into virtual
storage for execution.

Valid AMODE and RMODE specifications are shown in Figure 4.

Attribute

AMODE=24

AMODE=31

AMODE=ANY

RMODE=24

RMODE=ANY

Meaning

24-bit addressing mode

31-bit addressing mode

Either 24-bit or 31-bit addressing mode

The module must reside in virtual storage below 16 megabytes.
Use RMODE=24 for 31-bit programs that have 24-bit
dependencies.

Indicates that the module can reside anywhere in storage.

Figure 4. AMODE and RMODE Specifications

For more information on AMODE and RMODE, see VMIXA System Product CMS
Application Program Development Guide, SC23-0355.

Chapter 1. How to Run a Program under VM 11

31-Bit Addressing Mode
Programs compiled by VS Pascal can execute in the 31-bit addressing mode of the
VM/XA operating system. With 31-bit addressing, you have more freedom to define
or reference larger data areas, files, and tables, and to create a larger overall
program. Your program and its data are no longer constrained to fit in a
16-megabyte address space. However, no single record or array can be greater
than 16 megabytes.

Modules that are link-edited together must also reside in the same address space
(either above or below the 16-megabyte address line).

To take advantage of 31-bit addressing, you must either:

• Generate your load module using the XA option in the PASCMOD EXEC

• Use the AMODE and RMODE options when loading your program and
generating your load module.

Every program that executes in VM/XA is assigned two attributes: AMODE
(addressing mode) and RMODE (residence mode). AMODE is the attribute of an
entry pOint into a load module that specifies the addressing mode in effect when
the load module is entered at run-time. RMODE is the attribute of a load module
that specifies the residence mode of a load module when it is loaded into virtual
storage for execution.

Valid AMODE and RMODE specifications are shown in Figure 4.

Attribute

AMODE=24

AMODE=31

AMODE=ANY

RMODE=24

RMODE=ANY

Meaning

24-bit addressing mode

31-bit addressing mode

Either 24-bit or 31-bit addressing mode

The module must reside in virtual storage below 16 megabytes.
Use RMODE = 24 for 31-bit programs that have 24-bit
dependencies.

Indicates that the module can reside anywhere in storage.

Figure 4. AMODE and RMODE Specifications

For more information on AMODE and RMODE, see VMIXA System Product CMS
Application Program Development Guide, SC23-0355.

Chapter 1. How to Run a Program under VM 11

Sample VM Session to Invoke 31-Bit Addressing Mode
Figure 5 shows how to compile, link-edit, and execute an already existing source
module in 31-bit addressing mode under VM. The commands entered from the
terminal are preceded with =>.

READY;

=> VSPASCAL LANDER (PRINT LIST

INVOKING VS PASCAL RELEASE 2.6
STARTING LANGUAGE ANALYSIS PASS .••
STARTING OPTIMIZATION PASS .••
STARTING CODE GENERATION PASS .••
NO COMPILER DETECTED ERRORS

SOURCE LINES: 47; COMPILE TIME: 6.19 SECONDS; COMPILE RATE: 15632

READY;

=> PASCMOD LANDER (XA
READY;

=> FILEDEF INPUT TERM
READY;

=> FILEDEF OUTPUT TERM
READY;

=> LANDER PARMS GO HERE

Figure 5. Compiling, Link-Editing, and Running a Program under VM/XA

12 vs Pascal Application Programming Guide

Sample VM Session to Invoke 31-Bit Addressing Mode
Figure 5 shows how to compile, link-edit, and execute an already existing source
module in 31-bit addressing mode under VM. The commands entered from the
terminal are preceded with =>.

READY;

=> VSPASCAL LANDER (PRINT LIST

INVOKING VS PASCAL RELEASE 2.0
STARTING LANGUAGE ANALYSIS PASS •.•
STARTING OPTIMIZATION PASS .••
STARTING CODE GENERATION PASS •••
NO COMPILER DETECTED ERRORS

SOURCE LINES: 47; COMPILE TIME: 0.19 SECONDS; COMPILE RATE: 15032

READY;

=> PASCMOD LANDER (XA
READY;

=> FILEDEF INPUT TERM
READY;

=> FILEDEF OUTPUT TERM
READY;

=> LANDER PARMS GO HERE

Figure 5. Compiling, Link-Editing, and Running a Program under VM/XA

12 vs Pascal Application Programming Guide

l.. Chapter 2. How to Run a Program under MVS/TSO

This chapter describes how to compile and execute a VS Pascal program under the
Time Sharing Option (TSO) of MVS. If you are not using VS Pascal under TSO, then
you can ski p this chapter.

There are four steps to running a VS Pascal program:

1. Compile the program to produce an object module.
2. Generate a load module from the object module.
3. Allocate all data sets used within the program.
4. Invoke the load module.

VS Pascal requires a minimum region size of 512K to compile a program under
MVS. A compiled and link-edited program can execute in a 448K region.

Step 1: How to Compile a Program
The VS Pascal compiler is invoked under TSO by means of a CUST. IBM provides
a sample CUST named VSPASCAL to compile a VS Pascal program. For a
detailed description of the VSPASCAL CUST parameters, see "VSPASCAL CLlST"
on page 131.

To invoke the VS Pascal compiler with the conditions:

• The user identification is ABC.
• The data set containing the program is named ABC.SORT.PASCAL.

• The compiler listing is to be directed to the printer.
• The default options and data set names are to be used.

Issue the following command:

VSPASCAL SORT SYSPRINT(A)

To invoke the VS Pascal compiler with the conditions:

• The user identification is XYZ.

• The data set containing the program is named ABC.TEST.PASCAL.

• The compiler listing is to be directed to a data set named XYZ.TESTUST.LlST.

• The long version of the cross-reference listing is preferred.

• The default options and data set names are to be used for the rest.

issue the following command:

VSPASCAL 'ABC.TEST.PASCAL' XREF(LONG),PRINT(TESTLIST)

Chapter 2. How to Run a Program under MVS/TSO 13

l.. Chapter 2. How to Run a Program under MVS/TSO

This chapter describes how to compile and execute a VS Pascal program under the
Time Sharing Option (TSO) of MVS. If you are not using VS Pascal under TSO, then
you can skip this chapter.

There are four steps to running a VS Pascal program:

1. Compile the program to produce an object module.
2. Generate a load module from the object module.
3. Allocate all data sets used within the program.
4. Invoke the load module.

VS Pascal requires a minimum region size of 512K to compile a program under
MVS. A compiled and link-edited program can execute in a 448K region.

Step 1: How to Compile a Program
The VS Pascal compiler is invoked under TSO by means of a CLiST. IBM provides
a sample CLiST named VSPASCAL to compile a VS Pascal program. For a
detailed description of the VSPASCAL CLiST parameters, see "VSPASCAL CLlST"
on page 131.

To invoke the VS Pascal compiler with the conditions:

• The user identification is ABC.
• The data set containing the program is named ABC.SORT.PASCAL.
• The compiler listing is to be directed to the printer.
• The default options and data set names are to be used.

Issue the following command:

VSPASCAL SORT SYSPRINT(A)

To invoke the VS Pascal compiler with the conditions:

• The user identification is XYZ.

• The data set containing the program is named ABC.TEST.PASCAL.

• The compiler listing is to be directed to a data set named XYZ.TESTLlST.LlST.

• The long version of the cross-reference listing is preferred.

• The default options and data set names are to be used for the rest.

issue the following command:

VSPASCAL 'ABC.TEST.PASCAL' XREF(LONG),PRINT(TESTLIST)

Chapter 2. How to Run a Program under MVS/TSO 13

For Programs that Use the %INCLUDE Compiler Directive
The %INCLUDE directive in a source program identifies a member from a
partitioned data set and directs the compiler to search for that member. When
found, that data set member becomes the input stream for the compiler. After the
compiler has read the enti re member it returns to the previous input stream at the
pOint immediately after the %INCLUDE directive.

At compile-time, you must use the LIB parameter of the VSPASCAL CLiST to tell
the compiler in which data sets it must search to find members named by a
%INCLUDE. (See "VSPASCAL CLlST" on page 131.)

The order in which data sets are identified, using the LIB parameter of the
VSPASCALCLlST, can affect program results. To understand why, remember that
the %INCLUDE directive can identify a data set member in one of two ways:

• By naming both the ddname of the data set and the member. In this case, the
compiler searches only the data set named. Before compiling the program,
use the TSO ALLOCATE command to associate the ddname of the data set with
the data set.

• By naming only the member. In this case, the compiler searches the default
library, SYSLlB, which contains all the data sets in the order that you listed
them on the LIB parameter of the VSPASCAL CLiST. When a %INCLUDE
identifies a member name that exists in two or more data sets, the compiler
uses the first so-named member that it encounters.

As an example, suppose the LIB option of the VSPASCAL CLiST lists, in order,
LlB1, LlB2, and LlB3. Both LlB2 and LlB3 contain a member named CONSTANTS.
When the compiler encounters a %INCLUDE CONSTANTS (without an
accompanying data set name), it first searches LlB1. Not finding CONSTANTS in
LlB1, it goes to LlB2, where it finds and uses CONSTANTS. If the program must
use CONSTANTS from LlB3 instead, you must either (1) change the %INCLUDE
directive in the source to specify both the ddname of the data set and member
name or (2) list LlB3 before LlB2 on the LIB option of the VSPASCAL CLiST at
compile-time.

The IBM-supplied default library for MVS/TSO is VSPASCAL.VSPV1R2.SAMPMAC1,
which you can think of as residing at the "bottom" of the of SYSLIB. Therefore,
VSPASCAL is always the last data set searched for any member named on a
%INCLUDE, and you do not need to specify it on the VSPASCAL CLlST, or in the
LIB list.

Note: When a %INCLUDE specifically names VSPASCAL, you must define
VSPASCAL with the ALLOCATE command before compile time.

To invoke the VS Pascal compiler with the conditions:

• The user identification is P123.

• The data set containing the program is named P123.MAIN.PASCAL.

• The source to be included is stored in two partitioned data sets by the names
of P123.PASLIB and VSPASCAL.VSPV1R2.SAMPMAC1.

• The default options and data set names are to be used for the rest.

14 vs Pascal Application Programming Guide

For Programs that Use the 'YoINCLUDE Compiler Directive
The %INCLUDE directive in a source program identifies a member from a
partitioned data set and directs the compiler to search for that member. When
found, that data set member becomes the input stream for the compiler. After the
complier has read the entire member it returns to the previous input stream at the
point immediately after the %INCLUDE directive.

At compile-time, you must use the LIB parameter of the VSPASCAL CLiST to tell
the compiler in which data sets it must search to find members named by a
%INCLUDE. (See "VSPASCAL CLlST" on page 131.)

The order in which data sets are identified, using the LIB parameter of the
VSPASCALCLlST, can a.ffect program results. To understand why, remember that
the %INCLUDE directive can identify a data set member in one of two ways:

• By naming both the ddname of the data set and the member. In this case, the
compiler searches only the data set named. Before compiling the program,
use the TSO ALLOCATE command to associate the ddname of the data set with
the data set.

• By naming only the member. In this case, the compiler searches the default
library, SYSLlB, which contains all the data sets in the order that you listed
them on the LIB parameter of the VSPASCAL CLiST. When a %INCLUDE
identifies a member name that exists in two or more data sets, the compiler
uses the first so-named member that it encounters.

As an example, suppose the LIB option of the VSPASCAL CLiST lists, in order,
LlB1, LlB2, and LlB3. Both LlB2 and LlB3 contain a member named CONSTANTS.
When the compiler encounters a %INCLUDE CONSTANTS (without an
accompanying data set name), it first searches LlB1. Not finding CONSTANTS in
LlB1, it goes to LlB2, where it ·finds and uses CONSTANTS. If the program must
use CONSTANTS from LlB3 instead, you must either (1) change the %INCLUDE
directive in the source to specify both the ddname of the data set and member
name or (2) list LlB3 before LlB2 on the LIB option of the VSPASCAL CLiST at
compile-time.

The IBM-supplied default library for MVS/TSO is VSPASCAL.VSPV1 R2.SAMPMAC1,
which you can think of as residing at the "bottom" of the of SYSLIB. Therefore,
VSPASCAL is always the last data set searched for any member named on a
%INCLUDE, and you do not need to specify it on the VSPASCAL CLlST, or in the
LIB list.

Note: When a %INCLUDE specifically names VSPASCAL, you must define
VSPASCAL with the ALLOCATE command before compile time.

To invoke the VS Pascal compiler with the conditions:

• The user identification is P123.

• The data set containing the program is named P123.MAIN.PASCAL.

• The source to be included is stored in two partitioned data sets by the names
of P123.PASLIB and VSPASCAL.VSPV1R2.SAMPMAC1.

• The default options and data set names are to be used for the rest.

14 vs Pascal Application Programming Guide

Issue the following command:

VSPASCAL MAIN LIB('PASLIB.' 'VSPASCAL.VSPVIR2.SAMPMACl" ')

Note: The high-level qualifier names (VSPASCAl.VSPV1 R2) might be different at
your site.

Passing Compile-Time Options
Compile-time options (see Chapter 13, "Compile-Time Options" on page 155) are
parameters passed to the compiler specifying whether or not a particular feature is
to be active. You can specify a list of compile-time options on the VSPASCAL
CUST (see "VSPASCAL CUST" on page 131).

For example, to compile the program TEST PASCAL with the Interactive Debugging
Tool enabled (DEBUG) and without a cross-reference table (NOXREF), issue the
command:

VSPASCAL TEST DEBUG NOXREF

The Compiler Listing
The compiler generates a listing of the source program with such information as
the lexical nesting structure of the program and cross-reference tables.

If you use the VSPASCAL CUST ("VSPASCAL CLlST" on page 131), remember that
the default is to suppress the compiler listing. If you want a compiler listing, you
can specify

• PRINT(*), which will display the listing on your terminal.
• PRINT(dsname), which will write the listing on the data set named dsname.

• SYSPRINT(sysclass), which will write the listing to the SYSOUT class named
sysclass.

For a detailed description of the information in the source listing, see
Chapter 4, "How to Read VS Pascal Listings" on page 33.

Compiler Diagnostics
By default, compiler diagnostics are displayed on your terminal. If the
CONSOLE(dsname) operand appears on the VSPASCAL CUST, the diagnostics are
stored in a data set instead. The errors are also indicated on your source listing at
the lines where the errors were detected. The diagnostics are summarized at the
end of the listing.

When an error is detected, the source line being scanned by the compiler is printed
on your terminal (or written to the CONSOLE data set). Underneath the printed
line, a plus sign (+) is placed at each location where an error was detected. This
symbol serves as a pointer to indicate the approximate location where the error
occurred within the source record.

Accompanying each error indicator is an error number. Beginning with the
following line of your console listing, a diagnostic message is produced for each
error number.

Compiler-generated messages are listed and explained in "Compiler
Messages-Source Code Processing" on page 216.

Chapter 2. How to Run a Program under MVSITSO 15

Issue the following command:

VSPASCAL MAIN LIB('PASLIB,' 'VSPASCAL.VSPVIR2.SAMPMACl' I ')

Note: The high-level qualifier names (VSPASCAL.VSPV1 R2) might be different at
your site.

Passing Compile-Time Options
Compile-time options (see Chapter 13, "Compile-Time Options" on page 155) are
parameters passed to the compiler specifying whether or not a particular feature is
to be active. You can specify a list of compile-time options on the VSPASCAL
CLiST (see "VSPASCAL CLlST" on page 131).

For example, to compile the program TEST PASCAL with the Interactive Debugging
Tool enabled (DEBUG) and without a cross-reference table (NOXREF), issue the
command:

VSPASCAL TEST DEBUG NOXREF

The Compiler Listing
The compiler generates a listing of the source program with such information as
the lexical nesting structure of the program and cross-reference tables.

If you use the VSPASCAL CLiST ("VSPASCAL CLlST" on page 131), remember that
the default is to suppress the compiler listing. If you want a compiler listing, you
can specify

• PRINT(-), which will display the listing on your terminal.
• PRINT(dsname), which will write the listing on the data set named dsname.

• SYSPRINT(sysclass), which will write the listing to the SYSOUT class named
sysclass.

For a detailed description of the information in the source listing, see
Chapter 4, "How to Read VS Pascal Listings" on page 33.

Compiler Diagnostics
By default, compiler diagnostics are displayed on your terminal. If the
CONSOLE(dsname) operand appears on the VSPASCAL CLlST, the diagnostics are
stored in a data set instead. The errors are also indicated on your source listing at
the lines where the errors were detected. The diagnostics are summarized at the
end of the listing.

When an error is detected, the source line being scanned by the compiler is printed
on your terminal (or written to the CONSOLE data set). Underneath the printed
line, a plus sign (+) is placed at each location where an error was detected. This
symbol serves as a pointer to indicate the approximate location where the error
occurred within the source record.

Accompanying each error indicator is an error number. Beginning with the
following line of your console listing, a diagnostic message is produced for each
error number.

Compiler-generated messages are listed and explained in "Compiler
Messages-Source Code Processing" on page 216.

Chapter 2. How to Run a Program under MVSITSO 15

Figure 6 shows a VS Pascal program and a corresponding compiler diagnostic.
The WRITELN statement contains an error so that you can see how the compiler
diagnostic flags and reports errors.

VS Pascal Program Containing an Error

PROGRAM COPY;
VAR

INFILE,
OUTFI LE
BUFFER

BEGIN

TEXT;
STRING(1000) ;

RESET(INFILE) ;
REWRITE(OUTFILE);
WHILE NOT EOF(INFILE) DO

BEGIN
READLN(INFILE,BUFFER);
WRITELN(OUTFILE BUFFER)

END;
END.

VS Pascal Compiler Diagnostic

INVOKING VS PASCAL RELEASE 2.0
STARTING LANGUAGE ANALYSIS PASS ...

WRITELN(OUTFILE BUFFER)
+41

ERROR 41: COMMA "," EXPECTED
NUMBER OF ERRORS REPORTED: 1

SOURCE LINES: 14; COMPILE TIME: 0.13 SECONDS; COMPILE RATE: 6462 LPM
RETURN CODE: 8

Figure 6. VS Pascal Program Containing an Error and Corresponding Compiler Diagnostic

Cross-System Compilation
You can compile a VS Pascal program under MVS and link-edit and run the object
module under VM.

Step 2: How to Build a Load Module (Link-Editing)
To generate a load module from a VS Pascal object module, you can use either the
TSO LINK command or the PASGMOD GLiST (see "PASGMOD GLlST" on
page 134). The GLiST performs the same function as the LINK command, and it
automatically includes the VS Pascal run-time library in generating the load
module. Also, if you are using the Interactive Debugging Tool, the GLiST includes
the VS Pascal debugging library.

16 vs Pascal Application Programming Guide

Figure 6 shows a VS Pascal program and a corresponding compiler diagnostic.
The WRITELN statement contains an error so that you can see how the compiler
diagnostic flags and reports errors.

VS Pascal Program Containing an Error

PROGRAM COPY;
VAR

INFILE,
OUTFILE
BUFFER

BEGIN

TEXT;
STRING(lOOO) ;

RESET(INFILE) ;
REWRITE(OUTFILE);
WHILE NOT EOF(INFILE) DO

BEGIN
READLN(INFILE,BUFFER);
WRITELN(OUTFILE BUFFER)

END;
END.

VS Pascal Compiler Diagnostic

INVOKING VS PASCAL RELEASE 2.0
STARTING LANGUAGE ANALYSIS PASS ...

WRITELN(OUTFILE BUFFER)
+41

ERROR 41: COMMA "," EXPECTED
NUMBER OF ERRORS REPORTED: 1

SOURCE LINES: 14; COMPILE TIME: 0.13 SECONDS; COMPILE RATE: 6462 LPM
RETURN CODE: 8

Figure 6. VS Pascal Program Containing an Error and Corresponding Compiler Diagnostic

Cross-System Compilation
You can compile a VS Pascal program under MVS and link-edit and run the object
module under VM.

Step 2: How to Build a Load Module (Link-Editing)
To generate a load module from a VS Pascal object module, you can use either the
TSO LINK command or the PASCMOD CLiST (see "PASCMOD CLlST" on
page 134). The CLiST performs the same function as the LINK command, and it
automatically includes the VS Pascal run-time library in generating the load
module. Also, if you are using the Interactive Debugging Tool, the CLiST includes
the VS Pascal debugging library.

16 vs Pascal Application Programming Guide

Every VS Pascal object module contains references to the run-time routines.
These routines are stored in two libraries called:

VSPASCAL.VSPVIR2.SAMPRUNl
VSPASCAL.VSPVIR2.SAMPMSGl

Note: The high-level qualifier names (VSPASCAL.VSPV1R2) might be different at
your installation.

These libraries must be linked into a VS Pascal object module in order to resolve
all external references properly. If the PASCMOD CUST is used, these libraries
are included automatically.

Example of Building a Load Module: In this example, a load module is created
from a compiled VS Pascal program consisting of three object modules. The
conditions are:

• The user-identification is ABC.
• The data sets containing the three object modules are:

ABC.SORT.OBJ
ABC. SEGI. OBJ
ABC.SEG2.0BJ

• The resulting load module is stored as a member named SORT in a data set
named ABC.PROGS.LOAD.

You enter:

PASCMOD * LOAD(PROGS(SORT)) OBJECT('SORT,SEGl,SEG2')

The system prompts you with:

ENTER CONTROL CARDS

You respond with:

ENTRY VSPASCAL

The system responds with the READY message.

For Programs to be Executed with the DEBUG Option: If you are using the
Interactive Debugging Tool, then you must include the debugging library containing
the debugging modules. The name of this library is:

VSPASCAL.VSPVIR2.SAMPDBGl

Note: The high-level qualifier names (VSPASCAL.VSPV1 R2) might be different at
your installation.

This library must be specified before the run-time library. If the PASCMOD CUST
is used, this library is included if the option DEBUG is specified.

If more than one object module is linked together, you must specify an entry point
by means of a linkage editor control statement. The name of the entry point for any
VS Pascal program is VSPASCAL.

For Programs to be Executed Under Transient Run-Time: Any program that you
intend to run with the transient run-time option must be link-edited using the
TRANUB option.

Chapter 2. How to Run a Program under MVS/TSO 17

Every VS Pascal object module contains references to the run-time routines.
These routines are stored in two libraries called:

VSPASCAL.VSPVIR2.SAMPRUNI
VSPASCAL.VSPVIR2.SAMPMSGI

Note: The high-level qualifier names (VSPASCAL.VSPV1R2) might be different at
your installation.

These libraries must be linked into a VS Pascal object module in order to resolve
all external references properly. If the PASCMOD CLiST is used, these libraries
are included automatically.

Example of Building a Load Module: In this example, a load module is created
from a compiled VS Pascal program consisting of three object modules. The
conditions are:

• The user-identification is ABC.
• The data sets containing the three object modules are:

ABC.SORT.OBJ
ABC. SEGl. OBJ
ABC.SEG2.0BJ

• The resulting load module is stored as a member named SORT in a data set
named ABC.PROGS.LOAD.

You enter:

PASCMOD * LOAD(PROGS(SORT» OBJECT('SORT,SEGl,SEG2')

The system prompts you with:

ENTER CONTROL CARDS

You respond with:

ENTRY VSPASCAL

The system responds with the READY message.

For Programs to be Executed with the DEBUG Option: If you are using the
Interactive Debugging Tool, then you must include the debugging library containing
the debugging modules. The name of this library is:

VSPASCAL.VSPVIR2.SAMPDBGI

Note: The high-level qualifier names (VSPASCAL.VSPV1 R2) might be different at
your installation.

This library must be specified before the run-time library. If the PASCMOD CLiST
is used, this library is included if the option DEBUG is specified.

If more than one object module is linked together, you must specify an entry pOint
by means of a linkage editor control statement. The name of the entry point for any
VS Pascal program is VSPASCAL.

For Programs to be Executed Under Transient Run-Time: Any program that you
intend to run with the transient run-time option must be link-edited using the
TRANLIB option.

Chapter 2. How to Run a Program under MVS/TSO 17

For example, to link-edit the program TEST PASCAL for transient run-time
execution, use:

PASCMOD * OBJECT('TEST') TRANLIB

The default is NOTRANLlB, which statically link-edits the load module for standard
execution.

Combining Release 1 and Release 2 Code
When combining units compiled with VS Pascal Release 1 and VS Pascal Release
2, you must link-edit the modules with the VS Pascal Release 2 libraries.

Because some debugger tables have been changed to allow larger programs to be
debugged, units compiled with DEBUG under Release 1 must be recompiled using
Release 2.

Step 3: How to Define Files
Before you invoke the generated load module, you must define the files that your
program requires. You do this with the TSO command ALLOCATE (or ALLOC). For
more information on the ALLOCATE command, see the appropriate TSO manual
(see "TSO" on page 295).

The ddname to be associated with a particular file variable in your program is
normally the name of the variable itself, truncated to eight characters.

For example, the ddnames for the variables declared within the VS Pascal
declaration in Figure 7 are SYSIN, SYSPRINT, and OUTPUTFI, respectively.
Figure 7 also shows the ALLOC commands required for each of the three file
variables, along with INPUT and OUTPUT.

File Declarations As They Appear in a VS Pascal Program:

VAR
SYSIN,
SYSPRINT
OUTPUTFILE

TEXT;
FILE OF INTEGER;

ALLOC Commands Required for Those Declarations:

ATTR F80 LRECL(80) BLKSIZE(80) RECFM(F)
ALLOC DDNAME(SYSIN) DSNAME(INPUT.DATA) SHR
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(OUTPUTFI) DSNAME(OUTPUT.DATA) NEW SPACE(100) BLOCK(3120)
ALLOC DDNAME(OUTPUT) DSNAME(*) USING(F80)
ALLOC DDNAME(INPUT) DSNAME(*) USING(F80)

Figure 7. Sample File Declarations and Complementary TSO ALLOC Commands

For files that need to be opened for output, the LRECL, BLKSIZE, or RECFM are
assigned default values if not specified via the ATTR command. For a description
of the defaults, see "Data Set DCB Attributes" on page 46.

18 vs Pascal Application Programming Guide

For example, to link-edit the program TEST PASCAL for transient run-time
execution, use:

PASCMOD * OBJECT('TEST') TRANLIB

The default is NOTRANLlB, which statically link-edits the load module for standard
execution.

Combining Release 1 and Release 2 Code
When combining units compiled with VS Pascal Release 1 and VS Pascal Release
2, you must link-edit the modules with the VS Pascal Release 2 libraries.

Because some debugger tables have been changed to allow larger programs to be
debugged, units compiled with DEBUG under Release 1 must be recompiled using
Release 2.

Step 3: How to Define Files
Before you invoke the generated load module, you must define the files that your
program requires. You do this with the TSO command ALLOCATE (or ALLOC). For
more information on the ALLOCATE command, see the appropriate TSO manual
(see "TSO" on page 295).

The ddname to be associated with a particular file variable in your program is
normally the name of the variable itself, truncated to eight characters.

For example, the ddnames for the variables declared within the VS Pascal
declaration in Figure 7 are SYSIN, SYSPRINT, and OUTPUTFI, respectively.
Figure 7 also shows the ALLOC commands required for each of the three file
variables, along with INPUT and OUTPUT.

File Declarations As They Appear In a VS Pascal Program:

VAR
SYSIN,
SYSPRINT
OUTPUTFILE

TEXT;
FILE OF INTEGER;

ALLOC Commands Required for Those Declarations:

ATTR F80 LRECL(80) BLKSIZE(80) RECFM(F)
ALLOC DDNAME(SYSIN) DSNAME(INPUT.DATA) SHR
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(OUTPUTFI) DSNAME(OUTPUT.DATA) NEW SPACE(100) BLOCK(3120)
ALLOC DDNAME(OUTPUT) DSNAME(*) USING(F80)
ALLOC DDNAME(INPUT) DSNAME(*) USING(F80)

Figure 7. Sample File Declarations and Complementary TSO ALLOC Commands

For files that need to be opened for output. the LRECL, BLKSIZE, or RECFM are
assigned default values if not specified via the ATTR command. For a description
of the defaults, see "Data Set DCB Attributes" on page 46.

18 vs Pascal Application Programming Guide

'-." Step 4: How to Invoke the Load Module
After creating the module and defining the files, you are ready to execute the
program. You do this through the TSO CALL command (see "CALL Command" on
page 136).

If your program expects to read a parameter list via the PARMS function, the list
must follow the module name:

CALL modname 'parameters'

Where Represents

modname The name of the load module.

parameters The parameters (if any) being passed.

If you are using MVS/XA, you must include PASRTLIB in the STEPLIB for your TSO
session before issuing the CALL command.

Run-time options are also passed as a parameter list. To distinguish run-time
options being passed to the VS Pascal environment from parameters that your
program reads (via the PARMS function), you must end the run-time parameter list
with a slash. The program parameters, if any, must follow the slash as shown
below.

CALL modname 'runtimeparameters / parameters'

If you are specifying the LANGUAGE run-time option, you must include
VSPASCAL.VSPV1R2.SAMPMSG1 in your STEPLIB prior to running the program.

For a description of run-time options, see Chapter 14, "Run-Time Options" on
page 167.

Transient Run-Time Considerations
Before invoking a program that was link-edited with the TRANLIB option, you must
make sure that the run-time libraries referenced in the program have been
identified.

Your logon procedures must reference the run-time load libraries in the STEPLIB
DO card.

Chapter 2. How to Run a Program under MVS/TSO 19

Step 4: How to Invoke the Load Module
After creating the module and defining the files, you are ready to execute the
program. You do this through the TSO CALL command (see "CALL Command" on
page 136).

If your program expects to read a parameter list via the PARMS function, the list
must follow the module name:

CALL modname 'parameters'

Where Represents

modname The name of the load module.

parameters The parameters (if any) being passed.

If you are using MVS/XA, you must include PASRTLIB in the STEPLIB for your TSO
session before issuing the CALL command.

Run-time options are also passed as a parameter list. To distinguish run-time
options being passed to the VS Pascal environment from parameters that your
program reads (via the PARMS function), you must end the run-time parameter list
with a slash. The program parameters, if any, must follow the slash as shown
below.

CALL modname 'runtimeparameters / parameters'

If you are specifying the LANGUAGE run-time option, you must include
VSPASCAL.VSPV1R2.SAMPMSG1 in your STEPLIB prior to running the program.

For a description of run-time options, see Chapter 14, "Run-Time Options" on
page 167.

Transient Run-Time Considerations
Before invoking a program that was link-edited with the TRANLIB option, you must
make sure that the run-time libraries referenced in the program have been
identified.

Your logon procedures must reference the run-time load libraries in the STEPLIB
DD card.

Chapter 2. How to Run a Program under MVS/TSO 19

Sample TSO Session: Compiling, Link-Editing, and Running a
Program

Figure 8 shows how to compile, link-edit, and execute an existing source module.
The commands you enter from the terminal are preceded with =>.

READY

=> VSPASCAL LANDER SYSPRINT(A) LIST

INVOKING VS PASCAL RELEASE 2.0
STARTING LANGUAGE ANALYSIS PASS ••.
STARTING OPTIMIZATION PASS ••.
STARTING CODE GENERATION PASS •••
NO COMPILER DETECTED ERRORS

SOURCE LINES: 47; COMPILE TIME: 0.19 SECONDS; COMPILE RATE: 15032

READY

=> PASCMOD LANDER LOAD(PROGRAMS(LANDER))
READY

=> ALLOC DDNAME(INPUT) DSNAME(*)
READY

=> ALLOC DDNAME(OUTPUT) DSNAME(*)
READY

=> CALL PROGRAMS(LANDER) 'PARMS GO HERE'

Figure 8. Compiling, Link-Editing, and Executing a Program under MVS

20 vs Pascal Application Programming Guide

J Sample TSO Session: Compiling, Link-Editing, and Running a
Program

Figure 8 shows how to compile, link-edit, and execute an existing source module.
The commands you enter from the terminal are preceded with =>.

READY

=> VSPASCAL LANDER SYSPRINT(A) LIST

INVOKING VS PASCAL RELEASE 2.8
STARTING LANGUAGE ANALYSIS PASS ••.
STARTING OPTIMIZATION PASS ...
STARTING CODE GENERATION PASS ...
NO COMPILER DETECTED ERRORS

SOURCE LINES: 47; COMPILE TIME: 8.19 SECONDS; COMPILE RATE: 15832

READY

=> PASCMOD LANDER LOAD(PROGRAMS(LANDER))
READY

=> ALLOC DDNAME(INPUT) DSNAME(*)
READY

=> ALLOC DDNAME(OUTPUT) DSNAME(*)
READY

=> CALL PROGRAMS(LANDER) 'PARMS GO HERE'

Figure 8. Compiling, Link-Editing, and Executing a Program under MVS

20 vs Pascal Application Programming Guide

31-Bit Addressing Mode
Programs compiled by VS Pascal can execute in the 31-bit addressing mode of the
MVS/XA and MVS/ESA operating systems. With 31-bit addressing, you have more
freedom to define or reference larger data areas, files, and tables, and to create a
larger overall program. Your program and its data are no longer constrained to fit
in a 16-megabyte address space. However, no single record or array can be
greater than 16 megabytes.

Modules that are link-edited together must also reside in the same address space
(either above or below the 16-megabyte address line).

To take advantage of 31-bit addressing, you must either:

• Link-edit your program using the XA option in the PASCMOD CLiST

• Use the AMODE and RMODE options when link-editing your program with the
linkage editor.

Every program that executes in MVS/XA or MVS/ESA is assigned two attributes:
AMODE (addressing mode) and RMODE (residence mode). AMODE is the attribute
of an entry point into a load module that specifies the addressing mode in effect
when the load module is entered at run-time. RMODE is the attribute of a load
module that specifies the residence mode of a load module when it is loaded into
virtual storage for execution.

Valid AMODE and RMODE specifications are shown in Figure 9.

Attribute

AMODE=24

AMODE=31

AMODE=ANY

RMODE=24

RMODE=ANY

Meaning

24-bit addressing mode

31-bit addressing mode

Either 24-bit or 31-bit addressing mode

The module must reside in virtual storage below 16 megabytes.
Use RMODE = 24 for 31-bit programs that have 24-bit
dependencies.

Indicates that the module can reside anywhere in storage.

Figure 9. AMODE and RMODE Specifications

For more information on AMODE and RMODE, see MVSIExtended Architecture
Linkage Editor and Loader User's Guide.

Chapter 2. How to Run a Program under MVS/TSO 21

31-Bit Addressing Mode
Programs compiled by VS Pascal can execute in the 31-bit addressing mode of the
MVS/XA and MVS/ESA operating systems. With 31-bit addressing, you have more
freedom to define or reference larger data areas, files, and tables, and to create a
larger overall program. Your program and its data are no longer constrained to fit
in a 16-megabyte address space. However, no single record or array can be
greater than 16 megabytes.

Modules that are link-edited together must also reside in the same address space
(either above or below the 16-megabyte address line).

To take advantage of 31-bit addressing, you must either:

• Link-edit your program using the XA option in the PASCMOD CLiST

• Use the AMODE and RMODE options when link-editing your program with the
linkage editor.

Every program that executes in MVS/XA or MVS/ESA is assigned two attributes:
AMODE (addressing mode) and RMODE (residence mode). AMODE is the attribute
of an entry point into a load module that specifies the addressing mode in effect
when the load module is entered at run-time. RMODE is the attribute of a load
module that specifies the residence mode of a load module when it is loaded into
virtual storage for execution.

Valid AM ODE and RMODE specifications are shown in Figure 9.

Attribute

AMODE=24

AMODE=31

AMODE=ANY

RMODE=24

RMODE=ANY

Meaning

24-bit addressing mode

31-bit addressing mode

Either 24-bit or 31-bit addressing mode

The module must reside in virtual storage below 16 megabytes.
Use RMODE = 24 for 31-bit programs that have 24-bit
dependencies.

Indicates that the module can reside anywhere in storage.

Figure 9. AM ODE and RMODE Specifications

For more information on AMODE and RMODE, see MVSIExtended Architecture
Linkage Editor and Loader User's Guide.

Chapter 2. How to Run a Program under MVS/TSO 21

Sample TSO Session to Invoke 31-Bit Addressing Mode
Figure 10 shows how to compile an existing source module, link-edit, and execute
in 31-bit addressing mode. The commands you enter from the terminal are
preceded with =>.

READY

=> VSPASCAL LANDER SYSPRINT(A) LIST

INVOKING VS PASCAL RELEASE 2.0
STARTING LANGUAGE ANALYSIS PASS •..
STARTING OPTIMIZATION PASS •..
STARTING CODE GENERATION PASS .•.
NO COMPILER DETECTED ERRORS

SOURCE LINES: 47; COMPILE TIME: 0.19 SECONDS; COMPILE RATE: 15032

READY

=> PASCMOD LANDER LOAD(PROGRAMS(LANDER» XA
READY

=> ALLOC DDNAME(INPUT) DSNAME(*)
READY

=> ALLOC DDNAME(OUTPUT) DSNAME(*)
READY

=> CALL PROGRAMS(LANDER) 'PARMS GO HERE'

Figure 10. Compiling, Link-Editing, and Running a Program under MVS/XA

22 vs Pascal Application Programming Guide

",]\;~

.J

Sample TSO Session to Invoke 31-Bit Addressing Mode
Figure 10 shows how to compile an existing source module, link-edit, and execute
in 31-bit addressing mode. The commands you enter from the terminal are
preceded with =>.

READY

=> VSPASCAL LANDER SYSPRINT(A) LIST

INVOKING VS PASCAL RELEASE 2.0
STARTING LANGUAGE ANALYSIS PASS ...
STARTING OPTIMIZATION PASS ...
STARTING CODE GENERATION PASS ..•
NO COMPILER DETECTED ERRORS

SOURCE LINES: 47; COMPILE TIME: 0.19 SECONDS; COMPILE RATE: 15032

READY

=> PASCMOD LANDER LOAD(PROGRAMS(LANDER)) XA
READY

=> ALLOC DDNAME(INPUT) DSNAME(*)
READY

=> ALLOC DDNAME(OUTPUT) DSNAME(*)
READY

=> CALL PROGRAMS(LANDER) 'PARMS GO HERE'

Figure 10. Compiling, Link-Editing, and Running a Program under MVS/XA

22 vs Pascal Application Programming Guide

Chapter 3. How to Run a Program in an MVS Batch
Environment

This chapter describes how to compile and execute VS Pascal programs in an MVS
batch environment using the IBM-supplied cataloged procedures. If you are not
using VS Pascal under MVS batch mode, you can skip this chapter.

VS Pascal requires a minimum region size of 512K to compile a program under
MVS. A compiled and link-edited program can execute in a 448K region.

Job Control Language
Job control language (JCL) is the means by which you define your jobs and job
steps to the operating system. You use JCL to describe the work you want the
operating system to do, and to specify the input/output facilities you require.

The JCL statements essential to run a VS Pascal job are:

• JOB statement, which identifies the start of the job.

• EXEC statement, which identifies a job step and the program to be executed,
either directly or by means of a cataloged procedure.

• DO (data definition) statement, which defines the input/output facilities required
by the program executed in the job step.

• /* (delimiter) statement, which separates data in the input stream from the job
control statements that follow this data.

A list of publications describing JCL is given in the "Bibliography" on page 295.

Compiling a Program that Uses the % INCLUDE Compiler Directive
The %INCLUDE directive in a source program identifies a member from a
partitioned data set and directs the compiler to search for that member. When
found, that data set member becomes the input stream for the compiler. After the
compiler reads the entire member, it returns to the previous input stream, at the
point immediately after the %INCLUDE directive.

At compile time, you must use the SYSLIB DO statement in procedure step PASC to
tell the compiler which data sets it must search for members named by a
%INCLUDE. Remember, also, that those data sets must be identified to the
operating system (using standard JCL) before the program can be compiled.

The order in which data sets are identified using the SYSLIB DO statement can
affect program results. To understand why, remember that the %INCLUDE
directive can identify a data set member in one of two ways:

• By naming both the data set and the member. In this case, the compiler
searches only the data set named.

Chapter 3. How to Run a Program in an MVS Batch Environment 23

Chapter 3. How to Run a Program in an MVS Batch
Environment

This chapter describes how to compile and execute VS Pascal programs in an MVS
batch environment using the IBM-supplied cataloged procedures. If you are not
using VS Pascal under MVS batch mode, you can skip this chapter.

VS Pascal requires a minimum region size of 512K to compile a program under
MVS. A compiled and link-edited program can execute in a 448K region.

Job Control Language
Job control language (JCL) is the means by which you define your jobs and job
steps to the operating system. You use JCL to describe the work you want the
operating system to do, and to specify the input/output facilities you require.

The JCL statements essential to run a VS Pascal job are:

• JOB statement, which identifies the start of the job.

• EXEC statement, which identifies a job step and the program to be executed,
either directly or by means of a cataloged procedure.

• DO (data definition) statement, which defines the input/output facilities required
by the program executed in the job step.

• /* (delimiter) statement, which separates data in the input stream from the job
control statements that follow this data.

A list of publications describing JCL is given in the "Bibliography" on page 295.

Compiling a Program that Uses the % INCLUDE Compiler Directive
The %INCLUDE directive in a source program identifies a member from a
partitioned data set and directs the compiler to search for that member. When
found, that data set member becomes the input stream for the compiler. After the
compiler reads the entire member, it returns to the previous input stream, at the
point immediately after the %INCLUDE directive.

At compile time, you must use the SYSLIB DO statement in procedure step PASC to
tell the compiler which data sets it must search for members named by a
%INCLUDE. Remember, also, that those data sets must be identified to the
operating system (using standard JCL) before the program can be compiled.

The order in which data sets are identified using the SYSLIB DO statement can
affect program results. To understand why, remember that the %INCLUDE
directive can identify a data set member in one of two ways:

• By naming both the data set and the member. In this case, the compiler
searches only the data set named.

Chapter 3. How to Run a Program in an MVS Batch Environment 23

• By naming only the member. In this case, the compiler searches the default
library, SYSLlB, which contains all the data sets in the order that you listed \
them with the SYSLIB DO statement. When a %INClUDE identifies a member,
name that exists in two or more data sets, the compiler uses the first so-named
member that it encounters.

As an example, suppose you use SYSLIB to list, in order, LlB1, LlB2, and LlB3.
Both LlB2 and LlB3 contain a member named CONSTANTS. When the compiler
encounters a %INClUDE CONSTANTS (without an accompanying data set name),
it first searches LlB1. Not finding CONSTANTS in LlB1, it goes to LlB2, where it
finds and uses CONSTANTS. If the program must use "constants" from LlB3
instead, you must either (1) change the %INClUDE directive in the source to
specify both the data set name and member name or (2) list LlB3 before LlB2 with
the SYSLIB DO statement.

You can specify an include library with the INClLlB parameter of the cataloged
procedures. You can also override the SYSLIB DO statement by specifying a DO
statement with the name PASC.SYSLIB. Here is an example.

IIJOBNAME JOB
II EXEC PASCCG
IIPASC.SYSLIB DD DSN= ... ,DISP=SHR
IIPASC.SYSIN DD *

11*

Passing Compile-Time Options
Compile-time options (see Chapter 13, "Compile-Time Options" on page 155) are
parameters passed to the compiler specifying whether or not a particular feature is
to be active. You can specify a list of compile-time options with the PARM
parameter of the EXEC statement.

For example, to compile a program with the Interactive Debugging Tool enabled
(DEBUG) and without a cross-reference table (NOXREF), issue the following
command:

II EXEC PASCC,PARM='DEBUG,NOXREF'

The Compiler Listing
The compiler generates a listing of the source program with such information as
the lexical nesting structure of the program and cross-reference tables. The
compiler listing is written to the data set specified by the SYSPRINT DO statement.
For a detailed description of the information in the source listing, see
Chapter 4, "How to Read VS Pascal Listings" on page 33.

Cross-System Compilation
You can compile a VS Pascal program under MVS and link-edit and run the object
module under VM.

24 vs Pascal Application Programming Guide

• By naming only the member. In this case, the compiler searches the default
library, SYSLlB, which contains all the data sets in the order that you listed
them with the SYSLIB DO statement. When a %INClUDE identifies a member
name that exists in two or more data sets, the compiler uses the first so-named
member that it encounters.

As an example, suppose you use SYSLIB to list, in order, LlB1, LlB2, and LlB3.
Both LlB2 and LlB3 contain a member named CONSTANTS. When the compiler
encounters a %INClUDE CONSTANTS (without an accompanying data set name),
it first searches LlB1. Not finding CONSTANTS in LlB1, it goes to LlB2, where it
finds and uses CONSTANTS. If the program must use "constants" from LlB3
instead, you must either (1) change the %INClUDE directive in the source to
specify both the data set name and member name or (2) list LlB3 before LlB2 with
the SYSLIB DO statement.

You can specify an include library with the INClLlB parameter of the cataloged
procedures. You can also override the SYSLIB DO statement by specifying a DO
statement with the name PASC.SYSLIB. Here is an example.

IIJOBNAME JOB
II EXEC PASCCG
IIPASC.SYSLIB DD DSN= ...• DISP=SHR
IIPASC.SYSIN DD *

11*

Passing Compile-Time Options
Compile-time options (see Chapter 13, "Compile-Time Options" on page 155) are
parameters passed to the compiler specifying whether or not a particular feature is
to be active. You can specify a list of compile-time options with the PARM
parameter of the EXEC statement.

For example, to compile a program with the Interactive Debugging Tool enabled
(DEBUG) and without a cross-reference table (NOXREF), issue the following
command:

II EXEC PASCC.PARM='DEBUG.NOXREF'

The Compiler Listing
The compiler generates a listing of the source program with such information as
the lexical nesting structure of the program and cross-reference tables. The
compiler listing is written to the data set specified by the SYSPRINT DO statement.
For a detailed description of the information in the source listing, see
Chapter 4, "How to Read VS Pascal Listings" on page 33.

Cross-System Compilation
You can compile a VS Pascal program under MVS and link-edit and run the object
module under VM.

24 vs Pascal Application Programming Guide

~

Using Cataloged Procedures
A regularly used set of job control statements can be prepared once, given a
name, stored in a system library, and the name entered in the catalog for that
library. Such a set of statements is called a cataloged procedure. A cataloged
procedure comprises one or more job steps (though it is not a job, because it must
not contain a JOB statement). A cataloged procedure is included in a job by
specifying its name in an EXEC statement instead of the name of a program.

Using cataloged procedures saves time and reduces errors in coding frequently
used sets of job control statements. If the statements in a cataloged procedure do
not match your requirements exactly, you can easily modify them or add new
statements for the duration of a job.

IBM supplies several cataloged procedures for use with the VS Pascal compiler. In
most cases, you will use one of these procedures to run a VS Pascal job.

IBM recommends that you review these procedures and modify them to make the
most efficient use of your resources and to tailor them to your operating
procedures.

The IBM-supplied cataloged procedures are:

PASCC
PASCL
PASCG
PASCCL
PASCLG
PASCCG
PASCCLG

Compile only (step name: PASC)
Link-edit only (step name: LKED)
Run only (step name: GO)
Compile and link-edit (step names: PASC, LKED)
Link-edit and run (step names: LKED, GO)
Compile, load, and run (step names: PASC, GO)
Compile, link-edit, and run (step names: PASC, LKED, GO)

See Chapter 12, "MVS Batch Cataloged Procedures" on page 137 for a listing of
each procedure.

These cataloged procedures do not include a DD statement for the source
program; you must always provide one. The ddname of the input data set is
SYSIN; the procedure step name that reads the input data set is PASCo For
example, here are the JCL statements that you might use to compile, link-edit, and
execute a VS Pascal program:

//JOBNAME
//STEPl
//PASC.SYSIN

JOB
EXEC PASCCLG
DO *

(Insert VS Pascal program to be compiled here.)

/*

The compiler listings and diagnostics are directed to the device or data set
associated with the ddname SYSPRINT. Each cataloged procedure routes ddname
SYSPRINT to the output class where the system messages are produced
(SYSOUT = *).

The object module produced from a compilation is normally placed in a temporary
data set and erased at the end of the job. If you wish to save it in a cataloged data

Chapter 3. How to Run a Program in an MVS Batch Environment 25

Using Cataloged Procedures
A regularly used set of job control statements can be prepared once, given a
name, stored in a system library, and the name entered in the catalog for that
library. Such a set of statements is called a cataloged procedure. A cataloged
procedure comprises one or more job steps (though it is not a job, because it must
not contain a JOB statement). A cataloged procedure is included in a job by
specifying its name in an EXEC statement instead of the name of a program.

Using cataloged procedures saves time and reduces errors in coding frequently
used sets of job control statements. If the statements in a cataloged procedure do
not match your requirements exactly, you can easily modify them or add new
statements for the duration of a job.

IBM supplies several cataloged procedures for use with the VS Pascal compiler. In
most cases, you will use one of these procedures to run a VS Pascal job.

IBM recommends that you review these procedures and modify them to make the
most efficient use of your resources and to tailor them to your operating
procedures.

The IBM-supplied cataloged procedures are:

PASCC
PASCl
PASCG
PASCCl
PASClG
PASCCG
PASCClG

Compile only (step name: PASC)
Link-edit only (step name: LKED)
Run only (step name: GO)
Compile and link-edit (step names: PASC, LKED)
Link-edit and run (step names: LKED, GO)
Compile, load, and run (step names: PASC, GO)
Compile, link-edit, and run (step names: PASC, LKED, GO)

See Chapter 12, "MVS Batch Cataloged Procedures" on page 137 for a listing of
each procedure.

These cataloged procedures do not include a DO statement for the source
program; you must always provide one. The ddname of the input data set is
SYSIN; the procedure step name that reads the input data set is PASCo For
example, here are the JCL statements that you might use to compile, link-edit, and
execute a VS Pascal program:

IIJOBNAME
IISTEPl
IIPASC.SYSIN

JOB
EXEC PASCCLG
DD *

(Insert VS Pascal program to be compiled here.)

1*

The compiler listings and diagnostics are directed to the device or data set
associated with the ddname SYSPRINT. Each cataloged procedure routes ddname
SYSPRINT to the output class where the system messages are produced
(SYSOUT= *).

The object module produced from a compilation is normally placed in a temporary
data set and erased at the end of the job. If you wish to save it in a cataloged data

Chapter 3. How to Run a Program in an MVS Batch Environment 25

set or punch it to another data set, you must override the ddname SYSLIN in
procedure step PASCo

For example, to compile a program stored in data set T123.S0RT.PASCAl and
store the resulting object module in a data set named T123.S0RT.OBJ, use the
following JCL:

//JOBNAME JOB
I/STEPI EXEC PASCC
IIPASC.SYSIN DD DSN=T123.S0RT.PASCAL,
II DISP=SHR
I/PASC.SYSLIN DD DSN=T123.S0RT.OBJ,
II UNIT=TSOPACK,
1/ DISP=(NEW,CATLG)

Combining Release 1 and Release 2 Code
When combining units compiled with VS Pascal Release 1 and VS Pascal Release
2, you must link-edit the modules with the VS Pascal Release 2 libraries.

Because some debugger tables have been changed to allow larger programs to be
debugged, units compiled with DEBUG under Release 1 must be recompiled using
Release 2.

How to Compile a Program Using PASCC
The PASCC cataloged procedure ("PASCC Procedure" on page 139) compiles one
VS Pascal source module and produces an object module. It consists of one step,
PASCo

Step PASC reads in the source module, diagnoses errors, produces a listing, and
generates an object module to the data set associated with ddname SYSLIN.

The DO statement for the object module defines a temporary data set named
&&lOADSET. PASC specifies the term MOD in the DISP parameter, and as a
result, if you invoke the procedure PASCC several times in succession for different
source modules, &&lOADSET will contain a concatenation of object modules. The
linkage editor and loader will accept such a data set as input.

How to Link-Edit a Program Using PASCL
The PASCl cataloged procedure ("PASCl Procedure" on page 141) link-edits a VS
Pascal source module and produces a load module. It consists of one step, lKED.

The DO statement with the name SYSLIB within this step specifies the library, or
libraries, from which the linkage editor obtains appropriate modules for inclusion
in the load module. The linkage editor always places the load modules it creates
in the standard data set defined by the SYSlMOD DO statement. This statement in
the cataloged procedure specifies a new temporary library,&&GOSET.

How to Run a Program Using PASCG
The PASCG cataloged procedure ("PASCG Procedure" on page 143) runs a VS
Pascal program. It consists of one step, named GO.

Use this procedure when you already have a load module.

26 vs Pascal Application Programming Guide

set or punch it to another data set, you must override the ddname SYSLIN in
procedure step PASCo

For example, to compile a program stored in data set T123.S0RT.PASCAL and
store the resulting object module in a data set named T123.S0RT.OBJ, use the
following JCL:

IIJOBNAME JOB
IISTEPI EXEC PASCC
IIPASC.SYSIN DD DSN=T123.S0RT.PASCAL,
II DISP=SHR
IIPASC.SYSLIN DD DSN=T123.S0RT.OBJ,
II UNIT=TSOPACK,
II DISP=(NEW,CATLG)

Combining Release 1 and Release 2 Code
When combining units compiled with VS Pascal Release 1 and VS Pascal Release
2, you must link-edit the modules with the VS Pascal Release 2 libraries.

Because some debugger tables have been changed to allow larger programs to be
debugged, units compiled with DEBUG under Release 1 must be recompiled using
Release 2.

How to Compile a Program Using PASCC
The PASCC cataloged procedure (UPASCC Procedure" on page 139) compiles one
VS Pascal source module and produces an object module. It consists of one step,
PASCo

Step PASC reads in the source module, diagnoses errors, produces a listing, and
generates an object module to the data set associated with ddname SYSLIN.

The DD statement for the object module defines a temporary data set named
&&LOADSET. PASC specifies the term MOD in the DISP parameter, and as a
result, if you invoke the procedure PASCC several times in succession for different
source modules, &&LOADSET will contain a concatenation of object modules. The
linkage editor and loader will accept such a data set as input.

How to Link-Edit a Program Using PASCL
The PASCL cataloged procedure (UPASCL Procedure" on page 141) link-edits a VS
Pascal source module and produces a load module. It consists of one step, LKED.

The DD statement with the name SYSLIB within this step specifies the library, or
libraries, from which the linkage editor obtains appropriate modules for inclusion
in the load module. The linkage editor always places the load modules it creates
in the standard data set defined by the SYSLMOD DD statement. This statement in
the cataloged procedure specifies a new temporary library, &&GOSET.

How to Run a Program Using PASCG
The PASCG cataloged procedure (UPASCG Procedure" on page 143) runs a VS
Pascal program. It consists of one step, named GO.

Use this procedure when you already have a load module.

26 vs Pascal Application Programming Guide

How to Compile and Link-Edit a Program Using PASCCL
The PASCCL cataloged procedure ("PASCCL Procedure" on page 144) compiles a
VS Pascal source module to produce an object module and then link-edits the
object module to produce a load module.

The linkage editor step is named LKED. The DO statement with the name SYSLIB
within this step specifies the library, or libraries, from which the linkage editor
obtains appropriate modules for inclusion in the load module. The linkage editor
always places the load modules it creates in the standard data set defined by the
SYSLMOD DO statement. This statement in the cataloged procedure specifies a
new temporary library, &&GOSET. The load module is placed in &&GOSET and
given the member name GO.

Placing the load module in a temporary library defined by the SYSLMOD DO
statement assumes that you will execute the load module in the same job. If you
want to retain the module, you must substitute your own statement for the
SYSLMOD DO statement.

When linking multiple modules, you must supply an entry pOint. The name of the
entry point can be either the name of your main program or the name VSPASCAL.
To define an entry point, you must specify a linkage editor ENTRY control card for
the linkage editor to process. You can do this with a DO statement named SYSIN
for step LKED, which references instream data:

IILKED.SYSIN DO *
ENTRY VSPASCAL

1*

Multiple invocations of the PASCC cataloged procedure concatenate object
modules. This permits you to compile and link-edit several modules conveniently
in one job.

The JCL shown in Figure 11 compiles three source modules and then link-edits
them to produce a single load module. Within the example, each source module is
a member of a partitioned data set named DOE.PASCAL.SRCLlB1.

The member names are MAIN, SEG1, and SEG2. The resulting load module is
placed in a preallocated library named DOE.PROGRAMS.LOAD as a member
named MAIN.

IIJOBNAME JOB (DOE),'JOHN DOE'
IISTEPl EXEC PASCC
IIPASC.SYSIN DO DSN=DOE.PASCAL.SRCLIBl(MAIN),DISP=SHR
//STEP2 EXEC PASCC
//PASC.SYSIN DO DSN=DOE.PASCAL.SRCLIBl(SEGl),DISP=SHR
//STEP3 EXEC PASCCL
//PASC.SYSIN DO DSN=DOE.PASCAL.SRCLIBl(SEG2),DISP=SHR
//LKED.SYSLMOD DO DSN=DOE.PROGRAMS.LOAD(MAIN),DISP=OLD
//LKED.SYSIN DO *

ENTRY VSPASCAL
/*

Figure 11. Sample JCL to Perform Multiple Compiles and a Link-Edit

Chapter 3. How to Run a Program in an MVS Batch Environment 27

How to Compile and Link-Edit a Program Using PASCCL
The PASCCL cataloged procedure ("PASCCL Procedure" on page 144) compiles a
VS Pascal source module to produce an object module and then link-edits the
object module to produce a load module.

The linkage editor step is named LKED. The DO statement with the name SYSLIB
within this step speci'fies the library, or libraries, from which the linkage editor
obtains appropriate modules for inclusion in the load module. The linkage editor
always places the load modules it creates in the standard data set defined by the
SYSLMOD DO statement. This statement in the cataloged procedure specifies a
new temporary library, &&GOSET. The load module is placed in &&GOSET and
given the member name GO.

Placing the load module in a temporary library defined by the SYSLMOD DO
statement assumes that you will execute the load module in the same job. If you
want to retain the module, you must substitute your own statement for the
SYSLMOD DO statement.

When linking multiple modules, you must supply an entry point. The name of the
entry point can be either the name of your main program or the name VSPASCAL.
To define an entry point, you must specify a linkage editor ENTRY control card for
the linkage editor to process. You can do this with a DO statement named SYSIN
for step LKED, which references instream data:

//LKED.SYSIN DD *
ENTRY VSPASCAL

1*

Multiple invocations of the PASCC cataloged procedure concatenate object
modules. This permits you to compile and link-edit several modules conveniently
in one job.

The JCL shown in Figure 11 compiles three source modules and then link-edits
them to produce a single load module. Within the example, each source module is
a member of a partitioned data set named DOE.PASCAL.SRCLlB1.

The member names are MAIN, SEG1, and SEG2. The resulting load module is
placed in a preallocated library named DOE. PROGRAMS. LOAD as a member
named MAIN.

//JOBNAME JOB (DOE),'JOHN DOE'
//STEPI EXEC PASCC
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIBl(MAIN),DISP=SHR
//STEP2 EXEC PASCC
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIBl(SEGl),DISP=SHR
//STEP3 EXEC PASCCL
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIBl(SEG2),DISP=SHR
//LKED.SYSLMOD DD DSN=DOE.PROGRAMS.LOAD(MAIN),DISP=OLD
//LKED.SYSIN DD *

ENTRY VSPASCAL
1*

Figure 11. Sample JCL to Perform Multiple Compiles and a Link-Edit

Chapter 3. How to Run a Program in an MVS Batch Environment 27

How to Link-Edit and Run a Program Using PASCLG
The PASCLG cataloged procedure (HPASCLG Procedure" on page 147) invokes the . '\
linkage editor to form a load module and then executes the load module. You can .."
use this procedure when you already have an object module produced by the VS
Pascal compiler. This is especially useful if you have access only to the VS Pascal
library and not to the VS Pascal compiler.

How to Compile, Load, and Run a Program Using PASCCG
The PASCCG cataloged procedure (HPASCCG Procedure" on page 149) compiles a
VS Pascal source module to produce an object module. In the second step (named
GO), the loader processes the object module produced by the compiler and
immediately runs the resulting executable program.

The DO statement labeled SYSLIB in step GO describes the libraries from which
external references are to be resolved. If you have a library of your own from
which you want external references to be resolved, pass its name in the LKLBDSN
operand.

Object modules from previous compilations can also be included in the loader's
input stream by concatenating them in the SYSLIN DD statement.

As an example, a program in a data set named DOE.SEARCH.PASCAL must be
compiled and loaded with an object module named DOE.SORT.OBJ. In addition,
several external routines are called from within the program which reside in a
library named DOE.MISC.OBJLlB. The following JCL statements would compile
the program and execute it.

IIDOE JOB
IISTEPI EXEC PASCCG,
/1 LKLBDSN='DOE.MISC.OBJLIB'
IIPASC.SYSIN DD DSN=DOE.SEARCH.PASCAL,
II DISP=SHR
IIGO.SYSLIN DD
II DD DSN=DOE.SORT.OBJ,
II DISP=SHR

How to Compile, Link-Edit, and Run a Program Using PASCCLG
The PASCCLG cataloged procedure (HPASCCLG Procedure" on page 152)
compiles a source module to form an object module, invokes the linkage editor to
form a load module, and then executes the load module.

The first two steps of this procedure are identical to those of the PASCCL
procedure. An additional third step (named GO) executes your program.

How to Modify the Cataloged Procedures for the DEBUG and TRANLIB
Options

You can modify the IBM-supplied cataloged procedures for use with the VS Pascal
Interactive Debugging Tool and the transient run-time library.

To modify the procedures, you delete the asterisk (*) from the //* in the appropriate
statements for the configuration you want to use.

28 vs Pascal Application Programming Guide

--- ~ ~-------

How to Link-Edit and Run a Program Using PASCLG
The PASCLG cataloged procedure ("PASCLG Procedure" on page 147) invokes the
linkage editor to form a load module and then executes the load module. You can
use this procedure when you already have an object module produced by the VS
Pascal compiler. This is especially useful if you have access only to the VS Pascal
library and not to the VS Pascal compiler.

How to Compile, Load, and Run a Program Using PASCCG
The PASCCG cataloged procedure ("PASCCG Procedure" on page 149) compiles a
VS Pascal source module to produce an object module. In the second step (named
GO), the loader processes the object module produced by the compiler and
immediately runs the resulting executable program.

The DO statement labeled SYSLIB in step GO describes the libraries from which
external references are to be resolved. If you have a library of your own from
which you want external references to be resolved, pass its name in the LKLBDSN
operand.

Object modules from previous compilations can also be included in the loader's
input stream by concatenating them in the SYSLIN DO statement.

As an example, a program in a data set named DOE.SEARCH.PASCAL must be
compiled and loaded with an object module named DOE.SORT.OBJ. In addition,
several external routines are called from within the program which reside in a
library named DOE.MISC.OBJLlB. The following JCL statements would compile
the program and execute it.

IIDOE JOB
IISTEPI EXEC PASCCG,
/1 LKLBDSN='DOE.MISC.OBJLIB'
IIPASC.SYSIN DD DSN=DOE.SEARCH.PASCAL,
II DISP=SHR
IIGO.SYSLIN DD
II DD DSN=DOE.SORT.OBJ,
II DISP=SHR

How to Compile, Link-Edit, and Run a Program Using PASCCLG
The PASCCLG cataloged procedure ("PASCCLG Procedure" on page 152)
compiles a source module to form an object module, invokes the linkage editor to
form a load module, and then executes the load module.

The first two steps of this procedure are identical to those of the PASCCL
procedure. An additional third step (named GO) executes your program.

How to Modify the Cataloged Procedures for the DEBUG and TRANLIB
Options

You can modify the IBM-supplied cataloged procedures for use with the VS Pascal
Interactive Debugging Tool and the transient run-time library.

To modify the procedures, you delete the asterisk (*) from the //* in the appropriate
statements for the configuration you want to use.

28 vs Pascal Application Programming Guide

How to Access Data Sets
Every file variable operated upon in your program must have an associated DD
statement for the GO step that executes your program. The ddname associated
with a particular file variable in your program is normally the name of the variable
itself, truncated to eight characters.

For example, the ddnames for the variables declared within the VS Pascal
declaration below are SYSIN, SYSPRINT, and OUTPUTFI, respectively.

VAR
SYSIN,
SYSPRINT: TEXT;
OUTPUTFILE: FILE OF INTEGER;

If you use the cataloged procedures, you need not define the file named OUTPUT.
The cataloged procedures that execute a VS Pascal program (PASCCG, PASCCLG,
and PASCLG) contain a DD statement for OUTPUT. OUTPUT is assigned to the
output class where the system messages and compiler listings are produced
(SYSOUT= *).

To define a data set to store output, you can override the output DD statement in
the cataloged procedure by specifying a GO.OUTPUT DD statement.

You must also include a GO.SYSIN DD statement to provide the necessary terminal
input for program input. Terminal output defaults to the output class assigned to
SYSOUT unless you specify a data set with a GO.SYSPRINT DD statement.

The DD statements GO.OUTPUT, GO.SYSPRINT, GO.SYSIN, and GO.INPUT
override those contained in the GO step of the VS Pascal cataloged procedures.
Any or all can be used, but the order in which they are coded is sequence
sensitive. If used, GO.OUTPUT must belirst, and GO.SYSPRINT must be coded
before GO.SYSIN and GO.lNPUT.

If the VS Pascal input/output manager attempts to open a data set that has an
incomplete data control block (DCB), it assigns default values to the DCB as
described in "Data Set DCB Attributes" on page 46. If you prefer not to rely on the
defaults, then you should specify the LRECL, BLKSIZE, and RECFM in the DCB
operand of the associated DD statement for a newly created data set (that is, one
whose DISP operand is set to NEW).

Note: VS Pascal programs using TERMIN to get input from the terminal in MVS get
input from SYSIN in MVS batch. Similarly, programs that use TERMOUT to write to
the terminal in MVS write to SYSPRINT in MVS batch.

Examples of Batch Jobs
The first example shows a batch job using the PASCCG procedure. The second
example shows a batch job using the PASCC and PASCClG procedures.

Example of Batch Job Using PASCCG
The job control statements shown in Figure 12 compile and run a VS Pascal
program consisting of one module. This program uses only the standard files
INPUT and OUTPUT.

In the sample JCl, EXAMPLE is the name of the job. The job name identifies the
job within the operating system; it is essential. The parameters required in the
JOB statement depend on the operating procedures established at your site.

Chapter 3. How to Run a Program in an MVS Batch Environment 29

How to Access Data Sets
Every file variable operated upon in your program must have an associated DD
statement for the GO step that executes your program. The ddname associated
with a particular file variable in your program is normally the name of the variable
itself, truncated to eight characters.

For example, the ddnames for the variables declared within the VS Pascal
declaration below are SYSIN, SYSPRINT, and OUTPUTFI, respectively.

VAR
SYSIN,
SYSPRINT: TEXT;
OUTPUTFILE: FILE OF INTEGER;

If you use the cataloged procedures, you need not define the file named OUTPUT.
The cataloged procedures that execute a VS Pascal program (PASCCG, PASCCLG,
and PASCLG) contain a DD statement for OUTPUT. OUTPUT is assigned to the
output class where the system messages and compiler listings are produced
(SYSOUT = *).

To define a data set to store output, you can override the output DD statement in
the cataloged procedure by specifying a GO.OUTPUT DD statement.

You must also include a GO.SYSIN DD statement to provide the necessary terminal
input for program input. Terminal output defaults to the output class assigned to
SYSOUT unless you specify a data set with a GO.SYSPRINT DD statement.

The DD statements GO.OUTPUT, GO.SYSPRINT, GO.SYSIN, and GO.INPUT
override those contained in the GO step of the VS Pascal cataloged procedures.
Any or all can be used, but the order in which they are coded is sequence
sensitive. If used, GO.OUTPUT must be first, and GO.SYSPRINT must be coded
before GO.SYSIN and GO.INPUT.

If the VS Pascal input/output manager attempts to open a data set that has an
incomplete data control block (DCB), it assigns default values to the DCB as
described in "Data Set DCB Attributes" on page 46. If you prefer not to rely on the
defaults, then you should specify the LRECL, BLKSIZE, and RECFM in the DCB
operand of the associated DD statement for a newly created data set (that is, one
whose DISP operand is set to NEW).

Note: VS Pascal programs using TERMIN to get input from the terminal in MVS get
input from SYSIN in MVS batch. Similarly, programs that use TERMOUT to write to
the terminal in MVS write to SYSPRINT in MVS batch.

Examples of Batch Jobs
The first example shows a batch job using the PASCCG procedure. The second
example shows a batch job using the PASCC and PASCCLG procedures.

Example of Batch Job Using PASCCG
The job control statements shown in Figure 12 compile and run a VS Pascal
program consisting of one module. This program uses only the standard files
INPUT and OUTPUT.

In the sample JCL, EXAMPLE is the name of the job. The job name identifies the
job within the operating system; it is essential. The parameters required in the
JOB statement depend on the operating procedures established at your site.

Chapter 3. How to Run a Program in an MVS Batch Environment 29

The EXEC statement invokes the IBM-supplied cataloged procedure PASCCG.
When the operating system encounters this name, it replaces the EXEC statement \
with a set of JCL statements previously written and cataloged in a system library. """
The EXEC statement also passes the LIST compile-time option to VS Pascal.

The cataloged procedure contains two steps:

PASC Invokes the VS Pascal compiler to produce an object module.

GO Invokes the loader to process the object module by loading it into memory
and including the appropriate run-time library routines. The resulting
program runs immediately. .

The DD statement PASC.SYSIN indicates that the program to be processed in
procedure step PASC follows immediately in the job. SYSIN is the name that the
compiler uses to refer to the data set or device on which it expects to find the
program.

The delimiter statement /* indicates the end of the data.

The DD statement GO.INPUT indicates that the data to be processed by the
program (in procedure step GO) follows the GO.INPUT statement.

//EXAMPLE JOB
//STEP1 EXEC PASCCG,PARM='LIST'
//PASC.SYSIN DO *

PROGRAM EXAMPLE(INPUT,OUTPUT);
VAR

A, B: REAL;
BEGIN

RESET(INPUT) ;
WHILE NOT EOF(INPUT) DO

BEGIN
READLN(A,B);
WRITELN (' SUM
WRITELN(' PRODUCT =

END;
END.

/*
//GO.INPUT DO *
3.0 4.0
3.14159 1. 414
1.0E-10 2.0E-I0
-10.0 102.0

/*

, ,A+B) ;
, ,A*B) ;

Figure 12. Sample Batch Job USing PASCCG

Example of Batch Job Using PASCC and PASCCLG
Figure 13 on page 31 shows an example using the PASCC and PASCCLG
cataloged procedures.

The EXEC statements in steps 1 and 2 pass the NOXREF compile-time option to VS
Pascal. This option suppresses a cross-reference listing.

30 vs Pascal Application Programming Guide

The EXEC statement invokes the IBM-supplied cataloged procedure PASCCG.
When the operating system encounters this name, it replaces the EXEC statement).
with a set of JCL statements previously written and cataloged in a system library. ...,
The EXEC statement also passes the LIST compile-time option to VS Pascal.

The cataloged procedure contains two steps:

PASC Invokes the VS Pascal compiler to produce an object module.

GO Invokes the loader to process the object module by loading it into memory
and including the appropriate run-time library routines. The resulting
program runs immediately.

The DD statement PASC.SYSIN indicates that the program to be processed in
procedure step PASC follows immediately in the job. SYSIN is the name that the
compiler uses to refer to the data set or device on which it expects to find the
program.

The delimiter statement /* indicates the end of the data.

The DD statement GO.INPUT indicates that the data to be processed by the
program (in procedure step GO) follows the GO.INPUT statement.

//EXAMPLE JOB
//STEPI EXEC PASCCG,PARM='LIST'
//PASC.SYSIN DD *

PROGRAM EXAMPLE(INPUT,OUTPUT);
VAR

A, B: REAL;
BEGIN

RES ET (I N PUT) ;
WHILE NOT EOF(INPUT) DO

BEGIN
READLN(A,B);
WRITELN (' SUM
WRITELN(' PRODUCT =

END;
END.

/*
//GO.INPUT DD *
3.0 4.0
3.14159 1.414
1.0E-I0 2.0E-IO
-10.0 102.0

/*

, ,A+B) ;
, ,A*B) ;

Figure 12. Sample Batch Job Using PASCCG

Example of Batch Job Using PASCC and PASCCLG
Figure 13 on page 31 shows an example using the PASCC and PASCCLG
cataloged procedures.

The EXEC statements in steps 1 and 2 pass the NOXREF compile-time option to VS
Pascal. This option suppresses a cross-reference listing.

30 vs Pascal Application Programming Guide

Step 1 compiles a program using the PASCC cataloged procedure. Step 2
compiles another program and link-edits and executes both programs using the
PASCCLG cataloged procedure.

IIJOBNAME JOB
IISTEPl EXEC PASCC,PARM='NOXREF'
IIPASC.SYSIN DD *
PROGRAM COPYFILE;
TYPE

F80 = FILE OF
PACKED ARRAY[1 •. 80] OF CHAR;

VAR
INFILE, OUTFILE: F8G;

PROCEDURE COPY(VAR FIN,FOUT: F80);
EXTERNAL;

BEGIN
RESET(INFILE) ;
REWRITE(OUTFILE);
COPY(INFILE.OUTFILE);

END.
1*

IISTEP2 EXEC PASCCLG,PARM='NOXREF,
IIPASC.SYSIN DO *
SEGMENT IO;
TYPE

F80 = FILE OF
PACKED ARRAY[1 •. 80] OF CHAR;

PROCEDURE COPY(VAR FIN,FOUT: F80);
EXTERNAL;

PROCEDURE COPY;
BEGIN

WHILE NOT EOF(FIN) DO
BEGIN

FOUT@ := FIN@;
PUT(FOUT) ;
GET(FIN)

END;
END; .
1*
IILKED.SYSIN DO *

ENTRY VSPASCAL
1*
IIGO.INFILE DO *

(data to be copied into data set goes here)

1*
IIGO.OUTFILE DO DSN=Pl23456.TEMP.DATA,UNIT=TSOUSER,
II OISP=(NEW,CATLG),
II OCB=(RECFM=FB,LRECL=80,BLKSIZE=3l20),
II SPACE=(3120,(1,1»

Figure 13. Sample Batch Job Using PASCC and PASCCLG

Chapter 3. How to Run a Program in an MVS Batch Environment 31

Step 1 compiles a program using the PASCC cataloged procedure. Step 2
compiles another program and link-edits and executes both programs using the
PASCCLG cataloged procedure.

IIJOBNAME JOB
IISTEPI EXEC PASCC,PARM=' NOXREF'
IIPASC.SYSIN DO *
PROGRAM COPYFILE;
TYPE

F80 = FILE OF
PACKED ARRAY[1 .. 80] OF CHAR;

VAR
INFILE, OUTFILE: F80;

PROCEDURE COPY(VAR FIN,FOUT: F80);
EXTERNAL;

BEGIN
RESET (INFI LE) ;
REWRITE(OUTFILE);
COPY(INFILE,OUTFILE);

END.
1*

IISTEP2 EXEC PASCCLG,PARM='NOXREF'
IIPASC.SYSIN DO *
SEGMENT 10;
TYPE

F80 = FILE OF
PACKED ARRAY[1 .. 80] OF CHAR;

PROCEDURE COPY(VAR FIN,FOUT: F80);
EXTERNAL;

PROCEDURE COPY;
BEGIN

WHILE NOT EOF(FIN) DO
BEGIN

FOUT@ := FlN@;
PUT(FOUT) ;
GET(FIN)

END;
END; .
1*
IILKED.SYSIN DO *

ENTRY VSPASCAL
1*
IIGO.INFILE DO *

(data to be copied into data set goes here)

1*
IIGO.OUTFILE DO DSN=P123456.TEMP.DATA,UNIT=TSOUSER,
II DISP=(NEW,CATLG),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120),
II SPACE=(3120,(1,1))

Figure 13. Sample Batch Job Using PASCC and PASCCLG

Chapter 3. How to Run a Program in an MVS Batch Environment 31

31-Bit Addressing Mode
Programs compiled by VS Pascal can execute in the 31-bit addressing mode of the
operating system. With 31-bit addressing, you have more freedom to define or
reference larger data areas, files, and tables, and to create a larger overall
program. Your program and its data are no longer constrained to fit in a
16-megabyte address space. However, no single record or array can be greater
than 16 megabytes.

Modules that are link-edited together must also reside in the same address space
(either above or below the 16-megabyte address line).

To take advantage of 31-bit addressing, you must link-edit your program using the
XA parameter in the cataloged procedures (see Chapter 12, "MVS Batch
Cataloged Procedures" on page 137).

Every program that executes in MVS is assigned two attributes: AMODE
(addressing mode) and RMODE (residence mode). AMODE is the attribute of an
entry point into a load module that specifies the addressing mode in effect when
the load module is entered at run-time. RMODE is the attribute of a load module
that specifies the residence mode of a load module when it is loaded into virtual
storage for execution.

Valid AMODE and RMODE specifications are shown in Figure 14.

Attribute

AMODE=24

AMODE=31

AMODE=ANY

RMODE=24

RMODE=ANY

Meaning

24-bit addressing mode

31-bit addressing mode

Either 24-bit or 31-bit addressing mode

The module must reside in virtual storage below 16 megabytes.
Use RMODE = 24 for 31-bit programs that have 24-bit
dependencies.

Indicates that the module can reside anywhere in storage.

Figure 14. AM ODE and RMODE Sf.k'.~ifications

For more information on AMODE and RMODE, see MVSIExtended Architecture
Linkage Editor and Loader User's Guide.

32 VS Pascal Application Programming Guide

~-------------

31-Bit Addressing Mode
Programs compiled by VS Pascal can execute in the 31-bit addressing mode of the
operating system. With 31-bit addressing, you have more freedom to define or
reference larger data areas, files, and tables, and to create a larger overall
program. Your program and its data are no longer constrained to fit in a
16-megabyte address space. However, no single record or array can be greater
than 16 megabytes.

Modules that are link-edited together must also reside in the same address space
(either above or below the 16-megabyte address line).

To take advantage of 31-bit addressing, you must link-edit your program using the
XA parameter in the cataloged procedures (see Chapter 12, "MVS Batch
Cataloged Procedures" on page 137).

Every program that executes in MVS is assigned two attributes: AMODE
(addressing mode) and RMODE (residence mode). AMODE is the attribute of an
entry point into a load module that specifies the addressing mode in effect when
the load module is entered at run-time. RMODE is the attribute of a load module
that specifies the residence mode of a load module when it is loaded into virtual
storage for execution.

Valid AMODE and RMODE specifications are shown in Figure 14.

Attribute

AMODE=24

AMODE=31

AMODE=ANY

RMODE=24

RMODE=ANY

Meaning

24-bit addressing mode

31-bit addressing mode

Either 24-bit or 31-bit addressing mode

The module must reside in virtual storage below 16 megabytes.
Use RMODE = 24 for 31-bit programs that have 24-bit
dependencies.

Indicates that the module can reside anywhere in storage.

Figure 14. AMODE and RMODE Sf.J,'~ifications

For more information on AMODE and RMODE, see MVSIExtended Architecture
Linkage Editor and Loader User's Guide.

32 vs Pascal Application Programming Guide

Chapter 4. How to Read VS Pascal Listings

This section describes how to read VS Pascal listings. The listings are:

• Compiler options summary
• Source listing
• Cross-reference listing
• Assembler listing
• External symbol dictionary listing
• Instruction statistics.

Compiler Options Summary

I V5 PASCAL RELEASE 2.0

The compiler options summary contains information about the parameters and
options in effect when the unit was compiled.

08/09/88 10:50:52 PAGE

COM P I L E R 0 P T ION S

II PARAMETERS PASSED: NOXREF

II OPTIONS IN EFFECT: MARGINS(1.72). 5EQ(73.80). NOXREF. LANGLVL(EXTENDED). DDNAME(COMPAT). FLAG(I). STDFLAG(E).
LINECOUNT(60). PAGEWIDTH(128), CHECK. GOSTMT. HEADER. OPTIMIZE. PXREF. SOURCE. CONDPARM()

Figure 15. Sample Compiler Options Summary

D Page Heading
The first line begins with "VS PASCAL RELEASE 2.0". This line lists
information in the following order.

1. The date and time when the program was compiled.
2. The page number.

The second line identifies this page as part of the options summary.

fJ Parameter List
The parameter list summarizes the parameters that were passed to VS Pascal.

II Option List
The option list summarizes the options that were in effect for the compilation.

Chapter 4. How to Read VS Pascal Listings 33

l,. Chapter 4. How to Read VS Pascal Listings

This section describes how to read VS Pascal listings. The listings are:

• Compiler options summary
• Source listing
• Cross-reference listing
• Assembler listing
• External symbol dictionary listing
• Instruction statistics.

Compiler Options Summary

II VS PASCAL RELEASE 2.0

The compiler options summary contains information about the parameters and
options in effect when the unit was compiled.

08/09/88 10:50:52 PAGE

COM P I L E R 0 P T ION S

II PARAMETERS PASSED: NOXREF

II OPTIONS IN EFFECT: MARGINS(1.72). SEQ(73.80). NOXREF. LANGLVL(EXTENDED). DDNAME(COMPAT). FLAG(I). STDFLAG(E).
LINECOllNT(60). PAGEWIDTH(128), CHECK. GOSTMT. HEADER. OPTIMIZE. PXREF. SOURCE. CONDPARM()

Figure 15. Sample Compiler Options Summary

II Page Heading
The first line begins with "VS PASCAL RELEASE 2.0". This line lists
information in the following order.

1. The date and time when the program was compiled.
2. The page number.

The second line identifies this page as part of the options summary.

IfJ Parameter List
The parameter list summarizes the parameters that were passed to VS Pascal.

II Option List
The option list summarizes the options that were in effect for the compilation.

Chapter 4. How to Read VS Pascal Listings 33

Source Listing
The source listing contains information about the source program, including
nesting and cross-reference information. See Figure 16 for a sample source
listing.

o VS PASCAL RELEASE 2.0

fJ B P C I STMT NO II

SRCHTREE:

SOU R C E PRO G RAM
INCLUDE 1 FROM SYSLIB(GLOBALS)

08/09/88 10:50:52

PAGE XREF II

1 :
1 :
1 :
1 :
1 :
1 :
1 :
1 :
1 :
1 :
1 :
1 :

V---+----l----+"---2----+----3----+----4----+----5----+----6----+----7-V SEQ NO
00000001 *

:type
NAMEPTR = @NAMEREC;
NAMEREC =

:def

record
NAME
LEFT_LINK.
RIGHT_LINK:

end;

: TREETOP: NAMEPTR;

:static

STRING(30);

NAMEPTR;

: NOTICE: STR!NG(80);

:value
: NOTICE:= 'Copyright Columbus Software Corporation 1492';

:procedure SEARCH(
const 10: STRING;
var PTR: NAMEPTR);

: EXTERNAL;

:procedure SEARCH;
:var
: LPTR = NAMEPTR;

==========ERROR=> +17
1 :begin
1 1: PTR: = ni 1 ;

2: LPTR:= TREETOP;
3 while LPTR <> nil do

1
1 1 4
1111 5:
1 1 1 1
2 1 1 1 6 :
2111 7:

==========ERROR=>
1 1 1 1

begin
with LPTR@ do

if NAME = ID then
begin

PTR := LPTR
return

+8
end

Figure 16 (Part 1 of 2). Sample Source Listing

34 vs Pascal Application Programming Guide

00000002 R
00000003 * *
00000004 *
00000005 R
00000006 * 1
00000007 *
00000008 * 3
00000009 R
00000010
00000011 R
00000012 * 3
00000004
OOOOOOOS R
00000006 * 1

00000007
00000008 R
00000009 3
00000010
00000011 R *
00000012 R * 1
00000013 R * 3
00000014 *
00000015
00000016 R 3
00000017 R
00000018 * 3

00000019 R
00000020 3 1

00000021 3 3
00000022 R 3 1 R
00000023 R
00000024 R 3 R
00000025 R 3 3 R
00000026 R
00000027 3 3
00000028 R

00000029 R

PAGE 3

Source Listing
The source listing contains information about the source program, including
nesting and cross-reference information. See Figure 16 for a sample source
listing.

D VS PASCAL RELEASE 2.0

fJ B P C I STMT NO II

SRCHTREE:

SOU R C E PRO G RAM
INCLUDE 1 FROM SYSLIB(GLOBALS)

08/09/88 10:50:52

PAGE XREF II

1 :
1 :
1 :
1 :
1 :
1 :
1 :
1 :
1 :
1 :
1 :
1 :

V---+----l----+"---2----+----3----+----4----+----5----+----6----+----7-V SEQ NO
00000001 *

:type
NAMEPTR = @NAMEREC;
NAMEREC =

:def

record
NAME
LEFT_LINK.
RIGHT_LINK:

end;

: TREETOP: NAMEPTR;

:static

STRING(30);

NAMEPTR;

: NOTICE: STRING(80);

:value
: NOTICE:= 'Copyright Columbus Software Corporation 1492';

:procedure SEARCH(
const ID: STRING;
var PTR: NAMEPTR);

: EXTERNAL;

:procedure SEARCH;
:var
: LPTR = NAMEPTR;

==========ERROR=> +17
1 :begin
1 PTR : = ni 1 ;

2 LPTR := TREETOP;
3 while LPTR <> nil do

begin
1 1 4 with LPTR@ do
1 1 1 1 5 if NAME = ID then
1 1 1 1 begin
2 1 1 1 6 PTR : = LPTR
211 1 7 return

==========ERROR=> +8
1 1 1 1 end

Figure 16 (Part 1 of 2). Sample Source Listing

34 vs Pascal Application Programming Guide

00000002 R
00000003 * *
00000004 *
00000005 R
00000006 * 1
00000007 *
00000008 * 3
00000009 R
000000l()
00000011 R
00000012 * 3
00000004
00000005 R
00000006 * 1

00000007
00000008 R
00000009 3
00000010
00000011 R *
00000012 R * 1
00000013 R * 3
00000014 *
00000015
00000016 R 3
00000017 R
00000018 * 3

00000019 R
00000020 3 1

00000021 3 3
00000022 R 3 1 R
00000023 R
00000024 R 3 R
[)0000025 R 3 3 R
00000026 R
00000027 3 3
00000028 R

00000029 R

PAGE

1 1 1 1
1 1 2 1
1 1 2 1

d 1 2 1
112 1

1 1

else
8 : if ID < NAME then
9 : LPTR := LEFT_LINK

else
10 : LPTR := RIGHT_LINK

end (* whi 1 e *)
:end;.

88888838 R
00000031 R 3 3 R
00000032 3 3
00000033 R
00000034 3 3
00000035 R
00000036 R

II NUMBER OF ERRORS REPORTED: 2
ERROR 8: Semicolon I;" expected
ERROR 17: Colon I:" expected

II SOURCE LI NES: 48; COMPILE TIME: 0.06 SECONDS; COMPILE RATE: 48000 LPM

Figure 16 (Part 2 of 2). Sample Source Listing

D Page Heading
The first line of every page contains the title, if one exists. The title is set with
the % TITLE statement and may be reset whenever necessary. If no title has
been specified, the line will be blank.

The second line begins with "VS PASCAL RELEASE 2.0". This line lists
information in the following order.

1. The PROGRAM/SEGMENT name is given before a colon. This name
becomes the name of the control section (CSECT) in which the generated
object code will reside.

2. Following the colon may be the name of the procedure or function
definition which was being compiled when the page boundary occurred.

3. The date and time when the program was compiled.

4. The page number.

The third line contains column headings. If the source being compiled came
from a library (for example using the %INCLUDE compiler directive). then the
last line of the heading identifies the library and member.

o Nesting Information
The left margin contains nesting information about the program. The depth of
nesting is represented by a number. The heading over this margin is:

B pel

B indicates the depth of BEGIN block nesting.

P indicates the depth of procedure nesting.

C indicates the nesting of conditional statements (IF and CASE).

indicates the nesting of iterative statements (FOR, REPEAT, and WHILE).

II Statement Numbering
VS Pascal numbers the statements of a routine. STMT NO is the heading of a
column that numbers the executable statements of each routine. If the source
line originated from an include library, the include number and a colon (":")
precede the statement number. These numbers are referenced when a
run-time error occurs (see "Reading a VS Pascal Trace-Back Report" on
page 73) and when breakpoints are specified in the Interactive Debugging Tool
(see Chapter 15, "Interactive Debugging Tool Commands" on page 173).

All non-empty statements are numbered except the REPEAT statement.
However, the UNTIL portion of a REPEAT statement is numbered.

Chapter 4. How to Read VS Pascal Listings 35

1 1 1 1
1 121
112 1

d 1 2 1
1 1 2 1

1 1

else
8 : if 10 < NAME then
9 : LPTR := LEFT_LINK

else
10 : LPTR := RIGHT LINK

end (* while *) -
:end; .

00808838 R
88888831 R 3 3 R
88000032 3 3
88000833 R
00000034 3 3
00000035 R
00000036 R

II NUMBER OF ERRORS REPORTED: 2
ERROR 8: Semicolon ";" expected
ERROR 17: Colon ":" expected

m SOURCE LINES: 48; COMPILE TIME: 0.06 SECONDS; COMPILE RATE: 48000 LPM

Figure 16 (Part 2 of 2). Sample Source listing

II Page Heading
The first line of every page contains the title, if one exists. The title is set with
the % TITLE statement and may be reset whenever necessary. If no title has
been specified, the line will be blank.

The second line begins with "VS PASCAL RELEASE 2.0". This line lists
information in the following order.

1. The PROGRAM/SEGMENT name is given before a colon. This name
becomes the name of the control section (CSECT) in which the generated
object code will reside.

2. Following the colon may be the name of the procedure or function
definition which was being compiled when the page boundary occurred.

3. The date and time when the program was compiled.

4. The page number.

The third line contains column headings. If the source being compiled came
from a library (for example using the %INCLUOE compiler directive). then the
last line of the heading identifies the library and member.

II Nesting Information
The left margin contains nesting information about the program. The depth of
nesting is represented by a number. The heading over this margin is:

B pel

B indicates the depth of BEGIN block nesting.

P indicates the depth of procedure nesting.

C indicates the nesting of conditional statements (IF and CASE).

indicates the nesting of iterative statements (FOR, REPEAT, and WHILE).

II Statement Numbering
VS Pascal numbers the statements of a routine. STMT NO is the heading of a
column that numbers the executable statements of each routine. If the source
line originated from an include library, the include number and a colon (":")
precede the statement number. These numbers are referenced when a
run-time error occurs (see "Reading a VS Pascal Trace-Back Report" on
page 73) and when breakpoints are specified in the Interactive Debugging Tool
(see Chapter 15, "Interactive Debugging Tool Commands" on page 173).

All non-empty statements are numbered except the REPEAT statement.
However, the UNTIL portion of a REPEAT statement is numbered.

Chapter 4. How to Read VS Pascal listings 35

A pair of BEGIN and END statements is not numbered because it serves only
as a bracket for a sequence of statements and has no executable code
associated with it.

.. Page Cross-Reference Field
If the PXREF compile-time option is active, the right margin of the listing
contains a cross-reference field. This field contains an indicator for each
identifier that appears in the associated line. The indicators have the following
meanings:

• A number indicates a page number on which the corresponding identifier
was declared.

• An "." indicates that the corresponding identifier is being declared.

• A "P" indicates that the corresponding identifier is predefined.

• An uRn indicates that the corresponding identifier is a reserved word.

• A "?" indicates that the corresponding identifier is either undeclared or will
be declared further on in the program. This latter occurrence arises often
in pointer type definitions.

II Error Summary
Toward the end of the listing is the error summary. It contains the diagnostic
messages corresponding to the compilation errors detected in the program.

Note: Message inserts will appear as <???>.

II Compilation Statistics
The compiler prints summary statistics that tell the number of lines compiled,
the time required, and compilation rate in lines per minute of (virtual)
processor time.

These statistics are divided between the phases of the compiler: the
syntax/semantic phase, the optimizing phase, and the code generation phase.
Also printed is the total time and accumulative rate for the sum of the phases.

Cross-Reference Listing
The cross-reference listing lists in alphabetic order every identifier used in the
unit, giving its attributes and both the page number and the source line number of
each reference.

If the %INCLUDE compiler directive was used, the cross-reference listing will
begin by listing all of the include members by name with a reference number.

36 vs Pascal Application Programming Guide

A pair of BEGIN and END statements is not numbered because it serves only
as a bracket for a sequence of statements and has no executable code
associated with it.

II Page Cross-Reference Field
If the PXREF compile-time option is active, the right margin of the listing
contains a cross-reference field. This field contains an indicator for each
identifier that appears in the associated line. The indicators have the following
meanings:

• A number indicates a page number on which the corresponding identifier
was declared.

• An "*" indicates that the corresponding identifier is being declared.

• A "P" indicates that the corresponding identifier is predefined.

• An "R" indicates that the corresponding identifier is a reserved word.

• A "?" indicates that the corresponding identifier is either undeclared or will
be declared further on in the program. This latter occurrence arises often
in pointer type definitions.

II Error Summary
Toward the end of the listing is the error summary. It contains the diagnostic
messages corresponding to the compilation errors detected in the program.

Note: Message inserts will appear as <???>.

II Compilation Statistics
The compiler prints summary statistics that tell the number of lines compiled,
the time required, and compilation rate in lines per minute of (virtual)
processor time.

These statistics are divided between the phases of the compiler: the
syntax/semantic phase, the optimizing phase, and the code generation phase.
Also printed is the total time and accumulative rate for the sum of the phases.

Cross-Reference Listing
The cross-reference listing lists in alphabetic order every identifier used in the
unit, giving its attributes and both the page number and the source line number of
each reference.

If the %INCLUDE compiler directive was used, the cross-reference listing will
begin by listing all of the include members by name with a reference number.

36 vs Pascal Application Programming Guide

Figure 17 shows a sample cross-reference listing.

C R 0 S S REF ERE N C ELI S TIN G

INCLUDE 1 CAME FROM MEMBER GLOBALS
IJ

IDENTIFIER

ID

LEFT_LINK

LPTR

NAME

NAMEPTR

NAMEREC

NIL

NOTICE

PTR

RIGHT_LINK

SEARCH

STRING

TREETOP

fJ II
DEFINITION ATTRIBUTES FORMAT: <PAGE NO>I<[NCLUDE NO>:<LINE NO>

3/12

3/1: 7

3/18

3/1:6

3/1:3

3/1:4

PREDEFINED

3/6

3/13

3/1:8

3/16

PREDEFINED

3/1:12

IN SEARCH, CLASS = CaNST PARAMETER, TYPE = STRING, OFFSET = 144
3/25 3/31

IN NAMEREC, CLASS = FIELD. TYPE = POINTER, OFFSET = 32, LENGTH = 4
3/32

IN SEARCH, CLASS = LOCAL VARIABLE, TYPE = POINTER, OFFSET = 152. LENGTH = 4
3/21 3/22 3/24 3/27 3/32 3/34

IN NAMEREC, CLASS = FIELD, TYPE = STRING. OFFSET = O. LENGTH = 32
3/25 3/31

CLASS = TYPE, TYPE = POINTER, LENGTH = 4
3/1:8 3/1:12 3/13 3/18

CLASS = TYPE, TYPE = RECORD, LENGTH = 40
3/1 :3

CLASS = CONSTANT, TYPE = POINTER
3/20 3/22

CLASS = STATIC VARIABLE. TYPE = STRING. OFFSET = O. LENGTH = 82
3/9

IN SEARCH, CLASS = VAR PARAMETER. TYPE = POINTER, OFFSET = 148. LENGTH = 4
3/20 3/27

IN NAMEREC. CLASS = FIELD. TYPE = POINTER. OFFSET = 36. LENGTH = 4
3/34

CLASS.= ENTRY PROCEDURE
3/16

CLASS = TYPE, TYPE = STRI NG
3/1:6 3/6 3/12

CLASS = DEF VARIABLE, TYPE = POINTER. LENGTH = 4
3/21

NO LANGUAGE ANALYSIS ERRORS DETECTED

SOURCE LI NES: 40; COMPILE TIME: 0.07 SECONDS; COMPILE RATE: 34286 LPM

NO OPTIMIZER ERRORS DETECTED

SOURCE LI NES: 40; COMPILE TIME: 0.01 SECONDS; COMPILE RATE: 24000 LPM

Figure 17. Sample Cross-Reference Listing

o Identifier
Lists the identifiers used in the unit in alphabetic order.

Chapter 4. How to Read VS Pascal Listings 37

Figure 17 shows a sample cross-reference listing.

C R 0 S S REF ERE N C ELI S TIN G

INCLUDE 1 CAME FROM MEMBER GLOBALS
D fJ II

IDENTIFIER DEFINITION ATTRIBUTES FORMAT: <PAGE NO>/<INCLUDE NO>:<LINE NO>

ID 3/12

LEFT_LINK 3/1:7

LPTR 3/18

NAME 3/1:6

NAMEPTR 3/1:3

NAMEREC 3/1:4

NIL PREDEFINED

NOTICE 3/6

PTR 3/13

RIGHT_LINK 3/1:8

SEARCH 3/16

STRING PREDEFINED

TREETOP 3/1:12

IN SEARCH. CLASS = CONST PARAMETER. TYPE = STRING. OFFSET = 144
3/25 3/31

IN NAMEREC. CLASS = FIELD. TYPE = POINTER. OFFSET = 32. LENGTH = 4
3/32

IN SEARCH. CLASS = LOCAL VARIABLE, TYPE = POINTER, OFFSET = 152. LENGTH = 4
3/21 3/22 3/24 3/27 3/32 3/34

IN NAMEREC, CLASS = FIELD. TYPE = STRING, OFFSET = O. LENGTH = 32
3/25 3/31

CLASS = TYPE, TYPE = POINTER, LENGTH = 4
3/1:8 3/1:12 3/13 3/18

CLASS = TYPE, TYPE = RECORD, LENGTH = 40
3/1:3

CLASS = CONSTANT. TYPE = POINTER
3/20 3/22

CLASS = STATIC VARIABLE. TYPE = STRING, OFFSET = 0, LENGTH = 82
3/9

IN SEARCH. CLASS = VAR PARAMETER. TYPE = POINTER. OFFSET = 148. LENGTH = 4
3/20 3/27

IN NAMEREC. CLASS = FIELD. TYPE = POINTER. OFFSET = 36. LENGTH = 4
3/34

CLASS.= ENTRY PROCEDURE
3/16

CLASS = TYPE. TYPE = STRING
3/1:6 3/6 3/12

CLASS = DEF VARIABLE. TYPE = POINTER, LENGTH = 4
3/21

NO LANGUAGE ANALYSIS ERRORS DETECTED

SOURCE LI NES: 40; COMPILE TIME: 0.07 SECONDS; COMPILE RATE: 34286 LPM

NO OPTIMIZER ERRORS DETECTED

SOURCE LI NES: 40; COMPILE TIME: 0.01 SECONDS; COMPILE RATE: 24000 LPM

Figure 17. Sample Cross-Reference Listing

D Identifier
Lists the identifiers used in the unit in alphabetic order.

Chapter 4. How to Read VS Pascal Listings 37

fJ Definition
The definition is of the form: pagelinclude:line. page is the page number,)
include is the number of the include-member if the reference took place within ...",
the member, and line is the line number within the program or include-member
at which the reference occurred. This column will state PREDEFINED if the
identifier is predefined, or CONDPARM if the identifier appeared on a %WHEN
directive or in the CONDPARM compile-time option. The reference
immediately following the identifier is the place in the source program where
the identifier was declared.

II Attributes
There are six possible attributes:

IN name
If the identifier is a record field, this attribute specifies the name of the
record in which the identifier was declared; otherwise, it specifies the
name of the routine in which the identifier was declared.

CLASS = class
This attribute gives the class of the identifier. Class can be:

CONSTANT
A declared constant

CONST PARAMETER
A pass-by-CONST parameter

DEF VARIABLE
A DEF external variable

ENTRY FUNCTION
A function declared as an external entry point

ENTRY PROCEDURE
A procedure declared as an external entry point

EXTERNAL FUNCTION
An external function

EXTERNAL PROCEDURE
An external procedure

FIELD
A record field

FORMAL FUNCTION
A function passed as a parameter

FORMAL PROCEDURE
A procedure passed as a parameter

FORTRAN FUNCTION
An external FORTRAN function

FORTRAN SUBROUTINE
An external FORTRAN subroutine

FUNCTION
A user-defined or standard function

GENERIC PROCEDURE
A generic procedure

38 vs Pascal Application Programming Guide

II Definition
The definition is of the form: page/include:line. page is the page number,
include is the number of the include-member if the reference took place within
the member, and line is the line number within the program or include-member
at which the reference occurred. This column will state PREDEFINED if the
identifier is predefined, or CONDPARM if the identifier appeared on a O/OWHEN
directive or in the CONDPARM compile-time option. The reference
immediately following the identifier is the place in the source program where
the identifier was declared.

II Attributes
There are six possible attributes:

IN name
If the identifier is a record field, this attribute specifies the name of the
record in which the identifier was declared; otherwise, it specifies the
name of the routine in which the identifier was declared.

CLASS = class
This attribute gives the class of the identifier. Class can be:

CONSTANT
A declared constant

CONST PARAMETER
A pass-by-CONST parameter

DEF VARIABLE
A DEF external variable

ENTRY FUNCTION
A function declared as an external entry point

ENTRY PROCEDURE
A procedure declared as an external entry pOint

EXTERNAL FUNCTION
An external function

EXTERNAL PROCEDURE
An external procedure

FIELD
A record field

FORMAL FUNCTION
A function passed as a parameter

FORMAL PROCEDURE
A procedure passed as a parameter

FORTRAN FUNCTION
An external FORTRAN function

FORTRAN SUBROUTINE
An external FORTRAN subroutine

FUNCTION
A user-de'fined or standard function

GENERIC PROCEDURE
A generic procedure

38 vs Pascal Application Programming Guide

LABEL
A statement label

LOCAL VARIABLE
An automatic variable

MAIN ENTRY POINT
A MAIN procedure

PROCEDURE
A user-defined or standard procedure

REENTRANT ENTRY POINT
A REENTRANT procedure

REF VARIABLE
An REF external variable

STATIC VARIABLE
A static variable

TYPE
A type identifier

VALUE PARAMETER
A pass-by-value parameter

VAR PARAMETER
A pass-by-VAR parameter

UNDECLARED
An undeclared identifier

TYPE = type
This attribute gives the type of the identifier. Type can be:

ARRAY
An array type

BOOLEAN
A Boolean type

CHAR
A character type

FILE
A file type

GCHAR
A graphic character type

GSTRING
A graphic string type

INTEGER
A fixed-point numeric

POINTER
A poi nter type

REAL
A floating-point numeric

RECORD
A record type

Chapter 4. How to Read VS Pascal Listings 39

LABEL
A statement label

LOCAL VARIABLE
An automatic variable

MAIN ENTRY POINT
A MAIN procedure

PROCEDURE
A user-defined or standard procedure

REENTRANT ENTRY POINT
A REENTRANT procedure

REF VARIABLE
An REF external variable

STATIC VARIABLE
A static variable

TYPE
A type identifier

VALUE PARAMETER
A pass-by-value parameter

VAR PARAMETER
A pass-by-VAR parameter

UNDECLARED
An undeclared identifier

TYPE = type
This attribute gives the type of the identifier. Type can be:

ARRAY
An array type

BOOLEAN
A Boolean type

CHAR
A character type

FILE
A file type

GCHAR
A graphic character type

GSTRING
A graphic string type

INTEGER
A fixed-point numeric

POINTER
A poi nter type

REAL
A floating-point numeric

RECORD
A record type

Chapter 4. How to Read VS Pascal Listings 39

SCALAR
An enumerated scalar or subrange

SET
A set type

SPACE
A space type

STRING
A stri ng type

OFFSET = n
This attribute specifies the byte offset (in decimal notation) of an automatic
variable or parameter within a routine's dynamic storage area (DSA); the
displacement of a record field within the associated record; or the offset of
a static variable in the static area.

LENGTH = n
This attribute specifies the byte length of a variable or the storage required
for an instance of a type.

VALUE = n
This attribute specifies the ordinal value of an integer or enumerated
scal ar constant.

Assembler Listing

I m
LOC OBJECT CODE

OOOODA 18E3
OOOODe 48FO EOOO
OOOOEO 41EO E002
0000E4 5840 0090
0000E8 4850 4000
0000EC 5650 ****
0000FO 4140 4002
0000F4 0FE4

0000F6 4770 ****

OOOOFA 5840 0094
0000FE 5030 4000

000102 47FO ****
000106

000106 58EO 0090

Figure 18 (Part 1 of 2).

The compiler produces a pseudo-assembler listing of your program if you specify
the LIST option. Figure 18 shows a sample assembler listing.

s 9
STMT P S E U D a ASS E M B L Y LIS TIN G

* if NAME = ID then
56 LR 14,03
57 LH 15,O{.14)
58 LA 14,2{.14)
59 L 04 ,144(,13)
60 LH 05,0(.04)
61 a 05. =X' 40000000 ,
62 LA 04.2(,04)
63 CLCL 14.04

64 BNE @4L3
* begin
* PTR ;= LPTR;

67 L 04.148(.13)
68 ST 03.0(.04)

* return
70 B @4L2
71 1!l4L3 DS OH

* end
* else

if ID < NAME then
75 L 14.144(.13)

Sample Assembler Listing

40 vs Pascal Application Programming Guide

j

SCALAR
An enumerated scalar or subrange

SET
A set type

SPACE
A space type

STRING
A string type

OFFSET = n
This attribute specifies the byte offset (in decimal notation) of an automatic
variable or parameter within a routine's dynamic storage area (DSA); the
displacement of a record field within the associated record; or the offset of
a static variable in the static area.

LENGTH = n
This attribute specifies the byte length of a variable or the storage required
for an instance of a type.

VALUE = n
This attribute specifies the ordinal value of an integer or enumerated
scalar constant.

Assembler Listing

11 9
LOC OBJECT CODE

OOOOOA 18E3
oooooe 48FO EOOO
OOOOEO 41EO E002
0000E4 5840 0090
0000E8 4850 4000
OOOOEC 5650 ****
OOOOFO 4140 4002
0000F4 OFE4

0000F6 4770 ****

OOOOFA 5840 0094
OOOOFE 5030 4000

000102 47FO ****
000106

000106 58EO 0090

The compiler produces a pseudo-assembler listing of your program if you specify
the LIST option. Figure 18 shows a sample assembler listing.

m II
STMT P S E U 0 0 ASS E M B L Y LIS TIN G

* if NAME = 10 then
56 LR 14,03
57 LH 15,0(,14)
58 LA 14.2(,14)
59 L 04.144(,13)
60 LH 05.0(,04)
61 0 05.=X'40000000'
62 LA 04.2(,04)
63 CLCL 14.04

64 BNE @4L3
* begin
* PTR := LPTR;

67 L 04.148(.13)
68 ST 03. O(.04)

* return
70 B @4L2
71 @4L3 OS OH

* end
* else
* if 10 < NAME then

75 L 14.144(.13)

Figure 18 (Part 1 of 2). Sample Assembler Listing

40 vs Pascal Application Programming Guide

00010A 48F0 E000 76 LH 15,0(,14)
00010E 41£0 £002 77 LA 14,2{.14)
000112 5830 D0ge 78 L 03,156(,13)
000116 1843 79 LR 04,03
000118 4850 4000 80 LH 05,O(,(4)
00011C 5650 **** 81 0 05,=X'40000GOO'
000120 4140 4002 82 LA 04,2(,04)
000124 OFE4 83 CLCL 14,04
000126 47BO **** 84 BNL @4L6

* LPTR ;= LEFT_LINK
00012A 0203 0098 3fl20 86 MVC 152(4,13),32(fl3)
aaa13a 47F0 **** 87 B @4L7
000134 88 @4L6 OS 0H

* else
* LPTR ;= RIGHT_LINK

000134· 583fl D09C 91 L 03,156(.13)

000138 0203 0098 3024 92 MVC 152(4,13),36(03)
00013E 93 @4L7 OS flH
00013E 47FO 2fl28 94 B @4Ll
000142 95 @4L2 OS 0H
000142 0203 C028 0000 96 MVC 40(4,12) ,0(13)
000148 5800 0004 97 L 13,4(,13)
00014C 98E5 000C 98 LM 14,05,12(13)
000150 07FE 99 BR 14
000154 0000 0000 100 =F'O'
000158 4000 OOflfl 1fl1 =X'400flflflflfl'
00fl15C flOOO 0000 102 =V(TREETOP)

Figure 18 (Part 2 of 2). Sample Assembler Listing

D Location Information
Location relative to the beginning of the unit in bytes (hexadecimal).

fJ Object Code
Up to 6 bytes per line of the generated text. If the line refers to a symbol or
literal not yet encountered in the listing (forward reference), the base
displacement format of the instruction is shown as four asterisks (.... u").

II Statement Information
Statement number in listing.

II Language Description
Basic assembler language description of generated instruction.

Note: Intermixed with the assembler instructions are the source lines from which
the instructions were generated. The source lines appear as comments in the
listing.

Chapter 4. How to Read VS Pascal Listings 41

ElElElIElA 48FEl EElElEl 76 LH 15,El(,14)
ElElEllElE 41EO EEl02 77 LA 14.2(,14)
000112 583El OEl9C 78 L El3,156(,B)
ElElEl116 1843 79 LR 04,03
ElElO118 485El 4ElElEl 8El LH El5,El(,El4)
ElElOllC 565El **** 81 0 El5,=X'40ElElElO00'
El0012El 414El 4ElEl2 82 LA El4,2(,El4)
El0El124 ElFE4 83 CLCL 14,04
El00126 47BEl **** 84 BNL @4L6

* LPTR := LEFT LINK
ElElEl12A 02El3 OEl98 3El20 86 MVC 152(4,13) .32(03)
ElElO130 47FO **** 87 B @4L7
ElEl0134 88 @4L6 OS ElH

* else
* LPTR := RIGHT_LINK

0ElEl134 583El 009C 91 L El3,156(,13)

El00138 0203 OEl98 3024 92 MVC 152(4,13),36(03)
ElElEl13E 93 @4L7 OS ElH
OEl013E 47FEl 2El28 94 B @4L1
OElEl142 95 @4L2 OS ElH
ElElO142 02El3 CEl28 OElElEl 96 MVC 4El(4,12) ,0(13)
OElEl148 580El OEl04 97 L 13,4(,13)
ElElEl14C 98E5 OElElC 98 LM 14,El5,12(13)
0ElO15El El7FE 99 BR 14
OOEl154 ElElOEl OElElO lElEl =F'El'
ElOO158 4ElElEl ElElElEl lEll =X'4ElOOEl0ElEl'
ElOEl15C ElOElEl ElElElEl lEl2 =V (TREETOP)

Figure 18 (Part 2 of 2). Sample Assembler Listing

II Location Information
Location relative to the beginning of the unit in bytes (hexadecimal).

If) Object Code
Up to 6 bytes per line of the generated text. If the line refers to a symbol or
literal not yet encountered in the listing (forward reference), the base
displacement format of the instruction is shown as four asterisks ("****").

II Statement Information
Statement number in listing.

.. Language Description
Basic assembler language description of generated instruction.

Note: Intermixed with the assembler instructions are the source lines from which
the instructions were generated. The source lines appear as comments in the
listi ng.

Chapter 4. How to Read VS Pascal Listings 41

External Symbol Dictionary Listing

I] ~
NAME TYPE

SRCHTREE SO
@STATIC PC
AMPXSEGE ER

The external symbol dictionary (ESO) provides one entry for each name in the
generated program that is an external. This information is required by the linkage
editor/loader to resolve inter-module linkages.
Figure 19 shows a sample external symbol dictionary listing.

EXT ERN A L S Y M B 0 L o I C T ION A R Y

m m I
ID ADOR 'LENGTH NAME TYPE ID ADDR LENGTH

1 000000 000290 SEARCH LO o 00009A 000001
2 000000 000052 TREETOP CM 3 000000 000004
4 000000

Figure 19, Sample ESD Table

o Name
Name of the symbol.

fJ Type
The classification of the symbol:

SO Symbol definition (corresponds to name of module)

LO Local definition (entry routines)

ER External reference (external routines)

CM Common (corresponds to OEF variables)

PC Private code (where static variables are located)

IJID
Number provided to the loader in order to relocate address constants correctly.

II AOOR
Offset (in hexadecimal) in the CSECT of an LO entry.

II Length
Size in bytes (in hexadecimal) of an SO, CM, or PC entry.

42 vs Pascal Application Programming Guide

External Symbol Dictionary Listing

II ~
NAME TYPE

SRCHTREE SO
@STATIC PC
AMPXSEGE ER

The external symbol dictionary (ESD) provides one entry for each name in the
generated program that is an external. This information is required by the linkage
editor/loader to resolve inter-module linkages.
Figure 19 shows a sample external symbol dictionary listing.

EXT ERN A L S Y M B 0 L o I C T ION A R Y

m m I
ID AOOR LENGTH NAME TYPE ID ADOR LENGTH

1 000000 000290 SEARCH LO o 00009A 000001
2 000000 000052 TREETOP CM 3 000000 000004
4 000000

Figure 19. Sample ESD Table

II Name
Name of the symbol.

FJ Type
The classification of the symbol:

SD Symbol definition (corresponds to name of module)

LD Local definition (entry routines)

ER External reference (external routines)

CM Common (corresponds to DEF variables)

PC Private code (where static variables are located)

IIID
Number provided to the loader in order to relocate address constants correctly.

II ADDR
Offset (in hexadecimal) in the CSECT of an LD entry.

II Length
Size in bytes (in hexadecimal) of an SD, CM, or PC entry.

42 vs Pascal Application Programming Guide

Instruction Statistics

0
OP CODE

L
LA
LH
MVC
B

fJ
NUM

If VS Pascal is requested to produce an assembler listing, it will also summarize
the usage of System/370 instructions generated by the compiler. The table is
sorted by frequency of occurrence. Figure 20 shows a sample instruction statistics
table.

IBM I 370 INS T R U C T ION USA G E
I]
% OP CODE NUM % OP CODE NUM % OP CODE NUM %

10 21.74 ST 3 6.52 BNE 2.17 CLC 2.17
4 8.70 LR 2 4.35 BNL 2.17 BC 2.17
4 8.70 CLCL 2 4.35 LM 2.17 SR 2.17
4 8.70 0 2 4.35 BAL 2.17 BE 2.17
3 6.52 BR 2 4.35 LTR 2.17 STM 2.17

NO CODE GENERATION ERRORS DETECTED

SOURCE LINES: 48; TRANSLATE TIME: 0.11 SECONDS; TRANSLATE RATE: 26182 LPM

TOTAL TIME: 0.21 SECONDS; TOTAL RATE: 13714 LPM

Figure 20. Sample Instruction Statistics Table

II OP CODE
The assembler mnemonic of the instruction.

fJ NUM
The number of times the instruction was generated.

11%
The percentage (of total instructions) that a given instruction was generated.

Chapter 4. How to Read VS Pascal Listings 43

Instruction Statistics

D
OP CODE

L
LA
LH
MVC
B

B
NUM

If VS Pascal is requested to produce an assembler listing, it will also summarize
the usage of System/370 instructions generated by the compiler. The table is
sorted by frequency of occurrence. Figure 20 shows a sample instruction statistics
table.

IBM / 3 7 0 INS T R U C T ION USA G E
II
% OP CODE NUt-1 % OP CODE NUM % OP CODE NUM %

10 21.74 ST 3 6.52 BNE 1 2.17 CLC 2.17
4 8.70 LR 2 4.35 BNL 2.17 BC 2.17
4 8.70 CLCL 2 4.35 LM 2.17 SR 2.17
4 8.70 0 2 4.35 BAL 2.17 BE 2.17
3 6.52 BR 2 4.35 LTR 2.17 STM 2.17

NO CODE GENERATION ERRORS DETECTED

SOURCE LINES: 48; TRANSLATE TIME: 0.11 SECONDS; TRANSLATE RATE: 26182 LPM

TOTAL TIME: 0.21 SECONDS; TOTAL RATE: 13714 LPM

Figure 20. Sample Instruction Statistics Table

II OP CODE
The assembler mnemonic of the instruction.

D NUM
The number of times the instruction was generated.

11%
The percentage (of total instructions) that a given instruction was generated.

Chapter 4. How to Read VS Pascal Listings 43

L Chapter 5. How to Use the Input/Output Facilities

An essential part of every program you develop is the reading and writing of data.
Your program retrieves information, processes it as you specify, and then
produces the results you want.

The source of the information and the display target for the output can be one or
more of the following:

• A direct-access device

• A magnetic tape

• A printer

• A terminal
• A card reader or punch
• Another program to which you pass data.

VS Pascal uses input and output statements to read and write data. ,A.n input
statement allows you to read data from a device. An output statement allows you
to write data to a device.

Input and output statements operate on files. A file is a collection of physical and
logical records; that is, a sequence of pieces of information that your progl am can
process. Under MVS, a file is also known as a data set.

VS Pascal uses the MVS or VM access methods to read and write data. The access
methods VS Pascal uses are:

• Queued sequential access method (QSAM)
• Basic partitioned access method (BPAM)

• Basic direct access method (BDAM).

Records in a data set processed by QSAM are stored and retrieved as logical
records. QSAM handles any physical blocking or deblocking required. On input,
QSAM anticipates the need for a record based on its physical order; normally, the
desired record is in storage, ready for use, before the request for it is made. On
output, QSAM holds the logical records in a buffer and perforrr:s ;)hysic:;>! Ol"P!'·

only when the buffer is filled. QSAM is used for sequential data sets.

With BPAM, a data set consists of a number of members and a directory that holds
the name and location of each member. A data set organized in this manner is
called a partitioned data set (PDS) under MVS or MACLIB under VM. BPAM
maintains and accesses the directory; once BPAM locates the desired member, the
records within the member are processed.

With BDAM, records may be organized in any manner. The data set must reside
on a direct-access device. Records are stored and retrieved by actual addresses
within the data set.

VS Pascal associates a file variable with a data set by means of a ddname. Under
VM, you would use the FILEDEF command to associate a file variable with a data
set. Under MVS/TSO, you would use the TSO ALLOCATION command to associate
the file variable with a data set. Under MVS batch mode, you would use the DD
statement to associate a file variable with a data set.

Chapter 5. How to Use the Input/Output Facilities 45

Chapter 5. How to Use the Input/Output Facilities

An essential part of every program you develop is the reading and writing of data.
Your program retrieves information, processes it as you specify, and then
produces the results you want.

The source of the information and the display target for the output can be one or
more of the following:

• A direct-access device

• A magnetic tape

• A printer

• A terminal
• A card reader or punch
• Another program to which you pass data.

VS Pascal uses input and output statements to read and write data. An input
statement allows you to read data from a device. An output statement allows you
to write data to a device.

Input and output statements operate on files. A file is a collection of physical and
logical records; that is, a sequence of pieces of information that your progr am can
process. Under MVS, a file is also known as a data set.

VS Pascal uses the MVS or VM access methods to read and write data. The access
methods VS Pascal uses are:

• Queued sequential access method (QSAM)

• Basic partitioned access method (BPAM)

• Basic direct access method (BDAM).

Records in a data set processed by QSAM are stored and retrieved as logical
records. QSAM handles any physical blocking or deblocking required . On input,
QSAM anticipates the need for a record based on its physical order; normally, the
desired record is in storage, ready for use, before the request for it is made. On
output, QSAM holds the logical records in a buffer and performs physic8! ou,~!:·
only when the buffer is filled. QSAM is used for sequential data sets.

With BPAM, a data set consists of a number of members and a directory that holds
the name and location of each member. A data set organized in this manner is
called a partitioned data set (PDS) under MVS or MACUB under VM. BPAM
maintains and accesses the directory; once BPAM locates the desired member, the
records within the member are processed.

With BDAM, records may be organized in any manner. The data set must reside
on a direct-access device. Records are stored and retrieved by actual addresses
within the data set.

VS Pascal associates a file variable with a data set by means of a ddname. Under
VM, you would use the FILEDEF command to associate a file variable with a data
set. Under MVSITSO, you would use the TSO ALLOCATION command to associate
the file variable with a data set. Under MVS batch mode, you would use the DO
statement to associate a file variable with a data set.

Chapter 5. How to Use the Input/Output Facilities 45

DDNAME Association
For any identifier declared as a simple file variable, the first eight characters of the
identifier's name serves as the ddname of the file. As a consequence, the first
eight characters of all file variables declared within a module should be unique.
You must also be careful not to allow one of the first eight characters to be an
underscore ('_') since this is not a valid character in a ddname.

An explicit ddname may be associated with a file variable by means of the
DDNAME option when the file is opened. (See "Options for Opening a File" on
page 54).

Once a file is associated with a ddname, the only way to change that association is
to reopen the file specifying a new ddname.

You should explicitly specify ddnames for files which are elements of arrays, fields
of records, or pointer qualified. If the ddname is not explicitly specified for such
files, VS Pascal will generate a ddname. See the DDNAME option in "Options for
Opening a File" on page 54.

You can also specify how VS Pascal generates ddnames for files with the DDNAME
compile-time option. Use DDNAME(COMPAT) if you want VS Pascal to use the
rules for PascallVS Release 2.2 to generate ddnames. Use DDNAME(UNIQUE) if
you want VS Pascal to use unique ddnames for each file to conform to standard
Pascal scoping rules. See Figure 27 on page 55.

Data Set DeB AHributes
Associated with every VS Pascal file variable at run-time is a Data Control Block
(DCB), containing information describing specific attributes of the associated data
set. Among these attributes are:

• The logical record length (LRECL)
• The physical block size (BLKSIZE)
• The record format (RECFM).

VS Pascal supports all of the record formats supported by QSAM, such as fixed,
variable, undefined, fixed-blocked, variable-blocked, and so on.

A VS Pascal program will process a file that contains ANSI or machine control
characters at the beginning of each logical record (in which case the record format
would be specified as RECFM = A or RECFM = M). Each logical record written to
these files will be prefixed with the appropriate control character. Thus, the first
character position of each record is not directly accessible from the VS Pascal
program. If the NOCC option is specified when the file is opened, no control
character will be prefixed and the first character is accessible (see "Options for
Opening a File" on page 54). For input files, VS Pascal will always get the first
character, even if it is a carriage control character.

46 vs Pascal Application Programming Guide

DDNAME Association
For any identifier declared as a simple file variable, the first eight characters of the
identifier's name serves as the ddname of the file. As a consequence, the first
eight characters of all file variables declared within a module should be unique.
You must also be careful not to allow one of the first eight characters to be an
underscore ('_') since this is not a valid character in a ddname.

An explicit ddname may be associated with a file variable by means of the
DDNAME option when the file is opened. (See "Options for Opening a File" on
page 54).

Once a file is associated with a ddname, the only way to change that association is
to reopen the file specifying a new ddname.

You should explicitly specify ddnames for files which are elements of arrays, fields
of records, or pointer qualified. If the ddname is not explicitly specified for such
files, VS Pascal will generate a ddname. See the DDNAME option in "Options for
Opening a File" on page 54.

You can also specify how VS Pascal generates ddnames for files with the DDNAME
compile-time option. Use DDNAME(COMPAT) if you want VS Pascal to use the
rules for PascallVS Release 2.2 to generate ddnames. Use DDNAME(UNIQUE) if
you want VS Pascal to use unique ddnames for each file to conform to standard
Pascal scoping rules. See Figure 27 on page 55.

Data Set DeB Attributes
Associated with every VS Pascal file variable at run-time is a Data Control Block
(DCB), containing information describing specific attributes of the associated data
set. Among these attributes are:

• The logical record length (LRECL)
• The physical block size (BLKSIZE)
• The record format (RECFM).

VS Pascal supports all of the record formats supported by QSAM, such as fixed,
variable, undefined, fixed-blocked, variable-blocked, and so on.

A VS Pascal program will process a file that contains ANSI or machine control
characters at the beginning of each logical record (in which case the record format
would be specified as RECFM = A or RECFM = M). Each logical record written to
these files will be prefixed with the appropriate control character. Thus, the first
character position of each record is not directly accessible from the VS Pascal
program. If the NOCC option is specified when the file is opened, no control
character will be prefixed and the first character is accessible (see "Options for
Opening a File" on page 54). For input files, VS Pascal will always get the first
character, even if it is a carriage control character.

46 vs Pascal Application Programming Guide

Types of Files

Text Files

Newly allocated (empty) data sets (that is, data sets intended for output) might not
have these attributes assigned. As far as VS Pascal is concerned, there are two
ways to specify the DCB attributes for such data sets:

• By specifying them in the associated data set definition (in CMS through the
FILEDEF command, in TSO the ALLOC/ATIR commands, in MVS batch mode
the DO statement)

• By specifying them when the file is opened by means of the options string.
(See "Options for Opening a File" on page 54.)

If any of these attributes are unassigned for a particular data set to which a VS
Pascal programwill be writing data, the VS Pascal 1/0 manager will assign
defaults according to whether the data set is being managed as a TEXT file or a
record file.

For TEXT files, if you do not specify LRECL, BLKSIZE, or RECFM, then the
following defaults will apply:

• LRECL
• BLKSIZE

• RECFM

= 256
= 260
=V

For record files, if you do not specify LRECL, BLKSIZE, or RECFM, then the
following defaults will apply:

• LRECL
• BLKSIZE
• RECFM

= "length of file component"
= LRECL
= F

If you specify some of the attributes, then the defaults will be applied using t.he
following criteria:

• RECFM = V is used for TEXT files.
• RECFM = F is used for record files.
• If RECFM = F, then the BLKSIZE is to be equal to the LRECL or to be a

multiple thereof.
• If RECFM = V, then the BLKSIZE is to be at least four bytes greater than the

LRECL.

VS Pascal supports both fixed-length and variable-length record formats for TEXT
files. Characters are stored in the EBCDIC character set.

The predefined data type TEXT is used to declare a TEXT file variable in VS Pascal.
The pointer associated with each file variable points to positions within a physical
1/0 buffer.

Chapter 5. How to Use the Input/Output Facilities 47

Types of Files

Text Files

Newly allocated (empty) data sets (that is, data sets intended for output) might not
have these attributes assigned. As far as VS Pascal is concerned, there are two
ways to specify the DCB attributes for such data sets:

• By specifying them in the associated data set definition (in CMS through the
FILEDEF command, in TSO the ALLOC/ATTR commands, in MVS batch mode
the DD statement)

• By specifying them when the file is opened by means of the options string.
(See "Options for Opening a File" on page 54.)

If any of these attributes are unassigned for a particular data set to which a VS
Pascal program will be writing data, the VS Pascal I/O manager will assign
defaults according to whether the data set is being managed as a TEXT file or a
record file.

For TEXT files, if you do not specify LRECL, BLKSIZE, or RECFM, then the
following defaults will apply:

• LRECL = 256
• BLKSIZE = 260

• RECFM = V

For record files, if you do not specify LRECL, BLKSIZE, or RECFM, then the
following defaults will apply:

• LRECL
• BLKSIZE

• RECFM

= "length of file component"
= LRECL
= F

If you specify some of the attributes, then the defaults will be applied using the
following criteria:

• RECFM = V is used for TEXT files.
• RECFM = F is used for record files.
• If RECFM = F, then the BLKSIZE is to be equal to the LRECL or to be a

multiple thereof.
• If RECFM = V, then the BLKSIZE is to be at least four bytes greater than the

LRECL.

VS Pascal supports both fixed-length and variable-length record formats for TEXT
files. Characters are stored in the EBCDIC character set.

The predefined data type TEXT is used to declare a TEXT file variable in VS Pascal.
The pOinter associated with each file variable points to positions within a physical
I/O buffer.

Chapter 5. How to Use the Input/Output Facilities 47

RecordFUes

Opening a Rle

The logical record length (LRECL)of a file must be at least large enough to contain
the file's base component; otherwise, arun"timeerror message will occur when
the file is opened. For example, a file variable declared as FILE OF INTEGER will
require the associated physical 'file to have a logical record length of at least 4
bytes.

tf a file has fixed-length records (RECFM = F) and the logical record length is larger
than necessary to contain the file's component type, then the extra space in each
logical record is wasted.

Before you can read data from a file or write data to a file, you must open the file.
The following sections describe ways of opening a file depending on how you want
to process that file.

Opening a File for 1nput(RESET)
To explicitly open a file for input, the procedure RESET is used. A call to RESET
has the form:

RESH(f,options)

Where Represents

f A file variable.

options An optional string that contains the open options (see "Options for
Opening a File" on page 54).

Normally, RESET allocates a buffer, reads the first logical record of the file into the
buffer, and positions the file pointer at the beginning of the buffer. Therefore, given
a TEXT file F the execution of the statement RESET(F) would imply that "F@"
would reference the first character of the file.

If a RESET operation is performed on an open file, the file is closed and then
reopened.

Figure 21 shows an example of using the RESET procedure on a TEXT file.

PROGRAM EXAMPLE;
VAR

SYSIN
C

BEGIN

TEXT;
CHAR;

(*open SYSIN for input *)
RESET(SYSIN,'NAME=SYSIN.TEXT');
(*get first character of file*)
C := SYSIN@;

END.

Figure 21. Example of Using the RESET Procedure on a TEXT File

48 VS Pascal Application Programming Guide

Record FUes

Opening a File

The logical record I~ngth (LRECL) of a file must be at least large enough to contain '\
the file's base component; otherwise, a run-time error message will occur when ..."
the ii/e is opened. For example, a file variable declared as FILE OF INTEGER will
require the associated physical file to have a logical record length of at least 4
bytes.

H a fil·e has fixed-length records (RECFM = F) and the logical record length is larger
than necessary to contain the file's component type, then the extra space in each
logical r~cord is wasted.

Before you can read data from a file or write data to a file, you must open the file.
The following sections describe ways of opening a file depending on how you want
to process that file.

Opening a File for Input (RESET)
To explicitly open a file for input, the procedure RESET is used. A call to RESET
has the form:

RESET(f,options)

Where Represents

f A file variable.

options An optional string that contains the open options (see "Options for
Opening a File" on page 54).

Normally, RESET allocates a buffer, reads the first logical record of the file into the
buffer, and positions the file pointer at the beginning of the buffer. Therefore, given
a TEXT fife F, the execution of the statement RESET(F) would imply that "F@"
would reference the first character of the file.

If a RESET operation is performed on an open file, the file is closed and then
reopened.

Figure 21 shows an example of using the RESET procedure on a TEXT file.

PROGRAM EXAMPLE;
VAR

SYSIN
C

BEGIN

TEXT;
CHAR;

(*open SYSIN for input *)
RESET (SYSIN, I NAME=SYSIN. TEXT ') ;
(*get first character of file*)
C := SYSIN@;

END.

Figure 21. Example of USing the RESET Procedure on a TEXT File

48 VS Pascal Application Programming Guide

Opening a file for Interactive Input
Because RESET periorms an implicit read o:peration to fill a file buffer, it is not weil
suited for files intended to be associated with interactive input. For example, itthe
file being opened is ass.igned to your terminal, you will be prompted for data when
the file is opened. This may not be preferable it your program is supposed to write
out prompting messages before reading.

To alleviate this problem, a file may be opened: tor interactive input by specifying
INTERACTIVE in the options string of RESET. No. initiaJ read. operation is
periormed on fi les opened in this manner. The tile pointer has the, value NIL until
the first file operation is performed (namely a GET or READ). It the file is a TEXT
file, the end"-of~line condition (see "End-ot-Line Condition" on page 64) is initially
set to TRUE.

Figure 22 shows an example of opening a file for interacUve input.

PROGRAM EXAMPLE;
VAR

SYSIN
DATA

TEXT;
STRING(80);

BEGIN
RESET(SYSIN,'INTERACTIVE');
WRITELN(' ENTER DATA: ');
REAOLN(SYSIN,DATA);

END.

(* Gpen SYSIN for interactive input. *)
(* Prompt for response. *)
(* Read in respons.e. *)

Figure 22. Example of Opening a File for Interactive Input

Opening a File for Output (REWRITE)
The REWRITE procedure is used to open a file for output. A call to the procedure
has the torm:

REWRITE(f,options)

Where Represents

f A file variable.

options An optional string that contains the open options (see "Options tar
Opening a File" on page 54).

REWRITE positions the file pointer at the beginning ot an empty buffer. If the file is
already open, it is closed before being reopened.

Chapter 5. How to Use the InputJOutput Facilities. 49

Opening a File for Interactive Input
Because RESET performs an implicit read operation to fill a file buffer, it is not weil
suited for files intended to be associated with interactive input. For example, if the
file being opened is ass.igned to your terminal, you will be prompted for data when
the file is opened. This may not be preferable if your program is supposed to write
out prompting messages before reading.

To alleviate this problem, a file may be opened tor interactive input by specifying
INTERACTIVE in the options string of RESET. No initiaJ read operation is
performed on files opened in this manner. The 'file pointer has the value NIL u.ntil
the first file operation is performed (namely a. GET or READ). It the-file is a TEXT
file, the end-at-line condition (see "End-at-Line Condition" on page 64) is initially
set to TRUE.

Figure 22 shows an example of opening a file for interactive input.

PROGRAM EXAMPLE;
VAR

SYSIN TEXT;
DATA STRING(8B);

BEGIN
RESET(SYSIN,' INTERACTIVE');
WRITELN(' ENTER DATA: ');
READLN(SYSIN,DATA);

END.

(* Open SYSIN for interactive input. *)
(* Prompt for response. *)
(* Read in response. *)

Figure 22. Example of Opening a File for Interactive Input

Opening a File for Output (REWRITE)
The REWRITE procedure is used to open a file for output. A call to the procedure
has the form:

REWRITE(f,options)

Where Represents

f A file variable.

options An optional string that contains the open options (see "Options tor
Opening a File" on page 54).

REWRITE positions the file pointer at the beginning at an empty buffer. If the file is
already open, it is closed before being reopened.

Chapter 5. How to Use the InputlOutput Facilities. 49

Figure 23 shows an example of opening a TEXT file with the REWRITE procedure.

PROGRAM EXAMPLE;
VAR

SYSPRINT : TEXT;
BEGIN

REWRITE(SYSPRINT);
WRITELN(SYSPRINT,'MESSAGE');

END.

Figure 23. Example of Opening a TEXT File with the REWRITE Procedure

Figure 24 shows an example of how to open a record file with the REWRITE
procedure.

PROGRAM EXAMPLE;
VAR

OUTFILE FILE OF INTEGER;
I INTEGER;

BEGIN
REWRITE(OUTFILE, 'BLKSIZE=1600,LRECL=4,RECFM=F');
I := 3;
OUTFILE@ := I;
PUT(OUTFILE);

END.

Figure 24. Example of Opening a Record File with the REWRITE Procedure

Opening a File for Updating (UPDATE)
The UPDATE procedure opens a record file for updating. In this mode, records
may be read, modified and then replaced. A call to the procedure has the form:

UPDATE(f,options)

Where Represents

f A file variable.

options An optional string that contains the open options (see "Options for
Opening a File" on page 54).

Upon calling UPDATE, a file buffer is allocated and the first record of the file is
read into it. If a subsequent PUT operation is performed, the contents of the buffer
will be stored back into the file at the location from which it was read.

Each GET operation reads in the next subsequent record of the file. A PUT
operation will write the record back from where the last GET operation obtained it.

50 vs Pascal Application Programming Guide

Figure 23 shows an example of opening a TEXT file with the REWRITE procedure.

PROGRAM EXAMPLE;
VAR

SYSPRINT : TEXT;
BEGIN

REWRITE(SYSPRINT);
WRITELN(SYSPRINT,'MESSAGE');

END.

Figure 23. Example of Opening a TEXT File with the REWRITE Procedure

Figure 24 shows an example of how to open a record file with the REWRITE
procedure.

PROGRAM EXAMPLE;
VAR

OUTFILE FILE OF INTEGER;
I INTEGER;

BEGIN
REWRITE(OUTFILE, 'BLKSIZE=160e,LRECL=4,RECFM=F');
I := 3;
OUTFILE@ := I;
PUT(OUTFILE);

END.

Figure 24. Example of Opening a Record File with the REWRITE Procedure

Opening a File for Updating (UPDATE)
The UPDATE procedure opens a record file for updating. In this mode, records
may be read, modified and then replaced. A call to the procedure has the form:

UPDATE(f,options)

Where Represents

f A file variable.

options An optional string that contains the open options (see "Options for
Opening a File" on page 54).

Upon calling UPDATE, a file buffer is allocated and the first record of the file is
read into it. If a subsequent PUT operation is performed, the contents of the buffer
will be stored back into the file at the location from which it was read.

Each GET operation reads in the next subsequent record of the file. A PUT
operation will write the record back from where the last GET operation obtained it.

50 vs Pascal Application Programming Guide

.;

Figure 25 shows an example of how to open a record file for updating.

PROGRAM EXAMPLE;
VAR

F FILE OF
RECORD

NAME:
AGE

END;
BEGIN

UPDATE(F) ;

STRING(30);
0 .. 99;

WHILE NOT EOF(F) DO (* Update each record by "incrementing age. *)
BEGIN

F@.AGE := F@.AGE + 1;
PUT(F);
GET(F);

END;
END.

Figure 25. Example of Opening a Record File for Updating

Opening a Partitioned Data Set For Input (PDSIN)
The PDSIN procedure opens a partitioned data set (PDS) for input. This procedure
has the form:

PDSIN(f,options)

Where Represents

f A file variable.

options A string that contains the open options (see "Options for Opening a File"
on page 54). If no member name is specified in the options string (using
MEMBER:;:name). the member TEMPNAME will be assumed.

PDSIN opens the specified member in the PDS for input. As in the case of RESET,
the file pointer is made to point to a buffer containing the first logical record of the
file.

Note: All operations that may be applied to "partitioned data sets" under MVS may
be applied to MACUB's and TXTUB's under CMS. See "Accessing a PDS in a
CMS Environment" on page 52 for more information.

See Figure 28 on page 58 for an example of opening a partitioned data set.

Chapter 5. How to Use the Input/Output Facilities 51

Figure 25 shows an example of how to open a record file for updating.

PROGRAM EXAMPLE;
VAR

F FILE OF
RECORD

NAME:
AGE

END;

STRING(30);
0 .. 99;

BEGIN
UPDATE(F);
WHILE NOT EOF(F) DO

BEGIN
(* Update each record by 'incrementing age. *)

F@.AGE := F@.AGE + 1;
PUT(F) ;
GET(F);

END;
END.

Figure 25. Example of Opening a Record File for Updating

Opening a Partitioned Data Set For Input (PDSIN)
The PDSIN procedure opens a partitioned data set (PDS) for input. This procedure
has the form:

PDSIN(f,options)

Where Represents

f A file variable.

options A string that contains the open options (see "Options for Opening a File"
on page 54). If no member name is specified in the options string (using
MEMSER=name), the member TEMPNAME will be assumed.

PDSIN opens the specified member in the PDS for input. As in the case of RESET,
the file pointer is made to point to a buffer containing the first logical record of the
file.

Note: All operations that may be applied to "partitioned data sets" under MVS may
be applied to MACUS's and TXTUS's under CMS. See "Accessing a PDS in a
CMS Environment" on page 52 for more information.

See Figure 28 on page 58 for an example of opening a partitioned data set.

Chapter 5. How to Use the Input/Output Facilities 51

Opening a Partitioned Data Set For Output (PDSOUT)
The POSOUT procedure opens a partitioned data set PDS) for output. This
procedure has the form:

POSOUT(f,options)

Where Represents

A file variable.

options A string that contains the open options Isee'Options for Ooening a :=\le"
on page 54). !f no member name is specified in the options string (using
MEMBER = name), the member TEMPNAME Nill be assumed.

POSOUT creates a member in the POS and opens it for output. If the member
already exists, it will be erased and then recreated.

Nole: All operations that may be apolied :0 'partitioned data sets" under MVS may
be applied to MAGUS's and TXTUB's under GMS. See Accessing a PDS !n a eMS
Environment for more information.

See Figure 28 on page 58 for an example ')f opening .~ oartitioned data set.

Accessing a PDS in a eMS Environment
In a GMS environment, members of MACUBs may ':Je accessed 'is ;:>artitioned ·iata
sets via the MVS simulation facilities .. A ddname lSissigned:o the M/'C~iB~iie
with the FILEDEF command; the ~ile name iJf ,he MAC~lS must :hen appear n a
<3LOBAL MAGUB command.

For example, in order to access the file "M'(':.JB MACLB 1\' as a par:itioned 'lata
set with ddname "UB" from aVS Pascal 'Jrogram. 'he !ollcwing Gcmmands would
be run before executing the orogram:

FILEDEF LIB DISK MYLIB MACLIB l~

GLOBAL MACLIB MYLIB

Two or more MAGUBs may be accessed as though ,hey '.II/ere concatenated by
using the GONGAT option of the I='LEDEF~:)mmand. For example. in nrder to
access the MAGLlBs "M1," "M2," and'M3"iS a ,:;oncatenated partitioned data set
with ddname "UB," the following commands would)8 axecuted berore executing
the VS Pascal program:

;lLEDEF ~IB DISK Ml MAC~IB A
FILEDEF LIB DISK M2 MACLIB ;\ (CONCAT
FILEOEF LIB DISK M3 MACLIB A (CONCA:
GLOBAL. MACLIB Ml MZ M3

52 VS Pascal Application PragJamming Guide

Opening a Partitioned Data Set For Output (PDSOUT)
The PDSOUT procedure opens a partitioned data set ipDS) for output. This
procedure has the form:

PDSOUT(f,options)

Where Represents

f A file variable.

options A string that contains the open options ,see "Options for Ooening a File"
on page 54). If no member name is specified in the options string (using
MEMBER =name), the member TEMPNAME will be assumed.

PDSOUT creates a member in the PDS and opens :t for outout. If the member
already exists, it will be erased and then recreated.

Note: All operations that may be apolied '0 'partitioned data sets" under MVS may
be applied to MAGUB's and TXTLlB's under ::;I\IIS. 3ee ,o,ccessing a P~S In a eMS
Environment for more information.

See Figure 28 on page 58 for an example :)f opening '~partitioned data set.

Accessing a PDS in a eMS Environment
In a GMS environment, members of MACUBs may !::Ie accessed 'is ;Jartitioned ·iata
sets via the MVS simulation facilities. A ddname ;s ~ssigned to +he M~C:"'iB file
with the FILEDEF command; the tile name iJt the MA\:UB :nust :hen appear n '1

·3LOBAL MAGUB command.

For example, in order to access the file "M,(L.IB MfoCUB A. ' as a par:itioned data
set with ddname "UB" from aVS Pascai .:Jrogram. 'he 'ollmving::cmmands would
be run before executing the program:

FILEDEF LIB DISK MYLIB MACLIB A
GLOBAL MACLIB MYLIB

Two or more MAGUBs may be accessed as though ,hey were concatenated by
using the CONGAT option of the I='ILEDEF .::ammand. for example. :n .Jrder to
access the MAGUBs "M1," "M2.," and 'M3" w a:;cncatenated partitioned data set
with ddname "UB," thetollowing commands would Je executed before executing
the VS Pascal program:

;ILEOEF LIB DISK Ml MACLIB A
FILEDEF LIB DISK M2 MACLIB ,~ (CONC;\T
FILEDEF LIB DISK M3 MACLIB t-l (CONCAT
GLOBAL MACLIB Ml M2 M3

52 VS Pasca1 Application Programming Guide

Opening a File for Terminal Input (TER.MIN)
You can use the TERMIN procedure to send input directly to your terminal without
gOing through the normal ddname interface. TERMIN opens a TEXT file for
Interactive input from your terminal. This procedure has the form:

TERMIN(f,options)

Where Represents

A file variable

options An optional string that contains the open options (see "Options for
Opening a File" on page 54).

Notes:

1. The TE8MIN procedure opens the file with the INTERACTIVE attribute as
described in "Opening a File for Interactive Input" on page 49.

:;,:. The EOF function always returns FALSE for such files, because the "end-of-file
condition" does not apply to files opened with the INTERACTIVE attribute.

Figure 26 snows an example of terminal input and output.

Note: Under MVS batch, files opened with TERMIN will read from SYSIN. Input
data normally entered from the terminal must be supplied by the JCL for the batch
Job, and you must provide a DD statement for SYSYIN.

Opening a Fiie for Terminal Output (TERMOUT)
You can use the TERMOUT procedure to send output directly to your terminal
withou~ gOing through the normal ddname interface. TERMOUT opens a TEXT file
fo~ terminal output. This procedure has the form:

TERMOUT(f,optionsj

Where Represents

A file variable.

optlOm An optional string tnat contains the open options (see "Options for
Opening a FHe" on page 54).

Figure 26 shows an exampie of terminal input and output.

PROGRAM EXAMP,-E;
VAR

TO 'I I~: 'TYOUT: EX,;
: INTEGER,

BoGI~

TERMIN(TT\'IN) ;
TERMOU:: T;YOUT \ ;
WRITELN (',YOUT, 'ENTER DATA: ') :
READ eN (7Tnr-., I

o~!L .

Figure 26 Example of Terminal input and Output

Note: Under MVS batch, files opened with TERMOUT will write to SYSPRINT.

Chapter 5. How to Use the Input/Output Facilities 53

Opening a File for Terminal Input (TER.MIN)
You can use the TERMIN procedure to send input directly to your terminal without
going through the normal ddname interface. TERMIN opens a TEXT file for
interactive input from your terminal. This procedure has the form:

TERMIN(f,options)

Where Represents

A file variable.

options An optional string that contains the open options (see "Options for
Opening a File" on page 54).

Notes:

1. The TERMIN procedure opens the file with the INTERACTIVE attribute as
described in "Opening a File for Interactive Input" on page 49.

L. The EOF function always returns FALSE for such files, because the "end-of-file
condition" does not apply to files opened with the INTERACTIVE attribute.

Figure 26 shows an example of terminal input and output.

Note ~ Under MVS batch, files opened with TERMIN will read from SYSIN. Input
data normallv entered from the terminal must be supplied by the JCL for the batch
Job. and you must provide a DO statement for SYSYIN.

Opening a File tor Terminal Output (TERMOUT)
You can use the TERMOUT procedure to send output directly to your terminal
without gOing through the normal ddname interface. TERMOUT opens a TEXT file
for terminal output. This procedure has the form:

TERMDUT(f,options)

Where Represents

A file vaqable.

options An optional string that contains the open options (see "Options for
Opening a File" on page 54).

Figure 26 shows an exampie of terminal input and output.

PROGRAH EXAMP~E;
VAR

TO'! II. -:-TYOUT: TEXT;
: INTEGER;

BEGIN
TERMIN(FYIN\ ;
TERMOUT (T":"YOUT\ ;
WRITELN(FYOUT. 'ENTER DATA:');
READcN(TTYI~, i

ENL.

Figure 26 Example 01 Terminal Input and Output

Note: Under MVS batch, files opened with TERMOUT will write to SYSPRINT.

Chapter 5. How to Use the Input/Output Facilities 53

Options for Opening a File
These options are valid for the following 110 routines:

PDSIN
PDSOUT
RESET
REWRITE
TERMIN
TERMOUT
UPDATE

All VS Pascal procedures which open files are defined with an optional string
parameter which contains options pertaining to the file being opened. These
options determine how the file is to be opened and what attributes it is to have.

The data in the string parameter has the syntax shown in the following figure:

~--~ASIS---------,--~------------------------------~-

BLKSIZE = n
DDNAME = name
INTERACTIVE
LRECL = n'---l
MEMBER = name
NAME = fn.ft./I
NOCC-------1
RECFM = C------I

UCASE----'

Not all of these options apply to all open procedures. If an invalid option is
specified for a procedure, the option will be ignored.

The following is a description of each option and the context in which it applies.

ASIS (eMS only)
ASIS causes text being read from a file to be read as is without translation to
upper case (this is the opposite of UCASE).

ASIS applie!; only to the TERMIN procedure.

BLKSIZE=n
BLKSIZE specifies a physical block size to be associated with an output file.
This value (indicated by n) will override a BLKSIZE specification on the
ddname definition.

BLKSIZE applies only to the procedure REWRITE.

DDNAME = name
DDNAME signifies that the physical file to be associated with the file variable
has the ddname indicated by name. This new ddname will remain associated
with the file variable even if the file is closed and then re-opened. It can only
be changed by another call to a file open routine with the DDNAME attribute
specified.

54 vs Pascal Application Programming Guide

Options for Opening a File
These options are valid for the following I/O routines:

PDSIN
PDSOUT
RESET
REWRITE
TERMIN
TERMOUT
UPDATE

All VS Pascal procedures which open files are defined with an optional string
parameter which contains options pertaining to the file being opened. These
options determine how the file is to be opened and what attributes it is to have.

The data in the string parameter has the syntax shown in the following figure:

+
~--r-ASIS----------r-~---------------------------------+~

BLKSIZE = n
DDNAME = name
INTERACTIVE
LRECL = n-------l

EMBER = name
NAME = fn.ft.fi
NOCC------~

RECFM = C----1

UCAS E-------'

Not all of these options apply to all open procedures. If an invalid option is
specified for a procedure. the option will be ignored.

The following is a description of each option and the context in which it applies.

ASIS (eMS only)
ASIS causes text being read from a file to be read as is without translation to
upper case (this is the opposite of UCASE).

ASIS applieli only to the TERMIN procedure.

BLKSIZE=n
BLKSIZE specifies a physical block size to be associated with an output file.
This value (indicated by n) will override a BLKSIZE specification on the
ddname definition.

BLKSIZE applies only to the procedure REWRITE.

DDNAME = name
DDNAME signifies that the physical file to be associated with the file variable
has the ddname indicated by name. This new ddname will remain associated
with the file variable even if the file is closed and then re-opened. It can only
be changed by another call to a file open routine with the DDNAME attribute
specified.

54 vs Pascal Application Programming Guide

When the
File Name Is

• A simple
variable.

If you do not specify a DDNAME, VS Pascal generates a ddname according to
the guidelines in Figure 27. The ddname will depend on the compile-time
option in effect:

• DDNAME(COMPAT) forces VS Pascal to generate ddnames that match the
identifiers used in the program. Remember that the operating system does
not observe VS Pascal scoping rules. For example, a file variable F in one
scope would be different from another file variable F in another scope, but
both would have the ddname F. This may cause the first occurrence of F to
be overwritten by the second occurrence of F when DDNAME(COMPAT) is
in effect. You must make sure that your program contains no duplicate
ddnames.

• DDNAME(UNIQUE) instructs VS Pascal to generate unique ddnames based
on the names used in the program, thus ensuring that multiple occurrences
of a file are not overwritten.

And DDNAME(COMPAT)
Is In Effect

The initial ddname is the first eight
characters of the variable name.
Variable names of fewer than eight
characters are padded on the right with
blanks.

For example, for a variable called F. VS
Pascal generates the ddname F followed
by seven blanks. For a variable called
CHECKBOOK, VS Pascal generates the
ddname CHECKBOO.

Or DDNAME(UNIQUE)
Is In Effect

1. For global variables specified In the
program parameter list, the ddname
is the first eight characters of the
variable name.

2. For flies opened with TERM IN, the
ddname is $CONSOLE (SYSIN in
MVS batch).

3. For flies opened with TERMOUT. the
ddname is $CONSOLE (SYSOUT in
MVS batch).

4. Otherwise, the initial ddname is the
first eight characters of the variable
name. Variable names of fewer than
eight characters are padded on the
right with a pound sign (#).

At run time, VS Pascal begins to
replace the ddname with digits and a
single pad character. starting on the
right-11and side of the ddname.

For example, if the first file opened is
named F, the ddname would be
F######1. If the next file opened is
named CHECKBOOK, the ddname
would be CHECKB#2.

Figure 27 (Part 1 of 2). VS Pascal Generated ddnames

Chapter 5. How to Use the Input/Output Facilities 55

When the
File Name Is

• A simple
variable.

If you do not specify a DDNAME, VS Pascal generates a ddname according to
the guidelines in Figure 27. The ddname will depend on the compile-time
option in effect:

• DDNAME(COMPAT) forces VS Pascal to generate ddnames that match the
identifiers used in the program. Remember that the operating system does
not observe VS Pascal scoping rules. For example, a file variable F in one
scope would be different from another file variable F in another scope, but
both would have the ddname F. This may cause the first occurrence of F to
be overwritten by the second occurrence of F when DDNAME(COMPAT) is
in effect. You must make sure that your program contains no duplicate
ddnames.

• DDNAME(UNIQUE) instructs VS Pascal to generate unique ddnames based
on the names used in the program, thus ensuring that multiple occurrences
of a file are not overwritten.

And DDNAME(COMPAT)
Is In Effect

The initial ddname is the first eight
characters of the variable name.
Variable names of fewer than eight
characters are padded on the right with
blanks.

For example, for a variable called F, VS
Pascal generates the ddname F followed
by seven blanks. For a variable called
CHECKBOOK, VS Pascal generates the
ddname CHECKBOO.

Or DDNAME(UNIQUE)
Is In Effect

1. For global variables specified In the
program parameter list, the ddname
is the first eight characters of the
variable name.

2. For files opened with TERMIN, the
ddname is $CONSOLE (SYSIN in
MVS batch).

3. For flies opened with TERMOUT, the
ddname is $CONSOLE (SYSOUT in
MVS batch).

4. Otherwise, the initial ddname is the
first eight characters of the variable
name. Variable names of fewer than
eight characters are padded on the
right with a pound sign (#).

At run time, VS Pascal begins to
replace the ddname with digits and a
single pad character, starting on the
right-hand side of the ddname.

For example, if the 'first file opened is
named F, the ddname would be
F######1. If the next file opened is
named CHECKBOOK, the ddname
would be CHECKB#2.

Figure 27 (Part 1 of 2). VS Pascal Generated ddnames

Chapter 5. How to Use the Input/Output Facilities 55

When the
File Name Is

• An element of
an array.

• A field of a
record.

• Pointer-qualified.

And DDNAME(COMPAT)
Is In Effect

1. For flies opened with TERMIN, the
ddname is $CONSOLE (SYSIN in
MVS batch).

2. For flies opened without TERMOUT,
the ddname is $CONSOLE (SYSOUT
in MVS batch).

3. Otherwise, VS Pascal generates an
initial name of PASCALOO. At run
time, VS Pascal replaces the name
with digits, starting on the right-hand
side of the name.

For example, the first such file
opened would have the ddname
PASCAL01, and the 100th file opened
would be PASCA100.

Or DDNAME(UNIQUE)
Is In Effect

1. For flies opened with TERM IN, the
ddname is $CONSOLE (SYSIN in
MVS batch).

2. For flies opened with TERMOUT, the
ddname is $CONSOLE (SYSOUT in
MVS batch).

3. Otherwise, VS Pascal generates an
initial name of PASCALOO. At run
time, VS Pascal replaces the name
with digits, starting on the right-hand
side of the name.

For example, the first such file
opened would have the ddname
PASCAL01, and the 100th file opened
would be PASCA100.

Figure 27 (Part 2 of 2). VS Pascal Generated ddnames

DONA ME applies to the following procedures: RESET, REWRITE, UPDATE,
PDSIN, PDSOUT, TERMIN, and TERMOUT.

INTERACTIVE
INTERACTIVE indicates that the file is to be opened for input as an interactive
file.

INTERACTIVE applies to the procedures RESET and PDSIN (and is implied for
TERMIN).

LRECL=n
LRECL specifies a logical record length to be associated with an output file.
The value (indicated by n) will override any LRECL specification on the
ddname definition.

For files with variable-length records (RECFM = V), the logical record length
must include a 4-byte length descriptor. Thus, if text is being written to such a
file, the LRECL must be 4 bytes longer than the longest line to be written.

Note: The 4-byte length descriptor for each record of a V-record file is an MVS
convention.

The LRECL attribute may also be used in the TERMIN and TERMOUT
procedures to specify the length of the 110 buffer. This will determine the
maximum length of the line to be read from, or written to, your terminal.

LRECL applies to the procedures REWRITE, TERMIN, and TERMOUT.

MEMBER = name
MEMBER specifies a member name of a partitioned data set (PDS). The
member to be accessed is indicated by name.

MEMBER applies to the procedures PDSIN and PDSOUT. If you do not specify
a member name for PDSIN and PDSOUT, VS Pascal uses the member name
TEMPNAME.

56 vs Pascal Application Programming Guide

When the
File Name Is

• An element of
an array.

• A field of a
record.

• Pointer-qualified.

And DDNAME(COMPAT)
Is In Effect

1. For files opened with TERMIN, the
ddname is $CONSOLE (SYSIN in
MVS batch).

2. For flies opened without TERMOUT,
the ddname is $CONSOLE (SYSOUT
in MVS batch).

3. Otherwise, VS Pascal generates an
initial name of PASCALOO. At run
time, VS Pascal replaces the name
with digits, starting on the right-hand
side of the name.

For example, the first such file
opened would have the ddname
PASCAL01, and the 100th file opened
would be PASCA100.

Or DDNAME(UNIQUE)
Is In Effect

1. For flies opened with TERM IN, the
ddname is $CONSOLE (SYSIN in
MVS batch).

2. For flies opened with TERMOUT, the
ddname is $CONSOLE (SYSOUT in
MVS batch).

3. Otherwise, VS Pascal generates an
initial name of PASCALOO. At run
time, VS Pascal replaces the name
with digits, starting on the right-hand
side of the name.

For example, the first such file
opened would have the ddname
PASCAL01, and the 100th file opened
would be PASCA100.

Figure 27 (Part 2 of 2). VS Pascal Generated ddnames

DDNAME applies to the following procedures: RESET, REWRITE, UPDATE,
PDSIN, PDSOUT, TERMIN, and TERMOUT.

INTERACTIVE
INTERACTIVE indicates that the file is to be opened for input as an interactive
file.

INTERACTIVE applies to the procedures RESET and PDSIN (and is implied for
TERMIN).

LRECL=n
LRECL specifies a logical record length to be associated with an output file.
The value (indicated by n) will override any LRECL specification on the
ddname definition.

For files with variable-length records (RECFM = V), the logical record length
must include a 4-byte length descriptor. Thus, if text is being written to such a
file, the LRECL must be 4 bytes longer than the longest line to be written.

Note: The 4-byte length descriptor for each record of a V-record file is an MVS
convention.

The LRECL attribute may also be used in the TERMIN and TERMOUT
procedures to specify the length of the I/O buffer. This will determine the
maximum length of the line to be read from, or written to, your terminal.

LRECL applies to the procedures REWRITE, TERMIN, and TERMOUT.

MEMBER = name
MEMBER specifies a member name of a partitioned data set (PDS). The
member to be accessed is indicated by name.

MEMBER applies to the procedures PDSIN and PDSOUT. If you do not specify
a member name for PDSIN and PDSOUT, VS Pascal uses the member name
TEMPNAME.

56 vs Pascal Application Programming Guide

NAME = fn.fUm (CMS only)
NAME specifies the name of a CMS file to be associated with the file variable.
This option has no effect if the program is not running under CMS.

tn, ft, tm are the file name, file type and file mode, respectively, of the CMS file.
Each must be separated by a period (u."). A file mode of "*" is permitted
except with the UPDATE procedure.

NAME applies to the following procedures: RESET, REWRITE, UPDATE,
PDSIN, and PDSOUT.

NOCC
NOCC causes data to be placed at the first character position of a file,
regardless of any carriage control character required in this position by the
RECFM.

Normally, the first character position of an output file which contains ANSI or
machine control characters (as determined by the RECFM) is not directly
accessible to the user program. The data in such files is placed at the second
character position of each record.

The NOCC option causes such files to be treated as though control characters
are not significant; that is, data will be placed within each record at the first
character position. This option allows control characters to be generated
explicitly.

NOCC applies only to the procedure REWRITE.

RECFM=c
RECFM specifies a record format to be associated with an output file. This
specification (indicated by c) will override a RECFM specification on the
ddname definition.

VS Pascal supports all record formats that QSAM supports:

~U-'C=--T-~-'-'t=--~-~-'------------------------~~4

B
S
T
BS
BT
BST

~D--'t=-~ ~-.,..-----------.~ ..

A Specifies that the records in the data set contain ASA print control
characters.

B Specifies that the data set contains blocked records.

D Specifies that the data set contains variable-length tape records.

F Specifies that the data set contains fixed-length records.

M Specifies that the records in the data set contain machine print control
characters.

Chapter 5. How to Use the Input/Output Facilities 57

NAME = fn.fUm (CMS only)
NAME specifies the name of a CMS file to be associated with the file variable.
This option has no effect if the program is not running under CMS.

fn, ft, fm are the file name, file type and file mode, respectively, of the CMS file.
Each must be separated by a period (". "). A file mode of "*" is permitted
except with the UPDATE procedure.

NAME applies to the following procedures: RESET, REWRITE, UPDATE,
POSIN, and POSOUT.

NOCC
NOCC causes data to be placed at the first character position of a file,
regardless of any carriage control character required in this position by the
RECFM.

Normally, the first character position of an output file which contains ANSI or
machine control characters (as determined by the RECFM) is not directly
accessible to the user program. The data in such files is placed at the second
character position of each record.

The NOCC option causes such files to be treated as though control characters
are not significant; that is, data will be placed within each record at the first
character position. This option allows control characters to be generated
explicitly.

NOCC applies only to the procedure REWRITE.

RECFM=c
RECFM specifies a record format to be associated with an output file. This
specification (indicated by c) will override a RECFM specification on the
ddname definition.

VS Pascal supports all record formats that QSAM supports:

L~ B
S
T
BS
BT
BST

-O'--'E-: ~--r-----------...~ ..

A Specifies that the records in the data set contain ASA print control
characters.

B Specifies that the data set contains blocked records.

D Specifies that the data set contains variable-length tape records.

F Specifies that the data set contains fixed-length records.

M Specifies that the records in the data set contain machine print control
characters.

Chapter 5. How to Use the Input/Output Facilities 57

S Specifies, for fixed-length records, that the records are to be written as
standard blocks. For variable-length and BDAM records, it specifies that
the records are to be written as spanned blocks. ..)

T Specifies that track overflow is used with the data set.

U Specifies that the data set contains undefined-length records.

V Specifies that the data set contains variable-length records.

RECFM applies to procedure REWRITE.

UCASE (CMS only)
UCASE causes text being read from a file to be translated to upper case (this is
the opposite of ASIS). This option applies only to programs running under
CMS; it is ignored otherwise.

UCASE applies only to the procedure TERMIN.

Figure 28 shows how to use the open options.

PROGRAM EXAMPLE;
VAR

PDS
MEMBER
BUF

BEGIN

TEXT;
STRING(8);
PACKED ARRAY[1 .. 80] OF CHAR;

RESET(INPUT,'INTERACTIVE'); (* Open INPUT for interactive input. *)
READLN(MEMBER); (* Read first member name. *)
WHILE NOT EOF(INPUT) DO (* Loop until no more members. *)

BEGIN (* Open member for input. *)

END.

PDSIN(PDS, 'DDNAME=SYSLIB,MEMBER=' II MEMBER);
WHILE NOT EOF(PDS) DO (* Copy each line of the member to

BEGIN (* file OUTPUT.
READLN(PDS,BUF);
WRITELN (BUF) ;

END;
READLN(MEMBER);

END;
(* Read next member name.

Figure 28. Example of Using the Open Options

Processing a TEXT File
This section describes how to read data from and write data to a TEXT file.

Reading Data from a TEXT File (GET)

*)
*)

*)

The GET procedure allows you to read data from a file. A call to the procedure has
the form:

GET(f)

Where Represents

f A file variable.

58 vs Pascal Application Programming Guide

S Specifies, for fixed-length records, that the records are to be written as
standard blocks. For variable-length and BDAM records, it specifies that 11
the records are to be written as spanned blocks. ..",.,

T Specifies that track overflow is used with the data set.

U Specifies that the data set contains undefined-length records.

V Specifies that the data set contains variable-length records.

RECFM applies to procedure REWRITE.

UCASE (CMS only)
UCASE causes text being read from a file to be translated to upper case (this is
the opposite of ASIS). This option applies only to programs running under
CMS; it is ignored otherwise.

UCASE applies only to the procedure TERMIN.

Figure 28 shows how to use the open options.

PROGRAM EXAMPLE;
VAR

PDS
MEMBER
BUF

BEGIN

TEXT;
STRING(8);
PACKED ARRAY[1 •• 80] OF CHAR;

RESET(INPUT,'INTERACTIVE'); (* Open INPUT for interactive input. *)
READLN(MEMBER); (* Read first member name. *)
WHILE NOT EOF(INPUT) DO (* Loop until no more members. *)

BEGIN (* Open member for input. *)

END.

PDSIN(PDS, 'DDNAME=SYSLIB,MEMBER=' II MEMBER);
WHILE NOT EOF(PDS) DO (* Copy each line of the member to

BEGIN (* file OUTPUT.
READLN(PDS,BUF);
WRITELN(BUF);

END;
READLN(MEMBER);

END;
(* Read next member name.

Figure 28. Example of Using the Open Options

Processing a TEXT File
This section describes how to read data from and write data to a TEXT file.

Reading Data from a TEXT File (GET)

*)
*)

*)

The GET procedure allows you to read data from a file. A call to the procedure has
the form:

GET (f)

Where Represents

f A file variable.

58 vs Pascal Application Programming Guide

When applied to an input TEXT file, GET causes the file pointer to be incremented
by one character position. If the file pointer is positioned at the last position of a
logical record, the GET operation will cause the end-ot-line condition to become
true (see "End-ot-Line Condition" on page 64) and the file pointer will be
positioned to a blank. It, betore the call, the end-ot-line condition is true, then the
file pointer will be positioned to the beginning ot the next logical record.

If, before the call to GET, the tile pointer is positioned to the end ot the last logical
record of a TEXT file (in which case the end-of-line condition will be true), then the
end-ot-file condition will become true. (See "End-of-File Condition" on page 65.)

If you attempt to use GET on a TEXT tile that has not been opened, it will be
implicitly opened for input (as if RESET had been called). This means that the first
character of the file will be skipped and the file pointer will be at the second
character.

Figure 29 shows how to use the GET procedure on a TEXT file.

PROGRAM EXAMPLE;
VAR

INFILE TEXT;
Cl,C2 CHAR;

BEGIN
RESET(INFILE) ;
Cl := INFILE@;
GET(INFILE) ;
C2 := INFILE@;

END.

(* Get first char of file. *)

(* Get second char of file. *)

Figure 29. Example of USing the GET Procedure on a TEXT File

Writing Data to a TEXT File (PUT)
The PUT procedure allows you to write data to a file. A call to this procedure has
the form:

PUT (f)

Where Represents

f A file variable.

You must open the file for output or update before calling PUT; otherwise, a
run-time error message will be issued. Before issuing a PUT operation, the
associated output buffer must contain the data to be written.

The PUT procedure, when applied to a TEXT file opened for output, causes the file
pointer to be incremented by one character position. If, before the call, the number
of characters in the current logical record is equal to the file's logical record length
(LRECL), the file pointer will be positioned within the associated buffer to begin a
new logical record.

Chapter 5. How to Use the Input/Output Facilities 59

When applied to an input TEXT file, GET causes the file pointer to be incremented
by one character position. If the file pointer is positioned at the last position of a
logical record, the GET operation will cause the end-of-line condition to become
true (see "End-of-Line Condition" on page 64) and the file pointer will be
positioned to a blank. If, before the call, the end-of-line condition is true, then the
file pointer will be positioned to the beginning of the next logical record.

If, before the call to GET, the file pointer is positioned to the end of the last logical
record of a TEXT file (in which case the end-of-line condition will be true), then the
end-of-file condition will become true. (See "End-of-File Condition" on page 65.)

If you attempt to use GET on a TEXT file that has not been opened, it will be
implicitly opened for input (as if RESET had been called). This means that the first
character of the file will be skipped and the file pointer will be at the second
character.

Figure 29 shows how to use the GET procedure on a TEXT file.

PROGRAM EXAMPLE;
VAR

INFILE TEXT;
Cl,C2 CHAR;

BEGIN
RESET (I NFl LE) ;
Cl := INFILE@;
GET(INFILE) ;
C2 := INFILE@;

END.

(* Get first char of file. *)

(* Get second char of file. *)

Figure 29. Example of Using the GET Procedure on a TEXT File

Writing Data to a TEXT File (PUT)
The PUT procedure allows you to write data to a file. A call to this procedure has
the form:

PUT (f)

Where Represents

A file variable.

You must open the file for output or update before calling PUT; otherwise, a
run-time error message will be issued. Before issuing a PUT operation, the
associated output buffer must contain the data to be written.

The PUT procedure, when applied to a TEXT file opened for output, causes the file
pointer to be incremented by one character position. If, before the call, the number
of characters in the current logical record is equal to the file's logical record length
(LRECL), the file pointer will be positioned within the associated buffer to begin a
new logical record.

Chapter 5. How to Use the Input/Output Facilities 59

-- ---------------~----- -------------

When the file buffer is filled to capacity, the buffer is written to the associated
physical file. The file pointer is then positioned to the beginning of the buffer so
that it may be refilled on subsequent calls to PUT. The capacity of the buffer is
equal to the file's physical block size (BLKSIZE).

Figure 30 shows how to use the PUT procedure for a TEXT file.

PROGRAM EXAMPLE;
VAR

OUTFILE
C

TEXT;
CHAR;

BEGIN
REWRITE(OUTFILE);
OUTFILE@ := C;
(*Write out value of C*)
PUT(OUTFILE);

END.

Figure 30. Example of Using the PUT Procedure for a TEXT File

Reading Data from a TEXT File (READ)
The READ procedure reads data from a TEXT file.

A call to READ has the forms:

READ(f,v)

or

READ(f,v:n)

Where Represents

f A file variable. The file variable f may be omitted, in which case the file
INPUT is assumed.

v A variable that must be one of the following types.

• CHAR (or a sub range thereof)
• DBCS fixed string

• GCHAR
• GSTRING
• INTEGER (or a subrange thereof)
• REAL (or SHORTREAL)
• SBCS fixed string

• STRING

n An optional field length (an integer expression).

Upon executing READ, if the file pointer is not yet set, an initial GET operation is
performed. This case occurs when a file is opened interactively. (See "Opening a
File for Interactive Input" on page 49.)

If READ is called for a closed file, the file is opened for input by an implicit call to
RESET.

60 vs Pascal Application Programming Guide

When the file buffer is filled to capacity, the buffer is written to the associated
physical file. The file pOinter is then positioned to the beginning of the buffer so
that it may be refilled on subsequent calls to PUT. The capacity of the buffer is
equal to the file's physical block size (BLKSIZE).

Figure 30 shows how to use the PUT procedure for a TEXT file.

PROGRAM EXAMPLE;
VAR

OUTFILE
C

TEXT;
CHAR;

BEGIN
REWRITE(OUTFILE);
OUTFILE@ := C;
(*Write out value of C*)
PUT(OUTFILE);

END.

Figure 30. Example of Using the PUT Procedure for a TEXT File

Reading Data from a TEXT File (READ)
The READ procedure reads data from a TEXT file.

A call to READ has the forms:

READ(f,v)

or

READ(f,v:n)

Where Represents

f A file variable. The file variable f may be omitted, in which case the file
INPUT is assumed.

v A variable that must be one of the following types.

• CHAR (or a sub range thereof)
• DBCS fixed string

• GCHAR
• GSTRING
• INTEGER (or a subrange thereof)
• REAL (or SHORTREAL)
• SBCS fixed string

• STRING

n An optional field length (an integer expression).

Upon executing READ, if the file pointer is not yet set, an initial GET operation is
performed. This case occurs when a file is opened interactively. (See "Opening a
File for Interactive Input" on page 49.)

If READ is called for a closed file, the file is opened for input by an implicit call to
RESET.

60 vs Pascal Application Programming Guide

Reading Data from a TEXT File (READLN)
A call to READLN has the same form as a call to READ and performs the same
function except that after the data has been read, all remaining characters within
the logical record are skipped. The procedure READLN is applicable to TEXT files
only.

Normally, READLN causes the next logical record to be read (unless the end-of-file
is reached) and the file pointer is positioned to the beginning of the buffer that
contains the record.

In the case of TEXT files opened with the INTERACTIVE attribute, the tile pointer is
positioned after the end ot the logical record and the end-ot-line condition is set to
TRUE.

It the end-ot-line condition is true for an interactive file before a call to READLN
and the condition was not the result of a previous call to READLN, then the call is
ignored. Two calls to READLN in succession will cause the following logical
record to be skipped in its entirety.

If READLN is called for a closed file, the file is opened implicitly for input as though
RESET had been called.

Figure 31 shows how to use the READLN procedure.

PROGRAM COPY;
VAR

INFIlE,
OUTFIlE TEXT;
BUF STRING(lBB);

BEGIN
RESET(INFILE) ;
REWRITE(OUTFIlE);
WHILE NOT EOF(INFIlE) DO

BEGIN
READLN(INFILE,BUF);
WRITELN(OUTFILE,BUF);

END;
END.

(* Ignore characters after column 188 *)
(* in each line. *)

Figure 31. Example of Using the READLN Procedure

Chapter 5. How to Use the Input/Output Facilities 61

Reading Data from a TEXT File (READLN)
A call to READLN has the same form as a call to READ and performs the same
function except that after the data has been read, all remaining characters within
the logical record are skipped. The procedure READLN is applicable to TEXT files
only.

Normally, READLN causes the next logical record to be read (unless the end-of-file
is reached) and the file pointer is positioned to the beginning of the buffer that
contains the record.

In the case of TEXT files opened with the INTERACTIVE attribute, the file pointer is
positioned after the end of the logical record and the end-of-line condition is set to
TRUE.

If the end-of-line condition is true for an interactive file before a call to READLN
and the condition was not the result of a previous call to READLN, then the call is
ignored. Two calls to READLN in succession will cause the following logical
record to be skipped in its entirety.

If READLN is called for a closed file, the file is opened implicitly for input as though
RESET had been called.

Figure 31 shows how to use the READLN procedure.

PROGRAM COPY;
VAR

INFILE,
OUTFILE TEXT;
BUF STRING(lee);

BEGIN
RESET(INFILE) ;
REWRITE(OUTFILE);
WHILE NOT EOF(INFILE) DO

BEGIN
READLN(INFILE,BUF);
WRITELN(OUTFILE,BUF);

END;
END.

(* Ignore characters after column lee *)
(* in each line. *)

Figure 31. Example of Using the READLN Procedure

Chapter 5. How to Use the Input/Output Facilities 61

Writing Data to a TEXT File (WRITE)
The WRITE procedure writes data to a TEXT file beginning at the current position of .J
the file pointer. A call to the procedure has the forms:,

WRITE(f,e)

or

WRITE(f,e:n)

or

WRITE(f,e:nl:n2)

Where Represents

f

e

A file variable. The file variable f can be omitted, in which case, the file
OUTPUT is assumed.

An expression that must be of one of the following types:

• BOOLEAN
• CHAR (or a sub range thereof)
• DBCS fixed string

• GCHAR
• GSTRING
• INTEGER (or a subrange thereof)
• REAL (or SHORTREAL)

• SBCS fixed string

• STRING

n, n1, n2 Optional field lengths (integer expressions).

If WRITE is called for a closed file, the file is opened implicitly for output.

If during a call to WRITE, the length of the logical record being produced becomes
longer than the logical record length (LRECL) of the TEXT file, a run-time error
message will be generated.

Writing Data to a TEXT File (WRITELN)
A call to WRITELN has the same form as a call to WRITE and performs the same
function except that as it causes the current logical record being produced to be
completed so that the next output operation will begin a new logical record. The
WRITELN procedure is applicable to TEXT files only.

If the record format of the file is fixed (RECFM = F), WRITELN will fill the remainder
of the current record with blanks. For variable length records (RECFM =V), the
record length is set to the number of bytes currently occupied by the record.

If WRITELN is called for a closed file, the file is opened implicitly for output.

62 vs Pascal Application Programming Guide

Writing Data to a TEXT File (WRITE)
The WRITE procedure writes data to a TEXT file beginning at the current position of
the file painter. A call to the procedure has the forms:

WRITE(f,e)

or

WRITE(f,e:n)

or

WRITE(f,e:nl:n2)

Where Represents

f

e

A file variable. The file variable f can be omitted, in which case, the file
OUTPUT is assumed.

An expression that must be of one of the following types:

• BOOLEAN
• CHAR (or a subrange thereof)
• OBCS fixed string

• GCHAR
• GSTRING
• INTEGER (or a subrange thereof)
• REAL (or SHORTREAL)
• SBCS fixed string

• STRING

n, n1, n2 Optional field lengths (integer expressions).

If WRITE is called for a closed file, the file is opened implicitly for output.

If during a call to WRITE, the length of the logical record being produced becomes
longer than the logical record length (LRECL) of the TEXT file, a run-time error
message will be generated.

Writing Data to a TEXT File (WRITELN)
A call to WRITELN has the same form as a call to WRITE and performs the same
function except that as it causes the current logical record being produced to be
completed so that the next output operation will begin a new logical record. The
WRITELN procedure is applicable to TEXT files only.

If the record format of the file is fixed (RECFM = F), WRITELN will fill the remainder
of the current record with blanks. For variable length records (RECFM = V), the
record length is set to the number of bytes currently occupied by the record.

If WRITELN is called for a closed file, the file is opened implicitly for output.

62 vs Pascal Application Programming Guide

Figure 32 shows how to use the WRITELN procedure.

PROGRAM DOUBLESPACE;
VAR

FILEIN,
FILEOUT TEXT;
BUF STRING(255);

BEGIN
REWRITE(FILEOUT);
RESET(FILEIN);
WHILE NOT EOF(FILEIN) DO

BEGIN
READLN(FILEIN,BUF);
WRITELN(FILEOUT,BUF);
WRITELN(FILEOUT);

END;
END.

(* Insert blank line.

Figure 32. Example of Using the WRITELN Procedure

The PAGE Procedure

*)

The PAGE procedure causes a page eject to occur on a TEXT output file which is to
be associated with a printer (or to a disk file which will eventually be printed). A
call to the procedure has the following form:

PAGE(f)

Where Represents

f An optional TEXT file variable. The default is OUTPUT.

If a logical record is partially filled, an implicit WRITELN will be performed before
the page eject.

For this procedure to have any effect, the first character of each logical record of
the file must be reserved for carriage control. This is done by specifying either A
(ANSI control) or M (machine control) in the RECFM attribute.

If the record format specifies ANSI control, then the character "1" will be inserted
in the first character position of the record. For machine control, a single record
that contains the hexadecimal value of "88" in its first character pOSition is written.

Chapter 5. How to Use the Input/Output Facilities 63

Figure 32 shows how to use the WRITELN procedure.

PROGRAM DOUBLESPACE;
VAR

FILEIN,
FILEOUT TEXT;
BUF STRING(255);

BEGIN
REWRITE(FILEOUT);
RESET(FILElN) ;
WHILE NOT EOF(FILEIN) DO

BEGIN
READLN(FILEIN,BUF);
WRITELN(FILEOUT,BUF);
WRITELN(FILEOUT);

END;
END.

(* Insert blank line.

Figure 32. Example of Using the WRITELN Procedure

The PAGE Procedure

*)

The PAGE procedure causes a page eject to occur on a TEXT output file which is to
be associated with a printer (or to a disk file which will eventually be printed). A
call to the procedure has the following form:

PAGE (f)

Where Represents

f An optional TEXT file variable. The default is OUTPUT.

If a logical record is partially filled, an implicit WRITELN will be performed before
the page eject.

For this procedure to have any effect, the first character of each logical record of
the file must be reserved for carriage control. This is done by specifying either A
(ANSI control) or M (machine control) in the RECFM attribute.

If the record format specifies ANSI control, then the character "1" will be inserted
in the first character position of the: record. For machine control, a single record
that contains the hexadecimal value of "88" in its first character position is written.

Chapter 5. How to Use the Input/Output Facilities 63

Figure 33 shows how to use the PAGE procedure.

PROGRAM EXAMPLE;
VAR

PRINT: TEXT;
BEGIN

REWRITE(PRINT) ;

PAGE(PRINT);
END.

(~ Start new page. *)

Figure 33. Example of Using the PAGE Procedure

End-ot-Line Condition
The end-of-line condition occurs on a TEXT file opened for input when the file
pointer is positioned after the end of a logical record. To test for this condition, the
EOLN function is used.

The end-ot-line condition becomes true when GET is executed tor a tile positioned
at the last character of a logical record, or it a call to READ consumes all of the
characters of the current logical record.

The file pOinter will always point to a blank character (in EBCDIC, hexadecimal 40)
when the end-of-line condition occurs.

The EOLN function is only applicable to TEXT files.

Figure 34 shows how to use the EOLN function.

PROGRAM EXAMPLE;
VAR

SYSIN: TEXT;
CNT : 9 .. 32767;

BEGIN
RESET(SYSIN);
CNT := 9;
WHILE NOT EOLN(SYSIN) DO

BEGIN
CNT := CNT + 1;
GET(SYSIN);

END;
WRITELN(CNT) ;

END.

(* Compute length of first logical
(* record of SYSIN.

Figure 34. Example of Using the EOLN Function

64 vs Pascal Application Programming Guide

*)
*)

Figure 33 shows how to use the PAGE procedure.

PROGRAM EXAMPLE;
VAR

PRINT: TEXT;
BEGIN

REWRITE(PRINT) ;

PAGE(PRINT);
END.

(~ Start new page. *)

Figure 33. Example of Using the PAGE Procedure

End-of-Line Condition
The end-of-line condition occurs on a TEXT file opened for input when the file
pointer is positioned after the end of a logical record. To test 'for this condition, the
EOLN function is used.

The end-of-line condition becomes true when GET is executed for a file positioned
at the last character of a logical record, or if a call to READ consumes all of the
characters of the current logical record.

The file pOinter will always point to a blank character (in EBCDIC, hexadecimal 40)
when the end-of-line condition occurs.

The EOLN function is only applicable to TEXT files.

Figure 34 shows how to use the EOLN function.

PROGRAM EXAMPLE;
VAR

SYSIN: TEXT;
CNT : 8 •. 32767;

BEGIN
RESET(SYSIN);
CNT := 8;
WHILE NOT EOLN(SYSIN) DO

BEGIN
CNT := CNT + 1;
GET(SYSIN);

END;
WRITELN (CNT) ;

END.

(* Compute length of first logical
(* record of SYSIN.

Figure 34. Example of Using the EOLN Function

64 vs Pascal Application Programming Guide

*)
*)

End-of-File Condition
The end-of-file condition becomes true for a TEXT file when one of the following
occurs:

• RESET is called and the file is empty. Under VM, this can only occur when the
file mode is 4.

• The file is open for output.

• GET is called when the file pointer is positioned at the end of the last logical
record of the file (in which case the end-of-line condition is true).

• READ or READLN is called and all characters of the last logical record were
consumed.

To test for this condition, use the EOF function.

Any calls to GET, READ, or READLN for a file for which the end-of-file condition is
true will result in a run-time error.

Figure 35 shows how to use the EOF function on a TEXT file.

PROGRAM EXAMPLE;
VAR

SYSIN: TEXT;
CNT : O .• 32767;

BEGIN
RESET(SYSIN);
CNT := 0;
WHILE NOT EOF(SYSIN) DO

BEGIN
CNT := CNT + 1;
READLN(SYSIN);

END;
WRITELN (CNT) ;

END.

(* Compute number of logical records
(* in file SYSIN.

Figure 35. Example of Using the EOF Function on a TEXT File

Processing a Record File

*)
*)

This section describes how to read data from and write data to a record file.

Reading Data from a Record File (GET)
The GET procedure allows you to read data from a file. A call to the procedure has
the form:

GET(f)

Where Represents

f A file variable.

Chapter 5. How to Use the Input/Output Facilities 65

End-of-File Condition
The end-ot-tile condition becomes true tor a TEXT tile when one ot the tollowing
occurs:

• RESET is called and the tile is empty. Under VM, this can only occur when the
tile mode is 4.

• The file is open tor output.

• GET is called when the tile pointer is positioned at the end ot the last logical
record ot the tile (in which case the end-ot-line condition is true).

• READ or READLN is called and all characters ot the last logical record were
consumed.

To test tor this condition, use the EOF tunction.

Any calls to GET, READ, or READLN tor a tile tor which the end-ot-tile condition is
true will result in a run-time error.

Figure 35 shows how to use the EOF tunction on a TEXT tile.

PROGRAM EXAMPLE;
VAR

SYSIN: TEXT;
CNT : O .• 32767;

BEGIN
RESET(SYSIN);
CNT := 0;
WHILE NOT EOF(SYSIN) DO

BEGIN
CNT := CNT + 1;
READLN(SYSIN);

END;
WRITELN (CNT);

END.

(* Compute number of logical records
(* in file SYSIN.

Figure 35. Example of Using the EOF Function on a TEXT File

Processing a Record File

*)
*)

This section describes how to read data trom and write data to a record tile.

Reading Data from a Record File (GET)
The GET procedure allows you to read data trom a tile. A call to the procedure has
the torm:

GET (f)

Where Represents

f A tile variable.

Chapter 5. How to Use the Input/Output Facilities 65

Each call to GET reads the next sequential logical record into the buffer referenced
by the file pointer. The end-of-file condition will become true if there are no more
records within the file.

A record file must be opened for input or update before executing a GET operation;
otherwise, a run-time error message will be issued.

Figure 36 snows how to use the GET procedure with a record file.

PROGRAM EXAMPLE;
VAR

F : FILE OF
RECORD

NAME: STRING(25);
AGE : 0 •. 99;
WEIGHT: REAL;
SEX : (MALE,FEMALE)

END;
BEGIN

RESET(F);
WHILE NOT EOF(F) DO

BEGIN

END;
END.

WRITE(' Name: "
F@.NAME);

WRITE(' Age : "
F@.AGE:3);

WRITELN;
GET(F) ;

Figure 36. Example of Using the GET Procedure on a Record File

Writing Data to a Record File (PUT)
The PUT procedure allows you to write data to a file. A call to the procedure has
the form:

PUT(f)

Where Represents

A file variable.

The PUT procedure causes the file record that was assigned to the output buffer via
the file pointer to be effectively written to the associated physical file. Each call to
PUT produces one logical record.

The file must be opened for output or update before calling PUT; otherwise, a
run-time error message will be issued. Before a PUT operation, the associated
output buffer must contain the data to be written.

66 vs Pascal Application Programming Guide

Each call to GET reads the next sequential logical record into the buffer referenced
by the file pointer. The end-of-file condition will become true if there are no more
records within the file.

A record file must be opened for input or update before executing a GET operation;
otherwise, a run-time error message will be issued.

Figure 36 shows how to use the GET procedure with a record file.

PROGRAM EXAMPLE;
VAR

F : FILE OF
RECORD

NAME: STRING(25);
AGE : 8 .. 99;
WEIGHT: REAL;
SEX : (MALE,FEMALE)

END;
BEGIN

RESET(F);
WHILE NOT EOF(F) DO

BEGIN

END;
END.

WRITE(I Name : I,

F@.NAME);
WRITE(I Age : I,

F@.AGE:3);
WRITELN;
GET(F);

Figure 36. Example of Using the GET Procedure on a Record File

Writing Data to a Record File (PUT)
The PUT procedure allows you to write data to a file. A call to the procedure has
the form:

PUT(f)

Where Represents

f A file variable.

The PUT procedure causes the file record that was assigned to the output buffer via
the file pointer to be effectively written to the associated physical file. Each call to
PUT produces one logical record.

The file must be opened for output or update before calling PUT; otherwise, a
run-time error message will be issued. Before a PUT operation, the associated
output buffer must contain the data to be written.

66 vs Pascal Application Programming Guide

Figure 37 shows how to use the PUT procedure with a record file.

PROGRAM EXAMPLE;
VAR

F : FI LE OF
RECORD

NAME: STRING(25);
AGE : 0 •• 99;
WEIGHT: REAL;
SEX : (MALE,FEMALE)

END;
BEGIN

REWRITE(F);
F@.NAME := 'John F. Doe';
F@.AGE := 36;
F@.WEIGHT := 160.0;
F@.SEX := MALE;
PUT(F) ;

END.

Figure 37. Example of Using the PUT Procedure on a Record File

Reading Data from a Record File (READ)
The statement:

READ(f,v)

is equivalent to:

BEGIN
V := F@;
GET(F) ;

END

Where Represents

f A record file variable.

v A variable of the same type as the record file's components.

If file f is not open when READ is called, a run-time error message will be issued.

Writing Data to a Record File (WRITE)
The statement:

WRITE(f ,e)

is equivalent to:

BEGIN
f@ := e;
PUT(f) ;

END

Where Represents

f A record file variable.

e An expression of the same type as the record file's components.

Chapter 5. How to Use the Input/Output Facilities 67

Figure 37 shows how to use the PUT procedure with a record file.

PROGRAM EXAMPLE;
VAR

F : FILE OF
RECORD

NAME: STRING(25);
AGE : O .. 99;
WEIGHT: REAL;
SEX : (MALE,FEMALE)

END;
BEGIN

REWRITE(F) ;
F@.NAME := 'John F. Doe';
F@.AGE := 36;
F@.WEIGHT := 160.0;
F@.SEX := MALE;
PUT(F) ;

END.

Figure 37. Example of Using the PUT Procedure on a Record File

Reading Data from a Record File (READ)
The statement:

READ(f,v)

is equivalent to:

BEGIN
V := F@;
GET(F);

END

Where Represents

f A record file variable.

v A variable of the same type as the record file's components.

If file f is not open when READ is called, a run-time error message will be issued.

Writing Data to a Record File (WRITE)
The statement:

WRITE(f,e)

is equivalent to:

BEGIN
f@ := e;
PUT(f) ;

END

Where Represents

A record file variable.

e An expression of the same type as the record file's components.

Chapter 5. How to Use the Input/Output Facilities 67

If file f is not open when WRITE is called, a run-time error message will be issued.

Figure 38 shows how to use the READ and WRITE procedures with record files.

PROGRAM EXAMPLE;
TYPE

REC = RECORD
NAME STRING(25);
AGE 0 .• 99;
SEX (MALE,FEMALE);

END;
VAR

INFILE.
OUTFILE: FILE OF REC;
BUFFER : REC;

BEGIN
RESET(INFILE) ;
REWRITE(OUTFILE);
WHILE NOT EOF(INFILE) DO

BEGIN
READ(INFILE.BUFFER);
WRITE(OUTFILE.BUFFER);

END;
END.

Figure 38. Example of Using the READ and WRITE Procedures on Record Files

Accessing a Record File Randomly
vs Pascal permits records of a record file to be accessed in a random order by
means of the SEEK procedure. SEEK positions a file pointer to a specific element
within a record file.

A call to SEEK has the form:

SEEK(f,n)

Where Represents

A record file that was previously opened with RESET, REWRITE, or
UPDATE.

n A positive integer expression that corresponds to a record number. The
number of the first record is 1.

A subsequent call to GET or PUT will operate on the "nth" record of the file. Each
call to GET or PUT thereafter will operate on subsequent records. SEEK does not
perform an 110 operation.

At the first call to SEEK, the file is implicitly closed and reopened for random
access using the basic direct access method (BDAM). The file that is to be
accessed in this manner must have unblocked, fixed-length records; that is, the
RECFM attribute for the file must be "F."

68 vs Pascal Application Programming Guide

If file f is not open when WRITE is called, a run-time error message will be issued.

Figure 38 shows how to use the READ and WRITE procedures with record files.

PROGRAM EXAMPLE;
TYPE

REC = RECORD
NAME STRING(25);
AGE 0 .. 99;
SEX (MALE,FEMALE);

END;
VAR

INFILE,
OUTFILE: FILE OF REC;
BUFFER : REC;

BEGIN
RESET(INFILE) ;
REWRITE(OUTFILE);
WHILE NOT EOF(INFILE) DO

BEGIN
READ(INFILE,BUFFER);
WRITE(OUTFILE,BUFFER);

END;
END.

Figure 38. Example of Using the READ and WRITE Procedures on Record Files

Accessing a Record File Randomly
vs Pascal permits records of a record file to be accessed in a random order by
means of the SEEK procedure. SEEK positions a file pointer to a specific element
within a record file.

A call to SEEK has the form:

SEEK(f,n)

Where Represents

f A record file that was previously opened with RESET, REWRITE, or
UPDATE.

n A positive integer expression that corresponds to a record number. The
number of the first record is 1.

A subsequent call to GET or PUT will operate on the "nth" record of the file. Each
call to GET or PUT thereafter will operate on subsequent records. SEEK does not
perform an I/O operation.

At the first call to SEEK, the file is implicitly closed and reopened for random
access using the basic direct access method (BDAM). The file that is to be
accessed in this manner must have unblocked, fixed-length records; that is, the
RECFM attribute for the file must be "F."

68 vs Pascal Application Programming Guide

Under TSO and MVS batch mode, the first SEEK operation on a file opened with
REWRITE will cause dummy records to be written to the associated data set until
the file's primary space allocation is filled. The record number specified must not
exceed the number of blocks in the file's primary space allocation.

Under CMS, the corresponding FILEDEF of a file being accessed with SEEK must
have the XTENT attribute specified. This attribute specifies the largest record
number that may be accessed; however, it has nothing to do with the space
occupied by the file. Thus, a FILEDEF specification of the form

FILEDEF F DISK FILE DATA(XTENT 65535

will permit any record in file F to be referenced with SEEK, regardless if it actually
exists. If a non-existent record is being read, CMS will return a buffer of zeroes.

Note: If XTENT is not specified, a default value of 50 is used.

Figure 39 shows how to use the SEEK procedure to access records randomly.

PROGRAM EXAMPLE;
TYPE

STRING(25);
REC == RECORD

NAME
AGE
SEX

0 .. 99;
(MALE,FEMALE)

END;
IDX = RECORD

RECNO: O .• MAXINT;
END;

VAR
RECFILE: FILE OF REC;
IDXFILE: FILE OF IDX;

BEGIN
RESET (IDXFI LE) ;
RESET(RECFILE) ;
WHILE NOT EOF(IDXFILE) DO (* Write out names in order of index. *)

BEGIN
SEEK(RECFILE,IDXFILE@.RECNO);
GET(RECFILE);
WRITELN(OUTPUT,RECFILE@.NAME);
GET (I DXFI LE) ;

END;
END.

Figure 39. Example of Using the SEEK Procedure

Chapter 5. How to Use the Input/Output Facilities 69

Under TSO and MVS batch mode, the first SEEK operation on a file opened with
REWRITE will cause dummy records to be written to the associated data set until
the file's primary space allocation is filled. The record number specified must not
exceed the number of blocks in the file's primary space allocation.

Under CMS, the corresponding FILEDEF of a file being accessed with SEEK must
have the XTENT attribute specified. This attribute specifies the largest record
number that may be accessed; however, it has nothing to do with the space
occupied by the file. Thus, a FILEDEF specification of the form

FILEDEF F DISK FILE DATA(XTENT 65535

will permit any record in file F to be referenced with SEEK, regardless if it actually
exists. If a non-existent record is being read, CMS will return a buffer of zeroes.

Note: If XTENT is not specified, a default value of 50 is used.

Figure 39 shows how to use the SEEK procedure to access records randomly.

PROGRAM EXAMPLE;
TYPE

STRING(25);
8 .• 99;

REC = RECORD
NAME
AGE
SEX (MALE, FEMALE)

END;
lOX = RECORD

RECNO: O .. MAXINT;
END;

VAR
RECFILE: FILE OF REC;
IDXFILE: FILE OF IDX;

BEGIN
RESET(IDXFILE) ;
RESET(RECFILE);
WHILE NOT EOF(IDXFILE) DO (* Write out names in order of index. *)

BEGIN
SEEK(RECFILE,IDXFILE@.RECNO);
GET(RECFILE);
WRITELN(OUTPUT,RECFILE@.NAME);
GET(lOXFILE) ;

END;
END.

Figure 39. Example of Using the SEEK Procedure

Chapter 5. How to Use the Input/Output Facilities 69

End-ol-File Condition

Closing a File

The end-of-file condition becomes true for a record file when:

• RESET is called for an empty file. Under VM, this can only occur with a file
mode of 4.

• The file is opened for output.

• GET or READ is executed for a file in which no more records remain.

To test for this condition, use the EOF function.

Any calls to GET or READ for a file for which the end-of-file condition is true will
produce an error message.

The procedure CLOSE closes a file explicitly. A call to this procedure has the
form:

CLOSE(f)

Where Represents

A file variable.

All open files which are declared in the body of a routine are closed implicitly
when the routine returns to its invoker. All files which are open when the program
terminates will be closed automatically by the VS Pascal run-time environment.

If the variable associated with an open file is destroyed before program
termination, the results could be disastrous when VS Pascal attempts to close the
file. This problem could occur if the file variable is pointer qualified (exists on the
heap) and the heap containing the file is freed with DISPOSEHEAP, or the subheap
containing the file is freed with RELEASE. In this case, the file variable must be
closed explicitly with a call to CLOSE.

Figure 40 shows how to use the CLOSE procedure.

PROGRAM EXAMPLE(OUTPUT);
VAR

FSTK : ARRAY [1 .• 4J OF TEXT;
DDNAME : STRING(8);
I : 1. .4;

BEGIN
DDNAME := 'TEST
FOR I :=1 TO 4 DO

BEGIN

, . ,

DDNAME[5] := CHR(I + ORD('G'));
REWRITE(FSTK[I],'DDNAME = 'I IDDNAME);
WRITELN(FSTK[I],'Test &numsign',i:1);
CLOSE (FSTK[I]);

END;
END.

Figure 40. Example of Using the CLOSE Procedure

70 vs Pascal Application Programming Guide

End-of-File Condition

Closing a File

The end-of-file condition becomes true for a record file when:

• RESET is called for an empty file. Under VM, this can only occur with a file
mode of 4.

• The file is opened for output.

• GET or READ is executed for a Ille in which no more records remain.

To test for this condition, use the EOF function.

Any calls to GET or READ for a file for which the end-of-file condition is true will
produce an error message.

The procedure CLOSE closes a file explicitly. A call to this procedure has the
form:

CLOSE(f)

Where Represents

f A file variable.

All open files which are declared in the body of a routine are closed implicitly
when the routine returns to its invoker. All files which are open when the program
terminates will be closed automatically by the VS Pascal run-time environment.

If the variable associated with an open file is destroyed before program
termination, the results could be disastrous when VS Pascal attempts to close the
file. This problem could occur if the file variable is pointer qualified (exists on the
heap) and the heap containing the file is freed with DISPOSEHEAP, or the subheap
containing the file is freed with RELEASE. In this case, the file variable must be
closed explicitly with a call to CLOSE.

Figure 40 shows how to use the CLOSE procedure.

PROGRAM EXAMPLE(OUTPUT);
VAR

FSTK : ARRAY [1 .. 4] OF TEXT;
DDNAME : STRING(8);
I : 1. .4;

BEGIN
DDNAME := 'TEST
FOR I :=1 TO 4 DO

BEGIN

, . ,

DDNAME[5] := CHR(I + ORD('8'));
REWRITE(FSTK[I], 'DDNAME = 'IIDDNAME);
WRITELN(FSTK[I],'Test &numsign' ,i:1);
CLOSE (FSTK[I]);

END;
END.

Figure 40. Example of Using the CLOSE Procedure

70 vs Pascal Application Programming Guide

Appending Data to a File
Data may be appended to an existing file by opening it for output with a call to
REWRITE and specifying a disposition of "MOD" on the corresponding ddname
definition.

The following examples illustrate how sueh a disposition is specified under the
various operating system environments. The ddname of the file is "LOG"; the file
name is "LOG.DATA."

eMS:

FILEDEF LOG DISK LOG DATA (DISP MOD

TSO:

ALLOC DDN(LOG) DSN(LOG.DATA) MOD

MVS Batch Mode:

//LOG DD DSN=ABC.LOG.DATA,DISP=MOD

Unpredictable Actions
VS Pascal will act unpredictably given the following situations:

• Two different files are associated to the same CMS file using the NAME option.

• Two different file variables are open with the same DDNAME. An example of
this would be if two file variables have the same first 8 characters (regardless
of seoping) when DDNAME(COMPAT) is specified. Another example would be
if a recursive procedure opens a file when DDNAME(COMPAT) is specified.
See Figure 27 on page 55.

Chapter 5. How to Use the Input/Output Facilities 71

Appending Data to a File
Data may be appended to an existing file by opening it for output with a call to
REWRITE and specifying a disposition of "MOD" on the corresponding ddname
definition.

The following examples illustrate how such a disposition is specified under the
various operating system environments. The ddname of the file is "LOG"; the file
name is "LOG.DATA."

eMS:

FILEDEF LOG DISK LOG DATA (DISP MOD

TSO:

ALLOC DDN(LOG) DSN(LOG.DATA) MOD

MVS Batch Mode:

//LOG DD DSN=ABC.LOG.DATA,DISP=MOD

Unpredictable Actions
VS Pascal will act unpredictably given the following situations:

• Two different files are associated to the same CMS file using the NAME option.

• Two different file variables are open with the same DDNAME. An example of
this would be if two file variables have the same first 8 characters (regardless
of scoping) when DDNAME(COMPAT) is specified. Another example would be
if a recursive procedure opens a file when DDNAME(COMPAT) is specified.
See Figure 27 on page 55.

Chapter 5. How to Use the Input/Output Facilities 71

• j

- , I - ,

!!!

un- ,
WI • !-

/

~ Chapter 6. VS Pascal Run-Time Error Handling

This section explains how to read trace-back reports, how VS Pascal handles
run-time errors, how you can produce a routine to control run-time error handling,
and how and when VS Pascal produces a symbol dump.

Reading a VS Pascal Trace-Back Report
The VS Pascal trace-back report provides useful information while you are
debugging programs. It gives you a list of all the routines in the procedure chain.

For each routine the trace-back report provides:

• The name of the routine

• The statement number of the last statement to be executed in the routine (that
is, the statement n'umber of the call to the next routine in the chain)

• The address in storage of the call to the next routine (or in case of an error, the
address of the instruction where the error occurred)

• The name of the unit in which the routine is declared.

A VS Pascal trace-back report can be produced in several ways:

• A trace-back report is produced when the predefined TRACE procedure is
called in your program, or when you issue a TRACE debugging command, The
last line of Figure 41 shows that VS Pascal called the user's main program in
the unit named HASHASEG. Statement 24 of the main program contains the
call to REAOJO, statement 3 of REAOJO contains the call to SEARCHJO, and
so on.

TRACE BACK OF CALLED ROUTINES
Routine
HASHKEY
GET_HASH_PTR
SEARCH_ID
READ 1D
<MAIN-PROGRAM>
VSPASCAL

stmt at address in module
9 0002018C HASHCSEG
2 00021208 HASHBSEG
9 000213C8 HASHBSEG
3 00021550 HASHBSEG

24 00020278 HASHASEG
000285FA

Figure 41. TRACE Routine Called by a User Program

Chapter 6. VS Pascal Run-Time Error Handling 73

/

\..., Chapter 6. VS Pascal Run-Time Error Handling

This section explains how to read trace-back reports, how VS Pascal handles
run-time errors, how you can produce a routine to control run-time error handling,
and how and when VS Pascal produces a symbol dump.

Reading a VS Pascal Trace-Back Report
The VS Pascal trace-back report provides useful information while you are
debugging programs. It gives you a list of all the routines in the procedure chain.

For each routine the trace-back report provides:

• The name of the routi ne

• The statement number of the last statement to be executed in the routine (that
is, the statement number of the call to the next routine in the chain)

• The address in storage of the call to the next routine (or in case of an error, the
address of the instruction where the error occurred)

• The name of the unit in which the routine is declared.

A VS Pascal trace-back report can be produced in several ways:

• A trace-back report is produced when the prede'fined TRACE procedure is
called in your program, or when you issue a TRACE debugging command, The
last line of Figure 41 shows that VS Pascal called the user's main program in
the unit named HASHASEG. Statement 24 of the main program contains the
call to READJD, statement 3 of READJD contains the call to SEARCHJD, and
so on.

TRACE BACK OF CALLED ROUTINES
Routine
HASH KEY
GET_HASH_PTR
SEARCH_ID
READ ID
<MAIN-PROGRAM>
VSPASCAL

stmt at address in module
9 0002018C HASHCSEG
2 00021208 HASHBSEG
9 000213C8 HASHBSEG
3 00021550 HASHBSEG

24 00020278 HASHASEG
000205FA

Figure 41. TRACE Routine Called by a User Program

Chapter 6. VS Pascal Run-Time Error Handling 73

• VS Pascal produces a trace-back report when a program error occurs.
Figure 42 shows a trace-back from a program error. The trace-back contains
an error message indicating a fixed-point overflow. The trace-back report
identifies the routine and the statement number where the error occurred. The
error occurred at statement 3 in routine FACTORIAL on the third recursive call.

AMPX818E Fixed Point Overflow
TRACE BACK OF CALLED ROUTINES

Routine
FACTORIAL
FACTORIAL
FACTORIAL
<MAIN-PROGRAM>
VSPASCAL

stmt at address ;n module
3 8082814C TEST
3 8882814C TEST
3 8882814C TEST

17 88828298 TEST
888285FA

Figure 42. TRACE Routine Call Due to a Program Error

• VS Pascal produces a trace-back report when a checking error occurs. A
checking error occurs when the compiler detects an invalid condition (such as
a subscript range error). (For a description of compiler-generated checks, see
"CHECK Option" on page 157.) Figure 43 shows a trace-back that occurred
from a checking error. The first line of the trace identifies the checking error.
The error occurred at statement 4 in routine TRANSLATE.

AMPX832E High Bound Checking Error
TRACE BACK OF CALLED ROUTINES

Routine
TRANSLATE
TO_ASCII
<MAIN-PROGRAM>
VSPASCAL

stmt at address in module
4 88828154 CONVERT

18 8802824C CONVERT
17 88828338 CONVERT

888205FA

Figure 43. TRACE Routine Call Due to a Checking Error

74 vs Pascal Application Programming Guide

• VS Pascal produces a trace-back report when a program error occurs.
Figure 42 shows a trace-back from a program error. The trace-back contains ,J
an error message indicating a fixed-point overflow. The trace-back report
identifies the routine and the statement number where the error occurred. The
error occurred at statement 3 in routine FACTORIAL on the third recursive call.

AMPX818E Fixed Point Overflow
TRACE BACK OF CALLED ROUTINES

Routine
FACTORIAL
FACTORIAL
FACTORIAL
<MAIN-PROGRAM>
VSPASCAL

stmt at address in module
3 8082814C TEST
3 8882814C TEST
3 8882814C TEST

17 88828298 TEST
888285FA

Figure 42. TRACE Routine Call Due to a Program Error

• VS Pascal produces a trace-back report when a checking error occurs. A
checking error occurs when the compiler detects an invalid condition (such as
a subscript range error). (For a description of compiler-generated checks, see
"CHECK Option" on page 157.) Figure 43 shows a trace-back that occurred
from a checking error. The first line of the trace identifies the checking error.
The error occurred at statement 4 in routine TRANSLATE.

AMPX832E High Bound Checking Error
TRACE BACK OF CALLED ROUTINES

Routine
TRANSLATE
TO ASCII
<MAIN-PROGRAM>
VSPASCAL

stmt at address in module
4 88828154 CONVERT

18 8882824C CONVERT
17 88828338 CONVERT

888285FA

Figure 43. TRACE Routine Call Due to a Checking Error

74 vs Pascal Application Programming Guide

• VS Pascal produces a trace-back report when an 1/0 error occurs. Figure 44
shows the trace-back from an 1/0 error. The trace-back shows that statement 3
of routine INITIALIZE attempted to open a file for which no DDNAME definition
exists.

AMPX041S File could not be opened: SYSIN
TRACE BACK OF CALLED ROUTINES

Routine
INITIALIZE
<MAIN-PROGRAM>
VSPASCAL

stmt at address in module
3 00020154 COPY
2 00020218 COPY

000205FA

Figure 44. TRACE Routine Call Due to an 1/0 Error

Note: While performing optimization, the compiler might move the code that tests
for an error condition back several statements. Thus, when a run-time error
occurs, the statement number indicated in the trace-back report might be slightly
less than the number of the statement that caused the error.

Chapter 6. VS Pascal Run-Time Error Handling 75

• VS Pascal produces a trace-back report when an 1/0 error occurs. Figure 44
shows the trace-back from an 1/0 error. The trace-back shows that statement 3
of routine INITIALIZE attempted to open a file for which no DDNAME definition
exists.

AMPX041S File could not be opened: SYSIN
TRACE BACK OF CALLED ROUTINES

Routine
INITIALIZE
<MAIN-PROGRAM>
VSPASCAL

stmt at address in module
3 00028154 COPY
2 88020218 COpy

000205FA

Figure 44. TRACE Routine Call Due to an 1/0 Error

Note: While performing optimization, the compiler might move the code that tests
for an error condition back several statements. Thus, when a run-time error
occurs, the statement number indicated in the trace-back report might be slightly
less than the number of the statement that caused the error.

Chapter 6. VS Pascal Run-Time Error Handling 75

Run-Time Checking Errors

Error

Low bound

High bound

Figure 45 shows the checking errors that can occur in a VS Pascal program at run
time.

Oescri ptlon

• The value of an array subscript is less than the minimum allowed.
• The value of a subrange is less than the minimum allowed.

• The value of an array subscript is higher than the minimum allowed.
• The value of a subrange is higher than the minimum allowed.

Note: When an unsigned check occurs, you might receive a high bound check when the
value was actually too low.

NIL pointer An attempt was made to reference a variable from a pointer that has the value NIL.

CASE label The value of a CASE selector does not match any of the specified CASE labels and there
is no OTHERWISE clause.

String truncation In a string-to-string assignment, the source string has more characters than the
maximum allowed length of the target string.

Assertion failure An ASSERT statement evaluated to FALSE.

String subscript An indexing operation on a string was greater than the current length of the string.
out of bounds

Function value A function routine returned to its invoker without being assigned a result.

Figure 45. Run-Time Checking Errors

How VS Pascal Handles Run-Time Errors
vs Pascal detects many kinds of errors during program execution; upon detecting
an error, the VS Pascal run-time library provides error handling.

In VM/CMS or MVS/TSO, the output is sent to your terminal (unless you select
another ddname with the ERRFILE run-time option).

In MVS batch, the output is sent to SYSPRINT (unless you select another ddname
with the ERRFILE run-time option).

The run-time library considers certain errors fatal. Examples of fatal errors are
operation exceptions and protection exceptions. When a fatal error occurs, VS
Pascal:

1. Issues a message describing the error
2. Displays a trace-back report
3. Terminates program execution.

76 vs Pascal Application Programming Guide

Run-Time Checking Errors

Error

Low bound

High bound

Figure 45 shows the checking errors that can occur in a VS Pascal program at run
time.

Description

• The value of an array subscript is less than the minimum allowed.
• The value of a subrange is less than the minimum allowed.

• The value of an array subscript is higher than the minimum allowed.
• The value of a subrange is higher than the minimum allowed.

Note: When an unsigned check occurs, you might receive a high bound check when the
value was actually too low.

NIL pointer An attempt was made to reference a variable from a pointer that has the value NIL.

CASE label The value of a CASE selector does not match any of the specified CASE labels and there
is no OTHERWISE clause.

String truncation In a string-to-string assignment, the source string has more characters than the
maximum allowed length of the target string.

Assertion failure An ASSERT statement evaluated to FALSE.

String subscript An indexing operation on a string was greater than the current length of the string.
out of bounds

Function value A function routine returned to its invoker without being assigned a result.

Figure 45. Run-Time Checking Errors

How VS Pascal Handles Run-Time Errors
vs Pascal detects many kinds of errors during program execution; upon detecting
an error, the VS Pascal run-time library provides error handling.

In VM/CMS or MVS/TSO, the output is sent to your terminal (unless you select
another ddname with the ERRFILE run-time option).

In MVS batch, the output is sent to SYSPRINT (unless you select another ddname
with the ERRFILE run-time option).

The run-time library considers certain errors fatal. Examples of fatal errors are
operation exceptions and protection exceptions. When a fatal error occurs, VS
Pascal:

1. Issues a message descri bi ng the error
2. Displays a trace-back report
3. Terminates program execution.

76 VS Pascal Application Programming Guide

/
Other errors, such as checking errors, do not stop program execution. You must
determine the extent to which the nonfatal errors affect your program results.
When a nonfatal error occurs:

1. VS Pascal produces a message describing the error.

2. VS Pascal generates a trace-back report.

3. If you compiled and link-edited the program with the DEBUG option and the
program was not executed with the DEBUG run-time option, VS Pasca.i
produces a symbolic dump of the variables in the procedure experiencing the
error.

4. If you compiled and link-edited the program with the DEBUG option and the
program was executed with the DEBUG run-time option, VS Pascal will invoke
the Interactive Debugging Tool as if a breakpoint had been encountered.

VS Pascal allows a specific number of nonfatal errors to occur before it terminates
the program. This number is set by the ERRCOUNT run-time option (see
Chapter 14, "Run-Time Options" on page 167). The default is 20.

Chapter 6. VS Pascal Run-Time Error Handling 77

Other errors, such as checking errors, do not stop program execution. You must
determine the extent to which the nonfatal errors affect your program results.
When a nonfatal error occurs:

1. VS Pascal produces a message describing the error.

2. VS Pascal generates a trace-back report.

3. If you compiled and link-edited the program with the DEBUG option and the
program was not executed with the DEBUG run-time option, VS Pasca.1
produces a symbolic dump of the variables in the procedure experiencing the
error.

4. If you compiled and link-edited the program with the DEBUG option and the
program was executed with the DEBUG run-time option, VS Pascal will invoke
the Interactive Debugging Tool as if a breakpoint had been encountered.

VS Pascal allows a specific number of nonfatal errors to occur before it terminates
the program. This number is set by the ERRCOUNT run-time option (see
Chapter 14, "Run-Time Options" on page 167). The default is 20.

Chapter 6. VS Pascal Run-Time Error Handling 77

How You Handle Run-Time Errors with the ON ERROR Procedure
VS Pascal provides a way for you to gain control when a run-time error occurs.
When run-time errors occur, the ONERROR procedure is called to perform any
necessary action before issuing an error message. The VS Pascal library provides
a default ONERROR routine (which does nothing).

You may write your own version of ON ERROR and declare it as an EXTERNAL
procedure. This allows you to control how errors are handled. Figure 46 shows
the IBM-supplied include file that contains information that will help you produce
your own ONERROR procedure. The member name in the include file is
ONERROR.

(***)
(* *)
(* RUNTIME ERROR INTERCEPTION ROUTINE *)
(* *)
(***)

TYPE
ERRORTYPE = 1 999;
ERRORACTIONS =

XHALT ,
XPMSG,
XUMSG,
XTRACE,
XDEBUG,
XDECERR,
XRESERVED6,
XRESERVED7,
XRESERVED8,
XRESERVED9,
XRESERVEDA,
XRESERVEDB,
XRESERVEDC,
XRESERVEDD,
XRESERVEDE,
XRESERVEDF);

(*number of execution errors *)
(*action to be performed *)
(*terminate program *)
(*print Pascal diagnostic *)
(*print user's message *)
(*produce a trace-back *)
(*invoke the debugger *)
(*decr error counter *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)

Figure 46 (Part 1 of 2). Contents of ONERROR Include File

78 vs Pascal Application Programming Guide

How You Handle Run-Time Errors with the ON ERROR Procedure
VS Pascal provides a way for you to gain control when a run-time error occurs.
When run-time errors occur, the ONERROR procedure is called to perform any
necessary action before issuing an error message. The VS Pascal library provides
a default ONERROR routine (which does nothing).

You may write your own version of ONERROR and declare it as an EXTERNAL
procedure. This allows you to control how errors are handled. Figure 46 shows
the IBM-supplied include file that contains information that will help you produce
your own ONERROR procedure. The member name in the include file is
ONERROR.

(***)
(* *)
(* RUNTIME ERROR INTERCEPTION ROUTINE *)
(* *)
(***)

TYPE
ERRORTYPE = 1 999;
ERRORACTIONS =

XHALT,
XPMSG,
XUMSG,
XTRACE,
XDEBUG,
XDECERR,
XRESERVED6,
XRESERVED7,
XRESERVED8,
XRESERVED9,
XRESERVEDA,
XRESERVEDB,
XRESERVEDC.
XRESERVEDD,
XRES ERVEDE,
XRESERVEDF) ;

(*number of execution errors *)
(*action to be performed *)
(*terminate program *)
(*print Pascal diagnostic *)
(*print user's message *)
(*produce a trace-back *)
(*invoke the debugger *)
(*decr error counter *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)
(*RESERVED *)

Figure 46 (Part 1 of 2). Contents of ONERROR Include File

78 vs Pascal Application Programming Guide

ERRORSET = SET OF ERRORACTIONS;

PROCEDURE ONERROR(
CONST FERROR
CONST FMODNAME
CONST FPROCNAME
CONST FSTMTNO
VAR FRETMSG
VAR FACTION

EXTERNAL;

ERRORTYPE;
STRING;
STRING;
INTEGER;
STRING;
ERRORSET) ;

(*ERROR NUMBER *)
(*MODULE NAME WHERE OCCURRED *)
(*PROCEDURE WHERE OCCURRED *)
(*STATEMENT NO *)
(*RETURNED USER'S MESSAGE *)
(*ACTIONS TO BE PERFORMED *)

Figure 46 (Part 2 of 2). Contents of ONERROR Include File

Upon entry to ONERROR, the parameter FERROR contains the number of the error
encountered. See "Run-Time Messages" on page 243 to determine the message
number corresponding to a particular error.

Note: Each error intercepted by the VS Pascal run-time environment consists of a
unique three-digit number. A diagnostic message corresponding to the error will
begin with the error number prefixed with the characters "AMPX" and suffixed with
the character "I" for "informational", "E" for "error", or "S" for "severe error".

FMODNAME, FPROCNAME, and FSTMTNO contain the name of the unit, the name
of the routine, and the source statement number, respectively, where the error
occurred.

FACTION is a set variable that determines what action is to be taken. Upon
invocation of ONERROR, FACTION describes the default actions that takes place
after ONERROR returns. Examine your ONERROR procedure and decide whether
you want to handle the error or let the default action take place. (The default
actions for all errors passed to ONERROR are listed in Appendix C, "Run-Time
Error Default Actions" on page 267.)

You can modify the FACTION parameter to fit your needs. Each member of
FACTION and its function is listed below.

XHALT Causes the program to terminate. If XDEBUG is also in FACTION and
the Interactive Debugging Tool is active, the debugging tool is invoked
instead of terminating. If specified, the actions for XPMSG, XUMSG,
and XTRACE are completed before the program terminates.

XPMSG Causes VS Pascal to display its diagnostic message for the error. If
XHALT is in FACTION, a severe error (S-Ievel) message is issued. If
XDECERR is in FACTION, an error (E-Ievel) message is issued.
Otherwise, an informational (I-level) message is issued.

XUMSG Causes VS Pascal to display the user's message. If you set the XUMSG
member of FACTION, you must also set FRETMSG with the text of the
message. If XUMSG and XPMSG are both in FACTION, the VS Pascal
diagnostic message is displayed before the user message.

XTRACE Causes VS Pascal to display a trace-back.

XDEBUG Causes the Interactive Debugging Tool to be invoked if active. If
specified, the actions for XPMSG, XUMSG, and XTRACE are completed
before invoking the debugger.

Chapter 6. VS Pascal Run-Time Error Handling 79

ERRORSET = SET OF ERRORACTIONS;

PROCEDURE ONERROR(
CONST FERROR
CONST FMODNAME
CONST FPROCNAME
CONST FSTMTNO
VAR FRETMSG
VAR FACTION

EXTERNAL;

ERRORTYPE;
STRING;
STRING;
INTEGER;
STRING;
ERRORSET);

(*ERROR NUMBER *)
(*MODULE NAME WHERE OCCURRED *)
(*PROCEDURE WHERE OCCURRED *)
(*STATEMENT NO *)
(*RETURNED USER'S MESSAGE *)
(*ACTIONS TO BE PERFORMED *)

Figure 46 (Part 2 of 2). Contents of ONERROR Include File

Upon entry to ONERROR, the parameter FERROR contains the number of the error
encountered. See "Run-Time Messages" on page 243 to determine the message
number corresponding to a particular error.

Note: Each error intercepted by the VS Pascal run-time environment consists of a
unique three-digit number. A diagnostic message corresponding to the error will
begin with the error number prefixed with the characters "AMPX" and suffixed with
the character "I" for "informational", "E" for "error", or "S" for "severe error".

FMODNAME, FPROCNAME, and FSTMTNO contain the name of the unit, the name
of the routine, and the source statement number, respectively, where the error
occurred.

FACTION is a set variable that determines what action is to be taken. Upon
invocation of ONERROR, FACTION describes the default actions that takes place
after ONERROR returns. Examine your ONERROR procedure and decide whether
you want to handle the error or let the default action take place. (The default
actions for all errors passed to ONERROR are listed in Appendix C, "Run-Time
Error Default Actions" on page 267.)

You can modify the FACTION parameter to fit your needs. Each member of
FACTION and its function is listed below.

XHALT Causes the program to terminate. If XDEBUG is also in FACTION and
the Interactive Debugging Tool is active, the debugging tool is invoked
instead of terminating. If specified, the actions for XPMSG, XUMSG,
and XTRACE are completed before the program terminates.

XPMSG Causes VS Pascal to display its diagnostic message for the error. If
XHALT is in FACTION, a severe error (S-Ievel) message is issued. If
XDECERR is in FACTION, an error (E-Ievel) message is issued.
Otherwise, an informational (I-level) message is issued.

XUMSG Causes VS Pascal to display the user's message. If you set the XUMSG
member of FACTION, you must also set FRETMSG with the text of the
message. If XUMSG and XPMSG are both in FACTION, the VS Pascal
diagnostic message is displayed before the user message.

XTRACE Causes VS Pascal to display a trace-back.

XDEBUG Causes the Interactive Debugging Tool to be invoked if active. If
specified, the actions for XPMSG, XUMSG, and XTRACE are completed
before invoking the debugger.

Chapter 6. VS Pascal Run-Time Error Handling 79

XDECERR Causes the run-time error counter to be decremented. The run-time
error counter is initially set with the value specified in the ERRCOUNT j
option (see "ERRCOUNT Option" on page 168). When the error counter ...",
becomes equal to zero, the program is terminated with a severe error.

Figure 47 shows an example of a user interception of run-time errors.

%INCLUDE ONERROR;
PROCEDURE ONERROR;
BEGIN

(*do nothing if fixed, decimal or floating divide by zero *)
(*and di~gnose fixed-point overflow in procedure HASHFNC *)
IF FERROR IN [19, 21, 25] THEN

FACTION := []
ELSE

END;

IF (FERROR = 18) AND (FPROCNAME = 'HASHFNC') THEN
BEGIN

FACTION := [XUMSG];
FRETMSG := 'INPUT DATA CONTAINS GARBAGE';

END;

Figure 47. Example of an Error Handling Routine Using ONERROR

Note: If your ONERROR procedure modifies a variable that is outside the scope of
the ONERROR procedure, and you specify the OPTIMIZE compile-time option, the
modification might not appear to have been made. This is because the variable
might be in a register, and your modification effects only the copy of the variable in ..."
storage.

In the following program, if file F does not exist and the OPTIMIZE option is in
effect, the program will print out "File opened OK" even though the file did not
open successfully. This is because the variable FILE_ERROR was kept in a
register, and though the storage copy was updated in ONERROR, the IF test used
the value in the register.

PROGRAM ERROR;
VAR

FILE ERROR : INTEGER;
F : TEXT;

%INCLUDE ONERROR;
PROCEDURE ONERROR;
BEGIN

FACTION := [];
FILE_ERROR := FERROR;

END;
BEGIN

FILE_ERROR := Q;
RESET(F) ;
IF FILE_ERROR <> 0 THEN WRITELN('File error ',FILE_ERROR:1)
ELSE WRITELN('File opened OK');

END.

80 vs Pascal Application Programming Guide

XDECERR Causes the run-time error counter to be decremented. The run-time
error counter is initially set with the value specified in the ERRCOUNT
option (see "ERRCOUNT Option" on page 168). When the error counter
becomes equal to zero, the program is terminated with a severe error.

Figure 47 shows an example of a user interception of run-time errors.

%INCLUDE ONERROR;
PROCEDURE ONERROR;
BEGIN

(*do nothing if fixed, decimal or floating divide by zero *)
(*and diagnose fixed-point overflow in procedure HASHFNC *)
IF FERROR IN [19, 21, 25] THEN

FACTION : = []
ELSE

END;

IF (FERROR = 18) AND (FPROCNAME = 'HASHFNC') lHEN
BEGIN

FACTION := [XUMSG];
FRETMSG := 'INPUT DATA CONTAINS GARBAGE';

END;

Figure 47. Example of an Error Handling Routine Using ON ERROR

Note: If your ONERROR procedure modifies a variable that is outside the scope of
the ONERROR procedure, and you specify the OPTIMIZE compile-time option, the
modification might not appear to have been made. This is because the variable
might be in a register, and your modification effects only the copy of the variable in
storage.

In the following program, if file F does not exist and the OPTIMIZE option is in
effect, the program will print out "File opened OK" even though the file did not
open successfully. This is because the variable FILE_ERROR was kept in a
register, and though the storage copy was updated in ONERROR, the IF test used
the value in the register.

PROGRAM ERROR;
VAR

FILE ERROR : INTEGER;
F : TEXT;

%INCLUDE ONERROR;
PROCEDURE ONERROR;
BEGIN

FACTION := [];
FILE_ERROR := FERROR;

END;
BEGIN

FILE ERROR := 0;
RESET(F);
IF FI LE_ERROR <> 0 THEN WRITELN (' Fil e error ',FI LE_ERROR: 1)
ELSE WRITELN('File opened OK');

END.

80 vs Pascal Application Programming Guide

Symbolic Variable Dump
When a program error or checking error occurs, VS Pascal can produce a symbolic
dump of ali variables local to the routine in which the error occurred. VS Pascal
produces this dump when both:

• The source file containing the code in which the error occurred was compiled
with the DEBUG option.

• The VS Pascal debugging library was included in the generation of the
associated load module.

In VM/CMS or MVS/TSO, the run-time library sends the variable dump to your
terminal (unless you select another ddname with the ERRFILE run-time option).

In MVS batch, the run-time library sends the variable dump to SYSPRINT (unless
you specify another ddname with the ERRFILE run-time option).

Chapter 6. VS Pascal Run-Time Error Handling 81

Symbolic Variable Dump
When a program error or checking error occurs, VS Pascal can produce a symbolic
dump of all variables local to the routine in which the error occurred. VS Pascal
produces this dump when both:

• The source file containing the code in which the error occurred was compiled
with the DEBUG option.

• The VS Pascal debugging library was included in the generation of the
associated load module.

In VM/CMS or MVS/TSO, the run-time library sends the variable dump to your
terminal (unless you select another ddname with the ERRFILE run-time option).

In MVS batch, the run-time library sends the variable dump to SYSPRINT (unless
you specify another ddname with the ERRFILE run-time option).

Chapter 6. VS Pascal Run-Time Error Handling 81

Chapter 7. How to Debug Your Program

This chapter describes how to use the Interactive Debugging Tool to find problems
in your program.

Using the Interactive Debugging Tool
You can use the Interactive Debugging Tool in interactive mode and in batch mode.
See Chapter 15, "Interactive Debugging Tool Commands" on page 173 for the
debugging tool commands.

The Interactive Debugging Tool allows you to quickly debug VS Pascal programs
without having to write debugging statements directly into your source code. Basic
functions include:

• Tracing program execution
• Viewing the run-time values of program variables
• Breaking at intermediate points of execution
• Displaying statement frequency counting information.

You use VS Pascal source names to reference statements and data.

Using the Debugging Tool under VM
To use the debugging tool, you must follow these three steps:

1. Compile the unit you want to debug with the DEBUG option. Units you have
compiled with the DEBUG option can be link-edited with units you have not
compiled with the DEBUG option.

2. Link-edit your program, specifying the debugging library before the run-time
library. If you use the PASCMOD EXEC (CMS), the debugging library is
included by specifying the DEBUG option. (See "Step 2: How to Build a Load
Module (Link-Editing)" on page 7.)

3. Execute the load module and specify DEBUG as a run-time option. DEBUG has
two suboptions:

• DEBUG(PROMPT), or simply DEBUG (the default), activates the Interactive
Debugging Tool and prompts you to enter a debugging command. VS
Pascal invokes the program only after you enter a debugging command
that resumes execution (WALK or GO).

• DEBUG(NOPROMPT) invokes the program immediately. The Interactive
Debugging Tool is still active, but it prompts you to enter a debugging
command only when a run-time error occurs.

Run-time options must be terminated with a slash ("/"). (See
Chapter 14, "Run-Time Options" on page 167.)

In the debugging environment, you can issue debugging commands directly from
your terminal to examine variables in modules compiled with the DEBUG option.
The output from your commands is sent to your terminal.

Chapter 7. How to Debug Your Program 83

Chapter 7. How to Debug Your Program

This chapter describes how to use the Interactive Debugging Tool to find problems
in your program.

Using the Interactive Debugging Tool
You can use the Interactive Debugging Tool in interactive mode and in batch mode.
See Chapter 15, "Interactive Debugging Tool Commands" on page 173 for the
debugging tool commands.

The Interactive Debugging Tool allows you to quickly debug VS Pascal programs
without having to write debugging statements directly into your source code. Basic
functions include:

• Tracing program execution
• Viewing the run-time values of program variables
• Breaking at intermediate points of execution
• Displaying statement frequency counting information.

You use VS Pascal source names to reference statements and data.

Using the Debugging Tool under VM
To use the debugging tool, you must follow these three steps:

1. Compile the unit you want to debug with the DEBUG option. Units you have
compiled with the DEBUG option can be link-edited with units you have not
compiled with the DEBUG option.

2. Link-edit your program, specifying the debugging library before the run-time
library. If you use the PASCMOD EXEC (CMS), the debugging library is
included by specifying the DEBUG option. (See "Step 2: How to Build a Load
Module (Link-Editing)" on page 7.)

3. Execute the load module and specify DEBUG as a run-time option. DEBUG has
two suboptions:

• DEBUG(PROMPT), or simply DEBUG (the default), activates the Interactive
Debugging Tool and prompts you to enter a debugging command. VS
Pascal invokes the program only after you enter a debugging command
that resumes execution (WALK or GO).

• DEBUG(NOPROMPT) invokes the program immediately. The Interactive
Debugging Tool is still active, but it prompts you to enter a debugging
command only when a run-time error occurs.

Run-time options must be terminated with a slash ("/"). (See
Chapter 14, "Run-Time Options" on page 167.)

In the debugging environment, you can issue debugging commands directly from
your terminal to examine variables in modules compiled with the DEBUG option.
The output from your commands is sent to your terminal.

Chapter 7. How to Debug Your Program 83

Using the Debugging Tool under MVS/TSO
To use the debugging tool, you must follow these three steps:

1. Compile the unit you want to debug with the DEBUG option. Units you have
compiled with the DEBUG option can be link-edited with units that you have not
compiled with the DEBUG option.

2. Link-edit your program, specifying the debugging library before the run-time
library. If you use the PASCMOD CLiST (TSO), the debugging library is
included by specifying the DEBUG option. (See "Step 2: How to Build a Load
Module (Link-Editing)" on page 16.)

3. Execute the load module and specify DEBUG as a run-time option. DEBUG has
two sub.options:

• DEBUG(PROMPT), or simply DEBUG (the default), activates the Interactive
Debugging Tool and prompts you to enter a debugging command. VS
Pascal invokes the program only after you enter a debugging command
that resumes execution (WALK or GO).

• DEBUG(NOPROMPT) invokes the program immediately. The Interactive
Debugging Tool is still active, but it prompts you to enter a debugging
command only when a run-time error occurs.

Run-time options must be terminated with a slash ("/"). (See
Chapter 14, "Run-Time Options" on page 167.)

In the debugging environment, you can issue debugging commands directly from
your terminal to examine variables in modules compiled with the DEBUG option.

Using the Debugging Tool under MVS Batch

Qualification

Before debugging a program under MVS batch, update the appropriate cataloged
procedure by:

1. Specifying DEBUG as a compile-time option

2. Concatenating the debug library before the run-time library

3. Specifying the DEBUG run-time option and defining the SYSIN data set in the
GO step.

SYSIN is used to input the debugging commands, and must include all of the
debugging commands you want executed during the debugging session. The
output from these commands is sent to SYSPRINT.

A qualification consists of a unit name and a routine name. The debugging tool
uses the current qualification as the default to retrieve information for commands.
The current qualification consists of the names of the unit and the routine that were
active when the debugging tool gained control.

At the start of a debugging session, the current qualification is the name of the unit
containing the main program, and the main program itself.

84 vs Pascal Application Programming Guide

Using the Debugging Tool under MVS/TSO
To use the debugging tool, you must follow these three steps:

1. Compile the unit you want to debug with the DEBUG option. Units you have
compiled with the DEBUG option can be link-edited with units that you have not
compiled with the DEBUG option.

2. Link-edit your program, specifying the debugging library before the run-time
library. If you use the PASCMOD CLiST (TSO), the debugging library is
included by specifying the DEBUG option. (See "Step 2: How to Build a Load
Module (Link-Editing)" on page 16.)

3. Execute the load module and specify DEBUG as a run-time option. DEBUG has
two suboptions:

• DEBUG(PROMPT), or simply DEBUG (the default), activates the Interactive
Debugging Tool and prompts you to enter a debugging command. VS
Pascal invokes the program only after you enter a debugging command
that resumes execution (WALK or GO).

• DEBUG(NOPROMPT) invokes the program immediately. The Interactive
Debugging Tool is still active, but it prompts you to enter a debugging
command only when a run-time error occurs.

Run-time options must be terminated with a slash ("/"). (See
Chapter 14, "Run-Time Options" on page 167.)

In the debugging environment, you can issue debugging commands directly from
your terminal to examine variables in modules compiled with the DEBUG option.

Using the Debugging Tool under MVS Batch

Qualification

Before debugging a program under MVS batch, update the appropriate cataloged
procedure by:

1. Specifying DEBUG as a compile-time option

2. Concatenating the debug library before the run-time library

3. Specifying the DEBUG run-time option and defining the SYSIN data set in the
GO step.

SYSIN is used to input the debugging commands, and must include all of the
debugging commands you want executed during the debugging session. The
output from these commands is sent to SYSPRINT.

A qualification consists of a unit name and a routine name. The debugging tool
uses the current qualification as the default to retrieve information for commands.
The current qualification consists of the names of the unit and the routine that were
active when the debugging tool gained control.

At the start of a debugging session, the current qualification is the name of the unit
containing the main program, and the main program itself.

84 vs Pascal Application Programming Guide

I

\....

Listing the Debugging Commands
If you need a listing of the debugging commands, enter HELP or ?, and VS Pascal
lists the debugging commands.

About Breakpoints
A breakpoint is a special command that forces a program to stop at a given
location. You can then examine the values of variables and the contents of
storage. In this way, you can verify the correct operation of the program at
selected locations. You can also execute debugging commands when a breakpoint
is encountered.

About Statement Counting
Before you can view statement counting information, you must use either the SET
COUNT ON debugging command or the COUNT run-time option. To view counting
information for a routine, counting must be set on before entry into the routine.

Chapter 7. How to Debug Your Program 85

Listing the Debugging Commands
If you need a listing of the debugging commands, enter HELP or ?, and VS Pascal
lists the debugging commands.

About Breakpoints
A breakpoint is a special command that forces a program to stop at a given
location. You can then examine the values of variables and the contents of
storage. In this way, you can verify the correct operation of the program at
selected locations. You can also execute debugging commands when a breakpoint
is encountered.

About Statement Counting
Before you can view statement counting information, you must use either the SET
COUNT ON debugging command or the COUNT run-time option. To view counting
information for a routine, counting must be set on before entry into the routine.

Chapter 7. How to Debug Your Program 85

Sample Debugging Terminal Session
Figure 48 shows a sample program used in the following debugging examples.

:PROGRAM PRIMGEN;
:TYPE

PRIMERANGE = 1 .. 100;

:VAR
PRIME

SAVEINDEX

ARRAY [PRIMERANGEJ

PRIMERANGE;

TESTNUMBER INTEGER;
PRIMEINDEX PRIMERANGE;

:FUNCTION ISPRIME(TESTVAL : INTEGER)
:VAR

QUOTl ENT ,
REMAINDER: INTEGER;
PRIMEINDEX : PRIMERANGE;

(*Specify limits for the
(*number of prime numbers

OF INTEGER;

*)
*)

(*This array stores the result*)
(*Used to remember last used *)
(*spot in Prime *)
(*Test value for primeness *)
(*Index into prime table *)

BOOLEAN;

(*TestVal div Prime *)
(*Test value for primeness *)
(*Index into prime table *)

:BEGIN (*function IsPrime *)
PRIMEINDEX := LOWEST(PRIMERANGE); (*Test each previous prime *)
REPEAT (*starting with the first one *)

2 PRIMEINDEX := SUCC(PRIMEINDEX); (*Get next prime *)
(*Compute relative primeness at TestVal and a known prime *)

3 QUOTIENT := TESTVAL DIV PRIME[PRIMEINDEX];
4 REMAINDER := TESTVAL - QUOTIENT * PRIME [PRIMEINDEX];
5 UNTl L (REMAINDER=O) OR (QUOTIENT <= PRIME [PRH1E1NDEXJ);
6 IF REMAINDER = 0 THEN (*If the number was divided by*)

ISPRIME := FALSE (*any known prime, then this *)
ELSE (*i5 not prime, else it *)

8 ISPRIME ;= TRUE; (*is prime *)
:END:

:BEGIN (*program PrimGen *)

1 PRII~E [lJ := 2; (*First prime is two *)
2 PRIME [2J := 3; (*Second prime is three *)
3 PRIME [3J := 5; (*Third prime is five *)
4 TESTNUMBER := 5; (*Start candidates at 5 *)
5 SAVEINDEX := 3; (*Last used Prime entry *)

REPEAT
6 TESTNUMBER ;= TESTNUMBER + 2 (*Test each odd number *)

(*starting with the first *)
7 IF ISPRIME(TESTNUMBER) THEN (*If candidate is a prime then*)

BEGIN (*Save it in the next place *)
8 ; SAVEINDEX := SUCC(SAVEINDEX); (*in the Prime table *)
9 PRIME[SAVEINDEXJ := TESTNUMBER; (* *)

END;
10 UNTIL SAVEINDEX = HIGHEST(PRIMERANGE);

(*Print list of primes, ten to a line *)
11 FOR PRIMEINDEX := LOWEST(PRIMERANGE) TO HIGHEST(PRIMERANGE) DO

BEGIN
12 WRITE(PRIME[PRIMEINDEX]:7); (*Print one prime number *)
13 IF (PRIMEINDEX MOD 10) = 0 THEN (*If ten have been printed *)
14 WRJTELN; (*then ski p to next 1 i ne *)

END;
: END. (*program PrimGen *)

Figure 48. Sample Program for a Debugging Session

86 vs Pascal Application Programming Guide

""""

Sample Debugging Terminal Session
Figure 48 shows a sample program used in the following debugging examples.

:PROGRAM PRIMGEN;
:TYPE

PRIMERANGE = 1 .. 100;

:VAR
PRIME

SAVEINDEX

ARRAY [PRIMERANGE]

PRIMERANGE;

TESTNUMBER INTEGER;
PRIMEINDEX PRIMERANGE;

: FUNCTION ISPRIME(TESTVAL : INTEGER)
:VAR

QUOTI ENT,
REMAINDER: INTEGER;
PRIMEINDEX : PRIMERANGE;

(*Specify limits for the
(*number of prime numbers

OF INTEGER;

*)
*)

(*This array stores the result*)
(*Used to remember last used *)
(*spot in Prime *)
(*Test value for primeness *)
(*Index into prime table *)

BOOLEAN;

(*TestVal div Prime *)
(*Test value for primeness *)
(*Index into prime table *)

:BEGIN (*function IsPrime *)
PRIMEINDEX := LOWEST(PRIMERANGE); (*Test each previous prime *)
REPEAT (*starting with the first one *)

2 PRIMEINDEX := SUCC(PRIMEINDEX); (*Get next prime *)
(*Compute relative primeness ot TestVal and a known prime *)

3 QUOTIENT := TEST VAL DIV PRIME[PRIMEINDEX];
4 REMAINDER := TESTVAL - QUOTIENT * PRIME [PRIMEINDEX];
5 UNTIL (REMAINDER=O) OR (QUOTIENT <= PRIME[PRIMEINDEX]);
6 IF REMAINDER = 0 THEN (*If the number was divided by*)

ISPRIME := FALSE (*any known prime, then this *)
ELSE (*is not prime, else it *)

B ISPRIME := TRUE; (*is prime *)
:END;

:BEGIN (*program PrimGen *)

I PRIME [1] := 2; (*First prime is two *)
2 PRIME [2] := 3; (*Second prime is three *)
3 PRIME [3] := 5; (*Third prime is five *)
4 TESTNUMBER := 5; (*Start candidates at 5 *)
5 SAVEINDEX := 3; (*Last used Prime entry *)

REPEAT
6 TESTNUMBER := TESTNUMBER + 2 (*Test each odd number *)

(*starting with the first *)
IF ISPRIME(TESTNUMBER) THEN (*If candidate is a prime then*)

BEGIN (*Save it in the next place *)
B SAVEINDEX := SUCC(SAVEINDEX); (*in the Prime table *)
9 PRIME[SAVEINDEX] := TESTNUMBER; (* *)

END;
10 UNTIL SAVEINDEX = HIGHEST(PRIMERANGE);

(*Print list of primes, ten to a line *)
11 FOR PRIME INDEX := LOWEST(PRIMERANGE) TO HIGHEST(PRIMERANGE) DO

BEGIN
12 WRITE(PRIME[PRIMEINDEX]:7); (*Print one prime number *)
13 IF (PRIME INDEX MOD 10) = 0 THEN (*If ten have been printed *)
14 WRITELN; (*then skip to next line *)

END;
:END. (*program Pri mGen *)

Figure 48. Sample Program for a Debugging Session

86 vs Pascal Application Programming Guide

Figure 49 shows how to compile, link-edit, and run the sample program. The
commands you enter are preceded with ===>.

===> VSPASCAL PRIMGEN (DEBUG
Invoking VS Pascal Release 2.0
Starting Language Analysis Pass •..
Starting Optimization Pass ...
~tarting Code Generation Pass ...
No Compiler Detected Errors

Source lines: 57; Total time: 0.18 seconds; Total rate: 19000 LPM
Ready;
===> PASCMOD PRIMGEN (DEBUG
Ready;
===> FILEDEF OUTPUT TERMINAL
Ready;
===> PRIMGEN DEBUG COUNT!

Figure 49. Compiling, Link-Editing, and Executing a Program with the DEBUG Option

Figure 50 shows how to issue the HELP command of the debugging tool. The
command you enter is preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> ?
?

Name (minimum abbreviation is in capital letters)
? Thi s command 1 i st
, variable Display a variable
,hexconstant Display memory
Break Set a breakpoint
CLEAR Remove all breakpoints
Cms Enter CMS subset mode
Display Display current resume point
Display Breaks Display currently set breakpoints
Display Counts Display current execution counts
Display Equates Display currently set equates
END Ha 1 t your program

Equate
Go
Help
Listvars
Qual
QUIT
Reset
Set Attr
Set Count
Set Trace
Trace
Walk

Set an identifier to a literal value
Continue executing your program
This command list
List all variables
Set default module/routine
Halt your program
Remove a specific breakpoint
Set default viewing information ON/OFF
Turn statement counting ON/OFF
Turn traCing ON/OFF/TO fileid
Display invocation chain of routines
Execute one statement of current routine

Figure 50. The HELP Command of the Interactive Debugging Tool

Chapter 7. How to Debug Your Program 87

Figure 49 shows how to compile, link-edit, and run the sample program. The
commands you enter are preceded with ===>.

===> VSPASCAL PRIMGEN (DEBUG
Invoking VS Pascal Release 2.0
Starting Language Analysis Pass ...
Starting Optimization Pass ...
~tarting Code Generation Pass ...
No Compiler Detected Errors

Source lines: 57; Total time: 0.18 seconds; Total rate: 19000 LPM
Ready;
===> PASCMOD PRIMGEN (DEBUG
Ready;
===> FILEDEF OUTPUT TERMINAL
Ready;
===> PRIMGEN DEBUG COUNT/

Figure 49. Compiling, Link-Editing, and Executing a Program with the DEBUG Option

Figure 50 shows how to issue the HELP command of the debugging tool. The
command you enter is preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> ?
?

Name (minimum abbreviation is in capital letters)
? Thi s command 1 i st
, variable Display a variable
,hexconstant Display memory
Break Set a breakpoint
CLEAR Remove all breakpoints
Cms Enter CMS subset mode
Display Display current resume point
Display Breaks Display currently set breakpoints
Display Counts Display current execution counts
Display Equates Display currently set equates
END Ha 1 t your program

Equate
Go
Help
Listvars
Qual
QUIT
Reset
Set Attr
Set Count
Set Trace
Trace
Walk

Set an identifier to a literal value
Continue executing your program
This command list
List all variables
Set default module/routine
Halt your program
Remove a specific breakpoint
Set default viewing information ON/OFF
Turn statement counting ON/OFF
Turn traCing ON/OFF/TO fileid
Display invocation chain of routines
Execute one statement of current routine

Figure 50. The HELP Command of the Interactive Debugging Tool

Chapter 7. How to Debug Your Program 87

----------------------- - ------ -----

Figure 51 shows how to set and display breakpoints. The commands you enter are
preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> BREAK 8
BREAK 8

PRIMGEN/<MAIN-PROGRAM>/8
Oebug(PRIMGEN/<MAIN-PROGRAM»:

===> BREAK 12 EVERY 10 FROM 20 TO 50 (0 B; GO)
BREAK 12 EVERY 10 FROM 20 TO 50 (0 B; GO)

PRIMGEN/<MAIN-PROGRAM>/12
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> BREAK END
BREAK END

PRIMGEN/<MAIN-PROGRAM>/END
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> DISPLAY BREAKS
DISPLAY BREAKS
Breakpoint 1 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 8

Breakpoint 2 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 12
Every => 10
From => 20
To => 50
Count => 0
Command => 0 B; GO

Breakpoint 3 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => END

Figure 51. Setting and Displaying Breakpoints

Figure 52 shows how to enter eMS mode during a debugging session. The
command you enter is preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> CMS
CMS subset
Ready;
===> TIME
FRI 08/05/88 16:28:09 DAY 218 88218 080588 162809 880805 1628 4:28-PM
Ready;

I ===> RETURN

Figure 52. Entering eMS Mode

88 vs Pascal Application Programming Guide

Figure 51 shows how to set and display breakpoints. The commands you enter are
preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> BREAK 8
BREAK 8

PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> BREAK 12 EVERY 10 FROM 20 TO 50 (D B; GO)
BREAK 12 EVERY 10 FROM 20 TO 50 (D B; GO)

PRIMGEN/<MAIN-PROGRAM>/12
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> BREAK END
BREAK END

PRIMGEN/<MAIN-PROGRAM>/END
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> DISPLAY BREAKS
DISPLAY BREAKS
Breakpoint 1 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 8

Breakpoint 2 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 12
Every => 10
From => 20
To => 50
Count => 0
Command => D B; GO

Breakpoint 3 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => END

Figure 51. Setting and Displaying Breakpoints

Figure 52 shows how to enter eMS mode during a debugging session. The
command you enter is preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> CMS
CMS subset
Ready;
===> TIME
FRI 08/05/88 16:28:09 DAY 218 88218 080588 162809 880805 1628 4:28-PM
Ready;

I ===> RETURN

Figure 52. Entering eMS Mode

88 vs Pascal Application Programming Guide

/'

Figure 53 shows how to issue the GO and WALK commands for statement walking.
The commands you enter are preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> GO
GO
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> WALK
WALK
Stopped at PRIMGEN/<MAIN-PROGRAM>/9
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> WALK
WALK
Stopped at PRIMGEN/<MAIN-PROGRAM>/lO
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> GO
GO
Stopped at PRIMGEN/<MAIN-PROGRAM>/8

Figure 53. The GO and WALK Debugging Commands

Figure 54 shows how to issue the LlSTVARS command to list all the variables. The
commands you enter are preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM>}:
===> SET ATTR ON
SET ATTR ON

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> LISTVARS
LISTVARS
Variables for procedure: <MAIN-PROGRAM>
Data Type : ARRAY
Length 400
Memory Class: LOCAL AUTOMATIC
Declared In : <MAIN-PROGRAM>

PRIME (El006El93e)

eeeeee OeeElElOEl2 El0000003 00000005 00000007 '•....
000010 FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE '
(00000020 through 000e018F same as above)
Data Type INTEGER
Memory Class : LOCAL AUTOMATIC
Declared In : <MAIN-PROGRAM>

PRIMEINDEX = uninitialized
Data Type INTEGER
Memory Class: LOCAL AUTOMATIC
Declared In : <MAIN-PROGRAM>

SAVEINDEX = 4

Data Type : INTEGER
Memory Class: LOCAL AUTOMATIC
Declared In : <MAIN-PROGRAM>

TESTNUMBER = 11
Debug(PRIMGEN/<MAIN-PROGRAM>}:

===> SET ATTR OFF
SET ATTR OFF

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> LISTVARS

Figure 54 (Part 1 of 2). Listing Variables in a Debugging Session

Chapter 7. How to Debug Your Program 89

Figure 53 shows how to issue the GO and WALK commands for statement walking.
The commands you enter are preceded with ===>.

Debug(PRIMGEN/<MAIN-PRDGRAM>}:
===> GO
GO
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN/<MAIN-PROGRAM>}:

===> WALK
WALK
Stopped at PRIMGEN/<MAIN-PROGRAM>/9
Debug(PRIMGEN/<MAIN-PROGRAM>}:

===> WALK
WALK
Stopped at PRIMGEN/<MAIN-PROGRAM>/IO
Debug(PRIMGEN/<MAIN-PROGRAM>}:

===> GO
GO
Stopped at PRIMGEN/<MAIN-PROGRAM>/8

Figure 53. The GO and WALK Debugging Commands

Figure 54 shows how to issue the LlSTVARS command to list all the variables. The
commands you enter are preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»;
===> SET A TTR ON
SET ATTR ON

Debug(PRIMGEN/<MAIN-PROGRAM»;
===> Ll STVARS
LlSTVARS
Variables for procedure; <MAIN-PROGRAM>
Data Type ARRAY
Length 400
Memory Class; LOCAL AUTOMATIC
Declared In ; <MAIN-PROGRAM>

PRIME (0G060930)

000000000000020000000300000005 00000007 '
000010 FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE '
(00000020 through 0000018F same as above)
Data Type ; INTEGER
Memory Class; LOCAL AUTOMATIC
Declared In ; <MAIN-PROGRAM>

PRIMEINDEX = uninitialized
Data Type ; INTEGER
Memory Class; LOCAL AUTOMATIC
Declared In ; <MAIN-PROGRAM>

SAVEINDEX = 4

Data Type ; INTEGER
Memory Class ; LOCAL AUTOMATIC
Declared In ; <MAIN-PROGRAM>

TESTNUMBER = 11
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> SET ATTR OFF
SET ATTR OFF

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> LlSTVARS

Figure 54 (Part 1 of 2). Listing Variables in a Debugging Session

Chapter 7. How to Debug Your Program 89

LISTVARS
Variables for procedure: <MAIN-PROGRAM>

PRIME (00060930)
000000000000020000000300000005 00000007 '
000010 FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE '
(00000020 through 0000018F same as above)
PRIMEINDEX = uninitialized
SAVEINDEX = 4
TESTNUMBER = 11

Debug(PRIMGEN/<MAIN-PROGRAM»;
,PRIME(.4.)

PRIME(.4.) = 7
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> ,TESTNUMBER (ATTR
,TESTNUMBER (ATTR
Data Type INTEGER
Memory Class; LOCAL AUTOMATIC
Declared In : <MAIN-PROGRAM>

TESTNUMBER = 11
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> ,'60930'X
• '60930'X
(00060930)
00000000000002000000030000000500000007 '

Figure 54 (Part 2 of 2). Listing Variables in a Debugging Session

Figure 55 shows how to execute with the trace mode of the debugging tool set to
ON. The commands you enter are preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM>}:
===> SET TRACE ON
SET TRACE ON

Program trace is currently on -- output is to the terminal
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> GO
GO
Resuming PRIMGEN/<MAIN-PROGRAM>
======> 10
======> 6-7
Executing PRIMGEN/ISPRIME
======> 1
======> 2-5
======> 2-5
======> 6
======> 8
Returning from ISPRIME
Resuming PRIMGEN/<MAIN-PROGRAM>
======> 8-9
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN/<MAIN-PROGRAM»:

Figure 55 (Part 1 of 2). Executing with Trace Mode On

90 vs Pascal Application Programming Guide

LISTVARS
Variables for procedure: <MAIN-PROGRAM>

PRIME (00060930)
000000000000020000000300000005 00000007 '
000010 FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE '
(00000020 through 0000018F same as above)

PRIME INDEX = uninitialized
SAVEINDEX = 4
TESTNUMBER = 11

Debug(PRIMGEN/<MAIN-PROGRAM»:
,PRIME(.4.)

PRIME(.4.) = 7
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> ,TESTNUMBER (ATTR
,TESTNUMBER (ATTR
Data Type INTEGER
Memory Class: LOCAL AUTOMATIC
Declared In : <MAIN-PROGRAM>

TESTNUMBER = 11
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> ,'60930' X
, '60930'X
(00060930)
0000000000000200000003.00000005 00000007 '

Figure 54 (Part 2 of 2). Listing Variables in a Debugging Session

Figure 55 shows how to execute with the trace mode of the debugging tool set to
ON. The commands you enter are preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> SET TRACE ON
SET TRACE ON

Program tr·ace is currently on -- output is to the termi na 1
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> GO
GO
Resuming PRIMGEN/<MAIN-PROGRAM>
======> 10
======> 6-7
Executing PRIMGEN/ISPRIME
======> 1
======> 2-5
======> 2-5
======> 6
======> 8
Returning from ISPRIME
Resuming PRIMGEN/<MAIN-PROGRAM>
======> 8-9
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN/<MAIN-PROGRAM»:

Figure 55 (Part 1 of 2). Executing with Trace Mode On

90 vs Pascal Application Programming Guide

===> WALK
WALK
Stopped at PRIMGEN/<MAIN-PROGRAM>/9
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> WALK
WALK

======> 10
Stopped at PRIMGEN/<MAIN-PROGRAM>!lO
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> WALK
WALK

======> 6-7
Stopped at PRIMGEN/<MAIN-PROGRAM>/6
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> SET TRACE OFF
SET TRACE OFF
Program trace is currently off

Figure 55 (Part 2 of 2). Executing with Trace Mode On

Figure 56 shows how to get a statement counting summary. The command you
enter is preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> DISPLAY COUNTS
DISPLAY COUNTS

VS PASCAL STATEMENT COUNTING SUMMARY

<MAIN-PROGRAM>
FROM-TO:COUNT

1-5 : 1
11 :0

IN PRIMGEN CALLED 1 TIME(S)
FROM-TO: COUNT FROM-TO: COUNT

6-7 :5 8-9 :3
12-13 :0 14 :0

ISPRIME IN PRIMGEN CALLED 4 TIME(S)
FROM-TO:COUNT FROM-TO:COUNT FROM-TO: COUNT

1 :4 2-5 :5 6 :4
8 :3

Figure 56. Displaying a Statement Counting Summary

PAGE 1

FROM-TO: COUNT
10 :4

FROM-TO:COUNT
7 :1

Chapter 7. How to Debug Your Program 91

===> WALK
WALK
Stopped at PRIMGEN/<MATN-PROGRAM>/9
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> WALK
WALK

======> 10
Stopped at PRIMGEN/<MAIN-PROGRAM>/10
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> WALK
WALK

======> 6-7
Stopped at PRIMGEN/<MAIN-PROGRAM>/6
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> SET TRACE OFF
SET TRACE OFF

Program trace is currently off

Figure 55 (Part 2 of 2). Executing with Trace Mode On

Figure 56 shows how to get a statement counting summary. The command you
enter is preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> DISPLAY COUNTS
DISPLAY COUNTS

VS PASCAL STATEMENT COUNTING SUMMARY

<MAIN-PROGRAM>
FROM-TO:COUNT

1-5 : 1
11 :0

IN PRIMGEN CALLED 1 TIME(S)
FROM-TO:COUNT FROM-TO:COUNT

6-7 :5 8-9 :3
12-13 :0 14 :0

ISPRIME IN PRIMGEN CALLED 4 TIME(S)
FROM-TO:COUNT FROM-TO:COUNT FROM-TO:COUNT

1 :4 2-5 :5 6 :4
8 :3

Figure 56. Displaying a Statement Counting Summary

PAGE 1

FROM-TO:COUNT
10 :4

FROM-TO:COUNT
7 : 1

Chapter 7. How to Debug Your Program 91

Figure 57 shows how to get a trace-back and a sample trace-back report. (See
"Reading a VS Pascal Trace-Back Report" on page 73 for more information.) The
commands you enter are preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> GO
GO
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> BREAK ISPRIME/END
BREAK ISPRIME/END

PRIMGEN/ISPRIME/END
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> GO
GO
Stopped at PRIMGEN/ISPRIME/END
Debug(PRIMGEN/ISPRIME):

===> TRACE
TRACE

TRACE BACK OF CALLED ROUTINES
ROUTINE STMT AT ADDRESS IN MODULE
ISPRIME 8 00020190 PRIMGEN
<MAIN-PROGRAM> 7 000203F2 PRIMGEN
VSPASCAL 00020922

Debug(PRIMGEN/ISPRIME):
===> RESET ISPRIME/END
RESET ISPRIME/END
Breakpoint at PRIMGEN/ISPRIME/END has been removed
Debug(PRIMGEN/ISPRIME):

===> GO
GO
Stopped at PRIMGEN/<MAIN-PROGRAM>/8

Figure 57. Using the TRACE Debugging Command to Get a Trace-Sack Report

92 vs Pascal Application Programming Guide

Figure 57 shows how to get a trace-back and a sample trace-back report. (See
"Reading a VS Pascal Trace-Sack Report" on page 73 for more information.) The
commands you enter are preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> GO
GO
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> BREAK ISPRIME/END
BREAK ISPRIME/END

PRIMGEN/ISPRIME/END
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> GO
GO
Stopped at PRIMGEN/ISPRIME/END
Debug(PRIMGEN/ISPRIME):

===> TRACE
TRACE

TRACE BACK OF CALLED ROUTINES
ROUTINE STMT AT ADDRESS IN MODULE
ISPRIME 8 00020190 PRIMGEN
<MAIN-PROGRAM> 7 000203F2 PRIMGEN
VSPASCAL 00020922

Debug(PRIMGEN/ISPRIME):
===> RESET ISPRIME/END
RESET ISPRIME/END
Breakpoint at PRIMGEN/ISPRIME/END has been removed
Debug(PRIMGEN/ISPRIME):

===> GO
GO
Stopped at PRIMGEN/<MAIN-PROGRAM>/8

Figure 57. Using the TRACE Debugging Command to Get a Trace-Back Report

92 vs Pascal Application Programming Guide

Figure 58 shows the commands to set and use equates. The commands you enter
are preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> EQUATE TN ,TESTNUMBER
EQUATE TN ,TESTNUMBER

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> TN

TN
TESTNUMBER = 19

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> EQUATE SI ,SAVEINDEX
EQUATE SI ,SAVEINDEX

Debug(PRIMGEN/<MAIN-PROGRAM»:

===> SI
SI

SAVEINDEX = 7
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> DISPLAY EQUATES
DISPLAY EQUATES

TN =-> ,TESTNUMBER
SI ==> ,SAVEINDEX

Figure 58. Using Equates in a Debugging Session

Figure 59 shows the commands to remove breakpoints. The commands you enter
are preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> DISPLAY BREAKS
DISPLAY BREAKS
Breakpoint 1 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 8

Breakpoint 2 ;s set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 12
Every => 19
From => 29
To => S9
Count => 9
Command => D B: GO

Breakpoint 3 ;s set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => END

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> GO
GO
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> RESET 8
RESET 8
Breakpoint at PRIMGEN/<MAIN-PROGRAM>/8 has been removed
Debug(PRIMGEN/<MAIN-PROGRAM»:

Figure 59 (Part 1 of 2). Removing Breakpoints

Chapter 7. How to Debug Your Program 93

Figure 58 shows the commands to set and use equates. The commands you enter
are preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> EQUATE TN ,TESTNUMBER
EQUATE TN ,TESTNUMBER

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> TN

TN
TESTNUMBER = 19

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> EQUATE SI ,SAVEINDEX
EQUATE SI ,SAVEINDEX

Debug(PRIMGEN/<MAIN-PROGRAM»:

===> SI
SI

SAVEINDEX = 7
Debug(PRIMGEN/<MAI N-PROGRAM» :

===> DISPLAY EQUATES
DISPLAY EQUATES

TN ==> ,TESTNUMBER
SI ==> ,SAVEINDEX

Figure 58. Using Equates in a Debugging Session

Figure 59 shows the commands to remove breakpoints. The commands you enter
are preceded with ===>.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> DISPLAY BREAKS
DISPLAY BREAKS
Breakpoint 1 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 8

Breakpoint 2 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
St,atement => 12
Every => 10
From => 20
To => 50
Count => 0
Command => D B; GO

Breakpoint 3 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => END

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> GO
GO
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRTMGEN/<MAIN-PROGRAM»:

===> RESET 8
RESET 8
Breakpoint at PRIMGEN/<MAIN-PROGRAM>/8 has been removed
Debug(PRIMGEN/<MAIN-PROGRAM»:

Figure 59 (Part 1 of 2). Removing Breakpoints

Chapter 7. How to Debug Your Program 93

===> D B
D B
Breakpoint 2 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 12
Every => 10
From => 20
To => 50
Count => 0
Command => D B; GO

Breakpoint 3 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => END

Figure 59 (Part 2 of 2). Removing Breakpoints

Figure 60 shows the effects of the options on the BREAK command.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> GO
GO

2 3 5 7 11 13 17 19 23 29
Stopped at PRIMGEN/<MAIN-PROGRAM>/12

===> D B
D B
Breakpoint 2 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 12
Every => 10
From => 20
To => 50
Count => 20
Command => D B; GO

Breakpoint 3 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => END

==,,> GO
GO

31 37 41 43 47 53 59 61 67 71
Stopped at PRIMGEN/<MAIN-PROGRAM>/12

Figure 60 (Part' of 3). Effects of BREAK Command Options

94 vs Pascal Application Programming Guide

...."

===> D B
D B
Breakpoint 2 is set at
Module => PRIMGEN
Procedure => <MAIN-PRDGRAM>
Statement => 12
Every => 10
From => 20
To => 50
Count => 0
Command => D B; GO

Breakpoint 3 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => END

Figure 59 (Part 2 of 2). Removing Breakpoints

Figure 60 shows the effects of the options on the BREAK command.

Debug(PRIMGEN/<MAIN-PROGRAM»:
===> GO
GO

2 3 5 7 11 13
Stopped at PRIMGEN/<MAIN-PROGRAM>/12

===> D B
D B
Breakpoint 2 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 12
Every => 10
From => 20
To => 50
Count => 20
Command => D B; GO

Breakpoint 3 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => END

===> GO
GO

31 37 41 43 47 53
Stopped at PRIMGEN/<MAIN-PROGRAM>/12

17 19 23

59 61 67

Figure 60 (Part 1 of 3). Effects of BREAK Command Options

94 vs Pascal Application Programming Guide

29

71

l

~
===> D B
D B
Breakpoint 2 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 12
Every => 10
From => 20
To => 50
Count => 30
Command => D B; GO

Breakpoint 3 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => END

===> GO
GO

73 79 83 89 97 101 103 107 109 113
Stopped at PRIMGEN/<MAIN-PROGRAM>/12

===> D B
D B
Breakpoint 2 ;s set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 12
Every => 10
From ~> 20
To => 50
Count => 40
Command => D B; GO

Breakpoint 3 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => END

===> GO
GO

127 131 137 139 149 151 157 163 167 173
Stopped at PRIMGEN/<MAIN-PROGRAM>/12

Figure 60 (Part 2 of 3). Effects of BREAK Command Options

Chapter 7. How to Debug Your Program 95

I ===> D B
~ D B

Breakpoint 2 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 12
Every => 10
From => 20
To => 50
Count => 30
Command => D B; GO

Breakpoint 3 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => END

===> GO
GO

73 79 83 89 97 101 103 107 109 113
Stopped at PRIMGEN/<MAIN- PROGRAM>/I2

==~> D B
D B
Breakpoint 2 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 12
Every => 10
From => 20
To => 50
Count => 40
Command => D B; GO

Breakpoint 3 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => END

===> GO
GO

127 131 137 139 149 151 157 163 167 173
Stopped at PRIMGEN/<MAIN-PROGRAM>/12

Figure 60 (Part 2 of 3) . Effects of BREAK Command Options

Chapter 7. How to Debug Your Program 95

===> D B
o B
Breakpoint 2 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 12
Every => 10
From => 20
To => 50
Count => 50
Command => D B; GO

Breakpoint 3 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => END

===> GO
GO

179 181 191 193
233 239 241 251
283 293 307 311
353 359 367 373
419 421 431 433
467 479 487 491

197
257
313
379
439
499

Stopped at PRIMGEN/<MAIN-PROGRAM>/END
Debug(PRIMGEN/<MAIN-PROGRAM>}:

===> CLEAR
CLEAR
All breakpoints have been removed

199 211 223 227
263 269 271 277
317 331 337 347
383 389 397 401
443 449 457 461
503 509 521 523

Figure 60 (Part 3 of 3). Effects of BREAK Command Options

Figure 61 shows the statement counting summary.

VS PASCAL STATEMENT COUNTING SUMMARY

<MAIN-PROGRAM>
FROM-TO: COUNT

1-5 : 1
11 :1

IN PRIMGEN CALLED 1 TIME(S)
FROM-TO: COUNT FROM-TO: COUNT

6-7 :268 8-9 :97
12-13 :100 14 :10

ISPRIME IN PRIMGEN CALLED 268 TIME(S)
FROM-TO: COUNT FROM-TO: COUNT FROM-TO:COUNT

1 :268 2-5 :910 6 :268
8 :97

Ready;

Figure 61. Statement Counting Summary

96 vs Pascal Application Programming Guide

229
281
349
409
463
541

PAGEl

FROM-TO: COUNT
10 :268

FROM-TO:COUNT
7 : 171

===> D B
D B
Breakpoint 2 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => 12
Every => 10
From => 20
To => 50
Count => 50
COITImand => D B; GO

Breakpoint 3 is set at
Module => PRIMGEN
Procedure => <MAIN-PROGRAM>
Statement => END

===> GO
GO

179 181 191 193 197 199
233 239 241 251 257 263
283 293 307 311 313 317
353 359 367 373 379 383
419 421 431 433 439 443
467 479 487 491 499 503

Stopped at PRIMGEN/<MAIN-PROGRAM>/END
Debug(PRIMGEN/<MAIN-PROGRAM»:

===> CLEAR
CLEAR
All breakpoints have been removed

211 223 227
269 271 277
331 337 347
389 397 401
449 457 461
509 521 523

Figure 60 (Part 3 of 3). Effects of BREAK Command Options

Figure 61 shows the statement counting summary.

VS PASCAL STATEMENT COUNTING SUMMARY

<MAIN-PROGRAM>
FROM-TO:COUNT

1-5 : 1
11 :1

IN PRIMGEN CALLED 1 TIME(S)
FROM-TO: COUNT FROM-TO: COUNT

6-7 :268 8-9 :97
12-13 :188 14 :10

ISPRIME IN PRIMGEN CALLED 268 TIME(S)
FROM-TO:CQUNT FROM-TO: COUNT FROM-TO: COUNT

1 :268 2-5 :910 6 :268
8 :97

Ready;

Figure 61. Statement Counting Summary

96 vs Pascal Application Programming Guide

229
281
349
409
463
541

PAGEl

FROM-TO: COUNT
10 :268

FROM-TO:COUNT
7 :171

\... Chapter 8. How to Use Interlanguage Communication

It is sometimes desirable to invoke subprograms (procedures) written in other
programming languages: this is useful to obtain services not available directly in
VS Pascal. It is also desirable to have a VS Pascal procedure called from a non-VS
Pascal program: this allows you to take advantage of VS Pascal in an existing
application without rewriting the entire application. This chapter will discuss the
options available to you and what you must do in order to have this flexibility.

If you are running Pascal under the XA environment in 31-bit addressing mode, you
must be sure that any language that calls VS Pascal or any language that VS
Pascal calls resides in the same address space as the VS Pascal code (either
above or below the 16-megabyte address line). For example, if a FORTRAN
program is below the 16-megabyte address line and calls a VS Pascal routine, the
VS Pascal routine must also be below the 16-megabyte address line. If a VS
Pascal program resides above the 16-megabyte address line and calls a COBOL
program, the COBOL program must also be above the 16-megabyte address line.

We can divide interlanguage communication into two classes:

• The VS Pascal procedure is the calling procedure and the non-VS Pascal
procedure is being called.

• The VS Pascal procedure is called from a non-VS Pascal calling procedure.

Your options are summarized in Figure 62.

Language VS Pascal as the Calling Language VS Pascal as the Called Language

Assembler Define procedures and 'functions in VS Pascal
using the FORTRAN or the EXTERNAL
directive. If you use EXTERNAL, you will be
able to specify an arbitrary VS Pascal
parameter list.

FORTRAN Define procedures and functions in VS Pascal
using the FORTRAN directive. This enables
you to call a subprogram written in
FORTRAN. In general, you must initialize the
FORTRAN run-time environment. See
Figure 71 on page 109 for an example, and
the appropriate FORTRAN manual (see
"FORTRAN" on page 296) for further
information.

Use a V-type constant in the assembler
routine to define the VS Pascal entry pOint.
You must declare the VS Pascal procedure
with the EXTERNAL, MAIN, or REENTRANT
directive. After the last call to a MAIN or
REENTRANT procedure you must call
PSCLHX to clean up the VS Pascal run-time
envi ronment.

Use a call statement in FORTRAN to call the
VS Pascal procedure. The VS Pascal
procedure must be declared with the MAIN or
REENTRANT directive. After the last call to a
VS Pascal procedure, you must call PSCLHX
to clean up the VS Pascal run-time
envi ronment.

Figure 62 (Part 1 of 2). VS Pascal Communication with Other Languages

Chapter 8. How to Use Interlanguage Communication 97

(

~ Chapter 8. How to Use Interlanguage Communication

It is sometimes desirable to invoke subprograms (procedures) written in other
programming languages: this is useful to obtain services not available directly in
VS Pascal. It is also desirable to have a VS Pascal procedure called from a non-VS
Pascal program: this allows you to take advantage of VS Pascal in an existing
application without rewriting the entire application. This chapter will discuss the
options available to you and what you must do in order to have this flexibility.

If you are running Pascal under the XA environment in 31-bit addressing mode, you
must be sure that any language that calls VS Pascal or any language that VS
Pascal calls resides in the same address space as the VS Pascal code (either
above or below the 16-megabyte address line). For example, if a FORTRAN
program is below the 16-megabyte address line and calls a VS Pascal routine, the
VS Pascal routine must also be below the 16-megabyte address line. If a VS
Pascal program resides above the 16-megabyte address line and calls a COBOL
program, the COBOL program must also be above the 16-megabyte address line.

We can divide interlanguage communication into two classes:

• The VS Pascal procedure is the calling procedure and the non-VS Pascal
procedure is being called.

• The VS Pascal procedure is called from a non-VS Pascal calling procedure.

Your options are summarized in Figure 62.

Language VS Pascal as the Calling Language

Assembler Define procedures and functions in VS Pascal
using the FORTRAN or the EXTERNAL
directive. If you use EXTERNAL, you will be
able to specify an arbitrary VS Pascal
parameter list.

FORTRAN Define procedures and functions in VS Pascal
using the FORTRAN directive. This enables
you to call a subprogram written in
FORTRAN. In general, you must initialize the
FORTRAN run-time environment. See
Figure 71 on page 109 for an example, and
the appropriate FORTRAN manual (see
"FORTRAN" on page 296) for further
information.

VS Pascal as the Called Language

Use a V-type constant in the assembler
routine to define the VS Pascal entry point.
You must declare the VS Pascal procedure
with the EXTERNAL, MAIN, or REENTRANT
directive. After the last call to a MAIN or
REENTRANT procedure you must call
PSCLHX to clean up the VS Pascal run-time
envi ronment.

Use a call statement in FORTRAN to call the
VS Pascal procedure. The VS Pascal
procedure must be declared with the MAIN or
REENTRANT directive. After the last call to a
VS Pascal procedure, you must call PSCLHX
to clean up the VS Pascal run-time
environment.

Figure 62 (Part 1 of 2). VS Pascal Communication with Other Languages

Chapter 8. How to Use Interlanguage Communication 97

language VS Pascal as the Calling Language VS Pascal as the Called Language

COBOL

PLII

Define procedures and functions in VS Pascal
using the FORTRAN directive. This enables
you to call a subprogram written in COBOL.
You may want to calilLBOSTPO before calling
a COBOL program. See the appropriate
COBOL manual (see "COBOL" on page 295)
for details.

Define procedures and functions in VS Pascal
using the FORTRAN directive. This enables
you to call a subprogram written in PLIL You
should define the PLII procedure with the
FORTRAN option. See the appropriate PLII
manual (see "PLlI" on page 296) for details.

Use a call statement in COBOL to call the VS
Pascal procedure. COBOL should be
compiled with the NODYNAM option and the
call must be a call of a literal. The VS Pascal
procedure must be declared with the MAIN or
REENTRANT directive. After the last call to a
VS Pascal procedure, you must call PSCLHX
to clean up the VS Pascal run-time
environment.

Use a call statement in PLII to call a VS
Pascal procedure. You must declare the VS
Pascal procedure with the MAIN or
REENTRANT directive. The PLII procedure
should specify the VS Pascal procedure as an
EXTERNAL. After the last call to a VS Pascal
procedure, you must call PSCLHX to clean up
the VS Pascal run-time environment.

Figure 62 (Part 2 of 2). VS Pascal Communication with Other Languages

When to Use the EXTERNAL Directive
The EXTERNAL directive is used to call a routine outside the lexical scope of the
caller (such as another unit). Both routines must use Pascal linkage conventions
(for example, when a Pascal program calls an assembler routine which then calls a
Pascal routine using the general interface). Both of the called routines must have
been defined as EXTERNAL.

While many units may call an EXTERNAL routine, its body will be contained only in
one unit. The formal parameters defined in the EXTERNAL routine must match
those in the unit where the routine is defined.

For more information see the VS Pascal Language Reference.

When to Use the MAIN Directive
The MAIN directive can be used on routines called by PLlI, FORTRAN, and COBOL,
and by assembler routines which do not need the general interface. The MAIN
directive is used to identify a Pascal procedure that can be invoked as if it were a
main program.

The first call to a MAIN directive causes a VS Pascal environment to be created. It
is your responsibility to remove this environment, and the procedure PSCLHX has
been provided for this purpose (see "When to Use the PSCLHX Procedure" on
page 99 for more information about the PSCLHX procedure).

When to Use the REENTRANT Directive
The REENTRANT directive can be used on routines called from PLlI, FORTRAN,
and COBOL, and by assembler routines which do not need the general interface.
The REENTRANT directive is used to identify a VS Pascal procedure that may be
invoked as if it were a main program, like a MAIN procedure. In addition,
invocations of this procedure may be reentrant.

98 vs Pascal Application Programming Guide

Language

COBOL

PLII

VS Pascal as the Calling Language

Define precedures and functiens in VS Pascal
using the FORTRAN directive. This enables
yeu to. call a subpregram written in COBOL.
Yeu may want to. call ILBOSTPO befere calling
a COBOL pregram. See the apprepriate
COBOL manual (see "COBOL" en page 295)
fer details.

Define precedures and functiens in VS Pascal
using the FORTRAN directive. This enables
yeu to. call a subpregram written in PUI. Yeu
sheuld define the PLII precedure with the
FORTRAN eptien. See the apprepriate PLII
manual (see "PUI" en page 296) fer details.

VS Pascal as the Called Language

Use a call statement in COBOL to. call the VS
Pascal precedure. COBOL sheuld be
cempiled with the NODYNAM eptien and the
call must be a call ef a literal. The VS Pascal
precedure must be declared with the MAIN er
REENTRANT directive. After the last call to. a
VS Pascal precedure, yeu must call PSCLHX
to. clean up the VS Pascal run-time
envi renment.

Use a call statement in PLII to. call a VS
Pascal precedure. Yeu must declare the VS
Pascal precedure with the MAIN er
REENTRANT directive. The PLII precedure
sheuld specify the VS Pascal precedure as an
EXTERNAL. After the last call to. a VS Pascal
precedure, yeu must call PSCLHX to. clean up
the VS Pascal run-time envirenment.

Figure 62 (Part 2 of 2). VS Pascal Communication with Other Languages

When to Use the EXTERNAL Directive
The EXTERNAL directive is used to. call a reutine eutside the lexical scepe ef the
caller (such as another unit). Beth reutines must use Pascal linkage cenventions
(for example, when a Pascal program calls an assembler routine which then calls a
Pascal reutine using the general interface). Beth ef the called routines must have
been defined as EXTERNAL.

While many units may call an EXTERNAL reutine, its bedy will be centained enly in
ene unit. The fermal parameters defined in the EXTERNAL reutine must match
those in the unit where the reutine is defined.

For mere informatien see the VS Pascal Language Reference.

When to Use the MAIN Directive
The MAIN directive can be used en reutines called by PUI, FORTRAN, and COBOL,
and by assembler reutines which de net need the general interface. The MAIN
directive is used to identify a Pascal procedure that can be invoked as if it were a
main program.

The first call to. a MAIN directive causes a VS Pascal envirenment to. be created. It
is your respensibility to. remeve this envirenment, and the procedure PSCLHX has
been previded fer this purpese (see "When to. Use the PSCLHX Precedure" on
page 99 fer mere infermatien abeut the PSCLHX precedure).

When to Use the REENTRANT Directive
The REENTRANT directive can be used on reutines called frem PUI, FORTRAN,
and COBOL, and by assembler reutines which de not need the general interface.
The REENTRANT directive is used to. identify a VS Pascal precedure that may be
invoked as if it were a main pregram, like a MAIN precedure. In additien,
invecatiens of this precedure may be reentrant.

98 vs Pascal Application Programming Guide

In order for this procedure to be reentrant, the first parameter of a procedure
defined with REENTRANT must be an INTEGER passed by VAR. Before the first
call to VS Pascal from a non-Pascal program, this variable must be set to zero (0).
On subsequent calls the same variable must be passed back unaltered. You need
not call the same procedure each time; you may call different procedures (just
continue to pass this variable on each call).

The first call to a REENTRANT directive causes a VS Pascal environment to be
created. It is your responsibility to remove this environment, and the procedure
PSCLHX has been provided for this purpose, (see "When to Use the PSCLHX
Procedure" for more information about the PSCLHX procedure).

For more information see the VS Pascal Language Reference.

When to Use the PSCLHX Procedure
The PSCLHX procedure is used to clean up the environment created by a call to a
MAIN or REENTRANT directive. PSCLHX will free memory and close files used by
the VS Pascal environment.

When called after invoking a MAIN procedure, the call to PSCLHX must pass zero
(0) as an argument in the form:

PSCLHX(O)

When called after invoking a REENTRANT procedure, the call to PSCLHX must
pass the same parameter passed to the initial call to the REENTRANT procedure.
The call to PSCLHX is made in the form:

PSCLHX(x)

where x is the same parameter passed on the initial call to the REENTRANT
procedure.

For more information see the VS Pascal Language Reference.

VS Pascal and Assembler
Writing an assembler language routine for VS Pascal is a simple operation
provided that a set of conventions is carefully followed. There are two reasons for
these conventions:

• VS Pascal parameter passing conventions: As described in Chapter 17, "VS
Pascal Parameter Passing" on page 195, VS Pascal parameters are passed in
a variety of ways, depending on their attributes.

• The VS Pascal environment: This is an arrangement of registers and control
blocks used by VS Pascal to handle storage management and run-time error
recovery. (See "Register Usage" on page 185.)

VS Pascal as the Caller to Assembler
Assembler routines can be called in two ways depending on your needs. The
minimum interface (see "Writing an Assembler Routine with a Minimum Interface"
on page 100) is simpler and faster, but may not provide enough function. The
general interface (see "Writing an Assembler Routine with a General Interface" on
page 101) is more flexible, but it imposes structuring requirements on your
program.

Chapter 8. How to Use Interlanguage Communication 99

In order for this procedure to be reentrant, the first parameter of a procedure
defined with REENTRANT must be an INTEGER passed by VAR. Before the first
call to VS Pascal from a non-Pascal program, this variable must be set to zero (0).
On subsequent calls the same variable must be passed back unaltered. You need
not call the same procedure each time; you may call different procedures (just
continue to pass this variable on each call).

The first call to a REENTRANT directive causes a VS Pascal environment to be
created. It is your responsibility to remove this environment, and the procedure
PSCLHX has been provided for this purpose, (see "When to Use the PSCLHX
Procedure" for more information about the PSCLHX procedure).

For more information see the VS Pascal Language Reference.

When to Use the PSCLHX Procedure
The PSCLHX procedure is used to clean up the environment created by a call to a
MAIN or REENTRANT directive. PSCLHX will free memory and close files used by
the VS Pascal environment.

When called after invoking a MAIN procedure, the call to PSCLHX must pass zero
(0) as an argument in the form:

PSCLHX(0)

When called after invoking a REENTRANT procedure, the call to PSCLHX must
pass the same parameter passed to the initial call to the REENTRANT procedure.
The call to PSCLHX is made in the form:

PSCLHX(x)

where x is the same parameter passed on the initial call to the REENTRANT
procedure.

For more information see the VS Pascal Language Reference.

VS Pascal and Assembler
Writing an assembler language routine for VS Pascal is a simple operation
provided that a set of conventions is carefully followed. There are two reasons for
these conventions:

• VS Pascal parameter passing conventions: As described in Chapter 17, "VS
Pascal Parameter Passing" on page 195, VS Pascal parameters are passed in
a variety of ways, depending on their attributes.

• The VS Pascal environment: This is an arrangement of registers and control
blocks used by VS Pascal to handle storage management and run-time error
recovery. (See "Register Usage" on page 185.)

VS Pascal as the Caller to Assembler
Assembler routines can be called in two ways depending on your needs. The
minimum interface (see "Writing an Assembler Routine with a Minimum Interface"
on page 100) is simpler and faster, but may not provide enough function. The
general interface (see "Writing an Assembler Routine with a General Interface" on
page 101) is more flexible, but it imposes structuring requirements on your
program.

Chapter 8. How to Use Interlanguage Communication 99

Writing an Assembler Routine with a Minimum Interface
Writing an assembler routine with the minimum interface requires the least
knowledge of the run-time environment. However, such a routine has the following
defi ci e nci es:

• It may not call a VS Pascal routine.

• It must be non recursive.

• If a program error should occur (such as divide by zero), the VS Pascal
run-time environment will not recover properly and the results will be
unpredictable.

When a VS Pascal program invokes an assembler language routine, register 14
contains the return address and register 15 contains the starting address of the
routine. The routine must follow the System/370 linkage conventions and save the
registers that will be modified in the routine. It must also save any floating-point
registers altered in the routine.

Upon entry to the routine, register 13 will contain the address of the register save
area provided by the caller, and register 1 will point to the first of a list of
parameters being passed (if such a list exists). Once the register values are stored
in the caller's save area, the save area address (register 13) must be stored in the
back chain word in a save area defined by the assembler routine itself. Before
returning to the VS Pascal routine, the registers must be restored to the values
they contained when the assembler routine was invoked.

If you insert your assembler instructions at the point indicated in the skeletal code
shown in Figure 63, your assembler routine can be called from a VS Pascal routine
and you need have no knowledge of the VS Pascal environment.

Note: The example below is not reentrant.

ANYNAME CSECT
ENTRY PROCNAME

PROCNAME DS 0H

*
*

STM 14,12,12(13)
BALR BASEREG,0
USING *,BASEREG
ST 13,SAVEAREA+4
LA 13,SAVEAREA

L
LM
BR

13,4(13)
14,12,12(13)
14

SAVEAREA DC
END

2BF'0'

declare routine name as an entry point
entry point to routine
save VS Pascal registers in VS Pascal save area
establish base register

store VS Pascal save area address
load address of local save area

body of assembler routine

restore the floating-point registers if
they were saved
restore VS Pascal save area
restore VS Pascal registers
return to VS Pascal
local save area

Figure 63. Minimum Interface to an Assembler Routine (Skeletal Code to be Invoked from
VS Pascal)

100 VS Pascal Application Programming Guide

--~~------------

Writing an Assembler Routine with a Minimum Interface
Writing an assembler routine with the minimum interface requires the least
knowledge of the run-time environment. However, such a routine has the following
deficiencies:

• It may not call a VS Pascal routine.

• It must be non recursive.

• If a program error should occur (such as divide by zero), the VS Pascal
run-time environment will not recover properly and the results will be
unpredictable.

When a VS Pascal program invokes an assembler language routine, register 14
contains the return address and register 15 contains the starting address of the
routine. The routine must follow the System/370 linkage conventions and save the
registers that will be modified in the routine. It must also save any floating-point
registers altered in the routine.

Upon entry to the routine, register 13 will contain the address of the register save
area provided by the caller, and register 1 will point to the first of a list of
para.meters being passed (if such a list exists). Once the register values are stored
in the caller's save area, the save area address (register 13) must be stored in the
back chain word in a save area defined by the assembler routine itself. Before
returning to the VS Pascal routine, the registers must be restored to the values
they contained when the assembler routine was invoked.

If you insert your assembler instructions at the pOint indicated in the skeletal code
shown in Figure 63, your assembler routine can be called from a VS Pascal routine
and you need have no knowledge of the VS Pascal environment.

Note: The example below is not reentrant.

ANY NAME CSECT
ENTRY PROCNAME

PROCNAME DS OH

*
*

STM 14,12,12(13)
BALR BASEREG,O
USING *,BASEREG
ST 13,SAVEAREA+4
LA 13,SAVEAREA

L
LM
BR

13,4(13)
14,12,12(13)
14

SAVEAREA DC
END

20F'O'

declare routine name as an entry point
entry pO'int to routine
save VS Pascal registers in VS Pascal save area
establish base register

store VS Pascal save area address
load address of local save area

body of assembler routine

restore the floating-point registers if
they were saved
restore VS Pascal save area
restore VS Pascal registers
return to VS Pascal
local save area

Figure 63. Minimum Interface to an Assembler Routine (Skeletal Code to be Invoked from
VS Pascal)

100 VS Pascal Application Programming Guide

Figure 64 shows an example of VS Pascal as the caller to an assembler routine
using the minimum interface.

VS Pascal program which Invokes an Assembler routine named SUM:

PROGRAM FROMPSCL;
PROCEDURE SUM(VAR I

CONST J
FORTRAN;

VAR

INTEGER;
INTEGER);

(*VS Pascal program heading

I,J : INTEGER;
BEGIN

(*Define two local variables *)

I := 8;
FOR J := 1 TO 18 DO

BEGIN

END

SUM(I ,J) ;
WRITELN('The current

END;

(*Set running sum to zero
(*loop through ten values

(*compute the next sum
running sum is ',1:0);

(*FROMPSCL

Assembler routine which Is being invoked from VS Pascal program:

SUM CSECT
USING *,15 establish addressability
STM 14,12, 12 (13) save caller's registers
ST 13,SAVEAREA+4 save address of caller's save area
BALR 5,0
USING *,5 establish addressability
LA 13,SAVEAREA set new save area
L 2,8(1) get address of I
L 3,8(2) get I
L 4,4(1) get address of J
A 3,0(4) I = I + J
ST 3,0(2) return the new value of
L 13,SAVEAREA+4 get address of caller's save area
LM 14,12,12(13) restore caller's registers
BR 14 return

SAVEAREA OS 18F
END

Figure 64. Example of VS Pascal as the Caller to an Assembler Routine Using the
Minimum Interface

Writing an Assembler Routine with a General Interface
If an assembler routine has at least one of the following characteristics:

• It calls a VS Pascal routine

• It is recursive

*)
*)

*)

*)

*)

• Program errors must be intercepted and diagnosed by the VS Pascal run-time
environment

the general interface must be used.

Chapter 8. How to Use Interlanguage Communication 101

"
Figure 64 shows an example of VS Pascal as the caller to an assembler routine
using the minimum interface.

VS Pascal program which Invokes an Assembler routine named SUM:

PROGRAM FROMPSCL;
PROCEDURE SUM(VAR I

CONST J
FORTRAN;

VAR

INTEGER;
INTEGER);

(*VS Pascal program heading

I,J :INTEGER;
BEGIN

(*Define two local variables *)

I := 0;
FOR J := 1 TO 10 DO

BEGIN

END

SUM(I ,J);
WRITELN('The current

END;

(*Set running sum to zero
(*loop through ten values

(*compute the next sum
running sum is ',1:0);

(*FROMPSCL

Assembler routine which Is being Invoked from VS Pascal program:

SUM CSECT
USING *,15
STM 14,12,12(13)
ST 13,SAVEAREA+4
BALR 5,0
USING *,5
LA 13,SAVEAREA
L 2,0(1)
L 3,0(2)
L 4,4(1)
A 3,0(4)
ST 3,0(2)
L 13,SAVEAREA+4
LM 14,12,12(13)
BR 14

SAVEAREA DS 18F
END

establish addressability
save caller's registers
save address of caller's save area

establish addressability
set new save area
get address of I
get I
get address of J
I = I + J
return the new value of
get address of caller's save area
restore caller's registers
return

Figure 64. Example of VS Pascal as the Caller to an Assembler Routine Using the
Minimum Interface

Writing an Assembler Routine with a General Interface
If an assembler routine has at least one of the following characteristics:

• It calls a VS Pascal routine

• It is recursive

*)
*)

*)

*)

*)

• Program errors must be intercepted and diagnosed by the VS Pascal run-time
environment

the general interface must be used.

Chapter 8. How to Use Interlanguage Communication 101

Two assembler macros are available which are used to generate the prolog and
epilog of an assembler routine with a general VS Pascal interface. The macro
names are PROLOG and EPILOG and their forms are described in the figures
below.

The PROLOG Macro:

-procname--PROLOG--LASTREG=r, VARS=n , FPARMS=j, PARMS=p----..... ~4

Figure 65. PROLOG Macro Syntax Diagram

Where Represents

procname The entry point name of the routine.

PROLOG Keyword.

LASTREG = r The highest register to be modified by the routine; r is a number
between 3 and 12, inclusive.

VARS=n

FPARMS=f

PARMS=p

Default: 12.

The number of bytes (n) required for any local data, including
passed-in parameters.

Default: O.

The number of bytes (f) for any passed-in parameters.

Default: The value (n) specified for VARS.

The number of bytes (p) required for the largest parameter list to
be built within the routine.

Default: O.

The PROLOG macro preserves any registers that are to be modified and allocates
storage for the dynamic storage area (DSA). It also includes code to recover from
a stack overflow and program error. The label of the macro is established as an
ENTRY point; register 2 is established as the base register for the first 4096 bytes
of code.

After entering a routine, but before executing the PROLOG code, the following
registers are expected to contain the indicated data:

Register Contents
1 Address of the parameter list built by th~ caller, which is 144 bytes into

the dynamic storage area (DSA) to be used by the called routine.
11 Address of the dynamic storage area (DSA) of the main program.
12 Address of the VS Pascal communication work area (PCWA).
13 Address of the dynamic storage area (DSA) of the calling routine.
14 Return address.
15 Address of the start of the called routine.

102 vs Pascal Application Programming Guide

Two assembler macros are available which are used to generate the prolog and
epilog of an assembler routine with a general VS Pascal interface. The macro
names are PROLOG and EPILOG and their forms are described in the figures
below.

The PROLOG Macro:

-procname--PROLOG--LASTREG=r, VARS=n ,FPARMS=j, PARMS=p----.... ~4

Figure 65. PROLOG Macro Syntax Diagram

Where Represents

procname The entry point name of the routine.

PROLOG Keyword.

LASTREG = r The highest register to be modified by the routine; r is a number
between 3 and 12, inclusive.

VARS=n

FPARMS=f

PARMS=p

Default: 12.

The number of bytes (n) required for any local data, including
passed-in parameters.

Default: O.

The number of bytes (f) for any passed-in parameters.

Default: The value (n) specified for VARS.

The number of bytes (p) required for the largest parameter list to
be built within the routine.

Default: o.

The PROLOG macro preserves any registers that are to be modified and allocates
storage for the dynamic storage area (DSA). It also includes code to recover from
a stack overflow and program error. The label of the macro is established as an
ENTRY pOint; register 2 is established as the base register for the first 4096 bytes
of code.

After entering a routine, but before executing the PROLOG code, the following
registers are expected to contain the indicated data:

Register Contents
1 Address of the parameter list built by th~ caller, which is 144 bytes into

the dynamic storage area (DSA) to be used by the called routine.
11 Address of the dynamic storage area (DSA) of the main program.
12 Address of the VS Pascal communication work area (PCWA).
13 Address of the dynamic storage area (DSA) of the calling routine.
14 Return address.
15 Address of the start of the called routine.

102 vs Pascal Application Programming Guide

After executing the code generated by the PROLOG macro, the registers are as
follows:

Register Contents
o Unchanged.
1 Address of an area of storage in which parameter lists can be built to

pass to other routines.
2 Base register for the first 4096 bytes of code within the invoked routine.
3-11 Unchanged.
12 Unchanged.
13 Address of the local DSA of the routine just invoked. The first 144 bytes

is the register save area for the invoked routine. Following the save area
is where the parameters passed in by the caller are located.
Immediately after the parameters is storage for local variables followed
by a parameter list build area.

14 Unchanged.
15 Unpredictable.

Note: Passed-in parameters start at offset 144 from register 13 after the prolog has
been executed.

The contents of the floating-point registers are not saved by the PROLOG macro. If
the floating-point registers are modified, they must be restored to their original
contents before returning from the routine.

The EPILOG Macro:

~EPILOG----DROP=----rc==--~~~

Figure 66. EPILOG Macro Syntax Diagram

Where Represents

EPILOG Keyword.

DROP=YESINO Whether or not register 2 is to be dropped as a base register
after the epilog is executed.

Default: YES.

The EPILOG macro restores the saved registers, then branches back to the calling
routine. In order for the epilog to execute properly, register 13 must have the same
contents as was established by the prolog. The macro will cause register 2 to be
dropped as a base register unless DROP = NO is specified.

Chapter 8. How to Use Interlanguage Communication 103

After executing the code generated by the PROLOG macro, the registers are as
follows:

Register
o
1

2
3-11
12
13

14
15

Contents
Unchanged.
Address of an area of storage in which parameter lists can be built to
pass to other routines.
Base register for the first 4096 bytes of code within the invoked routine.
Unchanged.
Unchanged.
Address of the local DSA of the routine just invoked. The first 144 bytes
is the register save area for the invoked routine. Following the save area
is where the parameters passed in by the caller are located.
Immediately after the parameters is storage for local variables followed
by a parameter list build area.
Unchanged.
Unpredictable.

Note: Passed-in parameters start at offset 144 from register 13 after the prolog has
been executed.

The contents of the floating-point registers are not saved by the PROLOG macro. If
the floating-point registers are modified, they must be restored to their original
contents before returning from the routine.

The EPILOG Macro:

~EPILOG----DROP=~~~~

Figure 66. EPILOG Macro Syntax Diagram

Where Represents

EPILOG Keyword.

DROP = YESINO Whether or not register 2 is to be dropped as a base register
after the epilog is executed.

Default: YES.

The EPILOG macro restores the saved registers, then branches back to the calling
routine. In order for the epilog to execute properly, register 13 must have the same
contents as was established by the prolog. The macro will cause register 2 to be
dropped as a base register unless DROP = NO is specified.

Chapter 8. How to Use Interlanguage Communication 103

----- ------------ -----

A skeleton of a general-interface assembler language routine, which may be called
by a VS Pascal program, is shown in Figure 67.

* The following names have the indicated mean-ing
* 'csectnam' is the name of the CSECT in which the routine resides
* 'procname' is the name of the routine.
* 'lastreg' is the highest register (up to 12) which will be modified
* 'varsize' is the storage required for the local variables
* 'parmsize' is the length of the passed-in parameters
* 'plist' is the length of the largest parameter list required for calls
* to other routines from "procname"
*
csectnam CSECT
*
procname PROLOG LASTREG=lastreg,VARS=varsize+parmsize,FPARMS=parmsize,PARMS=plist

*
EPILOG
END

<== insert code here

Figure 67. General Interface to an Assembler Routine

Receiving Parameters from Routines
Parameters received from a VS Pascal routine are mapped within a list in the
manner described in Chapter 17, "VS Pascal Parameter Passing" on page 195.
At invocation, register 1 contains the address of this list.

Assembler as the Caller to VS Pascal
An assembler language routine that was invoked from a VS Pascal program may
call a VS Pascal procedure without setting up the VS Pascal run-time environment
provided that:

• The assembler routine was called from a VS Pascal routine.

• The VS Pascal routine to be called is declared using the EXTERNAL directive.

See Figure 68 on page 105 as an example.

Before making the call to a VS Pascal procedure from an assembler routine,
register 1 must contain the value assigned to it within the PROLOG code.
Parameters to be passed are stored into appropriate displacements from register 1
as described in Chapter 17, "VS Pascal Parameter Passing" on page 195.

If the assembler routine was not invoked from a VS Pascal routine, then the VS
Pascal run-time environment must be set up before entering the VS Pascal routine.
To do this, the VS Pascal procedure must be declared using the MAIN or
REENTRANT directive. (See "When to Use the REENTRANT Directive" on page 98
and "When to Use the MAIN Directive" on page 98.)

At the point of call, register 12 must contain the address of the VS Pascal
communication work area (PCWA). This will be the case if the assembler routine
was invoked from a VS Pascal routine and has not modified the register.

104 VS Pascal Application Programming Guide

A skeleton of a general-interface assembler language routine, which may be called
by a VS Pascal program, is shown in Figure 67.

* The following names have the indicated meaning
* 'csectnam' is the name of the CSECT in which the routine resides
* 'procname' is the name of the routine.
* 'lastreg' is the highest register (up to 12) which will be modified
* 'varsize' is the storage required for the local variables
* 'parmsize' is the length of the passed-in parameters
* 'plist' is the length of the largest parameter list required for calls
* to other routines from "procname"
*
csectnam CSECT
*
procname PROLOG LASTREG=l astreg,VARS=varsize+parmsize, FPARMS=parmsize, PARMS=plist

*
EPILOG
END

<== insert code here

Figure 67. General Interface to an Assembler Routine

Receiving Parameters from Routines
Parameters received from a VS Pascal routine are mapped within a list in the
manner described in Chapter 17, "VS Pascal Parameter Passing" on page 195.
At invocation, register 1 contains the address of this list.

Assembler as the Caller to VS Pascal
An assembler language routine that was invoked from a VS Pascal program may
call a VS Pascal procedure without setting up the VS Pascal run-time environment
provided that:

• The assembler routine was called from a VS Pascal routine.

• The VS Pascal routine to be called is declared using the EXTERNAL directive.

See Figure 68 on page 105 as an example.

Before making the call to a VS Pascal procedure from an assembler routine,
register 1 must contain the value assigned to it within the PROLOG code.
Parameters to be passed are stored into appropriate displacements from register 1
as described in Chapter 17, "VS Pascal Parameter Passing" on page 195.

If the assembler routine was not invoked from a VS Pascal routine, then the VS
Pascal run-time environment must be set up before entering the VS Pascal routine.
To do this, the VS Pascal procedure must be declared using the MAIN or
REENTRANT directive. (See "When to Use the REENTRANT Directive" on page 98
and "When to Use the MAIN Directive" on page 98.)

At the point of call, register 12 must contain the address of the VS Pascal
communication work area (PCWA). This will be the case if the assembler routine
was invoked from a VS Pascal routine and has not modified the register.

104 VS Pascal Application Programming Guide

To perform the call, a V-type constant address of the routine to be called is loaded
into register 15 and then the instruction "BALR 14,15" is executed.

Sample Assembler Routine
Figure 68 shows the VS Pascal description of an assembler routine which may be
called from a VS Pascal program, and the described assembler routine. The
assembler routine executes an MVS TPUT macro to write a line of text to your
terminal.

VS Pascal program that calls an Assembler routine

PROGRAM PASCAL;
TYPE

BUFINDEX = 0 .. 80;
BUFFER = PACKED ARRAY[1 .. 80] OF CHAR;

(*this routine is in assembly language*)
PROCEDURE TPUT(

CONST BUF BUFFER;
LEN BUFINDEX) ;

EXTERNAL;

(*this routine is called from the assembly language routine*)
PROCEDURE ERROR(

RETCODE: INTEGER;
CONST MESSAGE: STRING);

EXTERNAL;
PROCEDURE ERROR;
BEGIN

WRITELN(OUTPUT, MESSAGE,' RETURN CODE =' RETCODE)
END;

BEGIN
TPUT('Test assembler call',19);

END.

Assembler routine being invoked from a VS Pascal program

TIOSEG
TPUT
*

*

CSECT
PROLOG LASTREG=4,VARS=8 only registers 3 and 4 are modified

L
L
TPUT
LTR
BZ

3,144(13)
4,148 (13)
(3),(4)
15.15
TPUTRET

load address of BUF parameter
load value of LEN parameter
write content of BUF to terminal
check return code
if no error then return
build parm list for call to ERROR

Figure 68 (Part 1 of 2). Sample Assembler Routine

Chapter 8. How to Use Interlanguage Communication 105

To perform the call, a V-type constant address of the routine to be called is loaded
into register 15 and then the instruction "BALR 14,15" is executed.

Sample Assembler Routine
Figure 68 shows the VS Pascal description of an assembler routine which may be
called from a VS Pascal program, and the described assembler routine. The
assembler routine executes an MVS TPUT macro to write a line of text to your
terminal.

VS Pascal program that calls an Assembler routine

PROGRAM PASCAL;
TYPE

BUFINDEX = 0 •• 80;
BUFFER = PACKED ARRAY[1 •. 80] OF CHAR;

(*this routine is in assembly language*)
PROCEDURE TPUT(

CONST BUF BUFFER;
LEN BUFINDEX);

EXTERNAL;

(*this routine is called from the assembly language routine*)
PROCEDURE ERROR(

RETCODE: INTEGER;
CONST MESSAGE: STRING);

EXTERNAL;
PROCEDURE ERROR;
BEGIN

WRITELN(OUTPUT, MESSAGE, , RETURN CODE =' RETCODE)
END;

BEGIN
TPUT('Test assembler call ',19);

END.

Assembler routine being Invoked from a VS Pascal program

TIOSEG CSECT
TPUT PROLOG LASTREG=4,VARS=8 only registers 3 and 4 are modified
*

L 3,144(13) load address of BUF parameter
L 4,148(13) load value of LEN parameter
TPUT (3),(4) write content of BUF to terminal
LTR 15,15 check return code
BZ TPUTRET if no error then return

* build parm list for call to ERROR

Figure 68 (Part 1 of 2). Sample Assembler Routine

Chapter 8. How to Use Interlanguage Communication 105

ST 15,8(1) assign to RETCODE parameter
LA 3,TPUTMSG load address of message
ST 3,4(1) assign to MESSAGE parameter
L 15,=V(ERROR) load address of ERROR procedure
BALR 14,15 call ERROR

*
TPUTRET EPILOG
*
TPUTMSG DC AL2 (L ' TPUTTEXT) halfword length of string
TPUTTEXT DC C'TPUT ERROR' message text

END

Figure 68 (Part 2 of 2). Sample Assembler Routine

Calling a VS Pascal Main Program from an Assembler Routine
A VS Pascal program may be invoked from an assembler language routine by
loading a V-type address constant of the main program name into register 15 and
executing a BALR instruction with 14 as the return register.

Figure 69 shows an example of an assembler routine as the caller to a VS Pascal
procedure.

The VS Pascal procedure to be called:

SEGMENT SQUARE;
PROCEDURE SQUARE(VAR X : REAL);

MAIN;
PROCEDURE SQUARE;
BEGIN

X := X * X
END; .

Assembler routine to call VS Pascal procedure:

TOSQ CSECT
USING *,15
STM 14,12,12(13)
ST 13,SAVEAREA+4
BALR 2,8
USING *,2
LA 13,SAVEAREA
LA l,PLISTl
L 15,=V(SQUARE)
BALR 14,15

establish addressability
save caller's registers
save address of caller's save area

establish addressability
set new save area
Reg 1 points to parameter list
load address of VS Pascal procedure
call SQUARE

Figure 69 (Part 1 of 2). Example of Assembler as the Caller to a VS Pascal Procedure

106 vs Pascal Application Programming Guide

..; ST 15,0(1) assign to RETCODE parameter
LA 3,TPUTMSG load address of message
ST 3,4(1) assign to MESSAGE parameter
L 15,=V(ERROR) load address of ERROR procedure
BALR 14,15 call ERROR

*
TPUTRET EPILOG
*
TPUTMSG DC AL2 (L' TPUTTEXT) halfword length of string
TPUTTEXT DC C'TPUT ERROR' message text

END

Figure 68 (Part 2 of 2) . Sample Assembler Routine

Calling a VS Pascal Main Program from an Assembler Routine
A VS Pascal program may be invoked from an assembler language routine by
loading a V-type address constant of the main program name into register 15 and
executing a BALR instruction with 14 as the return register.

Figure 69 shows an example of an assembler routine as the caller to a VS Pascal
procedure.

The VS Pascal procedure to be called:

SEGMENT SQUARE;
PROCEDURE SQUARE(VAR X : REAL);

MAIN;
PROCEDURE SQUARE;
BEGIN

X := X * X
END; .

Assembler routine to call VS Pascal procedure:

TOSQ CSECT
USING *,15
STM 14,12,12(13)
ST 13,SAVEAREA+4
BALR 2,0
USING *,2
LA
LA
L
BALR

13, SAVEAREA
1, PLIST!
15,=V(SQUARE)
14,15

establish addressability
save caller's registers
save address of caller's save area

establish addressability
set new save area
Reg 1 pOints to parameter list
load address of VS Pascal procedure
call SQUARE

Figure 69 (Part 1 of 2). Example of Assembler as the Caller to a VS Pascal Procedure

106 vs Pascal Application Programming Guide

~

~ LA 1,PLIST2 reg 1 points to parameter list
L 15,=V(PSCLHX) load address of VS Pascal procedure
BALR 14,15 call PSCLHX to terminate environment
L 13,SAVEAREA+4 get address of caller's save area
LM 14,12,12(13) restore caller's registers
BR 14 return

PLISTl DC A(X) PARAMETER LIST
X DC D'4.8'
PLIST2 DC A(ZERO) PARAMETER LI ST
ZERO DC F'8'
SAVEAREA DS 18F

END

Figure 69 (Part 2 of 2). Example of Assembler as the Caller to a VS Pascal Procedure

The convention employed in passing parameters to a program is dependent on
whether you are running under eMS or under TSO (or MVS Batch). Both
conventions require that register 1 be set to the address of the parameter data.
You can use the PARMS function to access the parameters.

Calling a VS Pascal Program from an Assembler Main Procedure
Figure 70 shows an example of calling a VS Pascal program from an assembler
routine.

Program to be called:

PROGRAM TEST;

BEGIN

END.

Assembler InstrucUons to perform the call under eMS:

LA 1,PLlST
L 15,=V(TEST)
BALR 14,15

Figure 70 (Part 1 of 2). Example of Calling a VS Pascal Program from an Assembler
Routine

Chapter 8. How to Use Interlanguage Communication 107

LA
L
BALR
L
LM
BR

PLISTl DC
X DC
PLIST2 DC
ZERO DC
SAVEAREA DS

END

l,PLIST2
15,=V(PSCLHX)
14,15
13 ,SAVEAREA+4
14,12,12(13)
14
A(X)
D'4.0'
A(ZERO)
F'0'
18F

reg 1 pOints to parameter list
load address of VS Pascal procedure
call PSCLHX to terminate environment
get address of caller's save area
restore caller's registers
return
PARAMETER LIST

PARAMETER LIST

Figure 69 (Part 2 of 2). Example of Assembler as the Caller to a VS Pascal Procedure

The convention employed in passing parameters to a program is dependent on
whether you are running under eMS or under TSO (or MVS Batch). Both
conventions require that register 1 be set to the address of the parameter data.
You can use the PARMS function to access the parameters.

Calling a VS Pascal Program from an Assembler Main Procedure
Figure 70 shows an example of calling a VS Pascal program from an assembler
routine.

Program to be called:

PROGRAM TEST;

BEGIN

END.

Assembler Inslructlons to perform the call under eMS:

LA l,PLIST
L 15,=V(TEST)
BALR 14,15

Figure 70 (Part 1 of 2). Example of Calling a VS Pascal Program from an Assembler
Routine

Chapter 8. How to Use Interlanguage Communication 107

PUST DS
DC
DC
DC

DC
DC

OF
CL8'TEST'
CL8'token I'
CL8'token 2'

CL8'token n'
8X'FF'

Assembler instructions to perform the call under MVS (and TSO)

LA 1, PUST
L 15,=V(TEST)
BALR 14,15

PUST DS
DC
DC

OF
XU'8Q'
AL3(PARMS)

set first bit of address

PARMS DC
DC

FL2' 1 ength' 1 ength of parameter stri ng
C'parm string goes here'

Figure 70 (Part 2 of 2). Example of Calling a VS Pascal Program from an Assembler
Routine

108 vs Pascal Application Programming Guide

PUST DS
DC
DC
DC

DC
DC

OF
CL8'TEST'
CL8'token I'
CL8'token 2'

CL8'token n'
8X' FF'

Assembler instructions to perform the call under MV5 (and T50)

LA I,PUST
L 15,=V(TEST)
BALR 14,15

PUST DS
DC
DC

OF
XLl'80'
AL3(PARMS)

set first bit of address

PARMS DC
DC

FL2' 1 ength' 1 ength of parameter stri ng
C'parm string goes here'

Figure 70 (Part 2 of 2). Example of Calling a VS Pascal Program from an Assembler
Routine

108 vs Pascal Application Programming Guide

VS Pascal and FORTRAN
Communication between VS Pascal and FORTRAN is accomplished by use of the
MAIN or REENTRANT directive (FORTRAN to VS Pascal) and the FORTRAN
directive (VS Pascal to FORTRAN).

Data may be passed between FORTRAN and VS Pascal through the parameter list
or FORTRAN COMMON. If you choose COMMON, specify the name of the
COMMON block as a VS Pascal DEF variable.

VS Pascal as the Caller to FORTRAN
Figure 71 shows an example of VS Pascal as the caller to a FORTRAN routine.

VS Pascal program that calls a FORTRAN subroutine:

PROGRAM FROMPSCL; (*VS Pascal program heading *)
(*THE FOLLOWING ROUTINE IS IN ASSEMBLER LANGUAGE*)
PROCEDURE INITFORT;

FORTRAN;
(*THE FOLLOWING ROUTINE IS IN FORTRAN*)
PROCEDURE SUM(VAR I INTEGER;

CONST J : INTEGER);
FORTRAN;

VAR
I,J : INTEGER;

BEGIN
I := 0;
IN ITFORT;
FOR J := 1 TO 10 DO

SUM(I,J);
END •

(*Define two local variables *)

(*Set running sum to zero
(*Initialize VS FORTRAN
(*Loop through ten values
(*Compute the next sum
(*FROMPSCL

*)
*)
*)
*)
*)

ASSEMBLER routine to Inl'llallze the FORTRAN environment
(this routine may be dependent on the FORTRAN release, and
is not reentrant).

LANGCALL CSECT
ENTRY INITFORT

INITFORT OS OH
STM 14,12,12(13)
BALR 2,0
USING *,2
ST 13,SAVEAREA+4
LA 13,SAVEAREA
LA l,PARMLIST
L 15,=V(FEINH)
BALR 14,15

INITIALIZE FORTRAN ROUTINE
SAVE CALLER'S ENVIRONMENT AND

ESTABLISH ADDRESSABILITY
REGISTER 2 IS THE BASE
REGISTER

POINT TO PARAMETERS
INITIALIZE FORTRAN

EXECUTION-TIME ENVIRONMENT

Figure 71 (Part 1 of 2). Example of VS Pascal as the Caller to a FORTRAN Routine

Chapter 8. How to Use Interlanguage Communication 109

VS Pascal and FORTRAN
Communication between VS Pascal and FORTRAN is accomplished by use of the
MAIN or REENTRANT directive (FORTRAN to VS Pascal) and the FORTRAN
directive (VS Pascal to FORTRAN).

Data may be passed between FORTRAN and VS Pascal through the parameter list
or FORTRAN COMMON. If you choose COMMON, specify the name of the
COMMON block as a VS Pascal DEF variable.

VS Pascal as the Caller to FORTRAN
Figure 71 shows an example of VS Pascal as the caller to a FORTRAN routine.

VS Pascal program that calls a FORTRAN subroutine:

PROGRAM FROMPSCL; (*VS Pascal program heading *)
(*THE FOLLOWING ROUTINE IS IN ASSEMBLER LANGUAGE*)
PROCEDURE INITFORT;

FORTRAN;
(*THE FOLLOWING ROUTINE IS IN FORTRAN*)
PROCEDURE SUM(VAR I INTEGER;

VAR

CONST J : INTEGER);
FORTRAN;

I,J : INTEGER;
BEGIN

I := 0;
INITFORT;
FOR J := 1 TO 10 DO

SUM(I,J);
END .

(*Define two local variables *)

(*Set running sum to zero
(*Initialize VS FORTRAN
(*Loop through ten values
(*Compute the next sum
(*FROMPSCL

*)
*)
*)
*)
*)

ASSEMBLER routine to Inillallze the FORTRAN environment
(this routine may be dependent on the FORTRAN release, and
Is not reentrant).

LANGCALL CSECT
ENTRY IN ITFORT

INITFORT OS OH
STM 14,12,12(13)
BALR 2,0
USING *,2
ST 13,SAVEAREA+4
LA 13,SAVEAREA
LA 1, PARMLIST
L 15,=V(FEIN#)
BALR 14,15

INITIALIZE FORTRAN ROUTINE
SAVE CALLER'S ENVIRONMENT AND

ESTABLISH ADDRESSABILITY
REGISTER 2 IS THE BASE
REGISTER

POINT TO PARAMETERS
INITIALIZE FORTRAN

EXECUTION-TIME ENVIRONMENT

Figure 71 (Part 1 of 2). Example of VS Pascal as the Caller to a FORTRAN Routine

Chapter 8. How to Use Interlanguage Communication 109

L
L
BR
LTORG

SAVEAREA DC
PARMLIST DC
PARMAREA DC
PARMSTRG DC

END

13,4(13)
14,12,12 (13)
14

20F'0'
A(PARMAREA+X'80000000')
Y(L'PARMSTRG)
C'OPTION, ... '

FORTRAN subroullne:

SUBROUTINE SUM(I,J)
I = I + J
WRITE (6,4) I

RESTORE CALLER'S ENVIRONMENT

RETURN TO CALLER

REGISTER SAVE AREA

EXECUTION-TIME OPTIONS LIST

4 FORMAT (' The current running sum is ',13)
RETURN
END

Figure 71 (Part 2 of 2). Example of VS Pascal as the Caller to a FORTRAN Routine

The FORTRAN directive instructs VS Pascal to use exactly the same calling
. conventions used by FORTRAN. This restricts the form of the parameter list,

namely, you may not pass a parameter by value; you may only pass a parameter
by VAR or by CONST. If you choose the latter mechanism, the FORTRAN
subprogram must not modify the parameter.

With most calls to FORTRAN you must initialize the FORTRAN execution-time
environment. You must write an assembler language routine to do this, because
most FORTRAN entry points include a pound sign (#) which is not valid in a VS
Pascal identifier. Also, the assembler routine can ensure that the desired
execution-time options are in effect for the FORTRAN subroutines you want to use.

Run-time errors that occur during the execution of the FORTRAN program will be
handled by the FORTRAN error-handling subroutines. See the appropriate
FORTRAN publication (see "FORTRAN" on page 296) for details.

FORTRAN as the Caller to VS Pascal
VS Pascal permits a FORTRAN program to call a VS Pascal procedure as a
subprogram. To do this, you specify the VS Pascal procedure with the MAIN
directive (see "When to Use the MAIN Directive" on page 98).

110 vs Pascal Application Programming Guide

L
L
BR
LTORG

SAVEAREA DC
PARMLIST DC
PARMAREA DC
PARMSTRG DC

END

13,4(13)
14,12,12(13)
14

20F'O'
A(PARMAREA+X'80000000')
Y(L'PARMSTRG)
C'OPTION, ... '

FORTRAN subroutine:

SUBROUTINE SUM(I,J)
I = I + J
WRITE (6,4) I

RESTORE CALLER'S ENVIRONMENT

RETURN TO CALLER

REGISTER SAVE AREA

EXECUTION-TIME OPTIONS LIST

4 FORMAT (' The current runni ng sum is', 13)
RETURN
END

Figure 71 (Part 2 of 2). Example of VS Pascal as the Caller to a FORTRAN Routine

The FORTRAN directive instructs VS Pascal to use exactly the same calling
. conventions used by FORTRAN. This restricts the form of the parameter list,

namely, you may not pass a parameter by value; you may only pass a parameter
by VAR or by CONST. If you choose the latter mechanism, the FORTRAN
subprogram must not modify the parameter.

With most calls to FORTRAN you must initialize the FORTRAN execution-time
environment. You must write an assembler language routine to do this, because
most FORTRAN entry points include a pound sign (#) which is not valid in a VS
Pascal identifier. Also, the assembler routine can ensure that the desired
execution-time options are in effect for the FORTRAN subroutines you want to use.

Run-time errors that occur during the execution of the FORTRAN program will be
handled by the FORTRAN error-handling subroutines. See the appropriate
FORTRAN publication (see "FORTRAN" on page 296) for details.

FORTRAN as the Caller to VS Pascal
VS Pascal permits a FORTRAN program to call a VS Pascal procedure as a
subprogram. To do this, you specify the VS Pascal procedure with the MAIN
directive (see "When to Use the MAIN Directive" on page 98).

110 VS Pascal Application Programming Guide

Figure 72 shows an example of a FORTRAN routine as the caller to VS Pascal
using the MAIN directive.

VS Pascal procedure to be called from FORTRAN using the
MAIN directive:

SEGMENT SQUARE;
PROCEDURE SQUARE(VAR E INTEGER; VAR X REAL);

MAIN;
PROCEDURE SQUARE;
BEGIN

X := X * X
END; •

FORTRAN program that calls a VS Pascal procedure:

REAL*8 AREAL
INTEGER * 4 SAVE
AREAL = 4.0
CALL SQUARE(AREAL)
PRINT 1, AREAL
CALL SQUARE(AREAL)
PRINT 1, AREAL
CALL SQUARE(AREAL)
PRINT I, AREAL
CALL SQUARE(AREAL)
PRINT 1, AREAL

C TERMINATE PASCAL ENVIRONMENT
CALL PSCLHX(O)
STOP

1 FORMAT (F12.0)
END

Figure 72. Example of FORTRAN as the Caller to a VS Pascal Procedure

VS Pascal also permits a FORTRAN program to call a VS Pascal procedure as a
subprogram using the REENTRANT directive (see "When to Use the REENTRANT
Directive" on page 98).

VS Pascal procedure to be called from FORTRAN program using
the REENTRANT directive:

SEGMENT SQUARE;
PROCEDURE SQUARE(VAR E INTEGER; VAR X REAL);

REENTRANT;
PROCEDURE SQUARE;
BEGIN

X := X * X
END; .

Figure 73 (Part 1 of 2). Example of FORTRAN as the Caller to a VS Pascal Procedure

Chapter 8. How to Use Interlanguage Communication 111

f

~

Figure 72 shows an example of a FORTRAN routine as the caller to VS Pascal
using the MAIN directive.

VS Pascal procedure to be called from FORTRAN using the
MAIN directive:

SEGMENT SQUARE;
PROCEDURE SQUARE(VAR E INTEGER; VAR X REAL);

MAIN;
PROCEDURE SQUARE;
BEGIN

X := X * X
END; .

FORTRAN program that calls a VS Pascal procedure:

REAL*8 AREAL
INTEGER * 4 SAVE
AREAL = 4.0
CALL SQUARE(AREAL)
PRINT 1, AREAL
CALL SQUARE(AREAL)
PRINT 1, AREAL
CALL SQUARE(AREAL)
PRINT 1, AREAL
CALL SQUARE(AREAL)
PRINT 1, AREAL

C TERMINATE PASCAL ENVIRONMENT
CALL PSCLHX(O)
STOP

1 FORMAT (F12.0)
END

Figure 72. Example of FORTRAN as the Caller to a VS Pascal Procedure

VS Pascal also permits a FORTRAN program to call a VS Pascal procedure as a
subprogram using the REENTRANT directive (see "When to Use the REENTRANT
Directive" on page 98).

VS Pascal procedure to be called from FORTRAN program using
the REENTRANT directive:

SEGMENT SQUARE;
PROCEDURE SQUARE(VAR E INTEGER; VAR X REAL);

REENTRANT;
PROCEDURE SQUARE;
BEGIN

X := X * X
END; .

Figure 73 (Part 1 of 2). Example of FORTRAN as the Caller to a VS Pascal Procedure

Chapter 8. How to Use Interlanguage Communication 111

Reentrant FORTRAN program that calls a VS Pascal procedure:

REAL*8 AREAL
INTEGER*4 SAVE
AREAL = 4.8
SAVE = 8
CALL SQUARE(SAVE,AREAL)
PRINT 1, AREAL
CALL SQUARE(SAVE,AREAL)
PRINT 1, AREAL
CALL SQUARE(SAVE.AREAL)
PRINT 1. AREAL

CALL SQUARE(SAVE.AREAL)
PRINT 1, AREAL

C TERMINATE PASCAL ENVIRONMENT
CALL PSCLHX(SAVE)
STOP

1 FORMAT (Fl2.8)
END

Figure 73 (Part 2 of 2). Example of FORTRAN as the Caller to a VS Pascal Procedure

It is your responsibility to clean up the VS Pascal environment; this is done by
invoking PSCLHX (see "When to Use the PSCLHX Procedure" on page 99).

If VS Pascal is not the main program, then VS Pascal will not attempt to handle any
errors during execution.

112 vs Pascal Application Programming Guide

Reentrant FORTRAN program that calls a VS Pascal procedure:

REAL*8 AREAL
INTEGER*4 SAVE
AREAL = 4.8
SAVE = 0
CALL SQUARE(SAVE,AREAL)
PRINT 1, AREAL
CALL SQUARE(SAVE,AREAL)
PRINT 1, AREAL
CALL SQUARE(SAVE,AREAL)
PRINT 1, AREAL

CALL SQUARE(SAVE,AREAL)
PRINT 1, AREAL

C TERMINATE PASCAL ENVIRONMENT
CALL PSCLHX(SAVE)
STOP

1 FORMAT (F12.8)
END

Figure 73 (Part 2 of 2). Example of FORTRAN as the Caller to a VS Pascal Procedure

It is your responsibility to clean up the VS Pascal environment; this is done by
invoking PSCLHX (see "When to Use the PSCLHX Procedure" on page 99).

If VS Pascal is not the main program, then VS Pascal will not attempt to handle any
errors during execution.

112 vs Pascal Application Programming Guide

VS Pascal and COBOL
Communication between VS Pascal and COBOL is accomplished by use of the
MAIN or REENTRANT directive (COBOL to VS Pascal) and the FORTRAN directive
(VS Pascal to COBOL).

VS Pascal as the Caller to COBOL
Figure 74 shows an example of VS Pascal as the caller of a COBOL routine.

VS Pascal program that calls a COBOL subprogram:

PROGRAM FROMPSCL; (*VS Pascal program heading *)
PROCEDURE SUMX(VAR I INTEGER;

FORTRAN;
VAR

CONST J INTEGER);

I,J :iNTEGER;
BEGIN

(*Define two local variables *)

I := 0;
FOR J := 1 TO 10 DO

BEGIN
SUMX(I,J) ;
WRITELN('The current

END;
END .

COBOL subprogram:

IDENTIFICATION DIVISION.
PROGRAM-ID. SUMX.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
LINKAGE SECTION.

(*Set running sum to zero
(*loop through ten values

(*compute the next sum
running sum is ',1:1);

(*FROMPSCL

77 I PIC IS 999999999 USAGE IS COMPUTATIONAL.
77 J PIC IS 999999999 USAGE IS COMPUTATIONAL.
PROCEDURE DIVISION USING I J.

ADD J TO 1.
GOBACK.

Figure 74. Example of VS Pascal as the Caller of a COBOL Routine

*)
*)

*)

*)

The FORTRAN directive instructs VS Pascal to use exactly the same calling
conventions used by FORTRAN which is also equivalent to COBOL. This restricts
the form of the parameter list; namely, you may not pass a parameter by value; you
may only pass a parameter by VAR or by CONST. If you choose the latter
mechanism, the COBOL subprogram must not modify the parameter.

Chapter 8. How to Use Interlanguage Communication 113

VS Pascal and COBOL
Communication between VS Pascal and COBOL is accomplished by use of the
MAIN or REENTRANT directive (COBOL to VS Pascal) and the FORTRAN directive
(VS Pascal to COBOL).

VS Pascal as the Caller to COBOL
Figure 74 shows an example of VS Pascal as the caller of a COBOL routine.

VS Pascal program that calls a COBOL subprogram:

PROGRAM FROMPSCL;
PROCEDURE SUMX(VAR I

CONST J
FORTRAN;

VAR

INTEGER;
INTEGER);

(*VS Pascal program heading

I,J :iNTEGER;
BEGIN

(*Define two local variables *)

I := 0;
FOR J := 1 TO 10 DO

BEGIN
SUMX(I ,J);
WRITELN('The current

END;
END .

COBOL subprogram:

IDENTIFICATION DIVISION.
PROGRAM-ID. SUMX.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
LINKAGE SECTION.

(*Set running sum to zero
(*loop through ten values

(*compute the next sum
running sum is ',1:1);

(*FROMPSCL

77 I PIC IS 999999999 USAGE IS COMPUTATIONAL.
77 J PIC IS 999999999 USAGE IS COMPUTATIONAL.
PROCEDURE DIVISION USING I J.

ADD J TO I.
GOBACK.

Figure 74. Example of VS Pascal as the Caller of a COBOL Routine

*)
*)

*)

*)

*)

The FORTRAN directive instructs VS Pascal to use exactly the same calling
conventions used by FORTRAN which is also equivalent to COBOL. This restricts
the form of the parameter list; namely. you may not pass a parameter by value; you
may only pass a parameter by VAR or by CONST. If you choose the latter
mechanism, the COBOL subprogram must not modify the parameter.

Chapter 8. How to Use Interlanguage Communication 113

Run-time errors that occur during the execution of the COBOL program will be
handled by the VS Pascal run-time support routines. VS Pascal will not issue a call '}
to ILBOSTPO (which sets up the COBOL error recovery). You may call this routine ..",
if you would like the "STOP RUN" statement of COBOL to treat the VS Pascal
calling procedure as a main entry pOint of a COBOL program. See the appropriate
COBOL publication (see "COBOL" on page 295).

A COBOL program which is communicating with VS Pascal must not use the
dynamic loading feature.

COBOL as the Caller to VS Pascal
VS Pascal permits a COBOL program to call a VS Pascal procedure as a
subprogram. To do this, you specify the VS Pascal procedure with the MAIN
directive or the REENTRANT directive (see "When to Use the MAIN Directive" on
page 98). Subsequent calls will use the same environment created by the first
call.

Figure 75 shows an example of COBOL as the caller of VS Pascal using the MAIN
directive.

VS Pascal procedure thai Is called from COBOL using the MAIN
directive:

SEGMENT SQUARE;
PROCEDURE SQUARE(VAR X REAL);

MAIN;
PROCEDURE SQUARE;
BEGIN

X := X * X
END; .

COBOL program that calls a VS Pascal procedure:

IDENTIFICATION DIVISION.
PROGRAM-ID. TOSQ.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 AREAL USAGE IS COMPUTATIONAL-2.
77 AZERO USAGE IS COMPUTATIONAL PIC IS 999999999.
PROCEDURE DIVISION.

MOVE 2 TO AREAL.
CALL "SQUARE" USING AREAL.
DISPLAY AREAL.
MOVE 0 TO AZERO.
CALL "PSCLHX" USING AZERO.
MOVE 0 TO RETURN-CODE.
STOP RUN.

Figure 75. Example of COBOL as the Caller to a VS Pascal Procedure USing the MAIN
Directive

114 vs Pascal Application Programming Guide

Run-time errors that occur during the execution of the COBOL program will be
handled by the VS Pascal run-time support routines. VS Pascal will not issue a call
to ILBOSTPO (which sets up the COBOL error recovery). You may call this routine
if you would like the "STOP RUN" statement of COBOL to treat the VS Pascal
calling procedure as a main entry point of a COBOL program. See the appropriate
COBOL publication (see "COBOL" on page 295).

A COBOL program which is communicating with VS Pascal must not use the
dynamic loading feature.

COBOL as the Caller to VS Pascal
VS Pascal permits a COBOL program to call a VS Pascal procedure as a
subprogram. To do this, you specify the VS Pascal procedure with the MAIN
directive or the REENTRANT directive (see "When to Use the MAIN Directive" on
page 98). Subsequent calls will use the same environment created by the first
call.

Figure 75 shows an example of COBOL as the caller of VS Pascal using the MAIN
directive.

VS Pascal procedure that is called from COBOL using the MAIN
directive:

SEGMENT SQUARE;
PROCEDURE SQUARE(VAR X REAL);

MAIN;
PROCEDURE SQUARE;
BEGIN

X := X * X
END; .

COBOL program that calls a VS Pascal procedure:

IDENTIFICATION DIVISION.
PROGRAM-ID. TOSQ.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 AREAL USAGE IS COMPUTATIONAL-2.
77 AZERO USAGE IS COMPUTATIONAL PIC IS 999999999.
PROCEDURE DIVISION.

MOVE 2 TO AREAL.
CALL "SQUARE" USING AREAL.
DISPLAY AREAL.
MOVE 0 TO AZERO.
CALL "PSCLHX" USING AZERO.
MOVE 0 TO RETURN-CODE.
STOP RUN.

Figure 75. Example of COBOL as the Caller to a VS Pascal Procedure Using the MAIN
Directive

114 VS Pascal Application Programming Guide

VS Pascal also permits a COBOL program to call a VS Pascal procedure as a
subprogram using the REENTRANT directive (see "When to Use the REENTRANT
Directive" on page 98).

REENTRANT VS Pascal procedure that is called from COBOL:

SEGMENT SQUARE;
PROCEDURE SQUARE(VAR E : INTEGER; VAR X : REAL);

REENTRANT;
PROCEDURE SQUARE;
BEGIN

X := X * X
END; .

COBOL program that calls a VS Pascal procedure:

CBL NODYNAM, RENT
IDENTIFICATION DIVISION.
PROGRAM-ID. TOSQ.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 AREAL USAGE IS COMPUTATIONAL-2.
77 ASAVE USAGE IS COMPUTATIONAL PIC IS 999999999.
PROCEDURE DIVISION.

MOVE",O TO ASAVE.
MOVE 2 TO AREAL.
CALL "SQUARE" USING ASAVE AREAL.
DISPLAY AREAL.
CALL "PSCLHX" USING ASAVE.
MOVE 0 TO RETURN-CODE.
STOP RUN.

Figure 76. Example of COBOL as the Caller to a REENTRANT VS Pascal Procedure

It is your responsibility to clean up the VS Pascal environment; this is done by
invoking PSCLHX (see "When to Use the PSCLHX Procedure" on page 99).

If VS Pascal is not the main program, then VS Pascal will not attempt to handle any
errors during execution.

Chapter 8. How to Use Interlanguage Communication 115

VS Pascal also permits a COBOL program to call a VS Pascal procedure as a
subprogram using the REENTRANT directive (see "When to Use the REENTRANT
Directive" on page 98).

REENTRANT VS Pascal procedure that is called from COBOL:

SEGMENT SQUARE;
PROCEDURE SQUARE(VAR E : INTEGER; VAR X : REAL);

REENTRANT;
PROCEDURE SQUARE;
BEGIN

X := X * X
END; .

COBOL program that calls a VS Pascal procedure:

CBL NODYNAM. RENT
IDENTIFICATION DIVISION.
PROGRAM-ID. TOSQ.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 AREAL USAGE IS COMPUTATIONAL-2.
77 ASAVE USAGE IS COMPUTATIONAL PIC IS 999999999.
PROCEDURE DIVISION.

MOVEiO TO ASAVE.
MOVE 2 TO AREAL.
CALL "SQUARE" USING ASAVE AREAL.
DISPLAY AREAL.
CALL "PSCLHX" USING ASAVE.
MOVE 0 TO RETURN-CODE.
STOP RUN.

Figure 76. Example of COBOL as the Caller to a REENTRANT VS Pascal Procedure

It is your responsibility to clean up the VS Pascal environment; this is done by
invoking PSCLHX (see "When to Use the PSCLHX Procedure" on page 99).

If VS Pascal is not the main program, then VS Pascal will not attempt to handle any
errors during execution.

Chapter 8. How to Use Interlanguage Communication 115

VS Pascal and PL/I
Communication between VS Pascal and PUI is accomplished by use of the MAIN
or REENTRANT directive (PUI to VS Pascal) and the FORTRAN directive (VS
Pascal to PUI).

VS Pascal as the Caller to PL/I
Figure 77 shows an example of VS Pascal as the caller of PUI.

VS Pascal program that calls a PLII procedure:

PROGRAM FROMPSCl;
PROCEDURE SUM(VAR I

CONST J
FORTRAN;

VAR

INTEGER;
INTEGER);

(*VS Pascal program heading

I,J : INTEGER;
BEGIN

(*Define two local variables *)

I := 0;
FOR J := 1 TO 10 DO

BEGIN

(*Set running sum to zero
(*loop through ten values

SUM(I ,J);
WRITElN('The current

END;

(*compute the next sum
running sum is ',1:0);

END .

PLII procedure:

SUM: PROC (I,J) OPTIONS(FORTRAN);
DCl (I,J) FIXED BINARY(31,0);
I = I + J;
RETURN;
END;

(*FROMPSCl

Figure 77. Example of VS Pascal as the Caller of a PUI Routine

*)
*)

*)

*)

*)

The FORTRAN directive instructs VS Pascal to use exactly the same calling
conventions used by FORTRAN. PUI will employ FORTRAN calling conventions if
"FORTRAN" is specified in the OPTIONS clause. See OS PUI Optimizing
Compiler: Programmer's Guide for details.

The FORTRAN directive restricts the form of the parameter list; namely, you may
not pass a parameter by value; you may only pass a parameter by either VAR or
CONST. If you choose the latter mechanism, the PU1 procedure must not modify
the parameter.

116 vs Pascal Application Programming Guide

VS Pascal and PL/I
Communication between VS Pascal and PLII is accomplished by use of the MAIN
or REENTRANT directive (PLII to VS Pascal) and the FORTRAN directive (VS
Pascal to PLlI).

VS Pascal as the Caller to PL/I
Figure 77 shows an example of VS Pascal as the caller of PLII.

VS Pascal program that calls a PLII procedure:

PROGRAM FROMPSCl; (*VS Pascal program headi ng *)
PROCEDURE SUM(VAR I INTEGER;

FORTRAN;
VAR

CONST J INTEGER);

I,J :INTEGER;
BEGIN

(*Define two local variables *)

I := 0;
FOR J := 1 TO 10 DO

BEGIN

(*Set running sum to zero
(*loop through ten values

SUM(I,J);
WRITElN('The current

END;

(*compute the next sum
running sum is ',1:0);

END .

PLII procedure:

SUM: PROC (I,J) OPTIONS(FORTRAN);
DCl (I,J) FIXED BINARY(31,0);
I = I + J;
RETURN;
END;

(*FROMPSCl

Figure 77. Example of VS Pascal as the Caller of a PLII Routine

*)
*)

*)

*)

The FORTRAN directive instructs VS Pascal to use exactly the same calling
conventions used by FORTRAN. PLII will employ FORTRAN calling conventions if
"FORTRAN" is specified in the OPTIONS clause. See OS PUI Optimizing
Compiler: Programmer's Guide for details.

The FORTRAN directive restricts the form of the parameter list; namely, you may
not pass a parameter by value; you may only pass a parameter by either VAR or
CONST. If you choose the latter mechanism, the PLl1 procedure must not modify
the parameter.

116 VS Pascal Application Programming Guide

PL/I as the Caller to VS Pascal
vs Pascal permits a PLII program to call a VS Pascal procedure as a subprogram.
To do this, you specify the VS Pascal procedure with the MAIN directive (see
"When to Use the MAIN Directive" on page 98).

Figure 78 shows an example of PLII as the caller of VS Pascal.

VS Pascal procedure that is called from PLII using the MAIN
directive:

SEGMENT SQUARE;
PROCEDURE SQUARE(VAR X REAL);

MAIN;
PROCEDURE SQUARE;
BEGIN

X := X * X
END; .

PLII program that calls a VS Pascal procedure:

TOSQ: PROC OPTIONS(MAIN);
DCl SQUARE ENTRY EXTERNAL OPTIONS(ASM);
DCl PSClHX ENTRY(FIXED BINARY(31,8) EXTERNAL;
DCl ZERO FIXED BINARY(31,8);
AREAL = 4.8;
CAll SQUARE(AREAl);
PUT LIST (AREAL) ;
CAll SQUARE(AREAl);
PUT LIST(AREAl);
CAll SQUARE(AREAl);
PUT LIST (AREAL) ;
CAll SQUARE(AREAl);
PUT LIST (AREAL) ;
ZERO = 0;
CAll PSClHX(ZERO);
END;

Figure 78. Example of PUI as the Caller to a VS Pascal Procedure Using the REEl;' RANT
Directive

The REENTRANT directive may be used in place of the MAIN directive if the
program must be reentrant (see "When to Use the REENTRANT Directive" on
page 98).

Chapter 8. How to Use Interlanguage Communication 117

I

\..,

PL/I as the Caller to VS Pascal
vs Pascal permits a PUI program to call a VS Pascal procedure as a subprogram.
To do this, you specify the VS Pascal procedure with the MAIN directive (see
"When to Use the MAIN Directive" on page 98).

Figure 78 shows an example of PUI as the caller of VS Pascal.

VS Pascal procedure that is called from PLII using the MAIN
directive:

SEGMENT SQUARE;
PROCEDURE SQUARE(VAR X REAL);

MAIN;
PROCEDURE SQUARE;
BEGIN

X := X * X
END; .

PL/I program that calls a VS Pascal procedure:

TOSQ: PROC OPTIONS(MAIN);
DCl SQUARE ENTRY EXTERNAL OPTIONS(ASM);
DCl PSClHX ENTRY(FIXED BINARY(31,0)) EXTERNAL;
DCl ZERO FIXED BINARY(31,0);
AREAL = 4.0;
CAll SQUARE(AREAl);
PUT LIST(AREAl);
CAll SQUARE(AREAl);
PUT LIST (AREAL) ;
CAll SQUARE(AREAl);
PUT LIST (AREAL) ;
CAll SQUARE(AREAl);
PUT LIST (AREAL) ;
ZERO = 0;
CAll PSClHX(ZERO);
END;

Figure 78. Example of PUI as the Caller to a VS Pascal Procedure Using the REEf~' RANT
Directive

The REENTRANT directive may be used in place of the MAIN directive if the
program must be reentrant (see "When to Use the REENTRANT Directive" on
page 98).

Chapter 8. How to Use Interlanguage Communication 117

Figure 79 shows an example of PLII as the caller of a VS Pascal procedure using
the REENTRANT directive.

VS Pascal procedure that is called from PLII
using the REENTRANT directive:

SEGMENT SQUARE;
PROCEDURE SQUARE(VAR E : INTEGER; VAR X REAL);

REENTRANT;
PROCEDURE SQUARE;
BEGIN

X := X * X
END; .

Reentrant PLII program that Invokes a VS Pascal procedure:

TOSQ: PROC OPTIONS(MAIN REENTRANT);
DCl SQUARE ENTRY EXTERNAL;
DCl PSClHX ENTRY(FIXED BINARY(31,0)) EXTERNAL;
DCl SAVE FIXED BINARY(31,0);
AREAL = 4.0;
SAVE = 0;
CAll SQUARE(SAVE,AREAl);
PUT LIST (AREAL) ;
CAll SQUARE(SAVE,AREAl);
PUT LI ST (AREAL) ;
CAll SQUARE(SAVE,AREAl);
PUT LIST(AREAl);
CAll SQUARE(SAVE,AREAL);
PUT LI ST (AREAL) ;
CAll PSClHX(SAVE);
END;

Figure 79. Example of PUI as the Caller to a VS Pascal Procedure Using the REENTRANT
Directive

The VS Pascal run-time routines will not attempt to handle any errors during
execution, unless the main program is in VS Pascal.

To terminate the VS Pascal environment set up by the REENTRANT procedure,
PSCLHX should be called (see "When to Use the PSCLHX Procedure" on page 99)
with the variable that contains the address. See Figure 79 for an example.

Data Type Comparisons
Every language has numerous data types that are suited for the applications for
which the language was intended. When passing data between programs written
in different languages, you must be aware which data types are the same and
where there is no equivalent representation.

Some data types in other languages have no direct equivalent in VS Pascal;
however, you can often create new user data types in VS Pascal that will simulate
some of the data types found in other languages. For example, you could define a
record type that is identical to FORTRAN's COMPLEX type. ..,

118 vs Pascal Application Programming Guide

Figure 79 shows an example of PLII as the caller of a VS Pascal procedure using
the REENTRANT directive.

VS Pascal procedure that is called from PLII
using the REENTRANT directive:

SEGMENT SQUARE;
PROCEDURE SQUARE(VAR E : INTEGER; VAR X REAL);

REENTRANT;
PROCEDURE SQUARE;
BEGIN

X := X * X
END; .

Reentrant PLII program that Invokes a VS Pascal procedure:

TOSQ: PROC OPTIONS(MAIN REENTRANT);
DCl SQUARE ENTRY EXTERNAL;
DCl PSClHX ENTRY(FIXED BINARY(31,0)) EXTERNAL;
DCl SAVE FIXED BINARY(31,0);
AREAL = 4.0;
SAVE = 0;
CAll SQUARE(SAVE,AREAl);
PUT LI ST (AREAL) ;
CAll SQUARE(SAVE,AREAl);
PUT LIST (AREAL) ;
CAll SQUARE(SAVE,AREAl);
PUT LIST (AREAL) ;
CAll SQUARE(SAVE,AREAl);
PUT LIST (AREAL) ;
CAll PSClHX(SAVE);
END;

Figure 79. Example of PLII as the Caller to a VS Pascal Procedure Using the REENTRANT
Directive

The VS Pascal run-time routines will not attempt to handle any errors during
execution, unless the main program is in VS Pascal.

To terminate the VS Pascal environment set up by the REENTRANT procedure,
PSCLHX should be called (see "When to Use the PSCLHX Procedure" on page 99)
with the variable that contains the address. See Figure 79 for an example.

Data Type Comparisons
Every language has numerous data types that are suited for the applications for
which the language was intended. When passing data between programs written
in different languages, you must be aware which data types are the same and
where there is no equivalent representation.

Some data types in other languages have no direct equivalent in VS Pascal;
however, you can often create new user data types in VS Pascal that will simulate
some of the data types found in other languages. For example, you could define a
record type that is identical to FORTRAN's COMPLEX type. ~

118 vs Pascal Application Programming Guide

VS Pascal

ARRAY

@id

BOOLEAN

CHAR

GCHAR

GSTRING(n)

INTEGER

PACKED
-3276S .. 32767

PACKED
0 .. 65536

PACKED -12S .. 127

PACKED 0 .. 255

PACKED ARRAY[1 .. n]
OF CHAR

PACKED ARRAY[1 .. n]
OF GCHAR

REAL

RECORD

SET OF O .. n

SHORTREAL

STRING(n)

SPACE

Figure SO compares VS Pascal data types with the equivalent ones in FORTRAN,
COBOL, and PLI!.

VS Pascal makes no attempt to remap any storage when an interlanguage call is
made. This means that because FORTRAN stores its arrays in column-major order
and VS Pascal stores its arrays in row-major order, a call between FORTRAN and
VS Pascal procedures appears to transpose the array.

FORTRAN COBOL PLII

Dimensioned variable OCCURS Dimensioned variable

Not applicable Not applicable POINTER

LOGICAL*1 Not applicable BIT(S) ALIGNED

CHARACTER*1 PICX CHAR

Not applicable PIC G GRAPHIC(1)

Not applicable Not applicable GRAPHIC(n) VARYING

INTEGER*4 PIC S999999999 USAGE FIXED BINARY(31,O)
IS COMPUTATIONAL

INTEGER*2 PIC S9999 USAGE IS FIXED BINARY(15,O)
COMPUTATIONAL

Not applicable Not applicable Not applicable

Not applicable Not applicable FIXED BINARY(7,0)

Not applicable Not applicable Not applicable

CHARACTER'n PIC X(n) or PIC X CHAR(n)
OCCURS n TIMES

Not applicable PIC G(n) GRAPHIC(n)

REAL'S COMPUTATIONAL-2 REAL FLOAT DEC(16)

Not applicable Record Structure

Not applicable Not applicable BIT(n+1)

REAL*4 COMPUTATIONAL-1 REAL FLOAT DEC(6)

Not applicable Not applicable CHAR(n) VARYING

Not applicable Not applicable AREA

Figure 80. Data Type Equivalences between Different Languages

Chapter 8. How to Use Interlanguage Communication 119

,,;

VS Pascal

ARRAY

@id

BOOLEAN

CHAR

GCHAR

GSTRING(n)

INTEGER

PACKED
-32768 .. 32767

PACKED
0 .. 65536

PACKED -128 .. 127

PACKED 0 .. 255

PACKED ARRAY[1 .. n]
OF CHAR

PACKED ARRAY[1 .. n]
OF GCHAR

REAL

RECORD

SET OF O .. n

SHORTREAL

STRING(n)

SPACE

Figure 80 compares VS Pascal data types with the equivalent ones in FORTRAN,
COBOL, and PLII.

VS Pascal makes no attempt to remap any storage when an interlanguage call is
made. This means that because FORTRAN stores its arrays in column-major order
and VS Pascal stores its arrays in row-major order, a call between FORTRAN and
VS Pascal procedures appears to transpose the array.

FORTRAN COBOL PL/I

Dimensioned variable OCCURS Dimensioned variable

Not applicable Not applicable POINTER

LOGICAL*1 Not applicable BIT(8) ALIGNED

CHARACTER*1 PICX CHAR

Not applicable PIC G GRAPHIC(1)

Not applicable Not applicable GRAPHIC(n) VARYING

INTEGER*4 PIC S999999999 USAGE FIXED BINARY(31,0)
IS COMPUTATIONAL

INTEGER*2 PIC S9999 USAGE IS FIXED BINARY(15,0)
COMPUTATIONAL

Not applicable Not applicable Not applicable

Not applicable Not applicable FIXED BINARY(7,0)

Not applicable Not applicable Not applicable

CHARACTER*n PIC X(n) or PIC X CHAR(n)
OCCURS n TIMES

Not applicable PIC G(n) GRAPHIC(n)

REAL*8 COM PUT ATIONAL-2 REAL FLOAT DEC(16)

Not applicable Record Structure

Not applicable Not applicable BIT(n + 1)

REAL*4 COM PUT ATIONAL-1 REAL FLOAT DEC(6)

Not applicable Not applicable CHAR(n) VARYING

Not applicable Not applicable AREA

Figure 80. Data Type Equivalences between Different Languages

Chapter 8. How to Use Interlanguage Communication 119

~ Chapter 9. Interfacing With IMS

Two routine directives make it possible for VS Pascal to interface with IMS:

• VS Pascal routines declared with the GENERIC directive can call other routines
written in IMS DLII.

• VS Pascal routines declared with the REENTRANT directive can be called by
IMS.

An IMS program that calls a VS Pascal procedure must be defined with
LANG = PASCAL in the PSBGEN statement.

This chapter provides an example of how to use the GENERIC and REENTRANT
directives to interface with IMS. For more information on GENERIC and
REENTRANT, see VS Pascal Language Reference.

Note: VS Pascal programs that interface with IMS must execute in the 31-bit
addressing mode. See the "31-bit Addressing Mode" section in the chapter on the
appropriate operating system.

Figure 81 on page 122 shows a sample VS Pascal program with procedures that
can call I MS.

Chapter 9. Interfacing With IMS 121

~ Chapter 9. Interfacing With IMS

Two routine directives make it possible for VS Pascal to interface with IMS:

• VS Pascal routines declared with the GENERIC directive can call other routines
written in IMS DLII.

• VS Pascal routines declared with the REENTRANT directive can be called by
IMS.

An IMS program that calls a VS Pascal procedure must be defined with
LANG = PASCAL in the PSBGEN statement.

This chapter provides an example of how to use the GENERIC and REENTRANT
directives to interface with IMS. For more information on GENERIC and
REENTRANT, see VS Pascal Language Reference.

Note: VS Pascal programs that interface with IMS must execute in the 31-bit
addressing mode. See the "31-bit Addressing Mode" section in the chapter on the
appropriate operating system.

Figure 81 on page 122 shows a sample VS Pascal program with procedures that
can call IMS.

Chapter 9. Interfacing With IMS 121

VS Pascal procedure that can be Invoked from IMS

SEGMENT PASCALIMS;
TYPE

CHAR2 = PACKED ARRAY [1 .. 2] OF CHAR;
CHAR4 = PACKED ARRAY [1 .. 4] OF CHAR;
PCB REC = RECORD

DBD NAME ALFA; (* Database name *)
SEG LEVEL CHAR2; (* Segment level number *)
STATUS CODE CHAR2; (* Status code of call *)
PROC_OPTIONS CHAR4; (* Processing options *)
RESERVE DLI INTEGER; (* Reserved for DlI/I *)
SEG_NAME_FB AlFA; (* Segment name *)
lENGTH FB KEY INTEGER; (* Length of Key FB Area *)
NUMB SENS SEGS INTEGER; (* Number of sensitive seg*)
KEY_FB_AREA (* Key Feedback Area *)

PACKED ARRAY [1 .. 17] OF CHAR;
END;

PROCEDURE PASCAlIMS(VAR SAVE: INTEGER;
VAR DB_PCB: PCB_REC);

REENTRANT;
PROCEDURE PASCALIMS;
TYPE

(* Addr of Pascal environ.*)
(* Addr of DB_PCB *)

10 REC = RECORD
KEY
FIELD

END;

PACKED ARRAY [l .. n] OF CHAR;
PACKED ARRAY [l .. n] OF CHAR;

USSA REC = RECORD

VAR
DLI FUNC
DB PCB

IOAREA

SEG NAME
BLANK

END;

CHAR4;
PCB_REC;

ALFA;
CHAR;

PROCEDURE PASTDLI; GENERIC;

BEGIN
DlI_FUNC := 'GU ';
UNQUAL_SSA.SEG_NAME := 'name , . ,

(* Contain segment's name *)

(* Dl/I function code *)
(* PCB that DL/I will *)
(* reference in this call *)
(* Data retrieved or *)
(* inserted *)
(* Unqualified segment *)
(* search argument *)

(*Declare PASTDLI routine *)

(* Set DL/I function
(* Set segment name

*)
*)

I Figure 81 (Part 1 of 2). Example of a VS Pascal Program with Procedures That Can Call and Be Called by IMS

122 vs Pascal Application Programming Guide

VS Pascal procedure that can be Invoked from IMS

SEGMENT PASCALIMS;
TYPE

CHAR2 = PACKED ARRAY [1 .. 2] OF CHAR;
CHAR4 = PACKED ARRAY [1 .. 4] OF CHAR;
PCB REC = RECORD

DBD NAME ALFA; (* Database name *)
SEG_LEVEL CHAR2; (* Segment level number *)
STATUS CODE CHAR2; (* Status code of call *)
PROC OPTIONS CHAR4; (* Processing options *)
RESERVE DLI INTEGER; (* Reserved for DLI/I *)
SEG_NAME_FB ALFA; (* Segment name *)
LENGTH_FB_KEY INTEGER; (* Length of Key FB Area *)
NUMB SENS SEGS INTEGER; (* Number of sensitive seg*)
KEY_FB_AREA (* Key Feedback Area *)

PACKED ARRAY [1 •. 17] OF CHAR;
END;

PROCEDURE PASCALIMS(VAR SAVE : INTEGER;
VAR DB_PCB: PCB_REC);

REENTRANT;
PROCEDURE PASCALIMS;
TYPE

(* Addr of Pascal environ.*)
(* Addr of DB_PCB *)

10 REC = RECORD
KEY
FIELD

END;

PACKED ARRAY [l .. n] OF CHAR;
PACKED ARRAY [l .. n] OF CHAR;

USSA REC = RECORD

VAR
DLI FUNC
DB PCB

IOAREA

SEG NAME
BLANK

END;

CHAR4;
PCB_REC;

USSA_REC;

ALFA;
CHAR;

PROCEDURE PASTDLI; GENERIC;

BEGIN
DLIJUNC := 'GU ';
UNQUAL_SSA.SEG_NAME := 'name , . ,

(* Contain segment's name *)

(* DL/I function code *)
(* PCB that DL/I will *)
(* reference in this call *)
(* Data retrieved or *)
(* inserted *)
(* Unqualified segment *)
(* search argument *)

(*Declare PASTDLI routine *)

(* Set DL/I function
(* Set segment name

*)
*)

I Figure 81 (Part 1 of 2). Example of a VS Pascal Program with Procedures That Can Call and Be Called by IMS

122 vs Pascal Application Programming Guide

PASTDLI(CONST DLI_FUNC,
VAR DB_PCB,
VAR IOAREA,
VAR UNQUAL_SSA);

END;

(* DLI function *)
(* PCB *)
(* Information requested *)
(* Segment to be searched *)

Figure 81 (Part 2 of 2). Example of a VS Pascal Program with Procedures That Can Call and Be Called by IMS

Chapter 9. Interfacing With IMS 123

PASTDLI(CONST DLI_FUNC,
VAR DB_PCB,
VAR IOAREA,
VAR UNQUAL_SSA);

END;

(* DLI function *)
(* PCB *)
(* Information requested *)
(* Segment to be searched *)

Figure 81 (Part 2 of 2). Example of a VS Pascal Program with Procedures That Can Call and Be Called by IMS

Chapter 9. Interfacing With IMS 123

Part II. Reference

Part II. Reference 125

Part II. Reference

Part II. Reference 125

--------------------- -

~ Chapter 10. VM EXECs

Figure 82 summarizes the VS Pascal EXECs in a quick-reference chart. Detailed
explanations of each EXEC follow. For more information see Chapter 1, "How to
Run a Program under VM" on page 3.

EXEC Description See Page

VSPASCAL EXEC Compiles a VS Pascal source file. 127

PASCMOD EXEC Link-edits a VS Pascal program. 128

PASCRUN EXEC Invokes a VS Pascal load module. 130

Figure 82. VS Pascal EXECs

VSPASCAL EXEC

-VSPASCAL -fn~Lr------~I--------------"
it Lfn;J

..
L(-exec-options [] L =oJ I

compile-time options)

....

Exec-options

....

Where

VSPASCAL

fn tt fm

LlB(mac/ibs)

LpRINT~ LCONSOLEJ BJECT(name)
DISK ~BJECT(f;r)

LNOPRINT~ NOOBJECT

Specifies

The command name.

Note: To access HELP information for this EXEC, enter
VSPASCAL ?

The file name (fn), file type (tt), and file mode (fm) of the source
program. The file type and file mode are optional. The default
file type is PASCAL, and the default file mode is ".

The macro libraries (mac/ibs) required by the unit being
compiled. These MACLIBs contain source code to be inserted
by the compiler when it encounters a %INCLUDE compiler
directive. For more information on %INCLUDE see "For
Programs that Use the %INCLUDE Compiler Directive" on
page 3.

Chapter 10. VM EXECs 127

~ Chapter 10. VM EXECs

Figure 82 summarizes the VS Pascal EXECs in a quick-reference chart. Detailed
explanations of each EXEC follow. For more information see Chapter 1, "How to
Run a Program under VM" on page 3.

EXEC Description See Page

VSPASCAL EXEC Compiles a VS Pascal source file. 127

PASCMOD EXEC Link-edits a VS Pascal program. 128

PASCRUN EXEC Invokes a VS Pascal load module. 130

Figure 82. VS Pascal EXECs

VSPASCAL EXEC

--VSPASCAL -fn--,L.-------,-I--------------~
It Lf;J

L(-exec-options [] L =oJ I
compile-time options)

Exec-options

Where

VSPASCAL

fn ft fm

LlB(maclibs)

L-PRINT~ L-CONSOLE~ BJECT(name)
DISK ~BJECT(f;r)

L-NOPRINT~ NOOBJECT

Specifies

The command name.

Note: To access HELP information for this EXEC, enter
VSPASCAL 1.

The file name (fn), file type (ft), and file mode (fm) of the source
program. The file type and file mode are optional. The default
file type is PASCAL, and the default file mode is ".

The macro libraries (maclibs) required by the unit being
compiled. These MACLIBs contain source code to be inserted
by the compiler when it encounters a %INCLUDE compiler
directive. For more information on %INCLUDE see "For
Programs that Use the %INCLUDE Compiler Directive" on
page 3.

Chapter 10. VM EXECs 127

The default MACLlB, named VSPASCAL, need not be specified.
It is always implicitly provided as the last MACLIB in the search . j
order. .."

DISK

PRINT

NOPRINT

CONSOLE

OBJECT(fn)

OBJECT(name)

NOOBJECT

compiler-options

PASCMOD EXEC

The listing is to be stored as a file on your A-disk. The file is
named fn LISTING where fn is the file name of the source
program. This is the default.

The listing is to be spooled to your virtual printer.

The listing is to be suppressed. This option automatically
activates three compile-time options: NOSOURCE, NOXREF,
and NOLIST.

The console messages produced by the compiler are to be
stored as a file on your A-disk. The file is named fn CONSOLE.
When CONSOLE is not specified, then the messages are
displayed on your terminal.

The TEXT file is to have the same name (fn) as the unit being
compiled.

The TEXT file is to be named name.

The production of an object module is suppressed. This option
is useful when you want only to check your program for
language errors.

The compile-time options. See Chapter 13, "Compile-Time
Options" on page 155.

--PASCMOD-mai n-r-bJ---r-----,exec-opti ons--------------..

name

Exec-options

I ~ODEB~NOTRANL~NO~
YlEBUG TRANLIB XA LNAME-modname..---J

Where Specifies

PASCMOD The command name.

Note: To access HELP information for this EXEC, enter PASCMOD ?

main The name of the main program module.

names The names of segment modules (TEXT decks) and text libraries
(TXTLlBs) to be included. If a name is specified and there are two
files with the same name (one is named n TEXT and the other named
n TXTLlB), the TEXT file is included and the TXTLIB is searched.

128 vs Pascal Application Programming Guide

_ ..

DISK

PRINT

NOPRINT

CONSOLE

OBJECT(fn)

The default MACLlB, named VSPASCAL, need not be specified.
It is always implicitly provided as the last MACLIB in the search
order.

The listing is to be stored as a file on your A-disk. The file is
named fn LISTING where fn is the file name of the source
program. This is the default.

The listing is to be spooled to your virtual printer.

The listing is to be suppressed. This option automatically
activates three compile-time options: NOSOURCE, NOXREF,
and NOLIST.

The console messages produced by the compiler are to be
stored as a file on your A-disk. The file is named fn CONSOLE.
When CONSOLE is not specified, then the messages are
displayed on your terminal.

The TEXT file is to have the same name (fn) as the unit being
compiled.

OBJECT(name)

NOOBJECT

The TEXT file is to be named name.

The production of an object module is suppressed. This option
is useful when you want only to check your program for
language errors.

compiler-options The compile-time options. See Chapter 13, "Compile-Time
Options" on page 155.

PASCMOD EXEC

--PASCMOD-ma i nl-o[j-n-am-e-.-----exec-oPt i ons--------------I~-..

Exec-options

LNODEB~NOTRANL~NO~
DEBUG TRANLIB XA LNAME-modname~

Where Specifies

PASCMOD The command name.

main

names

Note: To access HELP information for this EXEC, enter PASCMOD ?

The name of the main program module.

The names of segment modules (TEXT decks) and text libraries
(TXTLlBs) to be included. If a name is specified and there are two
files with the same name (one is named n TEXT and the other named
n TXTLlB), the TEXT file is included and the TXTLIB is searched.

128 VS Pascal Application Programming Guide

XA VS Pascal programs can reside above the 16-megabyte line. All
program data (both dynamic and static) can be allocated above the
16-megabyte line.

The eMS command

GLOBAL LOADLIB PASRTLIB

will be issued. This command makes a load library (LOADLlB)
available. This library is required for the XA option.

NOXA VS Pascal programs must reside below the 16-megabyte line. This is
the default.

DEBUG The debugging routines are to be linked into the load module so that
the Interactive Debugging Tool can be used.

NODEBUG The debugging routines are not to be linked into the load module.
This is the default.

TRANLIB The module is to be link-edited for execution with the transient
run-time library.

NOTRANLIB

Transient run-time execution loads all library members needed by a
user program when the program begins execution, instead of the
library members being link-edited into the source module. Although
transient run-time can slow program execution, it decreases the size
of the load module and eliminates the need for providing copies of
run-time libraries to multiple users. This is particularly helpful to
sites that must provide resources to a large number of individual
users.

Remember that because the load module is not fully resolved, it
cannot be transported to another site that does not have the
IBM-licensed run-time libraries.

The load module is to be link-edited for standard execution. This is
the default.

NAME modname
An alternate name for the load module. The resulting load module
and map have the name name MODULE A and name MAP A.

Chapter 10. VM EXECs 129

XA VS Pascal programs can reside above the 16-megabyte line. All
program data (both dynamic and static) can be allocated above the
16-megabyte line.

The eMS command

GLOBAL LOADLIB PASRTLIB

will be issued. This command makes a load library (LOADLlB)
available. This library is required for the XA option.

NOXA VS Pascal programs must reside below the 16-megabyte line. This is
the default.

DEBUG The debugging routines are to be linked into the load module so that
the Interactive Debugging Tool can be used.

NODEBUG The debugging routines are not to be linked into the load module.
This is the default.

TRANLIB The module is to be link-edited for execution with the transient
run-time library.

NOTRANLIB

Transient run-time execution loads all library members needed by a
user program when the program begins execution, instead of the
library members being link-edited into the source module. Although
transient run-time can slow program execution, it decreases the size
of the load module and eliminates the need for providing copies of
run-time libraries to multiple users. This is particularly helpful to
sites that must provide resources to a large number of individual
users.

Remember that because the load module is not fully resolved, it
cannot be transported to another site that does not have the
IBM-licensed run-time libraries.

The load module is to be link-edited for standard execution. This is
the default.

NAME modname
An alternate name for the load module. The resulting load module
and map have the name name MODULE A and name MAP A.

Chapter 10. VM EXECs 129

PASCRUN EXEC

-PASCRUN-ma i n'----r-L-parms
run-time-options-/ L J

parms

to ..

Where Specifies

PASCRUN The command name.

Note: To access HELP information for this EXEC, enter PASCRUN ?

main The name of the load module.

run-time options

parms

VS Pascal run-time options. See Chapter 14, "Run-Time Options"
on page 167 for more information on the VS Pascal run-time
options.

The parameters (if any) being passed to the load module.

130 vs Pascal Application Programming Guide

PASCRUN EXEC

--PASCRUN-ma i n---'-L-parms
run-time-options-/ L J

parms

Where Specifies

PASCRUN The command name.

Note: To access HELP information for this EXEC, enter PASCRUN ?

main The name of the load module.

run-time options

parms

VS Pascal run-time options. See Chapter 14, "Run-Time Options"
on page 167 for more information on the VS Pascal run-time
options.

The parameters (if any) being passed to the load module.

130 vs Pascal Application Programming Guide

Chapter 11. MVS CLISTs and the CALL Command

Figure 83 summarizes all VS Pascal CUSTs and the MVS/TSO CALL command in a
quick-reference chart. Detailed explanations of each command follow. For more
information, see Chapter 2, "How to Run a Program under MVS/TSO" on page 13.

CLiST or
Command

VSPASCAL CUST

PASCMOD CUST

CALL command

Description

Compiles a VS Pascal source file.

Link-edits a VS Pascal program.

Invokes a load module.

See
Page

131

134

136

Figure 83. MVS CLiSTs and the CALL Command

VSPASCAl CllST

--vsPAscAL-idsname-clist-oPtions---rL---------J,---~ ..

compiZe-time-options

Cllst options

---"'NOLIB,---T--r~NlQjOP~RWINri1T.----T--~

LUB ('dsnZist')J ~PRINT(*)--~--i
tPRINT(dsname)::j
SYSPRINT(syscZass)

~CONSOLE(*)
CONSOLE (dsname)J

lOBJECT(dsname) I
NOOBJ ECT---"

~ ..

Where

VSPASCAL

idsname

Specifies

The command name.

The name of the primary input data set containing the source
program to be compiled. This can be either a fully qualified
name (enclosed in single quotation marks) or a simple name (to
which the user identification is prefixed and the qualifier
'PASCAL' is suffixed). This must be the first parameter
specified.

compile-time options
One or more compile-time options separated by commas or
blanks. See Chapter 13, "Compile-Time Options" on page 155.

Chapter 11. MVS CLiSTs and the CALL Command 131

Chapter 11. MVS CLISTs and the CALL Command

Figure 83 summarizes all VS Pascal CUSTs and the MVSITSO CALL command in a
quick-reference chart. Detailed explanations of each command follow. For more
information, see Chapter 2, "How to Run a Program under MVS/TSO" on page 13.

CLiST or
Command

VSPASCAL CUST

PASCMOD CUST

CALL command

Description

Compiles a VS Pascal source file.

Link-edits a VS Pascal program.

Invokes a load module.

See
Page

131

134

136

Figure 83. MVS CLiSTs and the CALL Command

VSPASCAL CLIST

---VSPASCAL-idsname-clist-options----.-L---------J-.---... • ..

compiZe-time-options

Clls' options

-----,-NOUB!---T--T~N[QO~PRU.lriJNT~----T--·
LUB ('dsnlist')J ~PRINT(*)--~--j

tPRINT(dsname)=:j
SYSPRINT(syscZass)

~CONSOLE(*)
CONSOLE(dsname)J

lOBJECT(dsname) I
NOOBJ ECT----'-

...

Where

VSPASCAL

idsname

Specifies

The command name.

The name of the primary input data set containing the source
program to be compiled. This can be either a fully qualified
name (enclosed in single quotation marks) or a simple name (to
which the user identification is prefixed and the qualifier
'PASCAL I is suffixed). This must be the first parameter
specified.

compile-time options
One or more compile-time options separated by commas or
blanks. See Chapter 13, "Compile-Time Options" on page 155.

Chapter 11. MVS CLiSTs and the CALL Command 131

NOLIB

LlB(' dsnlist')

No %INCLUDE libraries are required. This is the default.

The list of partitioned data set names (dsnlist) that may be
specified for use in the %INCLUDE compiler directive. For more
information see "For Programs that Use the %INCLUDE
Compiler Directive" on page 14.

If the list contains more than one name, the entire list must be
enclosed within quotes. Any fully qualified name within the
quoted list must be enclosed in double quotes' ' ... ' I.

NOPRINT The listing is to be suppressed. This parameter activates the
compile-time options: NOSOURCE, NOXREF, and NOLIST. This
is the default.

PRINT(*) The compiler listing is to be displayed on the terminal; no other
copy will be available.

PRINT (dsname) The compiler listing is to be written to the data set named in
dsname. This can be either a fully qualified name (enclosed
within triple quotation marks " ' ... ' , ') or a simple name
(prefixed by the identification qualifier and suffixed by the
qualifier' LlST').

Note: For fully qualified names, the triple quotation marks are
required because the CLiST processor removes the outer
quotation marks within a keyword suboperand list.

SYSPRINT (sysc/ass)

CONSOLE(*)

The compiler listing is to be written to the SYSOUT class named
sysc/ass.

The compiler-generated messages are to be displayed on the
terminal. This is the default.

CONSOLE (dsname)
The compiler-generated messages are to be written to the data
set named (dsname). This can be either a fully qualified name
(enclosed within triple quotation marks' , , ... ' , ') or a simple
name (prefixed by the identification qualifier and suffixed by the
qualifier 'CONSOLE').

Note: For fully qualified names, the triple quotation marks are
required because the CLiST processor removes the outer
quotation marks within a keyword suboperand list.

132 vs Pascal Application Programming Guide

NOLIS

LlS(' dsnlist')

No O/OINCLUDE libraries are required. This is the default.

The list of partitioned data set names (dsnlist) that may be
specified for use in the O/OINCLUDE compiler directive. For more
information see "For Programs that Use the %lNCLUDE
Compiler Directive" on page 14.

If the list contains more than one name, the entire list must be
enclosed within quotes. Any fully quali'fied name within the
quoted list must be enclosed in double quotes' ' ... ' '.

NOPRINT The listing is to be suppressed. This parameter activates the
compile-time options: NOSOURCE, NOXREF, and NOLIST. This
is the default.

PRINT(*) The compiler listing is to be displayed on the terminal; no other
copy will be available.

PRINT (dsname) The compiler listing is to be written to the data set named in
dsname. This can be either a fully qualified name (enclosed
within triple quotation marks' , , ... ' , ') or a simple name
(prefixed by the identification qualifier and suffixed by the
qualifier' LIST').

Note: For fully qualified names, the triple quotation marks are
required because the CLiST processor removes the outer
quotation marks within a keyword suboperand list.

SYSPRINT (sysc/ass)

CONSOLE(*)

The compiler listing is to be written to the SYSOUT class named
sysc/ass.

The compiler-generated messages are to be displayed on the
terminal. This is the default.

CONSOLE (dsname)
The compiler-generated messages are to be written to the data
set named (dsname). This can be either a fully qualified name
(enclosed within triple quotation marks' , I ••• I I ') or a simple
name (prefixed by the identification qualifier and suffixed by the
qualifier I CONSOLE ').

Note: For fully qualified names, the triple quotation marks are
required because the CLiST processor removes the outer
quotation marks within a keyword suboperand list.

132 vs Pascal Application Programming Guide

OBJECT (dsname)

NOOBJECT

The object module produced by the compiler is to be written to
the data set named dsname. This can be either a fully qualified
name (enclosed within triple quotation marks I I I ••• I I ') or a
simple name (prefixed by the identification qualifier and suffixed
by the qualifier I OBJ ').

Note: For fully qualified names, the triple quotation marks are
required because the CLiST processor removes the outer
quotation marks within a keyword suboperand list.

This is the default.

If neither OBJECT nor NOOBJECT is specified, then the object
module produced by the compiler is written to a default data set.
If the data set specified in the first operand contains a
descriptive qualifier of I PASCAL I, the CLiST forms a data set
name for the object module by replacing the descriptor qualifier
of the input data set with I OBJ I. If the descriptive qualifier is
not I PASCAL I, then you will be prompted for the object module
data set name.

If the primary input data set (idsname) is a member of a
partitioned data set, then the name of the associated object
module is generated as just described. If the object module
data set is a partitioned data set, then the object module
becomes a member within the PDS and has the same name as
the member name of the input data set.

Examples:

• VSPASCAL SORT gives object module I ABC.SORT.OBJ I
• VSPASCAL I DEF.PDS.PASCAL(MAIN) I gives object module

I DEF.PDS.OBJ(MAIN) I

• VSPASCAL I ABC.PROG.PAS I will prompt you for the object
module name.

No object module is to be produced. The compiler diagnoses
errors only.

Chapter 11. MVS CLiSTs and the CALL Command 133

OBJECT (dsname)

NOOBJECT

The object module produced by the compiler is to be written to
the data set named dsname. This can be either a fully qualified
name (enclosed within triple quotation marks I I I ••• I I ') or a
simple name (prefixed by the identification qualifier and suffixed
by the qualifier I OBJ ').

Note: For fully qualified names, the triple quotation marks are
required because the CLiST processor removes the outer
quotation marks within a keyword suboperand list.

This is the default.

If neither OBJECT nor NOOBJECT is speci'fied, then the object
module produced by the compiler is written to a default data set.
If the data set specified in the first operand contains a
descriptive qualifier of I PASCAL I, the CLiST forms a data set
name for the object module by replacing the descriptor qualifier
of the input data set with I OBJ I. If the descri ptive qual ifier is
not I PASCAL I, then you will be prompted for the object module
data set name.

If the primary input data set (idsname) is a member of a
partitioned data set, then the name of the associated object
module is generated as just described. If the object module
data set is a partitioned data set, then the object module
becomes a member within the PDS and has the same name as
the member name of the input data set.

Examples:

• VSPASCAL SORT gives object module I ABC.SORT.OBJ I

• VSPASCAL I DEF.PDS.PASCAL(MAIN) I gives object module
I DEF.PDS.OBJ(MAIN) I

• VSPASCAL I ABC.PROG.PAS I will prompt you for the object
module name.

No object module is to be produced. The compiler diagnoses
errors only.

Chapter 11. MVS CLiSTs and the CALL Command 133

PASCMOD CLIST

--PASCMOO~~~cl is t-options--l inkage-edi tor-opt ions-'

Clist-Options

U I !!OOEBU~T"T!!OTRANLI§T"T!!OX8r-
lOBJECT('dsnlist')J lLlB('dsnlist')J LOEBUG--.l LTRANLIB--.l LXA::::J

Where Specifies

PASCMOD The command name.

dsname Specifies the name of a data set containing a VS Pascal object
module and/or linkage editor control statements. If more than one
object module is to be linked, then their names should appear in the
OBJECT parameter.

You may substitute an asterisk (*) for the data set name to indicate
that you will enter control statements from your terminal. The system
will prompt you to enter the control statements. A null line indicates
the end of your control statements.

OBJECT(' dsnlist')
Specifies a list of data sets containing additional object modules to be
included in the link-edit.

Because of CLiST restrictions, the list must be enclosed in single
quotation marks (' ... '); fully qualified names within the list must be
enclosed in double quotation marks (' , ' ').

LlB(I dsnlist ')
One or more names of library data sets to be searched by the linkage
editor to resolve external references (locate load modules referred to
by the module being processed). The name of the VS Pascal run-time
library is implicitly appended to the end of this list; you need not
specify it.

Because of CLiST restrictions, the list must be enclosed in single
quotation marks (' ... '); fully qualified names within the list must be
enclosed in double quotation marks (' I ' ').

DEBUG The debugging routines are to be linked into the load module so that
the Interactive Debugging Tool can be used.

NODEBUG The debugging routines are not to be linked into the load module.
This is the default.

134 vs Pascal Application Programming Guide

PASCMOD CLIST

--PASCMOD~~~cl ist-options--l inkage-edi tor-options--'

Cllsl-Oplions

•• (!iODEBU§lI!iOTRANLI~lI!!OX8"""
lOBJECT('dsnlist')J lLIB('dsnlist')J LDEBUG-.J LTRANLIB-.J LXA=:J

Where Specifies

PASCMOD The command name.

dsname Specifies the name of a data set containing a VS Pascal object
module and/or linkage editor control statements. If more than one
object module is to be linked, then their names should appear in the
OBJECT parameter.

You may substitute an asterisk (*) for the data set name to indicate
that you will enter control statements from your terminal. The system
will prompt you to enter the control statements. A null line indicates
the end of your control statements.

OBJECT(, dsnlist')
Specifies a list of data sets containing additional object modules to be
included in the link-edit.

Because of CUST restrictions, the list must be enclosed in single
quotation marks (' ... '); fully qualified names within the list must be
enclosed in double quotation marks (' ' ' ').

UB(' dsnlist')
One or more names of library data sets to be searched by the linkage
editor to resolve external references (locate load modules referred to
by the module being processed). The name of the VS Pascal run-time
library is implicitly appended to the end of this list; you need not
specify it.

Because of CUST restrictions, the list must be enclosed in single
quotation marks (' ... '); fully qualified names within the list must be
enclosed in double quotation marks (' ' ' ').

DEBUG The debugging routines are to be linked into the load module so that
the Interactive Debugging Tool can be used.

NODEBUG The debugging routines are not to be linked into the load module.
This is the default.

134 vs Pascal Application Programming Guide

!
'1

1

TRANLIB

NOTRANLIB

XA

NOXA

The module is to be link-edited for execution with the transient
run-time library.

Transient run-time execution loads all library members needed by a
user program when the program begins execution, instead of the
library members being link-edited into the source module. Although
transient run-time can slow program execution, it decreases the size
of the load module and eliminates the need for providing copies of
run-time libraries to multiple users. This is particularly helpful to
sites that must provide resources to a large number of individual
users.

Remember that because the load module is not fully resolved, it
cannot be transported to another site that does not have the
IBM-licensed run-time libraries.

The load module is to be link-edited for standard execution. This is
the default.

VS Pascal programs can reside above the 16-megabyte line. All
program data (both dynamic and static) can be allocated above the
16-megabyte line.

The Interactive Debugging Tool can also be above the 16-megabyte
line.

VS Pascal programs must reside below the 16-megabyte line. This is
the default.

linkage-editor-options
Other link-edit options. Refer to MVS/370 Linkage Editor and Loader
User I s Guide, SC26-4061 for information on available options.

The dsname, OBJECT, LIB, TRANLlB, XA, and DEBUG parameters are unique to
VS Pascal. For more information on the other parameters, see the LINK command
in the TSO Extensions Command Reference, GC28-1307.

Chapter 11. MVS CLiSTs and the CALL Command 135

i
'1

1

TRANLIB

NOTRANLIB

XA

NOXA

The module is to be link-edited for execution with the transient
run-time library.

Transient run-time execution loads all library members needed by a
user program when the program begins execution, instead of the
library members being link-edited into the source module. Although
transient run-time can slow program execution, it decreases the size
of the load module and eliminates the need for providing copies of
run-time libraries to multiple users. This is particularly helpful to
sites that must provide resources to a large number of individual
users.

Remember that because the load module is not fully resolved, it
cannot be transported to another site that does not have the
IBM-licensed run-time libraries.

The load module is to be link-edited for standard execution. This is
the default.

VS Pascal programs can reside above the 16-megabyte line. All
program data (both dynamic and static) can be allocated above the
16-megabyte line.

The Interactive Debugging Tool can also be above the 16-megabyte
line.

VS Pascal programs must reside below the 16-megabyte line. This is
the default.

linkage-editor-options
Other link-edit options. Refer to MVS/370 Linkage Editor and Loader
User's Guide, SC26-4061 for information on available options.

The dsname, OBJECT, LIB, TRANLlB, XA, and DEBUG parameters are unique to
VS Pascal. For more information on the other parar;neters, see the LINK command
in the TSOextensions Command Reference, GC28-1307.

Chapter 11. MVS CLiSTs and the CALL Command 135

CALL Command

~CALL---dsname~~-------~r-----------------------~~~~4

L(member)J l,-parms--'--------iJ
l'-run-time options-/ ,J

LparmsJ

Where Specifies

CALL The command name.

dsname (member)

options

parms

The name of a partitioned data set and the member where the load
module to be invoked is stored. If you omit the member name, VS
Pascal invokes the member' TEMPNAME' .

dsname may be either a simple name (to which the user identification
is prefixed and the qualifier' LOAD' is suffixed), or a fully qualified
name in quotation marks.

One or more run-time options separated by either a comma or a blank.
See Chapter 14, "Run-Time Options" on page 167.

A parameter string that is passed to the program. The parameter
string is retrieved from within the program by the PARMS function.

The total length of the quoted string (options plus parms) must not exceed 100
characters.

136 vs Pascal Application Programming Guide

CALL Command

~CALL---dsname--r--------~r------------------------.~~~~

L(member)J L.-parms--'--------IJ
L'-run-time options-j ,J

LparmsJ

Where Specifies

CALL The command name.

dsname (member)

options

parms

The name of a partitioned data set and the member where the load
module to be invoked is stored. If you omit the member name, VS
Pascal invokes the member 'TEMPNAME'.

dsname may be either a simple name (to which the user identification
is prefixed and the qualifier' LOAD' is suffixed), or a fully qualified
name in quotation marks.

One or more run-time options separated by either a comma or a blank.
See Chapter 14, "Run-Time Options" on page 167.

A parameter string that is passed to the program. The parameter
string is retrieved from within the program by the PARMS function.

The total length of the quoted string (options plus parms) must not exceed 100
characters.

136 vs Pascal Application Programming Guide

Chapter 12. MVS Batch Cataloged Procedures

Figure 84 summarizes all MVS Batch cataloged procedures in a quick-reference
chart. Detailed explanations of each cataloged procedure follow. For more
information see Chapter 3, "How to Run a Program in an MVS Batch
Environment" on page 23.

Procedure

PASCC Procedure

PASCCG Procedure

PASCCl Procedure

PASCClG Procedure

PASCG Procedure

PASCl Procedure

PASClG Procedure

Description

Compiles a source module to produce an object
module.

Compiles a source module and executes the
resulting load module.

Compiles a source module to produce an object
module and then link-edits the object module to
produce a load module.

Compiles, link-edits, produces a load module,
then executes the load module.

Runs a precompiled program

Link-edits a module.

Link-edits, then executes the program.

Figure 84. MVS Batch Cataloged Procedures

See
Page

139

149

144

152

143

141

147

Data Set Descriptions
Figure 85 describes the data sets needed in VS Pascal cataloged procedures.

DO Statement In Step Named Description

SYSIN PASC

OUCODE PASC

OUTPUT PASC

STEPLIB PASC

SYSLIB PASC

SYSLIN PASC

Input data set. You must supply this statement with the qualified ddname
PASC.SYSIN.

Intermediate data produced by the VS Pascal optimizer when the
OUCODE compile-time option is specified. For information on the
OUCODE compile-time option, see VS Pascal Diagnosis Guide and
Reference.

Output data set for system messages.

Data sets containing the VS Pascal compiler modules and run-time
environment.

Input data sets for %INClUDE members.

Temporary data set for the object module.

Figure 85 (Part 1 of 2). Data Set Descriptions for Cataloged Procedures

Chapter 12. MVS Batch Cataloged Procedures 137

Chapter 12. MVS Batch Cataloged Procedures

Figure 84 summarizes all MVS Batch cataloged procedures in a quick-reference
chart. Detailed explanations of each cataloged procedure follow. For more
information see Chapter 3, "How to Run a Program in an MVS Batch
Environment" on page 23.

Procedure

PASCC Procedure

PASCCG Procedure

PASCCL Procedure

PASCCLG Procedure

PASCG Procedure

PASCL Procedure

PASCLG Procedure

See
Description Page

Compiles a source module to produce an object 139
module.

Compiles a source module and executes the 149
resulting load module.

Compiles a source module to produce an object 144
module and then link-edits the object module to
produce a load module.

Compiles, link-edits, produces a load module, 152
then executes the load module.

Runs a precompiled program 143

Link-edits a module. 141

Link-edits, then executes the program. 147

Figure 84. MVS Batch Cataloged Procedures

Data Set Descriptions
Figure 85 describes the data sets needed in VS Pascal cataloged procedures.

DO Statement In Step Named Description

SYSIN PASC

OUCODE PASC

OUTPUT PASC

STEPLIB PASC

SYSLIB PASC

SYSLIN PASC

Input data set. You must supply this statement with the qualified ddname
PASC.SYSIN.

Intermediate data produced by the VS Pascal optimizer when the
OUCODE compile-time option is specified. For information on the
OUCODE compile-time option, see VS Pascal Diagnosis Guide and
Reference.

Output data set for system messages.

Data sets containing the VS Pascal compiler modules and run-time
environment.

Input data sets for %INCLUDE members.

Temporary data set for the object module.

l.. Figure 85 (Part 1 of 2). Data Set Descriptions for Cataloged Procedures

Chapter 12. MVS Batch Cataloged Procedures 137

DD Statement In Step Named Description

SYSLIST PASC Data set for pseudo-assembler listing when the LIST compile-time option ~
is specified.

SYSOIN PASC Used by VS Pascal for intermediate data.

SYSPRINT PASC For iistings and diagnostics produced by the compiler.

SYSTERM PASC Used for terminal messages.

SYSTIN PASC Work data set for VS Pascal intermediate data.

SYSUHDR PASC Temporary data set for UHEADERs.

SYSUT1 PASC Work data set.

SYSUT2 PASC Work data set.

SYSXREF PASC Work data set for cross-reference listing (when XREF compile-time option
specified).

UCODE PASC Intermediate data produced by the VS Pascal compiler front-end when
the UCODE compile-time option is specified. For information on the
UCODE compile-time option, see VS Pascal Diagnosis Guide and
Reference.

SYSIN LKED You supply an entry point with this statement when linking multiple
modules. The ddname is LKED.SYSIN.

SYSLIB LKED Automatic call library.

SYSLIN LKED Primary input data set for the linkage editor.

SYSLMOD LKED Output load module library.

SYSPRINT LKED For diagnostic output messages.

SYSUT1 LKED Work data set.

STEPLIB GO Data set for the run-time environment.

OUTPUT GO Output data set for VS Pascal program and system messages.

SYSLIB GO Automatic call library.

SYSLIN GO Primary input data set for the loader.

SYSLOUT GO For loader output.

SYSPRINT GO For output messages.

Figure 85 (Part 2 of 2). Data Set Descriptions for Cataloged Procedures

138 vs Pascal Application Programming Guide

DO Statement In Step Named

SYSLIST PASC

SYSOIN PASC

SYSPRINT PASC

SYSTERM PASC

SYSTIN PASC

SYSUHDR PASC

SYSUT1 PASC

SYSUT2 PASC

SYSXREF PASC

UCODE PASC

SYSIN LKED

SYSLIB LKED

SYSLIN LKED

SYSLMOD LKED

SYSPRINT LKED

SYSUT1 LKED

STEPLIB GO

OUTPUT GO

SYSLIB GO

SYSLIN GO

SYSLOUT GO

SYSPRINT GO

Description

Data set for pseudo-assembler listing when the LIST compile-time option
is specified.

Used by VS Pascal for intermediate data.

For iistings and diagnostics produced by the compiler.

Used for terminal messages.

Work data set for VS Pascal intermediate data.

Temporary data set for UHEADERs.

Work data set.

Work data set.

Work data set for cross-reference listing (when XREF compile-time option
specifi ed).

Intermediate data produced by the VS Pascal compiler front-end when
the UCODE compile-time option is specified. For information on the
UCODE compile-time option, see VS Pascal Diagnosis Guide and
Reference.

You supply an entry point with this statement when linking multiple
modules. The ddname is LKED.SYSIN.

Automatic call library.

Primary input data set for the linkage editor.

Output load module library.

For diagnostic output messages.

Work data set.

Data set for the run-time environment.

Output data set for VS Pascal program and system messages.

Automatic call library.

Primary input data set for the loader.

For loader output.

For output messages.

Figure 85 (Part 2 of 2). Data Set Descriptions for Cataloged Procedures

138 vs Pascal Application Programming Guide

Cataloged Procedures

PASCC Procedure

11**11
1/* *//
1/* v SPA S CAL * I /
1/* Version 1, Release 2.0 */1
1/* 5668-717 (C) Copyright IBM Corp. 1981, 1987, 1988. */1
1/* *11
11* PASCC Procedure: Compile a VS Pascal program. *1/
1/* *//
1/* Symbo 1 i c Parameters: * / I
1/* *//
1/* HiQual - High-level qualifier of the VS Pascal datasets *1/
11* MidQual - Mid-level qualifier of the VS Pascal datasets *1/

11* LoadSet - Dataset to contain generated object code *//
/1* COpts - Compiler options *1/
//* CLang - Language for compile-time messages.and text *//
1/* SOut - SYSOUT * I I
//* *//
11**/1
IIPASCC PROC HIQUAL='VSPASCAL',
II MIDQUAL='VSPV1R2',
II LOADSET='PASC.OBJ',
II
1/
II
11*

COPTS=' I,
CLANG=ENG,
SOUT='*'

II*******~**1/

11* Compile step. *11
11**11
/IPASC EXEC PGM=PASCALI,REGION=1M,
1/ PARM='LANGUAGE(&CLANG) I &COPTS'
IISTEPLIB DD DSN=&HIQUAL .. &MIDQUAL .• SAMPMOD1,DISP=SHR
II DD DSN=&HIQUAL .. &MIDQUAL •• SAMPRUN2,DISP=SHRl
II DD DSN=&HIQUAL .• &MIDQUAL •• SAMPMSG1,DISP=SHR
IISYSLIB DD DSN=&HIQUAL .• &MIDQUAL .. SAMPMACl,DISP=SHR
I/OUCODE DD SYSOUT=&SOUT
IIOUTPUT DD SYSOUT=&SOUT
/ISYSLIN DD DSN=&LOADSET,DISP=(NEW,CATLG),
II SPACE=(TRK,(2,5»,
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
IISYSLIST DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»
/ISYSOIN DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»
//SYSPRINT DO SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
I/SYSTERM DO DUMMY
I/SYSTIN DO UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»

Figure 86 (Part 1 of 2). PASCC Procedure

Chapter 12. MVS Batch Cataloged Procedures 139

Cataloged Procedures

PASCC Procedure

11**11
11* *11
11* v SPA S CAL *11
11* Version 1, Release 2.0 *11
11* 5668-717 (C) Copyright IBM Corp. 1981, 1987, 1988. *11
11* *11
1/* PASCC Procedure: Compile a VS Pascal program. *11
11* *11
11* Symbo 1 i c Parameters: * I I
11* *11
11* Hi Qual - High-level qualifier of the VS Pascal datasets *11
11* MidQual - Mid-level qualifier of the VS Pascal datasets *11

1/*
11*
11*
11*
11*

LoadSet - Dataset to contain generated object code
COpts - Compiler options
CLang - Language for compile-time messages and text
SOut - SYSOUT

*11
*11
*11
*11
*11

11**11
IIPASCC PROC HIQUAL='VSPASCAL',
II MIDQUAL='VSPV1R2',
II LOADSET='PASC.OBJ',
II
II
II
11*

COPTS=' "
CLANG=ENG,
SOUT='*'

11*******·**11
11* Compile step. *11
11**11
IIPASC EXEC PGM=PASCALI,REGION=lM,
II PARM='LANGUAGE(&CLANG) I &COPTS'
IISTEPLIB DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMOD1,DISP=SHR
II DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN2,DISP=SHRl
II DD DSN=&HIQUAL .• &MIDQUAL .. SAMPMSG1,DISP=SHR
IISYSLIB DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMAC1,DISP=SHR
IIOUCODE DD SYSOUT=&SOUT
IIOUTPUT DD SYSOUT=&SOUT
IISYSLIN DD DSN=&LOADSET,DISP=(NEW,CATLG),
II SPACE=(TRK,(2,5)),
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
IISYSLIST DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
IISYSOIN DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
IISYSPRINT DD SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
IISYSTERM DD DUMMY
IISYSTIN DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))

Figure 86 (Part 1 of 2). PASCC Procedure

Chapter 12. MVS Batch Cataloged Procedures 139

IISYSUHDR
IISYSUTl
II
IISYSUT2
II
IISYSXREF
IIUCODE
11*

DD UNIT=SYSDA.DISP=(NEW.DELETE),SPACE=(TRK,(2,5»
DO UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»,

DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK.(2,5».

DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB.DSORG=PS)
DD UNIT=SYSDA.DISP=(NEW,DELETE),SPACE=(TRK,(2,5»
DO SYSOUT=&SOUT

Figure 86 (Part 2 of 2). PASCC Procedure

IThis is required only if the VS Pascal compiler is installed above the 16-megabyte
address line.

140 vs Pascal Application Programming Guide

IISYSUHDR
IISYSUTl
II
IISYSUT2
II
IISYSXREF
IIUCODE
11*

DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5)),

DCB=(LRECL=88,BLKSIZE=3128,RECFM=FB,DSORG=PS)
DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5)),

DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
DD SYSOUT=&SOUT

Figure 86 (Part 2 of 2). PASCC Procedure

lThis is required only if the VS Pascal compiler is installed above the 16-megabyte
address line.

140 vs Pascal Application Programming Guide

I PASCL Procedure

//**//
//* *//
//* v SPA S CAL *//
//* Version 1, Release 2.0 *//
//* 5668-717 (C) Copyright IBM Corp. 1988. *//
//* *//
//* PASCL Procedure: Link a VS Pascal program. *//
//* *//
//* Symbolic Parameters: *//
//* *//
//* Hi Qual - High-level qualifier of the VS Pascal datasets *//
//* MidQual - Mid-level qualifier of the VS Pascal datasets *//
//* LoadSet - Dataset containing previously compiled object *//
~ c~ ~
//* GoSet - Dataset to contain load module *//
//* GoMem - Member of GoSet to contain load module *//
//* LOpts - Options passed to the Linkage Editor *//
//* XA - 'XA' causes the program to be linked AMODE(31),*//
//* RMODE(Any), 'NOXA' causes the program to be *//
//* linked AMODE(31), RMODE(24) *//
//* SOut - SYSOUT *//
//* *//
//**//
//PASCL PROC HIQUAL='VSPASCAL',
II MIDQUAL='VSPVIR2',
// LOADSET='PASC.OBJ',
// GOSET='PASC.MOD',
// GOMEM='GO',
1/ LOPTS='LIST,MAP',
1/
II
11*

XA=' XA',
SOUT='*'

//**/1
//* Link step. *//
11**11
IILKED EXEC PGM=IEWL,PARM='&LOPTS'
11*--*1/
/1* Choose a syslib based on the desired configuration *11
//*
//* Syslib for transient library (with debugger)
//*
II*SYSLIB
//*
1/*
/1*

DD DSN=&HIQUAL •. &MIDQUAL •• SAMPDBG2,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .• SAMPRUN3,DISP=SHR
DD DSN=&HIQUAL .• &MIDQUAL •• SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL •• SAMPMSGI,DISP=SHR

Figure 87 (Part 1 of 2). PASCL Procedure

Chapter 12. MVS Batch Cataloged Procedures 141

I PASCL Procedure

11**11
11* *11
11* v SPA S CAL *11
11* Version 1, Release 2.0 *11
11* 5668-717 (C) Copyright IBM Corp. 1988. *11
11* *11
11* PASCL Procedure: Link a VS Pascal program. *11
11* *11
11* Symbol i c Parameters: * I I
11* *11
11* HiQual - High-level qualifier of the VS Pascal datasets *11
11* MidQual - Mid-level qualifier of the VS Pascal datasets *11
11* LoadSet - Dataset containing previously compiled object *11
11* code *11
11* GoSet - Dataset to contain load module *11
11* GoMem - Member of GoSet to contain load module *11
11* LOpts - Options passed to the Linkage Editor *11
11* XA - 'XA' causes the program to be linked AMODE(31),*11
11* RMODE(Any), 'NOXA' causes the program to be *11
11* linked AMODE(31), RMODE(24) *11
11* SOut - SYSOUT *11
11* *11
11**11
IIPASCL PROC HIQUAL='VSPASCAL',
II MIDQUAL='VSPV1R2',
II LOADSET='PASC.OBJ',
I I GOSET=' PASC. MOD' ,
II GOMEM='GO',
II LOPTS='LIST,MAP',
II
II
11*

XA=' XA',
SOUT='*'

11**11
11* Link step. *11
11**11
IILKED EXEC PGM=IEWL,PARM='&LOPTS'
11*--*11
11* Choose a syslib based on the desired configuration *11
11*
11* Syslib for transient library (with debugger)
1/*
II*SYSLIB
11*
11*
1/*

DD DSN=&HIQUAL .. &MIDQUAL •• SAMPDBG2,DISP=SHR
DD DSN=&HIQUAL .• &MIDQUAL .. SAMPRUN3,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL •. SAMPRUN1,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL •. SAMPMSG1.DISP=SHR

Figure 87 (Part 1 of 2). PASCl Procedure

Chapter 12. MVS Batch Cataloged Procedures 141

11*
11* Syslib for transient library (without debugger)
1/*
II*SYSLIB
11*
11*
11*

DO DSN=&HIQUAL .• &MIDQUAL •• SAMPRUN3.0ISP=SHR
DO OSN=&HIQUAL •• &MIDQUAL •• SAMPRUNl,DISP=SHR
OD DSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,DISP=SHR

11* Syslib for normal library (with debugger)
11*
II*SYSLIB
11*
1/*
11*

DD DSN=&HIQUAL •. &MIDQUAL •• SAMPDBGl,DISP=SHR
DO DSN=&HIQUAL .. &MIDQUAL .. SAMPRUNl,DISP=SHR
DO OSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,OISP=SHR

11* Syslib for normal library (without debugger)
11*
IISYSLIB DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUNl,OISP=SHR
II DO DSN=&HIQUAL •• &MIOQUAL .• SAMPMSGl.DISP=SHR
11*
11* End of syslib choices *11
11*--*11
IISYSLIN DO DSN=&HIQUAL •• &MIDQUAL •. SAMPLKDl(&XA).DISP=SHR
II DO DSN=&LOADSET.DISP=SHR
II DO OONAME=SYSIN
IISYSLMOD DO DSN=&GOSET(&GOMEM).DISP=(NEW,CATLG),
II SPACE=(TRK.(2.5.1»
IISYSPRINT DO SYSOUT=&SOUT
IISYSUTI DO UNIT=SYSOA.SPACE=(CYL,(l.l»
11*

Figure 87 (Part 2 of 2). PASel Procedure

142 vs Pascal Application Programming Guide

11*
11* Syslib for transient library (without debugger)
11*
II*SYSLIB
11*
11*
11*

DD DSN=&HIQUAL .. &MIDQUAL •• SAMPRUN3,DISP=SHR
DD DSN=&HIQUAL .• &MIDQUAL .. SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL •. SAMPMSGl,DISP=SHR

11* Syslib for normal library (with debugger)
11*
II*SYSLIB
11*
11*
11*

DD DSN=&HIQUAL .• &MIDQUAL .. SAMPDBGl,DISP=SHR
DD DSN=&HIQUAL •• &MIDQUAL .. SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL •• &MIDQUAL •. SAMPMSGl,DISP=SHR

11* Syslib for normal library (without debugger)
1/*
IISYSLIB DD DSN=&HIQUAL .. &MIDQUAL .• SAMPRUNl,DISP=SHR
II DD DSN=&HIQUAL .. &MIDQUAL •• SAMPMSGl,DISP=SHR
11*
11* End of syslib choices *11
11*--*11
IISYSLIN DD DSN=&HIQUAL .. &MIDQUAL .. SAMPLKDl(&XA),DISP=SHR
II DD DSN=&LOADSET,DISP=SHR
II DD DDNAME=SYSIN
IISYSLMOD DD DSN=&GOSET(&GOMEM),DISP=(NEW,CATLG),
II SPACE=(TRK,(2,5,1»
IISYSPRINT DD SYSOUT=&SOUT
IISYSUTI DD UNIT=SYSDA,SPACE=(CYL,(l,l»
11*

Figure 87 (Part 2 of 2). PASel Procedure

142 vs Pascal Application Programming Guide

I PASCG Procedure

11**11
11*
11*
11*
11*
11*
1/*
11*

11*
1/*
1/*
1/*
1/*
11*
11*
11*
11*
11*

v SPA S CAL
Version 1, Release 2.0
5668-717 (C) Copyright IBM Corp. 1988.

PASCG Procedure: Execute a VS Pascal program.

Symbolic Parameters:

Hi Qual
Mi dQual
GoSet
GoMem
ROpts
RLang
SOut

- High-level qualifier of the VS Pascal datasets
- Mid-level qualifier of the VS Pascal datasets
- Dataset containing load module
- Member of GoSet containing load module
- Execution options for the VS Pascal program
- Language for run-time messages
- SYSOUT

*11
*11
*11
*11
*11
*11
*11

*11
*11
*11
*11
*11
*11
*11
*11
*11
*11

11**11
IIPASCG PROC HIQUAL='VSPASCAL',
II MIDQUAL='VSPV1R2',
II GOSET='PASC.MOD',
II GOMEM='GO',
II ROPTS=' "
II RLANG=ENG,
II SOUT='*'
11*

11**11
11* Execute step. *11
11**11
II GO EXEC PGM=&GOMEM,REGION=lM,
II PARM='LANGUAGE(&RLANG) I &ROPTS'
IISTEPLIB DD DSN=&GOSET,DISP=SHR
II DD DSN=&HIQUAL .. &MIDQUAL .• SAMPRUN4,DISP=SHR
II DD DSN=&HIQUAL .. &MIDQUAL .• SAMPRUN2,DISP=SHR
II DD DSN=&HIQUAL •• &MIDQUAL .. SAMPMSG1,DISP=SHR
IIOUTPUT DD SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133)
IISYSPRINT DD SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133)
11*

Figure 88. PASCG Procedure

Chapter 12. MVS Batch Cataloged Procedures 143

I PASCG Procedure

11**11
11* *11
11* v SPA S CAL *11
11* Version 1, Release 2.0 *11
11* 5668-717 (C) Copyright IBM Corp. 1988. *11
11* *11
11* PASCG Procedure: Execute a VS Pascal program. *11
11* *11

11*
1/*
1/*
11*
11*
1/*
11*
1/*
1/*
1/*

Symbolic Parameters:

HiQual
MidQual
GoSet
GoMem
ROpts
RLang
SOut

- High-level qualifier of the VS Pascal datasets
- Mid-level qualifier of the VS Pascal datasets
- Dataset containing load module
- Member of GoSet containing load module
- Execution options for the VS Pascal program
- Language for run-time messages
- SYSOUT

*11
*11
*11
*11
*11
*11
*11
*11
*11
*11

11**11
IIPASCG PROC HIQUAL='VSPASCAL',
II MIDQUAL='VSPVIR2',
II GOSET='PASC.MOD',
II GOMEM='GO',
I I ROPTS=' "
II RLANG=ENG,
II SOUT='*'
11*

11**11
11* Execute step. *11
11**11
II GO EXEC PGM=&GOMEM,REGION=IM,
II PARM='LANGUAGE(&RLANG) I &ROPTS'
IISTEPLIB DO DSN=&GOSET,DISP=SHR
II DO DSN=&HIQUAL •. &MIDQUAL .. SAMPRUN4,DISP=SHR
II DO DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN2,DISP=SHR
II DO DSN=&HIQUAL .. &MIDQUAL .. SAMPMSG1,DISP=SHR
IIOUTPUT DO SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133)
IISYSPRINT DO SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133)
11*

Figure 88. PASCG Procedure

Chapter 12. MVS Batch Cataloged Procedures 143

PASCCL Procedure

11**11
11* *11
1/* v SPA seA L *11
11* Version 1, Release 2.0 *11
11* 5668-717 (e) Copyright IBM Corp. 1981, 1987, 1988. *11
11* *11
1/* PASCCL Procedure: Compile and link a VS Pascal program. *11
11* *11

11* Symbolic Parameters: *11
11* *11
1/* HiQual - High-level qualifier of the VS Pascal data sets *11
11* MidQual - Mid-level qualifier of the VS Pascal data sets *11
11* GoSet - Dataset to contain load module *11
11* GoMem - Member in GoSet for load module *11
11* COpts - Compiler options *11
/1* CLang - Language for compile-time messages and text *11
/1* LOpts - Options passed to the Linkage Editor *11

1/*
1/*
1/*
1/*
11*

XA - 'XA' causes the program to be linked AMODE(31) ,*11
RMODE(Any) , 'NOXA' causes the program to be *11
linked AMODE(31), RMODE(24) *11

SOut - SYSOUT *11
*11

11**11

IIPAseCL PROC HIQUAL='VSPASCAL',
II MIDQUAL='VSPV1R2',
II GOSET='PASe.MOD',
II GOMEM='GO',
II COPTS=",
II eLANG=ENG,
1/ LOPTS='LIST,MAP',
II
II
1/*

XA=' XA',
SOUT='*'

/1**11

Figure 89 (Part 1 of 3). PASCCL Procedure

144 VS Pascal Application Programming Guide

PASCCL Procedure

11**11
11*
1/*
11*
1/*
11*
11*
1/*

11*
1/*
11*
11*
11*
11*
11*
11*
11*

v SPA S CAL
Version 1, Release 2.0
5668-717 (C) Copyright IBM Corp. 1981, 1987, 1988.

PASCCL Procedure: Compile and link a VS Pascal program.

Symbolic Parameters:

HiQual
MidQual
GoSet
GoMem
COpts
CLang
LOpts

- High-level qualifier of the VS Pascal data sets
- Mid-level qualifier of the VS Pascal datasets
- Dataset to contain load module
- Member in GoSet for load module
- Compiler options
- Language for compile-time messages and text
- Options passed to the Linkage Editor

*11
*11
*11
*11
*11
*11
*11

*11
*11
*11
*11
*11
*11
*11
*11
*11

11*
11*
11*
11*
11*

XA - 'XA' causes the program to be linked AMODE(31) ,*11
RMODE(Any) , 'NOXA' causes the program to be *11
linked AMODE(31), RMODE(24) *11

SOut - SYSOUT *11
*11

11**11

IIPASCCL PROC HIQUAL='VSPASCAL',
II MIDQUAL='VSPVIR2',
II GOSET='PASC.MOD',
II GOMEM='GO',
II
II
II
II
II
11*

COPTS=' "
CLANG=ENG,
LOPTS='LIST,MAP',
XA=' XA',
SOUT='*'

11**11

Figure 89 (Part 1 of 3). PASCCL Procedure

144 VS Pascal Application Programming Guide

11* Compile step. *//
/1**11
IIPASC EXEC PGM=PASCALI,REGION=lM,
II PARM='LANGUAGE(&CLANG} I &COPTS'
IISTEPLIB DD DSN=&HIQUAL .. &MIDQUAL •• SAMPMODl,DISP=SHR
II OD OSN=&HIQUAL .. &MIOQUAL .• SAMPRUN2,OISP=SHRI
II DO OSN=&HIQUAL •• &MIDQUAL •• SAMPMSGl,DISP=SHR
I/OUCODE DO SYSOUT=&SOUT
IIOUTPUT DO SYSOUT=&SOUT
IISYSLIB DO OSN=&HIQUAL .• &MIOQUAL .. SAMPMACl,OISP=SHR

IISYSLIN OD DSN=&&LOADSET,UNIT=SYSDA,OISP=(MOD,PASS),
II SPACE=(TRK,(2,5»,
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,OSORG=PS)
IISYSLIST DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»
IISYSOIN DD UNIT=SYSDA,OISP=(NEW,DELETE),SPACE=(TRK,(2,5»
IISYSPRINT DD SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
IISYSTERM DO DUMMY

IISYSTIN
IISYSUHOR
IISYSUTl
II
I/SYSUT2
II
IISYSXREF
IIUCOOE
11*

DO UNIT=SYSOA,DISP=(NEW,OELETE),SPACE=(TRK,(2,5»
DO UNIT=SYSOA,OISP=(NEW,OELETE),SPACE=(TRK,(2,5»
DO UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»,

DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
DO UNIT=SYSDA,OISP=(NEW,DELETE),SPACE=(TRK,(2,5»,

DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
DO UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»
OD SYSOUT=&SOUT

11**//
11* Link step. *11
11**//
IILKEO EXEC PGM=IEWL,COND=(8,LE,PASC),
II PARM='&LOPTS'
11*--*11
11* Choose a syslib based on the desired configuration *11
11*
11* Syslib for transient library (with debugger)

Figure 89 (Part 2 of 3). PASCCL Procedure

Chapter 12. MVS Batch Cataloged Procedures 145

(

'-'

11* Compile step. *11
11**~***********II
IIPASC EXEC PGM=PASCALI,REGION=lM,
II PARM='LANGUAGE(&CLANG) I &COPTS'
IISTEPLIB DO DSN=&HIQUAL .. &MIDQUAL .. SAMPMODl,DISP=SHR
II DO DSN=&HIQUAL •. &MIDQUAL •. SAMPRUN2,DISP=SHRI
II DO DSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,DISP=SHR
IIOUCODE DO SYSOUT=&SOUT
IIOUTPUT DO SYSOUT=&SOUT
IISYSLIB DO DSN=&HIQUAL .• &MIDQUAL •• SAMPMACl,DISP=SHR

IISYSLIN DO DSN=&&LOADSET, UN IT=SYSDA, 01 SP= (MOD, PASS) ,
II SPACE=(TRK,(2,5)),
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
IISYSLIST DO UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
IISYSOIN DO UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
IISYSPRINT DO SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
IISYSTERM DO DUMMY

IISYSTIN
IISYSUHDR
IISYSUTl
II
IISYSUT2
II
IISYSXREF
IIUCODE
11*

DO UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
DO UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
DO UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5)),

DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
DO UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5)),

DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
DO UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
DO SYSOUT=&SOUT

11**11
11* Link step. *11
11**11
IILKED EXEC PGM=IEWL,COND=(8,LE,PASC),
II PARM='&LOPTS'
11*--*11
11* Choose a syslib based on the desired configuration *11
11*
11* Syslib for transient library (with debugger)

Figure 89 (Part 2 of 3). PASCCL Procedure

Chapter 12. MVS Batch Cataloged Procedures 145

11*
II*SYSLIB
11*
11*
11*
11*

DD DSN=&HIQUAL .. &MIDQUAL •. SAMPDBG2,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN3,DISP=SHR
DD DSN=&HIQUAL •• &MIDQUAL •• SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL •• &MIDQUAL •• SAMPMSGl,DISP=SHR

11* Syslib for transient library (without debugger)
11*
II*SYSLIB
11*
11*
11*

DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN3,DISP=SHR
DD DSN=&HIQUAL •• &MIDQUAL •• SAMPRUNl,DISP=SHR
DO OSN=&HIQUAL •• &MIOQUAL .• SAMPMSGl,OISP=SHR

11* Syslib for normal library (with debugger)
11*
II*SYSLIB
11*
11*
11*

DO OSN=&HIQUAL .. &MIDQUAL •. SAMPOBGl,OISP=SHR
DO OSN=&HIQUAL .. &MIOQUAL .. SAMPRUNl,OISP=SHR
DO OSN=&llIQUAL.. &MIDQUAL .• SAMPMSGl,OISP=SHR

11* Syslib for normal library (without debugger)
1/*
IISYSLIB DO OSN=&HIQUAL .. &MIDQUAL •. SAMPRUNl,OISP=SHR
II DO DSN=&HIQUAL .. &MIDQUAL •. SAMPMSGl,OISP=SHR
1/*
11* End of syslib choices *11
11*--*11
IISYSLIN DO DSN=&HIQUAL .• &MIOQUAL •. SAMPLKOl(&XA),OISP=SHR
II DO OSN=*.PASC.SYSLIN,OISP=(OLD,DELETE)
II DD OONAME=SYSIN
IISYSLMOD DD DSN=&GOSET(&GOMEM),OISP=(NEW,CATLG),
II SPACE=(TRK,(2,5,1)
IISYSPRINT DD SYSOUT=&SOUT
IISYSUTI DD UNIT=SYSDA,SPACE=(CYL,(l,l»
11*

Figure 89 (Part 3 of 3). PASCCL Procedure

lThis is required only if the VS Pascal compiler is installed or executed above the
16-megabyte address line.

146 vs Pascal Application Programming Guide

1/*
II*SYSLIB
11*
11*
1/*
11*

DD DSN=&HIQUAL .. &MIDQUAL .. SAMPDBG2,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL •. SAMPRUN3,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .• SAMPMSGl,DISP=SHR

11* Syslib for transient library (without debugger)
11*
II*SYSLIB
1/*
11*
11*

DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN3,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .• SAMPMSGl,DISP=SHR

11* Syslib for normal library (with debugger)
11*
II*SYSLIB
1/*
11*
11*

DD DSN=&HIQUAL .. &MIDQUAL .. SAMPDBGl,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL •. SAMPRUNl,DISP=SHR
DD DSN=&llIQUAL •• &MIDQUAL .. SAMPMSGl, DISP=SHR

11* Syslib for normal library (without debugger)
11*
IISYSLIB DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUNl,DISP=SHR
II DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,DISP=SHR
11*
11* End of syslib choices *11
11*--*11
IISYSLIN DD DSN=&HIQUAL .. &MIDQUAL .. SAMPLKDl(&XA),DISP=SHR
II DD DSN=*.PASC.SYSLIN,DISP=(OLD,DELETE)
II DD DDNAME=SYSIN
IISYSLMOD DD DSN=&GOSET(&GOMEM),DISP=(NEW,CATLG),
II SPACE=(TRK,(2,5,1))
IISYSPRINT DD SYSOUT=&SOUT
IISYSUTI DD UNIT=SYSDA,SPACE=(CYL,(l,l))
11*

Figure 89 (Part 3 of 3). PASCCL Procedure

lThis is required only if the VS Pascal compiler is installed or executed above the
16-megabyte address line.

146 vs Pascal Application Programming Guide

I PASCLG Procedure

//**//
//* */1
11* v SPA S CAL *11
11* Version 1, Release 2.0 *11
11* 5668-717 (C) Copyright IBM Corp. 1981, 1987, 1988. *11
11* */1
11* PASCLG Procedure: Link and execute a VS Pascal program. */1
~* *~
11* Symbolic Parameters: *11
11* *11
11* HiQual High-level qualifier of the VS Pascal datasets *11
1/* MidQual - Mid-level qualifier of the VS Pascal data sets *11
11* LoadSet - Dataset containing previously compiled object *11
11* code * I I
11* LOpts Options passed to the Linkage Editor *11
11* XA - 'XA' causes the program to be linked AMODE(31),*11
11* RMODE(Any) , 'NOXA' causes the program to be *11
11* linked AMODE(31), RMODE(24) *11
11* ROpts - Execution options for the VS Pascal program */1
//* RLang - Language for run-time messages *11
11* SOut - SYSOUT *//
1/* */1
/1**11
/IPASCLG PROC HIQUAL='VSPASCAL',
II MIDQUAL='VSPV1R2',
II LOADSET='PASC.OBJ',
II LOPTS='LIST,MAP',
II
/1
II
II
/1*

XA=' XA' ,
ROPTS=' , ,
RLANG=ENG,
SOUT='*'

11**11
1/* Link step. *1/
11**1/
/ILKED EXEC PGM=IEWL,PARM='&LOPTS'
11*--*1/
1/* Choose a syslib based on the desired configuration *11
11*
11* Syslib for transient library (with debugger)
/1*
/ /*SYSLIB
11*
11*
11*

DO DSN=&HIQUAL .. &MIDQUAL .. SAMPDBG2,DISP=SHR
DO DSN=&HIQUAL .. &MIDQUAL •. SAMPRUN3,DISP=SHR
DO OSN=&HIQUAL .• &MIOQUAL •. SAMPRUN1,OISP=SHR
DO DSN=&HIQUAL .. &MIDQUAL .. SAMPMSG1,DISP=SHR

Figure 90 (Part 1 of 2). PASCLG Procedure

Chapter 12. MVS Batch Cataloged Procedures 147

I PASCLG Procedure

11**11
11* *11
11* v SPA S CAL *11
11* Version 1, Release 2.0 *11
11* 5668-717 (C) Copyright IBM Corp. 1981, 1987, 1988. *11
11* *11
11* PASCLG Procedure: Link and execute a VS Pascal program. *11
~* *~
11* Symbolic Parameters: *11
11* *11
11* Hi Qual - High-level qualifier of the VS Pascal datasets *11
11* MidQual - Mid-level qualifier of the VS Pascal datasets *11
11* LoadSet - Dataset containing previously compiled object *11
11* code *11
11* LOpts Options passed to the Linkage Editor *11
11* XA - 'XA' causes the program to be linked AMODE(31) ,*11
11* RMODE(Any) , 'NOXA' causes the program to be *11
11* linked AMODE(31), RMODE(24) *11
11* ROpts - Execution options for the VS Pascal program *11
/1* RLang - Language for run-time messages *11
1/* SOut - SYSOUT * I I
11* *11
11**11
IIPASCLG PROC HIQUAL='VSPASCAL',
II MIDQUAL='VSPV1R2',
II LOADSET='PASC.OBJ',
II LOPTS='LIST,MAP',
II
II
II
II
1/*

XA=' XA' ,
ROPTS=' , ,
RLANG=ENG,
SOUT='*'

11**11
11* Link step. *11
11**11
IILKED EXEC PGM=IEWL,PARM='&LOPTS'
11*--*11
11* Choose a syslib based on the desired configuration *11
11*
11* Syslib for transient library (with debugger)
11*
II*SYSLIB
1/*
11*
11*

DO DSN=&HIQUAL .. &MIDQUAL .. SAMPDBG2,DISP=SHR
DO DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN3,DISP=SHR
DO DSN=&HIQUAL .. &MIDQUAL .. SAMPRUNl,DISP=SHR
DO DSN=&HIQUAL .. &MIDQUAL .. SAMPMSG1,DISP=SHR

Figure 90 (Part 1 of 2). PASCLG Procedure

Chapter 12. MVS Batch Cataloged Procedures 147

11*
11* Syslib for transient library (without debugger)
11*
II*SYSLIB
11*
11*
11*

DD DSN=&HIQUAL .. &MIDQUAL •. SAMPRUN3,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL •. SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,DISP=SHR

11* Syslib for normal library (with debugger)
11*
I/*SYSLIB
1/*
1/*
1/*

DD DSN=&HIQUAL •• &MIDQUAL .. SAMPDBGl,DISP=SHR
DD DSN=&HIQUAL •• &MIDQUAL. • SAMPRUNl, DISP=SHR
DD DSN=&HIQUAL •• &MIDQUAL •. SAMPMSGl,DISP=SHR

11* Syslib for normal library (without debugger)
11*
I ISYSLI B DD DSN=&HIQUAL •• &MIDQUAL. . SAMPRUN1, DISP=SHR
II DD DSN=&HIQUAL .• &MIDQUAL .• SAMPMSGl,DISP=SHR

11*
1/* End of syslib choices */1
11*--*11
IISYSLIN DD DSN=&HIQUAL .. &MIDQUAL .. SAMPLKDl(&XA),DISP=SHR
II DD DSN=&LOADSET,DISP=SHR
1/ DD DDNAME=SYSIN
IISYSLMOD DD DSN=&&GOSET(GO),UNIT=SYSDA,DISP=(,PASS),
II SPACE=(TRK,(2,5»
IISYSPRINT DD SYSOUT=&SOUT
IISYSUTI DD UNIT=SYSDA,SPACE=(CYL,(l,l»
11*
1/**11
11* Execute step. *11
11**/1
IIGO EXEC PGM=*.LKED.SYSLMOD,REGION=lM,COND=(8,LE,LKED),
II PARM='LANGUAGE(&RLANG) I &ROPTS'
IISTEPLIB DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN4,DISP=SHR
II DD DSN=&HIQUAL .. &MIDQUAL .• SAMPRUN2,DISP=SHR
II DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,DISP=SHR
IIOUTPUT DD SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133)
IISYSPRINT DD SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133)
11*

Figure 90 (Part 2 of 2). PASCLG Procedure

148 vs Pascal Application Programming Guide

11*
11* Syslib for transient library (without debugger)
11*
II*SYSLIB
11*
11*
11*

DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN3,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,DISP=SHR

11* Syslib for normal library (with debugger)
11*
I/*SYSLIB
11*
1/*
11*

DD DSN=&HIQUAL .. &MIDQUAL .. SAMPDBGl,DISP=SHR
DD DSN=&HIQUAL •. &MIDQUAL .. SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL •. SAMPMSGl,DISP=SHR

11* Syslib for normal library (without debugger)
1/*
IISYSLIB DD DSN=&HIQUAL •. &MIDQUAL •• SAMPRUNl,DISP=SHR
II DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,DISP=SHR

11*
11* End of syslib choices *11
11*--*11
IISYSLIN DD DSN=&HIQUAL .. &MIDQUAL •. SAMPLKDl(&XA),DISP=SHR
II DD DSN=&LOADSET,DISP=SHR
II DD DDNAME=SYSIN
IISYSLMOD DD DSN=&&GOSET(GO),UNIT=SYSDA,DISP=(,PASS),
II SPACE=(TRK,(2,5))
IISYSPRINT DD SYSOUT=&SOUT
IISYSUTI DD UNIT=SYSDA,SPACE=(CYL,(l,l))
11*
11**11
11* Execute step. *11
11**11
IIGO EXEC PGM=*.LKED.SYSLMOD,REGION=lM,COND=(8,LE,LKED),
II PARM='LANGUAGE(&RLANG) I &ROPTS'
IISTEPLIB DD OSN=&HIQUAL •• &MIDQUAL .. SAMPRUN4,DISP=SHR
II DO DSN=&HIQUAL .• &MIDQUAL .. SAMPRUN2,DISP=SHR
II DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,DISP=SHR
IIOUTPUT DD SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133)
IISYSPRINT DD SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133)
11*

Figure 90 (Part 2 of 2). PASCLG Procedure

148 vs Pascal Application Programming Guide

I PASCCG Procedure

//**//
//* *//
//* v SPA S CAL *//
//* Version 1, Release 2.0 *//
//* 5668-717 (C) Copyright IBM Corp. 1981, 1987, 1988. *//
//* *//
//* PASCCG Procedure: Compile, load, and execute a VS Pascal *//
//* program. *//
/1* */1
1/* Symbol ic Parameters: *//
//* */1
1/* HiQual - High-level qualifier of the VS Pascal datasets */1

//* MidQual - Mid-level qualifier of the VS Pascal datasets *//
1/* COpts - Compiler options *11
/1* CLang - Language for compile-time messages and text *1/
11* Include - Use 'AMPZMVSB' if program to reside above 16M, */1
//* use 'AMPZRPOl' if program to reside below 16M *//
//* Modes - AMODE and RMODE of program
11* ROpts - Execution options for the VS Pascal program */1
//* RLang - Language for run-time messages *//
1/* SOut - SYSOUT *1/
//* *Ij
1/**//

/IPASCCG PROC HIQUAL='VSPASCAL',
/1 MIDQUAL='VSPV1R2',
// COPTS=",
// CLANG=ENG,
// INCLUDE='AMPZMVSB',
/1 MODES='AMODE=31,RMODE=ANY' ,
//
//
II
1/*

ROPTS=' , ,
RLANG=ENG,
SOUT='*'

1/**/1

/1* Compile step. *1/
1/**11
IIPASC EXEC PGM=PASCALI,REGION=lM,
/1 PARM='LANGUAGE(&CLANG) / &COPTS'
//STEPLIB DO DSN=&HIQUAL .• &MIDQUAL .. SAMPMOD1,DISP=SHR
II DO DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN2,DISP=SHRl
II DO DSN=&HIQUAL •. &MIDQUAL .. SAMPMSGl,DISP=SHR
/ISYSLIB DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMAC1,DISP=SHR
I/OUCODE DO SYSOUT=&SOUT
//OUTPUT DO SYSOUT=&SOUT

Figure 91 (Part 1 of 3). PASCCG Procedure

Chapter 12. MVS Batch Cataloged Procedures 149

I PASCCG Procedure

//**//
//* *//
//* v SPA S CAL *//
//* Version 1, Release 2.0 *//
//* 5668-717 (C) Copyright IBM Corp. 1981, 1987, 1988. *//
//* *//
//* PASCCG Procedure: Compile, load, and execute a VS Pascal *//
//* program. *//
//* *//
//* Symbolic Parameters: *//
//* *//
//* HiQual - High-level qualifier of the VS Pascal datasets *//

//* MidQual - Mid-level qualifier of the VS Pascal datasets *//
//* COpts - Compiler options *//
//* CLang - Language for compile-time messages and text *//
//* Include - Use 'AMPZMVSB' if program to reside above 16M, *//
//* use 'AMPZRPOl' if program to reside below 16M *//
//* Modes - AMODE and RMODE of program
//* ROpts - Execution options for the VS Pascal program *//
//* RLang - Language for run-time messages *//
//* SOut - SYSOUT *//
//* */j
//**//

//PASCCG PROC HIQUAL='VSPASCAL',
1/ MIDQUAL='VSPVIR2',
//
II
II
II
1/
//
//
//*

COPTS=' , ,
CLANG=ENG,
INCLUDE='AMPZMVSB',
MODES='AMODE=31,RMODE=ANY' ,
ROPTS=' , ,
RLANG=ENG,
SOUT='*'

//**1/

/1* Compile step. *//
1/**//
//PASC EXEC PGM=PASCALI,REGION=IM,
// PARM='LANGUAGE(&CLANG) / &COPTS'
//STEPLIB DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMODI,DISP=SHR
/1 DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN2,DISP=SHRI
/ / DD DSN=&HIQUAL .. &.MIDQUAL .. SAMPMSGl, DISP=SHR
//SYSLIB DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMACl,DISP=SHR
IIOUCODE DD SYSOUT=&SOUT
I/OUTPUT DD SYSOUT=&SOUT

Figure 91 (Part 1 of 3). PASCCG Procedure

Chapter 12. MVS Batch Cataloged Procedures 149

IISYSLIN DD DSN=&&LOADSET,UNIT=SYSDA,DISP=(MOD,PASS),
II SPACE=(TRK,(2,5»,
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
IISYSLIST DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
IISYSOIN DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
IISYSPRINT DD SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
IISYSTERM DD DUMMY
IISYSTIN DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
IISYSUHDR DO UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5)

IISYSUTl
II
IISYSUT2
II
IISYSXREF
IIUCODE
/1*

DO UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5}},
DCB=(LRECL=B0.BLKSIZE=3120,RECFM=FB,DSORG=PS}

DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5),
DCB=(LRECL=B0,BLKSIZE=3120,RECFM=FB,DSORG=PS}

DO UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5)}
DD SYSOUT=&SOUT

1/**//

/1* Load and execute step. */1
1/**11
I/GO EXEC PGM=LOADER,COND=(B,LE,PASC),
// PARM=' EP=VSPASCAL,&MODES,LET/LANGUAGE(&RLANG)/&ROPTS'
IISTEPLIB DO DSN=&HIQUAL .. &MIDQUAL .• SAMPRUN4,OISP=SHR
II DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN2,DISP=SHR
II DO DSN=&HIQUAL •• &MIDQUAL •• SAMPMSGl,DISP=SHR
1/*--*/1
11* Choose a syslib based on the desired configuration *11
11*

11* Syslib for transient library (with debugger)
11*
II*SYSLIB
11*
1/*
1/*
1/*

DD DSN=&HIQUAL •. &MIDQUAL .. SAMPDBG2,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .• SAMPRUN3,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .• SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,DISP=SHR

Figure 91 (Part 2 of 3). PASCCG Procedure

150 vs Pascal Application Programming Guide

IISYSLIN DD DSN=&&LOADSET ,UNIT=SYSDA,DISP=(MOD,PASS),
II SPACE=(TRK,(2,5)),
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
IISYSLIST DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
IISYSOIN DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
IISYSPRINT DD SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
IISYSTERM DD DUMMY
IISYSTIN DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
IISYSUHDR DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))

I ISYSUTl
II
IISYSUT2
II
IISYSXREF
IIUCODE
11*

DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5)),
DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)

DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5)),
DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)

DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5))
DD SYSOUT=&SOUT

11**11

11* Load and execute step. *11
11**11
IIGO EXEC PGM=LOADER,COND=(8,LE,PASC),
II PARM='EP=VSPASCAL,&MODES,LET/LANGUAGE(&RLANG)/&ROPTS'
IISTEPLIB DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN4,DISP=SHR
II DD DSN=&HIQUAL .. &MIDQUAL •. SAMPRUN2,DISP=SHR
II DD DSN=&HIQUAL .• &MIDQUAL .. SAMPMSGl,DISP=SHR
11*--*11
11* Choose a syslib based on the desired configuration *11
11*

11* Syslib for transient library (with debugger)
11*
I/*SYSLIB
11*
11*
1/*
11*

DD DSN=&HIQUAL .. &MIDQUAL .. SAMPDBG2,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN3,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,DISP=SHR

Figure 91 (Part 2 of 3). PASCCG Procedure

150 vs Pascal Application Programming Guide

11* Syslib for transient library (without debugger)
11*
/ !*SYSLIB
11*
11*
11*

DD DSN=&HIQUAL .. &MIDQUAL •• SAMPRUN3 ,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .• SAMPRUNl,DISP=SHR
DO DSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,DISP=SHR

//* Syslib for normal library (with debugger)
//*
/I*SYSLIB
11*
/1*
11*

DD DSN=&HIQUAL .. &MIDQUAL .. SAMPDBGl,DISP=SHR
DO DSN=&HIQUAL .. &MIDQUAL .. SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,DISP=SHR

11* Syslib for normal library (without debugger)
1/*
//SYSLIB DD DSN=&HIQUAL •. &MIDQUAL •. SAMPRUNl,DISP=SHR
II DO DSN=&HIQUAL .. &MIDQUAL •. SAMPMSGl,DISP=SHR
1/*
11* End of syslib choices */1
//*--*11
IIOUTPUT DO SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133)
IISYSLIN DO DSN=&HIQUAL .. &MIOQUAL •. SAMPRUNl(&INCLUOE},OISP=SHR
II DO DSN=*.PASC.SYSLIN,OISP=(OLD,OELETE)
I/SYSLOUT DD SYSOUT=&SOUT
I/SYSPRINT DD SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133)
/1*

Figure 91 (Part 3 of 3). PASCCG Procedure

lThis is required only if the VS Pascal compiler is installed or executed above the
16-megabyte line.

Chapter 12. MVS Batch Cataloged Procedures 151

11* Syslib for transient library (without debugger)
11*
II*SYSLIB
11*
11*
11*

DO DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN3,DISP=SHR
DO DSN=&HIQUAL .. &MIDQUAL .. SAMPRUNl,DISP=SHR
DO DSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,DISP=SHR

11* Syslib for normal library (with debugger)
1/*
I/*SYSLIB
1/*
11*
11*

DO DSN=&HIQUAL .. &MIDQUAL .. SAMPDBGl,DISP=SHR
DO DSN=&HIQUAL .. &MIDQUAL .. SAMPRUNl,DISP=SHR
DO DSN=&HIQUAL .. &MIDQUAL .• SAMPMSGl,DISP=SHR

11* Syslib for normal library (without debugger)
11*
IISYSLIB DO DSN=&HIQUAL .. &MIDQUAL •• SAMPRUNl,DISP=SHR
I I DO DSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,DISP=SHR
11*
11* End of syslib choices *11
11*--*11
IIOUTPUT DO SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133)
IISYSLIN DO DSN=&HIQUAL .. &MIDQUAL .. SAMPRUNl(&INCLUDE),DISP=SHR
II DO DSN=*.PASC.SYSLIN,DISP=(OLD,DELETE)
IISYSLOUT DO SYSOUT=&SOUT
IISYSPRINT DO SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133)
11*

Figure 91 (Part 3 of 3). PASCCG Procedure

IThis is required only if the VS Pascal compiler is installed or executed above the
16-megabyte line.

Chapter 12. MVS Batch Cataloged Procedures 151

I PASCCLG Procedure

11**11
11* *11
11* v SPA S CAL *11
11* Version 1, Release 2.0 *11
11* 5668-717 (C) Copyright IBM Corp. 1981, 1987, 1988. *11
11* *11
11* PASCCLG Procedure: Compile, link, and execute a VS Pascal *11
11* program. * I I
11* *11
11* Symbolic Parameters: *11
11* *11
11* Hi Qual - High-level qualifier of the VS Pascal datasets *11

- Mid-level qualifier of the VS Pascal datasets
- Compiler options
- Language for compile-time messages and text

*1/
*11
*11

11*
11*
11*
11*
1/*
11*
1/*
11*
11*
11*
/1*

MidQual
COpts
CLang
LOpts
XA

- Options passed to the Linkage Editor *11
- 'XA' causes the program to be linked AMODE(31),*11

RMODE(Any), 'NOXA' causes the program to be *11
linked AMODE(31) , RMODE(24) *11

ROpts
RLang
SOut

- Execution options for the VS Pascal program *11
- Language for run-time messages *11
- SYSOUT *11

*11
11**11

IIPASCCLG PROC HIQUAL='VSPASCAL'.
II MIDQUAL='VSPV1R2',
I I COPTS=" ,
II CLANG=ENG,
II LOPTS='LIST,MAP',
II
II
II
II
1/*

XA='XA' ,
ROPTS=' "
RLANG=ENG,
SOUT='*'

11**11

11* Compile step. *11
11**11
IIPASC EXEC PGM=PASCALI,REGION=lM,
II PARM='LANGUAGE(&CLANG) / &COPTS'
IISTEPLIB DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMOD1,DISP=SHR
II DD DSN=&HIQUAL •• &MIDQUAL •• SAMPRUN2,DISP=SHRl
II DD DSN=&HIQUAL •• &MIDQUAL .• SAMPMSG1,DISP=SHR
IIOUCODE DO SYSOUT=&SOUT
IIOUTPUT DD SYSOUT=&SOUT

Figure 92 (Part 1 of 3). PASCCLG Procedure

152 vs Pascal Application Programming Guide

I PASCCLG Procedure

11**11
11* *11
11* v SPA S CAL *11
11* Version I, Release 2.0 *11
11* 5668-717 (C) Copyright IBM Corp. 1981, 1987, 1988. *11
11* *11
11* PASCCLG Procedure: Compile, link, and execute a VS Pascal *11
11* program. * I I
11* *11
11* Symbolic Parameters: *11
11* *11
11* HiQual - High-level qualifier of the VS Pascal datasets *11

- Mid-level qualifier of the VS Pascal datasets
- Compiler options
- Language for compile-time messages and text

*11
*11
*11

11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*

MidQual
COpts
CLang
LOpts
XA

- Options passed to the Linkage Editor *11
- 'XA' causes the program to be linked AMODE(31) ,*11

RMODE(Any) , 'NOXA' causes the program to be *11
linked AMODE(31), RMODE(24) *11

ROpts
RLang
SOut

- Execution options for the VS Pascal program *11
- Language for run-time messages *11
- SYSOUT *11

*11
11**11
IIPASCCLG PROC HIQUAL='VSPASCAL',
II MIDQUAL='VSPVIR2',
II
II
II
II
II
II
II
11*

COPTS=' , ,
CLANG=ENG,
LOPTS='LIST,MAP',
XA=' XA',
ROPTS=' "
RLANG=ENG,
SOUT='*'

11**11
11* Compile step. *11
11**11
IIPASC EXEC PGM=PASCALI,REGION=IM,
II PARM='LANGUAGE(&CLANG) I &COPTS'
IISTEPLIB DD DSN=&HIQUAL .. &MIDQUAL •• SAMPMOD1,DISP=SHR
II DD DSN=&HIQUAL .. &MIDQUAL •• SAMPRUN2,DISP=SHRl
II DD DSN=&HIQUAL .. &MIDQUAL .. SAMPMSG1,DISP=SHR
IIOUCODE DD SYSOUT=&SOUT
IIOUTPUT DD SYSOUT=&SOUT

Figure 92 (Part 1 of 3). PASCCLG Procedure

152 vs Pascal Application Programming Guide

IISYSLIB DD DSN=&HIQUAL .• &MIDQUAL .• SAMPMACl,DISP=SHR
IISYSLIN DD DSN=&&LOAOSET,UNIT=SYSDA,DISP=(MOD,PASS),
II SPACE=(TRK,(2,5»,
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
IISYSLIST DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»
IISYSOIN DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»
IISYSPRINT DO SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
IISYSTERM DD DUMMY

IISYSTIN
IISYSUHDR
IISYSUTl
II
IISYSUT2
II
IISYSXREF
IIUCODE
11*

DO UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»
DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»
DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»,

DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»,

DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»
DO SYSOUT=&SOUT

11**11
11* Link step. *11
11**//
//LKED EXEC PGM=IEWL,COND=(8,LE,PASC),
// PARM=' &LOPTS ,
//*--*//
//* Choose a syslib based on the desired configuration *//
//*
/1* Syslib for transient library (with debugger)
1/*
II*SYSLIB
1/*
//*
1/*
1/*

DD DSN=&HIQUAL •• &MIDQUAL •• SAMPDBG2,DISP=SHR
DD DSN=&HIQUAL •. &MIDQUAL .. SAMPRUN3,DISP=SHR
DD DSN=&HIQUAL •• &MIDQUAL •• SAMPRUNl,DISP=SHR
DO DSN=&HIQUAL .• &MIDQUAL •• SAMPMSGl,DISP=SHR

//* Syslib for transient library (without debugger)
/1*
/ /*SYSLIB
/1*
/1*
11*

DO DSN=&HIQUAL •. &MIDQUAL .• SAMPRUN3,DISP=SHR
DD OSN=&HIQUAL •. &MIDQUAL •. SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL •. &MIDQUAL •• SAMPMSGl,DISP=SHR

/1* Syslib for normal library (with debugger)
//*
/ /*SYSLIB
11*
/1*
/1*

DO DSN=&HIQUAL .• &MIDQUAL •• SAMPDBGl,DISP=SHR
DD DSN=&HIQUAL •• &MIDQUAL .• SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL .• &MIDQUAL •• SAMPMSGl,DISP=SHR

Figure 92 (Part 2 of 3). PASCCLG Procedure

Chapter 12. MVS Batch Cataloged Procedures 153

IISYSLIB DD DSN=&HIQUAL •• &MIDQUAL .. SAMPMACl,DISP=SHR
IISYSLIN DD DSN=&&LOADSET,UNIT=SYSDA,DISP=(MOD,PASS),
II SPACE=(TRK,(2,5»,
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
IISYSLIST DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»
IISYSOIN DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»
IISYSPRINT DD SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
IISYSTERM DD DUMMY

IISYSTIN
IISYSUHDR
IISYSUTl
II
IISYSUT2
II
IISYSXREF
IIUCODE
1/*

DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»
DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»
DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»,

DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»,

DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(TRK,(2,5»
DD SYSOUT=&SOUT

11**11
11* Link step. *11
11**11
IILKED EXEC PGM=IEWL,COND=(8,LE,PASC),
II PARM=' &LOPTS,
11*--*11
11* Choose a syslib based on the desired configuration *11
11*
11* Syslib for transient library (with debugger)
1/*
II*SYSLIB
11*
11*
11*
1/*

DD DSN=&HIQUAL •. &MIDQUAL .. SAMPDBG2,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN3,DISP=SHR
DD DSN=&HIQUAL •• &MIDQUAL .. SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL •• &MIDQUAL .. SAMPMSGl,DISP=SHR

11* Syslib for transient library (without debugger)
11*
II*SYSLIB
11*
11*
11*

DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUN3,DISP=SHR
DD DSN=&HIQUAL •. &MIDQUAL .• SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .• SAMPMSGl,DISP=SHR

11* Syslib for normal library (with debugger)
11*
II*SYSLIB
11*
11*
11*

DD DSN=&HIQUAL .. &MIDQUAL •• SAMPDBGl,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL .• SAMPRUNl,DISP=SHR
DD DSN=&HIQUAL .. &MIDQUAL •. SAMPMSGl,DISP=SHR

Figure 92 (Part 2 of 3). PASCCLG Procedure

Chapter 12. MVS Batch Cataloged Procedures 153

11* Syslib for normal library (without debugger)
11*
IISYSLIB
II
11*

DD DSN=&HIQUAL .. &MIDQUAL .. SAMPRUNl,DISP=SHR
DO DSN=&HIQUAL .. &MIDQUAL .. SAMPMSGl,DISP=SHR

11* End of syslib choices *11
11*-----------------------,---*11

IISYSLIN DO OSN=&HIQUAL .. &MIDQUAL .. SAMPLKDl(&XA),OISP=SHR
II DO DSN=*.PASC.SYSLIN,DISP=(OLD,DELETE)
II DD DDNAME=SYSIN
IISYSLMOD DD DSN=&&GOSET(GO),UNIT=SYSDA,DISP=(,PASS),
II SPACE=(TRK,(2,5,1»
IISYSPRINT DO SYSOUT=&SOUT
IISYSUTI DD UNIT=SYSDA,SPACE=(CYL,(l,l»
1/*
11**11
11* Execute step. *11
11**11
IIGO EXEC PGM=*.LKED.SYSLMOO,REGION=lM,
II COND=((8,LE,PASC),(8,LE,LKED»,
II PARM='LANGUAGE(&RLANG) I &ROPTS'

IISTEPLIB
II
II

DD DSN=&HIQUAL •• &MIDQUAL •• SAMPRUN4,DISP=SHR
DO DSN=&HIQUAL .. &MIDQUAL •. SAMPRUN2,DISP=SHR
DO OSN=&HIQUAL •. &MIOQUAL .• SAMPMSGl,DISP=SHR

IIOUTPUT DD SYSOUT=&SQUT,OCB=(RECFM=VBA,LRECL=133)
IISYSPRINT DO SYSQUT=&SQUT,OCB=(RECFM=VBA,LRECL=133)
11*

Figure 92 (Part 3 of 3). PASCCLG Procedure

IThis is required only if your program will execute above the 16-megabyte address
line.

154 VS Pascal Application Programming Guide

11* Syslib for normal library (without debugger)
11*
IISYSLIB DO DSN=&HIQUAL .• &MIDQUAL .• SAMPRUNl,DISP=SHR
II DO DSN=&HIQUAL .• &MIDQUAL .. SAMPMSGl,DISP=SHR
11*
11* End of syslib choices *11
11*--*11

IISYSLIN DO DSN=&HIQUAL •• &MIDQUAL .• SAMPLKDl(&XA),DISP=SHR
II DO DSN=*.PASC.SYSLIN,DISP=(OLD,DELETE)
II DO DDNAME=SYSIN
IISYSLMOD DO DSN=&&GOSET(GO),UNIT=SYSDA,DISP=(,PASS),
II SPACE=(TRK,(2,5,l»
IISYSPRINT DO SYSOUT=&SOUT
IISYSUTI DO UNIT=SYSDA,SPACE=(CYL,(l,l»
11*

11**11
11* Execute step. *11
11**11
IIGO EXEC PGM=*.LKED.SYSLMOD,REGION=lM,
II COND=((8,LE,PASC),(8,LE,LKED»,
II PARM='LANGUAGE(&RLANG) I &ROPTS'

IISTEPLIB DO DSN=&HIQUAL .. &MIDQUAL •. SAMPRUN4,DISP=SHR
II DO DSN=&HIQUAL •. &MIDQUAL •• SAMPRUN2,DISP=SHR
II DO DSN=&HIQUAL .. &MIDQUAL •. SAMPMSGl,DISP=SHR
IIOUTPUT DO SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133)
IISYSPRINT DO SYSOUT=&SOUT,DCB=(RECFM=VBA,LRECL=133)
11*

Figure 92 (Part 3 of 3). PASCCLG Procedure

IThis is required only if your program will execute above the 16-megabyte address
line.

154 VS Pascal Application Programming Guide

Chapter 13. Compile-Time Options

Compile-Time
Option

CHECK
NOCHECK

CONDPARM(varname1
= . string' [,
varname2 = ·string'] ..)

DDNAME(COMPAT)

DDNAME(UNIQUE)

DEBUG
NODEBUG

FLAG(IIWIEIS)

GOSTMT
NOGOSTMT

GRAPHIC
NOGRAPHIC

HEADER
NOH EADER

LANGLVL(ANSI83)
LANGLVL(EXTENDED)

LANGUAGE(ccc)

LlNECOUNT(n)

Figure 93 summarizes all VS Pascal compile-time options in a quick-reference
chart. Detailed explanations of each option follow in alphabetic order, starting on
page 157. All compile-time options are IBM extensions to Standard Pascal.

Abbreviated See
Name Default Function Page

CHECK Enables or disables run-time error 157
checking.

Controls when selected sections of source 159
are compiled.

DDNAME(COM- Controls how VS Pascal generates 160
PAT) ddnames for files.

NODEBUG Controls whether the compiler prepares 161
the unit for debugging with the Interactive
Debugging Tool.

FLAG(I) Controls which messages (informational, 161
warning, error, or severe error) are listed.

GS GOSTMT Controls whether a statement table is 161
NOGS included within the object code.

NOGRAPHIC Controls whether the compiler recognizes 162
the shift-out (X I OE ') and shift-i n (X I OF ')
characters as bracketing double-byte
characters (DBCS characters) in string
literals, comments, and the % TITLE and
%WRITE compiler directives.

HEADER Controls whether a header appears above 162
the generated code of each routine.

LANGLVL(EX- Controls whether the compiler accepts 162
TENDED) Standard Pascal or full VS Pascal.

The language Specifies a language other than the default 163
specified at language for textual information.
installation.

LC(n) LlNECOUNT(60) Specifies the number of lines to appear on 163
each page of the output listing.

Figure 93 (Part 1 of 2). Summary of Compile-Time Options

Chapter 13. Compile-Time Options 155

Chapter 13. Compile-Time Options

Compile-Time
Option

CHECK
NOCHECK

CONDPARM(varname1
= 'string' [,
varname2 = 'string'] ..)

DDNAME(COMPAT)

DDNAME(UNIQUE)

DEBUG
NODE BUG

FLAG(IIWIEIS)

GOSTMT
NOGOSTMT

GRAPHIC
NOGRAPHIC

HEADER
NOH EADER

LANGLVL(ANSI83)
LANGLVL(EXTENDED)

LANGUAGE(ccc)

LlNECOUNT(n)

Figure 93 summarizes all VS Pascal compile-time options in a quick-reference
chart. Detailed explanations of each option follow in alphabetic order, starting on
page 157. All compile-time options are IBM extensions to Standard Pascal.

Abbreviated See
Name Default Function Page

CHECK Enables or disables run-time error 157
checking.

Controls when selected sections of source 159
are compiled.

DDNAME(COM- Controls how VS Pascal generates 160
PAT) ddnames for files.

NODEBUG Controls whether the compiler prepares 161
the unit for debugging with the Interactive
Debugging Tool.

FLAG(I) Controls which messages (informational, 161
warning, error, or severe error) are listed.

GS GOSTMT Controls whether a statement table is 161
NOGS included within the object code.

NOGRAPHIC Controls whether the compiler recognizes 162
the shift-out (X' OE ') and shift-i n (X' OF')
characters as bracketing double-byte
characters (DBCS characters) in string
literals, comments, and the % TITLE and
%WRITE compiler directives.

HEADER Controls whether a header appears above 162
the generated code of each routine.

LANGLVL(EX- Controls whether the compiler accepts 162
TENDED) Standard Pascal or full VS Pascal.

The language Specifies a language other than the default 163
specified at language for textual information.
installation.

LC(n) LlNECOUNT(60) Specifies the number of lines to appear on 163
each page of the output listing.

Figure 93 (Part 1 of 2). Summary of Compile-Time Options

Chapter 13. Compile-Time Options 155

Compile-Time Abbreviated See
Option Name Default Function Page ,."
LIST NOLIST Controls the generation of the 163
NOLIST pseudo-assembler listing.

MARGINS(m,n) MAR(m,n) MARGINS(1,72) Sets the left and right margins of the input 164
program.

OPTIMIZE OPT OPTIMIZE Controls whether the compiler generates 164
NOOPTIMIZE NOOPT optimized code.

PAGEWIDTH(n) PW(n) PAGEWIDTH(128) Specifies the maximum number of 164
characters that can appear on a single line
of the output listing.

PXREF PXREF Specifies that the right margin of the 164
NOPXREF output listing is to contain cross-reference

entries.

SEQUENCE(m,n) SEQ(m,n) SEQUENCE(73,80) Specifies which columns within the 165
NOSEQUENCE NOSEQ program being compiled are reserved for

a sequence field.

SOURCE S SOURCE Controls the generation of the compiler 165
NOSOURCE NOS source listing.

STDFLAG(IIWIEIS) STDFLAG(E) for Controls how most standard extensions 165
LANGLVL(ANSI83) are flagged (informational, warning, error,

or severe error message) when
LANGLVL(EXTENDED) is not in use.

WRITE NOWRITE Controls whether messages in a %WRITE 166
NOWRITE compiler directive are written to the

terminal during compilation.

XREF(SHORT) X XREF(SHORT) Controls the generation of the 166
XREF(LONG) NOX cross-reference portion of the source
NOXREF listing.

Figure 93 (Part 2 of 2). Summary of Compile-Time Options

156 vs Pascal Application Programming Guide

Compile-Time Abbreviated See
Option Name Default Function Page

LIST NOLIST Controls the generation of the 163
NOLIST pseudo-assembler listing.

MARGINS(m,n) MAR(m,n) MARGINS(1,72) Sets the left and right margins of the input 164
program.

OPTIMIZE OPT OPTIMIZE Controls whether the compiler generates 164
NOOPTIMIZE NOOPT optimized code.

PAGEWIDTH(n) PW(n) PAGEWIDTH(128) Specifies the maximum number of 164
characters that can appear on a single line
of the output listing.

PXREF PXREF Specifies that the right margin of the 164
NOPXREF output listing is to contain cross-reference

entries.

SEOUENCE(m,n) SEO(m,n) SEOUENCE(73,80) Speci'fies which columns within the 165
NOSEOUENCE NOSEO program being compiled are reserved for

a sequence field.

SOURCE S SOURCE Controls the generation of the compiler 165
NOSOURCE NOS source listing.

STDFLAG(IIWIEIS) STDFLAG(E) for Controls how most standard extensions 165
LANGLVL(ANSI83) are 'flagged (informational, warning, error,

or severe error message) when
LANGLVL(EXTENDED) is not in use.

WRITE NOWRITE Controls whether messages in a O/OWRITE 166
NOWRITE compiler directive are written to the

terminal during compilation.

XREF(SHORT) X XREF(SHORT) Controls the generation of the 166
XREF(LONG) NOX cross-reference portion of the source
NOXREF listing.

Figure 93 (Part 2 of 2). Summary of Compile-Time Options

156 vs Pascal Application Programming Guide

CHECK Option

/

CHECK causes in-line run-time error checking to be generated. If NOCHECK is
specified, all run-time checking will be suppressed.

Note: The NOCHECK option will cause any %CHECK statement within the source
program to be ignored.

Default: CHECK.

The run-time errors which may be checked are listed as follows:

CASE statements
Any CASE statement that does not contain an OTHERWISE clause is checked to
make sure that the selector expression has a value equal to one of the CASE
label values.

Function routines
A call to a function routine is checked to verify that the called function returns a
value.

Pointers
A reference to an object which is based upon a pointer variable is checked to
make sure that the pointer does not have the value NIL.

String truncation
Values assigned to string variables are checked to ensure that the variable
receiving the value is large enough to contain the value.

This checking may occur:

• When a string variable appears on the left side of an assignment
statement.

• When a string expression is passed by value or CONST to a routine.

• When a string variable is passed by VAR to a routine.

Subrange bounds
Variables declared as subrange bounds are tested when they are assigned a
value to guarantee that the value lies within the declared bounds of the
variable. This checking may occur:

• When a subrange variable or function result appears on the left side of an
assignment statement.

• When a value is passed by value or CONST to a formal subrange
parameter in a routine (including calls to the WRITE procedure for record
files).

• After a subrange variable is passed by VAR to a routine (including the
READ, READLN, and READSTR procedures).

• When certain predefined routines are used (such as CHR) that require their
arguments to be in a certain range.

Chapter 13. Compile-Time Options 157

CHECK Option

I

\.

CHECK causes in-line run-time error checl<ing to be generated. If NOCHECK is
specified, all run-time checking will be suppressed.

Note: The NOCHECK option will cause any %CHECK statement within the source
program to be ignored.

Default: CHECK.

The run-time errors which may be checked are listed as follows:

CASE statements
Any CASE statement that does not contain an OTHERWISE clause is checked to
make sure that the selector expression has a value equal to one of the CASE
label values.

Function routines
A call to a function routine is checked to verify that the called function returns a
value.

Pointers
A reference to an object which is based upon a pointer variable is checked to
make sure that the pointer does not have the value NIL.

String truncation
Values assigned to string variables are checked to ensure that the variable
receiving the value is large enough to contain the value.

This checking may occur:

• When a string variable appears on the left side of an assignment
statement.

• When a string expression is passed by value or CONST to a routine.

• When a string variable is passed by VAR to a routine.

Subrange bounds
Variables declared as subrange bounds are tested when they are assigned a
value to guarantee that the value lies within the declared bounds of the
variable. This checking may occur:

• When a subrange variable or function result appears on the left side of an
assignment statement.

• When a value is passed by value or CONST to a formal subrange
parameter in a routine (including calls to the WRITE procedure for record
files).

• After a subrange variable is passed by VAR to a routine (including the
READ, READLN, and READSTR procedures).

• When certain predefined routines are used (such as CHR) that require their
arguments to be in a certain range.

Chapter 13. Compile-Time Options 157

For the sake of efficiency, the compiler may suppress checking when it can
determine that it is semantically unnecessary. For example, the compiler will
not generate code to check the first three assignment statements below;
however, the last three will be checked.

VAR
A -10 •• lE);
B 0 •• 20;

BEGIN;
A := B - 10;
B := ABS(A);
A := B DIV 2;

A := B;
B := A*10;
A := -B;

END;

(*no check*)
(*no check*)
(*no check*)

(*check *)
(*check *)
(*check *)

The compiler makes no explicit attempt to diagnose the use of uninitialized
variables. However, to detect such errors, the SETMEM run-time option can be
used (see Chapter 14, "Run-Time Options" on page 167).

Subscript ranges
Subscript expressions within arrays, strings, or spaces are tested to guarantee
that their values lie within the declared array, string, or space bounds. As in
the case of subrange checks, the compiler will suppress checks that are
semantically unnecessary.

When a run-time checking error occurs, a diagnostic message will be displayed on
your terminal followed by a trace back report of the routines which were active
when the error occurred. If the program is invoked from batch mode, the
diagnostic message and trace-back report will be sent to the data set or device
associated with ddname SYSPRINT. You can use the "ERRFILE" option (see
Chapter 14, "Run-Time Options" on page 167) to direct the error diagnostics to
any file you choose.

See "Reading a VS Pascal Trace-Sack Report" on page 73 for an example of a
trace-back report due to a checking error.

"How You Handle Run-Time Errors with the ONERROR Procedure" on page 78
describes how checking errors may be intercepted by your program.

158 vs Pascal Application Programming Guide

For the sake of efficiency, the compiler may suppress checking when it can
determine that it is semantically unnecessary. For example, the compiler will
not generate code to check the first three assignment statements below; .."
however, the last three will be checked.

VAR
A -10 .• 18;
B 0 •• 20;

BEGIN;
A := B - 10; (*no check*)
B := ABS(A); (*no check*)
A := B DIV 2; (*no check*)

A := B;
B := A*10;
A := -B;

END;

(*check *)
(*check *)
(*check *)

The compiler makes no explicit attempt to diagnose the use of uninitialized
variables. However, to detect such errors, the SETMEM run-time option can be
used (see Chapter 14, "Run-Time Options" on page 167).

Subscript ranges
Subscript expressions within arrays, strings, or spaces are tested to guarantee
that their values lie within the declared array, string, or space bounds. As in
the case of subrange checks, the compiler will suppress checks that are
semantically unnecessary.

When a run-time checking error occurs, a diagnostic message will be displayed on
your terminal followed by a trace back report of the routines which were active
when the error occurred. If the program is invoked from batch mode, the
diagnostic message and trace-back report will be sent to the data set or device
associated with ddname SYSPRINT. You can use the "ERRFILE" option (see
Chapter 14, "Run-Time Options" on page 167) to direct the error diagnostics to
any file you choose.

See "Reading a VS Pascal Trace-Back Report" on page 73 for an example of a
trace-back report due to a checking error.

"How You Handle Run-Time Errors with the ONERROR Procedure" on page 78
describes how checking errors may be intercepted by your program.

158 vs Pascal Application Programming Guide

~ CONDPARM Option
CONDPARM allows you to compile only selected sections of source code.
CONDPARM passes a conditional parameter to the compiler, which evaluates the
Boolean expressions used in %WHEN compiler directives.

In the source code, one or more %WHEN statements are enclosed by the
%SELECT and %ENDSELECT compiler directives. VS Pascal will compile code
enclosed by %SELECT and %ENDSELECT only when the Boolean expression in a
%WHEN statement evaluates true. The compiler compiles from the start of that
%WHEN statement until it reaches another %WHEN or the %ENDSELECT. For
more information on the %SELECT, %WHEN, and %ENDSELECT compiler
directives, see VS Pascal Language Reference.

The form of the CONDPARM option is:

" ---CONDPARM-(--name- = -'value'-....L.-- -----------i

Where

name

'value'

Represents

The name of the conditional Parameter. This parameter name must
follow VS Pascal identifier rules and must not be more than 16
characters.

The character string value associated with the specified name. The
conditional parameter value must:

• Be enclosed in single quotes
• Not exceed 16 characters.

For example

CONDPARM (PARMI = 'DOG' , PARM2 = 'CAT')

will set the value of PARM1 to DOG and the value of PARM2 to CAT.

Note: When using the CONDPARM option under VM/SP or VM/XA, parameter list
tokenization into eight character segments prohibits conditional parameter names
longer than eight characters and values longer than six characters. Also, while in
a VM environment, blanks should be inserted as in the example above. The value
will be folded to upper case by the operating system.

Chapter 13. Compile-Time Options 159

CONDPARM Option
CONDPARM allows you to compile only selected sections of source code.
CONDPARM passes a conditional parameter to the compiler, which evaluates the
Boolean expressions used in %WHEN compiler directives.

In the source code, one or more %WHEN statements are enclosed by the
%SELECT and %ENDSELECT compiler directives. VS Pascal will compile code
enclosed by %SELECT and %ENDSELECT only when the Boolean expression in a
%WHEN statement evaluates true. The compiler compiles from the start of that
%WHEN statement until it reaches another %WHEN or the %ENDSELECT. For
more information on the %SELECT, %WHEN, and %ENDSELECT compiler
directives, see VS Pascal Language Reference.

The form of the CONDPARM option is:

" ~H~~--'CONDPARM-(--name- = -'value'-...l...-- ----------i~_ ..

Where

name

'value'

Represents

The name of the conditional Parameter. This parameter name must
follow VS Pascal identifier rules and must not be more than 16
characters.

The character string value associated with the specified name. The
conditional parameter value must:

• Be enclosed in single quotes
• Not exceed 16 characters.

For example

CONDPARM (PARMI = 'DOG' , PARM2 = 'CAT')

will set the value of PARM1 to DOG and the value of PARM2 to CAT.

Note: When using the CONDPARM option under VM/SP or VM/XA, parameter list
tokenization into eight character segments prohibits conditional parameter names
longer than eight characters and values longer than six characters. Also, while in
a VM environment, blanks should be inserted as in the example above. The value
will be folded to upper case by the operating system.

Chapter 13. Compile-Time Options 159

Figure 94 illustrates how to use CONDPARM for conditional compilation.

PROGRAM ABSOLUTEZERO(OUTPUT);
VAR

TEMPERATURE : REAL;

BEGIN
TEMPERATURE := -459.40;

%SELECT
%WHEN (FORM = 'CLSIUS')

TEMPERATURE = (TEMPERATURE - 32) * 5/9;
%WHEN (FORM = 'KELVIN')

TEMPERATURE = ((TEMPERATURE - 32) * 5/9) + 273;
%ENDSELECT

WRITELN(TEMPERATURE:4:2);
END.

If you enter

CONDPARM(FORM = 'CLSIUS')

then AbsoluteZero outputs -273.00.

If you enter

CONDPARM(FORM = 'KELVIN')

then AbsoluteZero outputs 0.00.

Otherwise, AbsoluteZero outputs -459.40.

Figure 94. Example of Using CONDPARM for Conditional Compilation

DDNAME Option
DDNAME controls how ddnames for files are generated.

COMPAT instructs the compiler to use PascallVS Release 2.2 conventions to
generate ddnames. Using these conventions. COMPAT generates ddnames from
the first eight characters in a file variable's name.

UNIQUE generates unique ddnames for each file variable to conform to Standard
Pascal scoping rules. See Figure 27 on page 55 for more information on how
ddnames are generated.

Default: DDNAME(COMPAT).

160 vs Pascal Application Programming Guide

Figure 94 illustrates how to use CONDPARM for conditional compilation.

PROGRAM ABSOLUTEZERO(OUTPUT);
VAR

TEMPERATURE : REAL;

BEGIN
TEMPERATURE := -459.40;

%SELECT
%WHEN (FORM = 'CLSIUS')

TEMPERATURE = (TEMPERATURE - 32) * 5/9;
%WHEN (FORM = 'KELVIN')

TEMPERATURE = ((TEMPERATURE - 32) * 5/9) + 273;
%ENDSELECT

WRITELN(TEMPERATURE:4:2);
END.

If you enter

CONDPARM(FORM = 'CLSIUS')

then AbsoluteZero outputs -273.00.

If you enter

CONDPARM(FORM = 'KELVIN')

then AbsoluteZero outputs 0.00.

Otherwise, AbsoluteZero outputs -459.40.

Figure 94. Example of Using CONDPARM for Conditional Compilation

DDNAME Option
DDNAME controls how ddnames for files are generated.

COMPAT instructs the compiler to use PascalIVS Release 2.2 conventions to
generate ddnames. Using these conventions, COMPAT generates ddnames from
the first eight characters in a file variable's name.

UNIQUE generates unique ddnames for each file variable to conform to Standard
Pascal scoping rules. See Figure 27 on page 55 for more information on how
ddnames are generated.

Default: DDNAME(COMPAT).

160 vs Pascal Application Programming Guide

DEBUG Option

FLAG Option

DEBUG indicates that the compiler is to produce the information that the
Interactive Debugging Tool needs in order to debug VS Pascal programs. The
Interactive Debugging Tool is described in Chapter 15, "Interactive Debugging
Tool Commands" on page 173.

The DEBUG option also implies that the GOSTMT option is active.

NODEBUG indicates that the Interactive Debugging Tool cannot be used for this
unit.

Default: NODE BUG.

FLAG controls the lowest class of message listed. The class specified and any
message of a higher class are listed.

List informational messages. This is the default, which means all messages
will be listed.

W List warning messages.

E List error messages.

S List severe error messages.

Default: FLAG(I).

GOSTMT Option
GOSTMT enables the inclusion of a statement table within the object code. The
entries within this table allow the run-time environment to identify the source
statement causing an execution error. This statement table also permits the
interactive debugging tool to place breakpoints based on source statement
numbers. For a description of the Interactive Debugging Tool, see
Chapter 15, "Interactive Debugging Tool Commands" on page 173.

The inclusion of the statement table does not affect the execution speed of the
compiled program.

NOGOSTMT will prevent the statement table from being generated.

Default: GOSTMT.

Chapter 13. Compile-Time Options 161

DEBUG Option

FLAG Option

DEBUG indicates that the compiler is to produce the information that the
Interactive Debugging Tool needs in order to debug VS Pascal programs. The
Interactive Debugging Tool is described in Chapter 15, "Interactive Debugging
Tool Commands" on page 173.

The DEBUG option also implies that the GOSTMT option is active.

NODEBUG indicates that the Interactive Debugging Tool cannot be used for this
unit.

Default: NODEBUG.

FLAG controls the lowest class of message listed. The class specified and any
message of a higher class are listed.

List informational messages. This is the default, which means all messages
will be listed.

W List warning messages.

E List error messages.

S List severe error messages.

Default: FLAG(I).

GOSTMT Option
GOSTMT enables the inclusion of a statement table within the object code. The
entries within this table allow the run-time environment to identify the source
statement causing an execution error. This statement table also permits the
interactive debugging tool to place breakpoints based on source statement
numbers. For a description of the Interactive Debugging Tool, see
Chapter 15, "Interactive Debugging Tool Commands" on page 173.

The inclusion of the statement table does not affect the execution speed of the
compiled program.

NOGOSTMT will prevent the statement table from being generated.

Default: GOSTMT.

Chapter 13. Compile-Time Options 161

GRAPHIC Option
GRAPHIC indicates that the VS Pascal compiler will treat the shift-out (X I OE ') and
shift-in (X I OF ') characters as bracketing double-byte characters (DBCS characters)
in string literals, comments, and the % TITLE and %WRITE compiler directives.
Every shift-out character must have a shift-in character on the same line. The
NOGRAPHIC compile-time option implies that shift-out and shift-in characters have
no special meaning.

This option only affects the compilation of programs and will have no effect on
program execution.

Default: NOGRAPHIC.

HEADER Option
HEADER places a header after the generated code of each routine. This header
contains: (1) the name of the compiled unit; (2) the compiler name; (3) the VS
Pascal version/release number; and (4) the date and time the unit was compiled.
You can also place your own customized header after the compiler-generated
header by using the %UHEADER compiler directive in the source code. For more
information on the %UHEADER compiler directive, see VS Pascal Language
Reference.

Default: HEADER.

Note: HEADER information can be viewed only in the object code.

LANGLVL Option
LANGLVL(ANSI83) indicates that the compiler is to diagnose all constructs and
features which do not conform to the ANSI standard. Violations of the standard will
appear as compiler errors. VS Pascal extensions will not be supported and
non-ANSI Standard Pascal reserved words will not be recognized.

If LANGLVL(EXTENDED) is specified, the full VS Pascal language is to be
supported.

Default: LANGLVL(EXTENDED).

162 vs Pascal Application Programming Guide

GRAPHIC Option
GRAPHIC indicates that the VS Pascal compi ler wi II treat the shift-out (X' OE') and
shift-in (X'OF') characters as bracketing double-byte characters (DBCS characters)
in string literals, comments, and the % TITLE and %WRITE compiler directives.
Every shift-out character must have a shift-in character on the same line. The
NOGRAPHIC compile-time option implies that shift-out and shift-in characters have
no special meaning.

This option only affects the compilation of programs and will have no effect on
program execution.

Default: NOGRAPHIC.

HEADER Option
HEADER places a header after the generated code of each routine. This header
contains: (1) the name of the compiled unit; (2) the compiler name; (3) the VS
Pascal version/release number; and (4) the date and time the unit was compiled.
You can also place your own customized header after the compiler-generated
header by using the %UHEADER compiler directive in the source code. For more
information on the %UHEADER compiler directive, see VS Pascal Language
Reference.

Default: HEADER.

Note: HEADER information can be viewed only in the object code.

LANGLVL Option
LANGLVL(ANSI83) indicates that the compiler is to diagnose all constructs and
features which do not conform to the ANSI standard. Violations of the standard will
appear as compiler errors. VS Pascal extensions will not be supported and
non-ANSI Standard Pascal reserved words will not be recognized.

If LANGLVL(EXTENDED) is specified, the full VS Pascal language is to be
supported.

Default: LANGLVL(EXTENDED).

162 vs Pascal Application Programming Guide

LANGUAGE Option
LANGUAGE specifies the language used for run-time messages, report headings,
and other textual information presented by VS Pascal. The LANGUAGE
compile-time option allows you to specify another language for textual information,
using a three-character identifier for the new language you desire.

The language is specified by LANGUAGE(eee), where eee is one of the following:

Where
ENG
UEN
JPN

Represents
Mixed-case English.
Uppercase English.
Japanese.

Default: The default language specified during installation.

LINECOUNT Option

LIST Option

L1NECOUNT specifies the number of lines to appear on each page of the output
listing. The maximum number of lines to fit on a page depends on the form to
which the output is being printed.

Minimum: 13.

Default: 60.

LIST and NOLIST control the generation or suppression of the translator
pseudo-assembler listing (see "Assembler Listing" on page 40).

Note: The NOLIST option will cause any %L1ST statement within the source
program to be ignored.

Default: NOLIST.

Chapter 13. Compile-Time Options 163

LANGUAGE Option
LANGUAGE specifies the language used for run-time messages, report headings,
and other textual information presented by VS Pascal. The LANGUAGE
compile-time option allows you to specify another language for textual information,
using a three-character identi'fier for the new language you desire.

The language is specified by LANGUAGE(ccc), where ccc is one of the following:

Where
ENG
UEN
JPN

Represents
Mixed-case English.
Uppercase English.
Japanese.

Default: The default language specified during installation.

LINECOUNT Option

LIST Option

LlNECOUNT specifies the number of lines to appear on each page of the output
listing. The maximum number of lines to fit on a page depends on the form to
which the output is being printed.

Minimum: 13.

Default: 60.

LIST and NOLIST control the generation or suppression of the translator
pseudo-assembler listing (see "Assembler Listing" on page 40).

Note: The NOLIST option will cause any %LlST statement within the source
program to be ignored.

Default: NOLIST.

Chapter 13. Compile-Time Options 163

MARGINS Option
MARGINS(m,n) sets the left and right margin of your program. The compiler scans
each line of your program starting at column m and ending at column n. Any data
outside these margin limits is ignored. The maximum right margin allowed is 100.

Range: 1 through 100
Default: MARGINS(1,72).

Notes:

1. The specified margins must not overlap the sequence field.

2. When the VSPASCAL CLiST is invoked under TSO, the subparameters of the
MARGINS option must be enclosed in quotes. For example,

MARGINS('l,72')

OPTIMIZE Option
OPTIMIZE indicates that the compiler is to generate optimized code. NOOPTIMIZE
indicates that the compiler is not to optimize.

When code is being optimized, the code generation phase of the compiler will try to
eliminate common sUb-expressions. For more information on common
sUb-expression elimination, see "Common Subexpression Elimination" on
page 210 for more information.

Default: OPTIMIZE.

For information on other VS Pascal optimizations, see Chapter 19, "Performance
Considerations" on page 205.

PAGEWIDTH Option

PXREF Option

PAGEWIDTH specifies the maximum number of characters (not including carriage
control characters) which may appear on a single line of the output listing. This
number depends on the page form and the printer model.

Range: 120 through 210
Default: PAGEWIDTH(128).

PXREF specifies that the right margin of the output listing is to contain cross
reference entries (see page cross-reference field in "Source Listing" on page 34).
NOPXREF suppresses these entries.

Default: PXREF.

164 vs Pascal Application Programming Guide

MARGINS Option
MARGINS(m,n) sets the left and right margin of your program. The compiler scans
each line of your program starting at column m and ending at column n. Any data
outside these margin limits is ignored. The maximum right margin allowed is 100.

Range: 1 through 100
Default: MARGINS(1,72).

Notes:

1. The specified margins must not overlap the sequence field.

2. When the VSPASCAL CLiST is invoked under TSO, the subparameters of the
MARGINS option must be enclosed in quotes. For example,

MARGINS ('1,72 I)

OPTIMIZE Option
OPTIMIZE indicates that the compiler is to generate optimized code. NOOPTIMIZE
indicates that the compiler is not to optimize.

When code is being optimized, the code generation phase of the compiler will try to
eliminate common sub-expressions. For more information on common
sub-expression elimination, see "Common Subexpression Elimination" on
page 210 for more information.

Default: OPTIMIZE.

For information on other VS Pascal optimizations, see Chapter 19, "Performance
Considerations" on page 205.

PAGEWIDTH Option

PXREF Option

PAGEWIDTH specifies the maximum number of characters (not including carriage
control characters) which may appear on a single line of the output listing. This
number depends on the page form and the printer model.

Range: 120 through 210
Default: PAGEWIDTH(128).

PXREF specifies that the right margin of the output listing is to contain cross
reference entries (see page cross-reference field in "Source Listing" on page 34).
NOPXREF suppresses these entries.

Default: PXREF.

164 vs Pascal Application Programming Guide

SEQUENCE Option
SEQUENCE(m,n) specifies which columns within the program being compiled are
reserved for a sequence field. The starting column of the sequence field is m; the
last column of the field is n.

The compiler does not process sequence fields; they serve only to identify lines in
the source listing. If the sequence field is blank, the compiler will insert a line
number in the corresponding area in the source listing.

NOSEQ indicates that there is to be no sequence field.

Range: 1 through 100
Default: SEQ(73,80).

Notes:

1. The sequence field must not overlap the source margins.

2. When the VSPASCAL CLiST is invoked under TSO, the subparameters of the
SEQ option must be enclosed in quotes. For example,

SEQ('73,a0')

SOURCE Option
SOURCE and NOSOURCE control the generation or suppression of the compiler
source listing.

Note: The NOSOURCE option will cause any %PRINT statement within the source
program to be ignored.

Default: SOURCE.

STDFLAG Option
STDFLAG controls how most standard extensions are flagged when not using
LANGLVL(EXTENDED):

Informational message.

W Warning message.

E Error message. This is the default if LANGLVL(ANSI83) is specified.

S Severe message.

This option has no effect for LANGLVL(EXTENDED).

Chapter 13. Compile-Time Options 165

SEQUENCE Option
SEQUENCE(m,n) specifies which columns within the program being compiled are
reserved for a sequence field. The starting column of the sequence field is m; the
last column of the field is n.

The compiler does not process sequence fields; they serve only to identify lines in
the source listing. If the sequence field is blank, the compiler will insert a line
number in the corresponding area in the source listing.

NOSEQ indicates that there is to be no sequence field.

Range: 1 through 100
Default: SEQ(73,80).

Notes:

1. The sequence field must not overlap the source margins.

2. When the VSPASCAL CLiST is invoked under TSO, the subparameters of the
SEQ option must be enclosed in quotes. For example,

SEQ('73,80')

SOURCE Option
SOURCE and NOSOURCE control the generation or suppression of the compiler
source listing.

Note: The NOSOURCE option will cause any %PRINT statement within the source
program to be ignored.

Default: SOURCE.

STDFLAG Option
STDFLAG controls how most standard extensions are flagged when not using
LANGLVL(EXTENDED):

Informational message.

W Warning message.

E Error message. This is the default if LANGLVL(ANSI83) is specified.

S Severe message.

This option has no effect for LANGLVL(EXTENDED).

Chapter 13. Compile-Time Options 165

WRITE Option

XREF Option

WRITE allows messages in a %WRITE compiler directive to be written to the
terminal at a specified location in the program during compilation. NOWRITE does
not allow messages to be written to the terminal.

Default: NOWRITE.

XREF and NOXREF control the generation or suppression of the cross-reference
portion of the source listing. (See "Cross-Reference Listing" on page 36.)

Either a short or long cross-reference listing can be generated. A long
cross-reference listing contains all identifiers declared in the program. A short
listing consists of only those identifiers referenced.

To specify a particular listing mode, either the word LONG or SHORT is placed
after the XREF specification and enclosed within parentheses. For example, the
specification

XREF(LONG)

would cause a long cross-reference table to be generated.

Default: XREF(SHORT).

Note: If the VSPASCAL CLiST is being invoked under TSO, a subparameter
(SHORT or LONG) must be specified with the XREF option; there are no defaults.

166 vs Pascal Application Programming Guide

WRITE Option

XREF Option

WRITE allows messages in a %WRITE compiler directive to be written to the
terminal at a specified location in the program during compilation. NOWRITE does
not allow messages to be written to the terminal.

Default: NOWRITE.

XREF and NOXREF control the generation or suppression of the cross-reference
portion of the source listing. (See "Cross-Reference Listing" on page 36.)

Either a short or long cross-reference listing can be generated. A long
cross-reference listing contains all identifiers declared in the program. A short
listing consists of only those identifiers referenced.

To specify a particular listing mode, either the word LONG or SHORT is placed
after the XREF specification and enclosed within parentheses. For example, the
specification

XREF(LONG)

would cause a long cross-reference table to be generated.

Default: XREF(SHORT).

Note: If the VSPASCAL CLiST is being invoked under TSO, a subparameter
(SHORT or LONG) must be specified with the XREF option; there are no defaults.

166 vs Pascal Application Programming Guide

Chapter 14. Run-Time Options

Run-Time
Option

COUNT

DEBUG
DEBUG(PROMPT)
DEBUG(NOPROMPT)

ERRCOUNT(n)

ERRFILE(ddname)

HEAP(initsize,incrsize)
HEAP(incrsize)

LANGUAGE(ccc)

MAINT

NOCHECK

NOSPIE

SETMEM

Figure 95 summarizes all VS Pascal run-time options in a quick-reference chart.
Detailed explanations of each option follow in alphabetic order, starting on page
168.

Note: When you invoke a VS Pascal program, always specify any run-time options
first, and end the option list with a slash ("f"). Follow the slash with any additional
parameter string that the program must process.

Default Function

Instructs VS Pascal to collect instruction
frequency information.

See
Page

168

DEBUG(PROMPT) Controls when and how the Interactive
Debugging Tool gains control during program
execution.

168

ERRCOUNT(20)

VM/CMS
Terminal
MVS/TSO
Terminal
MVS Batch
SYSPRINT

HEAP(12,12)
HEAP(12)

The language
specified at
install ation.

Specifies how many non-fatal errors can occur 168
before the program is abnormally terminated.

Specifies the ddname of the file to which all 168
run-time diagnostics, counting information, and
debugger output is written.

Controls how VS Pascal creates and maintains 169
heaps.

Specifies a language other than the default 170
language for textual information.

Specifies that trace backs include a list of
active run-time routines when an error occurs.

170

Instructs VS Pascal to ignore checking errors 170
during program execution.

Instructs VS Pascal not to issue a SPIE request, 170
preventing interception of program interrupts.

Specifies that, upon entry to each VS Pascal 170
routine, each byte of storage in which the
routine's local variables are allocated will be
set to a specific hexadecimal value, namely
X'FE'.

Figure 95 (Part 1 of 2). Summary of Run-Time Options

Chapter 14. Run-Time Options 167

Chapter 14. Run-Time Options

Run-Time
Option

COUNT

DEBUG
DEBUG(PROMPT)
DEBUG(NOPROMPT)

ERRCOUNT(n)

ERRFILE(ddname)

HEAP(initsize,incrsize)
HEAP(incrsize)

LANGUAGE(ccc)

MAINT

NOCHECK

NOSPIE

SETMEM

Figure 95 summarizes all VS Pascal run-time options in a quick-reference chart.
Detailed explanations of each option follow in alphabetic order, starting on page
168.

Note: When you invoke a VS Pascal program, always specify any run-time options
first, and end the option list with a slash ("f"). Follow the slash with any additional
parameter string that the program must process.

Default Function

Instructs VS Pascal to collect instruction
frequency information.

See
Page

168

DEBUG(PROMPT) Controls when and how the Interactive
Debugging Tool gains control during program
execution.

168

ERRCOUNT(20)

VM/CMS
Terminal
MVS/TSO
Terminal
MVS Batch
SYSPRINT

HEAP(12,12)
HEAP(12)

The language
specified at
installation.

Specifies how many non-fatal errors can occur 168
before the program is abnormally terminated.

Specifies the ddname of the file to which all 168
run-time diagnostics, counting information, and
debugger output is written.

Controls how VS Pascal creates and maintains 169
heaps.

Specifies a language other thEm the default 170
language for textual information.

Specifies that trace backs include a list of
active run-time routines when an error occurs.

170

Instructs VS Pascal to ignore checking errors 170
during program execution.

Instructs VS Pascal not to issue a SPIE request, 170
preventing interception of program interrupts.

Specifies that, upon entry to each VS Pascal 170
routine, each byte of storage in which the
routine's local variables are allocated will be
set to a specific hexadecimal value, namely
X'FE'.

Figure 95 (Part 1 of 2). Summary of Run-Time Options

Chapter 14. Run-Time Options 167

Run-Time
Option

STACK(n)

Default

STACK(12)

See
Function Page

Specifies the number of kilobytes that the 171
run-time stack is extended each time the stack
overflows.

Figure 95 (Part 2 of 2). Summary of Run-Time Options

COUNT Option

DEBUG Option

COUNT specifies that instruction frequency information is to be collected during
program execution. After the program is completed, this information is written to
the file specified by ERRFILE. This option will only have an effect if the program
was both compiled and link-edited with the DEBUG option.

Note: This option causes a small degradation in performance.

DEBUG or DEBUG(PROMPT) specifies that the Interactive Debugging Tool is to
gain initial control when you invoke your program. This option is valid only if the
load module was generated with the DEBUG option.

DEBUG(NOPROMPT) specifies that the Interactive Debugging Tool will be active
but will prompt you for a debugging command only when a run-time error is
detected.

Default: DEBUG(PROMPT)

Notes:

1. This option causes a small degradation in performance.

2. Specifying DEBUG causes SETMEM to be activated.

3. The NOSPIE option should not be used with the DEBUG option (breakpoints
and statement walking will not work).

ERRCOUNT Option
ERRCOUNT(n) specifies how many non-fatal errors (n) can occur before the
program is abnormally terminated.

Default: ERRCOUNT(20)

ERRFILE Option
ERRFILE(ddname) specifies the ddname of the file to which all run-time
diagnostics, counting information, and debugger information are written. Under
CMS and TSO, this information is displayed on your terminal by default. Under
MVS batch, the default error file is SYSPRINT.

168 vs Pascal Application Programming Guide

Run-Time
Option

STACK(n)

Default

STACK(12)

See
Function Page

Specifies the number of kilobytes that the 171
run-time stack is extended each time the stack
overflows.

Figure 95 (Part 2 of 2). Summary of Run-Time Options

COUNT Option

DEBUG Option

COUNT specifies that instruction frequency information is to be collected during
program execution. After the program is completed, this information is written to
the file specified by ERRFILE. This option will only have an effect if the program
was both compiled and link-edited with the DEBUG option.

Note: This option causes a small degradation in performance.

DEBUG or DEBUG(PROMPT) specifies that the Interactive Debugging Tool is to
gain initial control when you invoke your program. This option is valid only if the
load module was generated with the DEBUG option.

DEBUG(NOPROMPT) specifies that the Interactive Debugging Tool will be active
but will prompt you for a debugging command only when a run-time error is
detected.

Default: DEBUG(PROMPT)

Notes:

1. This option causes a small degradation in performance.

2. Specifying DEBUG causes SETMEM to be activated.

3. The NOSPIE option should not be used with the DEBUG option (breakpoints
and statement walking will not work).

ERRCOUNT Option
ERRCOUNT(n) specifies how many non-fatal errors (n) can occur before the
program is abnormally terminated.

Default: ERRCOUNT(20)

ERRFILE Option
ERRFILE(ddname) specifies the ddname of the file to which all run-time
diagnostics, counting information, and debugger information are written. Under
CMS and TSO, this information is displayed on your terminal by default. Under
MVS batch, the default error file is SYSPRINT.

168 vs Pascal Application Programming Guide

HEAP Option
HEAP controls the way VS Pascal creates and maintains heaps. Heaps are areas
of storage from which VS Pascal allocates memory for dynamic variables. A heap
is created by a call to the procedure NEWHEAP; the NEW and MARK procedures
may also create a new heap if there is no active heap.

HEAP takes two forms:

HEAP(initsize,incrsize)
HEAP(incrsize)

Where Specifies

initsize The initial size of each new heap in kilobytes.

incrsize How many kilobytes a heap is extended on overflow.

Note: Both values must be positive, nonzero integers.

Default: HEAP(12,12)

Notes:

1. When VS Pascal exhausts a heap, it issues a GETMAIN to allocate more
storage for the heap. If the memory space required by NEW is greater than
incrsize, GETMAIN allocates the amount of needed space, rounded up to the
nearest kilobyte.

2. There is a significant overhead penalty for each invocation of GETMAIN. If you
underestimate incrsize, GETMAIN is invoked frequently, adversely affecting
execution speed. If you overestimate incrsize, the heap sets aside storage that
is never used. When estimating heap requirements, remember that the two
HEAP parameters control all user heaps, and the liD heap.

For more information, see Chapter 18, "Managing Storage" on page 199.

Chapter 14. Run-Ti me Options 169

HEAP Option
HEAP controls the way VS Pascal creates and maintains heaps. Heaps are areas
of storage from which VS Pascal allocates memory for dynamic variables. A heap
is created by a call to the procedure NEWHEAP; the NEW and MARK procedures
may also create a new heap if there is no active heap.

HEAP takes two forms:

HEAP(initsize,incrsize)
HEAP(incrsize)

Where Specifies

initsize The initial size of each new heap in kilobytes.

incrsize How many kilobytes a heap is extended on overflow.

Note: Both values must be positive, nonzero integers.

Default: HEAP(12,12)

Notes:

1. When VS Pascal exhausts a heap, it issues a GETMAIN to allocate more
storage for the heap. If the memory space required by NEW is greater than
incrsize, GETMAIN allocates the amount of needed space, rounded up to the
nearest kilobyte.

2. There is a significant overhead penalty for each invocation of GETMAIN. If you
underestimate incrsize, GETMAIN is invoked frequently, adversely affecting
execution speed. If you overestimate incrsize, the heap sets aside storage that
is never used. When estimating heap requirements, remember that the two
HEAP parameters control all user heaps, and the I/O heap.

For more information, see Chapter 18, "Managing Storage" on page 199.

Chapter 14. Run-Time Options 169

I LANGUAGE Option

MAINT Option

LANGUAGE specifies the language used for run-time messages, report headings,
and other textual information presented by VS Pascal. The LANGUAGE run-time
option allows you to specify another language for textual information, using a
three-character identifier for the new language you desire.

The language is specified by LANGUAGE(eee), where eee is one of the following:

Where
ENG
UEN
JPN

Represents
Mixed-case English.
Uppercase English.
Japanese.

Default: The default language specified during installation.

MAINT specifies that when a run-time error occurs, the trace back is to list active
run-time routines. These routines begin with an AMP prefix and are normally
suppressed from the trace back listing. This option is used to locate bugs within
the run-time environment.

NOCHECK Option

NOSPIE Option

NOCHECK specifies that any checking errors detected within the program are to be
ignored.

NOSPIE specifies that the VS Pascal run-time environment is not to issue a SPIE
request and therefore will not intercept program interrupts.

Note: The Interactive Debugging Tool uses SPIE for breakpoints, and therefore
NOSPIE should not be used with the DEBUG option.

SETMEM Option
SETMEM specifies that upon entry to each VS Pascal routine, each byte of storage
in which the routine's local variables are allocated will be set to the hexadecimal
value X'FE'. This option aids in locating the source of intermittent errors which
occur because of the use of uninitialized variables.

Note: This option causes a small degradation in performance.

170 vs Pascal Application Programming Guide

LANGUAGE Option

MAl NT Option

LANGUAGE specifies the language used for run-time messages, report headings,
and other textual information presented by VS Pascal. The LANGUAGE run-time
option allows you to specify another language for textual information, using a
three-character identifier for the new language you desire.

The language is specified by LANGUAGE(eee), where eee is one of the following:

Where
ENG
UEN
JPN

Represents
Mixed-case English.
Uppercase English.
Japanese.

Default: The default language specified during installation.

MAINT specifies that when a run-time error occurs, the trace back is to list active
run-time routines. These routines begin with an AMP prefix and are normally
suppressed from the trace back listing. This option is used to locate bugs within
the run-time environment.

NOCHECK Option

NOSPIE Option

NOCHECK specifies that any checking errors detected within the program are to be
ignored.

NOSPIE specifies that the VS Pascal run-time environment is not to issue a SPIE
request and therefore will not intercept program interrupts.

Note: The Interactive Debugging Tool uses SPIE for breakpoints, and therefore
NOSPIE should not be used with the DEBUG option.

SETMEM Option
SETMEM specifies that upon entry to each VS Pascal routine, each byte of storage
in which the routine's local variables are allocated will be set to the hexadecimal
value X I FE I. This option aids in locating the source of intermittent errors which
occur because of the use of uninitialized variables.

Note: This option causes a small degradation in performance.

170 VS Pascal Application Programming Guide

\.... S1 ACK Option
STACK(n) specifies the number of kilobytes (n) that the run-time stack is to be
"extended" each time the stack overflows. The run-time stack is where the
dynamic storage area (DSA) of a routine is allocated when the routine is invoked.

Notes:

1. When the end of the stack is reached, the GETMAIN supervisor call is invoked
to allocate more storage for the stack. If the length of the DSA required is
greater than n, the amount allocated will be the length of the DSA rounded up
to the next kilobyte.

2. There is a significant overhead penalty for each invocation of GETMAIN. If n is
too small, GETMAIN will be invoked frequently and the execution speed of the
program will be affected. If n is too large, the stack will occupy more storage
than is necessary.

Default: STACK(12).

Chapter 14. Run-Time Options 171

STACK Option
STACK(n) specifies the number of kilobytes (n) that the run-time stack is to be
"extended" each time the stack overflows. The run-time stack is where the
dynamic storage area (DSA) of a routine is allocated when the routine is invoked.

Notes:

1. When the end of the stack is reached, the GETMAIN supervisor call is invoked
to allocate more storage for the stack. If the length of the DSA required is
greater than n, the amount allocated will be the length of the DSA rounded up
to the next kilobyte.

2. There is a significant overhead penalty for each invocation of GETMAIN. If n is
too small, GETMAIN will be invoked frequently and the execution speed of the
program will be affected. If n is too large, the stack will occupy more storage
than is necessary.

Default: ST ACK(12).

Chapter 14. Run-Time Options 171

,1

\...

Chapter 15. Interactive Debugging Tool Commands

Debugging
Command

BREAK

CLEAR

CMS

DISPLAY

DISPLA Y BREAKS

DISPLAY COUNTS

DISPLAY EQUATES

END

EQUATE

GO

HELP or?

LlSTVARS

QUAL

QUIT

RESET

SET ATTR

SET COUNT

SET TRACE

TRACE

Figure 96 summarizes all VS Pascal commands used with the Interactive
Debugging Tool. For more information on debugging, see Chapter 7, "How to
Debug Your Program" on page 83. Except for QUIT, END, and CLEAR, you can
abbreviate all commands to one letter. Use semicolons to separate multiple
commands on a line.

All output produced by the debugger (except for program tracing) will go to the file
specified by ERRFILE. If ERRFILE is not specified, the output goes to the terminal
in VM/CMS and MVS/TSO, and to SYSPRINT in MVS Batch.

All input to the debugger comes from the terminal in VM/CMS and MVSITSO, and
from SYSIN in MVS Batch.

See
Abbreviation Function Page

B Sets a breakpoint at a specified statement. 174

Removes all breakpoints. 176

C Activates the CMS subset mode. 176

D Displays information about the current debugging session. 177

DB Produces a list of all current breakpoints. 177

DC Displays instruction frequency information. 177

DE Produces a list of all equate symbols and their current 178
definitions.

Terminates the program immedi~tely. 178

E Equates an identifier name to a data string. 178

G Starts or resumes program execution. 179

H or? Lists all the debugging commands. 179

L Displays the values of all variables that are local to the 180
currently qual ifi ed routi ne.

Q Sets the scope of variables to be displayed. 180

Terminates the program immediately. 180

R Removes a specified breakpoint. 181

SA Sets the default method for viewing variables. 181

SC Initiates and terminates statement counting. 182

ST Activates or deactivates program tracing. 182

T Produces a routine trace-back. 183

Figure 96 (Part 1 of 2). Summary of Debugging Commands

Chapter 15. Interactive Debugging Tool Commands 173

....

I
~

Chapter 15. Interactive Debugging Tool Commands

Debugging
Command

BREAK

CLEAR

CMS

DISPLAY

DISPLAY BREAKS

DISPLAY COUNTS

DISPLA Y EQUATES

END

EQUATE

GO

HELP or?

LlSTVARS

QUAL

QUIT

RESET

SET ATTR

SET COUNT

SET TRACE

TRACE

Figure 96 summarizes all VS Pascal commands used with the Interactive
Debugging Tool. For more information on debugging, see Chapter 7, "How to
Debug Your Program" on page 83. Except for QUIT, END, and CLEAR, you can
abbreviate all commands to one letter. Use semicolons to separate multiple
commands on a line.

All output produced by the debugger (except for program tracing) will go to the file
specified by ERRFILE. If ERRFILE is not specified, the output goes to the terminal
in VM/CMS and MVS/TSO, and to SYSPRINT in MVS Batch.

All input to the debugger comes from the terminal in VM/CMS and MVSITSO, and
from SYSIN in MVS Batch.

See
Abbreviation Function Page

B Sets a breakpoint at a specified statement. 174

Removes all breakpoints. 176

C Activates the CMS subset mode. 176

D Displays information about the current debugging session. 177

DB Produces a list of all current breakpoi nts. 177

DC Displays instruction frequency information. 177

DE Produces a list of all equate symbols and their current 178
definitions.

Terminates the program immedi~tely. 178

E Equates an identifier name to a data string. 178

G Starts or resumes program execution. 179

H or? Lists all the debugging commands. 179

L Displays the values of all variables that are local to the 180
currently qualified routine.

Q Sets the scope of variables to be displayed. 180

Terminates the program immediately. 180

R Removes a specified breakpoint. 181

SA Sets the default method for viewing variables. 181

SC Initiates and terminates statement counting. 182

ST Activates or deactivates program tracing. 182

T Produces a routine trace-back. 183

Figure 96 (Part 1 of 2). Summary of Debugging Commands

Chapter 15. Interactive Debugging Tool Commands 173

Debugging See
Command Abbreviation Function Page

view variable ,variable Shows the user the contents of a variable during program 183
execution.

view storage ,hex-string Displays the contents of a specific storage location. 183

WALK W Executes the next statement and then halts the program. 184

Figure 96 (Part 2 of 2). Summary of Debugging Commands

BREAK Command
BREAK causes a breakpoint to be set at the indicated statement. The program is
stopped before the statement is executed.

If you have two or more procedures with the same name in a module, the
breakpoint setting may be unpredictable.

A maximum of 32 breakpoints may be set at anyone time.

EVERY-incr
FROM-tni t
TO-final

Where Specifies

BREAK The command keyword.
Minimum abbreviation: B

unit The name of a VS Pascal unit.

cmd----i

routine The name of a procedure or function in the unit.

stmt The number of the statement at which to stop in the specified routine of
the specified unit. The statement numbers are found on the source listing.

EVERY, FROM, TO
The way in which the Interactive Debugging Tool steps through repeated
executions of a statement.

• EVERY determines how many repetitions of the statement must occur
(incr) between breakpoints.
Default: EVERY 1

174 vs Pascal Application Programming Guide

Debugging See
Command Abbreviation Function Page

view variable ,variable Shows the user the contents of a variable during program 183
execution.

view storage ,hex-string Displays the contents of a specific storage location. 183

WALK W Executes the next statement and then halts the program. 184

Figure 96 (Part 2 of 2). Summary of Debugging Commands

BREAK Command
BREAK causes a breakpoint to be set at the indicated statement. The program is
stopped before the statement is executed.

If you have two or more procedures with the same name in a module, the
breakpoint setting may be unpredictable.

A maximum of 32 breakpoints may be set at anyone time.

~BREAK-'---------------~-'---"L-stmtl
'---r------r----r-----r- j ---.-J END.....!

Lunit-j-.J Lroutine-.J

EVERY-inc
FROM-init
TO-final

Where Specifies

BREAK The command keyword.
Minimum abbreviation: B

unit The name of a VS Pascal unit.

cmd'-----i

routine The name of a procedure or function in the unit.

stmt The number of the statement at which to stop in the specified routine of
the specified unit. The statement numbers are found on the source listing.

EVERY, FROM, TO
The way in which the Interactive Debugging Tool steps through repeated
executions of a statement.

• EVERY determines how many repetitions of the statement must occur
(incr) between breakpoints.
Default: EVERY 1

174 VS Pascal Application Programming Guide

• FROM determines at which repetition of the statement the first Unit)
breakpoint occurs.
Default: FROM 0

• TO determines at which repetition of the statement the last (final)
breakpoint occurs. Final must be greater than or equal to init.
Default: TO MAXINT

Notes:

1. The parameter init must be an integer greater than or equal to zero,
and the parameters incr and final must be positive integers greater
than zero.

2. If EVERY, FROM, or TO is specified more than once, the last
specification of the command will be used.

3. EVERY, FROM, and TO may be specified in any order.

END The breakpoint is to occur in the epilog of the routine before the routine's
return.

cmd The action to be taken upon encountering a breakpoint. If you omit the
right parenthesis, the rest of the line will be considered part of the
associated command string.

Note: The Interactive Debugging Tool executes commands on a BREAK
only when a breakpoint actually occurs.

The unit andlor routine may be omitted in which case the defaults are taken from
the current qualification.

The following table illustrates the meaning of the various forms.

Input
BS
B IS
B PIS
B MilS
B MIPIS

Where
current
M,P
S

Unit Procedure
current current
current main program
current P
M main program
M P

Specifies
The currently qualified unit or procedure.
The names of a unit or procedure.
Either a statement number or END.

Chapter 15. Interactive Debugging Tool Commands 175

• FROM determines at which repetition of the statement the first Unit)
breakpoint occurs.
Default: FROM 0

• TO determines at which repetition of the statement the last (final)
breakpoint occurs. Final must be greater than or equal to in it.
Default: TO MAXINT

Notes:

1. The parameter init must be an integer greater than or equal to zero,
and the parameters incr and final must be positive integers greater
than zero.

2. If EVERY, FROM, or TO is specified more than once, the last
specification of the command will be used.

3. EVERY, FROM, and TO may be specified in any order.

END The breakpoint is to occur in the epilog of the routine before the routine's
return.

cmd The action to be taken upon encountering a breakpoint. If you omit the
right parenthesis, the rest of the line will be considered part of the
associated command string.

Note: The Interactive Debugging Tool executes commands on a BREAK
only when a breakpoint actually occurs.

The unit andlor routine may be omitted in which case the defaults are taken from
the current qualification.

The following table illustrates the meaning of the various forms.

Input
BS
B IS
B PIS
B MilS
B MIPIS

Where
current
M,P
S

Unit Procedure
current current
current main program
current P
M main program
M P

Specifies
The currently qualified unit or procedure.
The names of a unit or procedure.
Either a statement number or END.

Chapter 15. Interactive Debugging Tool Commands 175

Examples

B 3

will stop at statement 3 of the current routine in the current unit.

B P/2 LISTVARS

will stop at statement 2 in routine P in the current unit and execute the LlSTVARS
command.

BREAK 12 EVERY 2

will stop at every second execution of statement 12.

B M/P/END (LISTVARS;GO)

will execute the LlSTVARS command at the end of routine P in unit M and resume
execution.

BREAK 12 EVERY 4 FROM 3 TO 16 LISTVARS

will stop at the third, seventh, eleventh, and fifteenth occurrences of statement 12,
and executes the LlSTVARS command at every instance of the breakpoint.

CLEAR Command
CLEAR removes all breakpoints.

~CLEAR----------------------~------------------------~~~

Minimum abbreviation: CLEAR

CMS Command
CMS activates the CMS subset mode. If the program is not being run under CMS,
the command is ignored. Typing "RETURN" returns to the debug mode from CMS
subset mode.

~CMS--~~~~

Minimum abbreviation: C

176 vs Pascal Application Programming Guide

Examples

B 3

will stop at statement 3 of the current routine in the current unit.

B P/2 LISTVARS

will stop at statement 2 in routine P in the current unit and execute the LlSTVARS
command.

BREAK 12 EVERY 2

will stop at every second execution of statement 12.

B M/P/END (LISTVARS;GO)

will execute the LlSTVARS command at the end of routine P in unit M and resume
execution.

BREAK 12 EVERY 4 FROM 3 TO 16 LISTVARS

will stop at the third, seventh, eleventh, and fifteenth occurrences of statement 12,
and executes the LlSTVARS command at every instance of the breakpoint.

CLEAR Command
CLEAR removes all breakpoints.

~CLEAR--+·~~

Minimum abbreviation: CLEAR

CMS Command
CMS activates the CMS subset mode. If the program is not being run under CMS,
the command is ignored. Typing "RETURN" returns to the debug mode from CMS
subset mode.

~CMS--~·~~

Minimum abbreviation: C

176 vs Pascal Application Programming Guide

DISPLAY Command
DISPLAY displays information about the current debugging session. The
information displayed is:

• The current qualification
• Where the user's program will resume execution after a GO or WALK

command
• The current status of counts
• The current status of tracing.

-DISPLAY-------------------------..

Minimum abbreviation: D

DISPLAY BREAKS Command
DISPLAY BREAKS displays information about breakpoints which are currently set.
This information includes:

• Break number
• Break unit
• Break routine
• Break statement
• Break command (if any)
• EVERY, FROM, and TO values (if any)
• Times the statement has executed if EVERY, FROM, or TO is specified.

"---~DISPLAY BREAKS--------------------.....

Minimum abbreviation: D B

DISPLAY COUNTS Command
DISPLAY COUNTS displays instruction frequency information on your terminal.

-DISPLAY COUNTS-------------------.... _ ..

Minimum abbreviation: D C

Notes:

1. You must use the SET COUNT ON debugging command or the COUNT run-time
option to activate statement counting.

2. Counting is done on a "basic block" basis. A basic block is a group of
statements entered only from the first statement. This implies that a line can
be counted as executed if any line in the basic block has been executed.

Chapter 15. Interactive Debugging Tool Commands 177

DISPLAY Command
DISPLAY displays information about the current debugging session. The
information displayed is:

• The current qualification
• Where the user's program will resume execution after a GO or WALK

command
• The current status of counts
• The current status of tracing.

-DISPLAY-----------------------~-..

Minimum abbreviation: D

DISPLAY BREAKS Command
DISPLAY BREAKS displays information about breakpoints which are currently set.
This information includes:

• Break number
• Break unit
• Break routine
• Break statement
• Break command (if any)
• EVERY, FROM, and TO values (if any)
• Times the statement has executed if EVERY, FROM, or TO is specified.

"'~~-~DISPLAY BREAKS---------------------II~~ ..

Minimum abbreviation: D B

DISPLAY COUNTS Command
DISPLAY COUNTS displays instruction frequency information on your terminal.

-DISPLAY COUNTS---------------------II.~ ..

Minimum abbreviation: D C

Notes:

1. You must use the SET COUNT ON debugging command or the COUNT run-time
option to activate statement counting.

2. Counting Is done on a "basic block" basis. A basic block is a group of
statements entered only from the first statement. This implies that a line can
be counted as executed if any line In the basic block has been executed.

Chapter 15. Interactive Debugging Tool Commands 177

DISPLAY EQUATES Command

END Command

DISPLAY EQUATES produces a list of all equate symbols and their current
definitions.

--DISPLAY EQUATES,---------------------1 .. - ..

Minimum abbreviation: D E

END terminates the program immediately. This command is synonymous with
QUIT.

--ENDr------------------------.. ~ ..

Minimum abbreviation: END

EQUATE Command
EQUATE equates an identifier name to a data string. When the identifier name
appears in a command. it will be expanded inline before executing the command.

A maximum of 12 EQUATES is allowed.

--EQUATE-identijielr---,-----,--------------.. ..
Ldato~

Where Specifies

EQUATE The command keyword.
Minimum abbreviation: E

identifier A VS Pascal identifier.

data A command that the identifier is to represent.

Examples

EQUATE X ,B[l]

will cause the variable "8[1]" to be viewed when "XU is entered as a command.

EQUATE Y R@.F[6].J
,B [YJ

will cause the variable "8[R@.F[6].J]" to be viewed.

178 vs Pascal Application Programming Guide

DISPLAY EQUATES Command

END Command

DISPLAY EQUATES produces a list of all equate symbols and their current
definitions.

--DISPLAY EQUATES,---------------------t--..

Minimum abbreviation: D E

END terminates the program immediately. This command is synonymous with
QUIT.

--END~----------------------~-~ ..

Minimum abbreviation: END

EQUATE Command
EQUATE equates an identifier name to a data string. When the identifier name
appears in a command, it will be expanded inline before executing the command.

A maximum of 12 EQUATES is allowed.

--EQUATE-i dent ifielr----rL---i-r"-------------.-..
data---1

Where Specifies

EQUATE The command keyword.
Minimum abbreviation: E

identifier A VS Pascal identifier.

data A command that the identifier is to represent.

Examples

EQUATE X ,B[l]

will cause the variable "8[1]" to be viewed when "X" is entered as a command.

EQUATE Y R@.F[6].J
,B [Y]

will cause the variable "8[R@.F[6].J]" to be viewed.

178 vs Pascal Application Programming Guide

,

GO Command

A semicolon will not terminate the EQUATE command; a semicolon will be treated
as part of the data string. For example, the command:

EQUATE Z GO;LISTVARS

will cause the "GO" and "LlSTVARS" commands to be executed in succession
when "Z" is entered as a command.

An equate command may be used to redefine the meaning of a debugging
command. There is one exception: the name EQUATE may not be equated to a
data string.

EQUATE GO WALK

makes the command "GO" function as the command "WALK".

An equate command may be cancelled by equating the previously defined
identifier to an empty data string:

EQUATE Z

removes the symbol "Z" from the Interactive Debugging Tool's equate table.

Equates may be equated to strings which contain other equates. The commands:

EQUATE A P@.I
EQUATE B ,XYZ[A]

will cause the symbol "8" to be expanded to ",XYZ[P@.I]".

GO starts or resumes program execution. The program will continue to execute
until one of the following events occurs:

Breakpoint
Program error
Normal program exit

A breakpoint or program error will return the user to the debugging environment.

~GO---~~4

Minimum abbreviation: G

HELP Command
HELP lists all the debugging commands.

Minimum abbreviation: H or ?

Chapter 15. Interactive Debugging Tool Commands 179

GO Command

A semicolon will not terminate the EQUATE command; a semicolon will be treated
as part of the data string. For example, the command:

EQUATE Z GO;LISTVARS

will cause the "GO" and "LlSTVARS" commands to be executed in succession
when "z" is entered as a command.

An equate command may be used to redefine the meaning of a debugging
command. There is one exception: the name EQUATE may not be equated to a
data string.

EQUATE GO WALK

makes the command "GO" function as the command "WALK".

An equate command may be cancelled by equating the previously defined
identifier to an empty data string:

EQUATE Z

removes the symbol "z" from the Interactive Debugging Tool's equate table.

Equates may be equated to strings which contain other equates. The commands:

EQUATE A P@.I
EQUATE B ,XYZ[A]

will cause the symbol "B" to be expanded to ",XYZ[P@.I]".

GO starts or resumes program execution. The program will continue to execute
until one of the following events occurs:

Breakpoint
Program error
Normal program exit

A breakpoint or program error will return the user to the debugging environment.

~GO'---~~4

Minimum abbreviation: G

HELP Command
HELP lists all the debugging commands.

Minimum abbreviation: H or?

Chapter 15. Interactive Debugging Tool Commands 179

LISTVARS Command
LlSTVARS displays the values of all variables that are local to the currently
qualified routine.

~LISTVARS--~·~4

Minimum abbreviation: L

QUAL Command
QUAL sets the scope of variables to be displayed.

When a breakpoint is encountered, the qualification is automatically set to the unit
and the routine in which the breakpoint was set. Qualification may be changed at
any time during a debugging session.

If you have two or more procedures with the same name in a module, the routine
qualified may be unpredictable.

~UAL--'----------~~--------~-----------------------".4

L unit----' Lroutine--'

Where Specifies

QUAL The command keyword.
Minimum abbreviation: Q

unit The name of a VS Pascal unit.

routine The name of a procedure or function in the unit.

If you do not specify a unit and/or a routine name, the defaults are taken from the
current qualification. The defaults are applied as follows:

• The unit name defaults to the current qualification.

• The routine defaults to the main program if the associated unit is a program
unit.

The lexical scope rules of Pascal are applied when viewing variables. The current
qualification provides the basis on which program names are resolved. If there is
no activation of the routine available (no invocations) the user may not display
local variables for that routine.

QUIT Command
QUIT terminates the program immediately. This command is synonymous with
END.

~QUIT---".4

Minimum abbreviation: QUIT

180 vs Pascal Application Programming Guide

LISTVARS Command
LlSTVARS displays the values of all variables that are local to the currently
qualified routine.

~LISTVARS--~·~4

Minimum abbreviation: L

QUAL Command
QUAL sets the scope of variables to be displayed.

When a breakpoint is encountered, the qualification is automatically set to the unit
and the routine in which the breakpoint was set. Qualification may be changed at
any time during a debugging session.

If you have two or more procedures with the same name in a module, the routine
qualified may be unpredictable.

~QUAL--,,---------~,--------~-----------------------+.~.

Luni t-_....J Lroutine~

Where Specifies

QUAL The command keyword.
Minimum abbreviation: Q

unit The name of a VS Pascal unit.

routine The name of a procedure or function in the unit.

If you do not specify a unit and/or a routine name, the defaults are taken from the
current qualification. The defaults are applied as follows:

• The unit name defaults to the current qualification.

• The routine defaults to the main program if the associated unit is a program
unit.

The lexical scope rules of Pascal are applied when viewing variables. The current
qualification provides the basis on which program names are resolved. If there is
no activation of the routine available (no invocations) the user may not display
local variables for that routine.

QUIT Command
QUIT terminates the program immediately. This command is synonymous with
END.

~QUIT--~··

Minimum abbreviation: QUIT

180 vs Pascal Application Programming Guide

RESET Command
RESET removes a specified breakpoint. The defaults are the same as the BREAK
command.

--RESET---.-------------i.....,---r-L-stmt I
'-r------.----.----..-j--.J END---'

Luntt---j.-J Lroutine.-J

Where Specifies

RESET The command keyword.
Minimum abbreviation: R

unit The name of a VS Pascal unit.

routine The name of a procedure or function in the unit.

stmt The number of a statement in the designated routine.

END The breakpoint is in the epilog of the routine before the routine's return.

SET ATTR Command
SET ATIR sets the default way in which variables are viewed. The default may be
overridden on the variable viewing command.

-SET ATTR--r-ON =oJ
LOFF

Where Specifies

SET ATIR The command keyword.
Minimum abbreviation: S A

ON Variable attribute information will be displayed by default. The
attributes are the data type, storage class, length if relevant, and the
routine where the variable was declared.

OFF Variable attribute information will not be displayed by default.

Chapter 15. Interactive Debugging Tool Commands 181

/' .

RESET Command
RESET removes a specified breakpoint. The defaults are the same as the BREAK
command.

--RES ET·-,------------i---,--,-L-S tmt I
'-T-------.------.----.-j-..J END~
Lunit---j~ Lroutine~

Where Specifies

RESET The command keyword.
Minimum abbreviation: R

unit The name of a VS Pascal unit.

routine The name of a procedure or function in the unit.

stmt The number of a statement in the designated routine.

END The breakpoint is in the epilog of the routine before the routine's return.

SET ATTR Command
SET ATTR sets the default way in which variables are viewed. The default may be
overridden on the variable viewing command.

--SET ATTR--r-ON]
L.OFF-

Where Specifies

SET ATTR The command keyword.
Minimum abbreviation: SA

ON Variable attribute information will be displayed by default. The
attributes are the data type, storage class, length if relevant, and the
routine where the variable was declared.

OFF Variable attribute information will not be displayed by default.

Chapter 15. Interactive Debugging Tool Commands 181

SET COUNT Command
SET COUNT initiates and terminates statement counting. Statement counting is
used to produce a summary of the number of times every statement is executed
during program execution. The summary is produced at the end of program
execution or when a DISPLAY COUNTS command is issued.

--SET COUNT--.-ON---,-----------------..-; .. -4
LOFF.-J

Where Specifies

SET COUNT The command keyword.
Minimum abbreviation: S C

ON Statement counting is on.

OFF Statement counting is off.

Notes:

1. Statement counting may also be initiated with the COUNT run-time option.

2. Counting is done on a "basic block" basis. A basic block is a group of
statements entered only from the first statement. This implies that a line can
be counted as executed if any line in the basic block has been executed.

SET TRACE Command
SET TRACE activates or deactivates program tracing. Program tracing provides
the user with a list of every statement executed in the program. This is useful for
following the execution flow.

The output from the program trace normally will go to your terminal. By using the
TO option, you may direct the output to a specific file.

--SET TRACE-r=~~F]

TO ddname

.. 4

Where Specifies

SET TRACE The command keyword.
Minimum abbreviation: S T

ON Program tracing is on.

OFF Program tracing is off.

TO ddname Trace output will be sent to ddname.

Note: Tracing is done on a "basic block" basis. A basic block is a group of
statements entered only from the 'first statement. This implies that a line can be
counted as executed if any line in the basic block has been executed.

182 vs Pascal Application Programming Guide

SET COUNT Command
SET COUNT initiates and terminates statement counting. Statement counting is
used to produce a summary of the number of times every statement is executed
during program execution. The summary is produced at the end of program
execution or when a DISPLAY COUNTS command is issued.

--SET COUNT-----.-ON-----,-----------------...;--..
LOFF~

Where Specifies

SET COUNT The command keyword.
Minimum abbreviation: S C

ON Statement counting is on.

OFF Statement counting is off.

Notes:

1. Statement counting may also be initiated with the COUNT run-time option.

2. Counting is done on a "basic block" basis. A basic block is a group of
statements entered only from the first statement. This implies that a line can
be counted as executed if any line in the basic block has been executed.

SET TRACE Command
SET TRACE activates or deactivates program tracing. Program tracing provides
the user with a list of every statement executed in the program. This is useful for
following the execution flow.

The output from the program trace normally will go to your terminal. By using the
TO option, you may direct the output to a specific file.

--SET TRACE--r=~~F]

TO ddname

Where Specifies

SET TRACE The command keyword.
Minimum abbreviation: S T

ON Program tracing is on.

OFF Program tracing is off.

TO ddname Trace output will be sent to ddname.

Note: Tracing is done on a "basic block" basis. A basic block is a group of
statements entered only from the 'first statement. This implies that a line can be
counted as executed if any line in the basic block has been executed.

182 vs Pascal Application Programming Guide

TRACE Command
TRACE produces a routine trace-back. The routines on the current invocation
chain are listed along with the most recently executed statement in each.

~TRACE--~~~~

Minimum abbreviation: T

For more information regarding trace-backs, see "Reading a VS Pascal Trace-Back
Report" on page 73.

Viewing Storage
,hex-string displays the contents of a specific storage location. The dump is in both
hexadecimal and character formats.

---, -hex-s tri ng--.....,--------------r--------------------------.... ~--..
L : -length..J

Where Specifies

hex-string The beginning storage location to be dumped. It must be a
hexadecimal number surrounded by single quotes and followed by an
'X' (for example '3SDOS'X).

length The number of bytes to be dumped. It must be a decimal number. If
length is not specified, storage is dumped for 16 bytes.

Examples

,'20000'X
, ' 46cf0 ' X 100

Viewing Variables
,variable displays the contents of a variable during program execution.

~.-variable---.------------------.-----------------------~~~

L (-op t i on-,----,----'
L)..J

Where

variable

option

Specifies

A VS Pascal variable.

Either ATTR or NOA DR. The default is taken from the SET A DR
command. The initial default is NOADR. If ATTR is specified,
attributes of the variable are displayed along with the value of the
variable. The attributes are the data type, storage class, length if
relevant, and the routine where the variable was declared.

Chapter 15. Interactive Debugging Tool Commands 183

TRACE Command
TRACE produces a routine trace-back. The routines on the current invocation
chain are listed along with the most recently executed statement in each.

~TRACE--~~~.

Minimum abbreviation: T

For more information regarding trace-backs, see "Reading a VS Pascal Trace-Sack
Report" on page 73.

Viewing Storage
,hex-string displays the contents of a specific storage location. The dump is in both
hexadecimal and character formats.

---, -hex-string-....,------------r-----------------.... ~
L : -length~

Where Specifies

hex-string The beginning storage location to be dumped. It must be a
hexadecimal number surrounded by single quotes and followed by an

'X' (for example '35005'X).

length The number of bytes to be dumped. It must be a decimal number. If
length is not specified, storage is dumped for 16 bytes.

Examples

,'20000' X
, '46cfO ' X 100

Viewing Variables
,variable displays the contents of a variable during program execution.

~,-variable--.--------------r---------------------~~ ..
L (-opt i on--"'--~-----'

Where

variable

option

L)~

Specifies

A VS Pascal variable.

Either ATTR or NOATTR. The default is taken from the SET ATTR
command. The initial default is NOATTR. If ATTR is specified,
attributes of the variable are displayed along with the value of the
variable. The attributes are the data type, storage class, length if
relevant, and the routine where the variable was declared.

Chapter 15. Interactive Debugging Tool Commands 183

The static scope rules that apply to the current qualification are applied to the
specified variable. If the variable is found to be a valid reference, then its value is
displayed. If the name cannot be resolved within the current qualification, you are ...",
informed that the name is not found. If the name resolves to an automatic variable
for which no activation currently exists, you are informed that the variable cannot
be displayed.

As can be seen from the following examples, array elements, record fields, and
dynamic variables may all be viewed. Variables are formatted according to their
data type. Entire records, arrays, and spaces are displayed as a hexadecimal
dump. You may view an array slice by specifying fewer indices than the declared
dimension of the array. The missing indices must be the rightmost ones.

Note: A subscripting expression may only be a variable or constant; that is, it may
contain no operators. Thus, such a reference as:

.A [B@[J]]

is valid (at least syntactically), but the reference:

.A [I +3]

is not a valid reference because the subscripting expression is not a variable or
constant.

Examples

,A
.p@
,P@.B
,B[l,X].INT (ATTR
.p@[X,Y].B@.A[l]

If the variable being viewed has not been assigned a value, then the results
depend on the variable's type:

• If the variable is a scalar, pointer, set or string type, the word uninitialized will
be written.

• If the variable is of a structured type (array, record, and so forth), then the
contents will be printed in hexadecimal; each byte of the the variable which is
uninitialized will have the hexadecimal value X I FE I.

WALK Command
WALK causes the program to either start executing or resume executing. The
program execution will continue for exactly one statement in the current routine
and then you will be returned to the debugging environment. This implies that if
the statement is a routine call, the routine will be executed as one statement.
However, if a breakpOint was set in the routine, the routine would stop at the
breakpoint (if appropriate).

This command is useful for single stepping through a section of code.

~WALK--~··

Minimum abbreviation: W

184 vs Pascal Application Programming Guide

The static scope rules that apply to the current qualification are applied to the
specified variable. If the variable is found to be a valid reference, then its value is
displayed. If the name cannot be resolved within the current qualification, you are
informed that the name is not found. If the name resolves to an automatic variable
for which no activation currently exists, you are informed that the variable cannot
be displayed.

As can be seen from the following examples, array elements, record fields, and
dynamic variables may all be viewed. Variables are formatted according to their
data type. Entire records, arrays, and spaces are displayed as a hexadecimal
dump. You may view an array slice by specifying fewer indices than the declared
dimension of the array. The missing indices must be the rightmost ones.

Note: A subscripting expression may only be a variable or constant; that is, it may
contain no operators. Thus, such a reference as:

,A[B@[J]]

is valid (at least syntactically), but the reference:

,A[1+3]

is not a valid reference because the subscripting expression is not a variable or
constant.

Examples

,A
, P@
,P@.B
,B[l,X].INT (ATTR
,P@[X,Y].B@.A[l]

If the variable being viewed has not been assigned a value, then the results
depend on the variable's type:

• If the variable is a scalar, pointer, set or string type, the word uninitiaJized will
be written.

• If the variable is of a structured type (array, record, and so forth), then the
contents will be printed in hexadecimal; each byte of the the variable which is
uninitialized will have the hexadecimal value X I FE I.

WALK Command
WALK causes the program to either start executing or resume executing. The
program execution will continue for exactly one statement in the current routine
and then you will be returned to the debugging environment. This implies that if
the statement is a routine cali, the routine will be executed as one statement.
However, if a breakpoint was set in the routine, the routine would stop at the
breakpoint (if appropriate).

This command is useful for single stepping through a section of code.

~WALK--~~4

Minimum abbreviation: W

184 VS Pascal Application Programming Guide

Chapter 16. VS Pascal Register and Storage Usage

This chapter discusses how VS Pascal uses registers and storage.

Linkage Conventions

Register Usage

VS Pascal uses standard System/370 linkage conventions with several additional
restrictions. The result is that VS Pascal may call any program that requires
standard conventions and may be called by any program that adheres to the
additional VS Pascal restrictions.

On entry to a VS Pascal routine, the contents of relevant registers are as follows:

• Register 1 - pOints to the parameter list

• Register 11 - points to the dynamic storage area (DSA) of the main program

• Register 12 - points to the VS Pascal communication work area (peWA)

• Register 13 - points to the save area provided by the caller

• Register 14 - return address

• Register 15 - entry point of called routine.

VS Pascal requires that the parameter register (register 1) be pointing into the
dynamic storage area (DSA) stack in such a way that 144 bytes before the register
1 address is an available save area.

The list below describes how each general register is used within a VS Pascal
program. The floating-point registers are used for computation on REAL data
types.

• Registers 0 and 1 - temporary work registers for the compiler and standard
linkage usage on calls

• Registers 3, 4, 5, 6, 7, 8, and 9 - Registers aSSigned by the compiler for
computation and for data base registers

• Registers 2 and 10 - Code base registers of the currently executing routine

• Register 11 - Address of the DSA of the main program

• Register 12 - Always points to VS Pascal communication work area

• Register 13 - Always pOints to the local DSA

• Registers 14 and 15'- Temporary work registers for the compiler and standard
linkage usage on calls.

Chapter 16. VS Pascal Register and Storage Usage 185

Chapter 16. VS Pascal Register and Storage Usage

This chapter discusses how VS Pascal uses registers and storage.

Linkage Conventions
VS Pascal uses standard System/370 linkage conventions with several additional
restrictions. The result is that VS Pascal may call any program that requires
standard conventions and may be called by any program that adheres to the
additional VS Pascal restrictions.

Register Usage

On entry to a VS Pascal routine, the contents of relevant registers are as follows:

• Register 1 - points to the parameter list

• Register 11 - points to the dynamic storage area (DSA) of the main program

• Register 12 - pOints to the VS Pascal communication work area (PCWA)

• Register 13 - points to the save area provided by the caller

• Register 14 - return address

• Register 15 - entry pOint of called routine.

VS Pascal requires that the parameter register (register 1) be pointing into the
dynamic storage area (DSA) stack in such a way that 144 bytes before the register
1 address is an available save area.

The list below describes how each general register is used within a VS Pascal
program. The floating-point registers are used for computation on REAL data
types.

• Registers 0 and 1 - temporary work registers for the compiler and standard
linkage usage on calls

• Registers 3,4,5,6,7,8, and 9 - Registers assigned by the compiler for
computation and for data base registers

• Registers 2 and 10 - Code base registers of the currently executing routine

• Register 11 - Address of the DSA of the main program

• Register 12 - Always points to VS Pascal communication work area

• Register 13 - Always pOints to the local DSA

• Registers 14 and 15 - Temporary work registers for the compiler and standard
linkage usage on calls.

Chapter 16. VS Pascal Register and Storage Usage 185

Routine Invocation
Each invocation of a VS Pascal routine must acquire a dynamic storage area
(DSA). This storage is allocated and deallocated in a LIFO (last in/first out) stack.
If the stack is filled, a storage overflow routine will attempt to obtain another stack
from which storage is to be allocated.

Every DSA must be at least 144 bytes long; this is the storage required by VS
Pascal for a save area. The routi ne's local variables and parameters are mapped
within the DSA starting at offset 144.

Upon entering a routine, register 1 points 144 bytes into the routine's DSA, which is
where the parameters passed in by the caller reside. This implies that the calling
routine is responsible for allocating a portion of the DSA required by the routine
being called, namely 144 bytes plus enough storage for the parameter list. This
portion of storage is actually an extension of the caller's DSA.

In general, the DSA of a routine consists of five sections:

1. The local save area (144 bytes)
2. Parameters passed in by the caller
3. Local variables required by the routine
4. A save area required by any routine that will be called
5. Storage for the largest parameter list to be built for a call.

Sections 1 and 2 are allocated by the calling routine; sections 3, 4, and 5 are
allocated by the prolog of the routine to which the DSA belongs.

186 vs Pascal Application Programming Guide

Routine Invocation
Each invocation of a VS Pascal routine must acquire a dynamic storage area
(DSA). This storage is allocated and deallocated in a LIFO (last in/first out) stack.
If the stack is filled, a storage overflow routine will attempt to obtain another stack
from which storage is to be allocated.

Every DSA must be at least 144 bytes long; this is the storage required by VS
Pascal for a save area. The routine's local variables and parameters are mapped
within the DSA starting at offset 144.

Upon entering a routine, register 1 points 144 bytes into the routine's DSA, which is
where the parameters passed in by the caller reside. This implies that the calling
routine is responsible for allocating a portion of the DSA required by the routine
being called, namely 144 bytes plus enough storage for the parameter list. This
portion of storage is actually an extension of the caller's DSA.

In general, the DSA of a routine consists of five sections:

1. The local save area (144 bytes)
2. Parameters passed in by the caller
3. Local variables required by the routine
4. A save area required by any routine that will be called
5. Storage for the largest parameter list to be built for a call.

Sections 1 and 2 are allocated by the calling routine; sections 3, 4, and 5 are
allocated by the prolog of the routine to which the DSA belongs.

186 vs Pascal Application Programming Guide

Upon invocation, register 13 points to the base of the DSA of the caller, which is
where the caller's save area is located. The new value of register 13 may be
computed by subtracting 144 from the value in register 1. Figure 97 illustrates the
condition of the stack and relevant registers immediately at the start of a routine.

IRegister 131-1-- r----------1
. . caller's save area

Start of DSA caller

To replace
Regi ster. 13

IRegister 1

local save area
(144 bytes)

parameters
Top of stack---- L-_______

Register 1
set here
for calls

Top of next stack-­

local variables

save area of
any routine yet
to be invoked

parameter list to
be built for
calls to other
routines

Start of DSA of called routine

144 bytes into DSA

Storage yet to be allocated

Start of DSA of routine
yet to be called

144 bytes into this DSA

Figure 97. Snapshot of Stack and Relevant Registers at Start of Routine

Chapter 16. VS Pascal Register and Storage Usage 187

Upon invocation, register 13 points to the base of the DSA of the caller, which is
where the caller's save area is located. The new value of register 13 may be
computed by subtracting 144 from the value in register 1. Figure 97 illustrates the
condition of the stack and relevant registers immediately at the start of a routine.

IRegister 1311--- 1----------1
. . caller's save area

Start of DSA caller

To replace
Register 13

IRegister 1

local save area
(144 bytes)

parameters
Top of stack---- '----------'

Register 1
set here
for call s

Top of next stack-­

local variables

save area of
any routine yet
to be invoked

parameter list to
be built for
calls to other
routines

Start of DSA of called routine

144 bytes into DSA

Storage yet to be allocated

Start of DSA of routine
yet to be ca 11 ed

144 bytes into this DSA

Figure 97. Snapshot of Stack and Relevant Registers at Start of Routine

Chapter 16. VS Pascal Register and Storage Usage 187

Procedure and Function Format
Every VS Pascal procedure or function is arranged in the order shown in
Figure 98. Register 2 is the code base register for the first 4K bytes of the routine
body. If the routine occupies more than 4K bytes, register 10 is used as the code
base register for the second 4K bytes. If a routine exceeds 8K bytes of storage, the
compiler will diagnose it as a terminal error.

Entry poin
Register 2

This must
<= 8192

t

be

Figure 98. Routine Format

Storage Mapping

Debugging Control
Block

Ent ry Prolog

Body
of

Routine

Exit Epilog

Literals:
ACONS, VCONS, and

sma 11 1 i tera 1 s
1-16 bytes long

STRING and SET
1 i tera 1 s longer
than 16 bytes

Statement table
(if present)

This section describes the rules that the VS Pascal compiler uses in mapping
variables to storage locations.

Storage for Automatic Variables
Variables declared locally to a routine through the VAR declaration are assigned
offsets within the routine's dynamic storage area (OSA). There is a DSA
associated with every invocation of a routine plus one for the main program itself.
The DSA of a routine is allocated when the routine is called and is deallocated
when the routine returns.

Storage for Static Variables
For source modules that contain variables declared STATIC, a single unnamed
control section ("private code") is associated with the source module in the
resulting text deck. Each variable declared through the STATIC declaration,
regardless of its scope, is assigned a unique offset within this control section.

188 vs Pascal Application Programming Guide

Procedure and Function Format
Every VS Pascal procedure or function is arranged in the order shown in
Figure 98. Register 2 is the code base register for the first 4K bytes of the routine
body. If the routine occupies more than 4K bytes, register 10 is used as the code
base register for the second 4K bytes. If a routine exceeds 8K bytes of storage, the
compiler will diagnose it as a terminal error.

Entry poin
Register 2

This must
<= 8192

t

be

Figure 98. Routine Format

Storage Mapping

Debugging Control
Block

Entry Prolog

Body
of

Routine

Exit Epil og

Litera 1 s:
ACONS, VCONS, and

sma 11 1 itera 1 s
1-16 bytes long

STRING and SET
1 i tera 1 s longer
than 16 bytes

Statement table
(if present)

This section describes the rules that the VS Pascal compiler uses in mapping
variables to storage locations.

Storage for Automatic Variables
Variables declared locally to a routine through the VAR declaration are assigned
offsets within the routine's dynamic storage area (DSA). There is a DSA
associated with every invocation of a routine plus one for the main program itself.
The DSA of a routine is allocated when the routine is called and is deallocated
when the routine returns.

Storage for Static Variables
For source modules that contain variables declared STATIC, a single unnamed
control section ("private code") is associated with the source module in the
resulting text deck. Each variable declared through the STATIC declaration,
regardless of its scope, is assigned a unique offset within this control section.

188 vs Pascal Application Programming Guide

Storage for DEF Variables
Each DEF variable which is initialized by means of the VALUE declaration will
generate a named control section (CSECT). Each DEF variable which is not
initialized will generate a named COMMON section, which may be used to
communicate with FORTRAN subroutines. The name of the section is derived from
the first eight characters of the variable's name.

Storage for Dynamic Variables

Record Fields

Pointer-qualified variables are allocated dynamically from heap storage by the
NEW procedure. Such variables are always aligned on a double-word boundary.

Fields of records are assigned consecutive offsets within the record in a sequential
manner, padding where necessary for boundary alignment. Fields within unpacked
records are aligned in the same way as variables are aligned. The fields of a
packed record are aligned on a byte boundary regardless of their declared type.

Data Size and Boundary Alignment of the VS Pascal Data Types
A variable defined in a VS Pascal source module is assigned storage and aligned
according to its declared type.

The Predefined Data Types
Figure 99 shows the storage requirements and boundary alignment of variables
declared with a predefined type.

Data Type Size in Bytes Boundary Alignment

ALFA 8 Byte

ALPHA 16 Byte

BOOLEAN Byte

CHAR Byte

GCHAR 2 Halfword

GSTRING(length) length*2+2 Halfword

INTEGER 4 Fullword

SHORTREAL 4 Fullword

REAL 8 Doubleword

STRING (length) length +2 Halfword

STRINGPTR 8 Fullword

TEXT 64 Fullword

Figure 99. Storage Mapping of Data for Predefined Types

Chapter 16. VS Pascal Register and Storage Usage 189

Storage for DEF Variables
Each DEF variable which is initialized by means of the VALUE declaration will
generate a named control section (CSECT). Each DEF variable which is not
initialized will generate a named COMMON section, which may be used to
communicate with FORTRAN subroutines. The name of the section is derived from
the first eight characters of the variable's name.

Storage for Dynamic Variables

Record Fields

Pointer-qualified variables are allocated dynamically from heap storage by the
NEW procedure. Such variables are always aligned on a double-word boundary.

Fields of records are assigned consecutive offsets within the record in a sequential
manner, padding where necessary for boundary alignment. Fields within unpacked
records are aligned in the same way as variables are aligned. The fields of a
packed record are aligned on a byte boundary regardless of their declared type.

Data Size and Boundary Alignment of the VS Pascal Data Types
A variable defined in a VS Pascal source module is assigned storage and aligned
according to its declared type.

The Predefined Data Types
Figure 99 shows the storage requirements and boundary alignment of variables
declared with a predefined type.

Data Type Size in Bytes Boundary Alignment

ALFA 8 Byte

ALPHA 16 Byte

BOOLEAN Byte

CHAR Byte

GCHAR 2 Halfword

GSTRING(/ength) length*2+2 Halfword

INTEGER 4 Fullword

SHORTREAL 4 Fullword

REAL 8 Doubleword

STRING(Jength) length+2 Halfword

STRINGPTR 8 Fullword

TEXT 64 Fullword

Figure 99. Storage Mapping of Data for Predefined Types

Chapter 16. VS Pascal Register and Storage Usage 189

Enumerated Scalar Data Types
An enumerated scalar variable with 256 or fewer possible distinct values will
occupy 1 byte and will be aligned on a byte boundary. If the scalar defines more
than 256 values, then it will occupy a halfword and will be aligned on a halfword
boundary.

Subrange Data Types
A sub range scalar data type that is not specified as packed will be mapped exactly
the same way as the scalar type from which it is based.

A packed subrange scalar data type is mapped as indicated in the table of
Figure 100. Given a type definition T as:

TYPE
T = PACKED i .. j ;

and

CONST
I = ORO (i) ;
J = ORO(j);

Range of I .. J

0 .. 255

-128 .. 127

-32768 .. 32767

0 .. 65535

0 .. 16777215

-8388608 .. 8388607

OTHERWISE

Size In Bytes Alignment

Byte

Byte

2 Halfword

2 Halfword

3 Byte

3 Byte

4 Fullword

Figure 100. Storage Mapping of Subrange Scalars

Each entry in the first column in the above table is meant to include all possible
subranges within the specified range. For example, the range 100 .. 250 would be
mapped in the same way as the range 0 .. 255.

190 vs Pascal Application Programming Guide

Enumerated Scalar Data Types
An enumerated scalar variable with 256 or fewer possible distinct values will
occupy 1 byte and will be aligned on a byte boundary. If the scalar defines more
than 256 values, then it will occupy a halfword and will be aligned on a halfword
boundary.

Subrange Data Types
A subrange scalar data type that is not specified as packed will be mapped exactly
the same way as the scalar type from which it is based.

A packed subrange scalar data type is mapped as indicated in the table of
Figure 100. Given a type de'finition T as:

TYPE
T = PACKED i..j;

and

CONST
I = ORD(;);
J = ORD(j);

Range of I .. J

0 .. 255

-128 .. 127

-32768 .. 32767

0 .. 65535

0 .. 16777215

-8388608 .. 8388607

OTHERWISE

Size In Bytes

1

2

2

3

3

4

Figure 100. Storage Mapping of Subrange Scalars

Alignment

Byte

Byte

Halfword

Halfword

Byte

Byte

Fullword

Each entry in the first column in the above table is meant to include all possible
subranges within the specified range. For example, the range 100 .. 250 would be
mapped in the same way as the range 0 .. 255.

190 vs Pascal Application Programming Guide

RECORD Data Types
An unpacked record is aligned on a boundary in such a way that every field of the
record is properly aligned on its required boundary. That is, records are aligned
on the boundary required by the field with the largest boundary requirement.

For example, record A below will be aligned on afullword because its field A1
requires a fullword alignment; record B will be aligned on a double word because
it has a field of type REAL; record C will be aligned on a byte.

TYPE
(*fullword aligned*)
INTEGER;

A= RECORD
Al
A2 : CHAR;

END;

B= RECORD
Bl
B2
B3

END;

(*double word aligned*)
A;
REAL;
BOOLEAN;

C= RECORD (*byte aligned*)
C1 PACKED 0 •• 255;
C2 : ALPHA;

END;

Figure 101. Alignment of Records

Packed records are always aligned on a byte boundary.

ARRAY Data Types
Consider the following type definition:

TYPE
A = ARRAY [s] OF t

where type s is a simple scalar and t is any type.

A variable declared with this type definition would be aligned on the boundary
required for data type t. With the exception noted below, the amount of storage
occupied by this variable is computed by the following expression:

(ORD(HIGHEST(s»-ORD(LOWEST(s»+I)
* SIZEOF(t)

The above expression is not necessarily applicable if t represents an unpacked
record type. In this case, padding will be added, if necessary, between each
element so that each element will be aligned on a boundary which meets the
requirements of the record type.

Packed arrays are mapped exactly as unpacked arrays, except padding is never
inserted between elements.

Chapter 16. VS Pascal Register and Storage Usage 191

RECORD Data Types
An unpacked record is aligned on a boundary in such a way that every field of the
record is properly aligned on its required boundary. That is, records are aligned
on the boundary required by the field with the largest boundary requirement.

For example, record A below will be aligned on a fullword because its field A1
requires a fullword alignment; record B will be aligned on a double word because
it has a field of type REAL; record C will be aligned on a byte.

TYPE
A= RECORD

Al
A2

(*fullword aligned*)
INTEGER;

: CHAR;
END;

B= RECORD
Bl
B2
B3

(*double word aligned*)
A;
REAL;
BOOLEAN;

END;

C= RECORD (*byte aligned*)
Cl PACKED 0 .. 255;
C2 : ALPHA;

END;

Figure 101. Alignment of Records

Packed records are always aligned on a byte boundary.

ARRAY Data Types
Consider the following type definition:

TYPE
A = ARRAY [s] OF t

where type s is a simple scalar and t is any type.

A variable declared with this type definition would be aligned on the boundary
required for data type t. With the exception noted below, the amount of storage
occupied by this variable is computed by the following expression:

(ORD(HIGHEST(s»-ORD(LOWEST(s»+I)
* SIZEOF(t)

The above expression is not necessarily applicable if t represents an unpacked
record type. In this case, padding will be added, if necessary, between each
element so that each element will be aligned on a boundary which meets the
requirements of the record type.

Packed arrays are mapped exactly as unpacked arrays, except padding is never
inserted between elements.

Chapter 16. VS Pascal Register and Storage Usage 191

FILE Data Types

SET Data Types

A mUlti-dimensional array is mapped as an array of array(s). For example, the
following two array definitions would be mapped identically in storage.

ARRAY [i .. j, m .. n] OF t

ARRAY [i .. j] OF
ARRAY [m •• n] OF t

File variables occupy 64 bytes and are aligned on a fullword boundary.

SET data types are represented internally as a string of bits: one bit position for
each value that can be contained within the set.

To adequately explain how sets are mapped, two terms will need to be defined:
the base type is the type to which all members of the set must belong. The
fundamental base type represents the nonsubrange scalar type which is
compatible with all valid members of the set. For example, a set which is declared
as

SET OF '0' •. '9'

has a base type defined by '0' .. '9' and a fundamental base type of CHAR.

Any two unpacked sets which have the same fundamental base type will be
mapped identically (that is, occupy the same amount of storage and be aligned on
the same boundary). In other words, given a set definition:

TYPE
S = SET OF s;
T = SET OF t;

where s is a nonsubrange scalar type and t is a subrange of s: both Sand Twill
have the same length and will be aligned in the same manner.

Sets always have zero origin; that is, the first bit of any set corresponds to a
member with an ordinal value of zero (even though this value may not be a valid
set member).

Unpacked sets will contain the minimum number of bytes necessary to contain the
largest value of the fundamental base type. Packed sets occupy the minimum
number of bytes to contain the largest valid value of the base type. Thus, variables
A and B below will both occupy 256 bits.

VAR
A : SET OF CHAR;
B : SET OF '0' .. '9';

Variables C and D will both occupy 16 bits; variable E will occupy 8 bits.

VAR
C : SET OF (C1,C2,C3,C4,C5,C6,

C7,C8,C9,C10,C11,C12
C12,C13,C14,C15,C16);

D SET OF C1 •. C8;
E PACKED SET OF C1 .. C8;

192 vs Pascal Application Programming Guide

FILE Data Types

SET Data Types

A multi-dimensional array is mapped as an array of array(s). For example, the
following two array definitions would be mapped identically in storage.

ARRAY i .. j, m .. n] OF t

ARRAY [i .. j] OF
ARRAY [m •• n] OF t

File variables occupy 64 bytes and are aligned on a fullword boundary.

SET data types are represented internally as a string of bits: one bit position for
each value that can be contained within the set.

To adequately explain how sets are mapped, two terms will need to be defined:
the base type is the type to which all members of the set must belong. The
fundamental base type represents the nonsubrange scalar type which is
compatible with all valid members of the set. For example, a set which is declared
as

SET OF '0' .. '9'

has a base type defined by '0' .. '9' and a fundamental base type of CHAR.

Any two unpacked sets which have the same fundamental base type will be
mapped identically (that is, occupy the same amount of storage and be aligned on
the same boundary). In other words, given a set definition:

TYPE
S = SET OF s;
T = SET OF t;

where s is a nonsubrange scalar type and t is a subrange of s: both Sand Twill
have the same length and will be aligned in the same manner.

Sets always have zero origin; that is, the first bit of any set corresponds to a
member with an ordinal value of zero (even though this value may not be a valid
set member).

Unpacked sets will contain the minimum number of bytes necessary to contain the
largest value of the fundamental base type. Packed sets occupy the minimum
number of bytes to contain the largest valid value of the base type. Thus, variables
A and B below will both occupy 256 bits.

VAR
A : SET OF CHAR;
B : SET OF '0' .. '9';

Variables C and D will both occupy 16 bits; variable E will occupy 8 bits.

VAR
C : SET OF (C1,C2,C3,C4,C5,C6,

C7,C8,C9,C10,C11,C12
C12,C13,C14,C15,C16);

D SET OF C1 .. C8;
E PACKED SET OF C1 .. C8;

192 vs Pascal Application Programming Guide

A SET data type with a fundamental base type of INTEGER is restricted so that the
largest member to be contained in the set may not exceed the value 255; therefore,
such a set will occupy 256 bits.

Thus, variables U and V below will both occupy 256 bits; variable W will occupy 24
bits; variable X will occupy 32 bits.

VAR
U SET OF 0 .• 255;
V SET OF 10 •. 20;
W PACKED SET OF 10 •• 20;
X PACKED SET OF 0 •• 31;

Given that M is the number of bits required for a particular set, the table in
Figure 102 indicates how the set will be mapped in storage.

Range of M Size in Bytes Alignment
1<=M<=8 1 Byte
9 < = M < = 16 2 Halfword
17 < = M < = 24 3 Byte
25 < = M < = 32 4 Fullword
33 < = M < = 256 (M+7) DIV 8 Byte

Figure 102. Storage Mapping of SET Data Types

SPACE Data Types
A variable declared as SPACE is aligned on a byte boundary and occupies the
number of bytes indicated in the length specifier of the type definition. For
example, the variable S declared below occupies 1000 bytes of storage.

VAR S: SPACE [1000J OF INTEGER;

Chapter 16. VS Pascal Register and Storage Usage 193

A SET data type with a fundamental base type of INTEGER is restricted so that the
largest member to be contained in the set may not exceed the value 255; therefore,
such a set will occupy 256 bits.

Thus, variables U and V below will both occupy 256 bits; variable W will occupy 24
bits; variable X will occupy 32 bits.

VAR
U SET OF 0 .. 255;
V SET OF 10 .. 20;
W PACKED SET OF 10 .. 20;
X PACKED SET OF 0 .• 31;

Given that M is the number of bits required for a particular set, the table in
Figure 102 indicates how the set will be mapped in storage.

Range of M Size in Bytes Alignment
1<=M<=8 1 Byte
9 < = M < = 16 2 Halfword
17 < = M < = 24 3 Byte
25 < = M < = 32 4 Fullword
33 < = M < = 256 (M+7) DIV 8 Byte

Figure 102. Storage Mapping of SET Data Types

SPACE Data Types
A variable declared as SPACE is aligned on a byte boundary and occupies the
number of bytes indicated in the length specifier of the type definition. For
example, the variable S declared below occupies 1000 bytes of storage.

VAR S: SPACE [1000] OF INTEGER;

Chapter 16. VS Pascal Register and Storage Usage 193

Chapter 17. VS Pascal Parameter Passing

VS Pascal passes parameters in several different ways depending on how you
declared the parameter. In every case, register 1 contains the address of the
parameter list.

The parameter list is aligned on a doubleword boundary and each parameter is
aligned on its proper boundary. Addresses are aligned on word boundaries.

Passing by Read/Write Reference
This mechanism is indicated by use of the reserved word VAR in the routine
heading. Actual parameters passed in this way may be modified by the invoked
routine.

Routine Heading

PROCEDURE PROC(VAR I:INTEGER);

Routine Invocation

PROC(J);

Parameter List
Address of J.

If the variable is a structure containing a file, an integer file key is also passed to
the routine by value.

Routine Heading

PROCEDURE PROC(VAR A:FILEARRAY);

Routine Invocation

PROCCA);

Parameter List
Address of A and value of file key.

If the parameter is a conformant string, the maximum length of the string is passed
to the routine by value.

Routine Heading

PROCEDURE PROC(CONST S: STRING);

Declaration of the Actual Parameter

VAR
ST : STRING(64);

Routine Invocation

PROC(ST) ;

Parameter List
The add ress of ST and 64.

Chapter 17. VS Pascal Parameter Passing 195

Chapter 17. VS Pascal Parameter Passing

VS Pascal passes parameters in several different ways depending on how you
declared the parameter. In every case, register 1 contains the address of the
parameter list.

The parameter list is aligned on a doubleword boundary and each parameter is
aligned on its proper boundary. Addresses are aligned on word boundaries.

Passing by Read/Write Reference
This mechanism is indicated by use of the reserved word VAR in the routine
heading. Actual parameters passed in this way may be modified by the invoked
routine.

Routine Heading

PROCEDURE PROC(VAR I:INTEGER);

Routine Invocation

PROC(J);

Parameter List
Address of J.

If the variable is a structure containing a file, an integer file key is also passed to
the routine by value.

Routine Heading

PROCEDURE PROC(VAR A:FILEARRAY);

Routine Invocation

PROC(A);

Parameter List
Address of A and value of file key.

If the parameter is a conformant string, the maximum length of the string is passed
to the routine by value.

Routine Heading

PROCEDURE PROC(CONST S: STRING);

Declaration of the Actual Parameter

VAR
ST : STRING(64);

Routine Invocation

PROC (ST) ;

Parameter List
The address of ST and 64.

Chapter 17. VS Pascal Parameter Passing 195

Passing by Read-Only Reference
This mechanism is indicated by use of the reserved word CONST in the routine
heading. Actual parameters passed in this way may not be modified by the
invoked routine. For actual parameters the same size as the formal parameter and
not packed, the parameter list contains the address of the actual parameter.
Otherwise, the parameter list contains the address of a temporary variable
containing the value of the actual parameter.

Routine Heading

PROCEDURE PROC(CONST I: INTEGER);

Routine Invocation

PROC(J+5);

Parameter List
Address of a storage location that contai ns the val ue of J + 5. For actual
parameters which are variables of the same size as the formal parameter and
not packed, the address passed is the address of the variable. Otherwise, the
address is of a temporary containing the value of the actual parameter.

If the parameter is a conformant string, only the address of the string is passed to
the routine.

Routine Heading

PROCEDURE PROC(VAR S: STRING);

Declaration of the Actual Parameter

VAR
ST : STRING(64);

Routine Invocation

PROC(ST) ;

Parameter List
The address of ST.

196 vs Pascal Application Programming Guide

Passing by Read-Only Reference
This mechanism is indicated by use of the reserved word CONST in the routine
heading. Actual parameters passed in this way may not be modi'fied by the
invoked routine. For actual parameters the same size as the formal parameter and
not packed, the parameter list contains the address of the actual parameter.
Otherwise, the parameter list contains the address of a temporary variable
containing the value of the actual parameter.

Routine Heading

PROCEDURE PROC(CONST I: INTEGER);

Routine Invocation

PROC(J+5);

Parameter List
Address of a storage location that contains the value of J + 5. For actual
parameters which are variables of the same size as the formal parameter and
not packed, the address passed is the address of the variable. Otherwise, the
address is of a temporary containing the value of the actual parameter.

If the parameter is a conformant string, only the address of the string is passed to
the routine.

Routine Heading

PROCEDURE PROC(VAR S: STRING);

Declaration of the Actual Parameter

VAR
ST : STRING(64);

Routine Invocation

PROC(ST) ;

Parameter List
The address of ST.

196 vs Pascal Application Programming Guide

Passing by Value
This mechanism is the default way in which parameters are passed. Parameters
passed in this way are treated as if they are preinitialized local variables in the
invoked routine. Any modification to these parameters by the invoked routine will
not be reflected back to the caller. If the actual parameter is a scalar, pointer, or
SET, then the parameter list will contain the value of the actual parameter. If the
actual parameter is an ARRAY, RECORD, SPACE, or string, then the parameter list
will contain the address of the actual parameter. In the latter case, the called
procedure will copy the parameter into its local storage.

Routine Heading

PROCEDURE PROC(
I : INTEGER;
A : ALPHA);

Routine Invocation

PROC(J, 'alpha');

Parameter List
Value of J and address of alpha.

Passing Procedure or Function Parameters
For procedures or functions which are passed as parameters, the address of the
routine and six additional words reserved for VS Pascal use are placed in the
parameter list.

Routine Heading

PROCEDURE PROC(
FUNCTION XCV: REAL): REAL);

Routine Invocation

PROC(COS);

Parameter List
Address of the COS routine and six additional words.

Function Results
VS Pascal functions have an implicit parameter which precedes all specified
parameters. This parameter contains the address of the storage location where
the function result will be placed.

Routine Heading

FUNCTION FUNC(C: CHAR):INTEGER;

Routine Invocation

I : = FUNC (, L') ;

Parameter List
Address of returned integer result and value of character L.

Chapter 17. VS Pascal Parameter Passing 197

Passing by Value
This mechanism is the default way in which parameters are passed. Parameters
passed in this way are treated as if they are preinitialized local variables in the
invoked routine. Any modification to these parameters by the invoked routine will
not be reflected back to the caller. If the actual parameter is a scalar, pOinter, or
SET, then the parameter list will contain the value of the actual parameter. If the
actual parameter is an ARRAY, RECORD, SPACE, or string, then the parameter list
will contain the address of the actual parameter. In the latter case, the called
procedure will copy the parameter into its local storage.

Routine Heading

PROCEDURE PROC(
I : INTEGER;
A : ALPHA);

Routine Invocation

PROC (J, ' alp h a ') ;

Parameter List
Value of J and address of alpha.

Passing Procedure or Function Parameters
For procedures or functions which are passed as parameters, the address of the
routine and six additional words reserved for VS Pascal use are placed in the
parameter list.

Routine Heading

PROCEDURE PROC(
FUNCTION X(Y: REAL): REAL);

Routine Invocation

PROC(COS);

Parameter List
Address of the COS routine and six additional words.

Function Results
VS Pascal functions have an implicit parameter which precedes all specified
parameters. This parameter contains the address of the storage location where
the function result will be placed.

Routine Heading

FUNCTION FUNC(C: CHAR):INTEGER;

Routine Invocation

1:= FUNC('L');

Parameter List
Address of returned integer result and value of character L.

Chapter 17. VS Pascal Parameter Passing 197

FORTRAN Routines
Routines using the same parameter passing conventions as FORTRAN pass only
VAR or CONST parameters, and the high-order bit in the last parameter in the set.

If the routine is declared as a function and is not floating-point, the result is
returned in register o. If the routine is declared as a function and is floating-point,
the result is returned in floating-point register o.
Note: There is no double parameter list for string arguments.

Routine Heading

FUNCTION FUNC(CONST I: INTEGER):INTEGER;FORTRAN;

Routine Invocation

I := FUNC(J + 5);

Parameter List
Address of temporary with the high-order bit on containing the value of J+5.

GENERIC Procedures
GENERIC procedures have no formal parameters. Their parameters are
"declared" when they are called. The last actual parameter specified on a call to a
GENERIC routine has its high-order bit turned on.

Routine Heading

PROCEDURE P; GENERIC;

Routine Invocation

P(VAR I, CONST J+5);

Parameter List
Address of I and address of a temporary with the high-order bit on containing
the value of J + 5.

198 vs Pascal Application Programming Guide

FORTRAN Routines
Routines using the same parameter passing conventions as FORTRAN pass only
VAR or CONST parameters, and the high-order bit in the last parameter in the set.

If the routine is declared as a function and is not floating-point, the result is
returned in register O. If the routine is declared as a function and is floating-point,
the result is returned in floating-point register O.

Note: There is no double parameter list for string arguments.

Routine Heading

FUNCTION FUNC(CONST I: INTEGER):INTEGER;FORTRAN;

Routine Invocation

I := FUNC(J + 5);

Parameter List
Address of temporary with the high-order bit on containing the value of J + 5.

GENERIC Procedures
GENERIC procedures have no formal parameters. Their parameters are
"declared" when they are called. The last actual parameter specified on a call to a
GENERIC routine has its high-order bit turned on.

Routine Heading

PROCEDURE P; GENERIC;

Routine Invocation

P(VAR I, CONST J+5);

Parameter List
Address of I and address of a temporary with the high-order bit on containing
the value of J + 5.

198 vs Pascal Application Programming Guide

~ Chapter 18. Managing Storage

This section explains how you manage storage in VS Pascal. It also explains how
to use storage efficiently.

Storage Management
VS Pascal provides three levels of storage management. You allocate and
deallocate storage for:

• Individual dynamic variables
• Groups of variables (subheaps or marks)
• Heaps (groups of subheaps and dynamic variables).

In a multiple-module application, multiple storage heaps provide a simple method
for isolating the storage used by different program components. By isolating the
storage, you can often reduce storage fragmentation.

Dynamic Variables
Storage is allocated for a dynamic variable using the NEW routine and deallocated
with the DISPOSE routine. The amount of storage allocated depends on the data
type of the variable.

Figure 103 gives an example of managing storage at the individual variable level.

PROGRAM DYN_VAR;

TYPE
SMALL_RECORD = RECORD

VAR

AT_BAT: INTEGER;
HITS: INTEGER;

END;

ALICIA, BOBBY, CHARLIE: @SMALL_RECORD;

BEGIN
NEW(ALICIA); (* Allocate a SMALL_RECORD and place its *)

(* address in the variable Alicia. *)
NEW(BOBBy); (* Allocate a SMALL_RECORD and place its *)

(* address in the variable Bobby. *)
NEW(CHARLJE); (* Allocate a SMALL_RECORD and place its *)

(* address in the variable Charlie. *)

(* Here we might do a lot of calculations that decide we *)
(* no longer need the storage associated with Bobby or *)
(* or Charl ie. *)

DISPOSE(BOBBY); (* Deallocate the SMALL_RECORD associated *)
(* with the variable Bobby. *)

DISPOSE(CHARLIE);(* Deallocate the SMALL RECORD associated *)
(* with the variable Ch;rlie. *)

END.

Figure 103. Managing Individual Dynamic Variables Using NEW and DISPOSE

Chapter 18. Managing Storage 199

Chapter 18. Managing Storage

This section explains how you manage storage in VS Pascal. It also explains how
to use storage efficiently.

Storage Management
VS Pascal provides three levels of storage management. You allocate and
deallocate storage for:

• Individual dynamic variables
• Groups of variables (subheaps or marks)
• Heaps (groups of subheaps and dynamic variables).

In a multiple-module application, multiple storage heaps provide a simple method
for isolating the storage used by different program components. By isolating the
storage, you can often reduce storage fragmentation.

Dynamic Variables
Storage is allocated for a dynamic variable using the NEW routine and deallocated
with the DISPOSE routine. The amount of storage allocated depends on the data
type of the variable.

Figure 103 gives an example of managing storage at the individual variable level.

PROGRAM DYN_VAR;

TYPE
SMALL_RECORD = RECORD

VAR

AT_BAT: INTEGER;
HITS: INTEGER;

END;

ALICIA, BOBBY, CHARLIE: @SMALL_RECORD;

BEGIN
NEW(ALICIA); (* Allocate a SMALL_RECORD and place its *)

(* address in the variable Alicia. *)
NEW(BOBBY); (* All ocate a. SMALL_RECORD and pl ace its *)

(* address in the variable Bobby. *)
NEW(CHARLIE); (* Allocate a SMALL_RECORD and place its *)

(* address in the variable Charlie. *)

(* Here we might do a lot of calculations that decide we *)
(* no longer need the storage associated with Bobby or *)
(* or Charlie. *)

DISPOSE(BOBBY); (* Deallocate the SMALL RECORD associated *)
(* with the variable Bobby. *)

DISPOSE(CHARLIE);(* Deallocate the SMALL RECORD associated *)
(* with the variable Charlie. *)

END.

Figure 103. Managing Individual DynamiC Variables Using NEW and DISPOSE

Chapter 18. Managing Storage 199

I Subheaps

Heaps

Subheaps are used to define logical groups of dynamic variables. When you call
the MARK routine, you define the beginning of a subheap. After a ca.11 to MARK, all
dynamic variables allocated in that heap become members of the subheap. The
MARK routine simplifies the freeing of storage used for the dynamic variables by
defining a logical group (the subheap). A subheap can be freed with one call to the
RELEASE routine, instead of requiring a separate DISPOSE call for each dynamic
variable.

Figure 103 on page 199 can be made simpler and faster by doing the following:

PROGRAM SUB_HEAPS;

TYPE
SMALL_RECORO = RECORD

AT_BAT: INTEGER;
HITS: INTEGER;

END;
DUMMY = @INTEGER; (* This type will be used for subheap *)

(* identifiers. *)

VAR
ALICIA. BOBBY. CHARLIE: @SMALL_RECORD;
SUB_HEAP: DUMMY;

BEGIN
NEW(ALICIA); (* Allocate a SMALL RECORD and place its *)

(* address in the variable Alicia. *)
MARK(SUB HEAP); (* Defi ne the begi nni ng of a subheap. *)
NEW(BOBBY); (* Allocate a SMALL RECORD and place its *)

(* address in the variable Bobby. *)
NEW(CHARLIE); (* Allocate a SMALL RECORD and place its *)

(* address in the variable Charlie. *)

(* Here we might do a lot of calculations that decide we *)
(* no longer need the storage associated with Bobby or *)
(* Charlie. *)

RELEASE(SUB_HEAP); (* Deallocate ALL dynamic variables *)
(* allocated since the call to *)
(* MARK(SUB_HEAP). *)

END.

Figure 104. Managing a Subheap Using MARK and RELEASE

The most general storage entity in VS Pascal is a heap. which contains dynamic
variables and subheaps. A heap is an extendable block of storage acquired by the
VS Pascal environment for use by Pascal applications.

The idea of the current (or active) heap is central to the heap concept. In a
multiple heap application, it is important to know the current heap because NEW
and MARK operate on the current heap. However, DISPOSE and RELEASE free
storage in any heap, regardless of whether or not it is the current heap.

Allocating a separate HEAP for each data structure allows the entire structure to
be freed (using DISPOSE) even if the structure was not allocated in a stack-line
manner that RELEASE can use.

200 vs Pascal Application Programming Guide

Subheaps

Heaps

Subheaps are used to define logical groups of dynamic variables. When you call
the MARK routine, you define the beginning of a subheap. After a call to MARK, all
dynamic variables allocated in that heap become members of the subheap. The
MARK routine simplifies the freeing of storage used for the dynamic variables by
defining a logical group (the subheap). A subheap can be freed with one call to the
RELEASE routine, instead of requiring a separate DISPOSE call for each dynamic
variable.

Figure 103 on page 199 can be made simpler and faster by doing the following:

PROGRAM SUB_HEAPS;

TYPE
SMALL_RECORD = RECORD

AT_BAT: INTEGER;
HITS: INTEGER;

END;
DUMMY = @INTEGER; (* Thi s type wi 11 be used for subheap *)

(* identifiers. *)

VAR
ALICIA, BOBBY, CHARLIE: @SMALL_RECORD;
SUB_HEAP: DUMMY;

BEGIN
NEW(ALICIA); (* Allocate a SMALL_RECORD and place its *)

(* address in the variable Alicia. *)
MARK(SUB HEAP); (* Def"j ne the begi nni ng of a subheap. *)
NEW(BOBBY); (* Allocate a SMALL RECORD and place its *)

(* address in the variable Bobby. *)
NEW(CHARLIE); (* Allocate a SMALL_RECORD and place its *)

(* address in the variable Charlie. *)

(* Here we might do a lot of calculations that decide we *)
(* no longer need the storage associated with Bobby or *)
(* Charlie. *)

RELEASE(SUB_HEAP); (* Deallocate ALL dynamic variables *)
(* allocated since the call to *)
(* MARK(SUB_HEAP). *)

END.

Figure 104. Managing a Sub heap Using MARK and RELEASE

The most general storage entity in VS Pascal is a heap, which contains dynamic
variables and subheaps. A heap is an extendable block of storage acquired by the
VS Pascal environment for use by Pascal applications.

The idea of the current (or active) heap is central to the heap concept. In a
multiple heap application, it is important to know the current heap because NEW
and MARK operate on the current heap. However, DISPOSE and RELEASE free
storage in any heap, regardless of whether or not it is the current heap.

Allocating a separate HEAP for each data structure allows the entire structure to
be freed (using DISPOSE) even if the structure was not allocated in a stack-line
manner that RELEASE can use.

200 vs Pascal Application Programming Guide

The default size of a new heap is 12 kilobytes, and the amount it is extended upon
overflow is also 12 kilobytes. At run time, you may change these values by using
either the HEAP option (see "HEAP Option" on page 169) or with the init and incr
parameters of the NEWHEAP routine (refer to the VS Pascal Language Reference
for more information). A program can also control other attributes, such as the
location of heaps in relation to the 16-megabyte addressing line.

Heaps are created with the NEWHEAP routine, specified as the current (active)
heap with the USEHEAP routine, and disposed of with the DISPOSEHEAP routine.
To identify the current heap use the QUERYHEAP routine.

Figure 105 shows how heaps are used within a module for storage management.

PROGRAM HEAPS;

TYPE
SMALL_RECORD = RECORD

AT_BAT: INTEGER;
HITS: INTEGER;

END;
HEAPPTR = @INTEGER; (* This type will be used for subheap *)

(* and heap identifiers *)

VAR
ALICIA. BOBBY. CHARLIE. DIANE. EDWARD. FRANCES: @SMALL_RECORD;
HEAP_ONE, HEAP_TWO: HEAPPTR;
SUB_HEAP_ONE. SUB_HEAP_TWO: HEAPPTR;

BEGIN

NEWHEAP{HEAP_ONE); (* Create a heap and place its *)
(* identifier in the variable HEAP_ONE. *)

NEWHEAP(HEAP_TWO); (* Create a heap and place its *)
(* identifier in the variable HEAP_TWO. *)

USEHEAP(HEAP_ONE); (* Make HEAP_ONE the current heap. *)

NEW{ALICIA) ; (* Allocate a SMALL RECORD in the heap
(* HEAP ONE and place its address in the
(* variable Alicia.

*)
*)
*)

MARK(SUB_HEAP_ONE); (* Define the beginning of a subheap of *)
(* HEAP_ONE and place its identifier in *)
(* the variable SUB_HEAP_One. *)

NEW (BOBBY) ;

NEW(CHARLI E);

(* Allocate a SMALL RECORD in the heap
(* HEAP_ONE and place its address in the
(* variable Bobby.
(* Allocate a SMALL RECORD in the heap
(* HEAP ONE and place its address in the
(* variable Charlie.

*)
*)
*)
*)
*)
*)

Figure 105 (Part 1 of 2). Managing Storage Using Two Heaps

Chapter 18. Managing Storage 201

The default size of a new heap is 12 kilobytes, and the amount it is extended upon
overflow is also 12 kilobytes. At run time, you may change these values by using
either the HEAP option (see "HEAP Option" on page 169) or with the init and incr
parameters of the NEWHEAP routine (refer to the VS Pascal Language Reference
for more information). A program can also control other attributes, such as the
location of heaps in relation to the 16-megabyte addressing line.

Heaps are created with the NEWHEAP routine, specified as the current (active)
heap with the USEHEAP routine, and disposed of with the DISPOSEHEAP routine.
To identify the current heap use the QUERYHEAP routine.

Figure 105 shows how heaps are used within a module for storage management.

PROGRAM HEAPS;

TYPE
SMALL_RECORD = RECORD

AT_BAT: INTEGER;
HITS: INTEGER;

END;
HEAPPTR = @INTEGER; (* This type will be used for subheap *)

(* and heap identifiers *)

VAR
ALICIA. BOBBY. CHARLIE. DIANE. EDWARD. FRANCES: @SMALL_RECORD;
HEAP_ONE. HEAP_TWO: HEAPPTR;
SUB_HEAP_ONE. SUB_HEAP_TWO: HEAPPTR;

BEGIN

NEWHEAP(HEAP_ONE); (* Create a heap and place its *)
(* identifier in the variable HEAP ONE. *)

NEWHEAP(HEAP_TWO); (* Create a heap and place its - *)
(* identifier in the variable HEAP_TWO. *)

USEHEAP(HEAP_ONE); (* Make HEAP_ONE the current heap. *)

NEW(ALICIA) ; (* Allocate a SMALL RECORD in the heap
(* HEAP_ONE and place its address in the
(* variable Alicia.

*)
*)
*)

MARK(SUB_HEAP_ONE); (* Define the beginning of a subheap of *)
(* HEAP ONE and place its identifier in *)
(* the ~ariable SUB_HEAP_One. *)

NEW(BOBBY); (* Allocate a SMALL_RECORD in the heap *)
(* HEAP ONE and place its address in the *)
(* variable Bobby. *)

NEW(CHARLIE); (* Allocate a SMALL_RECORD in the heap *)
(* HEAP ONE and place its address in the *)
(* variable Charlie. *)

Figure 105 (Part 1 of 2). Managing Storage Using Two Heaps

Chapter 18. Managing Storage 201

USEHEAP(HEAP_TWO): (* Make HEAP_TWO the current heap. *)

NEW(DIANE): (* Allocate a SMALL_RECORD in the heap
(* HEAP_TWO and place its address in the
(* variable Diane.

*)
*)
*)

MARK(SUB_HEAP_TWO): (* Define the beginning of a subheap of *)
(* HEAP_TWO and place its identifier in *)
(* the vai'iable SUB_HEAP_Two. *)

NEW(EDWARD): (* Allocate a SMALL RECORD in the heap
(* HEAP_TWO and place its address in the
(* variable Edward.

*)
*)
*)
*)
*)
*)

NEW(FRANCES): (* Allocate a St~ALL_RECORD in the heap
(* HEAP_TWO and place its address in the
(* variable Frances.

(* See the table below for the results of some of the *)
(* calls that may be made at this point. *)

END.

Figure 105 (Part 2 of 2). Managing Storage Using Two Heaps

The following table explains the effects of some other calls that you can make at
the end of the program in Figure 105 on page 201.

Call

DISPOSE(EDWARD);

DISPOSE(ALICIA) ;

RELEASE(SUB_HEAP _ONE);

RELEASE(SUB_HEAP _TWO);

DISPOSEHEAP(HEAP _ONE);

DISPOSEHEAP(HEAP _TWO);

202 vs Pascal Application Programming Guide

Result

Deallocates the dynamic variable whose address is
stored in EDWARD.

Deallocates the dynamic variable whose address is
stored in ALICIA, even though it is not part of the
current heap.

Deallocates all dynamic variables allocated in
HEAP_ONE since the creation of the subheap
SUB_HEAP _ONE; that is, BOBBY and CHARLIE.
Additionally, the subheap identifier SUB_HEAP _ONE
is deallocated.

Deallocates all dynamic variables allocated in
HEAP_TWO si nee the creation of the subheap
SUB_HEAP _TWO; that is, EDWARD and FRANCES.
Additionally, the subheap identifier SUB_HEAP _TWO
is deallocated.

Deallocates the entire heap whose pOinter is stored
in HEAP_ONE. This deallocates the dynamic
variables ALICIA, BOBBY, and CHARLIE, and the
subheap identifier SUB_HEAP _ONE.

Deallocates the entire heap whose pointer is stored
in HEAP_TWO. This deallocates the dynamic
variables DIANE, EDWARD, and FRANCES, and the
subheap identifier SUB_HEAP _TWO. Additionally,
note that because HEAP_TWO is the current heap,
there will be no current heap following the call.

USEHEAP(HEAP _TWO); (* Make HEAP_TWO the current heap. *)

NEW(DIANE); (* Allocate a SMALL_RECORD in the heap
(* HEAP_TWO and place its address in the
(* variable Diane.

*)
*)
*)

MARK(SlIB_HEAP_TWO); (* Define the beginning of a subheap of *)
(* HEAP_TWO and place its identifier in *)
(* the variable SUB_HEAP_Two. *)

NEW(EDWARD); (* Allocate a SMALL_RECORD in the heap *)
(* HEAP_TWO and place its address in the *)
(* variable Edward. *)

NEW(FRANCES); (* Allocate a SMALL_RECORD in the heap *)
(* HEAP_TWO and place its address in the *)
(* variable Frances. *)

(* See the table below for the results of some of the *)
(* calls that may be made at this point. *)

END.

Figure 105 (Part 2 of 2). Managing Storage Using Two Heaps

The following table explains the effects of some other calls that you can make at
the end of the program in Figure 105 on page 201.

Call

DISPOSE(EDWARD);

DISPOSE(ALlCIA);

RELEASE(SUB_HEAP _ONE);

RELEASE(SUB_HEAP _TWO);

DISPOSEHEAP(HEAP _ONE);

DISPOSEHEAP(HEAP _TWO);

202 vs Pascal Application Programming Guide

Result

Deallocates the dynamic variable whose address is
stored in EDWARD.

Deallocates the dynamic variable whose address is
stored in ALICIA, even though it is not part of the
current heap.

Deallocates all dynamic variables allocated in
HEAP_ONE since the creation of the subheap
SUB_HEAP _ONE; that is, BOBBY and CHARLIE.
Additionally, the subheap identifier SUB_HEAP _ONE
is deallocated.

Deallocates all dynamic variables allocated in
HEAP_TWO since the creation of the subheap
SUB_HEAP _TWO; that is, EDWARD and FRANCES.
Additionally, the subheap identifier SUB_HEAP _TWO
is deallocated.

Deallocates the entire heap whose pointer is stored
in HEAP_ONE. This deallocates the dynamic
variables ALICIA, BOBBY, and CHARLIE, and the
subheap identifier SUB_HEAP _ONE.

Deallocates the entire heap whose pointer is stored
in HEAP_TWO. This deal locates the dynamic
variables DIANE, EDWARD, and FRANCES, and the
subheap identifier SUB_HEAP _TWO. Additionally,
note that because HEAP_TWO is the cu rrent heap,
there will be no current heap following the call.

Using Storage Intelligently
Imagine an application containing three separate modules, each using dynamic
variables and subheaps. Upon invocation, each module would:

• Call QUERYHEAP and save the identifier of the current heap
• Call NEWHEAP to create a heap for its own use
• Call USEHEAP to make that heap the current heap
• Perform its designated task
• Call USEHEAP to restore the current heap to its invocation value
• Call DISPOSEHEAP to free its heap.

If each module in the application follows this practice, overall performance may be
improved because "well behaved" storage algorithms are isolated from the
fragmentation caused by those less well behaved. Additionally, a given module's
storage can be tuned to a specific size. Note, however, that creating a heap
usually involves requesting storage from the operating system, a relatively
expensive process in terms of application performance. Calls to NEWHEAP should
be coded with this in mind.

Figure 106 is an example of "well behaved" storage algorithms.

TYPE
HEAPPTR @INTEGER; (* This type will be used for subheap *)

(* and heap identifiers. *)
PROCEDURE APPL_PART; EXTERNAL;
PROCEDURE APPL_PART;

VAR
SAVED_HEAP, MY_HEAP: HEAPPTR;

BEGIN
QUERYHEAP(SAVED_HEAP);
NEWHEAP(MY_HEAP);

USEHEAP(MY_HEAP);

(* Save the calling module's heap. *)
(* Create a heap for use by this *)
(* module. *)
(* Make it the current heap. *)

(* The application code would go here. *)

USEHEAP(SAVED_HEAP);

DISPOSEHEAP(MY_HEAP);

END;

(* Restore the current heap to the *)
(* caller's heap. *)
(* Deallocate all storage used by *)
(* this module. *)

Figure 106. Saving and Restoring the Current Heap

See the VS Pascal Language Reference for more information on the NEW,
DISPOSE, MARK, RELEASE, NEWHEAP, DISPOSEHEAP, QUERYHEAP, and
USEHEAP routines.

Chapter 18. Managing Storage 203

Using Storage Intelligently
Imagine an application containing three separate modules, each using dynamic
variables and subheaps. Upon invocation, each module would:

• Call QUERYHEAP and save the identifier of the current heap
• Call NEWHEAP to create a heap for its own use
• Call USEHEAP to make that heap the current heap
• Perform its designated task
• Call USEHEAP to restore the current heap to its invocation value
• Call DISPOSEHEAP to free its heap.

If each module in the application follows this practice, overall performance may be
improved because "well behaved" storage algorithms are isolated from the
fragmentation caused by those less well behaved. Additionally, a given module's
storage can be tuned to a specific size. Note, however, that creating a heap
usually involves requesting storage from the operating system, a relatively
expensive process in terms of application performance. Calls to NEWHEAP should
be coded with this in mind.

Figure 106 is an example of "well behaved" storage algorithms.

TYPE
HEAPPTR @INTEGER; (~This type will be used for subheap *)

(* and heap identifiers. *)
PROCEDURE APPL_PART; EXTERNAL;
PROCEDURE APPL_PART;

VAR
SAVED_HEAP. MY_HEAP: HEAPPTR;

BEGIN
QUERYHEAP(SAVED_HEAP);
NEWHEAP(MY_HEAP);

USEHEAP(MY_HEAP);

(* Save the calling module's heap. *)
(* Create a heap for use by this *)
(* module. *)
(* Make it the current heap. *)

(* The application code would go here. *)

USEHEAP(SAVED_HEAP);

DISPOSEHEAP(MY_HEAP);

END;

(* Restore the current heap to the *)
(* caller's heap. *)
(* Deallocate all storage used by *)
(* this module. *)

Figure 106. Saving and Restoring the Current Heap

See the VS Pascal Language Reference for more information on the NEW,
DISPOSE, MARK, RELEASE, NEWHEAP. DISPOSEHEAP, QUERYHEAP, and
USEHEAP routines.

Chapter 18. Managing Storage 203

Chapter 19. Performance Considerations

This chapter describes the optimizations VS Pascal performs, and discusses what
you can do to make your program more efficient.

Optimizations Performed by VS Pascal

Constant Folding

This section describes the various optimizations performed by VS Pascal. All
optimizations listed are performed automatically by VS Pascal, with the exception
of common subexpression elimination, which is controlled by the OPTIMIZE
compile-time option.

Constant folding refers to the process of replacing an expression consisting of
constants with a singl~ constant.

A := 3 * SQR(20);

would be logically replaced with

A := 1200;

While all operators are eligible for constant folding, only the functions that can be
used in constant expressions are eligible for constant folding. Therefore, an
expression such as SUBSTR(I ABC ',1,2) would still involve a library call.

In-Line Code for Predefined Routines
Certain predefined routines are implemented using in-line code instead of calls to
library routines. These routines include:

ABS LBOUND PRED
ADDR LENGTH ROUND
CHR LOWEST SIZEOF
EOF MAX SQR
EOLN MAXLENGTH STR
FLOAT MIN SUCC
GSTR ODD TRUNC
HBOUND ORD
HIGHEST Ordinal conversion

Expression Simplification
Certain expressions will be reordered to be more efficient. Boolean expressions
containing the "NOT" operator are transformed so that the "NOT" is removed. For
example, the statement

IF NOT (I > J) THEN

is logically transformed to

IF I <= J THEN

Chapter 19. Performance Considerations 205

Chapter 19. Performance Considerations

This chapter describes the optimizations VS Pascal performs, and discusses what
you can do to make your program more efficient.

Optimizations Performed by VS Pascal

Constant Folding

This section describes the various optimizations performed by VS Pascal. All
optimizations listed are performed automatically by VS Pascal, with the exception
of common subexpression elimination, which is controlled by the OPTIMIZE
compile-time option.

Constant folding refers to the process of replacing an expression consisting of
constants with a singl~ constant.

A := 3 * SQR(20);

would be logically replaced with

A := 1200;

While all operators are eligible for constant folding, only the functions that can be
used in constant expressions are eligible for constant folding. Therefore, an
expression such as SUBSTR(I ABC ',1,2) would still involve a library call.

In-Line Code for Predefined Routines
Certain predefined routines are implemented using in-line code instead of calls to
library routines. These routines include:

ABS LBOUND PRED
ADDR LENGTH ROUND
CHR LOWEST SIZEOF
EOF MAX SQR
EOLN MAXLENGTH STR
FLOAT MIN SUCC
GSTR ODD TRUNC
HBOUND ORO
HIGHEST Ordinal conversion

Expression Simplification
Certain expressions will be reordered to be more efficient. Boolean expressions
containing the "NOT" operator are transformed so that the "NOT" is removed. For
example, the statement

IF NOT (I > J) THEN

is logically transformed to

IF I <= J THEN

Chapter 19. Performance Considerations 205

Boolean Short-Circuiting
Boolean short-circuiting (also known as "anchor pointing" and "partial
evaluation") allows Boolean expressions containing the "AND" and "OR"
operators to only have the left side expression evaluated if that is enough to
resolve the condition. For example. given Boolean expressions "A" and "B". the
expression

IF A AND B THEN statement;

will be transformed to

IF A THEN IF B THEN statement;

The expression

IF A OR B THEN statement;

will be transformed to

IF A THEN GOTO LABl
ELSE IF ~B THEN GOTO LAB2;

LABl:
statement;

LAB2:

As a less trivial case consider

IF «I < 0) AND (J < 0))
OR

«I > 9) AND (J > 9))
THEN

I := J;

This statement would be transformed to evaluate as follows:

IF NOT (1 < 0) THEN GOTO LAB2
IF J < 0 THEN GOTO LAB3

LAB2:
IF NOT (1 > 9) THEN GOTO LABl
IF NOT (J > 9) THEN GO TO LAB!

LAB3:
I := J;

LAB!:

Boolean expressions which are being assigned to variables are transformed to
conditional expressions which produce a value of TRUE or FALSE within a
temporary. For example:

B := (1 > 0) OR (1 = J);

is transformed to

IF I > 8 THEN GOTO LAB!
ELSE IF I <> J THEN GOTO LAB2;

LABl:
B := TRUE;
GO TO LAB3;

LAB2:
B := FALSE;

LAB3:

206 vs Pascal Application Programming Guide

Boolean Short-Circuiting
Boolean short-circuiting (also known as "anchor pointing" and "partial
evaluation") allows Boolean expressions containing the "AND" and "OR"
operators to only have the left side expression evaluated if that is enough to
resolve the condition. For example, given Boolean expressions "A" and "B", the
expression

IF A AND B THEN statement;

wi II be transformed to

IF A THEN IF B THEN statement;

The expression

IF A OR B THEN statement;

will be transformed to

IF A THEN GOTO LAB!
ELSE IF 'B THEN GOTO LAB2;

LABl:
statement;

LAB2:

As a less trivial case consider

IF ((I < 0) AND (J < 0))
OR

((I > 9) AND (J > 9))
THEN

I := J;

This statement would be transformed to evaluate as follows:

IF NOT (I < 0) THEN GOlO LAB2
IF J < 0 THEN GOlO LAB3

LAB2:
IF NOT (I > 9) THEN GOTO LABl
IF NOT (J > 9) THEN GOTO LAB!

LAB3:
I := J;

LABl:

Boolean expressions which are being assigned to variables are transformed to
conditional expressions which produce a value of TRUE or FALSE within a
temporary. For example:

B := (I > 0) OR (I = J);

is transformed to

IF I > 0 THEN GOTO LAB!
ELSE IF I <> J THEN GOTO LAB2;

LABl:
B := TRUE;
GOTO LAB3;

LAB2:
B := FALSE;

LAB3:

206 vs Pascal Application Programming Guide

Note: Boolean short-circuiting can cause problems if the right operand of the
Boolean operator is a function call and subsequent statements in the program
require that the function was called (in other words, the program relies on a
side-effect of the function). For example, the following program would print
"PASS" if short-circuiting is not done, and "FAIL" if short-circuiting is done.

PROGRAM P;
VAR

B1, B2 BOOLEAN;
FUNCTION F(VAR B : BOOLEAN) BOOLEAN;
BEGIN

F := B;
B := NOT B;

END;
BEGIN

B1 := TRUE;
B2 := TRUE;
IF B1 OR F(B2) THEN

IF B2 THEN
WRITELN (' FAI L')

ELSE WRITELN('PASS')
ELSE WRITELN('FAIL');

END.

Cascaded Branches
A cascaded branch is when the target of one branch is an unconditional branch.
The first branch can be optimized so that its target is the target of the unconditional
branch.

The following program helps illustrate this.

PROGRAM BRANCH;
LABEL 1;
VAR

I : INTEGER;
BEGIN

I := 3;
CASE I OF

MININT. .-1
WRITELN('FAIL CASE');

B:
WRITELN('FAIL CASE');

1,2:
WRITELN('FAIL CASE');

3:
GOTO 1;

4 .. MAXINT:
WRITELN('FAIL CASE');

END;
WRITELN('FAIL TEMP');

1:
WRITELN('PASS TEMP');

END.

The CASE statement will generate a branch to the label indicated by the selector,
which in this case is an unconditional branch (GOTO) to label 1. This will be
optimized so that when the CASE selector is 3, control will transfer to label 1
directly instead of to the GOTO.

Chapter 19. Performance Considerations 207

Note: Boolean short-circuiting can cause problems if the right operand of the
Boolean operator is a function call and subsequent statements in the program
require that the function was called (in other words, the program relies on a
side-effect of the function). For example, the following program would print
"PASS" if short-circuiting is not done, and "FAIL" if short-circuiting is done.

PROGRAM P;
VAR

Bl, B2 BOOLEAN;
FUNCTION F(VAR B : BOOLEAN) BOOLEAN;
BEGIN

F := B;
B := NOT B;

END;
BEGIN

Bl := TRUE;
B2 := TRUE;
IF Bl OR F(B2) THEN

IF B2 THEN
WRITELN(' FAIL')

ELSE WRITELN('PASS')
ELSE WRITELN('FAIL');

END.

Cascaded Branches
A cascaded branch is when the target of one branch is an unconditional branch.
The first branch can be optimized so that its target is the target of the unconditional
branch.

The following program helps illustrate this.

PROGRAM BRANCH;
LABEL 1;
VAR

I : INTEGER;
BEGIN

I := 3;
CASE I OF

MININT. .-1
WRITELN('FAIL CASE');

0:
WRITELN('FAIL CASE');

1,2:
WRITELN('FAIL CASE');

3:
GOTO 1;

4 .• MAXINT:
WRITELN('FAIL CASE');

END;
WRITELN('FAIL TEMP');

1 :
WRITELN('PASS TEMP');

END.

The CASE statement will generate a branch to the label indicated by the selector,
which in this case is an unconditional branch (GOTO) to label 1. This will be
optimized so that when the CASE selector is 3, control will transfer to label 1
directly instead of to the GOTO.

Chapter 19. Performance Considerations 207

Partial Dead Code Elimination

Set Operations

Code which immediately follows an unconditional branch and is not the target of
another branch is unreachable. This "dead code" can be deleted.

The example in "Cascaded Branches" on page 207 illustrates this. Normally, each
case in a CASE statement ends with an unconditional branch past the end of the
CASE statement. Because the statement for case 3 is itself an unconditional
branch (GOTO), this last branch could be removed. In fact, because the branch to
the GOTO was a cascaded branch, all of case 3 is dead code, so case 3 would
result in no machine instructions being generated.

The set relational operators for subset and superset are optimized for better
code-generation. Relational expressions of the form

51 - 52

where "S1" and "S2" are set expressions, are transformed to

(51 * ",52) = 51

The latter form is more suitable for machine code generation. Similarly,
expressions of the form

51 >= 52

are transformed to

(52 * 51) = 52

The set difference operator is optimized for better code-generation. Expressions of
the form

51 - 52;

are transformed to

51 * -.52;

Strength Reduction
Multiplication and division by integer powers of 2 are transformed to arithmetic
shifts. For example,

N * 64

is transformed to

N » 6

and

N DIV 32

is transformed to

N « 5

208 vs Pascal Application Programming Guide

Partial Dead Code Elimination

Set Operations

Code which immediately follows an unconditional branch and is not the target of
another branch is unreachable. This "dead code" can be deleted.

The example in "Cascaded Branches" on page 207 illustrates this. Normally, each
case in a CASE statement ends with an unconditional branch past the end of the
CASE statement. Because the statement for case 3 is itself an unconditional
branch (GOTO), this last branch could be removed. In fact, because the branch to
the GOTO was a cascaded branch, all of case 3 is dead code, so case 3 would
result in no machine instructions being generated.

The set relational operators for subset and superset are optimized for better
code-generation. Relational expressions of the form

SI - S2

where "S1" and "S2" are set expressions, are transformed to

(SI * ",S2) = SI

The latter form is more suitable for machine code generation. Similarly,
expressions of the form

SI >= S2

are transformed to

(S2 * SI) = S2

The set difference operator is optimized for better code-generation. Expressions of
the form

SI - S2;

are transformed to

SI * -,S2;

Strength Reduction
Multiplication and division by integer powers of 2 are transformed to arithmetic
shifts. For example,

N * 64

is transformed to

N » 6

and

N DIV 32

is transformed to

N « 5

208 vs Pascal Application Programming Guide

Modulo operations in which the right side operand is an integer power of 2 and the
left side operand is non-negative are transformed to masking operations. For
example, assuming N is unsigned,

N MOD 256

is transformed to

NAND 255

Array References
Subscripted addresses are transformed for easier translation to efficient machine
code.

Given a subscripted variable reference of the form "A[N]", where A is of the type
"ARRAY[I..J] of T", the associated address of A[N] can be computed as

ADDR(A) + (N-I)*SIZEOF(T)

where "ADDR(A)" is the address of array A, and "SIZEOF(T)" is the length of each
element of the array.

The subtraction in the above expression can be eliminated by "origining" the array
as follows:

(ADDR(A)-I*SIZEOF(T» + N*SIZEOF(T)

in which the first operand of the addition is computed at compile-time.

Constant subscripts, such as A[3], have their addresses completely computed at
compile-time.

Unnesting of Function Calls
Actual parameters of routine calls which a.re themselves function calls can often
cause difficulty in code generation. If all routines calls are "unnested" so that no
call will take place while the parameter list of another call is being constructed,
this problem is avoided. This optimization simplifies managing the run-time stack.

For example, the statement

X := SIN(ARCTAN(Y»;

would be evaluated as

temp := ARCTAN(Y)i
X := SIN(temp)i

where "temp" is a compiler generated temporary.

Chapter 19. Performance Considerations 209

/

Modulo operations in which the right side operand is an integer power of 2 and the
left side operand is non-negative are transformed to masking operations. For
example, assuming N is unsigned,

N MOD 256

is transformed to

NAND 255

Array References
Subscripted addresses are transformed for easier translation to efficient machine
code.

Given a subscripted variable reference of the form "A[N]", where A is of the type
"ARRAY[I..J] of T", the associated address of A[N] can be computed as

ADDR(A) + (N-I)*SIZEOF(T)

where "ADDR(A)" is the address of array A, and "SIZEOF(T)" is the length of each
element of the array.

The subtraction in the above expression can be eliminated by "origining" the array
as follows:

(ADDR(A)-I*SIZEOF(T)) + N*SIZEOF(T)

in which the first operand of the addition is computed at compile-time.

Constant subscripts, such as A[3J, have their addresses completely computed at
com pile-ti me.

Unnesting of Function Calls
Actual parameters of routine calls which are themselves function calls can often
cause difficulty in code generation. If all routines calls are "unnested" so that no
call will take place while the parameter list of another call is being constructed,
this problem is avoided. This optimization simplifies managing the run-time stack.

For example, the statement

X := SIN(ARCTAN(Y));

would be evaluated as

temp := ARCTAN(Y);
X := SIN(temp);

where "temp" is a compiler generated temporary.

Chapter 19. Performance Considerations 209

Common Subexpression Elimination
Common subexpression elimination involves evaluating an expression once and
saving its value instead of computing the same expression several times. For
example,

I := W + Y * Z DIV 3;
J := X + Y * Z DIV 3;

would be logically replaced with

temp := Y * Z DIV 3;
I := W + temp;
J := X + temp;

where "tem.p" would be a register.

This optimization is performed over a range of instructions known as a "basic
block". A basic block is a group of statements that is only entered from the first
statement. For example, common subexpression would not be performed in the
following case because the assignments are in different basic blocks.

IF B THEN
I := W + Y * Z DIV 3

ELSE
I := X + Y * Z DIV 3;

Figure 107 shows the effects of common subexpression elimination

Sample program to demonstrate code optimization

PROGRAM TEST;
VAR

l,J,K : INTEGER;
BEGIN

I := S0;
J := I * 3;
J := 2;
K := I * 3;
K := 2;

END.

Optimized Code Unoptimized code

* I := S0; * I := S0;
LA 03,S0 LA 03,S0
ST 63,144(' 13) ST 63,144(,13)

* J := I * 3; * J := I * 3;
MH 63,=H'3' L 03,144(,13)
ST 63.14S(,13) MH 03,=H'3'

* J := 2; ST 03,148(.13)
LA 04,2 * J := 2;
ST 04,148(.13) LA 03,2

* K := I * 3; ST 03,14S(,B)
ST 03,152(.13) * K ;= I * 3;

* K := 2; L 03,144 (,13)
ST 04,152(.13) MH 03,=H'3'

ST 03,152(.13)
* K := 2;

LA 03,2
ST 03,152(,13)

Figure 107. Example of the Differences Between Optimized and Unoptimized Code

210 vs Pascal Application Programming Guide

Common Subexpression Elimination
Common subexpression elimination involves evaluating an expression once and
saving its value instead of computing the same expression several times. For
example,

I := W + Y * Z DIY 3;
J := X + Y * Z DIY 3;

would be logically replaced with

temp := Y * Z DIY 3;
I := W + temp;
J := X + temp;

where "temp" would be a register.

This optimization is performed over a range of instructions known as a "basic
block". A basic block is a group of statements that is only entered from the first
statement. For example, common subexpression would not be performed in the
following case because the assignments are in different basic blocks.

IF B THEN
I := W + Y * Z DIY 3

ELSE
I := X + Y * Z DIY 3;

Figure 107 shows the effects of common subexpression elimination

Sample program to demonstrate code optimization

PROGRAM TEST;
VAR

I ,J. K : INTEGER;
BEGIN

I := 80;
J := I * 3;
J := 2;
K := I * 3;
K := 2;

END.

Optimized Code Unoptimized code

* I := 80; * I := 80;
LA 03.80 LA 03.80
ST 03.144(.13) ST 03.144(.13)

* J := I * 3: * J := I * 3;
MH 03.=H'3' L 03.144(.13)
ST 03.148(.13) MH 03.=H'3'

* J := 2; ST 03.148(.13)
LA 04.2 * J := 2:
ST 04.148(.13) LA 03.2

* K:=I*3; ST 03.148(.13)
ST 03.152(.13) * K:=I*3;

* K := 2; L 03.144(.13)
ST 04.152(.13) MH 03.=H'3'

ST 03.152(.13)
* K := 2:

LA 03.2
ST 03.152(.13)

Figure 107. Example of the Differences Between Optimized and Unoptimized Code

210 vs Pascal Application Programming Guide

Note: Because some values are kept in registers at certain times, attempting to
assign values to variables in an ONERROR procedure may appear to fail if the
program is compiled with the OPTIMIZE compile-time option in effect.

In the following program, if file F does not exist and the OPTIMIZE option is in
effect, the program will print out "File opened OK" even if the file did not open

successfully. This is because the variable FILE_ERROR was kept in a register, and
though the storage copy was updated in ONERROR, the IF test used the value in
the register.

PROGRAM ERROR;
VAR

FILE ERROR: INTEGER;
F : TEXT;

%INCLUDE ONERROR;
PROCEDURE ONERROR;
BEGIN

FACTION := [];
FILE ERROR .= FERROR;

END;
BEGIN

FILE_ERROR := 0;
RESET(F) ;
IF FILE_ERROR <> 0 THEN WRITELN('File error ',FILE_ERROR:1)
ELSE WRITELN{'File opened OK');

END.

Memory References
Many target machines have limits on the range of memory that can be directly
addressed from a base register. The IBM System/370, for example, has a limit of 0
to 4095 bytes. When an address has a displacement which is outside this range,
the address must be explicitly computed.

One of the transformations performed by the compiler is to expand memory
references which are not directly addressable into explicit address computations.
This permits the common subexpression eliminator to optimize such computations.

As an example, consider the following procedure.

PROCEDURE MEMREF;
VAR

HUGE: ARRAY[1 .. 10000] OF CHAR;
A : INTEGER;
B : INTEGER;

BEGIN
B := 3;
A := B;

END;

With OPTIMIZE on, the following code is generated.

* B:= 3;
LR
AH
LA
ST

* A:= B;
ST

03,13
03,=H'8192'
04,3
04,1956(,03)

04,1952 (,03)

Chapter 19. Performance Considerations 211

Note: Because some values are kept in registers at certain times, attempting to
assign values to variables in an ONERROR procedure may appear to fail if the
program is compiled with the OPTIMIZE compile-time option in effect.

In the following program, if file F does not exist and the OPTIMIZE option is in
effect, the program will print out "File opened OK" even if the file did not open
successfully. This is because the variable FILE_ERROR was kept in a register, and
though the storage copy was updated in ONERROR, the IF test used the value in
the register.

PROGRAM ERROR;
VAR

FILE ERROR: INTEGER;
F : TEXT;

%INCLUDE ONERROR;
PROCEDURE ONERROR;
BEGIN

FACTION := [];
FILE ERROR := FERROR;

END;
BEGIN

FILE_ERROR := 8;
RE5ET(F);
IF FILE_ERROR <> 8 THEN WRITELN('File error ',FILE_ERROR:l)
EL5E WRITELN('File opened OK');

END.

Memory References
Many target machines have limits on the range of memory that can be directly
addressed from a base register. The IBM System/370, for example, has a limit of 0
to 4095 bytes. When an address has a displacement which is outside this range,
the address must be explicitly computed.

One of the transformations performed by the compiler is to expand memory
references which are not directly addressable into explicit address computations.
This permits the common subexpression eliminator to optimize such computations.

As an example, consider the following procedure.

PROCEDURE MEMREF;
VAR

HUGE: ARRAY[I .. 18888] OF CHAR;
A : INTEGER;
B : INTEGER;

BEGIN
B := 3;
A := B;

END;

With OPTIMIZE on, the following code is generated.

* B:= 3;
LR
AH
LA
5T

* A:= B;
5T

83,13
83,=H'8192'
84,3
84,1956(,83)

84,1952(,83)

Chapter 19. Performance Considerations 211

Range Checking

Without the optimization, code similar to the following would be generated, taking
more code.

* B:= 3;
LR
AH
LA
ST

* A:= B;
LR
AH
ST

03,13
03,=H'10148'
04,3
04,0(,03)

03,13
03,=H'10144'
04,0(,03)

If additional references to variables past HUGE were made, either more code
would be needed (reloading register 13 into register 3 for each reference), or an
additional register would be needed (to save register 13).

Transformations are performed on subrange checks involving expressions of the
forms:

E + C
E - C
E * C
E DIV C

where "E" is an integer expression, and "e" is an integer constant. The
transformation moves the check down to the expression "e" as illustrated in the
following example.

VAR
N : 1..10;
M : INTEGER;

BEGIN

N := M - 15;

END;

In the first compiler pass, code will be generated for the expression "M-15" to
verify that it is within the range 0 to 10. The second compiler pass will rewrite the
checking code so that variable "M" will be checked instead of the whole
expression. In this case, "Mil must lie in the range 16 to 25.

The purpose of this transformation is to help the common subexpression eliminator
(in the third pass) remove redundant range checks. Also, subrange variables
whose lower bound has an ordinal value of zero will not have low-bound checking
code generated; an unsigned check for the high-bound will be generated instead.

Note: Due to these optimizations, some checks normally resulting in low-bound
checking errors will actually result in high-bound checking errors and vice versa.

212 vs Pascal Application Programming Guide

Range Checking

Without the optimization, code similar to the following would be generated, taking
more code.

* B:= 3;
LR
AH
LA
5T

* A:= B;
LR
AH
5T

83,13
83,=H'18148'
84,3
84,8(,83)

83,13
83,=H'18144'
84,8 (,83)

If additional, references to variables past HUGE were made, either more code
would be needed (reloading register 13 into register 3 for each reference), or an
additional register would be needed (to save register 13).

Transformations are performed on subrange checks involving expressions of the
forms:

E + C
E - C
E * C
E DIV C

where "E" is an integer expression, and "C" is an integer constant. The
transformation moves the check down to the expression "e" as illustrated in the
following example.

VAR
N : 1..18;
M : INTEGER;

BEGIN

N := M - 15;

END;

In the 'first compiler pass, code will be generated for the expression "M-15" to
verify that it is within the range 0 to 10. The second compiler pass will rewrite the
checking code so that variable "M" will be checked instead of the whole
expression. In this case, "M" must lie in the range 16 to 25.

The purpose of this transformation is to help the common subexpression eliminator
(in the third pass) remove redundant range checks. Also, subrange variables
whose lower bound has an ordinal value of zero will not have low-bound checking
code generated; an unsigned check for the high-bound will be generated instead.

Note: Due to these optimizations, some checks normally resulting in low-bound
checking errors will actually result in high-bound checking errors and vice versa.

212 VS Pascal Application Programming Guide

I Making Your Programs More Efficient

Variable Declaration

Array Bounds

vs Pascal allocates automatic variables in the order they are declared. Due to
System/370 architecture, accessing variables in the first 4K of a DSA is more
efficient than accessing variables allocated after the first 4K. Therefore, small and
frequently accessed variables should be declared first in a routine.

Large lower bounds on arrays can cause array origining to be omitted, requiring
additional calculations at run-time. The following program illustrates this.

PROGRAM ARRBOUND;
CONST

ALB = 1;
AHB = 10;
BLB = 20000001;
BHB = 20000010;

VAR
A
B
I

BEGIN

ARRAY[ALB .. AHB] OF INTEGER;
ARRAY[BLB •. BHB] OF INTEGER;
INTEGER;

IF SIZEOF(A) <> SIZEOF(B) THEN WRITELN('FAIL ARRBOUND');
FOR I := ALB TO AHB DO

A[I] := I;
FOR I := BLB TO BHB DO

B[I] := I;
END.

The code generated for each array element assignment is shown below.

* A[I]:= I;
L 03,224(,13)
LR 04,03
SLA 04,2
ST 03,140(04,13)

* B[I]:= I;
LR 03,13
A 03,=F'-80003072'
L 04,224(,13)
LR 05,04
SLA 05,2
ST 04,3252(05,03)

Record Field Accessing
Using a WITH statement on a complicated field reference that is used multiple
times can sometimes speed up your program. This is because computing the
address to the 'field is only done once and saved in memory. However, because
the address of the field is stored in memory when using a WITH statement, there
are cases where using a WITH statement will be less efficient than explicit field
references, especially if common subexpression elimination can be used.

Chapter 19. Performance Considerations 213

I Making Your Programs More Efficient

Variable Declaration

Array Bounds

vs Pascal allocates automatic variables in the order they are declared. Due to
System/370 architecture, accessing variables in the first 4K of a DSA is more
efficient than accessing variables allocated after the first 4K. Therefore, small and
frequently accessed variables should be declared first in a routine.

Large lower bounds on arrays can cause array origining to be omitted, requiring
additional calculations at run-time. The following program illustrates this.

PROGRAM ARRBOUND;
CONST

ALB = 1;
AHB = 18;
BLB = 28888881;
BHB = 28888818;

VAR
A
B
I

ARRAY[ALB .. AHB] OF INTEGER;
ARRAY[BLB .. BHB] OF INTEGER;
INTEGER;

BEGIN
IF SIZEOF(A) <> SIZEOF(B)
FOR I := ALB TO AHB DO

A[I] := I;
FOR I := BLB TO BHB DO

B[I] .= I;

THEN WRITELN('FAIL ARRBOUND');

END.

The code generated for each array element assignment is shown below.

*

*

A [I] : =
L
LR
SLA
ST

B[I] :=
LR
A
L

I;
83,224(,13)
84,83
84,2
83,148(84,13)

I;
83,13
83 ,=F' -88883072'
84,224(,13)

LR 05,84
SLA 05,2
ST 04,3252(85,83)

Record Field Accessing
Using a WITH statement on a complicated field reference that is used multiple
times can sometimes speed up your program. This is because computing the
address to the 'field is only done once and saved in memory. However, because
the address of the field is stored in memory when using a WITH statement, there
are cases where using a WITH statement will be less efficient than explicit field
references, especially if common subexpression elimination can be used.

Chapter 19. Performance Considerations 213

Program Parameters

File Closing

Placing INPUT in the program parameter list causes a RESET(INPUT) to be
performed; therefore, if INPUT is not used in your program, delete it from the
program parameter list.

A similar optimization is possible for OUTPUT because placing OUTPUT in the
program parameter list causes a REWRITE(OUTPUT) to be performed.

Calling the CLOSE procedure is never needed except under those conditions
mentioned in "Closing a File" on page 70, or if you intentionally associate different
Pascal file variables with the same external file.

You may wish to call CLOSE to make it obvious that a file is closed, or to guarantee
that all data is written to a file in case a severe error occurs in your program.

Use of Value and Constant Parameters
When a structured variable is to be passed to a routine where it will not be
modified, using the CONST parameter passing mechanism will be more efficient
than using pass-by-value.

Note: When using CONST parameters, you must be careful that you do not
threaten an "alias" of the CONST parameter name. An alias is defined as the
name of the actual parameter or the name of a VAR parameter which represents
the same value, or any alias of those names. The following example illustrates
this.

PROGRAM ALIAS(OUTPUT);
TYPE

ARR = ARRAY[I .. 20] OF INTEGER;
VAR

AI, A2, A3 : ARR;
PROCEDURE P(VAR Bl ARR; CONST B2, B3 ARR);
BEGIN

Bl [1] := 3;
if B2[1] <> A3[1] THEN WRITELN('B2 modified&ssq];
A2[1] := 3;
if B3[1] <> A3[1] THEN WRITELN('B3 modified&ssq];

END;
BEGIN

Al := ARR(1234:20);
A2 := AI;
A3 := AI;
P(Al, AI, A2);

END.

I VALUE Initializations
It is more efficient to use a VALUE declaration to initialize a STATIC or DEF
variable than to use an assignment statement at the beginning of a routine. This is
because the linkage editor performs this initialization if a VALUE declaration is
used.

Note: If a routine modifies a STATIC or DEF variable, the next time the routine is
called the variable will have the new value (not the value specified on the VALUE
declaration).

214 VS Pascal Application Programming Guide

Program Parameters

File Closing

Placing INPUT in the program parameter list causes a RESET(INPUT) to be
performed; therefore, if INPUT is not used in your program, delete it from the
program parameter list.

A similar optimization is possible for OUTPUT because placing OUTPUT in the
program parameter list causes a REWRITE(OUTPUT) to be performed.

Calling the CLOSE procedure is never needed except under those conditions
mentioned in "Closing a File" on page 70, or if you intentionally associate different
Pascal file variables with the same external file.

You may wish to call CLOSE to make it obvious that a file is closed, or to guarantee
that all data is written to a file in case a severe error occurs in your program.

Use of Value and Constant Parameters
When a structured variable is to be passed to a routine where it will not be
modified, using the CONST parameter passing mechanism will be more efficient
than using pass-by-value.

Note: When using CONST parameters, you must be careful that you do not
threaten an "alias" of the CONST parameter name. An alias is defined as the
name of the actual parameter or the name of a VAR parameter which represents
the same value, or any alias of those names. The following example illustrates
this.

PROGRAM ALIAS(OUTPUT);
TYPE

ARR = ARRAY[I .. 20] OF INTEGER;
VAR

AI, A2, A3 : ARR;
PROCEDURE P(VAR Bl ARR; CONST B2, B3 ARR);
BEGIN

Bl[l] := 3;
if B2[1] <> A3[1] THEN WRITELN('B2 modified&ssq];
A2[1] := 3;
if B3[IJ <> A3[1] THEN WRITELN('B3 modified&ssq];

END;
BEGIN

Al := ARR(1234:20);
A2 := AI;
A3 := AI;
P(Al, AI, A2);

END.

VALU E Initializations
It is more efficient to use a VALUE declaration to initialize a STATIC or DEF
variable than to use an assignment statement at the beginning of a routine. This is
because the linkage editor performs this initialization if a VALUE declaration is
used.

Note: If a routine modifies a STATIC or DEF variable, the next time the routine is
called the variable will have the new value (not the value specified on the VALUE
declaration).

214 vs Pascal Application Programming Guide

Chapter 20. VS Pascal Messages

The message prefixes identify when a message was generated-during compile
time or run time, when debugging, or when running an EXEC or CLiST. To find a
message explanation quickly, look up the message prefix in the first column of
Figure 108. The page number indicates where the section for that message type
starts; messages are arranged in numeric order within each section.

Note: Compiler messages without a prefix have an implied prefix of "AMPL".

Message Message See
Range Type Page

(AMPL)O to Compiler Messages-Source Code Processing 216
AMPL999S

AMP0001S to Compiler Messages-Intermediate Code Optimization 240
AMP0999S

AMPT001E to Compiler Messages-Object Code Generation 241
AMPT999S

AMPX011E to Run-Time Messages 243
AMPX999S

AMPD500 to Interactive Debugging Tool Messages 251
AMPD544

AMPE100E to EXEC Messages 255
AMPE206E

AMPC100W to CLiST Messages 257
AMPC1021

Figure 108. VS Pascal Message Summary

Chapter 20. VS Pascal Messages 215

Chapter 20. VS Pascal Messages

The message prefixes identify when a message was generated-during compile
time or run time, when debugging, or when running an EXEC or CLiST. To find a
message explanation quickly, look up the message prefix in the first column of
Figure 108. The page number indicates where the section for that message type
starts; messages are arranged in numeric order within each section.

Note: Compiler messages without a prefix have an implied prefix of "AMPL".

Message
Range

(AMPL)O to
AMPL999S

AMP0001S to
AMP0999S

AMPT001E to
AMPT999S

AMPX011E to
AMPX999S

AMPD500 to
AMPD544

AMPE100E to
AMPE206E

AMPC100W to
AMPC1021

Message
Type

Compiler Messages-Source Code Processing

Compiler Messages-Intermediate Code Optimization

Compiler Messages-Object Code Generation

Run-Time Messages

Interactive Debugging Tool Messages

EXEC Messages

CLiST Messages

Figure 108. VS Pascal Message Summary

See
Page

216

240

241

243

251

255

257

Chapter 20. VS Pascal Messages 215

Compiler Messages-Source Code Processing

These messages are issued during the first compiler pass (syntactic and semantic analysis and
intermediate code generation). They all have an implied prefix of AMPL. The action associated with each
message class is shown below.

Note: All messages in this section are errors unless otherwise noted.

Message Class Return Code

Informational o
Warning 4

Error 8

Severe error 12

o UNSUPPORTED VS PASCAL FEATURE
Explanation: VS Pascal does not support the indicated
construction.

Note: Do not report any problems caused by unsupported
features to IBM.
Programmer Response: If you did not intend to use the feature,
remove it from your code.
System Action: The compiler accepts this feature, but the
results are unpredictable.

IDENTIFIER EXPECTED
Explanation: An identifier was expected but not found.
Programmer Response: Place a valid identifier at the indicated
location.
System Action: The compiler assumes an identifier was found
and continues compiling.

2 SOURCE CONTINUES AFTER END OF PROGRAM
Explanation: Tile compiler detected text after the logical end of
the program. Mismatched BEGIN and END statements often
cause this error.
Programmer Response: Either:

Add END statements where appropriate.

Delete the statement with the missing END statement.
System Action:

3

If you were compiling a program unit, the compiler ignores
the remaining code.
If you were compiling a segment unit. the compiler
compiles the remaining code.

"END" EXPECTED
Explanation: An END was expected but not found.
Programmer Response: Add an END at the intended location.
or remove an unmatched BEGIN.
System Action: The compiler assumes an END statement was
found and continues compiling.

216 vs Pascal Application Programming Guide

Object Code? Other Actions

Yes None

Yes None

No None

No Compiler halts

4 CHARACTER IN QUOTED STRING IS NOT
DISPLAYABLE

Explanation: The indicated character within a quoted string is
not a valid. displayable EBCDIC character. If the string is
printed on a device, the character might be interpreted as a
control character, causing unpredictable results.

If you intend for the character to be a control character, you
must make sure the string is in hexadecimal form.
Programmer Response: If you used the character
unintentionally. correct the string.
System Action: The compiler accepts the character and
continues compiling. This is a warning.

5 SYMBOL INVALID OR OUT OF CONTEXT
Explanation: The indicated symbol is not part of the syntax of
the construct being scanned.
Programmer Response: Delete or change the symbol
System Action: The compiler attempts to recover and continues
compiling.

6 EOF BEFORE LOGICAL END OF PROGRAM
Explanation: The compiler came to the end of the source
program without finding the logical end of the program. This
error is typically caused by:

Mismatched BEGIN/END brackets

Missing comment delimiters.
Programmer Response: Match BEGIN and END words properly.
Make sure all comments are closed.
System Action: The compiler process all remaining input text
and then stops.

7 "BEGIN" EXPECTED
Explanation: A BEGIN statement was expected but not found.
Programmer Response: Put a BEGIN where indicated.
System Action: The compiler assumes a BEGIN was found and
continues compiling.

8 SEMICOLON ";" EXPECTED
Explanation: A semicolon was expected but not found.
Programmer Response: Put a semicolon where indicated.
System Action: The compiler assumes a semicolon was found
and continues compiling.

Compiler Messages-Source Code Processing

These messages are issued during the first compiler pass (syntactic and semantic analysis and
intermediate code generation). They all have an implied prefix of AMPL. The action associated with each
message class is shown below.

Note: All messages in this section are errors unless otherwise noted.

Message Class Return Code

Informational o
Warning 4

Error 8

Severe error 12

o UNSUPPORTEO VS PASCAL FEATURE
Explanation: VS Pascal does not support the indicated
construction.

Note: Do not report any problems caused by unsupported
features to IBM.
Programmer Response: If you did not intend to use the feature,
remove it from your code.
System Action: The compiler accepts this feature, but the
results are unpredictable.

IDENTIFIER EXPECTED
Explanation: An identifier was expected but not found.
Programmer Response: Place a valid identifier at the indicated
location.
System Action: The compiler assumes an identifier was fOllnd
and continues compiling.

2 SOURCE CONTINUES AFTER END OF PROGRAM
Explanation: Tile compiler detected text after the logical end of
the program. Mismatched BEGIN and END statements often
cause this error.
Programmer Response: Either:

Add END statements where appropriate.

Delete the statement with the missing END statement.
System Action:

3

If you were compiling a program unit, the compiler ignores
the remaining code.
If you were compiling a segment unit, the compiler
compiles the remaining code.

"END" EXPECTED
Explanation: An END was expected but not found.
Programmer Response: Add an END at the intended location,
or remove an unmatched BEGIN.
System Action: The compiler assumes an END statement was
found and continues compiling.

216 vs Pascal Application Programming Guide

Object Code? Other Acllons

Yes None

Yes None

No None

No Compiler halts

4 CHARACTER IN QUOTED STRING IS NOT
DISPLAYABLE

Explanation: The indicated character within a quoted string is
not a valid, displayable EBCDIC character. If the string is
printed on a device, the character might be interpreted as a
control character, causing unpredictable results.

If you intend for the character to be a control character, you
must make sure the string is in hexadecimal form.
Programmer Response: If you used the character
unintenl.ionally, correct the string.
System Action: The compiler accepts the character and
continues compiling. This is a warning.

5 SYMBOL INVALID OR OUT OF CONTEXT
Explanation: The indicated symbol is not part of the syntax of
the construct being scanned.
Programmer Response: Delete or change the symbol
System Action: The compiler attempts to recover and continues
compiling.

6 EOF BEFORE LOGICAL END OF PROGRAM
Explanation: The compiler came to the end of the source
program without finding the logical end of the program. This
error is typically caused by:

Mismatched BEGIN/END brackets
Missing comment delimiters.

Programmer Response: Match BEGIN and END words properly.
Make sure all comments are closed.
System Action: The compiler process all remaining input text
and then stops.

7 "BEGIN" EXPECTED
Explanation: A BEGIN statement was expected but not found.
Programmer Response: Put a BEGIN where indicated.
System Action: The compiler assllmes a BEGIN was found and
continues compiling.

8 SEMICOLON ";" EXPECTED
Explanation: A semicolon was expected but not found.
Programmer Response: Put a semicolon where indicated.
System Action: The compiler assumes a semicolon was found
and continues compiling.

9 ROUTINE MAY NOT BE PASSED TO FORTRAN
SUBROUTINE

Explanation: The indicated subroutine is declared with the
FORTRAN directive. The declaration of this routine also
contains an argument that is a procedure or function
parameter. You cannot pass procedures or functions to
FORTRAN subroutines.
Programmer Response: If you did not intend to pass a routine
as a parameter, pass the correct parameter. If you must pass a
routine as a parameter, you must rewrite the FORTRAN
subroutine in Pascal.
System Action: The compiler accepts the routine parameter
and continues compiling.

10 NO CASE LABELS SPECIFIED
Explanation: A CASE statement appears with no case labels. A
CASE statement cannot be empty or consist only of an
OTHERWISE clause.
Programmer Response: Delete the CASE statement or add
some alternatives to the CASE statement.
System Action: The compiler attempts to recover and continues
compiling.

11 AMBIGUOUS PROCEDURE/FUNCTION
SPECIFICATION

Explanation: The indicated routine is declared with an
EXTERNAL, GENERIC, FORTRAN, MAIN, or REENTRANT routine
directive. This routine was also declared as an ENTRY routine.
This combination is contradictory.
Programmer Response: Delete the ENTRY pseudo-directive.
VS Pascal does not support ENTRY.
System Action: The compiler attempts to recover and continues
compiling.

12 MULTIPLY DECLARED LABEL
Explanation: The indicated label was previously declared
within the current routine.
Programmer Response: Remove the duplicate declaration or
use a different label.
System Action: The compiler attempts to recover and continues
compiling.

13 LABEL IDENTIFIER EXPECTED
Explanation: Within a label declaration or GOTO statement, a
label identifier is missing or invalid. A label identifier is either:

An alphanumeric identifier
An integer constant within the range 0 to 9999.

Programmer Response: Either:
Use a correct label identifier.

Remove the invalid declaration or GOTO.
System Action: The compiler attempts to recover and continues
compiling.

14 THE CHARACTERS "S" AND "_" ARE NOT VALID
IN STANDARD PASCAL

Explanation: This message can occur only when you specify
the LANGLVL(ANSI83) compile-time optiorl. An identifier name
contains characters that are not recognizable in standard
Pascal.
Programmer Response: Either:

Compile with LANGLVL(EXTENDED).
Delete the unrecognized characters.

System Action: The compiler accepts the characters and
continues compiling. VS Pascal issues this message only when
LANGLVL(ANSI83) is in effect. The message class is controlled
by STDFLAG.

15 EQUAL SIGN" = " EXPECTED
Explanation: An equal sign was expected but not found.
Programmer Response: Put an equal sign in the indicated
place.
System Action: The compiler assumes an equal sign was used
and continues compiling.

16 IDENTIFIER REQUIRED TO BE A TYPE IN TAG
FIELD SPECIFICATION

Explanation: The declaration of the tag field with a RECORD
contains an error. The indicated identifier must represent the
tag field's type, but the identifier is not declared as a type.
Programmer Response: Either

Use a type identifier for the tag field.
Use a different type of tag field specification.

System Action: The compiler attempts to recover and continues
compiling.

17 COLON ":" EXPECTED
Explanation: A colon was expected but not found.
Programmer Response: Put a colon in the indicated place.
System Action: The compiler assumes a colon was used and
continues compiling.

18 PARAMETERS ON FORWARDED ROUTINE NOT
NECESSARY

Explanation: This error occurs when the body of a previously
declared routine also declares formal parameters. This can
occur when you declare routines with the FORWARD or
EXTERNAL directives.

You include the formal parameters when you declare the
header of the routine. When you declare the body of the
routine, you must not specify any formal parameters.
Programmer Response: Delete the formal parameters.
System Action: The compiler attempts to compile the
parameter list given.

19 FILES PASSED BY VALUE NOT PERMITTED
Explanation: The indicated formal value parameter is a file
type or a type that contains a file. You can pass a file variable
to a routine only by VAR or by CONST. You can never pass a
file variable by value.
Programmer Response: Pass the parameter by VAR or CONST.
System Action: The compiler assumes the parameter was good
and continues compiling.

20 FILES NOT PERMITTED IN STRUCTURED VALUE
CONSTRUCTORS

Explanation: A type containing a file was used to construct a
structured value. This is illegal, because files cannot be
initialized.
Programmer Response: Either:

Do not declare the type with a file in it.
Use a different type as the structured value constructor.

System Action: The compiler assumes the type did not contain
a file and continues compiling.

21 RIGHT PARENTHESIS ")" EXPECTED
Explanation: A right parenthesis. ")", was expected but not
found.
Programmer Response: Add a right parenthesis in the
indicated location.
System Action: The compiler assumes a right parenthesis was
found and continues compiling.

Chapter 20. VS Pascal Messages 217

9 ROUTINE MAY NOT BE PASSED TO FORTRAN
SUBROUTINE

Explanation: The indicated subroutine is declared with the
FORTRAN directive. The declaration of this routine also
contains an argument that is a procedure or function
parameter. You cannot pass procedures or functions to
FORTRAN subroutines.
Programmer Response: If you did not intend to pass a routine
as a parameter, pass the correct parameter. If you must pass a
routine as a parameter, you must rewrite the FORTRAN
subroutine in Pascal.
System Action: The compiler accepts the routine parameter
and continues compiling.

10 NO CASE LABELS SPECIFIED
Explanation: A CASE statement appears with no case labels. A
CASE statement cannot be empty or consist only of an
OTHERWISE clause.
Programmer Response: Delete the CASE statement or add
some alternatives to the CASE statement.
System Action: The compiler attempts to recover and continues
compiling.

11 AMBIGUOUS PROCEDURE/FUNCTION
SPECIFICATION

Explanation: The indicated routine is declared with an
EXTERNAL, GENERIC, FORTRAN, MAIN, or REENTRANT routine
directive. This routine was also declared as an ENTRY routine.
This combination is contradictory.
Programmer Response: Delete the ENTRY pseudo-directive.
VS Pascal does not support ENTRY.
System Action: The compiler attempts to recover and continues
compiling.

12 MULTIPLY DECLARED LABEL
Explanation: The indicated label was previously declared
within the current routine.
Programmer Response: Remove the duplicate declaration or
use a different label.
System Action: The compiler attempts to recover and continues
compiling.

13 LABEL IDENTIFIER EXPECTED
Explanation: Within a label declaration or GOTO statement, a
label identifier is missing or invalid. A label identifier is either:

An alphanumeric identifier

An integer constant within the range 0 to 9999.
Programmer Response: Either:

Use a correct label identifier.
Remove the invalid declaration or GOTO.

System Action: The compiler attempts to recover and continues
compiling.

14 THE CHARACTERS "S" AND "_" ARE NOT VALID
IN STANDARD PASCAL

Explanation: This message can occur only when you specify
the LANGLVL(ANSI83) compile-time option. An identifier name
contains characters that are not recognizable in standard
Pascal.
Programmer Response: Either:

Compile with LANGLVL(EXTENDED).

Delete the unrecognized characters.
System Action: The compiler accepts the characters and
continues compiling. VS Pascal issues this message only when
LANGLVL(ANSI83) is in effect. The message class is controlled
bySTDFLAG.

15 EQUAL SIGN" = " EXPECTED
Explanation: An equal sign was expected but not found.
Programmer Response: Put an equal sign in the indicated
place.
System Action: The compiler assumes an equal sign was used
and continues compiling.

16 IDENTIFIER REQUIRED TO BE A TYPE IN TAG
FIELD SPECIFICATION

Explanation: The declaration of the tag field with a RECORD
contains an error. The indicated identifier must represent the
tag field's type, but the identifier is not declared as a type.
Programmer Response: Either

Use a type identifier for the tag field.

Use a different type of tag field specification.
System Action: The compiler attempts to recover and continues
compiling.

17 COLON ":" EXPECTED
Explanation: A colon was expected but not found.
Programmer Response: Put a colon in the indicated place.
System Action: The compiler assumes a colon was used and
continues compiling.

18 PARAMETERS ON FORWARDED ROUTINE NOT
NECESSARY

Explanation: This error occurs when the body of a previously
declared routine also declares formal parameters. This can
occur when you declare routines with the FORWARD or
EXTERNAL directives.

You include the formal parameters when you declare the
header of the routine. When you declare the body of the
routine, you must not specify any formal parameters.
Programmer Response: Delete the formal parameters.
System Action: The compiler attempts to compile the
parameter list given.

19 FILES PASSED BY VALUE NOT PERMITTED
Explanation: The indicated formal value parameter is a file
type or a type that contains a file. You can pass a file variable
to a routine only by VAR or by CONST. You can never pass a
file variable by value.
Programmer Response: Pass the parameter by VAR or CONST.
System Action: The compiler assumes the parameter was good
and continues compiling.

20 FILES NOT PERMITTED IN STRUCTURED VALUE
CONSTRUCTORS

Explanation: A type containing a file was used to construct a
structured value. This is illegal, because files cannot be
initialized.
Programmer Response: Either:

Do not declare the type with a file in it.
Use a different type as the structured value constructor.

System Action: The compiler assumes the type did not contain
a file and continues compiling.

21 RIGHT PARENTHESIS ")" EXPECTED
Explanation: A right parenthesis, u)", was expected but not
found.
Programmer Response: Add a right parenthesis in the
indicated location.
System Action: The compiler assumes a right parenthesis was
found and continues compiling.

Chapter 20. VS Pascal Messages 217

22 FORWARDED ROUTINE CLASS CONFLICT
Explanation: Either:

A procedure declaration was previously declared as a
forwarded function.
A function declaration was previously declared as a
forwarded procedure.

Programmer Response: Either:
Declare the routine conSistently.
Use a different name for one of the routines.

System Action: The compiler assumes a new declaration of the
routine is occurring and continues compiling.

25 TYPE NOT NEEDED ON FORWARDED FUNCTION
Explanation: A function declaration that was previously
forwarded must not specify a result type. VS Pascal assumes
that the type specification appears on the declaration that
contains the forwarding directive.
Programmer Response: Either:

Remove the result type specification
Do not declare the function with a directive initially.

System Action: The compiler compiles the result type.

26 MISSING TYPE SPECIFICATION FOR FUNCTION
Explanation: The indicated function header did not specify a
return type.
Programmer Response: Either:

Add a result type to the function declaration.

Use a procedure instead of a function.
System Action: The compiler assumes a result type was given
and continues compiling.

27 PROCEDURE/FUNCTION PREVIOUSLY
FORWARDED

Explanation: The indicated routine declaration contains a
forwarding directive (for example, FORWARD, EXTERNAL,
MAIN, or REENTRANT). However, the routine was already
previously forwarded.
Programmer Response: Remove one of the routine header
declarations.
System Action: The compiler assumes the specified directive is
correct and continues compiling.

28 ADDITIONAL ERRORS IN THIS LINE WERE NOT
DIAGNOSED

Explanation: The indicated construct contains more errors, but
the compiler did not diagnose these errors because of space
considerations,
Programmer Response: Correct the errors on this line. The
compiler might detect more errors on this line when you
recompile the unit.
System Action: The compiler attempts to recover and continues
compiling.

29 ILLEGAL HEXADECIMAL OR BINARY DIGIT
Explanation: The compiler detected either:

An invalid hexadecimal digit within a hexadecimal
constant specification with one of these forms:

' ... IX

' ... 'XC
' ... 'XG

' ... 'XR.
An invalid binary digit within a binary constant
specification with the form:

1 ••• '8.

218 VS Pascal Application Programming Guide

The following characters are valid hexadecimal digits:
o through 9
A through F
a through f

The following characters are valid binary digits:
o
1.

Programmer Response: Use a valid digit or use a different
base.
System Action: The compiler assumes a zero was intended and
continues compiling.

30 UNIDENTIFIABLE CHARACTER
Explanation: The indicated character is not a valid token or is
out of context.
Programmer Response: Remove the character from the
source.
System Action: The compiler skips the character and continues
compiling.

31 DIGIT EXPECTED
Explanation: A decimal digit was expected but missing at the
indicated location.
Programmer Response: Place a digit where indicated.
System Action: The compiler attempts to recover and continues
compiling. This omission is an error in most cases. However,
when the LANGLVL(ANSI83) compile-time option is in effect, the
compiler might issue this message with a different class,
depending on the setting of STDFLAG, when the exponent
character immediately follows the decimal point in a real
constant.

34 END OF STRING NOT SEEN
Explanation: A string literal cannot cross a line boundary. This
error is often caused by mismatched quotation marks.
Programmer Response: Place the string literal on a new line.
If the literal is too large to fit on one line, break it up into
multiple strings and concatenate the strings with the i I
operator. (Concatenation of string constants is performed at
compile time.)
System Action: The compiler assumes the string was ended by
a single quote at the end of the line and continues compiling.

37 STANDARD ROUTINES NOT PERMITTED AS
PARAMETERS

Explanation: You cannot pass standard routines that generate
in-line code as parameters to other routines. See "Routines
That May Not Be Passed As Parameters" on page 277.
Programmer Response: Peclare a routine that calls only the
standard routine and pass this new routine as the parameter.
System Action: The compiler assumes the routine was legal to
pass as a parameter and continues compiling.

38 VARIABLE MUST BE OF TYPE FILE
Explanation: The indicated variable must be a FILE type.
Programmer Response: Use a file variable where indicated.
System Action: The compiler assumes a file was specified and
continues compiling.

39 MUST BE OF TYPE TEXT
Explanation: The indicated variable must be a TEXT type.
Programmer Response: Use a TEXT file where indicated.
System Action: The compiler assumes a TEXT file was
specified and continues compiling.

22 FORWARDED ROUTINE CLASS CONFLICT
Explanation: Either:

A procedure declaration was previously declared as a
forwarded function.

A function declaration was previously declared as a
forwarded procedure.

Programmer Response: Either:

Declare the routine consistently.
Use a different name for one of the routines.

System Action: The compiler assumes a new declaration of the
routine is occurring and continues compiling.

25 TYPE NOT NEEDED ON FORWARDED FUNCTION
Explanation: A function declaration that was previously
forwarded must not specify a result type. VS Pascal assumes
that the type specification appears on the declaration that
contains the forwarding directive.
Programmer Response: Either:

Remove the result type specification

Do not declare the function with a directive initially.
System Action: The compiler compiles the result type.

26 MISSING TYPE SPECIFICATION FOR FUNCTION
Explanation: The indicated function header did not specify a
return type.
Programmer Response: Either:

Add a result type to the function declaration.

Use a procedure instead of a function.
System Action: The compiler assumes a result type was given
and continues compiling.

27 PROCEDURE/FUNCTION PREVIOUSLY
FORWARDED

Explanation: The indicated routine declaration contains a
forwarding directive (for example. FORWARD. EXTERNAL.
MAIN. or REENTRANT). However. the routine was already
previously forwarded.
Programmer Response: Remove one of the rOutine header
declarations.
System Action: The compiler assumes the specified directive is
correct and continues compiling.

28 ADDITIONAL ERRORS IN THIS LINE WERE NOT
DIAGNOSED

Explanation: The indicated construct contains more errors. but
the compiler did not diagnose these errors because of space
considerations.
Programmer Response: Correct the errors on this line. The
compiler might detect more errors on this line when you
recompile the unit.
System Action: The compiler attempts to recover and continues
compiling.

29 ILLEGAL HEXADECIMAL OR BINARY DIGIT
Explanation: The compiler detected either:

An invalid hexadecimal digit within a hexadecimal
constant specification with one of these forms:

I •• ,IX

• ... ·XC
' ... 'XG

' ... 'XR.
An invalid binary digit within a binary constant
specification with the form:

I ... IB.

218 VS Pascal Application Programming Guide

The following characters are valid hexadecimal digits:
Othrough 9
A through F
a through f

The following characters are valid binary digits:
o
1.

Programmer Response: Use a valid digit or use a different
base.
System Action: The compiler assumes a zero was intended and
continues compiling.

30 UNIDENTIFIABLE CHARACTER
Explanation: The indicated character is not a valid token or is
out of context.
Programmer Response: Remove the character from the
source.
System Action: The compiler skips the character and continues
compiling.

31 DIGIT EXPECTED
Explanation: A decimal digit was expected but misSing at the
indicated location.
Programmer Response: Place a digit where indicated.
System Action: The compiler attempts to recover and continues
compiling. This omission is an error in most cases. However.
when the LANGLVL(ANSI83) compile-time option is in effect. the
compiler might issue this message with a different class.
depending on the setting of STDFLAG. when the exponent
character immediately follows the decimal point in a real
constant.

34 END OF STRING NOT SEEN
Explanation: A string literal cannot cross a line boundary. This
error is often caused by mismatched quotation marks.
Programmer Response: Place the string literal on a new line.
If the literal is too large to fit on one line. break it up into
multiple strings and concatenate the strings with the i I
operator. (Concatenation of string constants is performed at
compile time.)
System Action: The compiler assumes the string was ended by
a single quote at the end of the line and continues compiling.

37 STANDARD ROUTINES NOT PERMITTED AS
PARAMETERS

Explanation: You cannot pass standard routines that generate
in-line code as parameters to other routines. See" Routines
That May Not Be Passed As Parameters" on page 277.
Programmer Response: Declare a routine that calis only the
standard routine and pass this new routine as the parameter.
System Action: The compiler assumes the routine was legal to
pass as a parameter and continues compiling.

38 VARIABLE MUST BE OF TYPE FILE
Explanation: The indicated variable must be a FILE type.
Programmer Response: Use a file variable where indicated.
System Action: The compiler assumes a file was specified and
continues compiling.

39 MUST BE OF TYPE TEXT
Explanation: The indicated variable must be a TEXT type.
Programmer Response: Use a TEXT file where indicated.
System Action: The compiler assumes a TEXT file was
specified and continues compiling.

40 REOUIRED PARAMETERS ARE MISSING
Explanation: The indicated read or write procedure is missing
a required parameter. Follow these procedures:

READ requires at least one variable to read data into.
WRITE requires at least one expression to write data from.
READSTR requires a string expression and at least one
variable.

• WRITESTR requires a string variable and at least one
expression.

Programmer Response: Specify the correct parameters for the
routine.
System Action: The compiler attempts to recover and continues
compiling.

41 COMMA "," EXPECTED
Explanation: A comma was expected but not found.
Programmer Response: Use a comma where indicated.
System Action: The compiler attempts to recover and continues
compiling.

42 USER DEFINED SCALARS NOT PERMITTED
Explanation: Expressions that are user-defined enumerated
types cannot be directly read from or written to a text file.
Programmer Response: Either:

Use a CASE statement to assign the name of the value of
the enumerated expression into a temporary string
variable and write that string out.
Write the ordinal value of the enumerated expression out.

System Action: The compiler attempts to recover and continues
compiling.

43 OPERAND OF READ/WRITE NOT OF A VALID
TYPE

Explanation: Any parameter passed to the procedures READ or
WRITE (TEXT file) must be compatible with one of the following
types:

INTEGER
REAL
SHORTREAL
CHAR
GCHAR

BOOLEAN (WRITE only)
STRING
GSTRING
PACKED ARRAY[1 .. n] OF CHAR (where n is a positive
integer constant)
PACKED ARRAY[1 .. n] OF GCHAR (where n is a positive
integer constant).

Programmer Response: Ensure the parameter passed is the
intended one. If it is, either:

Convert the parameter to an appropriate type.
Do not pass the parameter.

System Action: The compiler attempts to recover and continues
compiling.

44 FIELD LENGTH MUST BE INTEGER
Explanation: The indicated length qualifier expression in a
READ or WRITE statement is not of type integer. Any length
specification within a text-file READ/WRITE must be of type
integer.
Programmer Response: Use an integer expression.
System Action: The compiler attempts to recover and continues
compiling.

45 SET CONTAINS CONSTANT MEMBER(S) WHICH
ARE OUT OF RANGE

Explanation: The indicated set constant contains members that
are not valid for the set variable to which the constant is being
assigned.

For example,

VAR
S : SET OF 10 .. 20;

BEGIN
S :; [1.2]; (* <=; This statement *)

(* produces error 45. *)
END;

This error can also occur when a set constant is being passed
as a parameter.
Programmer Response: Either:

Extend the set bounds.
Use proper values in the set constant.

System Action: The compiler attempts to recover and continues
compiling.

46 SECOND FIELD LENGTH APPLICABLE ONLY TO
REAL DATA

Explanation: In the procedure WRITE (TEXT file case), only
expressions of type REAL (or SHORTREAL) are permitted to
have two length field qualifications.
Programmer Response: Either:

• Use a real expression.
Delete the second length field.

System Action: The compiler attempts to recover and continues
compiling.

47 ARRAY REFERENCE CONTAINS TOO MANY
SUBSCRIPTS

Explanation: An array variable of dimension 'n' is being
subscripted with more than 'n' subscripts.
Programmer Response: Ensure the array being subscripted is
the correct one. If it is, use the correct number of subscripts.
System Action: The compiler attempts to recover and continues
compiling.

48 ASSOCIATED VARIABLE OF SUBSCRIPT MUST
BE OF AN ARRAY TYPE

Explanation: An attempt is being made to subscript a variable
that is not declared as an array.
Programmer Response: Ensure the variable being subscripted
is the one intended. If it is, either:

Remove the subscript.
Declare the variable as an array.

System Action: The compiler attempts to recover and continues
compiling.

49 EXPRESSION MUST BE OF A SIMPLE SCALAR
TYPE

Explanation: Because of the context in which it is being used,
the indicated expression must be a simple scalar type.
Programmer Response: Use a simple scalar expression.
System Action: The compiler attempts to recover and continues
compiling.

Chapter 20. VS Pascal Messages 219

40 REQUIRED PARAMETERS ARE MISSING
Explanation: The indicated read or write procedure is missing
a required parameter. Follow these procedures:

READ requires at least one variable to read data into.

WRITE requires at least one expression to write data from.

READSTR requires a string expression and at least one
variable.

WRITESTR requires a string variable and at least one
expression.

Programmer Response: Specify the correct parameters for the
routine.
System Action: The compiler attempts to recover and continues
compiling.

41 COMMA "," EXPECTED
Explanation: A comma was expected but not found.
Programmer Response: Use a comma where indicated.
System Action: The compiler attempts to recover and continues
compiling.

42 USER DEFINED SCALARS NOT PERMITTED
Explanation: Expressions that are user-defined enumerated
types cannot be directly read from or written to a text file.
Programmer Response: Either:

Use a CASE statement to assign the name of the value of
the enumerated expression into a temporary string
variable and write that string out.

Write the ordinal value of the enumerated expression out.
System Action: The compiler attempts to recover and continues
compiling.

43 OPERAND OF READ/WRITE NOT OF A VALID
TYPE

Explanation: Any parameter passed to the procedures READ or
WRITE (TEXT file) must be compatible with one of the following
types:

INTEGER

REAL

SHORTREAL

CHAR
GCHAR

BOOLEAN (WRITE only)

STRING

GSTRING

PACKED ARRAY[1 .. n] OF CHAR (where n is a positive
integer constant)
PACKED ARRAY[1..n] OF GCHAR (where n is a positive
integer constant).

Programmer Response: Ensure the parameter passed is the
intended one. If it is, either:

Convert the parameter to an appropriate type.

Do not pass the parameter.
System Action: The compiler attempts to recover and continues
compiling.

44 FIELD LENGTH MUST BE INTEGER
Explanation: The indicated length qualifier expression in a
READ or WRITE statement is not of type integer. Any length
specification within a text-file READ/WRITE must be of type
integer.
Programmer Response: Use an integer expression.
System Action: The compiler attempts to recover and continues
compiling.

45 SET CONTAINS CONSTANT MEMBER(S) WHICH
ARE OUT OF RANGE

Explanation: The indicated set constant contains members that
are not valid for the set variable to which the constant is being
assigned.

For example,

VAR
S : SET OF 10 .. 20;

BEGIN
S := [1,2]; (* <== This statement *)

(* produces error 45. *)
END;

This error can also occur when a set constant is being passed
as a parameter.
Programmer Response: Either:

Extend the set bounds.

Use proper values in the set constant.
System Action: The compiler attempts to recover and continues
compiling.

46 SECOND FIELD LENGTH APPLICABLE ONLY TO
REAL DATA

Explanation: In the procedure WRITE (TEXT file case), only
expressions of type REAL (or SHORTREAL) are permitted to
have two length field qualifications.
Programmer Response: Either:

Use a real expression.

Delete the second length field.
System Action: The compiler attempts to recover and continues
compiling.

47 ARRAY REFERENCE CONTAINS TOO MANY
SUBSCRIPTS

Explanation: An array variable of dimension 'n' is being
subscripted with more than 'n' subscripts.
Programmer Response: Ensure the array being subscripted is
the correct one. If it is, use the correct number of subscripts.
System Action: The compiler attempts to recover and continues
compiling.

48 ASSOCIATED VARIABLE OF SUBSCRIPT MUST
BE OF AN ARRAY TYPE

Explanation: An attempt is being made to subscript a variable
that is not declared as an array.
Programmer Response: Ensure the variable being subscripted
is the one intended. If it is, either:

Remove the subscript.
Declare the variable as an array.

System Action: The compiler attempts to recover and continues
compiling.

49 EXPRESSION MUST BE OF A SIMPLE SCALAR
TYPE

Explanation: Because of the context in which it is being used,
the indicated expression must be a simple scalar type.
Programmer Response: Use a simple scalar expression.
System Action: The compiler attempts to recover and continues
compiling.

Chapter 20. VS Pascal Messages 219

50 NO MAXIMUM LENGTH SPECIFIED ON STRING
TYPE; 255 ASSUMED

Explanation: A type definition of the form "STRING" does not
contain a length specification to indicate the maximum length of
the string variable. The default length is 255.
Programmer Response: Explicitly specify the maximum length
desired.
System Action: The compiler attempts to recover and continues
compiling. This is a warning.

51 VARIABLE MUST BE OF A POINTER TYPE
Explanation: The indicated variable is used as a pointer.
However. the variable is not declared as a pOinter.
Programmer Response: Ensure the variable being used is the
correct one. if it is. either:

Redeclare the variable as a pOinter.
Do not use the variable as if it were a pOinter.

System Action: The compiler attempts to recover and continues
compiling.

52 CORRESPONDING VARIANT DECLARATION
MISSING

Explanation: Within a call to the procedure NEW or to the
function SIZEOF, either:

The indicated tag field specification fails to correspond to
a variant within the associated record variable.

The associated variable was not of a record type.
Programmer Response: If the variant being used was correct,
include it in the record declaration.
System Action: The compiler attempts to recover and continues
compiling.

54 EXPRESSION MUST BE NUMERIC
Explanation: Expressions that are prefixed with a sign (' +' or
'-') must be of a type that is compatible with INTEGER or REAL.
This also applies to expressions that are operands of such
predefined functions as ABS and SQA.
Programmer Response: Either:

Use a numeric expression.

Delete the sign.
System Action: The compiler attempts to recover and continues
compiling.

55 EXPRESSION MUST BE OF TYPE REAL
Explanation: The indicated call to ROUND or TRUNC has an
argument (actlJal parameter) of an incorrect type. The
predefined functions TRUNC and ROUND require an expression
of type REAL (or SHORT REAL) as a parameter.
Programmer Response: Ensure the parameter is a real value.
System Action: The complier attempts to recover and continues
compiling.

56 EXPRESSION MUST BE OF TYPE INTEGER
Explanation: The indicated expression must be of a type that is
compatible with INTEGER.
Programmer Response: Ensure the expression is an integer.
System Action: The compiler attempts to recover and continues
compiling.

220 vs Pascal Application Programming Guide

57 PARAMETER TYPE DOES NOT MATCH FORMAL
PARAMETER

Explanation: Within a procedure or function call. an expression
or variable being passed as an actual parameter is of a type
that is not compatible with the corresponding formal parameter.
Programmer Response: Ensure the actual parameter was the
one intended. If it is, either:

Convert the the actual parameter to the correct type.
Modify the formal parameter.

System Action: The compiler attempts to recover and continues
compiling.

58 EXPRESSION MUST BE A VARIABLE
Explanation: An erroneous attempt was made to pass a
non-variable as an actual parameter to a routine that expects a
pass-by-VAR parameter.
Programmer Response: Either:

Use a variable.
Pass the parameter by value or CONST.

System Action: The compiler attempts to recover and continues
compiling.

59 NUMBER OF PARAMETERS DOES NOT AGREE
Explanation: Within a procedure or function call. the number of
parameters being passed does not correspond with the number
required.
Programmer Response: Ensure the routine being called was
the one intended. If it is. either:

Pass the correct number of actual parameters.
Modify the routine declaration by changing the number of
formal parameters.

System Action: The compiler attempts to recover and continues
compiling.

60 LEFT PARENTHESIS "C" EXPECTED
Explanation: A left parenthesis, "(", was expected but not
found.
Programmer Response: Use a left parenthesis where
indicated.
System Action: The compiler attempts to recover and continues
compiling.

61 CONSTANT EXPECTED
Explanation: At the place indicated, a constant was expected
but is missing.
Programmer Response: Use a constant where indicated.
System Action: The compiler attempts to recover and continues
compiling.

62 TYPE SPECIFICATION EXPECTED
Explanation: At the place indicated, a type definition is
expected but is missing.
Programmer Response: Use a type specification where
indicated.
System Action: The compiler attempts to recover and continues
compiling.

63 RANGE SPECIFICATION SYMBOL " •• " EXPECTED
Explanation: A range specification symbol was expected but
not found.
Programmer Response: Use a range symbol where indicated.
System Action: The compiler attempts to recover and continues
compiling.

50 NO MAXIMUM LENGTH SPECIFIED ON STRING
TYPE; 255 ASSUMED

Explanation: A type definition of the form "STRING" does not
contain a length specification to indicate the maximum length of
the string variable. The default length is 255.
Programmer Response: Explicitly specify the maximum length
desired.
System Action: The compiler attempts to recover and continues
compiling. This is a warning.

51 VARIABLE MUST BE OF A POINTER TYPE
Explanation: The indicated variable is used as a pOinter.
However, the variable is not declared as a pOinter.
Programmer Response: Ensure the variable being used is the
correct one. If it is, either:

Redeclare the variable as a pointer.

Do not use the variable as if it were a pointer.
System Action: The compiler attempts to recover and continues
compiling.

52 CORRESPONDING VARIANT DECLARATION
MISSING

Explanation: Within a call to the procedure NEW or to the
function SIZEOF, either:

The indicated tag field specification fails to correspond to
a variant within the associated record variable.

The associated variable was not of a record type.
Programmer Response: If the variant being used was correct,
include it in the record declaration.
System Action: The compiler attempts to recover and continues
compiling.

54 EXPRESSION MUST BE NUMERIC
Explanation: Expressions that are prefixed with a sign (' +' or
'-') must be of a type that is compatible with INTEGER or REAL.
This also applies to expressions that are operands of such
predefined functions as ASS and SQR.
Programmer Response: Either:

Use a numeric expression.
Delete the sign.

System Action: The compiler attempts to recover and continues
compiling.

55 EXPRESSION MUST BE OF TYPE REAL
Explanation: The indicated call to ROUND or TRUNC has an
argument (actual parameter) of an incorrect type. The
predefined functions TRUNC and ROUND require an expression
of type REAL (or SHORTREAL) as a parameter.
Programmer Response: Ensure the parameter is a real value.
System Action: The compiler attempts to recover and continues
compiling.

56 EXPRESSION MUST BE OF TYPE INTEGER
Explanation: The indicated expression must be of a type that is
compatible with INTEGER.
Programmer Response: Ensure the expression is an integer.
System Action: The compiler attempts to recover and continues
compiling.

220 vs Pascal Application Programming Guide

57 PARAMETER TYPE DOES NOT MATCH FORMAL
PARAMETER

Explanation: Within a procedure or function call, an expression
or variable being passed as an actual parameter is of a type
that is not compatible with the corresponding formal parameter.
Programmer Response: Ensure the actual parameter was the
one intended. If it is, either:

Convert the the actual parameter to the correct type.
Modify the formal parameter.

System Action: The compiler attempts to recover and continues
compiling.

58 EXPRESSION MUST BE A VARIABLE
Explanation: An erroneous attempt was made to pass a
non-variable as an actual parameter to a routine that expects a
pass-by-VAR parameter.
Programmer Response: Either:

Use a variable.

Pass the parameter by value or CONST.
System Action: The compiler attempts to recover and continues
compiling.

59 NUMBER OF PARAMETERS DOES NOT AGREE
Explanation: Within a procedure or function call, the number of
parameters being passed does not correspond with the number
required.
Programmer Response: Ensure the routine being called was
the one intended. If it is, either:

Pass the correct number of actual parameters.

Modify the routine declaration by changing the number of
formal parameters.

System Action: The compiler attempts to recover and continues
compiling.

60 LEFT PARENTHESIS "(" EXPECTED
Explanation: A left parenthesis, "(", was expected but not
found.
Programmer Response: Use a left parenthesis where
indicated.
System Action: The compiler attempts to recover and continues
compiling.

61 CONSTANT EXPECTED
Explanation: At the place indicated, a constant was expected
but is missing.
Programmer Response: Use a constant where indicated.
System Action: The compiler attempts to recover and continues
compiling.

62 TYPE SPECIFICATION EXPECTED
Explanation: At the place indicated, a type definition is
expected but is missing.
Programmer Response: Use a type specification where
indicated.
System Action: The compiler attempts to recover and continues
compiling.

63 RANGE SPECIFICATION SYMBOL " EXPECTED
Explanation: A range specification symbol was expected but
not found.
Programmer Response: Use a range symbol where indicated.
System Action: The compiler attempts to recover and continues
compiling.

64 EXPRESSION'S TYPE IS INCORRECT OR
INCOMPATIBLE WITHIN CONTEXT

Explanation: This error is caused by a number of reasons,
including:

A unary or binary operator is being applied to an
expression that is of a type that is not valid for the
operator.
A binary operator is being used on two expressions of
incompatible types.
The parameters of the MIN or MAX functions are of
incompatible types.
Members of a set constructor have inconsistent types.

Programmer Response: Ensure all types are compatible where
indicated.
System Action: The compiler attempts to recover and continues
compiling.

65 SUB RANGE LOWER BOUND IS GREATER THAN
UPPER BOUND

Explanation: The lower bound of a subrange was greater than
the specified upper bound.
Programmer Response: Adjust one of the bounds so that the
lower bound is less than or equal to the upper bound.
System Action: The compiler attempts to recover and continues
compiling.

66 ASSIGNMENT TO POINTER QUALIFIED VARIANT
RECORD UNSAFE

Explanation: The indicated statement attempts an assignment
to an entire pointer-qualified record variable with variant fields.
Such an assignment is dangerous under VS Pascal. This
message is issued because the pointer-qualified record might
have been allocated with a size that is specific to its active
variant.

Here is an example of the error:

TYPE
R = RECORO

CASE BOOLEAN OF
TRUE: (C:CHAR);
FALSE: (A: ALPHA)

END;
VAR P @R;

RR R;
BEGIN

NEW(P,TRUE);
P@ := RR (* <=== Invalid assignment, *)

END

Programmer Response: Ensure the value being assigned is at
least as long as the variable being assigned into.
System Action: The compiler generates code to perform the
assignment and continues compiling. This is a warning.

67 REAL TYPE NOT VALID HERE
Explanation: The indicated expression is of type REAL or
SHORTREAL. An expression of this type is not valid within the
associated context.
Programmer Response: Do not use a REAL or SHORTREAL
value here.
System Action: The compiler attempts to recover and continues
compiling.

68 "OF" EXPECTED
Explanation: An OF was expected but not found.
Programmer Response: Use the reserved word OF where
indicated.
System Action: The compiler attempts to recover and continues
compiling.

69 TAG CONSTANT DOES NOT MATCH TAG FIELD
TYPE

Explanation: Within a RECORD definition, a variant tag is being
defined that is of a type that is not compatible with the
corresponding tag field type.

Within a call to NEW or SIZEOF, a tag value is specified that is
of a type that is not compatible with the corresponding tag field
type of an associated record variable.
Programmer Response: Either:

Use a valid tag constant.
Change the variant definition to use a different type.

System Action: The compiler attempts to recover and continues
compiling.

70 DUPLICATE VARIANT FIELD
Explanation: Within a RECORD definition, a variant tag is being
defined more than once.
Programmer Response: Delete or change one of the duplicate
variant tags.
System Action: The compiler attempts to recover and continues
compiling.

71 NOT APPLICABLE TO "PACKED" QUALIFIER
Explanation: The indicated type definition was qualified with
the word "PACKED". Such a qualification within the associated
context is not va I id.
Programmer Response: Remove the PACKED reserved word
from the type declaration.
System Action: The compiler attempts to recover and continues
compiling.

72 LEFT BRACKET "[" EXPECTED
Explanation: A left bracket, "[", was expected but not found. A
"(." is also acceptable.
Programmer Response: Use a left bracket where indicated.
System Action: The compiler attempts to recover and continues
compiling.

74 RIGHT BRACKET "]" EXPECTED
Explanation: A right bracket, "J", was expected but not found.
A ".r is also acceptable.
Programmer Response: Use a right bracket where indicated.
System Action: The compiler attempts to recover and continues
compiling.

75 LENGTH QUALIFIER APPLICABLE ONLY TO
STRING TYPE

Explanation: A length qualifier was applied to a non-STRING
type. STRINGs are the only types that can have length
qualifiers.
Programmer Response: Either:

Use a STRING.
Remove the length qualifier.

System Action: The compiler attempts to recover and continues
compiling.

Chapter 20. VS Pascal Messages 221

64 EXPRESSION'S TYPE IS INCORRECT OR
INCOMPATIBLE WITHIN CONTEXT

Explanation: This error is caused by a number of reasons,
including:

A unary or binary operator is being applied to an
expression that is of a type that is not valid for the
operator.

A binary operator is being used on two expressions of
incompatible types.

The parameters of the MIN or MAX functions are of
incompatible types.

Members of a set constructor have inconsistent types.
Programmer Response: Ensure all types are compatible where
indicated.
System Action: The compiler attempts to recover and continues
compiling.

65 SUBRANGE LOWER BOUND IS GREATER THAN
UPPER BOUND

Explanation: The lower bound of a subrange was greater than
the specified upper bound.
Programmer Response: Adjust one of the bounds so that the
lower bound is less than or equal to the upper bound.
System Action: The compiler attempts to recover and continues
compiling.

66 ASSIGNMENT TO POINTER QUALIFIED VARIANT
RECORD UNSAFE

Explanation: The indicated statement attempts an assignment
to an entire pointer-qualified record variable with variant fields.
Such an assignment is dangerous under VS Pascal. This
message is issued because the pointer-qualified record might
have been allocated with a size that is specific to its active
variant.

Here is an example of the error:

TYPE
R = RECORD

CASE BOOLEAN OF
TRUE: (e: CHAR);
FALSE: (A: ALPHA)

END;
VAR P @R;

RR R;
BEGIN

NEW(P,TRUE);
P@ := RR

END
(* <=== Invalid assignment. *)

Programmer Response: Ensure the value being assigned is at
least as long as the variable being assigned into.
System Action: The compiler generates code to perform the
assignment and continues compiling. This is a warning.

67 REAL TYPE NOT VALID HERE
Explanation: The indicated expression is of type REAL or
SHORTREAL. An expression of this type is not valid within the
associated context.
Programmer Response: Do not use a REAL or SHORTREAL
value here.
System Action: The compiler attempts to recover and continues
compiling.

68 "OF" EXPECTED
Explanation: An OF was expected but not found.
Programmer Response: Use the reserved word OF where
indicated.
System Action: The compiler attempts to recover and continues
compiling.

69 TAG CONSTANT DOES NOT MATCH TAG FIELD
TYPE

Explanation: Within a RECORD definition, a variant tag is being
defined that is of a type that is not compatible with the
corresponding tag field type.

Within a call to NEW or SIZEOF, a tag value is specified that is
of a type that is not compatible with the corresponding tag field
type of an associated record variable.
Programmer Response: Either:

Use a valid tag constant.

Change the variant definition to use a different type.
System Action: The compiler attempts to recover and continues
compiling.

70 DUPLICATE VARIANT FIELD
Explanation: Within a RECORD definition, a variant tag is being
defined more than once.
Programmer Response: Delete or change one of the duplicate
variant tags.
System Action: The compiler attempts to recover and continues
compiling.

71 NOT APPLICABLE TO "PACKED" QUALIFIER
Explanalion: The indicated type definition was qualified with
the word" PACKED". Such a qualification within the associated
context is not valid.
Programmer Response: Remove the PACKED reserved word
from the type declaration.
System Action: The compiler attempts to recover and continues
compiling.

72 LEFT BRACKET "[" EXPECTED
Explanalion: A left bracket, "[", was expected but not found. A
"(." is also acceptable.
Programmer Response: Use a left bracket where indicated.
System Action: The compiler attempts to recover and continues
compiling.

74 RIGHT BRACKET "]" EXPECTED
Explanation: A right bracket, "]", was expected but not found.
A ".)" is also acceptable.
Programmer Response: Use a right bracket where indicated.
System Action: The compiler attempts to recover and continues
compiling.

75 LENGTH QUALIFIER APPLICABLE ONLY TO
STRING TYPE

Explanation: A length qualifier was applied to a non-STRING
type. STRINGs are the only types that can have length
qualifiers.
Programmer Response: Either:

Use a STRING.

Remove the length qualifier.
System Action: The compiler attempts to recover and continues
compiling.

Chapter 20. VS Pascal Messages 221

76 FILE OF FILES NOT SUPPORTED
Explanation: A file cannot contain a file or a type that contains
a file.
Programmer Response: Ensure the type of the file is correct. If
it is. either:

Do not declare a file of this type.

Redeclare the type so that it does not contain a file.
System Action: The compiler attempts to recover and continues
compiling.

77 ILLEGAL REFERENCE OF FUNCTION NAME
Explanation: The indicated identifier is the name of a function.
This identifier is being used incorrectly. This error can occur
when you try to assign a resullto:

A function outside of the function
A function that is either predefined or a formal parameter.

Programmer Response:
System Action: The compiler attempts to recover and continues
compiling.

78 SUBSCRIPT TYPE NOT COMPATIBLE WITH INDEX
TYPE

Explanation: The indicated subscript expression is not of a type
that is compatible with the declared subscript type for the array.
Programmer Response: Either:

Ensure the expression returns a type compatible with the
index type.

Change the index type.
System Action: The compiler attempts to recover and continues
compiling.

79 ASSOCIATED VARIABLE MUST BE OF A RECORD
TYPE

Explanation: A variable associated with the indicated
statement or expression is required to be of a record type
according to context. but such is not the case.
Programmer Response: Ensure a record is used where
indicated.
System Action: The compiler attempts to recover and continues
compiling.

80 RECORD FIELD QUALIFIER NOT DEFINED
Explanation: The indicated identifier was not defined as a
record field.
Programmer Response: Do one of the following:

Use a different record name.

Use a different qualifier name.
Do not use the period qualification.

System Action: The compiler assumes the variable was a
record and continues compiling.

81 QUALIFIED VARiABLE NOT A RECORD
Explanation: A variable was qualified that was not a record.
Programmer Response: Either:

Use a record variable name to the left of the period.
Do not qualify the variable.

System Action: The compiler assumes the variable was a
record and continues compiling.

222 vs Pascal Application Programming Guide

82 ASSOCIATED VARIABLE MUST BE OF A POINTER
OR FILE TYPE

Explanation: The indicated arrow-qualified variable is not of a
pOinter or file type.
Programmer Response: Either:

Use a valid pOinter or file name.
Delete the pOinter dereference symbol.

System Action: The compiler attempts to recover and continues
compiling.

83 SET ELEMENT OUT OF RANGE
Explanation: The indicated set member of a set constructor
exceeds the allowed range for the set.
Programmer Response: Either:

Use a valid set member.
Expand the range of the set.

System Action: The compiler attempts to recover and continues
compiling.

84 EXPRESSION MUST BE OF A SET TYPE
Explanation: The indicated expression is required to be of a set
type in the context in which it is being used.
Programmer Response: Ensure the expression is a constant
expression resulting in an integer value.
System Action: The compiler attempts to recover and continues
compiling.

85 MUST BE POSITIVE INTEGER CONSTANT
Explanation: The indicated expression fails to evaluate to a
positive integer constant. Because of the context in which it is
used. the expression must evaluate to a positive integer
expression.
Programmer Response: Ensure the expression evaluates to a
positive integer.
System Action: The compiler attempts to recover and continues
compiling.

86 LEAVE/CONTINUE NOT WITHIN LOOP
Explanation: The indicated LEAVE or CONTINUE statement
does not reside within a loop construct.
Programmer Response: Either:

Delete the LEAVE or CONTINUE.
Make sure the LEAVE or CONTINUE is in a loop.

System Action: The compiler attempts to recover and continues
compiling.

87 ASSIGNMENT SYMBOL ": EXPECTED
Explanation: An assignment symbol. ": = ". was expected but
not found.
Programmer Response: Place an assignment symbol where
indicated.
System Action: The compiler attempts to recover and continues
compiling.

89 TEXT FILES MAY NOT BE UPDATED
Explanation: An attempt was made to open a text file for
updating. Only record files can be updated.
Programmer Response: Use an identifier with a record file
type.
System Action: The compiler attempts to recover and continues
compiling.

76 FILE OF FILES NOT SUPPORTED
Explanation: A file cannot contain a file or a type that contains
a file.
Programmer Response: Ensure the type of the file is correct. If
it is, either:

Do not declare a file of this type.

Redeclare the type so that it does not contain a file.
System Action: The compiler attempts to recover and continues
compiling.

77 ILLEGAL REFERENCE OF FUNCTION NAME
Explanation: The indicated identifier is the name of a function.
This identifier is being used incorrectly. This error can occur
when you try to assign a result to:

A function outside of the function

A function that is either predefined or a tormal parameter.
Programmer Response:
System Action: The compiler attempts to recover and continues
compiling.

78 SUBSCRIPT TYPE NOT COMPATIBLE WITH INDEX
TYPE

Explanation: The indicated subscript expression is not of a type
that is compatible with the declared subscript type for the array.
Programmer Response: Either:

Ensure the expression returns a type compatible with the
index type.

Change the index type.
System Action: The compiler attempts to recover and continues
compiling.

79 ASSOCIATED VARIABLE MUST BE OF A RECORD
TYPE

Explanation: A variable associated with the indicated
statement or expression is required to be of a record type
according to context, but such is not the case.
Programmer Response: Ensure a record is used where
indicated.
System Action: The compiler attempts to recover and continues
compiling.

80 RECORD FIELD QUALIFIER NOT DEFINED
Explanation: The indicated identifier was not defined as a
record field.
Programmer Response: Do one of the following:

Use a different record name.

Use a different qualifier name.

Do not use the period qualification.
System Action: The compiler assumes the variable was a
record and continues compiling.

81 QUALIFIED VARIABLE NOT A RECORD
Explanation: A variable was qualified that was not a record.
Programmer Response: Either:

Use a record variable name to the left of the period.

Do not qualify the variable.
System Action: The compiler assumes the variable was a
record and continues compiling.

222 vs Pascal Application Programming Guide

82 ASSOCIATED VARIABLE MUST BE OF A POINTER
OR FILE TYPE

Explanation: The indicated arrow-qualified variable is not of a
pOinter or file type.
Programmer Response: Either:

Use a valid pOinter or file name.

Delete the pOinter dereference symbol.
System Action: The compiler attempts to recover and continues
compiling.

83 SET ELEMENT OUT OF RANGE
Explanation: The indicated set member of a set constructor
exceeds the allowed range for the set.
Programmer Response: Either:

Use a valid set member.

Expand the range of the set.
System Action: The compiler attempts to recover and continues
compiling.

84 EXPRESSION MUST BE OF A SET TYPE
Explanation: The indicated expression is required to be of a set
type in the context in which it is being used.
Programmer Response: Ensure the expression is a constant
expression resulting in an integer value.
System Action: The compiler attempts to recover and continues
compiling.

85 MUST BE POSITIVE INTEGER CONSTANT
Explanation: The indicated expression fails to evaluate to a
positive integer constant. Because of the context in which it is
used, the expression must evaluate to a positive integer
expression.
Programmer Response: Ensure the expression evaluates to a
positive integer.
System Action: The compiler attempts to recover and continues
compiling.

86 LEAVE/CONTINUE NOT WITHIN LOOP
Explanation: The indicated LEAVE or CONTINUE statement
does not reside within a loop construct.
Programmer Response: Either:

Delete the LEAVE or CONTINUE.
Make sure the LEAVE or CONTINUE is in a loop.

System Action: The compiler attempts to recover and continues
compiling.

87 ASSIGNMENT SYMBOL u: =" EXPECTED
Explanation: An assignment symbol, ": = ", was expected but
not found.
Programmer Response: Place an assignment symbol where
indicated.
System Action: The compiler attempts to recover and continues
compiling.

89 TEXT FILES MAY NOT BE UPDATED
Explanation: An attempt was made to open a text file for
updating. Only record files can be updated.
Programmer Response: Use an identifier with a record file
type.
System Action: The compiler attempts to recover and continues
compiling.

90 LABEL NOT DECLARED
Explanation: The indicated label did not appear in a LABEL
declaration.
Programmer Response: Either:

Declare the label.

Use the correct label identifier.
System Action: The compiler attempts to recover and continues
compiling.

91 MAXIMUM LENGTH OF STRING VARIABLE DOES
NOT MATCH FORMAL PARAMETER

Explanation: A string variable is being passed to a procedure
by VAR, and the corresponding formal parameter is declared
with an explicit length. This error occurs when the declared
length of the variable being passed does not match that of the
formal parameter.

Here is an example this error:

PROCEDURE XYZ(VAR S: STRING(lOO));
EXTERNAL;

VAR T: STRING(50);
BEGIN

XYZ(T); (* ERROR: The declared length *)
(* of T does not match that *)
(* of parameter S, *)

END

Programmer Response: Either:

Use conformant string parameters.
Change the declaration of one of the parameters.

System Action: The compiler attempts to recover and continues
compiling.

92 "THEN" EXPECTED
Explanation: A THEN was expected but not found.
Programmer Response: Put a THEN where indicated.
System Action: The compiler attempts to recover and continues
compiling.

93 REDUNDANT CASE ALTERNATIVE
Explanation: The indicated CASE statement label is equal to a
previous label within the same CASE statement.
Programmer Response: Either:

Delete one of the duplicate CASE labels.

Change one of them to the correct value.
System Action: The compiler attempts to recover and continues
compiling.

94 REQUIRED LENGTH EXPRESSION MISSING FOR
DYNAMIC STRING ALLOCATION

Explanation: A pOinter variable declared with the type
STRINGPTR is being allocated with the NEW procedure, but the
required length expression is missing.
Programmer Response: Add an expression to the call to NEW
that specifies the length of the string desired.
System Action: The compiler attempts to recover and continues
compiling.

95 "UNTIL" EXPECTED
Explanation: An UNTIL was expected but not found.
Programmer Response: Put an UNTIL where indicated.
System AClion: The compiler attempts to recover and continues
compiling.

96 "DO" EXPECTED
Explanation: A DO was expected but not found.
Programmer Response: Put a DO where indicated.
System Action: The compiler attempts to recover and continues
compiling.

97 FOR-LOOP INDEX MUST BE SIMPLE LOCAL
VARIABLE

Explanation: A FOR loop variable must be declared as a simple
automatic (VAR) variable, local to the routine in which the FOR
loop resides. This means that the loop control variable cannot
be:

Cannot be a DEF, REF, or STATIC variable
Cannot be a parameter to the routine

Can be part of a structure.

The indicated FOR loop variable did not meet this criteria.
Programmer Response: Make the loop control variable a local
VAR variable.
System Action: The compiler attempts to recover and continues
compiling.

98 "TO" EXPECTED
Explanation: A TO was expected but not found.
Programmer Response: Put a TO where indicated.
System Action: The compiler attempts to recover and continues
compiling.

99 LABEL PREVIOUSLY DEFINED
Explanation: The indicated label identifier was previously
defined within the associated routine.
Programmer Response: Change or delete one of the duplicate
label identifiers.
System Action: The compiler attempts to recover and continues
compiling.

103 EXPRESSION MUST BE OF TYPE BOOLEAN
Explanation: The indicated expression that is associated with
an IF, ASSERT, WHILE, or REPEAT statement must represent a
condition. Conditional expressions are of type BOOLEAN. The
indicated expression failed to meet this criteria.
Programmer Response: Ensure the expression results in a
BOOLEAN value.
System Action: The compiler attempts to recover and continues
compiling.

104 CONSTANT OUT OF RANGE
Explanation: The indicated constant expression evaluated to a
value that is outside the range required by its context.
Programmer Response: Either:

Use a valid constant.

If possible, expand the range of constants allowed.
System Action: The compiler attempts to recover and continues
compiling.

105 IDENTIFIER WAS PREVIOUSLY DECLARED
Explanation: The indicated identifier within a declaration was
previously declared within the same lexical scope.
Programmer Response: Either:

Change one of the declarations to use a different name.
Delete one of the declarations.

System Action: The compiler attempts to recover and continues
compiling.

Chapter 20. VS Pascal Messages 223

90 LABEL NOT DECLARED
Explanation: The indicated label did not appear in a LABEL
declaration.
Programmer Response: Either:

Declare the label.

Use the correct label identifier.
System Action: The compiler attempts to recover and continues
compiling.

91 MAXIMUM LENGTH OF STRING VARIABLE DOES
NOT MATCH FORMAL PARAMETER

Explanation: A string variable is being passed to a procedure
by VAR, and the corresponding formal parameter is declared
with an explicit length. This error occurs when the declared
length of the variable being passed does not match that of the
formal parameter.

Here is an example this error:

PROCEDURE XYZ(VAR S: STRING(HlO));
EXTERNAL;

VAR T: STRING(50);
BEGIN

XYZ(T); (* ERROR: The declared length *)
(* of T does not match that *)
(* of parameter S, *)

END

Programmer Response: Either:

Use conformant string parameters.

Change the declaration of one of the parameters.
System Action: The compiler attempts to recover and continues
compiling.

92 "THEN" EXPECTED
Explanation: A THEN was expected but not found.
Programmer Response: Put a THEN where indicated.
System Action: The compiler attempts to recover and continues
compiling.

93 REDUNDANT CASE ALTERNATIVE
Explanation: The indicated CASE statement label is equal to a
previous label within the same CASE statement.
Programmer Response: Either:

Delete one of the duplicate CASE labels.

Change one of them to the correct value.
System Action: The compiler attempts to recover and continues
compiling.

94 REQUIRED LENGTH EXPRESSION MISSING FOR
DYNAMIC STRING ALLOCATION

Explanation: A pOinter variable declared with the type
STRINGPTR is being allocated with the NEW procedure, but the
required length expression is missing.
Programmer Response: Add an expression to the call to NEW
that specifies the length of the string desired.
System Action: The compiler attempts to recover and continues
compiling.

95 "UNTIL" EXPECTED
Explanation: An UNTIL was expected but not found.
Programmer Response: Put an UNTIL where indicated.
System Action: The compiler attempts to recover and continues
compiling.

96 "DO" EXPECTED
Explanation: A DO was expected but not found.
Programmer Response: Put a DO where indicated.
System Action: The compiler attempts to recover and continues
compiling.

97 FOR-LOOP INDEX MUST BE SIMPLE LOCAL
VARIABLE

Explanation: A FOR loop variable mlJst be declared as a simple
automatic (VAR) variable, local to the routine in which the FOR
loop resides. This means that the loop control variable cannot
be:

Cannot be a DEF, REF, or STATIC variable

Cannot be a parameter to the routine

Can be part of a structure.

The indicated FOR loop variable did not meet this criteria.
Programmer Response: Make the loop control variable a local
VAR variable.
System Action: The compiler attempts to recover and continues
compiling.

98 "TO" EXPECTED
Explanation: A TO was expected but not found.
Programmer Response: Put a TO where indicated.
System Action: The compiler attempts to recover and continues
compiling.

99 LABEL PREVIOUSLY DEFINED
Explanation: The indicated label identifier was previously
defined within the associated routine.
Programmer Response: Change or delete one of the duplicate
label identifiers.
System Action: The compiler attempts to recover and continues
compiling.

103 EXPRESSION MUST BE OF TYPE BOOLEAN
Explanation: The indicated expression that is associated with
an IF, ASSERT, WHILE, or REPEAT statement must represent a
condition. Conditional expressions are of type BOOLEAN. The
indicated expression failed to meet this criteria.
Programmer Response: Ensure the expression results in a
BOOLEAN value.
System Action: The compiler attempts to recover and continues
compiling.

104 CONSTANT OUT OF RANGE
Explanation: The indicated constant expression evaluated to a
value that is outside the range required by its context.
Programmer Response: Either:

Use a valid constant.

If possible, expand the range of constants allowed.
System Action: The compiler attempts to recover and continues
compiling.

105 IDENTIFIER WAS PREVIOUSLY DECLARED
Explanation: The indicated identifier within a declaration was
previolJsly declared within the same lexical scope.
Programmer Response: Either:

Change one of the declarations to use a different name.

Delete one of the declarations.
System Action: The compiler attempts to recover and continues
compiling.

Chapter 20. VS Pascal Messages 223

106 UNDECLARED IDENTIFIER
Explanation: The indicated identifier being referenced was not
declared. This can occur when using an unqualified record
field name outside of a WITH statement.
Programmer Response: Do one of the following:

Use the correct identifier.
Declare the indicated identifier.
Qualify the identifier with a record value if the identifier is
a field name.

System Action: The compiler attempts to recover and continues
compiling.

107 IDENTIFIER IS NOT IN PROPER CONTEXT
Explanation: The indicated identifier is being used in a way that
is not consistent with how it was declared.
Programmer Response: Use an identifier that is valid in this
context.
System Action: The compiler attempts to recover and continues
compiling.

109 CASE LABEL TAG OF WRONG TYPE
Explanation: The value of the indicated CASE statement label
is not of a type that can conform to the CASE statement
indexing expression.
Programmer Response: Either:

Use a valid case label.
Modify the type of the CASE expression.

System Action: The compiler attempts to recover and continues
compiling.

110 LOOP WILL NEVER EXECUTE
Explanation: The indicated FOR loop will not execute at run
time. The compiler has determined that the terminating
condition for the loop is unconditionally true.
Programmer Response: Correct the error if this condition was
unintentional.
System Action: The compiler attempts to recover and continues
compiling. This is a warning.

111 LOOP RANGE EXCEEDS RANGE OF INDEX
Explanation: The indexing variable used for the indicated FOR
loop was declared with a sub range that does not include the
range indicated by the initial and final index values.
Programmer Response: Either:

Enlarge the range of the variable.
Change the loop bounds.

System Action: The compiler attempts to recover and continues
compiling. This is a warning.

112 "PROGRAM" HEADER MISSING
Explanation: The PROGRAM symbol was expected but not
found.
Programmer Response: Ensure the first keyword in the
program is PROGRAM.
System Action: The compiler attempts to recover and continues
compiling.

224 vs Pascal Application Programming Guide

113 NESTED COMMENT DELIMITER FOUND
Explanation: A starting comment symbol was detected within a
comment opened by the same starting symbol. This error often
occurs because of mismatched comment delimiters.
Programmer Response: Either:

Delete the nested comment delimiter.

Terminate the original comment.
System Action: The compiler attempts to recover and continues
compiling. This is a warning.

119 FIRST PARAMETER OF READSTR/WRITESTR
MUST BE OF TYPE STRING

Explanation: The first parameter of the indicated READSTR or
WRITESTR procedure was not a STRING.
Programmer Response: Ensure the first parameter is a string.
System Action: The compiler attempts to recover and continues
compiling.

120 STRING CONSTANT REQUIRES TRUNCATION
Explanation: The indicated string constant is being assigned to
a variable or being passed to a routine. This string constant
requires truncation because of its excessive length. Implicit
truncation of strings is not permitted.
Programmer Response: Either:

Use a larger string in the assignment or as the formal
parameter.
Explicitly truncate the string being assigned or passed.

System Action: The compiler attempts to recover and continues
compiling.

121 DECLARATION OUT OF ORDER: LABEL, CONST,
TYPE, VAR, ROUTINE

Explanation: This message can be produced when the
LANGLVL(ANSI83) compile-time option is specified. One or
more declaration constructs are not in the order required by
standard Pascal. Standard Pascal requires identifiers to be
declared in the following order:

1. Labels (LABEL)
2. Constants (CONST)
3. Types (TYPE)
4. Variables (VAR)
5. Routines (PROCEDURE/FUNCTION)

Programmer Response: Fix the order of the declarations if this
was unintentional, or consider compiling with
LANGLVL(EXTENDED).
System Action: The compiler attempts to recover and continues
compiling. VS Pascal issues this message only when
LANGLVL(ANSI83) is in effect. The message class is controlled
by STDFLAG.

122 "OTHERWISE" CLAUSE WITHOUT ASSOCIATED
CASE STATEMENT

Explanation: The indicated OTHERWISE statement is not within
the context of a CASE statement.
Programmer Response: Ensure the OTHERWISE statement is
within a CASE statement or delete the OTHERWISE statement.
System Action: The compiler attempts to recover and continues
compiling.

106 UNDECLARED IDENTIFIER
Explanation: The indicated identifier being referenced was not
declared. This can occur when using an unqualified record
field name outside of a WITH statement.
Programmer Response: Do one of the following:

Use the correct identifier.

Declare the indicated identifier.

Qualify the identifier with a record value if the identifier is
a field name.

System Action: The compiler attempts to recover and continues
compiling.

107 IDENTIFIER IS NOT IN PROPER CONTEXT
Explanation: The indicated identifier is being used in a way that
is not consistent with how it was declared.
Programmer Response: Use an identifier that is valid in this
context.
System Action: The compiler attempts to recover and continues
compiling.

109 CASE LABEL TAG OF WRONG TYPE
Explanation: The value of the indicated CASE statement label
is not of a type that can conform to the CASE statement
indexing expression.
Programmer Response: Either:

Use a valid case label.

Modify the type of the CASE expression.
System Action: The compiler attempts to recover and continues
compiling.

110 LOOP WILL NEVER EXECUTE
Explanation: The indicated FOR loop will not execute at run
time. The compiler has determined that the terminating
condition for the loop is unconditionally true.
Programmer Response: Correct the error if this condition was
unintentional.
System Action: The compiler attempts to recover and continues
compiling. This is a warning.

111 LOOP RANGE EXCEEDS RANGE OF INDEX
Explanation: The indexing variable used for the indicated FOR
loop was declared with a sub range that does not include the
range indicated by the initial and final index values.
Programmer Response: Either:

Enlarge the range of the variable.

Change the loop bounds.
System Action: The compiler attempts to recover and continues
compiling. This is a warning.

112 "PROGRAM" HEADER MISSING
Explanation: The PROGRAM symbol was expected but not
found.
Programmer Response: Ensure the first keyword in the
program is PROGRAM.
System Action: The compiler attempts to recover and continues
compiling.

224 VS Pascal Application Programming Guide

113 NESTED COMMENT DELIMITER FOUND
Explanation: A starting comment symbol was detected within a
comment opened by the same starting symbol. This error often
occurs because of mismatched comment delimiters.
Programmer Response: Either:

Delete the nested comment delimiter.

Terminate the original comment.
System Action: The compiler attempts to recover and continues
compiling. This is a warning.

119 FIRST PARAMETER OF READSTR/WRITESTR
MUST BE OF TYPE STRING

Explanation: The first parameter of the indicated READSTR or
WRITESTR procedure was not a STRING.
Programmer Response: Ensure the first parameter is a string.
System Action: The compiler attempts to recover and continues
compiling.

120 STRING CONSTANT REQUIRES TRUNCATION
Explanation: The indicated string constant is being assigned to
a variable or being passed to a routine. This string constant
requires truncation because of its excessive length. Implicit
truncation of strings is not permitted.
Programmer Response: Either:

Use a larger string in the assignment or as the formal
parameter.

Explicitly truncate the string being assigned or passed.
System Action: The compiler attempts to recover and continues
compiling.

121 DECLARATION OUT OF ORDER: LABEL, CONST,
TYPE, VAR, ROUTINE

Explanation: This message can be produced when the
LANGLVL(ANSI83) compile-time option is specified. One or
more declaration constructs are not in the order required by
standard Pascal. Standard Pascal requires identifiers to be
declared in the following order:

1. Labels (LABEL)
2. Constants (CONST)
3. Types (TYPE)
4. Variables (VAR)
5. Routines (PROCEDURE/FUNCTION)

Programmer Response: Fix the order of the declarations if this
was unintentional, or consider compiling with
LANGLVL(EXTENDED).
System Action: The compiler attempts to recover and continues
compiling. VS Pascal issues this message only when
LANGLVL(ANSI83) is in effect. The message class is controlled
by STDFLAG.

122 "OTHERWISE" CLAUSE WITHOUT ASSOCIATED
CASE STATEMENT

Explanation: The indicated OTHERWISE statement is not within
the context of a CASE statement.
Programmer Response: Ensure the OTHERWISE statement is
within a CASE statement or delete the OTHERWISE statement.
System Action: The compiler attempts to recover and continues
compiling.

124 CONSTRUCT OR OPERATION IS NOT IN
STANDARD PASCAL

Explanation: This message may be produced when the
LANGLVL(ANSI83) compile-time option is specified. The
indicated language construct or arithmetic operation is not
supported in standard Pascal, but is a VS Pascal language
extension.
Programmer Response: Either compile with
LANGLVL(EXTENDED) or remove the non-standard feature.
System Action: The compiler attempts to recover and continues
compiling. VS Pascal issues this message only when
LANGLVL(ANSI83) is in effect. The message class is controlled
bySTDFLAG.

125 REAL TO INTEGER CONVERSION NOT VALID
Explanation: The indicated expression is of type REAL, but
according to its context, it is required to be of type INTEGER.
Implicit REAL-to-INTEGER conversion is not performed.
Programmer Response: Convert the REAL or SHORTREAL
value :0 an integer value using TRUNC or ROUND or use a
REAL or SHORTREAL instead of an integer.
System Action: The compiler accepts the extension and
continues compiling.

126 TYPES NOT CONfORMABLE IN ASSIGNMENT
Explanation: The indicated assignment statement attempts to
assign an expression of a particular type to a variable of an
incompatible type.
Programmer Response: Ensure the types of the variable and
the expression are compatible.
System Action: The compiler attempts to recover and continues
compiling.

127 FILE VARIABLE ASSIGNMENT NOT PERMITTED
Explanation: The left side of the indicated assignment
statement is a variable of a file type or of a type that contains a
file. Assignment to file variables is not permitted.
Programmer Response: Ensure the type of file is correct. If it
is, either do not assign a variable of this type, or redeclare the
type so that it does not contain a file.
System Action: The compiler attempts to recover and continues
compiling.

128 NOT COMPILE-TIME COMPUTABLE
Explanation: The indicated expression fails to be a constant
expression that can be evaluated at compile time.
Programmer Response: Use a variable to hold the value of the
expression, or make the expression computable at compile
time.
System Action: The compiler attempts to recover and continues
compiling.

129 ASSIGNMENT TO "CONST" PARAMETER INVALID
Explanation: The indicated variable declared as a formal
CONST parameter within a particular routine cannot be
modified by an assignment.
Programmer Response: Ensure that the parameter being
modified is the correct one, and use a pass-by-VAR or
pass-by-value parameter if it is correct.
System Action: The compiler attempts to recover and continues
compiling.

130 ASSIGNMENT TO FOR-LOOP INDEX INVALID
Explanation: The indicated variable that is being used as a
FOR loop index cannot be modified by an assignment within the
FOR loop statement.
Programmer Response: Ensure the variable being modified is
the correct one, and use another variable to hold the index if it
is correct.
System Action: The compiler attempts to recover and continues
compiling.

131 PASSING "CONST" PARAMETER BY VAR
INVALID

Explanation: The indicated variable declared as a formal
CONST parameter cannot be modified by being passed as an
actual VAR parameter to a routine,
Programmer Response: Ensure that the parameter being
passed by VAR is the correct one, and, if it is correct, either
pass the parameter by value or by CONST to the called routine
or change the calling routine's parameter to a pass-by-value or
pass-by-VAR parameter,
System Action: The compiler attempts to recover and continues
compiling.

132 PASSING FOR-LOOP INDEX BY VAR INVALID
Explanation: The indicated variable that is being used as a
FOR loop index cannot be modified by being passed as an
actual VAR parameter to a routine,
Programmer Response: Pass the index by value or CONST
instead of by VAR.
System Action: The compiler attempts to recover and continues
compiling,

133 REfER·BACK TAGflELD MUST NOT BE TYPED
Explanation: The indicated tag field specification within a
record definition was found to reference a previous field within
the record, Such refer-back references cannot contain a type
reference.
Programmer Response: Either remove the type trom the tag
field specification or use a different name for the tag field.
System Action: The compiler attempts to recover and continues
compiling.

137 PASSING PACKED RECORD FIELD BY VAR NOT
VALID

Explanation: This message may be produced when the
LANGLVL(ANSI83) compiler option is specified. The indicated
field of a packed record is being passed as an actual VAR
parameter to a routine. Passing fields of packed records as
VAR parameters is not valid in standard Pascal.
Programmer Response: If this is intentional, you might want to
compile with the LANGLVL(EXTENDED) option. Otherwise,
remove the PACKED speCification from the record whose field
is being passed, assign the field to an unpacked variable and
pass it, or pass the field by value.
System Action: The compiler passes the field as a packed
record field and continues compiling. VS Pascal issues this
message only when the LANGLVL(ANSI83) compile-time option
is in effect. The message class is controlled by STDFLAG.

Chapter 20. VS Pascal Messages 225

124 CONSTRUCT OR OPERATION IS NOT IN
STANDARD PASCAL

Explanation: This message may be produced when the
LANGLVL(ANSI83) compile-time option is specified. The
indicated language construct or arithmetic operation is not
supported in standard Pascal, blJt is a VS Pascal language
extension.
Programmer Response: Either compile with
LANGLVL(EXTENDED) or remove the non-standard feature.
System Action: The compiler attempts to recover and continues
compiling. VS Pascal issues this message only when
LANGLVL(ANSI83) is in effect. The message class is controlled
by STDFLAG.

125 REAL TO INTEGER CONVERSION NOT VALID
Explanation: The indicated expression is of type REAL, but
according to its context, it is required to be of type INTEGER.
Implicit REAL-to-INTEGER conversion is not performed.
Programmer Response: Convert the REAL or SHORT REAL
value 10 an integer value using TRUNC or ROUND or IJse a
REAL or SHORTREAL instead of an integer.
System Action: The compiler accepts the extension and
continues compiling.

126 TYPES NOT CONFORMABLE IN ASSIGNMENT
Explanation: The indicated assignment statement attempts to
assign an expression of a particular type to a variable of an
incompatible type.
Programmer Response: Ensure the types of the variable and
the expression are compatible.
System Action: The compiler attempts to recover and continues
compiling.

127 FILE VARIABLE ASSIGNMENT NOT PERMITTED
Explanation: The left side of the indicated assignment
statement is a variable of a file type or of a type that contains a
file. Assignment to file variables is not permitted.
Programmer Response: Ensure the type of file is correct. If it
is, either do not assign a variable of this type, or redeclare the
type so that it does not contain a file.
System Action: The compiler attempts to recover and continues
compiling.

128 NOT COMPILE·TIME COMPUTABLE
Explanation: The indicated expression fails to be a constant
expression that can be evaluated at compile time.
Programmer Response: Use a variable to hold the value of the
expression, or make the expression computable at compile
time.
System Action: The compiler attempts to recover and continues
compiling.

129 ASSIGNMENT TO "CONST" PARAMETER INVALID
Explanation: The indicated variable declared as a formal
CaNST parameter within a particular routine cannot be
modified by an assignment.
Programmer Response: Ensure that the parameter being
modified is the correct one, and use a pass-by-VAR or
pass-by-value parameter if it is correct.
System Action: The compiler attempts to recover and continues
compiling.

130 ASSIGNMENT TO FOR·LOOP INDEX INVALID
Explanation: The indicated variable that is being used as a
FOR loop index cannot be modified by an assignment within the
FOR loop statement.
Programmer Response: Ensure the variable being modified is
the correct one, and use another variable to hold the index if it
is correct.
System Action: The compiler attempts to recover and continues
compiling.

131 PASSING "CONST" PARAMETER BY VAR
INVALID

Explanation: The indicated variable declared as a formal
CaNST parameter cannot be modified by being passed as an
actual VAR parameter to a rOlJtine.
Programmer Response: Ensure that the parameter being
passed by VAR is the correct one, and, if it is correct, either
pass the parameter by value or by CaNST to the called routine
or change the calling routine's parameter to a pass-by-va/ue or
pass-by-VAR parameter.
System Action: The compiler attempts to recover and continues
compiling.

132 PASSING FOR·LOOP INDEX BY VAR INVALID
Explanation: The indicated variable that is being used as a
FOR loop index cannot be modified by being passed as an
actual VAR parameter to a routine.
Programmer Response: Pass the index by value or CaNST
instead of by VAR.
System Action: The compiler attempts to recover and continues
compiling.

133 REFER·BACK TAGFIELD MUST NOT BE TYPED
Explanation: The indicated tag field specification within a
record definition was found to reference a previous field within
the record. Such refer-back references cannot contain a type
reference.
Programmer Response: Either remove the type from the tag
field specification or use a different name for the tag field.
System Action: The compiler attempts to recover and continues
compiling.

137 PASSING PACKED RECORD FIELD BY VAR NOT
VALID

Explanation: This message may be produced when the
LANGLVL(ANSI83) compiler option is specified. The indicated
field of a packed record is being passed as an actual VAR
parameter to a routine. Passing fields of packed records as
VAR parameters is not valid in standard Pascal.
Programmer Response: If this is intentional, you might want to
compile with the LANGLVL(EXTENDED) option. Otherwise,
remove the PACKED specification from the record whose field
is being passed, assign the field to an unpacked variable and
pass it, or pass the field by value.
System Action: The compiler passes the field as a packed
record field and continues compiling. VS Pascal issues this
message only when the LANGLVL(ANSI83) compile-time option
is in effect. The message class is controlled by STDFLAG.

Chapter 20. VS Pascal Messages 225

138 PASSINO SPACE COMPONENT BY VAR NOT
VALID

Explanation: This message may be produced when the
LANGLVL(ANSI83) compile-time option is in effect. Standard
Pascal requires that actual VAR parameters be properly
aligned, but this is not necessarily the case with a SPACE
component. The indicated parameter is a component of a
SPACE variable that is being passed as a VAR parameter.
Programmer Response: Either do not use a SPACE variable in
LANGLVL(ANSI83) or compile with LANGLVL(EXTENDED).
System Action: The compiler attempts to recover and continues
compiling. This is a warning.

139 PASSING PACKED ARRAY ELEMENT BY VAR
NOT VALID

Explanation: The indicated subscripted variable is being
passed as an actual VAR parameter to a routine. The variable
being subscripted is a packed array. Passing elements of
packed arrays as VAR parameters is not valid in standard
Pascal.
Programmer Response: If this is intentional, you may want to
compile with the LANGLVL(EXTENDED) option. Otherwise,
remove the PACKED specification from the array whose
element is being passed, copy the packed array into an
unpacked variable and pass it, or pass the element by value.
System Action: The compiler passes the array element as a
packed array element if the element was byte aligned and
continues compiling. This is an error if the element was not
byte aligned. Otherwise, this is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

140 ACTUAL AND FORMAL PARAMETER SIZES
DIFFER

Explanation: The actual parameter being passed by VAR did
not have the same storage size as the formal parameter. This
could lead to storage overlays, and thus is illegal. This can
happen when the packing differs between the actual and formal
parameters, or when REAL and SHORTREAL types are mixed.
Programmer Response: Ensure the actual and formal
parameters require the same amount of storage or pass the
parameter by value or CONST.
System Action: The compiler assumes the types had the same
sizes and continues compiling.

141 SYMBOL NOT RECOGNIZABLE IN STANDARD
PASCAL

Explanation: This message may result when the
LANGL VL(ANSI83) compiler option is specified. The indicated
symbol (or operator) is not supported in Standard Pascal. The
symbol is part of a construct that is a VS Pascal language
extension.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED); otherwise, do not use the
indicated symbol.
System Action: The compiler accepts the symbol and continues
compiling. This is only issued in LANGLVL(ANSI83) and its
class is controlled by STDFLAG.

142 VARIABLE MUST BE AN ARRAY VARIABLE
Explanation: The indicated variable is required to be of an
am'~ type, but such is not the case.
Programmer Response: Use an array variable.
System Action: The compiler attempts to recover and continues
compiling.

226 vs Pascal Application Programming Guide

143 OFFSET QUALIFIED FIELD NOT ON PROPER
BOUNDARY

Explanation: The indicated field in a record definition is
qualified with an offset that is not consistent with the boundary
requirement of the field's type.
Programmer Response: Either ensure the offset specified is
valid for the field type or declare the record PACKED.
System Action: The compiler attempts to recover and continues
compiling.

144 OFFSET QUALIFICATION VALUE IS TOO SMALL
Explanation: The indicated field in a record definition is
qualified with an offset that either causes an overlap with a
previous field within the record or is an illegal (negative) offset.
Programmer Response: Make the offset a positive number that
does not overlap any previous fields.
System Action: The compiler attempts to recover and continues
compiling.

145 TYPE MUST BE CHAR OR PACKED ARRAY OF
CHAR

Explanation: The indicated expression is required by its
context to be of type CHAR or PACKED ARRAY[1..n] OF CHAR.
Programmer Response: Use the correct type.
System Action: The compiler attempts to recover and continues
compiling.

146 VARIABLES OF TYPE POINTER ARE NOT
PERMITIED

Explanation: The special type "POINTER" can be applied only
to a formal parameter of a routine.
Programmer Response: Do not use the "POINTER" type.
System Action: The compiler attempts to recover and continues
compiling.

147 IDENTIFIER WAS NOT DECLARED AS FUNCTION
Explanation: The indicated identifier is used as though it is a
function name, but is not declared as such. This can be caused
by having a left parenthesis following an identifier that is not a
function or by using a type name that is not valid in a structured
constant or scalar conversion.
Programmer Response: Use a valid function or type identifier.
System Action: The compiler attempts to recover and continues
compiling.

148 MISSING PERIOD "." ASSUMED
Explanation: The indicated expression performs a comparison
operation on two entities for which such comparison is not
allowed. Except for strings, variables of structured types
cannot be directly compared with each other. The only valid
comparison operators for sets are' = " ' < > " ' < = ' , and
1>='.
Programmer Response: Use a valid comparison operator, or
write a routine to do the comparison.
System Action: The compiler attempts to recover and continues
compiling.

138 PASSINO SPACE COMPONENT BY VAR NOT
VALID

Explanallon: This message may be produced when the
LANGLVL(ANSI83) compile-time option is in effect. Standard
Pascal requires that actual VAR parameters be properly
aligned, but this is not necessarily the case with a SPACE
component. The indicated parameter is a component of a
SPACE variable that is being passed as a VAR parameter.
Programmer Response: Either do not use a SPACE variable in
LANGLVL(ANSI83) or compile with LANGLVL(EXTENDED).
System Action: The compiler attempts to recover and continues
compiling. This is a warning.

139 PASSING PACKED ARRAY ELEMENT BY VAR
NOT VALID

Explanation: The indicated subscripted variable is being
passed as an actual VAR parameter to a routine. The variable
being subscripted is a packed array. Passing elements of
packed arrays as VAR parameters is not valid in standard
Pascal.
Programmer Response: If this is intentional, you may want to
compile with the LANGLVL(EXTENDED) option. Otherwise,
remove the PACKED specification from the array whose
element is being passed, copy the packed array into an
unpacked variable and pass it, or pass the element by value.
System Action: The compiler passes the array element as a
packed array element if the element was byte aligned and
continues compiling. This is an error if the element was not
byte aligned. Otherwise, this is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

140 ACTUAL AND FORMAL PARAMETER SIZES
DIFFER

Explanation: The actual parameter being passed by VAR did
not have the same storage size as the formal parameter. This
could lead to storage overlays, and thus is illegal. This can
happen when the packing differs between the actual and formal
parameters, or when REAL and SHORTREAL types are mixed.
Programmer Response: Ensure the actual and formal
parameters require the same amount of storage or pass the
parameter by value or CONST.
System Action: The compiler assumes the types had the same
sizes and continues compiling.

141 SYMBOL NOT RECOGNIZABLE IN STANDARD
PASCAL

Explanation: This message may result when the
LANGLVL(ANSI83) compiler option is specified. The indicated
symbol (or operator) is not supported in Standard Pascal. The
symbol is part of a construct that is a VS Pascal language
extension.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED); otherwise, do not use the
indicated symbol.
System Action: The compiler accepts the symbol and continues
compiling. This is only issued in LANGLVL(ANSI83) and its
class is controlled by STDFLAG.

142 VARIABLE MUST BE AN ARRAY VARIABLE
Explanation: The indicated variable is required to be of an
am.y type, but such is not the case.
Programmer Response: Use an array variable.
System Action: The compiler attempts to recover and continues
compiling.

226 vs Pascal Application Programming Guide

143 OFFSET QUALIFIED FIELD NOT ON PROPER
BOUNDARY

Explanation: The indicated field in a record definition is
qualified with an offset that is not consistent with the boundary
requirement of the field's type.
Programmer Response: Either ensure the offset specified is
valid for the field type or declare the record PACKED.
System Action: The compiler attempts to recover and continues
compiling.

144 OFFSET QUALIFICATION VALUE IS TOO SMALL
Explanation: The indicated field in a record definition is
qualified with an offset that either causes an overlap with a
previous field within the record or is an illegal (negative) offset.
Programmer Response: Make the offset a positive number that
does not overlap any previous fields.
System Action: The compiler attempts to recover and continues
compiling.

145 TYPE MUST BE CHAR OR PACKED ARRAY OF
CHAR

Explanation: The indicated expression is required by its
context to be of type CHAR or PACKED ARRAY[1 .. nJ OF CHAR.
Programmer Response: Use the correct type.
System Action: The compiler attempts to recover and continues
compiling.

146 VARIABLES OF TYPE POINTER ARE NOT
PERMITTED

Explanation: The special type "POINTER" can be applied only
to a formal parameter of a routine.
Programmer Response: Do not use the "POINTER" type.
System Action: The compiler attempts to recover and continues
compiling.

147 IDENTIFIER WAS NOT DECLARED AS FUNCTION
Explanation: The indicated identifier is used as though it is a
function name, but is not declared as such. This can be caused
by having a left parenthesis following an identifier that is not a
function or by using a type name that is not valid in a structured
constant or scalar conversion.
Programmer Response: Use a valid function or type identifier.
System Action: The compiler attempts to recover and continues
compiling.

148 MISSING PERIOD "." ASSUMED
Explanation: The indicated expression performs a comparison
operation on two entities for which such comparison is not
allowed. Except for strings, variables of structured types
cannot be directly compared with each other. The only valid
comparison operators for sets are I = I, I < > I, I < = I, and
1>=1.

Programmer Response: Use a valid comparison operator, or
write a routine to do the comparison.
System Action: The compiler attempts to recover and continues
compiling.

149 NOT A VALID COMPARISON OPERATION
Explanation: The indicated expression performs a comparison
operation on two entities for which such comparison is not
allowed. Except for strings, variables of structured types
cannot be directly compared with each other. The only valid
comparison operators for sets are' = " '< > " ' < = ' , and
'>=',
Programmer Response: Use a valid comparison operator, or
write a routine to do the comparison.
System Action: The compiler attempts to recover and continues
compiling.

150 ENTRY ROUTINES MUST BE AT THE
OUTERMOST NESTING LEVEL

Explanation: A routine that is to be called from another module
is nested within another routine. This type of nesting is not
allowed. Such routines must be declared at the outermost
nesting level.
Programmer Response: Move the routine to the outermost
level, or do not make the routine an entry point.
System Action: The compiler attempts to recover and continues
compiling.

152 CHECKING ERROR WILL INEVITABLY OCCUR AT
EXECUTION TIME

Explanation: This error indicates that the compiler has
detected a condition related to a particular construct that will
cause a run-time error.

This error may occur at an assignment or at a routine call in
which parameters are passed. It indicates that the range of the
source expression (a scalar) does not overlap the declared
range of the target. For example, the following assignment
would cause this error to occur:

VAR I: l .. Hl;
J: 10 .. 20;

:= J+1; (* Target's range: 1 .. 10; *)
(* source's range: 11 .. 21. *)

Programmer Response: Ensure any variables have appropriate
bounds or change the statement to avoid the error.
System Action: The compiler attempts to recover and continues
compiling.

153 LBOUND/HBOUND DIMENSION NUMBER IS
INVALID FOR VARIABLE

Explanation: An invalid dimension number was used as the
second parameter for LBOUND or HBOUND.
Programmer Response: Fix the dimension number or the array
declaration.
System Action: The compiler attempts to recover and continues
compiling.

154 LOW BOUND OF SUBSCRIPT RANGE IS TOO
LARGE IN MAGNITUDE

Explanation: The indicated array definition has an illegal
subscript range that causes addressing code to be outside the
range of the target machine's capability.
Programmer Response: This error should not occur. If it does,
consult the VS Pascal Diagnosis Guide and Reference for help.
System Action: The compiler attempts to recover and continues
compiling.

156 LENGTH FIELDS NOT APPLICABLE TO NON· TEXT
FILES

Explanation: A record file READ or WRITE contains a length
qualified parameter. Length specifications have no meaning in
record file 110.
Programmer Response: Either remove the length specification
or IJse a text file.
System Action: The compiler attempts to recover and continues
compiling.

157 STRING VARIABLE IS SMALLER THAN FILE
COMPONENT

Explanation: The error occurs when an attempt is made to
perform a READ operation from a FILE OF STRINGs into a string
variable in which truncation is possible. The string variable
must be declared with at least the same length as the file
component.
Programmer Response: Fix the string or file declaration.
System Action: The compiler attempts to recover and continues
compiling.

158 COMMENT NOT CLOSED
Explanation: A comment was opened but never closed, and the
rest of the source program was read in as a comment.
Programmer Response: Add an appropriate closing comment
delimiter, or remove the opening comment delimiter and any
non-program text.
System Action: The compiler stops executing, possibly after
issuing other diagnostics.

159 RECURSIVE TYPE REFERENCE IS NOT
PERMITTED

Explanation: The compiler detected a degenerate TYPE
declaration of one of the following forms:

Form I:

TYPE X = X;

Form II:

TYPE X = RECORD

F: X;

END

Programmer Response: Fix the type declaration.
System Action: The compiler attempts to recover and continues
compiling.

160 THIS SET OPERATION WILL ALWAYS PRODUCE
THE NULL SET

Explanation: Two diSjoint sets are being intersected. The
result will always be the null set lJ. Here is an example of the
error:

VAR Sl: SET OF 0 .. 10;
S2: SET OF 11 .. 20;
S3: SET OF 0 .. 20;

BEGIN

S3 := Sl * S2; (* <== Always *)
(* produces the *)
(* NULL set. *)

END

Programmer Response: Ensure the null set is what is desired
in this location.

Chapter 20. VS Pascal Messages 227

149 NOT A VALID COMPARISON OPERATION
Explanation: The indicated expression performs a comparison
operation on two entities for which such comparison is not
allowed. Except for strings, variables of structured types
cannot be directly compared with each other. The only valid

comparison operators for sets are' = " ' < > " '< = ' , and
1>=1.
Programmer Response: Use a valid comparison operator, or
write a routine to do the comparison.
System Action: The compiler attempts to recover and continues
compiling.

150 ENTRY ROUTINES MUST BE AT THE
OUTERMOST NESTING LEVEL

Explanation: A routine that is to be called from another module
is nested within another routine. This type of nesting is not
allowed. Such routines must be declared at the outermost
nesting level.
Programmer Response: Move the routine to the outermost
level, or do not make the routine an entry point.
System Action: The compiler attempts to recover and continues
compiling.

152 CHECKING ERROR WILL INEVITABLY OCCUR AT
EXECUTION TIME

Explanation: This error indicates that the compiler has
detected a cond ition related to a particular construct that wi II
cause a run-time error.

This error may occur at an assignment or at a routine call in
which parameters are passed. It indicates that the range of the
source expression (a scalar) does not overlap the declared
range of the target. For example, the following assignment
would cause this error to occur:

VAR I: 1 .. 10;
J: 10 .. 20;

:= J+1; (* Target's range: 1..10; *)
(* source's range: 11 .. 21. *)

Programmer Response: Ensure any variables have appropriate
bounds or change the statement to avoid the error.
System Action: The compiler attempts to recover and continues
compiling.

153 LBOUNDIHBOUND DIMENSION NUMBER IS
INVALID FOR VARIABLE

Explanation: An invalid dimension number was used as the
second parameter for LBOUND or HBOUND.
Programmer Response: Fix the dimension number or the array
declaration.
System Action: The compiler attempts to recover and continues
compiling.

154 LOW BOUND OF SUBSCRIPT RANGE IS TOO
LARGE IN MAGNITUDE

Explanation: The indicated array definition has an illegal
subscript range that causes addressing code to be outside the
range of the target machine's capability.
Programmer Response: This error should not occur. If it does,
consult the VS Pascal Diagnosis Guide and Reference for help.
System Action: The compiler attempts to recover and continues
compiling.

156 LENGTH FIELDS NOT APPLICABLE TO NON·TEXT
FILES

Explanation: A record file READ or WRITE contains a length
qualified parameter. Length specifications have no meaning in
record file 110.
Programmer Response: Either remove the length speCification
or use a text file.
System Action: The compiler attempts to recover and continues
compiling.

157 STRING VARIABLE IS SMALLER THAN FILE
COMPONENT

Explanation: The error occurs when an attempt is made to
perform a READ operation from a FILE OF STRINGs into a string
variable in which truncation is possible. The string variable
must be declared with at least the same length as the file
component.
Programmer Response: Fix the string or file declaration.
System Action: The compiler attempts to recover and continues
compiling.

158 COMMENT NOT CLOSED
Explanation: A comment was opened but never closed, and the
rest of the source program was read in as a comment.
Programmer Response: Add an appropriate closing comment
delimiter, or remove the opening comment delimiter and any
non-program text.
System Acllon: The compiler stops executing, possibly after
issuing other diagnostiCS.

159 RECURSIVE TYPE REFERENCE IS NOT
PERMITTED

Explanation: The compiler detected a degenerate TYPE
declaration of one of the following forms:

Form I:

TYPE X = X;

Form II:

TYPE X = RECORD

F: X;

END

Programmer Response: Fix the type declaration.
System Action: The compiler attempts to recover and continues
compiling.

160 THIS SET OPERATION WILL ALWAYS PRODUCE
THE NULL SET

Explanation: Two diSjoint sets are being intersected. The
result will always be the null set []. Here is an example of the
error:

VAR Sl: SET OF 0 .. 10;
S2: SET OF 11 .. 20;
S3: SET OF 0 .. 20;

BEGIN

S3 .- Sl * S2; (* <== Always *)
(* produces the *)
(* NULL set. *)

END

Programmer Response: Ensure the null set is what is desired
in this location.

Chapter 20. VS Pascal Messages 227

System Action: The compiler accepts the expression and
continues compiling. This is a warning.

161 ELSE CLAUSE WITHOUT ASSOCIATED IF
STATEMENT

Explanation: An ELSE symbol was detected that is not part of
an IF statement. This error often occurs when the preceding
THEN clause of an IF statement is terminated with a semicolon
(;).
Programmer Response: Remove the semicolon from the THEN
clause, or ensure the conditional statement nesting is correct.
System Action: The compiler assumes the ELSE statement is
part of an IF statement and continues compiling.

162 MUST BE AN UNPACKED ARRAY
Explanation: The indicated array variable is erroneously
declared as PACKED when the context requires it to be
unpacked.
Programmer Response: Remove the PACKED keyword from
the array declaration or use a different array variable.
System Action: The compiler attempts to recover and continues
compiling.

163 MUST BE A PACKED ARRAY
Explanation: The indicated array variable should have been
declared as PACKED, but was not.
Programmer Response: Add the PACKED keyword to the array
declaration or use a different array variable.
System Action: The compiler attempts to recover and continues
compiling.

164 UNRECOGNIZABLE PROCEDURE/FUNCTION
DIRECTIVE

Explanation: The indicated identifier was interpreted as a
procedure or function directive but was not recognizable. The
following are the only recognizable directives:

FORWARD
EXTERNAL
GENERIC
FORTRAN
MAIN
REENTRANT

Programmer Response: Use one of the above directives, or, if
no directive was intended, ensure the routine declaration is
syntactically correct.
System Action: The compiler attempts to recover and continues
compiling.

165 FORTRAN SUBROUTINES MAY NOT BE PASSED
AS PARAMETERS

Explanation: Only VS Pascal routines may be passed as
parameters; FORTRAN subroutines may not.
Programmer Response: Define a VS Pascal procedure that
does nothing more than call the FORTRAN subroutine, and then
pass the VS Pascal procedure in place 0 the FORTRAN
subroutine. Otherwise, replace the FORTRAN directive with the
EXTERNAL directive if possible.
System Action: The compiler attempts to recover and continues
compiling.

228 vs Pascal Application Programming Guide

166 FORTRAN SUBROUTINE PARAMETERS MAY NOT
BE PASSED BY VALUE

Explanation: All formal parameters of a FORTRAN subroutine
must be passed by reference: either by VAR or by CONST.
Programmer Response: Declare the indicated parameter as
pass-by-VAR or pass-by-CONST.
System Action: The compiler attempts to recover and continues
compiling.

167 FORTRAN FUNCTIONS MAY RETURN ONLY
SCALAR VALUES

Explanation: A FORTRAN function may only return values that
are scalars (including floating pOint).
Programmer Response: Return a scalar result or call an
EXTERNAL function which can return non-scalar results.
System Action: The compiler attempts to recover and continues
compiling.

168 GENERIC ROUTINE PARAMETERS MAY NOT BE
PASSED BY VALUE

Explanation: All actual parameters of a GENERIC routine must
be passed by reference: either by VAR or by CONST.
Programmer Response: Add the VAR or CONST reserved word
before the actual parameter.
System Action: The compiler accepts the value parameter and
continues compiling.

169 ROUTINES MAY NOT BE PASSED TO GENERIC
ROUTINES

Explanation: The indicated reserved word attempted to pass a
routine to a GENERIC routine. Only VAR and CONST
parameters can be passed to GENERIC routines.
Programmer Response: If the routine was passed
unintentionally, use a different reserved word. If the routine
must be passed, rewrite the GENERIC routine as a normal
Pascal routine.
System Action: The compiler accepts the routine parameter
and continues compiling.

170 GENERIC ROUTINES MAY NOT BE PASSED AS
PARAMETERS

Explanation: Only VS Pascal routines can be passed as
parameters; GENERIC routines cannot.
Programmer Response: One way to work around this limitation
is to define a VS Pascal routine that does nothing more than
call the GENERIC routine, and then pass the VS Pascal routine
in place of the GENERIC routine. Or, if possible, replace the
GENERIC directive with the EXTERNAL directive.
System Action: The compiler attempts to recover and continues
compiling.

171 ONLY STATIC/DEF VARIABLES MAY BE
INITIALIZED

Explanation: The only class of variables which may be
initialized at compile time are DEF and STATIC variables.
Programmer Response: Check that the variable appearing in
the VALUE declaration was intended. If it was, either remove
the VALUE declaration or make the variable DEF or STATIC.
System Action: The compiler accepts the VALUE declaration
and continues compiling.

System Action: The compiler accepts the expression and
continues compiling. This is a warning.

161 ELSE CLAUSE WITHOUT ASSOCIATED IF
STATEMENT

Explanation: An ELSE symbol was detected that is not part of
an IF statement. This error often occurs when the preceding
THEN clause of an IF statement is terminated with a semicolon
(;).
Programmer Response: Remove the semicolon from the THEN
clause, or ensure the conditional statement nesting is correct.
System Action: The compiler assumes the ELSE statement is
part of an IF statement and continues compiling.

162 MUST BE AN UNPACKED ARRAY
Explanation: The indicated array variable is erroneously
declared as PACKED when the context requires it to be
unpacked.
Programmer Response: Remove the PACKED keyword from
the array declaration or use a different array variable.
System Action: The compiler attempts to recover and continues
compiling.

163 MUST BE A PACKED ARRAY
Explanation: The indicated array variable should have been
declared as PACKED, but was not.
Programmer Response: Add the PACKED keyword to the array
declaration or use a different array variable.
System Action: The compiler attempts to recover and continues
compiling.

164 UNRECOGNIZABLE PROCEDURE/FUNCTION
DIRECTIVE

Explanation: The indicated identifier was interpreted as a
procedure or function directive but was not recognizable. The
following are the only recognizable directives:

FORWARD
EXTERNAL
GENERIC
FORTRAN
MAIN
REENTRANT

Programmer Response: Use one of the above directives, or, if
no directive was intended, ensure the routine declaration is
syntactically correct.
System Action: The compiler attempts to recover and continues
compiling.

165 FORTRAN SUBROUTINES MAY NOT BE PASSED
AS PARAMETERS

Explanation: Only VS Pascal routines may be passed as
parameters; FORTRAN subroutines may not.
Programmer Response: Define a VS Pascal procedure that
does nothing more than call the FORTRAN subroutine, and then
pass the VS Pascal procedure in place 0 the FORTRAN
subroutine. Otherwise, replace the FORTRAN directive with the
EXTERNAL directive if possible.
System Action: The compiler attempts to recover and continues
compiling.

228 vs Pascal Application Programming Guide

166 FORTRAN SUBROUTINE PARAMETERS MAY NOT
BE PASSED BY VALUE

Explanation: All formal parameters of a FORTRAN subroutine
must be passed by reference: either by VAR or by CONST.
Programmer Response: Declare the indicated parameter as
pass-by-VAR or pass-by-CONST.
System Action: The compiler attempts to recover and continues
compiling.

167 FORTRAN FUNCTIONS MAY RETURN ONLY
SCALAR VALUES

Explanation: A FORTRAN function may only return values that
are scalars (including floating point).
Programmer Response: Return a scalar result or call an
EXTERNAL function which can return non-scalar results.
System Action: The compiler attempts to recover and continues
compiling.

168 GENERIC ROUTINE PARAMETERS MAY NOT BE
PASSED BY VALUE

Explanation: All actual parameters of a GENERIC routine must
be passed by reference: either by VAR or by CONST.
Programmer Response: Add the VAR or CONST reserved word
before the actual parameter.
System Action: The compiler accepts the value parameter and
continues compiling.

169 ROUTINES MAY NOT BE PASSED TO GENERIC
ROUTINES

Explanation: The indicated reserved word attempted to pass a
routine to a GENERIC routine. Only VAR and CONST
parameters can be passed to GENERIC routines.
Programmer Response: If the routine was passed
unintentionally, use a different reserved word. If the routine
must be passed, rewrite the GENERIC routine as a normal
Pascal routine.
System Action: The compiler accepts the routine parameter
and continues compiling.

170 GENERIC ROUTINES MAY NOT BE PASSED AS
PARAMETERS

Explanation: Only VS Pascal routines can be passed as
parameters; GENERIC routines cannot.
Programmer Response: One way to work around this limitation
is to define a VS Pascal routine that does nothing more than
call the GENERIC routine, and then pass the VS Pascal routine
in place of the GENERIC routine. Or, if possible, replace the
GENERIC directive with the EXTERNAL directive.
System Action: The compiler attempts to recover and continues
compiling.

171 ONLY STATIC/DEF VARIABLES MAY BE
INITIALIZED

Explanation: The only class of variables which may be
initialized at compile time are DEF and STATIC variables.
Programmer Response: Check that the variable appearing in
the VALUE declaration was intended. If it was, either remove
the VALUE declaration or make the variable DEF or STATIC.
System Action: The compiler accepts the VALUE declaration
and continues compiling.

172 VARIABLE'S ADDRESS IS NOT COMPILE-TIME
COMPUTABLE

Explanation: The indicated VALUE assignment could not be
performed. In order for a variable to be initialized at
compile-time, its address must be compile-time computable.
Programmer Response: Ensure that any indexes or
expressions used on the left side of the VALUE assignment are
all constants.
System Action: The compiler attempts to recover and continues
compiling.

173 ARRAY STRUCTURE HAS TOO MANY ELEMENTS
Explanation: The indicated array structure contains more
elements than was declared for the array type.
Programmer Response: Declare the array type again or use
fewer elements in the array constant.
System Action: The compiler starts filling the array from the
smallest element and continues compiling.

174 REPETITION FACTOR APPLICABLE TO
CONSTANTS ONLY

Explanation: Within an array structure, only a constant
expression may be qualified with a repetition factor; a general
expression may not.
Programmer Response: Use a compile-time computable value
for the value being repeated.
System Action: The compiler attempts to recover and continues
compiling.

175 NO CORRESPONDING RECORD FIELD
Explanation: The indicated record structure contains more
elements than there are fields within the record type.
Programmer Response: Declare the record type again with
more fields or use less fields in the record constant.
System Action: The compiler attempts to recover and continues
compiling.

176 THIS IDENTIFIER IS A RESERVED NAME
Explanation: An attempt was made to declare an identifier
which is a reserved name.
Programmer Response: Use a new identifier name or check
the syntax of your program.
System Action: The compiler attempts to recover and continues
compiling.

177 NUMERIC LABELS MUST LIE WITHIN THE RANGE
0 .• 9999.

Explanation: A numeric label declaration was found with a
value not in the range 0 .. 9999.
Programmer Response: Use a valid number for the label.
System Action: The compiler accepts the iabel declaration and
continues compiling.

178 IDENTIFIER WAS PREVIOUSLY REFERENCED
ILLEGALLY

Explanation: The indicated identifier that was just declared was
referenced previously within the associated routine. VS Pascal
requires an identifier to be declared before its use.

The following would cause such a problem to occur.

VAR
I : INTEGER;
INTEGER : REAL;

Programmer Response: Declare the identifier with a new
nam~.

System Action: The compiler attempts to recover and continues
compiling.

179 RECURSIVE REFERENCE WITHIN CONSTANT
DECLARATION

Explanation: A constant declaration of one of the following
forms was detected:

CONST X = X;
or

CONST X = "some expression involving X";

Such recursion within a constant declaration is not permitted.
Programmer Response: Use a different identifier on one side of
the" =."
System Action: The compiler attempts to recover and continues
compiling.

180 REPETITION FACTOR NOT APPLICABLE TO
RECORD STRUCTURES

Explanation: The indicated record structure contains a
component which is qualified with a repetition factor. Only
array structures are permitted to have repetition factors.
Programmer Response: Ensure a record constant was
intended. If it was, remove the repetition factor and duplicate
the field value the correct number of times.
System Action: The compiler ignores the repetition factor and
continues compiling.

181 LABEL PREVIOUSLY REFERENCED FROM A
GOTO INVALIDLY

Explanation: The indicated label was previously referenced in
a GOTO statement that is not a constituent of the statement
sequence in which the label is defined.

Here is an example:

BEGIN
GOTO LABEll;
FOR I := 1 TO 10 DO

BEGIN

END

LABEll: A[I] := 0;

END;

(* <== Label was previously *)
(* referenced invalidly. *)

Programmer Response: Correct either the GOTO statement or
the label definition.
System Action: The compiler attempts to recover and continues
compiling.

Chapter 20. VS Pascal Messages 229

172 VARIABLE'S ADDRESS IS NOT COMPILE·TlME
COMPUTABLE

Explanation: The indicated VALUE assignment could not be
performed. In order for a variable to be initialized at
compile-time, its address must be compile-time computable.
Programmer Response: Ensure that any indexes or
expressions used on the left side of the VALUE assignment are
all constants.
System Action: The compiler attempts to recover and continues
compiling.

173 ARRAY STRUCTURE HAS TOO MANY ELEMENTS
Explanation: The indicated array structure contains more
elements than was declared for the array type.
Programmer Response: Declare the array type again or use
fewer elements in the array constant.
System Action: The compiler starts filling the array from the
smallest element and continues compiling.

174 REPETITION FACTOR APPLICABLE TO
CONSTANTS ONLY

Explanation: Within an array structure, only a constant
expression may be qualified with a repetition factor; a general
expression may not.
Programmer Response: Use a compile-time computable value
for the value being repeated.
System Action: The compiler attempts to recover and continues
compiling.

175 NO CORRESPONDING RECORD FIELD
Explanation: The indicated record structure contains more
elements than there are fields within the record type.
Programmer Response: Declare the record type again with
more fields or use less fields in the record constant.
System Action: The compiler attempts to recover and continues
compiling.

176 THIS IDENTIFIER IS A RESERVED NAME
Explanation: An attempt was made to declare an identifier
which is a reserved name.
Programmer Response: Use a new identifier name or check
the syntax of your program.
System Action: The compiler attempts to recover and continues
compiling.

177 NUMERIC LABELS MUST LIE WITHIN THE RANGE
0,,9999,

Explanation: A numeric label declaration was found with a
value not in the range 0 .. 9999.
Programmer Response: Use a valid number for the label.
System Aclion: The compiler accepts the label declaration and
continues compiling.

178 IDENTIFIER WAS PREVIOUSLY REFERENCED
ILLEGALLY

Explanation: The indicated identifier that was just declared was
referenced previously within the associated routine. VS Pascal
requires an identifier to be declared before its use.

The following would cause such a problem to occur.

VAR
: INTEGER;

INTEGER : REAL;

Programmer Response: Declare the identifier with a new
nam~.

System Action: The compiler attempts to recover and continues
compiling.

179 RECURSIVE REFERENCE WITHIN CONSTANT
DECLARATION

Explanation: A constant declaration of one of the following
forms was detected:

CONST X X;
or

CONST X "some expression involving X";

Such recursion within a constant declaration is not permitted.
Programmer Response: Use a different identifier on one side of
the" =."

System Aclion: The compiler attempts to recover and continues
compiling.

180 REPETIl'ION FACTOR NOT APPLICABLE TO
RECORD STRUCTURES

Explanation: The indicated record structure contains a
component which is qualified with a repetition factor. Only
array structures are permitted to have repetition factors.
Programmer Response: Ensure a record constant was
intended. If it was, remove the repetition factor and duplicate
the field value the correct number of times.
System Action: The compiler ignores the repetition factor and
continues compiling.

181 LABEL PREVIOUSLY REFERENCED FROM A
GOTO INVALIDLY

Explanation: The indicated label was previously referenced in
a GOTO statement that is not a constituent of the statem .. ~nt
sequence in which the label is defined.

Here is an example:

BEGIN
GOTO LABE Ll;
FOR I := 1 TO 10 DO

BEGIN

END

LABEll: A[I] ;= 0;

END;

(* <== Label was previously *)
(* referenced invalidly, *)

Programmer Response: Correct either the GOTO statement or
the label definition.
System Action: The compiler attempts to recover and continues
compiling.

Chapter 20. VS Pascal Messages 229

182 A GOTO MAY NOT REFERENCE A LABEL WITHIN
A SEPARATE STATEMENT SEQUENCE

Explanation: The indicated GOTO statement references a label
which was previously defined within a statement sequence of
which the GOTO is not a constituent. Such a reference is not
permitted.

Here is an example:

BEGIN
FOR I : = 1 TO 10 DO

BEGIN
LABEll: A[I] := 0;

END;
GOTO LABEll; (* <== Invalid *)

(* reference *)
(* of label. *)

END

Programmer Response: Correct either the GOTO statement or
the label definition.
System Action: The compiler attempts to recover and continues
compiling.

183 CASE LABEL OUTSIDE RANGE OF INDEXING
EXPRESSION

Explanation: The indicated CASE label within a CASE
statement has a value which is outside the range of the
indexing expression. For example:

VAR I: O •• 10;
BEGIN

CASE 1*2 OF
(* Range of index is 0 .. 20. *)

0:
1. .20: •••
30:

(* <== This label is out of *)
(* range of index. *)

END
END

Programmer Response: Delete the CASE label or use a larger
indexing expression.
System Action: The compiler processes the label and
continues compiling. This is a warning.

184 SECOND OPERAND OF MOD OPERATION MUST
BE POSITIVE INTEGER

Explanation: The indicated expression involving the MOD
operator was found to be invalid; the second operand is
required to be a positive integer.
Programmer Response: Use a positive second operand. or
define a function to do what is desired.
System Action: The compiler attempts to recover and continues
compiling.

185 ROUTINE IS NOT DEFINED IN STANDARD
PASCAL

Explanation: This message may be produced when the
LANGLVL(ANSI83) compiler option is specified. The indicated
call statement refers to a predefined VS Pascal routine which
does not exist in standard Pascal.
Programmer Response: If the routine was used intentionally.
consider compiling with LANGLVL(EXTENDED).
System Action: The compiler uses the referenced routine and
continues compiling This is only issued in LANGLVL(ANSI83)
and its class is controlled by STDFLAG.

230 vs Pascal Application Programming Guide

186 DIRECTIVE ONLY APPLIES TO PROCEDURE, NOT
TO A FUNCTION

Explanation: A function cannot be declared with the MAIN,
REENTRANT. or GENERIC routine directives. Only procedures
can.
Programmer Response: Remove the directive, or change the
function to a procedure which returns the result in a
pass-by-VAR parameter.
System Action: The compiler attempts to recover and continues
compiling.

187 DIRECTIVE REQUIRES THE PROCEDURE TO
HAVE NO PARAMETER LIST

Explanation: A routine declared with the GENERIC routine
directive cannot have a formal parameter list.
Programmer Response: Use a different routine directive, or
delete the formal parameter list.
System Action: The compiler ignores the formal parameter list
and continues compiling.

188 FIRST PARAMETER OF REENTRANT
PROCEDURE MUST BE AN INTEGER BY VAR

Explanation: The indicated procedure declaration in which the
directive REENTRANT was specified failed to comply with the
parameter list requirement for such a procedure: the first
parameter of a REENTRANT procedure must be a
pass-by-reference (specified with the VAR reserved word)
integer in which a pOinter to the VS Pascal environment is
saved between calls.
Programmer Response: Make the first parameter comply with
the above, or do not use the REENTRANT directive.
System Action: The compiler attempts to recover and continues
compiling.

189 TMP OR BUILTIN PROCEDURE MAY NOT BE
PASSED AS A PARAMETER

Explanation: You have used an unsupported routine directive.
Programmer Response: Do not use the routine directive.
System Action: The compiler attempts to recover and continues
compiling.

190 TMP PROCEDURE MAY NOT BE INVOKED FROM
PASCAL

Explanation: You have used an unsupported routine directive.
Programmer Response: Do not use the routine directive.
System Action: The compiler attempts to recover and continues
compiling.

191 SIMPLE CONSTANT REQUIRED
Explanation: A constant expression which required
compile-time computation was found where a simple constant
is required. This occurs when the RANGE keyword is not used
before a constant expression that begins a sub range or when
the LANGLVL(ANSI83) compiler option is specified.
Programmer Response: If this occurred in LANGLVL(ANSI83)
and was intentional, consider compiling under
LANGLVL(EXTENDED). If this occurred under
LANGLVL(EXTENDED), use the RANGE keyword before the
constant expression.
System Action: The compiler uses the value of the constant
expression and continues compiling. This is a warning in
LANGLVL(EXTENDED) and is controlled by STDFLAG in
LANGL VL(ANSI83).

182 A GOTO MAY NOT REFERENCE A LABEL WITHIN
A SEPARATE STATEMENT SEQUENCE

Explanation: The indicated GOTO statement references a label
which was previously defined within a statement sequence of
which the GOTO is not a constituent. Such a reference is not
permitted.

Here is an example:

BEGIN
FOR I := 1 TO 10 DO

BEGIN
LABEll: A[I] := 0;

END;
GOTO LABELl; (* <== Invalid *)

(* reference *)
(*oflabel. *)

END

Programmer Response: Correct either the GOTO statement or
the label definition.
System Action: The compiler attempts to recover and continues
compiling.

183 CASE LABEL OUTSIDE RANGE OF INDEXING
EXPRESSION

Explanation: The indicated CASE label within a CASE
statement has a value which is outside the range of the
indexing expression. For example:

VAR I: 0 .. 10;
BEGIN

CASE 1*2 OF
(* Range of index is 0 .. 20. *)

0:
1. .20: ...
30:

(* <== This label is out of *)
(* range of index. *)

END
END

Programmer Response: Delete the CASE label or use a larger
indexing expression.
System Action: The compiler processes the label and
continues compiling. This is a warning.

184 SECOND OPERAND OF MOD OPERATION MUST
BE POSITIVE INTEGER

Explanation: The indicated expression involving the MOD
operator was found to be invalid; the second operand is
required to be a positive integer.
Programmer Response: Use a positive second operand, or
define a function to do what is desired.
System Action: The compiler attempts to recover and continues
compiling.

185 ROUTINE IS NOT DEFINED IN STANDARD
PASCAL

Explanation: This message may be produced when the
LANGLVL(ANSI83) compiler option is specified. The indicated
call statement refers to a predefined VS Pascal routine which
does not exist in standard Pascal.
Programmer Response: If the routine was used intentionally,
consider compiling with LANGLVL(EXTENDED).
System Action: The compiler uses the referenced routine and
continues compiling This is only issued in LANGLVL(ANSI83)
and its class is controlled by STDFLAG.

230 vs Pascal Application Programming Guide

186 DIRECTIVE ONLY APPLIES TO PROCEDURE, NOT
TO A FUNCTION

Explanation: A function cannot be declared with the MAIN.
REENTRANT, or GENERIC routine directives. Only procedures
can.
Programmer Response: Remove the directive, or change the
function to a procedure which returns the result in a
pass-by-VAR parameter.
System Action: The compiler attempts to recover and continues
compiling.

187 DIRECTIVE REQUIRES THE PROCEDURE TO
HAVE NO PARAMETER LIST

Explanation: A routine declared with the GENERIC routine
directive cannot have a formal parameter list.
Programmer Response: Use a different routine directive, or
delete the formal parameter list.
System Action: The compiler ignores the formal parameter list
and continues compiling.

188 FIRST PARAMETER OF REENTRANT
PROCEDURE MUST BE AN INTEGER BY VAR

Explanation: The indicated procedure declaration in which the
directive REENTRANT was specified failed to comply with the
parameter list requirement for such a procedure: the first
parameter of a REENTRANT procedure must be a
pass-by-reference (specified with the VAR reserved word)
integer in which a pOinter to the VS Pascal environment is
saved between calls.
Programmer Response: Make the first parameter comply with
the above, or do not use the REENTRANT directive.
System Action: The compiler attempts to recover and continues
compiling.

189 TMP OR BUILTIN PROCEDURE MAY NOT BE
PASSED AS A PARAMETER

Explanation: You have used an unsupported routine directive.
Programmer Response: Do not use the routine directive.
System Action: The compiler attempts to recover and continues
compiling.

190 TMP PROCEDURE MAY NOT BE INVOKED FROM
PASCAL

Explanation: You have used an unsupported routine directive.
Programmer Response: Do not use the routine directive.
System Action: The compiler attempts to recover and continues
compiling.

191 SIMPLE CONSTANT REQUIRED
Explanation: A constant expression which required
compile-time computation was found where a simple constant
is required. This occurs when the RANGE keyword is not used
before a constant expression that begins a subrange or when
the LANGLVL(ANSI83) compiler option is specified.
Programmer Response: If this occurred in LANGLVL(ANSI83)
and was intentional, consider compiling under
LANGLVL(EXTENDED). If this occurred under
LANGLVL(EXTENDED), use the RANGE keyword before the
constant expression.
System Action: The compiler uses the value of the constant
expression and continues compiling. This is a warning in
LANGLVL(EXTENDED) and is controlled by STDFLAG in
LANGLVL(ANSI83).

192 %PERCENT DIRECTIVES ARE NOT RECOGNIZED
IN STANDARD PASCAL

Explanation; This message may be produced when the
LANGLVL(ANSI83) compiler option is specified. All compiler
directives which appear in the source program with the percent
(%) prefix are VS Pascal extensions and are not supported in
standard Pascal.
Programmer Response; If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action; The compiler accepts the directive and
continues compiling. This is only issued in LANGLVL(ANSI83)
and its class is controlled by STDFLAG.

193 FOR· OR WHILE·LOOP HAS NO STATEMENTS
WITHIN ITS BODY

Explanation: This is a warning message to indicate that a FOR
statement or WHILE statement loops on an empty statement.
Such a case is often not the programmer's intent.

Here are some examples:

WHILE A > 0 DO;

FOR I ;= 1 TO J DO;

Programmer Response; Ensure the semicolon after the DO was
not placed there by accident.
System Action; The compiler assumes the empty loop was
wanted and continues compiling. This is a warning.

194 PACKED SUBRANGES NOT SUPPORTED IN
STANDARD PASCAL

Explanation: This message may be produced when the
LANGLVL(ANSI83) compiler option is specified. Subrange type
definitions may not be PACKED in standard Pascal. This
feature is a VS Pascal language extension.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler packs the subrange and
continues compiling. This is only issued in LANGLVL(ANSI83)
and its class is controlled by STDFLAG.

195 ACTUAL AND FORMAL PARAMETER SIZES
DIFFER

Explanation: The actual parameter being passed by VAR did
not have the same storage size as the formal parameter. This
could lead to storage overlays, and thus is illegal.
Programmer Response: Ensure the actual and formal
parameter requires the same amount of storage or pass the
parameter by value or CONST.
System Action: The compiler assumes the types had the same
sizes and continues compiling.

198 STANDARD PASCAL FUNCTIONS MAY NOT
RETURN STRUCTURED RESULTS

Explanation: Functions in standard Pascal may only return
scalar, real. or pointer results.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler accepts the result type and
continues compiling. This is only issued in LANGLVL(ANSI83)
and its class is controlled by STDFLAG.

199 NIL NOT ALLOWED IN CONSTANT DEFINITIONS
IN STANDARD PASCAL

Explanation: The reserved word NIL is not considered a
constant in standard Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler sets the constant to NIL and
continues compiling. This is only issued in LANGLVL(ANSI83)
and its class is controlled by STDFLAG.

200 STANDARD PASCAL DOES NOT SUPPORT
CONST PARAMETERS

Explanation: CONST parameters are not allowed in standard
Pascal.
Programmer Response: Either use a value or variable
parameter or consider compiling in LANGLVL(EXTENDED).
System Action: The compiler generates a pass-by-CONST
parameter and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

201 ARRAY ELEMENTS MUST HAVE THE SAME TYPE
Explanation: The array elements of the specified arrays are not
identical. This error can occur in LANGLVL(ANSI83) in PACK
and UNPACK.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler accepts the array element type
and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

202 FOR INDEX THREATENED BY LOCAL ROUTINE
Explanation: A routine local to the routine being compiled
contained a threatening reference to a variable being used as a
FOR loop index. Example:

PROGRAM BADFOR;
VAR I : INTEGER;
PROCEDURE P;
BEGIN

I : = 3; (* <== Thi s threatens *)
(* the FOR loop index. *)

END;
BEGIN

FOR := 1 TO 3 DO WRITELN(I);
(* Error flagged here. *)

END

Programmer Response: Save the FOR loop control variable in
a temporary variable and use that or use a different variable for
the control variable.
System Action: The compiler generates code to modify the FOR
loop control variable and continues compiling. The loop may
not behave as expected at run time. This is a warning in
LANGLVL(EXTENDED) and is controlled by STDFLAG in
LANGL VL(ANSI83).

203 NUMBERS MUST BE SEPARATED FROM
RESERVED WORDS AND IDENTIFIERS

Explanation: Numeric literals must be separated from reserved
words and identifiers by either a comment, a space, or an
end-of-line.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler assumes a space was found and
continues compiling. This is only issued in LANGLVL{ANSI83)
and its class is controlled by STDFLAG.

Chapter 20. VS Pascal Messages 231

192 %PERCENT DIRECTIVES ARE NOT RECOGNIZED
IN STANDARD PASCAL

Explanation: This message may be produced when the
LANGLVL(ANSI83) compiler option is specified. All compiler
directives which appear in the source program with the percent
(%) prefix are VS Pascal extensions and are not supported in
standard Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler accepts the directive and
continues compiling. This is only issued in LANGLVL(ANSI83)
and its class is controlled by STDFLAG.

193 FOR- OR WHILE-LOOP HAS NO STATEMENTS
WITHIN ITS BODY

Explanation: This is a warning message to indicate that a FOR
statement or WHILE statement loops on an empty statement.
Such a case is often not the programmer's intent.

Here are some examples:

WHILE A > (:) DO;

FOR I ;= 1 TO J DO;

Programmer Response: Ensure the semicolon after the DO was
not placed there by accident.
System Action: The compiler assumes the empty loop was
wanted and continues compiling. This is a warning.

194 PACKED SUBRANGES NOT SUPPORTED IN
STANDARD PASCAL

Explanation: This message may be produced when the
LANGLVL(ANSI83) compiler option is specified. Subrange type
definitions may not be PACKED in standard Pascal. This
feature is a VS Pascal language extension.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler packs the subrange and
continues compiling. This is only issued in LANGLVL(ANSI83)
and its class is controlled by STDFLAG.

195 ACTUAL AND FORMAL PARAMETER SIZES
DIFFER

Explanation: The actual parameter being passed by VAR did
not have the same storage size as the formal parameter. This
could lead to storage overlays, and thus is illegal.
Programmer Response: Ensure the actual and formal
parameter requires the same amount of storage or pass the
parameter by value or CONST.
System Action: The compiler assumes the types had the same
sizes and continues compiling.

198 STANDARD PASCAL FUNCTIONS MAY NOT
RETURN STRUCTURED RESULTS

Explanation: Functions in standard Pascal may only return
scalar, real, or pointer results.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler accepts the result type and
continues compiling. This is only issued in LANGLVL(ANSI83)
and its class is controlled by STDFLAG.

199 NIL NOT ALLOWED IN CONSTANT DEFINITIONS
IN STANDARD PASCAL

Explanation: The reserved word NIL is not considered a
constant in standard Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler sets the constant to NIL and
continues compiling. This is only issued in LANGLVL(ANSI83)
and its class is controlled by STDFLAG.

200 STANDARD PASCAL DOES NOT SUPPORT
CONST PARAMETERS

Explanation: CONST parameters are not allowed in standard
Pascal.
Programmer Response: Either use a value or variable
parameter or consider compiling in LANGLVL(EXTENDED).
System Action: The compiler generates a pass-by-CONST
parameter and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

201 ARRAY ELEMENTS MUST HAVE THE SAME TYPE
Explanation: The array elements of the specified arrays are not
identical. This error can occur in LANGLVL(ANSI83) in PACK
and UNPACK.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler accepts the array element type
and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

202 FOR INDEX THREATENED BY LOCAL ROUTINE
Explanation: A routine local to the routine being compiled
contained a threatening reference to a variable being used as a
FOR loop index. Example:

PROGRAM BADFOR;
VAR I ; INTEGER;
PROCEDURE P;
BEGIN

I ; = 3; (* <== Thi 5 threatens *)
(* the FOR loop index. *)

END;
BEGIN

FOR ;= 1 TO 3 DO WRITELN(I);
(* Error flagged here. *)

END

Programmer Response: Save the FOR loop control variable in
a temporary variable and use that or use a different variable for
the control variable.
System Action; The compiler generates code to modify the FOR
loop control variable and continues compiling. The loop may
not behave as expected at run time. This is a warning in
LANGLVL(EXTENDED) and is controlled by STDFLAG in
LANG L VL(ANSI83).

203 NUMBERS MUST BE SEPARATED FROM
RESERVED WORDS AND IDENTIFIERS

Explanation: Numeric literals must be separated from reserved
words and identifiers by either a comment, a space, or an
end-of-line.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler assumes a space was found and
continues compiling. This is only issued in LANGLVL(ANSI83)
and its class is controlled by STDFLAG.

Chapter 20. VS Pascal Messages 231

204 STRING CONSTANTS MAY NOT BE INDEXED IN
STANDARD PASCAL

Explanation: A string constant was being used as a subscripted
variable. This is illegal in standard Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler generates code to index the string
constant and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

205 ALL TAG CONSTANTS NOT SPECIFIED
Explanation: Standard Pascal requires all tag constants that
are allowed for a given tag type to be specified as the selector
for exactly one variant in a record. Under LANGLVL(ANSI83),
this restriction is enforced. Here is an example:

RECORD
CASE BOOLEAN OF

TRUE: ();

END
(* FALSE will not be specified. *)
(* Error flagged here. *)

Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler continues compiling. At run time,
unpredictable results may occur from attempting to activate a
non-existent variant. This is only issued in LANGLVL(ANSI83)
and its class is controlled by STDFLAG.

206 STANDARD PASCAL STRINGS MUST HAVE
UPPER BOUNDS GREATER THAN ONE

Explanation: A fixed string with an upper bound of one was
used in LANGLVL(ANSI83). Fixed strings must have upper
bounds greater than one in this language level.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler uses a one-character fixed string
and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

207 STRING TYPES MAY NOT BE READ FROM
TEXTFILES IN LANGLVL(ANSI83)

Explanation: Standard Pascal does not allow fixed string types
(packed arrays of CHAR) to be read in from files of type TEXT.
This is a VS Pascal extension which is flagged in
LANGLVL(ANSI83).
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler generates code to read in a fixed
string and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

209 PASS BY VAR PARAMETERS MUST HAVE SAME
TYPE IN LANGLVL(ANSI83)

Explanation: In standard Pascal, variable parameters must
have identical types. This restriction was violated.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler generates code to pass the
parameter by VAR and continues compiling. This is only issued
in LANGLVL(ANSI83) and its class is controlled by STDFLAG.

232 vs Pascal Application Programming Guide

210 TAG FIELDS MAY NOT BE PASSED BY VAR IN
LANGL VL(ANSI83)

Explanation: A tag field in a record may not be passed as a
variable parameter by either a comment, a space. or an
end-of-line.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler generates code to pass the tag
field by VAR and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

211 INPUT WAS NOT INCLUDED IN THE PROGRAM
PARAMETER LIST

Explanation: INPUT was not included in the program parameter
list, but was used in the program.
Programmer Response: If this was intentional. consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler uses the predefined INPUT file
and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

212 OUTPUT WAS NOT INCLUDED IN THE PROGRAM
PARAMETER LIST

Explanation: OUTPUT was not included in the program
parameter list, but was used in the program.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler uses the predefined OUTPUT file
and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

213 DUPLICATE PROGRAM PARAMETERS NOT
ALLOWED

Explanation: An identifier occurred twice in the program
parameter list. Duplicate program parameters are not allowed.
Programmer Response: Delete the duplicate program
parameter.
System Action: The compiler ignores the duplicate program
parameter and continues compiling. This is a warning in
LANGLVL(EXTENDED) and is controlled by STDFLAG in
LANGLVL(ANSI83).

214 PROGRAM PARAMETERS MUST BE DECLARED
AS GLOBAL VARIABLES

Explanation: An identifier listed in the program parameter list
was globally declared as something other than a variable.
Program parameters (other than INPUT and OUTPUT) must be
declared as global variables.
Programmer Response: Remove the program parameter or
use a different identifier name.
System Action: The compiler accepts the identifier as declared
and continues compiling. This is a warning in
LANGLVL(EXTENDED) and is controlled by STDFLAG in
LANGLVL(ANSI83) .

215 FIXED STRINGS MUST BE OF EQUAL LENGTH IN
STANDARD PASCAL

Explanation: Fixed strings used in assignments or binary
operations must be of equal length in standard Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler continues compiling using the
different length fixed strings. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

204 STRING CONSTANTS MAY NOT BE INDEXED IN
STANDARD PASCAL

Explanation: A string constant was being used as a subscripted
variable. This is illegal in standard Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler generates code to index the string
constant and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

205 ALL TAG CONSTANTS NOT SPECIFIED
Explanation: Standard Pascal requires all tag constants that
are allowed for a given tag type to be specified as the selector
for exactly one variant in a record. Under LANGLVL(ANSI83),
th is restriction is enforced. Here is an example:

RECORD
CASE BOOLEAN OF

TRUE: ();
(* FALSE will not be specified. *)

END (* Error flagged here. *)

Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler continues compiling. At run time,
unpredictable results may occur from attempting to activate a
non-existent variant. This is only issued in LANGLVL(ANSI83)
and its class is controlled by STDFLAG.

206 STANDARD PASCAL STRINGS MUST HAVE
UPPER BOUNDS GREATER THAN ONE

Explanation: A fixed string with an upper bound of one was
used in LANGLVL(ANSI83). Fixed strings must have upper
bounds greater than one in this language level.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler uses a one-character fixed string
and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

207 STRING TYPES MAY NOT BE READ FROM
TEXTFILES IN LANGLVL(ANSI83)

Explanation: Standard Pascal does not allow fixed string types
(packed arrays of CHAR) to be read in from files of type TEXT.
This is a VS Pascal extension which is flagged in
LANG L VL(ANSI83).
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler generates code to read in a fixed
string and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

209 PASS BY VAR PARAMETERS MUST HAVE SAME
TYPE IN LANGLVL(ANSI83)

Explanation: In standard Pascal, variable parameters must
have identical types. This restriction was violated.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler generates code to pass the
parameter by VAR and continues compiling. This is only issued
in LANGLVL(ANSI83) and its class is controlled by STDFLAG.

232 vs Pascal Application Programming Guide

210 TAG FIELDS MAY NOT BE PASSED BY VAR IN
LANGLVL(ANSI83)

Explanation: A tag field in a record may not be passed as a
variable parameter by either a comment, a space, or an
end-of-line.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler generates code to pass the tag
field by VAR and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

211 INPUT WAS NOT INCLUDED IN THE PROGRAM
PARAMETER LIST

Explanation: INPUT was not included in the program parameter
list, but was used in the program.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler uses the predefined INPUT file
and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

212 OUTPUT WAS NOT INCLUDED IN THE PROGRAM
PARAMETER LIST

Explanation: OUTPUT was not included in the program
parameter list, but was used in the program.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler uses the predefined OUTPUT file
and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

213 DUPLICATE PROGRAM PARAMETERS NOT
ALLOWED

Explanation: An identifier occurred twice in the program
parameter list. Duplicate program parameters are not allowed.
Programmer Response: Delete the duplicate program
parameter.
System Action: The compiler ignores the duplicate program
parameter and continues compiling. This is a warning in
LANGLVL(EXTENDED) and is controlled by STDFLAG in
LANGLVL(ANSI83).

214 PROGRAM PARAMETERS MUST BE DECLARED
AS GLOBAL VARIABLES

Explanation: An identifier listed in the program parameter list
was globally declared as something other than a variable.
Program parameters (other than INPUT and OUTPUT) must be
declared as global variables.
Programmer Response: Remove the program parameter or
use a different identifier name.
System Action: The compiler accepts the identifier as declared
and continues compiling. This is a warning in
LANGLVL(EXTENDED) and is controlled by STDFLAG in
LANGL VL(ANSI83).

215 FIXED STRINGS MUST BE OF EQUAL LENGTH IN
STANDARD PASCAL

Explanation: Fixed strings used in assignments or binary
operations must be of equal length in standard Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler continues compiling using the
different length fixed strings. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

216 LABELS MUST BE INTEGERS IN STANDARD
PASCAL

Explanation: An identifier was used as a label. Labels must be
integers in Standard Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler attempts to recover and continues
compiling. This is only issued in LANGLVL(ANSI83) and its
class is controlled by STDFLAG.

217 SET PACKING MUST MATCH IN STANDARD
PASCAL

Explanation: In set assignments and binary set operations,
both sets must either be packed or unpacked in Standard
Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler converts one set to an
appropriate type and continues compiling. This is only issued
in LANGLVL(ANSI83) and its class is controlled by STDFLAG.

218 FUNCTION ASSIGNMENTS MAY NOT BE
QUALIFIED IN STANDARD PASCAL

Explanation: Function assignments may be qualified in
Standard Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler generates code assigning a value
into the qualified function result and continues compiling. This
is only issued in LANGLVL(ANSI83) and its class is controlled
by STDFLAG.

219 FUNCTION RESULTS MAY NOT CONTAIN FILES
Explanation: Because assignments using files are not valid,
and every function must have a result assigned to it, function
results may not contain files.
Programmer Response: Do not use a function with a result type
that contains a file.
System Action: The compiler attempts to recover and continues
compiling.

220 PREDEFINED ROUTINES MAY NOT BE
PARAMETERS IN STANDARD PASCAL

Explanation: Predefined routines may not be parameters in
Standard Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: If the routine may be passed as a parameter in
LANGLVL(EXTENDED). the compiler generates code to pass the
routine and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

221 IDENTIFIER HAS BEEN IMPLICITLY DECLARED
BY PROGRAM PARAMETER

Explanation: An identifier has been implicilly declared by a
program parameter.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED). This can occur when
declaring INPUT or OUTPUT as a global variable when it was
also listed as a program parameter.
System Action: The compiler creates a variable with the name
specified and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

222 EMPTY PARAMETER LISTS ARE NOT ALLOWED
IN STANDARD PASCAL

Explanation: VS Pascal allows empty parameter lists (a left
parenthesis followed by a right parenthesis) on user-defined
functions and statements to prevent them from being confused
with variables and statements. This is not allowed in Standard
Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler assumes that no parentheses
were used and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

223 FUNCTION CONTAINS NO RESULT ASSIGNMENT
Explanation: A function contains no result assignment.
Programmer Response: Use a procedure or assign a value to
the function result.
System Action: The compiler assumes a result was assigned
and continues compiling.

224 FORMAL ROUTINE PARAMETER LISTS MUST BE
CONGRUENT IN STANDARD PASCAL

Explanation: When passing a routine as an actual parameter,
the number of formal parameter sections in the actual routine
did not match the number of formal parameter sections in the
formal routine.

Consider two routines with the following headers:

PROCEDURE P(PROCEDURE Q(I, J : INTEGER));
PROCEDURE R(I : INTEGER; J : INTEGER);

Procedure a has one formal parameter section with two integer
parameters, while procedure R has two formal parameter
sections each with one integer parameter. Thus, P(R) would
result in this message if the unit was not compiled using
LANGLVL(EXTENDED).
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler assumes the parameter list was
congruent and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

225 IDENTIFIER PREVIOUSLY REFERENCED
ILLEGALLY IN FORWARD TYPE REFERENCE

Explanation: An identifier was previously referenced illegally in
a forward type reference. This can occur as shown below.

TYPE
R = RECORD

P : @T;
T : INTEGER; (* T not a type. *)

END:

Programmer Response: Ensure the type and identifier names
used were the intended ones. If they were. rename the type or
the identifier.
System Action: The compiler attempts to recover and continues
compiling.

Chapter 20. VS Pascal Messages 233

216 LABELS MUST BE INTEGERS IN STANDARD
PASCAL

Explanation: An identifier was used as a label. Labels must be
integers in Standard Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler attempts to recover and continues
compiling. This is only issued in LANGLVL(ANSI83) and its
class is controlled by STDFLAG.

217 SET PACKING MUST MATCH IN STANDARD
PASCAL

Explanation: In set assignments and binary set operations,
both sets must either be packed or unpacked in Standard
Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler converts one set to an
appropriate type and continues compiling. This is only issued
in LANGLVL(ANSI83) and its class is controlled by STDFLAG.

218 FUNCTION ASSIGNMENTS MAY NOT BE
QUALIFIED IN STANDARD PASCAL

Explanation: Function assignments may be qualified in
Standard Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler generates code assigning a value
into the qualified function result and continues compiling. This
is only issued in LANGLVL(ANSI83) and its class is controlled
by STDFLAG.

219 FUNCTION RESULTS MAY NOT CONTAIN FILES
Explanation: Because assignments using files are not valid,
and every function must have a result assigned to it, function
results may not contain files.
Programmer Response: Do not use a function with a result type
that contains a file.
System Action: The compiler attempts to recover and continues
compiling.

220 PREDEFINED ROUTINES MAY NOT BE
PARAMETERS IN STANDARD PASCAL

Explanation: Predefined routines may not be parameters in
Standard Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: If the routine may be passed as a parameter in
LANGLVL(EXTENDED), the compiler generates code to pass the
routine and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

221 IDENTIFIER HAS BEEN IMPLICITLY DECLARED
BY PROGRAM PARAMETER

Explanation: An identifier has been implicitly declared by a
program parameter.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED). This can occur when
declaring INPUT or OUTPUT as a global variable when it was
also listed as a program parameter.
System Action: The compiler creates a variable with the name
specified and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

222 EMPTY PARAMETER LISTS ARE NOT ALLOWED
IN STANDARD PASCAL

Explanation: VS Pascal allows empty parameter lists (a left
parenthesis followed by a right parenthesis) on user-defined
functions and statements to prevent them from being confused
with variables and statements. This is not allowed in Standard
Pascal.
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler assumes that no parentheses
were used and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

223 FUNCTION CONTAINS NO RESULT ASSIGNMENT
Explanation: A function contains no result assignment.
Programmer Response: Use a procedure or assign a value to
the function result.
System Action: The compiler assumes a result was assigned
and continues compiling.

224 FORMAL ROUTINE PARAMETER LISTS MUST BE
CONGRUENT IN STANDARD PASCAL

Explanation: When passing a routine as an actual parameter,
the number of formal parameter sections in the actual routine
did not match the number of formal parameter sections in the
formal routine.

Consider two routines with the following headers:

PROCEDURE P(PROCEDURE Q(I. J : INTEGER));
PROCEDURE R(I : INTEGER; J : INTEGER);

Procedure Q has one formal parameter section with two integer
parameters, while procedure R has two formal parameter
sections each with one integer parameter. Thus, P(R) would
result in this message if the unit was not compiled using
LANGLVL(EXTENDED).
Programmer Response: If this was intentional, consider
compiling with LANGLVL(EXTENDED).
System Action: The compiler assumes the parameter list was
congruent and continues compiling. This is only issued in
LANGLVL(ANSI83) and its class is controlled by STDFLAG.

225 IDENTIFIER PREVIOUSLY REFERENCED
ILLEGALLY IN FORWARD TYPE REFERENCE

Explanation: An identifier was previously referenced illegally in
a forward type reference. This can occur as shown below.

TYPE
R = RECORD

P : @T;
T : INTEGER; (* T not a type. *)

END:

Programmer Response: Ensure the type and identifier names
used were the intended ones. If they were, rename the type or
the identifier.
System Action: The compiler attempts to recover and continues
compiling.

Chapter 20. VS Pascal Messages 233

226 DOUBLE BYTE CHARACTER SET SO HAD NO
CORRESPONDING SI

Explanation: The compiler encountered a shift-out (SO),
marking the start of a portion of double-byte character set
(DBCS) data, but the compiler reached the end of the input line
without encountering the shift-in (SI) needed to end the DBCS
portion. Such a broken SO/SI pair can occur when a single
DBCS data portion incorrectly spans multiple lines. This error
can occur in DBCS literals. When the GRAPHIC compile-time
option is in effect, this error can also occur in string literals,
comments, and compiler directives.
Programmer Response: If the indicated character is used
intentionally in a string literal, comment, or compiler directive,
consider compiling with the NOGRAPHIC compiler option.
Otherwise, insert an SI in the proper place.
System Action: The compiler attempts to recover and continues
compiling.

227 DOUBLE BYTE CHARACTER SET SI HAD NO
CORRESPONDING SO

Explanation: The compiler encountered a shift-in (SI), which
marks the end of a portion of double-byte character set (DBCS)
data, but the line did not contain the needed shift-out (SO) to
mark the beginning of the DBCS data. Such a broken SO/SI pair
can occur when a single DBCS portion spans multiple lines,
which is not allowed. This error can occur in DBCS literals.
When the GRAPHIC compile-time option is in effect, this error
can occur in string literals, comments, and compiler directives.
Programmer Response: If the indicated character is used
intentionally in a string literal, comment, or compiler directive,
consider compiling with the NOGRAPHIC compiler option.
Otherwise, insert an SO in the proper place.
System Action: The compiler attempts to recover and continues
compiling.

228 INVALID DOUBLE BYTE CHARACTER SET
CHARACTER

Explanation: The compiler encountered an invalid double-byte
character set (DBCS) character outside the valid DBCS code

range. The valid code ranges are' 41' X through 'FE' X for the

first and second bytes or '4040'X. This error can occur in
DBCS literals and hexadecimal literals. When the GRAPHIC
compile-time option is in effect. this error can occur in string
literals, comments, and compiler directives.
Programmer Response: If you used the indicated character
intentionally in a string literal, comment, or compiler directive,
consider compiling wHh the GRAPHIC option. Otherwise, use a
valid DBCS character.
System Action: The compiler attempts to recover and continues
compiling.

229 DOUBLE BYTE CHARACTER SET BYTE LENGTH
IS NOT EVEN

Explanation: The compiler encountered an odd number of
bytes of DBCS data between a shift-out (SO) and shift-in (SI).
This error can occur in DBCS literals. When the GRAPHIC
compile-time option is in effect, this error can also occur in
string literals, comments. and compiler directives.
Programmer Response: If you do not intend for the data
surrounded by an SO/SI pair to be DBCS data. consider
compiling with the NOGRAPHIC compile-time option,
Otherwise, correct the byte length of the DBCS data.

234 vs Pascal Application Programming Guide

230 GLOBAL LABELS MAY ONLY OCCUR IN
PROGRAM UNITS

Explanation: A label declaration was found in the global
declarations of a SEGMENT unit. Branching to these labels
may cause unpredictable results. Only PROGRAM units may
have global labels because only programs have code
associated with their global declarations and every label mllst
have a definition in the code associated with that declaration
level.
Programmer Response: Remove the label declaration. If the
label is actually located in the main program, try the following:

PROGRAM TEST;
LABEL 1;
declarations
BEGIN
code part 1
1: code part 2
END.

SEGMENT TEST!;
LABEL 1;
declarations
routine header
BEGIN
code part

GOTO 1;
code part 2
END;
declarations

PROGRAM TEST;
LABEL 1;
declarations
PROCEDURE PI;

EXTERNAL;
PROCEDURE PI;
BEGIN

GOTO 1;
END;
BEGIN
code part
1: code part 2
END.

SEGMENT TEST!;
declarations
PROCEDURE PI;

EXTERliAL;
PROCEDURE P;
routine header
BEGIN
code part

PI;
code part 2
END;
declarations

System Action: The compiler compiles the label declarations.
This is a warning.

231 DOUBLE BYTE CHARACTER SET STRING NOT
ENCLOSED IN SHIFT CODES

Explanation: A double-byte character set (DBCS) literal string
was not enclosed by shift codes, DBCS dat~ must be enclosed
by a starting shift-out (SO) character (' OE' X) and ending shift-in

(SI) character ('OF'X).
Programmer Response: If a DBCS string is intended, make
sure an SO follows the opening quote and an SI precedes the
ending quote. Otherwise. remove the string literal's "G" suffix.
System Action: The compiler assumes shift codes were
properly specified and continues compiling.

233 TYPE MUST BE GCHAR OR PACKED ARRAY OF
GCHAR

Explanation: The context requires that the indicated expression
be of type GCHAR or PACKED ARRAY [1..nJ of GCHAR.
Programmer Response: Use the correct type.
System Action: The compiler attempts to recover and continues
compiling.

226 DOUBLE BYTE CHARACTER SET SO HAD NO
CORRESPONDING SI

Explanation: The compiler encountered a shift-out (SO),
marking the start of a portion of double-byte character set
(DBCS) data, but the compiler reached the end of the input line
without encountering the shift-in (SI) needed to end the DBCS
portion Such a broken SO/SI pair can occur when a single
DBCS data portion incorrectly spans multiple lines. This error
can occur in DBCS literals. When the GRAPHIC compile-time
option is in effect, this error can also occur in string literals,
comments, and compiler directives.
Programmer Response: If the indicated character is used
intentionally in a string literal, comment, or compiier directive,
consider compiling with the NOGRAPHIC compiler option.
Otherwise, insert an SI in the proper place.
System Action: The compiler attempts to recover and continues
compiling.

227 DOUBLE BYTE CHARACTER SET SI HAD NO
CORRESPONDING SO

Explanation: The compiler encountered a shift-in (SI), which
marks the end of a portion of double-byte character set (DBCS)
data, but the line did not contain the needed shift-out (SO) to
mark the beginning of the DBCS data. Such a broken SO/SI pair
can occur when a single DBCS portion spans multiple lines,
which is not allowed. This error can occur in DBCS literals.
When the GRAPHIC compile-time option is in effect, this error
can occur in string literals, comments, and compiler directives.
Programmer Response: If the indicated character is used
intentionally in a string literal, comment, or compiler directive,
consider compiling with the NOGRAPHIC compiler option.
Otherwise, insert an SO in the proper place.
System Action: The compiler attempts to recover and continues
compiling.

228 INVALID DOUBLE BYTE CHARACTER SET
CHARACTER

Explanation: The compiler encountered an invalid double-byte
character set (DBCS) character outside the valid DBCS code

range. The valid code ranges are '41' X through' FE' X for the

first and second bytes or ' 4040' X. This error can occur in
DBCS literals and hexadecimal literals. When the GRAPHIC
compile-time option is in effect. this error can occur in string
literals, comments, and compiler directives.
Programmer Response: If you used the indicated character
intentionally in a string literal, comment, or compiler directive,
consider compiling with the GRAPHIC option. Otherwise, use a
valid DBCS character.
System Action: The compiler attempts to recover and continues
compiling.

229 DOUBLE BYTE CHARACTER SET BYTE LENGTH
IS NOT EVEN

Explanation: The compiler encountered an odd number of
bytes of DBCS data between a shift-out (SO) and shift-in (SI).
This error can occur in DBCS literals. When the GRAPHIC
compile-time option is in effect, this error can also occur in
string literals, comments, and compiler directives.
Programmer Response: If you do not intend for the data
surrounded by an SO/SI pair to be DBCS data, consider
compiling with the NOGRAPHIC compile-time option.
Otherwise, correct the byte length of the DBCS data.

234 vs Pascal Application Programming Guide

230 GLOBAL LABELS MAY ONLY OCCUR IN
PROGRAM UNITS

Explanation: A label declaration was found in the global
declarations of a SEGMENT unit. Branching to these labels
may cause unpredictable results. Only PROGRAM units may
have global labels because only programs have code
associated with their global declarations and every label must
have a definition in the code associated with that declaration
level.
Programmer Response: Remove the label declaration. If the
label is actually located in the main program, try the following:

PROGRAM TEST;
LABEL 1;
declarations
BEGIN
code part 1
1: code part 2
END.

SEGMENT TESTl;
LABEL 1;
declarations
routine header
BEGIN
code part

GOTO 1;
code part 2
END;
declarations

PROGRAM TEST;
LABEL 1;
declarations
PROCEDURE Pl;

EXTERNAL;
PROCEDURE Pi;
BEGIN

GOTO 1;
END;
BEGIN
code part
1: code part 2
END.

SEGMENT TESTl;
declarations
PROCEDURE Pi;

EXTERNAL;
PROCEDURE P;
routine header
BEGIN
code part

Pi;
code part 2
END;
declarations

System Action: The compiler compiles the label declarations.
This is a warning.

231 DOUBLE BYTE CHARACTER SET STRING NOT
ENCLOSED IN SHIFT CODES

Explanation: A double-byte character set (DBCS) literal string
was not enclosed by shift codes. DBCS datq must be enclosed
by a starting shift-out (SO) character (' OE' X) and ending shift-in

(SI) character (' OF' X).
Programmer Response: If a DBCS string is intended, make
sure an SO follows the opening quote and an SI precedes the
ending quote. Otherwise, remove the string literal's "G" suffix.
System Action: The compiler assumes shift codes were
properly specified and continues compiling.

233 TYPE MUST BE GCHAR OR PACKED ARRAY OF
GCHAR

Explanation: The context requires that the indicated expression
be of type GCHAR or PACKED ARRAY [1..n] of GCHAR.
Programmer Response: Use the correct type.
System Action: The compiler attempts to recover and continues
compiling.

500 RECURSION DETECTED IN "%INCLUDE"
PROCESSING lib(mem)

Explanallon: Source text which was included from member
mem in library lib by means ofthe %INCLUDE directive
contains in itself a %INCLUDE directive which directly or
indirectly references the same member recursively. Example:

Source program: Member TYPES:

PROGRAM EXAMPLE;
TYPE

REC = RECORD
NAME: STRING(10);
AGE : 0 .. 99; %INCLUDE TYPES;

BEGIN END;

END.

%INCLUDE TYPES;
(*<===ERROR 500*)

Programmer Response: Ensure the %INCLUDE directives all
reference the correct members.
System Action: The compiler halts with a severe error,

501 TOO MANY NESTING LEVELS IN "%INCLUDE"
PROCESSING Iib(mem)

Explanation: A %INCLUDE directive was detected which is
nested 8 levels deep within a stack of "includes." "Included"
source text may not be nested beyond 8 levels.
Programmer Response: Eliminate the %INCLUDE, or
physically put one member within another.
System Action: The compiler halts with a severe error.

502 UNABLE TO OPEN "%INCLUDE" LIBRARY:
Iibname

Explanation: The include library named Iibname could not be
opened. Possible causes are that the ddname was not
assigned or the DCB attributes of the library are not correct.
Programmer Response: Ensure the library specified was
correct.
System Action: The compiler halts with a severe error.

503 PERCENT U%" STATEMENT NOT FOUND
Explanation: A" %" symbol was detected, but with no identifier
following.
Programmer Response: Delete the percent sign or add the
name of the compiler directive desired.
System Action: The compiler attempts to recover and continues
compiling.

504 PERCENT "%" IDENTIFIER NOT RECOGNIZED
Explanation: An identifier following the" %" symbol is not
recognized as a valid compiler directive.
Programmer Response: Use a valid compiler directive name.
System Action: The compiler attempts to recover and continues
compiling.

505 "ON" OR "OFF" EXPECTED
Explanation: An "ON" or "OFF" was expected but not found.
Programmer Response: Specify "ON" or "OFF" where
indicated.
System Action: The compiler attempts to recover and continues
compiling.

506 UNRECOGNIZABLE OPTION IN U%CHECK"
Explanation: An invalid option was used with a %CHECK
directive. Valid options are POINTER, PTR, , SUBSCRIPT,
SUBRANGE, FUNCTION, CASE and TRUNCATE.
Programmer Response: Use a valid option or delete the
%CHECK directive.
System Action: The compiler attempts to recover and continues
compiling.

507 %INCLUDE MEMBER NOT FOUND IN LIBRARY
Explanation: The library member which was to be included into
the source program could not be found.
Programmer Response: Correct the member name or use the
LIB compiler option to specify the library the member is in.
System Action: The %INCLUDE directive is ignored and
compilation continues.

506 LEFT MARGIN GREATER THAN RIGHT MARGIN
Explanation: The first number (left margin setting) on a
%MARGINS compiler directive is greater than the second
number (right margin setting).
Programmer Response: Change the numbers on the
%MARGINSdirective appropriately.
System Action: The compiler uses the previous margin settings
and continues compiling.

509 MARGINS OVERLAP SEQUENCE FIELD
Explanation: The margin settings on a %MARGINS compiler
directive overlap the sequence number field.
Programmer Response: Change the numbers on the
%MARGINS directive, or use the SEQUENCE compiler option to
change the sequence field placement.
System Action: The compiler assumes that a sequence field is
no longer desired and uses the new margin settings. This is a
warning.

510 MISSING %ENDSELECT DIRECTIVE
Explanation: There is no %ENDSELECT compiler directive to
match a previous %SELECT directive. This error can occur
when, after encountering an initial %SELECT, the compiler
encounters (1) the end of the file, or (2) another %SELECT.
Programmer Response: Insert a %ENDSELECT directive at the
appropriate location in the source file, or delete the %SELECT
directive.
System Action: If the compiler reached the end of the input file,
it stops executing, possibly after issuing other diagnostics. If
the compiler found a %SELECT after an initial %SELECT, it
ignores the second %SELECT and continues compiling.

511 CHARACTERS WERE FOUND BETWEEN
%SELECT AND FIRST %WHEN

Explanation: Characters appear after a %SELECT compiler
directive but before the first %WHEN directive.
Programmer Response: If the characters must be conditionally
compiled, insert a %WHEN directive before them or move them
below the appropriate %WHEN directive. Otherwise, move
them above the %SELECT directive.
System Action: Characters between %SELECT and the first
%WHEN are ignored, and compilation continues. This is a
warning.

Chapter 20. VS Pascal Messages 235

500 RECURSION DETECTED IN "%INCLUDE"
PROCESSING Iib(mem)

Explanallon: Source text which was included from member
mem in library lib by means of the %INCLUDE directive
contains in itself a %INCLUDE directive which directly or
indirectly references the same member recursively. Example:

Source program: Member TYPES:

PROGRAM EXAMPLE;
TYPE

REC ~ RECORD
NAME: STRING(18);
AGE : 0 .. 99; %INCLUDE TYPES;

BEGIN END;

END.

%INCLUOE TYPES;
(*<~~~ERROR 500*)

Programmer Response: Ensure the %INCLUDE directives all
reference the correct members.
System Action: The compiler halts with a severe error.

501 TOO MANY NESTING LEVELS IN "%INCLUDE"
PROCESSING Iib(mem)

Explanation: A %INCLUDE directive was detected which is
nested 8 levels deep within a stack of "includes." "Included"
source text may not be nested beyond 8 levels.
Programmer Response: Eliminate the %INCLUDE, or
physically put one member within another.
System Action: The compiler halts with a severe error.

502 UNABLE TO OPEN "%INCLUDE" LIBRARY:
Iibname

Explanation: The include library named libname could not be
opened. Possible causes are that the ddname was not
assigned or the DCB attributes of the library are not correct.
Programmer Response: Ensure the library specified was
correct.
System Action: The compiler halts with a severe error.

503 PERCENT "%" STATEMENT NOT FOUND
Explanation: A "%" symbol was detected, but with no identifier
following.
Programmer Response: Delete the percent sign or add the
name of the compiler directive desired.
System Action: The compiler attempts to recover and continues
compiling.

504 PERCENT "%"IDENTIFIER NOT RECOGNIZED
Explanation: An identifier following the "%" symbol is not
recognized as a valid compiler directive.
Programmer Response: Use a valid compiler directive name.
System Action: The compiler attempts to recover and continues
compiling.

505 "ON" OR "OFF" EXPECTED
Explanation: An "ON" or "OFF" was expected but not found.
Programmer Response: Specify "ON" or "OFF" where
indicated.
System Action: The compiler attempts to recover and continues
compiling.

506 UNRECOGNIZABLE OPTION IN "%CHECK"
Explanallon: An invalid option was used with a %CHECK
directive. Valid options are POINTER, PTR, , SUBSCRIPT,
SUBRANGE, FUNCTION, CASE and TRUNCATE.
Programmer Response: Use a valid option or delete the
%CHECK directive.
System Action: The compiler attempts to recover and continues
compiling.

507 %INCLUOE MEMBER NOT FOUND IN LIBRARY
Explanation: The library member which was to be included into
the source program could not be found.
Programmer Response: Correct the member name or use the
LIB compiler option to specify the library the member is in.
System Action: The %INCLUDE directive is ignored and
compilation continues.

508 LEFT MARGIN GREATER THAN RIGHT MARGIN
Explanation: The first number (left margin setting) on a
%MARGINS compiler directive is greater than the second
number (right margin setting).
Programmer Response: Change the numbers on the
%MARGINS directive appropriately.
System Action: The compiler uses the previous margin settings
and continues compiling.

509 MARGINS OVERLAP SEQUENCE FIELD
Explanation: The margin settings on a %MARGINS compiler
directive overlap the sequence number field.
Programmer Response: Change the numbers on the
%MARGINS directive, or use the SEQUENCE compiler option to
change the sequence field placement.
System Acllon: The compiler assumes that a sequence field is
no longer desired and uses the new margin settings. This is a
warning.

510 MISSING %ENDSELECT DIRECTIVE
Explanation: There is no %ENDSELECT compiler directive to
match a previous %SELECT directive. This error can occur
when, after encountering an initial %SELECT, the compiler
encounters (1) the end of the file, or (2) another %SELECT.
Programmer Response: Insert a %ENDSELECT directive at the
appropriate location in the source file, or delete the %SELECT
directive.
System Acllon: If the compiler reached the end of the input file,
it stops executing, possibly after issuing other diagnostics. If
the compiler found a %SELECT after an initial %SELECT, it
ignores the second %SELECT and continues compiling.

511 CHARACTERS WERE FOUND BETWEEN
%SELECT AND FIRST %WHEN

Explanation: Characters appear after a %SELECT compiler
directive but before the first %WHEN directive.
Programmer Response: If the characters must be conditionally
compiled, insert a %WHEN directive before them or move them
below the appropriate %WHEN directive. Otherwise, move
them above the %SELECT directive.
System Action: Characters between %SELECT and the first
%WHEN are ignored, and compilation continues. This is a
warning.

Chapter 20. VS Pascal Messages 235

512 INVALID EXPRESSION IN %WHEN DIRECTIVE
Explanation: A %WHEN compiler directive contains an invalid
Boolean expression.
Programmer Response: Correct the syntax of the Boolean
expression.
System Action: The compiler continues compiling as if the
expression evaluated to FALSE.

513 MISSING %SELECT DIRECTIVE
Explanation: A %WHEN or %ENDSELECT compiler directive
appears ahead of a %SELECT directive.
Programmer Response: Insert a %SELECT directive at the
appropriate location in the source file, or remove the %WHEN
or %ENDSELECT directive.
System Action: The compiler assumes a %SELECT was found
and continues compiling.

514 INVALID CONDITIONAL PARAMETER NAME
Explanation: The conditional parameter name on a %WHEN
compiler directive is not valid. Note that parameter names
used for conditional compilation cannot contain double-byte
character set (DBCS) characters or be more than 16 characters
long.
Programmer Response: Correct the invalid name.
System Action: The compiler ignores the name and continues
compiling.

600 IDENTIFIER xxxx IN FORWARD TYPE REFERENCE
AT LINE nnn OUT OF CONTEXT

Explanation: The identifier xxxx appeared in a pOinter type
definition of the form '@xxxx' at line nnn, but the identifier was
subsequently declared as something other than a type.
Example:

TYPE X = @y;

VAR Y: INTEGER;
(* <=== would cause error 600 *)
(* to be generated *)

Programmer Response: Make the forward type reference pOint
to the correct type identifier or change the name of the non-type
identifier if the type is declared later.
System Action: The compiler attempts to recover and continues
compiling.

601 FORWARD TYPE REFERENCE TO xxxx AT LINE
nnn NOT RESOLVED

Explanation: The identifier xxxx appeared in a pointer type
definition of the form '@xxxx' at line nnn, but the identifier was
not subsequently declared.
Programmer Response: Make the forward type reference point
to the correct type identifier or add a new type identifier with
the proper name.
System Action: The compiler assumes the type was declared
properly and continues compiling.

602 LABEL xxxx WAS DECLARED ANDIOR
REFERENCED BUT WAS NOT DEFINED

Explanation: The label named xxxx was declared and/or
referenced from within the associated routine, but was not
defined. All labels declared in a block must have a
corresponding definition in the block's statement part.
Programmer Response: Define the label in this routine or
remove the label declaration.
System Action: The compiler assumes the label was defined in
this routine and continues compiling. This is a warning in

236 vs Pascal Application Programming Guide

LANGLVL(EXTENDED} and is controlled by STDFLAG in
LANGLVL(ANSI83} .

603 THE BODY FOR ROUTINE routinename WAS NOT
DECLARED

Explanation: The routine routinename was declared with a
directive that requires the routine to have a body, but the
routine body was never declared. Directives that require
bodies are FORWARD, MAIN, and REENTRANT.
Programmer Response: Change the routine directive to one
that does not require a body or declare the routine body.
System Action: The compiler assumes the routine body was
resolved and continues compiling.

605 PROGRAM PARAMETER xxxx WAS NOT
DECLARED AS A GLOBAL VARIABLE

Explanation: The program parameter named xxxx in the
program heading was not declared in the main program as a
global variable.
Programmer Response: Associate the program parameter with
a global variable or delete the program parameter.
System Action: The compiler ignores the program parameter
and continues compiling. This is a warning in
LANGLVL(EXTENDED} and is controlled by STDFLAG in
LANGLVL(ANSI83}.

700 INPUT FILE SYSIN COULD NOT BE OPENED
Explanation: The input file could not be opened. This could
occur because a file was specified which was also used
inlernally by Ihe compiler.
Programmer Response: Specify a new file or rename the file.
System Action: The compiler halls wilh a severe error.

701 OPTION option DOES NOT TAKE SUBOPTIONS
Explanation: Option was specified wilh a suboption lisl, but it
cannot accept suboptions.
Programmer Response: Either (1) remove the suboption list or
(2) specify the option for which the suboption list is intended.
System Action: The compiler continues as if no suboption list.
This is a warning.

702 Token IS NOT A VALID SUBOPTION FOR option
Explanation: Token is not a valid suboption for compiler option
option.
Programmer Response: Either do not specify the option at all,
or use a valid suboplion
System Action: The compiler ignores the option and continues
compiling. This is a warning.

703 SUBOPTION EXPECTED FOR option
Explanation: Option requires a qualifying suboption, but none
was found. The left parenthesis indicating a suboption list may
have been omitted.
Programmer Response: Either do not specify the option at all,
or specify a valid suboption.
System Action: The compiler ignores the option and continues
compiling. This is a warning.

512 INVALID EXPRESSION IN %WHEN DIRECTIVE
Explanation: A %WHEN compiler directive contains an invalid
Boolean expression.
Programmer Response: Correct the syntax of the Boolean
expression.
System Action: The compiler continues compiling as if the
expression evaluated to FALSE.

513 MISSING %SELECT DIRECTIVE
Explanation: A %WHEN or %ENDSELECT compiler directive
appears ahead of a %SELECT directive.
Programmer Response: Insert a %SELECT directive at the
appropriate location in the source file, or remove the %WHEN
or %ENDSELECT directive.
System Action: The compiler assumes a %SELECT was found
and continues compiling.

514 INVALID CONDITIONAL PARAMETER NAME
Explanation: The conditional parameter name on a %WHEN
compiler directive is not valid. Note that parameter names
used for conditional compilation cannot contain double-byte
character set (DBCS) characters or be more than 16 characters
long.
Programmer Response: Correct the invalid name.
System Action: The compiler ignores the name and continues
compiling.

600 IDENTIFIER xxxx IN FORWARD TYPE REFERENCE
AT LINE nnn OUT OF CONTEXT

Explanation: The identifier xxxx appeared in a pOinter type
definition of the form '@xxxx' at line nnn, but the identifier was
subsequently declared as something other than a type.
Example:

TYPE X = @Y;

VAR Y: INTEGER;
(* <=== would cause error 600 *)
(* to be generated *)

Programmer Response: Make the forward type reference point
to the correct type identifier or change the name of the non-type
identifier if the type is declared later.
System Action: The compiler attempts to recover and continues
compiling.

601 FORWARD TYPE REFERENCE TO xxxx AT LINE
nnn NOT RESOLVED

Explanation: The identifier xxxx appeared in a pOinter type
definition of the form '@xxxx' at line nnn, but the identifier was
not subsequently declared.
Programmer Response: Make the forward type reference point
to the correct type identifier or add a new type identifier with
the proper name.
System Action: The compiler assumes the type was declared
properly and continues compiling.

602 LABEL xxxx WAS DECLARED AND/OR
REFERENCED BUT WAS NOT DEFINED

Explanation: The label named xxxx was declared and/or
referenced from within the associated routine, but was not
defined. All labels declared in a block must have a
corresponding definition in the block's statement part.
Programmer Response: Define the label in this routine or
remove the label declaration.
System Action: The compiler assumes the label was defined in
this routine and continues compiling. This is a warning in

236 vs Pascal Application Programming Guide

LANGLVL(EXTENDED) and is controlled by STDFLAG in
LANGL VL(ANSI83).

603 THE BODY FOR ROUTINE routinename WAS NOT
DECLARED

Explanation: The routine routinename was declared with a
directive that requires the routine to have a body, but the
routine body was never declared. Directives that require
bodies are FORWARD, MAIN, and REENTRANT.
Programmer Response: Change the routine directive to one
that does not require a body or declare the routine body.
System Action: The compiler assumes the routine body was
resolved and continues compiling.

605 PROGRAM PARAMETER xxxx WAS NOT
DECLARED AS A GLOBAL VARIABLE

Explanation: The program parameter named xxxx in the
program heading was not declared in the main program as a
global variable.
Programmer Response: Associate the program parameter with
a global variable or delete the program parameter.
System Action: The compiler ignores the program parameter
and continues compiling. This is a warning in
LANGLVL(EXTENDED) and is controlled by STDFLAG in
LANGL VL(ANSI83).

700 INPUT FILE SYSIN COULD NOT BE OPENED
Explanation: The input file could not be opened. This could
occur because a file was specified which was also used
internally by the compiler.
Programmer Response: Specify a new file or rename the file.
System Action: The compiler halts with a severe error.

701 OPTION option DOES NOT TAKE SUBOPTIONS
Explanation: Option was specified with a suboption list, but it
cannot accept suboptions.
Programmer Response: Either (1) remove the suboption list or
(2) specify the option for which the suboption list is intended.
System Action: The compiler continues as if no suboption list.
This is a warning.

702 Token IS NOT A VALID SUBOPTION FOR option
Explanation: Token is not a valid suboption for compiler option
option.
Programmer Response: Either do not specify the option at all,
or use a valid suboption
System Action: The compiler ignores the option and continues
compiling. This is a warning.

703 SUBOPTION EXPECTED FOR option
Explanation: Option requires a qualifying suboption, but none
was found. The left parenthesis indicating a suboption list may
have been omitted.
Programmer Response: Either do not specify the option at all,
or specify a valid suboption.
System Action: The compiler ignores the option and continues
compiling. This is a warning.

704 MISSING element EXPECTED FOR option
Explanation: Option contained a syntax error because element
was expected but not found. This can happen if a comma or
right parenthesis is missing on a suboption list.
Programmer Response: Either do not specify the option at all
or use a syntactically valid form of the option.
System Action: The compiler option is set as specified, and
compilation continues. This is a warning.

705 SUBOPTIONS FOUND WITH NO ASSOCIATED
OPTION

Explanation: A list of suboptions had no option preceding it.
This can happen if (1) a left parenthesis immediately follows the
left parenthesis that marks the start of an option list, or (2) a left
parenthesis immediately follows a suboption list of another
option.
Programmer Response: You can (1) add a valid option name
before the suboption list, (2) delete the suboption list, or (3)
remove the parentheses around the suboption list.
System Action: The compiler ignores the suboption list and
continues compiling. This is a warning.

706 MESSAGE TEXT NOT FOUND FOR LANGUAGE:
language

Explanation: Message text does not exist for language, as
specified on the LANGUAGE option.
Programmer Response: Change the LANGUAGE option to a
language that is supported by VS Pascal and implemented on
your system.
System Action: Compilation continues; all output will appear in
the default language selected during installation. This is a
warning.

707 INVALID CONDPARM PARAMETER NAME: name
Explanation: The conditional parameter name name is not
valid. Note that conditional parameters cannot contain
double-byte character set (DBCS) characters or be more than
sixteen characters long.
Programmer Response: Correct the invalid name.
System Action: The compiler ignores the name and continues
compiling.

708 CONDITIONAL PARAMETER name WAS SET
PREVIOUSLY

Explanation: The conditional parameter name is already set.
Programmer Response: Remove the duplicate assignment
from the CONDPARM compiler option and restart the compiler.
System Action: The compiler uses the last value specified and
continues compiling. This is a warning.

709 Option1 AND option2 ARE MUTUALLY
EXCLUSIVE; option3 ASSUMED

Explanation: Option1 and option2 cannot be used together.
Programmer Response: Specify non-conflicting options.
System Action: The compiler continues compiling, replacing
option1 with option3. This is a warning.

799 OPTION IS UNSUPPORTED IN VS PASCAL
Explanation: The indicated compiler option is not supported.
Any problems caused by using an option which could cause this
message should not be reported to service.
Programmer Response: Remove or correct the specified
compiler option if used unintentionally.
System Action: The compiler accepts the option, but the results
are unpredictable. This is a warning.

800 STRING LITERAL CONSTANT IS TOO LONG:
EXCEEDS 3190

Explanation: Because of an implementation restriction, a string
constant may not exceed 3190 characters in length.
Programmer Response: Concatenate shorter literals to form a
longer string constant.
System Action: The compiler attempts to recover and continues
compiling.

801 ROUTINE NESTING EXCEEDS MAXIMUM
Explanation: The indicated PROCEDURE or FUNCTION
declaration exceeds the maximum allowed nesting level for
routines. Routines may be nested to a maximum depth of 8
(including the main program or segment).
Programmer Response: Move the indicated routine a higher
scope. This may require moving some identifiers referenced by
the routine to a higher scope as well.
System Action: The compiler attempts to recover and continues
compiling.

802 TOO MANY NESTED WITH STATEMENTS OR
RECORD DEFINITIONS

Explanation: This error occurs when too many lexical scopes
are active. This can occur in multiple nested WITH statements
and RECORD definitions.
Programmer Response: Do not use so many nested WITH
statements or RECORD declarations.
System Action: The compiler attempts to recover and continues
compiling.

803 REAL CONSTANT HAS TOO MANY DIGITS
Explanation: The indicated floating point constant contains
more digits than the compiler allows for in scanning. Real
constants may have 72 characters in decimal notation, and 16
characters in hexadecimal notation.
Programmer Response: Use fewer digits in the number.
Leading zeroes may be replaced with scientific notation, and
trailing zeroes may be omitted.
System Action: The compiler attempts to recover and continues
compiling.

804 INTEGER CONSTANT TOO LARGE
Explanation: The indicated integer constant is not within the
range -2147483647 to 2147483647.
Programmer Response: Use an integer in the specified range.
If you wish to use the value of -2**31, use the predefined
constant MININT.
System Action: The compiler assumes a value of zero and
continues compiling.

805 HEXADECIMAL INTEGER CONSTANT MAY NOT
EXCEED 8 DIGITS

Explanation: The indicated hexadecimal constant exceeds the
maximum allowed number of digits.
Programmer Response: Use a smaller constant.
System Action: The compiler attempts to recover and continues
compiling.

806 BINARY INTEGER CONSTANT MAY NOT EXCEED
32 DIGITS

Explanation: The indicated binary constant exceeds the
maximum number of digits.
Programmer Response: Use a smaller constant.
System Action: The compiler assumes a value of zero and
continues compiling.

Chapter 20. VS Pascal Messages 237

704 MISSING element EXPECTED FOR option
Explanation: Option contained a syntax error because element
was expected but not found. This can happen if a comma or
right parenthesis is missing on a suboption list.
Programmer Response: Either do not specify the option at all
or use a syntactically valid form of the option.
System Action: The compiler option is set as specified, and
compilation continues. This is a warning.

705 SUBOPTIONS FOUND WITH NO ASSOCIATED
OPTION

Explanation: A list of suboptions had no option preceding it.
This can happen if (1) a left parenthesis immediately follows the
left parenthesis that marks the start of an option list, or (2) a left
parenthesis immediately follows a suboption list of another
option.
Programmer Response: You can (1) add a valid option name
before the suboption list, (2) delete the suboplion list, or (3)
remove the parentheses around the suboption list.
System Action: The compiler ignores the suboption list and
continues compiling. This is a warning.

706 MESSAGE TEXT NOT FOUND FOR LANGUAGE:
language

Explanation: Message text does not exist for language, as
specified on the LANGUAGE option.
Programmer Response: Change the LANGUAGE option to a
language that is supported by VS Pascal and implemented on
your system.
System Action: Compilation continues; all output will appear in
the default language selected during installation. This is a
warning.

707 INVALID CONDPARM PARAMETER NAME: name
Explanation: The conditional parameter name name is not
valid. Note that conditional parameters cannot contain
double-byte character set (DBCS) characters or be more than
sixteen characters long.
Programmer Response: Correct the invalid name.
System Action: The compiler ignores the name and continues
compiling.

708 CONDITIONAL PARAMETER name WAS SET
PREVIOUSLY

Explanation: The conditional parameter name is already set.
Programmer Response: Remove the duplicate assignment
from the CONDPARM compiler option and restart the compiler.
System Action: The compiler uses the last value specified and
continues compiling. This is a warning.

709 Option1 AND option2 ARE MUTUALLY
EXCLUSIVE; option3 ASSUMED

Explanation: Option1 and option2 cannot be used together.
Programmer Response: Specify non-conflicting options.
System Action: The compiler continues compiling, replacing
option1 with option3. This is a warning.

799 OPTION IS UNSUPPORTED IN VS PASCAL
Explanation: The indicated compiler option is not supported.
Any problems caused by using an option which could cause this
message should not be reported to service.
Programmer Response: Remove or correct the specified
compiler option if used unintentionally.
System Action: The compiler accepts the option, but the results
are unpredictable. This is a warning.

800 STRING LITERAL CONSTANT IS TOO LONG:
EXCEEDS 3190

Explanation: Because of an implementation restriction, a string
constant may not exceed 3190 characters in length.
Programmer Response: Concatenate shorter literals to form a
longer string constant.
System Action: The compiler attempts to recover and continues
compiling.

801 ROUTINE NESTING EXCEEDS MAXIMUM
Explanation: The indicated PROCEDURE or FUNCTION
declaration exceeds the maximum allowed nesting level for
routines. Routines may be nested to a maximum depth of 8
(including the main program or segment).
Programmer Response: Move the indicated routine a higher
scope. This may require moving some identifiers referenced by
the routine to a higher scope as well.
System Action: The compiler attempts to recover and continues
compiling.

802 TOO MANY NESTED WITH STATEMENTS OR
RECORD DEFINITIONS

Explanation: This error occurs when too many lexical scopes
are active. This can occur in multiple nested WITH statements
and RECORD definitions.
Programmer Response: Do not use so many nested WITH
statements or RECORD declarations.
System Action: The compiler attempts to recover and continues
compiling.

803 REAL CONSTANT HAS TOO MANY DIGITS
Explanation: The indicated floating point constant contains
more digits than the compiler allows for in scanning. Real
constants may have 72 characters in decimal notation, and 16
characters in hexadecimal notation.
Programmer Response: Use fewer digits in the number.
Leading zeroes may be replaced with scientific notation, and
trailing zeroes may be omitted.
System Action: The compiler attempts to recover and continues
compiling.

804 INTEGER CONSTANT TOO LARGE
Explanation: The indicated integer constant is not within the
range -2147483647 to 2147483647.
Programmer Response: Use an integer in the specified range.
If you wish to use the value of -2**31, use the predefined
constant MININT.
System Action: The compiler assumes a value of zero and
continues compiling.

805 HEXADECIMAL INTEGER CONSTANT MAY NOT
EXCEED 8 DIGITS

Explanation: The indicated hexadecimal constant exceeds the
maximum allowed number of digits.
Programmer Response: Use a smaller constant.
System Action: The compiler attempts to recover and continues
compiling.

806 BINARY INTEGER CONSTANT MAY NOT EXCEED
32 DIGITS

Explanation: The indicated binary constant exceeds the
maximum number of digits.
Programmer Response: Use a smaller constant.
System Action: The compiler assumes a value of zero and
continues compiling.

Chapter 20. VS Pascal Messages 237

807 ARRAY HAS TOO MANY ELEMENTS
Explanation: The length of the indicated array definition
exceeds the addressability of the computer.
Programmer Response: Declare the array with fewer elements
or a smaller element type.
System Action: The compiler attempts to recover and continues
compiling.

808 MAGNITUDE OF FLOATING POINT CONSTANT
TOO LARGE OR TOO SMALL

Explanation: The indicated floating point constant has a
magnitude that is outside the range of the IBM/370 double
precision representation. The largest floating-point magnitude
that can be represented is:

7.23700557733226E75

The smallest is:

5.39760534693403E-79

Programmer Response: Use a valid floating point constant.
System Action: The compiler attempts to recover and continues
compiling.

809 MAXIMUM STRING LENGTH EXCEEDED
Explanation: The indicated expression produced a varying
length string which exceeds 32767 characters in length. The
maximum allowed length for a varying length string is 32767.
Programmer Response: Either truncate the string causing the
error or don't use a varying length string.
System Action: The compiler attempts to recover and continues
compiling.

810 FIXED POINT OVERFLOW OR DIVIDE·BY·ZERO
Explanation: An integer expression consisting of constant
operands causes a program error to occur when it is evaluated.
Programmer Response: Change or rearrange the computation.
System Action: The compiler attempts to recover and continues
compiling.

811 THE ORO OF ALL SET MEMBERS MUST LIE
WITHIN 0 .. 255

Explanation: The ordinal value of any valid set member may
not be less than 0 no greater than 255.
Programmer Response: Modify the set declaration or reference
to use appropriate member values.
System Action: The compiler attempts to recover and continues
compiling.

812 FLOATING POINT COMPUTATIONAL ERROR
Explanation: The indicated floating point expression causes a
program error when evaluated.
Programmer Response: Change or rearrange the computation.
System Action: The compiler continues compiling using an
unpredictable result for the expression.

813 DATA STORAGE EXCEEDS ADDRESSABILITY OF
MACHINE

Explanation: The storage required to contain all declared
variables within a routine or main program exceeds the
capacity of the computer; that is, it exceeds 16 megabytes.
Programmer Response: Split the routine up so that it does not
use so much storage.
System Action: The compiler attempts to recover and continues
compiling.

238 vs Pascal Application Programming Guide

814 VARIABLE IS NOT PROPERLY ALIGNED
Explanation: The indicated variable is being passed as a VAR
parameter and the compiler has detected that its address may
not be properly aligned. (For example, passing a fullword
integer which has an address that is not on a word boundary
would result in this message.)

On most models of the 370 series, the manipulation of objects
which are not properly aligned will result in a penalty in
execution speed.

This warning will be produced even if the variable is just
potential misaligned (as in the case of a subscripted variable).
Programmer Response: Fix the variable alignment if this was
unintentional.
System Action: The compiler attempts to recover and continues
compiling. This is a warning.

815 OFFSET QUALIFICATION VALUE IS TOO LARGE
Explanation: The indicated field in a record definition is
qualified with an offset which would result in a record that was
too large to address.
Programmer Response: Use a smaller offset qualification, or
use less fields in the record.
System Action: The compiler attempts to recover and continues
compiling.

816 OBJECT EXCEEDS STORAGE LIMITS
Explanation: The specified object would cause the program to
require more storage than is physically addressable.

Note: This error can occur on a type declaration even if no
variable is declared with that type.
Programmer Response: Declare the object so that it won't use
so much space.
System Action: The compiler attempts to recover and continues
compiling.

817 TOO MANY SCOPES USED
Explanation: The program being compiled had too many
scoping levels. Compilation will continue, but some scoping
violations will not be detected.
Programmer Response: Use fewer routines, or change some
functions to procedures that return results as pass-by-VAR
parameters.
System Action: The compiler attempts to recover and continues
compiling,

818 TOO MANY %INCLUDE DIRECTIVES USED
Explanation: The number of %INCLUDE directives exceeds the
compiler's limit.
Programmer Response: Combine several %INCLUDE members
into one member where possible.
System Action: The compiler halts and indicates a severe
error.

819 HEX LITERAL HAS INVALID NUMBER OF DIGITS
Explanation: The number of hex digits specified is not a
multiple of two in a hex character string (XC) or is not a multiple
of four in a hex double-byte character string (XG).
Programmer Response: Make sure the number of hex digits is
correct.
System Action: The compiler assumes the literal had the
correct number of digits and continues compiling.

807 ARRAY HAS TOO MANY ELEMENTS
Explanation: The length of the indicated array definition
exceeds the addressability of the computer.
Programmer Response: Declare the array with fewer elements
or a smaller element type.
System Action: The compiler attempts to recover and continues
compiling.

808 MAGNITUDE OF FLOATING POINT CONSTANT
TOO LARGE OR TOO SMALL

Explanation: The indicated floating point constant has a
magnitude that is outside the range of the IBM/370 double
precision representation. The largest floating-point magnitude
that can be represented is:

7.23700557733226E75

The smallest is:

5.39760534693403E-79

Programmer Response: Use a valid floating point constant.
System Action: The compiler attempts to recover and continues
compiling.

809 MAXIMUM STRING LENGTH EXCEEDED
Explanation: The indicated expression produced a varying
length string which exceeds 32767 characters in length. The
maximum allowed length for a varying length string is 32767.
Programmer Response: Either truncate the string causing the
error or don't use a varying length string.
System Action: The compiler attempts to recover and continues
compiling.

810 FIXED POINT OVERFLOW OR DIVIDE·BY·ZERO
Explanation: An integer expression consisting of constant
operands causes a program error to occur when it is evaluated.
Programmer Response: Change or rearrange the computation.
System Action: The compiler attempts to recover and continues
compiling.

811 THE ORO OF ALL SET MEMBERS MUST LIE
WITHIN 0 .. 255

Explanation: The ordinal value of any valid set member may
not be less than a no greater than 255.
Programmer Response: Modify the set declaration or reference
to use appropriate member values.
System Action: The compiler attempts to recover and continues
compiling.

812 FLOATING POINT COMPUTA1'IONAL ERROR
Explanation: The indicated floating point expression causes a
program error when evaluated.
Programmer Response: Change or rearrange the computation.
System Action: The compiler continues compiling using an
unpredictable result for the expression.

813 DATA STORAGE EXCEEDS ADDRESSABILITY OF
MACHINE

Explanation: The storage required to contain all declared
variables within a routine or main program exceeds the
capacity of the computer; that is. it exceeds 16 megabytes.
Programmer Response: Split the routine up so that it does not
use so much storage.
System Action: The compiler attempts to recover and continues
compiling.

238 vs Pascal Application Programming Guide

814 VARIABLE IS NOT PROPERLY ALIGNED
Explanation: The indicated variable is being passed as a VAR
parameter and the compiler has detected that its address may
not be properly aligned. (For example. passing a fullword
integer which has an address that is not on a word boundary
would result in this message.)

On most models of the 370 series, the manipulation of objects
which are not properly aligned will result in a penalty in
execution speed.

This warning will be produced even if the variable is just
potential misaligned (as in the case of a subscripted variable).
Programmer Response: Fix the variable alignment if this was
unintentional.
System Action: The compiler attempts to recover and continues
compiling. This is a warning.

815 OFFSET QUALIFICATION VALUE IS TOO LARGE
Explanation: The indicated field in a record definition is
qualified with an offset which would result in a record that was
too large to address.
Programmer Response: Use a smaller offset qualification, or
use less fields in the record.
System Action: The compiler attempts to recover and continues
compiling.

816 OBJECT EXCEEDS STORAGE LIMITS
Explanation: The specified object would cause the program to
require more storage than is physically addressable.

Note: This error can occur on a type declaration even if no
variable is declared with that type.
Programmer Response: Declare the object so that it won't use
so much space.
System Action: The compiler attempts to recover and continues
compiling.

817 TOO MANY SCOPES USED
Explanation: The program being compiled had too many
scoping levels. Compilation will continue, but some scoping
violations will not be detected.
Programmer Response: Use fewer routines, or change some
functions to procedures that return results as pass-by-VAR
parameters.
System Action: The compiler attempts to recover and continues
compiling.

818 TOO MANY %INCLUDE DIRECTIVES USED
Explanation: The number of %INCLUDE directives exceeds the
compiler's limit.
Programmer Response: Combine several %INCLUDE members
into one member where possible.
System Action: The compiler halts and indicates a severe
error.

819 HEX LITERAL HAS INVALID NUMBER OF DIGITS
Explanation: The number of hex digits specified is not a
multiple of two in a hex character string (XC) or is not a multiple
of four in a hex double-byte character string (XG).
Programmer Response: Make sure the number of hex digits is
correct.
System Action: The compiler assumes the literal had the
correct number of digits and continues compiling.

900 INTERNAL COMPILER FAILURE
Explanation: An internal compiler error has occurred.
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for more information.
System Action: The compiler attempts to recover and continues
compiling.

AMPL999S INTERNAL COMPILER FAILURE
Explanation: An internal error was detected in the first pass of
the compiler. A message will be issued to show the type of
internal error detected.
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for more information.
System Action: Depending on the severity of the message
issued after this message, the compiler will continue execution
or halt.

Chapter 20. VS Pascal Messages 239

900 INTERNAL COMPILER FAILURE
Explanation: An internal compiler error has occurred.
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for more information.
System Action: The compiler attempts to recover and continues
compiling.

AMPL999S INTERNAL COMPILER FAILURE
Explanation: An internal error was detected in the first pass of
the compiler. A message will be issued to show the type of
internal error detected .
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for more information.
System Action: Depending on the severity of the message
issued after this message, the compiler will continue execution
or halt.

Chapter 20. VS Pascal Messages 239

Compiler Messages-Intermediate Code Optimization

These messages are issued during the second compiler pass (intermediate code optimization). All
messages will indicate the module, routine and statement which caused the message to be issued.

AMP0001S ROUTINE routinename IS TOO LARGE TO
COMPILE AT STMT n

Explanation: The indicated routine has too many statements to
compile; a fixed-length table of the compiler has overflowed.
The last statement that was successfully processed was
statement n.
Programmer Response: Divide the routine irito two or more
separate routines. For example, you can take this routine

PROCEDURE BIG;
declarations

BEGIN
code part 1
code part 2

END;

and separate it this way:

PROCEDURE BIG;
declarations

PROCEDURE Pl;
BEGIN

code part
END;

PROCEDURE P2;
BEGIN

code part 2
END;

BEGIN
Pl;
P2;

END;

240 vs Pascal Application Programming Guide

System Action: The compiler stops with a return code of 16. No
object code is generated.

AMPOOO2S INTERNAL OPTIMIZER ERROR
Explanation: An internal optimizer error occurred. Another
message will identify which routine and statement in the source
program caused the error.
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for further information.
System Acllon: The compiler generates a trace-back and stops
with a return code of 16. No object code is generated.

AMP07001 MESSAGE TEXT NOT FOUND FOR LANGUAGE:
language

Explanation: Message text does not exist for language, as
specified on the LANGUAGE option.
Programmer Response: Change the LANGUAGE option to a
language that is supported by VS Pascal and implemented on
your system.
System Action: Compilation continues; all output will appear in
the default language selected during installation.

AMP0999S INTERNAL OPTIMIZER ERROR
Explanation: The compiler detected an internal error during its
second pass. A message will be issued to show the type of
internal error detected.
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for further information.
System Action: The compiler stops with a return code of 16. No
object code is generated.

Compiler Messages-Intermediate Code Optimization

These messages are issued during the second compiler pass (intermediate code optimization). All
messages will indicate the module, routine and statement which caused the message to be issued.

AMP0001S ROUTINE routinename IS TOO LARGE TO
COMPILE AT STMT n

Explanation: The indicated routine has too many statements to
compile; a fixed-length table of the compiler has overflowed.
The last statement that was successfully processed was
statement n.
Programmer Response: Divide the routine into two or more
separate routines. For example, you can take this routine

PROCEDURE BIG;
declarations

BEGIN
code part 1
code part 2

END;

and separate it this way:

PROCEDURE BIG;
declarations

PROCEDURE Pi;
BEGIN

code part
END;

PROCEDURE P2;
BEGIN

code part 2
END;

BEGIN
Pi;
P2;

END;

240 vs Pascal Application Programming Guide

System Action: The compiler stops with a return code of 16. No
object code is generated.

AMP0002S INTERNAL OPTIMIZER ERROR
Explanation: An internal optimizer error occurred. Another
message will identify which routine and statement in the source
program caused the error.
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for further information.
System Action: The compiler generates a trace-back and stops
with a return code of 16. No object code is generated.

AMP07001 MESSAGE TEXT NOT FOUND FOR LANGUAGE:
language

Explanation: Message text does not exist for language, as
specified on the LANGUAGE option.
Programmer Response: Change the LANGUAGE option to a
language that is supported by VS Pascal and implemented on
your system.
System Action: Compilation continues; all output will appear in
the default language selected during installation.

AMP0999S INTERNAL OPTIMIZER ERROR
Explanation: The compiler detected an internal error during its
second pass. A message will be issued to show the type of
internal error detected.
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for further information.
System Action: The compiler stops with a return code of 16. No
object code is generated.

Compiler Messages-Object Code Generation

These messages are issued during the third compiler pass (370 object code generation). All messages will
indicate the module, routine and statement which caused the message to be issued.

Note: For the AMPT5xx messages, the statement number may be invalid because these messages are
issued for declarations.

AMPTOO1E INEVITABLE NIL POINTER ERROR WILL OCCUR
Explanation: The compiler's code optimizer determined that a
NIL pointer checking error will inevitably occur at run time. The
message also indicates the module, routine, and statement
where error will occur. Here is an example of code that will
cause this error:

BEGIN
P := NIL;
WRITELN(P@. I);
(*<===AMPT00lE - inevitable error*)

END;

Programmer Response: Use a valid pointer.
System Action: The compiler attempts to recover and continues
compiling.

AMPT002E INEVITABLE HIGH BOUND ERROR WILL OCCUR
Explanation: The compiler's code optimizer determined that a
high-bound checking error will inevitably occur at run time.
The message also indicates the module, routine, and statement
where the error will occur. Here is an example of code that will
cause this error:

VAR
I : 1. .10;
J : INTEGER;

BEGIN
J := 11;
I := J;
(*<===AMPT002E - inevitable error*)

END;

Programmer Response: Either:
Adjust the sub range.
Modify the statement.

System Action: The compiler attempts to recover and continues
compiling.

AMPT003E INEVITABLE LOW BOUND ERROR WILL OCCUR
Explanation: The compiler's code optimizer determined that a
low-bound checking error will inevitably occur at run time. The
message also indicates the module, routine, and statement
where the error will occur. Here is an example of code that will
cause this error:

VAR
I : 1. .10;
J : INTEGER;

BEGIN
J : = 0;
I : = J;
(*<===AMPT003E - inevitable error*)

END;

Programmer Response: Adjust the subrange or modify the
statement.
System Action: The compiler attempts to recover and continues
compiling.

AMPT004E INEVITABLE RECORD TAG FIELD ERROR
Explanation: This error occurs when you use a compiler
directive not supported by the VS Pascal compiler.

Note: Do not report any problems caused by unsupported
features to IBM.
Programmer Response: For best results, remove the
unsupported directive from your code.
System Action: The compiler attempts to recover and continues
compiling.

AMPTOOSE FUNCTION ROUTINE DOES NOT RETURN A
VALUE

Explanation: The compiler's code optimizer determined that
the indicated function does not return a result. Here is an
example of code that will cause this error:

FUNCTION F(VAR I: INTEGER): INTEGER;
BEGIN

READLN(J) ;
END;

(*<===AMPT005 function did not*)
(*return a result*)

Programmer Response: Correct the function so that it returns a
result.
System Action: The compiler attempts to recover and continues
compiling.

AMPTSOOW RECORD TYPE CONTAINS TOO MANY FIELDS
(MAX = n)

Explanation: The module being compiled with the DEBUG
option contains a record type definition with too many fields to
be accommodated in the Interactive Debugging Tool"s type
table. The maximum number of table entries possible in your
implementation of VS Pascal is n.
Programmer Response: You can ignore the error, but the
resulting code might not work properly with the Interactive
Debugging Tool. Otherwise, compile the program without the
DEBUG option.
System Action: The compiler attempts to recover and continues
compiling.

AMPTS01W FIELD NAME SPACE POOL OVERFLOWED
Explanation: The module being compiled with the DEBUG
option contains a large number of record definitions. The
Interactive Debugging Tool table that contains record field
names overflowed.
Programmer Response: You can ignore the error, but the
resulting code might not work properly with the Interactive
Debugging Tool. Otherwise, compile the program without the
DEBUG option.
System Action: The compiler attempts to recover and continues
compiling.

Chapter 20. VS Pascal Messages 241

Compiler Messages-Object Code Generation

These messages are issued during the third compiler pass (370 object code generation). All messages will
indicate the module, routine and statement which caused the message to be issued.

Note: For the AMPT5xx messages, the statement number may be invalid because these messages are
issued for declarations.

AMPT001E INEVITABLE NIL POINTER ERROR WILL OCCUR
Explanation: The compiler's code optimizer determined that a
NIL pOinter checking error will inevitably occur at run time. The
message also indicates the module, routine, and statement
where error will occur. Here is an example of code that will
cause this error:

BEGIN
P :- NIL;
WRITELN (P@. I) ;
(*<=--AMPT001E - inevitable error*)

END;

Programmer Response: Use a valid pointer.
System Action: The compiler attempts to recover and continues
compiling.

AMPT002E INEVITABLE HIGH BOUND ERROR WILL OCCUR
Explanation: The compiler's code optimizer determined that a
high-bound checking error will inevitably occur at run time.
The message also indicates the module, routine, and statement
where the error will occur. Here is an example of code that will
cause th is error:

VAR
I : 1 .. 10;
J : INTEGER;

BEGIN
J := 11;
I : = J;
(*<===AMPT002E - inevitable error*)

END;

Programmer Response: Either:

Adjust the subrange.

Modify the statement.
System Action: The compiler attempts to recover and continues
compiling.

AMPT003E INEVITABLE LOW BOUND ERROR WILL OCCUR
Explanation: The compiler's code optimizer determined that a
low-bound checking error will inevitably occur at run time. The
message also indicates the module, routine, and statement
where the error will occur. Here is an example of code that will
cause this error:

VAR
I : 1..10;
J : INTEGER;

BEGIN
J := 0;
I : = J;
(*<===AMPT003E - inevitable error*)

END;

Programmer Response: Adjust the subrange or modify the
statement.
System Action: The compiler attempts to recover and continues
compiling.

AMPT004E INEVITABLE RECORD TAG FIELD ERROR
Explanation: This error occurs when you use a compiler
directive not supported by the VS Pascal compiler.

Note: Do not report any problems caused by unsupported
features to IBM.
Programmer Response: For best results, remove the
unsupported directive from your code.
System Action: The compiler attempts to recover and continues
compiling.

AMPT005E FUNCTION ROUTINE DOES NOT RETURN A
VALUE

Explanation: The compiler's code optimizer determined that
the indicated function does not return a result. Here is an
example of code that will cause this error:

FUNCTION F(VAR I: INTEGER): INTEGER;
BEGIN

READLN(I);
END;

(*<-=-AMPT005 function did not*)
(*return a result*)

Programmer Response: Correct the function so that it returns a
result.
System Action: The compiler attempts to recover and continues
compiling.

AMPT500W RECORD TYPE CONTAINS TOO MANY FIELDS
(MAX = n)

Explanation: The module being compiled with the DEBUG
option contains a record type definition with too many fields to
be accommodated in the Interactive Debugging Tool's type
table. The maximum number of table entries possible in your
implementation of VS Pascal is n.
Programmer Response: You can ignore the error, but the
resulting code might not work properly with the Interactive
Debugging Tool. Otherwise, compile the program without the
DEBUG option.
System Action: The compiler attempts to recover and continues
compiling.

AMPT501W FIELD NAME SPACE POOL OVERFLOWED
Explanation: The module being compiled with the DEBUG
option contains a large number of record definitions. The
Interactive Debugging Tool table that contains record field
names overflowed.
Programmer Response: You can ignore the error, but the
resulting code might not work properly with the Interactive
Debugging Tool. Otherwise. compile the program without the
DEBUG option.
System Action: The compiler attempts to recover and continues
compiling.

Chapter 20. VS Pascal Messages 241

AMPT502E TYPE TABLE OVERFLOW. DEBUG IS DISABLED
Explanation: The module being compiled with the DEBUG
option contains more than 8.192 unique data types, exceeding
the capacity of the Interactive Debugging Tool's type table. The
Interactive Debugging Tool cannot be used on this module.
Programmer Response: Either:

Ignore the error.

Do not compile with the DEBUG option.
System Action: The compiler attempts to recover and continues
compiling.

AMPT503W SYMBOL NAME SPACE POOL OVERFLOWED
Explanation: The module being compiled with the debug option
contains a large number of symbols. The Interactive Debugging
Tool table that contains symbol names overflowed.
Programmer Response: You can ignore the error, but the
resulting code might not work properly with the Interactive
Debugging Tool. Otherwise, compile the program without the
DEBUG option.
System Action: The compiler attempts to recover and continues
compiling.

AMPT7001 MESSAGE TEXT NOT FOUND FOR LANGUAGE:
language

Explanation: You specified language on the LANGUAGE option,
but no message text exists for that language identifier.
Programmer Response: Specify a LANGUAGE identifier that is
s'upported by VS Pascal and implemented on your system.
System Action: Compilation continues; all output appears in the
default language selected during installation.

AMPT900S EXPRESSION IS TOO COMPLICATED
Explanation: The indicated expression is too complex to
compile. This error typically occurs when a statement requires
too many registers.
Programmer Response: Break the statement up into multiple
statements. If the indicated statement contains a relatively
simple expression, see the VS Pascal Diagnosis Guide and
Reference for more help.
System Action: The compiler stops compiling the program.

AMPT901S ROUTINE routinename CONTAINS TOO MANY
STATEMENTS (MAX = n)

Explanation: The table that contains statement information
overflowed in the indicated routine routinename. The maximum
number of statements you can use is n.
Programmer Response: Divide the routine into two or more
routines. For example, you can take this routine:

PROCEDURE BIG;
declarations

BEGIN
code part
code part

END;

and separate it this way:

242 vs Pascal Application Programming Guide

PROCEDURE BIG;
declarations

PROCEDURE Pl;
BEGIN

code part
END;

PROCEDURE P2;
BEGIN

code part 2
END;

BEGIN
Pl;
P2;

END;

System Action: The compiler stops compiling the program.

AMPT902S ROUTINE EXCEEDS 8K LIMIT
Explanation: A routine generated more than 8192 bytes of code.
Because VS Pascal reserves only two base registers to address
code, 8192 bytes is the limit. The routine causing the problem
and the statement where the limit was exceeded are shown
following the message. This error also occurs with the DEBUG
option in effect when the information required by the Interactive
Debugging Tool exceeds 8192 bytes of storage.
Programmer Response: Divide the routine into two or more
routines. For example, you can take this routine:

PROCEDURE BIG;
declarations

BEGIN
code part 1
code part 2

END;

and separate it this way:

PROCEDURE BIG;
declarations

PROCEDURE Pl;
BEGIN

code part
END;

PROCEDURE P2;
BEGIN

code part 2
END;

BEGIN
Pl;
P2;

END;

System Action: The compiler stops.

AMPT998S INTERNAL TRANSLATOR ERROR
Explanation: An internal translator error occurred. A later
message will identify which routine and statement caused the
error.
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for more information.
System Action: The compiler generates a trace-back and stops.
No object code is generated.

AMPT999S INTERNAL TRANSLATOR ERROR
Explanation: The compiler detected an internal error on its
third pass. Another message will indicate the type of error
detected.
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for more information.
System Action: Depending on the severity of the message
issued after this message, the compiler continues running or
stops.

AMPT502E TYPE TABLE OVERFLOW. DEBUG IS DISABLED
Explanation: The module being compiled with the DEBUG
option contains more than 8,192 unique data types, exceeding
the capacity of the Interactive Debugging Tool's type table. The
Interactive Debugging Tool cannot be used on this module.
Programmer Response: Either:

Ignore the error.

Do not compile with the DEBUG option.
System Action: The compiler attempts to recover and continues
compiling.

AMPT503W SYMBOL NAME SPACE POOL OVERFLOWED
Explanation: The module being compiled with the debug option
contains a large number of symbols. The Interactive Debugging
Tool table that contains symbol names overflowed.
Programmer Response: You can ignore the error, but the
resulting code might not work properly with the Interactive
Debugging Tool. Otherwise, compile the program without the
DEBUG option.
System Action: The compiler attempts to recover and continues
compiling.

AMPT7001 MESSAGE TEXT NOT FOUND FOR LANGUAGE:
language

Explanation: You specified language on the LANGUAGE option,
but no message text exists for that language identifier.
Programmer Response: Specify a LANGUAGE identifier that is
s'upported by VS Pascal and implemented on your system.
System Action: Compilation continues; all output appears in the
default language selected during installation.

AMPT900S EXPRESSION IS TOO COMPLICATED
Explanation: The indicated expression is too complex to
compile. This error typically occurs when a statement requires
too many registers.
Programmer Response: Break the statement up into multiple
statements. If the indicated statement contains a relatively
simple expression, see the VS Pascal Diagnosis Guide and
Reference for more help.
System Action: The compiler stops compiling the program.

AMPT901S ROUTINE routinename CONTAINS TOO MANY
STATEMENTS (MAX = n)

Explanation: The table that contains statement information
overflowed in the indicated routine routinename. The maximum
number of statements you can use is n.
Programmer Response: Divide the routine into two or more
routines. For example, you can take this routine:

PROCEDURE BIG;
declarations

BEGIN
code part
code part 2

END;

and separate it this way:

242 vs Pascal Application Programming Guide

PROCEDURE BIG;
declarations

PROCEDURE Pl;
BEGIN

code part
END;

PROCEDURE P2;
BEGIN

code part 2
END;

BEGIN
Pl;
P2;

END;

System Action: The compiler stops compiling the program.

AMPT902S ROUTINE EXCEEDS 8K LIMIT
Explanation: A routine generated more than 8192 bytes of code.
Because VS Pascal reserves only two base registers to address
code, 8192 bytes is the limit. The routine causing the problem
and the statement where the limit was exceeded are shown
following the message. This error also occurs with the DEBUG
option in effect when the information required by the Interactive
Debugging Tool exceeds 8192 bytes of storage.
Programmer Response: Divide the routine into two or more
routines. For example, you can take this routine:

PROCEDURE BIG;
declarations

BEGIN
code part 1
code part 2

END;

and separate it this way:

PROCEDURE BIG;
declarations

PROCEDURE P 1;
BEGIN

code part
END;

PROCEDURE P2;
BEGIN

code part 2
END;

BEGIN
Pl;
P2;

END;

System Action: The compiler stops.

AMPT998S INTERNAL TRANSLATOR ERROR
Explanation: An internal translator error occurred. A later
message will identify which routine and statement caused the
error.
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for more information.
System Action: The compiler generates a trace-back and stops.
No object code is generated.

AMPT999S INTERNAL TRANSLATOR ERROR
Explanation: The compiler detected an internal error on its
third pass. Another message will indicate the type of error
detected.
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for more information.
System Action: Depending on the severity of the message
issued after this message, the compiler continues running or
stops.

Run-Time Messages

These messages are issued during execution of a program. The message severity code letter for each
message is a default and may be changed by the ONERROR procedure. See Appendix C, "Run-Time
Error Default Actions" on page 267 for a list of the default actions for run-time error messages passed to
ONERROR in FACTION. The action associated with each message class is shown below:

Message Class Return Code

Informational o
Error 8

Severe error 16

AMPX011S OPERATION EXCEPTION
Explanation: An operation exception occurred in the program.
This error is typically caused by either:

An assembly language routine linked with your Pascal
program

A "wild" assignment through an uninitialized pOinter.
Programmer Response: Correct the error.
System Action: The program ends.

AMPX012S PRIVILEGED EXCEPTION
Explanation: A privileged exception occurred in the program.
This error is typically caused by an assembly language routine
linked with your Pascal program.
Programmer Response: Correct the error.
System Action: The program ends.

AMPX013S EXECUTE EXCEPTION
Explanation: An execute exception occurred in the program.
This error is typically caused by an assembly language routine
linked with your Pascal program.
Programmer Response: Correct the error.
System Action: The program ends.

AMPX014S PROTECTION EXCEPTION
Explanation: A protection exception occurred in the program.
This error is typically caused by either:

A "wild" assignment through an uninitialized pOinter

An array assignment with a bad subscript (with checking
off).

Programmer Response: Correct the error.
System Action: The program ends.

AMPX015S ADDRESSING EXCEPTION
Explanation: An addressing exception occurred in the program.
This error is typically caused by either:

A "wild" assignment through an un initialized pointer

An array assignment with a bad subscript (with checking
off).

Programmer Response: Correct the error.
System Action: The program ends.

Action

None

The error count is decremented

Program execution halts

AMPX016S SPECIFICATION EXCEPTION
Explanation: A specification exception occurred in the
program. This error is typically caused by an assembly
language routine linked with your Pascal program.
Programmer Response: Correct ihe error.
System Action: The program ends.

AMPX017S DATA EXCEPTION
Explanation: A data exception occurred in the program. This
error is typically caused by a non-Pascal routine linked with a
Pascal program.
Programmer Response: Correct the error.
System Action: The program ends.

AMPX018E FIXED POINT OVERFLOW EXCEPTION
Explanation: A fixed-point overflow exception occurred in the
program. This error is typically caused when an addition.
subtraction. or multiplication produces an integer greater than
MAXINT.
Programmer Response: Correct the error.
System Action: The run-time error counter is decreased. The
program continues running.

AMPX019E FIXED POINT DIVIDE BY ZERO EXCEPTION
Explanation: A fixed-point. divide-by-zero exception occurred
in the program. This error occurs when the second operand
(the divisor) of a DIV or MOD operation has a value of zero.
Programmer Response: Correct the error.
System Action: The run-time error counter is decreased. The
program continues running.

AMPX020E DECIMAL OVERFLOW EXCEPTION
Explanation: A decimal overflow exception occurred in the
program. This error typically occurs in a non-Pascal routine
linked to the Pascal program.
Programmer Response: Correct the error.
System Action: The run-time error counter is decreased. The
program continues running.

AMPX021E DECIMAL DIVIDE BY ZERO EXCEPTION
Explanation: A decimal divide-by-zero exception occurred in
the program. This error typically occurs in a non-Pascal
routine linked to the Pascal program.
Programmer Response: Correct the error.
System Action: The run-time error counter is decreased. The
program continues running.

Chapter 20. VS Pascal Messages 243

Run-Time Messages

These messages are issued during execution of a program. The message severity code letter for each
message is a default and may be changed by the ONERROR procedure. See Appendix C, "Run-Time
Error Default Actions" on page 267 for a list of the default actions for run-time error messages passed to
ONERROR in FACTION. The action associated with each message class is shown below:

Message Class Return Code

Informational o
Error 8

Severe error 16

AMPX011S OPERATION EXCEPTION
Explanation: An operation exception occurred in the program.
This error is typically caused by either:

An assembly language routine linked with your Pascal
program

A "wild" assignment through an uninitialized pointer.
Programmer Response: Correct the error.
System Action: The program ends.

AMPX012S PRIVILl:GED EXCEPTION
Explanation: A privileged exception occurred in the program.
This error is typically caused by an assembly language routine
linked with your Pascal program.
Programmer Response: Correct the error.
System Action: The program ends.

AMPX013S EXECUTE EXCEPTION
Explanation: An execute exception occurred in the program.
This error is typically caused by an assembly language routine
linked with your Pascal program.
Programmer Response: Correct the error.
System Action: The program ends.

AMPX014S PROTECTION EXCEPTION
Explanation: A protection exception occurred in the program.
This error is typically caused by either:

A "wild" assignment through an uninitialized pointer

An array assignment with a bad subscript (with checking
off).

Programmer Response: Correct the error.
System Action: The program ends.

AMPX015S ADDRESSING EXCEPTION
Explanation: An addressing exception occurred in the program.
This error is typically caused by either:

A "wild" assignment through an uninitialized pointer

An array assignment with a bad subscript (with checking
off).

Programmer Response: Correct the error.
System Action: The program ends.

Action

None

The error count is decremented

Program execution halts

AMPX016S SPECIFICATION EXCEPTION
Explanation: A specification exception occurred in the
program. This error is typically caused by an assembly
language routine linked with your Pascal program.
Programmer Response: Correct ihe error.
System Action: The program ends.

AMPX017S DATA EXCEPTION
Explanation: A data exception occurred in the program. This
error is typically caused by a non-Pascal routine linked with a
Pascal program.
Programmer Response: Correct the error.
System Action: The program ends.

AMPX018E FIXED POINT OVERFLOW EXCEPTION
Explanation: A fixed-point overflow exception occurred in the
program. This error is typically caused when an addition,
subtraction, or multiplication produces an integer greater than
MAXINT.
Programmer Response: Correct the error.
System Action: The run-time error counter is decreased. The
program continues running.

AMPX019E FIXED POINT DIVIDE BY ZERO EXCEPTION
Explanation: A fixed-point, divide-by-zero exception occurred
in the program. This error occurs when the second operand
(the divisor) of a DIV or MOD operation has a value of zero.
Programmer Response: Correct the error.
System Action: The run-time error counter is decreased. The
program continues running.

AMPX020E DECIMAL OVERFLOW EXCEPTION
Explanation: A decimal overflow exception occurred in the
program. This error typically occurs in a non-Pascal routine
linked to the Pascal program.
Programmer Response: Correct the error.
System Action: The run-time error counter is decreased. The
program continues running.

AMPX021 E DECIMAL DIVIDE BY ZERO EXCEPTION
Explanation: A decimal divide-by-zero exception occurred in
the program. This error typically occurs in a non-Pascal
routine linked to the Pascal program.
Programmer Response: Correct the error.
System Action: The run-time error counter is decreased. The
program continues running.

Chapter 20. VS Pascal Messages 243

AMPX022E EXPONENT OVERFLOW EXCEPTION
Explanation: An exponent overflow exception occurred in the
program. This error typically occurs when the result of a
floating-point multiplication or division is greater than
7.23700557733226E75.
Programmer Response: Correct the error.
System Action: The run-time error counter is decreased. The
program continues running.

AMPX023E EXPONENT UNDERFLOW EXCEPTION
Explanation: An exponent underflow exception occurred in the
program. This error typically occurs when the result of a
floating-point multiplication or division is less than
5.39760534693403E-79.
Programmer Response: Correct the error.
System Action: The run-time error counter is decreased. The
program continues running.

AMPX024E SIGNIFICANCE EXCEPTION
Explanation: The VS Pascal run-time environment does not
intercept this exception. This error is typically caused by
modifying the VS Pascal run-time environment.
Programmer Response: If the VS Pascal run-time environment
was not modified locally, contact your local system support.
System Action: The run-time error counter is decreased. The
program continues running.

AMPX025E FLOATING POINT DIVIDE BY ZERO EXCEPTION
Explanation: A floating-point, divide-by-zero exception
occurred in the program. This error is caused by an attempt to
divide by zero.
Programmer Response: Correct the error.
System Action: The run-time error counter is decreased. The
program continues running.

AMPX026S SEGMENT TRANSLATION EXCEPTION
Explanation: This is a non-Pascal system error.
Programmer Response: Run the program again and, if the
error persists, consult the VS Pascal Diagnosis Guide and
Reference for more help.
System Action: The program ends.

AMPX027S PAGE TRANSLATION EXCEPTION
Explanation: This is a non-Pascal system error.
Programmer Response: Run the program again and, if the
error persists, consult the VS Pascal Diagnosis Guide and
Reference for more help.
System Action: The program ends.

AMPX028S TRANSLATION SPECIFICATION EXCEPTION
Explanation: This is a non-Pascal system error.
Programmer Response: Run the program again and, if the
error persists, consult the VS Pascal Diagnosis Guide and
Reference for more help.
System Action: The program ends.

AMPX029S SPECIAL OPERATION EXCEPTION
Explanation: This is a non-Pascal system error.
Programmer Response: Run the program again and, if the
error persists, consult the VS Pascal Diagnosis Guide and
Reference for more help.
System Action: The program ends.

244 VS Pascal Application Programming Guide

AMPX030E TERMINAL ATTENTION EXCEPTION
Explanation: An attention was signaled from the user's
terminal.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX031E LOW BOUND CHECKING ERROR
Explanation: Either:

The value of an array subscript is less than the minimum
allowed for the subscript.
The value being assigned to a subrange type variable is
less than the minimum allowed for the subrange.

This error can also occur when the second operand (the
divisor) of a MOD operation is less than or equal to zero.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX032E HIGH BOUND CHECKING ERROR
Explanation: Either:

The value of an array subscript is greater than the
maximum allowed for the subscript.
The value being assigned to a subrange type variable is
greater than the maximum allowed for the subrange.

Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX033E NIL POINTER CHECKING ERROR
Explanation: An attempt was made to reference a dynamic
variable from a pointer that has the value NIL.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX034E CASE LABEL CHECKING ERROR
Explanation: The expression of a CASE statement has a value
other than any of the specified CASE labels and there is no
OTHERWISE clause.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX03SE FUNCTION VALUE CHECKING ERROR
Explanation: A function routine returned to its invoker without
being assigned a result.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX036E ASSERTION FAILURE CHECKING ERROR
Explanation: The expression of an ASSERT statement
computed to the value FALSE.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX022E EXPONENT OVERFLOW EXCEPTION
Explanation: An exponent overflow exception occurred in the
program. This error typically occurs when the result of a
floating-point multiplication or division is greater than
7.23700557733226E75.
Programmer Response: Correct the error.
System Action: The run-time error counter is decreased. The
program continues running.

AMPX023E EXPONENT UNDERFLOW EXCEPTION
Explanation: An exponent underflow exception occurred in the
program. This error typically occurs when the result of a
floating-point multiplication or division is less than
5.39760534693403E-79.
Programmer Response: Correct the error.
System Action: The run-time error counter is decreased. The
program continues running.

AMPX024E SIGNIFICANCE EXCEPTION
Explanation: The VS Pascal run-time environment does not
intercept this exception. This error is typically caused by
modifying the VS Pascal run-time environment.
Programmer Response: If the VS Pascal run-time environment
was not modified locally, contact your local system support.
System Action: The run-time error counter is decreased. The
program continues running.

AMPX025E FLOATING POINT DIVIDE BY ZERO EXCEPTION
Explanation: A floating-point, divide-by-zero exception
occurred in the program. This error is caused by an attempt to
divide by zero.
Programmer Response: Correct the error.
System Action: The run-time error counter is decreased. The
program continues running.

AMPX026S SEGMENT TRANSLATION EXCEPTION
Explanation: This is a non-Pascal system error.
Programmer Response: Run the program again and, if the
error persists, consult the VS Pascal Diagnosis Guide and
Reference for more help.
System Action: The program ends.

AMPX027S PAGE TRANSLATION EXCEPTION
Explanation: This is a non-Pascal system error.
Programmer Response: Run the program again and, if the
error persists, consult the VS Pascal Diagnosis Guide and
Reference for more help.
System Action: The program ends.

AMPX028S TRANSLATION SPECIFICATION EXCEPTION
Explanation: This is a non-Pascal system error.
Programmer Response: Run the program again and, if the
error persists, consult the VS Pascal Diagnosis Guide and
Reference for more help.
System Action: The program ends.

AMPX029S SPECIAL OPERATION EXCEPTION
Explanation: This is a non-Pascal system error.
Programmer Response: Run the program again and, if the
error persists, consult the VS Pascal Diagnosis Guide and
Reference for more help.
System Action: The program ends.

244 VS Pascal Application Programming Guide

AMPX030E TERMINAL ATTENTION EXCEPTION
Explanation: An attention was signaled from the user's
terminal.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX031E LOW BOUND CHECKING ERROR
Explanation: Either:

The value of an array subscript is less than the minimum
allowed for the subscript.

The value being assigned to a subrange type variable is
less than the minimum allowed for the subrange.

This error can also occur when the second operand (the
divisor) of a MOD operation is less than or equal to zero.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX032E HIGH BOUND CHECKING ERROR
Explanation: Either:

The value of an array subscript is greater than the
maximum allowed for the subscript.

The value being assigned to a sub range type variable is
greater than the maximum allowed for the subrange.

Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX033E NIL POINTER CHECKING ERROR
Explanation: An attempt was made to reference a dynamic
variable from a pointer that has the value NIL.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX034E CASE LABEL CHECKING ERROR
Explanation: The expression of a CASE statement has a value
other than any of the specified CASE labels and there is no
OTHERWISE clause.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX035E FUNCTION VALUE CHECKING ERROR
Explanation: A function routine returned to its invoker without
being assigned a result.
Programmer Response: Correct the error.
System Action: The run-lime error counter decreases. The
program continues running.

AMPX036E ASSERTION FAILURE CHECKING ERROR
Explanation: The expression of an ASSERT statement
computed to the value FALSE.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX037E STRING SUBSCRIPT OUT OF BOUNDS CHECKING
ERROR

Explanation: The subscript on a STRING is not in the range
O .. LENGTH(s), where s is the STRING being subscripted.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX039E STRING TRUNCATION CHECKING ERROR
Explanation: The program contains a string assignment in
which the length of the source string was longer than the
maximum length of the target string. VS Pascal does not
implicitly truncate strings in such a case.
Programmer Response: Correct the error.
System Action: VS Pascal makes the assignment, possibly
overlaying storage used by other variables. The run-time error
counter decreases. The program continues running.

AMPX040E STRING MAXIMUM LENGTH EXCEEDED
Explanation: Concatenation caused a STRING or GSTRING to
exceed 32,767 characters.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX041S FILE COULD NOT BE OPENED: ddname
Explanation: An error occurred when the program attempted to
open the file named ddname. The most probable cause of this
error is a missing DD statement. Under CMS, this error can
occur when the program tries to open a file with a format other
than "F" or "V".
Programmer Response: Correct the error.
System Action: The program ends.

AMPX042E LRECL SIZE TOO SMALL FOR FILE ddname
Explanation: The logical record length of the file named
ddname is not large enougll to contain a single file component.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX043E FILE IS NOT OPEN FOR OUTPUT: ddname
Explanation: The program attempted an output operation on
the file named ddname, but the file is open for input.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX044E FILE IS NOT OPEN FOR INPUT: ddname
Explanation: The program attempted an input operation on the
file named ddname, but the file is open for output.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX04SE LOGICAL RECORD IS TOO SMALL IN INPUT FILE
Explanation: The program is reading a record file that consists
of variable-length records (RECFM =V). However, the program
read a logical record that is too short to represent a valid
record in the file.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX046E DATA LARGER THAN LRECL FOR FILE
Explanation: The logical record length of a file is too small to
contain the file's component.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX048E MISSING MEMBER IN FILE: member library
Explanation: The indicated member cannot be found in the
partitioned data set.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX049E FLOATING POINT UNDERFLOW OR OVERFLOW
Explanation: The floating-point number read by the READ
procedure was either too small or too large to be represented
within the machine.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPXOSOE BLKSIZE EXCEEDS 32760 IN FILE: ddname
Explanation: The block size for the file named ddname exceeds
the maximum of 32,760 bytes.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPXOS1E LRECL > BLKSIZE-4IN V FORMAT FILE: ddname
Explanation: The logical record length of the file named
ddname is too large to permit at least one record to be fit in a
block.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPXOS2E BLKSIZE NOT INTEGER MULTIPLE OF LRECL IN:
ddname

Explanation: The block size of the fixed-length record file
named ddname is not an integer multiple of the logical record
length.
Programmer Response: Correct the error.
System Action: The run-time error counter decrease~ The
program continues running.

AMPX053E COMPONENT LENGTH OF FILE EXCEEDS 32760
IN: ddname

Explanation: The component length of the file named ddname
exceeds the 32,760-byte maximum. Because a single element
must fit in one logical record, its length cannot exceed 32,760
bytes.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX054E GET OR READ CALLED AFTER END-OF-FILE IN:
ddname

Explanation: The program tried to advance the file named
ddname beyond the end of the file.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

Chapter 20. VS Pascal Messages 245

AMPX037E STRING SUBSCRIPT OUT OF BOUNDS CHECKING
ERROR

Explanation: The subscript on a STRING is not in the range
O .. LENGTH(s), where s is the STRING being subscripted.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX039E STRING TRUNCATION CHECKING ERROR
Explanation: The program contains a string assignment in
which the length of the source string was longer than the
maximum length of the target string. VS Pascal does not
implicitly truncate strings in such a case.
Programmer Response: Correct the error.
System Action: VS Pascal makes the assignment, possibly
overlaying storage used by other variables. The run-time error
counter decreases. The program continues running.

AMPX040E STRING MAXIMUM LENGTH EXCEEDED
Explanation: Concatenation caused a STRING or GSTRING to
exceed 32,767 characters.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX041S FILE COULD NOT BE OPENED: ddname
Explanation: An error occurred when the program attempted to
open the file named ddname. The most probable cause of this
error is a missing DD statement. Under CMS, this error can
occur when the program tries to open a file with a format other
than" F" or "V".
Programmer Response: Correct the error.
System Action: The program ends.

AMPX042E LRECL SIZE TOO SMALL FOR FILE ddname
Explanation: The logical record length of the file named
ddname is not large enough to contain a single file component.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX043E FILE IS NOT OPEN FOR OUTPUT: ddname
Explanation: The program attempted an output operation on
the file named ddname, but the file is open for input.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX044E FILE IS NOT OPEN FOR INPUT: ddname
Explanation: The program attempted an input operation on the
file named ddname, but the file is open for output.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX045E LOGICAL RECORD IS TOO SMALL IN INPUT FILE
Explanation: The program is reading a record file that consists
of variable-length records (RECFM = V). However, the program
read a logical record that is too short to represent a valid
record in the file.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX046E DATA LARGER THAN LRECL FOR FILE
Explanation: The logical record length of a file is too small to
contain the file's component.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX048E MISSING MEMBER IN FILE: member library
Explanation: The indicated member cannot be found in the
partitioned data set.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX049E FLOATING POINT UNDERFLOW OR OVERFLOW
Explanation: The floating-point number read by the READ
procedure was either too small or too large to be represented
within the machine.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX050E BLKSIZE EXCEEDS 32760 IN FILE: ddname
Explanation: The block size for the file named ddname exceeds
the maximum of 32,760 bytes.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX051E LRECL > BLKSIZE-4 IN V FORMAT FILE: ddname
Explanation: The logical record length of the file named
ddname is too large to permit at least one record to be fit in a
block.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX052E BLKSIZE NOT INTEGER MULTtPLE OF LRECL IN:
ddname

Explanation: The block size of the fixed-length record file
named ddname is not an integer multiple of the logical record
length.
Programmer Response: Correct the error.
System Action: The run-time error counter decrease~ The
program continues running.

AMPX053E COMPONENT LENGTH OF FILE EXCEEDS 32760
IN: ddname

Explanation: The component length of the file named ddname
exceeds the 32,760-byte maximum. Because a single element
must fit in one logical record, its length cannot exceed 32,760
bytes.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX054E GET OR READ CALLED AFTER END-OF-FILE IN:
ddname

Explanation: The program tried to advance the file named
ddname beyond the end of the file.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

Chapter 20. VS Pascal Messages 245

AMPX055E INTEGER READ OPERATION FAILED FOR FILE:
ddname

Explanation: The program tried to read an integer from the text
file named ddname, but either:

The end-of-file occurred.
An unrecognizable character appeared where the integer
should have been.

Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX056E OVERFLOWIUNDERFLOW DETECTED IN INTEGER
READ: ddname

Explanation: In the file named ddname, an attempt was made
to read an integer whose value lies outside tlie permissible
range of -2147483648 .. 2147483647.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX0581 OPEN AND INTERACTIVE ARE NO LONGER
SUPPORTED; USE RESET OR REWRITE

Explanation: The procedures OPEN and INTERACTIVE are not
supported. VS Pascal Application Programming Guide and VS
Pascal Language Reference describe the equivalent
operations.
Programmer Response: Correct the error.
System Action: The program continues running.

AMPX059E TEXT EXCEEDS LOGICAL RECORD LENGTH IN
FILE: ddname

Explanation: The line of data being written into the text file
named ddname exceeds the file's logical record length. VS
Pascal ends the line at end of the logical record and places the
remaining text of the line in the next logical record.

VS Pascal issues this message on the first occurrence for each
file; it does not issue the message for subsequent occurrences
in the same file.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX060E OPERAND TO RELEASE DOES NOT
CORRESPOND TO MARK

Explanation: The parameter passed to RELEASE does not have
the value returned by a call to MARK.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX061E OPERAND TO DISPOSE NOT ALLOCATED WITH
NEW

Explanation: The program contains a DISPOSE operation for a
pointer whose value was not returned by NEW.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

246 vs Pascal Application Programming Guide

AMPX062E REAL READ OPERATION FAILED FOR FILE
ddname

Explanation: The program tried to read a REAL data type from
a text file, but either:

The end-of-file occurred.
An unrecognizable character appeared where the REAL
should have been.

Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX063E OPERAND TO DISPOSE ALREADY
DEALLOCATED

Explanation: A pOinter referred to on a DISPOSE operation
paints to heap storage that has already been released.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX064E INSUFFICIENT SPACE TO DO NEW
Explanation: There is not enough available storage to perform
the NEW procedure.

Under MVS, run the program in a larger region.

Under CMS, run the program in a larger virtual machine.

You cannot call DISPOSE for storage you no longer need.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX065E STORAGE HAS BEEN tNCORRECTL Y ASSIGNED
PRIOR TO DISPOSE

Explanation: The program uses the painter being disposed of
incorrectly. Specifically, the painter causes the heap to be
modified beyond the size of the dynamic variable. This can
happen when the dynamic variable is a RECORD allocated by
specifying tag values, and the variable is later used in an
assignment with a different variant.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX066E OPERAND TO DISPOSE IS NIL OR UNDEFINED.
Explanation: The operand is not valid for DISPOSE.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX067E HEAP INCORRECT DUE TO PREVIOUS INVALID
ASSIGNMENT USING A POINTER

Explanation: The heap has been damaged. The damage was
probably occurred when a pointer was used incorrectly.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX068S INTERNAL RUN-TIME ERROR
Explanation: This is a run-time environment error.
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for more information.
System Action: The program ends.

AMPX055E INTEGER READ OPERATION FAILED FOR FILE:
ddname

Explanation: The program tried to read an integer from the text
file named ddname, but either:

The end-of-file occurred.

An unrecognizable character appeared where the integer
should have been.

Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX056E OVERFLOW/UNDERFLOW DETECTED IN INTEGER
READ: ddname

Explanation: In the file named ddname, an attempt was made
to read an integer whose value lies outside tlie permissible
range of -2147483648 .. 2147483647.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX0581 OPEN AND INTERACTIVE ARE NO LONGER
SUPPORTED; USE RESET OR REWRITE

Explanation: The procedures OPEN and INTERACTIVE are not
supported. VS Pascal Application Programming Guide and VS
Pascal Language Reference describe the equivalent
operations.
Programmer Response: Correct the error.
System Action: The program continues running.

AMPX059E TEXT EXCEEDS LOGICAL RECORD LENGTH IN
FILE: ddname

Explanation: The line of data being written into the text file
named ddname exceeds the file's logical record length. VS
Pascal ends the line at end of the logical record and places the
remaining text of the line in the next logical record.

VS Pascal issues this message on the first occurrence for each
file; it does not issue the message for subsequent occurrences
in the same file.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX060E OPERAND TO RELEASE DOES NOT
CORRESPOND TO MARK

Explanation: The parameter passed to RELEASE does not have
the value returned by a call to MARK.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX061E OPERAND TO DISPOSE NOT ALLOCATED WITH
NEW

Explanation: The program contains a DISPOSE operation for a
pOinter whose value was not returned by NEW.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

246 vs Pascal Application Programming Guide

AMPX062E REAL READ OPERATION FAILED FOR FILE
ddname

Explanation: The program tried to read a REAL data type from
a text file, but either:

The end-of-tile occurred.

An unrecognizable character appeared where the REAL
should have been.

Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX063E OPERAND TO DISPOSE ALREADY
DEALLOCATED

Explanation: A pOinter referred to on a DISPOSE operation
pOints to heap storage that has already been released.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX064E INSUFFICIENT SPACE TO DO NEW
Explanation: There is not enough available storage to perform
the NEW procedure.

Under MVS, run the program in a larger region.

Under CMS, run the program in a larger virtual machine.

You cannot call DISPOSE for storage you no longer need.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX065E STORAGE HAS BEEN INCORRECTLY ASSIGNED
PRIOR TO DISPOSE

Explanation: The program uses the pOinter being disposed of
incorrectly. Specifically, the pointer causes the heap to be
modified beyond the size of the dynamic variable. This can
happen when the dynamic variable is a RECORD allocated by
specifying tag values, and the variable is later used in an
assign ment with a different variant.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX066E OPERAND TO DISPOSE IS NIL OR UNDEFINED.
Explanation: The operand is not valid for DISPOSE.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX067E HEAP INCORRECT DUE TO PREVIOUS INVALID
ASSIGNMENT USING A POINTER

Explanation: The heap has been damaged. The damage was
probably occurred when a pointer was used incorrectly.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX068S INTERNAL RUN-TIME ERROR
Explanation: This is a run-time environment error.
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for more information.
System Action: The program ends.

AMPX069S INTERNAL RUN· TIME ERROR
Explanation: This is a run-time environment error,
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for more information,
System Action: The program ends,

AMPX070E LN: ARGUMENT < = 0.0
Explanation: The natural logarithm function (LN) was called
with a 0 or negative argument.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases, The
program continues running,

AMPX071E SQRT: ARGUMENT < 0.0, ZERO RETURNED AS
RESULT

Explanation: The square root function (SQRT) was called with a
negative argu ment.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases, The
program continues running.

AMPX072E EXP: ARGUMENT TOO LARGE, EXCEEDS
174.67309

Explanation: The argument of the EXP function is too large; the
result of the call exceeds the largest REAL number that can be
represented: 7.237e + 75,
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX073E RANDOM: SEED IS OUT OF RANGE
Explanation: The argument of the RANDOM function is either:

Negative
Greater than the maximum of 1048575.

Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX074E SIN/COS: ARGUMENT TOO LARGE, EXCEEDS
(PII2)**SO

Explanation: The argument in a call to SIN or COS is too large
for an accurate result to be computed.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX07SE SEEK CALLED FOR A FILE NOT OPENED FOR
DIRECT ACCESS

Explanation: A call to SEEK refers to a file that is not open for
direct-access processing.
Programmer Response: Correct the error.
Syslem Action: The run-time error counter decreases, The
program continues running.

AMPX076E SEEK: BAD RELATIVE RECORD ADDRESS
Explanation: The record number in an invocation of SEEK has
an invalid value,
Programmer Response: Correct the error,
System Action: The run-time error counter decreases, The
program continues running,

AMPX077E DIRECT ACCESS FILE DOES NOT HAVE FIXED
UNBLOCKED RECORDS: ddname

Explanation: The program tried to perform direct-access
(relative record) operations on a file that is either not fixed or
not unblocked, The required record format for a file to be
manipulated with SEEK is RECFM = F,
Programmer Response: Correct the error.
System Action: The run-time error counter decreases, The
program continues running,

AMPX078E TARGET STRING FILLED TO MAXIMUM LENGTH
IN WRITESTR CALL

Explanation: The target STRING (first parameter) in a call to
WRITESTR was filled to capacity before the data being assigned
into the STRING was exhausted,
Programmer Response: Correct the error.
System Action: The run-time error counter decreases, The
program continues running,

AMPX079E SOURCE STRING EXHAUSTED IN READSTR CALL
Explanation: Before reading all data from the source string
(first parameter). the end of the string was encountered,
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX080E L TOKEN: TOKEN LENGTH EXCEEDS MAXIMUM
LENGTH OF STRING

Explanation: The token to be returned on a call to L TOKEN is
longer than Ihe maximum length of the string passed to receive
it.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases, The
program continues running.

AMPX081E functionname: PADDING EXCEEDS MAXIMUM
LENGTH OF STRING

Explanation: The function functionname specifies a pad length
(second operand) that exceeds the maximum allowed length of
the target string (first parameter).
Programmer Response: Correct the error.
System Action: The run-lime error counter decreases. The
program continues running,

AMPX082E functionname: LENGTH PARAMETER LESS THAN
ZERO

Explanation: The function functionname specifies a length
parameter less than zero,
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX083E functionname: STARTING INDEX IS LESS THAN 1
Explanation: The function functionname specifies a starting
index less than one.
Programmer Response: Correct the error,
System Action: The run-lime error counter decreases. The
program continues running,

Chapter 20. VS Pascal Messages 247

AMPX069S INTERNAL RUN-TIME ERROR
Explanation: This is a run-time environment error.
Programmer Response: See VS Pascal Diagnosis Guide and
Reference for more information.
System Action: The program ends.

AMPX070E LN: ARGUMENT < = 0.0
Explanation: The natural logarithm function (LN) was called
with a 0 or negative argument.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX071E SQRT: ARGUMENT < 0.0, ZERO RETURNED AS
RESULT

Explanation: The square root function (SORT) was called with a
negative argument.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX072E EXP: ARGUMENT TOO LARGE, EXCEEDS
174.67309

Explanation: The argument of the EXP function is too large; the
result of the call exceeds the largest REAL number that can be
represented: 7.237e + 75.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX073E RANDOM: SEED IS OUT OF RANGE
Explanation: The argument of the RANDOM function is either:

Negative
Greater than the maximum of 1048575.

Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX074E SIN/COS: ARGUMENT TOO LARGE, EXCEEDS
(PI/2)**50

Explanation: The argument in a call to SIN or COS is too large
for an accurate result to be computed.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX075E SEEK CALLED FOR A FILE NOT OPENED FOR
DIRECT ACCESS

Explanation: A call to SEEK refers to a file that is not open for
direct-access processing.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX076E SEEK: BAD RELATIVE RECORD ADDRESS
Explanation: The record number in an invocation of SEEK has
an invalid value.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX077E DIRECT ACCESS FILE DOES NOT HAVE FIXED
UNBLOCKED RECORDS: ddname

Explanation: The program tried to perform direct-access
(relative record) operations on a file that is either not fixed or
not unblocked. The required record format for a file to be
manipulated with SEEK is RECFM = F.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX078E TARGET STRING FILLED TO MAXIMUM LENGTH
IN WRITESTR CALL

Explanation: The target STRING (first parameter) in a call to
WRITESTR was filled to capacity before the data being assigned
into the STRING was exhausted.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX079E SOURCE STRING EXHAUSTED IN READSTR CALL
Explanation: Before reading all data from the source string
(first parameter), the end of the string was encountered.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX080E L TOKEN: TOKEN LENGTH EXCEEDS MAXIMUM
LENGTH OF STRING

Explanation: The token to be returned on a call to L TOKEN is
longer than the maximum length of the string passed to receive
it.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX081E functionname: PADDING EXCEEDS MAXIMUM
LENGTH OF STRING

Explanation: The function functionname specifies a pad length
(second operand) that exceeds the maximum allowed length of
the target string (first parameter).
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX082E functionname: LENGTH PARAMETER LESS THAN
ZERO

Explanation: The function functionname specifies a length
parameter less than zero.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX083E functionname: STARTING INDEX IS LESS THAN 1
Explanation: The function functionname specifies a starting
index less than one.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

Chapter 20. VS Pascal Messages 247

AMPX084E functionname: SUBSTRING NOT CONTAINED
WITHIN SOURCE STRING

Explanation: The function functionname specifies a substring
not contained in the source string.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX085E SET OPERATION OUT OF BOUNDS
Explanation: The set resulting from a set operation contains
members that are outside the range of the target set. This can
occur in a set assignment in which the source set conlains
members that a re not valid for the declared type of the target
set.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX090E PICTURE: CHARACTERS "Z", n*", AND DRIFTING
SIGN CAN NOT BE MIXED

Explanation: Each field (decimal and exponent) can contain
only one drifting character.
Programmer Response: Correct the error in the PICTURE
specification string.
System Action: The PICTURE function returns a null string.
System Action: The run-time error counter decreases. The
program continues running.

AMPX091E PICTURE: INVALID CHARACTER IN DECIMAL
FIELD: character

Explanation: A decimal field cannot contain character.
Programmer Response: Correct the error in the PICTURE
specification string.
System Action: The PICTURE function returns a null string.
System Action: The run-time error counter decreases. The
program continues running.

AMPX092E PICTURE: INVALID CHARACTER IN PICTURE
SPECIFICATION: character

Explanation: Character is not a valid PICTURE character. A
syntax error in the PICTURE specification can also produce this
message.
Programmer Response: Correct the error in the PICTURE
specification string.
System Action: The PICTURE function returns a null string.
System Action: The run-time error counter decreases. The
program continues running.

AMPX093E functionname: DOUBLE BYTE CHARACTER SET
SO HAD NO CORRESPONDING SI

Explanation: During a call to the function functionname, VS
Pascal encountered a starting shift-out (SO) but no
corresponding shift-in (51). Double-byte character set (DBCS)
data must be enclosed by a starting SO character (' OE' X) and
ending 51 ('OF' X).
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

248 vs Pascal Application Programming Guide

AMPX094E functionname: DOUBLE BYTE CHARACTER SET
51 HAD NO CORRESPONDING SO

Explanation: During a call to Ihe function functionname, VS
Pascal encountered a shift-in (SI) before a shift-out (SO).
Double-byte character set (DBCS) data must be enclosed by a
starting SO character (' OE' X) and ending 51 (' OF' X).
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX095E functionname: INVALID DOUBLE BYTE
CHARACTER SET CODE RANGE

Explanation: A double-byte character set (DBCS) string or the
DBCS portion of a mixed string is invalid because of an
improper code range. Proper code ranges are either:

'41' X through' FE' X for the first and second bytes
'4040'X.

VS Pascal encountered this error during a call to the function
functionname.
Programmer Response: Use only valid DSCS characters in the
proper range.
System Action: The run-time error counter decreases. The
program continues running.

AMPX096E function name: DOUBLE BYTE CHARACTER SET
BYTE LENGTH IS NOT EVEN

Explanation: Either:

The byte length of a double-byte character set (DBCS)
string is not even.
The byte length of the DBCS portion of a mixed string is
not even.

VS Pascal encountered this error during a call to the function
functionname.
Programmer Response: Change the string so that the byte
length is even.
System Action: The run-time error counter decreases. The
program continues running.

AMPX097E function name: STRING CONTAINS SINGLE BYTE
CHARACTER SET CHARACTERS

Explanation: A string that must contain only double-byte
character set (DBCS) characters contains single-byte character
set (SBCS) characters. VS Pascal encountered this error
during a call to the function functionname.
Programmer Response: Change the string so that it contains
only valid DSCS characters.
System Action: The run-time error counter decreases. The
program continues running.

AMPX098E DBC5 READ OPERATION FAILED FOR FILE:
ddname

Explanation: While reading double-byte character set (DBCS)
data into the GCHAR or GSTRING variable named ddname, VS
Pascal encountered Single-byte character set (SBCS) data.
This can happen when the field width specified for the input
data mistakenly overlaps into SBCS characters.
Programmer Response: Make sure the data to be read are
valid DBCS characters, or use a shorter (or no) field width for
the input data.
System Action: The run-time error counter decreases. The
program continues running.

AMPX084E functionname: SUBSTRING NOT CONTAINED
WITHIN SOURCE STRING

Explanation: The function functionname specifies a substring
not contained in the source string.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX085E SET OPERATION OUT OF BOUNDS
Explanation: The set resulting from a set operation contains
members that are outside the range of the target set. This can
occur in a set assignment in which the source set contains
members that are not valid for the declared type of the target
set.
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX090E PICTURE: CHARACTERS "Z", "'", AND DRIFTING
SIGN CAN NOT BE MIXED

Explanation: Each field (decimal and exponent) can contain
only one drifting character.
Programmer Response: Correct the error in the PICTURE
specification string.
System Action: The PICTURE function returns a null string.
System Action: The rLin-time error counter decreases. The
program continues running.

AMPX091E PICTURE: INVALID CHARACTER IN DECIMAL
FIELD: character

Explanation: A decimal field cannot contain character.
Programmer Response: Correct the error in the PICTURE
specification string.
System Action: The PICTURE function returns a null string.
System Action: The run-time error counter decreases. The
program continues running.

AMPX092E PICTURE: INVALID CHARACTER IN PICTURE
SPECIFICATION: character

Explanation: Character is not a valid PICTURE character. A
syntax error in the PICTURE specification can also produce this
message.
Programmer Response: Correct the error in the PICTURE
specification string.
System Action: The PICTURE function returns a null string.
System Action: The run-time error counter decreases. The
program continues running.

AMPX093E functionname: DOUBLE BYTE CHARACTER SET
SO HAD NO CORRESPONDING SI

Explanation: During a call to the function functionname, VS
Pascal encountered a starting shift-out (SO) but no
corresponding shift-in (SI). Double-byte character set (DBCS)
data must be enclosed by a starting SO character (' OE' X) and

ending SI ('OF'X).
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

248 VS Pascal Application Programming Guide

AMPX094E functionname: DOUBLE BYTE CHARACTER SET
SI HAD NO CORRESPONDING SO

Explanation: During a call to the function functionname, VS
Pascal encountered a shift-in (SI) before a shift-out (SO).
Double-byte character set (DBCS) data must be enclosed by a
starting SO character (' OE' X) and ending SI (' OF' X).
Programmer Response: Correct the error.
System Action: The run-time error counter decreases. The
program continues running.

AMPX095E functionname: INVALID DOUBLE BYTE
CHARACTER SET CODE RANGE

Explanation: A double-byte character set (OBCS) string or the
DBCS portion of a mixed string is invalid because of an
improper code range. Proper code ranges are either:

'41 'X through 'FE'X for the first and second bytes

'4040'X.

VS Pascal encountered this error during a call to the function
functionname.
Programmer Response: Use only valid DBCS characters in the
proper range.
System Action: The run-time error counter decreases. The
program continues running.

AMPX096E functionname: DOUBLE BYTE CHARACTER SET
BYTE LENGTH IS NOT EVEN

Explanation: Either:

The byte length of a double-byte character set (DBCS)
string is not even.
The byte length of the DBCS portion of a mixed string is
not even.

VS Pascal encountered this error during a call to the function
functionname.
Programmer Response: Change the string so that the byte
length is even.
System Action: The run-time error counter decreases. The
program continues running.

AMPX097E functionname: STRING CONTAINS SINGLE BYTE
CHARACTER SET CHARACTERS

Explanation: A string that must contain only double-byte
character set (DBCS) characters contains single-byte character
set (SBCS) characters. VS Pascal encountered this error
during a call to the function functionname.
Programmer Response: Change the string so that it contains
only valid DBCS characters.
System Action: The run-time error counter decreases. The
program continues running.

AMPX098E DBCS READ OPERATION FAILED FOR FILE:
ddname

Explanation: While reading double-byte character set (DBCS)
data into the GCHAR or GSTRING variable named ddname, VS
Pascal encountered single-byte character set (SBCS) data.
This can happen when the field width specified for the input
data mistakenly overlaps into SBCS characters.
Programmer Response: Make sure the data to be read are
valid OBCS characters, or use a shorter (or no) field width for
the input data.
System Action: The run-time error counter decreases. The
program continues running.

AMPX099E SEGMENTS MAY NOT BE CALLED AS ROUTINES
Explanation: The program called a segment as if it were a
routine. Therefore, you have duplicate names for:

An external routine in another unit
A segment in the program.

Programmer Response: Either:

In the segment, include an entry point with the same name
as the segment.
Declare the external routine with another name.

System Action: The run-time error counter decreases. The
program continues running.

AMPX100E INSUFFICIENT SPACE TO DO NEWHEAP
Explanation: There is not enough available storage to perform
the NEWHEAP procedure.
Programmer Response: Use DISPOSEHEAP to deallocate
unused heaps. Otherwise:

Under MVS, run the program in a larger region.

Under CMS, run the program in a larger virtual machine.

System Action: The run-time error counter decreases. The
program continues running.

AMPX101E OPERAND TO DISPOSEHEAP IS NOT A VALID
HEAP

Explanation: The pointer variable passed to the DISPOSEHEAP
procedure does not identify an existing heap.
Programmer Response: Either:

Pass a heap identifier returned by NEWHEAP.
Call DISPOSE or RELEASE for this pointer as appropriate.

System Action: The run-time error counter decreases. The
program continues running.

AMPX102E OPERAND TO USEHEAP IS NOT A VALID HEAP
Explanation: The painter variable passed to the USEHEAP
procedure does not identify an existing heap.
Programmer Response: Pass a heap identifier returned by
NEWHEAP.
System Action: The run-time error counter decreases. The
program continues running.

AMPX2001 THE MODULE MUST BE LINKED WITH DEBUG
FOR DEBUGGER FEATURES

Explanation: You can use the Interactive Debugging Tool only
on modules that were linked-edited with the DEBUG option.
Programmer Response: If you want to use the Interactive
Debugging Tool, link-edit the module with the DEBUG option.
Otherwise, do not use the DEBUG run-time option.
System Action: The program continues running. The
ONERROR routine cannot trap this error.

AMPX2011 THE MODULE MUST BE COMPILED WITH DEBUG
FOR SYMBOLIC DUMP

Explanation: A run-time error occurred, and a symbolic dump
of the offending routine was attempted. However, the module in
which the routine is located was not compiled with the DEBUG
option.
Programmer Response: If you want a symbolic dump, compile
the module with the DEBUG option and link-edit the module with
the DEBUG option.
System Action: The program continues running. The
ONERROR routine cannot trap this error.

AMPX203E ERROR OCCURRED WHILE EXECUTING
ONERROR ROUTINE

Explanation: A run-time error occurred while the ONERROR
routine was running. ONERROR is a procedure that you write
to diagnose run-time errors and specify a course of action.
Programmer Response: Correct the error.
System Action: The program continues running. The
ON ERROR routine cannot trap this error.

AMPX204S NO VS PASCAL ENVIRONMENT FOUND FOR
SUBPROGRAM DIRECTIVE

Explanation: An unsupported directive was used, and no
run-time environment could be found.
Programmer Response: Use the MAIN directive.
System Action: The program ends. The ONERROR routine
cannot trap this error.

AMPX600E INVALID INPUT/OUTPUT OPTION: option
Explanation: The option string passed to the procedure
contains the incorrect or invalid option option.
Programmer Response: Correct or change option.
System Action: The run-time error counter decreases. The
program continues running.

AMPX601E INVALID VALUE suboption FOR INPUT/OUTPUT
OPTION option

Explanation: The invalid value suboption was assigned to the
input/output option option.
Programmer Response: Assign a valid value to option.
System Action: The run-time error counter decreases. The
program continues running.

AMPX602E INVALID SYNTAX IN INPUT/OUTPUT OPTIONS:
option

Explanation: The options string contains a syntax error in or
before option. This error can be caused by a missing equal
sign, comma, or option value.
Programmer Response: Correct the syntax of the options.
System Action: The run-time error counter decreases. The
program continues running.

AMPX603E INVALID NEWHEAP OPTION: option
Explanation: The option string passed to the NEWHEAP
procedure contains the invalid option option.
Programmer Response: Either:

Replace option with a valid option.
Delete option altogether.

System Action: The run-time error counter decreases. The
program ignores the invalid option and continues running.

A MPX604E INVALID VALUE suboption FOR NEWHEAP
OPTION option

Explanation: In the option string passed to the NEWHEAP
procedure, the invalid value suboption was assigned to option.
Programmer Response: Either:

Replace the incorrect suboption with a valid value.
Delete option from the NEWHEAP option string.

System Action: The run-time error counter decreases. The
program uses the default value for option and continues
running.

Chapter 20. VS Pascal Messages 249

AMPX099E SEGMENTS MAY NOT BE CALLED AS ROUTINES
Explanation: The program called a segment as if it were a
routine. Therefore, you have duplicate names for:

An external routine in another unit

A segment in the program.
Programmer Response: Either:

In the segment, include an entry point with the same name
as the segment.
Declare the external routine with another name.

System Action: The run-time error counter decreases. The
program continues running.

AMPX100E INSUFFICIENT SPACE TO DO NEWHEAP
Explanation: There is not enough available storage to perform
the NEWHEAP procedure.
Programmer Response: Use DISPOSEHEAP to deallocate
unused heaps. Otherwise:

Under MVS, run the program in a larger region.

Under CMS, run the program in a larger virtual machine.

System Action: The run-time error counter decreases. The
program continues running.

AMPX101E OPERAND TO DISPOSEHEAP IS NOT A VALID
HEAP

Explanation: The pOinter variable passed to the DISPOSEHEAP
procedure does not identify an existing heap.
Programmer Response: Either:

Pass a heap identifier returned by NEWHEAP.

Call DISPOSE or RELEASE for this pointer as appropriate.
System Action: The run-time error counter decreases. The
program continues running.

AMPX102E OPERAND TO USEHEAP IS NOT A VALID HEAP
Explanation: The pointer variable passed to the USE HEAP
procedure does not identify an existing heap.
Programmer Response: Pass a heap identifier returned by
NEWHEAP.
System Action: The run-time error counter decreases. The
program continues running.

AMPX2001 THE MODULE MUST BE LINKED WITH DEBUG
FOR DEBUGGER FEATURES

Explanation: You can use the Interactive Debugging Tool only
on modules that were linked-edited with the DEBUG option.
Programmer Response: If you want to use the Interactive
Debugging Tool, link-edit the module with the DEBUG option.
Otherwise, do not use the DEBUG run-time option.
System Action: The program continues running. The
ONERROR routine cannot trap this error.

AMPX2011 THE MODULE MUST BE COMPILED WITH DEBUG
FOR SYMBOLIC DUMP

Explanation: A run-time error occurred, and a symbolic dump
of the offending routine was attempted. However, the module in
which the routine is located was not compiled with the DEBUG
option.
Programmer Response: If you want a symbolic dump, compile
the module with the DEBUG option and link-edit the module with
the DEBUG option.
System Action: The program continues running. The
ONERROR routine cannot trap this error.

AMPX203E ERROR OCCURRED WHILE EXECUTING
ONERROR ROUTINE

Explanation: A run-time error occurred while the ONERROR
routine was running. ONERROR is a procedure that you write
to diagnose run-time errors and specify a course of action.
Programmer Response: Correct the error.
System Action: The program continues running. The
ONERROR routine cannot trap this error.

AMPX204S NO VS PASCAL ENVIRONMENT FOUND FOR
SUBPROGRAM DIRECTIVE

Explanation: An unsupported directive was used, and no
run-time environment could be found.
Programmer Response: Use the MAIN directive.
System Action: The program ends. The ONERROR routine
cannot trap this error.

AMPX600E INVALID INPUT/OUTPUT OPTION: option
Explanation: The option string passed to the procedure
contains the incorrect or invalid option option.
Programmer Response: Correct or change option.
System Action: The run-time error counter decreases. The
program continues running.

AMPX601E INVALID VALUE suboption FOR INPUT/OUTPUT
OPTION option

Explanation: The invalid value suboption was assigned to the
input/output option option.
Programmer Response: Assign a valid value to option.
System Action: The run-time error counter decreases. The
program continues running.

AMPX602E INVALID SYNTAX IN INPUT/OUTPUT OPTIONS:
option

Explanation: The options string contains a syntax error in or
before option. This error can be caused by a missing equal
sign, comma, or option value.
Programmer Response: Correct the syntax of the options.
System Action: The run-time error counter decreases. The
program continues running.

AMPX603E INVALID NEWHEAP OPTION: option
Explanation: The option string passed to the NEWHEAP
procedure contains the invalid option option.
Programmer Response: Either:

Replace option with a valid option.
Delete option altogether.

System Action: The run-time error counter decreases. The
program ignores the invalid option and continues running.

AMPX604E INVALID VALUE suboption FOR NEWHEAP
OPTION option

Explanation: In the option string passed to the NEWHEAP
procedure, the invalid value suboption was assigned to option.
Programmer Response: Either:

Replace the incorrect suboption with a valid value.
Delete option from the NEWHEAP option string.

System Action: The run-time error counter decreases. The
program uses the default value for option and continues
running.

Chapter 20. VS Pascal Messages 249

AMPX605E INVALID SYNTAX IN NEWHEAP OPTIONS: option
Explanation: The option string passed to the NEWHEAP
procedure contained a syntax error in or before option. This
error is caused by:

Missing commas between the options
Missing equal signs between an option and its value

A missing value for the option.
Programmer Response: Fix the syntax error.
System Action: The run-time error counter decreases. The
program ignores the invalid option and continues running.

AMPX7001 INVALID RUN-TIME OPTION: option
Explanation: You invoked a VS Pascal program with the invalid
run-time option option. When invoking a program, you must
precede run-time options with a slash, "/".
Programmer Response: If the parameters you pass to the
program contain a slash, you must still precede those
parameters with a slash. Otherwise, either:

Use a valid run-time option.
Fix the syntax of the options.

System Action: The program continues running.

AMPX7011 INVALID VALUE suboption SPECIFIED WITH
RUN-TIME OPTION option

Explanation: Suboption is not a valid attribute for run-time
option option. VS Pascal also issues this message when a
numeric suboption is outside its valid range.
Programmer Response: Either:

Specify a valid attribute for option.
Use another option.

System Action: The program continues running.

AMPX7021 INVALID SYNTAX IN RUN-TIME OPTION: option
Explanation: The run-time option option contains a syntax
error. The error might be a missing attribute or an incorrectly
specified attribute. You must precede attributes for run-time
options with a left parenthesis, "(", and end them with a right
parenthesis, ")".
Programmer Response: Correct the syntax of the option.
System Action: The program continues running.

AMPX7031 MESSAGE TEXT NOT FOUND FOR LANGUAGE:
language

Explanation: Message text does not exist for language, as
specified on the LANGUAGE option.
Programmer Response: Change the LANGUAGE option to a
language that is supported by VS Pascal and implemented on
your system.
System Action: The program continues running. All output will
appear in the default language selected during installation.

250 vs Pascal Application Programming Guide

AMPX900S EXECUTION NOT ALLOWED TO CONTINUE
Explanation: An error was issued that had XHAL T returned in
FACTION after calling the ONERROR procedure.
Programmer Response: If you want the program to continue,
write an ON ERROR procedure that removes XHAL T from
FACTION for this message number.
System Action: The program ends. The ONERROR routine
cannot trap th is error.

AMPX901S PROGRAM HALTED DUE TO ERROR COUNT
Explanation: The number of errors you specified on the
ERRCOUNT run-time option (or its default value) was reached.
Programmer Response: If you want the program to continue,
either:

Specify a larger ERRCOUNT value.
Write an ONERROR procedure that removes XDECERR
from FACTION for some messages.

System Action: The program ends. The ONERROR routine
cannot trap this error.

AMPX902S PROGRAM INTERRUPT OCCURRED IN
NON-PASCAL ROUTINE

Explanation: A program interrupt occurred in a non-Pascal
routine. This message is issued because certain registers or
data areas contain values different from those the VS Pascal
run-time environment expects. If this error was caused by an
abend, the abend code will be in register 2 and the abend
address will be in register 3.
Programmer Response: Fix the non-Pascal routine. If no
non-Pascal routine was called, consult VS Pascal Diagnosis
Guide and Reference for more help.
System Action: The program ends. The ONERROR routine
cannot trap this error.

AMPX999S RECURSIVE ERROR IN RUN-TIME ENVIRONMENT
Explanation: A second error occurred while VS Pascal wa.s
recovering from the first error. This error can be caused by
"wild" pOinter assignments.
Programmer Response: Ensure that no invalid pOinter
assignments have been made. If this error perSists, consult VS
Pascal Diagnosis Guide and Reference for more help.
System Action: The program ends.

AMPX60SE INVALID SYNTAX IN NEWHEAP OPTIONS: option
Explanation: The option string passed to the NEWHEAP
procedure contained a syntax error in or before option. This
error is caused by:

Missing commas between the options

Missing equal signs between an option and its value

A missing value for the option.
Programmer Response: Fix the syntax error.
System Action: The run-time error counter decreases. The
program ignores the invalid option and continues running.

AMPX7001 INVALID RUN·TIME OPTION: option
Explanation: You invoked a VS Pascal program with the invalid
run-time option option. When invoking a program, you must
precede run-time options with a slash, "/".
Programmer Response: If the parameters you pass to the
program contain a slash, you must still precede those
parameters with a slash. Otherwise, either:

Use a valid run-time option.

Fix the syntax of the options.
System Action: The program continues running.

AMPX7011 INVALID VALUE suboption SPECIFIED WITH
RUN· TIME OPTION option

Explanation: Suboption is not a valid attribute for rlln-time
option option. VS Pascal also issues this message when a
numeric suboption is outside its valid range.
Programmer Response: Either:

Specify a valid attribute for option.
Use another option.

System Action: The program continues running.

AMPX7021 INVALID SYNTAX IN RUN·TIME OPTION: option
Explanation: The run-time option option contains a syntax
error. The error might be a missing attribute or an incorreclly
specified attribute. You must precede attributes for run-time
options with a left parenthesis, "(", and end them with a right
parenthesis, ")".
Programmer Response: Correct the synta)(of the option.
System Action: The program continues running.

AMPX7031 MESSAGE TEXT NOT FOUND FOR LANGUAGE:
language

Explanation: Message text does not exist for language, as
specified on the LANGUAGE option.
Programmer Response: Change the LANGUAGE option to a
language that is supported by VS Pascal and implemented on
your system.
System Action: The program continues running. All output will
appear in the default language selected during installation.

250 vs Pascal Application Programming Guide

AMPX900S EXECUTION NOT ALLOWED TO CONTINUE
Explanation: An error was issued that had XHAL T returned in
FACTION after calling the ONERROR procedure.
Programmer Response: If you want the program to continue,
write an ONERROR procedure that removes XHAL T from
FACTION for this message number.
System Action: The program ends. The ONERROR routine
cannot trap this error.

AMPX901S PROGRAM HALTED DUE TO ERROR COUNT
Explanation: The number of errors you specified on the
ERRCOUNT run-time option (or its default value) was reached.
Programmer Response: If you want the program to continue,
either:

Specify a larger ERRCOUNT value.

Write an ON ERROR procedure that removes XDECERR
from FACTION for some messages.

System Action: The program ends. The ONERROR routine
cannot trap this error.

AMPX902S PROGRAM INTERRUPT OCCURRED IN
NON·PASCAL ROUTINE

Explanation: A program interrupt occurred in a non-Pascal
routine. This message is issued because certa.in registers or
data areas contain values different from those the VS Pascal
run-time environment expects. If this error was caused by an
abend, the abend code will be in register 2 and the abend
address will be in register 3.
Programmer Response: Fix the non-Pascal routine. If no
non-Pascal routine was called, consult VS Pascal Diagnosis
Guide and Reference for more help.
System Action: The program ends. The ONERROR routine
cannot trap this error.

AMPX999S RECURSIVE ERROR IN RUN·TIME ENVIRONMENT
Explanation: A second error occurred while VS Pascal was
recovering from the first error. This error can be caused by
"wild" pointer assignments.
Programmer Response: Ensure that no invalid pOinter
assignments have been made. If this error perSists, consult VS
Pascal Diagnosis Guide and Reference for more help.
System Action: The program ends.

Interactive Debugging Tool Messages

These messages are issued while in the Interactive Debugging Tool. They are all informational messages.

AMPD5001 CURRENT MODULE NOT COMPILED WITH
DEBUG OPTION

Explanation: The current module contains a debugging
command. but the module was not compiled with the DEBUG
option.
Programmer Response: Either:

Do not execute the debugging command in this module.

Recompile the module with the DEBUG option.
System Action: VS Pascal ignores the command.

AMPD5011 NO STATEMENT nnn IN routinename
Explanation: A BREAK command specifies a statement
number, nnn, that does not exist in routine routinename.
Programmer Response: Use a valid statement number.
System Action: VS Pascal does not set a breakpoint.

AMPD5021 ntERE IS t40 ROUTINE NAMED routinename IN
MODULE modulename

Explanation: The routine routinename does not exist in module
modulename.
Programmer Response: Specify correct module and routine
names.
System Action: VS Pascal ignores the command.

AMPDS031 INVALID QUALIFICATION SPECIFICATION: token
Explanation: You incorrectly qualified the command with token.
This can happen when:

You fail to use a "j" where required.
The statement specification you give for a BREAK or
RESET command is neither a number nor "END".

Programmer Response: Reissue the command with a valid
qualification.
System Action: VS Pascal ignores the command.

AMPDS041 MISSING QUALIFICATION SPECIFICATION
Explanation: You omitted part of the qualification for the
command.
Programmer Response: Correct the error.
System Action: VS Pascal ignores the command.

AMPD50S1 MODULE NAME MUST BE SPECIFIED
Explanation: You failed to specify a unit name for a BREAK or
RESET command, and you have not specified a default unit
name.
Programmer Response: Either:

Specify a unit name on the command.
Issue a QUAL command to specify a default unit name.

System Action: VS Pascal ignores the command.

AMPDS061 BREAKPOINT IS ALREADY SET
Explanation: The breakpoint you entered is already set.
Programmer Response: If want to modify a breakpoint's
options:

1. Issue the RESET command to remove the breakpoint.
2. Issue the BREAK command to set the breakpoint with the

new options.
System Action: VS Pascal leaves the breakpoint unchanged.

AMPD5071 MAXIMUM NUMBER OF BREAKPOINTS HAVE
BEEN SET

Explanation: The maximum number of breakpoints is already
set. You cannot set another breakpoint.
Programmer Response: If you want to set a new breakpoint,
you must first remove an existing breakpoint.
System Action: VS Pascal does not set the breakpoint.

AMPDS081 SPECIFIED BREAKPOINT DOES NOT EXIST
Explanation: You tried to reset a breakpoint that does not exist.
Programmer Response: Ensure that you correclly specified the
breakpoint you want to reset. If this is not the problem, the
breakpoint you tried to reset has already been reset.
System Action: VS Pascal does not remove any breakpoints.

AMPD5091 Variablename IS AN AUTOMATIC VARIABLE
LOCAL TO A NON-ACTIVE ROUTINE

Explanation: The identifier variablename is a local automatic
variable in an inactive routine. This error occurs when you try
to view an automatic variable in a routine not in the current call
chain.
Programmer Response: Ensure that you specified the correct
variable name. If you specified the correct variable name, you
must wait until the routine becomes active before you can view
the the variable's value.
System Action: VS Pascal ignores the command.

AMPDS101 FIELD QUALIFIED VARIABLE IS NOT A RECORD
Explanation: You qualified a variable with a field name, but the
variable is not a record.
Programmer Response: Either:

Specify a record variable name to the left of the period.
Do not qualify the variable.

System Action: VS Pascal ignores the command.

AMPDS111 Identifier IS NOT A VALID RECORD FIELD
Explanation: The field name you specified, identifier, is not
valid for the variable.
Programmer Response: Either:

Use a variable that contains identifier as a valid field
name.
Use a field name that is valid for the variable.
Do not qualify the variable.

System Action: VS Pascal ignores the command.

AMPDS121 SUBSCRIPTED VARIABLE IS NOT AN ARRAY
Explanation: You specified a subscript for a variable that is not
an array, string, or space.
Programmer Response: Either:

• Do not subscript the variable.
Specify an indexed variable.

System Action: VS Pascal ignores the command.

AMPDS131 ARRAY SUBSCRIPT IS NOT A SCALAR
Explanation: You used a non-scalar value as an index for an
array, string, or space variable. You can use only integers,
characters, and enumerated scalars as index values.
Programmer Response: Use a scalar value to subscript the
indexed variable.
System Action: VS Pascal ignores the command.

Chapter 20. VS Pascal Messages 251

Interactive Debugging Tool Messages

These messages are issued while in the Interactive Debugging Tool. They are all informational messages.

AMPD5001 CURRENT MODULE NOT COMPILED WITH
DEBUG OPTION

Explanation: The current module contains a debugging
command, but the module was not compiled with the DEBUG
option.
Programmer Response: Either:

Do not execute the debugging command in this module.

Recompile the module with the DEBUG option.
System Action: VS Pascal ignores the command.

AMPD5011 NO STATEMENT nnn IN routinename
Explanation: A BREAK command specifies a statement
number, nnn, that does not exist in routine routinename.
Programmer Response: Use a valid statement number.
System Action: VS Pascal does not set a breakpoint.

AMPD5021 THERE IS t~O ROUTINE NAMED routinename IN
MODULE modulename

Explanation: The routine routinename does not exist in module
modulename.
Programmer Response: Specify correct module and routine
names.
System Action: VS Pascal ignores the command.

AMPD5031 INVALID QUALIFICATION SPECIFICATION: token
Explanation: You incorrectly qualified the command with token.
This can happen when:

You fail to use a "f" where required.
The statement specification you give for a BREAK or
RESET command is neither a number nor "END".

Programmer Response: Reissue the command with a valid
qualification.
System Action: VS Pascal ignores the command.

AMPD5041 MISSING QUALIFICATION SPECIFICATION
Explanation: You omitted part of the qualification for the
command.
Programmer Response: Correct the error.
System Action: VS Pascal ignores the command.

AMPD5051 MODULE NAME MUST BE SPECIFIED
Explanation: You failed to specify a unit name for a BREAK or
RESET command, and you have not specified a default unit
name.
Programmer Response: Either:

Specify a unit name on the command.

Issue a QUAL command to specify a default unit name.
System Action: VS Pascal ignores the command.

AMPD5061 BREAKPOINT IS ALREADY SET
Explanation: The breakpoint you entered is already set.
Programmer Response: If want to modify a breakpoint's
options:

1. Issue the RESET command to remove the breakpoint.
2. Issue the BREAK command to set the breakpoint with the

new options.
System Action: VS Pascal leaves the breakpoint unchanged.

AMPD5071 MAXIMUM NUMBER OF BREAKPOINTS HAVE
BEEN SET

Explanation: The maximum number of breakpoints is already
set. You cannot set another breakpoint.
Programmer Response: If you want to set a new breakpoint,
you must first remove an existing breakpoint.
System Action: VS Pascal does not set the breakpoint.

AMPD5081 SPECIFIED BREAKPOINT DOES NOT EXIST
Explanation: You tried to reset a breakpoint that does not exist.
Programmer Response: Ensure that you correctly specified the
breakpoint you want to reset. If this is not the problem, the
breakpoint you tried to reset has already been reset.
System Action: VS Pascal does not remove any breakpoints.

AMPD5091 Variablename IS AN AUTOMATIC VARIABLE
LOCAL TO A NON-ACTIVE ROUTINE

Explanation: The identifier variablename is a local automatic
variable in an inactive routine. This error occurs when you try
to view an automatic variable in a routine not in the current call
chain.
Programmer Response: Ensure that you specified the correct
variable name. If you specified the correct variable name, you
must wait until the routine becomes active before you can view
the the variable's va.lue.
System Action: VS Pascal ignores the command.

AMPD5101 FIELD QUALIFIED VARIABLE IS NOT A RECORD
Explanation: You qualified a variable with a field name, but the
variable is not a record.
Programmer Response: Either:

Specify a record variable name to the left of the period.
Do not qualify the variable.

System Action: VS Pascal ignores the command.

AMPD5111 Identifier IS NOT A VALID RECORD FIELD
Explanation: The field name you specified, identifier, is not
valid for the variable.
Programmer Response: Either:

Use a variable that contains identifier as a valid field
name.
Use a field name that is valid for the variable.

Do not qualify the variable.
System Action: VS Pascal ignores the command.

AMPD5121 SUBSCRIPTED VARIABLE IS NOT AN ARRAY
Explanation: You specified a subscript for a variable that is not
an array, string, or space.
Programmer Response: Either:

Do not subscript the variable.
Specify an indexed variable.

System Action: VS Pascal ignores the command.

AMPD5131 ARRAY SUBSCRIPT IS NOT A SCALAR
Explanation: You used a non-scalar value as an index for an
array, string, or space variable. You can use only integers,
characters, and enumerated scalars as index values.
Programmer Response: Use a scalar value to subscript the
indexed variable.
System Action: VS Pascal ignores the command.

Chapter 20. VS Pascal Messages 251

AMPD5141 INVALID SYMBOL: symbol
Explanation: The indicated symbol (symbol) is not valid in the
context in which it is used.
Programmer Response: Either:

Remove symbol from the command.
Replace symbol with an appropriate symbol.

System Action: VS Pascal ignores the command.

AMPD5151 ARRAY SUBSCRIPT IS OUT OF BOUNDS:
subscript

Explanation: You used an out-of-bounds subscript on an array.
string. or space reference. For variable-length strings. the
subscript must be less than or equal to the length of the string.
Programmer Response: Use a valid subscript or a different
variable.
System Action: VS Pascal ignores the command.

AMPD5161 MISSING SYMBOL: symbol
Explanation: You must use symbol with the command.
Programmer Response: Reissue the command with symbol in
the proper place.
System Action: VS Pascal ignores the command.

AMPD5171 ASSOCIATED VARIABLE IS NOT A POINTER
Explanation: You tried to dereference a variable that is not a
pointer.
Programmer Response: Either:

Do not use the variable as a pointer.
Use a variable that is a pointer.

System Action: VS Pascal ignores the command.

AMPD5181 POINTER VARIABLE DOES NOT CONTAIN VALID
ADDRESS

Explanation: You tried to dereference a pointer that does not
contain a valid address. This pointer is either undefined or NIL.
Programmer Response: Either:

Do not try to dereference the pOinter.

Use a valid pointer.
System Action: VS Pascal ignores the command.

AMPD5191 Identifier NOT FOUND IN SYMBOL TABLE
Explanation: You specified identifier in a command. but
identifier is not in the symbol table. The debug symbol table
contains only variable identifiers. VS Pascal does not keep
information about labels. constants. and types at run time. and
you cannot display information about routines. programs, or
segments.
Programmer Response: Reissue the command with the correct
variable identifier.
System Action: VS Pascal ignores the command.

AMPD5201 EQUATE SUBSTITUTION IS IN INFINITE
RECURSION

Explanation: You specified a circular series of EQUATE values.
When VS Pascal begins substituting the EQUATE values you
provided. it enters an endless loop.
Programmer Response: Remove one of the EQUATE values
that cause the loop.
System Action: VS Pascal stops expanding the EQUATE values
and ignores the input line.

252 vs Pascal Application Programming Guide

AMPD5211 EQUATE EXPANSION CAUSES COMMAND
TRUNCATION (EXCEEDS 255 CHARACTERS)

Explanation: The EQUATE values you provided caused a
command to expand beyond the 255-character maximum.
Programmer Response: Issue the commands truncated
because of the error.
System Action: VS Pascal expands the EQUATE and truncates
the result. It then processes the input as is.

AMPD5221 YOU ARE NOT IN CMS, COMMAND NOT VALID
Explanation: You issued the CMS command. but the Interactive
Debugging Tool is not running in a CMS environment.
Programmer Response: Either:

Use the Interactive Debugging Tool in a CMS environment.
Do not use the CMS command.

System Action: VS Pascal does not enter CMS.

AMPD5231 DEBUG COMMAND NOT RECOGNIZED: token
Explanation: The command you issued. token. is either:

Not a valid debugging command.

Not equated to a valid debugging command.
Programmer Response: Either:

Issue a valid debugging command.
Equate token to a valid debugging command.

System Action: VS Pascal ignores the command string. but it
processes all input after the command normally. For example.
if you issue the command

BRAK Xj3; GO

VS Pascal issues error message AMPD523 because BRAK is
not a valid debugging command. VS Pascal then executes the
GO command.

INVALID CHARACTER IN HEXADECIMAL STRING:
character

Explanation: You used character in a hexadecimal string. but
this is not a valid hexadecimal digit.
Programmer Response: Replace character with a valid
hexadecimal digit.
System Action: VS Pascal ignores the command.

AMPD5251 INVALID HEXADECIMAL STRING
Explanation: You specified an invalid hexadecimal string on a
storage-viewing command. Hexadecimal strings consist of:

1. A single quotation mark (')
2. Eight hexadecimal digits

3. Another single quotation mark (')
4. An "X".

For example. I 0000917F I X is a valid hexadecimal string. In this
case. the last" I" is missing.
Programmer Response: Reissue the command with a valid
hexadecimal string.
System Action: VS Pascal ignores the view command.

AMPD5261 ROUTINE IS NOT ACTIVE
Explanation: You issued a QUAL command that set the current
qualification to an inactive routine.
Programmer Response: Correct any errors in the routine
name. If the routine name is correct. make sure that you are
trying to view only STATIC. DEF. and REF variables.
System Acllon: VS Pascal accepts the command. but you
cannot view local automatic variables for this routine.

AMPD5141 INVALID SYMBOL: symbol
Explanation: The indicated symbol (symbol) is not valid in the
context in which it is used.
Programmer Response: Either:

Remove symbol from the command.

Replace symbol with an appropriate symbol.
System Action: VS Pascal ignores the command.

AMPD5151 ARRAY SUBSCRIPT IS OUT OF BOUNDS:
subscript

Explanallon: You used an out-of-bounds subscript on an array.
string. or space reference. For variable-length strings. the
subscript must be less than or equal to the length of the string.
Programmer Response: Use a valid subscript or a different
variable.
System Action: VS Pascal ignores the command.

AMPD5161 MISSING SYMBOL: symbol
Explanation: You must use symbol with the command.
Programmer Response: Reissue the command with symbol in
the proper place.
System Action: VS Pascal ignores the command.

AMPD5171 ASSOCIATED VARIABLE IS NOT A POINTER
Explanation: You tried to dereference a variable that is not a
pointer.
Programmer Response: Either:

Do not use the variable as a pointer.

Use a variable that is a poi nter.
System Action: VS Pascal ignores the command.

AMPD5181 POINTER VARIABLE DOES NOT CONTAIN VALID
ADDRESS

Explanation: You tried to dereference a pOinter that does not
contain a valid address. This pointer is either undefined or NIL.
Programmer Response: Either:

Do not try to dereference the pointer.

Use a valid pOinter.
System Action: VS Pascal ignores the command.

AMPD5191 Identifier NOT FOUND IN SYMBOL TABLE
Explanation: You specified identifier in a command. but
identifier is not in the symbol table. The debug symbol table
contains only variable identifiers. VS Pascal does not keep
information about labels. constants. and types at run time. and
you cannot display information about routines. programs. or
segments.
Programmer Response: Reissue the command with the correct
variable identifier.
System Action: VS Pascal ignores the command.

AMPD5201 EQUATE SUBSTITUTION IS IN INFINITE
RECURSION

Explanallon: You specified a circular series of EQUATE values.
When VS Pascal begins substituting the EQUATE values you
provided. it enters an endless loop.
Programmer Response: Remove one of the EQUATE values
that cause the loop.
System Action: VS Pascal stops expanding the EQUATE values
and ignores the input line.

252 vs Pascal Application Programming Guide

AMPD521I EQUATE EXPANSION CAUSES COMMAND
TRUNCATION (EXCEEDS 255 CHARACTERS)

Explanation: The EQUATE values you provided caused a
command to expand beyond the 255-character maximum.
Programmer Response: Issue the commands truncated
because of the error.
System Action: VS Pascal expands the EQUATE and truncates
the result. It then processes the input as is.

AMPD5221 YOU ARE NOT IN CMS, COMMAND NOT VALID
Explanation: You issued the CMS command. but the Interactive
Debugging Tool is not running in a CMS environment.
Programmer Response: Either:

Use the Interactive Debugging Tool in a CMS environment.

Do not use the CMS command.
System Action: VS Pascal does not enter CMS.

AMPD5231 DEBUG COMMAND NOT RECOGNIZED: token
Explanation: The command you issued. token. is either:

Not a valid debugging command.
Not equated to a valid debugging command.

Programmer Response: Either:

Issue a valid debugging command.

Equate token to a valid debugging command.
System Acllon: VS Pascal ignores the command string. but it
processes all input after the command normally. For example.
if you issue the command

BRAK X/3; GO

VS Pascal issues error message AMPD523 because BRAK is
not a valid debugging command. VS Pascal then executes the
GO command.

INVALID CHARACTER IN HEXADECIMAL STRING:
character

Explanation: You used character in a hexadecimal string. but
this is not a valid hexadecimal digit.
Programmer Response: Replace character with a valid
hexadecimal digit.
System Action: VS Pascal ignores the command.

AMPD5251 INVALID HEXADECIMAL STRING
Explanation: You specified an invalid hexadecimal string on a
storage-viewing command. Hexadecimal strings consist of:

1. A single quotation mark (')
2. Eight hexadecimal digits

3. Another single quotation mark (')
4. An "X".

For example. '0000917F' X is a valid hexadecimal string. In this
case. the last"'" is missing.
Programmer Response: Reissue the command with a valid
hexadecimal string.
System Action: VS Pascal ignores the view command.

AMPD5261 ROU1"INE IS NOT ACTIVE
Explanation: You issued a QUAL command that set the current
qualification to an inactive routine.
Programmer Response: Correct any errors in the routine
name. If the routine name is correct. make sure that you are
trying to view only STATIC. DEF. and REF variables.
System Action: VS Pascal accepts the command. but you
cannot view local automatic variables for this routine.

AMPD5271 QUALIFICATION SET TO MODULE
Explanation: You issued a QUAL command that set the current
qualification to the global variables of a segment.
Programmer Response: Set the qualification to the program
unit's main program to view global variables.
System Action: VS Pascal accepts the command, but no
variables are in the qualification.

AMPD5281 THE WORD 'EQUATE' MAY NOT BE REDEFINED
Explanation: You tried to redefine the word "equate" with the
EQUATE command. This is not allowed. However, you can use
any abbreviation of "equate" in an EQUATE command.
Programmer Response: Choose a different identifier to use in
the EQUATE command.
System Action: VS Pascal ignores the EQUATE command.

AMPD5291 MAXIMUM NUMBER OF EQUATES HAVE BEEN
SET

Explanation: You tried to create a new equate, but the
maximum number of equates is already set.
Programmer Response: Either:

Dispose of an existing equate.

Do not enter any new equates.
System Action: VS Pascal leaves the existing list of equates as
is.

AMPD5301 THERE ARE NO EQUATES CURRENTLY SET
Explanation: You issued the DISPLAY EQUATES command, but
no equates exist.
Programmer Response: Make sure you did not accidentally
remove equates that you set previously.
System Action: VS Pascal does not display any equates.

AMPD531I STATEMENT TABLE MISSING; TRACE REQUIRES
GOSTMT OPTION

Explanation: You issued a SET TRACE ON, and program
execution resumed. However, VS Pascal did not find a
statement table. The statement table is necessary for program
tracing.
Programmer Response: Compile the program with the
GOSTMT option.
System Action: VS Pascal does not display trace information.

AMPD5321 EQUATE DOES NOT EXIST: identifier
Explanation: You tried to remove an equate with the command:

EQUATE identifier

However, identifier is not an equate.
Programmer Response:

If you want to dispose of an equate, use the correct name
of the equate.

If you want to create a new equate, reissue the command
with the correct syntax:

EQUATE identifier string

where string is the text to wh ich the identifier must be
equated.

System Action: VS Pascal leaves the existing list of equates as
is.

AMPD5331 THERE ARE NO ACTIVE VARIABLES
Explanation: You tried to view a variable, but the currently
qualified routine contains no variables.
Programmer Response: Ensure the current qualification is
correct.
System Action: VS Pascal does not display a variable.

AMPD5341 ROUTINE IS NOT ACTIVE: routinename
Explanation: You used a LlSTVARS command for routinename,
but this routine is not currently active.
Programmer Response: Ensure that the current qualification is
correct. If the current qualification is correct, make sure that
you used LlSTVARS correctly. You can use LlSTVARS to
display local automatic variables. To display STATIC, DEF, or
REF variables, you must issue a view command instead.
System Action: VS Pascal does not display a variable.

AMPD5351 RESET DOES NOT ALLOW ASSOCIATED
COMMANDS

Explanation: You tried to use an associated command with
RESET. You can use RESET only to remove a breakpoint. You
cannot use RESET to change a command associated with a
breakpoint.
Programmer Response:

If you want only to remove the breakpoint, issue the
RESET command without the associated command.
If you want to change the command associated with a
breakpoint:

1. Issue the RESET command without the associated
command.

2. Use the BREAK command to specify a new
associated command.

System Action: VS Pascal ignores the RESET command. The
breakpoint remains set.

AMPD5361 BREAKPOINT COMMAND IGNORED; COMMAND
WOULD EXCEED 255 CHARS

Explanation: A command associated with a breakpoint would
have caused the current input line to exceed the maximum of
255 characters. This error should occur only when an input line
is not completely exhausted following a GO or WALK command.
Programmer Response: If no commands are pending, you can
execute the commands associated with the breakpoint.
System Action: VS Pascal ignores the associated command
and processes the remainder of the input line.

AMPD5371 VIEW ONLY WORKS WITH IDENTIFIERS OR HEX
NUMBERS

Explanation: The variable you specified on a view command is
neither an identifier nor a hexadecimal storage address.
Programmer Response: Specify an identifier or hexadecimal
storage address after the comma (,) in the view command.
System Action: VS Pascal ignores the view command.

AMPD5381 FILE 10 EXPECTED
Explanation: You failed to specify a file identifier.
Programmer Response: Reissue the command with a file
identifier in the proper place.
System Action: VS Pascal ignores the command.

AMPD5391 MODULE NAME EXPECTED
Explanation: You failed to specify a module name.
Programmer Response: Reissue the command with a module
name in the proper place.
System Action: VS Pascal ignores the command.

Chapter 20. VS Pascal Messages 253

AMPD5271 QUALIFICATION SET TO MODULE
Explanation: You issued a QUAL command that set the current
qualification to the global variables of a segment.
Programmer Response: Set the qualification to the program
unit's main program to view global variables.
System Action: VS Pascal accepts the command, but no
variables are in the qualification.

AMPD5281 THE WORD 'EQUATE' MAY NOT BE REDEFINED
Explanation: You tried to redefine the word "equate" with the
EQUATE command. This is not allowed. However, you can use
any abbreviation of "equate" in an EQUATE command.
Programmer Response: Choose a different identifier to use in
the EQUATE command.
System Action: VS Pascal ignores the EQUATE command.

AMPD5291 MAXIMUM NUMBER OF EQUATES HAVE BEEN
SET

Explanation: You tried to create a new equate, but the
maximum number of equates is already set.
Programmer Response: Either:

Dispose of an existing equate.

Do not enter any new equates.
System Action: VS Pascal leaves the existing list of equates as
is.

AMPD5301 THERE ARE NO EQUATES CURRENTLY SET
Explanation: You issued the DISPLAY EQUATES command, but
no equates exist.
Programmer Response: Make sure you did not accidentally
remove equates that you set previously.
System Action: VS Pascal does not display any equates.

AMPD531I STATEMENT TABLE MISSING; TRACE REQUIRES
GOSTMT OPTION

Explanation: You issued a SET TRACE ON, and program
execution resumed. However, VS Pascal did not find a
statement table. The statement table is necessary for program
traCing.
Programmer Response: Compile the program with the
GOSTMT option.
System Action: VS Pascal does not display trace information.

AMPD5321 EQUATE DOES NOT EXIST: identifier
Explanation: You tried to remove an equate with the command:

EQUATE identifier

However, identifier is not an equate.
Programmer Response:

If you want to dispose of an equate, use the correct name
of the equate.

If you want to create a new equate, reissue the command
with the correct syntax:

EQUATE identifier string

where string is the text to which the identifier must be
equated.

System Action: VS Pascal leaves the existing list of equates as
is.

AMPD5331 THERE ARE NO ACTIVE VARIABLES
Explanation: You tried to view a variable, but the cLirrently
qualified routine contains no variables.
Programmer Response: Ensure the current qualification is
correct.
System Action: VS Pascal does not display a variable.

AMPD5341 ROUTINE IS NOT ACTIVE: routinename
Explanation: You used a LlSTVARS command for routinename,
but this routine is not currently active.
Programmer Response: Ensure that the current qualification is
correct. If the current qualification is correct, make sure that
you used LlSTVARS correctly. You can use LlSTVARS to
display local automatic variables. To display STATIC, DEF, or
REF variables, you must issue a view command instead.
System Action: VS Pascal does not display a variable.

AMPD5351 RESET DOES NOT ALLOW ASSOCIATED
COMMANDS

Explanation: You tried to use an associated command with
RESET. You can use RESET only to remove a breakpoint. You
cannot use RESET to change a command associated with a
breakpoint.
Programmer Response:

If you want only to remove the breakpoint, issue the
RESET command without the associated command.

If you want to change the command associated with a
breakpoint:

1. Issue the RESET command without the associated
command.

2. Use the BREAK command to specify a new
associated command.

System Action: VS Pascal ignores the RESET command. The
breakpoint remains set.

AMPD5361 BREAKPOINT COMMAND IGNORED; COMMAND
WOULD EXCEED 255 CHARS

Explanation: A command associated with a breakpoint would
have caused the current input line to exceed the maximum of
255 characters. This error should occur only when an input line
is not completely exhausted following a GO or WALK command.
Programmer Response: If no commands are pending, you can
execute the commands associated with the breakpoint.
System Action: VS Pascal ignores the associated command
and processes the remainder of the input line.

AMPD5371 VIEW ONLY WORKS WITH IDENTIFIERS OR HEX
NUMBERS

Explanation: The variable you specified on a view command is
neither an identifier nor a hexadecimal storage address.
Programmer Response: Specify an identifier or hexadecimal
storage address after the comma (,) in the view command.
System Action: VS Pascal ignores the view command.

AMPD5381 FILE ID EXPECTED
Explanation: You failed to specify a file identifier.
Programmer Response: Reissue the command with a file
identifier in the proper place.
System Action: VS Pascal ignores the command.

AMPD5391 MODULE NAME EXPECTED
Explanation: You failed to specify a module name.
Programmer Response: Reissue the command with a module
name in the proper place.
System Action: VS Pascal ignores the command.

Chapter 20. VS Pascal Messages 253

AMPD5401 IDENTIFIER EXPECTED
Explanation: You failed to specify an identifier.
Programmer Response: Reissue the command with an
identifier in the proper place.
System Action: VS Pascal ignores the command.

AMPD541I INVALID ARGUMENT ON EVERY OPTION OF
BREAK

Explanation: You specified an invalid value for the EVERY
option on a BREAK command. The EVERY option specifies an
increment value. This increment value must be a positive
integer.
Programmer Response: Issue the BREAK command with a
valid increment value for EVERY.
System Action: VS Pascal ignores the BREAK command and
does not set a breakpoint.

AMPD5421 INVALID ARGUMENT ON FROM OPTION OF
BREAK

Explanation: You specified an invalid value for the FROM
option on a BREAK command. The FROM option specifies an
initial value. This initial value must be a positive integer or
zero.
Programmer Response: Issue the BREAK command with a
valid inilial value for FROM.
System Action: VS Pascal ignores the BREAK command and
does not set a breakpoint.

254 vs Pascal Application Programming Guide

AMPD5431 INVALID ARGUMENT ON TO OPTION OF BREAK
Explanation: You specified an invalid value for the TO option
on a BREAK command. The TO option specifies a final value.
This final value must be a positive integer greater than or equal
to the initial value specified for the FROM option.
Programmer Response: Issue the BREAK command with a
valid final value.
System Action: VS Pascal ignores the BREAK command and
does not set a breakpoint.

AMPD5441 OPTION NOT APPLICABLE ON RESET
Explanation: You specified an EVERY, FROM, or TO option on a
RESET command. These options work only with the BREAK
command. You can use RESET only to remove a breakpoint.
You cannot use RESET 10 change the value of BREAK options.
Programmer Response:

If you want to remove the breakpoint, issue the RESET
command without the option.
If you want to change the BREAK option value:

1. Issue the RESET command without the option.
2. Issue the BREAK command to specify a new option

value.
System Action: VS Pascal ignores the RESET command and
leaves the breakpoint set.

AMPD5451 LENGTH OF STRING (GSTRING) IS NEGATIVE
Explanation: The length of the STRING (or GSTRING) variable
is negative. This can occur when an uninitialized variable is
used or when part of a variant record overlays the variable.
Programmer Response: Make sure the length of the variable is
greater than or equal to zero.
System Action: VS Pascal does not display the variable.

AMPD5401 IDENTIFIER EXPECTED
Explanation: You failed to specify an identifier.
Programmer Response: Reissue the command with an
identifier in the proper place.
System Action: VS Pascal ignores the command.

AMPD5411 INVALID ARGUMENT ON EVERY OPTION OF
BREAK

Explanation: You specified an invalid value for the EVERY
option on a BREAK command. The EVERY option specifies an
increment vallJe. This increment value must be a positive
integer.
Programmer Response: Issue the BREAK command with a
valid increment vallJe for EVERY.
System Action: VS Pascal ignores the BREAK command and
does not set a breakpoint.

AMPD5421 INVALID ARGUMENT ON FROM OPTION OF
BREAK

Explanation: You specified an invalid value for the FROM
option on a BREAK command. The FROM option specifies an
initial value. This initial value must be a positive integer or
zero.
Programmer Response: Issue the BREAK command with a
valid initial value for FROM.
System Action: VS Pascal ignores the BREAK command and
does not set a breakpoint.

254 vs Pascal Application Programming Guide

AMPD5431 INVALID ARGUMENT ON TO OPTION OF BREAK
Explanation: You specified an invalid value for the TO option
on a BREAK command. The TO option specifies a final value.
This final value must be a positive integer greater than or equal
to the initial value specified for the FROM option.
Programmer Response: Issue the BREAK command with a
valid final value.
System Action: VS Pascal ignores the BREAK command and
does not set a breakpoint.

AMPD5441 OPTION NOT APPLICABLE ON RESET
Explanation: You specified an EVERY, FROM, or TO option on a
RESET command. These options work only with the BREAK
command. You can use RESET only to remove a breakpoint.
You cannot use RESET to change the vallJe of BREAK options.
Programmer Response:

If you want to remove the breakpoint, issue the RESET
command without the option.

If you want to change the BREAK option value:
1. Issue the RESET command without the option.
2. Issue the BREAK command to specify a new option

value.
System Action: VS Pascal ignores the RESET command and
leaves the breakpoint set.

AMPD5451 LENGTH OF STRING (GSTRING) IS NEGATIVE
Explanation: The length of the STRING (or GSTRING) variable
is negative. This can occur when an uninitialized variable is
used or when part of a variant record overlays the variable.
Programmer Response: Make sure the length of the variable is
greater than or equal to zero.
System Action: VS Pascal does not display the variable.

EXEC Messages

The following messages are issued by VS Pascal EXECs (VSPASCAL, PASCMOD, and PASCRUN).

AMPE100E UNABLE TO FIND "filename filetype file mode"
Explanation: VS Pascal did not find the program named
filename filetype filemode.
Programmer Response: Check the spelling of the program
name and make sure it is on an accessed disk.
System Action: The compiler does not start.

AMPE101E BAD PARAMETERS SPECIFIED: "parms"
Explanation: You specified parms after what should be the
filemode.
Programmer Response: Either:

Place a left parenthesis, "(", before any compile-time
options you pass to the compiler.

Remove the bad parameters.
System Action: The compiler does not start.

AMPE102E NO OPTIONS WERE SPECIFIED AFTER THE LEFT
PARENTHESIS "(".

Explanation: You used a left parenthesis, "(", on the command
line. This indicates that compile-time options follow, but you
did not specify any options.
Programmer Response: Either:

Remove the left parenthesis.

Specify the desired compile-time options.
System Action: The compiler does not start.

AMPE103E DATA FOUND PAST COMMAND END: "data"
Explanation: You specified data after the right parenthesis, u)"
on a command fine. This is invalid,because the right
parenthesis ends the command.
Programmer Response: Either:

Check for mismatched parentheses.

Move the last right parenthesis after data.
System Action: The compiler does not start.

AMPE104E UNABLE TO FIND THE "libname" MACLIB
Explanation: VS Pascal did not find the MACLIB named
Iibname.
Programmer Response: Check the spelling of the MACLIB
name and make sure it is on an accessed disk.
System Action: The compiler does not start.

AMPE105E MORE THAN n MACLIBS SPECIFIED
Explanation: You can specify up to n MACLIBs when invoking
the VSPASCAL EXEC.
Programmer Response: Use fewer MACLIBs. You can try
combining several MACLIBs into one.
System Action: The compiler does not start.

AMPE1061 CONFLICTING LISTING OPTION: option
Explanation: The option option conflicts with a previously
specified option.
Programmer Response: Check the options specified to ensure
they do not conflict with each other.
System Action: The option is ignored and the compiler
continues.

AMPE107E SUBOPTION EXPECTED FOR option
Explanation: Option requires a qualifying suboption, but you
did not specify one. The suboption might be missing a left
parenthesis.
ProgrammcH Response: Either:

Do not specify the option at all.

Specify a valid suboption.
System Action: The compiler does not start.

AMPE108E TOO MANY SUBOPTIONS SPECIFIED AFTER THE
option OPTION

Explanation: You specified too many suboptions for option.
You might have omitted a right parenthesis from the suboption
list.
Programmer Response: Either:

Do not specify the option at all.

Specify a valid suboption.
System Action: The compiler does not start.

AMPE109E Token IS NOT A VALID SUBOPTION FOR option
Explanation: Token is not a valid suboption for compile-time
option option.
Programmer Response: Either:

Do not specify the option at all.

Use a valid suboption.
System Action: The compiler does not start.

AMPE1101 MESSAGE TEXT NOT FOUND FOR LANGUAGE:
language

Explanation: Message text does not exist for language, as
specified on the LANGUAGE option.
Programmer Response: Change the LANGUAGE option to a
language that is supported by VS Pascal and implemented on
your system.
System Action: The compiler continues; all output will appear
in the default language selected during installation.

AMPE111S A-DISK EITHER NOT ACCESSED OR LINKED
READ-ONLY

Explanation: The compiler must write several files to the
A-disk. Either:

The compiler did not find the A-disk.

The A-disk the compiler found is linked as read-only.
Programmer Response: Either:

Access the A-disk.

Link the A-disk in read-write mode.
System Action: The compiler does not start.

Chapter 20. VS Pascal Messages 255

EXEC Messages

The following messages are issued by VS Pascal EXECs (VSPASCAL, PASCMOD, and PASCRUN).

AMPE100E UNABLE TO FIND "filename filetype filemode"
Explanation: VS Pascal did not find the program named
filename filetype filemode.
Programmer Response: Check the spelling of the program
name and make sure it is on an accessed disk.
System Action: The compiler does not start.

AMPE101E BAD PARAMETERS SPECIFIED: "parms"
Explanation: You specified parms after what should be the
filemode.
Programmer Response: Either:

Place a left parenthesis, "(", before any compile-time
options you pass to the compiler.

Remove the bad parameters.
System Action: The compiler does not start.

AMPE102E NO OPTIONS WERE SPECIFIED AFTER THE LEFT
PARENTHESIS "(".

Explanation: You used a left parenthesis, "(", on the command
line. This indicates that compile-time options follow, but you
did not specify any options.
Programmer Response: Either:

Remove the left parenthesis.

Specify the desired compile-time options.
System Action: The compiler does not start.

AMPE103E DATA FOUND PAST COMMAND END: "data"
Explanation: You specified data after the right parenthesis, ")"
on a command line. This is invalid, because the right
parenthesis ends the command.
Programmer Response: Either:

Check for mismatched parentheses.

Move the last right parenthesis after data.
System Action: The compiler does not start.

AMPE104E UNABLE TO FIND THE "Iibname" MACLIB
Explanation: VS Pascal did not find the MACLIS named
libname.
Programmer Response: Check the spelling of the MACLIS
name and make sure it is on an accessed disk.
System Action: The compiler does not start.

AMPE10SE MORE THAN n MACLIBS SPECIFIED
Explanation: You can specify up to n MACLISs when invoking
the VSPASCAL EXEC.
Programmer Response: Use fewer MACLISs. You can try
combining several MACLISs into one.
System Action: The compiler does not start.

AMPE1061 CONFLICTING LISTING OPTION: option
Explanation: The option option conflicts with a previously
specified option.
Programmer Response: Check the options specified to ensure
they do not conflict with each other.
System Action: The option is ignored and the compiler
continues.

AMPE107E SUBOPTION EXPECTED FOR option
Explanation: Option requires a qualifying suboption, but you
did not specify one. The suboption might be missing a left
parenthesis.
Programmer Response: Either:

Do not specify the option at all.

Specify a valid suboption.
System Action: The compiler does not start.

AMPE108E TOO MANY SUBOPTIONS SPECIFIED AFTER THE
option OPTION

Explanation: You specified too many suboptions for option.
You might have omitted a right parenthesis from the sllboption
list.
Programmer Response: Either:

Do not specify the option at all.

Specify a valid suboption.
System Action: The compiler does not start.

AMPE109E Token IS NOT A VALID SUBOPTION FOR option
Explanation: Token is not a valid suboption for compile-time
option option.
Programmer Response: Either:

Do not specify the option at all.

Use a valid suboption.
System Action: The compiler does not start.

AMPE1101 MESSAGE TEXT NOT FOUND FOR LANGUAGE:
language

Explanation: Message text does not exist for language, as
specified on the LANGUAGE option.
Programmer Response: Change the LANGUAGE option to a
language that is supported by VS Pascal and implemented on
your system.
System Action: The compiler continues; all output will appear
in the default language selected during installation.

AMPE111S A-DISK EITHER NOT ACCESSED OR LINKED
READ-ONLY

Explanation: The compiler must write several files to the
A-disk. Either:

The compiler did not find the A-disk.
The A-disk the compiler found is linked as read-only.

Programmer Response: Either:

Access the A-disk.

Link the A-disk in read-write mode.
System Action: The compiler does not start.

Chapter 20. VS Pascal Messages 255

AMPE112S FILE filename fi/etype FOUND ON READ-ONLY
EXTENSION OF DISK filemode

Explanation: VS Pascal must update the file called filename
filetype. but the fiie resides on a read-only extension of disk
filemode.
Programmer Response: Release the read-only extension by
either:

Releasing the disk.

Reaccessing the disk so that it is not a read-only extension
of disk filemode.

System Action: The compiler does not start.

AMPE200E INVALID OPTIONS: options
Explanation: You invoked the PASCMOD EXEC with invalid
options.
Programmer Response: Either:

Use a valid option.

Fix the syntax of the options.
System Action: The PASCMOD EXEC ends. The load module is
not generated.

AMPE201E LOAD COMMAND FAILED. RETURN CODE =
retumeode

Explanation: The LOAD command failed. The return code is
retumeode.
Programmer Response: Refer to the CMS Command and
Macro Reference for an explanation of the error.
System Action: The EXEC ends. The load module is not
generated.

AMPE202E GLOBAL TXTLIB COMMAND FAILED. RETURN
CODE = retumcode

Explanation: The GLOBAL TXTLIB command failed. The return
code is retumcode.
Programmer Response: Refer to CMS Command and Macro
Reference for an explanation of the error.
System Action: The EXEC ends. The load module is not
generated.

256 vs Pascal Application Programming Guide

AMPE203E GENMOD COMMAND FAILED. RETURN CODE =
retumeode

Explanation: The GENMOD command failed. The return code is
retumeode.
Programmer Response: Refer to CMS Command and Macro
Reference for an explanation of the error.
System Action: The EXEC ends. The load module is not
generated.

AMPE204E NO OBJECT FILES OR LIBRARIES WITH THESE
NAMES:

Explanation: VS Pascal cannot find the object files or libraries
you specified.
Programmer Response: Check the spelling of the object file or
library names and make sure they are on an accessed disk.
System Action: The EXEC ends. The load module is not
generated.

AMPE205E XA OPTION IS NOT SUPPORTED IN VM/SP
ENVIRONMENT

Explanation: You cannot use the XA option when link-editing a
program in a VM/SP environment.
Programmer Response: Either:

Remove the XA option.
Execute the EXEC under VM/XA.

System Action: The EXEC ends. The load module is not
generated.

AMPE206E GLOBAL LOADLIB COMMAND FAILED. RETURN
CODE = retumcoda

Explanation: The GLOBAL LOADLIB command failed. The
return code is returncode.
Programmer Response: Refer to the CMS Command and
Macro Reference for an explanation of the error.
System Action: The EXEC ends. The GLOBAL command is not
in effect.

AMPE112S FILE filename filetype FOUND ON READ·ONLY
EXTENSION OF DISK filemode

Explanation: VS Pascal must update the file called filename
filetype, but the file resides on a read-only extension of disk
filemode.
Programmer Response: Release the read-only extension by
either:

Releasing the disk.

Reaccessing the disk so that it is not a read-only extension
of disk filemode.

System Action: The compiler does not start.

AMPE200E INVALID OPTIONS: options
Explanation: You invoked the PASCMOD EXEC with invalid
options.
Programmer Response: Either:

Use a valid option.

Fix the syntax of the options.
System Action: The PASCMOD EXEC ends. The load module is
not generated.

AMPE201E LOAD COMMAND FAILED. RETURN CODE =
returncode

Explanation: The LOAD command failed. The return code is
returncode.
Programmer Response: Refer to the CMS Command and
Macro Reference for an explanation of the error.
System Action: The EXEC ends. The load module is not
generated.

AMPE202E GLOBAL TXTLIB COMMAND FAILED. RETURN
CODE = returncode

Explanation: The GLOBAL TXTLIB command failed. The return
code is returncode.
Programmer Response: Refer to CMS Command and Macro
Reference for an explanation of the error.
System Action: The EXEC ends. The load module is not
generated.

256 vs Pascal Application Programming Guide

AMPE203E GENMOD COMMAND FAILED. RETURN CODE =

returncode
Explanation: The GENMOD command failed. The return code is
returncode.
Programmer Response: Refer to CMS Command and Macro
Reference for an explanation of the error.
System Action: The EXEC ends. The load module is not
generated.

AMPE204E NO OBJECT FILES OR LIBRARIES WITH THESE
NAMES:

Explanation: VS Pascal cannot find the object files or libraries
you specified.
Programmer Response: Check the spelling of the object file or
library names and make sure they are on an accessed disk.
System Action: The EXEC ends. The load module is not
generated.

AMPE205E XA OPTION IS NOT SUPPORTED IN VM/SP
ENVIRONMENT

Explanation: You cannot use the XA option when link-editing a
program in a VM/SP environment.
Programmer Response: Either:

Remove the XA option.

Execute the EXEC under VM/XA.
System Action: The EXEC ends. The load module is not
generated.

AMPE206E GLOBAL LOADLIB COMMAND FAILED. RETURN
CODE = returncode

Explanation: The GLOBAL LOADLIB command failed. The
return code is returncode.
Programmer Response: Refer to the CMS Command and
Macro Reference for an explanation of the error.
System Action: The EXEC ends. The GLOBAL command is not
in effect.

CLIST Messages

The following messages are issued by VS Pascal CLiSTs (VSPASCAL and PASCMOD).

AMPC100W BOTH option1 AND option2 SPECIFIED, option
ASSUMED.

Explanation: Option1 and option2 are conflicting options.
Programmer Response: Correct the options specified to ensure
they do not conflict with each other.
System Action: Option is used and the compiler continues.

AMPC101W Token IS NOT A VALID SUBOPTION FOR option
Explanation: Token is not a valid suboption for compile-time
option option.
Programmer Response: Either:

Do not specify the option at all.
Use a valid suboption.

System Action: The option is ignored and the compiler
continues.

AMPC1021 MESSAGE TEXT NOT FOUND FOR LANGUAGE:
language

Explanation: Message text does not exist for language, as
specified on the LANGUAGE option.
Programmer Response: Change the LANGUAGE option to a
language that is supported by VS Pascal and implemented on
your system.
System Action: The compiler continues; all output will appear
in the default language selected during installation.

Chapter 20. VS Pascal Messages 257

CLIST Messages

The following messages are issued by VS Pascal CLiSTs (VSPASCAL and PASCMOD).

AMPC100W BOTH option1 AND option2 SPECIFIED, option
ASSUMED.

Explanation: Option1 and option2 are conflicting options.
Programmer Response: Correct the options specified to ensure
they do not conflict with each other.
System Action: Option is used and the compiler continues.

AMPC101W Token IS NOT A VALID SUBOPTION FOR option
Explanation: Token is not a valid suboption for compile-time
option option.
Programmer Response: Either:

Do not specify the option at all.

Use a valid suboption.
System Action: The option is ignored and the compiler
continues.

AMPC1021 MESSAGE TEXT NOT FOUND FOR LANGUAGE:
language

Explanation: Message text does not exist for language, as
specified on the LANGUAGE option.
Programmer Response: Change the LANGUAGE option to a
language that is supported by VS Pascal and implemented on
your system.
System Action: The compiler continues; all output will appear
in the default language selected during installation.

Chapter 20. VS Pascal Messages 257

Appendix A. Summary of Changes

VS Pascal Release 2 provides additions and enhancements to vs Pascal Release 1
in the following areas:

• System Flexibility

VS Pascal now:

Runs under VMIExtended Architecture (VMIXA).
Runs under MVSIEnterprise Systems Architecture (MVSIESA).
Allows communication with other IBM licensed programs, such as IMS.

• Communication with Other Programming Languages

VS Pascal now:

Supports communication with OS PUI Version 2.
Provides better error detection in Assembler routines called by VS Pascal.
Program checks in Assembler routines coded with the PROLOG macro will
be handled using the ONERROR procedure used by VS Pascal instead of
causing the severe error message AMPX902S. In order for program
checks to be handled by ONERROR, Assembler routines using the
PROLOG macro need to be reassembled.

• Transient Run-Time

Users now have the option to:

Compile load modules for standard link-editing, or compile modules that
will access run-time routines dynamically at execution. The transient
run-time library option helps free resources in large-scale, modular
systems that must serve multiple users. Transient run-time reduces the
size of load modules and makes it unnecessary for each program to
include a copy of the run-time library.

• Compiler Features

Users now have the option to:

Compile only selected portions of a source program. This "conditional
compilation" feature simplifies debugging and supports multiple operating
envi ronments.

Place headers in generated code. Headers include the name of the
compiled routine, the compiler name, and the date and time of compilation.
Users can also insert a customized header after the compiler header.

• Compile-Time Limits

Users can now write and debug larger and more complex programs. Each
compilable program can have up to:

999 %INCLUDE directives (previous limit: 255).
8192 TYPE declarations (previous limit: 255).
32678 characters in identifier names in a routine (previous limit: 8192).
1024 fields per record (previous limit: 255).

Appendix A. Summary of Changes 259

Appendix A. Summary of Changes

VS Pascal Release 2 provides additions and enhancements to vs Pascal Release 1
in the following areas:

• System Flexibility

VS Pascal now:

Runs under VMIExtended Architecture (VMIXA).
Runs under MVSIEnterprise Systems Architecture (MVSIESA).
Allows communication with other IBM licensed programs, such as IMS.

• Communication with Other Programming Languages

VS Pascal now:

Supports communication with OS PUI Version 2.
Provides better error detection in Assembler routines called by VS Pascal.
Program checks in Assembler routines coded with the PROLOG macro will
be handled using the ONERROR procedure used by VS Pascal instead of
causing the severe error message AMPX902S. In order for program
checks to be handled by ONERROR, Assembler routines using the
PROLOG macro need to be reassembled.

• Transient Run-Time

Users now have the option to:

Compile load modules for standard link-editing, or compile modules that
will access run-time routines dynamically at execution. The transient
run-time library option helps free resources in large-scale, modular
systems that must serve multiple users. Transient run-time reduces the
size of load modules and makes it unnecessary for each program to
include a copy of the run-time library.

• Compiler Features

Users now have the option to:

Compile only selected portions of a source program. This "conditional
compilation" feature simplifies debugging and supports multiple operating
envi ronments.

Place headers in generated code. Headers include the name of the
compiled routine, the compiler name, and the date and time of compilation.
Users can also insert a customized header after the compiler header.

• Compile-Time Limits

Users can now write and debug larger and more complex programs. Each
compilable program can have up to:

999 %INCLUDE directives (previous limit: 255).
8192 TYPE declarations (previous limit: 255).
32678 characters in identifier names in a routine (previous limit: 8192).
1024 fields per record (previous limit: 255).

Appendix A. Summary of Changes 259

• Debugging

Users can now:

Invoke the interactive debugging tool without having to issue further
debugging instructions. With this option, the debugger prompts users for
further instructions only when it detects an error. With this "hot
debugger," less experienced users can test programs in a production
environment.

Specify how many instances of a breakpoint can occur before program
execution halts. Previously, execution halted at every occurrence of a
breakpoint. Programmers now have the flexibility of bypassing a specified
number of breakpoint occurrences at a repeated statement.

Oisplay the statistics kept by the COUNT run-time option at any time during
a debugging session.

• Error Handling

VS Pascal Release 2 now:

Checks compiler directives for syntax, semantic, and limit errors.

Finishes printing its cross-reference and statistics listing when it
encounters a severe error. Previously, severe errors caused the listing to
abort immediately.

Flags invalid compile-time option syntax and suboptions that were
previously ignored.

• Storage Considerations

VS Pascal Release 2 allows users to tune programs by providing:

Enhanced heap management options. Users can now control the initial
size of the default heap, in addition to the amount it is extended on
overflow.

Multiple heap support. To help alleviate storage fragmentation problems,
a component of a large, multicomponent program can now create and
manage its own heap independent of heaps associated with other
components.

• Double-Byte Character Set (DBCS) Data

Among many new OSCS features, Release 2 supports:

A predefined scalar data type, GCHAR, which represents one oacs
character.
A predefined structured data type, GSTRING, which represents a oacs
string.
Hexadecimal graphic data.

Existing string manipulation routines were revised for OSCS support, and
special OSCS routines for handling mixed strings were added:

Many existing string routines now work with GSTRING data in a
character-oriented manner (two bytes at a time).
New string routines were added which work with sacs and oacs STRING
data in a character-oriented (not byte-oriented) manner.

260 vs Pascal Application Programming Guide

• Debugging

Users can now:

Invoke the interactive debugging tool without having to issue further
debugging instructions. With this option, the debugger prompts users for
further instructions only when it detects an error. With this "hot
debugger," less experienced users can test programs in a production
envi ronment.

Specify how many instances of a breakpoint can occur before program
execution halts. Previously, execution halted at every occurrence of a
breakpoint. Programmers now have the flexibility of bypassing a specified
number of breakpoint occurrences at a repeated statement.

Display the statistics kept by the COUNT run-time option at any time during
a debugging session.

• Error Handling

VS Pascal Release 2 now:

Checks compiler directives for syntax, semantic, and limit errors.

Finishes printing its cross-reference and statistics listing when it
encounters a severe error. Previously, severe errors caused the listing to
abort immediately.

Flags invalid compile-time option syntax and suboptions that were
previously ignored.

• Storage Considerations

VS Pascal Release 2 allows users to tune programs by providing:

Enhanced heap management options. Users can now control the initial
size of the default heap, in addition to the amount it is extended on
overflow.

Multiple heap support. To help alleviate storage fragmentation problems,
a component of a large, multicomponent program can now create and
manage its own heap independent of heaps associated with other
components.

• Double-Byte Character Set (DBCS) Data

Among many new OSCS features, Release 2 supports:

A predefined scalar data type, GCHAR, which represents one DaCS
character.
A predefined structured data type, GSTRING, which represents a DBCS
string.
Hexadecimal graphic data.

Existing string manipulation routines were revised for OSCS support, and
special OSCS routines for handling mixed strings were added:

Many existing string routines now work with GSTRING data in a
character-oriented manner (two bytes at a time).
New string routines were added which work with sacs and DBCS STRING
data in a character-oriented (not byte-oriented) manner.

260 vs Pascal Application Programming Guide

• Proposed ANSI/IEEE Extended Pascal

VS Pascal Release 2 adds support for:

The EPSREAL predefined constant.
The MAXCHAR predefined constant.
A plus sign (+) for string concatenation (II).
A set symmetric difference operator (> <).

• National Language Support

Release 2 also:

Adopts the Syntactic Graphic Character Set (GCSGID 640) as its standard
character set. VS Pascal programs do not require characters outside this
set, establishing a standard that makes programs easily transportable
between different sites.

Allows customization of character translation and uppercase tables at
installation. This eases compiler recognition of tokens and characters due
to national programming standards and allows the creation of uppercase
rules.

Provides three languages from which sites choose a default language
during installation. At both run time and compile time, users can override
the default language with another language. Currently, VS Pascal provides
mixed-case English, uppercase English, and Japanese.

Appendix A. Summary of Changes 261

• Proposed ANSI/IEEE Extended Pascal

VS Pascal Release 2 adds support for:

The EPSREAL predefined constant.
The MAXCHAR predefined constant.
A plus sign (+) for string concatenation (II).
A set symmetric difference operator (> <).

• National Language Support

Release 2 also:

Adopts the Syntactic Graphic Character Set (GCSGID 640) as its standard
character set. VS Pascal programs do not require characters outside this
set, establishing a standard that makes programs easily transportable
between different sites.

Allows customization of character translation and uppercase tables at
installation. This eases compiler recognition of tokens and characters due
to national programming standards and allows the creation of uppercase
rules.

Provides three languages from which sites choose a default language
during installation. At both run time and compile time, users can override
the default language with another language. Currently, VS Pascal provides
mixed-case English, uppercase English, and Japanese.

Appendix A. Summary of Changes 261

Appendix B. How to Read Syntax Diagrams

No Parameters

Read syntax diagrams from left to right, top to bottom.

~~ indicates the beginning of the diagram.
---~ indicates that the syntax is continued on the next line.
~ indicates that the syntax is continued from the previous line.
--... ~...... i ndi cates the end of the di agram.

Keywords appear in all capital letters. For example: VAR, BEGIN, END. When
writing code, enter keywords exactly as shown, either in all caps or in lowercase.

Variables appear in lowercase in a special typeface. For example: label-del.

Special Symbols such as " >", "=", and so forth must be entered as part of the
code.

A keyword that requires no parameter is diagrammed this way:

"'~'----STATEMENT---------------------'~ ..

Remember that you must code keywords (those in capital letters) exactly as
shown, or in lowercase. In this example, you can code

STATEMENT

or

statement

Required Parameters
All required keywords and variables appear on the diagram's main path. In this
example,

"'~~----STATEMENT--PARMI--PARM2--------------I~-"

you must code both parameters. Always separate parameters with one or more
blanks.

STATEMENT PARMI PARM2

Appendix B. How to Read Syntax Diagrams 263

Appendix B. How to Read Syntax Diagrams

No Parameters

Read syntax diagrams from left to right, top to bottom.

•• indicates the beginning of the diagram.
• indicates that the syntax is continued on the next line .

• indicates that the syntax is continued from the previous line • ... indicates the end of the diagram.

Keywords appear in all capital letters. For example: VAR, BEGIN, END. When
writing code, enter keywords exactly as shown, either in all caps or in lowercase.

Variables appear in lowercase in a special typeface. For example: label-del.

Special Symbols such as "> ", "=", and so forth must be entered as part of the
code.

A keyword that requires no parameter is diagrammed this way:

H··~---STATEMENT---------------------'· ..

Remember that you must code keywords (those in capital letters) exactly as
shown, or in lowercase. In this example, you can code

STATEMENT

or

statement

Required Parameters
All required keywords and variables appear on the diagram's main path. In this
example,

.. ··----STATEMENT--PARMI--PARM2--------------t·-. ..

you must code both parameters. Always separate parameters with one or more
blanks.

STATEMENT PARMI PARM2

Appendix B. How to Read Syntax Diagrams 263

Parentheses around parameters, like all special symbols, must be coded exactly
as shown. In this example,

H ~---STATEMENT-(-PARMI-)-(-PARM2-)-----------.. ~ ..

you must code:

STATEMENT (PARMI) (PARM2)

When there is a vertical list of parameters, one of which is on the main path, you
must choose only one of them. In this example,

.... STATEMENTtPARMI~
PARM2
PARM3

you must code:

STATEMENT PARMI

or

STATEMENT PARM2

or

STATEMENT PARM3

Optional Parameters
A single optional parameter appears below the main path. In this example,

....

~""~----STATEMENT--.-------.------------------------------~""

LpARMI~

you must code either:

STATEMENT

or

STATEMENT PARMI

When you can choose only one optional parameter from a list of two or more, the
choices appear in a vertical list below the main path. In this example,

H ~---STATEMENT-'L-PA-R-M-I:J---.---------------.........

LpARM2~

264 vs Pascal Application Programming Guide

Parentheses around parameters, like all special symbols, must be coded exactly
as shown. In this example,

~··----STATEMENT-(-PARMI-)-(-PARM2-)-----------." ..

you must code:

STATEMENT (PARMI) (PARM2)

When there is a vertical list of parameters, one of which is on the main path, you
must choose only one of them. In this example,

STATEMENTtPARMI~
PARM2
PARM3

you must code:

STATEMENT PARMI

or

STATEMENT PARM2

or

STATEMENT PARM3

Optional Parameters
A single optional parameter appears below the main path. In this example,

...

H··-----STATEMENT-,----..------------------i·-..
LpARMI~

you must code either:

STATEMENT

or

STATEMENT PARMI

When you can choose only one optional parameter from a list of two or more, the
choices appear in a vertical list below the main path. In this example,

H •• -----STATEMENT-...,[-PA-R-M-I-:]-..------------------i--..

LpARM2~

264 vs Pascal Application Programming Guide

you must code:

STATEMENT

or

STATEMENT PARMI

or

STATEMENT PARM2

Multiple Parameters
The repeat symbol

n
indicates that you can specify more than one parameter or a single parameter
more than once. In this example,

t
.H·----STATEMENT---parm-'------------------....· ..

parm, shown in small letters, represents a variable parameter. If the values you
can substitute for parm include PARM1 and PARM2, then you can code:

STATEMENT parmI

or

STATEMENT parmI parm2

and so forth.

This diagram

t
STATEMENTtPARMI~

PARM2
PARM3

indicates that you can code:

STATEMENT PARMI

or

STATEMENT PARMI PARM3

or

STATEMENT PARMI PARM2 PARM3

and so forth.

...

Appendix B. How to Read Syntax Diagrams 265

you must code:

STATEMENT

or

STATEMENT PARMI

or

STATEMENT PARM2

Multiple Parameters
The repeat symbol

n
indicates that you can specify more than one parameter or a single parameter
more than once. In this example,

f
~~~----STATEMENT---parmr7r--'-----------------~~~" 

parm, shown in small letters, represents a variable parameter. If the values you 
can substitute for parm include PARM1 and PARM2, then you can code: 

STATEMENT parmI 

or 

STATEMENT parmI parm2 

and so forth. 

This diagram 

f 
STATEMENTtPARMI~ 

PARM2 
PARM3 

indicates that you can code: 

STATEMENT PARMI 

or 

STATEMENT PARMI PARM3 

or 

STATEMENT PARMI PARM2 PARM3 

and so forth. 

... 

Appendix B. How to Read Syntax Diagrams 265 



When the repeat symbol contains a comma, 

f'l 
you must separate multiple parameters with commas. In such cases, parameters 
need not be separated by blanks. In this example, 

"GJ STA TEMENTtPARMI--,--'----------------t~--.. 
PARM2 
PARM3 

you can code: 

STATEMENT PARMI 

or 

STATEMENT PARMI, PARM3 

or 

STATEMENT PARMI,PARM2,PARM3 

and so forth. 

Default Parameters 
Default parameters are underscored. Omitting a parameter with a default value 
produces the same result as actually coding the default. In this example, 

STATEMENT----i- ~ 
LpARM---rYES 

LNO 

coding 

STATEMENT PARM 

is equivalent to coding 

STATEMENT PARM YES 

266 VS Pascal Application Programming Guide 

When the repeat symbol contains a comma, 

f'l 
you must separate multiple parameters with commas. In such cases, parameters 
need not be separated by blanks. In this example, 

"GJ STATEMENTtPARM1--r...l....-----------------j~-.. 
PARM2 
PARM3 

you can code: 

STATEMENT PARMl 

or 

STATEMENT PARM1, PARM3 

or 

STATEMENT PARM1,PARM2,PARM3 

and so forth. 

Default Parameters 
Default parameters are underscored. Omitting a parameter with a default value 
produces the same result as actually coding the default. In this example, 

STATEMENT~- ~ 
LpARM~YES 

LNO 

coding 

STATEMENT PARM 

is equivalent to coding 

STATEMENT PARM YES 

266 vs Pascal Application Programming Guide 



Appendix C. Run-Time Error Default Actions 

The following table lists the defaults for run-time error messages passed to 
ONERROR in FACTION. 

Message Defaults 

AMPXOll XHALT XPMSG XTRACE XDECERR 

AMPX012 XHALT XPMSG XTRACE XDECERR 

AMPX013 XHALT XPMSG XTRACE XDECERR 

AMPX014 XHALT XPMSG XTRACE XDEBUG XDECERR 

AMPX015 XHALT XPMSG XTRACE XDEBUG XDECERR 

AMPX016 XHALT XPMSG XTRACE XDECERR 

AMPX017 XHALT XPMSG XTRACE XDECERR 

AMPX018 XPMSG XTRACE XDEBUG XDECERR 

AMPX019 XPMSG XTRACE XDEBUG XDECERR 

AMPX020 XPMSG XTRACE XDEBUG XDECERR 

AMPX021 XPMSG XTRACE XDEBUG XDECERR 

AMPX022 XPMSG XTRACE XDEBUG XDECERR 

AMPX023 XPMSG XTRACE XDEBUG XDECERR 

AMPX024 XPMSG XTRACE XDECERR 

AMPX025 XPMSG XTRACE XDEBUG XDECERR 

AMPX026 XHALT XPMSG XTRACE XDECERR 

AMPX027 XHALT XPMSG XTRACE XDECERR 

AMPX028 XHALT XPMSG XTRACE XDECERR 

AMPX029 XHALT XPMSG XTRACE XDECERR 

AMPX030 XPMSG XTRACE XDEBUG 

AMPX031 XPMSG XTRACE XDEBUG XDECERR 

AMPX032 XPMSG XTRACE XDEBUG XDECERR 

AMPX033 XPMSG XTRACE XDEBUG XDECERR 

AMPX034 XPMSG XTRACE XDEBUG XDECERR 

AMPX035 XPMSG XTRACE XDEBUG XDECERR 

AMPX036 XPMSG XTRACE XDEBUG XDECERR 

AMPX037 XPMSG XTRACE XDEBUG XDECERR 

AMPX038 XPMSG XTRACE XDEBUG XDECERR 

AMPX039 XPMSG XTRACE XDEBUG XDECERR 

AMPX040 XPMSG XTRACE XDEBUG XDECERR 

AMPX041 XHALT XPMSG XTRACE XDEBUG XDECERR 

AMPX042 XPMSG XTRACE XDEBUG XDECERR 

AMPX043 XPMSG XTRACE XDEBUG XDECERR 

AMPX044 XPMSG XTRACE XDEBUG XDECERR 

AMPX045 XPMSG XTRACE XDEBUG XDECERR 

AMPX046 XPMSG XTRACE XDEBUG XDECERR 

AMPX048 XPMSG XTRACE XDEBUG XDECERR 

\...-
Figure 109 (Part 1 of 3). Defaults for Messages Passed to ONERROR in FACTION 

Appendix C. Run-Time Error Default Actions 267 

Appendix C. Run-Time Error Default Actions 

The following table lists the defaults for run-time error messages passed to 
ONERROR in FACTION. 

Message Defaults 

AMPX011 XHALT XPMSG XTRACE XDECERR 

AMPX012 XHALT XPMSG XTRACE XDECERR 

AMPX013 XHALT XPMSG XTRACE XDECERR 

AMPX014 XHALT XPMSG XTRACE XDEBUG XDECERR 

AMPX015 XHALT XPMSG XTRACE XDEBUG XDECERR 

AMPX016 XHALT XPMSG XTRACE XDECERR 

AMPX017 XHALT XPMSG XTRACE XDECERR 

AMPX018 XPMSG XTRACE XDEBUG XDECERR 

AMPX019 XPMSG XTRACE XDEBUG XDECERR 

AMPX020 XPMSG XTRACE XDEBUG XDECERR 

AMPX021 XPMSG XTRACE XDEBUG XDECERR 

AMPX022 XPMSG XTRACE XDEBUG XDECERR 

AMPX023 XPMSG XTRACE XDEBUG XDECERR 

AMPX024 XPMSG XTRACE XDECERR 

AMPX025 XPMSG XTRACE XDEBUG XDECERR 

AMPX026 XHALT XPMSG XTRACE XDECERR .... 
AMPX027 XHALT XPMSG XTRACE XDECERR 

AMPX028 XHALT XPMSG XTRACE XDECERR 

AMPX029 XHALT XPMSG XTRACE XDECERR 

AMPX030 XPMSG XTRACE XDEBUG 

AMPX031 XPMSG XTRACE XDEBUG XDECERR 

AMPX032 XPMSG XTRACE XDEBUG XDECERR 

AMPX033 XPMSG XTRACE XDEBUG XDECERR 

AMPX034 XPMSG XTRACE XDEBUG XDECERR 

AMPX035 XPMSG XTRACE XDEBUG XDECERR 

AMPX036 XPMSG XTRACE XDEBUG XDECERR 

AMPX037 XPMSG XTRACE XDEBUG XDECERR 

AMPX038 XPMSG XTRACE XDEBUG XDECERR 

AMPX039 XPMSG XTRACE XDEBUG XDECERR 

AMPX040 XPMSG XTRACE XDEBUG XDECERR 

AMPX041 XHALT XPMSG XTRACE XDEBUG XDECERR 

AMPX042 XPMSG XTRACE XDEBUG XDECERR 

AMPX043 XPMSG XTRACE XDEBUG XDECERR 

AMPX044 XPMSG XTRACE XDEBUG XDECERR 

AMPX045 XPMSG XTRACE XDEBUG XDECERR 

AMPX046 XPMSG XTRACE XDEBUG XDECERR 

AMPX048 XPMSG XTRACE XDEBUG XDECERR 

~ 
Figure 109 (Part 1 of 3). Defaults for Messages Passed to ONERROR in FACTION 

Appendix C. Run-Time Error Default Actions 267 



Message Defaults 

AMPX049 XPMSG XTRACE XDEBUG XDECERR .."" 
AMPX050 XPMSG XTRACE XDEBUG XDECERR 

AMPX051 XPMSG XTRACE XDEBUG XDECERR 

AMPX052 XPMSG XTRACE XDEBUG XDECERR 

AMPX053 XPMSG XTRACE XDEBUG XDECERR 

AMPX054 XPMSG XTRACE XDEBUG XDECERR 

AMPX055 XPMSG XTRACE XDEBUG XDECERR 

AMPX056 XPMSG XTRACE XDEBUG XDECERR 

AMPX058 XPMSG XTRACE 

AMPX059 XPMSG XTRACE XDECERR 

AMPX060 XPMSG XTRACE XDEBUG XDECERR 

AMPX061 XPMSG XTRACE XDEBUG XDECERR 

AMPX062 XPMSG XTRACE XDEBUG XDECERR 

AMPX063 XPMSG XTRACE XDEBUG XDECERR 

AMPX064 XPMSG XTRACE XDEBUG XDECERR 

AMPX065 XPMSG XTRACE XDEBUG XDECERR 

AMPX066 XPMSG XTRACE XDEBUG XDECERR 

AMPX067 XPMSG XTRACE XDEBUG XDECERR 

AMPX068 XPMSG XTRACE XDECERR 

AMPX069 XPMSG XTRACE XDECERR 

AMPX070 XPMSG XTRACE XDECERR 

AMPX071 XPMSG XTRACE XDECERR 

AMPX072 XPMSG XTRACE XDECERR 

AMPX073 XPMSG XTRACE XDECERR 

AMPX074 XPMSG XTRACE XDECERR 

AMPX075 XPMSG XTRACE XDECERR 

AMPX076 XPMSG XTRACE XDECERR 

AMPX077 XPMSG XTRACE XDECERR 

AMPX078 XPMSG XTRACE XDECERR 

AMPX079 XPMSG XTRACE XDECERR 

AMPX080 XPMSG XTRACE XDECERR 

AMPX081 XPMSG XTRACE XDECERR 

AMPX082 XPMSG XTRACE XDECERR 

AMPX083 XPMSG XTRACE XDECERR 

AMPX084 XPMSG XTRACE XDECERR 

AMPX085 XPMSG XTRACE XDEBUG XDECERR 

AMPX090 XPMSG XTRACE XDECERR 

AMPX091 XPMSG XTRACE XDECERR 

AMPX092 XPMSG XTRACE XDECERR 

AMPX093 XPMSG XTRACE XDEBUG XDECERR 

AMPX094 XPMSG XTRACE XDEBUG XDECERR 

AMPX095 XPMSG XTRACE XDEBUG XDECERR 

Figure 109 (Part 2 of 3). Defaults for Messages Passed to ONERROR in FACTION 

268 vs Pascal Application Programming Guide 

Message Defaults 

AMPX049 XPMSG XTRACE XDEBUG XDECERR 

AMPX050 XPMSG XTRACE XDEBUG XDECERR 

AMPX051 XPMSG XTRACE XDEBUG XDECERR 

AMPX052 XPMSG XTRACE XDEBUG XDECERR 

AMPX053 XPMSG XTRACE XDEBUG XDECERR 

AMPX054 XPMSG XTRACE XDEBUG XDECERR 

AMPX055 XPMSG XTRACE XDEBUG XDECERR 

AMPX056 XPMSG XTRACE XDEBUG XDECERR 

AMPX058 XPMSG XTRACE 

AMPX059 XPMSG XTRACE XDECERR 

AMPX060 XPMSG XTRACE XDEBUG XDECERR 

AMPX061 XPMSG XTRACE XDEBUG XDECERR 

AMPX062 XPMSG XTRACE XDEBUG XDECERR 

AMPX063 XPMSG XTRACE XDEBUG XDECERR 

AMPX064 XPMSG XTRACE XDEBUG XDECERR 

AMPX065 XPMSG XTRACE XDEBUG XDECERR 

AMPX066 XPMSG XTRACE XDEBUG XDECERR 

AMPX067 XPMSG XTRACE XDEBUG XDECERR 

AMPX068 XPMSG XTRACE XDECERR 

AMPX069 XPMSG XTRACE XDECERR 

AMPX070 XPMSG XTRACE XDECERR 

AMPX071 XPMSG XTRACE XDECERR 

AMPX072 XPMSG XTRACE XDECERR 

AMPX073 XPMSG XTRACE XDECERR 

AMPX074 XPMSG XTRACE XDECERR 

AMPX075 XPMSG XTRACE XDECERR 

AMPX076 XPMSG XTRACE XDECERR 

AMPX077 XPMSG XTRACE XDECERR 

AMPX078 XPMSG XTRACE XDECERR 

AMPX079 XPMSG XTRACE XDECERR 

AMPX080 XPMSG XTRACE XDECERR 

AMPX081 XPMSG XTRACE XDECERR 

AMPX082 XPMSG XTRACE XDECERR 

AMPX083 XPMSG XTRACE XDECERR 

AMPX084 XPMSG XTRACE XDECERR 

AMPX085 XPMSG XTRACE XDEBUG XDECERR 

AMPX090 XPMSG XTRACE XDECERR 

AMPX091 XPMSG XTRACE XDECERR 

AMPX092 XPMSG XTRACE XDECERR 

AMPX093 XPMSG XTRACE XDEBUG XDECERR 

AMPX094 XPMSG XTRACE XDEBUG XDECERR 

AMPX095 XPMSG XTRACE XDEBUG XDECERR 

Figure 109 (Part 2 of 3). Defaults for Messages Passed to ONERROR in FACTION 

268 vs Pascal Application Programming Guide 



Message Defaults 

AMPX096 XPMSG XTRACE XDEBUG XDECERR 

AMPX097 XPMSG XTRACE XDEBUG XDECERR 

AMPX098 XPMSG XTRACE XDEBUG XDECERR 

AMPX099 XPMSG XTRACE XDECERR 

AMPX100 XPMSG XTRACE XDECERR 

AMPX101 XPMSG XTRACE XDECERR 

AMPX102 XPMSG XTRACE XDECERR 

AMPX600 XPMSG XTRACE XDECERR 

AMPX601 XPMSG XTRACE XDECERR 

AMPX602 XPMSG XTRACE XDECERR 

AMPX603 XPMSG XTRACE XDECERR 

AMPX604 XPMSG XTRACE XDECERR 

AMPX605 XPMSG XTRACE XDECERR 

AMPX700 XPMSG XTRACE XDECERR 

AMPX701 XPMSG XTRACE XDECERR 

AMPX702 XPMSG XTRACE XDECERR 

AMPX703 XPMSG XTRACE XDECERR 

Figure 109 (Part 3 of 3). Defaults for Messages Passed to ONERROR in FACTION 

Appendix C. Run-Time Error Default Actions 269 

Message Defaults 

AMPX096 XPMSG XTRACE XDEBUG XDECERR 

AMPX097 XPMSG XTRACE XDEBUG XDECERR 

AMPX098 XPMSG XTRACE XDEBUG XDECERR 

AMPX099 XPMSG XTRACE XDECERR 

AMPX100 XPMSG XTRACE XDECERR 

AMPX101 XPMSG XTRACE XDECERR 

AMPX102 XPMSG XTRACE XDECERR 

AMPX600 XPMSG XTRACE XDECERR 

AMPX601 XPMSG XTRACE XDECERR 

AMPX602 XPMSG XTRACE XDECERR 

AMPX603 XPMSG XTRACE XDECERR 

AMPX604 XPMSG XTRACE XDECERR 

AMPX605 XPMSG XTRACE XDECERR 

AMPX700 XPMSG XTRACE XDECERR 

AMPX701 XPMSG XTRACE XDECERR 

AMPX702 XPMSG XTRACE XDECERR 

AMPX703 XPMSG XTRACE XDECERR 

Figure 109 (Part 3 of 3). Defaults for Messages Passed to ONERROR in FACTION 

Appendix C. Run-Time Error Default Actions 269 





Appendix D. VS Pascal and the 1983 ANSI/IEEE Pascal 
Standard 

The VS Pascal (MVS version) processor complies with the requirements of 
ANSI/IEEE770X3.97-1983. 

The VS Pascal (MVS version) processor complies with the requirements of level 0 
of ISO 7185. 

The VS Pascal (VM version) processor complies with the requirements of 
ANSIIIEEE770X3.97-1983 with the following exceptions: 

• Due to an operating system limitation, empty lines in text files are not 
supported (such as a line which has EOLN true immediately upon reading it in). 

• Due to an operating system limitation, empty files are not supported (such as a 
file which has EOF true immediately after applying RESET to it). 

The VS Pascal (VM version) processor complies with the requirements of level 0 of 
ISO 7185 with the same exceptions as noted above. 

The remainder of this section discusses the implementation-de'fined features of VS 
Pascal and how VS Pascal handles errors, extensions and 
implementation-dependent features. 

Implementation-Defined Features of VS Pascal 
The definitions of implementation-defined features of VS Pascal are listed below. 
For information on the EBCDIC character set and System/370 floating-point type, 
see the appropriate manual in "Principles of Operation" on page 296. 

• The characters allowed in string types are the printable EBCDIC characters 
plus the space character. Depending on the system and terminal being used, 
different characters may be visible. 

• The character set used by the data type CHAR is the EBCDIC character set. 
Depending on the system and terminal being used, different characters may be 
visible. 

• The ordinal values used for each character in the CHAR data type are those 
given by the EBCDIC character set. Depending on the terminal and system 
being used, the same ordinal value may correspond to different characters. 

• The subset of real numbers used by the VS Pascal REAL data type is the same 
as the System/370 long floating-point type. 

• The accuracy of real arithmetic is that given by the System/370 hardware long 
floati ng-poi nt operations. 

• The value of MAXINT is 2147483647. 

• The actions taken by the file handling procedures and the time of their 
performance are specified below. 

Appendix D. VS Pascal and the 1983 ANSI/IEEE Pascal Standard 271 

Appendix D. VS Pascal and the 1983 ANSI/IEEE Pascal 
Standard 

The VS Pascal (MVS version) processor complies with the requirements of 
ANSIIIEEE770X3.97-1983. 

The VS Pascal (MVS version) processor complies with the requirements of level a 
of ISO 7185. 

The VS Pascal (VM version) processor complies with the requirements of 
ANSIIIEEE770X3.97-1983 with the following exceptions: 

• Due to an operating system limitation, empty lines in text files are not 
supported (such as a line which has EOLN true immediately upon reading it in). 

• Due to an operating system limitation, empty files are not supported (such as a 
file which has EOF true immediately after applying RESET to it). 

The VS Pascal (VM version) processor complies with the requirements of level 0 of 
ISO 7185 with the same exceptions as noted above. 

The remainder of this section discusses the implementation-defined features of VS 
Pascal and how VS Pascal handles errors, extensions and 
i m pi em entation-dependent featu res. 

Implementation-Defined Features of VS Pascal 
The definitions of implementation-defined features of VS Pascal are listed below. 
For information on the EBCDIC character set and System/370 floating-point type, 
see the appropriate manual in "Principles of Operation" on page 296. 

• The characters allowed in string types are the printable EBCDIC characters 
plus the space character. Depending on the system and terminal being used, 
different characters may be visible. 

• The character set used by the data type CHAR is the EBCDIC character set. 
Depending on the system and terminal being used, different characters may be 
visible. 

• The ordinal values used for each character in the CHAR data type are those 
given by the EBCDIC character set. Depending on the terminal and system 
being used, the same ordinal value may correspond to different characters. 

• The subset of real numbers used by the VS Pascal REAL data type is the same 
as the System/370 long floating-point type. 

• The accuracy of real arithmetic is that given by the System/370 hardware long 
floating-point operations. 

• The value of MAXINT is 2147483647. 

• The actions taken by the file handling procedures and the time of their 
performance are specified below. 

Appendix D. VS Pascal and the 1983 ANSI/IEEE Pascal Standard 271 



REWRITE-REWRITE(f) causes the external file bound to f to be erased, 
and the file to be opened for output. These operations are performed 
immediately upon executing the REWRITE. 

PUT -PUT(f) causes the value of the file buffer to be placed into a special 
buffer. This buffer is written to the external file upon any of the following 
occurrences: 

The special buffer becomes full (this buffer's capacity is equal to the 
physical file's block size). 

A RESET is performed on file f. 

The routine or program containing the file fends. 

In LANGLVL(EXTENDED), the CLOSE, UPDATE, TERMIN, TERMOUT, 
PDSIN, and PDSOUT procedures are applied to file f. 

RESET-RESET(f) causes the external file bound to f to open for input. This 
occurs immediately upon executing the RESET. The first element in the 
external file bound to f is immediately assigned to the file buffer, unless (in 
LANGLVL(EXTENDED) only) the file is an interactive file. In this case, the 
file pointer has the value NIL until the first GET or READ is done on the file. 
At this time, the file buffer will contain the first element in the file. 

- GET-GET(f) causes the file pointer to point to the next unread element of f 
(if any), and the file buffer to be updated with that element. This action 
occurs immediately upon execution of the GET. 

• The default field width for integer output is 12. 

• The default field width for Boolean output is 10. 

• Boolean variables are output in all upper case (such as TRUE and FALSE). 

• The default field width for real output is 20. 

• The exponent character for real output is E. 

• Two exponent digits are used for real output. 

• The effect of the PAGE procedure on a TEXT file depends on the type of 
external file the TEXT file is bound to. If the TEXT file is bound to an ASA 
(RECFM A) file, a "1" is written in column one (the carriage control column) of 
the next line of the file. If the TEXT file is bound to a machine (RECFM M) file, 
a X'8B' is written in column one of the next line of the file. A new line is 
started after this. If neither of the above conditions hold true, the PAGE 
procedure has no effect on the file other than performing the WRITELN 
specified by the ANSI/IEEE Pascal standard. 

• Files listed as program parameters are bound to external files in the same way 
as any other file. 

Note: The first 8 characters of the program parameter's name will form the 
ddname of the file, regardless of the setting of the DDNAME compile-timer 
option. 

• Applying RESET and REWRITE to TEXT files INPUT and OUTPUT will yield the 
same results as applying RESET and REWRITE to any other file. 

272 vs Pascal Application Programming Guide 

REWRITE-REWRITE(f) causes the external file bound to f to be erased, 
and the file to be opened for output. These operations are performed 
immediately upon executing the REWRITE. 

PUT-PUT(f) causes the value of the file buffer to be placed into a special 
buffer. This buffer is written to the external file upon any of the following 
occurrences: 

The special buffer becomes full (this buffer's capacity is equal to the 
physical file's block size). 

A RESET is performed on file f. 

The routine or program containing the file fends. 

In LANGLVL(EXTENDED). the CLOSE, UPDATE, TERMIN, TERMOUT, 
PDSIN, and PDSOUT procedures are applied to file f. 

RESET-RESET(f) causes the external file bound to fto open for input. This 
occurs immediately upon executing the RESET. The first element in the 
external file bound to f is immediately assigned to the file buffer, unless (in 
LANGLVL(EXTENDED) only) the file is an interactive file. In this case, the 
file pointer has the value NIL until the first GET or READ is done on the file. 
At this time, the file buffer will contain the first element in the file. 

- GET-GET(f) causes the file pointer to point to the next unread element of f 
(if any), and the file buffer to be updated with that element. This action 
occurs immediately upon execution of the GET. 

• The default field width for integer output is 12. 

• The default field width for Boolean output is 10. 

• Boolean variables are output in all upper case (such as TRUE and FALSE). 

• The default field width for real output is 20. 

• The exponent character for real output is E. 

• Two exponent digits are used for real output. 

• The effect of the PAGE procedure on a TEXT file depends on the type of 
external file the TEXT file is bound to. If the TEXT file is bound to an ASA 
(RECFM A) file, a "1" is written in column one (the carriage control column) of 
the next line of the file. If the TEXT file is bound to a machine (RECFM M) file, 

a X'8B' is written in column one of the next line of the file. A new line is 
started after this. If neither of the above conditions hold true, the PAGE 
procedure has no effect on the file other than performing the WRITELN 
specified by the ANSI/IEEE Pascal standard. 

• Files listed as program parameters are bound to external files in the same way 
as any other file. 

Note: The first 8 characters of the program parameter's name will form the 
ddname of the file, regardless of the setting of the DDNAME compile-timer 
option. 

• Applying RESET and REWRITE to TEXT files INPUT and OUTPUT will yield the 
same results as applying RESET and REWRITE to any other file. 

272 vs Pascal Application Programming Guide 



Error Handling in VS Pascal 
This section describes how VS Pascal handles the errors listed in the 1983 
ANSI/IEEE Pascal standard. The following list parallels the error handling list in 
Appendix D of that standard. 

It is assumed that all compile-time and run-time checking has been turned on. If 
the checking is off, some errors that would normally be caught will not be caught. 
Also, if an error occurs in a program, further errors mayor may not be caught. 

Unless an error is stated to be caught (with no qualifications), for the purposes of 
the standard, it may be considered to be undetected. Thus, if an error is stated to 
be "generally caught", there are some ci rcumstances where it will be left 
undetected. 

1. Array subscri pti ng errors are caught. 

2. Accessing a component of an inactive variant is not caught (for RECORD data 
type). 

3. NIL pointer dereferencing errors are caught. 

4. Undefined pointer dereferencing errors are not caught except in special 
ci rcumstances. 

5. Removing the identifying value of an identified (pointer-qualified) variable 
while a reference to that variable exists is not caught. 

6. Altering the value of a file variable while a reference to its buffer variable 
exists is not caught. 

7. Assignment compatibility errors between actual and formal ordinal value 
parameters are caught. 

8. Assignment compatibility errors between actual and formal set value 
parameters are caught. 

9. Using the PUT, WRITE, WRITELN, and PAGE procedures on files not open for 
output is generally caught. 

10. Using the PUT, WRITE, WRITELN, and PAGE procedures on undefined files is 
generally caught. 

11. Using the PUT, WRITE, WRITELN, and PAGE procedures on files with 
end-of-file not true before the call is not possible with LANGLVL(ANSI83). For 
LANGLVL(EXTENDED), the UPDATE procedure and random access 1/0 allow 
the end-of-file to be false. 

12. Using the PUT procedure with an undefined buffer variable is not caught. 

13. Using the RESET procedure on an undefined file is not caught. 

14. Using the GET, READ, and READLN procedures on files that are not open for 
input is generally caught. 

15. Using the GET, READ, and READLN procedures on undefined files are 
generally caught. 

16. Attempting to use the GET, READ, or READLN procedures with end-of-file true 
is caught. 

17. For READ, assignment compatibility errors are caught. 

18. For WRITE, assignment compatibility errors are caught. 

Appendix D. VS Pascal and the 1983 ANSIIIEEE Pascal Standard 273 

Error Handling in VS Pascal 
This section describes how VS Pascal handles the errors listed in the 1983 
ANSI/IEEE Pascal standard. The following list parallels the error handling list in 
Appendix D of that standard. 

It is assumed that all compile-time and run-time checking has been turned on. If 
the checking is off, some errors that would normally be caught will not be caught. 
Also, if an error occurs in a program, further errors mayor may not be caught. 

Unless an error is stated to be caught (with no qualifications), for the purposes of 
the standard, it may be considered to be undetected. Thus, if an error is stated to 
be "generally caught", there are some ci rcumstances where it will be left 
undetected. 

1. Array subscri pti ng errors are caught. 

2. Accessing a component of an inactive variant is not caught (for RECORD data 
type). 

3. NIL pointer dereferencing errors are caught. 

4. Undefined pointer dereferencing errors are not caught except in special 
ci rcumstances. 

5. Removing the identifying value of an identified (pointer-qualified) variable 
while a reference to that variable exists is not caught. 

6. Altering the value of a file variable while a reference to its buffer variable 
exists is not caught. 

7. Assignment compatibility errors between actual and formal ordinal value 
parameters are caught. 

8. Assignment compatibility errors between actual and formal set value 
parameters are caught. 

9. Using the PUT, WRITE, WRITELN, and PAGE procedures on files not open for 
output is generally caught. 

10. Using the PUT, WRITE, WRITELN, and PAGE procedures on undefined files is 
generally caught. 

11. Using the PUT, WRITE, WRITELN, and PAGE procedures on files with 
end-of-file not true before the call is not possible with LANGLVL(ANSI83). For 
LANGLVL(EXTENDED), the UPDATE procedure and random access I/O allow 
the end-of-file to be false. 

12. Using the PUT procedure with an undefined buffer variable is not caught. 

13. Using the RESET procedure on an undefined file is not caught. 

14. Using the GET, READ, and READLN procedures on files that are not open for 
input is generally caught. 

15. Using the GET, READ, and READLN procedures on undefined files are 
generally caught. 

16. Attempting to use the GET, READ, or READLN procedures with end-of-file true 
is caught. 

17. For READ, assignment compatibility errors are caught. 

18. For WRITE, assignment compatibility errors are caught. 

Appendix D. VS Pascal and the 1983 ANSIIIEEE Pascal Standard 273 



19. Activating a variant of a variant part of a variable created with the NEW 
procedure of the form (p,t1, ... ,tn) where the variant is in the same variant part 
as, but different from, one of the specified variants is not caught. 

20. Using the DISPOSE(p) procedure on a variable created with the NEW 
procedure of the form (p,t1, ... ,in) is not caught. 

21. Using the DISPOSE procedure of the form (p,t1, ... ,ty) on a variable created with 
the NEW procedure of the form (p,t1, ... ,tx) where x is not equal to y is not 
caught. 

22. Using the DISPOSE procedure of the form (p,t1, ... ,tn) on a variable with active 
variants different from (t1 , ... ,tn) is not caught. 

23. Using the DISPOSE procedure on a NIL pointer is caught. 

24. USing the DISPOSE procedure on an undefined pointer is not generally caught. 

25. Accessing variables created by the NEW procedure of the form (p,t1, ... ,tn) 
using the identified variable in a factor, an assignment statement, or as an 
actual parameter is not caught. 

26. Assignment compatibility errors on the ordinal variable in the PACK procedure 
are caught. 

27. Accessing undefined elements of the unpacked array in the PACK procedure is 
not caught. 

28. Exceeding the index of the unpacked array in the PACK procedure is caught. 

29. Assignment compatibility errors on the ordinal variable in the UNPACK 
procedure are caught. 

30. Having undefined elements in the packed array in the UNPACK procedure is 
not caught. 

31. Exceeding the index of the unpacked array in the UNPACK procedure is 
caught. 

32. Applying the SQR function to a value whose square would not exist is generally 
caught. 

33. Applying the LN function to a value less than or equal to zero is caught. 

34. Applying the SQRT function to a negative value is caught. 

35. Applying the TRUNC function to a value that would produce an integer with too 
large a magnitude is generally caught. 

36. Applying the ROUND function to a value that would produce an integer with too 
large a magnitude is generally caught. 

37. Applying the CHR function to a value that does not have a character value is 
caught. 

38. Applying the SUCC function to a value that does not have a successor is not 
caught. 

39. Applying the PRED function to a value that does not have a predecessor is not 
caught. 

40. Using the EOF function on an undefined file is not caught. 

41. Using the EOLN function on an undefined file is not caught. 

42. Using the EOLN function on a file with the end-of-file condition true is not 
caught. 

274 VS Pascal Application Programming Guide 

19. Activating a variant of a variant part of a variable created with the NEW 
procedure of the form (p,t1, ... ,tn) where the variant is in the same variant part 
as, but different from, one of the specified variants is not caught. 

20. Using the DISPOSE(p) procedure on a variable created with the NEW 
procedure of the form (p,t1, ... ,tn) is not caught. 

21. Using the DISPOSE procedure of the form (p,t1, ... ,ty) on a variable created with 
the NEW procedure of the form (p,t1, ... ,tx) where x is not equal to y is not 
caught. 

22. Using the DISPOSE procedure of the form (p,t1, ... ,tn) on a variable with active 
variants different from (t1, ... ,tn) is not caught. 

23. Using the DISPOSE procedure on a NIL pointer is caught. 

24. Using the DISPOSE procedure on an undefined pointer is not generally caught. 

25. Accessing variables created by the NEW procedure of the form (p,t1, ... ,tn) 
using the identified variable in a factor, an assignment statement, or as an 
actual parameter is not caught. 

26. Assignment compatibility errors on the ordinal variable in the PACK procedure 
are caught. 

27. Accessing unde'fined elements of the unpacked array in the PACK procedure is 
not caught. 

28. Exceeding the index of the unpacked array in the PACK procedure is caught. 

29. Assignment compatibility errors on the ordinal variable in the UNPACK 
procedure are caught. 

30. Having undefined elements in the packed array in the UNPACK procedure is 
not caught. 

31. Exceeding the index of the unpacked array in the UNPACK procedure is 
caught. 

32. Applying the SQR function to a value whose square would not exist is generally 
caught. 

33. Applying the LN function to a value less than or equal to zero is caught. 

34. Applying the SQRT function to a negative value is caught. 

35. Applying the TRUNC function to a value that would produce an integer with too 
large a magnitude is generally caught. 

36. Applying the ROUND function to a value that would produce an integer with too 
large a magnitude is generally caught. 

37. Applying the CHR function to a value that does not have a character value is 
caught. 

38. Applying the SUCC function to a value that does not have a successor is not 
caught. 

39. Applying the PRED function to a value that does not have a predecessor is not 
caught. 

40. Using the EOF function on an undefined file is not caught. 

41. Using the EOLN function on an undefined file is not caught. 

42. Using the EOLN function on a file with the end-of-file condition true is not 
caught. 

274 VS Pascal Application Programming Guide 



43. Using undefined variables in an expression is not caught. 

44. Real division by zero is caught. 

45. Integer division by zero is caught. 

46. Using the MOD operator with a second operand less than or equal to zero is 
caught. 

47. Not performing integer operations or functions according to the mathematical 
rules for integer arithmetic is generally caught. 

48. Undefined function result errors are caught. 

49. Assignment compatibility errors with ordinal types are caught. 

50. Assignment compatibility errors with set types are caught. 

51. CASE statement index errors are caught. 

52. Assignment compatibility errors between FOR loop indices and initial values 
are caught. 

53. Assignment compatibility errors between FOR loop indices and final values are 
caught. 

54. Attempting to read an integer from a TEXT file where the sequence of 
characters, after skipping precedinn spaces and end-of-line conditions, does 
not form a signed integer is caught. 

55. Type compatibility for integers read from TEXT files is checked and caught. 

56. Attempting to read a number from a TEXT file where the sequence of 
characters, after skipping preceding spaces and end-of-line conditions, does 
not form a signed number is caught. 

57. Using the READ or READLN procedure on a file with the buffer variable 
undefined is caught. This error can occur when trying to read past the end of 
file. 

58. Usi ng the form" e : length1 : length2" or "e : length1" in the WRITE and 
WRITELN procedures for TEXT files where length1 or length2 are less than 
one, is caught (in LANGLVL(ANSI83) only). 

Extension Handling 
When using the LANGLVL(ANSI83) and DDNAME(UNIQUE) compiler options, no 
extensions to the ANSIIIEEE standard are allowed. When using the 
LANGLVL(EXTENDED) compile-time option, all extensions listed in VS Pascal 
Language Reference may be used. When using the DDNAME(COMPAT) 
compile-time option, all file variables (not in a structure or on the heap) map to 
ddnames based on the fi rst 8 characters of their names. 

Impiementation-Dependent Features Not Flagged 
Because most implementation-dependent features are used frequently in VS 
Pascal, these features will not be flagged. The following 
implementation-dependent features are not flagged by VS Pascal: 

• The order of evaluation of array indices. 

• The order of evaluation of members in a set constructor. 

Appendix D. VS Pascal and the 1983 ANSI/IEEE Pascal Standard 275 

43. Using undefined variables in an expression is not caught. 

44. Real division by zero is caught. 

45. Integer division by zero is caught. 

46. Using the MOD operator with a second operand less than or equal to zero is 
caught. 

47. Not performing integer operations or functions according to the mathematical 
rules for integer arithmetic is generally caught. 

48. Undefined function result errors are caught. 

49. Assignment compatibility errors with ordinal types are caught. 

50. Assignment compatibility errors with set types are caught. 

51. CASE statement index errors are caught. 

52. Assignment compatibility errors between FOR loop indices and initial values 
are caught. 

53. Assignment compatibility errors between FOR loop indices and final values are 
caught. 

54. Attempting to read an integer from a TEXT file where the sequence of 
characters, after skipping precedinr. spaces and end-of-line conditions, does 
not form a signed integer is caught. 

55. Type compatibility for integers read from TEXT files is checked and caught. 

56. Attempting to read a number from a TEXT file where the sequence of 
characters, after skipping preceding spaces and end-of-line conditions, does 
not form a signed number is caught. 

57. Using the READ or READLN procedure on a file with the buffer variable 
undefined is caught. This error can occur when trying to read past the end of 
file. 

58. Usi ng the form" e : length1 : length2" or "e : length1" in the WRITE and 
WRITELN procedures for TEXT files where length1 or length2 are less than 
one, is caught (in LANGLVL(ANSI83) only). 

Extension Handling 
When using the LANGLVL(ANSI83) and DDNAME(UNIQUE) compiler options, no 
extensions to the ANSI/IEEE standard are allowed. When using the 
LANGLVL(EXTENDED) compile-time option, all extensions listed in VS Pascal 
Language Reference may be used. When using the DDNAME(COMPAT) 
compile-time option, all file variables (not in a structure or on the heap) map to 
ddnames based on the first 8 characters of their names. 

Impiementation-Dependent Features Not Flagged 
Because most implementation-dependent features are used frequently in VS 
Pascal, these features will not be flagged. The following 
implementation-dependent features are not flagged by VS Pascal: 

• The order of evaluation of array indices. 

• The order of evaluation of members in a set constructor. 

Appendix D. VS Pascal and the 1983 ANSI/IEEE Pascal Standard 275 



• The order of evaluation of component expressions in a member-designator in a 
set constructor. 

• The order of evaluation of the operands of a dyadic operator (such as A + 8). 

• The order of evaluation of the actual parameters in a procedure or function 
call. 

• The order of evaluation of the left-hand side and the right-hand side of an 
assignment statement. 

• The effect of reading from a file that had the PAGE procedure applied to it. 

• The binding of program parameters not declared as files. 

276 vs Pascal Application Programming Guide 

• The order of evaluation of component expressions in a member-designator in a 
set constructor. 

• The order of evaluation of the operands of a dyadic operator (such as A + 8). 

• The order of evaluation of the actual parameters in a procedure or function 
call. 

• The order of evaluation of the left-hand side and the right-hand side of an 
assignment statement. 

• The effect of reading from a file that had the PAGE procedure applied to it. 

• The binding of program parameters not declared as files. 

276 vs Pascal Application Programming Guide 



Appendix E. Implementation Specifics 

This section discusses various VS Pascal implementation dependencies. Note that 
the compiler limits are approximations. Your program may deviate from the 
maximum limits depending on the complexity of your program. 

Routines That May Not Be Passed As Parameters 

Data Types 

VS Pascal does not allow the following standard routines to be passed as 
parameters to another routine: 

ABS GTOSTR MIN READSTR SUBSTR 
ADDR HBOUND NEW RELEASE SUCC 
CHR HIGHEST ODD RESET TERMIN 
CLOSE INDEX ORO REWRITE TERMOUT 
COMPRESS LBOUND PACK RINDEX TRIM 
DELETE LENGTH PAGE ROUND TRUNC 
DISPOSE LOWEST PDSIN RPAD UNPACK 
EOF LPAD PDSOUT SEEK UPDATE 
EOLN LTRIM PRED SIZEOF WRITE 
FLOAT MARK PUT SQR WRITELN 
GET MAX READ STOGSTR WRITESTR 
GSTR MAX LENGTH READLN STR 

GENERIC procedures and FORTRAN functions or subroutines may not be passed 
as parameters to a VS Pascal routine. 

INTEGER Data Type 
The largest integer that may be represented is 2147483647. This is the highest 
signed value that may be represented in a 32-bit word. This is the value of the 
predefined constant MAXINT. 

Appendix E. Implementation Specifics 277 

Appendix E. Implementation Specifics 

This section discusses various VS Pascal implementation dependencies. Note that 
the compiler limits are approximations. Your program may deviate from the 
maximum limits depending on the complexity of your program. 

Routines That May Not Be Passed As Parameters 

Data Types 

VS Pascal does not allow the following standard routines to be passed as 
parameters to another routi ne: 

ABS GTOSTR MIN READSTR SUBSTR 
ADDR HBOUND NEW RELEASE SUCC 
CHR HIGHEST ODD RESET TERMIN 
CLOSE INDEX ORD REWRITE TERMOUT 
COMPRESS LBOUND PACK RINDEX TRIM 
DELETE LENGTH PAGE ROUND TRUNC 
DISPOSE LOWEST PDSIN RPAD UNPACK 
EOF LPAD PDSOUT SEEK UPDATE 
EOLN LTRIM PRED SIZEOF WRITE 
FLOAT MARK PUT SQR WRITELN 
GET MAX READ STOGSTR WRITESTR 
GSTR MAXLENGTH READLN STR 

GENERIC procedures and FORTRAN functions or subroutines may not be passed 
as parameters to a VS Pascal routine. 

INTEGER Data Type 
The largest integer that may be represented is 2147483647. This is the highest 
signed value that may be represented in a 32-bit word. This is the value of the 
predefined constant MAXINT. 

Appendix E. Implementation Specifics 277 



Floating-Point Arithmetic 

Characteristic 

MAXREAL (see note 2) 

MIN REAL (see note 3) 

I EPSREAL (see note 4) 

Figure 110 shows some commonly required characteristics of System/370 
floating-point arithmetic. 

Decimal Approximation Exact Representation (see note 1) 

7 .23700557733226E + 75 '7FFFFFFFFFFFFFFF'XR 

5.39760534693403E-79 '0010000000000000'XR 

1.38777878078145E-17 '3310000000000000'XR 

Figure 110. Characteristics of System/370 Floating-Point Arithmetic 

SET Data Type 

Notes to Figure 110: 

1. The syntax ' ... ' XR is the way hexadecimal floating-point numbers are 
represented in VS Pascal. See the section titled "Constants" in VS Pascal 
Language Reference. 

2. MAXREAL is the largest finite floating-point number that may be represented. 
Its value is in the predefined constant MAXREAL. 

3. MINREAL is the smallest positive finite floating-point number that may be 
represented. Its value is in the predefined constant MINREAL. 

4. EPSREAL is the smallest positive floating-point number such that the following 
condition holds: 

1.0+EPSREAL > 1.0 

Its value is in the predefined constant EPSREAL. This value is often needed in 
numerical computations involving converging series. 

Given a SET data type of the form: 

SET OF a .. b 

where a and b express the lower and upper bounds of the base scalar type, the 
following conditions must hold true: 

ORD(a) >= 0 
ORD(b) <= 255 

Compiler Limits 

Routine Nesting 

Identifiers 

Routines may be nested up to eight levels deep including the main program. 

Because identifiers cannot span multiple lines, and because VS Pascal restricts the 
length of an input line to 100 characters or less, VS Pascal will not allow identifiers 
to be longer than 100 characters. 

278 vs Pascal Application Programming Guide 

Floating-Point Arithmetic 

Characteristic 

MAXREAL (see note 2) 

MINREAL (see note 3) 

I EPSREAL (see note 4) 

Figure 110 shows some commonly required characteristics of System/370 

floating-point arithmetic. 

Decimal Approximation Exact Representation (see note 1) 

7 .23700557733226E + 75 '7FFFFFFFFFFFFFFF'XR 

5.39760534693403E-79 '0010000000000000'XR 

1.38777878078145E-17 '3310000000000000'XR 

Figure 110. Characteristics of System/370 Floating-Point Arithmetic 

SET Data Type 

Notes to Figure 110: 

1. The syntax' ... ' XR is the way hexadecimal floating-point numbers are 
represented in VS Pascal. See the section titled "Constants" in VS Pascal 
Language Reference. 

2. MAXREAL is the largest finite floating-point number that may be represented. 
Its value is in the predefined constant MAXREAL. 

3. MINREAL is the smallest positive finite floating-point number that may be 
represented. Its value is in the predefined constant MINREAL. 

4. EPSREAL is the smallest positive floating-point number such that the following 
condition holds: 

1.0+EPSREAL > 1.0 

Its value is in the predefined constant EPSREAL. This value is often needed in 
numerical computations involving converging series. 

Given a SET data type of the form: 

SET OF a .. b 

where a and b express the lower and upper bounds of the base scalar type, the 
following conditions must hold true: 

ORDeal >= 0 
ORD(b) <= 255 

Compiler Limits 

Routine Nesting 

Identifiers 

Routines may be nested up to eight levels deep including the main program. 

Because identifiers cannot span multiple lines, and because VS Pascal restricts the 
length of an input line to 100 characters or less, VS Pascal will not allow identifiers 
to be longer than 100 characters. 

278 vs Pascal Application Programming Guide 



Size Limitations 

External procedures and DEF and REF variables may not start with the following 
letters (because they are used internally by VS Pascal): 

• AMPD 
• AMPX 
• AMPY 
• AMPZ 

Also, the following external routine names may not be used: 

• CMS 
• ITOHS 

• LPAD 
• PICTURE 

• RPAD 

Source code limits 

• The maximum number of identifiers allowed in a unit is 65536. 

• The maximum number of %INCLUDE directives allowed in a unit is 999. 

• Units are limited to 65535 lines of code. 

Data size limits 

• Variables are limited to 16 megabytes. 

• The size of all VAR variables in a routine must be less than 16 megabytes. 

• The size of all STATIC variables in a unit must be less than 16 megabytes. 

• Sets are limited to 256 members with ordinal values 0 through 255. 

Debugging limits 

• The Interactive Debugging Tool types limit is 8192. 

• The maximum number of characters in variable names in a routine is 
32767-n*2, where n is the number of variables in the routine. 

• Records are limited to 1024 fields. 

Code size limits 

• The size of a single procedure or function must not exceed 8192 bytes of 
generated code. 8192 bytes represent approximately 400 VS Pascal 
statements, depending on the complexity of the statements. The compiler will 
generate an error message if this limit is reached. 

Operating system limits 

• The combined number of routines and DEF/REF variables allowed is 32767. 

Appendix E. Implementation Specifics 279 

Size Limitations 

External procedures and DEF and REF variables may not start with the following 
letters (because they are used internally by VS Pascal): 

• AMPD 
• AMPX 
• AMPY 
• AMPZ 

Also, the following external routine names may not be used: 

• CMS 
• ITOHS 

• LPAD 
• PICTURE 

• RPAD 

Source code limits 

• The maximum number of identifiers allowed in a unit is 65536. 

• The maximum number of %INCLUDE directives allowed in a unit is 999. 

• Units are limited to 65535 lines of code. 

Data size limits 

• Variables are limited to 16 megabytes. 

• The size of all VAR variables in a routine must be less than 16 megabytes. 

• The size of all STATIC variables in a unit must be less than 16 megabytes. 

• Sets are limited to 256 members with ordinal values 0 through 255. 

Debugging limits 

• The Interactive Debugging Tool types limit is 8192. 

• The maximum number of characters in variable names in a routine is 
32767-n*2, where n is the number of variables in the routine. 

• Records are limited to 1024 fields. 

Code size limits 

• The size of a single procedure or function must not exceed 8192 bytes of 
generated code. 8192 bytes represent approximately 400 VS Pascal 
statements, depending on the complexity of the statements. The compiler will 
generate an error message if this limit is reached. 

Operating system limits 

• The combined number of routines and DEF/REF variables allowed is 32767. 

Appendix E. Implementation Specifics 279 





Appendix F. Double-Byte Character Set (DBCS) Support 

Many written languages contain a large number of characters. For example, 
Japanese newspapers use as many as 4000 different characters; a Chinese scholar 
may recognize as many as 40000 characters; the Korean and Thai languages also 
have thousands of characters for everyday usage. 

English is often used within the data processing environment of non-English 
speaking countries. However, users need to communicate with the computer in 
their native language. When that native language involves thousands of 
characters, the 256 characters allowed by the EBCOIC set is clearly not sufficient. 

To support languages with a large number of characters, VS Pascal supports a 
predefined scalar data type, GCHAR, that represents one OBCS character. VS 
Pascal also supports a predefined structured data type, GSTRING, that represents 
a OBCS string. Both input and output of OBCS data require terminals and printers 
with OBCS capability, which are available in countries that extensively use those 
languages. 

OBCS constants and comments require the use of a shift-out (X' OE') and shift-in 
(X' OF') character. The shift-out character indicates the beginning of OBCS data; 
the shift-in character indicates the end of OBCS data. The GRAPHIC compile-time 
option must be active for VS Pascal to recognize the shift-out and shift-in 
characters. OBCS character constants and comments cannot span multiple lines. 

Each byte of a OBCS character must be withi n the range X '41' through X' FE ' 
inclusive. A OBCS blank is X '4040'. 

For an example of OBCS constants, comments, GCHAR data type, and GSTRING 
data type, see the VS Pascal Language Reference. 

Appendix F. Double-Byte Character Set (DBCS) Support 281 

Appendix F. Oouble-Byte Character Set (OBCS) Support 

Many written languages contain a large number of characters. For example, 
Japanese newspapers use as many as 4000 different characters; a Chinese scholar 
may recognize as many as 40000 characters; the Korean and Thai languages also 
have thousands of characters for everyday usage. 

English is often used within the data processing environment of non-English 
speaking countries. However, users need to communicate with the computer in 
their native language. When that native language involves thousands of 
characters, the 256 characters allowed by the EBCOIC set is clearly not sufficient. 

To support languages with a large number of characters, VS Pascal supports a 
predefined scalar data type, GCHAR, that represents one OBCS character. VS 
Pascal also supports a predefined structured data type, GSTRING, that represents 
a OBCS string. Both input and output of OBCS data require terminals and printers 
with OBCS capability, which are available in countries that extensively use those 
languages. 

OBCS constants and comments require the use of a shift-out (X'OE') and shift-in 
(X' OF') character. The shift-out character indicates the beginning of OBCS data; 
the shift-in character indicates the end of OBCS data. The GRAPHIC compile-time 
option must be active for VS Pascal to recognize the shift-out and shift-in 
characters. OBCS character constants and comments cannot span multiple lines. 

Each byte of a OBCS character must be within the range X '41' through X' FE' 
inclusive. A OBCS blank is X'4040'. 

For an example of DBCS constants, comments, GCHAR data type, and GSTRING 
data type, see the VS Pascal Language Reference. 

Appendix F. Double-Byte Character Set (DBCS) Support 281 





Appendix G. Migration Considerations 

From VS Pascal Release 1 to VS Pascal Release 2 
vs Pascal Release 2 supports all existing Release 1 functions with full upward 
compatibility at both the source and object levels, with the exceptions noted in 
Figure 111. 

Release 2 
Change to '" 

Debugged 
Object Decks 

Compile-Time 
Limits 

Compiler 
Option 
Checking 

Compiler 
Directive 
Checking 

Hex String 
Checking 

Message 
Issued Nature of Change 

Release 1 object decks compiled with DEBUG 
must be recompiled for use with Release 2. This 
allows the debugger to work with larger 
programs. 

AMPX902S In Release 2, routines compiled with the HEADER 
compile-time option, which places header 
information in the code space, might exceed 8K. 
To correct the error: 

Messages 
in the 
Range 
7xx 

819 

• Compile routines with the NOHEADER 
compile-time option 

• Issue a O/OUHEADER OFF before the routine if 
a user header is being used. 

Release 2 now flags some invalid compile-time 
options that were ignored in Release 1. This 
affects only those users who invoke the compiler 
with their own commands. 

Release 2 now flags some invalid compiler 
directives that were ignored in Release 1. 

Release 2 flags hex string literals containing an 
odd number of hex digits (for example, '404'XC) 
as errors. Release 1 added a zero to the right of 
hex string literals that contained an odd number of 
hex digits. 

Figure 111 (Part 1 of 4). Exceptions in VS Pascal Release 2 Support of Release 1 

Appendix G. Migration Considerations 283 

Appendix G. Migration Considerations 

From VS Pascal Release 1 to VS Pascal Release 2 
vs Pascal Release 2 supports all existing Release 1 functions with full upward 
compatibility at both the source and object levels, with the exceptions noted in 
Figure 111. 

Release 2 
Change to '" 

Debugged 
Object Decks 

Compile-Time 
Limits 

Compiler 
Option 
Checking 

Compiler 
Directive 
Checking 

Hex String 
Checking 

Message 
Issued Nature of Change 

Release 1 object decks compiled with DEBUG 
must be recompiled for use with Release 2. This 
allows the debugger to work with larger 
programs. 

AMPX902S In Release 2, routines compiled with the HEADER 
compile-time option, which places header 
information in the code space, might exceed BK. 
To correct the error: 

Messages 
in the 
Range 
7xx 

819 

• Compile routines with the NOHEADER 
compile-time option 

• Issue a O/OUHEADER OFF before the routine if 
a user header is being used. 

Release 2 now flags some invalid compile-time 
options that were ignored in Release 1. This 
affects only those users who invoke the compiler 
with their own commands. 

Release 2 now flags some invalid compiler 
directives that were ignored in Release 1. 

Release 2 flags hex string literals containing an 
odd number of hex digits (for example, '404'XC) 
as errors. Release 1 added a zero to the right of 
hex string literals that contained an odd number of 
hex digits. 

Figure 111 (Part 1 of 4). Exceptions in VS Pascal Release 2 Support of Release 1 

Appendix G. Migration Considerations 283 



Release 2 
Change to ... 

DBCS 
Checking 

Structured 
Constant 
Checking 

VAR 
Parameter 
Checking 

Writing 
Character 
Data 

Operator 

Message 
Issued Nature of Change 

The GRAPHIC compile-time option now causes VS 
Pascal to check double-byte character set (DBCS) 
literals and comments and the % TITLE and 
%WRITE compiler directives to ensure that: 

• A shift-out (' OE I X) character and shift-in 
( I OF I X) character are pai red before the end of 
a source record. (This is the only check done 
by Release 1.) 

• Every shift-in is preceded by a shift-out. 

• There are an even number of bytes between a 
shift-out and shift-in. 

• Only valid DBCS characters occur between a 
shift-out and shift-in. 

As defined in the proposed ANSI/IEEE Extended 
Pascal Standard, Release 2 now flags as errors 
structured constants containing files. 

Release 2 now flags as errors actual and formal 
VAR parameters that do not have the same size. 

As defined in the proposed ANSI/IEEE Extended 
Pascal Standard, when a character variable or 
constant is written with a field width of zero, no 
data will be written. 

Compile-time and run-time options no longer 
accept U=". In Release 2 you must specify 
optname = optvalue as optname(optvalue). 

Note: Only the ERRCOUNT, ERRFILE, STACK, 
and HEAP run-time options, and the LlNECOUNT 
and PAGEWIDTH compile-time options, are 
affected. 

Figure 111 (Part 2 of 4). Exceptions in VS Pascal Release 2 Support of Release 1 

284 vs Pascal Application Programming Guide 

Release 2 
Change to ... 

OBCS 
Checking 

Structured 
Constant 
Checking 

VAR 
Parameter 
Checking 

Writing 
Character 
Data 

Operator 

Message 
Issued Nature of Change 

The GRAPHIC compile-time option now causes VS 
Pascal to check double-byte character set (OBCS) 
literals and comments and the % TITLE and 
%WRITE compiler directfves to ensure that: 

• A shift-out (' OE I X) character and shift-in 
( I OF I X) character are pai red before the end of 
a source record. (This is the only check done 
by Release 1.) 

• Every shift-in is preceded by a shift-out. 

• There are an even number of bytes between a 
shift-out and shift-in. 

• Only valid OBCS characters occur between a 
shift-out and shift-in. 

As defined in the proposed ANSI/IEEE Extended 
Pascal Standard, Release 2 now flags as errors 
structured constants containing files. 

Release 2 now flags as errors actual and formal 
VAR parameters that do not have the same size. 

As defined in the proposed ANSI/IEEE Extended 
Pascal Standard, when a character variable or 
constant is written with a field width of zero, no 
data will be written. 

Compile-time and run-time options no longer 
accept "=". In Release 2 you must specify 
optname = optvalue as optname(optvalue). 

Note: Only the ERRCOUNT, ERRFILE, STACK, 
and HEAP run-time options, and the LlNECOUNT 
and PAGEWIOTH compile-time options, are 
affected. 

Figure 111 (Part 2 of 4). Exceptions in VS Pascal Release 2 Support of Release 1 

284 vs Pascal Application Programming Guide 



Release 2 
Change to ... 

New"> <" 
Operator 

MAIN and 
REENTRANT 
Routine 
Directives 

ONERROR 
Routines 

LPAD and 
RPAD 
Procedures 

READSTR 
Procedure 

Message 
Issued 

AMPX600 
AMPX601 
AMPX602 
AMPX700 
AMPX701 
AMPX702 
AMPX081 
AMPX082 
AMPX083 
AMPX084 

Nature of Change 

When the characters" > < " are passed in a string 
to TOKEN or L TOKEN, they are now returned as 
one token rather than two, unless the" >" was 
returned as part of another token. 

Note: The characters" > < " can now be used as 
a set operator for symmetric difference as defined 
in the proposed ANSIIIEEE Extended Pascal 
Standard. As an IBM extension to the Standard, 
these characters can also be used as Boolean 
exclusive or. Release 2 still supports XOR and 
"&&" so that existing code need not be updated. 
However, new code should use only" > < ". 

Release 2 now flags as errors MAIN and 
REENTRANT routines that do not have their 
bodies declared. 

As part of national language support, ONERROR 
routines that caused message AMPX047 in 
Release 1 now cause messages AMPX600-602 in 
Release 2. Routines that caused message 
AMPX057 in Release 1 now cause messages 
AMPX700-702 in Release 2. Routines that caused 
message AMPX089 now cause message AMPX081 
in Release 2. Routines that caused messages 
AMPX086 through AMPX088 in Release 1 now 
cause messages AMPX082-084 in Release 2. 

You should delete any %INCLUDE STRING 
directives from your source code if you want to 
use LPAD and RPAD with DBCS data. 

Note: If you have declared LPAD or RPAD in a 
higher scope than the one in which the 
%INCLUDE STRING was deleted, you must use 
different names in order to be able to access the 
predefined LPAD and RPAD routines. 

When a fieldwidth of READSTR is equal to zero, 
the length of the string will be used as the 
fieldwidth; if the fieldwidth is less than zero, the 
absolute value of the fieldwidth will be used as the 
fieldwidth. This makes READSTR consistent with 
READ. 

Figure 111 (Part 3 of 4). Exceptions in VS Pascal Release 2 Support of Release 1 

Appendix G. Migration Considerations 285 

Release 2 
Change to ... 

New"> <" 
Operator 

MAIN and 
REENTRANT 
Routine 
Directives 

ONERROR 
Routines 

LPAD and 
RPAD 
Procedures 

READSTR 
Procedure 

Message 
Issued 

AMPX600 
AMPX601 
AMPX602 
AMPX700 
AMPX701 
AMPX702 
AMPX081 
AMPX082 
AMPX083 
AMPX084 

Nature of Change 

When the characters" > <" are passed in a string 
to TOKEN or L TOKEN, they are now returned as 
one token rather than two, unless the" > .. was 
returned as part of another token. 

Note: The characters" > < " can now be used as 
a set operator for symmetric difference as defined 
in the proposed ANSIIIEEE Extended Pascal 
Standard. As an IBM extension to the Standard, 
these characters can also be used as Boolean 
exclusive or. Release 2 still supports XOR and 
"&&" so that existing code need not be updated. 
However, new code should use only" > < ". 

Release 2 now flags as errors MAIN and 
REENTRANT routines that do not have their 
bodies declared. 

As part of national language support, ONERROR 
routines that caused message AMPX047 in 
Release 1 now cause messages AMPX600-602 in 
Release 2. Routines that caused message 
AMPX057 in Release 1 now cause messages 
AMPX700-702 in Release 2. Routines that caused 
message AMPX089 now cause message AMPX081 
in Release 2. Routines that caused messages 
AMPX086 through AMPX088 in Release 1 now 
cause messages AMPX082-084 in Release 2. 

You should delete any %INCLUDE STRING 
directives from your source code if you want to 
use LPAD and RPAD with DBCS data. 

Note: If you have declared LPAD or RPAD in a 
higher scope than the one in which the 
%INCLUDE STRING was deleted, you must use 
different names in order to be able to access the 
predefined LPAD and RPAD routines. 

When a fieldwidth of READSTR is equal to zero, 
the length of the string will be used as the 
fieldwidth; if the fieldwidth is less than zero, the 
absolute value of the fieldwidth will be used as the 
fieldwidth. This makes READSTR consistent with 
READ. 

Figure 111 (Part 3 of 4). Exceptions in VS Pascal Release 2 Support of Release 1 

Appendix G. Migration Considerations 285 



Release 2 
Change to ... 

PROLOG Macro 
in Assembler 
Routines 

Message 
Issued Nature of Change 

Any code using the PROLOG macro should be 
re-assembled. This allows assembler routine 
errors to generate an error trace back rather than 
error message AMPX902S, and improves error 
checking. 

The new parameter FPARMS should be added to 
the PROLOG macro of any assembler code that 
contains local variables as well as formal 
parameters. This helps the PROLOG macro 
generate code compatible with compiler­
generated code, and might prevent certain 
memory errors. 

Figure 111 (Part 4 of 4). Exceptions in VS Pascal Release 2 Support of Release 1 

From Pascal/VS Release 2.2 to VS Pascal Release 1 
vs Pascal Release 2 supports ali functions that are in PascallVS Release 2.2 (the 
Program Offering that preceded the VS Pascal Release 1 Licensed Program) with 
full upward compatibility at the source level except for some minor enhancements. 
Recompilation of the PascallVS source code under VS Pascal Release 2 is 
required. 

The main differences between PascallVS Release 2.2 and VS Pascal Release 1 are 
listed in the following section; the main differences between VS Pascal Release 1 
and VS Pascal Release 2 are listed in the preceding section. 

Changes In 

Source 
Language 
Statements 

Change 

Threatened FOR loop indexes are now always flagged with a 
warning. 

Value parameters may no longer be control variables for FOR 
loops. 

Figure 112 (Part 1 of 4). Exceptions to VS Pascal Release 1 Support of PascallVS Release 
2.2 

286 vs Pascal Application Programming Guide 

Release 2 
Change to ... 

PROLOG Macro 
in Assembler 
Routines 

Message 
Issued Nature of Change 

Any code using the PROLOG macro should be 
re-assembled. This allows assembler routine 
errors to generate an error trace back rather than 
error message AMPX902S, and improves error 
checking. 

The new parameter FPARMS should be added to 
the PROLOG macro of any assembler code that 
contains local variables as well as formal 
parameters. This helps the PROLOG macro 
generate code compatible with compiler­
generated code, and might prevent certain 
memory errors. 

Figure 111 (Part 4 of 4). Exceptions in VS Pascal Release 2 Support of Release 1 

From Pascal/VS Release 2.2 to VS Pascal Release 1 
vs Pascal Release 2 supports all functions that are in PascalIVS Release 2.2 (the 
Program Offering that preceded the VS Pascal Release 1 Licensed Program) with 
full upward compatibility at the source level except for some minor enhancements. 
Recompilation of the PascalIVS source code under VS Pascal Release 2 is 
required. 

The main differences between PascalIVS Release 2.2 and VS Pascal Release 1 are 
listed in the following section; the main differences between VS Pascal Release 1 
and VS Pascal Release 2 are listed in the preceding section. 

Changes In 

Source 
Language 
Statements 

Change 

Threatened FOR loop indexes are now always flagged with a 
warning. 

Value parameters may no longer be control variables for FOR 
loops. 

Figure 112 (Part 1 of 4). Exceptions to VS Pascal Release 1 Support of PascallVS Release 
2.2 

286 vs Pascal Application Programming Guide 



Changes in 

Compiler 
Options 

Change 

The WARNING I NOWARNING compile-time options are no 
longer supported. They have been replaced by the FLAG 
compiler option. 

VS Pascal supports only two language level compile-time 
options: ANSI83 and EXTENDED. PascallVS supported three 
compile-time options: STANDARD, STDRES, and EXTENDED. 
When LANGLVL(ANSI83) is specified, all standard violations will 
be flagged as compiler errors. If warnings (instead of errors) 
are desired, STDFLAG(W) must be specified. This is equivalent 
to LANGLVL(STDRES). 

You cannot specify only the option, such as EXTENDED for 
LANGLVL. You must specify the complete option, such as 
LANGLVL(EXTENDED). 

Run-Time The component types of the arrays passed to the PACK and 
Library Routines UNPACK routines must have equal ranges if they are subrange 

data types. 

Function 
Declarations 

Range checking will now be done on the integer-to-character 
conversion function (CHR). 

In PascallVS, if the third parameter to SUBSTR or DELETE was 
a variable with the value -1, the remainder of the string was 
returned or deleted. In VS Pascal, an error message is issued 
instead. If the PascallVS behavior is required, a statement such 
as: 

IF L = -1 
THEN S := SUBSTR(S,I) 
ELSE S := SUBSTR(S,I,L); 

should produce results equivalent to those in PascallVS. 

Function results must now be identifier types. This will only 
prevent subrange specifications whose first value is a constant 
identifi er. 

Each function must now contain an assignment to the function 
result. 

Figure 112 (Part 2 of 4). Exceptions to VS Pascal Release 1 Support of PascallVS Release 
2.2 

Appendix G. Migration Considerations 287 

Changes in 

Compiler 
Options 

Change 

The WARNING I NOWARNING compile-time options are no 
longer supported. They have been replaced by the FLAG 
compiler option. 

VS Pascal supports only two language level compile-time 
options: ANSI83 and EXTENDED. PascallVS supported three 
compile-time options: STANDARD, STORES, and EXTENDED. 
When LANGLVL(ANSI83) is specified, all standard violations will 
be flagged as compiler errors. If warnings (instead of errors) 
are desired, STDFLAG(W) must be specified. This is equivalent 
to LANGLVL(STDRES). 

You cannot specify only the option, such as EXTENDED for 
LANGLVL. You must specify the complete option, such as 
LANGLVL(EXTENDED). 

Run-Time The component types of the arrays passed to the PACK and 
Library Routines UNPACK routines must have equal ranges if they are subrange 

data types. 

Function 
Declarations 

Range checking will now be done on the integer-to-character 
conversion function (CHR). 

In PascallVS, if the third parameter to SUBSTR or DELETE was 
a variable with the value -1, the remainder of the string was 
returned or deleted. In VS Pascal, an error message is issued 
instead. If the PascallVS behavior is required, a statement such 
as: 

IF L = -1 
THEN S := SUBSTR(S,I) 
ELSE S := SUBSTR(S,I,L); 

should produce results equivalent to those in PascallVS. 

Function results must now be identifier types. This will only 
prevent subrange speCifications whose first value is a constant 
identifier. 

Each function must now contain an assignment to the function 
result. 

Figure 112 (Part 2 of 4). Exceptions to VS Pascal Release 1 Support of PascallVS Release 
2.2 

Appendix G. Migration Considerations 287 



Changes In 

I/O Routi nes 

Program 
Parameters 

Change 

Parameters for the 1/0 routines READ, READLN, READSTR, 
WRITE, WRITELN, and WRITESTR are now evaluated in 
left-to-right order. 

Output of some real numbers will be changed to conform to the 
1983 ANSI/IEEE standard. PascallVS always writes a real 
number with a value of zero as "0.0" or "0." The ANSIIIEEE 
standard makes no such distinction between zero and other 
real numbers. In VS Pascal, real zero is now handled just like 
any other real number. If the PascallVS behavior is required, a 
statement such as: 

IF R=0.0 
THEN WRITELN (R : LENGTH1 : 1) 

should produce results equivalent to those in PascallVS. 

When writing REAL data: in the case where Tota/Width and 
FracDigits are specified and FracDigits equals zero, then a 
decimal point is written, but no decimal place is written. If 
FracDigits is negative, the number is written using the floating 
point form. If the PascallVS Release 2.2 behavior is required, a 
statement such as: 

IF (LENGTH2 = 0) AND (ABS(R) >= 1) 
THEN WRITELN(ROUND(R) : LENGTH1) 
ELSE WRITELN(R : LENGTH1 : LENGTH2); 

will replace WRITELN(R : LENGTH1 : LENGTH2). 

The CLOSE procedure no longer accepts open options. 

Duplicate program parameters are now flagged. 

Program parameters (other than INPUT or OUTPUT) that are not 
declared as global variables are now flagged. 

If INPUT is specified as a program parameter, a RESET(INPUT) 
will be issued. If this behavior is not desired, remove INPUT 
from the program parameter list. 

If OUTPUT is specified as a program parameter, a 
REWRITE(OUTPUT) will be issued. If this behavior is not 
desired, remove OUTPUT from the program parameter list. 

Figure 112 (Part 3 of 4). Exceptions to VS Pascal Release 1 Support of PascallVS Release 
2.2 

288 vs Pascal Application Programming Guide 

Changes In 

1/0 Routi nes 

Program 
Parameters 

Change 

Parameters for the 1/0 routines READ, READLN, READSTR, 
WRITE, WRITELN, and WRITESTR are now evaluated in 
left-to-right order. 

Output of some real numbers will be changed to conform to the 
1983 ANSI/IEEE standard. PascallVS always writes a real 
number with a value of zero as "0.0" or "0." The ANSI/IEEE 
standard makes no such distinction between zero and other 
real numbers. In VS Pascal, real zero is now handled just like 
any other real number. If the PascallVS behavior is required, a 
statement such as: 

IF R=0.8 
THEN WRITELN (R : LENGTH1 : 1) 

should produce results equivalent to those in PascallVS. 

When writing REAL data: in the case where Tota/Width and 
FracDigits are specified and FracDigits equals zero, then a 
decimal point is written, but no decimal place is written. If 
FracDigits is negative, the number is written using the floating 
point form. If the PascallVS Release 2.2 behavior is required, a 
statement such as: 

IF (LENGTH2 = 8) AND (ABS(R) >= 1) 
THEN WRITELN(ROUND(R) : LENGTH1) 
ELSE WRITELN(R : LENGTH1 : LENGTH2); 

will replace WRITELN(R : LENGTH1 : LENGTH2). 

The CLOSE procedure no longer accepts open options. 

Duplicate program parameters are now flagged. 

Program parameters (other than INPUT or OUTPUT) that are not 
declared as global variables are now flagged. 

If INPUT is specified as a program parameter, a RESET(INPUT) 
will be issued. If this behavior is not desired, remove INPUT 
from the program parameter list. 

If OUTPUT is specified as a program parameter, a 
REWRITE(OUTPUT) will be issued. If this behavior is not 
desired, remove OUTPUT from the program parameter list. 

Figure 112 (Part 3 of 4). Exceptions to VS Pascal Release 1 Support of PascallVS Release 
2.2 

288 vs Pascal Application Programming Guide 



Changes In 

Operating 
Systems 

Routine 
Parameters 

Other Items 

Change 

The OSIVS 1 and VM/PC operating systems are not supported. 
Although VS Pascal and its generated programs may work on 
these systems, any problems on these systems must be 
reproduced on a supported operating system. The IBM Support 
Center will not accept problem reports using these operating 
systems. 

Variables preceded by a unary plus and variables in 
parentheses are no longer allowed as actual VAR parameters. 

Range checking is now done on all pass-by-value and 
pass-by-constant actual expression parameters. 

Illegal use of file variables (embedded files) not flagged by 
PascallVS will now be diagnosed by VS Pascal. There were 
situations in which file variables occurred illegally, and 
PascallVS did not flag such occurrences as illegal. Illegal 
occurrences of file variables include: files within files, 
assigning files, files in value parameters, and files in function 
results. 

Fields in records may no longer have the same name as the 
domain type of a new pointer type being referenced in the 
record. 

Invalid values for value assignments are now flagged as errors. 

Global labels in segment units are now flagged with a warning 
message because they can't be branched to. 

All tag constants in a variant record must be legal values for the 
tag type of the record. 

If you do not use the %INCLUDE ONERROR method to define 
ONERROR, you must change the ALPHA parameters to CONST 
contormant STRING parameters. 

Figure 112 (Part 4 of 4). Exceptions to VS Pascal Release 1 Support of PascallVS Release 
2.2 

Appendix G. Migration Considerations 289 

Changes In 

Operating 
Systems 

Routine 
Parameters 

Other Items 

Change 

The OSIVS 1 and VM/PC operating systems are not supported. 
Although VS Pascal and its generated programs may work on 
these systems, any problems on these systems must be 
reproduced on a supported operating system. The IBM Support 
Center will not accept problem reports using these operating 
systems. 

Variables preceded by a unary plus and variables in 
parentheses are no longer allowed as actual VAR parameters. 

Range checking is now done on all pass-by-value and 
pass-by-constant actual expression parameters. 

Illegal use of file variables (embedded files) not flagged by 
PascallVS will now be diagnosed by VS Pascal. There were 
situations in which file variables occurred illegally, and 
PascallVS did not flag such occurrences as illegal. Illegal 
occurrences of file variables include: files within files, 
assigning files, files in value parameters, and files in function 
results. 

Fields in records may no longer have the same name as the 
domain type of a new pointer type being referenced in the 
record. 

Invalid values for value assignments are now flagged as errors. 

Global labels in segment units are now flagged with a warning 
message because they can't be branched to. 

All tag constants in a variant record must be legal values for the 
tag type of the record. 

If you do not use the %INCLUDE ONERROR method to define 
ONERROR, you must change the ALPHA parameters to CONST 
conformant STRING parameters. 

Figure 112 (Part 4 of 4). Exceptions to VS Pascal Release 1 Support of PascallVS Release 
2.2 

Appendix G. Migration Considerations 289 





Glossary 

This glossary defines terms and acronyms used In this 
book. It includes terms and definitions from the IBM 
Dictionary of Computing, SC20-1699. 

A 

addressing mode. Determines whether generated 
instructions use 24-bit or 31-bit addressing. 

AM ODE. Specifies the addressing mode (of an entry 
point in a load module) in effect when the load module 
is entered at run-time. 

ANSI/IEEE standard. American National Standards 
Institute 1983 standard for the Pascal Computer 
Programming Language. 

B 

BDAM (basic direct access method). An access 
method used to directly retrieve or update particular 
blocks of a data set on a direct access device. 

bit. One binary digit. 

BPAM (basic partitioned access method). An access 
method that can be applied to create program libraries 
in direct access storage for convenient storage and 
retrieval of programs. 

byte. The unit of add ressabi lity on the System/370; its 
length is 8 bits. 

c 

cataloged procedure. A regularly-used set of job 
control statements that are prepared once, given a 
name, stored in a system library, and the name entered 
in the catalog for that library. A cataloged procedure 
comprises one or more job steps (though it is not a job 
because it must not contain a JOB statement). 

compilable unit. An independently compilable piece of 
code. There are two types of unit: the program unit 
and the segment unit. 

compile-time option. A parameter passed to the 
compiler that specifies whether or not a particular 
feature is to be active. 

constant. A value that is either a literal or an identifier 
that has been associated with a value in a CONST 
declaration. 

constant expression. An expression that can be 
completely evaluated by the compiler at compile time. 

current heap. The area of storage in the VS Pascal 
run-time environment where dynamic variables 
allocated by calls to NEW will reside. While many 
heaps can exist at one time, there is only one current 
heap. 

D 

DBCS (double-byte character set). The internal 
representation of each character requiring 2 bytes of 
space. Languages such as Kanji require such 
double-byte representations. 

DCB (data control block). A control block used by 
access method routines in storing and retrieving data. 

DD statement (data dellnltlon statement). The JCL 
statement that identifies the input/output facilities 
required by the program executed in the job step. 

delimiter statement. The JCL statement that separates 
data in the input stream from the job control statements 
that follow this data. 

dynamic variable. A variable that is allocated under 
programmer control. Explicit allocates and deallocates 
are required; the predefined procedures NEW and 
DISPOSE are provided for this purpose. 

E 

EBCDIC. See extended binary-coded decimal 
interchange code. 

element. The component of an array. 

enumerated scalar type. A scalar that is defined by 
enumerating the elements of the type. Each element is 
represented by an identifier. 

EXEC statement. The JCL statement that identifies a 
job step and the program to be executed, either directly 
or by means of a cataloged procedure. 

executable program. Consists of object code from your 
main program that is link-edited with the object code 
from the run-time library and any segments that are 
needed by the main program. 

extended blnary-coded decimal Interchange code 
(EBCDIC). The underlying character set used in VS 
Pascal. 

external routine. A procedure or function whose body 
is not contained in the unit being compiled. 

Glossary 291 

Glossary 

This glossary defines terms and acronyms used in this 
book. It includes terms and definitions from the IBM 
Dictionary of Computing, SC20-1699. 

A 

addressing mode. Determines whether generated 
instructions use 24-bit or 31-bit addressing. 

AMODE. Specifies the addressing mode (of an entry 
point in a load module) in effect when the load module 
is entered at run-time. 

ANSI/IEEE standard. American National Standards 
Institute 1983 standard for the Pascal Computer 
Programming Language. 

B 

BDAM (basic direct access method). An access 
method used to directly retrieve or update particular 
blocks of a data set on a direct access device. 

bit. One binary digit. 

BPAM (basic partitioned access method). An access 
method that can be applied to create program libraries 
in direct access storage for convenient storage and 
retrieval of programs. 

byte. The unit of addressability on the System/370; its 
length is 8 bits. 

c 

cataloged procedure. A regularly-used set of job 
control statements that are prepared once, given a 
name, stored in a system library, and the name entered 
in the catalog for that library. A cataloged procedure 
comprises one or more job steps (though it is not a job 
because it must not contain a JOB statement). 

compilable unit. An independently compilable piece of 
code. There are two types of unit: the program unit 
and the segment unit. 

compile-time option. A parameter passed to the 
compiler that specifies whether or not a particular 
feature is to be active. 

constant. A value that is either a literal or an identifier 
that has been associated with a value in a CONST 
declaration. 

constant expression. An expression that can be 
completely evaluated by the compiler at compile time. 

current heap. The area of storage in the VS Pascal 
run-time environment where dynamic variables 
allocated by calls to NEW will reside. While many 
heaps can exist at one time, there is only one current 
heap. 

D 

DBCS (double-byte character set). The internal 
representation of each character requiring 2 bytes of 
space. Languages such as Kanji require such 
double-byte representations. 

DCB (data control block). A control block used by 
access method routines in storing and retrieving data. 

DD statement (data dellnltlon statement). The JCL 
statement that identifies the input/output facilities 
required by the program executed in the job step. 

delimiter statement. The JCL statement that separates 
data in the input stream from the job control statements 
that follow this data. 

dynamic variable. A variable that is allocated under 
programmer control. Explicit allocates and deallocates 
are required; the predefined procedures NEW and 
DISPOSE are provided for this purpose. 

E 

EBCDIC. See extended binary-coded decimal 
interchange code. 

element. The component of an array. 

enumerated scalar type. A scalar that is defined by 
enumerating the elements of the type. Each element is 
represented by an identifier. 

EXEC statement. The JCL statement that identifies a 
job step and the program to be executed, either directly 
or by means of a cataloged procedure. 

executable program. Consists of object code from your 
main program that is link-edited with the object code 
from the run-time library and any segments that are 
needed by the main program. 

extended blnary-coded decimal Interchange code 
(EBCDIC). The underlying character set used in VS 
Pascal. 

external routine. A procedure or function whose body 
is not contained in the unit being compiled. 

Glossary 291 



external variable. A variable that may be referenced 
from units and scopes other than the one in which it 
was declared. 

F 

field. The component of a record. 

file pOinter. A pointer into an input/output buffer. 

FILE type. A data type that is the mechanism to do 
input and output in VS Pascal. 

fixed-length record. A record having the same length 
as all other records with which it is logically or 
physically associated. 

fixed string. A PACKED ARRA Y[1 ... n] OF CHAR or a 
PACKED ARRA Y[1 ... n] OF GCHAR. 

floating-point number. A subset of the set of real 
numbers. 

formal parameter. A parameter as declared in the 
routine heading. A formal parameter is used to specify 
what is permitted to be passed to a routine. 

function. A routine that is invoked by coding its name 
in an expression. The routine passes a result back to 
the invoker through the routine name. 

G 

GENERIC routine. A routine whose parameter count, 
types and passing mechanism are specified by the call 
to the routine. 

H 

heap. An area of storage where dynamiC variables are 
created. 

hexadecimal digits. A digit that is a member of the set 
of sixteen digits: 0 through 9, and then A through F 
used in a number system of Base 16. 

Identifier. The name of a declared item. 

Integer. The set of positive and negative whole 
numbers. 

Internal routine. A routine that can be used only from 
within the lexical scope in which it was declared. 

J 

JCL Gob control language). A control language used to 
identify a job to an operating system and to describe 
the job's requirements. 

292 vs Pascal Application Programming Guide 

JOB statement. The JCL statement that identifies the 
start of the job. 

L 

lexical scope. Identifies the portion of a unit in which a 
name is known. An identifier declared in a routine is 
known within that routine and within all nested 
routines. If a nested routine declares an item with the 
same name, the outer item is not available in the 
nested routine. 

load module. A computer program in a form suitable 
for loading into main storage for execution. 

M 

mixed string. A mixture of DBCS and SBCS data. 

o 

object code. Output from a compiler or assembler 
which is itself executable machine code or is suitable 
for processing to produce executable machine code. 

object module. A portion of an object program suitable 
as input to a linkage editor. 

ordinal type. A scalar type whose values are mapped 
to a continuous range of integers. 

p 

PDS (partitioned data set). A file (sometimes referred 
to as a library) containing logical files that are called 
members. 

pOinter. A variable that contains the address of a 
dynamic variable. 

procedure. A routine, invoked by coding its name as a 
statement, that does not pass a result back to the 
invoker. 

program. See executable program. 

program unit. The name of the compilable unit of code 
that represents the first unit executed. 

Q 

QSAM (queued sequential access method). An 
extended version of BSAM. When this method is used, 
a queue is formed of input data blocks that are awaiting 
processing or of output data blocks that have been 
processed and are awaiting transfer to auxiliary 
storage or to an output device. 

qualification. A naming mechanism in a programming 
language for referencing a component of a language 

external variable. A variable that may be referenced 
from units and scopes other than the one in which it 
was declared. 

F 

field. The component of a record. 

file pointer. A pOinter into an input/output buffer. 

FILE type. A data type that is the mechanism to do 
input and output in VS Pascal. 

fixed-length record. A record having the same length 
as all other records with which it is logically or 
physically associated. 

fixed string. A PACKED ARRA Y[1...n] OF CHAR or a 
PACKED ARRA Y[1...n] OF GCHAR. 

floating-point number. A subset of the set of real 
numbers. 

formal parameter. A parameter as declared in the 
routine heading. A formal parameter is used to specify 
what is permitted to be passed to a routine. 

function. A routine that is invoked by coding its name 
in an expression. The routine passes a result back to 
the invoker through the routine name. 

G 

GENERIC routine. A routine whose parameter count, 
types and passing mechanism are specified by the call 
to the routine. 

H 

heap. An area of storage where dynamic variables are 
created. 

hexadecimal digits. A digit that is a member of the set 
of sixteen digits: 0 through 9, and then A through F 
used in a number system of Base 16. 

Identifier. The name of a declared item. 

Integer. The set of positive and negative whole 
numbers. 

Internal routine. A routine that can be used only from 
within the lexical scope in which it was declared. 

J 

JCL Oob control language). A control language used to 
identify a job to an operating system and to describe 
the job's requirements. 

292 vs Pascal Application Programming Guide 

JOB statement. The JCL statement that identifies the 
start of the job. 

L 

lexical scope. Identifies the portion of a unit in which a 
name is known. An identifier declared in a routine is 
known within that routine and within all nested 
routines. If a nested routine declares an item with the 
same name, the outer item is not available in the 
nested routine. 

load module. A computer program in a form suitable 
for loading into main storage for execution. 

M 

mixed string. A mixture of DBCS and SBCS data. 

o 

object code. Output from a compiler or assembler 
which is itself executable machine code or is suitable 
for processing to produce executable machine code. 

object module. A portion of an object program suitable 
as input to a linkage editor. 

ordinal type. A scalar type whose values are mapped 
to a continuous range of integers. 

p 

PDS (partitioned data set). A file (sometimes referred 
to as a library) containing logical files that are called 
members. 

pOinter. A variable that contains the address of a 
dynamic variable. 

procedure. A routine, invoked by coding its name as a 
statement, that does not pass a result back to the 
invoker. 

program. See executable program. 

program unit. The name of the compilable unit of code 
that represents the first unit executed. 

Q 

QSAM (queued sequential access method). An 
extended version of BSAM. When this method is used, 
a queue is formed of input data blocks that are awaiting 
processing or of output data blocks that have been 
processed and are awaiting transfer to auxiliary 
storage or to an output device. 

qualification. A naming mechanism in a programming 
language for referencing a component of a language 



object by means of a reference to the object and an 
identifier declared for the component. A qualification 
consists of a unit name and a routine name. 

R 

record type. The structured type that contains a series 
of fields. Each field may be a different type than the 
other fields in the record. A field is selected by the 
name of the field. 

register. A storage device having a specified storage 
capacity such as a bit, byte, or computer word, and 
usually intended for a special purpose. 

reserved word. An identifier whose use is restricted by 
the VS Pascal compiler. 

residence mode. Determines where in storage a 
program may reside (either above or below the 
16-megabyte line). 

RMODE. Specifies the residence mode of a load 
module when it is loaded into virtual storage for 
execution. 

routine. A unit of a VS Pascal program that may be 
called. The two types of routines are functions and 
procedures. 

s 

scalar type. A type whose values contain only one 
element. 

SBCS. See single-byte character set. 

segment unit. A compilable unit in VS Pascal that is 
used to contain entry routines. 

shift-in character. Indicates the end of DBCS data and 
is denoted by X 

source module. The source statements that constitute 
the input to a language translator for a particular 
translation. 

statement. The executable code in a VS Pascal 
program. 

string. Represents an ordered list of characters whose 
size may vary at run time. There is a maximum size 
for every string. 

string constant. A string whose value is fixed by the 
compiler. 

structured type. Anyone of several data type 
mechanisms that defines variables that have multiple 
values. Each value is referred to generally as a 
component. 

subrange type. Used to define a variable whose va.lue 
is restricted to some subset of values of a base ordinal 
type. 

subheap. An area in a heap delimited by a call to 
MARK. Subheaps are treated in a stack-like manner 
within a heap. 

T 

text decks. A main program unit and any segment units 
of file type TEXT. 

text libraries. The VS Pascal run-time library and any 
other libraries of compiled code with the file type 
TXTLIB. 

type. Defines the permissible values a variable may 
assume. 

type definition. The specification of a data type. The 
specification may appear in a type declaration or in the 
declaration of a variable. 

type Identifier. The name given to a declared type. 

u 

unit. See compilable unit. 

v 

variable-length record. A record having a length 
independent of the length of other records with which it 
is logically or physically associated. 

Glossary 293 

object by means of a reference to the object and an 
identifier declared for the component. A qualification 
consists of a unit name and a routine name. 

R 

record type. The structured type that contains a series 
of fields. Each field may be a different type than the 
other fields in the record. A field is selected by the 
name of the field. 

register. A storage device having a specified storage 
capacity such as a bit, byte, or computer word, and 
usually intended for a special purpose. 

reserved word. An identifier whose use is restricted by 
the VS Pascal compiler. 

residence mode. Determines where in storage a 
program may reside (either above or below the 
16-megabyte line). 

RMODE. Specifies the residence mode of a load 
module when it is loaded into virtual storage for 
execution. 

routine. A unit of a VS Pascal program that may be 
called. The two types of routines are functions and 
procedures. 

s 

scalar type. A type whose values contain only one 
element. 

SBCS. See single-byte character set. 

segment unit. A compilable unit in VS Pascal that is 
used to contain entry routines. 

shift-in character. Indicates the end of DBCS data and 
is denoted by X 

source module. The source statements that constitute 
the input to a language translator for a particular 
translation. 

statement. The executable code in a VS Pascal 
program. 

string. Represents an ordered list of characters whose 
size may vary at run time. There is a maximum size 
for every string. 

string constant. A string whose value is fixed by the 
compiler. 

structured type. Anyone of several data type 
mechanisms that defines variables that have multiple 
values. Each value is referred to generally as a 
component. 

subrange type. Used to define a variable whose value 
is restricted to some subset of values of a base ordinal 
type. 

subheap. An area in a heap delimited by a call to 
MARK. Subheaps are treated in a stack-like manner 
within a heap. 

T 

text decks. A main program unit and any segment units 
of file type TEXT. 

text libraries. The VS Pascal run-time library and any 
other libraries of compiled code with the file type 
TXTUB. 

type. Defines the permissible values a variable may 
assume. 

type definition. The specification of a data type. The 
specification may appear in a type declaration or in the 
declaration of a variable. 

type Identifier. The name given to a declared type. 

u 

unit. See compilable unit. 

v 

variable-length record. A record having a length 
independent of the length of other records with which it 
is logically or physically associated. 

Glossary 293 





Bibliography 

VS Pascal Publications 

These books provide additional information about VS 
Pascal. 

Evaluation 

• VS Pascal General Information, GC26-4318, 
provides an overview of VS Pascal. 

• VS Pascal Licensed Program Specifications, 
GC26-4317, contains warranty information for VS 
Pascal. 

Application Programming 

• VS Pascal Language Reference, SC26-4320, 
provides a detailed explanation of the VS Pascal 
programming language and its syntax. 

• VS Pascal Reference Summary, SX26-3760, 
provides quick-reference charts of VS Pascal 
language rules and processing/debugging options. 

Installation 

• VS Pascallnstal/ation and Customization for VM, 
SC26-4342, explains how to install VS Pascal under 
VM/SP and VM/XA. 

• VS Pascallnstal/ation and Customization for MVS, 
SC26-4321, explains how to install VS Pascal under 
MVS/SP, MVS/XA and MVS/ESA. 

Diagnosis 

• VS Pascal Diagnosis Guide and Reference, 
LY27-9525, explains how to diagnose, report, and 
request information on VS Pascal-related 
problems. 

Related Publications 

These publications will be helpful when working with 
VS Pascal. 

VM 
Virtual Machine/System Product CMS Command 
Reference, SC19-6209 

Virtual Machine/System Product CMS User's 
Guide, SC19-6210 

Virtual Machine/System Product: Planning Guide 
and Reference, SC19-6201 

i 
i. 

Virtual Machine/System Product CMS for System 
Programming, SC24-5286 

Virtual Machine/System Product Application 
Development Guide, SC24-5247 

VM/XA System Product CMS Application Program 
Development Guide, SC23-0355 

VM/XA System Product CMS Application Program 
Conversion Guide, SC23-0403 

VM/XA System Product CMS Command Reference, 
SC23-0354 

VM/XA System Product CMS User's Guide, 
SC23-0356 

VM/XA System Product Planning, GC23-0378 

Job Control Language 
MVS/370 JCL User's Guide, GC28-0692 

MVS/370 JCL Reference, GC28-1350 

MVS/Extended Architecture JCL User's Guide, 
GC28-1351 

MVS/Extended Architecture JCL Reference, 
GC28-1352 

MVS/Enterprise Systems Architecture JCL User's 
Guide, GC28-1830. 

MVS/Enterprise Systems Architecture JCL 
Reference, GC28-1829. 

T80 
TSO Extensions Command Reference, GC28-1307 

OS/VS2 TSO Command Language Reference, 
GC28-0646 

MVS/Extended Architecture TSO Command 
Language Reference, GC28-0646 with supplement 
number GD23-0259 

Assembler 
Assembler H Version 2 Application Programming: 
Language Reference, GC26-4037. 

COBOL 
IBM OSIVS COBOL Compiler and Library 
Programmer's Guide, SC28-6483 

VS COBOL 1/ Application Programming Guide, 
SC26-4045 

Bibliography 295 

Bibliography 

VS Pascal Publications 

These books provide additional information about VS 
Pascal. 

Evaluation 

• VS Pascal General Information, GC26-4318, 
provides an overview of VS Pascal. 

• VS Pascal Licensed Program Specifications, 
GC26-4317, contains warranty information for VS 
Pascal. 

Application Programming 

• VS Pascal Language Reference, SC26-4320, 
provides a detailed explanation of the VS Pascal 
programming language and its syntax. 

• VS Pascal Reference Summary, SX26-3760, 
provides quick-reference charts of VS Pascal 
language rules and processing/debugging options. 

Installation 

• VS Pascal Installation and Customization for VM, 
SC26-4342, explains how to install VS Pascal under 
VM/SP and VM/XA. 

• VS Pascal Installation and Customization for MVS, 
SC26-4321, explains how to install VS Pascal under 
MVS/SP, MVS/XA and MVS/ESA. 

Diagnosis 

• VS Pascal Diagnosis Guide and Reference, 
LY27-9525, explains how to diagnose, report, and 
request information on VS Pascal-related 
problems. 

Related Publications 

These publications will be helpful when working with 
VS Pascal. 

VM 
Virtual Machine/System Product CMS Command 
Reference, SC19-6209 

Virtual Machine/System Product CMS User's 
Guide, SC19-6210 

Virtual Machine/System Product: Planning Guide 
and Reference, SC19-6201 

i 
I. 

Virtual Machine/System Product CMS for System 
Programming, SC24-5286 

Virtual Machine/System Product Application 
Development Guide, SC24-5247 

VM/XA System Product CMS Application Program 
Development Guide, SC23-0355 

VM/XA System Product CMS Application Program 
Conversion Guide, SC23-0403 

VM/XA System Product CMS Command Reference, 
SC23-0354 

VM/XA System Product CMS User's Guide, 
SC23-0356 

VM/XA System Product Planning, GC23-0378 

Job Control Language 
MVS/370 JCL User's Guide, GC28-0692 

MVS/370 JCL Reference, GC28-1350 

MVS/Extended Architecture JCL User's Guide, 
GC28-1351 

MVS/Extended Architecture JCL Reference, 
GC28-1352 

MVS/Enterprise Systems Architecture JCL User's 
Guide, GC28-1830. 

MVS/Enterprise Systems Architecture JCL 
Reference, GC28-1829. 

T50 
TSO Extensions Command Reference, GC28-1307 

OSIVS2 TSO Command Language Reference, 
GC28-0646 

MVS/Extended Architecture TSO Command 
Language Reference, GC28-0646 with supplement 
number G023-0259 

Assembler 
Assembler H Version 2 Application Programming: 
Language Reference, GC26-4037. 

COBOL 
IBM OSIVS COBOL Compiler and Library 
Programmer's Guide, SC28-6483 

VS COBOL II Application Programming Guide, 
SC26-4045 

Bibliography 295 



PL/I 
OS PLII Optimizing Compiler: Programmer's 
Guide, SC33-0006 

OS PLII Version 2 Programming Guide, SC26-4307. 

OS PLII Version 2 Programming: Language 
Reference, SC26-4308. 

FORTRAN 
VS FORTRAN Programming Guide, SC26-4118 

VS FORTRAN Version 2: Programming Guide, 
SC26-4222 

296 vs Pascal Application Programming Guide 

Linkage Editor and Loader 
MVSI370 Linkage Editor and Loader User's Guide, 
GC26-4061 

MVSIExtended Architecture Linkage Editor and 
Loader User's Guide (Data Facility Product, 
Version 1), GC26-4011 

MVSIExtended Architecture Linkage Editor and 
Loader User's Guide (Data Facility Product, 
Version 2), GC26-4143 

Principles of Operation 
IBM Systeml370 Extended Architecture Principles 
of Operation, SA22-7085 

IBM Systeml370 Principles of Operation, 
GA22-7000 

IBM Systeml370 Enterprise Systems Architecture 
Principles of Operation, SA22-7200. 

PL/I 
OS PLII Optimizing Compiler: Programmer's 
Guide, SC33-0006 

OS PLII Version 2 Programming Guide, SC26-4307. 

OS PLII Version 2 Programming: Language 
Reference, SC26-4308. 

FORTRAN 
VS FORTRAN Programming Guide, SC26-4118 

VS FORTRAN Version 2: Programming Guide, 
SC26-4222 

296 vs Pascal Application Programming Guide 

Linkage Editor and Loader 
MVSI370 Linkage Editor and Loader User's Guide, 
GC26-4061 

MVSIExtended Architecture Linkage Editor and 
Loader User's Guide (Data Facility Product, 
Version 1), GC26-4011 

MVSIExtended Architecture Linkage Editor and 
Loader User's Guide (Data Facility Product, 
Version 2), GC26-4143 

Principles of Operation 
IBM Systeml370 Extended Architecture Principles 
of Operation, SA22-7085 

IBM Systeml370 Principles of Operation, 
GA22-7000 

IBM Systeml370 Enterprise Systems Architecture 
Principles of Operation, SA22-7200. 



Index 

Special Characters 
• view storage 

debugging command 183 
• view variable 

debugging command 183 
%INCLUDE compiler directive 

under CMS 3 
under MVS batch mode 23 
under TSO 14 

? HELP 
debugging command 179 

HELP 
description 179 

A 
access methods 

BDAM 45 
BPAM 45 
QSAM 45 

ALFA data type 
boundary alignment 189 
size 189 

ALLOCATE command 
example 18 

ALLOCATION command 
use 45 

ALPHA data type 
boundary alignment 189 
size 189 

AMODE (addressing mode) 
MVS/batch specification 32 
MVS/TSO specification 21 
VM specification 11 

ANSI control characters 
in files 46 

ANSI/IEEE standard 
compliance statement 271 
extension handling 275 
how VS Pascal handles errors 273 
implementation-defined features 271 
implementation-dependent features not 

flagged 275 
appending to a file 

REWRITE procedure 71 
array bounds 

optimization 213 
ARRAY data type 

boundary alignment 191 
array references 

optimization 209 
assembler 

calling Pascal 104-108 

assembler (continued) 
general interface 101 
linking to 99 
macro 

EPILOG 102 
PROLOG 102 

minimum interface 100 
Pascal calling 99-104 

assembler listing 40-41 
example 40 

ASSERT statement 
run-time checking error 76 

ATTR command 
specifying data set attributes 47 

automatic variables 
storage mapping 188 

B 
basic direct access method (BDAM) 

description 45 
basic partitioned access method (BPAM) 

description 45 
batch 

See MVS batch 
BDAM (basic direct access method) 

description 45 
BLKSIZE 

block size attribute 46 
record file default 47 
TEXT file default 47 

BOOLEAN data type 
boundary alignment 189 
size 189 

Boolean short-circuiting 
optimization 206 

boundary alignment of data types 
description 189 

BPAM (basic partitioned access method) 
description 45 

BREAK debugging command 
description 174 

breakpoint 
defined 85 

C 
CALL command 

description 136 
use 19 

cascaded branches 
optimization 207 

CASE statement 
checking error 76 

Index 297 

Index 

Special Characters 
, view storage 

debugging command 183 
, view variable 

debugging command 183 
%INCLUDE compiler directive 

under CMS 3 
under MVS batch mode 23 
under TSO 14 

? HELP 
debugging command 179 

HELP 
description 179 

A 
access methods 

BDAM 45 
BPAM 45 
QSAM 45 

ALF A data type 
boundary alignment 189 
size 189 

ALLOCATE command 
example 18 

ALLOCATION command 
use 45 

ALPHA data type 
boundary alignment 189 
size 189 

AMODE (addressing mode) 
MVS/batch specification 32 
MVS/TSO speCification 21 
VM specification 11 

ANSI control characters 
in files 46 

ANSI/IEEE standard 
compliance statement 271 
extension handling 275 
how VS Pascal handles errors 273 
implementation-defined features 271 
implementation-dependent features not 

flagged 275 
appending to a file 

REWRITE procedure 71 
array bounds 

optimization 213 
ARRAY data type 

boundary alignment 191 
array references 

optimization 209 
assembler 

calling Pascal 104-108 

assembler (continued) 
general interface 101 
linking to 99 
macro 

EPILOG 102 
PROLOG 102 

minimum interface 100 
Pascal calling 99-104 

assembler listing 40-41 
example 40 

ASSERT statement 
run-time checking error 76 

ATTR command 
specifying data set attributes 47 

automatic variables 
storage mapping 188 

B 
basic direct access method (BDAM) 

description 45 
basic partitioned access method (BPAM) 

description 45 
batch 

See MVS batch 
BDAM (basic direct access method) 

description 45 
BLKSIZE 

block size attribute 46 
record fi Ie default 47 
TEXT file default 47 

BOOLEAN data type 
boundary alignment 189 
size 189 

Boolean short-circuiting 
optimization 206 

boundary alignment of data types 
description 189 

BPAM (basic partitioned access method) 
description 45 

BREAK debugging command 
description 174 

breakpoint 
defined 85 

C 
CALL command 

description 136 
use 19 

cascaded branches 
optimization 207 

CASE statement 
checking error 76 

Index 297 



CASE statement (continued) 
run-time checking 157 

cataloged procedures 
description 137 
examples 29 
PASCC 26, 139 
PASCCG 28, 149 
PASCCL 27, 144 
PASCCLG 28,152 
PASCG 26, 143 
PASCL 26,141 
PASCLG 28, 147 
use 25 

CHAR data type 
boundary alignment 189 
size 189 

CHECK compile-time option 
CASE statements 157 
description 157 
function routines 157 
pOinters 157 
string truncation 157 
subscripts 158 

checking errors 
run-time 76 

CLEAR debugging command 
description 176 

CLiST 
PASCMOD 134 
running PASCMOD 16 
running VSPASCAL 14 
VSPASCAL 131 

CLOSE procedure 
closing a file 70 

closing a file 
CLOSE procedure 70 

CMS (conversational monitor system) 
See also VM (Virtual Machine) 
building a load module 7 
compiling under 3 
defining files under 8 
EXEC 

PASCMOD 7 
PASCRUN 9 
VSPASCAL 3 

load module invocation 9 
running under 3 

CMS debugging command 
description 176 

COBOL 
calling Pascal 114-115 
Pascal calling 113-114 

command 
CALL 136 

commands, debugging 
See debugging commands 

common subexpression elimination 
optimization 210 

298 vs Pascal Application Programming Guide 

compilation 
under CMS 3 
under MVS batch 23 
under MVS/TSO 13 

compile-time options 
CHECK 157 
CONDPARM 159 
DDNAME 160 
DEBUG 161 
FLAG 161 
GOSTMT 161 
GRAPHIC 162 
HEADER 162 
LANGLVL 162 
LlNECOUNT 163 
LIST 163 
MARGINS 164 
NOCHECK 157 
NODE BUG 161 
NOGOSTMT 161 
NOGRAPHIC 162 
NOHEADER 162 
NOLIST 163 
NOOPTIMIZE 164 
NOPXREF 164 
NOSEQUENCE 165 
NOSOURCE 165 
NOWRITE 166 
NOXREF 166 
OPTIMIZE 164 
PAGEWIDTH 164 
passing under MVS batch 24 
passing under MVS/TSO 15 

passing under VM 4 
PXREF 164 
SEQUENCE 165 
SOURCE 165 
STDFLAG 165 
WRITE 166 
XREF 166 

compiler diagnostics 
MVS batch 25 
under CMS 5 
under TSO 15 

compiler limits 
description 278 

compiler messages 216 
compliance statement 

ANSIIIEEE Pascal standard 271 
CONDPARM compile-time option 

description 159 
console input 

TERMIN procedure 53 
CONSOLE option 

(*) parameter 
on VSPASCAL CLiST 132 

dsname parameter 
on VSPASCAL CLiST 132 

CASE statement (continued) 
run-time checking 157 

cataloged procedures 
description 137 
examples 29 
PASCC 26,139 
PASCCG 28, 149 
PASCCL 27, 144 
PASCCLG 28,152 
PASCG 26, 143 
PASCL 26,141 
PASCLG 28, 147 
use 25 

CHAR data type 
boundary alignment 189 
size 189 

CHECK compile-time option 
CASE statements 157 
description 157 
function routines 157 
pOinters 157 
string truncation 157 
subscripts 158 

checking errors 
run-time 76 

CLEAR debugging command 
description 176 

CLiST 
PASCMOD 134 
running PASCMOD 16 
running VSPASCAL 14 
VSPASCAL 131 

CLOSE procedure 
closing a file 70 

closing a file 
CLOSE procedure 70 

CMS (conversational monitor system) 
See also VM (Virtual Machine) 
building a load module 7 
compiling under 3 
defining files under 8 
EXEC 

PASCMOD 7 
PASCRUN 9 
VSPASCAL 3 

load module invocation 9 
running under 3 

CMS debugging command 
description 176 

COBOL 
calling Pascal 114-115 
Pascal calling 113,-114 

command 
CALL 136 

commands, debugging 
See debugging commands 

common subexpression elimination 
optimization 210 

298 vs Pascal Application Programming Guide 

compilation 
under CMS 3 
under MVS batch 23 
under MVS/TSO 13 

compile-time options 
CHECK 157 
CONDPARM 159 
DDNAME 160 
DEBUG 161 
FLAG 161 
GOSTMT 161 
GRAPHIC 162 
HEADER 162 
LANGLVL 162 
LlNECOUNT 163 
LIST 163 
MARGINS 164 
NOCHECK 157 
NODEBUG 161 
NOGOSTMT 161 
NOGRAPHIC 162 
NOHEADER 162 
NOLIST 163 
NOOPTIMIZE 164 
NOPXREF 164 
NOSEQUENCE 165 
NOSOURCE 165 
NOWRITE 166 
NOXREF 166 
OPTIMIZE 164 
PAGEWIDTH 164 
passing under MVS batch 24 
passing under MVS/TSO 15 
passing under VM 4 
PXREF 164 
SEQUENCE 165 
SOURCE 165 
STDFLAG 165 
WRITE 166 
XREF 166 

compiler diagnostics 
MVS batch 25 
under CMS 5 
under TSO 15 

compiler limits 
description 278 

compiler messages 216 
compliance statement 

ANSI/IEEE Pascal standard 271 
CONDPARM compile-time option 

description 159 
console input 

TERMIN procedure 53 
CONSOLE option 

(*) parameter 
on VSPASCAL CLiST 132 

dsname parameter 
on VSPASCAL CLiST 132 



CONSOLE option (continued) 
on VSPASCAL EXEC 128 

console output 
TERMOUT procedure 53 

constant folding 
optimization 205 

conversational monitor system (CMS) 
See CMS (conversational monitor system) 

COUNT run-time option 
description 168 

cross-reference listing 37-40 
example 37 

o 
data set 

descriptions 137-138 
data set attributes 

BLKSIZE 46 
LRECL 46 
RECFM 46 

data types 
boundary alignment 189 
size 189 

DBCS (double-byte character set) support 
what it is 281 

DCB attributes 
BLKSIZE 46 
LRECL 46 
RECFM 46 

ddname 
OPEN specification 54 

ddname association 
description 46 

DDNAME compile-time option 
description 160 
use 46 

DDNAME open option 
use 46 

DEBUG option 
compile-time 

description 161 
required for symbolic variable dump 81 
under MVS batch 84 
under MVS/TSO 84 
under VM 83 

description 168 
modifying cataloged procedures to enable 28 
on PASCMOD CLiST 134 
on PASCMOD EXEC 129 
run-time 

during nonfatal error 77 
debugging 

library 81 
sample terminal session 86 
trace-back report 73 
under MVS 84 
under VM 83 

debugging a program 
messages 251 

debugging commands 
BREAK 174 
CLEAR 176 
CMS 176 
DISPLAY 177 
DISPLAY BREAKS 177 
DISPLAY COUNTS 177 
DISPLAY EQUATES 178 
END 178 
EQUATE 178 
GO 179 
HELP 179 
LlSTVARS 180 
QUAL 180 
QUIT 180 
RESET 181 
SET ATTR 181 
SET COUNT 182 
SET TRACE 182 
TRACE 183 
view storage 183 
view variables 183 
WALK 184 

debugging library 
under MVS batch 28 
under MVS/TSO 16 
under VM 7 

DEF variable 
limit 279 
storage mapping 189 
use 109 

defining files 
under TSO 18 
under VM 8 

diagnostics 
compiler 5 

DISK option 
on VSPASCAL EXEC 128 

DISPLAY BREAKS debugging command 
descri ption 177 

DISPLAY COUNTS debugging command 
description 177 

DISPLAY debugging command 
description 177 

DISPLAY EQUATES debugging command 
description 178 

DLII 
communication with VS Pascal 121 

double-byte character set (DBCS) support 
what it is 281 

DSA (dynamic storage area) 
address 102 

dsname (member) option 
on CALL command 136 

dsname option 
on PASCMOD CLiST 134 

Index 299 

CONSOLE option (continued) 
onVSPASCALEXEC 128 

console output 
TERMOUT procedure 53 

constant folding 
optimization 205 

conversational monitor system (CMS) 
See CMS (conversational monitor system) 

COUNT run-time option 
description 168 

cross-reference listing 37-40 
example 37 

o 
data set 

descriptions 137-138 
data set attributes 

BLKSIZE 46 
LRECL 46 
RECFM 46 

data types 
boundary alignment 189 
size 189 

DBCS (double-byte character set) support 
what it is 281 

DCB attributes 
BLKSIZE 46 
LRECL 46 
RECFM 46 

ddname 
OPEN specification 54 

ddname association 
description 46 

DDNAME compile-time option 
description 160 
use 46 

DDNAME open option 
use 46 

DEBUG option 
compile-time 

description 161 
reqlJired for symbolic variable dump 81 
under MVS batch 84 
under MVS/TSO 84 
under VM 83 

description 168 
modifying cataloged procedures to enable 28 
on PASCMOD CLiST 134 
on PASCMOD EXEC 129 
run-time 

during nonfatal error 77 
debugging 

library 81 
sample terminal session 86 
trace-back report 73 
under MVS 84 
under VM 83 

debugging a program 
messages 251 

debugging commands 
BREAK 174 
CLEAR 176 
CMS 176 
DISPLAY 177 
DISPLAY BREAKS 177 
DISPLAY COUNTS 177 
DISPLAY EQUATES 178 
END 178 
EQUATE 178 
GO 179 
HELP 179 
LlSTVARS 180 
QUAL 180 
QUIT 180 
RESET 181 
SET ATTR 181 
SET COUNT 182 
SET TRACE 182 
TRACE 183 
view storage 183 
view variables 183 
WALK 184 

debugging library 
under MVS batch 28 
under MVS/TSO 16 
under VM 7 

DEF variable 
limit 279 
storage mapping 189 
use 109 

defining files 
under TSO 18 
under VM 8 

diagnostics 
compiler 5 

DISK option 
on VSPASCAL EXEC 128 

DISPLAY BREAKS debugging command 
description 177 

DISPLAY COUNTS debugging command 
description 177 

DISPLAY debugging command 
description 177 

DISPLAY EQUATES debugging command 
description 178 

DLII 
communication with VS Pascal 121 

double-byte character set (DBCS) support 
what it is 281 

DSA (dynamic storage area) 
address 102 

dsname (member) option 
on CALL command 136 

dsname option 
on PASCMOD CLiST 134 

Index 299 



dump 
symbolic variable 81 

dynamic storage area (DSA) 
See DSA (dynamic storage area) 

dynamic variable 

E 

storage management 199 
storage mapping 189 

END debugging command 
description 178 

end-of-fi Ie condition 
for record files 70 
for TEXT file 65 
with GET procedure 59 
with REAOLN procedure 61 

end-of-line condition 
in TEXT file 64 
with GET procedure 58 
with REAOLN procedure 61 
with RESET procedure 49 

enumerated scalar data type 
boundary alignment 190 
size 190 

EOF function 
coding 65 
example 65 
for record files 70 

EOLN function 
coding 64 
example 64 

EPILOG 
assembler macro 102 

EPSREAL 
representation of 278 

EQUATE debugging command 
description 178 

ERRCOUNT run-time option 
description 168 
use 77 

ERRFILE run-time option 
description 168 

errors 
how VS Pascal handles ANSIIIEEE standard 273 
run-time 

intercepting 79 
run-time handling 76 

ESO (external symbol dictionary) 
listing 42 

EXEC 
PASCMOD 128 

link-editing 7 
PASCRUN 130 

invoking a module 9 
VSPASCAL 127 

compiling 3 

300 vs Pascal Application Programming Guide 

executing a program 
under MVS batch 23 
under TSO 19 
under VM 9 

execution errors 
intercepting 79 

expression simplification 
optimization 205 

extension handling 
in ANSI/IEEE standard 275 

external symbol dictionary (ESO) 
listing 42 

F 
file closing 

optimization 214 
FILE data type 

boundary alignment 192 
size 192 

file definitions' 
under CMS 8 
under MVS batch 29 
under TSO 18 

FILEOEF command 
example 8 
specifying data set attributes 47 
use 45 

FLAG compile-time option 
description 161 

floating-point arithmetic 
characteristics 278 

FORTRAN 
calling Pascal 110-112 
communication with Pascal 109 
function may not be passed as a parameter 277 
parameter passing 198 
Pascal calling 109-110 
subroutine may not be passed as a parameter 277 

function 
passed as parameter 197 
size limitations 279 

function results 
description 197 

function routine 
checking error 76 
checking for run-time errors 157 

G 
GCHAR data type 

boundary alignment 189 
size 189 

general interface 
in assembler routine 101 

GENERIC 
parameter passing 198 

dump 
symbolic variable 81 

dynamic storage area (DSA) 
See DSA (dynamic storage area) 

dynamic variable 

E 

storage management 199 
storage mapping 189 

END debugging command 
description 178 

end-of-file condition 
for record files 70 
for TEXT file 65 
with GET procedure 59 
with READLN procedure 61 

end-of-line condition 
in TEXT file 64 
with GET procedure 58 
with READLN procedure 61 
with RESET procedure 49 

enumerated scalar data type 
boundary alignment 190 
size 190 

EOF function 
coding 65 
example 65 
for record files 70 

EOLN function 
coding 64 
example 64 

EPILOG 
assembler macro 102 

EPSREAL 
representation of 278 

EQUATE debugging command 
description 178 

ERRCOUNT run-time option 
description 168 
use 77 

ERRFILE run-time option 
description 168 

errors 
how VS Pascal handles ANSI/IEEE standard 273 
run-time 

intercepting 79 
run-time handling 76 

ESD (external symbol dictionary) 
listing 42 

EXEC 
PASCMOD 128 

link-editing 7 
PASCRUN 130 

invoking a module 9 
VSPASCAL 127 

compiling 3 

300 VS Pascal Application Programming Guide 

executing a program 
under MVS batch 23 
under TSO 19 
under VM 9 

execution errors 
intercepting 79 

expression simplification 
optimization 205 

extension handling 
in ANSIIIEEE standard 275 

external symbol dictionary (ESD) 
listing 42 

F 
file closing 

optimization 214 
FILE data type 

boundary alignment 192 
size 192 

file definitions' 
under CMS 8 
under MVS batch 29 
under TSO 18 

FILEDEF command 
example 8 
specifying data set attributes 47 
use 45 

FLAG compile-time option 
description 161 

floating-point arithmetic 
characteristics 278 

FORTRAN 
calling Pascal 110-112 
communication with Pascal 109 
function may not be passed as a parameter 277 
parameter passing 198 
Pascal calling 109--110 
subroutine may not be passed as a parameter 277 

function 
passed as parameter 197 
size limitations 279 

function results 
description 197 

function routine 
checking error 76 
checking for run-time errors 157 

G 
GCHAR data type 

boundary alignment 189 
size 189 

general interface 
in assembler routine 101 

GENERIC 
parameter passing 198 



GENERIC directive 
IMS communication 121 

GET procedure 
example 59 
record files 65 
TEXT file 58 

GO debugging command 
description 179 
example 90 

GOSTMT compile-time option 
description 161 

GRAPHIC compile-time option 
description 162 

GSTRING data type 

H 

boundary alignment 189 
size 189 

HEADER compile-time option 
description 162 

heap 
storage management 200 

HEAP run-time option 
description 169 

high bound checking error 
run-time 76 

identifiers 
length of 278 

implementation 
dependent features not flagged 275 
features of VS Pascal 271 
specifics 277 

IMS (Information Management System) 
communication with VS Pascal 121-123 

In-line code for predefined routines 
optimization 205 

INCLUDE compiler directive 
under CMS 3 
under MVS batch mode 23 
under TSO 14 

include library 
%INCLUDE directive 14 
representation in source listing 35 
specifying 3, 14,23 

INTEGER data type 
boundary alignment 189 
largest integer represented 277 
size 189 

interactive debugging commands 
See debugging commands 

interactive files 
READLN procedure 61 
RESET procedure 49 

interactive input 
opening a file for 49 

INTERACTIVE open option 
interactive input 56 
RESET procedure 49 
with READLN procedure 61 

intercepting run-time errors 
ONERROR 79 

interface 
general 101 
minimum 100 

interlanguage communication 97-119 
data type equivalents 118 

ISO Pascal Standard 
VS pascal compliance 271 

J 
JCL (Job Control Language) 

in MVS Batch 23 
Job Control Language (JCL) 

See JCL (Job Control Language) 

L 
LANGLVL compile-time option 

description 162 
LANGUAGE compile-time option 

description 163 
LANGUAGE run-time option 

description 170 
LIB option 

dsnlist parameter 
on PASCMOD CLiST 134 

on VSPASCAL CLiST 132 
on VSPASCAL EXEC 127 

L1NECOUNT compile-time option 
description 163 

linkage conventions 
description 185 

LIST compile-time option 
description 163 

listing 
assembler 40 
assembler example 40 
compiler 

MVS batch 24 
MVS/TSO 15 
VM 5 

cross-reference 36 
cross-reference example 37 
external symbol dictionary (ESD) 42 
external symbol dictionary example 42 
source 34 
source example 34 

L1STVARS debugging command 
description 180 
example 89 

Index 301 

GENERIC directive 
IMS communication 121 

GET procedure 
example 59 
record files 65 
TEXT file 58 

GO debugging command 
description 179 
example 90 

GOSTMT compile-time option 
description 161 

GRAPHIC compile-time option 
descri ption 162 

GSTRING data type 

H 

boundary alignment 189 
size 189 

HEADER compile-time option 
description 162 

heap 
storage management 200 

HEAP run-time option 
description 169 

high bound checking error 
run-time 76 

identifiers 
length of 278 

implementation 
dependent features not flagged 275 
features of VS Pascal 271 
specifics 277 

IMS (Information Management System) 
communication with VS Pascal 121-123 

In-line code for predefined routines 
optimization 205 

INCLUDE compiler directive 
under CMS 3 
under MVS batch mode 23 
under TSO 14 

include library 
%INCLUDE directive 14 
representation in source listing 35 
specifying 3, 14,23 

INTEGER data type 
boundary alignment 189 
largest integer represented 277 
size 189 

interactive debugging commands 
See debugging commands 

interactive files 
READLN procedure 61 
RESET procedure 49 

interactive input 
opening a file for 49 

INTERACTIVE open option 
interactive input 56 
RESET procedure 49 
with READLN procedure 61 

intercepting run-time errors 
ONERROR 79 

interface 
general 101 
minimum 100 

interlanguage communication 97-119 
data type equivalents 118 

ISO Pascal Standard 
VS pascal compliance 271 

J 
JCL (Job Control Language) 

in MVS Batch 23 
Job Control Language (JCL) 

See JCL (Job Control Language) 

L 
LANGLVL compile-time option 

description 162 
LANGUAGE compile-time option 

description 163 
LANGUAGE run-time option 

description 170 
LIB option 

dsnlist parameter 
on PASCMOD CLiST 134 

on VSPASCAL CLiST 132 
on VSPASCAL EXEC 127 

LlNECOUNT compile-time option 
description 163 

linkage conventions 
description 185 

LIST compile-time option 
description 163 

listing 
assembler 40 
assembler example 40 
compiler 

MVS batch 24 
MVS/TSO 15 
VM 5 

cross-reference 36 
cross-reference example 37 
external symbol dictionary (ESD) 42 
external symbol dictionary example 42 
source 34 
source example 34 

LlSTVARS debugging command 
description 180 
example 89 

Index 301 



load module 
creating under CMS 7 
invoking under TSO 19 
VM/CMS invocation 9 

low bound checking error 
run-time 76 

LRECL 
length attribute 46 
record file default 47 
TEXT file default 47 

M 
machine control characters 

in files 46 
MACUB 

default 4 
definition 45 
including 3 

macro 
EPILOG 102 
PROLOG 102 

MAIN directive 
with assembler routine 104 
with COBOL routi ne 113, 114 
with FORTRAN routine 109, 110 
with PLII routine 116,118 

MAINT run-time option 
description 170 

MARGINS compile-time option 
description 164 

MAXINT 
predefined constant 277 

MAXREAL predefined constant 
representation of 278 

MEMBER open option 
file name specification 56 

memory references 
optimization 211 

messages 
CUST 257 
compi ler 216--239 
debugging tool 251 
EXEC 255-256 
intermediate code optimization 240 
object code generation 241 
run-time 243 

migration considerations 281-289 
minimum interface 

in assembler routine 100 
MINREAL predefined constant 

representation of 278 
Multiple Virtual Storage (MVS) 

debugging a program under 84 
using cataloged procedures 25 

MVS (Multiple Virtual Storage) 
debugging a program under 84 
using cataloged procedures 25 

302 vs Pascal Application Programming Guide 

MVS/XA 

N 

sample TSO session for 22 
31-bit addressing mode 21,32 

NAME open option 
file name specification 57 

NAME option 
on PASCMOD EXEC 129 

nesting routines 
limits 278 

NIL pointer checking error 
run-time 76 

NOCC open option 
description 46, 57 

NOCHECK compile-time option 
description 157 

NOCHECK run-time option 
description 170 

NODEBLJG compile-time option 
description 161 

NODE BUG option 
on PASCMOD CUST 134 
on PASCMOD EXEC 129 

NOGOSTMT compile-time option 
description 161 

NOGRAPHIC compile-time option 
description 162 

NOH EADER compile-time option 
description 162 

NOUB option 
on VSPASCAL CUST 131 

NOLIST compile-time option 
description 163 

NOOBJECT option 
on VSPASCAL CUST 133 
on VSPASCAL EXEC 128 

NOOPTIMIZE compile-time option 
description 164 

NOPRINT option 
on VSPASCAL CUST 132 
on VSPASCAL EXEC 128 

NOPXREF compile-time option 
description 164 

NOSEQUENCE compile-time option 
description 165 

NOSOURCE compile-time option 
description 165 

NOSPIE run-time option 
description 170 

NOTRANLIB option 
on PASCMOD CLiST 135 
on PASCMOD EXEC 129 

NOWRITE compile-time option 
description 166 

NOXA option 
on PASCMOD CUST 135 

load module 
creating under CMS 7 
invoking under TSO 19 
VM/CMS invocation 9 

low bound checking error 
run-time 76 

LRECL 
length attribute 46 
record file default 47 
TEXT file default 47 

M 
machine control characters 

in files 46 
MACLIB 

default 4 
definition 45 
including 3 

macro 
EPILOG 102 
PROLOG 102 

MAIN directive 
with assembler routine 104 
with COBOL routine 113, 114 
with FORTRAN routine 109,110 
with PLII routine 116, 118 

MAINT run-time option 
description 170 

MARGINS compile-time option 
description 164 

MAXI NT 
predefined constant 277 

MAXREAL predefined constant 
representation of 278 

MEMBER open option 
file name specification 56 

memory references 
optimization 211 

messages 
CLiST 257 
compiler 216-239 
debugging tool 251 
EXEC 255-256 
intermediate code optimization 240 
object code generation 241 
run-time 243 

migration considerations 281-289 
minimum interface 

in assembler routine 100 
MINREAL predefined constant 

representation of 278 
Multiple Virtual Storage (MVS) 

debugging a program under 84 
using cataloged procedures 25 

MVS (Multiple Virtual Storage) 
debugging a program under 84 
using cataloged procedures 25 

302 vs Pascal Application Programming Guide 

MVS/XA 

N 

sample TSO session for 22 
31-bit addressing mode 21,32 

NAME open option 
file name specification 57 

NAME option 
on PASCMOD EXEC 129 

nesting routines 
limits 278 

NIL pointer checking error 
run-time 76 

NOCC open option 
description 46,57 

NOCHECK compile-time option 
description 157 

NOCHECK run-time option 
description 170 

NODE BUG compile-time option 
description 161 

NODEBUG option 
on PASCMOD CLiST 134 
on PASCMOD EXEC 129 

NOGOSTMT compile-time option 
description 161 

NOGRAPHIC compile-time option 
description 162 

NOHEADER compile-time option 
description 162 

NOLIB option 
on VSPASCAL CLiST 131 

NOLIST compile-time option 
description 163 

NOOBJECT option 
on VSPASCAL CLiST 133 
on VSPASCAL EXEC 128 

NOOPTIMIZE compile-time option 
description 164 

NOPRINT option 
on VSPASCAL CLiST 132 
on VSPASCAL EXEC 128 

NOPXREF compile-time option 
description 164 

NOSEQUENCE compile-time option 
description 165 

NOSOURCE compile-time option 
description 165 

NOSPIE run-time option 
description 170 

NOTRANLIB option 
on PASCMOD CLiST 135 
on PASCMOD EXEC 129 

NOWRITE compile-time option 
description 166 

NOXA option 
on PASCMOD CLiST 135 



NOXA option (continued) 
on PASCMOD EXEC 129 

NOXREF compile-time option 
description 166 

o 
OBJECT option 

dsname parameter 133 
on VSPASCAl CUST 133 

dsnlist parameter 
on PASCMOD CUST 134 

on VSPASCAl EXEC 128 
ONERROR routine 

contents 79 
description 78 

open options 
list 54 

opening a file 
for input 

RESET 48 
for output 49 
for terminal input 53 
for terminal output 53 
for update 50 
interactive input 49 
partitioned data set 51, 52 

opening a file for output 
example 50 

optimization 
array bounds 213 
array references 209 
Boolean short-circuiting 206 
cascaded branches 207 
common subexpression elimination 210 
constant folding 205 
expression simplification 205 
file closing 214 
In-line code for predefined routines 205 
memory references 211 
partial dead code elimination 208 
program parameters 214 
range checking 212 
record field accessing 213 
set operations 208 
strength reduction 208 
unnesting function calls 209 
value and constant parameters 214 
VALUE initializations 214 
variable declaration 213 

OPTIMIZE compile-time option 
description 164 

OUCODE data set 
description 137 

OUTPUT data set 
description 137,138 

p 
PAGE procedure 

coding 63 
example 64 

PAGEWIDTH compile-time option 
description 164 

parameter passing 
description 195 
function 197 
procedure 197 
read only reference 196 
read/write reference 195 
routines that may not be passed 277 
value 197 

partial dead code elimination 
optimization 208 

partitioned data set (PDS) 
definition 45 
opening for input (PDSIN) 51 
opening for output (PDSOUT) 52 

PascallVS, migration considerations 286-289 
PASCC cataloged procedure 

example 30 
listing 139 
use 26 

PASCCG cataloged procedure 
example 29 
listing 149 
use 28 

PASCCl cataloged procedure 
listing 144 
use 27 

PASCClG cataloged procedure 
example 30 
listing 152 
use 28 

PASCG cataloged procedure 
listing 143 
use 26 

PASCl cataloged procedure 
listing 141 
use 26 

PASClG cataloged procedure 
listing 147 
use 28 

PASCMOD CUST 
description 134 
messages 257 
XA option 21 

PASCMOD EXEC 
description 128 
messages 255 
under CMS 7 

XA option 11 
PASCRUN EXEC 

description 130 
invoking a load module 9 
messages 255 

Index 303 

NOXA option (continued) 
on PASCMOD EXEC 129 

NOXREF compile-time option 
description 166 

o 
OBJECT option 

dsname parameter 133 
on VSPASCAl CUST 133 

dsnlist parameter 
on PASCMOD CUST 134 

on VSPASCAl EXEC 128 
ONERROR routine 

contents 79 
description 78 

open options 
list 54 

opening a file 
for input 

RESET 48 
for output 49 
for terminal input 53 
for terminal output 53 
for update 50 
interactive input 49 
partitioned data set 51, 52 

opening a file for output 
example 50 

optimization 
array bounds 213 
array references 209 
Boolean short-circuiting 206 
cascaded branches 207 
common subexpression elimination 210 
constant folding 205 
expression simplification 205 
file closing 214 
In-line code for predefined routines 205 
memory references 211 
partial dead code elimination 208 
program parameters 214 
range checking 212 
record field accessing 213 
set operations 208 
strength reduction 208 
unnesting function calls 209 
value and constant parameters 214 
VALUE initializations 214 
variable declaration 213 

OPTIMIZE compile-time option 
description 164 

OUCODE data set 
description 137 

OUTPUT data set 
description 137,138 

p 
PAGE procedure 

coding 63 
example 64 

PAGEWIDTH compile-time option 
description 164 

parameter passing 
description 195 
function 197 
procedure 197 
read only reference 196 
read/write reference 195 
routines that may not be passed 277 
value 197 

partial dead code elimination 
optimization 208 

partitioned data set (PDS) 
definition 45 
opening for input (PDSIN) 51 
opening for output (PDSOUT) 52 

PascalIVS, migration considerations 286-289 
PASCC cataloged procedure 

example 30 
listing 139 
use 26 

PASCCG cataloged procedure 
example 29 
listing 149 
use 28 

PASCCl cataloged procedure 
listing 144 
use 27 

PASCClG cataloged procedure 
example 30 
listing 152 
use 28 

PASCG cataloged procedure 
listing 143 
use 26 

PASCl cataloged procedure 
listing 141 
use 26 

PASClG cataloged procedure 
listing 147 
use 28 

PASCMOD CUST 
description 134 
messages 257 
XA option 21 

PASCMOD EXEC 
description 128 
messages 255 
under CMS 7 

XA option 11 
PASCRUN EXEC 

description 130 
invoking a load module 9 
messages 255 

Index 303 



PASDEBUG TXTUB 
under VM 7 

PCWA (VS Pascal communication work area) 
address 102 

PDS (partitioned data set) 
definition 45 
opening for input (PDSIN) 51 
opening for output (PDSOUT) 52 

PDSIN procedure 
coding 51 

PDSOUT procedure 
coding 52 

PLII 
calling Pascal 117-118 
communication with Pascal 116 
Pascal calling 116 

pointer 
checking for run-time errors 157 

predefined constant 
EPSREAL 278 
MAXINT 277 
MAXREAL 278 
MINREAL 278 

PRINT option 
on VSPASCAL CLiST 132 
on VSPASCAL EXEC 128 

procedure 
passed as parameter 197 

procedures 
size limitations 279 

procedures, cataloged 
See cataloged procedures 

program parameters 
optimization 214 

PROLOG 
assembler macro 102 

PSCLHX procedure 
with COBOL routine 115 
with FORTRAN routine 112 
with PLII routi ne 118 

PUT procedure 
coding 59 
record files 66 
TEXT file 59 
TEXT file example 60 

PXREF compile-time option 
description 164 

Q 
QSAM (queued sequential access method) 

description 45 
QUAL debugging command 

description 180 
queued sequential access method (QSAM) 

See also QSAM (queued sequential access method) 
description 45 

304 vs Pascal Application Programming Guide 

QUIT debugging command 
description 180 

R 
random access files 

SEEK procedure 68 
range checking 

optimization 212 
READ procedure 

coding 60 
for record file 67 
TEXT file 60 

READLN procedure 
for TEXT files 61 

REAL data type 
boundary alignment 189 
size 189 

RECFM 
record file default 47 
record format attribute 46 
TEXT file default 47 

RECORD data type 
boundary alignment 191 

record field accessing 
optimization 213 

record fields 
storage mapping 189 

record file 
BLKSIZE 47 

. closing 70 
default 
GET operation 65 
LRECL 47 
opening example 50, 51 
opening for input 48 
opening for output 49 
PUT operation 66 
RECFM 47 
updating 50 

REENTRANT directive 
IMS communication 121 
with assembler routine 104 
with COBOL routine 115 
with FORTRAN routine 111 
with PLII routine 116, 118 

REF variable 
limit 279 

register usage 
description 185 

RESET debugging command 
description 181 

RESET procedure 
coding 48 
example 48 
interactive input example 49 

REWRITE procedure 
coding 49 

PASDEBUG TXTUB 
under VM 7 

PCWA (VS Pascal communication work area) 
address 102 

PDS (partitioned data set) 
definition 45 
opening for input (PDSIN) 51 
opening for output (PDSOUT) 52 

PDSIN procedure 
coding 51 

PDSOUT procedure 
coding 52 

PLII 
calling Pascal 117-118 
communication with Pascal 116 
Pascalcalling 116 

pointer 
checking for run-time errors 157 

predefined constant 
EPSREAL 278 
MAXI NT 277 
MAXREAL 278 
MINREAL 278 

PRINT option 
on VSPASCAL CUST 132 
on VSPASCAL EXEC 128 

procedure 
passed as parameter 197 

procedures 
size limitations 279 

procedures, cataloged 
See cataloged procedures 

program parameters 
optimization 214 

PROLOG 
assembler macro 102 

PSCLHX procedure 
with COBOL routine 115 
with FORTRAN routine 112 
with PLII routi ne 118 

PUT procedure 
coding 59 
record files 66 
TEXT file 59 
TEXT file example 60 

PXREF compile-time option 
description 164 

Q 
QSAM (queued sequential access method) 

description 45 
QUAL debugging command 

description 180 
queued sequential access method (QSAM) 

See also QSAM (queued sequential access method) 
description 45 

304 vs Pascal Application Programming Guide 

QUIT debugging command 
description 180 

R 
random access files 

SEEK procedure 68 
range checking 

optimization 212 
READ procedure 

coding 60 
for record file 67 
TEXT file 60 

READLN procedure 
for TEXT files 61 

REAL data type 
boundary alignment 189 
size 189 

RECFM 
record file default 47 
record format attribute 46 
TEXT file default 47 

RECORD data type 
boundary alignment 191 

record field accessing 
optimization 213 

record fields 
storage mapping 189 

record file 
BLKSIZE 47 
closing 70 
default 
GET operation 65 
LRECL 47 
opening example 50, 51 
opening for input 48 
opening for output 49 
PUT operation 66 
RECFM 47 
updating 50 

REENTRANT directive 
IMS communication 121 
with assembler routine 104 
with COBOL routine 115 
with FORTRAN routine 111 
with PLII routine 116, 118 

REF variable 
limit 279 

register usage 
description 185 

RESET debugging command 
description 181 

RESET procedure 
coding 48 
example 48 
interactive input example 49 

REWRITE procedure 
coding 49 



REWRITE procedure (continued) 
example 50 

RMODE (residence mode) 
MVS/batch specification 32 
MVS/TSO specification 21 
VM specification 11 

routine format 
description 188 

routine invocation 
description 186 

routines 
limits 278 
nested levels 278 
ONERROR 78 
that may not be passed as parameters 277 
TRACE 73 

run-time errors 
handling 76, 78 
intercepting 79 

run-time options 
COUNT 168 
DEBUG 168 
description 167 
ERRCOUNT 168 
ERRFILE 168 
HEAP 169 
LANGUAGE 170 
MAINT 170 
NOCHECK 170 
NOSPIE 170 
SETMEM 170 
STACK 171 

S 
SEEK procedure 

accessing a file randomly 68 
SEQUENCE compile-time option 

description 165 
SET ATTR debugging command 

description 181 
SET COUNT debugging command 

description 182 
SET data type 

conditions for 278 
limit 279 
storage mapping 192 

set operations 
optimization 208 

SET TRACE debugging command 
description 182 
example 90 

SETMEM run-time option 
description 170 

SHORTREAL data type 
boundary alignment 189 
size 189 

size of data types 
description 189 

SOURCE compile-time option 
description 165 

source listing 
example 34 

SPACE data type 
boundary alignment 193 

STACK run-time option 
description 171 

statement counting 
description 85 

static variables 
storage mapping 188 

STDFLAG compile-time option 
description 165 

STEPLIB data set 
description 137,138 

storage management 
using intelligently 203 

storage mapping 
description 188 

storage requirements 
limits on functions 279 
limits on procedures 279 
MVS batch mode 23 
MVS/TSO 13 
VM/CMS 3 

strength reduction 
optimization 208 

STRING data type 
boundary alignment 189 
size 189 

string subscript 
checking error 76 

string truncation 
checking error 76 
checking for run-time errors 157 

STRINGPTR data type 
boundary alignment 189 
size 189 

subheap 
storage management 200 

subrange scalar data type 
checking for run-time errors 157 
storage mapping 190 

subscript range 
checking for run-time errors 158 

symbolic variable dump 
when produced 81 

syntax diagrams 
default parameters 266 
multiple parameters 265 
optional parameters 264 
required parameters 263 

SYSIN data set 
description 137, 138 

Index 305 

REWRITE procedure (continued) 
example 50 

RMODE (residence mode) 
MVS/batch specification 32 
MVS/TSO specification 21 
VM specification 11 

routine format 
description 188 

routine invocation 
description 186 

routines 
limits 278 
nested levels 278 
ONERROR 78 
that may not be passed as parameters 277 
TRACE 73 

run-time errors 
handling 76,78 
intercepting 79 

run-time options 
COUNT 168 
DEBUG 168 
description 167 
ERRCOUNT 168 
ERRFILE 168 
HEAP 169 
LANGUAGE 170 
MAINT 170 
NOCHECK 170 
NOSPIE 170 
SETMEM 170 
STACK 171 

S 
SEEK procedure 

accessing a file randomly 68 
SEQUENCE compile-time option 

description 165 
SET ATTR debugging command 

description 181 
SET COUNT debugging command 

description 182 
SET data type 

conditions for 278 
limit 279 
storage mapping 192 

set operations 
optimization 208 

SET TRACE debugging command 
description 182 
example 90 

SETMEM run-time option 
description 170 

SHORTREAL data type 
boundary alignment 189 
size 189 

size of data types 
descri ption 189 

SOURCE compile-time option 
description 165 

source listing 
example 34 

SPACE data type 
boundary alignment 193 

STACK run-time option 
description 171 

statement counting 
description 85 

static variables 
storage mapping 188 

STDFLAG compile-time option 
description 165 

STEPLIB data set 
description 137,138 

storage management 
using intelligently 203 

storage mapping 
description 188 

storage requirements 
limits on functions 279 
limits on procedures 279 
MVS batch mode 23 
MVS/TSO 13 
VM/CMS 3 

strength reduction 
optimization 208 

STRING data type 
boundary alignment 189 
size 189 

string subscript 
checking error 76 

string truncation 
checking error 76 
checking for run-time errors 157 

STRINGPTR data type 
boundary alignment 189 
size 189 

subheap 
storage management 200 

subrange scalar data type 
checking for run-time errors 157 
storage mapping 190 

subscript range 
checking for run-time errors 158 

symbolic variable dump 
when produced 81 

syntax diagrams 
default parameters 266 
multiple parameters 265 
optional parameters 264 
required parameters 263 

SYSIN data set 
description 137,138 

Index 305 



SYSLIB data set 
description 137, 138 

SYSLIB DD statement 27 
%INCLUDE library 23 

SYSLIN data set 
description 137, 138 

SYSLIN DD statement 25 
SYSLIST data set 

description 137 
SYSLMOD data set 

description 138 
SYSLMOD DD statement 27 
SYSLOUT data set 

description 138 
SYSOIN data set 

description 138 
SYSPRINT data set 

description 138 
used for listings and diagnostics 25 
used for symbolic variable dump 81 

SYSPRINT option 
on VSPASCAL CLiST 132 

SYSTERM data set 
description 138 

SYSTIN data set 
description 138 

SYSUHDR data set 
description 138 

SYSUT1 data set 
description 138 

SYSUT2 data set 
description 138 

SYSXREF data set 
description 138 

T 
TERMIN procedure 

for terminal input 53 
terminal input 

TERMIN procedure 53 
terminal output 

TERMOUT procedure 53 
TERMOUT procedure 

for terminal output 53 
TEXT data type 

boundary alignment 189 
size 189 

TEXT file 
BLKSIZE 47 
closing 70 
default 
end-of-file condition for 65 
EOF function example 65 
EOLN function example 64 
GET procedure example 59 
interactive input 49 
LRECL 47 

306 vs Pascal Application Programming Guide 

TEXT file (continued) 
opening example 50 
opening for input 48 

RESET 48 
opening for output 49 
PUT procedure example 60 
reading data from 58 
reading from 60 
RECFM 47 
WRITELN procedure example 63 
writing data 59 

Time Sharing Option (TSO) 
See also TSO (Time Sharing Option) 
storage requirements 13 

TRACE debugging command 
description 183 

TRACE routine 
debugging aid 73 

trace-back report 
debugging aid 73 

TRANLIB option 
on PASCMOD CLiST 135 
on PASCMOD EXEC 129 

TSO (Time Sharing Option) 
building a load module 16 
compiling 13 
defining files 18 
invoking the load module 19 
sample session 20 
storage requirements 13 

TSO session 
for 31-bit addressing mode 22 

U 
UCASE open option 

description 58 
UCODE data set 

description 138 
unnesting function calls 

optimization 209 
UPDATE procedure 

coding 50 

v 
value and constant parameters 

optimization 214 
VALUE initializatlons 

optimization 214 
variable 

DEF 279 
REF 279 

variable declaration 
optimization 213 

variable dump 
when produced 81 

SYSLIB data set 
description 137,138 

SYSLIB DO statement 27 
%INCLUDE library 23 

SYSLIN data set 
description 137, 138 

SYSLIN DO statement 25 
SYSLIST data set 

descri ption 137 
SYSLMOD data set 

description 138 
SYSLMOD DO statement 27 
SYSLOUT data set 

description 138 
SYSOIN data set 

description 138 
SYSPRINT data set 

description 138 
used for listings and diagnostics 25 
used for symbolic variable dump 81 

SYSPRINT option 
on VSPASCAL CLiST 132 

SYSTERM data set 
description 138 

SYSTIN data set 
description 138 

SYSUHDR data set 
description 138 

SYSUT1 data set 
description 138 

SYSUT2 data set 
description 138 

SYSXREF data set 
descri ption 138 

T 
TERMIN procedure 

for terminal input 53 
terminal input 

TERMIN procedure 53 
terminal output 

TERMOUT procedure 53 
TERMOUT procedure 

for terminal output 53 
TEXT data type 

boundary alignment 189 
size 189 

TEXT file 
BLKSIZE 47 
closing 70 
default 
end-of-file condition for 65 
EOF function example 65 
EOLN function example 64 
GET procedure example 59 
interactive input 49 
LRECL 47 

306 vs Pascal Application Programming Guide 

TEXT file (continued) 
opening example 50 
opening for input 48 

RESET 48 
opening for output 49 
PUT procedure example 60 
reading data from 58 
reading from 60 
RECFM 47 
WRITELN procedure example 63 
writing data 59 

Time Sharing Option (TSO) 
See also TSO (Time Sharing Option) 
storage requirements 13 

TRACE debugging command 
description 183 

TRACE routi ne 
debugging aid 73 

trace-back report 
debugging aid 73 

TRANLIB option 
on PASCMOD CLiST 135 
on PASCMOD EXEC 129 

TSO (Time Sharing Option) 
building a load module 16 
compiling 13 
defining files 18 
invoking the load module 19 
sample session 20 
storage requirements 13 

TSO session 
for 31-bit addressing mode 22 

U 
UCASE open option 

description 58 
UCODE data set 

description 138 
unnesting function calls 

optimization 209 
UPDATE procedure 

coding 50 

v 
value and constant parameters 

optimization 214 
VALUE initializations 

optimization 214 
variable 

DEF 279 
REF 279 

variable declaration 
optimization 213 

variable dump 
when produced 81 



variables 
limit 279 

variables, automatic 
storage mapping 188 

view storage debugging command 
description 183 

view variable debugging command 
description 183 

Virtual Machine (VM) 
See also VM (Virtual Machine) 
debugging a program 83 
running under 3 

VM (Virtual Machine) 
building a load module 7 
compiling under 3 
debugging a program 83 
definingfiles 8 
invoking the load module 9 
running under 3 
sample session 10 
XA sample session 12 
31-bit addressing mode sample session 12 

VM/XA 
31-bit addressing mode 11 

VS Pascal 
migration considerations 281-289 

VSPASCAL CLiST 
description 131 
messages 257 
use 14 

VSPASCAL EXEC 
description 127 
messages 255 
use 3 

W 
WALK debugging command 

description 184 
WRITE compile-time option 

description 166 
WRITE procedure 

description 62 
for record file 67 

WRITELN procedure 
description 62 
example 63 

X 
XA option 

addressing/residence modes 11 
MVS/TSO 21 
on PASCMOD CLiST 135 
on PASCMOD EXEC 129 

XA parameter 
MVS/batch 32 

XREF compile-time option 
description 166 

Numerics 
1983 ANSI/IEEE standard 

how VS Pascal handles errors 273 
31-bit addressing mode 

AMODE/RMODE specifications 11 
MVS/batch specification 32 
MVS/TSO 21 
sample TSO session for 22 

Index 307 

variables 
limit 279 

variables, automatic 
storage mapping 188 

view storage debugging command 
description 183 

view variable debugging command 
description 183 

Virtual Machine (VM) 
See also VM (Virtual Machine) 
debugging a program 83 
running under 3 

VM (Virtual Machine) 
building a load module 7 
compiling under 3 
debugging a program 83 
defining files 8 
invoking the load module 9 
running under 3 
sample session 10 
XA sample session 12 
31-bit addressing mode sample session 12 

VM/XA 
31-bit addressing mode 11 

VS Pascal 
migration considerations 281-289 

VSPASCAL CLiST 
description 131 
messages 257 
use 14 

VSPASCAL EXEC 
description 127 
messages 255 
use 3 

w 
WALK debugging command 

description 184 
WRITE compile-time option 

description 166 
WRITE procedure 

description 62 
for record file 67 

WRITELN procedure 
description 62 
example 63 

X 
XA option 

addressing/residence modes 11 
MVS/TSO 21 
on PASCMOD CLiST 135 
on PASCMOD EXEC 129 

XA parameter 
MVS/batch 32 

XREF compile-time option 
description 166 

Numerics 
1983 ANSI/IEEE standard 

how VS Pascal handles errors 273 
31-bit addressing mode 

AMODE/RMODE specifications 11 
MVS/batch specification 32 
MVS/TSO 21 
sample TSO session for 22 

Index 307 





2 
o 
z 

VS Pascal 
Application Programming Guide 

SC26-4319-1 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM systems. 
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the under­
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any 
obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appro­
priate. 

Note: Do not use this form to request IBM publications. H you do, your order will be delayed because publications are not slocked at 
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for assistance in using 
your IBM system, to your IBM representative or to Ihe IBM branch office serving your locality. 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

Comments (please include specific chapter and page references) : 

If you want a reply, please complete the following information: 

Name __________________________________________________ __ Date ____________________________________ _ 

Company ________________________________________________ _ Phone No. ( _____ ) ________________________ _ 

Address ____________________________________________________________________________________________ __ 

Thank you for your cooperation. No postage is necessary If mailed in the U.S.A. (Elsewhere. an IBM office or representative will be 
happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.) 

<D 

-0 
z 

VS Pascal 
Application Programming Guide 

SC26-4319-1 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM systems. 
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the under­
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any 
obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appro­
priate. 

Note: Do not use this form to request IBM publications. H you do, your order will be delayed because publications are not stocked at 
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for assistance in using 
your IBM system, to your IBM representative or to the IBM branch oHlce serving your locality. 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

Comments (please include specific chapter and page references) : 

If you want a reply, please complete the following information: 

Name __________________________________________________ __ Date ___________________ _ 

Company __________________________ _ Phone No. ( _____ ) ___________ ___ 

Address _______________________________________________________ __ 

Thank you for your cooperation. No postage is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be 
happy to forward your comments or you may mall them directly to the address in the Edition Notice on the back of the title page.) 



SC26-4319-1 

Reader's Comment Form 

Fold and tape 

Fold and tape 

-~- ------- - -------- -. ---- - - -------------- -, 
® 

Please do not staple 

BUSINESS REPLY MAIL 
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY 

POSTAGE WILL BE PAID BY ADDRESSEE 

IBM Corporation 
Programming Publishing 
P.O. Box 49023 
San Jose, CA 95161-9023 

1'1.11 •• 1.1.1 •• 111 •••••• 111.1 •• 1.1 •• 1 •• 1 •••• 11.1.1.1 

Please do not staple 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

1 

I 
1 

1 

1 

1 

.1 
1 

1 

SC26-4319-1 

Reader's Comment Form 

Fold and tape Please do not staple Fold and tape 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 ............................................................................................... '1 

Fold and tape 

--..- ------ - - ------- -. ---- - ---------
-~-,-

® 

BUSINESS REPLY MAIL 
FIRST CLASS MAIL PERMIT NO. 40 

POSTAGE WILL BE PAID BY ADDRESSEE 

IBM Corporation 
Programming Publishing 
P.O. Box 49023 
San Jose, CA 95161-9023 

ARMONK, NY 

1 ••• 11 •• 1.1.1 •• 111 •••••• 111.1 •• 1.1 •• 1 •• 1 •••• 11.1.1.1 

Please do not staple 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

I 
I 
1 

1 

.1 
I 
I 






