

==~~-i i€1W-; ====r.,. VS Pascal

Diagnosis Guide and Reference

Release 2

"Restricted Materials of IBM"
Licensed Materials - Property of IBM
LY27-9525-1 0 Copyright IBM Corp. 1987, 1988

L Y27 -9525-1

Second Edition (December 1988)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

This edition replaces and makes obsolete the previous edition, LY27-9525-O.

This edition applies to Release 2 of VS Pascal, Program Number 5668-767 (Compiler and Library) and
5668-717 (Library only) and to any subsequent releases until otherwise indicated in new editions or
technical newsletters.

The changes for this edition are summarized under "Summary of Changes" in Appendix A. Because the
technical changes in this edition are extensive and difficult to localize, they are not indicated by vertical
bars in the left margin.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM Systeml370, 30xx, 4300, and 9370 Processors
Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM's program may be used. Any functionally
equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be delayed
because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Programming Publishing, P. O. Box 49023, San Jose,
California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

This is a licensed document that contains restricted materials of International Business Machines
Corporation. © Copyright International Business Machines Corporation 1987, 1988. All rights reserved.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Preface

This book is provided to help persons diagnose problems when using VS Pascal
and presents a systematic way of selecting keywords to describe a suspected
failure in the VS Pascal compiler or library.

This book contains no definition of the VS Pascal programming language and its
syntax. For information about this subject matter, see VS Pascal Language
Reference.

It assumes that you have:

1. Used all the debugging tools and options available to you, such as static debug
statements or the VS Pascal Interactive Debugging Tool.

2. Examined all VS Pascal messages and error conditions produced by the
program, and corrected them when possible.

3. Ensured that the error is occurring in the VS Pascal compiler or library and not
in the application program.

4. Noted the specific sequence of events preceding the error condition.

If you have not completed all these steps, see VS Pascal Application Programming
Guide for more information about how to do so.

How This Manual Is Organized
Part 1, Determining the Cause of the Problem, helps you locate and identify
the source of the problem.

Chapter 1, "Isolating the Problem" on page 3, suggests ways in which
you can determine whether you are experiencing a user error or a problem
in the VS Pascal compiler or library.

Chapter 2, "Creating a Test Case" on page 11, explains how to create a
test case that you can use to isolate the error.

Chapter 3, "Diagnosis Aids" on page 13, summarizes VS Pascal features
that will help you identify the error.

Part 2, Identifying the Problem with Keywords, helps you locate any existing
solutions to the problem once you have determined that VS Pascal is the
cause.

Chapter 4, "Building a Keyword String" on page 21, explains how to build
a keyword string with which you can search a data base for possible
solutions to the problem.

Chapter 5, "Keywords for Options" on page 35, lists the compile-time,
link-time, and run-time options you need to include in the keyword string.

Chapter 6, "Searching for a Solution with Your Keyword String" on
page 39, describes how to search the data base.

Part 3, Reporting the Problem to IBM, explains what information you must
submit to the IBM Support Center if the problem cannot be resolved by any
other means.

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Preface iii

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 7, "Preparing an APAR" on page 43, explains how to submit an. ' '
authorized program analysis report (APAR) if an APAR describing the"
problem does not already exist.

Part 4, Reference, provides additional information on VS Pascal that may help
you isolate the source of the problem.

Chapter 8, "Further VS Pascal Diagnostic Information" on page 49,
describes the major functions and routines of the VS Pascal compiler and
library.

Appendix A, "Summary of Changes" on page 61, details additions and
enhancements related to diagnosing problems that VS Pascal Release 2 makes to
VS Pascal Release 1.

The "Bibliography" on page 63, lists VS Pascal publications and other publications
that might help you to diagnose problems.

Iv VS Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Contents

Part 1. Determining the Cause of the Problem 1

Chapter 1. Isolating the Problem 3
General Questions to Consider 3
Compile-Time Problems 4

If You Receive Compile-Time Error Messages 4
If the Problem Is a Wait, Loop, or Abend 4
If You Receive a Trace-Back Report 5
If You Receive an Incorrect Compilation 5

Link-Time Problems .. 5
If You Receive EXEC or CLiST Error Messages 5
If You Receive Linkage Editor Error Messages under MVS 6

Run-Time Problems .. 6
If You Receive Run-Time Error Messages 7
If the Problem Is a Wait or Loop .. 7
If the Problem Is an Abend 7
If You Receive Incorrect Output 8

Installation Problems 8
Errors in VS Pascal Publications 8
Degraded Performance 9
VS Pascal Product Problems 9

Chapter 2. Creating a Test Case 11

Chapter 3. Diagnosis Aids 13
Compile-Time Options 13
Compiler Directives .. 14
Routines .. 15
Link-Time Option .. 16
Run-Time Options ... 16
VS Pascal Interactive Debugging Tool 17

Part 2. Identifying the Problem with Keywords 19

Chapter 4. Building a Keyword String 21
Using Keywords 21
Component Identification Keyword 23
Release Level Keyword 23
Keywords to Use for Various Types of Problems 23

Abnormal Terminations (A bends) . 25
Procedure 25
Example .. 26

Error Messages .. 26
Procedure 28
Examples 31

Nothing Is Happening . 31
Procedure 31
Example 31

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Contents V

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Errors in VS Pascal Publications 31
Procedure ... 31

Incorrect Output ... 32
Procedure ... 32
Example .. 33

Degraded Performance 33
Procedure ... 33
Example .. 33

Chapter 5. Keywords for Options 35
Compile-Time Options 35
Link-Time Options .. 36
Run-Time Options .. 36

Chapter 6. Searching for a Solution with Your Keyword String 39
If You Conduct the Search 39
If You Request that IBM Conduct the Search 40

Part 3. Reporting the Problem to IBM 41

Chapter 7. Preparing an APAR 43
When to Submit an APAR 43
Materials to Submit with Your APAR 43

Original Source Information 44
Load Library Information 44
Input Data Set Information 44
Compiler Listing ... 44
JCL Listing ... 45
CMS Terminal Session Log 45
Error Trace-Backs .. 45
Debugging Output .. 45
CMS EXECs .. 46
Application Program Description 46
Linkage Editor or Loader Map Listing 46
Applied Solutions .. 46

Part 4. Reference ... 47

Chapter 8. Further VS Pascal Diagnostic Information 49
The Compiler ... 49
The Library .. 49

Input/Output Routines 52
Error-Handling Routines 55
Conversion Routines 56
Mathematical Routines 57
String Routines .. 57
Storage Management Routines 59

The Debugging Library 60
Breakpoint Handling 60

Appendix A. Summary of Changes 61

Bibliography ... 63
VS Pascal Publications 63

vi vs Pascal Diagnosis Guide and Reference L Y27-9525-1 © Copyright IBM Corp. 1987, 1988

"m>,

..J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Related Publications

Index

LY27-9525-1 © Copyright IBM Corp. 1987, 1988

63

65

Contents vii

,

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

\.... Figures

1. Compile-Time Options 13
2. Compiler Directives 15
3. Compiler Routines 15
4. Link-Time Option 16
5. Run-Time Options 17
6. Flowchart of a VS Pascal Keyword String 22
7. VS Pascal Symptom Table 23
8. Statement Names as Modifier Keywords 26
9. A Trace-Back Report Identifying a Failing Module and Routine 28

10. A Trace-Back Report Showing an Error-Handling Module as the Last
Action Module .. 29

11. A Trace-Back Report Issued When the MAINT Run-Time Option Is in Effect 30
12. A Trace-Back Report for a Probable User Error 30
13. VS Pascal Compi/e-Time Options 35
14. VS Pascal Link-Time Options 36
15. VS Pascal Run-Time Options 36
16. Summary of Materials Required for APAR Submission 43
17. General Run-Time Routines 50
18. Input/Output Routines 53
19. Error Handling-Routines 56
20. Conversion Routines 56
21. Mathematical Routines 57
22. String Routines .. 58
23. Storage Management Routines 60

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Figures ix

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Part 1. Determining the Cause of the Problem

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Part 1. Determining the Cause of the Problem 1

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 1. Isolating the Problem

In order to correct a problem in a VS Pascal program, you must isolate and
accurately define the problem. The diagnosis hints in this chapter, and in those
parts of the VS Pascal Application Programming Guide that discuss debugging VS
Pascal programs, can help you in this process.

General Questions to Consider
The following questions and suggested courses of action might help you determine
whether you are dealing with an error in your application program or in VS Pascal.

As you work, keep a record of messages that you receive. You should also keep
copies of all programs run and output generated. These records will help you in
isolating and solving both user problems and VS Pascal problems.

Has the program changed since you last complied or executed It successfully?
If so, examine the changes. If the error occurs in the changed code and
cannot be corrected, note the change that caused the error. Keep
copies of both the original and the changed programs.

Did you compile your program using the OPTIMIZE option?
If so, either recompile the program using the NOOPTIMIZE
compile-time option, or use the VS Pascal Interactive Debugging Tool.
If you can successfully compile the program using NOOPTIMIZE, you
have bypassed the problem- not solved it - and you can run the
program until a permanent solution is developed. Keep a record of the
conditions and options in effect at the time the problem occurred.

Did you compile your program using the NOOPTIMIZE option?
If so, use either the VS Pascal Interactive Debugging Tool or Pascal
debugging statements in the code to identify the problem.

Are you accessing roullnes provided by other products, such as IMS, from VS
Pascal?
If so, consider whether new releases of these programs might be
causing problems that appear related to VS Pascal.

Are you accessing other languages from VS Pascal?
If so, consider whether these languages might be causing problems that
appear related to VS Pascal.

Does the problem look like a walt or loop?
If so, it might be a system problem. You should follow your site's
procedures for resolving such problems. If no system problem exists,
and the failure occurs while your program is running, the problem is
probably a user error. Carefully check your VS Pascal source program
to be sure it does not contain an endless loop. Adding a WRITELN
statement and recompiling might help detect such an error.

Does the problem occur during run lime?
If you are running in batch mode and the error results in a system
abend, you might not have allotted enough time to compile or execute
the program. Increasing the time allotment and recompiling or
rerunning the program might solve this problem. It is also possible that

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 1. Isolating the Problem 3

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

the region size specified in the execute step is too small. The problem
may be resolved if you increase the region size and rerun the program.

If the problem persists at this point, read through the rest of this chapter until you
find the section that applies to your problem, and follow the steps given there.

Compile-Time Problems
A problem at compile time will result in one or more of these responses:

• Error messages
• A wait, loop, or abend

• A trace-back report
• An incorrect compilation.

If you receive one of these responses while compiling a program, proceed to the
appropriate section and follow the instructions given there. Remember to keep a
record of any changes you make and their effects.

If You Receive Compile-Time Error Messages
1. For the full meaning of the message and recommended action to take, refer to

the VS Pascal Application Programming Guide. You should also verify the
correct syntax and usage of the code that produces the error. The VS Pascal
Language Reference provides specific coding syntax and the VS Pascal
Application Programming Guide provides usage guidelines.

2. If possible, correct the condition causing the message. Ensure that previous
messages are not related to the current problem.

3. If the problem persists, create the smallest test case possible, as explained in
Chapter 2, "Creating a Test Case" on page 11. Change the values of
compile-time options specified in the test case to determine if one of the
options is causing the problem. Sometimes, rearranging the order of the
specified options can help isolate the problem.

4. If you cannot identify the cause of the problem, follow the instructions given in
Chapter 3, "Diagnosis Aids" on page 13. If you are still unsuccessful, follow
the instructions given in the section "VS Pascal Product Problems" on page 9.

If the Problem Is a Wait, Loop, or Abend
1. Create the smallest test case possible, as explained in Chapter 2, "Creating a

Test Case" on page 11. Change the values of compile-time options specified
in the test case to determine if one of the options is causing the problem.
Sometimes, rearranging the order of the specified options can help isolate the
problem.

2. Produce a dump and verify that the flow of control in the program is correct.

3. If you cannot locate the cause of the problem, follow the instructions given in
Chapter 3, "Diagnosis Aids" on page 13. If you are still unsuccessful, follow
the instructions given in the section "VS Pascal Product Problems" on page 9.

4 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

I
\..."

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

If You Receive a Trace-Back Report
1. Check the statement indicated, and the code immediately preceding the

statement, for proper syntax and usage. The VS Pascal Language Reference
provides specific coding syntax and the VS Pascal Application Programming
Guide provides usage guidelines.

2. If the problem persists, create the smallest test case possible, as explained in
Chapter 2, "Creating a Test Case" on page 11. Change the values of
compile-time options specified in the test case to determine if one of the
options is causing the problem. Sometimes, rearranging the order of the
specified options can help isolate the problem.

3. If you cannot identify the cause of the problem, follow the instructions given in
Chapter 3, "Diagnosis Aids" on page 13. If you are still unsuccessful, follow
the instructions given in the section "VS Pascal Product Problems" on page 9.

If You Receive an Incorrect Compilation
1. Create the smallest test case possible, as explained in Chapter 2, "Creating a

Test Case" on page 11. Change the values of compile-time options specified
in the test case to determine if one of the options is causing the problem.
Sometimes, rearranging the order of the specified options can help isolate the
problem.

2. Produce a compiler listing and a console listing of the compilation.

3. If you cannot locate the cause of the problem, follow the instructions given in
Chapter 3, "Diagnosis Aids" on page 13. If you are still unsuccessful, follow
the instructions given in the section "VS Pascal Product Problems" on page 9.

Link-Time Problems
A problem at link time will result in one or more of these responses:

• EXEC or CLiST error messages
• Linkage editor error messages.

If you receive one of these responses at link time, first verify that you are not
linking your program with an old release of the library. If not, proceed to the
appropriate section and follow the instructions given there. Remember to keep a
record of any changes you make and their effects.

If You Receive EXEC or CLiST Error Messages
1. For the full meaning of the message and recommended action to take, refer to

the VS Pascal Application Programming Guide.

2. If possible, correct the condition causing the message.

3. If the problem persists, change the values of link-time options specified to
determine if one of the options is causing the problem. Sometimes,
rearranging the order of the specified options can help isolate the problem.

4. If you cannot identify the cause of the problem, follow the instructions given in
Chapter 3, "Diagnosis Aids" on page 13. If you are still unsuccessful, follow
the instructions given in the section "VS Pascal Product Problems" on page 9.

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 1. Isolating the Problem 5

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

If You Receive Linkage Editor Error Messages under MVS
1. Rerun the job using the linkage editor options LIST and MAP in order to have

more diagnostic information.

2. If the problem persists at this point, verify that the data sets in the link-edit step
are in the correct search order. See the catalogued procedures in the VS
Pascal Application Programming Guide for more information.

3. If the problem continues, change the values of link-time options specified to
determine if one of the options is causing the problem.

4. If you cannot identify the cause of the problem, follow the instructions given in
Chapter 3, "Diagnosis Aids" on page 13. If you are still unsuccessful, follow
the instructions given in the section "VS Pascal Product Problems" on page 9.

Run-Time Problems
A problem at run time will result in one or more of these responses:

• Run-time error messages
• A wait or loop

• An abend
• Incorrect output.

If you receive one of these responses at run time, you should first:

• Ensure that your code contains no user errors. In most cases, run-time errors
are the result of errors in an application program and not in VS Pascal.

• Use the VS Pascal Interactive Debugging Tool to perform a run-time analysis of
the program and its error. See "VS Pascal Interactive Debugging Tool" on
page 17 for more information on the VS Pascal Interactive Debugging Tool.

• Recompile the program. Specify these compile-time options to produce the
maximum diagnostic information, unless one of these options masks the
problem, or the opposite option is required to cause the problem:

CHECK
GOSTMT
HEADER
LIST
OUCODE

PXREF
SOURCE
UCODE
XREF(LONG}

See "Compile-Time Options" on page 13 for information on the compile-time
options.

• Run the program with different run-time options. Run the program with
SETMEM and MAl NT, and without NOCHECK and NOSPIE, unless the opposite
action is required to cause the problem. Note any changes from the previous
run. See "Run-Time Options" on page 16 for information on the run-time
options.

If the problem persists, proceed to the appropriate section and follow the
instructions given there. Remember to keep a record of any changes you make
and their effects.

6 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

, If You Receive Run-Time Error Messages
...... 1. For the full meaning of the message and recommended action to take. refer to

the VS Pascal Application Programming Guide. You should also verify the
correct syntax and usage of the code that produces the error. The VS Pascal
Language Reference provides specific coding syntax and the VS Pascal
Application Programming Guide provides usage guidelines.

2. If possible. correct the condition causing the message. Ensure that previous
messages are not related to the current problem.

3. Run the program using the MAINT option. Use the trace-back report to
determine if the error occurred in a VS Pascal routine. See VS Pascal
Application Programming Guide for more information on trace-back reports.

4. If the problem persists, create the smallest test case possible, as explained in
Chapter 2, "Creating a Test Case" on page 11. Change the values of
compile-time, link-time, and run-time options specified in the test case to
determine if one of the options is causing the problem. Sometimes,
rearranging the order of the specified options can help isolate the problem.

5. If the problem continues, either use the Interactive Debugging Tool or add
WRITE statements to the code to isolate the problem. Tracing the program
flow might help you locate where, and determine why, the problem is
occurring.

6. If you cannot identify the cause of the problem, follow the instructions given in
Chapter 3, "Diagnosis Aids" on page 13. If you are still unsuccessful, follow
the instructions given in the section "VS Pascal Product Problems" on page 9.

If the Problem Is a Wait or Loop
1. Create the smallest test case possible, as explained in Chapter 2, "Creating a

Test Case" on page 11. Change the values of compile-time, link-time, and
run-time options specified in the test case to determine if one of the options is
causing the problem. Sometimes, rearranging the order of the specified
options can help isolate the problem.

2. If the problem continues, either use the Interactive Debugging Tool or add
WRITE statements to the code to isolate the problem. Tracing the program
flow might help you locate where, and determine why, the problem is
occurring.

3. If you cannot identify the cause of the problem, follow the instructions given in
Chapter 3, "Diagnosis Aids" on page 13. If you are still unsuccessful, follow
the instructions given in the section "VS Pascal Product Problems" on page 9.

If the Problem Is an Abend
1. Create the smallest test case possible, as explained in Chapter 2, "Creating a

Test Case" on page 11. Change the values of compile-time, link-time, and
run-time options specified in the test case to determine if one of the options is
causing the problem. Sometimes, rearranging the order of the specified
options can help isolate the problem.

2. If the problem continues, either use the Interactive Debugging Tool or add
WRITE statements to the code to isolate the problem. Tracing the program
flow might help you locate where, and determine why, the problem is
occurring.

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 1. Isolating the Problem 7

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

3. If you originally compiled the program using the NOCHECK compile-time'
option, recompile the program using CHECK and try to identify the cause of the """"
error. If you originally ran the program using the NOCHECK or NOSPIE
run-time options, rerun the program using the MAINT option.

4. If you cannot identify the cause of the problem. follow the instructions given in
Chapter 3, "Diagnosis Aids" on page 13. If you are still unsuccessful, follow
the instructions given in the section "VS Pascal Product Problems" on page 9.

If You Receive Incorrect Output
1. Create the smallest test case possible, as explained in Chapter 2, "Creating a

Test Case" on page 11. Change the values of compile-time, link-time, and
run-time options specified in the test case to determine if one of the options is
causing the problem. Sometimes, rearranging the order of the specified
options can help isolate the problem.

2. If the problem continues, either use the Interactive Debugging Tool or add
WRITE statements to the code to isolate the problem. Tracing the program
flow might help you locate where, and determine why, the problem is
occurring.

3. If you cannot identify the cause of the problem, follow the instructions given in
Chapter 3, "Diagnosis Aids" on page 13. If you are still unsucceSSful, follow
the instructions given in the section "VS Pascal Product Problems" on page 9.

Installation Problems
If you experience problems during installation you should:

1. Check the PSP bucket.

2. Read the Program Directory accompanying the installation tape.

3. If you still cannot resolve the problem, develop a keyword string based on the
symptoms of the problem, as described in Chapter 4, "Building a Keyword
String" on page 21.

4. As a last resort, re-install VS Pascal following the steps outlined in the proper
installation guide for your system (VS Pascal Installation and Customization for
VM or VS Pascal Installation and Customization for MVS).

Errors in VS Pascal Publications
If you discover an error in a VS Pascal publication, you should take one of these
two courses of action, based upon the severity of the error:

1. If the problem is not severe, fill out the Reader's Comment Form attached to
the back of the manual, and provide the problem description you developed.
Include your name and return address so that IBM can respond to your
comments.

2. If the problem is so severe as to affect other users, follow the instructions
given in Chapter 4, "Building a Keyword String" on page 21.

8 vs Pascal Diagnosis Guide and Reference L Y27-9525-1 © Copyright IBM Corp. 1987, 1988

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

~ Degraded Performance
If the system suffers from degraded performance, and you cannot correct the
problem by system tuning, follow the instructions given in "Degraded
Performance" on page 33.

VS Pascal Product Problems
If you have followed every suggestion given in this chapter, and you have
determined that VS Pascal and not the program is causing the problem, you should
note the sequence of events that leads to the failure and follow the instructions
given in "Component Identification Keyword" on page 23.

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 1. Isolating the Problem 9

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 2. Creating a Test Case

A test case is a simplified version of a failing program that can reproduce the
original error. When faced with a problem, using a test case can help you:

• Distinguish between an error in the program and an error in VS Pascal
• Locate and identify the error
• Choose keywords that best describe the problem.

A test case is created largely through a process of elimination. Depending upon
the type of failure, you change various options and code and recompile or rerun
the program until you discover the likely cause of the error.

The following list of failures and suggested option and code changes will help you
create a test case. Start with the most obvious change that applies to the type of
failure you are experiencing. If the program fails in the same way after changing
one option or section of code, try the next most obvious change. Through this
process of elimination, the test case will be the shortest and simplest version of the
original program and will reproduce the original error.

Unreferenced Identifiers
Remove any unreferenced identifiers. You can locate them using
the XREF(LONG) compile-time option.

Compile-time failure
Remove any code that was not processed at the time of the
failure.

Compile-time failure In a procedure or function

Run-time failure

Remove all code and declarations from any other routines and
keep only the procedure header and BEGIN/END block.

Remove any code that was not executed, as well as references to
the code that could cause a syntactically or semantically invalid
program. Use the COUNT run-time option to find these code
references.

Failure In a structured statement
Put the failing statement in the mainline code. (Structured
statements include IF, CASE, WITH, FOR, WHILE, and REPEAT.)

Failure In a procedure or function
Place the failing code in the main program.

Failure using structured variables
Use scalar variables.

%INCLUDE complier directives
Put all the %INCLUDE member code in the main file.

Segment units
Put all the declarations that are not in the program unit into the
program unit.

LY27-9525-1 © CopyrightlBM Corp. 1987, 1988 Chapter 2. Creating a Test Case 11

Unrelated code

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Remove any code that appears unrelated to the failure (except for
code necessary to ensure the syntactic and semantic validity of
the program).

12 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

L Chapter 3. Diagnosis Aids

,
~

This chapter summarizes the features of VS Pascal that can help you diagnose a
problem and locate the source of an error:

• Compile-time options

• Compiler directives

• Routines
• Link-time options
• Run-time options
• Interactive Debugging Tool.

For more information on these features, refer to the VS Pascal Language
Reference and the VS Pascal Application Programming Guide.

Note: Any of the following features not listed in the above manuals are intended
for diagnostic purposes only, and are marked "FOR DIAGNOSTIC PURPOSES
ONLY". These features should be used only when IBM Service directs you to. IBM
will not accept APARs related to these features.

Compile-Time Options
Some compile-time options can help you isolate problems in the compiler or in a
user program. Figure 1 summarizes these options. For more information on
compile-time options, refer to the VS Pascal Application Programming Guide.

Option Description Used to

CHECK Enables run-time checking for a Catch run-time errors (should
user program. be used at all times).

COMPILER Allows the compiler to be Invoke the compiler to check for
invoked with certain run-time an uninitialized variable in the
options. FOR DIAGNOSTIC compiler (VM only).
PURPOSES ONLY.

CONDPARM Allows only selected sections of Selectively include debugging
source code to be compiled. statements (WRITE) in

compilation.

DEBUG Allows the VS Pascal Interactive Provide information needed by
Debugging Tool to be used with the Interactive Debugging Tool.
a program.

HEADER Places a header in the Identify routines in a program
generated code of each user dump.
routine.

Figure 1 (Part 1 of 2). Compile-Time Options

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 3. Diagnosis Aids 13

Option Description

LANGUAGE Displays textual information in a
language different from that
selected at installation.

LIST Generates a pseudoassembler
listing for the user program
being compiled.

LOG Generates a processing log in
the third compiler pass (code
generation). FOR DIAGNOSTIC
PURPOSES ONLY.

OLOG Generates a processing log in
the second compiler pass
(intermediate code
optimization). FOR
DIAGNOSTIC PURPOSES ONLY.

OUCODE Generates a listing of the
optimized intermediate code.
FOR DIAGNOSTIC PURPOSES
ONLY.

UCODE Generates a listing of the
intermediate code produced by
the compiler. FOR DIAGNOSTIC
PURPOSES ONLY.

WRITE Allows %WRITE statements to
output messages while a
program is being compiled.

Figure 1 (Part 2 of 2). Compile-Time Options

Compiler Directives

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Used to

Generate text in the language
requested by IBM service
personnel.

Determine the instruction
causing a run-time error or
abend and determine if the
compiler is generating incorrect
code.

Determine if an error occurred
when OPTIMIZE was specified.

Diagnose errors occurring in the
second compiler pass.

Diagnose errors occurring in the
second compiler pass.

Diagnose errors occurring in the
first compiler pass.

Diagnose errors occurring in the
first compiler pass.

Some compiler directives can help you isolate problems in the compiler or a user
program. Figure 2 on page 15 summarizes these compiler directives. For more
information on compiler directives, refer to the VS Pascal Language Reference.

14 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © CopyrightlBM Corp. 1987, 1988

~

J

:;

,
~

I
\.-

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Complier
Directive

%CHECK

% LIST

%SELECT
%WHEN
%ENDSELECT

%UHEADER

%WRITE

Description

Enables run-time checking for
a portion of a user program.

Generates a pseudoassembler
listing for a portion of the user
program being compiled.

Marks a section of code that is
selectively compiled.

Allows a customized header to
be placed after the
compiler-generated header.

Issues a message during
compilation of a program.

Figure 2. Compiler Directives

Routines

Used to

Turn checking on and off.

Check the compiler-generated
code, isolate the address of an
abend, and make the
pseudoassembler code listing
smaller.

Selectively include debugging
statements (WRITE) in
compilation.

Put specific information in the
header.

Isolate where the first pass of
the VS Pascal compiler is
failing.

Some compiler routines can help you isolate problems in a user program.
Figure 3 summarizes these compiler routines. For more information on compiler
routines, refer to the VS Pascal Language Reference.

Routine Description Used to

ADDR Returns the address of a given Determine if a variable is
variable. where you expected it to be in

storage.

AMPXMDMP Dumps the storage pools Check if the error occurred in
currently in use. This is the heap manager.
declared as:

PROCEDURE AMPXMDMP; EXTERNAL;

and can be called from a user
program. FOR DIAGNOSTIC
PURPOSES ONLY.

HBOUND Returns the maximum Check if an array subscript was
subscript of an array variable valid.
or type.

Figure 3 (Part 1 of 2). Compiler Routines

L Y27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 3. Diagnosis Aids 15

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Routine Description Used to

HIGHEST Returns the maximum value ot Check if an ordinal value was
a variable or type. valid.

LBOUND Returns the minimum subscript Check if an array subscript was
of an array variable or type. valid.

LOWEST Returns the minimum value of Check if an ordinal value was
a variable or type. valid.

ONERROR Allows run-time errors to be Specify a user-customized exit
trapped and handled specially. routine for run-time errors.

SIZEOF Returns the size of a given Check storage allocations and
variable or type. out-ot-storage conditions.

TRACE Produces a trace-back report Provide a "map" showing the
of the program executing. path taken to a specific

instruction.

Figure 3 (Part 2 of 2). Compiler Routines

Link-Time Option
Figure 4 summarizes a link-time option that can help you isolate problems in a
user program. For more information on this option, refer to the VS Pascal
Application Programming Guida.

link-Time
Option

DEBUG

Description

Activates the Interactive
Debugging Tool.

Figure 4. Link-Time Option

Run-Time Options

Used to

Prepare to use the Interactive
Debugging Tool or to generate
a symbolic dump of the
variables in the failing routine.

Some run-time options can help you isolate problems in a user program. Figure 5
on page 17 summarizes these run-time options. For more information on run-time
options, refer to the VS Pascal Application Programming Guide.

16 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Run-Time
Option Description Used to

COUNT Provides a statement execution Tune performance and show
count for a program. loops in code.

DEBUG Activates the VS Pascal Isolate failures in a program.

ERRCOUNT

ERRFILE

LANGUAGE

MAINT

SETMEM

Interactive Debugging Tool.

Terminates program execution
after a specified number of
errors have occurred.

Directs run-time error
messages to a specified output
device.

Displays textual information in
a language different from that
selected at installation.

Includes all run-time library
routines called in any trace
backs.

Initializes local variable
storage to a common value at
each routine invocation.

Figure 5. Run-Time Options

VS Pascal Interactive Debugging Tool

Reduce amount of information
for service.

Trap error output for service
uses.

Generate text in the language
requested by IBM service
personnel.

Check if an error occurred in
the VS Pascal run-time
envi ronment.

Detect uninitialized variables
in a user program.

You can use the VS Pascal Interactive Debugging Tool to help identify the
statement causing an error. With the VS Pascal Interactive Debugging Tool, you
can:

• Suspend program execution
• Continue execution
• Examine variable values
• Display storage
• Trace program execution
• View a program trace-back report
• Count statement execution
• Issue system commands (CMS only).

You can also use the VS Pascal Interactive Debugging Tool to debug optimized
code, with some restrictions. For more information on the debugging tool, see the
VS Pascal Application Programming Guide.

There is one diagnostic command for the VS Pascal Interactive Debugging Tool -
the DG command. The DG command displays the values contained in general
registers 12 and 13. This command is intended FOR DIAGNOSTIC PURPOSES
ONLY.

LY27-9525-1 0 Copyright IBM Corp. 1987, 1988 Chapter 3. Diagnosis Aids 17

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Part 2. Identifying the Problem with Keywords

LY27-9525-1 C Copyright IBM Corp. 1987, 1988 Part 2. Identifying the Problem with Keywords 19

f

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

.~ Chapter 4. Building a Keyword String

VS Pascal Compiler and Library product failures can be described using keywords.
A keyword is a word or abbreviation used to describe a single aspect of a product
failure. A set of keywords for a given problem is called a keyword string.
Keywords ensure that any two people report the same type of problem caused by
the same program error in identical terms.

This chapter explains how to use keywords describing various types of problems to
develop a full keyword string that includes:

• A component identification keyword that identifies the VS Pascal product
involved

• A release level keyword that identifies the release and modification level
under which you are operating

• Additional keywords that identify the specific type of problem you are
experiencing.

Using Keywords

Before Conllnulng ------------------------,

Ensure that you have followed all instructions outlined in Chapter 1, Isolating
the Problem that relate to the problem you are experiencing.

A keyword string is used as a search argument in an IBM software support data
base, such as the Software Support Facility (SSF) or the Early Warning System
(EWS). In order to search the data base, you must develop a keyword string that
accurately describes the problem.

If the problem has already been entered in the software support data base using
the same keyword string you developed, your search will turn up the matching
entry and, usually, a solution to the problem.

If the problem has not been entered in the software support data base, you can use
the keyword string you developed to prepare an APAR. For additional information
on keywords and APAR preparation, see Field Engineering Programming System
General Information.

Figure 6 on page 22 shows a flowchart of a VS Pascal keyword string.

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 4. Building a Keyword String 21

Abnormal
Termination
Procedure

Message
Procedure

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Release
Level

Keyword

No
Response

Procedure

Incorrect
Output

Procedure

Performance
Problems
Procedure

Search
Argument
Procedure

Document
Procedure

Figure 6. Flowchart of a VS Pascal Keyword String

22 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

~

~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Component Identification Keyword
The component identification number is the first keyword in a keyword string. It
identifies the library within the software support data base that contains known
problem descriptions for the product. A search of the software support data base
with this keyword alone will turn up all reported problems for the entire licensed
program.

566876701 is the component identification keyword for the VS Pascal Compiler and
Library. 566871701 is the component identification keyword for the VS Pascal
Library.

Continue the diagnosis with "Release Level Keyword."

Release Level Keyword
The release level is the second keyword in a keyword string. It identifies the
specific release level of VS Pascal under which you were operating at the time the
problem occurred. A search of the software support data base with this keyword,
and the component identification keyword, will turn up all reported problems for a
specific release and modification level of the licensed program.

The release and modification level (denoted by VS PASCAL RELEASE r.m) is
located at the top of the first page of the most recent compiler listing for your test
case. Specify the release level keyword, using the format Rrm, where "r" is the
release level and "m" is the modification level.

Continue the diagnosis with "Keywords to Use for Various Types of Problems."

Keywords to Use for Various Types of Problems
Select the symptom that best describes the problem from the list of symptoms in
Figure 7. If more than one keyword describes the problem, use the keyword that
appears first in the list.

Symptom

Abend (Abnormal
Termination)

Description

The compiler or user program
has terminated abnormally
without a message, and you
have performed the steps in
"If the Problem Is a Wait,
Loop, or Abend" on page 4
and "If the Problem Is an
Abend" on page 7.

Figure 7 (Part 1 of 2). VS Pascal Symptom Table

Keyword

ABENDx
ABENDUx

See

"Abnormal
Terminations
(Abends)"
on
page 25

LY27-9S2S-1 © Copyright IBM Corp. 1987, 1988 Chapter 4. Building a Keyword String 23

Symptom

Error Messages

Nothing Is
Happening

Errors in
Publications

Incorrect Output

Degraded
Performance

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Description Keyword See

A message indicates a MSGx "Error
compiler or user program Messages"
error, or seems itself to be an on
error, and you have page 26
performed the steps in "If You
Receive Compile-Time Error
Messages" on page 4.

The program seems to be LOOP "Nothing Is
doing nothing, or is doing Happening"
something repetitively, and on
you have performed the steps page 31
in "If the Problem Is a Wait,
Loop, or Abend" on page 4.

Information in one of the VS DOC "Errors in
Pascal publications is VS Pascal
incorrect or missing, and you Publications"
have read the information in on
"Errors in VS Pascal page 31
Publications" on page 8.

Output from the program is INCORROUT "Incorrect
missing or invalid, and you Output" on
have performed the steps in page 32
"If You Receive Incorrect
Output" on page 8.

The performance of the PERFM "Degraded
program is degraded, and you Performance"
have performed the steps in on
"Degraded Performance" on page 33
page 9.

Figure 7 (Part 2 of 2). VS Pascal Symptom Table

24 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987,1988

.'-

...)

~"'"

..J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

l Abnormal Terminations (Abends)
Before proceeding, read "If the Problem Is a Wait, Loop, or Abend" on page 4 if
the problem occurs during compilation, or "If the Problem Is an Abend" on page 7
if the problem occurs during run time.

Procedure

Use the ABENDx keyword when a program exception occurs:

• Within VS Pascal
• Within a VS Pascal-compiled program
• Whenever the VS Pascal compiler or a VS Pascal-compiled program

terminates without a message.

Do not use this keyword if termination is accompanied by a message with the
prefix "AMP". For those situations, refer to "Error Messages" on page 26.

Do not use this keyword if termination was forced because too much time was
spent in a wait state or in an endless loop. For those situations, refer to "Nothing
Is Happening" on page 31.

If the problem occurs during installation, use the modifier INSTALL.

If the problem occurs during compile time or run time:

1. Use the CMPL modifier if the problem occurs during the compilation of your
program. If the problem occurs during run time, use the EXEC modifier.

2. Determine with which compile-time, link-time, and run-time options the failure
occurs. If the failure occurs only when using certain options, indicate those
options in the keyword string. Select the appropriate modifier keyword from
the list shown in Chapter 5, "Keywords for Options" on page 35.

3. Determine which statement causes the problem.

Use the following keywords as modifier keywords to describe the statement
you think is causing the error.

LY27-9S2S-1 © Copyright IBM Corp. 1987, 1988 Chapter 4. Building a Keyword String 25

Example

Error Messages

AND IF
ARRAY IN
ASSERP

LABEL
BEGIN LEAVP

CASE MOD
CONST
CONTINUP NIL

NOT
DEFI
DlV OF6
002 OR
00WNT03 OTHERWISP 7

ELSP PACKED
ENDs PROCEDURE

PROGRAM
FILE
FOR
FUNCTION

GOTO

Figure 8. Statement Names as Modifier Keywords

Notes to Figure 8:
LANGLVL(EXTENDED) only.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

RANGP
RECORD
REFI
REPEAT
RETURNI

SET
SPACP
STATIC 1

THEN4
T03
TYPE

UNTiL8

VALUP
VAR

WHILE
WITH

XOR1

2 Use FOR, WHILE, or WITH as keyword as appropriate.
3 Use FOR as keyword.
4 Use IF as keyword.
S Use BEGIN, CASE, or RECORD as keyword as appropriate.
6 Use ARRAY, CASE, FILE, SET, or SPACE as keyword as appropriate.
7 Use CASE as keyword.
8 Use REPEAT as keyword.

A keyword string showing an OC1 abend in the library has this format:

Component Identification:
Release Level:
Type of Failure:
Modifiers:

566871781
R20
ABENDOCl
EXEC
GOTO

Before proceeding, read "If You Receive Compile-Time Error Messages" on
page 4 if the problem occurs during compilation, or "If You Receive Run-Time
Error Messages" on page 7 if the problem occurs during run time.

Use the MSGx keyword for any of these conditions:

• A message indicates either a compiler or user program error.
• A message is issued under conditions that should not cause it to be issued.
• A message contains invalid data or is missing data.

26 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

,#,

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

\..... Chapter 5. Keywords for Options

I
~~-

This chapter lists the keywords used to describe VS Pascal compile-time, link-time,
and run-time options in keyword strings.

Compile-Time Options
Use the modifier keywords shown below to identify compile-time options and VS
Pascal EXEC and CLIST options in the keyword string.

Option ModHler Keywords

CHECK or NOCHECK CHECK,NOCHECK

CONDPARM CONDPARM

CONSOLE CONSOLE

DEBUG or NODE BUG DEBUG,NODEBUG

DDNAME DDNAME

DISK DISK

FLAG FLAG

GOSTMT or NOGOSTMT GOSTMT, NOGOSTMT

GRAPHIC or NOGRAPHIC GRAPHIC, NOGRAPHIC

HEADER or NOH EADER HEADER, NOHEADER

LANGLVL (EXTENDED) LANGLVL EXTENDED
LANGLVL (ANSI83) LANGLVL ANSI83

LANGUAGE(ccc) LANGUAGE ccc (see note)

LIB or NOLIB LIB or NOLIB

LlNECOUNT LlNECOUNT

LIST or NOLIST LIST, NOLIST

MARGINS MARGINS

OBJECT or NOOBJECT OBJECT or NOOBJECT

OPTIMIZE or NOOPTIMIZE OPT, NOOPT

PAGEWIDTH PW

PRINT or NOPRINT PRINT or NOPRINT

PXREF or NOPXREF PXREF,NOPXREF

SEQUENCE or NOSEQUENCE SEQ, NOSEQ

SOURCE or NOSOURCE SOURCE,NOSOURCE

STDFLAG STDFLAG

Figure 13 (Part 1 of 2). VS Pascal Compile-Time Options

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 5. Keywords for Options 35

Opt/on

SYSPRINT

TRANLIB or NOTRANLIB

WRITE or NOWRITE

XREF(LONGISHORT) or NOXREF

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Modifier Keywords

SYSPRINT

TRANLlB, NOTRANLIB

WRITE, NOWRITE

LONGXREF,SHRTXREF,NOXREF

Figure 13 (Part 2 of 2). VS Pascal Compile-Time Options

Note to Figure 13 on page 35: In LANGUAGE(ccc), the identifier ccc represents
one of the three languages that VS Pascal supports:

UEN
ENG
JPN

Link-Time Options

Uppercase English
Mixed-case English
Japanese

Use the modifier keywords shown below to identify link-time options in the keyword
string.

Option Modifier Keywords

DEBUG or NODEBUG LDEBUG or LNODEBUG

LIB LLiB

NAME LNAME

OBJECT LOBJECT

TRANLIB or NOTRANLIB L TRANLIB or LNOTRANLIB

XA or NOXA LXA or LNOXA

Figure 14. VS Pascal Link-Time Options

Run-Time Options
Use the modifier keywords shown below to identify run-time options in the keyword
string.

Option Modifier Keywords

COUNT RCOUNT

DEBUG RDEBUG

ERRCOUNT RERRCNT

ERRFILE RERRFILE

HEAP RHEAP

Figure 15 (Part 1 of 2). VS Pascal Run-Time Options

36 vs Pascal Diagnosis Guide and Reference L Y27-9525-1 © Copyright IBM Corp. 1987, 1988

.. Restricted Materials of IBM"
Licensed Materials - Property of IBM

Option

LANGUAGE(ccc)

MA!NT

NOCHECK

NOSPIE

STACK

SETMEM

Modifier Keywords

RLANGUAGE ccc (see note)

RMAINT

RNOCHECK

RNOSPIE

RSTACK

RSETMEM

Figure 15 (Part 2 of 2). VS Pascal Run-Time Options

Note to Figure 15 on page 36: In LANGUAGE(ccc), the identifier ccc represents
one of the three languages that VS Pascal supports:

UEN
ENG
JPN

Uppercase English
Mixed-case English
Japanese

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 5. Keywords for Options 37

d

IIRe's~icled Materials of IBM' 'aiS ... property of IBM
ucensed Mater!

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Do not use this keyword if you receive a message as the result of a run-time
abnormal termination. In that case, see "If the Problem Is an Abend" on page 7. If
you receive a message as the result of a compile-time abnormal termination, read
"If the Problem Is a Wait, Loop, or Abend" on page 4.

Syntax and Semantic Messages
Each VS Pascal compiler syntax or semantic error message is identified by a string
of three characters: nnn, where nnn is the message number. For the purpose of
identification, consider each of these messages to have a message identifier of
AMPLnnn.

Compiler Messages
Every VS Pascal compiler message other than syntax and semantic error
messages is identified by a string of eight characters, AMPpnnnc, where:

AMP is the message prefix identifying all VS Pascal compiler messages.

p is a letter representing the compiler phase issuing the message. p will
be either "L", "0", or "T".

nnn is the message number.

c is either an "I" for informational messages, a "W" for warning
messages, an "E" for normal error conditions, or an "S" for severe error
conditions.

Library Messages
Every VS Pascal library message is identified by a string of eight characters,
AMPXnnnc, where:

AMPX

nnn

c

is the message prefix identifying all VS Pascal library messages.

is the message number.

is either an "I" for informational messages, an "E" for normal error
conditions, or an "S" for severe error conditions.

Debugging Messages
Every VS Pascal debugging message is identified by a string of eight characters,
AMPDnnnc, where:

AMPD is the message prefix identifying all VS Pascal debugging messages.

nnn is the message number.

c is either an "I" for informational messages, a "W" for warning
messages, an "E" for normal error conditions, or an "S" for severe error
conditions.

CMS EXEC Messages
Every CMS EXEC message is identified by a string of eight characters, AMPEnnnc,
where:

AMPE

nnn

c

is the message prefix identifying all CMS EXEC messages.

is the message number.

is either an "I" for informational messages, a "W" for warning
messages, an "E" for normal error conditions, or an "S" for severe error
conditions.

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 4. Building a Keyword String 27

Procedure

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

TSO CLIST Messages
Every TSO CLiST message is identified by a string of eight characters, AMPCnnnc,
where:

AMPC is the message prefix identifying all TSO CLiST messages.

is the message number. nnn

c is either an "I" for informational messages, a "W" for warning
messages, an "E" for normal error conditions, or an "S" for severe error
conditions.

1. For each VS Pascal message issued, replace the x of MSGx keyword with the
complete message identifier but do not include the severity character (if any).
Remember that syntax and semantic errors have an implied prefix of AMPL.

2. For the module name keyword, use the name of the module, routine, and
statement number that caused the message to be issued.

To determine which module, routine, and statement number caused the error,
look at the top-most routine and module shown in the trace-back report (as
shown in Figure 9). The top-most module, routine, and statement number are
usually the ones you need to report. If no module or statement number is
shown in the trace-back report, use the routine name and address as
modifiers.

AMPX036S Assertion failure checking error
AMPL999S COMPILER ERROR: NOTIFY VS PASCAL SUPPORT

TRACE BACK OF CALLED ROUTINES
ROUTINE
MAXLENFUNC
CALL
FACTOR
TERM
SIMPLEEXPRESSION
EXPRESSION
WRITE
CALL
STATEMENT
BODY
BLOCK
PROGRAMME
<MAIN-PROGRAM>
VSPASCAL

STMT AT ADDRESS IN MODULE
25 0e06119C AMPLSTRG
56 0e060BD6 AMPLCALL
16 0006B482 AMPLFACT
3 00055F3e AMPLEXPR
7 0ee56EA6 AMPLEXPR
3 ee05767E AMPLEXPR

52 00e5A3F4 AMPLREAD
13 0ee6e8CA AMPLCALL
84 0003CBBE AMPLSTMT
92 000218ec AMPLMAIN
51 0e02202E AMPLMAIN
36 0e0225CE AMPLMAIN
42 0e0248A4 AMPLMAIN

0002020A

AMPX900S EXECUTION NOT ALLOWED TO CONTINUE

Figure 9. A Trace-Back Report Identifying a Failing Module and Routine

The type of failure shown in Figure 9 is "MSGAMPX036 MSGAMPL999
MSGAMPX900" and the modifiers are "AMPLSTRG MAXLENFUNC 25".

There are several cases in which the top-most module and routine are not
reported. Figure 10, Figure 11, and Figure 12 show examples of these types
of trace-back reports.

28 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

J

L

• Restricted Materials of IBM"
Licensed Materials - Property of IBM

For example. when compiling. ignore the top-most occurrences of the following
modules and routines:

Module Routine

AMPLINSY ERROR

AMPLINSY WARNING

AMPLINSY INFORMATION

AMPLINSY NORMAL_MSG

AMPLINSY IMMEOIATE_MSG

AMPOMISC ERROR

AMPOMISC OVERFLOW

AMPTXMSC ERROR

AMPTXMSC FATAL

An example of the trace-back report when compiling is shown in Figure 10.

AMPT998S *** TRANSLATOR ERROR: NOTIFY VS PASCAL SUPPORT ***
FAILED AT HALFMULT/<MAIN-PROGRAM>/l

TRACE BACK OF CALLED ROUTINES
ROUTINE STMT AT ADDRESS IN MODULE
FATAL 9 00026244 AMPTXMSC
BD 3 00030264 AMPTXA
BXD 7 0003D4C2 AMPTXA
XMPYI 21 0005823C AMPTXE
GENBINARY 24 0003EE36 AMPTGEN
EXPRESSION 37 0002DA50 AMPTTRAN
EXPRESSION 9 0002D85C AMPTTRAN
EXPRESSION 9 0002D85C AMPTTRAN
EXPRESSION 6 00020818 AMPTTRAN
DOBB 13 0002DFD2 AMPTTRAN
TRANSLATE 54 0002E47E AMPTTRAN
<MAIN-PROGRAM> 7 00021EEE AMPTMAIN
VSPASCAL 0002020A

Figure 10. A Trace-Back Report Showing an Error-Handling Module as the Last Action
Module

The failure shown in Figure 10 is "MSGAMPT998". The modifiers are
"AMPTXA SO 3" in this case because AMPTXMSC/FATAL is ignored.

When using the MAINT run-time option. ignore the top-most occurrences of the
following modules and routines:

Module Routine
AMPXTRAC AMPXTRAC
AMPXCHKR AMPXERR
AMPXCHKR AMPXOIAG
AMPXCHKR AMPXCHKR
AMPXIO· AMPXIOER

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 4. Building a Keyword String 29

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

In addition, ignore all occurrences of routine AMPXMEMF. Figure 11 shows an"
example of a trace-back report issued when the MAINT run-time option is in;
effect.

AMPX023E Exponent underflow exception
TRACE BACK OF CALLED ROUTINES

ROUTINE STMT AT ADDRESS IN MODULE
AMPXTRAC 9 0002E756 AMPXTRAC
AMPXERR 81 000262F6 AMPXCHKR
AMPXDIAG 37 00026882 AMPXCHKR
CHARX 17 00022BOO AMPXPICT
PICTURE 7 000242B8 AMPXPICT
<MAIN-PROGRAM> 1 000200F0 PICTBUG
AMPXMEMF 00025808
VSPASCAL 000203 FA

Figure 11. A Trace-Back Report Issued When the MAINT Run-Time Option Is in Effect

The type of failure shown in Figure 11 is "MSGAMPX023". The modifiers are
"AMPXPICT CHARX 17" because AMPXTRAC/AMPXTRAC,
AMPXCHKR/AMPXERR, and AMPXCHKR/AMPXDIAG should not be reported.

If, after ignoring the specified routines, the top-most routine is in your program
(the module generally does not start with AMPX), then you should not report
the failing module and routine.

An example of a trace-back report for a probable user error is shown in
Figure 12.

AMPX014S Protection exception
TRACE BACK OF CALLED ROUTINES

ROUTINE STMT AT ADDRESS IN MODULE
AMPXTRAC 9 00028C46 AMPXTRAC
AMPXERR 81 00021C3E AMPXCHKR
AMPXDIAG 37 000224CA AMPXCHKR
<MAIN-PROGRAM> 1 000200CA TEMP
AMPXMEMF 00021150
VSPASCAL 000202F2

AMPX900S EXECUTION NOT ALLOWED TO CONTINUE

Figure 12. A Trace-Back Report for a Probable User Error

The type of failure shown in Figure 12 is "MSGAMPX014 MSGAMPX900".
There are no modifiers because the error appears to have occurred in the
main program of TEMP.

3. Determine with which compile-time, link-time, and run-time options the failure
occurs. If the failure occurs only when using certain options, indicate those
options in the keyword string. Select the appropriate modifier keyword from
the list shown in Chapter 5, "Keywords for Options" on page 35.

30 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

'"" ~

,
......

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Examples
If the message 9 occurs during compilation, use the following keywords:

Component Identification:
Release Level:
Type of Failure:
Modifier:

566871701
R20
MSGAMPLO09
CMPL

If the message AMPX067E occurs during execution, use the following keywords:

Component Identification:
Release Level:
Type of Fail ure:
Modifier:

5668717tU
R20
MSGAMPX067
EXEC

Nothing Is Happening

Procedure

Example

Before proceeding, read "If the Problem Is a Wait, Loop, or Abend" on page 4.

Use the LOOP keyword when a program seems to be doing nothing or is doing
something repetitively.

If the problem occurs during installation, use the modifier INSTALL.

If the problem occurs during compile time or run time:

1.

2.

Use the modifier CMPL if the loop occurs during compilation. If the loop occurs
during execution, use the modifier EXEC .

Determine with which compile-time, link-time, and run-time options the failure
occurs. If the failure occurs only when using certain options, indicate those
options in the keyword string. Select the appropriate modifier keyword from
the list shown in Chapter 5, "Keywords for Options" on page 35.

If the compiler appears to loop, the set of keywords describing the problem has
this format:

Component Identification:
Release Level:
Type of Fail ure:
Modifier:

566876701
R20
LOOP
CMPL

Errors in VS Pascal Publications

Procedure

Before proceeding, read "Errors in VS Pascal Publications" on page 8.

Use the DOC keyword when a program problem appears to be caused by incorrect
or missing information in a VS Pascal publication.

1. Locate the page in the document where the information is incorrect or missing
and prepare a description of the error and the problem it caused.

If the problem might affect other users, use a keyword string to search the
software support data base to determine if IBM has a record of the problem.
Use the DOC keyword and the order number on the cover of the document
(omitting the hyphens) as the failure keyword. For example, rather than using

l Y27-9525-1 \CI Copyright IBM Corp. 1987, 1988 Chapter 4. Building a Keyword String 31

Incorrect Output

Procedure

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY27-9525-1 (for this book), use LY2795251. You should have the following set
of keywords:

Component Identification: 566876701
R20 Release Level:

Type of Failure: DOC LY2795251

2. If your search argument is not in the software support data base, try another
search using this format:

Component Identification: 566876701
R20 Re 1 ease Leve 1 :

Type of Failure: DOC LY279525*

This format searches for all entries for the specified document number.

3. If your search does not turn up an identical entry, the problem has not been
entered in the software support data base, and you will be asked to submit a
severity 4 (DOC) APAR.

Before proceeding, read "If You Receive Incorrect Output" on page 8.

Use the INCORROUT keyword when output appears to be incorrect or missing, and
the program terminates normally otherwise.

If the problem occurs during installation, use the modifier INSTALL.

If the problem occurs during compile time or run time:

1. Use the modifier CMPL if the incorrect output occurs during compilation. If the
incorrect output occurs during execution, use the modifier EXEC.

2. If you suspect incorrect or missing output from a compilation or execution that
otherwise compiled or executed successfully; select a modifier keyword from
the following list to describe the type of error in the output. You can also use
these modifier keywords for an installation problem.

Modifier

MISSING

DUPLICATE

INVALID

Type of Incorrect Output

Some expected output was missing.

Some records or data were duplicated, but not repeated
endlessly (in that case, see "If the Problem Is a Wait, Loop, or
Abend" on page 4).

The proper amount of output appeared, but it was not what
was expected.

3. If the failure occurred during compilation, select another modifier keyword
from the following list to describe the portion of the output in which the error
occurred.

Modifier

ERROR

EXTSYM

OBJECT

Portion of Output In Error

Error summary of listing

External symbol listing

Machine-language object program

32 vs Pascal Diagnosis Guide and Reference LY27-9525-1 ©Copyright IBM Corp. 1987,1988

.~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Example

OPTS Compiler parameters and options summary

PXREF Page cross-reference listing

SOURCE Source listing

STAT Compilation statistics summary

TERMERR Console error listing

TRACE Trace-back report

XREF Cross-reference listing

4. Determine with which compile-time, link-time, and run-time options the failure
occurs (this step is not appropriate for installation problems). If the failure
occurs only when using certain options, indicate those options in the keyword
string. Select the appropriate modifier keyword from the list shown in
Chapter 5, "Keywords for Options" on page 35.

If you believe the compiler produced an incorrect cross-reference listing only when
compiling with the XREF(LONG) option, the keyword string has this format:

Component Identification:
Release Level:
Type of Failure:
Modifiers:

566876781
R28
INCORROUT
CMPL
INVALID XREF
LONGXREF

Degraded Performance

Procedure

Example

Use the PERFM keyword when a performance problem cannot be corrected by
system tuning, and performance is below expectations as documented in an IBM
product publication.

1. Record the actual performance and the expected performance measurements
for your system configuration. Note the order number and page of the IBM
document that is the source of your performance expectations. You will be
asked for this information if you contact the IBM Support Center. If you
prepare materials for an APAR, you should also include this information in the
error description.

2. Use the modifier CMPL if the performance problem occurs during compilation.
If the performance problem occurs during execution, use the modifier EXEC.

3. Determine with which compile-time, link-time, and run-time options the failure
occurs. If the failure occurs only when using certain options, indicate those
options in the keyword string. Select the appropriate modifier keyword from
the list shown in Chapter 5, "Keywords for Options" on page 35.

If a performance problem occurs during compilation, the keyword string has this
format:

Component Identification:
Release Level:
Type of Failure:
Modifiers:

566876781
R28
PERFM
CMPL

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 4. Building a Keyword String 33

.1"

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

~ Chapter 5. Keywords for Options

This chapter lists the keywords used to describe VS Pascal compile-time, link-time,
and run-time options in keyword strings.

Compile-Time Options
Use the modifier keywords shown below to identify compile-time options and VS
Pascal EXEC and CLIST options in the keyword string.

Option ModHler Keywords

CHECK or NOCHECK CHECK,NOCHECK

CONDPARM CONDPARM

CONSOLE CONSOLE

DEBUG or NODEBUG DEBUG,NODEBUG

DDNAME DDNAME

DISK DISK

FLAG FLAG

GOSTMT or NOGOSTMT GOSTMT, NOGOSTMT

GRAPHIC or NOGRAPHIC GRAPHIC, NOGRAPHIC

HEADER or NOHEADER HEADER,NOHEADER

LANGLVL (EXTENDED) LANGLVL EXTENDED
LANGLVL (ANSI83) LANGLVL ANSI83

LANGUAGE(cce) LANGUAGE eee (see note)

LIB or NOLIB LIB or NOLIB

lINECOUNT LlNECOUNT

LIST or NOLIST LIST, NOLIST

MARGINS MARGINS

OBJECT or NOOBJECT OBJECT or NOOBJECT

OPTIMIZE or NOOPTIMIZE OPT, NOOPT

PAGEWIDTH PW

PRINT or NOPRINT PRINT or NOPRINT

PXREF or NOPXREF PXREF, NOPXREF

SEQUENCE or NOSEQUENCE SEQ,NOSEQ

SOURCE or NOSOURCE SOURCE,NOSOURCE

STDFLAG STDFLAG

Figure 13 (Part 1 of 2). VS Pascal Compile-Time Options

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 5. Keywords for Options 35

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Option Modifier Keywords

SYSPRINT SYSPRINT

TRANLIB or NOTRANLIB TRANLlB, NOTRANLIB
--

WRITE or NOWRITE WRITE, NOWRITE

XREF (LONGISHORT) or NOXREF LONGXREF, SHRTXREF, NOXREF

Figure 13 (Part 2 of 2). VS Pascal Compile-Time Options

Note to Figure 13 on page 35: In LANGUAGE(eee), the identifier eee represents
one of the three languages that VS Pascal supports:

UEN
ENG
JPN

Link-Time Options

Uppercase English
Mixed-case English
Japanese

Use the modifier keywords shown below to identify link-time options in the keyword
string.

Option Modifier Keywords

DEBUG or NODEBUG LDEBUG or LNODEBUG

LIB LLiB

NAME LNAME

OBJECT LOBJECT

TRANLIB or NOTRANLIB L TRANLIB or LNOTRANLIB

XA or NOXA LXA or LNOXA

Figure 14. VS Pascal Link-Time Options

Run-Time Options
Use the modifier keywords shown below to identify run-time options in the keyword
string.

Option Modifier Keywords

COUNT RCOUNT

DEBUG RDEBUG

ERRCOUNT RERRCNT

ERRFILE RERRFILE

HEAP RHEAP

Figure 15 (Part 1 of 2). VS Pascal Run-Time Options

36 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

\

J

.r

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Option

LANGUAGE(eee)

MA!NT

NOCHECK

NOSPIE

STACK

SETMEM

Modifier Keywords

RLANGUAGE eee (see note)

RMAINT

RNOCHECK

RNOSPIE

RSTACK

RSETMEM

Figure 15 (Part 2 of 2). VS Pascal Run-Time Options

Note to Figure 15 on page 36: In LANGUAGE(eee), the identifier eee represents
one of the three languages that VS Pascal supports:

UEN
ENG
JPN

Uppercase English
Mixed-case English
Japanese

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 5. Keywords for Options 37

~,~,

..J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

\.... Chapter 6. Searching for a Solution with Your Keyword String

This chapter explains how to use the keyword string you have developed to search
the software support data base. You can conduct the search yourself if you have
access to the correct data base, or you can request that IBM conduct the search.

If You Conduct the Search
If you conduct the search yourself, you should follow these rules:

• Use only the keywords provided in this manual.
• Spell keywords exactly as they are presented in this manual.
• Include all appropriate keywords in any discussion with IBM support personnel

or in any written description of your problem.

The following steps will help you conduct your search of the software support data
base.

1. Search the software support data base using the full set of keywords you
developed. Given this format:

Component Identification:
Release Level:
Type of Fail ure:

Module Name:
Routine Name:
Statement Number:

your keyword string will be:

566876701
R20
MSGAMPL999
MSGAMPX059
AMPLINSY
ENDOFLINE
2

566876701 R20 MSGAMPL999 MSGAMPX059 AMPLINSY ENDOFLINE 2

2. Eliminate from the list of possible matches those APAR solutions which
already apply to your system.

3. Compare the closing description of each remaining APAR with the symptoms
of your current problem.

4. If you find an APAR that describes your problem, find out if there is a
corresponding PTF (program temporary fix). You can order the application PTF
from the IBM Support Center. You might already have the PTF at your site, and
only need to install it from the correct program update tape (PUT).

Note: Information on applying a specific PTF is provided in the cover letter
sent with the PTF.

5. If you do not find an APAR that describes your problem, broaden your search
using these techniques:

a. One by one, eliminate keywords from the right of your keyword string.
(The keyword string was developed in a specific sequence to make this
technique possible.)

b. Consider using a synonym as a replacement for a modifier keyword. The
problem might have been entered into the data base using a slightly
different expression than the now-recommended format.

LY27-952S-1 IC Copyright IBM Corp. 1987, 1988 Chapter 6. Searching for a Solution with Your Keyword String 39

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

c. Consider using the other Component Identification keyword. It is possible
that a library problem might have been reported as a compiler program, or
vice-versa.

6. If you still cannot find an appropriate APAR, go to Chapter 7, "Preparing an
APAR" on page 43.

If You Request that IBM Conduct the Search
You must contact the IBM Support Center if you want IBM to conduct the search.
When you contact the IBM Support Center you will be asked to provide:

• Your customer number
• The full set(s) of keywords you developed.

40 VS Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY27-9525-1 © Copyright IBM Corp. 1987, 1988

Part 3. Reporting the Problem to IBM

Part 3. Reporting the Problem to IBM 41

,.
\..,r

. ~.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 7. Preparing an APAR

This chapter explains what an authorized program analysis report (A PAR) is and
how to submit an APAR to the IBM Support Center.

When to Submit an APAR
An authorized program analysis report, known as an APAR, identifies a problem
caused by a suspected defect in a current unaltered release of a program.

You should prepare an APAR only after you have exhausted all of the preceding
diagnostic procedures and you cannot find a solution in an IBM data base.

If you need to submit an APAR, contact the IBM Support Center and be prepared to
supply:

• Your customer number
• The keyword string(s) you used to search the software support data base.

The support personnel will review the problem with you, and give you an APAR
number when you and they have agreed that an APAR is necessary.

Materials to Submit with Your APAR
It is essential to supply all of the required documentation relating to your problem
when you submit an APAR. Otherwise, IBM will return the APAR.

If you are resubmitting an APAR that has been returned to you for further
information, you must supply the additional requested documentation. Remember
to indicate the number of the original APAR.

The following checklist summarizes the materials you must submit with an APAR .
A complete description of each type of material follows the checklist.

Malerlals

Original source or failing test case

Load library information

Input data set information

Compiler listing

JCL listing

CMS terminal session log

Error trace-backs

Debugging output

CMS EXECs

When Required

Always

Run-time problems only

Run-time problems only

Always

MVS only

CMS only

Always

Always

CMSonly

Figure 16 (Part 1 of 2). Summary of Materials Required for APAR Submission

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 7. Preparing an APAR 43

Materia"

A description of the application program
and the organization of its data sets

Linkage editor or loader map listing

Applied PTFs and solutions

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

When Required

Always

Link-time and run-time problems only

Always, or specify no solutions applied

Figure 16 (Part 2 of 2). Summary of Materials Required for APAR Submission

Note: If you supply machine-readable material on a tape reel, describe how the
tape was created.

Original Source Information
You must supply source information in one of three forms:

• A small test case that reproduces the problem
• Your original source
• The machine-readable source (large programs only).

Note: If you do not supply one of these three, IBM Programming Service will
probably return your APAR.

If you send machine-readable source, submit the information on an unlabeled tape.
Along with the tape, send a hard copy listing that shows how the tape was created.
Ca.refully pack and clearly identify machine-readable information. Make sure the
APAR number is on the tape, so it can be identified if it is separated from the rest
of the material submitted with the APAR.

Load Library Information
If the failure occurs at run time, any routines not contained in your program must
be provided as either source or object code in machine-readable form.

Input Data Set Information

Compiler Listing

If the failure occurs at run time, you must provide enough input data with your
APAR so the failure can be reproduced.

If you think you have a compiler failure, all listings that you supply must relate to a
specific run of the compiler. Do not send information derived from separate
compilations or runs. This might mislead the programming support personnel.

Always supply with your APAR these listings that result from the compilation of the
original source:

• Source listing
• Intermediate code listings
• Object listing
• Cross-reference listing.

44 VS Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

JCL Listing
In MVS, you must provide listings of job control statements used to run the
program. If you are having problems with a batch job, show any cataloged
procedures you are using in expanded form by specifying MSGLEVEL=(1,1) in the
JOB statement.

CMS Terminal Session Log
If the failure occurs while compiling or running a program under CMS, supply the
full details of the VM (virtual machine) environment:

1. Immediately before you invoke the compiler to reproduce the problem, issue
the following commands:

QUERY SET
QUERY TERMINAL
QUERY VIRTUAL
QUERY SEARCH
QUERY DISK *
QUERY FI LEDEF
QUERY LIBRARY
QUERY INPUT
QUERY OUTPUT

2. Invoke the compiler using the VSPASCAL command, specifying the
compile-time options required to produce the relevant output, preferably on a
line printer, or, alternatively, at a typewriter terminal.

Submit the entire terminal listing, from LOGON to LOGOFF. If a display terminal is
used, spool console input and output using the following commands:

CP SPOOL CONSOLE START

to start spooling and:

CP SPOOL CONSOLE CLOSE

to stop spooling just before you log off.

If running under FULLSCREEN CMS, you can enter:

PUT VSCREEN CMS In It

to get this information.

The output from these commands provides full details of all input entered and all
responses received.

Error Trace-Backs
Always supply with your APAR a hard copy listing of error traces relating to each
specific run of the compiler.

Debugging Output
Always supply with your APAR a hard copy listing of output from the debugging
program relating to each specific run of the compiler.

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 7. Preparing an APAR 45

CMS EXECs

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Always supply with your APAR a hard copy listing of any CMS EXECs used.

Application Program Description
Always supply with your APAR a hard copy listing describing the application
program, the data set organization, and the operating instructions or console log.
These might be helpful in reproducing the error.

Linkage Editor or Loader Map Listing

Applied Solutions

Always supply with your APAR a hard copy listing of the linkage editors and
loaders output at the time of the run.

Always supply with your APAR a list of any program temporary fixes (PTFs) and
local solutions applied to either the compiler or to the library. If no solutions have'~
been applied, specifically indicate this with your APAR. ..."

",J

,~~

..J

46 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY27-9525-1 © Copyright IBM Corp. 1987,1988

Part 4. Reference

Part 4. Reference 47

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 8. Further VS Pascal Diagnostic Information

The Compiler

The Library

This section describes the major functions of the VS Pascal compiler and library. It
is intended to give you a basis for communicating with an IBM program specialist
about possible program failures, and is intended for no other purpose.

The VS Pascal compiler consists of four logical phases. The first compiler phase is
the L phase, which transforms VS Pascal code into intermediate code. The second
compiler phase is the 0 phase, which optimizes the intermediate code. The third
compiler phase is the T phase, which transforms intermediate code into 370
machine code. Under MVS, there is an I phase that calls the L, 0, and T phases.

U-code is the intermediate language that VS Pascal generates from the source
code. VS Pascal uses U-code to communicate between each phase of the
compiler.

The functions performed by each phase are:

Phase L

• Parses the VS Pascal source code
• Checks for syntax and semantic errors
• Translates the source code into U-code
• Prints the source listings
• Records and prints errors on source listings.

Phase 0

• Optimizes U-code
• Processes Boolean expressions
• Performs range checking.

Phase T

• Performs common subexpression elimination
• Translates U-code into machine code
• Prints pseudoassembler listing
• Prints external symbol dictionary (ESD)
• Prints compiler statistics.

Phase I

• Invokes the VS Pascal compiler under MVS.

The VS Pascal library is a collection of subprograms that are combined, as needed,
with object modules produced by the VS Pascal compiler to form an executable
load module.

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 8. Further VS Pascal Diagnostic Information 49

.. Restricted Materials of IBM"
Licensed Materials - Property of IBM

As the compiler examines Pascal source statements and translates them into an
object module, it identifies the need for certain library operations. At the
corresponding points in the object module, the compiler inserts calls to the
appropriate library routines. Copies of these library routines can be link-edited
and made part of the load module, or they can be linked dynamically at run time.

The VS Pascal library contains seven types of subprograms:

• General run-time routines
• Input/output routines
• Error-handling routines
• Conversion routines
• Mathematical routines
• String routines
• Storage management routines.

When you invoke a VS Pascal program, the routine responsible for establishing the
VS Pascal run-time environment gains control and performs the following
functions:

1. Obtains storage where dynamic storage areas (DSAs) are allocated and
deallocated (the stack)

2. Creates and initializes the VS Pascal communication work area (PCWA)

3. Initializes the begin-clock function (MVS only)

4. Processes any run-time options

5. Sets up an environment to intercept program interrupts (fixed-point overflow,
divide by zero, and so forth)

6. Calls the main program

7. Cancels program interrupt interception

8. Closes any open files upon return from the main program

9. Frees acquired storage

10. Calls the end-clock function (MVS only)

11. Returns control to the caller.

Figure 17 summarizes general run-time routines.

Procedure

AMPXBCLK

AMPXCHKS

AMPXCLCK

AMPXCMS

AMPXCPMT

Description

Initializes the execution clock

Checks a set for membership

CLOCK function

Formats the user parameter string into CMS parameter list
format and then calls AMPXSVC2 or AMPXSVC4

Calls the Interactive Debugging Tool when a run-time error
occurs

Figure 17 (Part 1 of 3). General Run-Time Routines

50 VS Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Procedure

AMPXCRTE

AMPXDATE

AMPXDATI

AMPXDSCS

AMPXDLNK

AMPXECLK

AMPXGOTO

AMPXGTOK

AMPXG12

AMPXG13

AMPXHALT

AMPXINIT

AMPXLTOK

AMPXLTVT

AMPXMAIN

AMPXMLNK

AMPXMOVE

AMPXMUS

AMPXNAME

AMPXOTOS

AMPXPACK

AMPXPAD

AMPXPARM

AMPXRETC

AMPXSEGE

AMPXSETV

AMPXSPAR

AMPXSVC2

AMPXSVC4

AMPXTERM

AMPXTOK

Description

Initializes the PCWA

DATETIME procedure

Gets the system date and time

Obtains the DSCS pointer of a procedure

Frees vector table

Ends the execution clock

Handles a GOTO out of block

Obtains a token from the user's execution parameters

Returns the contents of register 12

Returns the contents of register 13

HALT procedure

Processes the run-time options and user parameters

LTOKEN procedure

Loads the transient library vector table

Interface for calling VS Pascal from other languages

Allocates vector table

Storage-to-storage move

Adds elements to a set

Obtains a procedure's name

Converts an offset in a procedure to a statement number

PACK procedure

Fills storage with blanks

PARMS function

RETCODE procedure

Intercepts calls to a SEGMENT name and issues an error

Fills storage with a value (SETMEM)

Initializes for PARMS function

Issues an SVC 202

Issues an SVC 204

Prints execution counting summary, closes any open files,
and frees acquired storage

TOKEN procedure

Figure 17 (Part 2 of 3). General Run-Time Routines

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 8. Further VS Pascal Diagnostic Information 51

Procedure

AMPXTRAC

AMPXUNPK

AMPZABND

AMPZCMSC
AMPZMVSC

AMPZCVD

AMPZMLD

AMPZMSGC

AMPZMSGD

AMPZMSGE

AMPZMSGL

AMPZMSGO

AMPZMSGT

AMPZMSGX

CLOCKH

CMS

ITOHS

PSCLHX

VSPASCAL

Description

TRACE procedure

UNPACK procedure

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Abnormal termination routine

Links with VS Pascal run-time routines that are.to reside
below the 16-megabyte line in an XA environment

Converts to decimal

Loads a message module

Loads the address of TSO CLiST messages

Loads the address of Interactive Debugging Tool messages

Loads the address of CMS EXEC messages

Loads the address of first compiler pass messages

Loads the address of second compiler pass messages

Loads the address of third compiler pass messages

Loads the address of library messages

Returns program execution time in 100ths of a second

CMS procedure

Integer-to-hexadecimal string conversion

Terminates execution for interlanguage calls

Main entry point for a VS Pascal main program

Figure 17 (Part 3 of 3). General Run-Time Routines

Input/Output Routines
vs Pascal uses OSIVS access methods to implement its input/output facilities. VS
Pascal file variables are associated with a data set by means of a ddname.
Queued sequential access method (QSAM) is used for sequential data sets. The
basic partitioned access method (BPAM) is used for partitioned data sets or
MACLIBs (for VM/SP). The basic direct access method (BDAM) is used for random
record access.

Each VS Pascal file is associated with a specific ddname. See the DDNAME open
option in the VS Pascal Application Programming Guide for information on
ddnames.

At run time, a data control block (DCB) is associated with every VS Pascal file
variable. The DCB contains information describing specific attributes of the
associated data set. For information on the DCB attributes, see "Data Set DCB
Attributes" in the VS Pascal Application Programming Guide.

Figure 18 on page 53 summarizes the input/output routines.

52 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Procedure

AMPXClOS

AMPXCOlS

AMPXDBCS

AMPXDRCT

AMPXGET

AMPXGETR

AMPXlTIO

AMPXOPEN

AMPXOPN1

AMPXOPN2

AMPXPARS

AMPXPCBC

AMPXPDS

AMPXPUT

AMPXRCHR

AMPXRGCHR

AMPXRGSTR

AMPXRGTXT

AMPXRINT

AMPXRLlN

AMPXRR

AMPXRRDY

AMPXRREC

AMPXRSTR

AMPXRTXT

AMPXSEEK

AMPXSTAT

AMPXTIO

AMPXWB

AMPXWCHR

AMPXWCHS

Description

CLOSE procedure

COlS function

Reads DBCS data into variables

Opens a file for random access

GET procedure (text files)

GET procedure (record files)

Closes all files in a routine or dynamic variable

Opens files opened with RESET. REWRITE. TERMIN.
TERMOUT. and UPDATE

Initializes a PCB before opening file

Sets a PCB after opening a file

Processes file open options

Closes a file (PCB)

Opens files opened with PDSIN and PDSOUT

PUT procedure

Reads a CHAR

Reads DBCS characters

Reads DBCS strings

Reads DBCS text

Reads an INTEGER

Reads to end-of-line (text file)

Reads a REAL value

Prepares a text file for input

Reads one record (record file)

Reads a STRING

Reads an array of CHAR

SEEK procedure

Returns a code indicating whether a file opened successfully

Terminates I/O processing

Writes a BOOLEAN val ue

Moves data to an I/O output buffer

Writes a CHAR to a text file

Figure 18 (Part 1 of 2). Input/Output Routines

LY27-9525-1 © Copyright IBM Corp. 1987. 1988 Chapter 8. Further VS Pascal Diagnostic Information 53

Procedure

AMPXWGCHR

AMPXWGSTR

AMPXWGTXT

AMPXWINT

AMPXWLlN

AMPXWR

AMPXWRDY

AMPXWREC

AMPXWSTG

AMPXWTXT

AMPYCLOS

AMPYDFLT

AMPYDRCT

AMPYGET

AMPYOPEN

AMPYPAGE

AMPYPDS

AMPYPUT

AMPYSEEK

AMPZDAMR

AMPZDAMW

AMPZDCBC

AMPZDCBO

AMPZFIND

AMPZGET

AMPZPUT

AMPZPUTX

AMPZSAMR

AMPZSAMW

AMPZSTOW

AMPZTGET

AMPZTPUT

Description

Writes DBCS characters

Writes DBCS strings

Writes DBCS text

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Writes an INTEGER to a text file

Writes an end-at-line to a text file

Writes a REAL value to a text file

Prepares a text file for output

Writes one record (record file)

Writes a string to a text file

Writes an array at CHAR to a text file

System-dependent aSAM close

Applies system-dependent defaults to a file

System-dependent BDAM open

System-dependent GET procedure

System-dependent aSAM open

PAGE procedure

System-dependent partitioned data set interface

System-dependent PUT procedure

System-dependent SEEK procedure

Issues a READ tor a BDAM data set

Issues a WRITE for a BDAM data set

Closes an OS/VS DCB

Opens an OSIVS DCB

Issues an OSIVS BLDL

Issues a aSAM GET

Issues a aSAM PUT

Issues a aSAM PUTX

Issues a READ for a BSAM data set

Issues a WRITE for a BSAM data set

Issues an OSIVS STOW

Issues a TGET (OSIVS) or RDTERM (CMS)

Issues a TPUT (OSIVS) or WRTERM (CMS)

Figure 18 (Part 2 of 2). Input/Output Routines

54 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

~

.J

J

\~

~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

/ Error-Handling Routines
\..... vs Pascal detects many kinds of errors during program execution. Upon detection

of an error, the VS Pascal run-time library provides error handling.

Certain errors are considered fatal by the run-time library. Examples of these
errors are operation exceptions and protection exceptions. When a fatal error
occurs, VS Pascal produces a message describing the error, displays a trace-back,
and terminates the program.

Other errors such as checking errors do not stop program execution. You must
determine the extent to which the nonfatal errors affect program results. When a
nonfatal error occurs, VS Pascal:

1. Produces a message describing the error. The message is written to the file
specified by ERRFILE or, when ERRFILE is not specified, to either the terminal
in VM/CMS and MVS/TSO, or to the SYSPRINT data set in MVS batch.

2. Produces a symbolic variable dump of the variables in the procedure
experiencing the error when the program was compiled and link-edited with
the DEBUG option, and the program was not executed with the DEBUG
run-time option. The message is written to the file specified by ERRFILE or,
when ERRFILE is not specified, to either the terminal in VM/CMS and
MVS/TSO, or to the SYSPRINT data set in MVS batch.

3. Invokes the Interactive Debugging Tool as if a breakpoint had been
encountered if the program was compiled, link-edited, and executed with the
DEBUG option.

VS Pascal allows a specific number of nonfatal errors to occur before the program
is terminated. This number is set by the ERRCOUNT run-time option. The default
is 20.

VS Pascal also provides a mechanism for you to gain control when a run-time error
occurs. When such an error occurs, a procedure called ONERROR is called to
perform any necessary action before generating a diagnostic message. A default
ONERROR routine (which does nothing) is provided in the VS Pascal library.

You can write a version of ONERROR and declare it as an EXTERNAL procedure.
The procedure is invoked when an error occurs. An example of this is shown in
the VS Pascal Application Programming Guide. the string routines listed in

Figure 19 on page 56 summarizes the error-handling routines.

LY27-9525-1 C Copyright IBM Corp. 1987, 1988 Chapter 8. Further VS Pascal Diagnostic Information 55

Procedure

AMPXCHKR

AMPXCOER

AMPXOIAG

AMPXERR

AMPXIOER

ONERROR

Description

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Intercepts run-time checking errors

Calls the ONERROR procedure

Intercepts program exceptions

General run-time error handler

I/O error interception routine

Oefault ONERROR procedure

Figure 19. Error Handling-Routines

Conversion Routines
There are several places where VS Pascal must perform data conversions. These
conversions take place when you are doing I/O on text files and when you use the
REAOSTR and WRITESTR routines.

Figure 20 summarizes conversion routines.

Procedure Description

AMPXATOS Converts a OBCS fixed string to a STRING

AMPXBTOS Converts a BOOLEAN to a string

AMPXCTOS Converts a CHAR to a string

AMPXGTST Converts a GSTRING to a STRING (short string)

AMPXHTOS Converts a GSTRING to a STRING

AMPXITOS Converts an INTEGER to a string

AMPXKTOS Converts a GCHAR to a STRING

AMPXRTOS Converts a REAL to a STRING

AMPXSTGS Converts a STRING to a GSTRING (short string)

AMPXSTOA Converts a STRING to a OBCS fixed string

AMPXSTOC Converts a STRING to a CHAR

AMPXSTOG Copies part of a STRING to another STRING

AMPXSTOH Converts a STRING to a GSTRING

AMPXSTOI Converts a STRING to an INTEGER

AMPXSTOK Converts a STRING to a GCHAR

AMPXSTOR Converts a STRING to a REAL

AMPXSTOS Appends a STRING to another STRING

Figure 20 (Part 1 of 2). Conversion Routines

56 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Procedure

AMPXSTOT

AMPXSTRP

AMPXTTOR

AMPXTTOS

AMPX$GTS

AMPX$STG

Description

Converts a STRING to an array of CHAR

Checks a STRING for valid DBCS characteristics and
removes adjacent shift-in/shift-out pairs and DBCS nulls

Converts an array of CHAR to a REAL

Appends an array of CHAR to a string

Converts a GSTRING to a STRING (long string)

Converts a STRING to a GSTRING (long string)

Figure 20 (Part 2 of 2). Conversion Routines

Mathematical Routines

String Routines

The mathematical routines are implemented as VS Pascal functions. The VS
Pascal compiler changes the user-provided name (such as SIN) to an internal
name (such as AMPXSIN).

Figure 21 summarizes the mathematical routines.

Procedure Description

AMPXATAN ARCTAN function

AMPXCOS COS function

AMPXEXP EXP function

AMPXLN LN function

AMPXRAND RANDOM function

AMPXSIN SIN function

AMPXSORT SORT function

Figure 21. Mathematical Routines

The string routines are implemented as VS Pascal functions and procedures. The
VS Pascal compiler changes the user-provided names (such as SUBSTR) to an
internal name (such as AMPXSUBS). Several routines are provided in two forms:
long and short. The short form is always used if possible. To use the short form.
the VS Pascal compiler must determine that the resulting string is less than 2048
bytes long. If the size cannot be limited by compiler analysis. the compiler uses
the long form that passes the results through the heap.

LY27-9525-1 © Copyright IBM Corp. 1987, 1988 Chapter 8. Further VS Pascal Diagnostic Information 57

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

In the string routines listed in Figure 22. procedure names follow these
conventions:

Convenllon Means

AMPXxxxx Short string routine

AMPX$xxx Long string routine

AMPXMxxx Short mixed string routine

AMPX$Mxx Long mixed string routine

AMPXGxxx Short DSCS string routine

AMPX$Gxx Long DBCS string routine

Figure 22 summarizes the string routines.

Procedure Description

AMPX$COM COMPRESS function (long strings)

AMPX$DEL DELETE function (long strings)

AMPX$GCP COMPRESS function (long GSTRINGs)

AMPX$LTR LTRIM procedure (long strings)

AMPX$MCP MCOMPRESS function (long mixed strings)

AMPX$MDE MDELETE function (long mixed strings)

AMPX$MLT ML TRIM function (long mixed strings)

AMPX$MSU MSUBSTR function (long mixed strings)

AMPX$MTR MTRIM function (long mixed strings)

AMPX$SUB SUBSTR function (long strings)

AMPX$TRI TRIM function (long strings)

AMPXCAT Concatenates 2 to 9 strings

AMPXCOMP COMPRESS function (short strings)

AMPXDELE DELETE function (short strings)

AMPXGCAT Concatenates GSTRINGs

AMPXGCOM COMPRESS function (short GSTRINGs)

AMPXGIDX INDEX function (short GSTRINGs)

AMPXGLPD LPAD procedure (GSTRINGs)

AMPXGRIX DBCS RINDEX function (short GSTRINGs)

AMPXGRPD RPAD procedure (GSTRINGs)

AMPXINDX INDEX procedure (strings)

AMPXLPAD LPAD procedure (STRINGs)

Figure 22 (Part 1 of 2). String Routines

58 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987. 1988

...J

J

J

'\

..J

. ..;

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Procedure

AMPXLTRI

AMPXMCMP

AMPXMDEL

AMPXMIDX

AMPXMLEN

AMPXMLTR

AMPXMRIX

AMPXMSUB

AMPXMTRI

AMPXRIDX

AMPXSUBS

AMPXTRIM

LPAD

PICTURE

RPAD

Description

LTRIM procedure (short strings)

MCOMPRESS function (short mixed strings)

MDELETE function (short mixed strings)

MINDEX function (mixed strings)

MLENGTH function (mixed strings)

ML TRIM function (short mixed strings)

MRINDEX function (mixed strings)

MSUBSTR function (short mixed strings)

MTRIM function (short mixed strings)

RINDEX function (strings)

SUBSTR function (short strings)

TRIM function (short strings)

LPAD procedure (used only with %INCLUDE STRING)

PICTURE function

RPAD procedure (used only with %INCLUDE STRING)

Figure 22 (Part 2 of 2). String Routines

Storage Management Routines
All VS Pascal dynamic variables are allocated from pools of storage called heaps.
The NEW 'function generates a call to the internal procedure AMPXNEW (or
AMPXVNEW for pointers to variant records). This procedure allocates storage
within a heap. If a heap has not yet been created, NEWHEAP obtains storage from
the operating system to create a heap.

The DISPOSE procedure generates a call to the procedure AMPXDISP. This
procedure deallocates the heap storage acquired by a previous call to AMPXNEW.
DISPOSEHEAP frees a heap created by NEWHEAP.

The MARK procedure generates a call to the procedure AMPXMARK. This
procedure creates a new subheap from which subsequent calls to AMPXNEW
obtain storage.

The RELEASE procedure generates a call to the procedure AMPXRLSE. This
procedure frees a subheap that was previously created via the AMPXMARK
procedure. Subsequent calls to AMPXNEW obtain storage from the heap or
subheap which was active before the call to AMPXMARK.

QUERYHEAP returns a pOinter to the current heap.

USEHEAP changes the current heap.

LY27-9S2S-1 © Copyright IBM Corp. 1987, 1988 Chapter 8. Further VS Pascal Diagnostic Information 59

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Data required by the run-time environment is allocated in a separate heap
controlled by AMPXINEW and AMPXIDSP. Thus the I/O control blocks and
debugging tables are in a distinct area.

Figure 23 summarizes the storage management routines.

Procedure Description

AMPXALOC Basic storage allocator

AMPXDISP DISPOSE procedure

AMPXDSPH DISPOSEHEAP procedure

AMPXFREE Basic storage deallocator

AMPXIDSP Free a dynamic variable in the special VS Pascal run-time
heap

AMPXINEW Create a dynamic variable in the special VS Pascal run-time
heap

AMPXMARK MARK procedure

AMPXNEW NEW procedure

AMPXNEWH NEWHEAP procedure

AMPXQUEH QUERYHEAP procedure

AMPXRLSE RELEASE procedure

AMPXTMEM Terminates processing for storage management

AMPXUSEH USEHEAP procedure

AMPXVNEW NEW procedure (when record is allocated with tags)

Figure 23. Storage Management Routines

The Debugging Library
The Interactive Debugging Tool is activated using the DEBUG compile-time option.
This option sets up the debugging tables and includes the necessary Interactive
Debugging Tool routines in the unit being compiled. When the load module is
executed, the DEBUG run-time option activates the debugging environment.

Breakpoint Handling
The address of the statement at which a breakpoint is to be set is calculated and
stored in a table. The first two bytes of the code at this address are stored in a
table, and then are overwritten with an illegal opcode. A branch back to the
program is also stored in the table so that execution can resume at the correct
location after the breakpoint is hit. When an illegal operation occurs, the table is
searched to determine if the error is a breakpoint or an actual program error. If it
is a breakpoint, the debugger command prompt is issued.

When execution resumes, the original first two bytes are used to rebuild and
execute the statement. The illegal opcode in the code is not replaced with the
original first two bytes until the breakpoint is removed.

60 vs Pascal Diagnosis Guide and Reference LY27-9525-1 © Copyright IBM Corp. 1987, 1988

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Appendix A. Summary of Changes

VS Pascal Release 2 provides additions and enhancements to vs Pascal Release 1
in the following areas:

• Communication with Other Programming Languages

VS Pascal now:

Provides better error detection in Assembler routines called by VS Pascal.
Program checks in Assembler routines coded with the PROLOG macro will
be handled using the ONERROR procedure used by VS Pascal instead of
causing the severe error message AMPX902S. In order for program
checks to be handled by ONERROR, Assembler routines using the
PROLOG macro must be reassembled.

• Transient Run Time

Users now have the option to:

Create modules that are self-contained, or that can dynamically access
run-time routines. The transient run-time library will help free up resources
in large-scale, modular systems that must serve multiple users. Transient
run time reduces the size of load modules and makes it unnecessary for
each user to maintain a copy of the run-time library.

• Complier Features

Users now have the option to:

Compile only selected portions of a source program. This "conditional
compilation" feature can simplify debugging and help support multiple
operating environments.

Place headers in generated code. Headers include the name of the
compiled routine, the compiler name, and the date and time of compilation.
Users can also insert a customized header after the compiler header.

• Compile-Time Limits

Users can now write and debug larger and more complex programs. Each
compilable program can have up to:

999 %INCLUDE directives (previous limit: 255)

8192 TYPE declarations (previous limit: 255)

32678 chararcters in identifier names in a routine (previous limit: 8192)

1024 fields per record (previous limit: 255)

• Debugging

Users can now:

Specify how many instances of a breakpoint can occur before program
execution halts. Previously, execution halted at every occurrence of a
breakpoint. Programmers now have the flexibility to bypass a specified
number of executions of a repeated statement.

Display the statistics kept by the COUNT run-time option at any time during
a debugging session.

LY27-9S2S-1 © Copyright IBM Corp. 1987, 1988 Appendix A. Summary of Changes 61

• National Language Support

Release 2 also:

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Allows customization of character translation and uppercase tables at
installation. This eases compiler recognotion of tokens and characters due
to different national programming standards, and allows creation of
uppercase rules.

Provides three languages from which sites choose a default language
during installation. Both at run time and compile time, users can override
the default language with another language. Currently, VS Pascal provides
mixed-case English, uppercase English, and Japanese.

62 vs Pascal Diagnosis Guide and Reference L Y27-9525-1 © Copyright IBM Corp. 1987, 1988

F

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

'-' Bibliography

VS Pascal Publications

These books provide additional information about VS
Pascal.

Evaluation

• VS Pascal General Information, GC26-4318,
provides an overview of VS Pascal.

• VS Pascal Licensed Program Specifications,
GC26-4317, contains warranty information for VS
Pascal.

Application Programming

• VS Pascal Application Programming Guide,
SC26-4319, explains how to compile, execute, and
debug VS Pascal programs.

• VS Pascal Language Reference, SC26-4320,
provides a detailed explanation of the VS Pascal
programming language and its syntax.

• VS Pascal Reference Summary, SX26-3760,
provides quick-reference charts of VS Pascal
language rules and processing/debugging options.

LY27-9525-1 0 Copyright IBM Corp. 1987, 1988

Installation

• VS Pascal Installation and Customization for VM,
SC26-4342, explains how to install VS Pascal under
VM/SP and VM/XA.

• VS Pascal Installation and Customization for MVS,
SC26-4321, explains how to install VS Pascal under
MVS/SP, MVS/XA and MVS/ESA.

Related Publications
• OS/VS Message Library: VS2 System Messages,

GC38-1002

• MVS/Extended Architecture Message Library:
System Messages Volume 1, GC28-1376

• MVS/Extended Architecture Message Library:
System Messages Volume 2, GC28-1377

• MVS/Enterprise System Architecture Message
Library: System Messages Volume 1, GC28-1812

• MVSIEnterprise System Architecture Message
Library: System Messages Volume 2, GC28-1813

• Virtual Machine/System Product System Messages
and Codes, SC19-6204

• VMIXA System Product Systems Messages and
Codes Reference, SC23-0376.

• Field Engineering Programming Systems General
Information, G229-2228

Bibliography 63

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

l
\..,. Index

Special Characters
%CHECK compiler directive

diagnostic aid 15
%ENDSELECT compiler directive

diagnostic aid 15
%INCLUDE compiler directive

creating a test case 11
% LIST compiler directive

diagnostic aid 15
%SELECT compiler directive

diagnostic aid 15
%UHEADER compiler directive

diagnostic aid 15
%WHEN compiler directive

diagnostic aid 15
%WRITE compiler directive

diagnostic aid 15

A
abend

See abnormal termination
ABENDUx keyword

abnormal termination descriptor 23
CMPL modifier 25
EXEC modifier 25
INSTALL modifier 25
keyword string example 26
procedure 25-26

ABENDx keyword
abnormal termination descriptor 23
CMPL modifier 25
EXEC modifier 25
INSTALL modifier 25
keyword string example 26
procedure 25-26

abnormal termination
keyword descriptors 23
keyword procedure 25-26

ADDR routine
diagnostic aid 15

AMPXMDMP routine
diagnostic aid 15

APAR (Authorized Program Analysis Report)
application program description 46
applied solutions (PTF or local) 46
CMS EXECs 46
CMS terminal session log 45
compiler listing 44
debugging output 45
error trace-backs 45
JCL listing 45

LY27-9525-1 © Copyright IBM Corp. 1987, 1988

APAR (Authorized Program Analysis Report)
(continued)

link editor or loader map 46
load libraries 44
machine-readable information to submit 44
materials to submit with your APAR 43-46
overview 43
source information 44
when to submit an APAR 43

application program description
APAR listing 46

B
breakpoint

overview 60

C
CHECK compile-time option

diagnostic aid 13
%CHECK compiler directive

diagnostic aid 15
CMPL modifier

abnormal termination
ABENDUx keyword 25
ABENDx keyword 25

incorrect output (INCORROUT keyword) 32
when nothing happens (LOOP keyword) 31

CMS EXEC message prefix
overview 27

compile-time
OPTIMIZE/NOOPTIMIZE option 3
option/modifier keyword list 35-37
options 13-14

compiler
directives

diagnostic aids 15
listing for APAR submission 44
phases

phase I 49
phase L 49
phase 0 49
phase T 49

COMPILER compile-time option
diagnostic aid 13

compiler message prefix
overview 27

component identification number
in a keyword string 23

CONDPARM compile-time option
diagnostic aid 13

Index 65

conversion routines
list 56-57

COUNT run-time option
creating a test case 11
diagnostic aid 17

o
DEBUG compile-time option

diagnostic aid 13
DEBUG link-time option

diagnostic aid 16
DEBUG run-time option

diagnostic aid 17
debugging

See Interactive Debugging Tool
debugging output

APAR listing 45
degraded performance

keyword descriptor 24
procedure (PERFM keyword) 33

DOC keyword
missing/incorrect documentation descriptor 24
missing/incorrect information 8
procedure 31

documentation

E

DOC keyword procedure 31
keyword for missinglincorrect information 24
missinglincorrect information 8

%ENDSELECT compiler directive
diagnostic aid 15

ERRCOUNT run-time option
diagnostic aid 17

ERRFILE run-time option
diagnostic aid 17

error isolation
accessing other software 3
isolating 3-9
OPTIMIZE/NOOPTIMIZE compile-time option 3

error message
AMP (compiler message prefix) 27
AMPC (TSO CLiST message prefix) 28
AMPD (Interactive Debugging Tool message

prefix) 27
AMPE (CMS EXEC message prefix) 27
AMPL (syntax/semantic message prefix) 27
AMPX (library message prefix) 27
keyword 26
problem isolation 4, 7

error trace-backs
APAR listing 45

error-handling routines
list 56
overview 55

66 vs Pascal Diagnosis Guide and Reference

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

EXEC modifier

H

abnormal termination
ABENDUx keyword 25
ABENDx keyword 25

incorrect output (INCORROUT keyword) 32
when nothing happens (LOOP keyword) 31

HBOUND routine
diagnostic aid 15

HEADER compile-time option
diagnostic aid 13

HIGHEST routine
diagnostic aid 16

%INCLUDE compiler directive
creating a test case 11

incorrect output
See INCORROUT keyword

INCORROUT keyword
CMPLmodifier 32
EXEC modifier 32
incorrect output descriptor 24
INSTALL modifier 32
keyword string example 33
procedure 32

input routines
list 52-54

INSTALL modifier
abnormal termination

ABENDUx It:eyword 25
ABENDx keyword 25

incorrect output (INCORROUT keyword) 32
when nothing happens (LOOP keyword) 31

Interactive Debugging Tool
overview 17

Interactive Debugging Tool message prefix
overview 27

J
JCL (job control language)

APAR listing 45

K
keyword

building strings 21-33
component identification number 23
example

ABEND 26
DOC 32
INCORROUT 33
LOOP 31
MSG 31
PERFM 33

LY27-9525-1 © Copyright IBM Corp. 1987, 1988

"Restricted Materials of IBM"
licensed Materials - Property of IBM

keyword (continued)

L

option/modifier keyword list 35-37
release level 23
statement name as modifier 25
string

abnormal termination (ABENDUx
keyword) 25-26

abnormal termination (ABENDx keyword) 25-26
building 21-33
conducting the search yourself 39
error messages (MSGx keyword) 26-31
incorrect output (INCORROUT keyword) 32
missing/incorrect documentation (DOC

keyword) 31
nothing happens (LOOP keyword) 31
option/modifier keyword list 35-37
overview 21
performance degradation (PERFM keyword) 33
requesting that IBM conduct the search 40
searching for a solution 39

symptom table 23-24
usage overview 21

LANGUAGE compile-time option
diagnostic aid 14

LANGUAGE run-time option
diagnostic aid 17

LBOUND routine
diagnostic aid 16

library
overview 49

library message prefix
overview 27

link editor or loader map
APAR listing 46

LIST compile-time option
diagnostic aid 14

%LlST compiler directive
diagnostic aid 15

load libraries
APAR listing 44

local fix
APAR submission 46

LOG compile-time option
diagnostic aid 14

LOOP keyword
CMPL modifier 31
descriptor when nothing happens 24
EXEC modifier 31
INSTALL modifier 31
keyword string example 31
procedure 31

LOWEST routine
diagnostic aid 16

LY27-9525-1 © Copyright IBM Corp. 1987, 1988

M
MAINT run-time option

diagnostic aid 17
mathematical routines

list 57
message problems

keyword descriptor 24
modifier keyword

option list 35-37
statement names 25

MSGx keyword

N

keyword string example 31
message problem descriptor 24
procedure 28-31

NOOPTIMIZE compile-time option
problem isolation 3

o
OLOG compile-time option

diagnostic aid 14
ONERROR routine

diagnostic aid 16
OPTIMIZE compile-time option

problem isolation 3
OUCODE compile-time option

diagnostic aid 14
output

incorrect
See INCORROUT keyword

output routines
list 52-54

P
PERFM keyword

keyword string example 33
performance degradation keyword 24
procedure 33

performance degradation
keyword descriptor 24
procedure (PERFM keyword) 33

problem isolation
accessing other software 3
isolating 3-9
OPTIMIZE/NOOPTIMIZE compile-time option 3

program temporary fix
APAR submission 46

Index 67

R
release level keyword

in a keyword string 23
run-time

s

option/modifier keyword list 35-37
options 17
routines 52

segment units
creating a test case 11

%SELECT compiler directive
diagnostic aid 15

SETMEM run-time option
diagnostic aid 17

SIZEOF routine
diagnostic aid 16

software support data base
keyword string search 39,40

spooled CMS console output or EXECs
APAR listing 46

statement names
as modifier keywords 25

storage management routines
list 60
overview 59

string routines
list 58-59
overview 57

submitting an APAR
See APAR (Authorized Program Analysis Report)

syntax/semantic error message prefix
overview 27

T
test case

creating 11-12
TRACE routine

diagnostic aid 16
trace-back report

example 28
TSO CLiST message prefix

overview 28

U
UCODE compile-time option

diagnostic aid 14
%UHEADER compiler directive

diagnostic aid 15

68 vs Pascal Diagnosis Guide and Reference

W

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

%WHEN compiler directive
diagnostic aid 15

WRITE compile-time option
diagnostic aid 14

%WRITE compiler directive
diagnostic aid 15

wrong output
See INCORROUT keyword

X
XREF(LONG) option

creating a test case 11

LY27-9525-1 © Copyright IBM Corp. 1987,1988

E ...
-0 e:
II U> a:i: .--~­!:TO
Q)G)
",U>
e: 0 .--tQ)
00.
U>O
1-

;::-0 o Q)
E E
u E
:g~
a~
-~ 60 ..
~o -.~ ~
0'):;;
E'Oj
G)e:
:o~ e ~
0. ..
II ~
U>U>
~U> o Q)

u~

5~
U::J

.!?~
0.0
OQ)

Via:
0;

15 z

"Restricted Materials of IBM"
Licensed Materials-Property of IBM
(Except for Customer-Originated Materials)
©Copyright IBM Corp. 1987, 1988
L Y27 -9525-1

VS Pascal
Diagnosis Guide and Reference

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM systems.
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the under­
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever review and action, If any, are deemed appro­
priate.

Note: Do not u .. thll form to requelt IBM pubHcltlonl. I you do, your order will be delayed becau .. publlcltlonl are not lIocked It
the addr ... printed on the reve,.e Iide. Inll.ad, you Ihould direct any requeltl for cople. of pubUcationl, or for alllilanee In using
your IBM Iyltem, to your IBM repre .. ntaUve or to the IBM branch office lervlng your locaHty.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Commenta (please include specific chapter and page references) :

If you want a reply, please complete the following Information:

Name __ _ Date _________________ _

Company __ _ Phone No. (___) ______________________ __

Address __ _

Thank you for your cooperation. No postage is necessary if mailed in the U.S.A. (Elsewhere, an iBM office or representative will be
happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.)

L Y27 -9525-1

Reader's Comment Form

Fold and tape

Fold and tape

--...- ------ --------- -. ---- -- -------------,-
~

Pl •••• do not steple

I I
BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Programming Publishing
P.O. Box 49023
San Jose, CA 95161-9023

1'1111 •• 1.1.1 •• 11111111.111.1111.1111 •• 1'11111.1.1.1

Pl •••• do not stepl.

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

fold and tape

