
------- - ------ - - ----------_.-

Publication Number
SA22-7125-1

IBM System/370

Vector Operations

File Number
S370-01

Second Edition (August 1986)

This edition obsoletes the previous edition, SA22-7125-0. It
contains a number of detailed changes, which are indicated by a
vertical line in the margin to the left of the change.

Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM
equipment, refer to the latest IBM System/ 370, 30 xx , and 4300
Processors Bib] iography, GC20-0001, for the editions that are
applicable and current.

This publication is provided for use in conjunction with other
relevant IBM publications, and IBM makes no warranty, express or
implied, relative to its completeness or accuracy.

IBM may have patents or pending patent applications covering
subject matter described herein. Furnishing this publication
does not constitute or imply a grant of any license under any
patents, patent applications, trademarks, copyrights, or other
rights of IBM or of any third party, or any right to refer to
IBM in any advertising or other promotional or marketing activ­
ities. IBM assumes no responsibility for any infringement of
patents or other rights that may result from the use of this
publication or from the manufacture, use, lease, or sale of
apparatus described herein.

Licenses under IBM's utility patents are available on reasonable
and nondiscriminatory terms and conditions. Inquiries relative
to licensing should be directed, in writing, to: Director of
Contracts and Licensing, International Business Machines Corpo­
ration, Armonk, New York 10504.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
product is not intended to state or imply that only IBM f S

product may be used. Any functionally equivalent product may be
used instead.

Publications are not stocked at the address given below.
Requests for IBM publications should be made to your IBM repre­
sentative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. I f the form has been removed, comments may be
addressed to IBM Corporation, Product Publications, Department
B98, PO Box 390, Poughkeepsie, NY, U.S.A. 12602. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1986

This publication contains, for reference
purposes, a detailed definition of the
machine functions provided by the IBM
System/370 vector facility. The vector
facility operates as a compatible exten­
sion of the functions of System/370 as
described in one of the Principles of
Operation publications, either the
facilities of the System/370 extended
architecture (370-XA) in IBM 370-XA
Principles of Operation, SA22-7085, or
those of the System/370 architecture in
IBM System/370 Principles of Operation,
GA22-7000.

The publication should not be considered
an introduction or a textbook. It is
written as a reference for use princi­
pally by assembler-language programmers,
although anyone concerned with the func­
tional details of vector operations may
find it useful. It describes each func­
tion at the level of detail needed to
prepare an assembler-language program
which relies on that function.

'This publication does not describe all
the instructions or other functions
needed to write a complete program using
vectors. It includes a description only
of functions which are added to
System/370 as part of the vector
facility. The reader is assumed to be
familiar with either the IBM 370-XA
Principles of Operation or IBM
System/370 Pr incipl es of Operation, as
appropriate. Terms and concepts
referred to in this publication but
explained in those Principles of Opera-

PREFACE

tion publications are not explained
again in this publication.

Writing a program in assembler language
requires a familiarity with the
notations and conventions of that lan­
guage, as well as with the facilities of
the operating system under which the
program is to be run. The reader should
refer to the appropriate programming
publications for such information.

Terminology

As used in this publication, a scalar is
a single data item, which may be a
floating-point number, a binary integer,
or a set of logical data. A vector is a
linearly ordered collection of such
scalars, where each scalar is an element
of the vector. All elements of a single
vector are of the same type: floating­
point numbers (floating-point vector),
binary integers (binary vector), or
logical data (logical vector).

Scalar instructions are instructions
which perform load, store, arithmetic,
or logical operations on scalars that
may reside in storage, floating-point
registers, or general registers. Vector
instructions perform similar operations
on vectors that may reside in storage or
in registers of the vector facility.
Only vector instructions and related
operations are described in this publi­
cation. Scalar instructions are
described in the IBM 370-XA Principles
of Operation or IBM System/370 Princi­
ples of Operation.

Preface iii

iv IBM System/370 Vector Operations

Chapter 1. Introduction
Compatibility Considerations

Vector and Scalar Operations
Model-Dependent Vector Functions

Chapter 2. Vector Facility
Vector-Facility Structure

Vector-Data Registers
Vector Registers
Vector-Mask Register

Vector Parameters
Section Size
Partial-Sum Number

Vector-Status Register
Vector-Mask-Mode Bit
Vector Count
Vector Interruption Index
Vector In-Use Bits
Vector Change Bits

Vector-Activity Count
Modes of Operation

Vector-Operation Control
Vector-Instruction Operands and
Results
Arithmetic Vectors in Storage

Access by Sequential
Addressing

Access by Indirect Element
Selection

Arithmetic Vectors in Registers
Operands in Vector Registers
Operands in Scalar Registers

Bit Vectors
Vector Sectioning
Conditional Arithmetic

Vector-Mask Mode
Instructions Controlling the
Vector-Mask Mode

Common Instruction Descriptions
Instruction Classes
Instruction Formats

Field Designations
Three-Operand Instruction

Formats
Summary of Instructions by
Class and Format

Class-IM and Class-IC
Instructions
Class-IM Instructions
Class-IC Instructions
Storage Operands for QST and

VST Formats
Class-NC Instructions

VS-Format Instructions
Instructions In Other Classes

Vector Interruptions

1-1
1-1
1-1
1-2

2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-5
2-6
2-6

2-7
2-8

2-8

2-9
2-10
2-10
2-10
2-10
2-11
2-12
2-12

2-12
2-12
2-13
2-13
2-13

2-15

2-15

2-15
2-17
2-17

2-18
2-19
2-19
2-19
2-20

CONTENTS

Interruptible Vector
Instructions
Units of Operation
Operand Parameters
Arithmetic Exceptions
Exception-Extension Code
Types of Ending for Units of

Operation
Effect of Interruptions During
Execution
Setting of Instruction
Address

Setting of Instruction-Length
Code

Setting of Storage Address
Setting of Vector
Interruption Index

Program-Interruption Conditions
Access Exceptions for Vector

Operands
Exponent-Overflow Exception
Exponent-Underflow Exception
Floating-Point-Divide
Exception

Specification Exception
Unnormalized-Operand
Exception

Vector-Operation Exception
Priority of Vector
Interruptions

Program Switching
Program Use of the Restore and

Save Instructions
Restore Operations
Save Operations

Clear Operations
Save-Area Requirements

Relationship to Other Facilities
Program-Event Recording (PER)
Vector-Store Operations

Storage-Operand Consistency
Storing into Instruction

Stream
Resets
Machine-Check Handling

Vector-Facility Failure
Vector-Facility Source
Validation of Vector-Facility
Registers

Chapter 3. Vector-Facility
Instructions

ACCUMULATE
ADD
AND
AND TO VMR

2-20
2-20
2-21
2-21
2-21

2-22

2-23

2-23

2-23
2-24

2-25
2-25

2-25
2-26
2-26

2-26
2-26

2-27
2-27

2-27
2-28

2-28
2-28
2-29
2-29
2-29
2-30
2-30
2-30
2-30

2-30
2-31
2-31
2-31
2-31

2-31

3-1
3-2
3-3
3-4
3-5

Contents v

CLEAR VR
COMPARE
COMPLEMENT VMR
COUNT LEFT ZEROS IN VMR
COUNT ONES IN VMR
DIVIDE
EXCLUSIVE OR
EXCLUSIVE OR TO VMR
EXTRACT ELEMENT
EXTRACT VCT
EXTRACT VECTOR MASK MODE
LOAD
LOAD BIT INDEX
LOAD COMPLEMENT
LOAD ELEMENT
LOAD EXPANDED
LOAD HALFWORD
LOAD IND IRECT
LOAD INTEGER VECTOR
LOAD MATCHED
LOAD NEGATIVE
LOAD POSITIVE
LOAD VCT AND UPDATE
LOAD VCT FROM ADDRESS
LOAD VMR
LOAD VMR COMPLEMENT
LOAD ZERO
MAXIMUM ABSOLUTE
MAXIMUM SIGNED
MINIMUM SIGNED
MULTIPLY
MULTIPLY AND ACCUMULATE
MULTIPLY AND ADD
MULTIPLY AND SUBTRACT
OR
OR TO VMR
RESTORE VAC
RESTORE VMR
RESTORE VR
RESTORE VSR
SAVE CHANGED VR
SAVE VAC

3-5
3-6
3-7
3-8
3-8
3-8
3-9

3-10
3-10
3-11
3-11
3-11
3-12
3-15
3-15
3-16
3-16
3-17
3-18
3-18
3-19
3-20
3-20
3-21
3-22
3-22
3-22
3-23
3-23
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-~9
3-29
3-30
3-31
3-32
3-33

vi IBM System/370 Vector Operations .

SAVE VMR
SAVE VR
SAVE VSR
SET VECTOR MASK MODE
SHIFT LEFT SINGLE LOGICAL
SHIFT RIGHT SINGLE LOGICAL
STORE
STORE COMPRESSED
STORE HALFWORD
STORE INDIRECT
STORE MATCHED
STORE VECTOR PARAMETERS
STORE VMR
SUBTRACT
SUM PARTIAL SUMS
TEST VMR
ZERO PARTIAL SUMS

Appendix A. Instruction-Use
Examples

Operations on Full Vectors
Contiguous Vectors
Vectors with Stride
Vector and Scalar Operands
Sum of Products
Compare and Swap Vector Elements

Conditional Arithmetic
Exception Avoidance
Add to Magnitude

Operations on Sparse Vectors
Full Added to Sparse to Give
Full

Sparse Added to Sparse to Give
Sparse

Floating-Point-Vector Conversions
Fixed Point to Floating Point
Floating Point to Fixed Point

Appendix B. Lists Of
Instructions

Index

3-33
3-34
3-34
3-35
3-35
3-35
3-35
3-36
3-36
3-37
3-37
3-38
3-38
3-39
3-40
3-4(}
3-41

A-1
A-1
A-1
A-2
A-2
A-3
A-4
A-4
A-4
A-4
A-5

A-5

A-6
A-6
A-6
A-7

B-1

X-1

The vector facility is a compatible
addition to the IBM System/370 architec­
ture. Use of the facility may benefit
applications in which a great deal of
the time of the central processing unit
(CPU) is spent executing arithmetic or
logical instructions on data which can
be treated as vectors. By replacing
loops of scalar instructions with the
vector instructions provided by the
vector facility, such applications may
take advantage of the order inherent in
vector data to improve performance.,

When the vector facility is provided on
a CPU, it functions as an integral part
of that CPU:

1. Standard System/370 instructions can
be used 'for all scalar operations.

2. Data formats which are provided for
vectors are the same as the corre­
sponding System/370 scalar formats.

3. Long-running vector instructions are
interruptible in the same manner as
long-running scalar instructions;
their execution can be resumed from
the point of interruption after
appropriate action has been taken.

4. Program interruptions due to arith­
metic exceptions are handled in the
same way as for scalar-arithmetic
instructions, and the same fixup
routines can be used with at most
some minor extensions.

5. Vector data may reside
storage, with access
being handled in the
manner.

.

in virtual
exceptions
customary

COMPATIBILITY CONSIDERATIONS

Compatibility with System/370 scalar
operations has been one of the major
objectives of the vector architecture,
so as to provide the same result data
when equivalent functions are programmed
on machines without the vector facility.
Some departures from strict compat­
ibility are introduced, however, for the
sake of performance and to provide

CHAPTER 1. INTRODUCTION

implementers of the vector facility more
flexibility in making design choices.

Vector and Scalar Operations

Al though operations on vector operands
are generally compatible, element by
element, with the corresponding scalar
operations, there are certain differ­
ences between the vector and scalar
architectures:

•

•

Operands of vector-facility instruc­
tions must be aligned on integral
boundaries; scalar-instruction oper­
ands need not be so aligned. (See
the section "Vector- Instruction
Operands and Results" on page 2-7.)

Vector divide and multiply oper­
ations do not permit unnormalized
floating-point operands; the corre­
sponding scalar instructions do.
Vector programs may encounter the
unnormalized operand exception.
(See the instruction descriptions
and the section "Unnormalized­
Operand Exception" on page 2-27.)

I • Because the result of a series of
floating-point additions may depend
on their sequence, the resul ts
produced by the vector instructions
ACCUMULATE or MULTIPLY AND ACCUMU­
LATE, followed by SUM PARTIAL SUMS,
are not necessarily identical with
those produced by scalar summation
loops, unless the scalar loops are
written to perform the additions in
exactly the same sequence as defined
for the vector instructions. (See
the instruction descriptions and the
section "Partial-Sum Number" on
page 2-2.)

I
I
I
I
I

• If, during execution of MULTIPLY AND
ACCUMULATE, MULTIPLY AND ADD, or
MULTIPLY AND SUBTRACT, the multipli­
cation of an element pair results in
an exponent underflow, a true zero
is used in place of the product even
when the exponent-underflow mask in
the PSW is one. The vector and
scalar results are the same,
however, when the mask bit is zero

Chapter 1. Introduction 1-1

or when an exponent underflow occurs
during the addition or subtraction.
(See the instruction descriptions
and the section "Exponent-Underflow
Exception" on page 2-26.)

• Vector-facility instructions cannot
safely be used to store into the
current instruction stream, whereas
all other instructions are inter­
locked to permit this. (See the
section "Vector-Store Operations" on
page 2-30.)

Model-Dependent Vector Functions

Programmers should keep the following
restrictions in mind to ensure that pro­
grams will run successfully regardless
of which implementation techniques have
been chosen on a particular model.

The program should not depend on spe­
cific values of the model-dependent
vector parameters (section size and
partial-sum number). Likewise, the
program should not depend on the con­
tents of fields that are described as
"reserved" or "undefined. If Specif­
ically:

• The section size should not be
treated as a numeric constant.
Thus, save-area sizes should be com­
puted from the section-size value
obtained at execution time. (See
the sectiqn "Save-Area Requirements"
on page 2-29.) The section size may
be obtained by executing the
instruction STORE VECTOR PARAMETERS.

• The program should not rely on
reserved bits 0-14 of the vector­
status register being zeros when
placed in a general register by the
instruction EXTRACT VECTOR MASK
MODE, or on the bits being stored as
zeros by SAVE VSR. (See the
instruction descriptions "EXTRACT
VECTOR MASK MODE" on page 3 -11 and
"SAVE VSR" on page 3-34.)

• The program should not depend on any
particular values being stored by
the instruction SAVE VMR in the
undefined part of the save area for
the vector-mask register; nor should

1-2 IBM System/370 Vector Operations

•

the program depend on the presence
or absence of access exceptions for
that portion of the VMR save area
when executing RESTORE VMR or SAVE
VMR. (See the instruction
descriptions "SAVE VMR" on page 3-33
and "RESTORE VMR" on page 3"'29.)

When a program using vector-facility
instructions is interrupted, it
cannot be safely resumed on another
machine with a different section
size or partial-sum number, unless
the interruption occurred at a point
that is known to be independent of
the section size or partial-sum
number, respectively.

I· The exact result produced by the
I vector instructions ACCUMULATE or
I MULTIPLY AND ACCUMULATE, followed by
I SUM PARTIAL SUMS, may depend on the

partial-sum number of the model
because that number affects the
sequence of performing the floating­
point additions.

The program should not rely on recelvlng
a specific program interruption, either
operation exception or vector-operation
exception, to indicate whether the
vector facility is installed in any CPU
of the configuration, since it depends
on the model which of the two exceptions
occurs. (See the section "Vector­
Operation Control" on page 2-6.)

Problem-state programs should not depend
on the setting of the vector change
bits, which may be altered by actions of
the control program that are unrelated
to the actions of a problem-state
program. Supervisor-state programs can
depend on the accuracy of vector change
bits that are zeros; vector change bits
may sometimes be set to one, however,
even when the corresponding vector­
register pair has not been changed.
Note also that the effect on the vector
change bits of executing the instruc­
tions RESTORE VR and RESTORE VSR depends
on whether the CPU is in the problem or
supervisor state. (See the section
"Vector Change Bits" on page 2-4.)

PER events for general-register alter­
ation mayor may not be recognized for
vector-facility instructions.

VECTOR-FACILITY STRUCTURE

The vector facility provides:

1. The vector-facility registers:

• 16 vector registers

• A vector-mask register

• A vector-status register

• A vector-activity count

2. 171 instructions

3. The following exceptions and excep­
tion indications:

• An unnormalized-operand excep­
tion

e A vector-operation exception

An exception-extension code for
arithmetic exceptions

4. A vector-control bit, bit 14 of
control register 0

Figure 2-1 on page 2-2 shows the regis­
ters provided by the vector facility.

Vector-Data Registers

Vector Registers

There are 16 vector registers, numbered
0-15. They are used to hold one or more
of the vector operands in most arith­
metic, comparison, logical, load, and
store operations. Unlike the general
and floating-point registers, the vector
registers are multipurpose in that
vectors of floating-point, binary­
integer, and logical data can all be
accommodated.

Each vector register contains a number
of element locations of 32 bits each.
Depending on the operation, a vector
operand may occupy a single vector reg-

CHAPTER 2. VECTOR FACILITY

ister or an even-odd pair of registers.
The element locations of a vector reg­
ister are identified by consecutive
element numbers, starting with O.

Vector-Mask Register

There is one vector-mask register (VMR) ,
which is used as:

• The target of the result of vector­
compare operations,

•

•

The source and target of logical
operations on bit vectors, and

The source of the mask for mask­
controlled operations.

Vector Parameters

The section size and the partial-sum
number are model-dependent parameters
which control certain operations of the
vector facility.

Section Size

The number of element locations in a
vector register, which is also the
number of bit positions in the vector­
mask register, is called the section
size. The section size is a power of 2;
depending on the model, the section size
may be 8, 16, 32, 64, 128, 256, or 512.

The element locations of a vector reg­
ister, as well as the bit positions in
the vector-mask register, are numbered
from 0 to one less than the section
size.

In a multiprocessing configuration, the
section size is the same for each CPU
which has the vector facility installed.

The section size of a model may be
obtained by executing the instruction
STORE VECTOR PARAMETERS, which places
the value as a 16-bit binary integer in
the left half of a word in storage.

Chapter 2. Vector Facility 2-1

Vector Registers Vector-Mask
Register

64 bits
1

32 bits bit
I I H

0(0) 1(0)

0(1) 1(1)

2(0) 3(0)

2 (1) 3(1)

I
4(0) 15 (0)

I
4(1) 15 (1)

I r
0

-~t \ I

1

0(2) 1(2) 2(2) 3(2) 4(2) 15(2) Z 2
I elements

I I II I II I I I

11--_0_(Z_-_l---,) 1,---1_(Z_-_l)--111 2 (Z -1) 1 3 (Z -1) 1 §rl~ 115 (Z -1) 1 1
I I

OZ-l
Vector-Status Register Vector-Activity Count

~ 64 bits ---1 ~ 64 bits ---1

I I I I
Note: Z is the section size (model-dependent).

Figure 2-1. Registers of the Vector Facility

Partial-Sum Number

The partial-sum number is the number ~f
partial sums produced when executing the
instruction ACCUMULATE or MULTIPLY AND
ACCUMULATE. It is also the number of
vector-register elements set to zero by
the instruction ZERO PARTIAL SUMS, as
well as the number of vector-register
elements summed by the instruction SUM
PARTIAL SUMS.

Depending on the model, the partial-sum
number may range from 1 up to and
including the section size.

In a multiprocessing configuration, the
partial-sum number is the same for each
CPU which has the vector facility
installed.

The partial-sum number of a model may be'
obtained by executing the instruction
STORE VECTOR PARAMETERS, which places
the value as a 16-bit binary integer in
the right half of a word in storage.

2-2 IBM System/370 Vector Operations

Vector-Status Register

The vector-status register (VSR) is 64
bits long and contains five fields of
information, which describe the current
status of the vector and vector-mask
registers and of a mode of operation.
The fields are arranged as follows:

Zeros IM\ VCT VIX

o 15 32 48 56 63

The contents of the vector-status reg­
ister as a whole may be examined by the
instruction SAVE VSR and altered by the
instruction RESTORE VSR. Bits 0-14 of
the VSR are reserved for possible future
use and are stored as zeros by SAVE VSR;
if the instruction RESTORE VSR specifies
other than all zeros for these bit posi­
tions,a specification exception is
recognized.

Vector-Mask-Hode Bit

When the vector-mask-mode bit eM), bit
15 of the vector-status register, is
one, the vector-mask mode is on, and
arithmetic and logical instructions are
executed under the control of bits in
the vector-mask register. When the bit
is zero, the mode is off. For details,
see the section "Conditional Arithmetic"
on page 2-12.

Vector Count

The vector count (VeT), bits 16-31 of
the vector-status register, is a 16-bit
unsigned binary integer. Together with
the vector interruption index, it deter­
mines for most vector operations the
number of element locations to be proc­
essed in vector registers or the number
of bit positions to be processed in the
vector-mask register.

Elements in register positions with
element numbers less than the vector
count are called the active elements of
the vector register. Likewise, bits in
bit positions of the vector-mask reg­
ister with bit numbers less than the
vector count are called the active bits
of the vector-mask register. Only the
active elements or bits take part in
operations where the number of elements
or bits processed is determined by the
vector count.

The vector count may range in value from
zero up to and including the section
size. A specification exception is
recognized if the instruction, RESTORE
VSR attempts to place a value in the
vector-count field which exceeds the
section size. The instruction EXTRACT
VCT may be used to examine the vector
count.

The following instructions may be used
to set the vector count. If they
specify a number greater than the
section size, they set the vector count
equal to the section size.

LOAD B IT INDEX
LOAD VCT AND UPDATE
LOAD VCT FROM ADDRESS

For information on using the vector
count with vectors of any length, see
the section "Vector Sectioning" on
page 2-11.

Vector Interruption Index

The vector interruption index (VIX) ,
bits 32-47 of the vector-status reg­
ister, is a 16-bit unsigned binary
integer. It specifies the number of the
first element location in any vector
register, or of the first bit position
in the vector-mask register, to be proc­
essed by an interruptible vector
instruction which depends on the vector
interruption index. The vector inter­
ruption index is used to control
resumption of the operation after such
an instruction has been interrupted. It
is normally zero at the start of exe­
cution, and it is set to zero at com­
pletion.

For details concerning the operation of
the vector interruption index and the
effect of an interruption, see the
section "Vector Interruptions" on
page 2-20.

The vector interruption index may range
from zero to the sect ion size. I t may
be examined by using the instruction
SAVE VSR, and it may be set explicitly
by RESTORE VSR. The instruction CLEAR
VR sets the vector interruption index to
zero. A specification exception is
recognized if the instruction RESTORE
VSR attempts to place a value in the
vector-interruption-index field which
exceeds the section size.

Programming Notes

1. Since the vector interruption index
is always set to zero upon com­
pletion of any instruction which
depends on it, the program normally
need not be concerned with setting
its value.

2. The vector interruption index may be
set to zero explicitly by use of the
instruction CLEAR VR with a zero
operand.

3. If it is desired to operate on a
vector in a vector register starting
at other than element location 0,
this may be done by first setting
the vector interruption index (VIX)
to the initial element number. The
VIX may be set by using the instruc­
tion SAVE VSR to place the current

Chapter 2. Vector Facility 2-3

contents of the vector-status reg­
ister (VSR) in storage, placing the
initial element number in the field
which corresponds to the VIX, and
then returning the result to the VSR
by means of RESTORE VSR. Such mod­
ification of the VSR can be per­
formed safely when the CPU is in the
problem state. If a program modi­
fying the VSR is to be executed in
the supervisor state, however, addi­
tional precautions may have to be
taken; see the section "Vector
Change Bits," programming note 3 on
page 2-5.

Vector In-Use Bits

The eight vector in-use bits (VIU) , bits
48-55 of the vector-status register,
correspond to the eight vector-register
pairs 0, 2, 4, 6, 8, 10, 12, and 14.

The vector in -use bits indicate which
vector-register pairs are to be saved
and restored by SAVE VR and RESTORE VR.
These instructions ignore vector­
register pairs for which the vector
in-use bit is zero.

During execution of instructions which
use the vector registers, the vector
in-use bit associated with a vector­
register pair is set to one whenever any
element in either or both of the regis­
ters is loaded or modified. When a reg­
ister is used as the source of an
operand, its vector in-use bit remains
unchanged.

The vector in-use bits are set by the
instruction RESTORE VSR. If that
instruction changes a vector in-use bit
from one to zero, it causes the corre­
sponding vector-register pair to be
cleared to zeros. A vector in-use bit
is set to zero when the instruction
CLEAR VR clears the corresponding
vector-register pair to zeros.

See the section "Program Switching" on
page 2-28 for a discussion of the vector
in-use bits.

2-4 IBM System/370 Vector Operations

Vector Change Bits

The eight vector change bits (VCH) , bits
56-63 of the vector-status register,
correspond to the eight vector-register
pairs 0, 2, 4, 6, 8, 10, 12,' and 14.

The vector change bits indicate which
vector-register pairs are to be saved by
the privileged instruction1~VE CHANGED
VR. That instruction saVe's a vector­
register pair if the corresponding
vector change bit is one; ,irtthen sets
the vector change bit to zera.

If the vector in-use bit associated with
a vector-register pair is set to zero by
the instruction CLEAR VR or RESTORE VSR,
the corresponding vector chahge bit is
also set to zero.

During execution of an instruction which
uses the vector registers, ,the vector
change bit associated withlJ'a vector­
register pair is set to on~ w~enever any
element in either or both of the regis­
ters is loaded or modified.',' An excep­
tion is the instruction RESTORE VR; when
the CPU is in the supervisor'state, exe­
cution of RESTORE VR leaves the vector
change bits unchanged.

When a vector register is used as the
source of an operand, its vector change
bit remains unchanged.

See the section "Program Switching" on
page 2-28 for further discussion of the
vector change bits."

,J J",

Programming Notes

1. The vector change bit is always zero
when the vector in-use bit is zero.
When the vector change bit is set to
one, the vector in -use bit is also
set to one.

2. As pointed out in the section
"Program Switching" on page 2-28,
vector change bits are intended for
use by control programs operating in
the supervisor state. When' the CPU
is in the problem state ,-,the value
of the vector change bits ~tored by
SAVE VSR is undefined; problem-state
programs should, therefore, not
depend on the value of these bits.

A program operating in the problem
state cannot set a vector change bit

to zero, except by also setting the
corresponding in-use bit to zero
(clearing the vector-register pair).
In the problem state, the instruc­
tion RESTORE VSR sets the vector
change bit to one for every pair of
vector registers whose in-use bit is
set to one.

3. If a program uses the instruction
RESTORE VSR to modify the contents
of the vector-status register while
the CPU is in the supervisor state,
and the program is subject to inter­
ruptions for which the interruption
handler may cause a SAVE CHANGED VR
instruction to be executed, care
must be taken to ensure that the
vector change bits reflect all mod­
ifications of the active vector reg­
isters. A safe procedure is to
supply ones in all bit positions of
the operand of RESTORE VSR which
correspond to the vector change
bits. This precaution is unneces­
sary in the problem state, because
RESTORE VSR then sets the vector
change bits to ones regardless of
the operand.

4. A program operating in the super­
visor state can depend on the accu­
racy of vector change bits that are
zeros. When the program is a guest
in a virtual-machine environment,
however, vector change bits may be
overindicated, so that a bit may be
set to one even when the corre­
sponding vector-register pair has
not been changed.

Vector-Activity Count

The vector-activity count (VAC) provides
a means for measuring and scheduling the
machine resources used in executing
instructions of the vector facility.

The vector-activity count has
format:

1000000001

o 8

this

63

Bits 8-63 are a 56-bit unsigned binary
integer. In the basic form, this
integer is incremented by adding a one

in hit position 51 every microsecond
while a vector-facility instruction is
being executed. In models having, a
higher or lower resolution, a different
bit position is incremented at such a
frequency that the rate of incrementing
the vector-activity count is the same as
if a one were added in bit position 51
every microsecond during those periods.
Bits 0-7 are zeros.

The contents of the vector-activity
count may be obtained by executing the
privileged instruction SAVE VAC, and
they may be set by means of the privi­
leged instruction RESTORE VAG. Bits
0-7, and any rightmost bit positions
which are not incremented, are stored as
zeros by SAVE VAC and are ignored by
RESTORE VAC.

When incrementing the vector-activity
count causes a carry to be propagated
out of bit position 8, the carry is
ignored, and counting continues from
zero. The program is not alerted, and
no interruption occurs as a result of
the overflow. Except for such
wraparound, or an explicit restore or
reset operation, the value of the count
never decreases.

The vector-activity count is not incre­
mented during execution of the instruc­
tions RESTORE VAC and SAVE VAC. In
addition, depending on the model, the
count may not be incremented during exe­
cution of some other short, uninterrup­
tible instructions of the vector
facility.

The vector-activity count is incremented
only when the CPU is in the operating
state.

Programming Notes

1. The vector-activity count is not
intended to be a precise measure of
vector execution time. The count
mayor may not advance during the
execution of a particular vector­
facility instruction. In the aggre­
gate, however, the count reflects
the execution time of the vector
portion of normal application pro­
grams.

2. The format of the vector-activity
count has been chosen to permit the
use of unnormalized scalar floating-

Chapter 2. Vector Facility 2-5

point instructions to perform fast
addition and subtraction of VAC
values.

Modes of Operation

The operation of the vector facility is
independent of the archi tectural mode,
except for the range of storage
addresses which can be specified. The
370-XA architectural mode provides the
choice of operating in either a 31-bit
or 24-bit addressing mode; the
System/370 architectural mode does not.
On a CPU which provides both the 370-XA
and System/370 modes, vector operations
in the System/370 mode are the same as
in the 370-XA mode when in the 24-bit
addressing mode. Thus, an address size
of 24 bits is available in either the
370-XA or System/370 mode, but vector
operations with an address size of 31
bits can be performed only in the 370-XA
mode. In the System/370 mode, instruc­
tions of the vector facility may be exe­
cuted in both the EC and BC modes.

In both the 370-XA and System/370 modes,
vector operations are governed by the
vector-control bit.

Vector-Operation Control

When the vector facility is installed
and available on a CPU, execution of
vector-facility instructions can be com­
pleted only if bit 14 of control reg­
ister 0, the vector-control bit, is one.
Executing a vector-facility instruction
when the vector-control bit is zero
causes a vector-operation exception to
be recognized and a program interruption
to occur. The initial value of the
vector-control bit is zero.

When the vector facility is not
installed or not available on this CPU
but is installed on any other CPU which
is or can be placed in the configura­
tion, executing a vector-facility
instruction causes a vector-operation
exception to be recognized regardless of
the state of the vector-control bit.

If the vector facility is not installed
on any CPU which is or can be placed in
the configuration, it depends on the
model whether executing a vector­
facility instruction causes a vector-

2-6 IBM System/370 Vector Operations

operation exception or an operation
exception to be recognized.

A vector facility, though installed, is
considered not available when it is not
in the configuration, when it is in
certain maintenance modes, or when its
power is off.

Figure 2-2 summarizes the effect of the
vector-control bit according to whether
the vector facility is installed and
whether vector instructions can be exe­
cuted by the program.

Vector Facility on This CPU

Effect of
Vector­
Facility
Instruction

Vector
Facility
Installed
on
Another
CPU

In- Avail-r-----~------~
stalled able VC = 0 VC = 1

Yes or No Yes Yes VOP Exe-
cute

Yes or No Yes No VOP VOP
Yes No (NA) VOP VOP
No No (NA) VOP or VOP or

OP

Explanation:

NA Not applicable
OP Operation exception
VC Vector-control bit (control

register 0, bit 14)
VOP Vector-operation exception

Figure 2-2. Vector Control

Programming Notes

OP

1. The control program may use the
vector-control bit to defer enabling
of the CPU for vector operations and
to delay allocation of a vector-save
area until a program attempts to use
the facility by executing its first
vector instruction. Because the
resulting vector-operation exception
nullifies the operation, the
instruction address does not need to
be adjusted in order to resume the
program.

2. The control program may also keep
the vector-control bit set to zero

to prevent a program from exam1n1ng
or changing the contents of the
vector-facility registers. This may
be useful when a program that does
not use the vector facility is to be
run after a program that does use
the facility has been interrupted.
If the next program to use the
vector registers is the original
progra~J ,then running the inter­
venini program with the vector­
control bit set to zero may
eliminate the need for information
held in the vector facility to be
saved and later restored.

A possible exception is the vector­
activity count (VAC). When the
vector-control bit is zero, the VAC
mayor may not be incremented during
the brief period of detecting that
an instruction requires the vector­
operation exception to be recog­
nized. The number of times that the
VAC might be stepped in this way is
small, however, compared to the
counts accumulated during execution
of a vector-application program.

3. When a machine check indicating
vector-facility failure occurs, the
machine has made a previously avail­
able vector facility unavailable.
Until the cause of the failure is
removed and the facility is made
available again, attempting to
execute a vector instruction causes
a vector-operation exception to be
recognized even though the vector­
control bit is one. (See the
section""Vector-Facility Failure" on
page 2-31.)

VECTOR-INSTRUCTION OPERANDS AND
RESULTS

The vector facility provides for oper­
ations on vectors of short (32-bit) and
long (64-bit) floating-point numbers,
32-bit signed binary integers, and
32-bit logical data. A few operations
deal wi t4" vectors of 16- and 64-bit
signed binary integers. There are also
operations on vectors of individual
bits, which are generally used as mask
bits.

All binary-arithmetic vector operations
treat elements of 32-bit binary integers

as signed; any fixed-point-overflow
exceptions are recognized. Binary­
comparison operations also deal with
32-bit signed binary integers. Logical
vector operations, including shifts,
treat elements as 32-bit logical data.

Most instructions which operate on
floating~point, binary-integer, or
logical vectors use a format that
explicitly designates three operands:
two source operands and one target
operand. The operands may be:

• In storage,

• In a vector register, or a pair of
vector registers, or

• In a scalar (general or floating­
point) register.

Instructions which use mask bits gener­
ally designate an implicit operand in
the vector-mask register, and they also
may explicitly designate storage,
vector-register, and scalar-register
operands.

All vector operands in storage must be
aligned on integral boundaries. When an
instruction requires boundary alignment
and the storage operand is not desig­
nated on the appropriate boundary, a
specification exception is recognized.

An instruction which processes operands
in vector or scalar registers must des­
ignate a valid register number for each
such operand. If an invalid register
number is designated, a specification
exception is recognized.

Figure 2-3 on page 2-8 summarizes the
vector-data formats, the associated
operations, and the boundary-alignment
and register-number requirements.

Vectors of 16-, 32-, and 64-bit elements
containing arithmetic or logical data
are collectively referred to as arith­
metic vectors. Arithmetic vectors in
storage must be on integral boundaries.
The elements of arithmetic vectors have
the same formats as scalar data of the
same data type.

Vectors of individual bits are referred
to as bit vectors (see the section "Bit
Vectors" on page 2-10).

Chapter 2. Vector Facility 2-7

Valid Register Numbers
Width in Bits Alignment

Required In Scalar Vector
Data Type 1 16 32 64 Storage Register Register

Floating point
Short A Word Even FR Any VR
Long A Doubleword Even FR Even VR

Binary integer
16-bit signed S Halfword -- Any VR
32-bit signed B Word Any GR Any VR
64-bit signed P -- -- Even VR

Logical L Word Any GR Any VR
Bit M Byte -- --

Explanation:

Does not apply
A
B
FR
GR
L
M

All arithmetic, load, and store operations
Some arithmetic and all load and store operations
Floating-point register
General register
Logical and shift operations
Logical operations on bits in storage and in vector-mask
register; comparison results

p 64-bit binary integers, which occur only as the result of
a binary multiply operation

S Only load and store operations, which convert between 16 bits
in storage and 32 bits in a vector register

VR Vector register

Figure 2-3. Types of Vector Data

Programming Note

Logical-data elements may also be con­
sidered as 32-bit unsigned binary inte­
gers, but no arithmetic or comparison
operations are provided to process such
vectors.

Arithmetic Vectors in Storage

Arithmetic vectors in storage may be
loaded and stored in one of two ways:

• By sequential addressing (contig­
uously or with stride)

• By indirect element selection

Most arithmetic, comparison, and logical
instructions may also access one of the
vector operands directly from storage by
sequential addressing. Indirect element
selection is available only for load and
store operations.

2-8 IBM System/370 Vector Operations

Access by Sequential Addressing

Vector elements are most often accessed
in storage in a regular sequence of
addresses. The instruction specifies a
general register containing the starting
address and, optionally, another general
register containing the stride. The
stride, which is a 32-bit signed binary
integer, is the number of element
locations by which the operation
advances when proceeding from one
element to the next. The maximum number
of elements to be accessed is specified
by the vector count.

A stride of one specifies a contiguous
vector, for which successive elements
are in adjacent storage locations; this
stride is the default when no general
register is specified for the stride. A
stride of zero causes the same element
to be used repeatedly as the storage

operand. A negative stride causes ele­
ments to be accessed in a descending
sequence of addresses.

During the execution of instructions
which access an arithmetic vector in
storage sequentially, the starting
address contained in the general reg­
ister is updated as successive elements
in storage are accessed. At the end of
instruction execution, or at the time of
any interruption, the contents of the
general register have been updated to
the storage address of the next vector
element due to be processed if instruc­
t ion execut ion had not ended or been
interrupted. Likewise, when instruc­
tions process a bit vector in storage,
the starting address in the general reg­
ister is updated by the number of bytes
accessed during execution.

Such automatic updating of vector
addresses is used to process a vector in
sections when the vector has more ele­
ments than will fit into a vector reg­
ister. It also assists in resuming
instruction execution after an inter­
ruption.

For more details on sequential
addressing, see the section "Class-1M
and Class-IC Instructions" on page 2-15.
For more information on sectioning, see
the section "Vector Sectioning" on
page 2-11.

Programming Note

A contiguous vector is implied when zero
is specified in the instruction field
that designates the general register
containing the stride. This differs
from a zero stride, which is specified
by placing a value of zero in the
general register containing the stride,
and which causes reuse of the same
element in storage. A zero stride is
generally not desired because the scalar
form of an instruction is usually faster
than repeated use of the same storage
location. (See the section "Operands in
Scalar Registers" on page 2-10.)

Access by Indirect Element Selection

Indirect element selection permits
vector elements to be loaded or stored
in an arbitrary sequence. With the
instructions used for indirect element
selection, LOAD INDIRECT and STORE INDI­
RECT, the locations of the individual
operand elements to be loaded or stored
are designated by a vector of element
numbers in a vector register. Each such
element number indicates the position of
the corresponding operand element rela­
tive to the start of the operand vector.
The number of operand elements accessed,
which is also the number of element
numbers used for indirect element
selection, is equal to or less than the
vector count.

The element numbers used for indirect
element selection are 32-bit signed
binary integers. They may be positive,
negative, repeated, and in any order.
Successive operand elements are located
in storage at addresses A + w*E(O) , A +
w*E(l), A + w*E(2) , ... , where A is the
origin of the operand vector in storage,
w is the width in bytes (4 or 8) of each
element, and E(O), E(l), E(2), ... are
the successive element numbers in a
vector register.

General-register address updating does
not apply to the instructions LOAD INDI­
RECT and STORE INDIRECT.

Programming Notes

1. For a discussion of address
updating, see the programming notes
under "Vector Sectioning" on
page 2-11.

2. Vectors of element numbers may be
stored as 16-bit signed binary inte­
gers when the element numbers remain
within the range of such integers.
The vector instructions LOAD
HALFWORD and STORE HALFWORD perform
the conversion between the 16-bit
and 32-bit formats.

3. Accessing vectors in storage in the
arbitrary sequence permitted by
indirect element selection may be
significantly slower than accessing
contiguous vector elements.

Chapter 2. Vector Facility 2-9

Arithmetic Vectors in Registers

Operands in Vector Registers

Any vector register can be designated
for a vector of short floating-point
numbers, 32-bit signed binary integers,
or 32-bit logical data. Even-odd
vector-register pairs are coupled to
hold long floating-point numbers or the
64-bit signed binary integers which
result from binary multiplication.

When a vector register is modified,
those elements in the vector register
beyond the last element to be modified
are left unchanged.

Most operations on floating-point,
binary, or logical vectors which may be
performed with one vector operand in
storage and one operand in a vector reg­
ister may also be performed with both
operands in vector registers. When both
operands are in vector registers, the
corresponding pairs of elements from
each vector-register operand generally
have the same element number (but see
the descriptions of ACCUMULATE and MUL­
TIPLY AND ACCUMULATE for an exception to
this rule).

Operands in Scalar Registers

Operations on floating-point, binary, or
logical vectors may specify as one
source operand the contents of a scalar
register, that is, of a floating-point
or general register, the other operand
being a vector. This scalar operand is
used repeatedly and treated as a vector
of identical elements of the same length
as the vector operand.

Some vector instructions which obtain
one of the source operands from a scalar
register also produce a scalar result,
which replaces the contents of the same
scalar register.

Bit Vectors

A group of bits in contiguous bit posi­
tions is called a bit vector. Bit
vectors are the operands of logical
operations where one of the operands is
in the vector-mask register. They are
used in operations on arithmetic vectors
under mask control.

2-10 IBM System/370 Vector Operations

A bit vector in storage must begin on a
byte boundary, but it may end at any bit
position, the remaining bits of the
rightmost byte being ignored. When the
instruction STORE VMR stores a bit
vector with the vector count specifying
a number of bits that is not a mUltiple
of 8, the final byte stored is padded on
the right with zeros.

When used for the control of load and
store operations or for arithmetic and
logical operations in the vector-mask
mode, the appropriate bit vector must
first be placed in the vector-mask reg­
ister. Each bit in the vector-mask reg­
ister corresponds sequentially, one for

'one, to an element of one or both of the
vector-register operands.

Bit vectors in the vector-mask register
are generated or altered by the fol­
lowing vector instructions:

AND TO VMR
COMPARE
COMPLEMENT VMR
EXCLUSIVE OR TO VMR
LOAD VMR
LOAD VMR COMPLEMENT
OR TO VMR

Programming Notes

1. Examples of the use of bit vectors
for mask control are shown in
Appendix A.

2. Since the section size is a multiple
of 8 and bit vectors start on a byte
boundary, every section of a bit
vector also starts on a byte
boundary. Thus, after an instruc­
tion has completed processing a full
section of bits, the next bit is
always the leftmost bit of the byte
specified by the updated address.

3. When a bit vector is used as a mask
to identify selected elements of an
arithmetic vector with one bits and
the rema1n1ng elements with zero
bits, the bit vector is logically
equivalent to a vector containing a
set of element numbers in ascending
sequence, which may be used for
indirect selection of the
arithmetic-vector elements. The
vector of element numbers consists
merely of the bit indexes (bit

numbers) of the one bits in the bit
vector.

A bit vector may be converted to a
vector of element numbers by the
instruction LOAD BIT INDEX. This
instruction operates directly on a
bit vector in storage and produces a
vector of element numbers in a
vector register; the vector-mask
register is not used.

Vector Sectioning

Vector sectioning is a programming tech­
nique for processing vectors the length
of which may exceed the section size.
Such vectors are processed by dividing
them into smaller sections and using a
loop of instructions, referred to as a
sectioning loop, which repeats the
appropriate s~uence of instructions for
all consecutive sections of the speci­
fied vectors. To assist with such sec­
tioning, addresses of vector operands in
storage and bit-vector parameters are
automatically updated, and the instruc­
tion LOAD VCT AND UPDATE is provided.

The LOAD VCT AND UPDATE instruction
specifies a general register that has
initially been loaded with the total
number of vector elements to be proc­
essed. The instruction sets the vector
count to the lesser of the section size
and the general-register contents. It
also subtracts this value from the
current contents of the general reg­
ister, which then contains the number of
elements remalnlng to be processed
during subsequent passes through the
sectioning loop.

LOAD VCT AND UPDATE sets the condition
code to provide the program with an
indication of whether a complete vector
has been processed. The program may use
the instruction BRANCH ON CONDITION for
loop control to repeat the sequence of
instructions for each section. A sec­
tioning loop may also be closed by
testing the residual count in the
general register for zero and branching
back to the start of the loop if not
zero.

For most vector operations, the program
can be written such that sectioning is
independent of the section size. There

are occas ions, however, when know ledge
of the actual section size is desirable;
this value is available to the program
by executing the instruction STORE
VECTOR PARAMETERS.

Programming Notes

1. Examples of sectioning are shown in
Appendix A.

2. One method of controlling the vector
count for sectioning is to place the
instruction LOAD VCT AND UPDATE at
the beginning of the loop and an
appropriate BRANCH ON CONDITION
instruction at the end of the loop.
This is usually sufficient because
most vector-facility instructions do
not set the condition code. If the
sectioning loop does contain an
instruction that modifies the condi­
tion code, the final BRANCH ON CON­
DITION instruction could be preceded
by a LOAD AND TEST instruction to
test the general register containing
the residual vector count.

Appendix A also illustrates other
techniques.

3. If a sectioning loop contains more
than one reference to the same
vector in storage, such as a load
followed later by a store, the
program must ensure, by retaining a
copy of the current address, that
all addresses within the loop which
specify the same vector refer to the
same section.

4. The instructions which provide indi­
rect element selection, LOAD INDI­
REcT and STORE INDIRECT, progress
one section of element numbers at a
time. But sectioning of the vector
of element numbers used for
addressing is performed by a pre­
ceding instruction which loaded or
generated the element numbers by
means of sequential addressing. The
indirect-selection instructions
themselves do not provide for
address updating. Each element
address is computed separately from
an element number and from the spec­
ified starting address, which
remains unchanged.

Chapter 2. Vector Facility 2-11

Conditional Arithmetic

Vector-Mask Mode

The vector-mask mode allows for condi­
tional execution of arithmetic and
logical instructions, depending on the
mask bits in the vector-mask register.

When the vector-mask mode is in effect,
operand elements are processed if they
are in positions which correspond to
mask bits that are ones. In positions
which correspond to zero mask bits, the
target locations remain unchanged, no
arithmetic or operand-access exceptions
are recognized for those positions, the
corresponding change bits in storage
remain unchanged, and no PER event for
storage alteration is indicated. When
the vector-mask mode is not in effect,
the mask bits are ignored, and all
active elements are processed.

The arithmetic and logical vector
instructions which are under the control
of the vector-mask mode are:

ACCUMULATE
ADD
AND
DIVIDE
EXCLUSIVE OR
LOAD COMPLEMENT
LOAD NEGATIVE
LOAD POSITIVE
MAXIMUM ABSOLUTE
MAXIMUM SIGNED
MINIMUM SIGNED
MULTIPLY
MULTIPLY AND ACCUMULATE
MULTIPLY AND ADD
MULTIPLY AND SUBTRACT
OR
SHIFT LEFT SINGLE LOGICAL
SHIFT RIGHT SINGLE LOGICAL
SUBTRACT

Except for LOAD COMPLEMENT, LOAD NEGA­
TIVE' and LOAD POSITIVE, which are con­
sidered arithmetic instructions for this
purpose, load and store instructions are
not controlled by the vector-mask mode;
neither are instructions which modify
the vector-mask register, such as
COMPARE. LOAD EXPANDED, LOAD MATCHED,
STORE COMPRESSED, and STORE MATCHED do
depend on the vector-mask register for

2-12 IBM System/370 Vector Operations

their execution, but this is independent
of the mode setting.

For more details, see the section
"Class-1M and Class-Ie Instructions" on
page 2-15.

Instructions Controlling the Vector-Mask
Mode

The instruction SET VECTOR MASK MODE
(VSVMM) turns the vector-mask mode on or
off. EXTRACT VECTOR MASK MODE eVXVMM)
places the current value of the mode in
a general register.

Programming Notes

1. The vector-mask mode is useful when
arithmetic vector operations depend
on the result of a vector compar­
ison. Only elements which are to be
processed are subject to arithmetic
and access exceptions.

2. Since loading, comparing, and
storing are operations which are not
subject to the vector-mask mode, it
is frequently possible to leave the
vector-mask mode in effect while
performing the arithmetic for an
entire sectioning loop.

COMMON INSTRUCTION DESCRIPTIONS

Many vector-facility instructions have
common characteristics and obey common
rules for accessing the elements of
their vector operands. This section
describes the common aspects, which are
not repeated in individual instruction
descriptions.

Some instructions contain fields that
vary slightly from the basic format, and
in some instructions, the operation per­
formed does not follow the general rules
stated in this section. Any exceptions
to these rules are noted in the indi­
vidual instruction descriptions, as are
the rules for instruction formats and
types not covered in this section.

The rules are grouped according to
instruction classes and formats.

Programming Note

Many load and all store operations on
vectors are the same for binary and
short floating-point operands, so that
only a single set of operation codes is
provided for them. However, for pro­
gramming convenience, both binary and
short floating-point mnemonics are
assigned to these operation codes.

Separate operation codes are provided
for short floating-point and binary
operands when the operation must distin­
guish between floating-point and general
registers, as in loading or extracting
an element, or when the operation
depends on the data type, such as LOAD
COMPLEMENT.

I nstruction Classes

Vector-facility instructions are classi­
fied into one of nine classes: 1M, IC,
IG, IP, IZ, NC, NZ, N1, and NO. The
properties of these nine instruction
classes are summarized in Figure 2-4.

Instruc- Number of Execution Vector-
tion Elements Inter- Mask Mode
Class or Bits ruptible? Control?

1M VCT - VIX Yes Yes
IC VCT - VIX Yes No
IG GR and Yes No

VIX
IP PSN - VIX Yes No
IZ SS Yes No

NC VCT No No
NZ SS No No
N1 One No No
NO None No No

Explanation:

GR Number of bits determined by
contents of a general register

PSN Number of elements determined by
partial-sum number

SS Section size
VCT Vector count
VIX Vector interruption index

Figure 2-4. Vector-Facility
tion Classes

Instruc-

The instruction classes distinguish:

•

•

•

•

•

•

Whether the instruction is interrup­
tible (1_) or not interruptible
(N_) ,

Whether instruction
depends on the vector
index (1M, IC, IG, IP),

execution
interruption

Whether instruction
depends on the setting
vector-mask mode (1M),

execution
of the

Whether the number of vector ele­
ments or bits processed is variable
and is controlled by the vector
count (1M, IC, NC) or by a general
register (IG),

Whether the number of vector
ments or bits processed is
partial-sum number (IP) or
section size (IZ, NZ),

Whether just one vector element
processed (N1) or none (NO).

ele­
the
the

is

I nstruction Formats

The instruction formats used by vector­
facility instructions are shown in
Figure 2-5 on page 2-14. The first four
are the base formats - QST, QV, VST,
and VV, where Q indicates that the
format provides for a scalar-register
operand, ST indicates a storage operand
(with stride), and V indicates a vector­
register operand. Most of the arith­
metic instructions are available in all
four of these base formats. For the
vector-comparison instructions, the VRl
field of the base formats is interpreted
as a modifier (M 1).

Bit positions which are shown in
instruction formats as shaded (1111) are
unassigned.

Field Designations

The field designations in the instruc­
tion formats indicate the use of the
field and the type of operation in which
the field participates.

B2 and D2 Fields: B2 designates a base
register, and D2 is a displacement.
They are used for addressing in the same
way as with scalar instructions.

Chapter 2. Vector Facility 2-13

First
Halfword

Second
Halfword

Third
Halfword

Base Formats

QST Format Op Code

0 16 20 24 28 31

QV Format Op Code

0 16 20 24 28 31

VST Format Op Code

0 16 20 24 28 31

W Format Op Code

0 16 20 24 28 31

Other Formats

RRE Format Op Code I111111111I GR1111111
0 16 24 28 31

RSE Format Op Code I R3 I1111I VRlllllll B2 D2

0 16 20 24 28 32 36 47

S Format Op Code I B2 I D2

0 16 20 31

VR Format Op Code I QR311111[VR11 GR2 \

0 16 20 24 28 31

VS Format Op Code I111111111111111 RS 2 1

0 16 28 31

Figure 2-5. Vector-Facility Instruction Formats

FR3 Field: FR3 designates a (scalar)
floating-point register. It is a more
specific description of the QR3 field
used in some instruction descriptions,
and the same rules and restrictions
apply as for QR3 .

2-14 IBM System/370 Vector Operations

GR Field: GR designates a (scalar)
general register or a pair of general
registers. Unless otherwise indicated
in the individual instruction defi­
nitions, the contents of the general
registers designated by the GR1 and GR2
fields are called the first operand and
second operand, respectively. When des­
ignating the third operand (GR3) , it is
a more specific indication of the QR3
field used in some instruction
descriptions, and the same rules and
restrictions apply as for QR3 .

QRg Field: QRg designates a scalar reg­
ister, with the operation code deter­
mining whether it is a floating-point or
general register. In the QST format,
the QRg field must not designate a
general register which is the same as
that designated by the RS 2 field; other­
wise, a specification exception is
recognized. For instructions in the QV
or VR formats with only two operands,
one a vector and one a scalar, the
scalar operand is called the second
operand and is designated by a QR2
field.

R3 Field: R3 is shown in individual
instruction descriptions as either VR3 ,
to designate a vector register, or GR3 ,
to designate a general register.

RS2 Field: RS 2 designates a general
register containing a storage-operand
address. The address is updated during
execution. The RS 2 field cannot desig­
nate the same general register as the
RT2 field or, in the QST format, as the
GR3 or QR3 field. (Note that the field
can designate general register 0.)

RT2 Field: RT2 designates a general
register containing a stride. The field
cannot designate general register 0; if
the RT2 field is zero, a stride of 1 is
specified. It also cannot designate the
same general register as the RS 2 field.

VR Field: VR designates a vector reg­
ister or a pair of vector registers.
The VR 1 , VR2 , and VR3 fields designate
the first, second, and third operands,
respectively, in vector registers or
pairs of vector registers, as required
for the data type specified by the oper­
ation code.

Three-Operand Instruction Formats

All nonstore vector instructions which
explicitly specify three operands in the
QST, QV, RSE, VST, and VV formats use
the first-operand location as the target
for the result and the second- and
third -operand locations for the source
operands. These three-operand oper­
ations may be shown symbolically as:

Operand 1 = Operand 3 • Operand 2

where • represents an arithmetic or
logical operation. Operand 1 is always
in vector registers. Operand 2 is in

storage or in vector registers. Operand
3 is either in vector registers or in a
scalar register. An instruction may
specify the same or different vector
registers for the target and source
operands.

Vector-comparison instructions are
similar to these three-operand instruc­
tions, except that they designate a mod­
ifier (M 1) instead of a first operand
(VR1), and they place the result in the
vector-mask register.

Summary of I nstructions by Class and
Format

Figure 2-6 on page 2-16 briefly lists
all instructions of the vector facility
according to class and format within the
class.

Class-1M and Class-IC Instructions

Most vector instructions are in either
class 1M or IC. Instructions in both
classes are interruptible, the number of
elements processed is determined by the
vector count, and they depend on the
vector interruption index. Class-1M
instructions are also under the control
of the vector-mask mode; class-IC
instructions are independent of the
vector-mask mode.

For both classes, the elements of each
operand are processed in sequence from
element X, where X is the initial value
of the vector interruption index
(normally zero), to C-1, where C is the
vector count.

The number of elements that are proc­
essed for each operand is called the net
count. If C is greater than X, then the
net count is C-X; otherwise the net
count is zero. For vector instructions
which combine vector operands with a
scalar operand, the scalar operand is
considered to be replicated as many
times as indicated by the net count.

If the net count is zero at the start of
instruction execution, the vector inter­
ruption index is set to zero, and exe­
cution is completed immediately. No
elements are processed, no operand­
access exceptions occur, the change bits
for any storage operand remain
unchanged, and no PER event for storage

Chapter 2. Vector Facility 2-15

Instruction Formats When Operands Are

Instructions Class Long Short Binary Other Total

ADD, SUBTRACT 1M Four 1 Four 1 Four 1 24
AND, EXCLUS IVE OR, OR 1M Four 1 12
DIVIDE 1M Four 1 Four 1 8
MULTIPLY 1M Four 1 Four 12 Four l 12

MULTIPLY AND ADD 1M QST/QV/VST QST/QV/VST2 6
MULTIPLY AND SUBTRACT 1M QST/QV/VST QST/QV/VST2 6
MULTIPLY AND ACCUMULATE 1M VST/VV VST/VV2 4
ACCUMULATE 1M VST/VV VSTjVV 2 4

LOAD COMPLEMENT 1M VV VV VV 3
LOAD NEGATIVE, LOAD POSITIVE 1M VV VV VV 6
SHIFT LEFT SINGLE LOGICAL 1M RSE 1
SHIFT RIGHT SINGLE LOGICAL 1M RSE 1
MAXIMUM ABSOLUTE 1M VR VR 2
MAXIMUM SIGNED, MINIMUM SIGNED 1M VR VR 4

COMPARE IC Four 1 Four 1 Four 1 12
LOAD, LOAD MATCHED IC QV/VST/VV QV/VST1/VV1 QV 14
STORE, STORE MATCHED IC VST VST1 4
LOAD EXPANDED, STORE COMPRESSED IC VST VST1 4
LOAD INTEGER VECTOR IC VST 1
LOAD HALFWORD, STORE HALFWORD IC VST 2
LOAD ZERO IC VV VV 1 2
LOAD INDIRECT, STORE INDIRECT IC RSE RSE 1 4

LOAD B IT INDEX IG RSE 1

SUM PARTIAL SUMS IP VR 1
ZERO PARTIAL SUMS IP VR 1

RESTORE VR IZ RRE 1
SAVE VR, SAVE CHANGED VR IZ RRE 2
RESTORE VSR IZ S 1

I CLEAR VR IZ S 1

Figure 2-6 (Part 1 of 2). Summary of Vector-Facility Instructions by Class and
Format

alteration is indicated. Vector,
floating-point, and general registers
that are due to be modified, the vector
in-use bits, and the vector change bits
remain unchanged.

If the instruction is interrupted during
execution, Y-X pairs of elements have
been proces s ed, where X and Yare the
values of the vector interruption index
at the beginning of execution and at the
time of interruption, respectively. Y
is then the element number of the next

2-16 IBM System/370 Vector Operations

element, if any, to be processed for
each operand.

When a class-1M or class-Ie instruction
designates a scalar register as the
location of the third operand (in the
QST or QV format), and the scalar reg­
ister is a floating-point register, the
instruction must designate register 0,
2, 4, or 6 in the third-operand field;
otherwise, a specification exception is
recognized.

Instruction Formats When Operands Are

Instructions Class Long Short Binary Other Total

COUNT LEFT ZEROS IN VMR NC RRE 1
COUNT ONES IN VMR NC RRE 1
COMPLEMENT VMR, TEST VMR NC RRE 2
AND TO VMR, EXCLUSIVE OR TO VMR NC VS 2
LOAD VMR, LOAD COMPLEMENT VMR NC VS 2
OR TO VMR, STORE VMR NC VS 2

RESTORE VMR, SAVE VMR NZ S 2

EXTRACT ELEMENT, LOAD ELEMENT N1 VR VR VR 6

EXTRACT VCT NO RRE 1
EXTRACT VECTOR MASK MODE NO RRE 1
LOAD VCT AND UPDATE NO RRE 1
LOAD VCT FROM ADDRESS NO S 1
RESTORE VAC, SAVE VAC, SAVE VSR NO S 3
SET VECTOR MASK MODE NO S 1
STORE VECTOR PARAMETERS NO S 1

Totals 53 51 41 26 171

Explanation:

1

2
Four instruction formats are provided: QST, QV, VST, and VV.
Operand 1 is in the long format; operands 2 and 3 are in the short format.

3 Instruction in this format may be used for both short and binary operands.

Figure 2-6 (Part 2 of 2). Summary of Vector-Facility Instructions by Class and
Format

Class-IM Instructions

For instructions in class 1M, all ele­
ments are processed as described above
when the vector-mask mode is off. When
the vector-mask mode is on, however,
operand elements are fetched from
storage or from operand registers, and
result elements are placed in the target
register, only for those elements which
correspond to ones in the vector-mask
register. Element positions in the
target register corresponding to zeros
remain unchanged; no arithmetic or
operand-access exceptions are recognized
for those positions, the corresponding
change bits in storage remain unchanged,
and no PER event for storage alteration
is indicated.

The first mask bit used, when the
vector-mask mode is on, is bit X of the
vector-mask register, corresponding to
the first vector-register element X.
The last mask bit and vector-register

element processed are numbered C-1, if
the instruction is completed, or Y-1, if
the instruction is interrupted during
execution.

Class-1M instructions in the QST and VST
formats have the storage address in the
RS 2 register updated during execution
for every element position, regardless
of whether the corresponding mask bit is
one or zero (see the section "Storage
Operands for QST and VST Formats fI on
page 2-18).

Class-IC Instructions

Execution of instructions in class IC is
independent of the vector-mask mode.
The following instructions depend on
mask bits in the vector-mask register,
but their execution is the same whether
the vector-mask mode is on or off: LOAD
EXPANDED, LOAD MATCHED, STORE COM­
PRESSED, and STORE MATCHED. The first

Chapter 2. Vector Facility 2-17

mask bit used for those instructions is
bit X, corresponding to the first
vector-register element X. The last
mask bit and vector-register element
processed are numbered C-1, if the
instruction is completed, or Y-1, if the
instruction is interrupted during exe­
cution.

Storage Operands for QST and VST Formats

In the QST and VST formats, the RS 2
field designates a general register con­
taining the starting address, that is,
the address of the first element of the
vector operand in storage which is to be
processed. The RT2 field, if not zero,
designates a general register containing
the stride; if the RT2 field is zero,
general register 0 is not used, and a
stride of one is assumed.

The addresses of successive vector ele­
ments in storage are A, A+wT, A+2wT,
... , where A is the starting address, T
is the stride, and w is the size of each
element in bytes. The value of w is 2,
4, or 8, depending on whether the opera­
tion code specifies the storage-operand
elements to be halfwords, words, or
doublewords.

Each address may be obtained by adding
to the previous address the value wT,
which is the stride T shifted to the
left by one, two, or three bit posi­
tions. Any carries or ones shifted out
of bit position 0 are ignored.
Depending on whether the address size is
31 or 24 bits, the rightmost 31 or 24
bits of the sum are used as the storage
address, which is also returned to the
general register containing the initial
address; the leftmost one or eight bit
positions, respectively, of the register
are set to zeros. The register is thus
updated after each unit of operation to
hold the address of the next element,
whether an element of the storage
operand has been accessed or not. All
bits in the general register containing
the stride take part in the operation,
with the contents of the stride register
remaining unchanged.

A stride of zero (T=O) means that the
same element location is used repeat­
edly. When storing with a zero stride,
only the last element stored is retained
in the addressed location.

2-18 IBM System/370 Vector Operations

The RT2 field must be zero and must not
designate the same general register as
the RS 2 field; likewise, the third­
operand field of a QST-format instruc­
tion must not designate the same general
register as the RS 2 field. Otherwise, a
specification exception is recognized,
and the operation is suppressed.

No storage accesses are made for ele­
ments that are skipped when the stride
is not one. If no elements are proc­
essed because the net count is zero at
the start of instruction execution, no
access exceptions are recognized for the
storage operand, the change bits for the
operand remain unchanged, and no PER
event for storage alteration is indi­
cated.

The contents of the RS 2 register remain
unchanged when the address is not
updated because the net count is zero.
When the net count is not zero and one
or more elements have been accessed, the
address is updated, and the leftmost
bits of the RS 2 register, depending on
the address size, are set to zeros, even
if the stride is zero.

For the instructions LOAD EXPANDED and
STORE COMPRESSED, when the net count is
not zero and the active bits of the
vector-mask register starting with bit X
are all zeros, X being the initial value
of the vector interruption index, no
operand storage accesses are made and
the address in the RS2 register is not
updated. It is undefined in that case
whether the leftmost one or eight bits
of the RS 2 register) depending on the
address size, are set to zeros or remain
unchanged.

When class - 1M instructions are executed
with the vector-mask mode on, no access
exceptions are recognized for elements
corresponding to zeros in the vector­
mask register.

Programming Notes

1. For instructions which produce a
vector result , result elements cor­
responding to ones in the vector­
mask register are the same whether
the vector-mask mode is on or off.
The vector-mask mode does affect the
results produced by instructions
which reduce vector operands to a
partial sum (ACCUMULATE and MULTIPLY

AND ACCUMULATE) or to a single
scalar result, because those results
may depend on the presence or
absence of each operand element.

2. The address-updating operation con­
s ists of uns igned shifts and addi­
tions of binary integers without
overflow. Nevertheless, it is
useful to consider the stride as a
signed quantity, because adding the
two's complement of an integer to an
unsigned binary number is the same
as subtracting that integer.

Class-NC Instructions

Class-NC instructions process a variable
number of bits in the vector-mask reg­
ister but do not process any arithmetic­
vector elements. The number of bits
processed is determined by the vector
count. The instructions are not inter­
ruptible and do not depend on the vector
interruption index.

Class-NC instructions use the RRE or VS
format. Class-NC instructions in the
RRE format operate on bits in the
vector-mask register. Class-NC instruc­
tions in the VS format operate on bits
in the vector-mask register and on a bit
vector in storage.

\4lhen instruction execution is completed
for an operation that modifies the con­
tents of the vector-mask register, any
remaining rightmost bits of the register
are set to zeros.

When the vector count is zero, execution
of the instruction is completed without
any bits being processed. For an
instruction of a type that modifies bits
in the vector-mask register when the
vector count is not zero, a vector count
of zero causes all bits of the vector­
mask register to be set to zeros. Any
general register due to be modified
remains unchanged.

VS-Format Instructions

The VS format is used for instructions
which operate on bit vectors in storage
and in the vector-mask register. All
VS-format instructions are in class NC.

The RS 2 field designates a general reg-

ister that contains the storage address
of the first byte of the second operand,
the leftmost bit of which is the first
bit of the storage operand to be proc­
essed. The first bit in the vector-mask
register is the leftmost bit, bit O.
The operation proceeds with successive
bits in contiguous bit locations of the
second operand and in the vector-mask
register.

When instruction execution is completed,
the address of what would have been the
next byte of the second operand is
placed in the general register desig­
nated by RS 2 ; that address is the inte­
gral part of the expression A + (C+7)/8,
where A is the starting address in the
RS 2 register and C is the vector count.
The updated address occupies the right­
most 31 or 24 bit positions of the RS 2
register, depending on the address size;
the leftmost bit or eight bits, respec­
tively, are set to zeros.

If the vector count is not a multiple of
8, the remaining bits in the last byte
used in storage are ignored on fetching
and set to zeros on storing.

If no bits are processed because the
vector count is zero, the contents of
the RS 2 register remain unchanged,
access exceptions are recognized for
storage operand, the change bits for
operand remain unchanged, and no
event for storage alteration is indi­
cated.

no
the
the
PER

Programming Note

Only class -NC instructions which modify
the vector-mask register set bits beyond
the active bits to zeros. This con­
trasts with COMPARE (class IC), which
leaves bits in the vector-mask register
beyond the active bits unchanged, and
RESTORE VMR (class NZ), which ignores
the vector count and replaces all the
bits.

I nstructions I n Other Classes

Details of instructions in classes IG,
IP, IZ, NZ, N1, and NO are contained in
the individual instruction definitions.

Chapter 2. Vector Facility 2-19

VECTOR INTERRUPTIONS

I nterruptible Vector Instructions

All instructions which can operate on
multiple elements of arithmetic vectors
in storage or in vector registers are
interruptible. Their execution gener­
ally consists of multiple units of oper­
ation with interruptions being permitted
between these units of operation.

Vector instructions which can operate on
only one arithmetic-vector element, or
on none at all, are not interruptible;
that is, the entire execution consists
of one unit of operation. They include
instructions which operate on multiple
bits in the vector-mask register but not
on elements of arithmetic vectors.

Conceptually, vector instructions are
executed sequentially, elements of the
vector operands of a single vector
instruction are processed sequentially,
and any resulting exceptions are recog­
nized sequentially. Any program inter­
ruption is due to the first exception
which is recognized and for which inter­
ruptions are allowed.

At the time of an interruption, changes
to register contents, which are due to
be made by an interruptible vector
instruction beyond the point of inter­
rupt ion, have not yet been made.
Changes to storage locations, however,
which are due to be made by an interrup­
tible vector instruction beyond the
point of interruption, may have occurred
for one or more storage locations beyond
the location containing the element
identified by the interruption parame­
ters, but not for any location beyond
the last element specified by the
instruction and not for any locations
for which access exceptions exist.
Changes to storage locations or register
contents which are due to be made by
instructions following the interrupted
instruction have not yet been made at
the time of interruption.

If an instruction is due to cause more
than one program interruption other than
for PER events, only the first one is
indicated.

2-20 IBM System/370 Vector Operations

Units of Operation

The execution of an interruptible vector
instruction is considered to be divided
into units of operation, such that an
interruption is permitted between these
units of operation.

The unit of operation for program inter­
ruptions, other than for PER events
alone, is one vector element. After the
last vector element has been processed
without a program interruption, the
instruction is completed in a final unit
of operation. This final unit of opera­
tion consists in advancing the instruc­
tion address to the next instruction,
setting the vector interruption index to
zero if the instruction depends on the
vector interruption index, and, for some
instructions, setting the condition
code.

Performing the final unit of operation
cannot create any program-interruption
conditions. If a program interruption
occurs while processing the last element
of a vector, the instruction remains
partially completed, because the final
unit of operation has not yet been per­
formed. Thus, all elements of a vector
are processed alike, including the
recognition of any program exceptions.

Only the final unit of operation of
advancing the instruction address,
setting the vector interruption index to
zero, and possibly setting the condition
code is performed without processing any
elements, when an interruptible instruc­
tion which depends on the vector inter­
ruption index is executed in the
following situations:

• For class - 1M and class - IC instruc­
tions, the vector interruption index
equals or exceeds the vector count.

• For the class-IP instructions SUM
PARTIAL SUMS and ZERO PARTIAL SUMS,
the vector interruption index equals
or exceeds the partial-sum number.

• For the class-IG instruction LOAD
BIT INDEX, the specified bit count
is zero, or the vector interruption
index equals the section size.

For interruptions due to an asynchronous
condition (external, I/O, repressible
machine-check, or restart), the unit of
operation may be one or more elements,

depending on the model, the particular
instruction, and the condition causing
the interruption. If a PER event is
held pending at the time an instruction
is due to be interrupted by such an
asynchronous condition, a program inter­
ruption for the PER event occurs first,
and the other interruptions occur subse­
quently (subject to the mask bits in the
new PSW) in the normal priority order.

PER events alone do not normally cause
execution of a vector instruction to be
interrupted prematurely. For possible
exceptions, see the subsection "Priority
of Indication" of the section "Program­
Event Recording" in Chapter 4,
"Control," of IBM 370-XA Principles of
Operation and IBM System/370 Principles
of Operation.

Operand Parameters

Execution of interruptible vector
instructions involves the updating of
information referred to as the operand
parameters. The operand parameters
include:

• The vector interruption index, for
instructions which depend on that
index,

•

•

•

•

The storage address in a
register, for instructions
QST and VST formats,

general
in the

The bit
general
INDEX,

index and bit
register, for

count
LOAD

in a
BIT

The floating-point scalar
for MAXIMUM ABSOLUTE,
SIGNED, MINIMUM SIGNED,
PARTIAL SUMS,

operand,
MAXIMUM

and SUM

The element numbers in a general­
register pair, if specified, for
MAXIMUM ABSOLUTE, MAXIMUM SIGNED,
and MINIMUM SIGNED,

• The vector in-use bits, for CLEAR VR
and RESTORE VSR, and

• The save-area address and element
number in general registers, for
RESTORE VR, SAVE CHANGED VR, and
SAVE VR.

Upon interruption, the operand parame­
ters are adjusted so as to indicate the

extent to which instruction execution
has been completed. If the instruction
is reexecuted after the interruption,
execution resumes from the point of
interruption.

Arithmetic Exceptions

The arithmetic exceptions which may be
caused by interruptible vector instruc­
tions are:

Exponent overflow
Exponent underflow
Fixed-point overflow
Floating-point divide
Significance
Unnormalized operand

In the following respects, the arith­
metic exceptions are the same for vector
instructions as for the corresponding
scalar instructions: the program mask
in the PSW controls the occurrence of a
program interruption for fixed-point
overflow, exponent underflow, or signif­
icance; the result for the current
target element is the same as the result
for the corresponding scalar operation;
and bits 8-15 of the program­
interruption code indicate the type of
exception.

The binary ADD, LOAD COMPLEMENT, LOAD
POSITIVE, and SUBTRACT instructions for
vectors do not indicate fixed-point
overflow when a program interruption is
disallowed by the fixed-point-overflow
mask in the PSW, unlike the corre­
sponding scalar instructions which can
indicate overflow by setting the condi­
tion code. Other differences, including
the definition of the unnormalized­
operand exception, which does not apply
to scalar instructions, are described in
the following sections.

Exception-Extension Code

When an arithmetic exception is/ recog­
nized during execution of an interrup­
tible vector instruction, a nonzero
exception-extension code is stored in
bits 0-7 of the program-interruption
code. The exception-extension code
indicates whether the interruption was
due to a noninterruptible scalar
instruction or an interruptible vector
instruction, whether the result, if any,
was placed in a scalar or vector reg-

Chapter 2. Vector Facility 2-21

ister, the width of the result, and the
number of the register.

The arithmetic-partial-completion bit,
bit 0 of the program-interruption code,
indicates that the exception-extension
code has been stored. If the arithmetic
exception is due to an interruptible
vector instruction and causes an inter­
ruption which leaves instruction exe­
cution partially completed, bit 0 is set
to one, and bits 1-7 contain further
information. If a scalar instruction
was executed, bits 0-7 are set to all
zeros.

If not all zeros, the information in the
exception-extension code is as follows:

lavwwrrrri

o 7

Bit 0 (a) is the arithmetic-partial­
completion bit; when one, it indicates
that the interrupted instruction was
partially completed and that bits 1-7
have the meaning shown below. If bit 0
is zero, bits 1-7 are also zeros.

Bit 1 (v), when one, indicates that the
arithmetic result is in vector regis­
ters. When bit 1 is zero, the ar i th­
metic result is in a scalar register.

Bits 2-3 (ww) contain the width of the
arithmetic result:

01 4-byte result (short or binary)
10 8-byte result (long or binary mul­

tiply)

Bits 4-7 (rrrr) contain the register
number of the result register designated
by the interrupted instruction.

Types of Ending for Units of Operation

When execution of an interruptible
vector instruction is interrupted, the
current unit of operation may end in one
of five ways: completion, inhibition,
nullification, suppression, or termi­
nation. Termination of a unit of opera­
tion of a vector instruction causes
termination of the instruction; it can
occur only as the result of an exigent

2-22 IBM System/370 Vector Operations

machine check and will not be discussed
further.

When an interruption occurs after com­
pletion, inhibition, nullification, or
suppression of a unit of operation, all
prior units of operation have been com­
pleted. The effect of the interruption
on the instruction address in the old
PSW stored during the interruption, on
the operand parameters, and on the
result location for the current unit of
operation is as follows:

Completion: The instruction address in
the old PSW designates the interrupted
instruction or an EXECUTE instruction,
as appropriate. The result location for
the current unit of operation contains
the new result, as defined for the type
of exception. The operand parameters
are adjusted such that, if the instruc­
tion is reexecuted, execution of the
interrupted instruction is resumed with
the next unit of operation.

Inhibition: Same as completion, except
that the result location for the current
unit of operation remains unchanged.
The exception-extension code is stored
the same as if a result had been placed
in that location.

Nullification: The instruction address
in the old PSW designates the inter­
rupted instruction or an EXECUTE
instruction, as appropriate. The result
location for the current unit of opera­
tion remains unchanged. The operand
parameters are adjusted such that, if
the instruction is reexecuted, execution
of the interrupted instruction is
resumed with the current unit of opera­
tion. Interruption occurs before any
arithmetic operation on the current
element has started. Because access
exceptions which nullify execution may
be recognized for elements beyond the
current unit of operation, access to the
current element mayor may not be the
cause of the exception.

Suppression: Same as nullification,
except that the instruction address in
the old PSW designates the next sequen­
tial instruction. Because access
exceptions which suppress execution may
be recognized for elements beyond the
current unit of operation, access to the
current element mayor may not be the
cause of the exception.

The following chart summarizes the dif­
ferences between the four types of
ending for a unit of operation:

Unit of Instruc- Operand Current
Operation tion Parame- Result
Is Address ters At Location

Completed ,Current Next Changed
Instruct. Element

Inhibited Current Next Unchanged
Instruct. Element

Nullified Current Current Unchanged
Instruct. Element

Suppressed Next In- Current Unchanged
struction Element

Programming Notes

1. After a program interruption due to
an arithmetic exception, an inter­
ruption handler may perform any
desired fixup of the result before
resuming execution of the program.

2. When an instruction which depends on
the vector interruption index is
interrupted because of an arithmetic
exception for the last element to be
processed by the instruction, and
the instruction is later reexecuted,
it is completed by advancing the
instruction address, setting the
vector interruption index to zero,
and possibly setting the condition
code, without further processing or
program interruptions for this
instruction. The same may happen
after the vector interruption index
has been set to too high a value by
the instruction RESTORE VSR.

If the last element processed before
an interruption due to an arithmetic
exception is the last element of the
vector register, then the vector
interruption index contains the
section size.

3. The floating-point-divide and unnor­
malized-operand exceptions are
defined to inhibit execution of the
current unit of operation. Inhibi­
tion differs from completion only in

4.

that no result is defined for these
exceptions, and that the resul t
location for the current element
remains unchanged. Inhibition
differs from nullification in that
an arithmetic operation has been
performed for the current element
and the operand parameters have been
adjusted to point to the next
element.

When an arithmetic exception is
recognized and bit 1 of the
exception-extension code is one, the
number of the associated result
element in the vector registers is
always one less than the current
vector interruption index, since all
arithmetic exceptions cause either
completion or inhibition of the
current unit of operation.

Effect of I nterruptions During Execution

Interruptions occurring before instruc­
tion execution has begun, or after com­
pletion of the entire instruction, are
the same as for nonvector instructions.

The effect of interruptions which occur
during execution of vector-facility
instructions depends on the type of
ending. Figure 2-7 on page 2-24 shows
the effect for each interruption type
that can occur during execution.

Setting of Instruction Address

The instruction address in the old PSW
designates the interrupted vector­
facility instruction or an EXECUTE
instruction, as appropriate, after com­
pletion, inhibition, or nullification of
a unit of operation. The instruction
address designates the next sequential
instruction after suppression of a unit
of operation.

Setting of Instruction-Length Code

When a program interruption occurs
during the execution of an interruptible
vector instruction, the instruction­
length code CILC) that is stored is 2 or
3, depending on whether the instruction
length is two or three halfwords,
respectively. When the vector instruc­
tion is executed under the control of an

Chapter 2. Vector Facility 2-23

Except.
Extens.

Type of Code
Type of Interruption Ending Stored?

Program

Addressing S No
Exponent overflow C Yes
Exponent underflow C Yes
Fixed-point overflow C Yes
Floating-point divide I Yes
Page translation N No
Protection S No
Segment translation N No
Significance C Yes
Translation
specification S No

Unnormalized operand I Yes
PER event alone C No
PER event with
another exception E E

External J I/O J Repressible
I Machine Check J and Restart

All I C No

Explanation:

C Completed unit of operation
E Action determined by the exception

reported with the PER event
I Inhibited unit of operation
N Nullified unit of operation
S Suppressed unit of operation

Figure 2-7. Interruptions during Exe­
cution of Interruptible
Vector-Facility Instruc­
tions

EXECUTE instruction, the ILC is always
2.

The ILC is stored as described regard­
less of whether the instruction address
is advanced to the next instruction (the
unit of operation is suppressed) or the
instruction address designates the
interrupted instruction (the unit of
operation is completed, inhibited, or
nullified).

2-24 IBM System/370 Vector Operations

For information on the ILC setting for a
program interruption that occurs while
fetching the instruction, see the
section "Instruction-Length Code" in
Chapter 6, "Interruptions, If of IBM
370-XA Principles of Operation and IBM
System/370 Principles of Operation.

Programming Note

Unless an interruption occurs during
instruction fetching and prevents inter­
pretation of the instruction, the
instruction-length code is determined
entirely by the leftmost two bits of the
operation code. The ILC value does not
depend on whether the operation code is
assigned, or whether the instruction is
installed or executed. Thus, the ILC is
set to 2 or 3 for a vector instruction,
depending on the instruction length,
even when a vector-operation exception
or an operation exception is recognized.

Setting of Storage Address

When a vector-facility instruction which
updates a vector-operand address in a
general register is interrupted, the
address in the general register has been
updated to the point of interruption.

After completion or inhibition of a unit
of operation, the updated address desig­
nates the next operand element in
storage following the one causing the
interruption.

After nullification or suppression of a
unit of operation, the updated address
designates the current operand element;
this mayor may not be the s arne as the
element that caused the interruption,
because of access exceptions which may
be recognized for elements beyond the
last one processed. If the exception
occurs before the first element has been
processed, the entire instruction is
nullified or suppressed, and the general
register containing the storage address
remains unchanged.

When the entire instruction has been
completed before an interruption takes
place, the updated address designates
the operand element following the last
element processed.

Setting of Vector Interruption Index

At the start of execution of an inter­
ruptible vector instruction which
depends on the vector interrupt ion
index, the vector interruption index
contains the number of the next element
to be processed in the designated vector
registers or the vector-mask register.
When such an instruction is interrupted,
the vector interruption index is set to
indicate the element within the regis­
ters at which execution may subsequently
be resumed.

After completion or inhibition of a unit
of operation, the vector interruption
index identifies the next element, if
any, to be processed after the one
causing the interruption.

After nullification or suppression of a
unit of operation, the vector inter­
ruption index identifies the current
element; this mayor may not be the
element which caused the interruption,
because of access exceptions which may
be recognized for elements beyond the
last one processed.

During the final step of completing the
entire instruction, the vector inter­
ruption index is set to zero. This
final step cannot cause any further
interruptions.

When the entire instruction is nullified
or suppressed, the vector interruption
index remains unchanged. It also
remains unaffected by the interruption
of interruptible vector-facility
instructions which do not depend on the
vector interruption index and which do
not set it explicitly. The vector
interruption index is explicitly set to
zero by CLEAR VR and to a specified
value by RESTORE VSR.

Programming Notes

1. Proper resumption of an
instruction depends on
interruption index and
priate general registers
unchanged.

interrupted
the vector
the appro­
being left

2. If it is desired not to resume a
program that was interrupted during
execution of a vector-facility
instruction but, instead, to store
the current vector-register contents

by means of vector-store instruc­
tions, or to load different data
using vector-load instructions, care
must be taken to set the vector
interruption index to zero explic­
itly. This may be done with a CLEAR
VR instruction; specifying a second
operand of zeros leaves the vector­
register contents unchanged.

Program-I nterruption Conditions

When the vector facility is installed,
two additional program exceptions can
occur: unnormalized operand and vector
operation. A vector-operation exception
may also occur on CPUs without the
vector facility. All arithmetic
exceptions for vector instructions cause
an exception-extension code to be stored
as part of the program-interruption
code. There are also modifications to
access exceptions and to some of the
arithmetic exceptions, and additional
causes for the specification exception.

Access Exceptions for Vector Operands

When a vector-facility instruction spec­
ifies an arithmetic or bit vector in
storage, access exceptions may be recog­
nized for one or more storage locations
beyond the location containing the
element being processed, but not for any
location beyond the last element speci­
fied by the instruction.

For contiguous operands, that is, for
arithmetic vectors which are addressed
sequentially with a stride of one and
for bit vectors, access exceptions are
not recognized more than 2K bytes beyond
the current location. For noncontiguous
operands, that is, for vectors which are
addressed sequentially with a stride not
equal to one and those which are loaded
or stored by indirect element selection,
access exceptions are not recognized
more than seven element locations beyond
the current one.

No access exceptions are recognized for
the storage location of an operand when:

•

•

No vector elements are to be proc­
essed because the net count is zero,

The instruction operates under - the
control of the vector-mask register
and the location of a vector element

Chapter 2. Vector Facility 2-25

•

•

•

in storage corresponds to a zero
mask bit,

For the instruction LOAD BIT INDEX,
the specified bit count is zero or
the vector interruption index equals
the section size,

For the instructions RESTORE VR and
SAVE VR, the vector in-use bit asso­
ciated with the specified vector­
register pair is zero, or

For the instruction SAVE CHANGED VR,
the vector change bit associated
with the specified vector-register
pair is zero.

Programming Note

Interruptible nonvector instructions,
such as MOVE LONG, permit access
exceptions to be recognized no more than
2K byte locations beyond the location of
the byte being processed, which permits
access exceptions for a maximum of four
operand pages, two for each operand.
This is in addition to access exceptions
during instruction fetching of up to
four pages when the instruction is the
target of EXECUTE. Interruptible vector
instructions permit access exceptions to
be recognized for up to eight operand
pages, in addition to a possible four
instruction pages. The eight operand
pages are not necessarily contiguous.

Exponent-Overflow Exception

If, during execution of a MULTIPLY AND
ACCUMULATE, MULTIPLY AND ADD, or MUL­
TIPLY AND SUBTRACT instruction, the mul­
tiplication of an element pair results
in an exponent overflow, only the multi­
plication part of the unit of operation
is completed, and the addition or sub­
traction part is not performed. The
unit of operation is completed by
placing the overflowed product, as
defined for the corresponding scalar
floating-point multiply instruction, in
the result location.

2-26 IBM System/370 Vector Operations

Exponent-Underflow Exception

If, during ~iecution of a MULTIPLY AND
ACCUMULATE" ASULTIPLY AND ADD, or MUL­
TIPLY AND SUBTRACT instruction, the mul­
tiplication of an element pair results
in an exponent underflow, no inter­
ruption occurs, regardless of the value
of the exponent -underflow mask in the
PSW. In this case, a true zero is added
in place of the product, and the opera­
tion continues.

Floating-Point-Divide Exception

When a floating-point-divide exception
is recognized during execution of a
vector floating-point DIVIDE instruc­
tion, the unit of operation is inhib­
ited.

Specification Exception

Specification exceptions are recognized
for the following causes in addition to
the causes listed in the section' "Spec­
ification Exception" of Chapter 6,
"Interruptions, t of IBI1 370-XA Princi­
ples of Operation and IBI1 System/370
Principles of Operation.

• An invalid vector-register number is
designated by a VR field of a vector
instruction.

•

•

•

The stride of an instruction in the
QST or VST format is specified to be
in the same general register as the
storage address.

The third operand of an instruction
in the QST format is specified to be
in the same general register as the
storage address.

The instruction RESTORE VSR attempts
to load values into the vector­
status register that are

1. Other than all zeros in bits
0-14,

2. Greater than the section size in
the vector-count field (bits
16-31), or

3. Greater than the section size in
the vector-interruption-index
field (bits 32-47).

•

•

The instruction RESTORE VR, SAVE
CHANGED VR, or SAVE VR specifies a
number in the element-number field
that is equal to or greater than the
section size, or a number in the
VR-pair field that is other than an
even number from 0 to 14.

The instruction EXTRACT ELEMENT or
LOAD ELEMENT specifies an element
number in the second operand that is
equal to or greater than the section
size.

Unnormalized-Op~rand Exception

An unnormalized-operand exception is
recognized when, in a vector floating­
point divide or multiply operation, a
source-operand element has a nonzero
fraction with a leftmost hexadecimal
digit of zero. The vector floating­
point instructions which may cause an
unnormalized-operand exception to be
recognized are DIVIDE, MULTIPLY, MUL­
TIPLY AND ACCUMULATE, MULTIPLY AND ADD,
and MULTIPLY AND SUBTRACT.

The unnormalized-operand exception is
recognized for one operand element even
when there is another operand that is
zero, except that the floating-point­
divide exception, which takes preced­
ence, is recognized instead when the
zero element is the divisor of a vector
DIVIDE instruction.

The unit of operation is inhibited.

The instruction-length code is 2.

The interruption cede is XX1E hex, or
XX9E hex with a concurrent PER event,
where XX is the exception-extension
code.

Vector-Operation Exception

A vector-operation exception is recog­
nized when a vector-facility instruction
is executed while bit 14 of control reg­
ister 0 is zero on a CPU which has the
vector facility installed and available.
The vector-operation exception is also
recognized when a vector-facility
instruction is executed and the vector
facility is not installed or available
on this CPU, but the facility can be
made available to the program either on

this CPU or on another CPU in the con­
figuration.

When a vector-facility instruction is
executed, and the vector facility is not
installed on any CPU which is or can be
placed in the configuration, it depends
on the model whether a vector-operation
exception or an operation exception is
recognized.

The operation is nullified when the
vector-operation exception is recog­
nized.

The instruction-length code is 2 or 3.

The interruption code is 0019 hex, or
0099 hex with a concurrent PER event.

Programming Note

The definition permits a vector­
operation exception to occur even when
no CPU in the configuration has the
vector facility installed. See the
section "Vector-Operation Control" on
page 2-6 for more information.

Priority of Vector Interruptions

Multiple program-interruption conditions
for vector-facility instructions are
recognized, one after another, according
to the same priority rules as apply to
other instructions, together with the
following rules:

•

•

The unnormalized-operand exception
has the same priority with respect
to the nonarithmetic exceptions as
the other arithmetic exceptions
which can occur for vector instruc­
tions (exponent overflow, exponent
underflow, fixed-point overflow,
floating-point divide, and signif­
icance) .

When more than one arithmetic'"
exception condition is recognized at
the same time, unnormalized operand
takes precedence over the exponent­
overflow and exponent-underflow
exceptions; the floating-point­
divide exception takes precedence
over the unnormalized-operand excep­
tion.

The vector"'operation exception has
the same priority as the oper-ation

Chapter 2. Vector Facility 2-27

exception; the two exceptions are
mutually exclusive.

• An access exception caused by the
operand of RESTORE VSR takes preced­
ence over a specification exception
caused by the same operand.

See also the section "Multiple Program­
Interruption Conditions" in Chapter 6,
"Interruptions," of IBH 370-XA Princi­
ples of Operation and IBH System/370
Principles of Operation.

PROGRAM SWITCHING

The following instructions are provided
to save, restore, and clear the vector­
facility registers when switching from
one program to another. The instruc­
tions marked "privileged" are restricted
to programs operating in the supervisor
state.

CLEAR VR
RESTORE VAC (privileged)
RESTORE VMR
RESTORE VR
RESTORE VSR
SAVE CHANGED VR (privileged)
SAVE VAC (privileged)
SAVE VMR
SAVE VR
SAVE VSR

Saving and restoring of the vector reg­
isters is further assisted by their
associated vector in-use bits and vector
change bits. When the vector in-use bit
for a vector-register pair is zero, the
saving and subsequent restoring of those
registers are eliminated, thus reducing
the program-switching time, because the
registers are known to contain all
zeros.

For programs operating in the supervisor
state, the vector change bits may serve
to reduce switching time still further
by permitting the saving of a vector­
register pair to be eliminated when its
vector in-use bit is one but its vector
change bi t is zero. Al though such a
vector-register pair is in use, its con­
tents are known not to have been changed
if its vector change bit has remained
zero since it was last restored from its
save area; consequently, the previously
saved information is still valid.

2-28 IBM System/370 Vector Operations

The vector change bits do not affect the
restoring of vector registers and,
therefore, do not help to reduce the
restore time. When an interruption­
handling portion of the control program
restores previously saved registers,
restoring the contents of a pair of
vector registers is not considered a
change. Hence, executing RESTORE VR in
the supervisor state is defined not to
alter the vector change bits. Executing
RESTORE VR in the problem state,
however, sets the vector change bit of
the affected vector-register pair to
one, so as to protect the integrity of
its use by the control program.

Program Use of the Restore and Save
Instructions

The instructions RESTORE VR, SAVE
CHANGED VR, and SAVE VR are defined to
be interruptible &nd to restore or save
only a single pair of vector registers
each time they are executed. When more
than one vector-register pair is to be
restored or saved, the appropriate
instruction must be used in a program­
ming loop as follows.

First, the even general register to be
specified by the instruction should be
set to the beginning of the save area
for the vector registers, and the odd
general register should be set to zeros.
Then the restore or save instruction
should be executed. It should be fol­
lowed by a BRANCH ON CONDITION with a
mask of 5 back to the restore or save
instruction. This causes each vector­
register pair, in turn, to be restored
or saved if its vector in-use bit (or
vector change bit for SAVE CHANGED VR)
is one, or to be skipped if the bit is
zero.

Restore Operations

To restore the vector-status register
and the vector registers, the instruc­
tion RESTORE VSR should be executed
before the above programming loop for
RESTORE VR. A complete set of restore
operations also includes RESTORE VMR and
RESTORE VAC. RESTORE VAC should be the
last restore instruction executed to
avoid having the others advance the
vector-activity count unnecessarily.

Save Operations

A complete set of save operations con­
sists of the instruction SAVE VAC, fol­
lowed by a loop that uses either SAVE V~
or SAVE CHANGED VR, and then the
instructions SAVE VMR and SAVE VSR.

SAVE VAC is executed first, so as to
avoid having the vector-activity count
advanced by the other save operations,
especially at a time when no vector
operations were performed since the last
time that the registers were restored.

Programs running in either the problem
state or the supervisor state may use
the instruction SAVE VR in the loop to
save the entire contents of all vector­
register pairs for which the vector
in-use bits are ones.

Alternatively, when a program using
vector-facility instructions is inter­
rupted and the vector registers are to
be placed back into an area from which
they were previously restored, an inter­
ruption handler in the supervisor state
may use the privileged instruction SAVE
CHANGED VR in the loop. SAVE VSR should
be executed only after the vector regis­
ters have been saved, so that the vector
change bits, which SAVE CHANGED VR sets
to zeros, are saved as zeros.

SAVE VR should be used instead of SAVE
CHANGED VR when the vector informat ion
is to be saved in an area which may not
be the one from which the vector regis­
ters were last restored. Thus, SAVE VR
is the appropriate instruction for a
machine-check-interruption handler.

Clear Operations

The instruction CLEAR VR may be used to
clear all or selected pairs of vector
registers and to make sure that the
vector interruption index is set to
zero.

CLEAR VR may be executed by the control
program to ensure that all vector regis­
ters are cleared before turning over the
vector facility to a new program
requesting vector operations. It should
also be executed by the vector program
to clear a vector-register pair that is
not needed again soon. Both measures
serve to avoid unnecessary saving and
restoring.

When a vector-register pair has been
cleared by means of CLEAR VR, and the
corresponding vector in-use bit is zero,
all elements in those registers contain
zeros. The zero elements in a cleared
register are valid operands. Such use
of a cleared vector register or register
pair as a source of all zeros does not
set the associated vector in-use bit to
one. One or more individual elements of
a cleared vector-register pair may be
replaced by an instruction such as LOAD
ELEMENT, but as soon as any element in
either or both registers of the pair has
been changed, its vector in-use bit and
vector change bit are set to ones, and
the register pair is no longer cons id­
ered cleared. The vector registers are
considered to have been changed even
when the value loaded is all zeros.

The instruction RESTORE VSR also clears
a vector-register pair when it finds
that the associated vector in-use bit is
one and must be set to zero.

When either CLEAR VR or RESTORE VSR
finds a vector in-use bit that is
already zero, the instruction does not
clear the vector-register pair again.
If either instruction is interrupted and
later reexecuted, instruction execution
is resumed from the beginning, but the
instruction skips over registers that
were cleared before the interruption and
have remained cleared.

Save-Area Requirements

To make programs that save and restore
registers of the vector facility model­
independent, the sizes and addresses of
the save areas should be computed at
execution time using the current section
size, as obtained by the instruction
STORE VECTOR PARAMETERS.

Figure 2-8 on page 2-30 shows the save­
area sizes and the boundary alignment
for RESTORE VR, SAVE CHANGED VR, and
SAVE VR as a function of the section
size. Boundary alignment requires that
the address of a vector-register save
area be a multiple of the integral
boundary shown in the second column (8
times the section size). The save-area
size is given as the number of bytes
required to save all 16 vector regis­
ters; when fewer consecutive vector reg­
isters are to be saved, this area may be

Chapter 2. Vector Facility 2-29

reduced correspondingly. The figure
also shows the vector-mask register
(VMR) , which requires 4Z bits (Z/2
bytes), where Z is the ~ection size; the
VMR save area has no alignment require­
ment.

Vector Registers Bytes for
Vector-

Section Integral Bytes for Mask
Size Boundary 16 VRs Register

(Z) (8Z) (64Z) (Z/2)

8 64 512 4
16 128 1,024 8
32 256 2,048 16
64 512 4,096 32

128 1,024 8,192 64
256 2,048 16,384 128
512 4,096 32,768 256

Figure 2-8. Save-Area Requirements

RELATIONSHIP TO OTHER FACILITIES

Program-Event Recording (PER)

The following PER events are recognized
for instructions of the vector facility:

Instruction fetching
Storage alteration

Whether PER general-register-alteration
events are recognized for vector­
facility instructions is undefined.

When the net count is zero for IC- or
1M-class instructions, when the vector
count is zero for NC-class instructions,
or when all active bits in the vector­
mask registers are zeros for the STORE
MATCHED instruction, no PER storage­
alteration events are recognized.

When an interruptible vector instruction
is interrupted and PER storage al ter­
ation applies to storage locations cor­
responding to vector elements that are
due to be changed by the instruction
beyond the point of interruption, PER
storage alteration is indicated if any
such storage change actually occurred
and may be indicated even if such a
change did not occur. PER storage
alteration is only recognized if no
access exception exists for such

2-30 IBM System/370 Vector Operations

locations at the time that the instruc­
tion is executed.

Vector-Store Operations

As for nonvector instructions, the proc­
essing of vector-facility instructions
generally appears to a program running
on the same CPU to follow the conceptual
sequence: The execution of one instruc­
tion appears to precede the execution of
the following instruction, the proc­
essing of one vector element appears to
precede the processing of the following
vector element, and an interruption
takes place between instructions or
between units of operation of interrup­
tible instructions. As discussed below,
however, this conceptual sequence is not
necessarily observed by programs on
other CPUs, by channel programs, or when
vector-facility instructions are used to
store into the instruction stream.

Storage-Operand Consistency

For all vector-facility instructions,
multiple accesses may be made to all or
some of the bytes of a storage operand.

Thus, unlike instructions which make
only single-access references, interme­
diate results of a vector-facility store
instruction may be observed by channel
programs and by other CPU programs
accessing the same storage location con~
currently.

When an interruptible store-type vector
instruction is interrupted and its exe­
cution is later resumed, a store per­
formed by the instruction before its
interruption may be repeated when exe­
cution is resumed.

(See the section "Storage-Operand Con­
sistenci;" in Chapter 5, "Program Exe­
cution,' of IBM 370-XA Principles of
Operation and IBM Systeml370 Principles
of Operation.)

Storing intp Instruction Stream

When a vector-facility instruction is
executed that causes storing into a
location from which subsequent instruc­
tions have been prefetched, the copies
of the prefetched instructions are not
necessarily changed. (See the section

"Instruction Fetching" in Chapter 5,
tfprogram Execution," of IBM 370-XA Prin­
ciples of Operation and IBM System/370
Principles of Operation for a complete
list of functions which cause all copies
of prefetched instructions to be dis­
carded.)

Resets

In regard to the operation of the vector
facility, CPU reset terminates execution
of the current vector instruction and
any manual operation. Pending machine­
check-interruption conditions affecting
the vector facility and check-stop
states are cleared. All copies of pre­
fetched vector-facility instructions or
operands are discarded.

Initial CPU reset initializes the
vector-control bit, bit 14 of control
register 0, to zero.

The registers of the vector facility
(vector-status register, vector-mask
register, vector-activity count, and all
vector registers) are cleared to zero by
clear reset and power-on reset. The
section size and partial-sum number
remain unaffected.

Machine-Check Handling

Two bits of the machine-check­
interruption code are associated with
the vector facility: vector-facility
failure and vector-facility source. The
vector-facility-failure bit indicates to
the program that vector-facility
instructions should no longer be used.
The vector-facility-source bit is a mod­
ifier to instruction-processing damage,
which indicates that the vector facility
is the error source.

These bits may be set to ones regardless
of whether the vector-control bit, bit
14 of control register 0, is one or
zero.

Vector-Facility Failure

Bit 6 (VF) of the machine-check­
interruption code, when one, indicates
that the vector facility has failed to
such an extent that the service
processor has made the facility not
available.

This bit is not meaningful when system
damage, bit 0 of the machine~check­
interruption code, is one.

Vector-facility failure is a repressible
condition, which has no subclass mask.

Vector-Facility Source

Bit 13 (VS) of the machine-check­
interruption code, when one, indicates
that the vector facility is the source
of the reported machine-check condition.
Vector-facility source is reported
together with instruction-processing
damage. When this bit is one, the con­
tents of vector-facility registers may
have been damaged or may contain incor­
rect information with no preserved
error.

This bit is not meaningful when vector­
facility failure, bit 6, is one.

Validation of Vector-Facility Registers

The following procedure can be used to
validate the registers associated with
the vector facility. The program should
first execute RESTORE VSR, specifying
all vector in-use bits as ones. This
validates the vector-status register by
setting it without first inspecting the
previous contents. The program should
then execute RESTORE VAC, RESTORE VMR,
and RESTORE VR to load and validate the
vector-activity count, the vector-mask
register, and the vector registers.

Programming Notes

1. When a vector-facility-failure con­
dition is indicated, the program
should stop using any functions
associated with the vector facility.
Thus, no vector-facility instruc­
tions should be executed; the
vector-control bit, bit 14 of
control register 0, should be set or
remain set to zero; and the regis -
ters associated with the vector
facility should not be validated or
saved.

2. Although the purpose of the vector­
facility-source bit is to indicate
that the vector facility is the
source of the instruction-processing

Chapter 2. Vector Facility 2-31

damage, it is possible in some situ­
ations that the bit may be set to
one when failures have occurred both
in the vector facility and in other
parts of the cpu.

3. Since a vector-facility-source con­
dition may imply that vector­
facility registers have been
damaged, the registers should be
validated before further use is
attempted. If the vector-control
bit is zero, it must be set to one
to perform the validation.

4. The instruction RESTORE VR is the
only instruction which validates the
vector registers, and then only if
their vector in-use bits are ones.

2-32 IBM System/370 Vector Operations

In particular, the instruction CLEAR
VR should not be used for vali­
dation, because this instruction may
be implemented for performance
reasons such that the registers are
not actually cleared unless the
program subsequently attempts to
load or modify them. With this
design, when the program next loads
the vector register following a
CLEAR VR instruction, only those
elements which are not loaded, if
any, are actually cleared at that
time. Except for the possible
effect on machine-check handling,
this implementation gives the same
results as if the instruction actu­
ally cleared the registers.

CHAPTER 3. VECTOR-FACILITY INSTRUCTIONS

Complete lists of vector-facility
instructions and their mnemonics,
formats, and operation codes are con­
tained in Appendix B, "Lists of Instruc­
tions . " The lists also indicate when
the condition code is set and the excep­
tional conditions in operand desig­
nations, data, or results that cause a
program interruption.

When, for a vector instruction, the
operation on each element of the vector
is the same as for a counterpart scalar
instruction, the vector instruction
description does not repeat these
details. The complete definition in
these cases can be obtained from the
definition for the counterpart scalar
instruction.

In manx cases, several related vector
operations are described under a single
name. For example, MULTIPLY in the QST
format is described as follows:

Mnemonic

o

Mne­
monic

VMS
VMDS
VMES

Op Code

Op
Code

'A4A2'
'A492'
'A482'

16 20

Operands

Binary
Long

[QST]

24 28 31

Short multiplier and
multiplicand, long
product

This figure is a "shorthand" represen­
tation for three different instructions,
one binary and two floating-point mul­
tiply instructions. It replaces the
following set of three figures:

VMS VR 1 ,GR3 ,RS 2 (RT2)
[QST, Binary operands]

o 16 20 24 28 31

VMDS VR 1 ,FR3 ,RS 2 (RT2)

[QST, Long operands]

o 16 20 24 28 31

VMES VR 1 ,FR3 ,RS 2 (RT2)

o

[QST, Short multiplier and
multiplicand, long product]

16 20 24 28 31

Thus, the term "Binary" under the
heading "Operands" for the first
instruction indicates that the vector
elements are 32-bit signed binary inte­
gers, that the scalar operand is taken
from a general register, and that the
operation on each element pair is per­
formed in the same manner as the scalar
MULTIPLY instruction described in
Chapter 7, "General Instructions," of
IBM 370-XA Principles of Operation and
IBM System/370 Principles of Operation.

Likewise, the terms "Short" or "Long"
under the heading "Operands fI for the
second and third instructions indicate
that the vector elements are floating­
point numbers in the short or long
floating-point format, respectively,
that the scalar operand is taken from a
floating-point register, and that the
operation on each element pair is per­
formed in the same manner as the corre­
sponding scalar MULTIPLY instruction
described in Chapter 9, "Floating-Point
Instructions," of IBM 370-XA Principles
of Operation and IBM System/370 Princi­
ples of Operation.

Chapter 3. Vector-Facility Instructions 3-1

Except for the new suffixes Q and S,
which indicate scalar-vector operations,
each mnemonic for a vector instruction
is generally the same as the mnemonic
for the counterRart scalar instruction
prefixed with a 'V."

For several of the load and store
instructions, the same instruction is
used for vectors in the short floating­
point format and in the 32-bit binary­
integer or logical format. Separate
mnemonics are assigned to the short and
binary-logical formats for programming
convenience, but the op codes for the
two mnemonics are the s arne when the
function is the same.

Programming Note

Programming notes in this section, as
well as the examples in Appendix A,
assume normal execution of vector
instructions. In particular, they
assume that the program does not alter
the vector interruption index, so that
each interruptible vector instruction
begins its operation on the first
element or element pair with the vector
interruption index set to zero. If the
instruction is interrupted for a cause
other than an arithmetic exception, and
if its execution is subsequently
resumed, the vector interruption index
and all other parameters are assumed to
have been restored to the value they had
at the time of interruption, so that the
result is the same as if the inter­
ruption had not occurred.

ACCUMULATE

Mnemonic [VST]

Op Code 1////1 RT21 VR11 Rs 2 1

0 16 20 24 28 31

Mne- Op
monic Code Operands

VACD 'A417' Long operand and sum
VACE 'A407' Short operand, long sum

3-2 IBM System/370 Vector Operations

Mnemonic [VV]

Op Code 1////////1 VRll VR21

0 16 24 28 31

Mne- Op
monic Code Operands

VACDR 'AS17' Long operand and sum
VACER 'AS07' Short operand, long sum

Partial sums of the elements of the
second-operand vector are accumulated by
adding the second-operand elements to
the contents of element positions 0 to
p-1 of the first operand. The
partial-sum number p depends on the
model.

The operation proceeds in an ascending
sequence of element numbers. The I -th
element of the second operand is added
to the first-operand element at a posi­
tion which is the remainder of dividing
I by p, where I varies from X to C-1, X
is the initial vector interruption index
(normally zero), and C is the vector
count. The operation accumulates C-X
elements of the second operand.

Thus, second-operand elements 0, p,
2p, ... are accumulated into pos i tion O.
of the first operand; second-operand
elements 1, p+1, 2p+1, ... are accumu­
lated into position 1; and so forth~
The contents of first-operand element
positions above p-1 remain unchanged.

Every addition is performed in the same
manner as for the scalar ADD NORMALIZED
(ADR) instruction, where the secon~­
operand elements for VACE and VACER are
extended on the right with 32 zero::;,
except that the condition code is not
set.

A specification exception is recognized
when the VRl field designates an invalia
register number. In the VST form-at) a
specification exception is also recog­
nized when the second operand is ,not
des ignated on an integral boundary, or
when the RT2 field is nonzero and des~g­
nates the same general register as the
RS 2 field.

ACCUMULATE is a class-1M instruction: it
is interruptible, the vector count and
vector interruption index determine the

number of e.le.ments processed, and its
execution is under the control of the
vector-mask mode.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (fetch, operand 2 in VST format)
Exponent overflow (with exception­

extension code)
Exponent underflow (with exception­

extension code)
Operation
Significance (with exception-extension

code)
Specification
Vector operation

Programming Notes

1. ACCUMULATE is used, together with
ZERO PARTIAL SUMS and SUM PARTIAL
SUMS, to produce the scalar sum of
the elements of a vector in a manner
similar to the example in Appendix A
("Sum of Products' on page A-3) of
using MULTIPLY AND ACCUMULATE to
produce a sum of products.

2. The short-format ACCUMULATE instruc­
tions (VACE and VACER) add froating­
point vector elements in the short
format to produce a floating-point
sum in the long format. This
creates a result of higher precision
than would an equivalent loop with
the scalar short-format ADD instruc­
tions (AE or AER, respectively),
which produces a sum in the short
format.

ADD

Mnemonic [QST]

Op Code I QR31 RT21 VR1 1 Rs 2 1

0 16 20 24 28 31

Mlle- Op
monic Code Operands

VAS 'A4AO' Binary
VADS 'A490' Long
VAES 'A480' Short

Mnemonic VR 1 ,QR3 ,VR2 [QV]

Op Code I QR3111111 VRll VR21

0

Mne- Op
monic Code

VAQ 'ASAO'
VADQ 'AS90'
VAEQ 'AS80'

Mnemonic

o

Mne­
monic

VA
VAD
VAE

Op Code

Op
Code

'A420'
'A410'
'A400'

16 20

Operands

Binary
Long
Short

16 20

Operands

Binary
Long
Short

24

24

Mnemonic VRl , VR3 , VR2

Op Code I VR3111111
0 16 20 24

Mne- Op
monic Code Operands

VAR 'AS20' Binary
VADR 'AS10~ Long
VAER 'ASOO' Short

28 31

[VST]

28 31

[VV]

VR 1 1 VR2 1

28 31

Element by element, the second-operand
vector is added to the third operand,
and the result is placed in the first­
operand location.

The operation is performed on each pair
of elements in the same manner as the
corresponding scalar operation, except
that the condition code is not set. For
floating-point operands, the scalar
equivalent is ADD NORMALIZED.

A specification exception is recognized
when a VR or QR field designates an

Chapter 3. Vector-Facility Instructions 3-3

invalid register number. In the QST and
VST formats, a specification exception
is recognized when the second operand is
not designated on an integral boundary,
or when the RT 2 fie ld is nonzero and
designates the same general register as
the RS 2 field. For the VAS instruction,
a specification exception is also recog­
nized when the QR3 field designates the
same general register as the RS2 field.

ADD is a class - 1M
interruptible, the
vector interruption
number of elements
execut ion is under
vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

instruction: it is
vector count and

index determine the
processed, and its
the control of the

The code remains

Access (fetch, operand 2 in QST and VST
formats)

Exponent overflow (with exception-
extension code; floating-point
operands only)

Exponent underflow (with exception-
extension code; floating-point
operands only)

Fixed-point overflow (with exception­
extension code; binary operands
only)

Operation
Significance (with exception-extension

code; floating-point operands only)
Specification
Vector operation

AND

VNS [QST]

'A4A4'

o 16 20 24 28 31

VNQ [QV]

'A5A4'

o 16 20 24 28 31

3-4 IBM System/370 Vector Operations

VN [VST]

'A424'

o 16 20 24 28 31

VNR [VV]

'A524'

o 16 20 24 28 31

Element by element, the AND of the
second and third operands is placed in
the first-operand location.

The operation is performed on each pair
of 32-bit elements in the same manner as
the corresponding scalar operation,
except that the condition code is not
set.

For the VN and VNS instructions, a spec­
ification exception is recognized when
the second operand is not designated on
an integral boundary, or when the RT2
field is nonzero and designates the same
general register as the RS 2 fi~ld. For
the VNS instruction, a specification
exception is also recognized when the
GR3 field designates the same general
register as the RS 2 field.

AND is a class-1M
interruptible, the
vector interruption
number of elements
execution is under
vector-mask mode.

instruction: it is
vector count and

index determine the
processed, and its
the control of the

Condition Code: The
unchanged.

code remains

Program Exceptions:

Access (fetch, operand 2 in
formats)

Operation
Specification
Vector operation

QST and VST

AND TO VMR

VNVM [V8]

'A684'

o 16 28 31

The AND of the second-operand bit vector
and of the active bits of the vector­
mask register is placed in the vector­
mask register. Bits beyond the active
bits are set to zeros.

AND TO VMR is a class-NC instruction:
it is not interruptible, the vector
count determines the number of elements
processed, and its execution is not
affected by the vector-mask mode.

Condition Code: The code remains
unchanged.

Program Exceptions:

Access (fetch, operand 2)
Operation
Vector operation

CLEAR VR

VRCL D2 (B2) [8]

'A6C5' B2 D2

0 16 20 31

The specified pairs of vector registers
are cleared, the associated vector
in-use bits and vector change bits are
set to zeros, and the vector inter­
ruption index is set to zero.

The second-operand address is not used
to address storage. Instead, bits 24-31
of the second-operand address, called
the second-operand bits, control which
vector registers are cleared. The eight
second-operand bits are associated with
the eight even -numbered vector-register
pairs from 0 to 14, and with the corre­
sponding vector in-use bits and vector

change bits. The leftmost bits of the
address are ignored.

The vector interruption index is set to
zero first, after which the eight
second-operand bits are examined in any
order. If a second-operand bit and the
corresponding vector in-use bit are both
ones, all element positions of the asso­
ciated pair of vector registers are
cleared to zeros; the corresponding
vector in-use bits and vector change
bits are then set to zeros. If a
second-operand bit or the corresponding
vector in-use bit is zero, the associ­
ated registers and bits remain
unchanged.

The instruction is interruptible. If it
is interrupted before the operation is
completed, the instruction address in
the current P8W identifies this instruc­
tion. If execution is resumed, then
vector-register pairs, which were
cleared and had their vector in-use bits
and vector change bits set to zeros, are
not cleared again, provided that their
vector in-use bits are still zeros.

The vector count is not used by the
instruction and remains unchanged.

CLEAR VR is a class-IZ instruction: it
is interruptible, the section size
determines the number of elements proc­
essed, and its execution is not affected
by the vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

Operation
Vector operation

Programming Notes

The code remains

1. When a vector in-use bit is zero,
execution time of CLEAR VR is saved
because the corresponding vector­
register pair is already cleared,
and the instruction does not clear
those registers again.

2. CLEAR VR with a zero operand (VRCL
0) merely sets the vector inter­
ruption index to zero.

Chapter 3. Vector-Facility Instructions 3-5

COMPARE

Mnemonic [QST]

Op Code I QR31 RT21 Ml I Rs2 1

0 16 20 24 28 31

Mne- Op
monic Code Operands

VCS 'A4A8' Binary
VCDS 'A498' Long
VCES 'A488' Short

Mnemonic Ml ,QR3 , VR2 [QV]

Op Code I QR3111111 Ml I VR21

0 16 20 24 28 31

Mne- Op
monic Code Operands

VCQ 'ASA8' Binary
VCDQ 'AS98' Long
VCEQ 'AS88' Short

Mnemonic M1 ,VR3 ,RS2 (RT2) [VST]

Op Code I VR31 RT21 Ml I RS21

0 16 20 24 28 31

Mne- Op
monic

\ >

Code Operands

VC 'A428' Binary
VCD 'A418' Long
VCE 'A408' Short

3-6 IBM System/370 Vector Operations

Mnemonic [VV]

Op Code I VRallllll Ml I VRzl
0 16 20 24 28 31

Mne" Op
monic Code Operands

VCR 'AS28' Binary
VCDR 'AS18' Long
VCER 'ASOS' Short

The third operand is compared with the
second-operand vector, element by
element. The corresponding bit in the
vector-mask register is set to one or
zero, depending on the comparison result
and on the value of a modifier in bits
24-26 of the instruction.

The comparison is algebraic and is per­
formed on each element pair in the same
manner as the corresponding scalar oper­
ation, except for the way in which the
result is indicated. The condition code
is not set; instead, a single result bit
is set in the vector-mask register for
each element pair. The value of the
result bit is selected from one of the
modifier bits according to the compar­
ison of the third-operand element with
the second-operand element, as follows:

Result of Modifier Bit \\1hose
Comparison Value Is Selected

Operands equal MO (bit 24)
Operand 3 low M1 (bit 2S)
Operand 3 high M2 (bit 26)

Modifier bit M3, bit 27 of the instruc­
tion, is ignored.

Bits in the vector-mask register which
do not correspond to elements being com­
pared remain unchanged.

A specification exception is recognized
when a VR or QR field designates an
invalid register number. In the QST and
VST formats, a specification exception
is recognized when the second operand is
not designated on an integral boundary,
or when the RT2 field is nonzero and

designates the same general register as
the RS 2 field. For the VCS instruction,
a specification exception is also recog­
nized when the QR3 field designates the
same general register as the RS 2 field.

COMPARE is a class-Ie instruction: it is
interruptible, the vector count and
vector interruption index determine the
number of elements processed, and its
execution is not affected by the vector­
mask mode.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Access (fetch, operand 2 in QST and VST
formats)

Operation
Specification
Vector operation

Programming Notes

1. To obtain ones in the resultant bit
vector when a desired comparison
condition is found for an element of
operand 3, the modifier bits should
be specified as follows:

Modifier Bits Result Is One
If Operand-3

MO M1 M2 M3 Comparison Is

0 0 0 - - (always 0)
0 0 1 - High
0 1 0 - Low
0 1 1 - Not equal
1 0 0 - Equal
1 0 1 - Not low
1 1 0 - Not high
1 1 1 - Any (always 1)

2. The modifier bits of the vector
COMPARE instruction correspond to
the condition codes of the scalar
COMPARE instruction when an element
of vector operand 3 is the same as
the scalar operand 1 and the corre­
sponding element of vector operand 2
is the same as the scalar operand 2.

Thus, the value of the leftmost
three bits of the mask field of the
BRANCH ON CONDITION instruction,
which causes branching when used to
test the condition code of the
scalar COMPARE, is the same as the
modifier value of the vector COMPARE
instruction, which sets a vector­
mask bit to one for the same compar­
ison condition.

3. The comparison instructions are the
only ones which both modify the
vector-mask register and are inter­
ruptible. They do not change those
bits in the vector-mask register
which lie beyond the last bit proc­
essed. This contrasts with the non­
interruptible instructions which
load or perform logical operations
on the vector-mask register; they
set to zeros all bits which lie
beyond the last bit processed.

4. Unlike the related arithmetic and
logical vector instructions, the
comparison instructions are not exe­
cuted under control of the vector­
mask mode.

COMPLEMENT VMR

VCVM [RRE]

'A641 ' 111111111111111111
o 16 31

The active bits of the vector-mask reg­
ister (VMR) are complemented. Bits
beyond the active bits of the vector­
mask register are set to zeros.

COMPLEMENT VMR is a class -NC instruc­
tion: it is not interruptible, the
vector count determines the number of
elements processed, and its execution is
not affected by the vector-mask mode.

Condit ion Code: The
unchanged.

Program Exceptions:

Operation
Vector operation

code remains

Chapter 3. Vector-Facility Instructions 3-7

COUNT LEFT ZEROS IN VMR

VCZVM [RRE]

'A642'

o 16 24 28 31

COUNT ONES IN VMR

VCOVM GR 1 [RRE]

'A643'

o 16 24 28 31

Selected bits among the active bits of
the vector-mask register eVMR) are
counted, and the count is added to the
contents of the general register desig­
nated by GR1 . For the COUNT LEFT ZEROS
IN VMR instruction, the selected bits
are the zero bits to the left of the
leftmost one bit. For the COUNT ONES IN
VMR instruction, the selected bits are
the one bits.

The general-register contents are
treated as a 32-bit unsigned binary
integer. Any carry out of the leftmost
bit of the sum is ignored; there is no
overflow indication.

Condition code 0, 1, or 3 is set
according to whether the active bits are
all zeros, mixed zeros and ones, or all
ones. When the vector count is zero,
the general register is not altered, and
condition code 0 is set.

COUNT LEFT ZEROS IN VMR and COUNT ONES
IN VMR are class-NC instructions: they
are not interruptible, the vector count
determines the number of elements proc­
essed, and their execution is not
affected by the vector-mask mode.

Resulting Condition Code:

o Active bits all zeros
1 Active bits mixed zeros and ones
2
3 Active bits all ones

3-8 IBM System/370 Vector Operations

Program Exceptions:

Operation
Vector operation

Programming Note

When only the condition-code result of
COUNT LEFT ZEROS IN VMR or COUNT ONES IN
VMR is required, but not the actual bit
counts, the instruction TEST VMR may be
used instead.

DIVIDE

Mnemonic [QST]

Op Code I FR31 RT21 VR11 Rs 2 1

0 16 20 24 28 31

Mne- Op
monic Code Operands

VDDS 'A493' Long
VDES 'A483' Short

Mnemonic [QV]

Op Code I FR31////1 VRll ~
0 16 20 24 28 31

Mne- Op
monic Code Operands

VDDQ 'A593' Long
VDEQ 'A583' Short

Mnemonic [VST]

Op Code I VR31 RT21 VR11 Rs 2 1

0 16 20 24 28 31

Mne- Op
monic Code Operands

VDD 'A413' Long
VDE 'A403' Short

Mnemonic [VV]

Op Code I VR3111111 VRll VR21

0 16 20 24 28 31

Mne- Op
monic Code Operands

VDDR 'A513' Long
VDER 'A503' Short

Element by element, the third operand is
divided by the second-operand vector,
and the result is placed in the first­
operand location.

The operation is performed on each pair
of elements in the same manner as the
corresponding scalar operation, except
for two changes. When the fraction part
of a divisor element is zero, so that a
floating-point-divide exception is
recognized, the unit of operation is
inhibited. Also, the operands are not
first normalized; when one or both of
the source-operand elements have a
nonzero fraction with a leftmost
hexadecimal digit of zero, an
unnormalized-operand exception is recog­
nized, and the unit of operation is
inhibited.

The floating-paint-divide exception
takes precedence over the unnormalized­
operand exception, and both take preced­
ence over the exponent overflow and
exponent underflow exceptions.

A specification exception is recognized
when a VR or QR field designates an
invalid register number. In the QST and
VST formats, a specification exception
is recognized when the second operand is
not designated on an integral boundary,
or when the RT2 field is nonzero and
designates the same general register as
the RS 2 field.

instruction: it is
vector count and

index determine the
processed, and its
the control of the

DIVIDE is a class-1M
interruptible, the
vector interruption
number of elements
execut ion is under
vector-mask mode.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (fetch, operand 2 in QST and VST
formats)

Exponent overflow (with exception­
extension code)

Exponent underflow (with exception­
extension code)

Floating-point divide (with exception-
extension code)

Operation
Specification
Unnormalized operand (with exception­

extension code)
Vector operation

Programming Notes

1. The QST and QV formats provide for
dividing a scalar operand by a
vector. The operation of dividing a
vector by a scalar can usually be
replaced by the (generally faster)
operation of multiplying the vector
operand by the reciprocal of the
scalar operand.

2. An unnormalized-operand exception is
recognized whenever a divisor
element is unnormalized, even if the
corresponding dividend element is
zero.

EXCLUSIVE OR

VXS [QST]

'A4A6'

o 16 20 24 28 31

VXQ [QV]

C=._IA_5A_61 __ ~I_G_R3~1/_11~/I_V_Rl~I_VR~21
o 16 20 24 28 31

VX [VST]

'A426'

o 16 20 24 28 31

Chapter 3. Vector-Facility Instructions 3-9

VXR [VV]

'A526'

o 16 20 24 28 31

Element by element, the EXCLUSIVE OR of
the second and third operands is placed
in the first-operand location.

The operation is performed on each pair
of 32-bit elements in the same manner as
the corresponding scalar operation,
except that the condition code is not
set.

For the VX and VXS instructions, a spec­
ification exception is recognized when
the second operand is not designated on
an integral boundary, or when the RT2
field is nonzero and designates the same
general register as the RS 2 field. For
the VXS instruction, a specification
exception is also recognized when the
GR3 field designates the same general
register as the RS 2 field.

EXCLUSIVE OR is a class-1M instruction:
it is interruptible, the vector count
and vector interruption index determine
the number of elements processed, and
its execution is under the control of
the vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Access (fetch, operand 2 in QST and VST
formats)

Operation
Specification
Vector operation

EXCLUSIVE OR TO VMR

VXVM RS 2

'A686'

o 16

[VS]

28 31

The EXCLUSIVE OR of the second-operand
bit vector and of the active bits of the
vector-mask register is placed in the

3-10 IBM System/370 Vector Operations

vector-mask register. Bits beyond the
active bits are set to zeros.

EXCLUSIVE OR TO VMR is a class-NC
instruction: it is not interruptible,
the vector count determines the number
of elements processed, and its execution
is not affected by the vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

The

Access (fetch, operand 2)
Operation
Vector operation

EXTRACT ELEMENT

Mnemonic

Op Code

code remains

[VR]

o 16 20 24 28 31

Mne- Op
monic Code Operands

VXEL 'A629' Binary or logical
VXELD 'A619' Long
VXELE 'A609' Short

The element from the vector register or
vector-register pair des ignated by VR 1 ,

which has the element number contained
in the general register designated by
GR2 , is placed in the general or
floating-point register designated by
QR3 ·

The element number is a 32-bit unsigned
binary integer which must be less than
the section size.

For VXELE, the rightmost 32 bits of the
floating-point register designated by
QR3 remain unchanged.

For VXEL, if the GR2 and QR3 fields des­
ignate the same general register, the
element number is obtained from that
register before it is replaced by the
specified vector element.

A specification exception is recognized
when the VRl or QR3 field designates an

invalid register number, or when the
element number is equal to or greater
than the section size.

EXTRACT ELEMENT is a class -N1 instruc­
tion: it is not interruptible, one
element is processed, and its execution
is not affected by the vector-mask mode.
The vector count and vector interruption
index are not used by the instruction
and remain unchanged.

Condition Code:
unchanged.

Program Exceptions:

Operation
Specification
Vector operation

EXTRACT VCT

The code remains

VXVC GR 1 [RRE]

o 16 24 28 31

The vector count, with 16 zeros appended
on the left, is placed in the general
register designated by GR 1 .

EXTRACT VCT is a class -NO instruction:
it is not interruptible, no elements are
processed, and its execution is not
affected by the vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

Operation
Vector operation

The code remains

EXTRACT VECTOR MASK MODE

VX'VMM [RRE]

'A646' }IN/11111 GR1 .. [;//I!.
o 24 28"31

Bits 16-31 of th~\, general register des­
ignated by GR1 "are set to the value of

bits 0-15 of the vector-status register.
Thus, bit 31 of the general register
indicates the current setting of the
vector-mask mode. Bits 0-15 of the
general register are set to zeros.

EXTRACT VECTOR MASK MODE is a class-NO
instruction: it is not interruptible,
no. elements are processed, and its exe­
cution is not affected by the vector­
mask mode.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Operation
Vector operation

Programming Note

The program should not rely on bits
16-30 of the general register being set
to zeros. Those bits correspond to
unassigned bits of the vector-status
register, which are reserved for pos­
sible future use.

LOAD

Mnemonic [QV]

Op Code ! QR2111111 VR1IIIIII

0 16 20 24 28 31

Mne- Op
monic Code Operands

VLQ 'ASA9' Binary or logical
VLDQ 'AS99' Long
VLEQ 'AS89' Short

Mnemonic [VST]

Op Code IIIIII RTzl VRll RS21

0 16 20 24 28 31

Mme- .,Op:
monic Code :Operands

-'--'--

VL fA409' Binary or logical
VLD t A419" Long,
VLE r A409,t Short

Chapter 3. Vector-Facility Instructions 3-11

Mnemonic VR1 , VR2 [VV]

Op Code 1////////1 VRll VR21

0 16 24 28 31

Mne- Op
monic Code Operands

VLR 'AS09' Binary or logical
VLDR 'AS19' Long
VLER 'AS09' Short

Element by element, the second operand
is placed unchanged in consecutive
first-operand locations.

A specification exception is recognized
when a VR or QR field designates an
invalid register number. In the VST
format, a specification exception is
also recognized when the second operand
is not designated on an integral
boundary, or when the RT2 field is
nonzero and designates the same general
register as the RS 2 field.

LOAD is a class-IC instruction: it is
interruptible, the vector count and
vector interruption index determine the
number of elements processed, and its
execution is not affected by the vector­
mask mode.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Access (fetch, operand 2 in VST format)
Operation
Specification
Vector operation

LOAD BIT INDEX

VLBIX [RSE]

I 'E4~8' I GRal////1 VR,I////I B2 I £~
/

o 16 20 24 28 32 36 47

Bit by bit, the second operand is con­
verted from a bit vector to a vector of
element numbers, the result vector is
placed in the first-operand location,

3!12 IBM System/370 Vector Operations

and the number of elements in the result
vector is placed in the vector count.

The result-vector elements are 32-bit
signed binary integers, which give the
positions of the one bits in the second
operand, relative to the starting
address of the second operand and in
sequence from left to right. No result­
vector elements are generated for zero
bits.

The GR3 field must designate an even
register number to specify an even -odd
pair of general registers. The regis­
ters contain a bit index and a bit
count, as follows:

GR3

GR3 +1

o

Bit Index

Bit Count

31

Both are treated as 32-bit signed binary
integers. The bit index identifies the
first bit of the second operand to be
processed. The bit count gives the
number of bits to be processed. If the
bit count is zero or less than zero, no
bits are processed. Upon completion or
interruption of the instruction, the bit
index identifies the next bit to be
processed, and the bit count, if greater
than zero, gives the number of bits
remaining.

The address of the byte location con­
taining the current bit to be processed
is the sum, modulo the address size, of
the second-operand address and of a
number obtained by shifting bits 0-28 of
the current bit index right by three bit
positions, with bits equal to bit 0
being shifted into the leftmost three
bit positions (without changing the con­
tents of the general register). The
rightmost three bits of the current bit
index designate the bit within the byte.

Execution of the instruction consists of
a repetition of the following procedure:

The current value of the vector inter­
ruption index is placed in the vector
count. Then, if the vector count is
equal to the section size, or if the bit
count is zero or less than zero, the

vector interruption index is set to
zero, and instruction execution is com­
pleted. Otherwise, the second-operand
bit designated by the current bit index
is selected. If the selected bit is
one, the value of the bit index is
placed in the first-operand element
location designated by the vector inter­
ruption index, and the vector inter­
ruption index is then incremented by
one. Next, regardless of the value of
the selected bit, one is added algebra­
ically to the bit index, and one is sub­
tracted from the bit count. The
procedure is then repeated.

Execution of the instruction may be
interrupted, but only upon return to the
starting point of the repetitive proce­
dure.

When 31-bit addressing is in effect,
incrementing the bit index beyond the
value 2 31 -1 may cause an overflow, which
is not signaled to the program. The
result of incrementing the bit index
beyond 2 31 -1 is undefined.

A specification exception is recognized
when the GR3 field designates an invalid
register number.

The B2 field should not designate the
same general register as either of the
pair of registers designated by the GR3
field. The result fields (bit count,
bit index, condition code, vector count,
vector interruption index, and vector
register) are undefined if B2 is nonzero
and B2 = GR3 or B2 = GR3+1.

LOAD BIT INDEX is a class-IG instruc­
tion: it is interruptible, a general
register and the vector interruption
index determine the number of elements
processed, and its execution is not
affected by the vector-mask mode.

Resulting Condition Code:

o Vector count zero; bit count zero
1 Vector count zero; bit count less

than zero
2 Vector count equal to section size;

bit count greater than zero
3 Vector count greater than zero; bit

count zero or less than zero

Program Exceptions:

Access (fetch, operand 2)
Operation
Specification
Vector operation

Programming Notes

1. Example of LOAD BIT INDEX:

Bit Positions: 012345678

Bit Vector: 010001101

Result Vector: 1 5 6 8

2. The bit index in the even register
should normally be set to zero by
the program before entering a sec­
tioning loop that contains the
instruction. An initial nonzero
value may be useful to shorten a bit
vector that would otherwise contain
a large number of leading zeros.

3. Assuming normal use of the instruc­
tion with the vector interruption
index initially set to zero, LOAD
BIT INDEX sets the vector count to
the number of result elements gener­
ated. The vector count is then
available to control subsequent
vector instructions.

If condition code 2 is set, the
vector count has been set to the
section size; a full section of
element numbers has been loaded by
the instruction, and more bits
remain to be processed. If condi­
tion code 3 is set, the vector count
has been set to a value equal to or
less than the section size; the last
or only section of element numbers
has been loaded, and no more bits
remain to be processed. If condi­
tion code 0 or 1 is set, the vector
count is zero, and there were no
bits to be processed and no element
numbers to be loaded.

4. If all bits in the second operand
are zeros, no result elements are
generated, and the vector count is
set to the initial vector inter­
ruption index, which normally is
zero. This may also occur for the
last pass through a sectioning loop
using this instruction, if the
number of one bits in the second

Chapter 3. Vector-Facility Instructions 3-13

operand happens to be a multiple of
the section size, thus generating
one or more full sections, with the
remainder of the second operand con­
taining only zero bits. Subsequent
vector instructions will still func­
tion correctly, because no elements
are processed when the vector count
is zero.

5. The effect on the result fields of
specifying the same general register
for the base register of the second
operand and for the bit index or bit
count is unpredictable; it may
depend on the model, on the occur­
rence of asynchronous interruptions
such as I/O, or on other events that
are not under the direct control of
the program.

6. Programs using extremely large
values of the bit index when 31-bit
addressing is in effect must limit
those values so that they cannot
exceed 231 _1, which corresponds to a
byte location of 228 -1 relative to
the second-operand address.
Allowing the instruction to incre­
ment the bit index to the next value
mayor may not cause overflow; the
next byte location might be either
228 or _2 28 relative to the second­
operand address. The result may not
be repeatable from one instruction
execution to the next.

7.

When 24-bit addressing is in effect,
byte addresses in storage are com­
puted modulo 224

, so that the possi­
bility of overflow at a bit index of
231 _1 does not affect the resultant
address.

Figure 3-1 is a summary of the oper­
ation.

3-14 IBM System/370 Vector Operations

BC:
BX:
CC:
SS:

Start

~

VCT ~ VIX

I
~

VCT = SS ?

INo
~

VRl ~ BX
VIX ~ VIX + 1

I
Yes

VCT:

Bit count in GR3 +1
Bit index in GR3
Condition code
Section size
Vector count

O?

No Yes\
.j, .j,

VIX: Vector interruption index

Figure 3-1. Execution
INDEX

of LOAD BIT

LOAD COMPLEMENT

Mnemonic [VV]

Op Code

o 16 24 28 31

Mne- Op
monic Code Operands

VLCR 'A562' Binary
VLCDR 'A552' Long
VLCER 'A542' Short

Element by element, the second-operand
vector is placed in the first-operand
location with the opposite sign. For
VLCR, each result element is the two's
complement of the corresponding source
element. For VLCDR and VLCER, each
result element is the corresponding
source element with the sign bit
inverted.

The operation is performed on each
element in the same manner as the corre­
sponding scalar operation, except that
the condition code is not set.

A specification exception is recognized
when a VR field designates an invalid
register number.

LOAD COMPLEMENT is a class-1M instruc­
tion: it is interruptible, the vector
count and vector interruption index
determine the number of elements proc­
essed, and its execution is under the
control of the vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Fixed-point overflow (with exception-
extension code; VLCR only)

Operation
Specification
Vector operation

LOAD ELEMENT

Mnemonic [VR]

Op Code

o 16 20 24 28 31

Mne- Op
monic Code Operands

VLEL 'A628' Binary or logical
VLELD 'A618' Long
VLELE 'A608' Short

The element in the vector register or
vector-register pair designated by VR 1 ,

which has the element number contained
in the general register designated by
GR2 , is replaced by the scalar operand
in the general or floating-point reg­
ister designated by QR3 .

The element number is a 32-bit unsigned
binary integer which must be less than
the section size.

A specification exception is recognized
when the VR 1 or QR3 field designates an
invalid register number, or when the
element number is equal to or greater
than the section size.

LOAD ELEMENT is a class-N1 instruction:
it is not interruptible, one element is
processed, and its execution is not
affected by the vector-mask mode. The
vector count and vector interruption
index are not used and remain unchanged.

Condition Code:
unchanged.

Program Exceptions:

Operation
Specification
Vector operation

The code remains

Chapter 3. Vector-Facility Instructions 3-15

LOAD EXPANDED

Mnemonic [VST]

Op Code

o 16 20 24 28 31

Mne- Op
monic Code Operands

VLY 'A40B' Binary or logical
VLYD 'A41B' Long
VLYE 'A40B' Short

Element by element, successive elements
of the second-operand vector are placed
unchanged in the element locations of
the first operand that correspond to
ones in the active bits of the vector­
mask register. Element locations of the
first operand that correspond to zeros
in the active bits of the vector-mask
register remain unchanged, and there are
no corresponding second-operand
locations in storage.

A specification exception is recognized
when the VR 1 field designates an invalid
register number, when the second operand
is not des ignated on an integral
boundary, or when the RT2 field is
nonzero and designates the same general
register as the RS 2 field.

When the active bits of the vector-mask
register are all zeros, no access
exceptions are recognized for the
storage location specified by the second
operand.

LOAD EXPANDED is a class-IC instruction:
it is interruptible, the vector count
and vector interruption index determine
the number of elements processed, and
its execution is not affected by the
vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

The

Access (fetch, operand 2)
Operation

code remains

3-16 IBM System/370 Vector Operations

Specification
Vector operation

Programming Notes

1. The number of vector elements which
are loaded from storage and the
amount by which the addres s in the
general register designated by RS 2
is updated correspond to the number
of ones among the active bits of the
vector-mask register.

2. The operation performed by LOAD
EXPANDED is the opposite of STORE
COMPRESSED.

LOAD HALFWORD

VLH [VST]

'A429'

o 16 20 24 28 31

Element by element, the second operand
is extended from a vector of 16-bit
signed binary integers to a vector of
32-bit signed binary integers, and the
result is placed in consecutive first­
operand locations.

Each second-operand element is two bytes
in length. The element is extended upon
loading to 32 bits by setting each of
the 16 leftmost bit positions of the
first-operand element equal to the sign
bit of the second-operand element.

A specification exception is recognized
when the second operand is not desig­
nated on a halfword boundary, or when
the RT2 field is nonzero and designates
the same general register as the RS 2
field.

LOAD HALFWORD is a class-IC instruction:
it is interruptible, the vector count
and vector interruption index determine
the number of elements processed, and
its execution is not affected by the
vector-mask mode.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (fetch, operand 2)
Operation
Specification
Vector operation

LOAD INDIRECT

Mnemonic [RSE]

~ ~Ode I VR--.-J.31_11_/ ---J-I I_V_R--L..l I_I I_I 1~I_B_2 ~~J
o 16 20 24 28 32 36 47

Mne- Op
monic Code Operands

VLI 'E400' Binary or logical
VLID 'E410' Long
VLIE 'E400' Short

Element by element, the third operand is
used to select elements of the second­
operand vector in storage and place them
unchanged in the element positions of
the first operand which correspond to
those of the third operand.

The third operand is a vector of 32-bit
signed binary integers. The address of
each second-operand element is computed
as the sum of the second-operand origin
and the offset obtained from each
element of the third operand, as
follows.

The second-operand orlgln is generated
from the base-address (B 2) and displace­
ment (D2) fields using the normal rules
of address generation. The offset is
obtained by shifting the current third­
operand element to the left by two bits
(for VLI or VLIE) or three bits (for
VLID), with zeros appended on the right.
The origin and offset are added. The
rightmost 31 or 24 bits of the sum,
depending on the address size, are used
as the storage address. The second­
operand element is fetched from that
address and loaded into the first­
operand location at the same element

position as that from which the third­
operand element was obtained.

During the shift and addition oper­
ations, any carries or shifts into or
out of the unused bit positions on the
left are ignored.

A specification exception is recognized
when the VR1 field designates an invalid
register number, or when the second
operand is not designated on an integral
boundary.

LOAD INDIRECT is a class-IC instruction:
it is interruptible, the vector count
and vector interruption index determine
the number of elements processed, and
its execution is not affected by the
vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

The

Access (fetch, operand 2)
Operation
Specification
Vector operation

Programming Note

code remains

LOAD INDIRECT is used to load a vector
by indirect element selection. The
instruction fetches elements from
storage in the following sequence of
addresses: A + w*VR3 (0), A + W"-VR3 (1),
A + w*VR3 (2), ... , where A is the origin
of the vector in storage, w is the width
of each element, and VR3 (0), VR3 (1),
VR3 (2), are the successive element
numbers contained in the vector register
designated by the VR3 field of the
instruction.

The origin is A = (B 2)+D2 , where (B 2)
represents the contents of the base reg­
ister designated by the B2 field, and D2
is the displacement designated by the D2
field.

The element width w is 4 for VLI or VLIE
and 8 for VLID. The storage elements
are loaded successively into element
positions VR1(0), VR 1 (1), VR1 (2), ... of
the target register.

Chapter 3. Vector-Facility Instructions 3-17

LOAD INTEGER VECTOR

VLINT [VST]

'A42A'

o 16 20 24 28 31

Element by element, a vector of uni­
formly spaced integers, as specified by
the second-operand designation, is
placed in consecutive first-operand
locations.

If the vector interruption index X is
less than the vector count, the contents
of the general register designated by
RS 2 replace element X of the first
operand (normally X = 0 at the start).
Then, the contents of that general reg­
ister are incremented by adding the con­
tents of the general register designated
by RT2 (the stride), both being treated
as 32-bit binary integers. Any overflow
during the addition is ignored. The
vector interruption index X is then
incremented by one.

These steps are repeated for each suc­
cessive first-operand element until
incrementing X causes it to equal the
vector count. The vector interruption
index is then set to zero.

The general register designated by RT2
remains unchanged. If the RT2 field of
the instruction is zero, general reg­
ister 0 is not used for the increment;
instead, the increment is +1, so that
consecutive integers are loaded.

A specification exception is recognized
when the RT2 field is nonzero and desig­
nates the same general register as the
RS 2 field.

LOAD INTEGER VECTOR is a class-IC
instruction: it is interruptible, the
vector count and vector interruption
index determine the number of elements
processed, and its execution is not
affected by the vector-mask mode.

Condition Code:
unchanged.

The code remains

3-18 IBM System/370 Vector Operations

Program Exceptions:

Operation
Specification
Vector operation

Programming Note

The operation resembles the generation
of storage addresses for QST- and
VST-format instructions, except that the
element size is w = 1, no storage refer­
ences for operands take place, no access
exceptions for operands are recognized,
and all 32 bits of both general regis­
ters participate in the operation. The
result is independent of the address
size.

Performing a LOAD INTEGER VECTOR opera­
tion also resembles the execution of a
loop using the nonvector instruction
LOAD ADDRESS. They differ in that LOAD
INTEGER VECTOR does not depend on the
address size; it does not set to zeros
the leftmost one or eight bit positions.
LOAD INTEGER VECTOR can generate nega­
tive numbers, which LOAD ADDRESS cannot.

LOAD MATCHED

Mnemonic

Op Code

0

Mne- Op
monic Code

VLMQ 'A5AA'
VLMDQ 'A59A'
VLMEQ 'A58A'

Mnemonic

Op Code

o

Mne­
monic

VLM
VLMD
VLME

Op
Code

'A40A'
'A41A'
'A40A'

[QV]

I QR21////1 VR 1 1////1

16 20 24 28 31

Operands

Binary or logical
Long
Short

[VST]

16 20 24 28 31

Operands

Binary or logical
Long
Short

Mnemonic VR 1 , VR2 [VV]

Op Code I11111111I VRll VR21

0 16 24 28 31

Mne- Op
monic Code Operands

VLMR 'ASOA' Binary or logical
VLMDR 'AS1A' Long
VLMER 'ASOA' Short

Element by element, elements of the
second operand corresponding to ones in
the active bits of the vector-mask reg­
ister are placed unchanged in the corre­
sponding element locations of the first
operand. Elements of the second operand
corresponding to zeros in the active
bits of the vector-mask register are not
loaded, and the corresponding element
locations of the first operand remain
unchanged.

A specification exception is recognized
when a VR or QR field designates an
invalid register number. In the VST
format, a specification exception is
also recognized when the second operand
is not designated on an integral
boundary, or when the RT2 field is
nonzero and designates the same general
register as the RS 2 field.

No access exceptions are recognized for
elements of the second operand which
correspond to zeros in the active bits
of the vector-mask register; however,
the general register designated by the
RS 2 field is updated for each of those
elements.

LOAD MATCHED is a class-IC instruction:
it is interruptible, the vector count
and vector interruption index determine
the number of elements processed, and
its execution is not affected by the
vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

The code remains

Access (fetch, operand 2 in VST format)
Operation
Specification

Vector operation

Programming Notes

1. LOAD MATCHED functions the same as
LOAD for those elements which corre­
spond to ones in the active bits of
the vector-mask register: each such
element is loaded from the same
storage location into the same
vector-register position. It
differs in that elements in storage
corresponding to zeros in the active
bits of the vector-mask register are
skipped.

2 . LOAD, LOAD EXPANDED, and LOAD
MATCHED function the same, for cor­
responding formats, when all active
bit positions of the vector-mask
register contain ones.

LOAD NEGATIVE

Mnemonic [VV]

Op Code I11111111I VR 1 I VR21

0 16 24 28 31

Mne- Op
monic Code Operands

VLNR 'AS61 ' Binary
VLNDR 'ASS1 ' Long
VLNER f AS41' Short

Element by element, the negative of the
absolute value of the second-operand
vector is placed in the ,first-operand
location.

The operation is performed on each
element in the same manner as the corre­
sponding scalar operation, except that
the condition code is not set.

A specification exception is recognized
when a VR field designates an invalid
register number.

LOAD NEGATIVE is a class-1M instruction:
it is interruptible, the vector count
and vector interruption index determine
the number of elements processed, and
its execution is under the control of
the vector-mask mode.

Chapter 3. Vector-Facility Instructions 3-19

Condition Code:
unchanged.

Program Exceptions:

Operation
Specification
Vector operation

LOAD POSITIVE

Mnemonic

The code remains

[VV]

Op Code 1////////1 VR11 VR21

0 16 24 28 31

Mne- Op
monic Code Operands

VLPR 'AS60' Binary
VLPDR 'ASSO' Long
VLPER 'AS40' Short

Element by element, the absolute value
of the second-operand vector is placed
in the first-operand location.

The operation is performed on each
element in the same manner as the corre­
sponding scalar operation, except that
the condition code is not set.

A specification exception is
when a VR field designates
register number.

recognized
an invalid

LOAD POSITIVE is a class-1M instruction:
it is interruptible, the vector count
and vector interruption index determine
the number of elements processed, and
its execution is under the control of
the vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

The

Fixed-point overflow
extension code;
only)

Operation
Specification
Vector operation

code remains

(with exception­
binary operand

3-20 IBM System/370 Vector Operations

LOAD VeT AND UPDATE

VLVCU [RRE]

'A64S'

o 16 24 28 31

If the operand in the general register
designated by the GR1 field is greater
than zero, the vector count (VCT) is
replaced by the lesser of the section
size and the operand. If the operand is
zero or less than zero, the vector count
is set to zero. The general register is
then updated by subtracting the new
vector count from the register contents.

The register contents are treated as a
32-bit signed binary integer. The
vector count and section size are
treated as 16-bit unsigned binary inte­
gers.

LOAD VCT AND UPDATE is a class-NO
instruction: it is not interruptible,
no elements are processed, and its exe­
cution is not affected by the vector­
mask mode.

Resulting Condition Code:

o Vector count zero; register result
zero

1 Vector count zero; register result
less than zero

2 Vector count equal to section size;
register result greater than zero

3 Vector count greater than zero; reg­
ister result zero

Program Exceptions:

Operation
Vector operation

Programming Notes

1. LOAD VCT AND UPDATE may be used at
the start of a sectioning loop to
determine the number of vector ele­
ments to be processed during each
pass through the loop. Before
entering the loop, the program ini­
tializes the general-register
operand to the total number of ele­
ments in the vector. The end of the
loop may simply be a BRANCH ON CON­
DITION instruction, if the condition

code has not been changed since the
start of the loop, or the branch may
be preceded by LOAD AND TEST speci­
fying the general register as both
the first and second operand.

If LOAD VCT AND UPDATE sets condi­
tion code 2, the vector count has
been set to the section size; a full
section of vector elements are to be
processed, and more remain to be
processed. If it sets condition
code 3, the vector count has a value
equal to or less than the section
size, and the last or only section
is to be processed. If it sets con­
dition code 0 or 1, the vector count
is zero, and there are no vector
elements to be processed.

2. If LOAD AND TEST is used instead at
the end of the loop, condition code
2 simply indicates that the general
register contents are greater than
zero, and there are more elements to
be proces s ed . Any other condition
code means that there are no more
elements.

3. The general-register operand remains
greater than zero at the end of
instruction execution only if condi­
tion code 2 is set. For the other
condition codes, the final register
contents are zero or negative.

LOAD VeT FROM ADDRESS

VLVCA [S]

'A6C4'

o 16 20 31

If the second-operand-address value is
greater than zero, the vector count
(VCT) is replaced by the lesser of the
section size and the address value. If
the second-operand-address value is zero
or less than zero, the vector count is
set to zero.

If the B2
not zero,

field of the instruction is
the second-operand-address

value is formed by adding the contents
of the general register designated by
the B2 field and the contents of the
12-bit D2 field of the instruction. All
32 bits in the general register desig­
nated by the B2 field participate in the
addition, which is independent of the
address size. The result of the addi­
tion is used as the operand itself and
not to address storage. It is treated
as a 32-bit signed binary integer.

If the B2 field of the instruction is
zero, general register 0 is not used;
instead, the address value consists of
the D2 field with 20 zero bits appended
on the left.

No storage references for operands take
place, and the address value is not
inspected for boundary alignment or
access exceptions.

LOAD VCT FROM ADDRESS is a class-NO
instruction: it is not interruptible,
no elements are processed, and its exe­
cution is not affected by the vector­
mask mode.

Resulting Condition Code:

o Vector count zero; second-operand
address zero

1 Vector count zero; second-operand
address less than zero

2 Vector count equal to section size;
second-operand address greater than
section size

3 Vector count greater than zero;
second-operand address less than or
equal to section size and greater
than zero

Program Exceptions:

Operation
Vector operation

Programming Note

LOAD VCT FROM ADDRESS may be used to set
the vector count to the section size by
specifying a B2 field of zero and
placing a value greater than 511 in the
D2 field.

Chapter 3. Vector-Facility Instructions 3-21

LOAD VMR

VLVM [VS]

'A680'

o 16 28 31

The second-operand bit vector replaces
the active bits of the vector-mask reg­
ister (VMR). Bits beyond the active
bits are set to zeros.

LOAD VMR is a class-NC instruction: it
is not interruptible, the vector count
determines the number of elements proc­
essed, and its execution is not affected
by the vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

The

Access (fetch, operand 2)
Operation
Vector operation

LOAD VMR COMPLEMENT

VLCVM

'A681 '

o 16

code remains

[VS]

28 31

The complement of the bits from the
second-operand bit vector replaces the
active bits of the vector-mask register
(VMR). Bits beyond the active bits are
set to zeros.

LOAD VMR COMPLEMENT is a class-NC
instruction: it is not interruptible,
the vector count determines the number
of elements processed, and its execution
is not affected by the vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

The

Access (fetch, operand 2)
Operation
Vector operation

code remains

3-22 IBM System/370 Vector Operations

LOAD ZERO

Mnemonic [VV]

Op Code

o 16 24 28 31

Mne- Op
monic Code Operands

VLZR 'A50B' Binary or logical
VLZDR 'A51B' Long
VLZER 'A50B' Short

The first-operand vector is cleared to
zero. Only element positions numbered
less than the vector count are set to
zero. Any element positions numbered
equal to or greater than the vector
count remain unchanged.

A specification exception is recognized
when the VR 1 field designates an invalid
register number.

LOAD ZERO is a class-IC instruction: it
is interruptible) the vector count and
vector interruption index determine the
number of element positions set to zero,
and its execution is not affected by the
vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

Operation
Specification
Vector operation

Programming Note

The code remains

The instruction LOAD ZERO is equivalent
to LOAD (VLQ, VLDQ, or VLEQ) with an
implied scalar source operand of zero.
It provides the fastest way to set a
vector register to zero.

MAXIMUM ABSOLUTE

Mnemonic VR 1 ,FR3 ,GR2

Op Code I FR3111111
0 16 20 24

Mne- Op
monic Code Operands

VMXAD 'A612' Long
VMXAE 'A602' Short

MAXIMUM SIGNED

Mnemonic

Op Code

0

Mne- Op
monic Code

VMXSD 'A610'
VMXSE 'A600'

MINIMUM SIGNED

Mnemonic

Op Code

0

Mne- Op
monic Code

VMNSD 'A611'
VMNSE 'A601 '

16 20

Operands

Long
Short

24

I FR3111111
16 20 24

Operands

Long
Short

[VR]

VR 1 1 GR21

28 31

[VR]

28 31

[VR]

VR 1 1 GR21

28 31

The scalar third operand and all first­
operand vector elements are compared to
determine the maximum or minimum value,
which replaces the third operand. The
instruction MAXIMUM ABSOLUTE compares
absolute values to select the maximum.
The instructions MAXIMUM SIGNED and
MINIMUM SIGNED compare signed values to
select the maximum or minimum, respec­
tively.

The comparison of each pair of absolute
or signed operand values is performed in
the same manner as the scalar floating-

point COMPARE instruction for the same
format, except that the result is the
selection of one element of the pair
instead of a condition-code setting.

The scalar third operand is compared
with each element of the first operand
in turn to determine the selected
(maximum absolute, maximum signed, or
mlnlmum signed) value. If the compar­
ison is unequal and the first-operand
element is the selected value, the
first-operand element replaces the third
operand; otherwise, no change takes
place. The operation then continues
with the next element of the first
operand in the sequence of element
numbers.

The GR2 fie ld mus t be zero or even.
When nonzero, it designates an even-odd
pair of general registers. The contents
of the odd general register are treated
as a 32-bit unsigned binary integer,
which is incremented by one after each
first-operand element has been proc­
essed; any carry out of bit position 0
is ignored. Each time a new selected
value replaces the third operand, the
current contents of the odd general reg­
ister, before it is incremented, are
placed in the even general register.

When the GR2 field is zero, the action
associated with the general registers is
not performed, and their contents remain
unchanged.

For VMXAE, VMXSE, and VMNSE, the right­
most 32 bits of the floating-point reg­
ister designated by FR3 remain
unchanged.

A specification exception is recognized
when the VR 1 , GR2 , or FR3 field desig­
nates an invalid register number.

MAXIMUM ABSOLUTE, MAXIMUM SIGNED, and
MINIMUM SIGNED are class-1M instruc­
tions: they are interruptible, the
vector count and vector interruption
index determine the number of elements
processed, and its execution is under
the control of the vector-mask mode.
When the vector-mask mode is on, no
selection takes place for first-operand
elements corresponding to zero mask
bi ts : the third operand and the even
general register remain unchanged.
However, when the GR2 field is nonzero,
the odd general register is incremented

Chapter 3. Vector-Facility Instructions 3-23

by one for every first-operand element,
regardless of the mode and mask bits.

Condition Code:
unchanged.

Program Exceptions:

Operation
Specification
Vector operation

Programming Notes

The code remains

1. Because the current third operand is
compared with every element of the
first operand, including element 0,
these instructions can be used in a
sectioning loop to find the selected
value of a vector of any length.
Before starting the first, or only,
section, the program should ini­
tialize the third operand as
follows.

MAXIMUM ABSOLUTE: zero
MAXIMUM SIGNED: largest negative
value
MINIMUM SIGNED: largest positive
value

2. If the GR2 field is not zero, and
the program initializes both of the
specified pair of general registers
to zero before executing the
instruction, the even registp-r will
contain the number of the 3 c!lected
element, counting from the start
(element 0) of the first section.
If no element was selected, the even
register will retain its initial
contents. The odd register will
contain the cumulative number of
elements processed.

When the first operand contains two
or more elements that could equally
qualify as the selected element, the
instruction selects the first one.

3. Since the element values are
floating-point numbers, the rules
for floating-point comparison apply,
and two or more elements with dif­
ferent bit patterns may satisfy the
test for maximum or minimum value.
For example, elements with zero
fractions compare equal even though
their sign and characteristic may
differ. (See also the programming

3-24 IBM System/370 Vector Operations

notes for the COMPARE instruction in
Chapter 9, "Floating-Point Instruc­
tions," of IBI1 370-XA Principles of
Operation and IBI1 System/370 Princi­
ples of Operation.)

MULTIPLY

Mnemonic

Op Code

o

Mne­
monic

VMS
VMDS
VMES

Mnemonic

Op

0

Mne-
monic

VMQ
VMDQ
VMEQ

Mnemonic

Op
Code

'A4A2'
'A492'
'A482'

Code

Op
Code

'A5A2'
'A592'
'A582'

Op Code

o

Mne­
monic

VM
VMD
VME

Op
Code

'A422'
'A412,
'A402'

[QST]

16 20 24 28 31

Operands

Binary
Long
Short multiplier and
multiplicand, long
product

[QV]

I QR31////1 VR 1 1 VR2 1

16 20 24 28 31

Operands

Binary
Long
Short multiplier and
multiplicand,
product

16 20

Operands

Binary
Long

24

long

[VST]

28 31

Short multiplier and
multiplicand, long
product

Mnemonic [VV]

Op Code I VR3111111 VRll VR21

0 16 20 24 28 31

Mne- Op
monic Code Operands

VMR 'A522' Binary
VMDR 'A512' Long
VMER 'A502' Short multiplier and

multiplicand, long
product

Element by element, the product of the
second operand and the third operand is
placed in the first-operand location.
The operation is performed on each pair
of elements in the same manner as the
corresponding scalar operation, except
for the following differences:

1. For binary operands, the third­
operand location is any vector reg­
ister; each element of the third
operand is a 32-bit signed binary
integer, as is each element of the
second operand. The first-operand
location is a vector-register pair,
which receives product elements con­
sisting of 64-bit signed binary
integers.

2. For floating-point operands, the
operands are not first normalized.
When one or both of the source­
operand elements have a nonzero
fracti6n with a leftmost hexadecimal
digit of zero, an unnormalized­
operand exception is recognized, and
the unit of operation is inhibited.

A specification exception is recognized
when a VR or QR field designates an
invalid register number. In the QST and
VST formats, a specification exception
is recognized when the second operand is
not designated on an integral boundary,
or when the RT2 field is nonzero and
designates the same general register as
the RS2 field. For the VMS instruction,
a specification exception is also recog­
nized when the QR3 field designates the
same general register as the RS 2 field.

MULTIPLY is a class-1M instruction: it
is interruptible, the vector count and
vector interruption index de-termine the

number of elements processed, and its
execution is under the control of the
vector-mask mode.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (fetch, operand 2 in QST and VST
formats)

Exponent overflow (with exception-
extension code; floating-point
operands only)

Exponent underflow (with exception-
extension code; floating-point
operands only)

Operation
Specification
Unnormalized operand (with exception-

extens ion code; floating-point
operands only)

Vector operation

MULTI PLY AND ACCUMULATE

Mnemonic

Op Code

o

Mne- Op
monic Code

VMCD
VMCE

Mnemonic

'A416'
'A406'

Op Code

o

Mne­
monic

VMCDR
VMCER

Op
Code

'A516'
'A506'

[VST]

16 20 24 28 31

Operands

Long
Short multiplier and
multiplicand; long
first operand,
product, and sum

[VV]

16 20 24 28 31

Operands

Long
Short multiplier and
multiplicand; long
first operand,
product, and sum

Chapter 3. Vector-Facility Instructions 3-25

Partial sums of the products of corre­
sponding elements of the second and
third operands are accumulated by adding
the products to the contents of element
positions 0 to p-1 of the first operand.
The partial-sum number p depends on the
model.

The operation proceeds in an ascending
sequence of element numbers. The
product of the I-th elements of the
second and third operands is added to
the first-operand element at a position
which is the remainder of dividing I by
p, where I varies from X to C-1, X is
the initial vector interruption index
(normally zero), and C is the vector
count. The operation accumulates C-X
element products.

Thus, the products formed from second­
and third-operand elements 0, p, 2p, ...
are accumulated into position 0 of the
first operand; products from elements 1,
p+1, 2p+1, ... are accumulated into
position 1; etc. The contents of first­
operand element positions above p-1
remain unchanged.

Every multiplication is performed in the
same manner as the corresponding scalar
floating-point, short or long, MULTIPLY
instruction, except that the operand
elements are not first normalized.
Every addition is performed in the same
manner as the scalar instruction ADD
NORMALIZED (ADR), except that the condi­
tion code is not set.

When one or both of a pair of second­
and third-operand elements have a
nonzero fraction with a leftmost
hexadecimal digit of zero, an
unnormalized-operand exception is recog­
nized, and the unit of operation is
inhibited.

If the multiplication of an element pair
results in an exponent underflow, a true
zero is used in place of the product in
the addition operation, and no exception
is recognized. If the multiplication
results in an exponent overflow, the
product replaces the corresponding
partial-sum element, and an exponent
overflow is recognized. Exceptions in
the addition are recognized in the same

3-26 IBM System/370 Vector Operations

manner as for the scalar instruction ADD
NORMALIZED (ADR).

A specification exception is recognized
when a VR field designates an invalid
register number. In the VST format, a
specification exception is also recog­
nized when the second operand is not
des ignated on an integral boundary, or
when the RT2 field is nonzero and desig­
nates the same general register as the
RS 2 field.

MULTIPLY AND ACCUMULATE is a class - 1M
instruction: it is interruptible, the
vector count and vector interruption
index determine the number of elements
processed, and its execution is under
the control of the vector-mask mode.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (fetch, operand 2 in VST format)
Exponent overflow (with exception­

extension code)
Exponent underflow (with exception­

extension code)
Operation
Significance (with exception-extension

code)
Specification
Unnormalized operand (with except ion­

extension code)
Vector operation

MULTI PLY AND ADD

Mnemonic

o

Mne­
monic

VMADS
VMAES

Op Code

Op
Code

'A494'
'A484'

[QST]

16 20 24 28 31

Operands

Long operands and sum
Short multiplier and
multiplicand; long
first operand,
product, and sum

Mnemonic

Op Code

o

Mne­
monic

VMADQ
VMAEQ

Mnemonic

Op
Code

'AS94'
'AS84'

, '}

Op Code

o

Mne- Op
monic Code

VMAD
VMAE

'A414 '
'A404'

[QV]

16 20 24 28 31

Operands

Long operands and sum
Short multiplier and
multiplicand; long
first operand,
product, and sum

[VST]

16 20 24 28 31

Operands

Long operands and sum
Short multiplier and
multiplicand; long
first operand,
product, and sum

MULTI PLY AND SUBTRACT

Mnemonic

Op Code

o

Mne- Op
monic Code

VMSDS 'A49S'

VMSES 'A48S'

[QST]

16 20 24 28 31

Operands

Long operands and
difference
Short multiplier and
multiplicand; long
first operand,
product, and
difference

Mnemonic

Op Code

0

Mne- Op
monic Code

VMSDQ 'AS95'

VMSEQ 'AS8S'

Mnemonic

o

Mne­
monic

VMSD

VMSE

Op Code

Op
Code

'A41S'

'A40S'

[QV]

16 20 24 28 31

Operands

Long operands and
difference
Short multiplier and
multiplicand; long
first operand,
product, and
difference

[VST]

I VR31 RT21 VR11 RS 2 1

16 20 24 28 31

Operands

Long operands and
difference
Short multiplier and
multiplicand; long
first operand,
product, and
difference

Element by element, the third operand is
multiplied by the second-operand vector,
and the product is added to, or sub­
tracted from, the first-operand vector.
The sum or difference is placed in the
first-operand location.

Every multiplication is performed in the
same manner as the corresponding scalar
floating-point, short or long, MULTIPLY
instruction, except that the operand
elements are not first normalized.
Every addition or subtraction is per­
formed in the same manner as the scalar
instruction ADD NORMALIZED (ADR) or SUB­
TRACT NORMALIZED (SDR) , respectively,
except that the condition code is not
set.

When one or both of a pair of
and third-operand elements
nonzero fraction with a

second­
have a
leftmost

hexadecimal digit of zero, an

Chapter 3. Vector-Facility Instructions 3-27

unnormalized-operand exception is recog­
nized, and the unit of operation is
inhibited.

If the multiplication of an element pair
results in an exponent underflow, a true
zero is used in place of the product in
the addition or subtraction operation,
and no exception is recognized. If the
mUltiplication of an element pair
results in an exponent overflow, the
corresponding product replaces the
first-operand element, and an exponent
overflow is recognized. Except:lons in
the addition or subtraction are recog­
nized in the same manner as for the
scalar instruction ADD NORMALIZED (ADR)
or SUBTRACT NORMALIZED (SDR), respec­
tively.

A specification exception is recognized
when a VR or FR field designates an
invalid register number. In the-QST and
VST formats, a specification exception
is also recognized when the second
operand is not designated on an integral
boundary, or when the RT2 field is
nonzero and designates the same general
register as the RS 2 field.

MULTIPLY AND ADD and MULTIPLY AND SUB­
TRACT are class-1M instructions: they
are interruptible, the vector count and
vector interruption index determine the
number of elements processed, and their
execution is under the control of the
vector-mask mode.

Condition Code: The
unchanged.

code remains

Program Exceptions:

Access (fetch, operand
formats)

Exponent overflow
extension code)

Exponent underflow
extension code)

Operation

2 in

(with

(with

QST and VST

exception-

exception-

Significance (with exception-extension
code)

Specification
Unnormalized operand (with exception­

extension code)
Vector operation

3-28 IBM System/370 Vector Operations

Programming Notes

1. The MULTIPLY AND ADD and MULTIPLY
AND SUBTRACT operations may be sum­
marized as:

2. If the constant 1.0 is placed in the
third-operand location, MULTIPLY AND
ADD (VMAES or VMAEQ) and MULTIPLY
AND SUBTRACT (VMSES or VMSEQ) may be
used to add (subtract)' a vector in
the short format to (from) a vector
in the long format.

OR

VOS [QST]

'A4AS'

o 16 20 24 28 31

VOQ [QV]

'ASAS'

o 16 20 24 28 31

VO [VST]

'A42S'

0 16 20 24 28 31

VOR [VV]

'AS2S'

o 16 20 24 28 31

Element by element, the OR of the second
and third operands is placed in the
first-operand location.

The operation is performed on each pair
of 32-bit elements in the same manner as
the corresponding scalar operation,

except that the condition code is not
set.

For the VO and VOS instructions, a spec­
ification exception is recognized when
the second operand is not designated on
an integral boundary, or when the RT 2
field is nonzero and designates the same
general register as the RS2 field. For
the VOS instruction, a specification
exception is also recognized when the
GR3 field ,designates the same general
register as the RS 2 field.

OR is a class-1M
interruptible, the
vector interruption
number of elements
execution is under
vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

instruction: it is
vector count and

index determine the
processed, and its
the control of the

The code remains

Access (fetch, operand 2 in QST and VST
formats)

Operation
Specification
Vector operation

OR TO VMR

VOVM

'A68S'

o

[VS]

16 28 31

The OR of the second-operand bit vector
and of the active bits of the vector­
mask register is placed in the vector­
mask register. Bits beyond the active
bits are set to zeros.

OR TO VMR is a class-NC instruction: it
is not interruptible, the vector count
determines the number of elements proc­
essed, and its execution is not affected
by the vec~or-mask mode.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (fetch, operand 2)
Operation
Vector operation

RESTORE VAC

'A6CB' B2

o 16 20

[S]

31

Bits 8-63 of the vector-activity count
(VAC) are replaced by bits 8-63 of the
doubleword de§ignated by the second­
operand address; bits 0-7 of the VAC are
set to zeros. Execution of this
instruction does not increment the
vector-activity count and leaves the
loaded value unchanged.

The operand must be designated
doubleword boundary; otherwise, a
ification exception is recognized.

on a
spec-

RESTORE VAC is a class -NO instruction:
it is not interruptible, no elements are
processed, and its execution is not
affected by the vector-mask mode.

Condition Code:
unchanged.

The

Program Exceptions:

Access (fetch, operand 2)
Operation
Privileged operation
Specification
Vector operation

RESTORE VMR

'A6C3' B2

o 16 20

code remains

[S]

31

The second operand replaces the entire
contents of the vector-mask register
(VMR) .

Chapter 3. Vector-Facility Instructions 3-29

The length of the second operand is 4Z
bits (Z/2 bytes), where Z is the section
size. The contents of only the first Z
bits are necessarily fetched and placed
in the VMR; additional bits mayor may
not be fetched from the second operand,
and access exceptions mayor may not be
recognized for that portion of the
operand.

RESTORE VMR is a class -NZ instruction:
it is not interruptible, the section
size determines the number of elements
processed, and its execution is not
affected by the vector-mask mode. The
vector count and vector interruption
index are not used by the instruction
and remain unchanged.

Condition Code:
unchanged.

Program Exceptions:

The

Access (fetch, operand 2)
Operation
Vector operation

RESTORE VR

VRRS

'A648'

o 16

code remains

[RRE]

24 28 31

If the vector in-use bit associated with
a specified pair of vector registers is
one, the contents of those vector regis­
ters are replaced by consecutive
doublewords from a storage area called
the save area of the vector-register
pair. If the vector in-use bit is zero,
the vector registers remain unchanged.
In either case, the address of the save
area is incremented to the location of
the save area of the next pair of vector
registers.

The GR 1 field must designate an even
register number to specify an even-odd
pair of general registers. The even
general register contains a save-area
address, which specifies the storage
location of the first element pair in
the save area. The odd general register
contains two uns igned binary integers:
bits 0-15 of the register contain an
element number, which designates the

3-30 IBM System/370 Vector Operations

location of the first el~rn~nt pair in
the vector registers; bits 16-31 desig­
nate the vector-register (VR) pair.

. .f '" ,
, .' 1',

Graphically, the general-register con­
tents may be represented as follows:

GR 1 Save-Area Address";
(even)

Number I GR 1+1 Element VR Pair
(odd)

0 16 ,.,ii '" 31

Depending on the address "size, the
rightmost 31 or 24 bits of the contents
of the even general register are used as
the save-area address. When the general
register is updated to the" address of
the next location, the leftmost one or
eight bit positions, respectively, of
the general register are set to zeros.

The instruction is interruptible. When
an interruption occurs, the save-area­
address and element-number fields have
been updated to indicate':' i the next
element to be processed in ",the current
save area and vector register's.

At the completion of the instruction,
the save-area-address field' is updated
to the storage location of the next pair
of vector registers, the element-number
field is set to zero, and the VR-pair
field is incremented by 2. <1:'f vector­
register pair 14 was just r~stored, the
VR-pair field is set to 16, and the
save-area-address field is set to the
next address following the ~hH of the
save area of vector-register pair 14.

At the start of execution, the VR-pair
field must be an even number' from 0 to
14, and the element-number field must be
less than the section size; also,
whether or not the storage location will
be accessed, the starting address of the
save area for the current VR pair must
be on a boundary which is a mtiltiple of
8 times the section size.

The starting addresses of the save areas
for the current and next pair of vector
registers are given in the following
formulas:

SAC = SAF - 8*ENF
SAN = SAC + 8*SS

evaluated modulo the
where:

address size,

ENF Contents of the element-number
field at the beginning of the
operation (normally zero)

SAC Starting address of save area for
the current VR pair

SAF

SAN

Contents of the save-area-address
field at the beginning of the
operation

Starting address of save area for
the next VR pair

SS Section size

If the vector in-use bit examined was
associated with vector-register pair 14
and 15, condition code 0 or 2 is set
according to whether the bit was zero or
one, respectively. If the vector in-use
bit examined was associated with any
other register pair, condition code 1 or
3 is set according to whether the bit
was zero or one, respectively.

When the CPU is in the problem state,
and the vector in-use bit of the speci­
fied pair of vector registers is one,
execution of this instruction sets the
vector change bit of the vector-register
pair to one; execution in the supervisor
state does not alter the vector change
bits.

A specification exception is recognized
when at the start of execution:

•

•

•

The GR 1 field designates an odd reg­
ister number.

The starting address of the save
area is not a multiple of 8 times
the section size.

The element number is equal to or
greater than the section size.

• The VR-pair field contains other
than an even number from 0 to 14.

RESTORE VR is a class-IZ instruction: it
is interruptible, the section size and
element-number field determine the
number of elements processed, and its
execution is not affected by the vector­
mask mode. The vector count and vector
interruption index are not used and
remain unchanged.

Resulting Condition Code:

0 VRs 14 and 15 examined and not
restored

1 VR pair other than 14 and 15 exam-
ined and not restored

2 VRs 14 and 15 restored
3 VR pair other than 14 and

restored

Program Exceptions:

Access (fetch, save-area location)
Operation
Specification
Vector operation

Programming Note

15

See the section "Program Use of the
Restore and Save Instructions" on
page 2-28 for a discussion of the use of
the instructions RESTORE VR, SAVE
CHANGED VR, and SAVE VR.

RESTORE VSR

[S]

'A6C2' B2

o 16 20 31

The contents of the vector-status reg­
ister (VSR) are replaced by the
doubleword designated by the second­
operand address, and vector registers
may be cleared depending on the vector
in-use bits.

The vector in-use bits, bits 48-55 of
the vector-status register, and the
vector change bits, bits 56-63 of the
register, are set in pairs sequentially
from left to right, a vector in-use bit
being set together with the corre­
sponding vector change bit.

If the second operand specifies that a
vector in-use bit is to be set to one,
it is set to one. The setting of the
corresponding vector change bit depends
on whether the instruction is executed
in the supervisor or problem state. If
the vector in-use bit is set to one
while in the supervisor state, the
vector change bit is set to the value

Chapter 3. Vector-Facility Instructions 3-31

specified by the second operand. If the
vector in-use bit is set to one while in
the problem state, the vector change bit
is set to one, ignoring the second
operand.

If the second operand specifies that a
vector in-use bit is to be set to zero,
the old setting of the vector in-use bit
is first tested before it is changed.
If the old setting was one, all element
positions of the associated pair of
vector registers are cleared to zeros,
and both the vector in-use bit and the
corresponding vector change bit are then
set to zeros. If the old setting was
zero, both the vector in-use bit and the
corresponding vector change bit are
simply set to zeros.

The instruction is interruptible. If it
is interrupted before the operation is
completed, the instruction address in
the current PSW identifies this instruc­
tion. If the interrupted instruction is
reissued, it is again executed from the
beginning; vector-register pairs which
were cleared and had their vector in-use
bits and vector change bits set to zeros
are not cleared again, provided that
their vector in-use bits are still
zeros.

A specification exception is recognized
if any of the following is true:

•

•

•

•

The second operand is not designated
on a doubleword boundary.

The value to be placed in bit posi­
tions 0-14 of the vector-status reg­
ister is not all zeros.

The value to be placed in the vector
count, bits 16-31 of the vector­
status register, is greater than the
section size.

The value to be placed in the vector
interruption index, bits 32-47 of
the vector-status register, is
greater than the section size.

RESTORE VSR is a class-IZ instruction:
it is interruptible, the section size
determines the number of elements proc­
essed, and its execution is not affected
by the vector-mask mode. The vector
count and vector interruption index are
loaded with values obtained from the
second operand.

3-32 IBM System/370 Vector Operations

Condition Code: The
unchanged.

Program Exceptions:

Access (fetch, operand 2)
Operation
Specification
Vector operation

SAVE CHANGED VR

VRSVC

'A649'

o 16

code remains

[RRE]

24 28 31

If the vector change bit associated with
a specified pair of vector registers is
one, the contents of those vector regis­
ters are placed in consecutive
doublewords of a storage area called the
save area of the vector-register pair,
and the vector change bit is then set to
zero. If the vector change bit is
already zero, the vector registers are
not stored. In either case, the address
of the save area is incremented to the
location of the save area of the next
pair of vector registers.

I f the vector change bit examined was
associated with vector-register pair 14
and 15, condition code 0 or 2 is set
according to whether the bit was zero or
one, respectively. If the vector change
bit examined was associated with any
other register pair, condition code 1 or
3 is set according to whether the bit
was zero or one, respectively.

The operand parameters
updating are the same
instruction RESTORE VR.

and their
as for the

A specification exception is recognized
when at the start of execution:

•

•

•

The GR1 field designates an odd reg­
ister number.

The starting address of the save
area is not a multiple of 8 times
the section size.

The element number is equal to or
greater than the section size.

• The VR-pair field contains other
than an even number from 0 to 14.

SAVE CHANGED VR is a class-IZ instruc­
tion: it is interruptible, the section
size and element-number field determine
the number of elements processed, and
its execution is not affected by the
vector-mask mode. The vector count and
vector interruption index are not used
and remain unchanged.

Resulting Condition Code:

o VRs 14 and 15 examined and not saved
1 VR pair other than 14 and 15 exam­

ined and not saved
2 VRs 14 and 15 saved
3 VR pair other than 14 and 15 saved

Program Exceptions:

Access (store, save-area location)
Operation
Privileged operation
Specification
Vector operation

Programming Notes

1. The operation is the same as for
SAVE VR, except that the instruction
is privileged, the vector change bit
takes the place of the vector in-use
bit, and the vector change bit is
set to zero after a vector-register
pair is saved. The effect is that a
vector-register pair is saved only
if it has been loaded or modified
since the last use of SAVE CHANGED
VR designating this pair.

If the vector in-use bit is zero,
the vector change bit is also zero,
so that neither instruction will
perform a save operation.

2. See the section "Program Use of the
Restore and Save Instructions" on
page 2-28 for a discussion of the
use of the instructions RESTORE VR,
SAVE CHANGED VR, and SAVE VR.

SAVE VAC

VACSV [S]

'A6CA'

o 16 20 31

The current value of the vector-activity
count (VAC) is stored at the doubleword
designated by the second-operand
address. Execution of this instruction
does not increment the vector-activity
count and leaves its value unchanged.

The operand must be designated on a
doubleword boundary; otherwise, a spec­
ification exception is recognized.

SAVE VAC is a class-NO instruction: it
is not interruptible, no elements are
processed, and its execution is not
affected by the vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

The

Access (store, operand 2)
Operation
Privileged operation
Specification
Vector operation

SAVE VMR

VMRSV

'A6Cl '

o 16 20

code remains

[S]

31

The contents of the entire vector-mask
register (VMR) are placed unchanged in
storage at the second-operand location.

The length of the second operand is 4Z
bits (Z/2 bytes), where Z is the section
size. Only the first Z bits of the
resul t are defined to be the VMR con­
tents; the remaining 3Z bits of the
result are undefined, and storing of
that part of the result mayor may not
take place.

Chapter 3. Vector-Facility Instructions 3-33

SAVE VMR is a class-NZ instruction: it
is not interruptible, the section size
determines the number of elements proc­
essed, and its execution is not affected
by the vector-mask mode. The vector
count and vector interruption index are
not used and remain unchanged.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (store, operand 2)
Operation
Vector operation

SAVE VR

VRSV GR 1 [RRE]

o 16 24 28 31

If the vector in-use bit associated with
a specified pair of vector registers is
one, the contents of those vector regis­
ters are placed in consecutive
doublewords of a storage area called the
save area of the vector-register pair.
I f the vector in -use bit is zero, the
vector registers are not stored. In
ei ther case, the address of the save
area is incremented to the location of
the save area of the next pair of vector
registers.

The operand parameters, their updating,
and the condition-code setting are the
same as for the instruction RESTORE VR.

A specification exception is recognized
when at the start of execution:

• The GR 1 field designates an odd reg­
ister number.

•

•

•

The starting address of the save
area is not a multiple of 8 times
the section size.

The element number is equal to or
greater than the section size.

The VR-pair field contains other
than an even number from 0 to 14.

3-34 IBM System/370 Vector Operations

SAVE VR is a class-IZ instruction: it is
interruptible, the section size and
element-number field determine the
number of elements processed, and its
execution is not affected by the vector­
mask mode. The vector count and vector
interruption index are not used and
remain unchanged.

Resulting Condition Code:

o
1

VRs 14 and 15 examined and not saved
VR pair other than 14 and 15 exam­
ined and not saved
VRs 14 and 15 saved 2

3 VR pair other than 14 and 15 saved

Program Exceptions:

Access (store, save-area location)
Operation
Specification
Vector operation

Programming Note

See the section "Program Use of the
Restore and Save Instructions" on
page 2-28 for a discussion of the use of
the instructions RESTORE VR, SAVE
CHANGED VR, and SAVE VR.

SAVE VSR

[S]

'A6CO' B2

o 16 20 31

The contents of the vector-status reg­
ister (VSR) are placed in storage at the
doubleword location designated by the
second-operand address, except that,
when the CPU is in the problem state,
the value of the vector change bits
stored by the instruction is undefined.

A specification exception is recognized
when the second operand is not desig­
nated on a doubleword boundary.

SAVE VSR is a class-NO instruction: it
is not interruptible, no elements are
processed, and its execution is not
affected by the vector-mask mode.

Condition Code: The code remains
unchanged.

Program Exceptions:

Access (store, operand 2)
Operation
Specification
Vector operation

SET VECTOR MASK MODE

VSVMM D2 (B 2) [S]

'A6C6' B2 D2

0 16 20 31

The vector-mask mode is set on or off,
depending on whether the rightmost bit,
bit 31, of the second-operand address is
one or zero, respectively. The second­
operand address is not used to address
data, and all address bits other than
bit 31 are ignored.

SET VECTOR MASK MODE is a class-NO
instruction: it is not interruptible,
no elements are processed, and its exe­
cution is not affected by the vector­
mask mode.

Condition Code:
unchanged.

Program Exceptions:

Operation
Vector operation

The code

SHIFT LEFT SINGLE LOGICAL

VSLL

remains

[RSE]

I' E4~_5 '-,--I VR_3 1'--.11_/--l.1 I_VR---I..l I_I I_I 1..-J....I_B_2 --L.--~ J
o 16 20 24 28 32 36 47

SHIFT RIGHT SINGLE LOGICAL

VSRL [RSE]

I' E4~_4 '-,--I V_R---.l
3 1_1 I_/--LI I_V_R~l I_I I_I 1..-J....I_B_2 -,--~J

o 16 20 24 28 32 36 47

One by one, the elements in the third­
operand vector are shifted left (VSLL)
or right (VSRL) by the number of bits
specified by the second-operand address,
and the result is placed in the first­
operand location.

The operation is performed on each
element in the same manner as the corre­
sponding scalar operation.

SHIFT LEFT SINGLE LOGICAL and SHIFT
RIGHT SINGLE LOGICAL are class-1M
instructions: they are interruptible,
the vector count and vector interruption
index determine the number of elements
processed, and their execution is under
the control of the vector-mask mode.

Condit ion Code: The
unchanged.

Program Exceptions:

Operation
Vector operation

STORE

Hnemonic

Op Code 1IIII1

0 16 20

Mne- Op

code remains

[VST]

RT21 VRll Rs 2 1

24 28 31

monic Code Operands

VST 'A40D' Binary or logical
VSTD 'A41D' Long
VSTE 'A40D' Short

Element by element, the first-operand
vector is placed unchanged in storage at
the second-operand location.

A specification exception is recognized
when the VRl field designates an invalid
register number, when the second operand

Chapter 3. Vector-Facility Instructions 3-35

is not designated on an integral
boundary, or when the RT2 field is
nonzero and designates the same general
register as the RS2 field.

STORE is a class-IC instruction: it is
interruptible, the vector count and
vector interruption index determine the
number of elements processed, and its
execution is not affected by the vector­
mask mode.

Condition Code:
unchanged.

Program Exceptions:

The

Access (store, operand 2)
Operation
Specification
Vector operation

STORE COMPRESSED

Mnemonic

Op Code

code remains

[VST]

0 16 20 24 28 31

Mne- Op
monic Code

VSTK 'A40F'
VSTKD 'A41F'
VSTKE 'A40F'

Operands

Binary or logical
Long
Short

Element by element, elements of the
first-operand vector corresponding to
ones in the active bits of the vector­
mask register are placed unchanged in
storage at successive element locations
of the second operand.

First-operand elements corresponding to
zeros in the active bits of the vector­
mask register are skipped, and there are
no corresponding element locations of
the second operand. If the active bits
of the vector-mask register are all
zeros, no access exceptions are recog­
nized for the storage location specified
by the second operand, the change bits
for the storage operand remain
unchanged, and no PER event for storage
alteration is indicated.

A specification exception is recognized
when the VRl field designates an invalid

3-36 IBM SystemJ370 Vector Operations

register number, when the second operand
is not designated on an integral
boundary, or when the RT2 field is
nonzero and designates the same general
register as the RS 2 field.

STORE COMPRESSED is a class-IC instruc­
tion: it is interruptible, the vector
count and vector interruption index
determine the number of elements proc­
essed, and its execution is not affected
by the vector-mask mode.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (store, operand 2)
Operation
Specification
Vector operation

Programming Notes

1. The number of vector elements which
are stored and the amount by which
the address in the general register
designated by RS 2 is updated corre­
spond to the number of ones among
the active bits of the vector-mask
register.

2. The operation performed by
COMPRESSED is the opposite of
EXPANDED.

STORE
LOAD

STORE HALFWORD

VSTH [VST]

'A42D'

o 16 20 24 28 31

Element by element, the rightmost 16
bits of each first-operand vector
element are placed unchanged in storage
at the second-operand: location.

A specification exception is recognized
when the second operand is not desig­
nated on a halfword boundary, or when
the RT2 field is nonzero and designates
the same general register as the RS 2
field.

STORE HALFWORD is a c1ass-IC instruc­
tion: it is interruptible, the vector
count and vector interruption index
determine the number of elements proc­
essed, and its execution is not affected
by the vector-mask mode.

Condition Code: The
unchanged.

Program Exceptions:

Access (store, operand 2)
Operation
Specification
Vector operation

STORE INDIRECT

Mnemonic

code remains

[RSE]

~ ~_od---,e I_V_R3--L.I_I I_I 1-,--I_VR_l...l.-1 I_I I_I IL--B_2 --'--~;]
o 16 20 24 28 32 36 47

Mne- Op
monic Code Operands

VSTI 'E401 ' Binary or logical
VSTID 'E411 ' Long
VSTIE 'E401 ' Short

Element by element, the third operand is
used to select element locations of the
second operand in storage, at which ele­
ments of the first-operand vector are
placed. The element positions of the
first operand correspond to those of the
third operand.

The method of selecting elements of the
first, second, and third operands is the
same as for LOAD INDIRECT, the amount of
left shift of the third-operand elements
being two bits for VSTI or VSTIE and
three bits for VSTID. The selected
first-operand elements are stored at the
specified second-operand locations.

A specification exception is recognized
when the VRl field designates an invalid
register number, or when the second
operand is not designated on an integral
boundary.

STORE INDIRECT is a class - IC instruc­
tion: it is interruptible, the vector
count and vector interruption index
determine the number of elements proc-

essed, and its execution is not affected
by the vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

The

Access (store, operand 2)
Operation
Specification
Vector operation

Programming Note

code remains

STORE INDIRECT, which is the opposite of
LOAD INDIRECT, is used to store a vector
by indirect element selection. See also
the programming note under LOAD INDI­
REcT.

STORE MATCHED

Mnemonic [VST]

Op Code [IIII[RT2[VRl[RS 2 [

0 16 20 24 28 31

Mne- Op
monic Code Operands

VSTM 'A40E' Binary or logical
VSTMD 'A41E' Long
VSTME 'A40E' Short

Element by element, elements of the
first-operand vector corresponding to
ones in the active bits of the vector­
mask register are placed unchanged in
storage at the corresponding element
locations of the second operand. Ele­
ments of the first operand corresponding
to zeros in the active bits of the
vector-mask register are not stored, and
the corresponding second-operand
locations in storage remain unchanged.

A specification exception is recognized
when the VRl field designates an invalid
register number, when the second operand
is not des ignated on an integral
boundary, or when the RT2 field is
nonzero and designates the same general
register as the RS 2 field.

No access
alteration

exceptions and PER storage­
events are recognized for

Chapter 3. Vector-Facility Instructions 3-37

elements of the second operand which
correspond to zeros in the active bits
of the vector-mask register, and the
corresponding change bits remain
unchanged; however, the general register
designated by the RS 2 field is updated
for each of those elements.

STORE MATCHED is a class-Ie instruction:
it is interruptible, the vector count
and vector interruption index determine
the number of elements processed, and
its execution is not affected by the
vector-mask mode.

Condition Code:
unchanged.

Program Exceptions:

The

Access (store, operand 2)
Operation
Specification
Vector operation

Programming Notes

code remains

1. STORE MATCHED functions the same as
STORE for those elements which cor­
respond to ones in the active bits
of the vector-mask register: each
such element is moved from the same
vector-register position into the
same storage location. It differs
in that storage locations corre­
sponding to zero bits remain
unchanged.

2. STORE, STORE COMPRESSED, and STORE
MATCHED function the same, for cor­
responding formats, when all active
bit positions of the vector-mask
register contain ones.

STORE VECTOR PARAMETERS

VSTVP [S]

'A6C8'

o 16 20 31

The 16-bit section size and the 16-bit
partial-sum number are placed in storage
in the left and right half, respec-

3-38 IBM System/370 Vector Operations

tively, of the word at the location des­
ignated by the second-operand address.

A specification exception is recognized
when the second operand is not desig­
nated on a word boundary.

STORE VECTOR PARAMETERS is a class -NO
instruction: it is not interruptible,
no elements are processed, and its exe­
cution is not affected by the vector­
mask mode.

Condition Code:
unchanged.

Program Exceptions:

The

Access (store, operand 2)
Operation
Specification
Vector operation

STORE VMR

VSTVM

'A682'

o 16

code remains

[VS]

28 31

The contents of the active-bit positions
of the vector-mask register are stored
as a bit vector at the second-operand
location.

When the vector count is not a multiple
of 8, zeros are stored for any bits in
the last byte which are to the right of
the last bit specified by the vector
count.

When the vector count is zero, no bits
are stored. No access exceptions are
recognized for the second operand, the
change bits for the operand remain
unchanged, and PER storage-alteration
events are not indicated.

STORE VMR is a class-NC instruction: it
is not interruptible, the vector count
determines the number of elements proc­
essed, and its execution is not affected
by the vector-mask mode.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access (store, operand 2)
Operation
Vector operation

SUBTRACT

Mnemonic

Op Code I QR31 RT21

0 16 20 24

Mne- Op
monic Code Operands

VSS 'A4A1 ' Binary
VSDS 'A491 ' Long
VSES 'A481 ' Short

Mnemonic

Op Code I QR3111111
0 16 20 24

Mne- Op
monic Code Operands

VSQ 'A5A1 ' Binary
VSDQ 'A591 ' Long
VSEQ 'A581 ' Short

Mnemonic VR 1 ,VR3 ,RS2 (RT2)

Op Code I VR31 RT21

0 16 20 24

Mne- Op
monic Code Operands

VS 'A421 ' Binary
VSD 'A411' Long
VSE 'A401 ' Short

[QST]

VR11 Rs 2 1

28 31

[QV]

VR11 VR21

28 31

[VST]

VR 1 I Rs 2 1

28 31

Mnemonic [VV]

Op Code I VR3111111 VRll VR21

0 16 20 24 28 31

Mne- Op
monic Code Operands

VSR 'A521 ' Binary
VSDR 'A511' Long
VSER 'A501 ' Short

Element by element, the second-operand
vector is subtracted from the third
operand, and the result is placed in the
first-operand location.

The operation is performed on each pair
of elements in the same manner as the
corresponding scalar operation, except
that the condition code is not set. For
floating-point operands, the scalar
equivalent is SUBTRACT NORMALIZED.

A specification exception is recognized
when a VR or QR field designates an
invalid register number. In the QST and
VST formats, a specification ~xception

is recognized when the second operand is
not designated on an integral boundary,
or when the RT 2 fie ld is nonzero and
designates the same general register as
the RS 2 field. For the VSS instruction,
a specification exception is also recog­
nized when the QR3 field designates the
same general register as the RS2 field.

SUBTRACT is a class-1M instruction: it
is interruptible, the vector count and
vector interruption index determine the
number of elements processed, and its
execution is under the control of the
vector-mask mode.

Condition Code:
unchanged.

The code remains

Chapter 3. Vector-Facility Instructions 3-39

Program Exceptions:

Access (fetch, operand 2 in QST and VST
formats)

Exponent overflow (with exception-
extension . code; floating-point
operands only)

Exponent underflow (with exception-
extension code; floating-point
operands only)

Fixed-point overflow (with exception­
extension code; binary operands
only)

Operation
Significance (with exception-extension

code; floating-point operands only)
Specification
Vector operation

Programming Note

The QST and QV formats provide for sub­
tracting a vector from a scalar operand.
The operation of subtracting a scalar
from a vector can be replaced by adding
the negative of the scalar to the vector
operand.

SUM PA~TIAL SUMS

VSPSD [VR, Long Operands]

'A61A'

o 16 20 24 28 31

Partial-sum elements of the first­
operand vector are added to the scalar
second operand, the result replacing the
second operand.

The operand elements are floating-point
numbers in the long format, and every
addition is performed in the same manner
as for the scalar ADD NORMALIZED (ADR)
instruction, except that the condition
code is not set. The operation begins
with adding element X of the first
operand to the second operand, where X
is the initial vector interruption index
(normally zero). It proceeds in an
ascending sequence of element numbers by
successively adding p-X first-operand
elements, where p is the model-dependent
partial-sum number. The last one to be
added is element p-1. The vector inter­
ruption index is then set to zero.

3-40 IBM System/370 Vector Operations

If the initial vector interruption index
X is equal to or greater than p, no ele­
ments are processed, and the scalar
second operand remains unchanged. The
vector interruption index is set to
zero, and instruction execution is com­
pleted.

A specification exception is recognized
when the VR 1 or FR2 field designates an
invalid register number.

SUM PARTIAL SUMS is a class-IP instruc­
tion: it is interruptible, the
partial-sum number and vector inter­
ruption index determine the number of
elements processed, and its execution is
not affected by the vector-mask mode.
The vector count is not used and remains
unchanged.

Condition Code:
unchanged.

Program Exceptions:

Exponent overflow
extension code)

Exponent underflow
extension code)

Operation
Significance (with

code)
Specification
Vector operation

Programming Note

The code remains

(with exception-

(with exception-

exception-extension

An example of the use of SUM PARTIAL
SUMS is Riven in Appendix A (see "Sum of
Products on page A-3).

TEST VMR

VTVM [RRE]

'A640' 1////////////////1

o 16 31

The active bits of the vector-mask reg­
ister are tested, and condition code 0,
1, or 3 is set according to whether
those bits are all zeros, mixed zeros
and ones, or all ones.

When the vector count is zero, condition
code 0 is set.

TEST VMR is a class-NC instruction: it
is not interruptible, the vector count
determines the number of elements proc­
essed, and its execution is not affected
by the vector-mask mode.

Resulting Condition Code:

o Active bits all zeros
1 Active bits mixed zeros and ones
2
3 Active bits all ones

Program Exceptions:

Operation
Vector operation

Programming Note

The instruction TEST VMR performs the
testing portion of the instructions
COUNT LEFT ZEROS IN VMR and COUNT ONES
IN VMR. It may be used to distinguish
the all-zeros and all-ones conditions
when the exact count is not required.

ZERO PARTIAL SUMS

VZPSD [VR]

'A61B'

o 16 24 28 31

Partial-sum element locations of the
vector-register pair designated by VR 1
are set to zero.

The operation begins with setting to
zero element X of the first operand,
where X is the initial vector inter-

ruption index (normally zero). It pro­
ceeds in an ascending sequence of
element numbers by successively setting
to zero p-X first-operand elements,
where p is the model-dependent
partial-sum number. The last one is
element p-1. The vector interruption
index is then set to zero.

If the initial vector interruption index
X is equal to or greater than p, the
vector-register contents and the associ­
ated vector in-use bit and vector change
bit remain unchanged. The vector inter­
ruption index is set to zero, and
instruction execution is completed.

A specification exception is recognized
if the VRl field designates an invalid
register number.

ZERO PARTIAL SUMS is a c1ass-IP instruc­
tion: it is interruptible, the
partial-sum number and vector inter­
ruption index determine the number of
elements processed, and its execution is
not affected by the vector-mask mode.
The vector count is not used by the
instruction and remains unchanged.

Condition Code:
unchanged.

Program Exceptions:

Operation
Specification
Vector operation

Programming Note

The code remains

An example of the use of ZERO PARTIAL
SUMS is Riven in Appendix A (see IISum of
Products on page A-3).

Chapter 3. Vector-Facility Instructions 3-41

APPENDIX A. INSTRUCTION-USE EXAMPLES

This appendix
simple examples
instructions.

contains
of the

a
use

number of
of vector

Every example has a sectioning loop, so
that vectors of any length can be
handled, independent of ~he section
size. The first example illustrates
sectioning in some detail; the others
use the same or a similar technique.

The examples are written in assembler
language. Register operands are indi­
cated symbolically with a prefix G, F,
or V to identify more clearly whether an
operand refers to a general register,
floating-point register, or vector reg­
ister, respectively.

Comments are written to the right of the
instruction or on separate lines that
begin with an asterisk (*).

OPERATIONS ON FULL VECTORS

The following examples illustrate oper­
ations on full vectors, where both zero
and nonzero elements are represented in
storage. Vectors in storage are
accessed by sequential addressing.

The first three examples use three dif­
ferent methods of controlling the sec­
tioning loop.

Contiguous Vectors

and B in Two contiguous vectors A
storage are added, and the
stored in contiguous vector
number of elements in each is
by N. All vectors are in
floating-point format.

result is
C. The
specified
the long

* C = A + B

* L GO,N
LA G1,A
LA G2,B
LA G3,C

LP VLVCU GO

Vector length to GRO
Address of A to GR1
Address of B to GR2
Address of C to GR3
Load VCT, update GRO
Load section of A
Add section of B
Store section in C
Test condition code
set by VLVCU, branch
if not last section *

VLD VO,G1
VAD VO,VO,G2
VSTD VO,G3
BC 2,LP

Assuming, for purposes of illustration,
a vector-section size of 8 and a vector
length of 20, the above program would
process three sections in turn (two full
sections of eight elements and one
partial section of four elements) before
ending the loop. One section of A and
one section of B are added in vector­
regis ter pair ° and 1. The result is
stored in a section of C, as illustrated
below:

Storage
Address
C

Stored
in

)1 I Loop

8 elementsl~1 I I
C+64 ---+ 2 Iri 8

elements I
8 elements Vector regis-

I 2J ters: 0, I
C+128 ~ 3 Section

4 elements size: 8
C+ 160 ~ '--------'

Vector C
Length: 20
Elements: 8 bytes

Since all vectors are stored contig­
uously, the stride for the three vector
instructions VLD, VAD, and VSTD is set
to one by specifying a value of zero in
the RT2 subfield. This may be done in

Appendix A. Instruction·Use Examples A-I

the assembler language either by placing
a zero inside the parentheses of the
stride subfield, as in:

Mnemonic

or by omitting the subfield, including
the parentheses, altogether:

Mnemonic

Each of these instructions automatically
updates the storage address in the des­
ignated general register to the value
that will be needed for the next time,
if any, around the loop.

The BRANCH ON CONDITION (BC) instruction
tests the condition code set by VLVCU,
because none of the intervening instruc­
tions change the condition code. If an
instruction setting the condition code
had intervened, the instruction
"LTR GO ,GO" inserted before the BC
instruction would test the contents of
GRO; BC would test for condition code 2
in either case.

The following figure shows the
condition-code setting (CC), the vector
count (VCT) , and the contents of the
general registers at the start, before
executing the first VLVCU instruction,
and at the end of each loop thereafter.

Loop CC VCT GRO GRI GR2 GR3

Start - - 20 A B C
End 1 2 8 12 A+64 B+64 C+64
End 2 2 8 4 A+128 B+128 C+128
End 3 3 4 ° A+160 B+160 C+160

Vectors with Stride

This example modifies the previous
example in four ways. All vector ele­
ments are in the short floating-point
format. The result of the addition is
returned to the storage location of
vector B. Vector B is assumed to be
stored with a stride T. Finally, a BC
instruction which tests for the end of
the loop is placed immediately after the
VLVCU instruction, and the loop is
closed with an unconditional branch.

A-2 IBM System/370 Vector Operations

This method, which could be used if
additional instructions were to change
the condition code later in the loop,
allows the loop to be bypassed when the
ini tial vector count is zero. (Note,
however, that the previous loop control
also works with a vector count of zero,
because no elements would be processed
if vector instructions were executed
with a zero vector count.)

* B=A+B
~':

L GO,N Vector length to GRO
LA Gl,A Address of A to GRI
LA G2,B Address of B to GR2
LR G3,G2 Copy address in GR3
L G4,T Stride for B to GR4

LP VLVCU GO Load VCT, update GRO
BC 12,NXT Exit loop if VCT=O
VLE VO,Gl Load section of A
VAE VO,VO,G2(G4)

-;': Add section of B
VSTE VO,G3(G4) Return section to B
BC 15,LP Branch to loop start

NXT Next instruction

Two registers, GR2 and GR3, are used to
specify the current address of B, so
that the two instructions VAE and VSTE
in the sectioning loop will refer to the
same section. Each of the two instruc­
tions updates its separate copy of the
address. (If a vector in storage is
referred to more than twice within a
sectioning loop, the address could be
copied inside the loop for each use
except the las t , so as to reduce the
number of general registers needed.)

Vector and Scalar Operands

This example illustrates the use of both
vector and scalar operands. It also
shows how the three-operand arithmetic
vector instructions can sometimes be
used to avoid a separate vector-load
instruction. A third loop-control
method is used here.

A and B are vectors of length N, and S
is a scalar. All are in the long
floating-point format.

* B = A * (S-A)

*
L GO,N
LA Gl,A
LR G2,Gl
LA G3,B
LD FO,S
VLVCU GO

LP VSDS VO,FO,Gl
VMD VO,VO,G2
VSTD VO,G3
VLVCU GO
BC 3,LP

Vector length to GRO
Address of A to GRl
Copy address in GR2
Address of B to GR3
Load S into FRO
Load VCT, update GRO
Compute S-A
Compute A~l-(S-A)
Store result in B
Load VCT, update GRO
Branch back if VCT>O

The VSDS instruction subtracts vector A
in storage from the scalar S. VMD
mUltiplies the result by vector A, again
from its storage location. VSTD stores
the product as B. There are two VLVCU
loop-control instructions, one before
entry into the loop and one at the end.

Note that the QST-format arithmetic
instruction (VSDS) saves a separate load
instruction at the expense of having to
access storage twice for the same vector
section A. Depending on the model, a
separate load instruction followed by
QV-format arithmetic instructions may be
more efficient in some circumstances,
particularly when the stride is greater
than one.

Note further that the QST-format
instructions are defined such that VSDS
subtracts a vector from a scalar (S-V).
Subtracting a scalar from a vector (V-S)
can be done conveniently by first
changing the sign of the scalar and then
adding, using VADS. Similarly, the VDDS
instruction divides a scalar by a vector
(SIV). Division of a vector by a scalar
(V IS) can be performed by first taking
the reciprocal of the scalar and then
multiplying, using VMDS. (The same
comment applies to the corresponding
QV-format instructions.)

Sum of Products

The use of MULTIPLY AND ACCUMULATE and
related instructions is illustrated by
computing the inner product of a row
vector A, taken from a matrix of dimen­
s ions I by J, and a column vector B,
taken from another matrix of dimensions

J by K. Each matrix is assumed to be
stored in column order. Therefore, row
vector A has a stride I and a length J,
and column vector B is contiguous and
has the same length J. The inner
product of the two vectors is a scalar
value that is the sum of the element-by­
element products of vectors A and B; it
is stored at address C.

*

LP

*

C = SUM (A * B)

L GO,J
LA Gl,A
L G2,I
LA G3,B
VZPSD VO
VLVCU GO
VLD V2,Gl(G2)
VMCD VO,V2,G3

BC 2,LP
SDR FO,FO
VSPSD VO,FO
STD FO,C

Vector length to GRO
Address of A to GRl
Stride for A to GR2
Address of B to GR3
Zero partial sums
Load VCT, update GRO
Row A section to VR2
Multiply by column B
partial sums to VRO
Branch back if GRO>O
Clear FRO to zero
Scalar sum to FRO
Store scalar sum

First the VZPSD instruction clears the
partial-sum locations in VRO to zero.
Then the sectioning loop accumulates
partial sums: The VLD instruction loads
a section of row A (with stride) into
VR2. The VMCD instruction multiplies
the elements of row A in VR2 by elements
of column B in storage (without stride)
and accumulates p partial sums in VRO;
the number p depends on the model.

After the sectioning loop is ended and
all partial sums have been accumulated
in VRO, FRO is cleared by means of SDR,
and the p partial sums are then added to
FRO by use of the VSPSD instruction.
The scalar sum is stored in C by STD.

Note that the program is independent of
the vector-section size and the number
of partial sums, both of which depend on
the model, because the instructions
VZPSD, VLVCU, VMCD, and VSPSD take care
of these dependencies automatically.

Appendix A. Instruction-Use Examples A-3

Compare and Swap Vector Elements

Two vectors A and B, both of length N,
are to be compared and their elements
swapped so that vector A will have the
smaller element of each pair and vector
B the larger. The elements are 32-bit
signed binary integers and stored con­
tiguously.

L GO,N
LA Gl,A
LR G2,Gl
LA G3,B
LR G4,G3

LP VLVCU GO
VL VO,Gl
VL Vl,G3
VCR 2,VO,Vl
VSTM VO,G4
VSTM Vl,G2
BC 2,LP

Vector length to GRO
Address of A to GRI
Copy address in GR2
Address of B to GR3
Copy address in GR4
Load VCT, update GRO
Section of A to VRO
Section of B to VRI
Check where A>B
Store greater in B
Store lesser in A
Branch back if GRO>O

CONDITIONAL ARITHMETIC

Exception Avoidance

One use of conditional arithmetic in the
vector-mask mode is to bypass vector
elements which would cause an exception
during the arithmetic operation and to
provide a predetermined alternate result
for those elements. The example divides
two vectors A and B. The divisor B is
tested for zeros. By using the vector­
mask mode, no division is performed for
zero divisor elements, thus avoiding a
disruptive floating-point-divide excep­
tion; the corresponding elements in
resul t vector C are set to the maximum
positive value NP. All floating-point
numbers are in the long format.

In this example, performing the arith­
metic conditionally requires two extra
vector instructions inside the sec­
tioning loop.

A-4 IBM System/370 Vector Operations

* C = A / B

*
L GO,N Vector length to GRO
LA Gl,A Address of A to GRI
LA G2,B Address of B to GR2
LR G3,G2 Copy address in GR3
LA G4,C Address of C to GR4
SDR FO,FO Clear FRO to zero
LD F2,MP Load max. positive

..;~ number NP in FR2
VSVMM 1 Vector~mask mode on

LP VLVCU GO Load VCT, update GRO
VCDS 6,FO,G2 Compare section of B

* not equal to zero
VLDQ VO,F2 Load NP in all elem.

..1. positions of VRO
VLD V2,Gl Load section of A
VDD VO,V2,G3 Conditionally divide

~'~ A by section of B
VSTD VO,G4 Store section in C
BC 2,LP Branch back if GRO>O
VSVMM 0 Set mask mode off

Add to Magnitude

Another use of conditional arithmetic is
to perform addition to the magnitude of
a vector regardless of signs. This may
be illustrated by rounding a vector V of
length N, consisting of floating-point
numbers in the short format, to integer
values. First, 0.5 is added to the mag­
nitude of each element. Then, the
digits to the right of the implied radix
point are truncated. The. rounded vector
R remains in the short floating-point
format.

Let Hand Z be constants with the fol­
lowing hexadecimal formats and values:

H = 40 80 00 00 = 0.5
Z = 47 00 00 00 = 0 (unnormalized)

H is the value which is to be added to
or subtracted from each vector element,
depending on its sign.

The constant Z is an unnormalized zero
with such a characteristic that its
addition to a short floating-point
number having a smaller characteristic
forces that number to be shifted to the
right, placing the units digit in the
guard-digit position. This causes any
digits to the right of the implied radix
point to be truncated and the result to

be normalized. Any number with an equal
or larger characteristic has no signif­
icant digits to the right of the implied
radix point and remains unchanged.

*
*

LP

R = ROUND(V)

L GO,N
LA G1, V
LA G2,R
SDR FO,FO
LE F2,H
LNER F4,F2
LE F6,Z
VLVCU GO
VLE VO,G1
VSVMM 1
VCEQ 12,FO,VO

VAEQ VO,F2,VO
VCVM
VAEQ VO,F4,VO
VSVMM °
VAEQ VO,F6,VO
VSTE VO,G2
BC 2,LP

Vector length to GRO
Address of V to GR1
Address of R to GR2
Clear FRO to zero
Load 8 into FR2
Load -8 into FR4
Load Z into FR6
Load VCT, update GRO
Load section of V
Vector-mask mode on
Compare; set mask to
one where O::;V
Add 0.5 under mask
Complement mask bits
Add -0.5 under mask
Vector-mask mode off
Add Z
Store section of R
Branch back if GRO>O

A variation of this rounding technique
is incorporated in a later example of
floating-point to fixed-point conver­
sion.

OPERATIONS ON SPARSE VECTORS

This section gives some examples of
operating on sparse vectors, where only
nonzero elements are directly repres­
ented in storage.

When many vector elements are zero, con­
siderable storage may be saved by using
a dense representation containing only
those elements which are nonzero. The
resulting nonzero elements can be stored
in contiguous locations along with a bit
vector indicating the nonzero values in
the corresponding full vector. A full
vector can be converted to such a dense
vector by performing a not-equal compar­
ison of the vector to a scalar zero and
using the resulting bit vector as a mask
in a STORE COMPRESSED instruction.

For use in the following examples,
assume two vectors A and B. The full
vectors are 10 elements in length; ele-

ments 0, 2, 5, 6, 7, and 9 of vector A
are nonzero; and elements 2, 4, 5, and 7
of vector B are nonzero. The figures
show the full vectors, the result of a
not-equal comparison to zero, and the
dense vectors for A and B.

Full Vector A (AP):

Result of comparing A # ° (mask AM):

1 ° 100 1 1 101

Dense Vector A (AD):

IAOIA21A51A61A71A91

Full Vector B (BF):

Result of comparing B # ° (mask BM):

° ° 1 ° 1 1 ° 100

Dense Vector B (BD):

IB21B41B51B71

Full Added to Sparse to Give Full

This example shows the addition of ele­
ments of full vector BF, which corre­
spond to nonzero elements of vector A,
to dense vector AD. The result elements
are replaced in BF. The length of the
full vectors is N, which is also the
number of bits in the mask.

LA GO,AD
SR G2,G2
L G3,N

LP VLBIX VO,G2,AM

* VLID V2,VO,BF
VAD V2,V2,GO
VSTID V2,VO,BF
BC 2,LP

Address of AD to GRO
Clear bit index, GR2
Set bit count N, GR3
Convert mask AM to
element numbers, VRO
Load BF indirectly
Add AD contiguously
Store indirectly
Branch back if GR3>O

Appendix A. Instruction-Use Examples A-5

The VLBIX instruction converts the bit
mask AM to a vector of element numbers,
using the general-register pair GR2 and
GR3 as the bit index and bit count.
This instruction creates up to a full
section of element numbers in VRO and
places the corresponding vector count .in
VCT for use by subsequent vector
instructions. GR2 and GR3 are updated
for the next pass through the loop.
VLID uses the generated element numbers
to select elements of full BF to corre­
spond to all the elements of dense AD,
which are added together by the instruc­
tion VAD. VSTID then stores the results
back into the same elements of BF. The
BC instruction tests the condition code
set by VLBIX and branches back if there
are more bits to be processed.

Sparse Added to Sparse to Give Sparse

The following example adds dense vectors
AD and BD to obtain dense vector CD.
The mask for CD is obtained by ORing the
mask for AD with the mask for BD, using
the instruction OR TO VMR.

LA GO,AD Address of AD to GRO
LA Gl,BD Address of BD to GRI
LA G2,CD Address of CD to GR2
LA G3,AM Address of AM to GR3
LR G4,G3 Copy address in GR4
LA GS,BM Address of BN to GR5
LA G6,CM Address of CN to GR6
L G7,N Length of full

-J~ vectors to GR7
LP VLVCU G7 Load VeT, update GR7

VLVM G3 Load mask AM in VMR
VLZDR VO Zeros into VRO, VRI
VLYD VO,GO Load AD expanded: AF
VLVM G5 Load mask BN in VMR
VLZDR V2 Zeros into VR2, VR3
VLYD V2,Gl Load BD expanded: BF
VADR VO,VO,V2 Add BF to AF
VOVM G4 or mask AM into VMR
VSTKD VO,G2 Store compressed: CD
VSTVM G6 Store VMR as mask CM
BC 2,LP Branch back if GR7>0

A-6 .IBM System/370 Vector Operations

FLOATING-POINT-VECTOR
CONVERSIONS

The conversion techniques illustrated
here are similar to the scalar examples
in IBM 370-XA Principles of Operation
and IBN System/370 Principles of Opera­
tion which may be consul ted for more
details. The methods differ, however,
because of different characteristics of
the vector-instruction set.

Fixed Point to Floating Point

Assume a vector K of .length N in
storage, the elements of which are
32-bit signed binary integers. The ele­
ments are to be converted to floating­
point numbers in the long format, and
the result is to be stored as vector W.

Assume a floating-point constant C in
storage with the following hexadecimal
format and value:

C = CE 00 00 00 80 00 00 00 = _2 31

This is an unnormalized floating-point
number in the long format with the char­
acteristic 4E, which is the proper char­
acteristic for a right-aligned,
unnormalized integer.

LA GO,K Address of K to GRO
LA Gl,W Address of W to GRI
L G2,N Vector length to GR2
LD FO,C Load C into FRO

LP VLVCU G2 Load VCT, update GR2
VL Vl,GO Load K into VRI
VLCER VI, VI K + 2 31

VLEQ VO,FO V = - (K + 231
)

VSDQ VO,FO,VO W = _2 31 - V
VSTD VO,Gl Store W
BC 2,LP Branch back if GR2>0

Inside the sectioning loop, the VLCER
instruction (LOAD COMPLEMENT in short
floating-poin}> format) inverts the sign
bit, bit 0, of each element in VRl,
without altering bits 1-31. Considering
these elements still as signed binary
integers, the operation is equivalent to
adding 231 to each, ignoring overflow,
which changes all elements into positive
numbers in the range ° to 232 -1 . The
VLEQ instruction places the left half of

the constant C into each element posi­
tion of VRO, which has the effect of
converting the contents of VRI to a
vector V of negative unnorma1ized
floating-point numbers in the long
format, occupying VRO and VR1.

The next instruction, VSDQ, subtracts V
from the entire constant C, which is
equivalent to subtracting 2 31 from the
original elements, thus restoring them
to the range _2 31 to 2 31 -1. The ele­
ments are normalized during this opera­
tion.

The next example presents an alternate
program, the loop of which is shorter by
one vector instruction.

LA GO ,K
LA G1, W
L G2,N
LD FO,C

LP VLVCU G2
VLDQ VO,FO
VX VI, V1 ,GO
VSDQ VO,FO,VO
VSTD VO,Gl
BC 2,LP

Address of K to GRO
Address of W to GR1
Vector length to GR2
Load C into FRO
Load VCT, update GR2
Load C into VRO, VR1
V = -(K+2 31

)

W = _2 31 - V
Store W
Branch back if GR2>0

The VLDQ instruction loads the entire
constant C into VRO and VRI. Then, the
VX instruction fetches the elements of K
from storage and EXCLUSIVE ORs them into
VR1, which contained a leftmost one fol­
lowed by 31 zeros. This inverts the
sign bit, as did VLCER in the previous
example. The rest of the program is the
same.

Floating Point to Fixed Point

This example combines conversion from
floating to fixed point with a variation
of the rounding technique shown in a
previous example.

* Start of range test
LA GO,W
LR G1,GO
L G2,N
LD FO,L
LNDR F2,FO

Address of W to GRO
Copy address to GRI
Vector length to GR2
FRO: upper limit L
FR2: lower limit -L

LP1 VLVCU G2 Load VCT, update GR2
Compare Land W; set
mask bit to one when *

*

*

VCDS 12,FO,GO

VTVM
BC
VCDS

5,OVFLO
2,F2,G1

L is equal or low
Test mask bits
Exit if any ones
Compare -L and W;
set mask bit to one
when -L is high

VTVM Test mask bits
BC 5,OVFLO Exit if any ones
LTR G2,G2 Test residual count
BC 2,LPI Branch back if GR2>0

* Start of conversion with rounding
LA GO,W Address of W to GRO
LA G1,K Address of K to GRI
L G2,N Vector length to GR2
LD FO,G Load G into FRO
LD F2,H Load H into FR2
LD F4,M Load Minto FR4

LP2 VLVCU G2 Load VCT, update GR2

*

VADS VO,F2,GO Add 0.5 to W section
VSVMM 1 Vector-mask mode on .
VCDQ 2,F2,VO Compare; set mask to

VADQ VO,F4,VO
VSVMM 0
VADQ VO,FO,VO
VST Vl,G1
BC 2,LP2

one where 0.5>W
Add -1.0 under mask
Set mask mode off
Add 2 53

Store K from VRI
Branch back if GR2>0

Assume a vector W of length N in
storage, the elements of which are
floating-point numbers in the long
format. Assume this vector is to be
converted to a vector of signed binary
integers, and the result is to be stored
as vector K. Assume floating-point con­
stants in storage with the following
names, hexadecimal formats, and values:

L = 48 80 00 00 00 00 00 00 = 2 31

G = 4F 02 00 00 00 00 00 00 = 2 53

H = 40 80 00 00 00 00 00 00 = 0.5
M = ClIO 00 00 00 00 00 00 = -1.0

L is the upper limit of the range of
numbers which, after truncation of the
fractional part, are representable as
signed binary integers. Vector W is
compared with this limit in a separate

Appendix A. Instruction-Use Examples A-7

sectioning loop before conversion is
started, so that nothing is stored if
any element of W is out of range. This
comparison loop can be omitted if all
elements are known to be within range.

Hand M are the constants 0.5 and -1.0,
respectively. Rounding is accomplished
by first adding 0.5 unconditionally to
vector W, and then adding -1.0 condi­
tionally where the elements are now less
than 0.5, which is equivalent to sub-

A-8 IBM System/370 Vector Operations

tracting 0.5 from all initially negative
elements.

The constant G is chosen such that its
addition to a number within the repre­
sentable range forces that number to be
shifted to the right, with the units
digit in the guard-digit position, and
the result to be normalized to the left
by one digit position. This causes any
fraction part to be truncated, leaving
the rounded integer part in the right
half of the vector-register pair.

The following figures list the vector
instructions by name, mnemonic, and op
code.

Explanation of Symbols in "Character­
istics" Column

A Access exceptions
C Condition code is set
EO Exponent-overflow exception
EU Exponent-underflow exception
FK Floating-point-divide exception
IC Class-IC instruction; interrup­

tible; vector count and vector
interruption index determine number
of elements processed; does not
depend on vector-mask mode

IF Fixed-point-overflow exception
IG Class-IG instruction; interrup­

tible; general register, vector
interruption index, and section
size determine number of elements
processed; sets vector count; does
not depend on vector-mask mode

1M Class-1M instruction; interrup­
tible; vector count and vector
interruption index determine number
of elements processed; depends on
vector-mask mode

IP Class-IP instruction; interrup­
tible; partial-sum number and
vector interruption index determine
number of elements processed; does
not depend on vector-mask mode

12 Class-IZ instruction; interrup­
tible; vector-section size deter­
mines number of elements processed;
does not depend on vector-mask mode

J Arithmetic exception; exception­
extension code is stored

LS Significance exception
NC Class-NC instruction; not interrup­

tible; vector count determines
number of elements processed; does
not depend on vector-mask mode

APPENDIX B. LISTS OF INSTRUCTIONS

N2

NO

N1

P
QST
QV
R-i,

RRE
RSE
S
SP
ST
U
VB

VE

VH
VR
VS
VST
VU
W

Notes

2

Class-N2 instruction; not interrup­
tible; vector-section size deter­
mines number of elements processed;
does not depend on vector-mask mode
Class-NO instruction; not interrup­
tible; no vector elements proc­
es s ed ; does not depend on
vector-mask mode
Class-N1 instruction; not interrup­
tible; one vector element proc­
essed; does not depend on
vector-mask mode
Privileged-operation exception
QST instruction format
QV instruction format
PER general-register-alteration
event mayor may not be recognized
RRE instruction format
RSE instruction format
S instruction format
Specification exception
PER storage-alteration event
Unnormalized-operand exception
Sets vector in-use bit and vector
change bit
Vector facility and vector-
operation exception
Sets vector change bit
VR instruction format
VS instruction format
VST instruction format
Leaves vector change bit unaltered
VV instruction format

Same op code as for short; separate
mnemonic for programming conven­
ience
Execution differs in problem state
and supervisor state

Appendix B. Lists Of Instructions B-1

Mne- Op
Name monic Characteristics Code

ACCUMULATE (long) VACD VST VE A SP J EU EO LS 1M VB R· ... A417
ACCUMULATE (long) VACDR VV VE SP J EU EO LS 1M VB AS17
ACCUMULATE (short to long) VACE VST VE A SP J EU EO LS 1M VB R-;': A407
ACCUMULATE (short to long) VACER VV VE SP J EU EO LS 1M VB AS07
ADD (binary) VA VST VE A SP J IF 1M VB R* A420

ADD (binary) VAQ QV VE J IF 1M VB ASAO
ADD (binary) VAR VV VE J IF 1M VB AS20
ADD (binary) VAS QST VE A SP J IF 1M VB R* A4AO
ADD (long) VAD VST VE A SP J EU EO LS 1M VB R* A410
ADD (long) VADQ QV VE SP J EU EO LS 1M VB AS90

ADD (long) VADR VV VE SP J EU EO LS 1M VB ASI0
ADD (long) VADS QST VE A SP J EU EO LS 1M VB R'#'(A490
ADD (short) VAE VST VE A SP J EU EO LS 1M VB R* A400
ADD (short) VAEQ QV v"'E SP J EU EO LS 1M VB A580
ADD (short) VAER VV VE J EU EO LS 1M VB A500

ADD (short)
I
VAES QST VE A SP J EU EO LS 1M VB R··~ A480

AND VN VST VE A SP 1M VB R* A424
AND VNQ QV VE 1M VB A5A4
AND VNR VV VE 1M VB A524
AND VNS QST VE A SP 1M VB R"'" A4A4

AND TO VMR VNVM VS VE A NC R"': A684
CLEAR VR VRCL S VE IZ VB A6C5
COMPARE (binary) VC VST VE A SP IC R/: A428
COMPARE (binary) VCQ QV VE IC A5A8
COMPARE (binary) VCR VV VE IC A528

COMPARE (binary) VCS ,QST VE A SP IC R* A4A8
COMPARE (long) VCD VST VE A SP IC R'k A418
COMPARE (long) VCDQ QV VE SP IC A598
COMPARE (long) VCDR VV VE SP IC ASI8
COMPARE (long) VCDS QST VE A SP IC R7': A498

COMPARE (short) VCE VST VE A SP IC R* A408
COMPARE (short) VCEQ QV VE SP IC A588
COMPARE (short) VCER VV VE IC A508
COMPARE (short) IVCES QST VE A SP IC R"'" A488
COMPLEMENT VMR VCVM RRE VE NC A641

COUNT LEFT ZEROS IN VMR VCZVM RRE C VE NC R* A642
COUNT ONES IN VMR VCOVM RRE C VE NC R* A643
DIVIDE (long) VDD VST VE A SP J U EU EO FK 1M VB R"'~ A413
DIVIDE (long) VDDQ QV VE SP J U EU EO FK 1M VB A593
DIVIDE (long) VDDR VV VE SP J U EU EO FK 1M VB A513

DIVIDE (long) VDDS QST V1: I A SP J U EU EO FK 1M VB 'R* A493
DIVIDE (short) VDE VST VE A SP J U EU EO FK 1M VB R7': A403
DIVIDE (short) VDEQ QV VE SP J U EU EO FK 1M VB A5831
DIVIDE (short) VDER VV VE J U EU EO FK 1M VB A503
DIVIDE (short) VDES QST VE A SP J U EU EO FK 1M VB R7'~ A4831

Figure B-1 (Part 1 of 4). Instructions Arranged by Name

B-2 IBM System/370 Vector Operations

Mne- Op
Name monic Characteristics Code

EXCLUSIVE OR VX VST VE A SP 1M VB R* A426
EXCLUSIVE OR VXQ QV VE 1M VB A5A6
EXCLUSIVE OR VXR VV VE 1M VB A526
EXCLUSIVE OR VXS QST VE A SP 1M VB R* A4A6
EXCLUSIVE OR TO VMR VXVM VS VE A NC R* A686

EXTRACT ELEMENT (binary) VXEL VR VE SP NI R* A629
EXTRACT ELEMENT (long) VXELD VR VE SP NI A619
EXTRACT ELEMENT (short) VXELE VR VE SP NI A609
EXTRACT VCT VXVC RRE VE NO R"': A644
EXTRACT VECTOR MASK MODE VXVMM RRE VE NO R-lr A646

LOAD (binary) 1 VL VST VE A SP IC VB R* A409
LOAD (binary) VLQ QV VE IC VB A5A9
LOAD (binary) 1 VLR VV VE IC VB A509
LOAD (long) VLD VST VE A SP IC VB R* A4I9
LOAD (long) VLDQ QV VE SP IC VB AS99

LOAD (long) VLDR VV VE SP IC VB A519
LOAD (short) VLE VST VE A SP IC VB R* A409
LOAD (short) VLEQ QV VE SP IC VB AS89
LOAD (short) VLER VV VE IC VB AS09
LOAD BIT INDEX VLBIX RSE C VE A SP IG VB R* E428

LOAD COMPLEMENT (binary) VLCR VV VE J IF 1M VB AS62
LOAD COMPLEMENT (long) VLCDR VV VE SP 1M VB AS52
LOAD COMPLEMENT (short) VLCER VV VE 1M VB A542
LOAD ELEMENT (binary) VLEL VR VE SP N1 VB A628
LOAD ELEMENT (long) VLELD VR VE SP NI VB A6I8

LOAD ELEMENT (short) VLELE VR VE SP N1 VB A608
LOAD EXPANDED (binary)1 VLY VST VE A SP IC VB R* A40B
LOAD EXPANDED (long) VLYD VST VE A SP IC VB R-;''' A41B
LOAD EXPANDED (short) VLYE VST VE A SP IC VB R* A40B
LOAD HALFWORD VLH VST VE A SP IC VB R"lr A429

LOAD INDIRECT (binary) 1 VLI RSE VE A SP IC VB E400
LOAD INDIRECT (long) VLID RSE VE A SP IC VB E410
LOAD INDIRECT (short) VLIE RSE VE A SP IC VB E400
LOAD INTEGER VECTOR VLINT VST VE SP IC VB R* A42A
LOAD MATCHED (binary)1 VLM VST VE A SP IC VB R* A40A

LOAD MATCHED (binary) VLMQ QV VE IC VB A5AA
LOAD MATCHED (binary) 1 VLMR VV VE IC VB A50A
LOAD MATCHED (long) VLMD VST VE A SP IC VB R* A41A
LOAD MATCHED (long) VLMDQ QV VE SP IC VB A59A
LOAD MATCHED (long) VLMDR VV VE SP IC VB A5IA

LOAD MATCHED (short) VLME VST VE A SP IC VB R* A40A
I LOAD MATCHED (short) VL.f1EQ QV VE SP IC VB AS8A
LOAD MATCHED (short) VLMER VV VE IC VB A50A
LOAD NEGATIVE (binary) VLNR VV VE 1M VB A56I
LOAD NEGATIVE (long) VLNDR VV VE SP 1M VB A55I

Figure B-1 (Part 2 of 4). Instructions Arranged by Name

Appendix B. Lists Of Instructions B-3

Mne- Op
Name monic Characteristics Code

LOAD NEGATIVE (short) VLNER VV VE 1M VB A541
LOAD POSITIVE (binary) VLPR VV VE J IF 1M VB A560
LOAD POSITIVE (long) VLPDR VV VE SP 1M VB A550
LOAD POSITIVE (short) VLPER VV VE 1M VB A540
LOAD VCT AND UPDATE VLVCU RRE C VE NO R7(A645

LOAD VCT FROM ADDRESS VLVCA S C VE NO A6C4
LOAD VMR VLVM V8 VE A NC R* A680
LOAD VMR COMPLEMENT VLCVM VS VE A NC R-;'c A681
LOAD ZERO (binary)l VLZR VV VE IC VB A50B
LOAD ZERO (long) VLZDR VV VE SP IC VB A51B

LOAD ZERO (short) VLZER VV VE IC VB A50B
MAXIMUM ABSOLUTE (long) VMXAD VR VE SP 1M R7:' A612
MAXIMUM ABSOLUTE (short) VMXAE VR VE SP 1M R·': A602
MAXIMUM SIGNED (long) VMXSD VR VE SP 1M R7:' IA610
MAXIMUM SIGNED (short) VMXSE VR VE SP 1M R7:' IA600

MINIMUM S IG~TED (long) VMNSD VR VE SP 1M R7(A611
MINIMUM SIGNED (short) VMNSE VR VE SP 1M R1: A601
MULTIPLY (binary) VM VST VE A SP 1M VB R·': A422
MULTIPLY (binary) VMQ QV VE SP 1M VB A5A2
MULTIPLY (binary) VMR VV VE SP 1M VB A522

MULTIPLY (binary) VMS QST VE A SP 1M VB R7:' IA4A2
MULTIPLY (long) VMD VST VE A SP J U EU EO 1M VB R* A412
MULTIPLY (long) VMDQ QV VE SP J U EU EO 1M VB A592
MULTIPLY (long) VMDR VV VE SP J U EU EO 1M VB A512
MULTIPLY (long) VMDS QST VE A SP J U EU EO 1M VB R7(A492

MULTIPLY (short to long) VME VST VE A SP J U EU EO 1M VB R* A402
MULTIPLY (short to long) VMEQ QV VE SP J U EU EO 1M VB A582
MULTIPLY (short to long) VMER VV VE SP J U EU EO 1M VB IA502
MULTIPLY (short to long) VMES QST VE A SP J U EU EO 1M VB R7: IA482
MULTIPLY AND ACCUMULATE (long) VMCD VST VE A SP J U EU EOLS 1M VB R7:'

IA416

MULTIPLY AND ACCUMULATE (long) VMCDR VV VE SP J U EU EO LS 1M VBI IA516
MULTIPLY AND ACCUMULATE(s to 1) VMCE VST VE A SP J U EU EO LS 1M VB R7:' A406
MULTIPLY AND ACCUMULATE(s to 1) VMCER VV VE SP J U EU EO LS 1M VB A506
MULTIPLY AND ADD (long) VMAD VST VE A SP J U EU EO LS 1M VB R7:' A414
MULTIPLY AND ADD (long) VMADQ QV VE SP J U EU EO LS 1M VB A594

1

MULTIPLY AND ADD (long) VMADS QST VE A SP J U EU EO LS 1M VB R7:'
1

A494
MULTIPLY AND ADD (short to long) VMAE VST VE A SP J U EU EO LS 1M VB R7(A404
MULTIPLY AND ADD (short to long) VMAEQ QV VE SP J U EU EO LS 1M VB IA584
MULTIPLY AND ADD (short to long) VMAES QST VE A SP J U EU EO LS 1M VB R,': A484
MULTIPLY AND SUBTRACT (long) VMSD VST VE A SP J U EU EO LS 1M VB R,'" A415

MULTIPLY AND SUBTRACT (long) VMSDQ QV VE SP J U EU EO L8 1M VBI A595
MULTIPLY AND SUBTRACT (long) VMSDS QST VE A SP J U ED EO LS 1M VB:R* A495 \
MULTIPLY AND SUBTRACT (s to 1) VMSE VST VE A SP J U EU EO LS 1M VB I R-;':, A405
MULTIPLY AND SUBTRACT (s to 1) VMSEQ QV VE SP J U EU EO LS 1M VBI A585
MULTIPLY AND SUBTRACT (8 to 1) VMSES .QST VE A SP J U EU EO LS 1M VB I R'k A485

Figure B-1 (Part 3 of 4). Instructions Arranged by Name

B-4 IBM System/370 Vector Operations

Mne- Op
Name monic Characteristics Code

OR VO VST VE A SP 1M VB R* A425
OR VOQ QV VE 1M VB A5A5
OR VOR VV VE 1M VB A525
OR VOS QST VE A SP 1M VB R* A4A5
OR TO VMR VOVM VS VE A NC R* A685

RESTORE VAC VACRS S VE A SP P NO JA6CB
RESTORE VMR VMRRS S VE A NZ A6C3
RESTORE VR VRRS RRE C VE A SP 2 IZ VU R* A648
RESTORE VSR VSRRS S VE A SP 2 IZ VB A6C2
SAVE CHANGED VR VRSVC RRE C VE A SP P IZ VH R* ST A649

SAVE VAC VACSV S VE A SP P NO ST A6CA
SAVE VMR VMRSV S VE A NZ STIA6C1
SAVE VR VRSV RRE C VE A SP IZ R* ST'A64A
SAVE VSR VSRSV S VE A SP 2 NO ST A6CO
SET VECTOR MASK MODE VSVMM S VE NO A6C6

SHIFT LEFT SINGLE LOGICAL VSLL RSE VE 1M VB ,E425
SHIFT RIGHT SINGLE LOGICAL VSRL RSE VE 1M VB IE424 STORE (binary)l VST VST VE A SP IC R* ST A40D
STORE (long) VSTD VST VE A SP IC R* ST

1

A41D
STORE (short) VSTE VST VE A SP IC R* ST A40D

STORE COMPRESSED (binary) 1 VSTK VST VE A SP IC Ri .. ST A40F
STORE COMPRESSED (long) VSTKD VST VE A SP IC R~'" ST,A41F
STORE COMPRESSED (short) VSTKE VST VE A SP IC R--'" ST A40F
STORE HALFWORD VSTH VST VE A SP Ie IR* ST A42D
STORE INDIRECT (binary) 1 VSTI RSE VE A SP IC ST E401

I
STORE INDIRECT (long) VSTID RSE VE A SP IC

I
ST E411

STORE INDIRECT (short) VSTIE RSE VE A SP IC ST E401
STORE MATCHED (binary)l VSTM VST VE J A SP IC IR* ST A40E
STORE MATCHED (long) VSTMD VST VE A SP IC IRi .. ST A41E
STORE MATCHED (short) VSTME VST VE A SP IC IR* ST A40E I
STORE VECTOR PARAMETERS VSTVP S VE A SP

IJ

NO I ST A6C8
STORE VMR VSTVM!VS VE A NC iR·'" ST A682
SUBTRACT (binary) VS VST VE A SP IF 1M VBIR* A4211
SUBTRACT (binary) VSQ QV VE I~ IF 1M VB A5A1

ISUBTRACT (binary) IVSR VV VE IF 1M VBI A521

!SUBTRACT (binary) VSS QST VE A SP IJ IF 1M VB I Ri .. IMAI I SUBTRACT (long) VSD IVST VE A SP IJ EU EO LS 1M VB I R"''' A411
SUBTRACT (long) VSDQ QV VE SP iJ ED EO LS 1M VB A591
SUBTRACT (long) VSDR VV VE SP IJ EU EO LS 1M VB IA511
SUBTRACT (long) VSDS QST VE A SP J EU EO LS 1M VB R* IA491
SUBTRACT (short) VSE VST VE!A SP J EU EO LS 1M VBIR* iA401

i

SUBTRACT (short) VSEQ QV VE SP J EU EO LS 1M VBI \A581
ISUBTRACT (short) VSER VV VE IJ EU EO LS 1M VBI iA501
SUBTRACT (short) VSES QST VE A SP \J EU EO LS 1M VB R* 'A481
SUM PARTIAL SUMS (long) VSPSD VR VE SP IJ EU EO LS IP , A61AI
TEST VMR VTVH IRRE CVE

SP I

NC A640
ZERO PARTIAL SUMS (long) VZPSD/VR VE IP VB A61B j

Figure B-1 (Part 4 of 4). Instructions Arranged by Name

Appendix B. Lists Of Instructions B-5

Mne- Op
monic Name Characteristics Code

VA ADD (binary) VST VE A SP J IF 1M VB R""" A420
VACD ACCUMULATE (long) VST VE A SP J EU EO LS 1M VB R* A4l7
VACDR ACCUMULATE (long) VV VE SP J EU EO LS 1M VB AS17
VACE ACCUMULATE (short to long) VST VE A SP J EU EO LS 1M VB R* A407
VACER ACCUMULATE (short to long) VV VE SP J EU EO LS 1M VB AS07

IVACRS RESTORE VAC S VE A SP P NO A6CB
VACSV SAVE VAC S VE A SP P NO ST A6CA
VAD ADD (long) VST VE A SP J EU EO LS 1M VB R'''" A410
VADQ ADD (long) QV VE SP J EU EO LS 1M VB AS90
VADR ADD (long) VV VE SP J EU EO LS 1M VB ASI0

VADS I ADD (long) QST VE A SP J EU EO LS 1M VB R"" A490
VAE ADD (short) VST VE A SP J EU EO LS 1M VB R* A400
VAEQ I ADD (short) QV VE SP J EU EO LS 1M VB A580
VAER ADD (short) VV VE J EU EO LS 1M VB ASOO
VAES ADD (short) QST VE A SP J EU EO LS 1M VB R'''" A480

VAQ ADD (binary) QV VE J IF 1M VB ASAO
VAR ADD (binary) VV VE J IF 1M VB AS20
VAS ADD (binary) QST VE A SP J IF 1M VB R A4AO
VC COMPARE (binary) VST VE A SP IC R,"" A428
VCD COMPARE (long) VST VE A SP IC R,"" A418

VCDQ COMPARE (long) QV VE SP IC AS98
VCDR COMPARE (long) VV VE SP IC AS18
VCDS COMPARE (long) QST VE A SP IC R"" A498

I
VCE COMPARE (short) VST VE A SP IC R'''" A408
VCEQ COMPARE (short) QV VE SP IC AS88

VCER COHPARE (short) VV VE IC AS08
VCES COMPARE (short) QST VE A SP IC R"" A488
VCOVM COUNT ONES IN VMR RRE C VE NC Ri .. A643
VCQ COMPARE (binary) QV VE IC ASA8
VCR COMPARE (binary) IVV VE IC A528

Ivcs COMPARE (binary) QST VE A SP IC R",. A4A8
IVCVM I COMPLEMENT VMR RRE VE NC A641
IVCZVM COUNT LEFT ZEROS IN VMR RRE C VE NC Rk A642
VDD DIVIDE (long) VST VE A SP J U EU EO FK 1M VB R* A413
VDDQ DIVIDE (long) QV VE SP J U EU EO FK 1M VB AS93

VDDR DIVIDE (long) VV VE SP J U EU EO FK 1M VB A513
VDDS DIVIDE (long) QST VE A SP J U EU EO FK 1M VB R#\" A493

IVDE DIVIDE (short) VST VE A SP J U EU EO FK 1M VB R'''" A403
IVDEQ DIVIDE (short) QV VE SP J U EU EO FK 1M VB AS83
VDER DIVIDE (short) VV VE J U EU EO FK 1M VB A503

IVDES IDIVIDE (short) QST VE A SP J U EU EO FK 1M VB R'''" A483
!VL iLOAD (binary)l VST VE A SP IC VB Ri .. A409
IVLBIXILOAD BIT INDEX RSE CVE A SP 1G VB R E428
I VLCDR I LOAD COMPLEMENT (long) VV VE SP 1M VB A5S2
!VLCER LOAD COMPLEMENT (short") VV VE 1M VB A542

Figure B-2 (Part 1 of 4). Instructions Arranged by Mnemonic

B-6 IBM System/370 Vector Operations

Mne- Op
monic Name Characteristics Code

VLCR LOAD COMPLEMENT (binary) VV VE J IF 1M VB AS62
VLCVM LOAD VMR COMPLEMENT VS VE A NC R A681
VLD LOAD (long) VST VE A SP IC VB R* A419
VLDQ LOAD (long) QV VE SP IC VB AS99
VLDR LOAD (long) VV VE SP IC VB AS19

VLE LOAD (short) VST VE A SP IC VB R'1(A409
VLEL LOAD ELEMENT (binary) VR VE SP Nl VB A628
VLELD LOAD ELEMENT (long) VR VE SP Nl VB A618
VLELE LOAD ELEMENT (short) VR VE SP Nl VB A608
YLEQ LOAD (short) QV VE SP IC VB AS89

VLER LOAD (short) VV VE IC VB AS09
VLH LOAD HALFWORD VST VE A SP IC VB R* A429
VLI LOAD INDIRECT (binary)l RSE VE A SP IC VB E400
VLID LOAD INDIRECT (long) RSE VE A SP IC VB E410
VLIE LOAD INDIRECT (short) RSE VE A SP IC VB E400

VLINT LOAD INTEGER VECTOR VST VE SP IC VB R* A42A
VLM ILOAD MATCHED (binary)' VST VE A SP IC VB R'1(A40A
VLMD LOAD MATCHED (long) VST VE A SP IC VB R'I" A41A
VLMDQ LOAD MATCHED (long) QV VE SP IC VB AS9A
VLMDR LOAD MATCHED (long) VV VE SP IC VB ASIA

VLME LOAD MATCHED (short) VST VE A SP IC VB R* A40A
VLMEQ LOAD MATCHED (short) QV VE SP IC VB AS8A
VLMER LOAD MATCHED (short) VV VE IC VB ASOA
VLMQ LOAD MATCHED (binary) QV VE IC VB ASAA
VLMR LOAD MATCHED (binary)l VV VE IC VB A50A

VLNDR LOAD NEGATIVE (long) VV VE SP 1M VB ASSI
V1J.\J"ER LOAD NEGATIVE (short) VV VE 1M VB AS41
VLNR LOAD NEGATIVE (binary) VV VE 1M VB AS61
VLPDR LOAD POSITIVE (long) VV VE SP JM VB ASSO
VLPER LOAD POSITIVE (short) VV VE 1M VB AS40

VLPR LOAD POSITIVE (binary) VV VE J IF 1M VB AS60
VLQ LOAD (binary) QV VE IC VB ASA9
VLR LOAD (binary)l VV VE IC VB AS09
VLVCA LOAD VCT FROM ADDRESS S C VE NO A6C4
VLVCU LOAD VCT AND UPDATE RRE C VE NO R* A64S

VLVM LOAD VMR VS VE A NC IR'I" A680
IVLY LOAD EXPANDED (binary)l IVST VE A SP IC VB I Ri(A40B
VLYD LOAD EXPA~~ED (long) VST VE A SP IC VB R* A41B
VLYE LOAD EXPANDED (short) VST VE A SP IC VBIR* A40B
VLZDR LOAD ZERO (long) VV VE SP IC VB

I
AS1B

VLZER LOAD ZERO (short)
I~

VE IC VB ASOB
VLZR LOAD ZERO (binary)l VE IC VB ASOB
VM MULTIPLY (binary) VST VE A SP 1M VB R* A422
VMAD MULTIPLY AND ADD (long) VST VE A SP J U EU EO LS 1M VB R* A414
VMADQ MULTIPLY ~~D ADD (long) QV VE SP J U EU EO LS 1M VB AS94

Figure B-2 (Part 2 of 4). Instructions Arranged by Mnemonic

Appendix B. Lists Of Instructions B-7

Mne- Op
monic Name Characteristics Code

VMADS MULTIPLY AND ADD (long) QST VE A SP J U EU EO LS 1M VB R* A494
VMAE MULTIPLY AND ADD (short to long) VST VE A SP J U EU EO LS 1M VB R* A404
VMAEQ MULTIPLY AND ADD (short to long) QV VE SP J U EU EO LS 1M VB A584
VMAES MULTIPLY AND ADD (short to long) QST VE A SP J U EU EO LS 1M VB R;': A484
VMCD MULTIPLY AND ACCUMULATE (long) VST VE A SP J U EU EO LS 1M VB R;'~ A416

VMCDR MULTIPLY AND ACCUMULATE (long) VV VE SP J U EU EO LS 1M VB A516
VMCE MULTIPLY AND ACCUMULATE(s to 1) VST VE A SP J U EU EO LS 1M VB R* A406
VMCER MULTIPLY AND ACCUMULATE(s to 1) VV VE SP J U EU EO LS 1M VB A506
VMD MULTIPLY (long) VST VE A SP J U EU EO 1M VB R* A412
VMDQ MULTIPLY (long) QV VE SP J U EU EO 1M VB A592

VMDR MULTIPLY (long) VV VE SP J U EU EO 1M VB A512
VMDS MULTIPLY (long) QST VE A SP J U EU EO 1M VB R;': A492
VME MULTIPLY (short to long) VST VE A SP J U EU EO 1M VB R* A402
VMEQ MULTIPLY (short to long) QV VE SP J U EU EO 1M VB A582
VMER MULTIPLY (short to long) VV VE SP J U EU EO 1M VB A502

VMES MULTIPLY (short to long) QST VE A SP J U EU EO 1M VB R;': A482
VMNSD MINIMUM SIGNED (long) VR VE SP 1M R* A611
VMNSE MINIMUM SIGNED (short) VR VE SP 1M R"'~ A601
VMQ MULTIPLY (binary) QV VE SP 1M VB A5A2
VMR MULTIPLY (binary) VV VE SP 1M VB A522

VMRRS RESTORE VMR S VE A NZ A6C3
VMRSV SAVE VMR S VE A NZ ST A6Cl
VMS MULTIPLY (binary) QST VE A SP 1M VB R* A4A2
VMSD MULTIPLY AND SUBTRACT (long) VST VE A SP J U EU EO LS 1M VB R;'~ A415
VMSDQ MULTIPLY AND SUBTRACT (long) QV VE SP J U EU EO LS 1M VB A595

VMSDS MULTIPLY AND SUBTRACT (long) QST VE A SP J U EU EO LS 1M VB R;'~ A495
VMSE MULTIPLY AND SUBTRACT (s to 1) VST VE A SP J U EU EO LS 1M VB R"'~ A405
VMSEQ MULTIPLY AND SUBTRACT (s to 1) QV VE SP J U ED EO LS 1M VB A585
VMSES MULTIPLY AND SUBTRACT (s to 1) QST VE A SP J U EU EO LS 1M VB R;''' A485
VMXAD MAXIMUM ABSOLUTE (long) VR VE SP 1M R"''- A612

VMXAE MAXIMUM ABSOLUTE (short) VR VE SP 1M R;'~ A602
VMXSD MAXIMUM SIGNED (long) VR VE SP 1M R;''' A610
VMXSE MAXIMUM SIGNED (short) VR VE SP 1M R;''- A600
VN AND VST VE A SP 1M VB R* A424
VNQ AND QV VE 1M VB A5A4

VNR AND VV VE 1M VB A524
VNS AND QST VE A SP 1M VB R* A4A4
VNVM AND TO VMR IVS VE A NC R;''- IA684
VO OR VST VE A SP 1M VB R;''- 1A425
VOQ OR QV VE 1M VB A5A5

VOR OR VV VE 1M VB IA525
VOS OR QST VE A SP 1M VBIR* IA4A5
VOVM OR TO VMR VS VE A NC R;'~ IA685
VRCL CLEAR VR S VE IZ VB A6C5
VRRS RESTORE VR RRE C VElA SP 2 IZ VU R* IA648

Figure B-2 (Part 3 of 4). Instructions Arranged by Mnemonic

B-8 IBM System/370 Vector Operations

Mne- Op
monic Name Characteristics Code

VRSV SAVE VR RRE C VE A SP IZ R'1: ST A64A
VRSVC SAVE CHANGED VR RRE C VE A SP P IZ VH R* ST A649
VS SUBTRACT (binary) VST VE A SP J IF 1M VB R* A421
VSD SUBTRACT (long) VST VE A SP J EU EO LS 1M VB R* A411
VSDQ SUBTRACT (long) QV VE SP J EU EO LS 1M VB A591

VSDR SUBTRACT (long) VV VE SP J EU EO L3 1M VB A511
VSDS SUBTRACT (long) QST VE A SP J EU EO LS 1M VB R* A491
VSE SUBTRACT (short) VST VE A SP J EU EO LS 1M VB R* A401
VSEQ SUBTRACT (short) QV VE SP J EU EO LS 1M VB A581
VSER SUBTRACT (short) VV VE J EU EO LS 1M VB A501 .
VSES SUBTRACT (short) QST VE A SP J EU EO LS 1M VB R~" A481
VSLL SHIFT LEFT SINGLE LOGICAL RSE VE 1M VB E425
VSPSD SUM PARTIAL SUMS (long) VR VE SP J EU EO LS IP A61A
VSQ SUBTRACT (binary)

I
QV VE J IF 1M VB A5A1

VSR SUBTRACT (binary) VV VE J IF 1M VB A521

VSRL SHIFT RIGHT SINGLE LOGICAL RSE VE 1M VB IE424
VSRRS RESTORE VSR S VE A SP 2 IZ VB

I
A6C2

VSRSV SAVE VSR S VE A SP 2 NO ST A6CO
VSS SUBTRACT (binary) QST VElA SP J IF 1M VB R* IA4A1
VST STORE (binary)l VST VEA SP IC R'1;- ST

1
A40D

VSTD STORE (long) VST VE A SP IC R* ST A41D
VSTE STORE (short) VST VE A SP IC R* ST A40D
VSTH STORE HALWORD VST VE A SP IC Ri .. ST A42D
VSTI STORE INDIRECT (binary) 1 RSE VE A SP IC ST E401
VSTID STORE INDIRECT (long) RSE VE A SP IC ST E411

VSTIE STORE INDIRECT (short) RSE VE A SP IC ST E401
VSTK STORE COMPRESSED (binary)l VST VE A SP IC R* ST

1

A40F
VSTKD STORE COMPRESSED (long) VST VE A SP IC Ri .. ST A41F
VSTKE STORE COMPRESSED (short) VST VE A SP IC I R~" ST A40F
VSTM STORE MATCHED (binary)l VST VElA SP IC I R~" ST I A40E

i

VSTMD STORE MATCHED (long) VST VElA SP IC R* STIA41E
VSTME STORE MATCHED (short) VST VE A SP IC R* ST A40E
VSTVM STORE VMR VS VE A NC R* ST

1

A682
,VSTVP STORE VECTOR PARAMETERS S VE A SP NO ST A6C8

VSVMM SET VECTOR MASK MODE S VE NO A6C6
!

VTVM TEST VMR RRE C VE NC A640
VX EXCLUSIVE OR VST VE A SP 1M VB R* A426
VXEL EXTRACT ELEMENT (binary) VR VE SP N1 R* A629
VXELD EXTRACT ELEMENT (long) VR VE SP N1 (619 VXELE EXTRACT ELEMENT (short) VR VE SP N1 A609
VXQ EXCLUSIVE OR QV VE

., 1M VB A5A6

VXR EXCLUSIVE OR VV VE 1M VB iA526
VXS EXCLUSIVE OR QST VE A SP 1M VB R* IA4A6
VXVC EXTRACT VCT 'RRE VE NO R* A6441
VXVM EXCLUSIVE OR TO VMR lvs VElA NC R* A686
VXVMM EXTRACT VECTOR MASK MODE IRRE ~I SP

NO R* A646
VZPSD ZERO PARTIAL SUMS (long) \VR IP VB A61B

Figure B-2 (Part 4 of 4). Instructions Arranged by Mnemonic

Appendix B. Lists Of Instructions B-9

Op Mne-

IvJ~ Code Name monic Characteristics

A400 ADD (short) VAE VST' VE A SP J EU EO,LS 1M VB R*
A401 SUBTRACT (short) VSE VST VE A SP J EU EO LS 1M VB R*
A402 MULTIPLY (short to long) VME VST VE A SP J U EU EO 1M VB R*
A403 DIVIDE (short) VDE VST VE A SP J U EU EO FK 1M VB R*
A404 MULTIPLY AND ADD (short to long) VMAE VST VE A SP J U EU EO LS 1M VB R*

A405 MULTIPLY AND SUBTRACT (s to 1) VMSE VST VE A SP J U EU EO LS 1M VB R';';o

A406 MULTIPLY AND ACCUMULATE(s to 1) VMCE VST VE A SP J U EU EO LS 1M VB R*
A407 ACCUMULATE (short to long) VACE VST VE A SP J EU EO LS 1M VB R*
A408 COMPARE (short) VCE VST VE A SP IC R*
A409 LOAD (binary)l VL VST VE A SP IC VB R"'"

A4091LOAD (short) VLE VST VE A SP IC VB R*
A40A LOAD MATCHED (binary)1 VLM VST VE A SP IC VB R*
A40A LOAD MATCHED (short) VLME VST VE A SP IC VB R"'"
A40B LOAD EXPANDED (binary)l VLY VST VE A SP IC VB R*
A40B LOAD EXPANDED (short) VLYE VST VE A SP IC VB R'i.-

A40D STORE (binary)l VST VST VE A SP IC R"' .. ST
A40D STORE (short) VSTE VST VE A SP IC R* ST
A40E STORE MATCHED (binary)l VSTM VST VE A SP IC R"'" ST
A40E STORE MATCHED (short) VSTME VST VE A SP IC R'''' ST
A40F STORE COMPRESSED (binary)l VSTK VST VE A SP IC R'''' ST

I
A40F STORE COMPRESSED (short) VSTKE VST VE A SP IC R* ST
A410 ADD (long) VAD VST VE A SP J EU EO LS 1M VB R
A411 SUBTRACT (long) VSD VST VE A SP J EU EO LS 1M VB R
A412 MULTIPLY (long) VMD VST VE A SP J U EU EO 1M VB R
A413 DIVIDE (long) VDD VST VE A SP J U EU EO FK 1M VB R"'"

A414 MULTIPLY AND ADD (long) VMAD VST VE A SP J U EU EO LS 1M VB R·'"
A415 MULTIPLY AND SUBTRACT (long) VMSD VST VE A SP J U EU EO LS 1M VB R"'"
A416 MULTIPLY AND ACCUMULATE (long) VMCD VST VE A SP J U EU EO LS 1M VB R"'"
A417 ACCUMULATE (long) VACD VST VE A SP J EU EO LS 1M VB R"' ..
A418 COMPARE (long) VCD VST VE A SP IC R·l~

A419 LOAD (long) VLD VST VE A SP IC VB R"'"
A41A

1

LOAD MATCHED (long) VLMD VST VE A SP IC VB R*
A41B LOAD EXPANDED (long) VLYD VST VE A SP IC VB R*
A41DISTORE (long) VSTD VST VE A SP IC R"' .. ST
A41E STORE MATCHED (long) VSTMD VST VE A SP IC R* ST

A41FISTORE COMPRESSED (long) VSTKD VST VE A SP IC R ST
A420 ADD (binary) VA VST VE A SP J IF 1M VB R"'"
A421

1

SUBTRACT (binary) VS VST VE A SP J IF 1M VB R"'''
A422 MULTIPLY (binary) VM VST VE A SP 1M VB R*
A424 AND VN VST VE A SP 1M VB R*

A425 OR VO I VST VE A SP 1M VB R
A426

1

EXCLUSIVE OR VX IVST VE A SP 1M VB R*
A428 COMPARE (binary) VC VST VE A SP IC R*
A429 LOAD HALFWORD I VIJI IVST VE A SP IC VB R*
A42AILOAD INTEGER VECTOR jVLINT VST VE SP IC VB R""

Figure B-3 (Part 1 of 4). Instructions Arranged by Op Code

B-I0 IBM System/370 Vector Operations

Op Mne-
Code Name monic Characteristics

A42D STORE HALFWORD VSTH VST VE A SP IC R* ST
A480 ADD (short) VAES QST VE A SP J ED EO LS 1M VB R*
A48I SUBTRACT (short) VSES QST VE A SP J EU EO LS 1M VB R*
A482 MULTIPLY (short to long) VMES QST VE A SP J U EU EO 1M VB R· ...
A483 DIVIDE (short) VDES QST VE A SP J U EU EO FK 1M VB R· ...

A484 MULTIPLY AND ADD (short to long) VMAES QST VE A SP J U EU EO LS 1M VB R*
A485 MULTIPLY AND SUBTRACT (s to 1) VMSES QST VE A SP J U EU EO LS 1M VB R*
A488 COMPARE (short) VCES QST VE A SP IC R*
A490 ADD (long) VADS QST VE A SP J EU EO LS 1M VB R*
A491 SUBTRACT (long) VSDS QST VE A SP J EU EO LS 1M VB R*

A492 MULTIPLY (long) VMDS QST VE A SP J U EU EO 1M VB R*
A4931DIVIDE (long) VDDS QST VE A SP J U EU EO FK 1M VB R*
A494 MULTIPLY AND ADD (long) VMADS QST VE A SP J U EU EO LS 1M VB R*
A495 MULTIPLY AND SUBTRACT (long) VMSDS QST VE A SP J U EU EO LS 1M VB R· ...
A498 COMPARE (long) VCDS QST VE A SP IC R*

A4AO ADD (binary) VAS QST VE A SP J IF 1M VB R*
A4AI SUBTRACT (binary) VSS QST VE A SP J IF 1M VB R*
A4A2 MULTIPLY (binary) VMS QST VE A SP 1M VB R*
A4A4 AND VNS QST VE A SP 1M VB R-/~

A4A5 OR VOS QST VE A SP 1M VB Ri.

A4A6 EXCLUSIVE OR VXS QST VE A SP 1M VB R*
A4A8 COMPARE (binary) VCS QST VE A SP IC R7;'

A500 ADD (short) VAER VV VE J EU EO LS 1M VB
A501,SUBTRACT (short) VSER VV VE J EU EO LS 1M VB
A502 MULTIPLY (short to long) VMER VV VE SP J U EU EO 1M VB

A503 DIVIDE (short) VDER VV VE J U EU EO FK 1M VB
A506 MULTIPLY AND ACCUMULATE(s to 1) VMCER VV VE SP J U EU EO LS 1M VB
A507 ACCUMULATE (short to long) VACER VV VE SP J EU EO LS 1M VB
A508,COMPARE (short) VCER VV VE IC
A509 f LOAD (binary)l VLR VV VE IC VB

A509 LOAD (short) VLER VV VE IC VB
A50A LOAD MATCHED (binary) 1 VLMR VV VE IC VB
A50A LOAD MATCHED (short) VLMER VV VE IC VB
A50B LOAD ZERO (binary)l VLZR VV VE IC VB
A50B LOAD ZERO (short) VLZER VV VE IC VB

A5I0 ADD (long) VADR VV VE SP J EU EO LS 1M VB
ASI1 SUBTRACT (long) VSDR VV VE SP J EU EO LS 1M VB
A5I2 MULTIPLY (long) VMDR VV VE SP J U EU EO 1M VB
A5I3 DIVIDE (long) VDDR VV VE SP J U EU EO FK 1M VB
A516 MULTIPLY AND ACCUMULATE (long) VMCDR VV VE SP J U EU EO LS 1M VB

A5I7 ACCUMULATE (long) VACDR VV VE SP J EU EO LS 1M VB
A5I8 COMPARE (long) VCDR VV VE SP IC
A5I9 LOAD Clang) VLDR VV VE SP IC VB
A5IA LOAD MATCHED (long) VLMDR VV VE SP IC VB
ASIB LOAD ZERO (long) I VLZDRI VV VE SP IC VB

Figure B-3 (Part 2 of 4). Instructions Arranged by Op Code

Appendix B. Lists Of Instructions B-11

Op Mne-
Code Name monic Characteristics

AS20 ADD (binary) VAR VV VE J IF 1M VB
AS21 SUBTRACT (binary) VSR VV VE J IF 1M VB
AS22 MULTIPLY (binary) VMR VV VE SP 1M VB
AS24 AND VNR VV VE 1M VB
AS2S OR VOR VV VE 1M VB

AS26 EXCLUSIVE OR VXR VV VE 1M VB
AS28 COMPARE (binary) VCR VV VE IC
AS40 LOAD POSITIVE (short) VLPER VV VE 1M VB
AS41 LOAD NEGATIVE (short) VLNER VV VE 1M VB
AS42 LOAD COMPLEMENT (short) VLCER VV VE 1M VB,

ASSO LOAD POSITIVE (long) VLPDR VV VE SP 1M VB
ASSl LOAD NEGATIVE (long) VLNDR VV VE SP 1M VB
ASS2\LOAD COMPLEMENT (long) VLCDR VV VE SP 1M VB
AS60 LOAD POSITIVE (binary) VLPR VV VE J IF 1M VB
AS61 LOAD NEGATIVE (binary) VLNR VV VE 1M VB

AS62 LOAD COMPLEMENT (binary) VLCR VV VE J IF 1M VB
AS80 ADD (short) VAEQ QV VE SP J EU EO LS 1M VB

I
AS81 SUBTRACT (short) VSEQ QV VE SP J EU EO LS 1M VB
A582 MULTIPLY (short to long) VMEQ QV VE SP J U EU EO 1M VB
AS83 DIVIDE (short) VDEQ QV VE SP J U EU EO FK 1M VB

AS84 MULTIPLY AND ADD (short to long) VMAEQ QV VE SP J U EU EO LS 1M VB
AS8S MULTIPLY AND SUBTRACT (s to 1) VMSEQ QV VE SP J U EU EO LS 1M VB
AS88 COMPARE (short) VCEQ QV VE SP IC
A589 LOAD (short) VLEQ QV VE SP IC VB
A58A LOAD MATCHED (short) VLMEQ QV VE SP IC VB

AS90 ADD (long) VADQ QV VE SP J EU EO LS 1M VB I AS91 SUBTRACT (long) VSDQ QV VE SP J EU EO LS 1M VB I

A592 MULTIPLY (long) VMDQ QV VE SP J U EU EO 1M VB
AS93 DIVIDE (long) VDDQ QV VE SP J U EU EO FK It-I VB
AS94 MULTIPLY AND ADD (long) VMADQ QV VE SP J U EU EO LS 1M VB

AS9S MULTIPLY fu~D SUBTRACT (long) VMSDQ QV VE SP J U EU EO LS 1M VB
AS98 COMPARE (long) VCDQ QV VE SP IC
AS99 LOAD (long) VLDQ QV VE SP IC VB
AS9A LOAD MATCHED (long) VLMDQ QV VE SP IC VB
ASAO ADD (binary) VAQ QV VE J IF 1M VB

ASAl SUBTRACT (binary) VSQ IQV VE J IF 1M VB
ASA2 MULTIPLY (binary) VMQ QV VE SP 1M VB
ASA4 AND VNQ QV VE 1M VB
ASAS OR VOQ QV VE 1M VB
ASA6 EXCLUSIVE OR VXQ QV VE 1M VB

ASA8 COMPARE (binary) VCQ QV VE IC
ASA9 LOAD (binary) VLQ QV VE IC VB
ASAA LOAD MATCHED (binary) VLMQ QV VE IC VB I
A600 MAXIMUM SIGNED (short) VMXSEIVR VE SP 1M IR*
A601 MINIMUM SIGNED (short) VMNSEIVR VE SP 1M IR~"

i

Figure B-3 (Part 3 of 4). Instructions Arranged by Op Code

B-12 IBM System/370 Vector Operations

Op Mne-
Code Name monic Characteristics

A602 MAXIMUM ABSOLUTE (short) VMXAE VR VE SP 1M R*
A608 LOAD ELEMENT (short) VLELE VR VE SP Nl VB
A609 EXTRACT ELEMENT (short) VXELE VR VE SP Nl
A610 MAXIMUM SIGNED (long) VMXSD VR VE SP 1M R~';-

A611 MINIMUM SIGNED (long) VMNSD VR VE SP 1M R7:

A612 MAXIMUM ABSOLUTE (long) VM..XAD VR VE SP 1M R*
A618 LOAD ELEMENT (long) VLELD VR VE SP Nl VB
A619 EXTRACT ELEMENT (long) VXELD VR VE SP Nl
A61A SUM PARTIAL SUMS (long) VSPSD VR VE SP J EU EO LS IP
A61B ZERO PARTIAL SUMS (long) VZPSD VR VE SP IP VB

A628 LOAD ELEMENT (binary) VLEL VR VE SP Nl VB
A629 EXTRACT ELEMENT (binary) VXEL VR VE SP Nl R*
A640 TEST VMR VTVM RRE C VE NC
A641 COMPLEMENT VMR VCVN ,RRE VE NC
A642 COUNT LEFT ZEROS IN VMR VCZVM RRE C VE NC R7C'

A643 COUNT ONES IN VMR VCOVM RRE C VE NC R
A644 EXTRACT VCT VXVC IRRE VE NO R*
A645 LOAD VCT AND UPDATE VLVCU,RRE C VE NO R*
A646 EXTRACT VECTOR MASK MODE VE NO I R VXVMM RRE

VUIR~ I A648 RESTORE VR VRRS RRE C VElA SP 2 IZ

A649 SAVE CHANGED VR VRSVC,RRE C VE A SP P IZ VIlIR* STI
A64A SAVE VR VRSV RRE C VE A SP IZ iR7C' ST
A680 LOAD VMR VLVM VS VE A NC R* I A681 LOAD VMR COMPLEMENT VLCVM VS VE A NC R7C'
A682 STORE VMR VSTVM VS VE A NC R* ST

A684 AND TO VMR V~rvM VS VE A NC R
A685 OR TO VMR VOVM VS VE A NC

I~: A686 EXCLUSIVE OR TO VMR VXVM VS .vE A NC
A6CO SAVE VSR VSRSVlS VE A SP 2 NO ST
A6C1 SAVE VMR VMRSVIS VE A NZ I ST

A6C2 RESTORE VSR IVSRRS S VE A SP 2 IZ VBl
A6C3 RESTORE VMR VMRRS S VE ·A NZ I A6C4 LOAD VCT FROM ADDRESS IVLVCA S C VE ! NO
A6C5 CLEAR VR VRCL S VE

I

IZ VBI
I

A6C6 SET VECTOR MASK MODE VSVMMIS VE NO I
A6C8 STORE VECTOR PARAMETERS VSTVP S VElA SP I NO I ST
A6CAIsAVE VAC VACSV S VE,A SP IP NO I ST

IA6CB RESTORE VAC IVACRS S VElA SP Ip NO
IE400 LOAD INDIRECT (binary)l VLI RSE VE A SP IC VB
IE400 LOAD INDIRECT (short) ,VLIE RSE VElA SP I IC VB
IE401 STORE INDIRECT (binary)l VSTI RSE VE A SP i IC ST

IE401 STORE INDIRECT (short) I I

VSTIE RSE VE A SP IC ST
E410lLOAD INDIRECT (long) IVLID RSE VE A SP I IC VB

IE411 STORE INDIRECT (long) IVSTID RSE VElA SP I IC ST
E4241SHIFT RIGHT SINGLE LOGICAL VSRL RSE VE

I

1M VB
iE425 SHIFT LEFT SINGLE LOGICAL

I
VSLL

I

RSE VE 1M VB
E4281LOAD BIT INDEX VLBIX RSE C VE A SP IG VB R7C'

Figure B-3 (Part 4 of 4). Instructions Arranged by Op Code

Appendix B. Lists Of Instructions B-13

A

access exceptions for vector
operands 2-25

access of vectors in storage 2-8
ACCUMULATE vector instructions 3-2
active bits and elements 2-3
activity count for vectors 2-5
ADD vector instructions 3-3

examples A-I
address generation 2-18

for LOAD INTEGER VECTOR 3-18
for LOAD/STORE INDIRECT 3-17

address size 2-6
address updating 2-9

in sectioning 2-11
addressing mode (in 370-XA mode) 2-6
alignment on storage boundary 2-7
AND TO VMR vector instruction 3-5
AND vector instructions 3-4
architectural mode 2-6
arithmetic (conditional) 2-12

examples A-4
arithmetic exceptions 2-21
arithmetic partial-completion bit 2-21
arithmetic vectors 2-7
availability of vector facility 2-6,

2-27
effect of machine check on 2-31

B

binary integers 2-7
bit count 3-12
bit index 3-12

relation of to element number 2-10
bit vector 2-10
boundary alignment 2-7

c
change bits 2-4

in saving and restoring 2-28
classes of vector instructions 2-13
CLEAR VR vector instruction 3-5
clearing of vector registers 2-29
COMPARE vector instructions 3-6

examples A-4, A-7
compatibility of vector programs 1-1
COMPLEMENT VMR vector instruction 3-7
completion of unit of operation 2-22
conceptual sequence of vector
operations 2-20, 2-30

conditional vector arithmetic 2-12
examples A-4, A-7

configuration of vector facility 2-6

contiguous vectors 2-8
access exceptions for 2-25
examples A-I

INDEX

control bit in control register 0 2-6
effect of on machine check 2-31

conversion
of bits to element numbers 2-10
of floating-point vectors A-6

count
bit 3-12
net 2-15
vector 2-3
vector-activity 2-5

COUNT LEFT ZEROS IN VMR vector instruc­
tion 3-8

COUNT ONES IN VMR vector
instruction 3-8

D

damage to vector facility 2-31
data types 2-7
DIVIDE vector instructions 3-8

example A-4

E

element 1.1.1.

indirect selection of 2-9
vector 2-1

element number 2-1
relation of to bit index 2-10

exception-extension code 2-21
exceptions

access 2-25
arithmetic 2-21
avoidance of A-4
exponent-overflow 2-21, 2-26
exponent-underflow 2-21, 2-26
fixed-point-overflow 2-7, 2-21
floating-point-divide 2-21, 2-26
operation 2-6
significance 2-21
specification 2-26
unnormalized-operand 2-21, 2-27
vector-operation 2-6, 2-27

EXCLUSIVE OR TO VMR vector
instruction 3-10

EXCLUSIVE OR vector instructions 3-9
exponent-overflow exception 2-21, 2-26
exponent-underflow exception 2-21, 2-26
extension code for exceptions 2-21
EXTRACT ELEMENT vector

instructions 3-10
EXTRACT VCT vector instruction 3-11

Index X-I

EXTRACT VECTOR MASK MODE vector instruc­
tion 3-11

F

failure of vector facility 2-31
fields in vector-instruction

formats 2-13
fixed-point-overflowexception 2-7,

2-21
floating-point conversion

(examples) A-6
floating-point-divide exception 2-21,

2-26
floating-point numbers 2-7
floating-point register (in vector oper­
ations) 2-10

formats of vector instructions 2-13

G

general register (in vector
operations) 2-10

IC (vector-instruction class)
IG (vector-instruction class)
ILC (instruction-length code)
1M (vector-instruction class)
in-use bits 2-4

2-15
2-13
2-23
2-15

in saving and restoring 2-28
index

bit 3-12
vector interruption

See vector interruption index
indirect element selection 2-9

load instruction for 3-17
store instruction for 3-37

inhibition of unit of operation 2-22
initialization 2-29
inner product (example) A-3
instruction-length code (ILC) 2-23
instructions

See vector-facility instructions
interruptible vector instructions 2-20
interruption

conditions for 2-25
effect of 2-23
of vector instructions 2-20
priority of 2-27

interruption index
See vector interruption index

invalid vector-register numbers 2-7
IP (vector-instruction class) 2-13
IZ (vector-instruction class) 2-13

X-2 IBM System/370 Vector Operations

L

length of vectors
See vector count

LOAD BIT INDEX vector instruction 3-12
example A-5

LOAD COMPLEMENT vector
instructions 3-15

LOAD ELEMENT vector instructions 3-15
LOAD EXPANDED vector instructions 3-16

example A-6
LOAD HALFWORD vector instruction 3-16
LOAD INDIRECT vector instructions 3-17

example A-5
LOAD INTEGER VECTOR vector
instruction 3-18

LOAD MATCHED vector instructions 3-18
LOAD NEGATIVE vector instructions 3-19
LOAD POSITIVE vector instructions 3-20
LOAD VCT AND UPDATE vector
instruction 3-20

examples A-1
LOAD VCT FROM ADDRESS vector
instruction 3-21

LOAD vector instructions 3-11
LOAD VMR COMPLEMENT vector
instructions 3-22

LOAD VMR vector instruction 3-22
LOAD ZERO vector instructions 3-22
logical data 2-7
loop for sectioning 2-11

M

machine check 2-31
mask bits

bit vector for 2-10
register for 2-1

mask mode
See vector-mask mode

MAXIMUM ABSOLUTE vector
instructions 3-23

MAXIMUM SIGNED vector instructions 3-23
MINIMUM SIGNED vector instructions 3-23
mode

addressing 2-6
architectural 2-6
vector-mask

See vector-mask mode
model-dependent vector functions 1-2
MULTIPLY AND ACCUMULATE vector instruc­
tions 3-25

example A-3
MULTIPLY AND ADD vector

instructions 3-26
MULTIPLY AND SUBTRACT vector instruc­
tions 3-27

MULTIPLY vector instructions 3-24
examples A-2

multiprocessing considerations 2-1

N

NC (vector-instruction class) 2-19
net count (of vector elements) 2-15
nullification of unit of operation 2-22
number of vector element 2-1
NZ (vector-instruction class) 2-13
NO (vector-instruction class) 2-13
N1 (vector-instruction class) 2-13

o
operand parameters (for interruptible
vector instruction) 2-21

operands for vector instructions 2-7
operation exception 2-6
OR TO VMR vector instruction 3-29
OR vector 'instructions 3-28
overflow

p

fixed-point 2-7, 2-21
floating-point exponent 2-21, 2-26

parameters
operand (for interruptible vector
instruction) 2-21

vector 2-1
partial-sum number 2-2
partial sums

for ACCUMULATE 3-2
for MULTIPLY AND ACCUMULATE 3-25
for SUM PARTIAL SUMS 3-40
for ZERO PARTIAL SUMS 3-41

PER (program-event recording) 2-30
prefetching of instructions 2-30
priority of vector interruptions 2-27
program initialization 2-29
program-interruption conditions 2-25
program switching 2-28
PSW (program-status word) after inter­
ruption 2-23

Q

QST instruction format
QV instruction format

2-13
2-13

R

register
vector-activity count 2-5
vector-mask

See vector-mask register
vector-status 2-2

registers
floating-point 2-10
general 2-10
saving and restoring of 2-28
scalar 2-10
vector

See vector register

resets 2-31
3-29
3-29

3-30
3-31

RESTORE VAC vector instruction
RESTORE VMR vector instruction
RESTORE VR vector instruction
RESTORE VSR vector instruction
restoring of registers 2-28
rounding (vector examples) A-4, A-7
RRE instruction format 2-13
RSE instruction format 2-13

s
S instruction format 2-13
SAVE CHANGED VR vector instruction 3-32
SAVE VAC vector instruction 3-33
SAVE VMR vector instruction 3-33
SAVE VR vector instruction 3-34
SAVE VSR vector instruction 3-34
saving of registers 2-28
scalar iii
scalar operands and registers 2-10
section size 2-1
sectioning 2-11

examples A-I
sequence of vector operations 2-20,

2-30
sequential addressing of vector

elements 2-8
SET VECTOR MASK MODE vector
instruction 3-35

examples A-4
SHIFT LEFT SINGLE LOGICAL vector
instruction 3-35

SHIFT RIGHT SINGLE LOGICAL vector
instruction 3-35

signed binary integers 2-7
significance exception 2-21
source of machine check 2-31
specification exception 2-26
storage-operand consistency 2-30
STORE COMPRESSED vector
instructions 3-36

example A-6
STORE HALFWORD vector instruction 3-36
STORE INDIRECT vector instructions 3-37

example A-5
STORE MATCHED vector instructions 3-37

examples A-4
STORE vector instructions 3-35
STORE VECTOR PARAMETERS vector instruc-
tion 3-38

STORE VMR vector instruction 3-38
storing into instruction stream 2-30
stride 2-8

examples A-2
SUBTRACT vector instructions 3-39

examples A-2
sum of products (example) A-3
Sl~ PARTIAL SUMS vector
instruction 3-40

example A-3
suppression of unit of operation 2-22

Index X-3

T

termination 2-22
TEST VMR vector instruction
three-operand instructions

3-40
2-15

u

units of operation 2-20
unnormalized-operand exception 2-21,

2-27
unsigned binary integers 2-7
updating of vector addresses

See address updating

v
VAG (vector-activity count)
valid vector-register numbers
validation of vector-facility
registers 2-31

VGT (vector count) 2-3
vector iii

bit 2-10

2-5
2-7

vector-activity count (VAG) 2-5
vector change bits 2-4

for saving and restoring 2-28
vector-control bit 2-6

effect of on machine check 2-31
vector count (VGT) 2-3
vector element 2-1
vector facility 2-1

availability of 2-6, 2-27
configuration of 2-6
registers of

See vector-facility registers
vector-facility failure 2-31
vector-facility instructions 3-1

classes of 2-13
effect of interruption on 2-23
fields of 2-13
formats for 2-13
interruptible 2-20
prefetching of 2-30
storing into 2-30
summary of 2-15

X-4 IBM System/370 Vector Operations

three-operand 2-15
units of operation for 2-20

vector-facility registers
See also vector-mask register, vector
register

validation of 2-31
vector-activity count 2-5
vector-status register 2-2

vector-facility source (of damage) 2-31
vector in-use bits 2-4

for saving and restoring 2-28
vector interruption index (VIX) 2-3

after interruption 2-25
vector length

See vector count
vector machine check 2-31
vector-mask mode (VMM) 2-12

bit in vector-status register 2-3
examples of use A-4, A-7

vector-mask register (VMR) 2-1
vector-operation exception 2-6, 2-27
vector register eVR) 2-1

valid numbers for 2-7
vector-section size 2-1
vector-status register (VSR) 2-2
VIX

See vector interruption index
VMM

See vector-mask mode
VMR

See vector-mask register
VR

See vector register
VR instruction format 2-13
VS instruction format 2-13,
VSR (vector-status register)
VSS (vector-section size)

See section size
VST instruction format 2-13
VV instruction format 2-13

z
ZERO PARTIAL SUMS vector
instruction 3-41

zero stride 2-8

2-19
2-2

.....
c:
Q,)

E
.9-
::J
g .
Cl E
,S: 0
..... -o .~
en.s:: -

'co -
E ~

't:l 0
~
CO Q,)

E 0.
B ~
::J't:l
CO OJ

.s:: E
:~ E s: ::J
en Cl

E Ci;
Q,).s::

::a (5 e ~
0. 0

~ ~
~ :~
(.) ~
c: Q,)

CO '" (.) Q,
'" ~

.!E ~
0. '" CO OJ

ci) a.
s:
::J

~ ~ c Q,)

<:0::

IBM System/370
Vector Operations

Order No. SA22-7125~1

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understanding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Com pleteness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the front cover or title page.)

SA22-7125-1

Reader's Comment Form

Fold and tape

Fold and tape

--------- - ------- - ---- - - -----------,-
®

Please Do Not Staple

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

Internationa,1 Business Machtnes Corporation
Department 898
P.O. Box 390
Pou~hkeepsie, New York 12602

Ptea" Do Net Stapl.

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

Fold and tape

(')

s.
g
'T1
o
0:
»
0"
::l
lQ

[
::s
(1)

to
~
en
-<
(f)

CD
3
tv
'-J
o
<
(1)
()
Q

,.-...

~
(1)

Z
o
en
tv
'-J
o
b
-"

~
::l
(1)
0..

::l

C
en »
(f)

»
N
N

I

'-J
-"
N
01

------- ------ ---- - - ----------_.-®

