

--- ------ - ---- ~-- Introduction to Data Management - - ---- - - -----------,-

Student Text

First Edition (April 1970)

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality. Address comments concerning the
contents of this publication to IBM Corporation, DPD Education Development -
Publications Services, Education Center, South Road, Poughkeepsie, New York 12602.

© Copyright International Business Machines Corporation 1970

Contents

CHAPTER 1: DATA MANAGEMENT CHAPTER 4: DATA ORGANIZATION 21
AND INFORMATION 1 Introduction 21

Introduction1 Sequential Organization 21
Data Management1 Direct Organization 23
Information 1 List Organiza tion 26
User Information3 Representing Data Structures 27

CHAPTER 2: FIELDS AND RECORDS 5 CHAPTER 5: FUNCTIONS OF DATA
Fields 5 MANAGEMENT 35

Types of Data Representation in Fields 5 Introduction 35
Encoding and Compression 5 Mapping 35
Virtual Data 6 Information Context and Data

Designing Logical Records 6 Independence 38
Fixed- and Variable-Length Logical Records ... 8 Data Management Functions 040
Logical Record Identification. 8 Events 43
Logical Data Structures 8 Data Flow45

Simple Data Structures. 8
Hierarchic Data Structures 10 CHAPTER 6: DATA BASE SYSTEMS
Networks 10 CONCEPTS47

Organizing Field Within Records 13 Introduction 47
Locating Fields 13 Information System47
Delimiting Fields 14 Design Criteria of a Data Base System47
Representing Data Structures 16 Event-Driven Systems 49

Data Independence49
CHAPTER 3: DATA STORAGE DEVICES ... 18 Binding Time 50
Introduction 18 Degree ofIndependence 50
Attributes 18 The System Administrator 51
Attaching Devices to Systems 19
Control of Devices 19 INDEX52

L

Chapter 1: Data Management and Information

INTRODUCTION

The purpose of this publication is to introduce the reader
to the concepts of data management and information pro
cessing. It is intended to address both programmer and non
programmer alike, although not all sections will be of
interest to experienced computer personnel.

It is important to distinguish between data management, as
described in this publication, and data management described
in the Operating System and Disk Operating System
publications. Many of the data management concepts
expressed in this manual have not been implemented in the
Operating System or Disk Operating System. It is the intent
of this publication to introduce the reader to data manage
ment concepts that will apply to future systems as well as
to current implementations.

The tem1S 'user' and 'information system' will be used in
this chapter. An information system provides information
on request. A 'user' of an information system can obtain
and alter information contained in the system, but cannot
alter the system.

DATA MANAGEMENT

Data management is the control, retrieval, and storage of
information to be processed by a computer. Each of these
three areas of data management is an essential function
of any information system.

Control

Control is the authorization and supervision of the data
management process. Authorization is the validation of a
user's right to access or modify the information in the
system. Supervision includes monitoring the location of
information, insuring against data loss (data integrity), and
insuring that the information in the system is current.

Retrieval

Retrieval is the process of locating, structuring, and ordering
the information in the system for the user of the system.
Locating information is determining what data is required
and where it may be found. If the information is not in a
form suitable to the user it must be structured to meet his
needs and perhaps ordered in a different sequence.

Storage

Storage is the technique for representing the information
both logically and physically on a storage device such as a
disk, tape, or punched card. It includes the order in which
the information is stored, the way it may be physically
accessed or addressed, and the physical method of
representing the data itself.

The data management system functions of control, retrieval
and storage will be discussed in more detail (with examples)
in another section of this manual.

INFORMATION

Before we can talk further about data management, it is
necessary to examine information and how it is represented
and used in an information processing sy~tem.

Information is ideas and facts about things; people, places,
machines, etc. We shall refer to these things as entities.
We record information about entities. Figure 1 shows some
entities and some information about them. The information
is in English text and roughly corresponds to how we think
about each entity. Much of the information shown in
Figure 1 is implicit and a result of our own understanding
of the nature of a person or a part.

If we attempt to make the implicit part of the information
explicit, the result is shown in Figure 2, Part 1.

We can now take these results and remove the part of the
information that applies uniquely to John Jones or Part 573.
The result is in Figure 2, Part 2.

We can see that information about entities is composed of
at least two parts: the context (Figure 2, Part 2) and data
(Figure 2, Part 3). The context is the same for like entities
(people) but different for different entities (people, Parts).

In addition to context and data, it is necessary to know how
the data is represented. For example, with the data "John
Jones" we must know that blalJks separate the first name
from the last, and that the order of the names is first name
first. Information about entities therefore consists of
3 parts:

Information = Context + data + data representation
(see Figure 3).

Data Management and Information

Entity

Person

Part

Figure 1. Information about Entities

Entity Information (Part 1)

John Jones is the ~ of an employee

whose occupation is Accountant, works

for employer ABC Company in Dept. 5A.

He has an age of 40 yrs., a marital

status of married. His salary is $250/wk.
Person

He lives at address 801 Main Street,

Poughkeepsie, N. Y. HisSocial Security

Number is 999-99-9999.

The part with part name gear has a part

number of A573. It has a diameter of 5",

Part has n~lmber of teeth 40 and has a shaft

diameter of 1/2 inch. It is made of

material aluminum. It has a manufac-

turing cost of $5 and a selling price of

$7.50. There is a quantity on hand of

100.

Figure 2. Information - Context and Data

2

John Jones is an Accountant who works for the ABC Company
in Department 5A.
He is 40 years old, married, and has 3 children aged 14, 10, and 8.
His salary is $250 per week.
He lives at 801 Main Street, Poughkeepsie, N. Y.
His Social Security Number is 999-99·9999.

The gear with Part Number A573 is 5 inches in diameter with
40 teeth, and fits a 1/2 inch shaft. It is made of aluminum.
It costs $5.00 to manufacture and sells for $7.50.
There are 100 of these gears in stock.

Context (Part 2) Data (Part 3)

____ is the name of an employee John Jones

Whose occupation is _____ " works for Accountant

employer _____ in Dept._ ABC Company 5A

He has an age of __ ' a marital 40 years

_st_at_u_s of ___ . His salary is __ _ He married $250/wk

lives at address _________ _ 801 Main St., Pok., N.Y.

His Social Security Number is ____ _ 999-99-9999

The part with part name _ has a part gear

number of . It has a diameter A573

of _, has number of teeth _and 5" 40

has a shaft diameter of ___ . It is made 1/2"

of material ___ • It has a manu- Aluminum

facturing cost of _ and a selling $5.00

price of __ . There is a quantity $7.50

on handof __ 100

L

Information
Information

Context + + Data Representation

Information
Entity Attributes Data Values Data Attributes

John Jones is an Accountant in NAME Jones, John 20 Alpha Characters
Deptarment A26 whose gross pay Last Name First

is $250 per week. His Social 5.5.# 999-99-9999 11 Alpha Characters
Security Number is 999-99·9999.

DEPT. # A26 3 Alpha Characters
Person

GROSS PAY $250 5 Decimal Digits with Decimal
Point between second and
third digit

OCCUPATIOI\l Accountant 10 Alpha Characters

The gear with Part Number PART NUMBER A573 4 Alpha Characters
A573 is 5" in diameter, has
40 teeth, and is constructed DIAMETER 5 1 Decimal Digit
of aluminum. It sells for Inches

$7.50 and costs $5.00 to NUMBER TEETH 40 2 Decimal Digits
Part manufacture.

MATERIAL Aluminum 8 Alpha Characters

SELL PRICE $7.50 3 Decimal Digits
2 Decimal Places

MAKE PRICE $5.00 3 Decimal Digits
2 Decimal Places

Figure 3. Information - Conrext, Data and Data Representation

In conventional data processing the data is stored separately
from the context and data representation. The reason is
that, as we have shown, the context and representation is
common to all like entities. The data is stored on tape, disk,
or cards, and the context and representation is part of the
computer program that retrieves the data. It is the function
of data management to build meaningful information by
bringing together the proper context, data, and data
representation. The characteristics of an entity that define
the context (for the entity "people" they are Name,
Address, Employer, Social Security Number, etc.) are called
Information Attributes (see Figure 3). A user will defme
the context of the information he will use by a list of
information attributes for which there are recorded
corresponding data values.

USER INFORMATION

The user of an information system wishes to know certain
facts about certain entities. To retrieve these facts he must
define the entities of interest, and for each entity, a list
of information attributes. For example, if the manager of
the Personnel Department wants to know the weekly salary
of all the female employees in the Accounting Department
(A45) he would defme the entities of interest as:

ENTITIES - Female Employees in Department A45

and the information attributes as:

NAME
WEEKLY SALARY
SEX
DEPARTMENT
MAN NUMBER

The list of information attributes for each entity is a logical
record. A logical record has meaning only to the person
using the system to obtain information.

The set of entities that is presented to the user is called a
fIle. In the previous example there may be 20 female
employees in Department A45. The 20 entities make up
the user's fIle. Figure 4 shows a logical record and fIle for
PARTS.

Up to this point we have not mentioned the relationship
between a user's fIle of logical records and the physical
representation and layout of the information. The method
by which the logical information is obtained from the
physical information is the key to understanding data
management. Figure 5 shows the subjects that must be
understood before we can continue the discussion of data
management. Read the associated chapters in those areas
with which you are not familiar.

Data Management and Infonnation 3

Entity Definition of Logical Record (Context) File (Oats)

Information Attributes

Definition Part Number A573 ""
of Diameter 5

Logical Number of Teeth 40

Gear Records Material Aluminum > Logical Record 1

Sell Price $750 J
Make Price $5.00

B614 ""'
6

70
> Logical Record 2 Steel

$10.00

$ 8.00

C720 """\

1

100 J Logical Record 3 Brass

$50.00

$40.00

Figure 4. Information - Logical Records and Files

Topic Chapter

User Concept of Data Chapter 1
Data Management and Information

Organization of Data Within Chapter 2
Logical Records Fields and Records

Data Storage Device Chapter 3
Characteristics, Volumes, and Data Storage Devices
Physical Records

Data Organization Chapter 4
Concepts and Techniques Data Organization

To Continue Discussion of Chapter 5
Data Management Functions of Data Management

Figure 5. Prerequisite Topics for Understanding Data Management

4

FIELDS

In Chapter 1 we discussed information as the sum of context,
data, and data representation. A field is the smallest unit of
information of interest. A field has a meaning and a name
(context), a value (data), and a representation. Exanlples
of fields are shown in Figure 6. A collection of fields
relating to the same entity is a logical record.

Types of Data Representation in Fields

There are many ways of representing data both internal
(main storage) and external (disk, tape, cards) to a digital
computer. We will discuss those representations that lend
themselves to processing by System/360 hardware and
language compilers (PL/I, COBOL, ALGOL, Assembler
Language, FORTRAN, RPG).

The data representations are:

Arithmetic - represents numeric data

• Decimal Fixed Point
• Decimal Floating Point
• Binary Fixed point
• Binary Floating Point

String - contiguous sequence of characters or binary digits

• Bit String (string of binary digits)
• Character String (string of alphameric characters)

Context

Meaning Name

The Man Number of MANNO
Entity Employee.

Outside Diameter SIZE
of Entity Pipe.

Address of ADDRESS
Entity Vendor.

Figure 6. EXIlmples of Fields

Chapter 2: Fields and Records

In general, arithmetic data is used for fields that are used in
arithmetic calculations and string data is used for all other
data types.

Detailed descriptions of the use and processing of these data
representations can be found in other IBM publications.
Some of these publications are: IBM System/360 Operating
System PL/I (F) Language Reference Manual (Ge28-820l),
IBM System/360 Operating System COBOL Language
(Ge28-6516), and IBM System/360 Principles of Operation
(GA22-6821).

Encoding and Compression

In addition to the different data representations listed
above, data can be represented within character and bit
strings in encoded or compressed form.

Encoding is translating data from one form to another.
Some examples are shown in Figure 7. Encoding is used to
conserve either external storage space or to facilitate
processing. In example 2, Figure 7, if 'Color' is stored as a
fIXed-length character string, 6 characters are required in
the logical record. If 'Color' is encoded as shown, at least
5 characters will be saved. If many logical tests (and, or,
not) are being performed on 'Color', the encoding to bit
string may make processing faster and easier. Encoding can
also be used for data security by encoding so that the
stored data value is meaningless unless the translation
scheme is known.

Data Representation

Value

778175 6 Alpha Characters
(Character String)

15 2 Decimal Digits
Unit of Measure· Inches
(Decimal Fixed Point)

15 Main St., 30 Alpha Characters
Alington. Va. Street, City, State, ZIP
60102 (Character String)

Fields and Records 5

ENCODING COMPRESSION

Information Possible Field
Max.

Translation Result Compression Result
Field Result Possible Data Length Result

Attribute Data Values Size
(-+) Length Algorithm Length

GERMAN 7 GERMAN -+ G G 1 bbliJOHNbDbbbb 25 Remove Blanks and 3JOHN9JONES4 12
ENGLISH Characters ENGLISH -+ E E Character 0lililiJONESlililili Replace with a

Language FRENCH FRENCH -+ F F liliFREDlililibbli 21 Count of Number
SPANISH SPANISH -+ S S lililibDbDlili of Blanks Removed 2FRED15 7

RED 6 RED -+ 001 001 3 Bits 0015700 7 Remove First and 01570 5

BLUE Characters BLUE -+ 010 010 ~ 0016300 Last Digit Since it 01630

-I Color
ORANGE ORANGE -+ 011 011 ~ 0019560 Does Not Change 01956

YELLOW YELLOW -+ 100 100 0187370 18737

GRAY GRAY -+ 101 101

Sex MALE 6 MALE -+ 1 1 1 Bit
FEMALE Characters FEMALE -+ 0 0 o

I

Figure 7. Encoding and Compression

Compression is condensing repetitive information (Figure 7). 2.
Compression, like encoding, is used to conserve external

How will the field be used?

storage space. In Figure 7, example 4, the data values can
contain many blanks. If the blanks are removed and a count
is inserted to indicate the number removed, the length of
the stored field is greatly reduced. The original data value
can be reconstructed using the count field.

Virtual Data

In the fields discussed in the previous sections, data
physically exists that corresponds to a field name. For
example, if a user defines a field as YEAR-TO-DATE
GROSS, a data value exists on a storage media (tape, disks,
cards) which represents the Y-T-D Gross. Another type of
data that can be useful in the information systems is
virtual data. Virtual data does not physically exist on a
storage device, but is calculated from other values. For
example, a user defines a field in his Logical Record as
YRS-OF-SERVICE. The data that is stored is DATE-OF
HIRE. If the system knows that the relationship between
YRS-OF-SERVICE and DATE-OF-HIRE is Y-O-S =
Today's date - (D-O-H), it can then perform this
calculation and present the result to the user. The user need
not be aware that YRS-OF-SERVICE is virtual data.

DESIGNING LOGICAL RECORDS

It is important in designing logical records to understand
each of these data types and to be able to answer the
following questions:

1. How meaningful is the information in this field?

6

Since we are designing a logical record for a user of
the information system, only those fields that have
meaning for his application should be included.

3.

4.

The data representation of the field should be
consistent with the predOminate usage of that field.
For example, if the field is used 80% of the time for
arithmetic calculations and 20% of the time for
display on a report, it should be stored in arithmetic
form (decimal or binary, fixed or float).

Are there language restrictions on a particular
data representation?

COBOL, FORTRAN, ALGOL, and RPG all have
strengths and weaknesses with respect to processing
certain data representations. The data representation
should be chosen to fit the language that will be
used for the particular application.

Is it necessary to be machine independent?

Certain data representations (fixed decimal, fixed
binary), when implemented for a particular computer,
make the data "machine dependent", that is, this
data cannot be processed by a computer of different
design. Character string data is generally the most
compatible data representation.

5. Is the field easy to process?

The data in the field should be as directly usable as
possible. For example, a field that contains a code for
SEX can be encoded 1 for Male, 2 for Female;
however, to display the information on a report would
require a translation (1 to MALE, 2 to FEMALE). If
the SEX were encoded M for Male, F for Female, a
translation may not be required.

L

L

Information Sample
Attribute Data Values

Student Name John Jones

Home Address 801 Main St. Pok, N.Y.

Campus Address Barker Hall

Class 1972

Enrolled Date 09/30/66

Tuition $500

Room Fee $200

Billing Address 801 Main St. Pok, N.Y.

College Engineering

Major Elect. Eng.

Grade/Course Math 101 - B
Chern 3 -A
Engl5 -0

Previous Colleges None

~~ T d~ T do!
T

Figure 8. Available Information about Students

6.

7.

How will the data representation of this field affect
the overall efficiency of the process?

Certain data types in combination with encoding and
compression conserve internal and external storage;
others conserve processing time. These tradeoffs
should be considered in the design of a field.

Will changes in the data values of a field affect
the representation?

In any encoding or compression scheme, a prior
knowledge of the possible data values is required. If
these values change at some later time, extensive
program changes may be required.

Range of Data Maximum
Data Values Representation Length

Unlimited Charactet'" String 30

Unlimited Character String 30

Barker Hall Character String 11
Jones Hall
Brown Hall
Davis Hall
Off Campus

1960 - 1980 Character String 4

1960·1970 Character String 8

Unlimited Character String 4

Unlimited Character String 4

Unlimited Character String 30

Unlimited Character String 15

Unlimited Character String 10

Unlimited Variable-Frequency 10
Character String Each

Course

Unlimited Variable-Frequency 20
Character String Each

College

,I.

T
,.
T

,.1"

T

To illustrate the above principles in designing fields for
logical records, let us design a logical record to be used for
student billing. The information attributes available for
each student are shown in Figure 8 along with sample data
values and representation. Please note that we are not
interested in how or where the information is currently
being stored, we are only interested in designing a record
for the purpose of student billing. The information attributes
that are required for student billing and the resulting logical
records are shown in Figure 9.

The assumptions on which this solution is based are:

• Student Name, Billing Address, and Department
are already in satisfactory form.

Fields and Records 7

Information Field Data
Attribute Size Representation

Student Name 30 Characters Character String

Billing
30 Characters Character String Address

Campus 2 Characters Character String

Address

Class 2 Characters Character String

Tuition 5 Decimal Digits Fixed Decimal
2 Decimal Places

Room Rent 5 Decimal Digits Fixed Decimal
2 Decimal Places

Dept. 20 Characters Character String

Figure 9. Student Billing Record

•
•

Tuition and Room Rent will be used frequently in
arithmetic calculations.
For the purpose of billing, an Encoded Campus
Address and compressed class is adequate.

FIXED· AND VARIABLE·LENGTH LOGICAL RECORDS

In the student billing example, the resulting logical record
was flXed length. The fixed·length record is defined as a
record in which all fields are of unchanging length and the
position of the field within the record is flXed for each
record within the me. Although fixed-length records are
usually the easiest to process and control, all types of data
do not conform to this format.

A record becomes a variable-length record if

1. It contains a variable-length field.
2. It contains a variable number of occurrences of

fixed-length fields.

If in our student me (Figure 7) we find that the average
length of a student's name is 10 characters, we may want to
make STUDENT NAME a variable-length field, instead of
a 30-character fixed field (see Figure 10). Grade data in the
student file is fixed for each entry (COURSE-GRADE),
however, there are !lyariable number of courses for each
student (Figure 10).

Since a variable-length logical record can contain many
different variable-length and occurrence fields, techniques
have been developed to organize data within these records

8

Encode and Compress Sample Value

None JONES, JOHN E.

None 801 Main St. Pok.

BARKER HALL ~ BA
JONES HALL ~JO

BROWN HALL ~ BR BA
DAVIS HALL ~ IJA
OFF CAMPUS ~OF

Remove first two digits 72

None 50000

None 20000

None ELECT ENGR

to allow retrieval of each field. These techniques will be
discussed in a later section of this chapter.

LOGICAL RECORD IDENTIFICATION

Each logical record contains a field that identifies the
record and relates it to an entity. This field is called the
record ~. If the record contains information about an
employee, the key is the Man Number; about a part,
the Part Number. A me is usually (but not necessarily) in
sequence by key. A key can also be a concatenation* of two
or more fields within the record, or a truncation of a field.
Examples of concatenated and truncated keys are shown in
Figure 11. Note that the keys do not have to be unique.

LOGICAL DATA STRUCTURES

Within logical records, relationships can exist between fields
as well as between entity and field. These relationships are
called data structures. Most information about entities is
expressed in one of three data structures; simple, hierarchic,
and network. Please remember that we are talking about
relationships within a single logical record, not between two
or more logical records.

Simple Data Structures

Simple data structures exist when each field within a logical
record is dependent only on the key field for its meaning.
An example of a simple structure is shown in Figure 12,
Part A.

*Concatenation is defIned as 'linking together to form a series or chain'.

Variable-Length Fields Variable Occurrences of Fixed Fields

Student Name

Fixed Length Variable Length Student Courses and Grades Length

Math 101 B 8

I JohnbJonesbbb --bl 25 I JohnbJones I 10
Jones Psyc 200 C 8

Muse 500 A 8
Phil 220 A 8
Math 102 C 8

I IbWUbtib b bl 25 1.lbWU I 4 Total 40

Davis Engl 001 D 8
I Stanley R. Kolwalskib-bl 25 I Sta.nley R. Kolwalski I 19 Math 010 D 8 -

Total 16

Figure 10. Variable-Length Data

Key Type Entity Record Key

Simple Employee Manno Name Gross Pay 778180 ---
~ Jones 100

Key

Part Part No. Part Description A622915 --
~ Wing Brace

Key

Key

Component -Concatenated r \
Parts Parent Part Component Part Oty Req

A01 XYZ 1 A01XYZ
A01 XY1 2 A01XY1
C03 ZYZ 7 C03ZYZ
C04 ZY5 6 C04ZY5
C04 125 9 C04125
C04 173 1 C04173

Truncated Telephone Name Phone No. Address
Customer

Robert A.J.

~ (
Robert

Roberts C. L. Robert
Roberts A. N. Robert

~on R. D. Robert

Key

Figure 11. Record Keys

Fields and Records 9

Structure
Type

® Simple

Key

Student No.

7302A

Key
Part No.

AZll0099

Name

Jones, John

Sample Record

Home Address Enroll Date Current Courses

101 Main St. Sept. 1969 Math 501
Engl 001
Psyh 700
Phys 317

Description Warehouse Component Parts

Base 702

Graph

® Hierarchy

Oty inWH 702
3

Location in 702
A28

AXl173321
Oty of Reg

1

ABl13227
4

©

716
100

A27,AOl B7336241
2

Key
Dept. No. Job Title Employee Task

D15

Network

CD Engineer (tev)

CD Secretary (t@)

G) E. Tech

@ Jones (tQ).t®) ® Design CompA

~® Smith(t(3),t@) ® Build ProtoA

(j) Johnson (tG).t®) @)Document

G) M. Tech (t@) @ Build PartZ

@ Design CompZ

(t @) Means 'a relationship exists between this field and field ®

Figure 12. Logical Data Structures

All of the fields in the student record are meaningful if we
associate each of them with the key of STUDENT NO. This
relationship can be shown graphically as in Figure 12. In the
graph each field depends on the field above it for its meaning.

Hierarchic Data Structures

Hierarchic relationships exist between fields when a field
depends on one or more fields (other than the key) for
its meaning.

In the example in Figure 12, Part B, "quantity on hand"
is meaningful only if the warehouse in which it is stored is
known, and "quantity of a component part" is meaningful
only if the part to which it refers is known. The graph in
Figure 12, Part B shows this relationship. Graphs of
hierarchic structures are called 'trees'. Another characteristic
of hierarchies is that each branch of the tree is independent
of other branches. In the tree shown in Figure 13 assume
that only one field exists at each level. A branch of the tree
can then be identified by the concatenation of the names

10

of all the fields in that branch. All the resulting branches
shown in Figure 13 are independent if the data structure is
hierarchic.

Fields at the same level of a hierarchy are sometimes formed
into groups called segments. It is often convenient to have
a key within each segment so that multiple occurrences of
that segment can be identified in sequence. Each segment
can then be treated as a sub-record and contain fields that
are dependent on the key of the segment. In Figure 14 the
field hierarchy has been transformed into a segment
hierarchy. In this graph, each field in each segment is
dependent on the key of that segment and the keys of all
higher-level segments for its meaning. None of the meaning
has been lost and the structure has been simplified.

Networks

A netwQrk exists within a logical record when the branches
of a tree representing the structure are not independent of
each other. An example of a network is shown in Figure 12.

Figure 13. Trees

Semester Average

Branches

A.B.C
A.B.D
A.H.I
A.X.Y.L
A.X.Y.M
A.X.Z

Field Hierarchy

Figure 14. Segment Hierarchy

Tree Representation of Hierarchy

Segment

Key

Home Address Campus Address Segment

Segment Key

Semester Spmester Average Segment

Segment Key

Course Grade Segment

Fields and Records 11

KEY Dept

Job Employee Task

Employee Job Employee

RECORD Employ In Employee
Dept Job That Job Employee Job Title Task Task Assigned

D15 Engineer Johnson Jones M. Tech Bid ProtoA Design CompA Johnson

Secretary Smith Smith Secretary Document Build ProtoA Jones

E. Tech Johnson Engineer Design CompA Document Smith

M. Tech Jones Design CompZ Build PartZ

Design CompZ Johnson

Figure 15. Network as Hierarchy by Duplication

Product A

. . . , • ••• •• II • • •• . .
.

Component B

.
Component C Component D

.
. . .

'--___ -I:
, "\

.......... _"'... \ I
---- ___ ~ __ .",..-'" I , \ , \

Figure 16. Network

12

, \ , \ , ,
" , ,

............ ' - ~ ----- -------

........
. .

The entity of interest is the department. Within the depart
ment are jobs that are represented by job titles (Engineer,
Technician, Secretary), people repre-sented by Man
Number, and tasks to be or being performed (Design
Component A, Build Component B, Document System).
An employee both fills a job title and is assigned one or
more tasks.

It is interesting to note that by duplicating fields within
the department record, the network can be expressed as a
hierarchy (see Figure 15).

Another example of a network within a logical record is
shown in Figure 16 which represents the structure of a
product made up of many parts. If we wish to relate all
parts of the same type (shown by the dashed lines) and all
components that are made in the same department (shown
by dotted lines) a network exists.

ORGANIZING FIELDS WITHIN RECORDS

The data structures described in the previous section
represent the logical relationships of the fields within a
logical record. Many techniques have been developed to
represent these data structures physically within the logical

Record

Social
Security No. Name

record as it appears in main storage. These techniques allow
the user's problem program to locate and process each field
within the record. This section will discuss the most common
methods for organizing fields within records.

Locating Fields

There are 3 basic ways in which a field can be located and
identified within a logical record:.

1. By relative location
2. By embedded identification
3. By pointers and lists

Relative Location

Each field in the logical record is identified by its relative
location. For example, in Figure 17, the Name field in the
Payroll record is always the second field in the record, and
the Address field in the Directory record is always the last
field in the record. Relative location is the most common
technique used today, and is always used for fixed-length
records. It can also be used for variable-length records
where no fields are omitted.

Samples

Salary YTD Gross YTD Tax

Payroll I 203·91-9055 I Richard D. Simpson I 150.00 I 2000.00 I 200.00 I
Record

I ""
, ..,' / ""

,
I / ./

, , , ,
I / , ,

/ , , ,
I

, ," t:. , ,

I 157-90-7132 I J. Jones 1250.00 13500.00 1329.00 I

Address

Directory I Record
A I B I C

1
501 Main St. I .., , , , ,

I Al
1

Bl

..,..,

I Cl 17 Broadway I

Figure 17. Location by Relative Position

Fields and Records 13

Embedded Identification

This technique requires that additional fields be added to
the record. These fields contain no data about an entity,
but identify the field or fields that follow. In Figure 18,
fields X, Y and Z contain character strings that give the
names of the fields which they immediately precede. With
this technique, fields can be in any order within the record
and still be located.

Pointers and Lists

Pointers are fields within the record that, like embedded
identification, contain no data about the entity. A pointer
field contains the location (address) of a field within the
record. In Figure 19 the Personnel record contains
information on both the employee's skills and his previous
positions. The first skill and position are located by relative
location. Each skill and position field has associated with it
a pointer field that points to the next skill or position. All
the skills can be located by finding the first skill then
following the pointers until the end is reached (* in pointer
field). Fields connected in this manner with pointers are
called lists, and the techniques of retrieving and updating
lists are called list processing.

Delimiting Fields

The previous three techniques assume that the length of
each field is known to the problem programmer. In fixed
length records, or in variable-length records containing
a variable number of fixed-length fields, the length does
not vary from record to record, and can be specified in the
problem programs. If variable-length fields are present,
however, the length of the field must be obtained from the
record, either implicitly or explicitly.

Implicit Length

If pointers are used to locate the beginning of fields, the
lengths can be calculated by subtracting the locations of
the starting points of adjacent fields. Another method is
inserting special characters (delimiters) to mark the beginning
or end of a field. Examples of implicit lengths are shown in
Figure 20.

Record Samples

Social Sec. No. X Y Z

155-12-8099 Jones. R. J.

"-
Payroll "-

"- "-

173-18-7621 8 Broadway Smith. T. P

Student Name X y

Student
Classes Math Engl Lit Grades A C B

Fields X. Y. Z contain character strings that give the name of the fields immediately following.

Figure 18. Location by Embedded Identification

14

...",

Record Sample

Relative Character Position (Address)

Personnel

Notes

o
I
I
I
I
I

10 20
I I
I Name I
I I

Jones, J.R.

Smith, T. J.

CD -Means this is a pointer field.

* - Indicates end of list.

Skills for Jones are Law - Eng - Acct

30 40 50
I I I
I Skilll ipositionl :

h<t) CD.

I

I I
i Skilll I Positionl

I CD.

Positions for Jones are Senior SE - Assoc SE - Dept Mgr - Sales

Skill 1 and Position 1 are located by relative position.

Figure 19. Pointers and Lists

Technique Sample Record

60

These pointers point to the start of each field.

~
Student Pl P2 P3 Address Tuition

Pointers I 1201451501 501 Main I I (1) Roberts, R. K. 700.00

Record Address----.20

Student Address

Delimiters I Roberts, R. K. 1 $1 501 Main 1 $1 (1)
(2) I I

RAl RA2

RA = Record Address of Delimiter $
(1) Field Indentification is by relative location in both examples.

(2) '$' Delimiter must not appear as data in this record.

Figure 20. Delimiting Fields - Implicit Length

45 50

Tuition

700.00 1 $1
I

RA3

Guardian

Roberts, J. N.

Guardian

Robert, J. N.

70

I
I

End

1

I
End

80
I
I

®:
I

100

Length Calculation

Length of Address = P2 - Pl

Length of Tuition = P3 - P2

Length of Guardian = End - P3+1

Length of Address = RA2 - RA 1 - 1

Length of Tuition = RA3 - RA2 - 1

Length of Guardian = End - RA3

Fields and Records 15

Explicit Length

The most common technique for specifying the length of
variable-length fields is preceding the field with a numeric
value that gives the length of the field. In Figure 21 field A
contains a value of 25 which is the length of the Name field.

Representing Data Structures

The methods for locating and delimiting fields can be used
in combination to physically represent logical data structures.
Some examples are:

EXAMPLE 1: Representing a hierarchy using relative
position and explicit length. The hierarchy shown in
Figure 12(A) can be represented as shown in Figure 22.

Variable
Length
Fields

S.S. No. (Fixed) A

999·99·9999

Name (Var)

Jones, J. B. tJ-tJ

B

The number of repeating fields are given in the fields CNT
(X). If fields are absent, the CNT (X) field value is zero, but
must still be present if location by relative position is to be
retained. This method is frequently used in COBOL
programming.

EXAMPLE 2: Representing a network with lists. The net
work shown in Figure 12 (C) can be represented with lists
as shown in Figure 22. Note that because EMPLOYEE
NAME is a variable-length field, a length field is included
immediately preceding each employee field. Note also that
a single field can be on two lists. The first item in each list
is located by relative position.

Address (Var) Salary (Fixed)

501 Main•.. N. Y. 150.00

Length of
Name field

Length of
Address field

Variable
Number
of Fixed
Fields

Student No. Name C Course Course Course

873982 Johnson, A. R.

t
Number of occurrences
of COU RSE field (1)

(1) Even though the length of each COU RSE field is known,
the number of occurrences is required to locate the
CAMPUS ADDRESS field.

Figure 21. Delimiting Fields - Explicit Length

16

Campus
Address

Barker Hall

'TI

~
'" ::I
0.
;:0
(1)
f)

o
a
t/>

-....

"!'J <§.
~

~
>J

1
~.

~
~

~
<""l ...
~

('

Hierarchy using
Relative Position
and Explicit
Length

Network using
Lists and
Pointers

Graph

(

Length
of

Sample Record

Part No. (Fixed) Descript. Description (Var) Warehouse 1

Z77 -909-A43 Gear Reducer 701

Warehouse 2

816

Comp Oty
Part 3 2

I 7610 11m]
CNT (1) = Number of Warehouse Groups
CNT (2) = Number of Oty/Location Groups within Warehouse 1
CNT (3) = Number of Oty/Location Groups within Warehouse 2
CNT (4) = Number of Component Part/Oty Groups

All fields fixed length except DESCRIPTION.

At Bt ct Job 1 Dt et

RA9

Task 5 Ft
I [)~~~D *

RA12
A t
B t
C t
D t
E t
F t

Points to next Employee
Points to JOB for that employee
Points to TASK for that employee
Points to next JOI?
Points to employee for that JOB
Points to Next Task

Loc 1

Task 1 Ft

(

Oty
2

Loc
2

Chapter 3: Data Storage Devices

INTRODUCTION

In Chapters 1 and 2 we have looked at data, information,
records, and files from the viewpoint of the user of an
information system. In this chapter we will look at how the
data is stored on and retrieved from the data storage devices
attached to a computer system, and the characteristics of
these devices.

The ideal complement to a data processing system would
be unlimited storage, any part of which could be made
available at the instant it was needed by a program. This
ideal is only approached by main storage, which certainly
is not infmite in size and does require a certain amount of
time to access. If technology could provide an infinitely
fast, unlimited size storage, there would be no need for
data management as we know it today because all data
could be directly referenced by the user.

Providing data storage outside the main storage of a
computing system is one function provided by Input/Output
(I/O) devices. All data (out) to and (in) from devices passes
through main storage. Input/Output devices provide
external storage and a means of communication between a
system and the external world.

I/O devices include card read punches, printers, typewriter
keyboard devices, magnetic tape units, direct access storage
(disk and drum), teleprocessing, and process control equip
ment. This chapter will provide an aid to understanding the
characteristics of those devices used in external data storage.

ATTRIBUTES

There are several attributes that classify storage devices.
These include data capacity, addressability (how data is
located), access time to data, data transfer rate, physical
advantages and limitations, and cost or economy. Devices
are selected for use in systems by evaluating these attributes
against the requirements of the application or system.

Capacity of a storage device is a measure of the amount of
data that can be stored on it. A standard measure is bit
capacity, usually megabit (l06 bits). All of the bit capacity
is not available for data storage. Some space is required for
error checking and synchronizing information, so it is more
practical to refer to useful data storage capacity in bytes
(a meaningful frame of 8 bits). A data or storage word may
also be used to describe a standard format of a number of
bits or bytes.

Addressability can be considered in two parts: addressing -

18

how a data element is located; and resolution - how much
data (bits, bytes, or words) is referenced by one data address.
Addressing may be simply implied. For example, cards being
read from a card reader are read in the order in which they
are placed in the hopper. It is not possible to select a
particular card for reading in the device. This is known as
sequential access, when addressing or locating a given element
of data is completely dependent on the data that has
already been accessed on the device. The opposite extreme
in addressing is the ability to reference data explicitly by
location where this access is in no way dependent on the
location of the data most recently read or Written. This is
known as direct access or direct addressing. Another
addressing method is access to data based on the value of
data or the contents of a storage location. This is called
associative addressing. Resolution describes how much data
is referenced in an address. For I/O devices, this is usually a
physical record or block such as a card in a card reader.
Main storage, while not an I/O device, is an example of byte
resolution -- any given byte may be addressed. Address
ability is influenced by physical attributes of the device and
the storage media itself. The device can fill both the role of
external storage and communication if the storage media
is removable and interchangeable. For example, a magnetic
tape can serve as additional storage to a system, can be
removed from the tape drive and mounted on a drive in
another system, and thereby become the source of input to
this second system.

Addressability can be limited by the physical structure of
the device. A tape unit is primarily suited for sequential
access to data. While it is possible to search for a particular
element of data, the system must look at every intervening
record until the desired one is found.

If you were to take magnetic tape (generally observed on a
reel), cut it into short pieces, and add the ability to find any
particular piece or strip, you would have the fundamental
principle of the data cell. An addressing scheme permits
selection of a given strip of tape. Once selected, this strip
must still pass by a reading station. Continuing the
comparison with a magnetic tape unit, if each strip contains
10 records and we know which strip contains the target
record, it is only necessary to search up to 9 records before
gaining access to the desired one. Conceptually this could be
accomplished by drawing the strip straight across some
reading mechanism starting with the beginning of the strip.
Another prinCiple can be introduced here - rotating media.
Forming this strip of tape into a loop, it is no longer
necessary to start reading at the beginning of the tape strip.
Reading may start anywhere and, when the end of the strip
is reached, simply continue from the beginning of the strip.

The principle of rotating media is the basis for disk and
drum devices. If you took many data cell strips, formed
them into loops side by side with the recording surfaces
facing out, put a reading element on each loop, and made
the whole assembly rigid (except the read elements or heads),
you would have the basic drum. The same principle holds
true for disks except that for economy, there is usually only
one read/write head per disk surface. This head is on a slide
or arm and is moved to the desired concentric location or
track as required. Following the example that we used for
the data cell, if we know what track a record is on it is
necessary to position a read head on that track, then read up
to 10 records to find the one in question. Note that this
may be accomplished without moving the unneeded data
into main storage.

The media or volume may be removable from the device
and interchangeable with other volumes on other devices or
it may be permanently mounted. The latter is usually
characteristic of drums. Another measure that can be made
of the device parameters presented thus far is the factor of
time or speed. The time factor includes:

• Access time to the beginning of data.
• Transfer rate of the data to or from main storage.

For magnetic tape, access time may be the time necessary
to move the tape to the beginning of the next record (milli
seconds) or much longer if it is necessary to search past
many records to find the desired data.

Access time for direct access devices consists of "seek
time", which is the time required to position the head to
the particular track, plus the "latency" or time necessary
to reach the beginning of the desired data on that track.
Average latency may be defined as one-half the time
interval between two successive occurrences of a particular
point or record at a read/write access position (;ea(i"lieads).
Once having reached the beginning of the desired data record,
transfer of data occurs to or from main storage at some
transfer rate.

In System/360, bytes per second is a convenient measure
of data transfer rate. This rate of transfer is determined by
the device. If tape is moving past a read head at some
number of inches per second and each inch of tape contains
800 bytes, then the transfer rate is apparent. This rate may
be variable if the device has the ability to "slow down"
during possible peak system loads when data cannot be
moved into main storage as fast as the device is presenting
data. Punched page tape is an example of this. A unique
mechanical cycle is taken for each byte of data and the next
mechanical cycle is not taken until the preceding data is
taken from the device. Magnetic tape and disk units, however,
must move data at a uniform rate. If data is not removed
from the deVice, or provided to it fast enough, we say the

device has "overrun" the system.

ATTACHING DEVICES TO SYSTEMS

The preceding discussion of device characteristics indicates
that the many different devices cannot be directly attached
to a system in the same manner. The channel, oriented to
the central processing system and main storage; and the
control unit, oriented to a particular device type, are
functional units between the device and the system.

The control unit provides the logical capability necessary to
operate and control an I/O device, and adapts the
characteristics of each I/O device to the standard form of
control provided by the channel. The control unit may be
housed separately or it may be physically and logically
integrated with the I/O device.

The channel directs the flow of information between I/O
control units and main storage on a standard I/O interface
to the control units. Again, the channel may be housed
separately or integrated under the covers of a CPU.

Much of the circuitry necessary to control a device is
complex, and is only required for a relatively small portion
of the total device operation. Also the normal use of the
device itself may create relatively long idle periods with
busy intervals. These conditions and the need for economy
make it feasible for several devices to share the services of
one control unit. Depending on the particular characteristics
of the devices, the control unit may permit many devices
or only one device to be operated at a time.

The channel is used for relatively brief intervals by a device
(control unit) to fetch or store data or control information
in main storage. Thus a channel will often have more than
one control unit attached to it. Again, concurrent operation
of control units may be permitted depending on the design
of a particular channel type.

CONTROL OF DEVICES

Now that we have developed device characteristics and
shown how devices may be attached to data systems, we
may turn to how operations start, end, and are controlled
on devices by the system. The method of control used in
System/360 is a hierarchy.

Instructions are issued by the program (usually the
operating system) to channels. These instructions specify
the particular channel, control unit, and device desired and
make indirect reference to control words in a predetermined
location of main storage. The channel will use these control
words to issue commands to the control unit. These
commands (such as read, write, control, and test) may be
modified and further defined for each device type.

Data Storage Devices 19

The device executes orders received from the control unit.
A DASD seek, for example, requires that a control command
be sent to the control unit. This command is modified to
indicate that a seek operation is required. The control unit
then requests the necessary data bytes from main storage
via the channel. Having received this seek address, the
control unit looks where the disk device is currently
positioned, calculates the direction and amount of arm
travel, then gives the device the seek order.

20

This chapter has taken a very general look at devices, their
use, attachment, and operation. Refer to the IBM System/360
Principles of Operation (GA22-6821) for more information
on system control of I/O operations and to the Component
Description SRL publications for more detailed information
about specific devices.

INTRODUCTION

We have seen that devices store data in physical blocks.
To make this data useful it is necessary to be able to
identify collections of physical blocks that pertain to
specific entities, and to be able to retrieve this data in a
meaningful sequence. It is also necessary to store the data
on the device in such a manner that the device is efficiently
utilized. The technique of identifying, retrieving, and
storing data in physical blocks on devices is called Data
Organization.

We know that data resides on a volume (such as a disk pack
or a reel of tape) in the form of a physical block. The size
of the block is often determined by device limitations
(30-character card) or hardware efficiency considerations
(one large block of data is usually more efficient to process
than many small blocks). Therefore, data is not normally
grouped in terms of physical blocks but in terms of another

basic unit of data called a stored record. A stored record is
an identifiable collection of related data elements. The
relationship of the data elements depends upon the particular
data structure. A data element is the data portion of a field
and has data attributes such as name, representation, and
length as opposed to information attributes pertaining to
entities such as employee name, address, or salary. There
may be one or more stored records in a block or there may
only be part of a stored record in a block with the remainder
contained in one or more additional blocks. The corre
spondence of stored records to logical records will be
discussed in the next chapter.

Stored records are grouped on storage volumes as data sets.
A data set is a named collection of stored records that may
reside on one or more volumes by itself or with other data
sets. An example of a data set might be a collection of
stored records containing data pertaining to all students in
a university. Another data set might be maintained for
faculty members, and another for programs used to process
student data.

We will now describe and compare three basic forms of
data organization: sequential, direct, and list. We will then
look at how these data organizations apply to various data
structures.

SEQUENTIAL ORGANIZATION

In the past, the most common data organization has been
sequential organization. Stored records are physically placed
adjacent to one another and to retrieve any record, all
preceding records must be retrieved.

Chapter 4: Data Organization

The order or sequence is usually chosen according to a
common attribute of the stored records such as a particular
data element. The data element chosen to order the data
set is called the ~. The sequence of a data set may be
changed by selecting a different data element to be the key
and sorting the stored records according to the values of
the new key_ In Figure 23(A), a data set containing data
about the employees of a given company is ordered
according to the values associated with the data element
EMPLOYEE NUMBER. If the data element NAME were
used as the key, the stored records would be physically
reordered in the data set as showin in Figure 23(B). In some
cases, using one data element as a key is not sufficient to
identify a given stored record. In this case, one or more
additional data elements would be concatenated to form
the key. Figure 23(C) shows the same data set sorted in
descending order according to the values of the data
element DEPT_NUMBER. Notice that there are two stored
records with the value of DEPT. NUMBER equal to 12.
To ensure a unique sequence, the data element NAME is
concatenated to DEPT. NUMBER and, in this case, the
values of NAME are placed in descending order. At the
other extreme, stored records might not make use of any
key and the order of placement into the data set may be
based on their order of arrival into the system.

The advantage of sequential organization is rapid access to
the next stored record. Referring to Figure 23(A) again,
sequential organization is more suited to processing requests
of the form "retrieve all stored records in order by ascending
value of EMPLOYEE NUMBER" rather than of the form
"retrieve the stored record with EMPLOYEE NUMBER
equal to 125". In both requests all of the stored records
must be accessed, but the first five stored records accessed
in the second request are of no value. Because a data set
can have only one physical sequence of stored records, the
mode of processing must coincide with the given sequence.

If a group of stored records must be processed using more
than one key, the stored records are sorted into different
data sets. The stored records in Figure 23 represent three
separate data sets. The contents of each data set is the same,
but the ordering facilitates processing using one of three
different keys. This duplication of data sets obviously wastes
storage space and increases maintenance cost because a
stored record that is updated in one data set must be
updated in all three.

Updating stored records in a sequential organization can be
difficult, especially if the updated stored record is longer
or shorter than the original. Updating usually involves
copying the stored records from one data set to another and

Data Organization 21

2

3

4

5

6

Employee
Number

008

043

081

086

102

125

Key

Name

Smith, J.

Jones, B.

Ritter, K.

Smith, B.

Pearce, D.

Holt, J.

(~

Dept.
Number

14

12

20

12

17

21

Employee
Number Name

2

3

4

5

6

Employee
Number

125

043

102

081

086

008

Dept.
Number

Dept.
Name Number

Holt, J. 21

Jones, B. 12

Pearce, D. 17

Ritter, K. 20

Smith, B. 12

Smith, J. 14

Key

125 Holt, J. 21

2 081 Ritter, K. 20

102 Pearce, D. 17 3
Dept.

Number + Name

4 008 Smith, J. 14

5 086 Smith, B. 12

6 043 Jones, B. 12

Concatenated
Key

Figure 23. Sequential Organization

updating the affected stored records as they are copied.
This becomes expensive when only a small number of stored
records require updating in a large data set. The usual
practice is to batch stored records to be updated, sort them
into the sequence of the data set, and process the data set
periodically when a significant number of updates have
been accumulated. However, this practice reduces the time
liness of the data in the data sets.

Similar problems are encountered in sequential organizations
where stored records are to be added or deleted. Inserting or
deleting a stored record means the existing stored records
must be shifted apart or pulled together respectively,
which means recopying the entire data set. This is not

22

entirely a disadvantage because retaining a stipulated
number of old copies* as a precaution provides a ready
method of recreation of data sets in the event of inadvertent
destruction or discovery of errors.

Sequential organization offers rapid access to the next
stored record in a data set if the basis for retrieval is the
same as the basis for the physical ordering of the data set.
Sequential organization is inefficient for retrieving stored
records not in sequence. Adding, deleting, and updating
stored records in a data set presents difficulties in that the
data set normally has to be copied in its entirety, but by
the same token, back-up procedures and error recovery
are simplified.
* These old copies are referred to as 'generations'.

DIRECT ORGANIZATION

Direct data organization ignores the physical sequence of
stored records in a data set and accesses stored records on
the basis of their physical hardware address in the storage
device. Direct organization is applicable only to direct
access storage devices such as disks and drums. Stored
records are always stored or retrieved using the hardware
address of the particular stored record. Variations in the
implementation of the direct organization occur in the way
that the key of the stored record and the hardware address
are related. Three common methods for accessing stored
records are: direct address, index search, and calculation
or hashing.

In direct address processing, every possible key in the data
set corresponds to a unique storage address. * A location
must be reserved in the data set for every key in the range.
For example, consider a data set that contains stored records
with key values ranging from 100 to 499. Because each

key converts to a unique address, 400 locations must be
reserved. If only 200 keys are active, half of the space in
the data set will be unused. This method of direct addressing
allows any stored record to be stored or retrieved with only
one movement of the access mechanism. In addition,
sequential processing is possible under this organization
because the stored records are written in key sequence.

The index search variation of direct organization alleviates
some of the shortcomings of direct addressing. In this
method, an index is maintained consisting of keys and
assigned hardware addresses. The assigned addresses are all
the available storage locations within a data set. When a
stored record is to be placed into the data set, as in Figure
24(A), the index is searched to locate an available storage
address, the key of the stored record is equated to that
address, and the stored record is written into the data set.
When a stored record is to be retrieved, as in Figure 24(B),
the index is searched to locate the required key value, the
associated storage address is obtained, and the address is

Index - Before Index - After

Key Key Location Key Location

1102 I
Pearce, D. 117 I 043 01 043 01

125 02

=> 008 03

102 04 ~
125 02

008 03

04

STORAGE
05 05

06 06

Data Set

1 043 1 Jones, B. 1121 1 125 1 Holt, J. 1211 Unused II'--_u_n_use_d_

01 02 04 05 06

Key

® 043

125

008 03
RETRIEVAL

102 04

05

06

Figure 24. Index Search

* It is restricted to the use of numeric keys only.

Data Organization 23

Key range: 0100-9999

®

Assume key value = 1898

" 99711898

60
15 r9o'1

Remainder = 901

Remainder = 1 (+1=2)

Storage Address: Relative Track 60 Record 2

Assume key value = 5886

'5 Remainder = 901
99715886

60 Remainder = 1 (+1=2)

15 r9o'1
Storage Address: Relative Track 60 Record 2

Figure 25. Example of Calculation Technique

used to access the given stored record. The index search
method allows data sets to be allocated space based only on
the actual space requirements of the stored records and not
on all possible key values within a range. Also, keys do not
have to be numeric values as in direct address, but can be
any representation. Unique addresses are assured and any
record can be accessed with only one seek once the address
is obtained from the index. However, time is required to
look up the address in the index, which may be a serious
disadvantage when it contains many entries. The index also
requires additional storage space in excess of that required
by the stored records in the data set. For sequential
retrieval the index can be sorted into key sequence.

The calculation or hashing method of direct organization is
used for non-numeric keys and when the range of keys for
a data set contains so many unused values that direct
addressing would not be practical. The purpose of the
calculation method is to manipulate the keys in a data set
by some algorithm to compress the range of key values to
a smaller range of stored addresses. Many techniques have
been used to calculate valid storage addresses from a given
set of key values. An example of one technique is shown
in Figure 25(A). Consider a data set that will contain 1000
stored records on a device that will hold 15 stored records
per track. A prime number is chosen close to 1000; in this
case 997. The key is divided by this prime number, the
quotient discarded, and the remainder divided by the
number of records per track. The quotient from this

24

calculation is the relative track address from the beginning
of the data set and the remainder plus one represents the
stored record location on the track. In Figure 25(A), for
key value of 1898, the result of this calculation gives an
address of relative track 60 and the second stored record
location on that track. This is a valid address because the
data set contains 67 tracks (1000 locations divided by 15
locations per track).

\n inevitable result of calculation techniques is the
occurrence of synonyms - two or more stored records that
result in the same storage address. In Figure 25(B) the same
calculation is performed for key value 5886 as was performed
for key value 1898 in Figure 25(A). Notice the storage
addresses derived are identical. Various techniques are used
to find a location for a synonym to a stored record already
located in a data set. One technique is to read stored
records sequentially until the nearest empty location is
found and place the synonym there. Another is to provide
a separate storage area for synonyms. Stored records placed
in such locations can later be retrieved simply by searching
until they are found or by using pointers to locate the
synonym more rapidly. *

For example, when a stored record cannot be placed in the
intended or "home" location because another stored record
is already there, a pointer from which the address of the
later stored record can be obtained is maintained as an
additional data element in the first stored record. If addi~
tional synonyms are added later, pointers can be maintained
from the next-to-Iast to the last synonym. Thus a "chain"
of addresses is set up; the stored record at the home
location will contain a pointer to the first synonym, the
fIrst synonym will point to the next, and so on until the
last synonym either points back to the home address or
contains an arbitrary value recognized to mean "end of the
chain" (Figure 26). This technique reduces retrieval time
at the expense of maintaining an additional data element in
each stored record andat the expense of increased complexity
in updating the data set because the previous stored record1s
pointer must be changed whenever a new synonym is added
or relocated.

The basic objectives of a calculation technique are to derive
a valid address for every key in the data set and to distribute
the addresses as evenly as possible across the key range to
minimize synonyms. A sought-after goal is to have no more
than 20% synonyms.

Direct organization is most suited to rapdily accessing a par
ticular stored record with a known key value. It is less suited
to rapidly accessing a large number of stored records following
a given relationship as in the sequential organization. This is
because the time required for the hardware access mechanism
to locate a given record will normally be much greater if the
next stored record is not physically adjacent to me currentoae.

• A pointer in this case is the direct address of the stored record
in question.

2

Track 5 186 000 E 000

2

Key

Stored Record

3

3

Pointer
Trk#+ Record #

Track 12
...... 4_01_ 00_0 1 I 607 000 I l_l_l_5 _0_oo_~

Figure 26. Chaining of Synonyms

®

®

2

3

4

5

6

Figure 27. Simple List

'999' Signifies End-of-Chain

2

3

4

5

6

Employee
Number

008

043

081

086

102

125

Name

Smith, J.

Jones, B.

Ritter, K.

Smith, B.

Pearce, D.

Holt, J.

Dept. Name
Number Pointer

14 X

12 5

20 4

12 1

17 3

21 2

Dept. Name Employee
Number Name Number Pointer

Dept.
Pointer

008 Smith, J. 14 X 4

043 Jones, B. 12 5 X

081 Ritter, K. 20 4 5

086 Smith, B. 12 1 2

102 Pearce, D. 17 3 1

125 Holt, J. 21 2 3 ...

L Starting point
for 'Name' list

4

Starting point
for 'Name' list

Starting point
for 'Dept' list

5

Data Organization 25

Most methods used in direct organization result in con
siderable unused storage or many groups of synonyms.

LIST ORGANIZATION

The basic concept of a list organization is the use of
pointers to defme the relationship between stored records.
A pointer is a data element within a stored record that
contains as a value the address of another stored record.
By including a pointer within each stored record, relation
ships between stored records can be established that are
independent of key values and physical location. By using
more than one pointer in each stored record, multiple
relationships can be established with one physical sequence
or a data set. Figure 27 gives an example of a simple
list organization. It is the data set of Figure 23(A) with a
pointer added to each stored record. We wish to establish a
relationship between the stored records based on the
alphabetical ordering of the data element NAME. We find
that the stored record in location 6 is the starting point of
the list. This stored record contains a pointer to the stored
record in location 2 which in turn contains a pointer to
the stored record in location 5, etc. The end of the list is
signified by the letter 'X' in the example. We see that by
adding one data element to each stored record we can
process the data set in employee number sequence by
means of the physical ordering of the data set and also in
alphabetical order by employee name by using the list
pointers. We add another data element as a pointer in each
stored record in Figure 27(B) and we have established all
the relationships between the stored records in one data
set that required three separate data sets in Figure 23.
Therefore, one obvious advantage of list organization is
the possibility of multiple relationships between stored
records using only one copy of the actual data. Updating
is simplified under simple list organization if data elements
not used as keys are changed because a change to a non-key
data element applies automatically to all lists passing through
the stored record. Updating data elements used as keys
requires changing the list pointers for that particular
relationship.

Inserting new stored records into a list is accomplished by
simply changing the pointer in the preceding stored record
to point to the one being inserted. The pointer that was
originally in the preceding stored record is placed in the
new stored record. If the new stored record is to be in
more than one list, each list must be searched from the
beginning in order to place the stored record correctly
within the given relationships. Deleting stored records is
simple if only one list passes through the stored records.
The list must be searched to locate the stored record and,
when it is located, the pointer from the stored record to
be deleted replaces the pointer in the preceding one. Deleting
a stored record through which multiple lists pass is difficult

26

unless pointers are maintained to the preceding stored
record as well as to the one following.

Insertion and deletion of stored records in a data set can be
made slightly easier by using a ring organization. Rings
are an extension of the simple list organization and are
created by having the last pointer in a list point back to the
first stored record in the list rather than indicate "end of
list". The first stored record in the list will have some type
of identifying symbol to denote that it is the beginning of
the list. When multiple lists pass through a given stored
record that is to be inserted or deleted, the starting point
record or the record that precedes or follows the desired
record can be found by searching the ring. Unless backward
pointers are maintained, it is not possible in a simple list to
find the preceding stored record without locating the list
starting point in some manner and searching from there.
Ring organization allows the preceding stored record to be
found without locating the starting point or using backward
pointers. However, this would be a time-consuming process
with large lists.

Because locating a specified stored record in both simple
list and ring organizations can be a relatively slow process
for long lists, a way to reduce the list length is advantageous.
This can be accomplished with an inverted list organization.
In a simple list, pointers are maintained with the stored
records to relate these stored records according to the values
of specific data elements used as keys. In an inverted list,
the data element values are placed in an index that relates
the value of the particular data element to the locations of
stored records that correspond to the given value. For
example, look at the data set in Figure 23(A). If the data
element DEPT.NUMBER were placed in an index with pointers
to the appropriate stored records, the result would be as shown
in Figure 28(A). Notice that no pointers are included in the
data set and that the relationship between the stored records
based on DEPT.NUMBER is contained in five short lists
in the index rather than in one longer list in the data set. To
retrieve the stored records that contain data about employees
who work in Department 12, the index would be scanned
for the key value 12 and the data set accessed for stored
records in locations 4 and 2. As a further example, suppose
the data set of Figure 23(A) had a data element added to
each stored record to indicate the sex of each employee as
shown in Figure 28(B). This example points out the ability
of an inverted list organization to handle classification
requests such as "how many female employees work in
Dept. 121". To satisfy this request, the index is searched to
find the lists corresponding to 12 and FEMALE. Only the
stored record in location 4 contains both attributes, so that
record is retrieved. The request was satisfied with only one
access to the data set with the majority of the processing
being done in the index. Another point to be made from the
example in Figure 28(B) is that keys used in an inverted
list organization are more effective if they contain classes of
values such as MALE or FEMALE; MARRIED, SINGLE,

•
1

®

®
--,

Dept. I
Number I -r-

Sex I
I
I
I
I
I
I

I
I
I
I

I
L ____ --1

Index

Key
Value

21

20

17

14

12

Key

Location

6

3

5

1

4;2

Index

Value Location

21 6

20 3

17 5

14 1

12 4;2

Male 2;3;5;6

Female 1; 4

Figure 28. Inverted Lists

or DIVORCED; rather than keys with inherently unique
values such as EMPLOYEE NUMBER. Unique keys generate
a large number of short lists and greatly increase the length
of the index. This can be alleviated somewhat by having a
higher level index to delineate key ranges as is shown within
the dotted lines in Figure 28(B).

In the general case, the inverted list organization can use
every data element as a key so that all data can be accessed
equally well. This would be very advantageous for unpredict
able data retrieval environments. However, the indexes
would take a great deal of storage space and the problem
of updating becomes very serious. A common compromise
approach is to organize the data in a sequential or direct

2

3

Data Set

Employee
Number Name

Dept.
Number

008

2 043

3 081

4 086

5 102

6 125

Employee
Number

008

043

081

Smith, J.

Jones, B.

Ritter, K.

Smith, B.

Pearce, D.

Holt, J.

Data Set
Dept.

Name Number

Smith, J. 14

Jones, B. 12

Ritter, K. 20

14

12

20

12

17

21

Sex

Female

Male

Male

4 086 Smith, B. 12 Female

5 102 Pearce, D. 17 Male

6 125 Holt, J. 21 Male

manner and use inverted lists only on selected keys. These
inverted key lists are usually referred to as secondary indexes.

REPRESENTING DATA STRUCTURES

In Chapter 2, three types of logical data structures were
defined -- simple, hierarchy, and network. These three
categories of data structures are also applicable to relation
ship between data elements within and between stored
records. Therefore, let us look at some examples of the basic
data organizations in the context of these three types of data
structures. No attempt will be made to show all possibilities.
We will simply demonstrate how a particular data structure
might be represented by an appropriate data organization.

Data Organization 27

Stored Record

Employee
Number Name

Dept. Hire
Number Date

10342 Johnson, R. 14 12-4-69 1

Graph

Employee
Number

J J
Name Dept. Hire

Number Date

Figure 29. Simple Data Structure

The example of a simple data structure shown in Figure 29
is similar to the stored record format we used in previous
examples. It is a simple structure because the data elements
'NAME', 'DEPT NUMBER', and 'HIRE DATE' are dependent
on the value of the key 'EMPLOYEE NUMBER' to derive
meaning. Let us assume that we have a data set of 10,000
stored records of the format in Figure 29 and the require
ment is to be able to process these stored records sequen
tially by the value of 'EMPLOYEE NUMBER'. We must
also be able to directly access any stored record pertaining
to a given employee. If we create the data set using the
sequential data organization and place the stored records
physically adjacent to each other in sequence by employee
number, we can satisfy the first requirement. However,
because sequential organization does not lend itself to
rapidly accessing a stored record other than the one that is
physically located next on the storage device, we must have
something more than simple sequential organization.

28

Remember that the index search type of direct data
organization allowed both sequential and direct processing
of a data set in some cases. Therefore, if we physically place
the stored records in the data set in sequence by the values
of the key 'EMPLOYEE NUMBER' and also place the key
values in sequence in the index, we can achieve both
sequential and direct processing.

We have met the processing requirements for the data set
but there are several weaknesses. The index used to directly
access the stored records contains 10,000 entries. This
might lead to lengthy search times to locate the particular
key value. We could reduce this time by creating a higher
level index to locate a more appropriate starting point for
the search but this approach increases the total size of the
indexes used. Another approach might be to place only the
key and storage location of every 10th stored record into
the index, thereby redUCing the index size in this example
to 1,000 entries. To retrieve a given stored record, the
index is sequentially scanned until the desired stored record
is located. This approach is sometimes known as "sparse
indexing" .

This approach would be satisfactory except that we cannot
add stored records and keep the sequence without rewriting
the entire data set and index. We might overcome this by
placing stored records to be added in a separate area of the
data set called an "overflow area" and use pointers to main
tain the sequence. A common approach is to use a second
index entry for each group of stored records (in this example,
every group of 10). The index entry indicates the existence
of overflow entries and, if any are present, where the over
flow stored records are located. If more than one overflow
stored record is present for a given group, pointers might
be used within them to maintain the sequence. Figure 30(A)
shows how a portion of the index and data set might look
before the addition of stored records with key values of 14,
15, and 29:Figure 30(B) shows the index and data after the
additions. The additions required only rewriting two groups
of stored records and two sets of index entries and writing
three stored records in the overflow area instead of re
copying the entire data set and index. The approach just
described is the basis for a common data organization known
as Indexed Sequential.

,
/

® Index
Stored Records (Keys Only)

Key Location 2 3 4 5 6 7 8 9 10 To be added

Normal 17 10 2 6 8 9 10 12 '<12" IJD ,51
Overflow 17 10

11 12 13 14 15 16 17 18 19 20 To be added

Normal 36 20 27tE' I~ 19 20 21 23 24 35

Overflow 36 20

~
91 92 93 94 95 96 97 98 99 100

Overflow I
I I I I I I I I I Area

@ Index
Stored Records (Keys Only)

Key Location 2 3 4 5 6 7 8 9 10

Normal 15 10 2 6 8 9 10 12 13 1141 15

Overflow 17 91
11 12 13 14 15 16 17 18 19 20

Normal 35 20

I I I I I I I I 19 20 21 23 24 27 29 30 31 35

Overflow 36 93

~
91 92 93 94 95 96 97 98 99 100

~~Iowl'i I t 36 I I I I I
Figure 30. Addition of Stored Records

Data Organization 29

Name

®

Figure 31. Hierarchical Data Structure

Figure 31(A) shows a graph of a hierarchical data
structure. It is hierarchical because certain data elements
such as COURSE NUMBER and GRADE depend on the
values of data elements other than the key for meaning. We
could combine all occurrences of the data elements into one
stored record as in Figure 31(B). The stored record would
be of variable length depending on the number of semesters
the student was in school, the number of courses per
semester, etc. A data set containing variable length
stored records presents unique updating problems when the
length of a stored record is changed. In addition, the length
of the stored record may become rather long, resulting in
the unnecessary transfer of data for a particular request
because only a limited number of data elements might be
needed to satisfy the request. Therefore, it would be to our
advantage to break the "stored record in Figure 31(B) into
smaller, fIxed-length stored records and try to take
advantage of the hierarchical structure.

30

Looking at the graph in Figure 31(A) we see that the
variable nature of the data stems from multiple occurrences
of SEMESTER for a given student and multiple occurrences
of COURSE NUMBER for a given semester. Therefore, we
might defIne three types of stored records for a given
student and use the simple list data organization to relate
the various types as shown in Figure 32. The fixed data
about a student such as NAME and ADDRESS are placed in
one stored record per student and arranged in sequence by
STUDENT NUMBER. A pointer is appended to this stored
record to point to the first stored record containing semester
data that could be contained in a different data set. For
each student, there will be one stored record for each
semester he was in school containing fIXed data for a given
semester (such as SEMESTER AVG) and a pointer to the
next semester's stored record. In addition, for each semester
there is a pointer to the fIrst stored record in a list containing
data pertaining to courses in which the student was enrolled
during that semester.

Student
Number

104

107

77

96

24

43

12

80

Semester
Name Address Pointer

Smith. B. Barker Hall I 2~ /

Johnson. A. 14 Elm Street I '~
Raymond. J. Westchester Hall

Semester Semester Course
Pointer Average Pointer

Course
Name

English 1

Math 10

Physics 2

Course
Grade Pointer

Figure 32. Use of Simple List Organization

Data Organization 31

I

Product Z

Component A Component B Component C

I 1 I I I I
Part 2 Part 4 Part 7 I Part 2 Part 5 I Part 2 1 I Part 4

Figure 33. Network Data Structure

Updating the data about a particular student is eased some
what under this data organization. Suppose we wish to add
an additional course for student number 112 for the FALL
70 semester. We locate the stored record with student
number 112. This stored record contains a pointer that tells
us that the semester list begins in location 77. We retrieve
each semester's stored record by means of the SEMESTER
POINTER data element until we encounter the one for the
FALL 70 semester. This stored record contains a pointer
that tells us that the course list begins in location 43. This
list is searched until the last stored record is retrieved
(denoted by an X in the COURSE POINTER data element)
and the new course stored record is added by changing the
X to the location of the new stored record. If we had
organized the data as in Figure 31(B), it would have been
necessary to rewrite the entire stored record due to the
increase in its length. In addition, no course data was
retrieved other than that pertaining to the semester in
question.

32

The last data structure we will consider is a network data
structure as depicted as a hierarchy by duplication in
Figure 33. It shows a product made up of components
that in tum are composed of specific parts. Each block
in the graph represents a stored record. We wish to be
able to find all the components making up a product, all
the parts in a given component, and to identify all com
ponents that contain a given part. We might be able
to accomplish these objectives by using the ring variation
of list data organization. Looking at Figure 34(A), we can
accomplish the first objective by maintaining a pointer
from the product stored record to the first component
stored record, which in tum will contain a pointer to the
next component, etc. When the last component stored
record is retrieved, it will point back to the product data.
Each component will have another data element used as a
pointer to locate the first stored record containing part data.
The part stored records will be chained together until the
last one is reached. It will point back to the first as shown
in Figure 34(B) for part numbers 2 and 4. Similarly, if a
pointer were placed into each component stored record
to point to other stored records under different products
that contain the same component number, we could locate
all products that contain a given component. The stored
records described might be as shown in Figure 35.

I

Product Z

Component B

® Product Z

Component B

~ __ pa_rt __ 2-J1~~----------------~,~~ __ pa_r_t_2 __ ~----------======::------~~1 __ p_a_rt_2 __ ~

~_p_a_rt_4 __ ...,jL_ :=:I Part 4

Part 7 Part 5

Figure 34. Use of Rings

Data Organization 33

Product

Product Number

Component
Number

Component
List Pointer

Next Component
Pointer

Parts List
Pointer

Same Component
Pointer

compon.ntl~ ____________ -L ______________ ~ ____________ ~ ____________ ~

Part Number

Part

Figure 35. Stored Record Descriptions

Next Part
Pointer

We can now get an idea of the power of rings in network
data structures. For example, not only can we locate all
components making up a product, but we can locate all
products that contain a given component by retrieving each
stored record using the SAME COMPONENT pointer until
the starting component stored record is reached. For any
component we can retrieve all parts data pertaining to that
component. For any given part within a product, we can
find all components that contain this part by searching the
SAME PART list. For example, this would be helpful if a
particular part could be made at a lower cost. We would
want to determine the impact on the price of the fmished
product. It is easy to see that the ring data organization
allows us to get from any stored record to any other by
following the appropriate list pointers. However,if the
rings are long or the stored records widely dispersed
throughout the data set, retrieval could be rather time
consuming.

34

Same Part
Pointer

Chapter 5: Functions of Data Management

INTRODUCTION

Up to this point we have looked at three aspects of
information storage:

MAPPING

• The user's concept of information consisting of
fields, logical records, and files (Chapters 1 and 2).

It is the function of data mangement to map the information
from physical blocks into stored records into logical records.
The organization of stored records and their mapping into
physical blocks is called DATA ORGANIZATION. The
organization and mapping of stored records into logical
records is called FILE ORGANIZATION (see Figure 36). • The device concept of information consisting of

physical blocks recorded on a storage medium
(Chapter 3).

• The system concept of information consisting of
stored records and data sets (Data Organization,
Chapter 4).

USER

.File

Logical Record

Logical Record

Logical Record

Logical Record

SYSTEM

Data Set

Stored Record

Stored Record

Stored Record

Stored Record

Storage Device

..... I-----------1.~ Physical Blocks

Physical Blocks

Physical Blocks

Physical Blocks

\, ____________________ ~~,-------------------JJ\,-----------------~,----------------____ ~J

File Organization Data Organization

Figure 36. File and Data Organization

Functions of Data Management 35

FILE DATASET STORAGE DEVICE

A, B, C = Fields Stored Record 1 A, B, C=Oata Elements

Logical
Record 1

FLO
A

FLO
B

FLO
C

A

B

C

A

B Physical Block

C

Stored Record 2

FLO
~ A ~ A

A

Logical FLO
B B Physical Block

Record 2 B ~ .-
FLO .- C ~ C

C

Stored Record 3

FLO A
A ~

Logical FLO
~ B

Record n B

FLO .- C
C

Figure 37. Field and Sequence Mapping (Simplest Case)

The simplest mapping possible is shown in Figure 37. The
logical, stored, and physical records are identical, as are the
file, data set, and sequence of the physical blocks. In Figure
38, a more complex mapping is shown. The logical sequence
of the stored records is different from the physical sequence
of the blocks, and the field position in the logical records is
the reverse of the stored record data elements. This example
suggests two distinct types of mapping: field, and record
sequence. Figure 39 shows complex field and record
sequence mapping for both system and logical file
organization.

36

~ A

.- B Physical Block

.-

In addition to field and record sequence mapping, trans
formations can also be performed between data set and file.
Transformations include changes in data representation,
encoding and trunction (see Chapter 2).

DEVICE

Storage Device

USER SYSTEM
07

File Data Set
B

Key 01 01

A
Stored Record 1

Logical Record 1 A B

{ 01
B A Physical

Block
B

A

Key 02 02

{ 03

Logical Record 2 A B Stored Record 2
B

B A A

{ 02
Key 03 03

B

Logical Record 3 A B Stored Record 3 Physical
A Block

A
08

\

'[
-File Organization B

~
A

-Data Organization

Figure 38. Field and Sequence Mapping

Functions of Data Management 37

USER SYSTEM
File Data Set 1

A I A I c I
B

~
C

[E
[E
Data Set 2

B F G

B F G

B F G

Data Set 3

8
Q
GJ

Figure 39. Complex Field and Sequence Mapping

Information Context and Data Independence

To perform sequence mapping the system must know the
record keys. Field mapping and field transformations require
that the context and data representation be known to the
system. System knowledge of context is the most important
design criteria of an information system.

38

...

C

C

C

DEVICE

Storage Device 1

A

Physical Block

Physical Block

F G

F G Physical Block

F G

D

D Physical Block

D

In the past, knowledge of the context and data representation
was contained in the user's problem program (see Figure 40).
The system therefore could perform no field mapping or
transformation at either the File or Data Organization levels.
If the order of the fields within a stored record was changed
or a data field was represented in a different fashion (character
string changed to fixed decimal), then all users of the data
set had to change their processing programs. When the system
knows the context and can perform field mapping and trans
formation, the data set content and data organization can be
changed without affecting the user's programs (see Figure 41).
The user's program becomes data independent. Data
independence will be discussed in more detail in Chapter 6.

USER
SYSTEM

Problem Program
Stored Record

Logical Record Definition ~
Context Data Representation

Name 20
Manno 7
Gross Pay 5
Dept 2

~
Name
Dept
Manno
Gross Pay

Figure 40. No Data Independence

User Problem Program

Logical Record Definition

Data
Context Representation

Name
Manno
Gross Pay
Dept

20 Characters
7 Characters
5 Decimal
2 Characters

20
2
7
6

No
Change
Necessary

User Problem Program

Name
Manno
Gross Pay
Dept

20 Characters
7 Characters
5 Decimal
2 Characters

Figure 41. Data Independence

Entire
Characters Record
Characters Mapped
Decimal
Characters ------

Must Change Problem Program
to Reflect Stored Record
Format Change

Characters
Characters
Characters
Decimal

~

~

System
Stored Record

From Data Set A

Record
Format
Changes

Jones

777312

500.00

A7

Jones

A7

Jones

777312 Context
Unknown

500.00
(Except Key
for Retrieval)

A7

Record
Format
Changes

Jones

A7

777312

0500.00

System Table

Context and Data Representation
for Data Set

Name
Manno
Gross Pay
Dept

Change
System
Table

Name
Dept
Manno
Gross Pay

20 Characters
7 Characters
5 Decimal
2 Characters

20 Characters
2 Characters
7 Characters
6 Decimal

Functions of Data Management 39

DATA MANAGEMENT FUNCTIONS

In Chapter 1 we described the basic functions of data
management as:

•
•

Control
Retrieval

• Storage

To illustrate these functions we will discuss what might be
involved in processing a request by a user for information
(Figure 42). The system described is a hypothetical one and
is used to illustrate the necessary functions.

Figure 43(A) shows the information (file and logical record)
requested from the system by the user. The user wishes to
process a file that is in sequence by department and, within
department, by man number. He specifies in his defmition
of a logical record the names of the fields he requires, their
data representation, and how he intends to process those
fields (Read only, Update). Figure 43(B) also shows the two
data sets that contain the data that the user wishes to
retrieve. These data sets reside on removable disk packs. We
will assume that our system allows the user to be totally
ignorant of where or how the data he requests is stored
(Data Independence). He need only know the names of the
fields he requires. In order to be able to provide the user
data independence and ensure the validity and privacy of
the data, the system must have information about both users
and data. This information is stored in system directories
(see Figure 44).

Logical Record
Retrieved by System
for User

USER

Specifications of
File and Logical
Record Required r-----..... _

SYSTEM

Data Sets on Devices

Figure 42. Information Flow to Satisfy User Request

40

Problem Program

LJser I D 87601

Retrieve File Sequentially in
Sequence by DEPT/MANNO

Logical Record Definition

Dept
Manno
Salary
Name
Manager
Yrs of Service

Job Title

Last Appraisal

Figure 43(A). User Request

Read Only

Update

Read Only

Payroll Data Set Personnel Data Set

·Stored Record .Stored Record
Definition Definition

,Manno (Key) Primary Manno (Key)
Name Index of Name
Salary both data Dept
YTD Gross sets is on Job Title
Deductions Manno Hire Date

Last Appraisal
Manager

Figure 43(B). Data Sets Available

""'"

User Directory

ID
Accounting

Name Information Facilities Allowed

Figure 44. System Directories

User Directory

This directory contains the identification of users who are
allowed to use the system. It might also include the user's
name, and accounting information to be used for billing.
Because each user may be limited to certain services, the
facilities he is allowed to use are contained in this directory.

Data Set Directory

D. S. Name Volume Key Organization Fields

Payroll 123456 Manno Indexed Manno
Name
Salar~
YTD R
Etc.

Personnel 789102 Manno Indexed Manno
Dept
Job Title
Etc.

Data Set Directory

This directory contains the names of the data sets, the
volumes on which they reside, the key, organization method,
and the users authorized to use them.

Functions of Data Management 41

Field Directory

Name Data Set
Data

Representation
CD

Key
@

Index Authorized Users

Department Personnel 2 Characters No Yes

Hire Date Personnel 8 Characters No Yes

Job Title Personnel 10 Characters No Yes

Manager Personnel 10 Characters No Yes

Manno Payroll 7 Characters Yes Yes
Personnel 7 Characters Yes Yes
Project 7 Characters No Yes

Name Payroll 20 Characters No Yes
Personnel 20 Characters No Yes

Salary Payroll 6 Decimal No No

Notes
CD Key Yes - An index exists for this field for this Data Set.

No - No index exists for this field for this Data Set.

@ Index

@ R/W/U

Yes - A temporary index may be built for this field.
No - No temporary index may be built for this field.

R - The user may read this field.
W - The user may create a new occurrence.
U - The user may update this field.

Figure 44. System Directories (continued)

Field Directory

This directory contains the names of the fields available and
their location. Location consists of the data sets in which
these fields can be found, and the location of the field
within the stored record. The ,data representation of the
data in the stored record, and authorized users are also
included. Information indicating which fields can be used
for secondary indexes, and the status of these indexes is
required.

42

87601 R
Z2929 R/U

A2771 R
87601 R

87601 R/U

87601 R/U

A7731 R
87601 R
08612 R

A003 R
87601 R

87601 R

"""'"

Exclusive Control Directory

Resource Use Owner

87601 Update Field - Job Title CD
In Stored Record-
I n Data Set Personnel

I D of stored record will vary with each record
retrieved.

Facilities Directory

Facility Availibility User

Figure 44. System Directories (continued)

Exclusive Control Directory

It may be necessary'during the processing of a user's
request for information to limit access of stored records,
fields, indexes, data sets, and system services to a single user.
This is normally required when information is being updated
or altered in any way. If a user requires exclusive control of
any facilities, the facility is entered into this directory along
with the user's identification. (Note: This differs from the
authorization facilities that are contained in the User

Facilities Directory

This directory contains the facilities available to the system
(main storage, I/O devices, programs, serVIces, etc.), their
status, and the user of the facility.

These directories may be wholly or partly contained in
either DASD or core storage.

The data management system will then make use of the
directories, the user's description of file and logical record,
and the data sets to provide the requested information
(Figure 45). Two aspects of this system will be examined:

•
•

The events that occur in the system.
The data flow through the system from data set to
user's problem program.

Logical
Record

D ata Set Directory
,

U ser Directory

F

E
C

--'" ,
acilities Directory

xclusive
ontrol Directory ~

USER

Logical Record
Definition
File Sequence

Payroll Data S
-...

SYSTEM
oL Personnel Data S
-..

t
Field Directory

Figure 45. Control Information

Events

et

et

The events that occur in the system are made up of the
user's request for information, and the system's response to
these requests. Figure 46 shows the events that take place
and the systems directories that are referenced. The example
in Figure 46 represents only a part of the many occurrences
in a data system. By examining these events we can isolate
certain functional subsystems that compose a Data
Management System. Refer to Figure 47. These subsystems
are:

• Allocation
Directory. The Exclusive Control Directory is used to control •
interaction between users.) •

Library System
Access Method
I/O Systems •

•
•
•
•

Field Conversion and Mapping
Authorization
Logging and Statistics
Exclusive Control

Functions of Data Management 43

The User

Identify himself by submitting
his identification code (I D).

Submit problem program that
contains request for a file of
logical records and method
of processing those records

Get logical record (for update)

Process user record and alter
job title

Put logical record (updated
record)

Loop back to get and repeat
until end-of·file.

End program

The System Directory Used

1. Verify identification and initiate accounting. User
2. Schedule the user for processing

1. Validate field names Field
- Are they valid?
- Is the user authorized to use them?

2. Determine data set required Data Set
3. Validate user's authorization to use these

data sets.
4. Determine facilities required. User problem program

and Data Sets
5. Validate user's authorization for use of the User

facility.
6. Allocate facilities. Facility
7. Locate data set. Data Set
8. Mount data set
9. Build secondary index of Dept./Man No. for Field

personnel file.

1. Locate next entry in secondary index.
2. Look up man no. in Man No. Index for

personnel data set.
3. Look up man no. in Man No. Index for

salary data set.
4. Obtain exclusive control of the record from Exclusive Control

personnel file for update.
5. Initiate read of physical records from both

data sets.
6. Extract stored records from physical records.
7. Extract fields from stored records. Field
8. Convert fields to user's data representation. User problem program

and field
9. Encode if necessary. User problem program

and field

10. Calculate YEARS OF SERVICE from HIRE DATE. Field
11. Build user record.
12. Return to user.

1. Move and convert JOB TITLE to stored record.
2. Rewrite physical block.
3. If JOB TITLE was secondary index, update or note. Field
4. Log the change for recovery purposes.
5. Drop exclusive control of record. Exclusive Control

1. Dea lIocate facilities.
2. Scratch secondary index.
3. Remove data sets.
4. Calculate account data.
5. Output run statistics to user and log.

Facilities
Field
Data Set
User

Figure 46. Events that Take Place and Directories Referenced

44

~, ,...;

'\
~

ALLOCATION

ACCESS METHOD

LIBRARY

INPUT/OUTPUT

FIELD MAPPING

AUTHOR IZATION

LOGGING AND STATISTICS

EXCLUSIVE CONTROL

Figure 47. Data Management Subsystems

ALLOCATION: Schedules, allocates, de allocates system
facilities (I/O units, DASD Space, Core Storage, Data Sets,
Buffers, Program Services, etc.).

LIBRARY SYSTEM: Maintains and accesses system
catalogs and directories.

ACCESS METHOD: Performs data organization, which
includes:

•
•
•
•

Maintaining and creating data set indexes
Locating physical records and stored records
Error checking and correction (logical errors)
Organizing data for output or retrieval

FIELD CONVERSION AND MAPPING: Performs the
logical file organizational functions of:

• Extracting and building fields from and into
stored records

• Converting the stored record's data representation
to the user's data representation

• Encoding and truncation
• Developing virtual data
• Validating field requests and formats

INPUT/OUTPUT SYSTEM: Responsible for the physical
transfer of data from I/O device to CPU, channel and
device scheduling, and physical device error analysis
and recovery.

AUTHORIZATION: Validates user's authority to use
system facilities, alter access fields, and to establish
accounting and priorities.

LOGGING AND STATISTICS: Logs transactions and
updates for recovery and evaluation. Records statistics of
system operations and accounting information.

EXCLUSIVE CONTROL: Responsible for preventing data
loss or inaccuracy due to simultaneous use of fields,
stored records, or data sets by multiple users.

Data Flow

Figure 48 illustrates the data flow from the data set to
logical record. It is assumed that the physical records that
are reqUIred to build the next logical record have been
located in the access method. The physical records are read
into buffers. The:stored records are then extracted from
the buffers and moved to a work area. The fields within the
stored records that the user requires are extracted, data
representations are changed, encoding is performed, and
then the fields are moved into the user's logical record.

The interaction of the data management subsystems that
accomplish the above data flow is shown in Figure 49.
(Note: Not all possible interactions are shown. Allocation
and authorization are assumed complete.) It should be
restated at this point that the above subsystems are not
meant to describe an implementation of a data management
system, but rather to illustrate functions of such a system.
It is also important to note that these functions are
required in any data management system regardless of
whether they are provided by the operating system, or the
user's problem program.

As the system provides more of these functions, the user
can:

• Become less sophisticated in data processing
• Concentrate on application development
• Reduce maintenance costs of problem programs
• Utilize the power of complex data processing

systems more efficiently

In the preceding section we have discussed how a data
management system can provide information for the user.
A system that can provide the functions just mentioned
for many users simultaneously is called a Data Base (D/B)
System. The next chapter will discuss the design require
ments of D/B systems.

Functions of Data Management 45

LOGICAL RECORD

DEPT

NAME

ETC.

~

WORK AREA

Payroll Stored Record

<D Physical blocks are read into system buffers.

<2> Stored records are bu ilt or extracted from buffers.

BUFFERS

<:3) Fields are extracted, converted (if necessary). and moved to user area.

Figure 48. Data Flow

Request for
Logical Record

Fields Required

USER

Logical Record

Status <D

LOGGING AND
................ STATISTICS --

Request for
Log or Status

I

FIELD
MAPPING

AND
CONTROL

Request for
Stored Record

Request for
Index Search

Request for
Index Build

Stored Record

Index Value

Status <D

for
Exclusive Control

Request to
Write Log

t

ACCESS
METHOD

PRl PR2

25CS

<D

Location of

~
Stored Record

DRl I SRY
'-v-...'

Physical Record

Physical Record

INPUT/

Physical Record OUTPUT

Status G}

~"'" 'od T",

(j) Status indicates error condition
EXCLUSIVE
CONTROL

Figure 49. Interaction of Data Management Subsystems

46

~

Chapter 6: Data Base System Concepts

INTRODUCTION

In the previous chapter the functions of a data management
system were described. If we add to data management a
control program to schedule and monitor facilities and a
communications control program to handle telecommunica
tions, the result is a data base or information system (see
Figure 50).

t t t t USERS

~ (INFORMATION

TELECOMMUNICATIONS
POOL

CONTROL
PROGRAM DATA

DATA
MANAGEMENT CONTEXT

SYSTEM

SUPERVISOR
SYSTEM

(CONTROL PROGRAM)
CONTROL

Figure 50. Information SjlStem

INFORMATION SYSTEM

An information system is a system that controls, maintains,
and provides concurrent access to a pool of information
for an identifiable set of users. This pool of information
is often called a 'data bank'. The components are:

1. Data base, which contains all the data that can be
accessed by users. *

2. Context and data representation for the data in
the data base.

3. System control information, such as users
authorized to access data, and available facilities. **

An information system possesses many advantages:

• Data Independence
• Data Availability
• Data Control
• Data Consistency

*User, as defined in Chapter 1, can retrieve and alter information
but cannot change the system.

**Items 2 and 3 could be contained in system directories as
discussed in Chapter 5.

Data Independence

As described in Chapter 5, data independence allows changes
in location and data representations of fields, without users
being aware of these changes. This can result in significant
savings in program maintenance costs as well as allowing
application development to proceed without reference to
impacting current applications.

Data Availability

Because the system knows the location of all fields and can
retrieve them, all the information in the system is available
in any cOmbination (if the user is authorized to retrieve it).

Data Control

Another by-product of data independence is centralized
control of the location and representaLon of fields. The
user has no power to alter the operation of the system or to
change and retrieve data unless authorized to do so.

Data Consistency

Access to data can be limited to those users capable of
using it correctly. Because the system processes each field,
it can also check to see if the value of the field is valid and
reasonable. *

We will now discuss the design criteria for an information
system that can offer the above advantages.

DESIGN CRITERIA OF A DATA BASE SYSTEM

In Chapter 5, we defined the requirements of the data
management system that are necessary to retrieve informa
tion for a single user. Many additional features are
necessary if the information system is to prove useful to
an organization consisting of many users who simultaneously
require access to the information. In addition, these users
may require many different levels of service, from simple
inquiries taking seconds, to complex file creations and
searches taking hours. Users can include programmers,
accounting department clerks, executives, department heads,
etc., each requiring unique types of service. This environ
ment imposes severe design requirements on an information
system. These criteria are in addition to those given in
Chapter 5. They are:

• Security and integrity of data
• System availability and recovery

*While'the system can provide reasonableness checks, it cannot be
responsible for the absolute data value.

Data Base Systems Concepts 47

•
•
•
•
•
•

Concurrent access to data
Ex pandability
Dynamic reconfiguration and control
Test/Debug facility
Multi-level function
Controllable response time

Security and Integrity of Data

It is extremely important that sensitive data be protected
against inadvertent destruction (data integrity), and
unauthorized access (data security). Payroll data about an
individual should be retrieved only by a select set of users
(Payroll Department, Individual's Manager). Bill of Material
(parts structures) data, while it may be available for anyone
to see, should be protected against accidental loss or
inaccuracy. Equally as important as prevention, is the
detection and correction of events that lead to violations of
security and integrity.

System A vail ability and Recovery

Because an information system contains critical information
necessary to run an organization, it should be available for
use a large percentage of the time. A system that handles
customer inquiries or reservations may require 100% avail
ability, while an in-house inventory status system may
tolerate short periods of unavailability. Another aspect of
availability is operation with a degradation of function or
performance. In a customer information system for example,
failure of some part of the system may cause answers to
inquiries to be delayed by several seconds, or allow only
certain types of inquiries to be made.

When some part of an information system fails it is necessary
for the system to have recovery procedures. When an error
or failure is detected, this procedure will determine the
corrective action required, and initiate this action. For
example, if a device that contains part of the data base fails,
the recovery system should make another device available
and ask the operator to move the volume. Recovery should
be undertaken if possible without reducing system avail
ability, or. at worst, with a reduction of function.

Concurrent Access to Data

Many users will require concurrent access to the same data
sets and fields. This implies that the system will need to
protect a user from the actions of all other users, without
seriously affecting performance. This capability is most
important when concurrent updating is to be provided.

Expandability

An information system should allow functions and
applications to be added to the system without affecting

48

current applications. For example, an executive query
language or a new set of inventory control programs can be
added to the system without affecting the already running
payroll and accounts receivable systems. The data can also
be expanded to include more information.

Dynamic Reconfiguration and Control

The load on an information system will vary from hour to
hour, and day to day. This load can involve both number of
users and type of functions, or data required. Tllis situation,
coupled with the requirement for high availability, dictates
a capability of dynamic reconfiguration. Dynamic reconfigu
ration is the ability of the system to alter itself to meet
current loads or changes in configuration. The system does
not necessarily have to alter itself, but it must at least
provide statistics that indicate when a change is necessary
and allow this change to be made without influencing
system availability.

Test/Debug Facilities

An information system can offer powerful testing facilities
due to its ability to build logical records of any form.
However, it must guard against exposure of sensitive data
to violations of security or integrity due to program failure
or malicious programmers. It should also allow test data to
be entered in the system and to be used as if it were real
data when a program being tested is encountered.

Multi-level Functions

An information system must be able to provide response
time and functions consistent with the nature of the user.
An unanticipated, unstructured request from an executive
for statistical information does not normally require fast
response, but may tie up many system facilities. On the
other hand, an anticipated * request from a phone operator
answering a customer inquiry requires very fast response
(1-2 seconds).

Control/able Response Time

Response time can be controlled by restructuring the data
base, altering the ways in which users compete for facilities,
or inserting time delays. All these methods are required to
effectively regulate the use of the information system, and
to provide satisfactory service. For example, the response to
an inquiry may vary from 1-6 seconds, depending on the
load. However, to mask the load or to provide consistent
response, a time delay is added to 1-,2-, or 3-second
responses so that the range of response times appears to
the user as 4-6 seconds. Changing response times could also
be used to encourage or discourage use of certain facilities.

* Anticipated in this context does not mean "when", but
rather that this type of transaction occurs frequently and
requires predetermined facilities.

BOXES OF BLOCKS PROCESSING REQUIRED

D \l
O\lD

ONlO

OOOD
0000

/\/\/\
D/\D

This
Box

Contains

060

This
Box

Contains

06

This
Box

Contains

06

Figure 51. Job Step System

0
PAINT

~ RED

6 ~ BLUE

D ~ GREEN

Techniques for implementing these design criteria are
complex and require careful system design and are therefore
beyond the scope of this publication.

EVENT-DRIVEN SYSTEMS

In current operating system design (Systemj360 Operating
System; Systemj360 Disk Operating System) it is assumed
that:

1. Each job will require a large portion of the system
facilities.

2. The required facilities will be dedicated to the job
while that job exists.

3. Each job will run for a long time (minutes).
4. The facilities of the system will be shared with only a

few other jobs.

The unit of work in such a system is a job step.

In an information system, the unit of work is the event
or transaction. Events:

1. Require only a small portion of system facilities.
2. Are of short duration (seconds).
3. Can share system facilities concurrently (as many

as 1000).
4. Do not have facilities dedicated to them.

To better illustrate the difference between a job step system
and an event system, let's look at an example. Figure 51
shows a set of boxes, each containing a number of wooden
blocks of different shapes (circular, triangular, square). These

FACILITIES AVAILABLE

PAINT & BRUSHES

PAINTERS

shapes are to be painted by a painter (circular-red, square
blue, triangular-green). Several cans of paint for each color
are available. The boxes are marked indicating what shapes
are in the box. The painter, however, selects the blocks at
random. The flow of this process is shown in Figure 52. In
this example each box represents ajob step, which is
composed of a number of different tasks (events). The events
that will be performed are known, but the order in which
they will be done is not. The facilities (painter and paint)
are allocated to job step (boxes) and dedicated to that step
until all events (blocks) are complete. Figures 51 and 52
therefore illustrate a conventional job-step system.

Figure 53 represents an event-oriented system. The blocks
(events) are independent and the facilities are not dedicated,
but shared. A coriventional job step can then be viewed as
a collection of events for which all resources are allocated
for all events within the step prior to execution. Because
the order in which the events are to be executed are not
known to the system, the resources must be held for the
duration of the step. The event system treats events as
separate entities and allocates and deallocates resources as
required.

DATA INDEPENDENCE

Data independence is a feature of data base systems that
allows the user's definition of his records, files, and processing
to be unaffected by changes to data organization, data
representation, devices, etc. There are two aspects of data
independence that require defmition:

• Binding time
• Degree of independence

Data Base Systems Concepts 49

ACTION FLOW

~

~

Box
Contains

Cbl ASSIGN
PAINTER

~

Cbl~~
~

o
~

GIVE
PAINTER
PAINTS &
BRUSHES

Ck RETURN PAINTS & PAINTER
WHEN COMPLETE

liD

Figure 52. Job Step System

Binding Time

As described in Chapter 5, one function of data management
is to map the data element into the user's field in his logical
record. The time that this mapping occurs is called the
binding time. When binding has occurred, the user is no
longer independent of changes in the data base.

Binding can be performed at different times for different
data attributes. For example, the name and location of the
data set containing the data may be bound at job initiation
time, while the location of the data element and the data
representation may be bound when the users issue a request
to data management to retrieve a logical record. In most
conventional batch data processing systems, the location of
a data element within a stored record and the representation
of that data element must be mapped when the user-program
is written. Changes in format or representation of a stored
record must be accompanied by a rewrite and recompilation
of all programs using those stored records. If binding is not

50

o
o
D
~
D
~

'" SELECT

DETERMINE ACTION
REOUIRED

Figure 53. Event System

performed until the user issues a request for information,
changes in the data base can occur between requests without
influencing the user's program. The latter method is
described in Chapter 5.

Degree of Independence

The other aspect of data independence is the amount of
information the user must know about the data elements he
requests for his fields. Some different degrees of independence
(from high to low) are:

1. User must know only the name of the data element
(see chapter 5).

2. User must know name and data representation.
3. User must know name, data representation, and

data set.
4. User must know level 3 plus data organization

technique.
5. User must know level 4 plus physical blocking

and device characteristics.

Binding time and degree can be used to evaluate the type of
data independence a data base system possesses.

PROGRAMMERS PROGRAMMING

SYSTEMS

USERS

Figure 54. System Administrator: Relationships with
System Users

THE SYSTEM ADMINISTRATOR

Any system with the power and potential benefits of a data
base requires careful control in planning and day-to-day
operation. This control function is provided by the system
administrator. The system administrator is an individual or
organization responsible for:

1.
2.
3.

The economics of the system.
Levels of service provided to the users.
Custody of the data base and resources of the system.

All use of the system is coordinated and audited by the
system administrator (see Figure 54). It is essential that
this position be created and filled with competent individuals
whenever a data base system is installed.

Data Base Systems Concepts 51

Index

Access method 43,45
Access time 18, 19
Addressability 18

addressing 18
resolution 18

Allocation 43,45
Arithmetic data 5
Associative addressing 18
Attaching devices to systems 19
Authorization 43, 45

Binding time 49, 50
Buffers 45

Calculation 23, 24
Capacity 18
Chain 24
Channel 19
Character string 14
Commands 19
Compression 5, 6, 7
Concatenated key 8, 9
Concurrent access to data 48
Context 1,2,38,47
Control 1, 40
Controllable response time 48
Control of devices 19
Control unit 19,20

Data 1,2,3
Data availability 47
Data bank 47
Data base 47
Data base system 49,51
Data cell 18, 19
Data consistency 47
Data control 47
Data elements 21
Data independence 38,40,47,49,50
Data management

definition of 1
functions of 3, 35,40, 50

Data organization 21,35,38,49
Data representation 1,5,6,38,47,49
Data set 21
Data set directory 43
Data storage devices 18
Data structures 8, 27

simple 8, 10, 27
hierarchy 10, 27
network 10, 27

Data transfer rate 19

52

Direct access 18
Direct address 23
Directories 40,41,42,43
Direct organization 23, 24, 28
Disk and drum devices 19
Degree of independence 50
Delimiters 14
Delimiting fields 14
Dynamic reconfiguration and control 48

Encoding 5,6,7,36,45
Entities 1, 21
Event 43, 44, 49
Event-driven systems 49
Event-oriented system 49
Exclusive control directory 43
Expandability 48
Explicit length 16
External storage 18

Facilities directory 43
Field 5,42
Field conversion and mapping 47,49
Field directory 42
Field mapping 36
File 3,38
File organization 35
Fixed-length record 8, 13, 14,46

Hardware address 23
Hashing 23,24
Hierarchical data structures 30
Hierarchy 11,13,16
Higher level index 27

Index 23
Indexed sequential organization 28
Index search 23
Information 1, 5
Information attributes 3
Information system 1, 38, 47
Input/Output devices 18
Input/Output system 47,49
Instructions 19
Inverted list 26
Inverted list organization 26, 27
Implicit length 14

Job step 49

Key 8, 10,21,41
concatenated 8, 9
truncated 8, 9

Latency 19
List 14, 16
List organization 26
List processing 14
Locating fields 13

by relative location 13
by embedded identification 13,14
by pointers and lists 13, 14, 15

Logical data structures 8, 16
Logical record 3,5,21,35
Logical records, designing 6, 7
Logical record identification 8

Mapping 35
field 36
record sequence 36

Multi-level functions 48

Network 10, 13, 16
Network data structure 32

Orders 20
Organizing fields within recods 13
Overflow area 28
Overrun 19

Physical block 21,35
Pointer 14,26,30
Pointer field 14

Record sequence mapping 36
Relative position 16
Representing data structures 16
R~trieval 1, 40
Ring 26
Ring organization 26, 32, 34

Secondary index 27
Security of data 47, 48
Segments 10, 11
Sequential access 18
Sequential organization 21,22,24,28
Simple data structures 8, 10, 27
Simple list organization 26
Sparse indexing 28
Storage 1, 40
Storage device attributes 18

capacity 18
addressability 18
access time 18

Stored record 21,23,28,35
updating in sequential organization 21, 26

String data 5
Synonym 24
System administrator 51

'-'" System availability and recovery 47,48

Test/Debug facilities 48
Transaction 51
Trees 10
Truncated key 8, 9
Truncation 36, 45

User directory 41,43
User information 3
User of information system 1

Variable-length record 8, 13, 14,30
Virtual data 6, 45
Volume 19,21

Index 53

'1,. ,

~,
,

.),

