
Publication Number
SA22-7085-0

IBM System/370
Extended Architecture

Principles of Operation

File Number
5370-01

First Edition (March 1983)

Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM
equipment, refer to the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any func
tionally equivalent program may be used instead.

Publications are not stocked at the address given below.
Requests for IBM publications should be made to your IBM repre
sentative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Product Publications, Department
B98, PO Box 390, Poughkeepsie, NY, U.S.A. 12602. IBM may use or
distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1?83

This publication provides, for reference
purposes, a detailed definition of the
machine functions performed by systems
operating in the System/370 extended
architecture (370-XA) mode.

The publication applies only to systems
operating in the 370-XA mode. The IBM
System/370 Principles of Operation;
GA22-7000, should be consulted regarding
the functions of the architecture which
apply to systems operating in the
System/370 mode.

The publication describes each function
at the level of detail needed to prepare
an assembler-language program that
relies on that function. It does not,
however, describe the notation and
conventions that must be employed in
preparing such a program, for which the
user must instead refer to the appropri
ate assembler-language publication.

The information in this publication is
provided principally for use by
assembler-language programmers, although
anyone concerned with the functional
details of systems operating in the
370-XA mode will find it useful.

This publication is written as a refer
ence and should not be considered an
introduction or a textbook. It assumes
the user has a basic knowledge of data
processing systems and, specifically,
systems operating in the 370-XA mode, as
found in Introduction to IBM Data Proc
essing Systems, GC20-1684:-ana--the IBM
System/370 System Summary: Processors,
GA22-7001. IBM publications relating to
systems operating in the 370-XA mode are
listed and described in the IBM
System/370 and 4300 Processors BibTT=
ography, GC20-0001.

All facilities discussed in this publi
cati~n are not necessarily available on
every model. Furthermore, in some
instances the definitions have been
structured to allow for some degree of
extendibility, and therefore certain
capabilities may be described or implied
that are not offered on any model.
Examples of such capabilities are the
use of a 16-bit field in the subsystem
identification word to identify the
channel subsystem, the size of the CPU
address, and the number of CPUs sharing
main storage. The allowance for this
type of extendibility should not be
construed as implying any intention by
IBM to provide such capabilities. For
information about the characteristics
and availability of facilities on a
specific model, see the functional char
acteristics publication for that model.
The availability of facilities is summa-

rized in
Summary:

the IBM System/370
Processors, GA22-7001.

PREFACE

largely because this publication is
arranged for reference, certain words
and phrases appear, of necessity, earli
er in the publication than the principal
discussions explaining them. The reader
who encounters a problem because of this
arrangement should refer to the index,
which indicates the location of the key
description.

The information presented in this publi
cation is grouped in 17 chapters and
several appendixes:

Chapte.r h Introduction, highlights some
of the major facilities of systems oper
ating in the 370-XA mode.

Chapter ~ Organization, describes the
major groupings within the system -- the
central processing unit (CPU), storage,
and input/output -- with some attention
given to the composition and character
istics of those groupings.

Chapter ~ Storage, explains the infor
mation formats, the addressing of stor
age, and the facilities for storage
protection. It also deals with dynamic
address translation (OAT), which,
coupled with special programming
support, makes the use of a virtual
storage possible in systems operating in
the 370-XA mode. Dynamic address trans
lation eliminates the need to assign a
program to a fixed location in real
storage and thus reduces the addressing
constraints on system and problem
programs.

Chapter iL Control, describes the facil
ities for the switching of system
status, for special externally initiated
operations, for debugging, and for
timing. It deals specifically with CPU
states, control modes, the program
status word (PSW), control registers,
program-event recording, timing facili
ties, resets, store status, and initial
program loading.

Chapter 2L Program Execution, explains
the role of instructions in program
execution, looks in detail at instruc
tion formats, and describes briefly the
use of the program-status word (PSW), of
branching, and of interruptions. It
also details the aspects of program
execution on one CPU as observed by a
channel program or another CPU program.

Chapter ~ Interruptions, details the
mechanism that permits the CPU to change
its state as a result of conditions
external to the system, within the

iii

system, or within the CPU itself. Six
classes of interruptions are identified
and described: machine-check interrup
t ion s, program interrupt ions, super
visor-call interruptions, external
interruptions, input/output interrup
tions, and restart interruptions.

Chapter LL General Instructions,
contains detailed descriptions of
logical and binary-integer data formats
and of all unprivileged instructions
except the decimal and floating-point
instructions.

Chapter ~ Decimal Instructions,
describes in detail decimal data formats
and the decimal instructions.

Chapter ~ Floating-Point Instructions,
contains detailed descriptions of
floating-point data formats and the
floating-point instructions.

Chapter 1.!Lt. Control Instructions,
contains detailed descriptions of all of
the semiprivileged and privileged
instructions except for the I/O
instructions.

Chapter l1.z.
describes the
correcting,
malfunctions.

Machine-Check Handling,
mechanism for detecting,

and reporting machine

Chapter ~ Operator Facilities,
describes the basic manual functions and
controls available for operating and
controlling the system.

Chapters 13-17 of
provide a detailed
functions performed
subsystem and the
between the CPU and
tem.

this publication
definition of the

by the channel
logical interface

the channel subsys-

Chapter 1dL I/O Overview, provides a
brief description of the basic compo
nents and operation of the channel
subsystem.

Chapter liL I/O Instructions, contains
the description of the 370-XA I/O
instructions.

Chapter 1.2..L Basic I/O Functionsz
describes the basic I/O functions
performed by the channel subsystem,
including the initiation and control of
I/O operations.

Chapter 1£L I/O Interruptions, covers
I/O interruptions, interruption condi
tions, and the concluding of I/O oper
ations.

Chapter 1lL I/O Support Functions,
describes such functions as channel-
subsystem usage monitoring, resets,
initial-program loading,
reconfiguration, and channel-subsystem
recovery_

iv

The Appendixes include:

• Information about number represen
tation

• Instruction-use examples

•

•

•

•
•

•

lists of the instructions arranged
in several sequences

A summary of the condition-code
settings

A summary of the differences be
tween the System/370 and 370-XA
modes.

A table of the powers of 2

Tabular information helpful in
dealing with hexadecimal numbers

An EBCDIC chart

SIZE NOTATION

In this publication, the letters K, M,
and G denote the multipliers 2 10 , 220 ,
and 2 30 , respectively. Although the
letters are borrowed from the decimal
system and stand for kilo (10 3), mega
(10 6), and giga (10 9), they do not have
the decimal meaning but instead repre
sent the power of 2 closest to the
corresponding power of 10. Their mean
ing in this publication is as follows:

Symbol Value

K (kilo) 1,024 = 2 10

M (mega) 1,048,576 = 2 20

G (giga) 1,073,741,824 = 2 30

The following are some examples of the
use of K, M, and G:

2,048 is expressed as 2K.
4,096 is expressed as 4K.
65,536 is expressed as 64K

(not 65K).
224 is expressed as 16M.
2 31 is expressed as 2G.

When the words "thousand" and "million"
are used, no special power-of-2 meaning
is assigned to them.

BYTES, CHARACTERS, AND CODES

Although the System/360 architecture was
originally designed to support the
Extended Binary-Coded-Decimal Inter
change Code (EBCDIC), the instructions
and data formats of the architecture are

for the most part independent of the
external code which is to be processed
by the machine. For most instructions,
all 256 possible combinations of bit
patterns for a particular byte can be
processed, independent of the character
which the bit pattern is intended to
represent. For instructions which use
the zoned format, and for those few
instructions which are dependent on a
particular external code, the instruc
tion TRANSLATE may be used to convert
data from one code to another code.
Thus, a machine operating in the 370-XA
mode can process EBCDIC, ASCII, or any
other code which can be represented in
eight or fewer bits per character.

In this publication, unless otherwise
specified, the value given for a byte
denotes a binary value. Thus, when a

byte is said to contain a zero, the
value 00000000 binary, or 00 hex, is
meant, and not the value for an EBCDIC
character "0," which would be FO hex.

OTHER PUBLICATIONS

The I/O interface is described in the
System Library publication IBM
System/360 and System/370 1/0 Interface
Channel to Control Unit Original Eguip
ment Manufacturers' Information,
GA22-6974.

The assists for MVS/XA are described in
the System Library publication IBM
Assists for MVS/XA, SA22-7092.

v

This page is intentionally left blank.

vi

The meanings of abbreviations that are
common in this publication are given in
the following list. Only a few instruc
tion mnemonics appear here; for a
complete list of the mnemonics, see
Appendix B. For other abbreviations not
shown in this list, see the index.

AFT

AFTO

AFX

AKM

ASN

AST

ASTE

ASTO

ASX

AT

ATl

ATO

AX

ASN first table

ASN-first-table origin

ASN-first-table index

authorization key mask

address-space number

ASN second table

AST entry

AST origin

ASN-second-table index

authority table

authority-table length

authority-table origin

authority index

CBC checking-block code

CCW channel-command word

CHPID channel-path identifier

CPU central processing unit

CR control register

CRW channel-report word

OAT dynamic address translation

EBCDIC

ECC

extended binary-coded-decimal
interchange code

error-checking-and-correction
code

EKM entry key mask

ESW

ET

ETl

extended-status word (word 3 of
the IRB)

entry table

entry-table length

ETO entry-table origin

EX entry index; execute

hex hexadecimal

10

IDAW

IlC

IMl

I/O

IPl

IRB

K

lPM

lPUM

IT

lTD

lTl

lTO

lX

M

OEMI

COMMON ABBREVIATIONS

indirect-data-address word

instruction-length code

initial microprogram loading

input/output

initial program loading

interruption-response block

1,024 (bytes)

logical-path mask (in ORB)

last-path-used mask (in SCHIB)

linkage table

linkage-table designation

linkage-table length

linkage-table origin

linkage index

1,048,576 (bytes)

original equipment manufactur
ers' information

op code operation code

ORB operation-request block

PAM path-available mask (in SCHIB)

PASN primary ASN

PC PROGRAM CAll

PC-cp

PC-ss

PCI

PROGRAM CAll to current primary

PROGRAM CAll with space switch
ing

program-controlled interru~~ion
(flag in CCW or function)

PER program-event recording

PFRA

PIM

PKM

PMCW

PNOM

page-frame real address

path-installed mask (in SCHIB)

PSW-key mask

path-management-control word
(words 0-6 of SCHIB)

path-not-operational mask (in
SCHIB)

vii

POM

PSTD

PSTl

PSTO

path-operational mask (in
SCHIB)

primary segment-table desig
nation

primary segment-table length

primary segment-table origin

PSW program-status word

PT

PT-cp

PT-ss

PTl

PTO

PX

RR

RRE

RS

RX

5

SASN

SCHIB

viii

PROGRAM TRANSFER

PROGRAM TRANSFER to current
primary

PROGRAM TRANSFER with space
switching

page-table length

page-table origin

page index

register-and-register instruc
tion format (or operation)

register-and-register instruc
tion format (or operation)
using an extended operation
code

register-and-storage instruc
tion format (or operation)

register-and-indexed-storage
instruction format (or opera
tion)

implied-operand-and-storage in
struction format (or operation)

secondary ASH

subchannel-information block

SCSW

SI

SID

SlI

SS

SSAR

subchannel-status word

storage-and-immediate-operand
instruction format (or opera
tion)

subsystem-identification word

suppress length indication
(flag in CCW)

storage-and-storage instruction
format (or operation)

SET SECONDARY ASH

SSAR-cp SET SECONDARY ASH to current
primary

SSAR-ss SET SECONDARY ASH with space
switching

SSE storage-and-storage instruction
format (or operation) using an
extended operation code

SSTD secondary segment-table desig
nation

SSTl secondary segment-table length

SSTO secondary segment-table origin

STD segment-table designation

STl

STO

sync

TlB

segment-table length

segment-table origin

synchronization

translation-lookaside buffer

TOO time of day

XA exte~ded architecture (archi
tecture mode)

CHAPTER 1. INTRODUCTION ••••
Highlights of 370-XA ••••••
Compatibility •••••••••

Compatibility Among Systems in
370-XA Mode .••••••••

Compatibility Between Systems in
System/370 Mode and in 370-XA
Mode ••••••••••••

Control-Program Compatibility
Problem-State Compatibility

System Program •.••
Availability •••••

CHAPTER 2. ORGANIZATION
Main Storage .••••
Central Processing Unit

Program-Status Word
General Registers ••
Floating-Point Registers
Control Registers

Input and Output
Channel Subsystem • • • •
Input/Output Devices and Control

Un its •••.•••
Operator Facilities ••••
Service Processor

CHAPTER 3. STORAGE
Storage Addressing

Information Formats
Integral Boundaries

Address Types and Formats
Address Types •••

Absolute Address
Real Address •••••
Virtual Address
Primary Virtual Address
Secondary Virtual Address
Logical Address ••••••
Instruction Address
Effective Address

Address Size and Wraparound
Address Wraparound

Storage Key ••.••••.
Protection •.•••••••

Key-Controlled Protection
Fetch-Protection-Override
Control •••••

Page Protection
Low-Address Protection

Reference Recording
Change Recording
Prefixing ••••.
Address Spaces
ASN Translati on •.•

ASH-Translation Controls
ASN-Translation Tables ••••

ASH-First-Table Entries
ASH-Second-Table Entries

ASH-Translation Process
ASH-First-Table Lookup
ASH-Second-Table Lookup
Recognition of Exceptions
during ASH Translation

ASH Authorization ..••
ASH-Authorization Controls

Control Register 4 ••
ASH-Second-Table Entry

1-1
1-1
1-3

1-3

1-4
1-4
1-4
1-5
1-5

2-1
2-2
2-2
2-3
2-3
2-3
2-3
2-5
2-5

2-5
2-5
2-5

3-1
3-2
3-2
3-3
3-4
3-4
3-4
3-4
3-5
3-5
3-5
3-5
3-5
3-5
3-6
3-6
3-8
3-8
3-9

3-10
3-10
3-11
3-11
3-11
3-12
3-13
3-14
3-14
3-15
3-15
3-15
3-16
3-17
3-17

3-18
3-18
3-18
3-18
3-18

CONTENTS

Authority-Table Entries
ASN-Authorization Process

Authority-Table Lookup
Recognition of Exceptions
during ASH Authorization

Dynamic Address Translation
Translation Control

PSW ..••••
Control Register 0
Control Register 1
Control Register 7

Translation Tables •
Segment-Table Entries
Page-Table Entri es • • •
Summary of Segment-Table and

Page-Table Sizes
Translation Process

Effective Segment-Table
Designation •.••. •

Inspection of Control Register
o •••••••••••••

Segment-Table lookup •••.
Page-Table Lookup •.•••
Formation of the Real Address
Recognition of Exceptions
during Translation ••••

Translation-lookaside Buffer
Use of the
Translation-lookaside Buffer

Modification of Translation
Tables ..•••

Address Summary •••••
Addresses Translated
Handling of Addresses

Assigned Storage locations

CHAPTER 4. COHTROl .
Stopped, Operating, load, and

Check-Stop States
Stopped State
Operating State
Load State
Check-Stop State ••••

Program-Status Word •
Program-Status-Word Format

Control Registers ••••
Tracing •.•••••••

Control-Register Allocation
Trace Entries ••••••
Operation ••••••.•

Program-Event Recording
Control-Register Allocation
Operation •••••••

Identification of Cause
Priority of Indication

Storage-Area Designation
PER Events •••••

Successful Branching ••••
Instruction Fetching ••••
Storage Alteration •••
General-Register Alteration

Indication of Events
Concurrently with Other
Interruption Conditions

Timing .•••••••••
Time-of-Day Clock

Format • • • •
States ••••

3-19
3-19
3-20

3-21
3-21
3-22
3-22
3-23
3-23
3-24
3-24
3-24
3-25

3-25
3-26

3-26

3-29
3-29
3-29
3-30

3-30
3-30

3-31

3-34
3-36
3-36
3-37
3-38

4-1

4-2
4-2
4-2
4-3
4-3
4-3
4-5
4-6
4-8
4-8
4-9

4-10
4-11
4-11
4-12
4-12
4-13
4-14
4-14
4-14
4-14
4-15
4-15

4-.16
4-18
4-18
4-18
4-19

ix

Changes in Clock State •
Setting and Inspecting the

Clock •••••••
TOD-Clock Synchronization
Clock Comparator ••••
CPU Timer •••••

Externally Initiated Functions
Service Signal •••••
Resets •••••

CPU Reset
Initial CPU Reset
Subsystem Reset
Clear Reset
Power-On Reset •••••••

Initial Program loading
Store Status ••••••

Multiprocessing •••••
Shared Main Storage ••
CPU-Address Identification

CPU Signaling and Response
Signal-Processor Orders •••
Conditions Determining Response

Conditions Precluding
Interpretation of the Order
Code ••••.••

Status Bits ••••

CHAPTER 5. PROGRAM EXECUTION
Instructions •••• • •••

Operands •.••• • • • •
Instruction Format •••••.

Register Operands •••••
Immediate Operands
Storage Operands

Address Generation
Bimodal Addressing ••••••
Sequential Instruction-Address

Generation •••••••••
Operand-Address Generation ••

Formation of the Intermediate
Value • . • • • . • • •

Formation of the Address
Branch-Address Generation

Formation of the Branch Address
Instruction Execution and
Sequencing

Decision-Making
loop Control
Subroutine linkage
Interruptions .••••
Types of Instruction Ending

Completion
Suppression
Nullification
Termination

Interruptible Instructions
Point of Interruption •
Execution of Interruptible
Instructions .•.••••

Exceptions to Nullification and
Suppression •.•••.•••
Storage Change and Restoration
for DAT-Associated Access
Exceptions .••••..•

Modification of DAT-Table
Entries ••••••.•••

Trial Execution for Editing
Instructions and TRANSLATE

Interlocked Update for
Nullification and Suppression

Authorization Mechanisms ••••
Mode Requirements •••••
Extraction-Authority Control
PSW-Key Mask • • • • •

x

4-19

4-20
4-21
4-21
4-22
4-23
4-23
4-24
4-27
4-27
4-28
4-28
4-28
4-29
4-29
4-30
4-30
4-30
4-31
4-31
4-33

4-33
4-34

5-1
5-2
5-2
5-2
5-4
5-4
5-4
5-4
5-4

5-5
5-5

5-5
5-5
5-6
5-6

5-6
5-6
5-7
5-7

5-11
5-11
5-11
5-11
5-11
5-11
5-11
5-11

5-12

5-12

5-13

5-13

5-14

5-14
5-14
5-15
5-15
5-15

Secondary-Space Control
Subsystem-linkage Control
ASN-Translation Control
Authorization Index

PC-Number Translation
PC-Number Translation Control
PC-Number Translation Tables

linkage-Table Entries
Entry-Table Entries ••••

PC-Number-Translation Process
linkage-Table lookup ••••
Entry-Table lookup •••••
Recognition of Exceptions

During PC-Number Translation
Sequence of Storage References

Interlocks for Virtual-Storage
References ••••

Instruction Fetching
DAT-Table Fetches
Storage-Key Accesses
Storage-Operand References

Storage-Operand Fetch
References ••.••

Storage-Operand Store
References ••..•

Storage-Operand Update
References ••.•••

Storage-Operand Consistency
Single-Access References
Multiple-Access Operands
Block-Concurrent References
Consistency Specification

Relation Between Operand
Accesses .••...

Other Storage References
Serialization •••••

CPU Serialization ••
Channel-Program Serialization

CHAPTER 6. INTERRUPTIONS
Interruption Action

Interruption Code
Enabling and Disabling ••••
Handling of Floating Interruption
Conditions •••.•••••

Instruction-Length Code
Zero ILC ••••..•• ••
ILC on Instruction-Fetching
Exceptions••••

Exceptions Associated with the
PSW •••••••..••••

Early Exception Recognition
Late Exception Recognition

External Interruption
Clock Comparator
CPU Timer
Emergency Signal
External Call
Interrupt Key
Malfunction Alert ..••••
Service Signal •..
TOD-Clock Sync Check

Input/Output Interruption
Machine-Check Interruption
Program Interruption ••••

Program-Interruption Conditions
Addressing Exception ••••
AFX-Translation Exception
ASN-Translation-Specification

Exception ••..•••
ASX-Translation Exception
Data Exception •.•••
Decimal-D~vide Exception
Decimal-Overflow Exception

5-15
5-15
5-15
5-16
5-17
5-18
5-18
5-18
5-18
5-19
5-20
5-21

5-21
5-21

5-22
5-23
5-24
5-24
5-25

5-25

5-25

5-26
5-27
5-27
5-27
5-27
5-27

5-28
5-29
5-29
5-29
5-30

6-1
6-2
6-5
6-5

6-6
6-6
6-6

6-6

6-8
6-8
6-8
6-9
6-9

6-10
6-10
6-10
6-10
6-11
6-11
6-11
6-11
6-12
6-12
6-13
6-13
6-15

6-15
6-15
6-15
6-16
6-16

Execute Except ion •••••
Exponent-Overflow Exception
Exponent-Underflow Exception
EX-Translation Exception ••
Fixed-Point-Divide Exception
Fixed-Point-Overflow Exception
Floating-Point-Divide

Exception •••••••
LX-Translation Exception
Monitor Event ••••
Operand Exception
Operation Exception •
Page-Translation Exception
PC-Translation-Specification

Exception •••••••••
PER Event •••••••••
Primary-Authority Exception
Privileged-Operation Exception
Protection Exception ••••
Secondary-Authority Exception
Segment-Translation Exception
Significance Exception
Space-Swi tch Event •••••
Special-Operation Exception
Specification Exception
P rogramm i ng Note ••••
Trace-Table Exception
Translation-Specification

Exception •••••••••
Collective Program-Interruption

Names ..••••••••••
Recognition of Access Exceptions
Multiple Program-Interruption

Conditions •••••.•
Access Exceptions
ASN-Translation Exceptions
Trace Exceptions ••••

Restart Interruption
Supervisor-Call Interruption
Priority of Interruptions

CHAPTER 7. GENERAL INSTRUCTIONS
Data Format ••••••••
Binary-Integer Representation
Binary Arithmetic •••.•

Signed Binary Arithmetic
Addition and Subtraction
Fixed-Point Overflow ••

Unsigned Binary Arithmetic
Signed and Logical Comparison
Instructions ••••••••

ADD •••••
ADD HALFWORD •••••••••
ADD LOGICAL •••••
AND • • • • • • •
BRANCH AND LINK
BRANCH AND SAVE •••••••
BRANCH AND SAVE AND SET MODE
BRANCH AND SET MODE
BRANCH ON CONDITION
BRANCH ON COUNT •••••
BRANCH ON INDEX HIGH
BRANCH ON INDEX LOW OR EQUAL
COMPARE ••••
COMPARE AND SWAP
COMPARE DOUBLE AND SWAP
COMPARE HALFWORD
COMPARE LOGICAL • • • •
COMPARE LOGICAL CHARACTERS UNDER

MASK ••••••
COMPARE LOGICAL LONG
CONVERT TO BINARY
CONVERT TO DECIMAL
DIVIDE ••••••

6-16
6-16
6-16
6-17
6-17
6-17

6-17
6-17
6-18
6-18
6-18
6-19

6-19
6-19
6-19
6-20
6-20
6-21
6-21
6-21
6-21
6-22
6-22
6-23
6-23

6-23

6-24
6-24

6-26
6-29
6-30
6-31
6-31
6-31
6-32

7-1
7-2
7-2
7-3
7-3
7-3
7-3
7-3
7-4
7-4
7-8
7-8
7-9
7-9

7-10
7-10
7-11
7-11
7-12
7-13
7-13
7-13
7-14
7-14
7-14'
7-16
7-16

7-17
7-17
7-19
7-20
7-20

EXCLUSIVE OR •••••••••
EXECUTE •••••••••••
INSERT CHARACTER •••••
INSERT CHARACTERS UNDER MASK
INSERT PROGRAM MASK
LOAD •••••
LOAD ADDRESS ••••
LOAD AND TEST ••••••
LOAD COMPLEMENT ••••
LOAD HALFWORD
LOAD MULTIPLE
LOAD NEGATIVE
LOAD POSITIVE
MONITOR CALL
MOVE .•.•
MOVE LONG
MOVE NUMERICS
MOVE WITH OFFSET
MOVE ZONES
MULTIPLY ••••••
MULTIPLY HALFWORD
OR ••••••••••••
PACK ••.•••
SET PROGRAM MASK ••••
SHIFT LEFT DOUBLE ••
SHIFT LEFT DOUBLE LOGICAL
SHIFT LEFT SINGLE ••••
SHIFT LEFT SINGLE LOGICAL
SHIFT RIGHT DOUBLE
SHIFT RIGHT DOUBLE LOGICAL
SHIFT RIGHT SINGLE
SHIFT RIGHT SINGLE LOGICAL
STORE ••••
STORE CHARACTER
STORE CHARACTERS UNDER MASK
STORE CLOCK • • • •
STORE HALFWORD ••••
STORE MULTIPLE
SUBTRACT •
SUBTRACT HALFWORD
SUBTRACT LOGICAL
SUPERVISOR CALL
TEST AND SET
TEST UNDER NASK
TRANSLATE
TRANSLATE AND TEST
UNPACK •••••

CHAPTER 8. DECIMAL INSTRUCTIONS
Decimal-Humber Formats

Zoned Format • • • • •
Packed Format ••••••
Decimal Codes

Decimal Operations ••••••
Decimal-Arithmetic Instructions
Editing Instructions •••••
Execution of Decimal Instructions
Other Instructions for Decimal

Operands
Instructions

ADD DECIMAL ••••••
COMPARE DECIMAL
DIVIDE DECIMAL
EDIT ••••••••••
EDIT AHD MARK
MULTIPLY DECIMAL
SHIFT AND ROUND DECIMAL
SUBTRACT DECIMAL ••••
ZERO AND ADD ••••••

CHAPTER 9. FLOATING-POINT
INSTRUCTIONS

Floating-Point Number
Representation

7-21
7-22
7-23
7-23
7-23
7-24
7-24
7-24
7-24
7-25
7-25
7-25
7-26
7-26
7-27
7-27
7-30
7-31
7-31
7-32
7-32
7-33
7-33
7-34
7-34
7-35
7-35
7-36
7-36
7-36
7-37
7-37
7-37
7-38
7-38
7-38
7-39
7-39
7-40
7-40
7-40
7-41
7-41
7-42
7-42
7-43
7-44

8-1
8-1
8-1
8-1
8-2
8-2
8-2
8-3
8-3

8-3
8-3
8-5
8-5
8-5
8-6
8-9

8-10
8;..10
8-11
8-11

9-1

9-1

xi

Normalization •••••
Floating-Point-Data Format
Instructions

ADD NORMALIZED
ADD UNNORMALIZED
COMPARE • • • •
DIVIDE • • • • . • • • •
HALVE ••••
LOAD. • • • •
LOAD AND TEST
LOAD COMPLEMENT
LOAD NEGATIVE
LOAD POSITIVE
LOAD ROUNDED ••••
MULTIPLY •••••••••
STORE • •
SUBTRACT NORMALIZED
SUBTRACT UNNORMALIZED

CHAPTER 10. CONTROL INSTRUCTIONS
DIAGNOSE •••••••••
EXTRACT PRIMARY ASN
EXTRACT SECONDARY ASN
INSERT ADDRESS SPACE CONTROL
INSERT PSW KEY•.
INSERT STORAGE KEY EXTENDED
INSERT VIRTUAL STORAGE KEY
INVALIDATE PAGE TABLE ENTRY
LOAD ADDRESS SPACE PARAMETERS
LOAD CONTROL • • • •
LOAD PSW .•.• • • • •
LOAD REAL ADDRESS
MOVE TO PRIMARY
MOVE TO SECONDARY
MOVE WITH KEY
PROGRAM CALL
PROGRAM TRANSFER
PURGE TLB • • • • • •
RESET REFERENCE BIT EXTENDED
SET ADDRESS SPACE CONTROL
SET CLOCK •••••••••
SET CLOCK COMPARATOR
SET CPU TIMER • • • •
SET PREFIX •.••••
SET PSW KEY FROM ADDRESS
SET SECONDARY ASN
SET STORAGE KEY EXTENDED
SET SYSTEM MASK
SIGNAL PROCESSOR
STORE CLOCK COMPARATOR
STORE CONTROL
STORE CPU ADDRESS
STORE CPU ID
STORE CPU TIMER
STORE PREFIX . • • •
STORE THEN AND SYSTEM MASK
STORE THEN OR SYSTEM MASK
TEST BLOCK
TEST PROTECTION
TRACE ••••••••

CHAPTER 11. MACHINE-CHECK
HANDLING •••••••••••

Machine-Check Detection ••••
Correction of Machine Malfunctions

Error Checking and Correction
CPU Retry •.•.••••••

xi i

Effects of CPU Retry
Checkpoint Synchronization
Handling of Machine Checks

During Checkpoint
Synchronization ••••••

Checkpoint-Synchronization
Operations ••••••

9-2
9-2
9-4
9-6
9-7
9-8
9-8

9-10
9-10
9-11
9-11
9-11
9-12
9-12
9-13
9-14
9-14
9-15

10-1
10-4
10-5
10-5
10-6
10-7
10-7
10-7
10-8

10-10
10-17
10-17
10-18
10-19
10-19
10-20
10-22
10-28
10-33
10-33
10-33
10-34
10-35
10-35
10-36
10-36
10-37
10-40
10-40
10-41
10-42
10-42
10-43
10-43
10-43
10-44
10-44
10-44
10-45
10-47
10-48

11-1
11-2
11-2
11-2
11-2
11-3
11-3

11-3

11-3

Checkpoint-Synchronization
Action •••••••

Channel-Subsystem Recovery
Unit Deletion ••••

Handling of Machine Checks
Validation ••••••
Invalid CBC in Storage ••

Programmed Validation of
Storage ••••••.•

Invalid CBC in Storage Keys
Invalid CBC in Registers

Check-Stop State; ••••
System Check Stop •

Machine-Check Interruption
Exigent Conditions •
Repressible Conditions
Interruption Action
Point of Interruption •••

Machine-Cheek-Interruption Code
Subclass •.•••••

System Damage
Instruction-Processing Damage
System Recovery
Timing-Facility Damage
Degradation •..•.
Warning •••••••
Channel Report Pending
Service-Processor Damage
Channel-Subsystem Damage •

Time of Interruption Occurrence
Backed Up .•••••

Synchronous Machine-Check
Interruption Conditions
Processing Backup
Processing Damage

Storage-Error Type •
Storage Error Uncorrected
Storage Error Corrected •
Storage-Key Error Uncorrected

Machine-Check Interruption-Code
Validity Bits •••••••

PSW-MWP Validity •••••
PSW Mask and Key Validity
PSW Program-Mask and
Condition-Code Validity

PSW-Instruction-Address
Validity ••••••••

Failing-Storage-Address
Validity ••••••

Floating-Point-Register
Validity •••.••••

General-Register Validity
Control-Register Validity
Storage L~gical Validity
CPU-Timer Validity ••••
Clock-Comparator Validity

Machine-Check Extended
Interruption Information
Register-Save Areas
Failing-Storage Address

Handling of Machine-Check
Conditions •••••••••

Floating Interruption
Conditions ••••

Floating
Machi ne-Check-Interrupti on
Conditions .••.•••

Floating I/O Interruptions
Machine-Check Masking .

Channel-Report-Pending
Subclass Mask

Recovery Subclass Mask
Degradation Subclass Mask

11-4
11-4
11-4
11-4
11-5
11-6

11-7
11-7
11-9

11-10
11-11
11-11
11-11
11-11
11-12
11-13
11-14
11-15
11-15
11-15
11-16
11-16
11-16
11-16
11-17
11-17
11-17
11-17
11-17

11-17
11-17
11-18
11-18
11-18
11-18
11-18

11-19
11-19
11-19

11-19

11-19

11-19

11-19
11-19
11-20
11-20
11-20
11-20

11-20
11-20
11-21

11-21

11-21

ll-21
11-21
11-21

11-22
11-22
11-22

Timing-Facility-Damage
Subclass Mask

Warning Subclass Mask
Machine-Check Logout
Summary of Machine-Check Masking

CHAPTER 12. OPERATOR FACILITIES
Manual Operation .•.•••
Basic Operator Facilities

Address-Compare Controls
Alter-and-Display Controls
Architectural-Mode Indicator
Architectural-Mode-Selection
Controls .•.• •• • •

Check-Stop Indicator •••••
IML Controls •••••
Interrupt Key
Load Indicator
Load-Clear Key • • • •
Load-Normal Key •••••
Load-Unit-Address Controls
Manual Indicator ••••
Power Controls ••••••••
Rate Control • • • • • • •
Restart Key
Start Key ••••
Stop Key •.•
Store-Status Key •••••••
System-Reset-Clear Key
System-Reset-Normal Key
Test Indicator ••••••••
TOD-Clock Control • • • •
Wait Indicator ••.••••.

Multiprocessing Configurations

CHAPTER 13. I/O OVERVIEW
Comparison with System/370
The Channel Subsystem

Subchannels •.•••••••
Attachment of Input/Output Devices

Channel Paths ••••
Control Units ••••••••
I/O Devices •••••

I/O Addressing •.•••
Channel-Path Identifier
Subchannel Number
Dev ice Number .•.•
Addresses Dependent on
Channel-Path Type

I/O Operations ..•••
S tar t - Fun ct ion, In i t i at ion
Path Management ••.•
Channel-Program Execution
Conclusion of I/O Operations
I/O Interruptions ..••

CHAPTER 14. I/O INSTRUCTIONS
Introduction ••••••
I/O-Instruction Formats
I/O-Instruction Execution

Serialization .•.•
Operand Access ••.•••••
Condition Code •
Program Exceptions

Instructions .•••
CLEAR SUBCHANNEL
HALT SUBCHANNEL
MODIFY SUBCHANNEL
RESET CHANNEL PATH ••••
RESUME SUBCHANNEL • • • •
SET ADDRESS LIMIT • • • •
SET CHANNEL MONITOR ••••
START SUBCHANNEL ••.
STORE CHANNEL PATH STATUS

11-22
11-22
11-22
11-22

12-1
12-1
12-1
12-1
12-2
12-2

12-2
12-2
12-3
12-3
12-3
12-3
12-3
12-3
12-3
12-3
12-4
12-4
12-4
12-4
12-4
12-5
12-5
12-5
12-5
12-5
12-5

13-1
13-1
13-2
13-2
13-3
13-3
13-4
13-4
13-5
13-5
13-5
13-5

13-5
13-6
13-6
13-6
13-7
13-7
13-8

14-1
14-1
14-1
14-1
14-1
14-2
14-2
14-2
14-2
14-3
14-4
14-6
14-6
14-8
14-9

14-10
14-11
14-13

STORE CHANNEL REPORT WORD
STORE SUBCHANNEL ..•••.
TEST PENDING INTERRUPTION
TEST SUBCHANNEL ••••

CHAPTER 15. BASIC I/O FUNCTIONS
Control of Basic I/O Functions

Subchannel-Information Block
(SCHIB) ••••.•..•••
Path-Management-Control Word
Subchannel-Status Word
Model-Dependent Area ••••
Summary of Modifiable Fields

Channel-Path Allegiance .•••
Working Allegiance ••••
Active Allegiance
Dedicated Allegiance
Channel-Path Availability
Control-Unit Type •.

Clear-Function Execution
Halt-Function Execution
Start-Function and

Resume-Function Execution
Execution of I/O Operations

Programming Note •••••
Blocking of Data ••...•
Operation-Request Block (ORB)
Channel-Command Word •.••
Command Code •..•.•••
Designation of Storage Area
Chaining •.•• • •••

Data Chaining .•••
Command Chaining •••••

Skipping •••• •
Program-Controlled Interruption
CCW Indirect Data Addressing
Suspension of Channel-Program

Execution
Commands

Wri te
Read •
Read Backward
Control
Sense
Sense ID • •
Transfer in Channel

Command Retry . • . •
Concluding I/O Operations During
Initiation ••••••••.

Immediate Conclusion of I/O
Operations •••••..••

Concluding I/O Operations During
Data Transfer .••••.

Channel-Path-Reset-Function
Execution ••••••••

CHAPTER 16. I/O INTERRUPTIONS
Interruption Conditions •

Unsolicited Interruption
Condition •.•••.

Solicited Interruption
Condition •...•.

Intermediate Interruption
Condition •••••••.••

Primary Interruption Condition
Secondary Interruption Condition
Alert Inter~uption Condition

Priority of Interruptions
Interruption Action ••••••
Interruption-Response Block (IRB)

Subchannel-Status Word (SCSW)
Extended-Status Word ••••
Extended-Control Word

Subchannel-Status-Word Contents

14-13
14-14
14-15
14-16

15-1
15-1

15-1
15-2
15-6
15-6
15-6
15-9
15-9
15-9

15-10
15-10
15-11
15-11
15-13

15-15
15-17
15-17
15-18
15-19
15-20
15-22
15-22
15-23
15-26
15-27
15-28
15-29
15-30

15-31
15-32
15-33
15-34
15-34
15-35
15-36
15-38
15-39
15-39

15-39

15-40

15-41

15-42

16-1
16-2

16-3

16-3

16-4
16-4
16-4
16-5
16-5
16-6
16-6
16-7
16-8
16-8
16-8

xii i

Subchannel Key • • • • •
Suspend Control (S) ••••
Extended-Status-Word Format

(L) •••••••••••
Deferred-Condition-Code Contents

Format (F) ••••••••
Prefetch (P) •••••••
Initial-Status-Interruption
Request (I) ••••

Address-Limit-Checking
Control (A) ••••

Suppress-Suspended
Interruption (U) .

Subchannel-Control-Field
Contents ••••••

Zero Condition Code (Z)
Extended Control (E) •
Path Not Operational (N)
Function Control
Activity Control
Status Control •••

Device-Status Conditions
Attention
Status Modifier
Control-Unit End
Busy
Channel End ••••
Device End ••••.
Uni t Check ••
Unit Exception ••.•••

Subchannel-Status Conditions
Program-Controlled
Interruption

Incorrect Length
Program Check
Protection Check
Channel-Data Check .. ••
Channel-Control Check
Interface-Control Check
Cha in i ng Check ••.•

CCW-Address-Field Contents
Count-Field Contents ••••

Extended-Status-Word Contents
Extended-Status Format 0
Extended-Status Format 1
Extended-Status Format 2
Extended-Status Format 3

Extended-Control Word ••••

16-8
16-8

16-8
16-9

16-11
16-11

16-12

16-12

16-12

16-12
16-12
16-12
16-13
16-13
16-14
16-16
16-18
16-19
16-19
16-19
16-21
16-21
16-21
16-22
16-23
16-23

16-24
16-24
16-24
16-25
16-26
16-26
16-27
16-27
16-28
16-33
16-35
16-36
16-40
16-40
16-41
16-43

CHAPTER 17. I/O SUPPORT FUNCTIONS 17-1
Address-Limit Checking 17-1
Channel-Subsystem-Monitoring
Facilities ••••••• 17-2
Channel-Subsystem-Timing
Facility ••.•...• 17-2

Channel-Subsystem Timer 17-2
Measurement-Block-Update

Facility •.••••• 17-4
Measurement Block 17-4
Measurement-Block Origin 17-5
Measurement-Block Key 17-5
Measurement-Block Index •• 17-6
Measurement-Block-Update Mode 17-6
Measurement-Block-Update

Enable •••••.• 17-6
Time-Interval-Measurement

Accuracy ••••.•••• 17-6
Device-Connect-Time-Measu~ement
Facility •••••••••• 17-7

Device-Connect-Time-Measurement
Mode ••••••••••• 17-7

Device-Connect-Time-Measurement
Enable • • • • • • •• 17-7

Signals and Resets ••••••• 17-8

xiv

Signals
Halt Signal
Clear Signal
Reset Signal

Resets • • •
Channel-Path Reset
I/O-System Reset ••••

Externally Initiated Functions.
Initial Program Loading
Reconfiguration of the I/O

System ••••••••
Channel-Subsystem Recovery

Channel-Report Word (CRW)
Channel Report •••••
CRW Contents •.••••

APPENDIX A. NUMBER REPRESENTATION
AND INSTRUCTION-USE EXAMPLES

Number Representation
Binary Integers •••••

Signed Binary Integers
Unsigned Binary Integers

Decimal Integers
Floating-Point Numbers
Conversion Example .

Instruction-Use Examples
Machine Format •
Assembler-Language Format

Addressing Mode in Examples
General Instructions •.••

ADD HALFWORD (AH) ••••
AND (N, NR, NI, NC)

And (NI) •••••.••••
BRANCH AND LINK (BAL, BALR)
BRANCH ON CONDITION (BC, BCR)
BRANCH ON COUNT (BCT, BCTR)
BRANCH ON INDEX HIGH (BXH)

BXH Example 1
BXH Example 2

BRANCH ON INDEX LOW OR EQUAL
(BXLE) .••••••••

COMPARE HALFWORD (CH) ••
COMPARE LOGICAL (CL, CLC, CLI,

ClR) ••••••••
Compare Logical (CLC)
Compare Logical (CLI)
Compare Logical (CLR) •

COMPARE LOGICAL CHARACTERS UNDER
MASK (CLM) •••••••

COMPARE LOGICAL LONG (CLCL)
CONVERT TO BINARY (CVB)
CONVERT TO DECIMAL (CVD)
DIVIDE (D, DR) ••
EXCLUSIVE OR (X, XC, XI, XR)

Exclusive Or (XC)
Exclusive Or (XI)

EXECUTE (EX) ••
INSERT CHARACTERS UNDER MASK

(ICM) .•••••••••••
LOAD (L, LR)
LOAD ADDRESS (LA)
LOAD HALFWORD (LH)
MOVE (MVC, MVI)

Move (MVC)
Move (MVI)

MOVE LONG (MVCL)
MOVE NUMERICS (MVN)
MOVE WITH OFFSET (MVO)
MOVE ZONES (MVZ)
MULTIPLY (M, MR)
MULTIPLY HALFWORD (MH)
OR (0, OR, 01, OC) ••••

Or (01) ••••••
PACK (PACK)

17-8
17-8
17-8
17-8
17-9
17-9
17-9

17-12
17-12

17-14
17-14
17-15
17-15
17-16

A-I
A-2
A-2
A-2
A-4
A-5
A-5
A-7
A-7
A-7
A-7
A-8
A-8
A-8
A-8
A-8
A-9
A-9

A-I0
A-I0
A-I0
A-I0

A-II
A-II

A-II
A-l1
A-12
A-12

A-12
A-13
A-14
A-14
A-15
A-15
A-15
A-16
A-17

A-17
A-18
A-IS
A-19
A-19
A-19
A-20
A-20
A-21
A-21
A-22
A-22
A-23
A-23
A-23
A-23

SHIFT LEFT DOUBLE (SLDA)
SHIFT LEFT SINGLE (SLA)
STORE CHARACTERS UNDER MASK

(STCM) ••.••••••••
STORE MULTIPLE (STM) .•••.
TEST UNDER MASK (TM)
TRANSLATE (TR) ••••••••
TRANSLATE AND TEST (TRT)
UNPACK (UNPK) •

Decimal Instructions
ADD DECIMAL (AP) .
COMPARE DECIMAL (CP)
DIVIDE DECIMAL (DP)
EDIT (ED) •••.•
EDIT AND MARK (EDMK)
MULTIPLY DECIMAL (MP) ••
SHIFT AND ROUND DECIMAL (SRP)

Decimal Left Shift •.•••
Decimal Right Shift .•••
Decimal Right Shift and Round
Multiplying by a Variable

Power of 10 •.••••
ZERO AND ADD (ZAP) •.•.

Floating-Point Instructions
ADD NORMALIZED (AD, ADR, AE,

AER, AXR) .•..•.••••
ADD UNNORMALIZED (AU, AUR, AW,

AWR) ••••..••••
COMPARE (CD, CDR, CE, CER)
DIVIDE (DO, DDR, DE, DER)
HALVE (HDR, HER) •••••••
MULTIPLY (MD, MDR, ME, MER, MXD,

MXDR, MXR) ..••....•
Floating-Point-Number Conversion

Fixed Point to Floating Point
Floating Point to Fixed Point

Multiprogramming and
Multiprocessing Examples .

Example of a Program Failure
Using OR Immediate

COMPARE AND SWAP (CS, CDS)
Setting a Single Bit .•••
Updating Counters

Bypassing POST AND WAIT
BYPASS POST Routine

A-24
A-24

A-24
A-25
A-25
A-26
A-26
A-28
A-28
A-28
A-29
A-29
A-29
A-31
A-32
A-32
A-32
A-33
A-33

A-33
A-34
A-34

A-34

A-34
A-35
A-35
A-36

A-36
A-36
A-37
A-37

A-38

A-38
A-38
A-39
A-39
A-40
A-40

BYPASS WAIT Routine ••••
LOCK/UNLOCK . • • • •

LOCK/UNLOCK with LIFO Queuing
for Contentions ••••••

LOCK/UNLOCK with FIFO Queuing
for Contentions ••••••

Free-Pool Manipulation ••••

APPENDIX B.

APPENDIX C.
SETTINGS

LISTS OF INSTRUCTIONS

CONDITION-CODE

APPENDIX D. COMPARISON BETWEEN
SYSTEM/370 AND 370-XA MODES

New Facilities in 370-XA Mode
Bimodal Addressing
31-Bit Logical Addressing
31-Bit Real and Absolute

Addressing •••.
Page Protection
Tracing •••••.

Comparison of Facilities .•••
Summary of Changes • • • • •

Changes in Instructions Provided
Input/Output Comparison
Comparison of PSW Formats
Changes in Control-Register

Assignment ..•..••
Changes in Assigned Storage

locations .. _ •.. __
SIGNAL PROCESSOR Changes
Machine-Check Changes ••
Changes to Addressing Wraparound
Changes to LOAD REAL ADDRESS
Changes to 31-Bit Real Operand

Addresses _ • . . .

APPENDIX E.

APPENDIX F.

APPENDIX G.

INDEX

TABLE OF POWERS OF 2

HEXADECIMAL TABLES

EBCDIC CHART

A-40
A-40

A-41

A-42
A-44

B-1

C-1

D-l
D-1
D-1
1)-1

[,-1
D-2
D-2
D-2
D-4
D-4
D-6
D-7

D-7

D-9
D-9
D-9

D-10
D-10

D-10

E-1

F-1

G-I

X-I

xv

CHAPTER ~ INTRODUCTION

Highlights of 370-XA ••••••.•.•.••.•••••••••••••••••••••••• 1-1
Compatibility •.•.•••••••••••.••••.•.•••••••••••••••••••••• 1-3

Compatibility Among Systems in 370-XA Mode •••••••••••••• 1-3
Compatibility Between Systems in System/370 Mode
and in 370-XA Mode ..•••••.•••••.••.•••••••.•..•••..••.•• 1-4

Control-Program Compatibility ••..••.•...•••..•••..•.•. 1-4
Problem-State Compatibility ••••••••••••••••••••..••..• 1-4

System Program .•••••..••.......•••••.•••.••••••..••.•••••. 1-5
Availability ••••.•••..•••••.•••••••••••••••••••••••••••••• 1-5

This publication describes the architec
ture of systems operating in the IBM
System/370 extended-architecture
(370-XA) mode.

The architecture of a system defines its
attributes as seen by the programmer,
that is, the conceptual structure and
functional behavior of the machine, as
distinct from the organization of the
data flow, the logical design, the phys
ical design, and the performance of any
particular implementation. Several
dissimilar machine implementations may
conform to a single architecture. When
programs running on different machine
implementations produce the results that
are defined by a single architecture,
the implementations are considered to be
compatible.

HIGHLIGHTS OF 370-XA

The 370-XA mode has evolved from the
System/370 architecture, with special
attention paid to the implementation of
large systems. It incorporates a number
of significant new facilities beyond
System/370. Some facilities available
in the System/370 mode are changed or
not provided in the 370-XA mode. A
detailed comparison of the differences
in the facilities and functions which
are offered in the System/370 mode and
in the 370-XA mode appears in Appendix
D.

The most significant change from
System/370 is in the I/O facilities
provided by the channel subsystem. It
includes these significant new capabili
ties:

• Path-independent addressing of I/O
devices, which permits the initi
ation of I/O operations with any
device without regard to which CPU
is executing the I/O instruction or
how the I/O device is attached to
the channel subsystem. Any I/O

•

•

•

•

•

interruption can be handled by any
CPU enabled for it.

Path management, whereby the chan
nel subsystem determines what paths
are available for selection, choos
es a path, and manages any busy
conditions encountered while
attempting to initiate I/O process
ing with the associated devices.
These functions are performed with
out interaction with the program.

Dynamic reconnection, which permits
any I/O device using this capabili
ty to reconnect to any available
channel path to which it has access
in order to continue execution of a
chain of commands. This capability
complements the path-management
capability; together, they permit
the channel subsystem and the I/O
device to choose the first avail
able path to initiate or continue
execution of a chain of operations.

Programmable interruption sub-
classes, which permit the
programmed assignment of 1/0-
interruption requests from individ
ual I/O devices to anyone of eight
maskable interruption queues.

An additional CCW format for the
direct use of 31-bit addresses in
channel programs. The new CCW
format, called format 1, is
provided in addition to the
System/370 CCW format, now called
format O. The format of the CCWs
is specified when an I/O operation
is initiated.

Address-limit checkin9t which pro
vides an additional storage-protec
tion facility to prevent data
access to storage locations above
or . below a specified absolute
address. The absolute address
limit value can be set by an I/O
instruction, and individual sub
channels can be set up by another
I/O instruction to allow data
accesses to locations only at or

Chapter 1. Introduction 1-1

above, or only below, the limit
address.

• Monitoring facilitie~ which can be
invoked by the program to cause the
channel subsystem to measure and
accumulate, in main storage, key
I/O-resource usage parameters for
individual subchannels. The accu
mulated data-transfer time for a
channel~program execution can be
passed to the program with the
ending status for that channel
program.

• A set of 13 new I/O instructions,
with associated control blocks,
which are provided for the control
of the channel subsystem.

The following is a summary of the other
extensions incorporated in the 370-XA
mode:

•

•

•

•

Bimodal addressing proyides two
modes of operation: a 24-bit
addressing mode for running old
programs and a 31-bit addressing
mode. The mode is controlled by a
bit in the PSW, and unprivileged
instructions are provided that
examine and set the mode. These
instructions conveniently permit
combining old programs, which must
operate in the 24-bit addressing
mode, and new programs, which can
take advantage of the 31-bit
addressing mode.

31-bit logical addressing extends
the virtual address space from the
16M bytes addressabl~ with 24-bit
addresses to 2G bytes
(2,147,483,648 bytes). In the
31-bit mode, address arithmetic
and all logical addresses specified
by instructions, as well as the
address appearing in the program
status word (PSW), are expanded to
31 bits. Addresses appearing in
control registers and permanently
assigned storage locations are 31
bits, independent of the addressing
mode.

31-bit real and absolute addressing
provides addressability for up to
2G bytes of main storage. Associ
ated with this extension, a number
of formats are changed to provide
for 31-bit address fields. These
include the dynamic-address
translation and other table
entries, the associated control
registers, and the prefix register.
The 31-bit-real-and-absolute
addressing facility replaces the
extended-real-addressing facility
of System/370, where page-table
entry bits 13 and 14 are used to
extend the real address to 26 bits.

The 370-XA protection facilities
reflect the adoption of the 4K-byte

1-2 370-XA Principles of Operation

•

•

•

block as the basic unit of storage
allocation. Only one storage key
is allocated to a 4K-byte
protection block of storage; that
iS t the System/370 2K-byte block is
not provided. Associated with the
4K-byte protection block is a
control, called the fetch
protection-override control, ~hat
eliminates fetch protection for
locations 0-2047 so as to permit
access to status and control infJr
mation located in the first 2K
bytes of storage. Page protection,
which is controlled by a bit in the
page-table entry, replaces segment
protection introduced for later
models of System/370. The page
protection facility permits
establishing read-only pages. As
in System/370, low-address protec
tion provides additional protection
for the contents of storage
locations 0 through 511.

The tracing facility assists in the
determination of system problems by
providing an on-going record in
storage of significant events.
Branch tracing and ASH tracing may
implicitly form entries in the
trace table, whereas entries may be
explicitly formed by the TRACE
instruction. Each of the three
types of tracing is separately
controllable. A separate trace
table is associated with each CPU.
This facility replaces the MVS
oriented System/370 dual-address
space tracing.

The two orders set prefix and store
status at address provide addi
tional capability for communication
between CPUs by means of the SIGNAL
PROCESSOR instruction.

The DIVIDE (DXR) instruction
provides for an extended-precision
dividend, divisor, and quotient and
thus rounds out the set of
extended-precision floating-point
instructions.

The following is a summary of the facil
ities appearing in the System/370 mode
but not provided in the 370-XA mode:

• The System/370 I/O instructions and
I/O interruptions, including all 10
System/370 I/O instructions, chan
nel masks in control register 2,
the block-multiplexing control in
control register 0, and channel-set
switching with the associated two
instructions. These facilities are
replaced by the 370-XA channel
subsystem.

• The System/370 formats containing
24-bit addresses, which have been
replaced by formats providing for
31-bit addresses. These include
tables and control registers asso-

ciated with dynamic address
translation and the dual-address
space facility.

• The basic-control mode and the
associated PSW format, as well as
the controls and information
formats of the interruption mecha
nism. In the 370-XA mode, only the
functions and format of the
System/370 extended-control mode
are available.

• The i nterva 1
location 80.

storage

• The 2K-byte block associated with a
storage key and the instructions
INSERT STORAGE KEY, RESET REFERENCE
BIT, and SET STORAGE KEY.

• Direct control, including the
instructions READ DIRECT and WRITE
DIRECT and the external signals.

• Certain System/370 machine-check
and I/O-recovery facilities. In
the 370-XA mode, these conditions
either are encoded differently or
the associated error-recording and
recovery functions are performed by
the machine without a need for
bringing the associated information
to the attention of the program.
The facilities include the I/O
extended logout and the associated
control in control register 14,
machine-check extended logout and
the associated controls in control
registers 14 and 15, limited
channel-logout extensions, and some
machine-check indications.

Additionally, the 370-XA mode differs
from the System/370 mode in that (1) the
control-register assignment has been
changed, (2) storage addresses for chan
nel programs in the 24-bitOmode cause an
I/O program check instead of wraparound,
(3) the extended-key instructions and
TEST BLOCK are subject to the 24-bit and
31-bit addressing modes, and (4) it is
unpredictable whether prefixing is
applied to addressing of dynamic
address-translation tables.

Except for the facilities specifically
identified as not provided, the 370-XA
mode includes all facilities that are
defined in the System/370 Principles of
Operation. Most of the facilities that
are considered features in the
System/370 mode (because they are
optional or unavailable on some models)
are a standard part of the 370-XA mode.

Specifically, the 370-XA mode incorpo
rates dynamic address translation,
including the common-segment bit and the
instructions INVALIDATE PAGE TABLE ENTRY
and TEST PROTECTION introduced for later
models of System/370. The table formats
are modified to accommodate 31-bit real
addresses, and, in contrast to the

facility in the System/370 mode, this
facility is available only with 1M-byte
segments and 4K-byte pages, reflecting
the larger virtual and real storage
available on systems operating in the
370-XA mode.

Similarly, the 370-XA mode includes all
of the functions (except for DAS
tracing) of the System/370 dual
address-space facility. The 370-XA mode
thus permits establishing addressability
for up to 65,536 address spaces of 2G
bytes each. A number of control
register and table formats, however, are
changed to accommodate the 31-bit
address fields.

The System/310 multiprocessing facil
ities, which include prefixing, CPU
address identification, CPU signaling
and response, and TOO-clock synchroniza
tion are a basic part of the 370-XA
mode. Thus, the instructions SET
PREFIX, STORE PREFIX, STORE CPU ADDRESS,
and SIGNAL PROCESSOR are operative even
when no other CPU is in the configura
tion.

Even though the System/370 I/O facil
ities have generally been replaced by
the channel subsystem in the 370-XA
mode, and although a new channel
command-word (CCW) format is introduced
to accommodate 31-bit addresses, the
System/370 24-bit format, including the
command codes and flags, is carried into
the 370-XA mode. Similarly, the 370-XA
mode incorporates the functions of the
suspend-and-resume facility available on
the later System/370 models. Computi
bility with System/370 is maintatned
also in the physical attachment of I/O
control units via the System/370 I/O
interface.

COMPATIBILITY

COMPATIBILITY AMONG SYSTEMS IN 370-XA
MODE

Although systems operating in the 370-XA
mode may differ in implementation and
physical capabilities, logically they
are upward and downward compatible.
Compatibility provides for simplicity in
education, availability of system
backup, and ease in system growth.
Specifically, any program written to
operate in the 370-XA mode gives identi
cal results on any system operating in
that mode, provided that the program:

1. Is not time-dependent.

2. Does not depend on system facili
ties (such as storage capacity, I/O
equipment, or optional facilities)
being present when the facilities

Chapter 1. Introduction 1-3

are not included in the configura
tion.

3. Does not depend on system facili
ties being absent when the facili
ties are included in the
configuration. For example, the
program must not depend on inter
ruptions caused by the use of
operation codes or command codes
that are not installed in some
models. Also, it must not use or
depend on fields associated with
uninstalled facilities. For exam
ple, data should not be placed in
an area used by another model for
logout. Similarly, the program
must not use or depend on unas
signed fields in machine formats
(control registers, instruction
formats, etc.) that are not explic
itly made available for program
use.

4. Does not depend on results or func
tions that are defined in this
pUblication to be unpredictable or
model-dependent, or on special
purpose functions (such as cssists)
that are not described in this
publication. This includes the
requirement that the program should
not depend on the assignment of
device numbers and CPU addresses.

5. Does not depend on results or func
tions that are defined in the
functional-characteristics publica
tion for a particular model to be
deviations from the architecture
defined in this publication.

COMPATIBILITY BETWEEN SYSTEMS IN
SYSTEM/370 MODE AND IN 370-XA MODE

Control-Program Compatibility

Control programs that were written to
run on systems operating in the
System/370 mode cannot be directly
transferred from those systems to
systems operating in the 370-XA mode.
This is because in the 370-XA mode the
BC mode is not present, new facilities
for I/O are included, and the dynamic
address-translation facility is
modified. (See Appendix D for a
detailed comparison between the
System/370 and 370-XA modes.)

To provide full control-program compat
ibility for the System/370 mode, all
models which provide the 370-XA mode
also offer manual controls that place
the machine in the System/370 mode.
When the system is in this mode, the
operation of the system is as described
in the ~tl System/370 Principles of
Operation, GA22-7000.

1-4 370-XA Principles of Operation

Problem-State Compatibility

A high degree of compatibility exists at
the problem-state level in going forward
from systems operating in the System/370
mode to systems operating in the 370-XA
mode. Because the majority of a user's
applications are written for the problem
state, this problem-state compatibility
is useful in ~any installations.

A program written to run in the problem
state on systems operating in the
System/370 mode will run on a system
operating in the 370-XA mode, provided
that the program:

1. Observes the limitations described
in the section "Compatibility Among
Systems in 370-XA Mode."

2. Is not dependent on control-program
facilities which are unavailable on
the system.

3. Takes into account other changes
made to the System/370 architec
tural definition that affect com
patibility between the System/370
mode and the 370-XA mode. These
changes are described in Appendix
D.

Programming Note

This publication assigns meanings to
various operation codes, to bit posi
tions in instructions, channel-command
words~ registers, and table entries, and
to fixed locations in the low 512 bytes
of storage. Unless specifically noted,
the remaining operation codes, bit posi
tions, and low-storage locations are
reserved for future assignment to new
facilities and other extensions of the
architecture.

To ensure that existing programs run if
and when such new facilities are
installed, programs should not depend on
an indication of an exception as a
result of invalid values that are
currently defined as being checked. If
a value must be placed in unassigned
positions that are not checked, the
program should enter zeros. When the
machine provides a code or field, the
program should take into account that
new codes and bits may be assigned in
the future. The program should not use
unassigned low-storage locations for
keeping information since these
locations may be assigned in the future
in such a way that the machine causes
this location to be changed.

SYSTEM PROGRAM

The system is designed to operate with a
control program that coordinates the use
of system resources and executes all I/O
instructions, handles exceptional condi
tions, and supervises scheduling and
execution of multiple programs.

AVAILABILITY

Availability is the capability of a
system to accept and successfully proc
ess an individual job. Systems operat
ing in the 370-XA mode permit
substantial availability by (1) allowing
a large number and broad range of jobs
to be processed concurrently, thus
making the system readily accessible to
any particular job, and (2) limiting the
effect of an error and identifying more
precisely its cause, with the result
that the number of jobs affected by
errors is minimized and the correction
of the errors facilitated.

Several design aspects make this possi
ble.

• A program is checked for the
correctness of instructions and
data as the program is executed,
and program errors are indicated
separate from equipment errors.
Such checking and reporting assists
in locating failures and isolating
effects.

• The protection facilities, in
conjunction with dynamic address
translation, permit the protection
of the contents of storage from
destruction or misuse caused by
erroneous or unauthorized storing
or fetching by a program. This
provides increased security for the
user, thus permitting applications
with different security require
ments to be processed concurrently
with other applications.

• Dynamic address translation allows
isolation of one application from
another, still permitting them to

•

•

•

•

•

share common resources. Also, it
permits the implementation of
virtual machines, which may be used
in the design and testing of new
versions of operating systems along
with the concurrent processing of
application programs. Addition
ally, it provides for the
concurrent operation of incompat
ible operating systems.

Multiprocessing and the channel
subsystem permit better use of
storage and processing capabili
ties, more direct communication
between CPUs, and duplication of
resources, thus aiding in the
continuation of system operation in
the event of machine failures.

MONITOR CALL, program-event re
cording, and the timing facilities
permit the testing and debugging of
programs without manual interven
tion and with little effect on the
concurrent processing of other
programs.

On most models, error checking and
correction (ECC) in main storage,
CPU retry, and command retry
provide for circumventing intermit
tent equipment malfunctions, thus
reducing the number of equipment
failures.

An enhanced machine-check handling
mechanism provides model
independent fault isolation, which
reduces the number of programs
impacted by uncorrected errors.
Additionally, it provides model
independent recording of machine
status i~formation. This leads to
greater machine-check handling
compatibllity between models and
improves the capability for loading
and running a program on a differ
ent model when a system failure
occurs.

A small number of manual controls
are required for basic system oper
ation, permitting most operator
system interaction to take place
via a unit operating as an I/O
device and thus reducing the possi
bility of operator errors.

Chapter 1. Introduction 1-5

CHAPTER ~ ORGANIZATION

Main Storage •••••••••••••••••••••••••••••••••••••.•••••••• 2-2
Central Processing Unit ••••••••••••••••••••••••••••••••••• 2-2

Program-Status Word •••••.•••••••••••••••••••••••.••••••• 2-3
General Registers •••••••.••••••••••••.•••••••••••••••••• 2-3
Floating-Point Registers ••••••••••••.•••••••••••.••••••• 2-3
Control Registers •.••••••.•.•.•••••••••••.••••••.•.••••• 2-3

Input and Output ••••.••..••.•.••••••.••••.••••.•••.••••••• 2-5
Channel Subsystem •••••••••.••••••••••••.••••••••.••••••• 2-5
Input/Output Devices and Control Units ••••••••••••.••••• 2-5

Operator Facilities •.•.•.•••..•.••••.••.••••••.•••..••.•.• 2-5
Service Processor ••••..••••...•.••••.•••••••••••••.••••••• 2-5

Logically, a system consists of main
storage, one or more central processing
units (CPUs), operator facilities, a
channel subsystem, and I/O devices. I/O
devices are attached to the channel
subsystem through control units. The
connection between the channel subsystem
and a control unit is called a channel
path. The physical identity of these
functions may vary among
implementations, called "models." The
figure "Logical Structure of a 370-XA
System With Two CPUs" depicts the
logical structure of a two-CPU multipro
cessing system.

Specific processors may differ in their
internal characteristics, the installed
facilities, the number of subchannelsl
channel paths, and control units which
can be attached to the channel
subsystem, the size of main storage, and
the representation of the operator
facilities. The differences in internal
characteristics are apparent to the
observer only as differences in machine
performance.

---- CPU

I
~ CPU Main Storage

~ Channel
Subsystem

I I I 1---1
Channel Paths

I I
/ / ~--------------~----------/

~----~------~----------~------/

Logical Structure of a 370-XA System
with Two CPUs

Chapter 2. Organization 2-1

A system viewed without regard to its
I/O devices is referred to as a config
uration. All of the physical equipment,
whether in the configuration or not, is
referred to as the installation.
Model-dependent reconfiguration controls
may be provided to change the amount of
main storage and the number of CPUs and
channel paths in the configuration. In
some instances, the reconfiguration
controls may be used to partition a
single configuration into multiple
configurations. Each of the configura
tions so reconfigured has the same
structure, that is, main storage, one or
more CPUs, and one or more subchannels
and channel paths in the channel subsys
tem. Each configuration is isolated in
that the main storage in one configura
tion is not directly addressable by the
CPUs and the channel subsystem of anoth
er configuration. It is, however,
possible for one configuration to commu
nicate with another by means of shared
I/O devices or a channel-to-channel
adapter. At anyone time, the storage,
CPUs, subchannels, and channel paths
connected together in a system are
referred to as being in the configura
tion. Each CPU, subchannel, channel
path, and main-storage location can be
in only one configuration at a time.

MAIN STORAGE

Main storage, which is directly address
able, provides for high-speed processing
of data by the CPUs and the channel
subsystem. Both data and programs must
be loaded into main storage from input
devices before they can be processed.
The amount of main storage available on
the system depends on the model, and,
depending on the model, the amount in
the configuration may be under control
of model-dependent configuration
controls. The storage is available in
multiples of 4K-byte blocks. At any
instant in time, the channel subsystem
and all CPUs in the configuration have
access to the same blocks of storage and
refer to a particular block of main
storage locations by using the same
absolute address.

Main storage may be either physically
integrated with a CPU or constructed as
standalone units. Additionally, main
storage may be composed of large
capacity storage and a faster-access
buffer storage, sometimes called a
cache. Each CPU may have an associated
cache. The effects, except on perform
ance, of the physical construction and
the use of distinct storage media are
not observable by the program.

2-2 370-XA Principles of Operation

CENTRAL PROCESSING UNIT

The central processing unit (CPU) is the
controlling center of the system. It
contains the sequencing and processing
facilities for instruction execution,
interruption action, timing functions,
initial program loading, and other
machine-related functions.

The physical implementation of the CPU
may differ among models, but the logical
function remains the same. The result
of executing an instruction is the same
for each model, providing that the
compatibility rules are observed.

The CPU, in executing instructions, can
process binary integers and floating
point numbers of fixed length, decimal
integers of variable length, and logical
information of either fixed or variable
length. Processing may be in parallel
or in series; the width of the process
ing elements, the multiplicity of the
shifting paths, and the degree of simul
taneity in performing the different
types of arithmetic differ from one CPU
to another without affecting the logical
results.

Instructions which the CPU executes fall
into five classes: general, decimal,
floating-point, control, and I/O
instructions. The general instructions
are used in performing binary integer
arithmetic operations and logical,
branching, and other nonarithmetic oper
ations. The decimal instructions
operate on data in the decimal format,
and the floating-point instructions on
data in the floating-point format. T~e
privileged control instructions and the
I/O instructions can be executed only
when the CPU is in the supervisor state;
the semiprivileged control instructions
can be executed in the problem state,
subject to the appropriate authorization
mechanisms.

To perform its functions, the CPU may
use a certain amount of internal
storage. Although this internal storage
may use the same physical storage medium
as maln storage, it is not considered
part of main storage and is not address
able by programs.

The CPU provides registers which are
available to programs but do not have
addressable represent~tions in main
storage. They include the current
program-statusword (PSW), the general
registers, the floating-point registers,
the control registers, the prefix regis
ter, and the registers for the clock
comparator and the CPU timer. Each CPU
in an installation provides access to a
time-of-day (TOO) clock which may be
local to that CPU or shared with other
CPUs in the installation. The instruc
tion operation code determines which
type of register is to be used in an

operation. See the figure "General,
Floating-Point, and Control Registers"
later in this chapter for the format of
those registers.

PROGRAM-STATUS WORD

The program-status word (PSW) includes
the instruction address, condition code,
and other information used to control
instruction sequencing and to determine
the state of the CPU. The active or
controlling PSW is called the current
PSW. It governs the program currently
being executed.

The CPU has an interruption capability,
which permits the CPU to switch rapidly
to another program in response to excep
tional conditions and external stimuli.
When an interruption occurs, the CPU
place~ the current PSW in an assigned
storage location, called the old-PSW
location, for the particular class of
interruption. The CPU fetches a new PSW
from a second assigned storage location.
This new PSW determines the next program
to be executed. When it has finished
processing the interruption, the inter
rupting program reloads the old PSW,
making it again the current PSW, so that
the interrupted program can continue.

There are six classes of interruption:
external, I/O, machine check, program,
restart, and supervisor call. Each
class has a distinct pair of old-PSW and
new-PSW locations permanently assigned
in real storage.

GENERAL REGISTERS

Instructions may designate information
in one or more of 16 general registers.
The general registers may be used as
base-address registers and index regis
ters in address arithmetic and as accu
mulators in general arithmetic and
logical operations. Each register
contains 32 bits. The general registers
are identified by the numbers 0-15 and
are designated by a four-bit R field in
an instruction. Some instructions
provide for addressing multiple general
registers by having several R fields.
For some instructions, the use of a
specific general register is implied
rather than explicitly designated by an
R field of the instruction.

For some operations, two adjacent gener
al registers are coupled, providing a

64-bit format. In these operations, the
program must designate an even-numbered
register, which contains the leftmost
(high-order) 32 bits. The next higher
numbered register contains the rightmost
(low-order) 32 bits.

In addition t~ their use as accumulators
in general ar~thmetic and logical oper
ations, 15 of the 16 general registers
are also .used as base-address and index
registers in address generation. In
these cases, the registers are desig
nated by a four-bit B field or X field
in an instruction. A value of zero in
the B or X field specifies that no base
or index is to be applied, and, thus,
general register 0 cannot be designated
as containing a base address or index.

FLOATING-POINT REGISTERS

Four floating-point registers are avail
able for floating-point operations.
They are identified by the numbers 0, 2,
4, and 6 and are designated by a four
bit R field in floating-point instruc
tions. Each floating-point register is
6 4 bit s Ion g and can con t a i n e i t h~! r a
short (32-bit) or a long (64-tit)
floating-point operand. A short oper!nd
occupies the leftmost bit positions of a
floating-point register. The rightmost
portion of the register is ignored in
operations that use short operands and
remains unchanged in operations that
produce short results. Two pairs of
adjacent floating-point registers can be
used for extended operands: registers 0
and 2, and registers 4 and 6. Each of
these pairs, identified by the numbers 0
and 4, provides for a 128-bit format.

CONTROL REGISTERS

The CPU has provisions for 16 control
registers, each having 32 bit positions.
The bit positions in the registers are
assigned to particular facilities in the
system, such as program-event recording,
and are used either to specify that an
operation can take place or to furnish
special information required by the
facility.

The control registers are identified by
the numbers 0-15 and are designated by
four-bit R fields in the instructions
LOAD CONTROL and STORE CONTROL. Multi
ple control registers can be addressed
by these instructions.

Chapter 2. Organization 2-3

Control General
Registers Registers

R Register
Field Number 1+--32 bits~1 1+--32 bits~1

0000 0

[I
I

0001 1

[I
0010 2

I 0011 3

[I
0100 4

I 0101 5

[I
0110 6

I 0111 7

[I
1000 8

I 1001 9

[I
1010 10

I 1011 11

[I
1100 12

I 1101 13

[I
1110 14

I 1111 15

General, Floating-Point, and Control Registers

2-4 370-XA Principles of Operation

Floating-Point Registers

l~E--------64 bits--------~)I

'----___ --.J

Note: The brackets
indicate that the two
registers may be coupled
as a double-register
pair, designated by
specifying the lower
numbered register in
the R field. For ex
ample, the general
register pair 14 and
15 is designated by
1110 binary in the R
field.

INPUT AND OUTPUT

Input/oqtput (I/O) operations involve
the transfer of information between main
storage and an I/O device. I/O devices
and their control units attach to the
channel subsystem, which controls this
data transfer.

CHANNEL SUBSYSTEM

The channel sUbsystem directs the flow
of information between I/O devices and
main storage. It relieves CPUs of the
task of communicating directly with I/O
devices and permits data processing to
proceed concurrently with I/O
processing. The channel subsystem uses
one or more channel paths as the commu
nication link in managing the flow of
information to or from I/O devices. As
part of I/O processing, the channel
subsystem also performs the path
management function of testing for
channel-path availability, selecting an
available channel path, and initiating
execution of the operation with the I/O
device. Within the channel subsystem
are subchannels.

One subchannel is provided for and dedi
cated to each I/O device accessible to
the channel subsystem. Each subchannel
contains storage for information
concerning the associated I/O device and
its attachment to the channel subsystem.
The subchannel also provides storage for
information concerning I/O operations
and other functions involving the asso
ciated I/O device. Information
contained in the subchannel can be
accessed by CPUs using I/O instructions
as well as by the channel subsystem and
serves as the means of communication
between any CPU and the channel subsys
tem concerning the associated I/O
device. The actual number of subchan
nels provided depends on the model and
the configuration; the maximum number of
subchannels is 64K.

I/O devices are attached through control
units to the channel subsystem via chan
nel paths. Control units may be
attached to the channel subsystem via
more than one channel path, and an I/O
device may be attached to more than one
control unit. In all, an individual I/O
device may be accessible to the channel
subsystem by as many as eight different
channel paths, depending on the model
and the configuration. The total number
of channel paths provided by a channel
subsystem depends on the model and the
configuration; the maximum number of
channel paths is 256.

INPUT/OUTPUT DEVICES AND CONTROL UNITS

Input/output devices include such equip
ment as card readers and punches,
magnetic-tape units, direct-access stor
age, displays, keyboards, printers,
teleprocessing devices, communications
controllers, and sensor-based equipment.
Many I/O devices function with an
external medium, such as punched cards
or magnetic tape. Some I/O devices
handle only electrical signals, such as
those found in sensor-based networks.
In either case, I/O-device operation is
regulated by a control unit. In all
cases, the control-unit function
provides the logical and buffering capa
bilities necessary to operate the
associated I/O device. From the
programming point of view, most
control-unit functions merge with I/O
device functions. The control-unit
function may be housed with the I/O
device or 1n the CPU, or a separate
control unit may be used.

OPERATOR FACILITIES

The operator facilities provide the
functions necessary for operator control
of the machine. Associated with the
operator facilities may be an operator
console device, which may also be used
as an I/O dev ice for commun i cat i ng II" th
the program.

The rna in funct ions prov i ded by the opt'r
ator facilities include resetting,
clearing, initial program loading,
start, stop, alter, and display.

SERVICE PROCESSOR

Depending on the model, a service
processor may be provided. The servic~
processor, which is intended primarily
for maintenance of the system, may
perform (1) some or all of the functions
associated with initial microprogram
loading, resets, and other operator
facilities, (2) CPU retry and other
recovery actions associated with
machine-check handling, and (3) recon
figuration operations.

Normally, the existence of the service
processor is not apparent to the program
since the functions involved could be
implemented by any physical unit in the
system with the same logical results.
However, the service processor can
generate two interruptions: a service
signal external interruption and a
service-processor-damage machine-check
interruption.

Chapter 2. Organization 2-5

CHAPTER ~ STORAGE

Storage Addressing •••••••••••••••.•••••••••••••••••••••••• 3-2
Information Formats •••••••••••••••••.••••.•••••••••••••• 3-2
Integral Boundaries ••...•••••.••••••••••..•.....•••••••• 3-3

Address Types and formats ••••••••••••••.••.••••.•••••••••• 3-4
Address Types .••••••••••.••••••••••.•••.•••••••••••••••. 3-4

Absolute Address •••••••••••••.•••••....•••...••••••••. 3-4
Real Address •...•••.•.•••••••.•••.•••.......•.••••••.. 3-4
Virtual Address •.••••••••••••.•.•••.•••.•••..••••••••• 3-5
Primary Virtual Address .•••••••••••••••••••.•••••••••• 3-5
Secondary Virtual Address ••.•.•.•.••.••••....•••••.••• 3-5
Logical Address ••••••••••••••••...•••..••••..•.••..••. 3-5
Instruction Address ••••••••••••.••••.........•••••••.• 3-5
Effective Address ••.••••••••••.•••••••••.••..••••••••• 3-5

Address Size and Wraparound ••••••••••.••..•....••••••••• 3-6
Address Wraparound .••.•..••••••...•••••.•....••••••••• 3-6

Storage Key ••••••••••••••••••.•••••••••••••••.•..••••••••• 3-8
Protection •.•.•••••••••.••.••.•.•••••••••••.••..•••••••••• 3-8

Key-Controlled Protection •....•••••••.•••..••..••••••••. 3-9
Fetch-Protection-Override Control •.••••••••.••.••••••. 3-10

Page Protection •.••••••••••••••••••••••.•••••.•••••••••• 3-10
Low-Address Protection •••••••.••••••••••..•......•••••.. 3-11

Reference Recording .••••••••••••.••••••.•••.••...••••••••• 3-11
Change Recording •••••••••••••••.••.•.••.•••••••..••••••••• 3-11
Prefi xi ng ••••••••••••••••••••••••••••.•.•••••••.•••••••••• 3-12
Address Spaces ••••.•••••••••••••••...••.•.•••••.••••.••••. 3-13
ASH Translation •.••••••••••••••••.•.•••.••.••••.•••.••.••• 3-14

ASN-Translation Controls •.•••••••••••.••.••••••••••••••• 3-14
ASN-Translation Tables •••••••••••••••••.•••••..••••••••• 3-15

ASN-first-Table Entries .•••••••••••••.•.••...•••••••.. 3-15
ASH-Second-Table Entries •••.•..•••.•••.••••..••••••..• 3-15

ASN-Translation Process ••••••••••••••••••••...•••••••••. 3-16
ASH-first-Table Lookup •••••••••.•••••••.•••.•••••••••• 3-17
ASN-Second-Table Lookup •..•••••..•..••••••...•.••••••. 3-17
Recognition of Exceptions During ASN Translation •••••• 3-18

ASH Authorization •.••••.••.••••.•••••.•••••••••.•••••••••• 3-18
ASN-Authorization Controls ••.••••••••••.•••••.•••••••••• 3-18

Control Register 4 ...•..•.•.•.•..•...........•.••••.•. 3-18
ASN-Second-Table Entry •••••••••••••.••..•••.••••••.••• 3-18
Authority-Table Entries ••••••••••••.•.•••••••••••••••• 3-19

ASN-Authorization Process ••••••••....••...•.•..••.••••.• 3-19
Authority-Table Lookup •••.••.•..•••.•...•...•.•...•••. 3-20
Recognition of Exceptions During ASH Authorization •••• 3-21

Dynamic Address Translation ••••••••••••••••••••..••••••••• 3-21
Translation Control •••••.•••••.•.••••.•...•....•••••.••• 3-22

PSW •.••.•....•..••.•••..••••••.••••.•..••...•••••••••• 3-22
Control Register 0 ••••••••••••••••••••••••..•••••••••• 3-23
Control Register 1 •••••••••••••••••••.•.•..••••••••••• 3-23
Control Register 7 •••••.•.•••••••••.•••.•• ~ ..••••••••. 3-24

Translation Tables •••..•••••••••.••••.•.•.•....••••••••• 3-24
Segment-Table Entries •••••.••••••••.•••••••..••••••••. 3-24
Page-Table Entries ••••••••••••••..•.•••••••.•••••••.•. 3-25
Summary of Segment-Table and Page-Table Sizes •.•••.••• 3-25

Translation Process •.•••.••..••••••••.••.•.•...••••••••• 3-26
Effective Segment-Table Designation ••••.•••..••••••••• 3-26
Inspection of Control Register 0 ••...•.••••.•••••••••. 3-29
Segment-Table Lookup •••.••••••.••••..••••....••••••••• 3-29
Page-Table Lookup •••••••••••••••••••••.•••.•.••••••••• 3-29
Formation of the Real Address ••••••••••••••..••••••••• 3-30
Recognition of Exceptions During Translation .••••••••. 3-30

Translation-Lookaside Buffer •••••••...•.•.•....•.••••••• 3-30
Use of the Translation-Lookaside Buffer •••..•••••••••• 3-31
Modification of Translation Tables •.••.•••...••••••••• 3-34

Address Summary .••••••.••••.•.•••••••••.•••.•....•••.••••• 3-36
Addresses Translated ..•••••.•••••••••.••..•....•••.••••• 3-36
Handling of Addresses •••.•••••••••••••••.••....••••••••• 3-37

Assigned Storage Locations •••••••••••••••••••.•.•••••••••• 3-38

Chapter 3. Storage 3-1

This chapter discusses the representa
tion of information in storage, the
addressing of information, protection,
and reference and change recording. The
aspects of addressing which are covered
include the format of addresses, the
concept of address spaces, the various
types of addresses, and the manner in
which one type of address is translated
to another type of address. A list of
permanently assigned storage locations
appears at the end of the chapter.

Main storage provides the system with
directly addressable fast-access storage
~f data. Both data and programs must be
loaded into main storage (from input
devices) before they can be processed.

Main storage may consist of standalone
units or be integrated with a CPU.
Additionally, main storage may be
composed of a large-capacity storage and
a smaller faster-access buffer storage,
sometimes called a cache. Each CPU may
have an associated cache. The effects,
except on performance, of the physical
construction and use of distinct storage
media are not observable by the program.

Fetching and storing of data by a CPU
are not affected by any concurrent
channel-subsystem activity or by a
concurrent reference to the same storage
location by another CPU. When concur
rent requests to a main-storage location
occur, access normally is granted in a
sequence that assigns highest priority
to references by the channel subsystem
and that rotates priority among CPUs.
If a reference changes the contents of
the location, any subsequent storage
fetches obtain the new contents.

Main storage may be volatile or nonvola
tile. If it is volatile, the contents
of main storage are not preserved when
power is turned off. If it is nonvola
tile, turning power off and then back on
does not affect the contents of main
storage, provided all CPUs are in the
stopped state and no references are made
to main storage by the channel subsystem
when power is being turned off. In both
types of main storage, the contents of
the storage key are not necessarily
preserved when the power for main stor
age is turned off.

Note: Because most references in this
publication apply to virtual storage,
the abbreviated term "storage" is often
used in place of "virtual storage." The
term "storage" may also be used in place
of "main storage," "absolute storage,"
or "real storage" when the meaning is
clear. The terms "main storage" and
"absolute storage" are used to describe
storage which is addressable by means of
an absolute address. The terms describe
fast-access storage, as opposed to
auxiliary storage, such as direct-access
storage devices provide. "Real storage"

3-2 370-XA Principles of Operation

is synonymous with "absolute storage"
except for the effects of prefixing.

STORAGE ADDRESSING

Storage is viewed as a long horizontal
string of bits. For most operations,
accesses to storage proceed in a left
to-right sequence. The string of bits
is subdivided into units of eight bits.
An eight-bit unit is called a byte,
which is the basic building block of all
information formats.

Each byte location in storage is identi
fied by a unique nonnegative integer,
which is the address of that byte
location or, simply, the byte address.
Adjacent byte locations have consecutive
addresses, starting with 0 on the left
and proceeding in a left-to-right
sequence. Addresses are either 24-bit
or 31-bit unsigned binary integers and
are described in the section "Address
Size and Wraparound" in this chapter.

INFORMATION FORMATS

Information is transmitted between stor
age and the CPU or the channel sUbsystem
one byte, or a group of bytes, at a
time. Unless otherwise specified, a
group of bytes in storage is addressed
by the leftmost byte of the group. The
number of bytes in the group is either
implied or explicitly specified by the
operation to be performed. When used in
a CPU operation, a group of bytes is
called a field.

Within each group of bytes, bits are
numbered in a left-to-right sequence.
The leftmost bits are sometimes referred
to as the "high-order" bits and the
rightmost bits as the "low-order" bits.
Bit numbers are not storage addresses,
however. Only bytes can be addressed.
To operate on individual bits of a byte
in storage, it is necessary to access
the entire byte.

The bits in a byte are numbered 0
through 7, from left to right.

The bits in an address are numbered 8
through 31 for 24-bit addresses and 1
through 31 for 31-bit addresses. Within
any other fixed-length format of multi
ple bytes, th~ bits making up the format
are consecutively numbered starting from
O.

For purposes of error detection, and in
some models for correction, one or more
check bits may be transmitted with each
byte or with a group of bytes. Such
check bits are generated automatically
by the machine and cannot be directly

controlled by the program. References
in this pUblication to the length of
data fields and registers exclude
mention of the associated check bits.
All storage capacities are expressed in
number of bytes.

When the length of a storage-operand
field is implied by the operation code
of an instruction, the field is said to
have a fixed length, which can be one,
two, four, or eight bytes. Larger
fields may be implied for some
instructions.

When the length of a storage-operand
field is not implied but is stated
explicitly, the field is said to have a
variable length. Variable-length oper
ands can vary in length by increments of
one byte.

When information is placed in storage,
the contents of only those byte
locations are replaced that are included
in the designated field, even though the
width of the physical path to storage
may be greater than the length of the
field being stored.

INTEGRAL BOUNDARIES

Certain units of information must be on
an integral boundary in storage. A

boundary is called integral for a unit
of information when its storage address
is a multiple of the length of the unit
in bytes. Special names are given to
fields of two, four, and eight bytes on
an integral boundary. A halfword is a
group of two consecutive bytes on a
two-byte boundary and is the basic
building block of instructions. A word
is a group of four consecutive bytes on
a four-byte boundary. A doubleword is a
group of eight consecutive bytes on an
eight-byte boundary. (See the figure
"Integral Boundaries with Storage
Addresses.")

When storage addresses designate half
words, words, and doublewords, the bina
ry representation of the address
contains one, two, or three rightmost
zero bits, respectively.

Instructions must be on two-byte inte
gral boundaries, and CCWs, IDAWs, and
the storage operands of certain
instructions must be on other integral
boundaries. The storage operands of
most instructions do not have boundary
alignment requirements.

Chapter 3. Storage 3-3

-------~ Storage Addresses

Bytes o 1 2 3 4 5 6

Halfwords o 2 4 6

Words o 4

Doublewords o

Integral Boundaries with Storage Addresses

Programming Note

For fixed-field-Iength operations with
field lengths that are a power of 2,
significant performance degradation is
possible when storage operands are not
positioned at addresses that are inte
gral multiples of the operand length.
To improve performance, frequently used
storage operands should be aligned on
integral boundaries.

ADDRESS TYPES AND FORMATS

ADDRESS TYPES

For purposes of addressing main storage,
three basic types of addresses are
recognized: absolute, real, and
virtual. The addresses are distin
guished on the basis of the transf
ormations that are applied to the
address during a storage access.
Address translation converts virtual to
real, and prefixing converts real to
absolute. In addition to the three
basic address types, additional types
are defined which are treated as one or
another of the three basic types,
depending on the instruction and the
current mode.

Absolute Address

An absolute address is the address
assigned to a main-storage location. An

3-4 370-XA Principles of Operation

7 8

8

8

8

absolute address
access without
performed on it.

is used for a storage
any transformations

The channel subsystem and all CPUs in
the configuration refer to a shared
main-storage location by using the same
absolute address. Available main stor
age is usually assigned contiguous abso
lute addresses starting at 0, and the
addresses are always assigned in
complete 4K-byte blocks on integral
boundaries. An exception is recognized
when an attempt is made to use an abso
lute address in a block which has not
been assigned to physical locations. On
some models, storage-reconfiguration
controls may be provided which permit
the operator to change the correspond
ence between absolute addresses and
physical locations. However, at anyone
time, a physical location. is not associ
ated with more than one absolute
address.

Storage consisting of byte
sequenced according to their
addresses is referred to as
storage.

Real Address

locations
absolute
absolute

A real address identifies a location in
real storage. When a real address is
used for an access to main storage, it
is converted, by means of prefixing, to
an absolute address.

At any instant there is one real-address
to absolute-address mapping for each CPU
in the configuration. When a real
address is used by a CPU to access main

storage, it is converted to an absolute
address by prefixing. The particular
transformation is defined by the value
in the prefix register for the CPU.

storage consisting of byte locations
sequenced according to their real
addresses is referred to as real
storage.

Virtual Address

A virtual address identifies a location
in virtual storage. When a virtual
address is used for an access to main
storage, it is translated by means of
dynamic address translation to a real
address, which is then further converted
by prefixing to an absolute address.

Primary Virtual Address

A primary virtual address is a virtual
address which is to be translated by
means of the primary segment-table
designation. logical addresses and
instruction addresses are treated as
primary virtual addresses when in
primary-space mode. The first-operand
address of MOVE TO PRIMARY and the
second-operand address of MOVE TO
SECONDARY are always treated as primary
virtual addresses.

Secondary Virtual Address

A secondary virtual address is a virtual
address which is to be translated by
means of the secondary segment-table
designation. logical addresses are
treated as secondary virtual addresses
when in secondary-space mode. The
second-operand address of MOVE TO PRIMA
RY and the first-operand address of MOVE
TO SECONDARY are always treated as
secondary virtual addresses.

logical Address

Except where otherwise specified, the
storage-operand addresses for
instructions are logical addresses.
logical addresses are treated as real
addresses in real mode, treated as
primary virtual addresses in primary
space mode, and treated as secondary
virtual addresses in secondary-space
mode. Some instructions have storage
operand addresses or storage accesses
associated with the instruction which do
not follow the rules for logical
addresses. In all such cases, the

instruction definition contains a defi
nition of the type of address.

Instruction Address

Addresses used to fetch instructions
~rom storage are called instruction
'addresses. Instructi on addresses are
treated as real addresses in real mode,
treated as primary virtual addresses in
primary-space mode, and treated as
either primary virtual addresses or
secondary virtual addresses in
secondary-space mode. The instruction
address in the current PSW and the
target address of EXECUTE are instruc
tion addresses.

Note: When the CPU is in the
secondary-space mode, it is unpredict
able whether instructions, and the
target of EXECUTE, are fetched from the
primary address space or the secondary
address space. However, all copies of
an instruction used in a single
execution are fetched from a single
address space, and the machine can
change to or from interpreting instruc
tion addresses as primary virtual or
secondary virtual only between
instructions and only by issuing a
checkpoint-synchronizing function.

Programming Hotes

1. Predictable program operation is
ensured in secondary-space mode
only when the instructions are
fetched from virtual-address
locations which translate to the
same real address by means of hoth
the primary and secondary segment
tables. Thus, a program should ~ot
enter secondary-space mode if it is
not aware of the virtual-to-real
address mapping in both the primary
and secondary address spaces.

2. The requirement limiting when the
CPU can change the address space
used for fetching instructions
eliminates problems with CPU retry,
OAT pretesting, and trial execution
of instructions for the purposes of
determining PER events.

Effective Address

In some situations, it is convenient to
use the term "effective address." An
effective address is the address which
results from address arithmetic, before
address translation, if any, is
performed. Address arithmetic is the

Chapter 3. Storage 3-5

addition of the base and displacement or
of the base, index, and displacement.

ADDRESS SIZE AND WRAPAROUND

Two sizes of addresses are provided:
24-bit and 31-bit. A 24-bit address can
accommodate a maximum of 16,777,216
(16M) bytes; with a 31-bit address,
2,147,483,648 (2G) bytes of storage can
be addressed.

The bits of the address are numbered
8-31 and 1-31, respectively, correspond
ing to the numbering of base-address and
index bits in a general register:

24-bit Address

o 8 31

I I 31-Bit Address

o 1 31

A 24-bit virtual address is expanded to
31 bits by appending seven zeros on the
left before it is translated by means of
the OAT process, and a 24-bit real
address is similarly expanded to 31 bits
before it is transformed by prefixing.
A 24-bit absolute address is expanded to
31 bits before main storage is accessed.
Thus, the 24-bit address always desig
nates the first 16M-byte block of the
2G-byte storage addressable by a 31-bit
address.

Unless specifically stated to the
contrary, the following definition
applies in this publication: whenever
the machine generates and provides to
the program an address, a 31-bit value
imbedded in a 32-bit field is made
ava.ilable (placed in storage or loaded
into a register). For 24-bit addresses,
bits 0-7 are set to zeros, and the
address appears in bit positions 8-31;
for 31-bit addresses, bit 0 is set to
zero, and the address appears in bit
positions 1-31.

The size of effective addresses is
controlled by bit 32 of the PSW, the
addressing-mode bit. When the bit is
zero, the CPU is in the 24-bit address
ing mode, and 24-bit operand and
instruction effective add~esses are
specified. When the bit is one, the CPU
is in the 31-bit addressing mode, and
31-bit operand and instruction effective
addresses are specified (see the section
"Address Generation" in Chapter 5, "Pro
gram Execution").

The size of the real addresses yielded
by the ASH-translation, PC-number-trans
lation ASH-authorization, and tracing
processes, and the real (or absolute)

3-6 370-XA Principles of Operation

addresses yielded by the OAT process, is
always 31 bits.

The size of the data address in a CCW is
under control of the format-control bit
in the operation-request block specified
by a START SUBCHANNEL instruction. The
CCWs with 24-bit and 31-bit addresses
are called format-O and format-l CCWs,
respectively. Format-O and format-l
CCWs are described in Chapter 15, "Basic
I/O Functions."

Address Wraparound

The CPU performs address generation when
it forms an operand or instruction
address or when it generates the address
of a table entry from the appropriate
table origin and index. It also
performs address generation when it
increments an address to access succes
sive bytes of a field. Similarly, the
channel subsystem generates an address
~hen it increments an address to fetch a
CCW, to fetch an IDAW, or to transfer
data.

When, during the generation of the
address, an address is obtained that
exceeds the value allowed for the
address size (2 24 - 1 or 2 31 - 1), one
of the following two actions is taken:

1. The carry out of the high-order bit
position of the address is ignored.
This handling of an address of
excessive size is called
wraparound.

2. An interruption condition is recog
nized.

The effect of wraparound is to make an
address space appear circular; that is,
address 0 appears to follow the maximum
allowable address. Address arithmetic
and wraparound occur before transforma
tion, if any, of the address by OAT or
prefixing.

Addresses generated by the CPU always
wrap, except for addresses generated for
OAT-table entries. For OAT-table
entries, it is unpredictable whether the
address wraps or whether an addressing
exception is recognized.

For channel-program execution, when the
generated address exceeds the value for
the address size (or, for the read
backward command is decremented below
0), an I/O program-check condition is
recognized.

The figure "Address-Space Wraparound"
identifies what limit values apply to
the generation of different addresses
and how addresses are handled when they
exceed the allowed value.

Address Generation for

Instructions and operands when AM is
zero

Successive bytes of instructions and
operands when AM is zero

Instructions and operands when AM is
one

Successive bytes of instructions and
operands when AM is one

DAT-table entries when used for
implicit translation

DAT-table entries when used for LRA

ASN-first-table, ASN-second-table,
authorization-table, linkage-table,
and entry-table entries

I/O measurement block

For a channel program with format-o
CCWs:

Channel-program address in ORB

Successive CCWs

Successive IDAWs

Successive bytes of I/O data
(without IDAWs)

Successive bytes of I/O data
(with IDAWs)

For a channel program with format-l
CCWs:

Channel-program address in ORB

Successive CCWs

Successive IDAWs

Successive bytes of I/O data
(without IDAWs)

Successive bytes of I/O data
(with IDAWs)

Address Wraparound (Part 1 of 2)

Address
Type

L,I,R,V

I,L,Vl

L,l,R,V

l,L,Vl

A

A

or

or

R

A

A

A

A

A

A

A

A

A

A

A

R2

R2

Handling When
Address Would

Wrap

W24

W24

W31

W31

X31

X31

W31

P31

P24

P24

P24

P24

P31

P31

P31

P31

P31

P31

Chapter 3. Storage 3-7

Explanation:

A
AM
I

Absolute address.
Addressing mode bit in the PSW.
Instruction address.
Logical address. L

P24

P31

R

An I/O program-check condition is recognized when the
address exceeds 224 - 1 or is decremented below zero.
An I/O program-check condition is recognized when the
address exceeds 2 31 - 1 or is decremented below zero.
Real address.
Virtual address. V

W24
W31
X31

1

Wrap to location 0 after location 224 - 1 and vice versa.
Wrap to location 0 after location 231 - 1 and vice versa.
When the address exceeds 2 31 - 1, it is model-dependent
whether the address wraps to location 0 after location
2 31 - 1 or whether an addressing exception is recognized.
Real addresses do not apply in this case since the in
structions which designate operands by means of real ad
dresses cannot designate operands that cross boundaries
224 and 231.

2 The choices are model-dependent.

Address Wraparound (Part 2 of 2)

STORAGE KEY

A storage key is associated with each
4K-byte block of storage that is avail
able in the configuration.

o 4 6

The bit positions in the storage key are
allocated as follows:

Access-Control Bits (ACC): If a refer
ence is subject to key-controlled
protection, the four access-control
bits, bits 0-3, are matched with the
four-bit access key when information is
stored, or when information is fetched
from a location that is protected
against fetching.

Fetch-Protection Bit (F): If a refer
ence is subjec~ to key-controlled
protection, the fetch-protection bit,
bit 4, controls whether key-controlled
protection applies to fetch-type refer
ences: a zero indicates that only
store-type references are monitored and
that fetching with any access key is
permitted; a one indicates that key
controlled protection applies both to
fetching and storing. No distinction is
made between the fetching of
instructions and of operands.

Reference Bit (R): The reference bit,
bit 5, normally is set to one each time
a location in the corresponding storage
block is referred to either for storing
or for fetching of information.

3-8 370-XA Principles of Operation

Change Bit (C): The change bit, bit 6,
is set to one each time information is
stored at a location in the correspond
ing storage block.

Storage keys are not part of addressable
storage. The entire storage key is set
by SET STORAGE KEY EXTENDED and
inspected by INSERT STORAGE KEY
EXTENDED. Additionally, the instruction
RESET REFERENCE BIT EXTENDED provides a
means of inspecting the reference and
change bits a~d of setting the reference
bit to zero. Bits 0-4 of the storage
key are inspected by the INSERT VIRTUAL
STORAGE KEY lnstruction. The contents
of the storage key are unpredictable
during and after the execution of the
usability test of the TEST BLOCK
instruction.

PROTECTION

Three protection facilities are provided
to protect the contents of main storage
from destruction or misuse by programs
that contain errors or are unauthorized:
key-controlled protection, page
protection, and low-address protection.
The protection facilities are applied
independently; access to main storage is
only permitted when none of the facili
ties prohibit the access.

Key-controlled protection affords
protection against improper storing or
against both improper storing and feb-:h
lng, but not against improper fetchlng
alone.

KEY-CONTROLLED PROTECTION

When key-controlled protection applies
to a storage access, a store is permit
ted only when the storage key matches
the access key associated with the
request for storage access; a fetch is
permitted when the keys match or when
the fetch-protection bit of the storage
key is zero.

The keys are said to match when the four
access-control bits of the storage key
are equal to the access key, or when the
access key 1S zero.

The protection action is summarized in
the figure "Summary of Protection
Action."

Conditions Is Access to
Storage Permitted?

Fetch-Protection
Bit of

Storage Key Key Relation Fetch Store

o
o
1
1

Match
Mismatch
Match
Mismatch

Yes
Yes
Yes
No

Yes
No
Yes
No

Explanation:

Match

Yes

No

The four access-control bits of the storage
key are eq~al to the access key, or the access
key is zero.

Access is permitted.

Access is not permitted. On fetching, the
information is not made available to the
program; on storing, the contents of the
storage location are not changed.

Summary of Protection Action

Chapter 3. Storage 3-9

When the access to storage is initiated
by the CPU, and key-controlled
protection applies, the PSW key is the
access key, except that, for the second
operand of MOVE WITH KEY and MOVE TO
PRIMARY and the first operand of MOVE TO
SECONDARY, the access key is specified
in a general register. The PSW key
occupies bit positions 8-11 of the
current PSW.

When the access to storage is for the
purpose of channel-program execution,
the subchannel key associated with that
channel program is the access key. The
subchannel key for a channel program is
specified in the operation-request block
(ORB). When, for purposes of channel
subsystem monitoring, an access to the
measurement block is made, the
measurement-block key is the access key.
The measurement-block key is specified
by the SET CHANNEL MONITOR instruction.

When a CPU access is prohibited because
of key-controlled protection, the unit
of operation is suppressed or the
instruction is terminated, and a program
interruption for a protection exception
takes place. When a channel-program
access is prohibited, the start function
is ended, and the protection-check
condition is indicated in the associated
interruption-response block (IRB). When
a measurement-block access is
prohibited, the I/O measurement-block
protection-check condition is indicated.

When a store access is prohibited
because of key-controlled protection,
the contents of the protected location
remain unchanged. When a fetch access
is prohibited, the protected information
is not loaded into a register, moved to
another storage location, or provided to
an I/O device. For a prohibited
instruction fetch, the instruction is
suppressed, and an arbitrary
instruction-length code is indicated.

Key-controlled protection is independent
of whether the CPU is in the problem or
supervisor state and, except as
described below, does not depend on the
type of CPU instruction or channel
command word being executed.

Except where otherwise specified, all
accesses to storage locations that are
explicitly designated by the program and
that are used by the CPU to store or
fetch information are subject to key
controlled protection.

Key-controlled protection is not applied
to access to the second operand of TEST
BLOCK.

All storage accesses by the channel
subsystem to access the I/O measurement
block, or by a channel program to fetch
a CCW or IDAW or to access a data area
designated during the execution of a
CCW, are subject to key-controlled pro-

3-10 370-XA Principles of Operation

tection. However, if a CCW, an IDAW, or
output data is prefetched, an I/O
protection check is not indicated until
the CCW or IDAW is due to take control
or until the data is due to be written.

Key-controlled protection is not applied
to accesses that are implicitly made for
any of such sequences as:

• An interruption

•
•

•

•

CPU logout

Fetching of table entries for
dynamic-address translation, PC
number translation, ASN transla
tion, or ASN authorization

Tracing

A store-status function

• Storing in real locations 184-191
when TEST PENDING INTERRUPTION has
an operand address of zero

• Initial program loading

Similarly, protection does not apply to
accesses initiated via the operator
facilities for altering or displaying
information. However, when the program
explicitly designates these locations,
they are subject to protection.

Fetch-Protection-Override Control

Bit 6 of control register 0 is the
fetch-protection-override control. When
the bit is one, fetch protection is
ignored for locations at effective
addresses 0-2047. Fetch-protection
override applies to instruction fetch
and to the fetch accesses of
instructions whose operand addresses are
logical, virtual, or real. It does not
apply to fetch accesses made for the
purpose of channel-program execution or
for the purpose of channel-subsystem
monitoring. When this bit is set to
zero, fetch protection of locations at
effective addresses 0-2047 is determined
by the state of the fetch-protection bit
of the storage key associated with those
locations.

Fetch-protection override has no effect
on accesses which are not subject to
key-controlled protection.

PAGE PROTECTION

ThE page-protection facility controls
access to virtual storage by using the
page-protection bit in each page-table
entry. It provides protection against
improper storing.

The page-protection bit, bit 22 of the
page-table entry, controls whether stor
ing is allowed into the corresponding
4K-byte page. When the bit is zero,
both fetching and storing are permitted;
when the bit is one, only fetching is
permitted. When an attempt is made to
store into a protected page, a program
interruption for protection takes place.
The contents of the protected location
remain unchanged.

Page protection applies to all
type references that use a
address.

lOW-ADDRESS PROTECTION

store
virtual

The low-address-protection facility
provides protection against the
destruction of main-storage information
used by the CPU during interruption
processing, by prohibiting instructions
from storing by using effective
addresses in the range 0 through 511.
The range criterion is applied before
address transformation, if any, of the
address by dynamic address translation
or prefixing.

low-address protection is under control
of bit 3 of control register 0, the
low-address-protection-control bit.
When the bit is zero, low-address
protection is off; when the bit is one,
low-address protection is on.

If an access is prohibited because of
low-address protection, the contents of
the protected location remain unchanged,
a program interruption for a protection
exception takes place, and the unit of
operation is suppressed or the instruc
tion terminated.

Any attempt by the program to store by
using effective addresses in the range 0
through 511 are subject to low-address
protection. low-address protection is
applied to the store accesses of
instructions whose operand addresses are
logical, virtual, or real. Low-address
protection is also applied to the trace
table.

low-address protection is not applied to
accesses made by the CPU or the channel
subsystem for such sequences as inter
ruptions, the storing of the 1/0-
interruption code in real locations
184-191 by TEST PENDING INTERRUPTION,
and the initial-program-loading and
store-status functions, nor is it
applied to data stores during I/O data
transfer. However, explicit stores by a
program at any of these locations are
subject to low-address protection.

Programming N~te

low-address protection and key
to the same controlled protection apply

store accesses, except that:

• low-address protection does not
apply to storing performed by the
channel subsystem, whereas key
controlled protection does.

• Key-controlled protection does not
apply to tracing or the second
operand of TEST BLOCK, whereas
low-address protection does.

REFERENCE, RECORDING

Reference recording provides information
for use in selecting pages for replace
ment. Reference recording uses :he
reference bit, bit 5 of the storage kE'Y.
The reference bit is set to one each
time a location in the corresponding
storage block is referred to either for
fetching or storing information, regard
less of whether DAT is on or off.

Reference recording is always active and
takes place for all storage accesses,
including those made by any CPU, any
operator facility, or the channel
subsystem. It takes place for implicit
accesses made by the machine, such as
those which are part of interruptions
and I/O-instruction execution.

Reference recording
operand accesses
instructions since
to a storage key
storage location:

does not occur for
of the following
they directly refer
without accessing a

INSERT STORAGE KEY EXTENDED
INSERT VIRTUAL STORAGE KEY
RESET REFERENCE BIT EXTENDED (ref

erence bit is set to zero)
SET STORAGE KEY EXTENDED (reference

bit is set to a specified
value)

The record provided by the reference bit
is substantially accurate. The refer
ence bit may be set to one by fetching
data or instructions that are neither
designated nor used by the program, and,
under certain conditions, a reference
may be made without the reference bit
being set to one. Under certain unusual
circumstances, a reference bit may be
set to zero by other than explicit
program action.

CHANGE RECORDING

Change recording provides information as
to which pages have to be saved in

Chapter 3. Storage 3-11

auxiliary storage when they are replaced
in main storage. Change recording uses
the change bit, bit 6 of the storage
key.

The change bit is set to one each time a
store access causes the contents in the
corresponding storage block to be
changed. A store access that does not
change the contents of storage mayor
may not set the change bit to one.

The change bit is not set to one for an
attempt to store if the access is
prohibited. In particular:

1. For the CPU, a store access is
prohibited whenever an access
exception exists for that access,
or whenever an exception exists
which is of higher priority than
the priority of an access exception
for that access.

2. For the channel subsystem, a store
access is prohibited whenever a
key-controlled-protection violation
exists for that access.

Change recording is always active and
takes place for all store accesses to
storage, including those made by any
CPU, any operator facility, or the chan
nel subsystem. It takes place for
implicit references made by the machine,
such as those which are part of inter
ruptions.

Change recording does not take place for
the operands of the following
instructions since they directly modify
a storage key without modifying a stor
age location:

RESET REFERENCE BIT EXTENDED
SET STORAGE KEY EXTENDED (change

bit is set to a specified
value)

Change bits which have been changed from
zeros to ones are not necessarily
restored to zeros on CPU retry (see the
section "CPU Retry" in Chapter 11,
"Machine-Check Handling"). See the
section "Exceptions to Nullification and
Suppression" in Chapter 5, "Program
Execution," for a description of the
handling of the change bit in certain
unusual situations.

PREFIXING

Prefixing provides the ability to assign
the range of real addresses 0-4095 (the
prefix area) to a different block in
absolute storage for each CPU, thus
permitting more than one CPU sharing

3-12 370-XA Principles of Operation

main storage to operate concurrently'
with a minimum of interference, espe
cially in the processing of
interruptions.

Prefixing causes real addresses in the
range 0-4095 to correspond to the block
of 4K absolute addresses identified by
the value in the prefix register for the
CPU, and the block of real addresses
identified by the value in the prefix
register to correspond to absolute
addresses 0-4095. The remaining real
addresses are the same as the corre
sponding absolute addresses. This
transformation allows each CPU to access
all of absolute main storage, inclu~ing
the first 4K bytes and the locati)ns
designated by the prefix registers of
other CPUs.

The relationship between real and abso
lute addresses is graphi~ally depicted
in the ~igure "Relationship between Real
and Absolute Addresses."

The prefix is a 19-bit quantity
contained in bit positions 1-19 of the
prefix register. The register has the
following format.

Prefix 1////////////1

o 1 20 31

The contents of the register can be set
and inspected by the _privileged
instructions SET PREFIX and STORE
PREFIX, respectively. On setting, bits
corresponding to bit positions 0 and
20-31 of the prefix register are
ignored. On storing, zeros are provided
for these bit positions. When the
contents of the prefix register are
changed, the change is effective for the
next sequential instruction.

When prefixing is applied, the real
address is transformed into an absolute
address by using one of the following
rules, depending on bits 1-19 of the
real address:

1. Bits 1-19 of the addr~ss, if all
zeros, are replaced with bits 1-19
of the prefix.

2. Bits 1-19 of the address, if equal
to bits 1-19 of the prefix, are
replaced with zeros.

3. Bits 1-19 of the address, if not
all zeros and not equal to bits
1-19 of the prefix, remain
unchanged.

In all cases, bits 20-31 of the address
remain unchanged.

Prefixing
,'----- ----l
I I ----.1--- No Change ------,r----

I

I
I
I
I
I "0"1---1(>

Prefixing
r- - - - - - - -- -I 1
I I
I I

I No Change----1-: --I
I
I

1 l<J----+ No Change-r-----+----

I I
I 0' I
1 ,.f
I ~ I ~ ~

VAddress I \ ' } 4A
o
d
9
d
6
ress II j'i(I, L:::reJ _________ ,--, _---'-I ---(>{ ~ Address L ~ _______ \--~-+----

k" Address
4096

,.-Address
o o 0

Real Addresses
for CPU A

Absolute
Addresses

Real Addresses
for CPU B

(1) Real addresses in which bits 1-19 are equal to the prefix for this CPU (A or
B).

(2) Absolute addresses of the block that contains for this CPU (A or B) the real
locations 0-4095.

Relationship between Real and Absolute Addresses

Only the address presented to storage is
translated by prefixing. The contents
of the source of the address remain
unchanged.

The distinction between real and abso
lute addresses is made even when the
prefix register contains all zeros, in
which case a real address and its corre
sponding absolute address are identical.

ADDRESS SPACES

An address space is a consecutive
sequence of integer numbers (virtual
addresses), together with the specific
transformation parameters which allow
each number to be associated with a byte
location in storage. The sequence
starts at zero and proceeds left to
right.

When a virtual address is used by a CPU
to access main storage, it is first

converted~ by means of dynamic address
translation (OAT), to a real address,
and then, by means of prefixing, to an
absolute address. DAT uses two levels
of tables (segment tables and page
tables) as transformation parameters.
The designation (origin and length) of a
segment table is found for use by DAT in
a control register.

At any instant the CPU can translate
virtual addresses of two address
spaces -- the primary address space,
consisting of primary virtual addresses,
and the secondary address space,
consisting of secondary virtual
addresses. The segment table defining
the primary address space is specified
by control register 1 and that defining
the secondary address space by control
register 7.

Each address space is assigned an
address-space number (ASN). An ASN
translation mechanism is provided which,
given an ASN, can locate (by using a
two-level table lookup) the designation

Chapter 3. storage 3-13

of the segment table which defines the
address space. Certain instructions use
ASN translation and load the resulting
segment-table designation into the
appropriate control register.

By using the ASN-translation mechanism,
anyone of up to 64K address spaces can
be selected to become the primary or
secondary address space.

The ASNs for the primary and secondary
address spaces are assigned positions in
control registers. The ASH for the
primary address space, called the prima
ry ASN, is assi gned bi ts 16-31 of'
control register 4, and that for the
secondary address space, called the
secondary ASN, is assigned bits 16-31 of
control register 3.

Control register 4

PASN

16 31

Control register 3

SASN

16 31

An instruction that uses ASN translation
and loads the primary or secondary
segment-table designation into the
appropriate control register also loads
the corresponding ASN into the appropri
ate control register.

Note: Virtual storage consisting of
byte locations ordered according to
their virtual addresses in an address
space is usually referred to as
"storage."

ASN TRANSLATION

ASN translation is the process of trans
lating the 16-bit ASH to locate the
address-space-control parameters. ASN
translation is performed as part of
PROGRAM CALL with space switching
(PC-ss), PROGRAM TRANSFER with space
switching (PT-ss), and SET SECONDARY ASN
with space switching (SSAR-ss). ASN
translation is also performed as part of
LOAD ADDRESS SPACE PARAMETERS. For
PC-ss and PT-ss, the ASH which is trans
lated replaces the primary ASN in
control register 4. For SSAR-ss, the
ASN which is translated replaces the
secondary ASN in control register 3.
These two translation processes are
called primary ASN translation and
secondary ASN translation, respectively,
and both can occur for LOAD ADDRESS
SPACE PARAMETERS. The ASN-translation

3-14 370-XA Principles of Operation

process is the same for both primary and
secondary ASN translation; only the uses
of the results of the process are
different.

The ASN-translation process uses two
tables, the ASN first table and the ASN
second table. They are used to locate
the address-space-control parameters and
a third table, the authority table,
which is used when ASH authorization is
performed.

For the purposes of this translation,
the 16-bit ASN is considered to consist
of two parts: the ASH-first-table index
(AFX) is the leftmost 10 bits of the
ASN, and thQ ASN-second-table index
(ASX) is the six rightmost bits.

ASN

AFX ASX

o 10 15

The AFX is used to select an entry from
the ASN first table. The origin of the
ASN first table is designated by the
ASN-first-table origin in control regis
ter 14. The ASN-first-table entry
contains the origin of the ASN second
table. The ASX is used to select an
entry from the ASN second table. This
entry contains the address-space-control
parameters.

ASH-TRANSLATION CONTROLS

ASH translation is controlled by
ASN-translation-control bit and
ASN-first-table origin, both of
reside in control register 14.

Control Register 14

AFTO

12 31

the
"'he

which

ASH-Translation Control (T): Bit 12 of
control register 14 -rs- the ASN
translation-control bit. This bit
provides a mechanism whereby the control
program can indicate whether ASN trans
lation can occur while a particular
program is being executed. Bit 12 must
be one to allow completion of these
instructions:

LOAD ADDRESS SPACE PARAMETERS
SET SECONDARY ASN
PROGRAM CALL with space switching
PROGRAM TRANSFER with space switch-

ing

Otherwise, a special-operation exception
is recognized. The ASH-translation-

control bit is examined in both the
problem and supervisor states.

ASH-First-Table Origin (AFTO): Bits
13-31 of control register 14, with 12
zeros appended on the right, form a
31-bit real address that designates the
beginning of the ASH first table.

ASH-TRANSLATIOH TABLES

The ASH-translation process consists in
a two-level lookup using two tables: an
ASH first table and an ASH second table.
These tables reside in real storage.

ASH-First-Table Entries

The entry fetched from the ASH first
table (AFT) designates the availability
and origin of the corresponding ASH
second table.

An entry in the ASH first table has the
following format:

[iJ ASTO ,0000 I
o 1 28 31

The fields in the entry are allocated as
follows:

AFX-Invalid Bit (I): Bit 0 controls
whether the ASH ---second table associated
with the ASN-first-table entry is avail
able. When bit 0 is zero, ASH trans
lation proceeds by using the designated
ASH second table. When the bit is one,
the ASH translation cannot continue.

ASH-Second-Table Origin (ASTO): Bits
1-27, with four zeros appended on the
right, are used to form a 31-bit real
address that designates the beginning of
the ASH second table.

Bits 28-31 of the AFT entry must be
zeros; otherwise, an ASH-translation
specification exception is recognized as
part of the execution of the instruction
using that entry for ASH translation.

ASH-Second-Table Entries

The entry fetched from the ASH second
table indicates the availability of the
address space and contains the address
space-control parameters if the address
space is available.

The ASH second-table
following format:

entry has the

ATO 10 0 I
o 1 31

AX ATL 10000 1
32 48 60 63

~---------------STD--------------~

IXI STO

64 84 89 95

~-------------LTD----------------~

I V I LTO lTL

96 121 127

The fields in the entry are allocated as
follows:

ASX-Invalid Bit (I): Bit 0 controls
whether the-address space associated
with the ASH-second-table entry is
available. When bit 0 is zero, ASH
translation proceeds. When the bit is
one, the ASH translation cannot
continue.

Authority-Table Origin (ATO): Bits
1-29, with two zeros appended on the
right, are used to form a 31-bit real
address that designates the beginning of
the authority table.

Authorization Index (AX): Bits 32-47
are used as a--res~of primary ASH
translation by PROGRAM CALL and PROGRAM
TRANSFER and may be used by LOAD ADDRESS
SPACE PARAMETERS. The AX field is
ignored for secondary ASH translation.

Authority-Table Length (ATL): Bits
48-59 specify the length of the authori
ty table in units of four bytes, thus
making the authority table variable in
multiples of 16 entries. The length of
the authority table, in units of four
bytes, is one more than the ATL value.
The contents of the ATL field are used
to establish whether the entry de~ig
nated by a particular AX falls within
the authority table.

Segment-Table Designation (STD): Bits
64-95 are used as a result of ASH trans
lation to replace the primary-segment-
table designation (PSTD) or the
secondary-segment-table designation
(SSTD). For SET SECONDARY ASH, the STD
field is placed in the SSTD, bits 0-31
of control register 7. For PROGRAM
CALL, the STD field is placed in the
PSTD, bits 0-31 of control register 1.
Each of these actions may occur inde
pendently for LOAD ADDRESS SPACE
PARAMETERS. For PROGRAM TRANSFER, the
STD field is placed in both the PSTD and
SSTD, bits 0-31 of control registers 1
and 7, respectively. The contents of

Chapter 3. Storage 3-15

the entire STD field are placed in the
appropriate control registers without
being inspected for validity.

Space-Switch-Event Control (X): Bit 0 of
the segment-table designation is the
space-switch-event-control bit. When,
in PC-ss or PT-ss, this bit is one in
control register 1 either before or
after the execution of the PC-ss or
PT-ss, a program interruption for a
space-switch event occurs after the
execution of the instruction is
completed. When, in LOAD ADDRESS SPACE
PARAMETERS, this bit is one during
primary ASH translation, this fact is
indicated by the condition code.

Linkage-Table Designation (LTD): Bits
96-127 are used as a result of primary
ASH translation. The linkage-table
designation field contains the
subsystem-linkage-control bit (V) (bit
96), the linkage-table orlg1n (LTO)
(bits 97-120), and the linkage-table
length (LTL) (bits 121-127). The
contents of the LTD field are placed in
control register 5 as a result of prima
ry ASH translation.

Bits 30, 31, and 60-63 of the AST entry
must be zeros; otherwise, an ASH
translation-specification exception is
recognized as part of the execution of
the instruction using that entry for ASH
translation.

Programming Hote

The unused portion of the STD field,
bits 84-88 of the AST entry, which
corresponds to bits 20-24 of the PSTD
and SSTD, should be set to zeros. These
bits are reserved for future expansion,
and programs which place nonzero values
in these bit positions may not operate
compatibly on future machines.

3-16 370-XA Principles of Operation

ASH-TRAHSLATIOH PROCESS

This section describes the ASH
translation process as it is performed
during the execution of PROGRAM CALL
with space switching, PROGRAM TRAHSFER
with space switching, and SET SECOHDARY
ASH with space switching. ASH trans
lation for LOAD ADDRESS SPACE PARAMETERS
is the same, except that AFX-translation
and ASX-translation exceptions do not
occur; such situations are instead indi
cated by the condition code.
Translation of an ASH is performed by
means of two tables, an ASH first table
and an ASH second table, both of which
reside in main storage.

The ASH first index is used to select an
entry from the ASH first table. This
entry designates the ASH second table to
be used.

The ASH second index is used to select
an entry from the ASH second table.
This entry contains the address-space
control parameters.

If the I bit ia one in either the ASH
first-table entry or ASH-second-table
entry, the entry is invalid, and the
ASH-translation process cannot be
completed. An AFX-translation exception
or ASX-translation exception is recog
nized.

Whenever access to main storage is made
during the ASH translation process for
the purpose of fetching an entry from an
ASH first table or ASH second table,
key-controlled protection does not
apply.

The ASH translation process is shown in
the figure "ASH Translation."

ASH

CR14

(x4) (x16)

~ ASH First Table

~ L~ I---T----T--I

R I ASTO o

(x16)

~ ASH Second Table

~ LJ--r---~~---'---f
R I ATO

R: Address, is real

ASH Translation

ASH-first-Table Lookup

The AfX portion of the ASH, in conjunc
tion with the ASH-first-table origin, is
used to select an entry from the ASH
second table.

The 31-bit real address of the ASH
first-table entry is obtained by append
ing 12 zeros on the right to the AfT
origin contained in bit positions 13-31
of control register 14 and adding the
AfX portion with two rightmost and 19
leftmost zeros appended. This addition
cannot cause a carry into bit position
o. All 31 bits of the address are used,
regardless of whether the current PSW
specifies the 24-bit or 31-bit address
ing mode.

All four bytes of the ASN-first-table
entry are fetched concurrently. The
fetch access is not subject to
protection. When the storage address
which is generated for fetching the
ASH-first-table entry designates a
location which is not available in the

STD LTD

configuration, an addressing exception
is recognized, and the operation is
suppressed.

Bit 0 of the four-byte AfT entry speci
fies whether the corresponding AST is
available. If this bit is one, an AfX
translation exception is recognized. If
bit positions 28-31 of the AfT entry do
not contain zeros, an ASN-translation
specification exception is recognized.
When no exceptions are recognized, the
entry fetched from the AFT is used to
access the AST.

ASN-Second-Table Lookup

The ASX portion of the ASH, in conjunc
tion with the ASH-second-table orlgln
contained in the ASH-first-table entry,
is used to select an entry from the ASH
second table.

The 31-bit real address
second-table entry is

of the ASH
obtained by

Chapter 3. Storage 3-17

appending four zeros on the right to
bits 1-27 of the ASN-first-table entry
and adding the ASX with four rightmost
and 21 leftmost zeros appended. A
carry, if any, into bit position 0 is
ignored. All 31 bits of the address are
used, regardless of whether the current
PSW specifies the. 24-bit or 31-bit
addressing mode.

The 16 bytes of the ASN-second-table
entry are fetched left to right, a word
at a time. The fetch access is not
subject to protection. When the storage
address which is generated for fetching
the ASN-second-table entry designates a
location which is not available in the
configuration, an addressing exception
is recognized, and the operation is
suppressed. .

Bit 0 of the 16-byte ASN-second-table
entry specifies whether the address
space is accessible. If this bit is
one, an ASX-translation exception is
recognized. If bit positions 30, 31,
and 60-63 of the ASN-second-table entry
do not contain zeros, an ASH
translation-specification exception is
recognized.

Recognition of Exceptions during ASN
Translation

The exceptions which can be encountered
during the ASH-translation process are
collectively referred to as ASH
translation exceptions. A list of these
exceptions and their priorities is given
in Chapter 6, "Interruptions."

ASH AUTHORIZATION

ASN authorization is the process of
testing whether the program associated
with the current authorization index is
permitted to establish a particular
address space. The ASH authorization is
performed as part of PROGRAM TRAHSFER
with space switching (PT-ss) and SET
SECONDARY ASH with space switching
(SSAR-ss) and may be performed as part
of LOAD ADDRESS SPACE· PARAMETERS. ASH
authorization is performed after the
ASH-translation process for these
instructions.

-- When performed as part of PT-ss, the ASH
authorization tests whether the ASH can
be established as the primary ASN and is
called primary-ASH authorization. When
performed as part of LOAD ADDRESS SPACE
PARAMETERS or SSAR-ss, the ASH authori
zation tests whether the ASH can be
established as the secondary ASH and is
called secondary-ASH authorization.

3-18 370-XA Principles of Operation

The ASH authorization is performed by
means of an authority table in real
storage which is designated by the
authority-table-origin and authority
table-length fields in the ASH-second
table entry.

ASN-AUTHORIZATIOH CONTROLS

ASH authorization uses the authority
table orlgln and the authority-table
length from the ASH-second-table entry,
together with an authorization index.

Control Register 1

For PT-ss and SSAR-ss, the current
contents of control register 4 contain
the authorization index. For LOAD
ADDRESS SPACE PARAMETERS, the value
which will become the new contents of
control register 4 is used. The regis
ter has the following format:

AX

o 15

Authorization Index (AX): Bits 0-15 of
control regist~are--used as an index
to locate the authority bits in the
authority table.

ASN-Second-Table Entry

The ASN-second-table entry which is
fetched as part of the ASH translation
process contains information which is
used to designate the authority table.

I I ATO
1

00
I

0 1 31

ATL 10000 1
32 48 60 64

Authority-Table Origin (ATO): Bits
1-29, with two zeros appended on the
right, are used to form a 31-bit real
address that designates the beginning of
the authority table.

Authority-Table length (ATl): Bits
48-59 designate the length of the
authority table in units of four bytes,
thus making the authority table variable
in multiples of 16 entries. The length
of the authority table, in units of four

bytes, is equal to one more than the ATL
value. The contents of the length field
are used to establish whether the entry
designated by the authorization index
falls within the authority table.

Authority-Table Entries

The authority table consists of entries
of two bits each; accordingly, each byte
of the authority table contains four
entries:

o 7

The fields are allocated as follows:

Primary Authority (P): The left bit of
an authority-table entry controls wheth
er the program with the authorization
index corresponding to the entry is
permitted to establish the address space
as a primary address space. If the P
bit ;s one, the access is permitted. If
the P bit is zero, the access is not
permitted.

Secondary Authority (S): The right bit
of an authority-table entry controls
whether the program with the correspond
ing authorization index is permitted to
establish the address space as a second
ary address space. If the S bit is one,

the access is permitted. If the S bit
is zero, the access is not permitted.

ASN-AUTHORIZATION PROCESS

This section describes the A~N
authorization process as it is performed
during the execution of PROGRAM TRANSFER
with space switching and SET SECONDARY
ASN with space switching. For these two
instructions, the ASH-authorization
process is performed by using the
authorization index currently in control
register 4. Secondary authorization for
LOAD ADDRESS SPACE PARAMETERS is the
same, except that the value which will
become the new contents of control
register 4 is used for the authorization
index, and a secondary-authority excep
tion does not occur. Instead, such a
situation is indicated by the condition
code.

The ASH-authorization process is
performed by using the authorization
index, in conjunction with the
authority-table origin and length from
the AST entry, to select an authority
table entry. The entry is fetched, and
either the primary- or secondary
authority bit is examined, depending on
whether the primary- or secondary-ASH
authorization process is being
performed. The ASH-authorization proc
ess is shown in the figure "ASN
Authorization."

Chapter 3. Storage 3-19

CR4

ASH Second Table

ASH-Second-Table Entry

I ATO STD LTD

(x4)

Authority Table

R P S

For primary ASH authorization (PT-ss only):
Primary-authority exception if P bit
zero or table length exceeded.

For secondary ASH authorization (SSAR-ss only):
Secondary-authority exception if S bit
zero or table length exceeded.

For secondary ASH authorization CLASP only):
Set condition code 2 if S bit zero or
table length exceeded.

R: Address is real

ASH Authorization

Authority-Table Lookup

The authorization index, in conjunction
with the authority-table origin
contained in the ASH-second-table entry,
is used to select an entry from the
authority table.

The authorization index
bit positions 0-15 of
4.

is contained in
control register

Bit positions 1-31 of the AST entry
contain the 31-bit real address of the
authority table (ATO), and bit positions
48-59 contain the length of the authori
ty table CATL).

The 31-bit real address of a byte in the
authority table is obtained by appending
two zeros on the right to the

3-20 370-XA Principles of Operation

authority-table orlgln and adding the 14
leftmost bits of the authorization index
with 17 zeros appended on the left. A
carry, if any, into bit position 0 is
ignored. All 31 bits of the address are
used, regardless of whether the current
PSW specifies the 24-bit or 31-bit
addressing mode.

As part of the authority-table-entry
lookup process, bits 0-11 of the author
ization index are compared against the
authority-table length. If the compared
portion is greater than the authority
table length, a primary-authority
exception or secondary-authority excep
tion is recognized for PT-ss or SSAR-ss,
respectively.

The fetch access to
authority table is
protection. When the

the byte in the
not subject to
storage address

which is generated for fetching the byte
designates a location which is not
available in the configuration, an
addressing exception is recognized, and
the operation is suppressed.

The byte contains four authority-table
entries of two bits each. The rightmost
two bits of the authorization index,
bits 14 and 15 of control register 4,
are used to select one of the four
entries. The left or right bit of the
entry is then tested, depending on
whether the authorization test is for a
primary ASN or a secondary ASH. The
~ollowing table shows the bit which is
selected from the byte as a function of
bits 14 and 15 of the authorization
index and the instruction PT-ss,
SSAR-ss, or LOAD ADDRESS SPACE PARAME
TERS.

Bit Selected from
Authority-Table Byte

for Test
Authorization-

Index Bits S Bit
P Bit (SSAR-ss

14 15 (PT-ss) or LASP)

0 0 0 1

0 1 2 3

1 0 4 5

1 1 6 7

If the selected bit is one, the ASN is
authorized, and the appropriate
address-space-control parameters from
the AST entry are loaded into the appro
priate control registers. If the
selected bit is zero, the ASH is not
authorized, and a primary-authority
exception or secondary-authority excep
tion is recognized for PT-5s or SSAR-ss,
respectively. For LASP, when the ASH is
not authorized, condition code 2 is set.

Recognition of Exceptions during ASN
Authorization

The exceptions which can be encountered
during the primary- and secondary-ASN
authorization processes and their prior
ities are described in the definitions
of the instructions in which ASH author
ization is performed.

Programming Note

The primary- and secondary-authority
exceptions cause nullification in order
to permit dynamic modification of the
authority table. Thus, when an address

space is created or "swapped in," the
authority table can first be set to all
zeros and the appropriate authority bits
set to one only when required.

DYNAMIC ADDRESS TRANSLATION

Dynamic address translation (OAT)
provides the ability to interrupt the
execution of a program at an arbitrary
moment, record it and its data in auxil
iary storage, such as a direct-access
storage device, and at a later time
return the program and the data to
different main-storage locations for
resumption of execution. The transfer
of the program and its data between main
and auxiliary storage may be performed
piecemeal, and the return of the infor
mation to main storage may take place in
response to an attempt by the CPU to
access it at the time it is needed for
execution. These functions may be
performed without change or inspection
of the program and its data, do not
require any explicit programming conven
tion for the relocated program, and do
not disturb the execution of the program
except for the time delay involved.

With appropriate support by an operating
system, the dynamic-address-translation
facility may be used to provide to a
user a system wherein storage appears to
be larger than the main storage which is
available in the configuration. This
apparent main storage is referred to as
virtual storage, and the addresses used
to designate locations in the virtual
storage are referred to as virtual
addresses. The virtual storage of a
user may far exceed the size of the main
storage which is available in ,the
configuration and normally is maintained
in auxiliary storage. The virtual stor
age occurs in blocks of addresses,
called pages. Only the most recently
referred-to pages of the virtual storage
are assigned to occupy blocks of phys
ical main storage. As the user ref~rs
to pages of vi rtual storage that do t,ot
appear in main storage, they are brought
in to replace pages in main storage that
are less likely to be needed. The swap
ping of pages of storage may be
performed by the operating system with
out the user's knowledge.

The sequence of virtual addresses asso
ciated with a virtual storage is called
an address space. With appropriate
support by an operating system, the
dynamic-address-translation facility may
be used to provide a number of address
spaces. These address spaces may be
used to provide degrees of isolation
between users. Such support can consist
of a completely different address space
for each user, thus providing complete
isolation, or a shared area may be
provided by mapping a portion of each

Chapter 3. Storage 3-21

address space to a single common storage
area. Also, instructions are provided
which permit a semiprivileged program to
access more than one such address space.
Dynamic address translation provides for
the translation of virtual addresses
from two different address spaces with
out requlrlng that the translation
parameters in the control registers be
changed. These two address spaces are
called the primary address space and the
secondary address space.

In the process of replacing blocks of
main storage by new information from an
external medium, it must be determined
which block to replace and whether the
block being replaced should be recorded
and preserved in auxiliary storage. To
aid in this decision process, a refer
ence bit and a change bit are associated
with the storage key.

Dynamic address translation may be spec
ified for instruction and data addresses
generated by the CPU but is not avail
able for the addressing of data and of
CCWs and IDAWs in I/O operations. The
CCW-indirect-data-addressing facility is
provided to aid I/O operations in a
virtual-storage environment.

Address computation can be carried out
in either 24- or 31-bit addressing mode.
When address computation is performed in
24-bit addressing mode, seven zeros are
appended on the left to form a 31-bit
address. Therefore, the resultant
logical address is always 31 bits in
length. All real addresses are 31 bits
in length.

Dynamic address translation is the proc
ess of translating a virtual address
during a storage reference into the
corresponding real address. When OAT is
off, the logical address is treated as a
real address. When OAT is on, the
virtual address may be either a primary
virtual address or a secondary virtual
address. Primary virtual addresses are
translated by means of the primary
segment-table designation and secondary
virtual addresses by means of the
secondary segment-table designation.
After selection of the appropriate
segment-table designation, the trans
lation process is the same for both
types of virtual address.

In the process of translation, two sizes
of information are recognized -
segments and pages. A segment is a
block of sequential virtual addresses
spanning 1M bytes and beginning at a
1M-byte boundary. A page is a block of

3-22 370-XA Principles of Operation

sequential virtual addresses spanning 4K
bytes and beginning at a 4K-byte bounda
ry.

The virtual address, accordingly, is
divided into three fields. Bits 1-11
are called the segment index (SX), bits
12-19 are called the page index (PX),
and bits 20-31 are called the byte index
(BX). The virtual address has the
following format:

SX PX BX

o 1 12 20 31

Vittual addresses are translated into
real addresses by means of two trans
lation tables: a segment table and a
page table. These reflect the current
assignment of real storage. The assign
ment of real storage occurs in units of
pages, the real locations being assigned
contiguously within a page. The pages
need not be adjacent in real storage
even though assigned to a set of sequen
tial virtual addresses.

TRANSLATION CONTROL

Address translation is controlled by two
bits in the PSW and by a set of bits,
referred to as the translation parame
ters, in control registers 0, 1, and 7.
Additional co~trols are located in the
translation tables.

The two bits in the PSW that control
dynamic address translation are bit 5,
the OAT-mode bit, and bit 16, the
address-space-control bit. When the
OAT-mode bit is zero, OAT is off, the
CPU is said to be in real mode, and
instruction and logical addresses are
treated as real addresses. When the
OAT-mode bit is one (OAT is on) and the
address-space-control bit is zero, the
CPU is said to be in primary-space mode,
and instruction and logical addresses
are treated as primary vi~tual
addresses. When OAT is on and the
address-space-control bit is one, the
CPU is said to be in secondary-space
mode, and logical addresses are treated
as secondary virtual addresses. The
various modes are shown in the figure
"Translation Modes."

Handling of Addresses
PSW Bit

Logical Instruction
5 116 OAT Mode Addresses Addresses

0 - Off Real mode Real Real
1 0 On Primary-space mode Primary Primary

virtual virtual
1 1 On Secondary-space mode Secondary See note

Translation Modes

Note: When the CPU is in secondary
space mode, it is unpredictable whether
instruction addresses are treated as
primary virtual or secondary virtual.
However, all copies of an instruction
used in a single execution are fetched
from a single space, and the machine can
change the interpretation of instruction
addresses as primary virtual or second
ary virtual only between instructions
and only by issuing a checkpoint
synchronizing function.

Control Register 1

Six bits are provided in control regis
ter 0 which are used in controlling
dynamic address translation. The bits
are assigned as follows:

I TF

5 8 13

Secondary-Space Control (D): Bit 5 of
control register 0 is the secondary
space-control bit. When this bit is
zero and execution of MOVE TO PRIMARY,
MOVE TO SECONDARY, or SET ADDRESS SPACE
CONTROL is attempted, a special
operation exception is recognized. When
this bit is one, it indicates that the
secondary segment table is attached when
the CPU is in primary-space mode.

Translation Format (TF): Bits 8-12 of
control register O--specify the trans
lation format, with only one combination
of the five control bits valid; all
other combinations are invalid.

virtual

The control bits are encoded as follows:

Bits of Control Register 0

8 I 9 I 10 I 11 I 12 Valid

1 0 1 1 0 Yes

All others No

When an invalid bit combination is
detected in bit positions 8-12, a
translation-specification exception is
recognized as part of the execution of
an instruction using address transla
tion.

Control Register 1

Control register 1 contains the primary
segment-table designation (PSTD). The
register has the following format:

I I Primary Segment
.X. Table Origin

o 1 20

I PSTL

25 31

Space-Switch-Event-Control Bit (X): When
bit 0 of control register 1 is--O;e and
execution of PROGRAM CALL with space
switching (PC-ss) or PROGRAM TRANSFER
with space switching (PT-s5) is
completed, a space-switch-event program
interruption occurs. The space-switch
event-control bit is also examined by
LOAD ADDRESS SPACE PARAMETERS, and, if
it is one, condition code 3 is set.

Primary Segment-Table Origin (PSTO):
Bits 1-19 of control register 1, with 12
zeros appended on the right, form an
address that designates the beginning of
the primary segment table. It is unpre
dictable whether the address is real or
absolute. This table is called the
primary segment table since it is used
to translate virtual addresses in the
primary address space.

Chapter 3. Storage 3-23

Pri~ Segment-Table length (PSTl):
Bit s 25-31 of cO'nt ro I reg i ster 1 spec i fy
the length of the primary segment table
in units of 64 bytes, thus making the
length of the segment table variable in
multiples of 16 entries. The length of
the primary segment table, in units of
64 bytes, is one more than the PSTL
value. The contents of the length field
are used to establish whether the entry
designated by the segment-index portion
of a primary virtual address falls with
in the primary segment table.

Bits 20-24 of control register 1 are not
assigned and are ignored.

Control Register I

Control register 7 contains the second
ary segment-table designation (SSTD).
The register has the following format:

Secondary Segment
Table Origin

o 1 20 25 31

Secondary Segment-Table Origin (SSTO):
Bits 1-19 of control register 7, with 12
zeros appended on the right, form an
address that designates the beginning of
the secondary segment table. It is
unpredictable whether the address is
real or absolute. This table is called
the secondary segment table since it is
used to translate virtual addresses in
the secondary address space.

Secondary Segment-Table l~ngth (SSTl):
Bits 25-31 of control register 7 specify
the length of the secondary segment
table in units of 64 bytes, thus making
the length of the segment table variable
in multiples of 16 entries. The length
of the secondary segment table, in units
of 64 bytes, is one more than the SSTL
value. The contents of the length field
are used to establish whether the entry
designated by the segment-index portion
of a secondary virtual address falls
within the secondary segment table.

Bits 0 and 20-24 of control register 7
are not assigned and are ignored.

Programming Notes

1. The validity of the information
loaded into a control register,
including that pertaining to dynam
ic address translation, is not
checked at the time the register is
loaded. This information is
checked and the program exception,

3-24 370-XA Principles of Operation

if any, is indicated at the time
the information is used.

2. The information pertaining to
dynamic address translation is
considered to be used when an
instruct;on is executed with DAT on
or when INVALIDATE PAGE TABLE ENTRY
or LOAD REAL ADDRESS is executed.
The information is not considered
to be used when the PSW specifies
translation, but an I/O, external,
restart, or machine-check inter
ruption occurs before an
instruction is executed, including
the case when the PSW specifies the
wait state.

TRANSLATION TABLES

The translation process consists in a
two-level lookup using two tables: a
segment table and a page table. These
tables reside in real or absolute stor
age.

Segment-Table Entries

The entry fetched from the segment table
designates the origin, availability, and
length of the corresponding page table.
It also specifies whether the segment is
common or private. The segment tables
designated by the primary and secondary
segment-table designations have the same
format.

An entry in the segment table has the
following for~at:

Page-T~ble Origin

o 1 26 28 31

The fields in the segment-table entry
are allocated as follows:

Paqe-Table Ori~ (PTO): Bits 1-25,
with six zeros appended on the right,
form the address that designates the
beginning of a page table. It is unpre
dictable whether the address is real or
absolute.

Seqment-Invalid Bit (1): Bit 26
controls whether the--segment associated
with the segment-table entry is avail
able. When the bit is zero, address
translation proceeds by using the
segment-table entry. When the bit is
one, the segment-table entry cannot be
used for translation.

Common-Segment Bit (C): Bit 27 controls
the use of the translati on-Iookasi ,:le
buffer (TlB) copies of the segment-tal:.1e

entry and of the page table which it
designates. A zero identifies a private
segment; in this case, the segment-table
entry and the page table it designates
may be used only in association with the
segment-table origin that designates the
segment table in which the segment-table
entry resides. A one identifies a
common segment; in this case, the
segment-table entry and the page table
it designates may continue to be used
for translating addresses corresponding
to the segment index, even though a
different segment table is specified.

Page-Table length (PTl): Bits 28-31
designate the length of the page table
in units of 64 bytes (16 entries). The
length of the page table, in units of 64
bytes, is one more than the PTL value.
The contents of the length field are
used to establish whether the entry
designated by the page-index portion of
the virtual address falls within the
page table.

Bit 0 of the segment-table entry must be
zero; if it is not zero, a translation
specification exception is recognized as
part of the execution of an instruction
using that entry for address transla
tion.

Page-Table Entries

The entry fetched from the page table
indicates the availability of the page
and contains the leftmost bits of the
real address. Additionally, the entry
contains the page-protection bit. The
page-table entry has the following
format:

PFRA

o 1 20 24 31

The fields in the page-table entry are
allocated as follows:

Page-Frame Real Address (PFRA): Bits
1-19 provide the leftmost bits of a real
storage address. When these bits are
concatenated with the 12-bit byte-index
field of the virtual address on the
right, a 31-bit real address is
obtained.

Page-Invalid Bit (1): Bit 21 controls
whether the page associated with the
page-table entry is available. When the
bit is zero, address translation
proceeds by using the page-table entry.
When the bit is one, the page-table
entry cannot be used for translation.

Page-Protection Bit (P): Bit 22 con
trols whether store accesses can be made
in the page. This protection mechanism
is in addition to the key-controlled
protection and low-address-protection
mechanisms. The bit has no effect on
fetch accesses. If the bit is zero,
stores are permitted to the page,
subject to the other protection mech
anisms. If the bit is one, stores are
disallowed. An attempt to store when
the page-protection bit is one causes a
protection exception to be recognized.

Bit positions 0, 20, and 23 of the entry
must contain zeros; otherwise, a
translation-specification exception is
recognized as part of the execution of
an instruction using that entry for
address translation. Bit positions
24-31 are unassigned and are not checked
for zeros; thus, they are available for
programming use.

Summary of Segment-Table and Page-Table
Sizes

The sizes of segment tables and page
tables are summarized in the figure
"Sizes of Segment Tables and Page
Tables."

Chapter 3. Storage 3-25

Segment-Table Parameters

Corresponding
Virtual Segment Table Segment-
Address Number of Table
Size Addressable Maximum Usable Increment

(Bits) Segments Size (Bytes) Length Code (Bytes)

241 16 64 0 --
31 2,.048 8,.192 127 64

Page-Table Parameters 2

Corresponding
Page Table Page-

Number of Table
Pages Maximum Usable Increment

in Segment Size (Bytes) Length Code (Bytes)

256 1,.024 15 64

Explanation:

A virtual address specified by the program in the
24-bit addressing mode consists of a 24-bit value
embedded in a 31-bit address.

2 The page-table size is independent of the virtual
address size.

Sizes of Segment Tables and Page Tables

TRANSLATION PROCESS

This section describes the translation
process as it is performed implicitly
before a virtual address is used to
access main storage. The process of
translating the operand address of LOAD
REAL ADDRESS and TEST PROTECTION is the
same,. except that segment-translation
and page-translation exceptions do not
occur; such situations are instead indi
cated in the condition code.
Translation of the operand address of
LOAD REAL ADDRESS also differs in that
the CPU may be in real mode and the
translation-Iookaside buffer is not
used.

Translation of a virtual address is
performed by means of a segment table
and a page table both of which reside in
real or absolute storage. It is
controlled by the DAT-mode bit and the
address-space-control bit, both in the
PSW. The translation tables are speci
fied by the translation parameters in
control registers 1 and 7.

3-26 370-XA Principles of Operation

Effective Segment-Table Designation

The segment-table designation used for a
particular address translation is called
the eff~ctive segment-table designation.
Accordingly, when a primary virtual
address is translated, control register
1 is used as the effective segment-table
designation,. and when a secondary virtu
al address is translated, control
register 7 is used as the effective
segment-table designation.

The segment-index portion of the virtual
address is used to select an entry from
the segment table, the starting address
and length of which are specified by the
effective segment-table designation.
This entry designates the page table to
be used.

The page-index portion of the virtual
address is used to select an entry from
the page table. This entry contains the
leftmost bits of the real address that
represents the translation of the virtu
al address and provides the page
protection bit.

The byte-indax field of the virtual
address is used unchanged as the right
most bit positions of the real address.

If the I bit is one in either the
segment-table entry or the page-table
entry, the entry is invalid, and the
translation process cannot be completed
for this virtual address. A segment
translation or a page-translation
exception is recognized.

In order to eliminate the delay associ
ated with references to translation
tables in real or absolute storage, the
information fetched from the tables
normally is also placed in a special
buffer, the translation-Iookaside buffer
(TlB), and subsequent translations
involving the same table entries may be

performed by using
recorded in the TlB.
the TlB is described
"Translation-lookaside
chapter.

the information
The operation of

in the section
Buffer" in this

Whenever access to real or absolute
storage is made during the address
translation process for the purpose of
fetching an entry from a segment table
or page table, key-controlled protection
does not apply.

The translation process, including the
effect of the TlB, is shown graphically
in the figure "Translation Process."

Chapter 3. Storage 3-27

Control Register 1 Control Register 7 Virtual Address

P STD SSTD I
I I ~

~~ I
r sx 1 PX BX

(x4) (x4) I
'----...,

0 '" I \ <E--.

'" I r---------------+---<E--.~~------~
Effec tive STD

I I STlI

(x4096)

~
Segment Table

..;. + I-------r-T----

PTO I I PTl
R/A

(x64)

~I--------------------------~(--·~ 2

'"

'"

Translation
lookaside
Buffer (TlB)

I

'" ~
Page Table

~ + ~ J.---r--.I

?' PFRA I ~------~~------~~------~~ I PFRA
R/A

0
1- '" 0 ~.) 0+.

0 '" I I

Real Address
R/A: Address is either real or absolute

Translation Process (Part 1 of 2)

3-28 370-XA Principles of Operation

'"

Control register 1 provides the primary segment-table designation for
translation of a primary virtual address, and control register 7
provides the secondary segment-table designation for translation of a
secondary virtual address.

Information, which may include portions of the virtual address and the
effective segment-table origin, is used to search the TlB.

If a match exists, the page-frame real address from the TlB is used in
forming the real address.

If no match exists, table entries in real or absolute storage are fetched.
The resulting fetched entries, in conjunction with the search information,
are used to translate the address and may be used to form an entry in the
TlB.

Translation Process (Part 2 of 2)

Inspection of Control Register!

The interpretation of the virtual
address for translation purposes
requires that there be a valid trans
lation format specified by bits 8-12 of
control register O. If bits 8-12
contain an invalid code, a translation
specification exception is recognized.

Segment-Table lookup

The segment-index portion of the virtual
address, in conjunction with the
segment-table origin contained in the
effective segment-table designation, is
used to select an entry from the segment
table.

The 31-bit real address of the segment
table entry is obtained by appending 12
zeros to the right of bits 1-19 of the
effective segment-table designation and
adding the segment index with two right
most and 18 leftmost zeros appended.
When a carry into bit position 0 occurs
during the addition, an addressing
exception may be recognized or the carry
may be ignored, causing the table to
wrap from 2 31 - 1 to zero. All 31 bits
of the address are used, regardless of
whether the current PSW specifies the
24-bit or 31-bit addressing mode.

As part of the segment-table-lookup
process, bits 1-7 of the virtual address
are compared against the segment-table
length, bit positions 25-31 of the
effective segment-table designation, to
establish whether the addressed entry is
within the segment table. If the value
in the segment-table-length field is
less than the value in the corresponding
bit positions of the virtual address, a
segment-translation exception is recog
nized.

All four bytes of the segment-table
entry are fetched concurrently. The
fetch access is not subject to
protection. When the storage address
generated for fetching the segment-table
entry designates a location which is not
available in the configuration, an
addressing exception is recognized, and
the unit of operation is suppressed.

Bit 26 of the entry fetched from the
segment table specifies whether the
corresponding segment is available.
This bit is inspected, and, if it is
one, a segment-translation exception is
recognized. If bit 0 of the entry is
one, a translation-specification excep
tion is recognized.

When no exceptions are recognized in the
process of segment-table lookup, the
entry fetched from the segment table
designates the length and beginning of
the corresponding page table.

The common-segment bit, bit 27 of an
entry fetched from the segment table. is
used only for the purpose of forming a
TlB entry (see the section "Use of the
Translation-lookaside Buffer" later in
this chapter).

Page-Table lookup

The page-index portion of the virtual
address, in conjunction with the
page-table origin contained in the
segment-table entry, is used to select
an entry from the page table.

The 31-bit real address of the page
table entry is obtained by appending six
zeros to the right of the page-table
origin and adding the page index, with
two rightmost and 21 leftmost zeros
appended. A carry into bit position 0

Chapter 3. Storage 3-29

may cause an addressing exception to be
recognized, or the carry may be ignored,
causing the page table to wrap from
2 31 - 1 to zero. All 31 bits of the
address are used, regardless of whether
the current PSW specifies the 24-bit or
31-bit addressing mode.

As part of the page-table-lookup
process, the four leftmost bits of the
page index are compared against the
page-table length, bits 28-31 of the
segment-table entry, to establish wheth
er the addressed entry is within the
table. If the value in the page-table
length field is less than the value in
the four leftmost bit positions of the
page-index field, a page-translation
exception is recognized.

All four bytes of the page-table entry
are fetched concurrently. The fetch
access is not subject to protection.
When the storage address generated for
fetching the page-table entry designates
a location which is not available in the
configuration, an addressing exception
is recognized, and the unit of operation
is suppressed.

The entry fetched from the page table
indicates the availability of the page
and contains the leftmost bits of the
page-frame real address. The page
invalid bit is inspected to establish
whether the corresponding page is avail
able. If this bit is one, a page
translation exception is recognized. If
bit position 0, 20, or 23 contains a
one, a translation-specification excep
tion is recognized.

Formation of the Real Address

When no exceptions in the translation
process are encountered, the page-frame
real address obtained from the page
table entry and the byte-index portion
of the virtual address are concatenated,
with the page-frame real address forming
the leftmost part. The result is the
real storage address which corresponds
to the virtual address. All 31 bits of
the address are used, regardless of
whether the current PSW specifies the
24-bit or 31-bit addressing mode.

Recognition of Exceptions during Trans
lation

Invalid addresses and invalid formats
can cause exceptions to be recognized
during the translation process.
Exceptions are recognized when informa
tion contained in control registers or
table entries is used for translation
and is found to be incorrect.

3-30 370-XA Principles of Operation

The information pertaining to OAT is
considered to be used when an instruc
tion is executed with DAT on or when
lOAD REAL ADDRESS is executed. The
information is not considered to be used
when the PSW specifies DAT on but an
I/O, external, restart, or machine-check
interruption occurs before an instruc
tion is executed, including the case
when the PSW specifies the wait state.
Only that information required in order
to translate a virtual address is
considered to be in use during the
translation of that address, and, in
particular, addressing exceptions that
would be caused by the use of the PSTD
or the SSTD are not recognized when the
translation of an address uses only the
SSTD or only the PSTD, respectively.

A list of translation exceptions, with
the action ta~en for each exception and
the priority in which the exceptions are
recognized wh~n more than one is appli
cable, is provided in the section
"Recognition of Access Exceptions" in
Chapter 6, "Interruptions."

TRANSlATION-lOOKASIDE BUFFER

To enhance performance, the dynamic
address-translation mechanism normally
is implemented such that some of the
information specified in the segment and
page tables is maintained in a special
buffer, referred to as the translation
lookaside buffer (TlB). The CPU neces
sarily refers to a OAT-table entry in
real or absolute storage only for the
initial access to that entry. This
information may be placed in the TlB,
and subsequent translations may be
performed by using the information in
the TlB. The presence of the TlB
affects the translation process to the
extent that a modification of ~he
contents of a table entry in real or
absolute storage does not necessarily
have an immediate effect, if any, on tha
translation.

The size and the structure of the TlB
depend on the model. For instance, the
TlB may be implemented in such a way as
to contain only a few entries pertaining
to the currently designated segment
table, each entry consisting of the
leftmost portion of a virtual address
and its corresponding page-frame real
address and page-protection bit; or it
may contain arrays of values where the
page-frame real address and page
protection bit are selected on the basis
of the effective segment-table origin
and the leftmost bits of the virtual
address. Entries within the TlB are not
explicitly addressable by the program.

The description of the logical structure
of the TlB covers the implementation by
all systems operating in the 370-XA

mode. The TLB entries are considered as
being of two types: TLB segment-table
entries and TLB page-table entries. A
TLB entry is considered as containing
within it both the information obtained
from the table entry in real or absolute
storage and the attributes used to fetch
the entry from storage. Thus, a TLB
segment-table entry would contain the
following fields:

ISTO

STO

SX

PTO

PTL

C

The segment-table orlgln in effect
when the entry was formed

The segment index used to select
the entry

The page-table origin fetched from
the segment-table entry in real or
absolute storage

The page-table length fetched from
the segment-table entry in real or
absolute storage

The common-segment bit fetched
from the segment-table entry in
real or absolute storage

A TLB page-table entry would contain the
following fields:

IPTO

PTO The page-table origin in effect
when the entry was formed

PX The page index used to select the
entry

PFRA The page-frame real address

P

fetched from the page-table entry
in real or absolute storage.

The page-protection
from the page-table
or absolute storage

bit fetched
entry in real

Depending on the implementation, not all
of the above items are required in the
TLB. For example, if the implementation
combines into a single TLB entry (1) the
information obtained from a page-table
entry and (2) the attributes of both the
page-table entry and the segment-table
entry, then the page-table-origin and
page-table-length fields are not
required.

Note: The following sections describe
the conditions under which information
may be placed in the TLB and information
from the TlB may be used for address
translation, and they describe how
changes to the translation tables affect
the translation process. Information is

not necessarily retained in the TLB
under all conditions for which such
retention is permissible. Furthermore,
information in the TLB may be cleared
under conditions additional to those for
which clearing is mandatory.

Use of the Translation-lookaside Buffer

The formation of TLB entries and the
effect of any manipulation of the
contents of a table entry in real or
absolute storage by the program depend
on whether the entry is valid, on wheth
er the entry is attached to a particular
CPU, on whether a copy of the entry can
be placed in the TLB of a particular
CPU, and on whether a copy in the TlB of
the entry is usable.

The valid state of a table entry denotes
that~segment or page associated with
the table entry is available. An entry
is valid when the segment-invalid bit or
page-invalid bit in the entry is zero.

The attached state of a table entry
denotes that the CPU to which it is
attached can attempt to use the table
entry for implicit address translation.
The table entry may be attached to more
than one CPU at a time. When a table
entry is described as attached, the term
"to a CPU" is implied.

The usable state of a TLB entry denotes
that the CPU can attempt to use the TlB
entry for implicit address translation.

A segment-table entry or a page-table
entry may be placed in the TlB only when
the entry is attached and valid and
would not cause a translation
specification exception if used for
translation. Except for these
restrictions, the entry may be placed in
the TLB at any time.

A segment-table entry is attached when
all of the following conditions are met:

1. The current PSW specifies OAT on.

2. The currQnt PSW contains no errors
which would cause an early excep
tion to be recognized.

3. The current translation format,
bits 8-12 in control register 0, is
valid.

4. The entry meets the requirements in
a or b below.

a. The entry is within the segment
table specified by the prlmary
segment-table designation in
control register 1.

b. The entry is within the segment
table specified by the second-

Chapter 3. Storage 3-31

ary segment-table designation
1n control register 7 and
either of the following re
quirements is met:

•

•

The CPU is in secondary
space mode.

The secondary-space con
trol, bit 5 of control reg
i ster 0, i s one.

A page-table entry is attached when it
is within the page table designated by
either a usable TLB segment-table entry
or by an attached and valid segment
table entry which would not cause a
translation-specification exception if
used for translation.

A TlB segment-table entry is in the
usable state when all of the following
conditions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors
which would cause an early excep
tion to be recognized.

3. The current translation format,
bits 8-12 in control register 0, is
valid.

4. The TlB segment-table entry meets
at least one of the following re
quirements:

• The common-segment bit is one
in the TLB entry.

• The segment-table-origin field
in the TLB entry is the same as
the current PSTO.

• The segment-table-origin field
in the TlB entry is the same as
the current SSTO, and either
PSW bit 16 is one or bit 5 of
control register 0 is one.

A TlB segment-table entry may be used
for implicit address translation only
when the entry is in the usable state,
the segment index of the entry matches
the segment index of the virtual address
to be translated, and either the
common-segment bit is one in the TlB
entry or the segment-table-origin field
in the TLB entry matches the segment
table origin used to select it.

A TLB page-table entry
state when all of the
tions are met:

is in the usable
following condi-

1. The TLB page-table entry is
selected by a usable TLB segment
table entry or by an attached and
valid segment-table entry which
would not cause a translation
specification exception if used for
translation.

3-32 370-XA Principles of Operation

2. The page-table-origin field in the
TLB page-table entry matches the
page-table-origin field in the
segment-table entry which selects
it.

3. The page-index field in the TLB
page-table entry is within the
range permitted by the page-table
length field in the segment-table
entry which selects it.

A TLB page-table entry may be used for
implicit address translation only when
theTlB entry is in the usable state as
selected by the segment-table entry
being used and only when the page index
of the TlB page-table entry matches the
page index of the virtual address being
translated.

The operand address of LOAD REAL ADDRESS
is translated without the use of the TLB
contents. Translation in this case is
performed by the use of the designated
tables in real or absolute storage.

Selected page-table entries are cleared
from the TLB by means of the INVALIDATE
PAGE TABLE ENTRY instruction. All
information in the TlB is necessarily
cle.ared only by execution of PURGE TlB,
SET PREFIX, or CPU reset.

Programming Notes

1. Although a table entry may be
copied into the TLB only when the
table entry i s both valid and
attached, the copy may remain in
the TlB even when the table entry
itself is no longer valid or
attached.

2. No entri~s can be copied into the
TLB when DAT is off because the
table entries at this time are not
attached. In particular, transla
tion of the operand address of LOAD
REAL ADDRESS, with DAT off, does
not cause entries to be placed in
the TLB.

Conversely, when DAT is on, infor
mation may be copied into the TLB
from all translation-table entries
that could be used for address
translation, given the current
translation parameters, the setting
of the address-space-control bit,
and the setting of the secondary
space-control bit. The loading of
the TLB does not depend on whether
the entry is used for translation
as part of the execution of the
current instruction, and such load
ing can occur when the wait state
is specified.

3. More than one copy of a table entry
may exist in the TLB. For example,

some implementations may cause a
copy of a valid table entry to be
placed in the TlB for each
segment-table orlgln by which the
entry becomes attached.

4. The states and use of the OAT
entries in both storage and in the
TLB are summarized in the figure
"Summary of OAT Entries."

State or Function

STE is attached by means
of PSTD (applies only to
STE in storage)

STE is attached by means
of SSTO (applies only to
STE in storage)

STE in storage is usable
for a particular instance
of implicit translation

STE can be placed in TlB

STE in TlB is usable

STE in TlB is usable for
a particular instance of
implicit translation

PTE is attached (applies
only to PTE in storage)

PTE in storage is usable
for a particular instance
of implicit translation

Conditions to Be Met

• OAT on
• No early PSW exception
• TF valid
• STE in segment table defined by

PSTO in CR1

• OAT on
• No early PSW exception
• TF valid
• STE in segment table defined by

SSTO in CR7
• P5W bit 16 one or bit 5 of CRO

one

• STE in segment table defined and
attached by STO being used for
the translation

• STE selected by 5X

• STE attached
• STE I bit zero
• No T5

• OAT on
• No early P5W exception
• TF valid
• STE selectable by an STO:

- C bit one, or
- STO matches PSTO, or
- STO matches 55TO, and PSW bit

16 one or bit 5 of CRO one

• OAT on
• No early P5W exception
• TF valid
• STE selected by STO being used

for the translation:
- 5TO matches, or
- C bit one

• SX matches

• PTE in page table defined by
usable STE in the TlB, or de
fined by an STE that can be
placed in the TlB

• PTE attached by means of STE
being used for the translation

• PTE selected by PX

Summary of OAT Entries (Part 1 of 2)

Chapter 3. Storage 3-33

State or Function Conditions to Be Met

PTE can be placed in TLB • PTE attached
• PTE I bit zero
• No TS

PTE in TLB is usable • PTE selectable by a usable STE
in the TLB or by an STE that
can be placed in the TLB:
- PTO matches and
- PX within PTL

PTE in TLB is usable for
a particular instance of
implicit translation

• PTE selected by STE being used
for the translation:
- PTO matches and
- PX within PTL

• PX matches

Explanation:

Common-segment bit in STE C bit
I bit
PSTD
PSTO
PTE
PTL
PTO
PX
SSTD
SSTO
STD
STE
STO
SX

Invalid bit in table entry
Primary segment-table designation
Primary segment-table origin
Page-table entry
Page-table length
Page-table origin
Page index
Secondary segment-table de~i~nation
Secondary segment-table orlgln
Segment-table designation
Segment-table entry
Segment-table origin
Segment index

TF
TS

Translation format (control register 0, bits 8-12)
Translation-specification exception

Summary of DAT Entries (Part 2 of 2)

Modification of Translation Tables

When an attached and invalid table entry
is made valid and no usable entry for
the associated virtual address is in the
TLB, the change takes effect no later
than the end of the current unit of
operation. Similarly, when an unat
tached and valid table entry is made
attached and no usable entry for the
associated virtual address is in the
TLB, the change takes effect no later
than the end of the current unit of
operation.

When a valid and attached table entry is
changed, and when, before the TLB is
cleared of entries which qualify for
substitution for that entry, an attempt
is made to refer to storage by using a
virtual address requiring that entry for
translation, unpredictable results may
occur, to the following extent. The use
of the new value may begin between
instructions or during the execution of
an instruction, including the instruc
tion that caused the change. Moreover,
until the TlB is cleared of entries
which qualify for substitution for that

3-34 370-XA Principles of Operation

entry, the TLB may contain both the old
and the new values, and it is unpredict
able whether the old or new value is
selected for a particular access. If
both old and new values of a segment
table entry are present in the TLB, a
page-table entry may be fetched by using
one value and placed in the TLB associ
ated with the other value. If the new
value of the eotry is a value which
would cause an exception, the exception
mayor may not cause an interruption to
occur. If an interruption does occur,
the result fields of the instruction may
be changed even though the exception
would normally cause suppression or
nullification.

Entries are cleared from the TLB in
accordance with the following rules:

1. All entries are cleared from the
TLB by the execution of PURGE TLB
and SET PREFIX and by CPU reset.

2. Selected entries are cleared from
all TLBs in the configuration by
the execution of INVALIDATE PAGE
TABLE ENTRY by any of the CPUs in
the configuration.

3. Some or all TLB entries may be
cleared at times other than those
required by PURGE TLB, SET PREFIX,
CPU reset, and INVALIDATE PAGE
TABLE ENTRY.

Programming Notes

1. Entries in the TLB may continue to
be used for translation after the
table entries from which they have
been formed have become unattached
or invalid. These TLB entries are
not necessarily removed unless
explicitly cleared from the TLB.

A change made to an attached and
valid entry or a change made to a
table entry that causes the entry
to become attached and valid is
reflected in the translation proc
ess for the next instruction, or
earlier than the next instruction,
unless a TLB entry qualifies for
substitution for that table entry.
However, a change made to a table
entry that causes the entry to
become unattached or invalid is not
necessarily reflected in the trans
lation process until the TLB is
cleared of entries which qualify
for substitution for that table
entry.

2. Exceptions associated with dynamic
address translation may be estab
lished by a pretest for operand
accessibility that is performed as
part of the initiation of the
instruction execution. Consequent
ly, a segment-translation or page
translation exception may be
indicated when a table entry is
invalid at the start of execution
even if the instruction would have
validated the table entry it uses
and the table entry would have
appeared valid if the instruction
was considered to process the oper
ands one byte at a time.

3. A change made to an attached table
entry, except to set the I bit to
zero or to alter the rightmost byte
of a page-table entry, may produce
unpredictable results if that entry
is used for translation before the
TLB is cleared of all copies of
that entry. The use of the new
value may begin between
instructions or during the
execution of an instruction,
including the instruction 'hat
caused the change. When an
instruction, such as MOVE (MVC),
makes a change to an attached table
entry, including a change that
makes the entry invalid, and subse
quently uses the entry for
translation, a changed entry is
being used without a prior clearing

of the entry from the TLB, and the
associated unpredictability of
result values and of exception
recognition applies.

Manipulation of attached table
entries may cause spurious table
entry values to be recorded in a
TLB. For example, if changes are
made piecemeal, modification of a
valid attached entry may cause a
partially updated entry to be
recorded, or, if an intermediate
value is introduced in the process
of the change, a supposedly invalid
entry may temporarily appear valid
and may be recorded in the TLB.
Such an intermediate value may be
introduced if the change is made by
an I/O operation that is retried,
or if an intermediate value is
introduced during the execution of
a single instruction.

As another example, if a segment
table entry is changed to designate
a different page table and used
without clearing the TLB, then the
new page-table entries may be
fetched and associated with the old
page-table origin. In such a ca5e,
execution of INVALIDATE PAGE TAlLE
ENTRY designating the new page
table origin will not necessarily
clear the page-table entries
fetched from the new page table.

4. To facilitate the manipulation of
translation tables, INVALIDATE PAGE
TABLE ENTRY is provided, which sets
the I bit in a page-table entry to
one and clears all TLBs in the
configuration of entries formed
from that table entry.

INVALIDATE PAGE TABLE ENTRY is
useful for setting the I bit to one
in a page-table entry and causing
TLB copies of the entry to be
cleared from the TLB of each CPU in
the configuration. The following
aspects of the TLB operation should
be considered when using INVALIDATE
PAGE TABLE ENTRY. (See also the
programming notes following INVALI
DATE PAGE TABLE ENTRY.)

a. INVALIDATE PAGE TABLE ENTRY
should be issued before making
any change to a page-table
entry other than changing the
rightmost byte; otherwise, the
selective clearing portion of
INVALIDATE PAGE TABLE ENTRY may
not clear the TLB copies of the
entry.

b. Invalidation of all the
page-table entries within a
page table by means of INVALI
DATE PAGE TABLE ENTRY does not
necessarily clear the TLB of
the copies, if any, of the
segment-table entry designating

Chapter 3. Storage 3-35

the page table. When it is
desired to invalidate and clear
the TLB of a segment-table
entry, the rules in note 5
below must be followed.

c. When a large number of
page-table entries are to be
invalidated at a single time,
the overhead involved in using
PURGE'TLB and in following the
rules in note 5 below may be
less than in issuing INVALIDATE
PAGE TABLE ENTRY for each
page-table entry.

5. Manipulation of table entries
should be in accordance with the
following rules. If these rules
are observed, translation is
performed as if the table entries
from real storage were always useq
in the translation process.

a. A valid table entry must not be
changed while it is attached to
any CPU except either to inval
idate the entry by using INVAL
IDATE PAGE TABLE ENTRY or to
alter bits 24-31 of a page
table entry.

b. When any change is made to a
table entry other than a change
to bits 24-31 of a page-table
entry, each CPU which may have
a TLB entry formed from that
entry must issue PURGE TLB or
SET PREFIX or perform CPU
reset, after the change occurs
and prior to the use of that
entry for implicit translation
by that CPU, except that the
purge is unnecessary if the
change was made by using INVAL
IDATE PAGE TABLE ENTRY.

c. When any change is made to an
invalid table entry in such a
way as to allow intermediate
valid values to appear in the
entry, each CPU to which the
entry is attached must issue
PURGE TLB or SET PREFIX or
perform CPU reset, after the
change occurs and prior to the
use of the entry for implicit
address translation by that
CPU.

d. When any change is made to a
segment-table or page-table
length, each CPU to which that
table has been attached must
issue PTLS after the length has
been changed but before that
table becomes attached again to
the CPU.

Note that when an invalid page
table entry is made valid without
introducing intermediate valid
values, the TLS need not be cleared
in a CPU which does not have any

3-36 370-XA Principles of Operation

usable TtB copies for that entry.
Similarly, when an invalid
segment-table entry is made valid
without introducing intermediate
valid values, the TlS need not be
cleared in a CPU which does not
have any usable TLB copies for that
segment-table entry and which does
not have any usable TLB copies for
the page-table entries attached by
it.

The execution of PURGE TLB and SET
PREFIX may have an adverse effect
on the performance of some models.
Use of these instructions should,
therefore, be minimized in conform
ity with the above rules.

ADDRESS SUMMARY

ADDRESSES TRANSLATED

Most addresses that are explicitly spec
ified by the program and are used by the
CPU to refer to storage for an instruc
tion or an operand are logical addresses
and are subject to implicit translation
when OAT is on. Analogously, the corre
sponding addresses indicated to the
program on an interruption or as the
result of executing an instruction are
logical. The operand address of LOAD
REAL ADDRESS is explicitly translated,
regardless of whether the PSW specifies
DAT on or off.

Translation is not applied to quantities
that are formed from the values desig
nated in the Band D fields of an
instruction but that are not used to
address storage. This includes operand
addresses in LOAD ADDRESS, MONITOR CALL,
and the shifting instructions. This
also includes the addresses in control
registers 10 and 11 designating the
starting and ending locations for PER.

With the exception of INSERT VIRTUAL
STORAGE KEY and TEST PROTECTION, the
addresses explicitly designating storage
keys (operand addresses in SET STORAGE
KEY EXTENDED, INSERT STORAGE KEY
EXTENDED, and RESET REFERENCE BIT
EXTENDED) are real addresses.
Similarly, the addresses implicitly used
by the CPU for such sequences as inter
ruptions are real addresses.

Th§! addresses used by channel programs
toTtransfer data and to refer to CCWs or
IDAWs are absolute addresses.

The handling of storage addresses asso
ciated with DIAGNOSE is model-dependent.

The processing of addresses, including
dynamic address translation and prefix
ing, is discussed in the section

"Address Types" in this chapter.
Prefixing, when provided, is applied
after the address has been translated by
means of the dynamic-address-translation
facility. For a description of prefix
ing, see the section "Prefixing" in this
chapter.

HANDLING OF ADDRESSES

The handling of addresses is summarized
in the figure "Handling of Addresses."
This figure lists all addresses that are
encountered by the program and specifies
the address type.

Virtual Addresses

• Operand address in INSERT VIRTUAL STORAGE KEY
• Operand address in LOAD REAL ADDRESS
• Operand addresses in MOVE TO PRIMARY and MOVE TO SECONDARY
• Address stored in the word at real location 144 on a program

interruption for page-translation or segment-translation
exception

Instruction Addresses

• Instruction address in PSW
• Branch address
• Target of EXECUTE
• Address stored in the word at real location 152 on a pro

gram interruption for PER
• Address placed in general register by BRANCH AND LINK,

BRANCH AND SAVE, BRANCH AND SAVE AND SET MODE, and
PROGRAM CALL

Logical Addresses

• Addresses of storage operands for instructions not other
wise specified

• Address placed in general register 1 by EDIT AND MARK and
TRANSLATE AND TEST

• Addresses in general registers updated by MOVE LONG and
COMPARE LOGICAL LONG

• Address for TEST PENDING INTERRUPTION provided the address
is nonzero

Real Addresses

• Operand address in INSERT STORAGE KEY EXTENDED, RESET
REFERENCE BIT EXTENDED, SET STORAGE KEY EXTENDED, and TEST
BLOCK

• Page-table origin in INVALIDATE PAGE TABLE ENTRY
• Segment-table origin 1 in control registers 1 and 7
• Page-table origin 1 in segment-table entry
• Page-frame real address in page-table entry
• Trace-entry address in control register 12
• ASN-first-table origin in control register 14
• ASN-second-table origin in ASN-first-table entry
• Authority-table origin in ASN-second-table entry
• Linkage-table origin in control register 5
• Entry-table origin in linkage-table entry

Handling of Addresses (Part 1 of 2)

Chapter 3. Storage 3-37

• The translated address generated by lOAD REAL ADDRESS
• Address 1 of segment-table entry or page-table entry provided

by LOAD REAL ADDRESS

Permanently Assigned Real Addresses

• Address of the doubleword at location 184 into which TEST
PENDING INTERRUPTION stores when the second-operand address
i s zero

• Addresses of PSWs, interruption codes, and the associated
information used during interruption

• Addresses used for machine-check logout and save areas

Absolute Addresses

• Prefix value
• Channel-program address in ORB
• Data address in CCW
• IDAW address in a CCW specifying indirect data addressing
• CCW address in a CCW specifying transfer in channel
• Data address in IDAW
• Measurement-block origin specified in SET CHANNEL MONITOR
• Address limit specified in SET ADDRESS LIMIT
• Addresses used by the store-status-at-address SIGNAL

PROCESSOR order
• Failing-storage address stored in the word at real loca

tion 248
• CCW address in SCSW

Permanently Assigned Absolute Addresses

• Addresses used for the store-status function
• Addresses of PSW and first two CCWs used for initial pro

gram loading

Addres·ses Not Used to Reference Storage

• PER starting address in control register 10
• PER ending address in control register 11
• Address stored in the word at real location 156 for a

monitor event
• Address in shift instructions and other instructions speci

fied not to use the address to reference storage
• Parameter stored in the word at real location 128 for a

service-signal external interruption
• I/O interruption parameter stored in the word at real loca

tion 188 for an I/O interruption

1 It is unpredictable whether these addresses are treated as
real or absolute.

Handling of Addresses (Part 2 of 2)

ASSIGNED STORAGE LOCATIONS

The figure "Assigned Storage locations"
shows the format and extent of the
assigned locations in storage. The
locations are used as follows.

0-7 (Absolute Address)

Initial-Program-Loading PSW:
The first eight bytes read
during the initial-program
loading (IPL) initial-read oper
ation are stored at locations
0-7. The contents of these
locations are used as the new

3-38 370-XA Principles of Operation

0-7

8-15

PSW at the completion of the IPL
operation. These locations may
also be used for temporary stor
age at the initiation of the IPL
operation.

(Real Address)

Restart New PSW: The new PSW is
fetched ~rom-- locations 0-7
during a restart interruption.

(Absolute Address)

Initial-Program-Loading CCW1:
Bytes 8-15 read during ~
initial-program-loading (IPL)

8-15

16-23

24-31

32-39

40-47

48-55

56-63

88-95

initial-read operation are
stored at locations 8-15. The
cont~nts of these locations are
ordinarily used as the next CCW
in an IPL CCW chain after
completion of the IPL initial
read operation.

(Real Address)

Restart Old PSW: The current
PSW is stored as the old PSW at
locations 8-15 during a restart
interruption.

(Absolute Address)

Initial-Program-Loading CCW2:
Bytes 16-23 read during the
initial-program loading (IPL)
initial-read operation are
stored at locations 16-23. The
contents of these locations may
be used as another CCW in the
IPL CCW chain to follow IPL
CCW1.

(Real Address)

External Old PSW: The current
PSW is stored as--the old PSW at
locations 24-31 during an
external interruption.

(Real Address)

Supervisor-Call Old PSW: The
current PSW is stored as the old
PSW at locations 32-39 during a
supervisor-call interruption.

(Real Address)

Program Old PSW: The current
PSW is stored as the old PSW at
locations 40-47 during a program
interruption.

(Real Address)

Machine-Check Old PSW: The
current PSW is stored as the old
PSW at locations 48-55 during a
machine-check interruption.

(Real Address)

Input/Output Old PSW: The
current PSW is stored as the old
PSW at locations 56-63 during an
I/O interruption.

(Real Address)

External New PSW: The new PSW
is fetched from--rocations 88-95
during an external interruption.

96-103 (Real Address)

Supervisor-Call New PSW: The
new PSW is fetched from
locations 96-103 during a
supervisor-call interruption.

104-111 (Real Address)

Program New PSW: The new PSW is
fetched from locations 104-111
during a program interruption.

112-119 (Real Address)

Machine-Check New PSW: The new
PSW is fetched from locations
112-119 during a machine-check
interruption.

120-127 (Real Address)

Input/Output New PSW: The new
PSW is fetched from- locations
120-127 during an I/O inter
ruption.

128-131 (Real Address)

External-Interruption Parameter:
During an external interruption
due to service signal, the
parameter associated with the
interruption is stored at
locations 128-131.

132-133 (Real Address)

CPU Address: During an external
interruption due to malfunction
alert, emergency signal, or
external call, the CPU address
associated with the source of
the interruption is stored at
locations 132-133. For all
other external-interruption
conditions, zeros are stored at
locations 132-133.

134-135 (Real Address)

External-Interruption Code:
During an external interruption,
the interruption code is stored
at locations 134-135.

136-139 (Real Address)

Supervisor-CalI-Interruption
Identification: During a
supervisor-call interruption,
the instruction-length code is
stored in bit positions 5 and 6
of location 137, and the inter
ruption code is stored at
locations 138-139. Zeros are
stored at location 136 and in
the remaining bit positions of
137.

140-143 (Real Address>

Program-Interruption Identifi
cation: During a program inter
ruption, the instruction-length
code is stored in bit positions
5 and 6 of location 141, and the
interruption code is stored at
locations 142-143. Zeros are
stored at location 140 and in

Chapter 3. Storage 3-39

the remalnlng bit positions of
141.

144-147 CReal Address)

Translation-Exception Identifi
cation: During a program inter
ruption due to a segment
translation exception or a
page-translation exception, the
segment-index and page-index
portion of the virtual address
causing the exception is stored
at locations 144-147. This
address is sometimes referred to
as the translation-exception
address. The rightmost 12 bits
of the address are unpredict
able. Bit 0 of location 144 is
set to zero if the translation
was relative to the primary
segment table designated by
control register 1, or it is set
to one if the translation was
relative to the secondary
segment table designated by
control register 7.

During a program interruption
due to an AFX-translation, ASX
translation, primary-authority,
or secondary-authority excep
tion, the ASN being translated
is stored at locations 146-147.
locations 144-145 are set to
zeros.

During a program interruption
for a space-switch event, the
old PASN, which appears in bits
16-31 of control register 4
before the execution of a
space-switching PROGRAM CALL or
PROGRAM TRANSFER instruction, is
stored at locations 146-147.
The old space-switch-event
control bit is placed in bit
position 0, and zeros are placed
in bit positions 1-15 at
locations 144-145.

During a program interruption
due to an lX-translation or EX
translation exception, the PC
number is stored in bit posi
tions 12-31 of the word at
location 144. Bits 0-11 are set
to zeros.

148-149 (Real Address)

Monitor-Class Number: During a
program interruption due to a
monitor event, the monitor-class
number is stored at location
149, and zeros are stored at
location 148.

150-151 (Real Address)

PER Code: During a program
interruption due to a PER event,
the PER code is stored in bit
positions 0-3 of location 150,

3-40 370-XA Principles of Operation

and zeros are stored in bit
positions 4-7 and at location
151.

152-155 (Real Address)

PER Address: During a program
interruption due to a program
event, the PER address 1S stored
at locations 152-155. Bit 0 of
location 152 is set to zero.

156-159 (Real Address)

Monitor Code: During a program
interruption due to a monitor
event, the monitor code is
stored in the word at location
156.

184-187 (Real Address)

Subsystem-Identification Word:
During an I/O interruption, the
subsystem-identification word is
stored in these locations.

188-191 (Real Address)

Interruption Parameter: During
an I/O interruption, the inter
ruption parameter from the asso
ciated subchannel is stored in
these locations.

216-223 (Absolute Address)

Store-Status CPU-Timer Save
Area: During the execution--of
the store-status operation, the
contents of the CPU timer are
stored at locations 216-223.

216-223 (Real Address)

Machine-Check CPU-Timer Save
Area: During a machine-check
interruption, the contents of
the CPU timer are stored at
locations 216-223.

224-231 (Absolute Address)

Store-Status Clock-Comparator
Save Area: During the execution
~the store-status operation,
the contents of the clock compa
rator are stored at location
224-231.

224-231 (Real Address)

Machine-Check Clock-Comparator
Save Area: During a machine
check interruption, the contents
of the clock comparator are
stored at location 224-231.

232-239 (Real Address)

Machine-Cheek-Interruption Code:
During a machine-check interrup
tion the machine-check-inter~up-

tion code is stored at locations
232-239.

248-251 (Real Address)

Failing-Storage Address: During
a machine-check interruption, a
failing-storage address may be
stored at locations 248-251.
Bit 0 of location 248 is set to
zero.

256-271 (Real Address)

Fixed-logout Area: Depending on
the model, logout information
may be placed in this area
during a machine-check interrup
tion.

264-267 (Absolute Address)

Store-Status Prefix Save Area:
During the executio-n---of~
store-status operation, the
contents of the prefix register
are stored at location 264-267.

352-383 (Absolute Address)

Store-Status FloatinQ-Point
Register Save Area: During the
execution of the store-status
operation, the contents of the
floating-point registers are
stored at locations 352-383.

352-383 (Real Address)

Machine-Check Floating-Point
Register Save Area: During a
machine-check interruption, the
contents of the floating-point
registers are stored at
locations 352-383.

384-447 (Absolute Address)

Store-Status General-Register
Save Area: During the execution
~the store-status operation,
the contents of the general
registers are stored at
locations 384-447.

384-447 (Real Address)

Machine-Check General-Register
Save Area: During a machine
check interruption, the contents
of the general registers are
stored at locations 384-447.

448-511 (Absolute Address)

Store-Status Control-Register
Save Area: During the execution
of the store-status operation,
the contents of the control
registers are stored at
locations 448-511.

448-511 (Real Address)

Machine-Check Control-Register
Save Area: During a machine
check interruption, the contents
of the control registers are
stored at locations 448-511.

Chapter 3. Storage 3-41

Hex Dec

0 0 Initial-Program-loading PSW; or Restart New PSW

4 4

8 8 Initial-Program-loading eeW1; or Restart Old PSW

e 12

10 16 Initial-Program loading eCW2

14 20

18 24 External Old PSW

Ie 28
-

20 32 Supervisor-Call Old PSW

24 36

28 40 Program Old PSW

2C 44

30 48 Machine-Check Old PSW

34 52

38 56 Input/Output Old PSW

3C 60

40 64

44 68

48 72

4C 76

50 80

54 84

58 88 External New PSW

5C 92

60 96 Supervisor-Call New PSW

64 100

68 104 Program New PSW

6C 108

70 112 Machine-Check New PSW

74 116

78 120 Input/Output New PSW

7C 124

Assigned Storage locations (Part 1 of 3)

3-42 370-XA Principles of Operation

Hex Dec

80 128 External-Interruption Parameter

84 132 CPU Address External-Interruption Code

88 136 0 0 0 0 0 0 0 0 0 0 0 0 0 ILC 0 SVC-Interruption Code

8C 140 0 0 0 0 0 0 0 0 0 0 0 0 0 ILC 0 Program-Interruption Code

90 144 Translation-Exception Identification

94 148 Monitor-Class Number PER CdelO 0 0 0 0 0 0 0 0 0 0 0
.-

98 152 PER Address

9C 156 Monitor Code

AO 160

A4 164

A8 168

AC 172

BO 176

B4 180

B8 184 Subsystem-Identification Word

BC 188 I/O-Interruption Parameter

CO 192

C4 196

C8 200

CC 204

DO 208

D4 212

D8 216 Store-Status CPU-Timer Save Area; or Machine-Check CPU-Timer
Save Area

DC 220

EO 224 Store-Status Clock-Comparator Save Area; or Machine-Check
Clock-Comparator Save Area

E4 228

E8 232 Machine-Check Interruption Code

EC 236

FO 240
F4 244

F8 248 Failing-Storage Address

FC 252

Assigned Storage Locations (Part 2 of 3)

Chapter 3. Storage 3-43

Hex Dec

100 256 Store-Status PSW Save Area; or Fixed logout Area (Part 1)

104 260

108 264. store-Status Prefix Save Area; or Fixed logout Area (Part 2)

10C 268 Fixed logout Area (Part 3)

110 272

3-44 370-XA Principles of Operation

CHAPTER !.:. CONTROL

Stopped, Operating, Load, and Check-Stop States •.••••••••• 4-2
Stopped State ••••••••••••••••••••••••••.•••••••••••••••• 4-2
Operating State .•••••••.•••••••••••••••••..••••••••••••• 4-2
load State •••.•.••.••.•.•.••••••••••••••••.•••..••.••..• 4-·3
Check-Stop State •••••••••••••••••••••• ~ •••••••.••••••••• 4-3

Program-Status Word .•••••..•••••.••••.....•.••.••••••.•... 4-3
Program-Status-Word Format ••.••.••••••••••••••••••.••.•. 4-5

Control Registers ••••••••.••••.••.••••••••••••••••••.•.•.• 4-6
Tracing ••••••••••••••••••.•••••••••••••••••••••••••••••••• 4-8

Control-Register Allocation •••••••••••••••••••••••.•...• 4-8
Trace Entries ••••••••••••••••••••••••.•••••••••••••••••• 4-9
Operation ••••••••.•••••••••••••••••••••••••••••••••••••• 4-10

Program-Event Recording •••••••••••••••••••••••••.•••.••••• 4-11
Control-Register Allocation •••••••••••••••••••.••••...•. 4-11
Operation •..•.••.•••.••••••••••••••••••••.••••••••...•.• 4-12

Identification of Cause •••••••••••••••••••••••••••.••• 4-12
Priority of Indication •••••••••••••.•••••••••••••••••• 4-13

Storage-Area Designation ••••.•••.•••••••••••••.•••••••.• 4-14
PER Events •..•••••••.••••••••••••••••.•••••••••••••••••• 4-14

Successful Branching ••••••.•••••••••••••••••••••.•••.• 4-14
Instruction Fetching •••••••••••••••••••.••••••••.•.•.• 4-14
Storage Alteration .••.•.•••••••••••.••••••.•.•••••.•.. 4-15
General-Register Alteration •.••••.•••.••••••••••••••.• 4-15

Indication of Events Concurrently with Other
Interruption Conditions •••••••.•.••••.•••..•••••.•....•• 4-16

Timing ••...••.••.•••.•.••••.•••••••••••.•••••••••••••••••• 4-18
Time-of-Day Clock ••••••.••••••••.••••.•••••••••••••••••• 4-18

Forma t •• 4 -18
States ••••..•..•.•.•.••••••.•••••••••.••.•••.•••.•.••• 4-19
Changes in Clock State •••••••..•••••••••••••••••••..•• 4-19
Setting and Inspecting the Clock •••.•••.•••••.•••••.•• 4-20

TOO-Clock Synchronization ••• ~ •••••••••••••• ~ ••••••••.••• 4-21
Clock Comparator ••••.•••••••••••.••••••••••••.•••••..••• 4-21
CPU Timer •••••••••.•••••.••••••••••••.•••••••••••••••••• 4-22

Externally Initiated Functions •••••••••••••••••••••••••••. 4-23
Service Signal ••••••••••••••••••••••••••.•••••••••.•...• 4-23
Resets .••.•.••••••••••••..•••••••••••••.••••.••••••.•••• 4-24

CPU Reset ••.•••.•••••••••••••••••••.••••••••••••...••• 4-27
Initial CPU Reset ••••••••••••••••••.••••••••••••.•.••• 4-27
Subsystem Reset ••••••••••••••••••••.••••••••••••....•. 4-28
CI ea r Reset ••••••••••••••••.••••.••..••.••••.•••....•• 4-28
Power-On Reset ••••.••••••••••••••••••••••••••••••••.•• 4-28

Initial Program Loading .•••••••••••••••••••••••••••••••• 4-29
Store Status •••••••••••••••••••••••••.••.•••.•.•••••..•• 4-29

Multiprocessing ..••••••••.••••••...••••.•••••••••••••••••• 4-30
Shared Main Storage ••••••••••••••••••.••••••.••••••••.•• 4-30
CPU-Address Identification •••••••••••.••••••••••••••.•.. 4-30

CPU Signaling and Response •••••••••••••.•••.•.••••••.•..•• 4-31
Signal-Processor Orders ••••••••••••••.••••••.•••••••.••. 4-31
Conditions Determining Response ••••••.••••••••••••••.••• 4-33

Conditions Precluding Interpretation of the Order
Code ... 4-33
Status Bits ••••••••••••••••••••••••.••.•.•.•••••.•..•• 4-34

This chapter describes in
facilities for controlling,

detail the
measuring,

and recording
more CPUs.

the operation of one

Chapter 4. Control

or

4-1

STOPPED, OPERATING, LOAD, AND CHECK-STOP
STATES

The stopped, operating, load, and
check-stop states are four mutually
exclusive states of the CPU. When the
CPU is in the stopped state,
instructions and interruptions, other
than the restart interruption, are not
executed. In the operating state, the
CPU executes instructions and takes
interruptions, subject to the control of
the program-status word (PSW) and
control registers, and in the manner
specified by the setting of the
operator-facility rate control. The CPU
is in the load state during the
initial-program-loading operation. The
CPU enters the check-stop state only as
the result of machine malfunctions.

A change between these four CPU states
can be effected by use of the operator
facilities or by acceptance of certain
SIGNAL PROCESSOR orders addressed to
that CPU. The states are not controlled
or identified by bits in the PSW. The
stopped, load, and check-stop states are
indicated to the operator by means of
the manual indicator, load indicator,
and check-stop indicator, respectively.
These three indicators are off when the
CPU is in the operating state.

The CPU timer is updated when the CPU is
in the operating state or the load
state. The TOO clock is not affected by
the state of any ~PU.

STOPPED STATE

The state of the CPU is changed from
operating to stopped by the stop func
tion. The stop function is performed
when:

• The stop key is activated while the
CPU is in the operating state.

• The CPU accepts a stop or stop
and-store-status order specified by
a SIGNAL PROCESSOR instruction
addressed to this CPU while it is
in the operating state.

• The CPU has finished the execution
of a unit of operation initiated by
performing the start function with
the rate control set to the in
struction-step position.

When the stop function is performed, the
transition from the operating to the
stopped state occurs at the end of the
current unit of operation. When the
wait-state bit of the PSW is one, the
transition takes place immediately,
provided no interruptions are pending
for which the CPU is enabled. In the
case of interruptible instructions, the

4-2 370-XA Principles of Operation

amount of data processed in a unit of
operation depends on the particular
instruction and may depend on the model.

Before entering the ~topped state by
means of the stop function, all pending
allowed interruptions are taken while
the CPU is still in the operating state.
They cause the old PSW to be stored and
the new PSW to be fetched before the
stopped state is entered. While the CPU
is in the stopped state, interruption
conditions remain pending.

The CPU is also placed in the stopped
state when:

• The CPU reset is completed. Howev
er, when the reset operation is
performed as part of initial
program loading, then the CPU is
placed in the load state and does
not necessarily enter the stopped
stote.

• An address comparison indicates
equality and stopping on the match
is specified.

The execution of resets is described in
the section "Resets" in this chapter,
and address comparison is described in
the section "Address-Compare Controls"
in Chapter 12, "Operator Facilities."

If the CPU is in the stopped state when
an INVALIDATE PAGE TABLE ENTRY instruc
tion is executed on another CPU in the
configuration, the invalidation may be
performed immediately or may be delayed
until the CPU leaves the stopped state.

OPERATING STATE

The state of the CPU is changed from
stopped to operating when the start
function is performed or when a restart
interruption (see Chapter 6) occurs.

The start function is performed if the
CPU is in the stopped state and (1) the
start key associated with that CPU is
activated or (2) that CPU accepts the
start order specified by a SIGNAL
PROCESSOR instruction addressed to that
CPU. The effect of performing the start
function is unpredictable when the
stopped state has been entered by means
of a reset.

When the rate control is set to the
process position and the start function
is performed, the CPU starts operating
at normal speed. When the rate control
is set to th~ instruction-step position
and the wait-state bit is zero, one
instruction or, for interruptible
instructions, one unit of operation is
executed, and all pending allowed inter
ruptions are taken before the CPU
returns to the stopped state. When the

rate control is set to the instruction
step position and the wait-state bit is
one, the start function causes no
instruction to be executed, but all
pending allowed interruptions are taken
before the CPU returns to the stopped
state.

LOAD STATE

The CPU enters the load state when the
load-normal or load-clear key is acti
vated. (See the section "Initial
Program Loading" in this chapter. See
also the section "Initial Program Load
ing" in Chapter 17, "I/O Support Func
tions.") If the initial-program-Ioading
operation is completed successfully, the
CPU state changes from load to
operating, provided the rate control is
set to the process position; if the rate
control is set to the instruction-step
position, the CPU state changGs from
load to stopped.

CHECK-STOP STATE

The check-stop state, which the CPU
enters on certain types of machine
malfunction, is described in Chapter 11,
"Machine-Check Handling." The CPU
leaves the check-stop state when CPU
reset is performed.

Programming Notes

1. Except for the relationship between
execution time and real time, the
execution of a program is not
affected by stopping the CPU.

2. When, because of a machine malfunc
tion, the CPU is unable to end the
execution of an instruction, the
stop function is ineffective, and a
reset function has to be invoked
instead. A similar situation
occurs when an unending string of
interruptions results from a PSW
with a PSW-format error of the type
that is recognized early, or from a
persistent interruption condition,
such as one due to the CPU timer.

3. Pending I/O operations may be
initiated, and active I/O oper-

ations continue to suspension or
completion, after the CPU enters
the stopped state. The int~r-
ruption conditions due to
suspension or completion of 1/0
operations remain pending when the
CPU is in the stopped state.

PROGRAM-STATUS WORD

The current program-status word (PSW) in
the CPU contains information required
for the execution of the currently
active program. The PSW is 64 bits in
length and includes the instruction
address, condition code, and other
control fields. In general, the PSW is
used to control instruction sequencing
and to hold and indicate much of the
status of the CPU in relation to the
program currently being executed. Addi
tional control and status information is
contained in control registers and
permanently assigned storage l~cations.

The status of the CPU can be changed by
loading a new PSW or part of a PSW.

Control is switched during an inter
ruption of the CPU by storing the
current PSW, so as to preserve the
status of the CPU, and then loading a
new PSW.

Execution of LOAD PSW, or the successful
conclusion of the initial-program
loading sequence, introduces a new PSW.
The instruction address is updated by
sequential instruction execution and
replaced by successful branches. Other
instructions are provided which operate
on a portion of the PSW. The figure
"Operations on PSW Fields" summarizes
these instructions.

A new or modified PSW becomes active
(that is, the information introduced
into the current PSW assumes control
over the CPU) when the interruption or
the execution of an instruction that
changes the PSW is completed. The
interruption for PER associated with an
instruction that changes the PSW occurs
under control of the PER mask that is
effective at the beginning of the opera
tion.

Bits 0-7 of the PSW are collectively
referred to as the system mask.

Chapter 4. Control 4-3

System Mask
(PSW Bits

0-7)

PSW Key
(PSW Bits

8-11>

Problem
State
(PSW

Bit 15)

Address
Space

Control
(PSW

Bit 16)

Condition
Code and

Program
Mask

(PSW Bits
18-23)

Addressing
Mode
(PSW

Bit 32)

Instruction Saved

BRANCH AND LINK No
BRANCH AND SAVE No
BRANCH AND SAVE AND SET No

MODE
BRANCH AND SET MODE No
INSERT PROGRAM MASK No
INSERT PSW KEY No
INSERT ADDRESS SPACE No

CONTROL
PROGRAM CALL No
PROGRAM TRANSFER No
SET ADDRESS SPACE CONTROL No
SET PROGRAM MASK No
SET PSW KEY FROM ADDRESS No
SET SYSTEM MASK No
STORE THEN AND SYSTEM MASK Yes
STORE THEN OR SYSTEM MASK Yes

Explanation:

Set Saved

No No
No No
No No

No No
No No
No Yes
No No

No No
No No
No No
No No
No No
Yes No
ANDs No
ORs No

Cannot be changed from one to zero.

Set Saved

No No
No No
No No

No No
No No
No No
No No

No Yes
No No
No No
No No
Yes No
No Uo
No No
No No

Set Saved Set

No No No
No No No
No No No

No No No
No No No
No No No
No Yes No

Yes No No
Yes 1 No No
No No Yes
No No No
No No No
No No No
No No No
No No No

Saved

AM
No
No

No
Yes
No
No

No
No
No
No
No
No
No
No

Set

No
No
No

No
No
No
No

No
No
No
Yes
No
No
No
No

Saved

AM
Yes
Yes

Yes 1

No
No
No

Yes
No
No
No
No
No
No
No

2

AM

The action takes place only if the associated R field in the instruction is nonzero.

The action depends on the addressing mode, bit 32 of the current PSW. In 24-bit mode,
the condition code and program mask are saved in the leftmost byte of the general reg
ister. In 31-bit addressing mode, the addressing mode, along with bits 1-7 of the 31-
bit address, replace the leftmost byte of the register.

ANDs

ORs

The logical AND of the immediate field in the instruction and the current system mask
replaces the current system mask.

The logical OR of the immediate field in the instruction and the current system mask
replaces the current system mask.

Operations on PSW Fields

Programming Note

A summary of the operations which save
or set the problem state, addressing
mode, and instruction address is
contained in the section "Subroutine
linkage" in Chapter 5, "Program
Execution."

4-4 370-XA Principles of Operation

Set

No
No
Yes 2

Yes 2

No
No
No

Yes
Yes
No,
No
No
No
No
No

~'
I

PROGRAM-STATUS-WORD FORMAT

o 5 8 12 16 18 20

Instruction Address

32

PSW Format

The following is a summary of the func
tions of the PSW fields. (See the
figure "PSW Format.")

PER Mask (R): Bit 1 controls whether
the CPU -rs-enabled for interruptions
associated with program-event recording
(PER). When the bit is zero, no PER
event can cause an interruption. When
the bit is one, interruptions are
permitted, subject to the PER-event-mask
bits in control register 9.

DAT Mode (T): Bit 5 controls whether
implicit dynamic address translation of
logical and instruction addresses used
to access storage takes place. When the
bit is zero, DAT is off, and logical and
instruction addresses are treated as
real addresses. When the bit is one,
OAT is on, and the dynamic-address
translation mechanism is invoked.

I/O Mask (10): Bit 6 controls whether
the ----CP-U----is enabled for I/O
interruptions. When the bit is zero, an
I/O interruption cannot occur. When the
bit is one, I/O interruptions are
subject to the I/O-interruption
subclass-mask bits in control register
6. When an I/O-interruption-subclass
mask is zero, an I/O interruption for
that I/O-interruption subclass cannot
occur; when the I/O-interruption-
subclass mask is one, an I/O
interruption for that I/O-interruption
subclass can occur.

External Mask (EX): Bit 7 controls
whether t~CPU is enabled for inter
ruption by conditions included in the
external class. When the bit is zero,
an external interruption cannot occur.
When the bit is one, an external inter
ruption is subject to the corresponding
external subclass-mask bits in control
register 0; when the subclass-mask bit
is zero, conditions associated with the
subclass cannot cause an interruption;
when the subclass-mask bit is one, an
interruption in that subclass can occur.

o 0 0 0 0 0 0 0

24 31

63

PSW Key: Bits 8-11 form the access key
for storage references by the CPU. If
the reference is subject to key
controlled protection, the PSW key 1S
matched with a storage key when informa
tion is stored or when information is
fetched from a location that is
protected against fetching. However,
for accesses to the second operand of
MOVE TO PRIMARY and MOVE WITH KEY, the
third operand is used instead of the PSW
key. The third operand is also used
instead of the PSW key for accesses to
the first operand of MOVE TO SECONDARY.

Machine-Check Mask (M): Bit 13 con~rols
whether the Crrr-Ts--enabled for inter
ruption by machine-check conditions.
When the bit is zero, a machine-check
interruption cannot occur. When the bit
is one, machine-check interruptions due
to system damage and instructi~n
processing damage are permitted, ~ut
interruptions due to other maching
check-subclass conditions are subject to
the subclass-mask bits in control regis
ter 14.

~a;t state (W): When bit 14 is one, the
CPU is waiting; that is, no instructions
are processed by the CPU, but inter
ruptions may take place. When bit 14 is
zero, instruction fetching and execution
occur in the normal manner. The wait
indicator is on when the bit is one.

Problem State (P): When bit 15 is one,
the CPU is in the problem state. When
bit 15 is zero, the CPU is in the super
visor state. In the supervisor state,
all instructions are valid. In the
problem state, only those instructions
are valid that provide meaningful infor
mation to the problem program and that
cannot affect system integrity. The
instructions that are never valid in the
problem state are called privileged
instructions. When a CPU in the problem
state attempts to execute a privileged
instruction, a privileged-operation
exception is recognized, and a program
interruption takes place. Another group
of instructions, called semiprivileged
instructions, are only executed by a CPU

Chapter 4. Control 4-5

in the problem state if specific author
ity tests are met; otherwise, a
privileged-operation exception or a
special-operation exception is recog
nized, and a program interruption takes
place.

Address-Space Control ~ Bit 16, in
conjunction with PSW bit 5, controls the
address-space mode. See the discussion
of the PSW under "Translation Control"
in Chapter 3, "Storage."

Condition Code (CC): Bits 18 and 19 are
the two bits of~condition code. The
condition code is set to 0, 1, 2, or 3,
depending on the result obtained in
executing certain instructions. Most
arithmetic and logical operations, as
well as some other operations, set the
condition code. The instruction BRANCH
ON CONDITION can specify any selection
of the condition-code values as a crite
rion for branching. A table in Appendix
C summarizes the condition-code values
that may be set for all instructions
which set the condition code of the PSW.

ProQram Mask: Bits 20-23 are the four
program-mask bits. Each bit is associ
ated with a program exception, as
follows:

Program-
Mask Bit Program Exception

20 Fixed-point overflow
21 Decimal overflow
22 Exponent underflow
23 Significance

When the mask bit is one, the exception
results in an interruption. When the
mask bit is zero, no interruption
occurs. The setting of the exponent
underflow-mask bit or the significance
mask bit also determines the manner in
which the operation is completed when
the corresponding exception occurs.

Addressing Mode (A): Bit 32 controls
the size of effective addresses and
effective-address generation. When the
bit is zero, 24-bit addressing is speci
fied. When th9 bit is one, 31-bit
addressing is specified. The addressing
mode does not control the size of PER
addresses or of addresses used to access
OAT, ASN, linkage, entry, and trace
tables. See the section "Address Gener
ation" in Chapter 5, "Program
Execution," and the section "Address
Size and Wraparound" in Chapter 3, "sto
rage."

Instruction Address: Bits 33-63 form
the instruction address. This address
designates the location of the leftmost
byte of the next instruction to be
executed, unless the CPU is in the wait
state (bit 14 of the PSW is one).

4-6 370-XA Principles of Operation

Bit positions 0, 2-4, 17, and 24-31 are
unassigned and must contain zeros. A
specification exception is recognized
when these bit positions do not contain
zeros. When bit 32 of the PSW specifies
24-bit addressing mode, bits 33-39 of
the instruction address must be zeros;
otherwise, a specification exception is
recognized. A specification exception
is also recognized when bit position 12
does not contain a one.

CONTROL REGISTERS

The control registers provide for main
taining and manipulating control infor
mation outside the PSW. There are
sixteen 32-bit control registers.

All control-register bit positions in
all 16 control registers are installed,
regardless of whether the bit position
is assigned to a facility. One or more
specific bit positions in control regis
ters are assigned to each facility
requiring suc;, register space.

The LOAD CONTROL instruction causes all
register positions, within those regis
ters designated by the instruction, to
be loaded from storage. The
instructions LOAD ADDRESS SPACE PARAME
TERS, SET SECONDARY ASN, PROGRAM CALL,
and PROGRAM TRANSFER offer specialized
control over which register positions
are loaded and the source of the infor
mation to be loaded. Information loaded
into the control registers becomes
active (that is, assumes control over
the system) at the completion of the
instruction causing the information to
be loaded.

At the time the registers are loaded,
the information is not checked for
exceptions, such as invalid
translation-format code or an address
designating an unavailable or a
protected location. The validity of the
information is checked and the
exceptions, if any, are indicated at the
time the information is used.

The STORE CONTROL instruction causes all
register positions, within those regis
ters designated by the instruction, to
be placed in storage. The instructions
EXTRACT PRIMARY ASN, EXTRACT SECONDARY
ASN, and PROGRAM CALL offer specialized
control over which register positions
are to be loaded into a general
register.

Only the general structure of control
registers is described here; a defi
nition of the register positions appears
with the description of the facility
with which the register position is
associated. The figure "Assignment of
Control-Register Fields" shows the
control-register positions which are

assigned and the initial value of the
field upon execution of initial CPU
reset. All control-register positions
not listed in the figure are initialized
to zero.

Ctrl
Reg Bits Name of Field

0 1 SSM-suppression control
0 2 TOD-clock-sync control
0 3 Low-address-protection control
0 4 Extraction-authority control
0 5 Secondary-space control
0 6 Fetch-protection_override
0 8-12 Translation format
0 16 Malfunction-alert subclass mask
0 17 Emergency-signal subclass mask
0 18 External-call subclass mask

Programming Note

To ensure that existing programs run if
and when new facilities using additional
control-register positions are instal
led, the program should load zeros in
unassigned control-register positions.

Initial
Associated with Value

SET SYSTEM MASK 0
TOD clock 0
Low-address protection 0
Dual-address-space control 0
Dual-address-space control 0
Key-controlled protection 0
Dynamic address translation 0
Interruptions 0
Interruptions 0
Interruptions 0

0 19 TOD-clock sync-check subclass mask Interruptions 0
0 20 Clock-comparator subclass mask Clock comparator 0
0 21 CPU-timer subclass mask CPU timer 0
0 22 Service-signal subclass mask Service signal 0
0 24 Unused 1 1
0 25 Interrupt-key subclass mask External interruptions 1
0 26 Unused 1 1
0 30 IUCV subclass mask 2 Virtual machines 0
0 31 VMCF subclass mask 2 Virtual machines 0

1 0 Space-switch-event control Dual-address-space control 0
1 1-19 Primary segment-table origin Dynamic address translation 0
1 25-31 Primary segment-table length Dynamic address translation 0

3 0-15 PSW-key mask Dual-address-space control 0
3 16-31 Secondary ASN Dual-address-space control 0

4 0-15 Authorization index Dual-addr~ss-space control 0
4 16-31 Primary ASN Dual-address-space control 0

5 0 Subsystem-linkage control Dual-address-space control 0
5 1-24 Linkage-table origin PC-number translation 0
5 25-31 Linkage-table length PC-number translation 0

6 0-7 I/O-interruption-subclass mask I/O 0

7 1-19 Secondary segment-table origin Dynamic address translation 0
7 25-31 Secondary segment-table length Dynamic address translation 0

8 16-31 Monitor Masks MONITOR CALL 0

9 0 Successful-branching-event mask Program-event recording 0
9 1 Instruction-fetching-event mask Program-event recording 0
9 2 Storage-alteration-event mask Program-event recording 0
9 3 GR-alteration-event mask Program-event recording 0
9 16-31 PER general-register masks Program-event recording 0

10 1-31 PER starting address Program-event recording 0

11 1-31 PER ending address Program-event recording 0

Assignment of Control-Register Fields (Part 1 of 2)

Chapter 4. Control 4-7

Ctrl
Reg Bits Harne of Field

12
12
12
12

14
14
14

14
14
14

14
14
14

o Branch-trace control
1-29 Trace-entry address
30 ASN-trace control
31 Explicit-trace control

o
1
3

4
5
6

7
12

13-31

Unused!
Unused!
Channel-report-pending subclass

mask
Recovery subclass mask
Degradation subclass mask
Timing-facility-damage subclass

mask
Warning subclass mask
ASH-translation control
ASH-first-table origin

Explanation:

The fields not listed are unassigned.

Associated with

Tracing
Tracing
Tracing
Tracing

I/O machine-check handling

Machine-check handling
Machine-check handling
Machine-check handling

Machine-check handling
ASN translation
ASN translation

Initial
Value

o
o
o
o

1
1
o
o
o
1

o
o
o

! This bit is not used but is initialized to one for consistency with the
System/370 definition.

This bit is used only in a control register of a virtual machine; in a real
machine, this bit is reserved.

Assignment of Control-Register Fields (Part 2 of 2)

TRACING

Tracing assists in the determination of
system problems by providing an on-going
record in storage of significant events.
Tracing consists of three separately
controllable functions which cause
entries to be made in a trace table:
branch tracing, ASN tracing, and explic
it tracing. Branch tracing and ASN
tracing together are referred to as
implicit tracing.

When branch tracing is on, an entry is
made in the trace table for each
execution of certain branch instructions
when they cause branching. The branch
address is placed in the trace entry.
The trace entry also indicates the
addressing mode in effect after branch
ing. The branch instructions that are
traced are:

BRANCH AND LINK (BALR only) when
the R:z field is not zero

BRANCH AND SAVE (BASR only) when
the R:z field is not zero

BRANCH AND SAVE AND SET MODE when
the R:z field is not zero

When ASN tracing is on, an entry is made
in the trace table for each execution of
the following instructions!

PROGRAM CALL
PROGRAM TRANSFER

4-8 370-XA Principles of Operation

SET SECONDARY ASH

When explicit tracing is on, execution
of TRACE causes an entry to be made in
the trace table. This entry includes
bits 16-63 from the TOO clock, the
second operand of the TRACE instruction,
and the contents of a range of general
registers.

CONTROL-REGISTER ALLOCATION

The information to control tracing is
contained in control register 12 and has
this format:

IBI Trace-Entry Address

o 1 30 31

Branch-Trace-Control Bit (B): Bit 0 of
control register 12--Controls whether
branch tracing is turned on or off. If
the bit is zero, branch tracing is off;
if the bit is one, branch tracing is on.

Trace-Entry Address: Bits 1-29 of
control register 12, with two zero bits
appended on the right, form the real
address of the next trace entry to be
made.

ASH-Trace-Control Bit CAl: Bit 30 of
control register 12 controls whether ASH
tracing is turned on or off. If the bit
is zero, ASH tracing is off; if the bit
is one, ASH tracing is on.

Explicit-Trace-Control Bit (E): Bit 31
of control register 12 controls whether
explicit tracing is turned on or off.
If the bit is zero, explicit tracing is
off, which causes the TRACE instruction
to be executed as a no-operation; if the
bit is one, the execution of the TRACE

31-Bit Branch

Branch Address

o 1 31

24-Bit Branch

1000000001 Branch Address

o 8 31

SET SECONDARY ASN

,000100001000000001 Hew SASH

o 8 16 31

PROGRAM CALL

PC Humber

o 8 12 32

PROGRAM TRAHSFER

Hew PASH

o 8 12 16 32

TRACE

instruction creates an entry in the
trace table, except that no entry is
made when bit 0 of the second operand of
the TRACE instruction is one.

TRACE EHTRIES

Trace entries are of six types, as shown
in the figure "Trace-Entry Formats."

GR 14 After

63

R2 Before

63

101111 N 1000000001 TOO-Clock Bits 16-63

o 4 8 16 63

r-----------------------------------~----------------/--------------~
TRACE Operand

~----------------------------------~----------------/--------------~
64 96 95 + 32(N+l)

Trace-Entry Formats

Chapter 4. Control 4-9

Branch Address! The branch address is
the address of the next instruction to
be executed when the branch is taken.
When the 31-bit addressing mode is in
effect after branching, bit positions
1-31 of the trace entry for a branch
instruction contain the branch address.
When the 24-bit addressing mode is in
effect after branching, bit positions
8-31 contain the branch address.

New SASN: Bit positions 16-31 of the
trace entry for SET SECONDARY ASN
contain the ASN value loaded into
control register 3 by the instruction.

PS~ Key: Bit positions 8-11 of the
trace entries made on execution of
PROGRAM CALL and PROGRAM TRANSFER
contain the PSW key from the current
PSW.

PC Number: Bit positions 12-31 of the
trace entry made on execution of PROGRAM
CALL contain the value of the rightmost
20 bits of the second-operand address.

GR14 After: Bit positions 32-63 of the
trace entry made on execution of PROGRAM
CALL contain the information which is
placed in general register 14: the
addressing bit, the return address, and
the problem-state bit.

New PASN: Bit positions 16-31 of the
trace entry made on execution of PROGRAM
TRANSFER contain the new PASN (which may
be zero) specified by the instruction.

R2 Before: Bit positions 32-63 of the
trace entry made on execution of PROGRAM
TRANSFER contain the contents of the
general register specified by the R2
field of the instruction. Bits 0-30 of
the general register specified by the. R2
field replace bits 32-62 of the PSW.
Bit 31 of the same general register
replaces the problem-state bit of the
PSW.

Number of Registers (N): Bits 4-7 of
the trace entry for TRACE contain a
value which is one less than the number
of general registers which have been
provided in the trace entry. The value
of N ranges from zero, meaning the
contents of one general register are
provided in the trace entry, to 15,
meaning the contents of all 16 general
registers are provided.

TOO-Clock Bits 16-63: Bits 16-63 of the
trace entry for TRACE are obtained from
bit positions 16-63 of the TOO clock, as
would have been provided by a STORE
CLOCK instruction executed at the time
the TRACE instruction was executed.

TRACE Operand: Bits 64-95 of the trace
entry for TRACE contain a copy of the 32
bits of the second operand of the TRACE
instruction for which the entry is made.

4-10 370-XA Principles of Operation

(Rl)-(R3): The four~byte fields start
ing with bit 96 of the trace entry for
TRACE contain the contents of the ge~er
al registers whose range is designeted
by the R t and R3 fields of the TR~CE
i nstructi on. The general regi sters c.lre
stored in ascending order of register
numbers, starting ~ith the regist~r
specified by Rt and continuing up to and
including the register specified by R3T

with register 0 following register 15.

Programming Note

The size of the trace entry for TRACE in
units of words is 3 + (N + 1). The
maximum size of an entry is 19 words, or
76 bytes.

OPERATION

When an instruction which is subject to
tracing is executed, and the correspond
ing tracing function is turned on, a
trace entry of the appropriate format is
made. The real address of the trace
entry is formed by appending two zero
bits on the right to the value in bit
positions 1-29 of control register 12.
The address in control register 12 is
subsequently increased by the size of
the entry created.

No trace entry is stored if the incre
menting of the address in control regis
ter 12 would cause a carry to be
propagated into bit position 19 (that
is, the trace-entry address would be in
the next 4K-byte block). If this would
be the case for the entry to be made, a
trace-table exception is recognized, and
instruction execution is nullified. For
the purpose of recognizing the trace
table exception in the case of a TRACE
instruction, the maximum length of 76
bytes is used instead of the actual
length.

The storing of a trace entry is not
subject to key-controlled protection
(nor, since the trace-entry address is
real, is it subject to page protection),
but it is subject to low-address
protection; that is, if the address of
the trace entry due to be created is in
the range 0-511 and bit 3 of control
register 0 is one, a protection excep
tion is recognized, and instruction
execution is suppressed. If the address
of a trace entry is invalid, an address
ing exception is recognized, and
instruction execution is suppressed.

The three exceptions associated with
storing a trace entry (addressing,
protection, and trace table) are collec
tively referred to as trace exceptions.

If a program interruption takes place
for a condition which is not a trace
exception condition and for which
execution of an instruction is not
completed, it is unpredictable whether
part or all of any trace entry due to be
made for such an interrupted instruction
is stored in the trace table. Thus, for
a condition which would ordinarily cause
nullification or suppression of instruc
tion execution, storage locations may
have been 'altered beginning at the
location designated by control register
12 and extending up to the length of the
entry that would have been created.

The order in which information is placed
in a trace entry is undetermined.
Furthermore, as observed by other CPU or
channel programs, the contents of a byte
of a trace entry may change more than
once before completion of the instruc
tion for which the entry is made.

The trace-entry address in control
register 12 is updated only on
completion of execution of an instruc
tion for which a trace entry is made.

A serialization and checkpoint
synchronization function is performed at
the beginning and also at the completion
of the tracing operation.

The CPU operation is delayed until all
previous storage accesses by this CPU
have been completed, as observed by
other CPU and channel programs. All
previous checkpoints, if any, are
canceled, and the results of all previ
ous stores are released, if held
exclusive, to permit other CPU and chan
nel programs to access the results.

When the tracing operation is completed,
a second serialization and checkpoint
synchronization function is performed,
as follows. The CPU operation is
delayed until all storage accesses due
to this instruction have been completed,
as observed by other CPU and channel
programs. All previous checkpoints, if
any, for this instruction are canceled,
and the results of all stores for this
instruction are released, if held exclu
sive, to permit other CPU and channel
programs to access the results.

PROGRAM-EVENT RECORDING

The purpose of the program-event
recording (PER) facility is to assist in
debugging programs. It permits the
program to be alerted to the following
types of PER events:

• Execution of a successful branch
instruction.

• Fetching of an instruction from the
designated storage area.

• Alteration of the contents of the
designated storage area.

• Alteration of the contents
designated general registers.

of

The program can selectively specify that
one or more of the above types of events
be recognized. The information concern
ing a PER event is provided to the
program by means of a program inter
ruption, with the cause of the
interruption being identified in the
interruption code.

CONTROL-REGISTER ALLOCATION

The information for controlling P~R
resides in control registers 9, 10, and
11 and consists of the following fields:

Control Register 9:

EM \Gen.-Reg. Masks

o 4 16 31

Control Register 10:

I I Starting Address

0 1 31

Control Register 11:

I I Ending Address

0 1 31

PER-Event Masks (EM): Bits 0-3 of
control register~pecify which types
of events are recognized. The bits are
assigned as follows:

Bit 0:
Bit 1:
Bit 2:
Bit 3:

Successful-branching event
Instruction-fetching event
Storage-alteration event
General-register-alteration
event

Bits 0-3, when ones,
corresponding types of
nized. When a bit is
sponding type of
recognized.

specify that the
events be recog

zero, the corre-
event is not

PER General-Register Masks: Bits ~6-31
of control register 9 specify which
general registers are designated for
recognition of the alteration of their
contents. The 16 bits, in the sequence
of ascending bit numbers, correspond one
for one with the 16 registers, in the
sequence of ascending register numbers.

Chapter 4. Control 4-11

When a bit is one, the alteration of the
associated register is recognized; when
it is zero, the alteration of the regis
ter is not recognized.

PER Starting Address: Bits 1-31 of
control register 10 are the address of
the beginning of the designated storage
area.

PER Ending Address: Bits 1-31 of
control register 11 are the address of
the end of the designated storage area.

Programming Note

Models may operate at reduced perform
ance while the CPU is enabled for PER
events. In order to ensure that CPU
performance is not degraded because of
the operation of the PER facility,
programs that do not use it should disa
ble the CPU for PER events by setting
either the PER mask in the PSW to zero
or the PER-event masks in control regis
ter 9 to zero, or both. No degradation
due to PER occurs when either of these
fields is zero.

However, some degradation may be experi
enced on some models every time control
registers 9, 10, and 11 are loaded, even
when the CPU is disabled for PER events
(see the programming note under
"Storage-Area Designation").

OPERATION

PER is under control of bit 1 of the
PSW, the PER mask. When the PER mask, a
particular PER-event mask bit, and, for
general-register-alteration events, a
particular general-register mask bit are
all ones, the CPU is enabled for the
corresponding type of event; otherwise,
it is disabled.

An interruption due to a PER event is
normally taken after the execution of
the instruction responsible for the
event. The occurrence of the event does
not affect the execution of the instruc
tion, which may be either completed,
partially completed, terminated,
suppressed, or nullified.

When the CPU is disabled for a partic
ular PER event at the time it occurs,
either by the PER mask in the PSW or by
the masks in control register 9, the
event is not recognized.

A change to the PER mask in the PSW or
to the PER control fields in control
registers 9, 10, and 11 affects PER
starting with the execution of the imme
diately following instruction. If a PER
event occurs during the execution of an

~-12 370-XA Principles of Operation

instruction which changes the CPU from
being enabled to being disabled for that
type of event, that PER event is recog
nized.

PER events may be recognized in a trial
execution of an instruction, and subse
quently the instruction, OAT-table
entries, and operands may be refetched
for the actual execution. If any
refetched field was modified by another
CPU or by a channel program between the
trial and actual executions, it is
unpredictable whether the PER events
indicated are for the trial execution or
the actual execution.

For special-purpose instructions that
are not described in this publication,
the operation of PER may not be exactly
as described in this section.

Identification of Cause

A program interruption for PER sets bit
8 of the interruption code to one and
places identifying information in real
storage locations 150-155. The format
of the i nformati on stored is as follo~ls:

Locations 150-151:

IPERCloooooooooooo\

o 4 15

Locations 152-155:

PER Address

o 1 31

PER Code (PERC): The occurrence of PER
events is indicated by ones in bit posi
tions 0-3 of real location 150, the PER
code. The bit position in the PER code
for a particular type of event is the
same as the bit position for that event
in the PER event-mask field in control
register 9. When a program interruption
occurs, more than one type of PER event
can be concurrently indicated. Addi
tionally, if another program
interruption condition exists, the
interruption code for the program inter
ruption may indicate both the PER events
and the other condition. Zeros are
stored in bit positions 4-7 of location
150.

PER Address: The PER address at
locations 152-155 contains the inst.ruc
tion address used to fetch the instruc
tion in execution when one or more PER
events were recognized. When the
instruction is the target of EXECUTE,
the instruction address used to fetch

the EXECUTE instruction is placed in the
PER-add~ess field. Zeros are stored in
bit position 0 of real location 152.

Instruction Address: The instruction
address in the program old PSW is the
address of the instruction which would
have been executed next, unless another
program condition is also indicated, in
which case the instruction address is
that determined by the instruction
ending due to that condition.

IlC: The IlC indicates the length of
the instruction designated by the PER
address, except when a concurrent spec
ification exception for the PSW intro
duced by LOAD PSW or a supervisor-call
interruption sets an IlC of O.

Priority of Indication

When a program interruption occurs and
more than one PER event has been recog
nized, all recognized PER events are
concurrently indicated in the PER code.
Additionally, if another program
interruption condition concurrently
exists, the interruption code for the
program interruption indicates both the
PER condition and the other condition.

In the case of an instruction-fetching
event for SUPERVISOR CAll, the program
interruption occurs immediately after
the supervisor-call interruption.

If a PER event is recognized during the
execution of an instruction which also
introduces a new PSW with the type of
PSW-format error which is recognized
early (see the section "Exceptions.Asso
ciated with the PSW" in Chapter 6,
"Interruptions"), both the specification
exception and PER are indicated concur
rently in the interruption code of the
program interruption. However, for a
PSW-format error of the type which is
recognized late, only PER is indicated
in the interruption code. In both
cases, the invalid PSW is stored as the
program old PSW.

Recognition of a PER event does not
normally affect the ending of execution
of an instruct ion. However, in the
following cases, execution of an inter
ruptible instruction is not completed
normally:

• When the instruction is due to be
interrupted for an asynchronous
condition (I/O, external, restart,
or repressible machine-check condi
tion), a program interruption for
the PER event occurs first, and the
other interruptions are taken subse
quently (subject to the mask bits in
the new PSW) in the normal priority
order.

•

•

•

When the stop function is performed,
a program interruption indicating
the PER event occurs before the
stopped state is entered.

When any program exception is recog
nized, PER events recognized for
that instruction execution are indi
cated concurrently.

Depending on the model, in certain
situations, recognition of a PER
event may appear to cause the
instruction to be interrupted prema
turely without concurrent indication
of a program exception, without an
interruption for any asynchronous
condition, or without the stopped
state be i rlg entered.

Programming Notes

1. In the following cases, an instruc
tion can both cause a program
interruption for a PER event and
change the value of masks control
ling an interruption for PER
events. The original mask values
determine whether a program inter
ruption takes place for the PER
event.

a. The instructions LOAD PSW, SET
SYSTEM MASK, STORE THEN AND
SYSTEM MASK, and SUPERVISOR
CALL can cause an instruction
fetching event and disable the
CPU for PER interruptions.
Additionally, STORE THEN AND
SYSTEM MASK can cause a
storage-alteration event to be
indicated. In all these cas~~s,
the program old PSW associated
with the program interruptiJn
for the PER event may indicate
that the CPU was disabled for
PER events.

b. An instruction-fetching event
may be recognized during
execution of a LOAD CONTROL
instruction which also changed
the value of the PER-event
masks in control register 9 or
the addresses in control regis
ters 10 and 11 controlling
indication of instruction
fetching events.

2. No instructions can both change the
values of general-register
alteration masks and cause a
general-register-alteration event
to be recognized.

3. When a PER interruption occurs
during the execution of an inter
ruptible instruction, the ILC indi
cates the length of that
instruction or EXECUTE, as appro
priate. When a PER interruption

Chapter 4. Control 4-13

occurs as a result of LOAD PSW or
SUPERVISOR CALL, the ILC indicates
the length of these instructions or
EXECUTE, as appropriate, unless a
concurrent specification exception
on LOAD PSW calls for an ILC of O.

4. When a PER interruption is caused
by branching, the PER address iden
tifies the branch instruction (or
EXECUTE, as appropriate), whereas
the old PSW points to the next
instruction to be executed. When
the interruption occurs during the
execution of an interruptible
instruction, the PER address and
the instruction address in the old
PSW are the same.

STORAGE-AREA DESIGNATION

Two types of PER events -- instruction
fetching and storage alteration-
involve the designation of an area in
storage. The storage area starts at the
location designated by the starting
address in control register 10 and
extends up to and including the location
designated by the ending address in
control register 11. The area extends
to the right of the starting address.

An instruction-fetching event occurs
whenever the first byte of an instruc
tion or the first byte of the target of
an EXECUTE instruction is fetched from
the designated area. A storage
alteration event occurs when a store
access is made to the designated area by
using an operand address that is defined
to be a logical or a virtual address. A
storage-alteration event does not occur
for a store access made with an operand
address defined to be a real address.

The set of addresses designated for
instruction-fetching and storage
alteration events wraps around at
address 2,147,483,647; that is, address
o is considered to follow address
2,147,483,647. When the starting
address is less than the ending address,
the area is contiguous. When the start
ing address is greater than the ending
address, the set of locations designated
includes the area from the starting
address to address 2,147,483,647 and the
area from address 0 to, and including,
the ending address. When the starting
address is equal to the ending address,
only that one location is designated.

Address comparison for storage
alteration and instruction-fetching
events is always performed by using
31-bit addresses. This is accomplished
in 24-bit addressing mode by extending
the virtual, logical, or instruction
address on the left with seven zero bits
before comparing it with the starting
and ending addresses.

4-14 370-XA Principles of Operation

Programming Note

In some models, performance degradation
due to address-range checking is
avoided, for those pages not in the
designated storage area, by means of an
extension to each page-table entry in
the TLB. In such an implementation,
each page-table entry in the TLB is
marked as to whether the corresponding
page does or does not contain locations
in the designated storage area. Loading
the contents of control registers 10 and
11 when the instruction-fetching or
storage-alteration event mask is one, or
setting either of these PER-event masks
to one, may cause the TLB to be cleared
of entries. This degradation may be
experienced even when the CPU is disa
bled for PER events. Thus, when
possible, the program should avoid load
ing control registers 9, 10, or 11.

PER EVENTS

Successful Branching

A successful-branching event occurs
whenever one of the following
instructions causes branching:

BRANCH AND LINK (BAL, BALR)
BRANCH AND SAVE (BAS, BASR)
BRANCH AND SAVE AND SET MODE

(BASSM)
BRANCH AND SET MODE (BSM)
BRANCH ON CONDITION (BC, BCR)
BRANCH ON COUNT (BCT, BCTR)
BRANCH ON INDEX HIGH (BXH)
BRANCH ON INDEX LOW OR EQUAL (BXLE)

A successful-branching event also occurs
whenever one of the following
instructions is completed:

PROGRAM CALL (PC)
PROGRAM TRANSFER (PT)

A successful-branching event causes a
successful-branching PER event to be
recognized if bit 0 of the PER-ev~nt
masks is one and the PER mask in the PSW
is one.

A successful-branching PER event is
indicated by setting bit 0 of the PER
code to one.

Instruction Fetching ,

/
An instruction-fetching event occurs if
the first byte of the instruction is

fetched from the storage area designated
by control register 10 and 11. An
instruction-fetching event also occurs
if the first byte of the target of
EXECUTE is within the designated storage
area.

An instruction-fetching event causes an
instruction-fetching PER event to be
recognized if bit 1 of the PER-event
masks is one and the PER mask in the PSW
is one.

The instruction-fetching PER event is
indicated by setting bit 1 of the PER
code to one.

Storage Alteration

A storage-alteration event occurs when
ever a CPU, by using a logical or virtu
al address, makes a store access without
an access exception to the monitored
storage area.

The contents of storage are considered
to have been altered whenever the CPU
executes an instruction that causes all
or part of an operand to be stored with
in the designated storage area. Alter
ation is considered to take place
whenever storing is considered to take
place for purposes of indicating
protection exceptions, except that
recognition does not occur for storing
of data by a channel program. (See the
section "Recognition of Access
Exceptions" in Chapter 6,
"Interruptions.") Storirig constitutes
alteration for PER purposes even if the
value stored is the same as the original
value.

Implied locations, which are referred to
by the CPU in the process of performing
an interruption, are not monitored.
These locations, however, are monitored
when information is stored there explic
itly by an instruction. Similarly,
monitoring does not apply to storing of
data by a channel program.

The I/O instructions are considered to
alter the second-operand location only
when storing actually occurs.

Storage alteration does not apply to
instructions whose operands are speci
fied to be real addresses. Thus, stor
age alteration does not apply to
INVALIDATE PAGE TABLE ENTRY, RESET
REFERENCE BIT EXTENDED, SET STORAGE KEY
EXTENDED, TEST BLOCK, and TEST PENDING
INTERRUPTION (when the effective address
is zero).

A storage-alteration event causes a
storage-alteration PER event to be
recognized if bit 2 of the PER-event
mask is one and the PER mask in the PSW
is one.

A storage-alteration PER event is indi
cated by setting bit 2 of the PER code
to one.

General-Register Alteration

A general-register-alteration event
occurs whenever the contents of a gener
al register are replaced.

The contents of a general register are
considered to have been altered whenever
a new value is placed in the register.
Recognition of the event is not contin
gent on the new value being different
from the previous one. The execution of
an RR-format arithmetic, logical, or
movement instruction is considered to
fetch the contents of the register,
perform the indicated operation, if any,
and then replace the value in the regis
ter. A register can be designated by an
RR, RRE, RS, or RX instruction or
implicitly, such as in TRANSLATE AND
TEST and EDIT AND MARK.

The instructions EDIT AND MARK and
TRANSLATE AND TEST are considered to
have altered the contents of general
register 1 or 2 only when these
instructions have caused information to
be placed in the register.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to
alter the contents of the four registers
specifying the two operands, including
the cases where the padding byte is
used, when both operands have zero
length. However, when condition code 3
is set for MOVE LONG, the general regis
ters containi~g the operand lengths may
or may not be considered as having been
altered.

The instruction INSERT CHARACTERS UNDER
MASK is not considered to alter the
general register when the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the general register, or
general-register pair, designated by R"
only when the contents are actuallY
replaced, that is, when the first and
second operands are not equal.

A general-register-alteration event
causes a general-register-alteration PER
event to be recognized if bit 3 of the
PER-event masks is one, the PER mask in
the PSW is one, and the corresponding
bit in the PER general-register mask is
one •. It is indicated by setting bit 3
of th~ PER code to one.

The general-register-alteration PER
event is indicated by setting bit 3 of
the PER code to one.

Chapter 4. Control 4-15

Programming Note

The following are some examples of
general-register alteration:

1. Reg;ster-to-register load
instructions are considered to
alter the register contents even
when both operand addresses desig
nate the same register.

2. Addition or subtraction of zero and
multiplication or division by one
are considered to constitute alter
ation.

3. logical and fixed-point shift oper
ations are considered to alter the
register contents even for shift
amounts of zero.

4. The branching instructions BRANCH
ON INDEX HIGH and BRANCH ON INDEX
lOW OR EQUAL are considered to
alter the first operand even when
zero is added to its value.

INDICATION OF EVENTS CONCURRENTLY WITH
OTHER INTERRUPTION CONDITIONS

The following rules govern the indi
cation of PER events caused by an
instruction that also causes a program
exception, a monitor event, a space
switch event, or a supervisor-call
interruption.

1. The indication of an instruction
fetching event does not depend on
whether the execution of the
instruction was completed, termi
nated, suppressed, or nullified.
The event, however, is not indi
cated when an access exception
prohibits access to the first half
word of the instruction. When the
first halfword of the instruction
is accessible but an access excep
tion applies to the second or third

4-16 370-XA Principles of Operation

halfword of the instruction, it is
unpredictable whether the
instruction-fetching event is indi
cated. I

2. When the operation is completed or
partially completed, the event is
indicated, regardless of whether
any program exception, space-switch
event, or monitor event is also
recognized.

3. Successful branching, storage
alteration, and general-register
alteration are not indicated for an
operation or, in case the instruc
tion is interruptible, for a unit
of operation that is suppressed or
nullified. .

4. When the execution of the instruc
tion is terminated, general
register or storage alteration is
indicated whenever the event has
occurred, and a model may indicate
the event if the event would have
occurred had the execution of the
instruction been completed, even if
altering the contents of the result
field is contingent on operand
values.

5. When LOAD PSW or SUPERVISOR CAll
causes a PER condition and at the
same time introduces a new PSW with
the type of PSW-format error that
is recognized immediately after the
PSW becomes active, the inter
ruption code identifies both the
PER condition and the specification
exception. When these instructions
introduce a PSW-format error of the
type that is recognized as part of·
the execution of the following
instruction, the PSW is stored as
the old PSW without the specifica
tion exception being recognized.

The indication of PER events concurrent
ly with other program-interruption
conditions is summarized in the figure
"Indication of PER Events with Other
Concurrent Conditions."

PER Event
Type
of Instr Storage GR

Concurrent Condition Ending Branch Fetch Alter. Alter.

Specification
Odd instruction address S No No No No

in the PSW
Instruction access

First halfword N or S No No No No
Second, third halfwords N or S No U No No

Specification
EXECUTE target address odd S No U No No

EXECUTE target access N or S No U No No
HoI Other nullifying N No Yes NOI

Other suppressing S No Yes NOI NOI
All terminating T No Yes Yes 2 Yes 2

All completing C Yes Yes Yes Yes

Explanation:

C

N

S

T

The operation or, in the case of the interruptible in
structions, the unit of operation is completed.

The operation or, in the case of the interruptible in
structions, the unit of operation is nullified.

The operation or, in the case of the interruptible in
structions, the unit of operation is suppressed.

The execution of the instruction is terminated.

Yes The PER event is indicated with the other program
interruption condition if the event has occurred; that
is, the contents of the designated storage location or
general register were altered, or an attempt was made
to execute an instruction whose first byte is located
in the designated storage area.

No The PER event is not indicated.

u
I

2

It is unpredictable whether the PER event is indicated.

Although PER events of this type are not indicated for
the current unit of operation of an interruptible in
struction, PER events of this type that were recognized
on completed units of operation of the interruptible
instruction are indicated.

This event may be indicated, depending on the model, if
the event has not occurred but would have been indicated
if execution had been completed.

Indication of PER Events with Other Concurrent Conditions

Programming Notes

1. The execution of the interruptible
instructions MOVE LONG, TEST BLOCK,
and COMPARE LOGICAL LONG can cause
events for general-register alter
ation and instruction fetching.
Additionally, MOVE LONG can cause
the storage-alteration event.

Interruption of such an instruction
may causa a PER event to be indi
cated more than once. It may be

necessary, therefore, for a program
to remove the redundant event indi
cations from the PER data. The
following rules govern the indi
cation of the applicable events
during execution of these
instructions:

a. The instruction-fetching event
is indicated whenever the
instruction is fetched for
execution, regardless of wheth
er it is the initial execution
or a resumption.

Chapter 4. Control 4-17

b. The general-register-alteration
event is indicated on the
initial execution and on each
resumption and does not depend
on whether or not the register
actually is changed.

c. The storage-alteration event is
indicated only when data has
been stored in the designated
storage area by the portion of
the operation starting with the
last initiation and ending with
the last byte transferred
before the interruption. No
special indication is provided
on premature interruptions as
to whether the event will occur
again upon the resumption of
the operation. When the desig
nated storage area is a single
byte location, a storage
alteration event can be
recognized only once in the
execution of MOVE LONG.

2. The following is an outline of the
general action a program must take
to delete multiple entries in the
PER data for an interruptible
instruction so that only one entry
for each complete execution of the
instruction is obtained:

a. Check to see if the PER address
is equal to the instruction
address in the old PSW and if
the last instruction executed
was interruptible.

b. If both conditions are met,
delete instruction-fetching and
register-alteration events.

c. If both conditions are met and
the event is storage
alteration, delete the event if
some part of the remalnlng
destination operand is within
the designated storage area.

TIMING

The timing facilities include three
facilities for measuring time: the TOO
clock, the clock comparator, and the CPU
timer.

In a multiprocessing configuration, a
single TOO clock may be shared by more
than one CPU, or each CPU may have a
separate TOO clock. However, each CPU
has a separate clock comparator and CPU
timer.

4-18 370-XA Principles of Operation

TIME-Of-DAY CLOCK

The time-of-day (TOO) clock provides a
high-resolution measure of real time
suitable for the indica~ion of date and
time of day. The cycle of the clock is
approximately 143 years.

In an installation with more than one
CPU, each CPU may have a separate TJD
clock, or more than one CPU may share a
clock, depending on the model. In all
cases, each CPU has access to a single
clock.

Format

The TOO clock is a binary counter with
the format shown in the following illus
tration. The bit positions of the clock
are numbered 0 to 63, corresponding to
the bit positions of a 64-bit unsigned
binary integer.

o

1 microsecond---,
~

I I
51 63

In the basic form, the TOO clock is
incremented by adding a one in bit posi
tion 51 every microsecond. In models
having a higher or lower resolution, a
different bit position is incremented at
such a frequency that the rate of
advancing the clock is the same as if a
one were added in bit position 51 every
microsecond. The resolution of the TOO
clock is such that the incrementing rate
is comparable to the instruction
execution rate of the model.

A TOO clock is said to be in a partic
ular multiprocessing configuration if at
least one of the CPUs which shares that
clock is in the configuration. Thus, it
is possible for a single TOO clock to be
in more than one configuration.
Conversely, if all CPUs having access to
a particular TOO clock have been removed
from a particular configuration, then
the TOO clock is no longer considered to
be in that configuration.

When more than one TOD clock exists in
the configuration, the stepping rates
are synchronized such that all TOO
clocks in the configuration are incre
mented at exactly the same rate.

When incrementing of the clock causes a
carry to be propagated out of bit posi
tion 0, the carry is ignored, and count
ing continues from zero. The program is
not alerted, and no interruption condi
tion is generated as a result of the
overflow.

The operation of the clock is not
affected by any normal activity or event
in the system. Incrementing of the
clock does not depend on whether the
wait-state bit of the PSW is one or
whether the CPU is in the operating,
load, stopped, or check-stop state. Its
operation is not affected by CPU,
initial-CPU, or clear resets or by
initial program loading. Operation of
the clock is also not affected by the
setting of the rate control or by an
initial-microprogram-Ioading operation.
Depending on the model and the config
uration, a TOO clock mayor may not be
powered independent of a CPU that
accesses it.

states

The following states are distinguished
for the TOO clock: set, not set,
stopped, error, and not operational.
The state determines the condition code
set by execution of STORE CLOCK. The
clock is incremented, and is said to be
running, when it is in either the set
state or the not-set state.

Not-Set State: When the power for the
clock is turned on, the clock is set to
zero, and the clock enters the not-set
state. The clock is incremented when in
the not-set state.

When the clock is in the not-set state,
execution of STORE CLOCK causes condi
tion code 1 to be set and the current
value of the running clock to be stored.

Stopped State: The clock enters the
stopped state when SET CLOCK is executed
on a CPU accessing that clock and the
clock is set. This occurs when SET
CLOCK is executed without encountering
any exceptions and any manual TOD-clock
control in the configuration is set to
the enable-set position. The clock can
be placed in the stopped state from the
set, not-set, and error states. The
clock is not incremented while in the
stopped state.

When the clock is in the stopped state,
execution of STORE CLOCK on a CPU
accessing that clock causes condition
code 3 to be set and the value of the
stopped clock to be stored.

Set State: The clock enters the set
state only from the stopped state. The
change of state is under control of the
TOD-clock-sync-control bit, bit 2 of
control register 0, in the CPU which
most recently caused that clock to enter
the stopped state. If the bit is zero,
the clock enters the set state at the
completion of execution of SET CLOCK.

If the bit is one, the clock remains in
the stopped state until the bit is set
to zero on that CPU, until another CPU
executes a SET CLOCK instruction affect
ing the clock, or until any other clock
in the configu~ation is incremented to a
value of all zeros in bit positions
32-63. If any clock is set to a value
of all zeros in bit positions 32-63 and
enters the set state as the result of a
signal from another clock, the updating
of bits 32-63 of the two clocks is in
synchronism.

Incrementing of the clock begins with
the first stepping pulse after the clock
enters the set state.

When the clock is in the set state,
execution of STORE CLOCK causes condi
tion code 0 to be set and the curr~nt
value of the runni ng clock to be storl!d.

Error State: The clock enters the err0r
state when a malfunction is detected
that is likely to have affected the
validity of the clock value. A timing
facility-damage machine-cheek-interrup
tion condition is generated on each CPU
which has access to that clock whenever
it enters the error state.

When STORE CLOCK is executed and the
clock accessed is in the error state,
condition code 2 is set, and the value
stored is zero.

Not-Operational State: The clock is in
the not-operational state when its power
is off or when it is disabled for maln
tenance. It depends on the model if the
clock can be placed in this state.
Whenever the clock enters the not
operational state, a timing-facility
damage machine-cheek-interruption
condition is generated on each CPU that
has access to that clock.

When the clock is in the not-operational
state, execution of STORE CLOCK causes
condition code 3 to be set, and zero is
stored.

Changes in Clock State

When the TOO clock accessed by a CPU
changes value because of the execution
of SET CLOCK or changes state, inter
ruption conditions pending for the clock
comparator, CPU timer, and TOD-clock
sync check mayor may not be recognized
for up to 1.048576 seconds (2 20 micro
seconds) after the change.

The results of channel-subsystem
monitoring-facility operations may be
unpredictable as a result of changes to
the TOO clock.

Chapter 4. Control 4-19

The clock can be set to a specific value
by execution of SET CLOCK if the manual
TOO-clock control of any CPU in the
configuration is in the enable-set posi
tion. Setting the clock replaces the
values in all bit positions from bit
position 0 through the rightmost posi
tion that is incremented when the clock
is running. However, on some models,
the rightmost bits starting at or to the
right of bit 52 of the specified value
are ignored, and zeros are placed in the
corresponding positions of the clock.

The TOO clock can be inspected by
executing STORE CLOCK, which causes a
64-bit value to be stored. Two
executions of STORE CLOCK, possibly on
different CPUs in the same
configuration, always store different
values if the clock is running or, if
separate clocks are accessed, both
clocks are running and are synchronized.

The values stored for a running clock
always correctly imply the sequence of
execution of STORE CLOCK on one or more
CPUs for all cases where the sequence
can be established by means of the
program. Zeros are stored in positions
to the right of the bit position that is
incremented. In a configuration with
more than one CPU, however, when the
value of a running clock is stored,
nonzero values may be stored in posi
tions to the right of the rightmost
posi ti on that is incremented. Thi s
ensures that a unique value is stored.

In a configuration where more than one
CPU accesses the same clock, SET CLOCK
is interlocked such that the entire
contents appear to be updated at once;
t ha tis, i f SET C L 0 C Kin s t r u c t ion s are
issued simultaneously by two CPUs, the
final result is either one or the other
value. If SET CLOCK is issued on one
CPU and STORE CLOCK on the other, the
result obtained by STORE CLOCK is either
the entire old value or the entire new
value. When SET CLOCK is issued by one
CPU, a STORE CLOCK issued on another CPU
may find the clock in the stopped state
even when the TOD-clock-sync-control bit
is zero in each CPU. The TOD-clock
sync-control bit is bit 2 of control
register O. Since the clock enters the
set state before incrementing, the first
STORE CLOCK issued after the clock
enters the set state may still find the
original value introduced by SET CLOCK.

1. Bit position 31 of the clock is
incremented every 1.048576 seconds;
for some applications, reference to

4-20 370-XA Principles of Operation

the leftmost 32 bits of the clock
may provide sufficient resolution.

2. Communication between systems is
facilitated by establishing a stan
dard time origin, or standard
epoch, which is the calendar date
and time to which a clock value of
zero corresponds. January 1, 1900,
o a.m. Gr'eenwich Mean Time (GMT) is
recommended as the standard epoch
for the clock.

3. A program using the clock value as
a time-of-day and calendar indi
cation must be consistent with the
programming support under which the
program is to run. If the program
ming support uses the standard
epoch, bit 0 of the clock remains
one through the years 1972-2041.
(Bit 0 turned on at 11:56:53.685248
(GMT) May II, 1971.) Ordinarily,
testing bit 0 for a one is suffi
cient to determine if the clock
value is in the standard epoch.

In converting to or from the
current date or time, the program
ming support assumes each day to be
86,400 seconds. It does not take
into account "leap seconds"
inserted or deleted because of
time-correction standards.

4. Because of the limited accuracy of
manually setting the clock value,
the rightmost bit positions of the
clock, expressing fractions of a
second, are normally not valid ~s
indications of the time of day.
However, they permit elapsed-time
measurements of high resolution.

5. The following chart shows the time
interval between instants at which
various bit positions of the TOO
clock are stepped. This time value
may also be considered as the
weighted time value that the bit;
when one, represents.

TOD~ Stepping Interval
Clock

DayslHourslMin·1 Bit Seconds

51 0.000 001
47 0.000 016
43 0.000 256

39 0.004 096
35 0.065 536
31 1.048 576

27 16.777 216
23 4 28.435 456
19 1 11 34.967 296

15 19 5 19.476 736
11 12 17 25 11.627 776

7 203 14 43 6.044 416
3 3257 19 29 36.710 656

6. The following chart shows the clock
setting at the start of various
years. The clock settings,
expressed 1n hexadecimal notation,
correspond to 0 AM Greenwich Mean
Time on January 1 of each year.

Year Clock Setting (Hex)

1900 0000 0000 0000 0000
1976 8853 BAFO B400 0000
1980 8F80 9FD3 2200 0000
1984 96AD 84B5 9000 0000
1988 90DA 6997 FEOO 0000
1992 A507 4E7A 6COO 0000
1996 AC34 335C DADO 0000
2000 B361 183F 4800 0000

7. The stepping value of TOO-clock bit
position 63, 1f implemented, is
2_12 microseconds, or approximately
244 picoseconds. This value is
called a clock unit.

The following chart shows various
time intervals in clock units
expressed in hexadecimal notation.

Interval Clock Units (Hex)

1 microsecond 1000
1 millisecond 3E 8000
I second F424 0000
1 minute 39 3870 0000
1 hour 069 3A40 0000
1 day 1 4100 7600 0000
365 days ICA E8C1 3EOO 0000
366 days ICC 2A9E B400 0000
1,461 daysl 72C E4E2 6EOO 0000

1 Number of days 1n four years,
including a leap year.

8. In a multiprocessing configuration,
after the TOO clock is set and
begins running, the program should
delay activity for 2 20 microseconds
(1.048576 seconds) to ensure that
the CPU-timer, clock-comparator,
and TOO-clock-sync-check interrup
tion conditions are recognized by
the CPU.

TOO-CLOCK SYNCHRONIZATION

In an installation with more than one
CPU, each CPU may have a separate TOO
clock, or more than one CPU may share a
TOO clock, depending on the model. In
all cases, each CPU has access to a
single clock.

The TOO-clock-synchronization facility,
in conjunction with a clock
synchronization program, makes it possi
ble to provide the effect of all CPUs in

a multiprocessing configuration sharing
a single TOO clock. The result is such
that, to all programs storing the TOD
clock value, it appears that all CPUs in
the configuration read the same TOO
clock. The TOO-clock-synchronization
facility provides these functions in
such a way that even though the number
of CPUs sharing a TOO clock is model
dependent, a single model-independent
clock-synchronization routine can be
written. The following functions are
provided:

• Synchronizing the stepping rates
for all TOO clocks in the config
uration. Thus, if all clocks are
set to the same value, they stay in
synchronism.

•

•

Comparin~ the rightmost 32 bits of
each clock in the configuration.
An unequal condition is signaled by
an external interruption with the
interruption code 1003 hex, indi
cating the TOD-clock-sync-check
condition.

Setting a TOO clock to the stopped
state.

• Causing a stopped clock, with the
TOD-clock-sync-control bit set to
one, to start incrementing when
bits 32-63 of any running clock in
the configuration are incremented
to zero. This permits the program
to synchronize all clocks to any
particular clock without requiring
special operator action to select a
"master clock" as the source of the
clock-synchronization pulses.

Programming Notes

1. TOO-clock synchronization provi~es
for checking and synchronizing only
the rightmost bits of the TOO
clock. The program must check for
synchronization of the leftmost
bits and must communicate the
leftmost-bit values from one CPU to
another in order to correctly set
the TOO-clock contents.

2. The TOO-clock-sync-check external
interruption can be used to deter
mine the number of TOO clocks in
the configuration.

CLOCK COMPARATOR

The clock comparator provides a means of
causing an interruption when the TOD
clock value exceeds a value specified by
the program.

Chapter 4. Control 4-21

In a configuration with
CPU, each CPU has a
comparator.

more than one
separate clock

The clock comparator has the same format
as the TOO clock. In the basic form,
the clock comparator consists of bits
0-47, which are compared with the corre
sponding bits of the TOO clock. In some
models, higher resolution is obtained by
providing more than 48 bits. The bits
in positions provided in the clock
comparator are compared with the corre
sponding bits of the clock. When the
resolution of the clock is less than
that of the clock comparator, the
contents of the clock comparator are
compared with the clock value as this
value would be stored by executing STORE
CLOCK.

The clock comparator causes an external
interruption with the interruption code
1004 hex. A request for a clock
comparator interruption exists whenever
either of the following conditions
exists:

1. The TOO clock is running and the
value of the clock comparator is
less than the value in the compared
portion of the clock, both values
being considered unsigned binary
integers. Comparison follows the
rules of unsigned binary
arithmetic.

2. The TOO clock is in the error state
or the not-operational state.

A request for a clock-comparator inter
ruption does not remain pending when the
value of the clock comparator is made
equal to or greater than that of the TOO
clock or when the value of the TOO clock
is made less than the clock-comparator
value. The latter may occur as a result
of the TOO clock either being set or
wrapping to zero.

The clock comparator can be inspected by
executing the instruction STORE CLOCK
COMPARATOR and can be set to a specific
value by executing the SET CLOCK COMPA
RATOR instruction.

The contents of the clock comparator are
initialized to zero by initial CPU
reset.

Programming Notes

1. An interruption request for the
clock comparator persists as long
as the clock-comparator value 1S

less than that of theTOD clock or
as long as the TaD clock is in the
error or not-operational state.
Therefore, one of the following
actions must be taken after an
external interruption for the clock

4-22 370-XA Principles of Operation

comparator has occurred and before
the CPU is again enabled for
external interruptions: the value
of the clock comparator has to be
replaced, the TOO clock has to be
set, the TOO clock has to wrap to
zero, or the clock-comparator
subclass mask has to be set to
zero. Otherwise, loops of external
interruptions are formed.

2. The instruction STORE CLOCK may
store a value which is greater than
that in the clock comparator, even
though the CPU is enabled for the
clock-comparator interruption.
This is because the TOO clock may
be incremented one or more times
between when instruction execution
is begun and when the clock value
is accessed. In this situation,
the interruption occurs when the
execution of STORE CLOCK is
completed.

CPU TIMER

The CPU timer provides a means for meas
uring elapsed CPU time and for causing
an interruption when a specified amount
of time has elapsed.

In a configuration with more than one
CPU, each CPU has a separate CPU timer.

The CPU timer is a binary counter with a
format which is the same as that of the
TOO clock, except that bit 0 is consid
ered a sign. In the basic form, the CPU
timer is decremented by subtracting a
one in bit position 51 every
microsecond. In models having a higher
or lower resolution, a different bit
position is decremented at such a
frequency that the rate of decrementing
the CPU timer is the same as if a one
were subtracted in bit position 51 every
microsecond. The resolution of the CPU
timer is such that the stepping rate is
comparable to the instruction-execution
rate of the model.

The CPU timer requests an external
interruption with the interrv~tion code
1005 hex whenever the CPU-timer value is
negative (bit 0 of the CPU timer is
one). The request does not remain pe~d
i ng when the CPU-t i mer va 1 ue i s Chan\led
to a nonnegative value.

When both the CPU timer and the TOO
clock are running, the stepping rates
are synchronized such that both are
stepped at the same rate. Normally,
decrementing the CPU timer is not
affected by concurrent I/O activity.
However, in some models the CPU timer
may stop during extreme I/O activity and
other similar interference situations.
In these cases, the time recorded by the
CPU timer provides a more accurate meas-

ure of the CPU time used by the program
than would have been recorded had the
CPU timer continued to step.

The CPU timer is decremented when the
CPU is in the operating state or the
load state. When the manual rate
control is set to instruction step, the
CPU timer is decremented only during the
time in which the CPU is actually
performing a unit of operation.
However, depending on the model, the CPU
timer mayor may not be decremented when
the TOO clock is in the error, stopped,
or not-operational state.

'Depending on the model, the CPU timer
mayor may not be decremented when the
CPU is in the check-stop state.

The CPU timer can be inspected by
executing the instruction STORE CPU
TIMER and can be set to a specific value
by executing the SET CPU TIMER instruc
tion.

The CPU timer is set to zero by initial
CPU reset.

Programming Notes

1. The CPU timer in association with a
program may be used both to measure
CPU-execution time and to signal
the end of a time interval on the
CPU.

2. The time measured for the execution
of a sequence of instructions may
depend on the effects of such
things as I/O interference, the
availability of pages, and instruc
tion retry. Hence, repeated
measurements of the same sequence
on the same installation may
differ.

3.

4.

The fact that a CPU-timer inter
ruption does not remain pending
when the CPU timer is set to a
positive value eliminates the prob
lem of an undesired interruption.
This would occur if, between the
time when the old value is stored
and a new value is set, the CPU is
disabled for CPU-timer inter
ruptions and the CPU timer value
goes from positive to negative.

The fact that CPU-timer interrup
tions are requested whenever the
CPU timer is negative (rather than
just when the CPU timer goes from
positive to negative) eliminates
the requirement for testing a value
to ensure that it is positive
before setting the CPU timer to
that value.

As an
program

example, assume
being timed by

that a
the CPU

timer is interrupted for a cause
other than the CPU timer, external
interruptions are disallowed by the
new PSW, and the CPU-timer value is
then saved by STORE CPU TIMER.
This value could be negative if the
CPU timer went from positive to
negative since the interruption.
Subsequently, when the program
being timed is to continue, the CPU
timer may be set to the saved value
by SET CPU TIMER. A CPU-timer
interruption occurs immediately
after external interruptions are
again enabled if the saved value
was negative.

The persistence of the CPU-timer
interruption request means,
however, that after an external
interruption for the CPU timer has
occurred, the value of the CPU
timer has to be replaced, the value
in the CPU timer has to wrap to a
positive value, or the CPU-timer
subclass mask has to be set to zero
before the CPU is again enabled for
external interruptions. Otherwise,
loops of external interruptions are
formed.

5. The instruction STORE CPU TIMER may
store a negative value even though
the CPU is enabled for the inter
ruption. This is because the CPU
timer value may be decremented one
or more times between when instruc
tion execution is begun and when
the CPU timer is accessed. In this
situation, the interruption occurs
when the execution of STORE CPU
TIMER is completed.

EXTERNAllY INITIATED FUNCTIONS

SERVICE SIGNAL

The service-signal facility permits the
service processor to communicate with
the CPU. Communications to the service
processor are model-dependent and are
accomplished by means of the DIAGNOSE
instruction. When the service processor
has completed all or part of a function
requested by means of the DIAGNOSE
instruction, a service-signal inter
ruption is generated~ The service
signal external interruption is, a
floating interruption condition and can
be accepted by any CPU in the configura
tion. The service-signal request causes
an external interruption with the inter
ruption code 2401 hex. A 32-bit
parameter is also stored in the word at
real location 128. The subclass mask

Chapter 4. Control 4-23

for service signal is bit 22 of control
register o.

RESETS

Five reset functions are provided:

• CPU reset

• Initial CPU reset

•

•

•

Subsystem reset

Clear reset

Power-on reset

CPU reset provides a means of clearing
equipment-check indications and any
resultant unpredictability in the CPU
state with the least amount of informa
tion destroyed. In particular, it is
used to clear check conditions when the
CPU state is to be preserved for analy
sis or resumption of the operation.

Initial CPU reset provides the functions
of CPU reset together with initializa
tion of the current PSW, CPU timer,
clock comparator, prefix, and control
registers.

Subsystem reset provides a means for
tlearing floating interruption condi
tions as well as for invoking I/O-system
r~set.

4-24 370-XA Principles of Operation

Clear reset causes initial CPU reset and
subsystem reset to be performed and,
additionally, clears or initializes all
storage locations and registers in all
CPUs in the configuration, with the
exception of the TOO clock. Such clear
ing is useful in debugging programs and
in ensuring user privacy. Clearing does
not affect external storage, such as
direct-access storage devices used by
the control program to hold the contents
of unaddressable pages.

The power-on-reset sequences for the TOO
clock, main storage, and the channel
subsystem may be included as part of the
CPU power-on sequence, or the power-on
sequence for these units may be initi
ated separately.

CPU reset, initial CPU reset, subsystem
reset, and clear reset may be initiated
manually by using the operator facili
ties (see Chapter 12, "Operator Facili
ties"). Initial CPU reset is part of
the initial-program-loading function.
The figure "Manual Initiation of Resets"
summarizes how these four resets are
manually initiated. Power-on reset is
performed as part of turning power on.
The reset actions are tabulated in the
figure "Summary of Reset Actions." For
information concerning what resets can
be performed by the SIGNAL PROCESSOR
instruction, see the section "Signal
Processor Orders" in this chapter.

Function Performed on 1

Key Activated
CPU on which Key

was Activated

System-reset-normal CPU reset
key

other CPUs
in Config

CPU reset

Remainder of
Configuration

Subsystem reset

System-reset-clear Clear reset 2

key
Clear reset 2 Clear reset 3

Load-normal key Initial CPU reset, CPU reset
followed by IPL

Subsystem reset

Load-clear key Clear reset 2 ,
followed by IPL

Clear reset 2 Clear reset 3

Explanation:

1 Activation of a system-reset or load key may change the config
uration, including the connection with I/O, storage units, and
other CPUs.

2 Only the CPU elements of this reset apply.

3 Only the non-CPU elements of this reset apply.

Manual Initiation of Resets

Chapter 4. Control 4-25

Reset Function

Sub- Initial Power
system CPU CPU Clear -on

Area Affected Reset Reset Reset Reset Reset

CPU U S SI SI
PSW U U/V c* C*l
Prefix U U/V C C
CPU timer U U/V C C
Clock comparator U U/V C C
Control registers U U/V I I
General registers U U/V U/V C
Floating-point registers U U/V U/V C
storage keys U U U C
Volatile main storage U U U C
Nonvolatile main storage U U U C
TOO clock U2 U2 U2 U2
Floating interruption C U U C

conditions
I/O system R U U R

Explanation:

C The condition or contents are cleared. If the area
affected is a field, the contents are set to zero with
valid checking-block code.

S
C*
C
C
C
I
C
C
C3

C3

U
1 3

C3

R4

I The state or contents are initialized. If the area af
fected is a field, the contents are set to the initial
value with valid checking-block code.

R I/O-system reset is performed in the channel subsystem.
As part of this reset, system reset is signaled to all
I/O control units and devices attached to the channel
sUbsystem.

S The CPU is reset; current operations, if any, are term
inated; the TlB is cleared of entries; interruption con
ditions in the CPU are cleared; and the CPU is placed in
the stopped state. The effect of performing the start
function is unpredictable when the stopped state has
been entered by means of a reset.

T The TOD clock is initialized to zero and validated; it
enters the not-set state.

U The state, condition, or contents of the field remain
unchanged. However, the result is unpredictable if an
operation is in progress that changes the state, con
dition, or contents of the field at the time of reset.

U/V The contents remain unchanged, provided the field is not
being changed at the time the reset function is per
formed. However, on some models the checking-block code
of the contents may be made valid. The result is un
predictable if an operation is in progress that changes
the contents of the field at the time of reset.

Summary of Reset Actions (Part 1 of 2)

4-26 370-XA Principles of Operation

Explanation (Continued):

Clearing the contents of the PSW to zero causes the PSW
to be invalid.

1 When the IPL sequence follows the reset function on that
CPU, the CPU does not necessarily enter the stopped
state, and the PSW is not necessarily cleared to zeros.

2 Access to the TOO clock by means of STORE CLOCK at the
time a reset function is performed does not cause the
value of the TOO clock to be affected.

3 When these units are separately powered, the action is
performed only when the power for the unit is turned on.

4 When the channel subsystem is separately powered or con
sists of multiple elements which are separately powered,
the reset action is applied only to those subchannels,
channel paths, and I/O control units and devices on those
paths associated with the element which is being powered
on.

Summary of Reset Actions (Part 2 of 2)

CPU reset causes the following actions:

1. The execution of the current
instruction or other processing
sequence, such as an interruption,
is terminated, and all program
interruption and supervisor-call
interruption conditions are
cleared.

2. Any pending external-interruption
conditions which are local to the
CPU are cleared. Floating
external-interruption conditions
are not cleared.

3. Any pending machine-check-
interruption conditions and error
indications which are local to the
CPU and any check-stop states are
cleared. Floating machine-check
interruption conditions are not
cleared. A broadcast machine check
which has been made pending to a
CPU is said to be local to the CPU.

4. All copies of prefetched
instructions or operands are
cleared. Additionally, any results
to be stored because of the
execution of instructions in the
current checkpoint interval are
cleared.

5. The translation-Iookaside buffer is
cleared of entries.

6. The CPU is placed in the stopped
state after actions 1-5 have been
completed. When the IPL sequence
follows the reset function on that
CPU, the CPU enters the load state
at the completion of the reset

function and does not necessarily
enter the stopped state during the
execution of the reset operation.

Registers, storage contents, and the
state of conditions external to the CPU
remain unchanged by CPU reset. However,
the subsequent contents of the register,
location, or state are unpredictable if
an operation is in progress that changes
the contents at the time of the reset.

When the reset function in the CPU is
initiated at the time the CPU is execut
ing an I/O instruction or is performing
an I/O interruption, the current opera
tion between the CPU and the channel
subsystem mayor may not be completed,
and the resultant state of the associ
ated channel-subsystem facility may be
unpredictable.

Programming Note

Most operations which would change a
state, a condition, or the contents of a
field cannot occur when the CPU is in
the stopped state. However, some
signal-processor functions and some
operator functions may change these
fields. To eliminate the possibility of
losing a field when CPU reset is issued,
the CPU should be stopped, and no opera
tor functions should be in progress.

Initial CPU Reset

Initial CPU reset combines the CPU reset
functions with the following clearing
and initializing functions:

Chapter 4. Control 4-27

1. The contents of the current PSW,
prefix, CPU timer, and clock compa
rator are set to zero. When the
IPL sequence follows the reset
function on that CPU, the contents
of the PSW are not necessarily set
to zero.

2. The contents of control registers
are set to their initial value.

These clearing and initializing func
tions include validation.

Setting the current PSW to zero causes
the PSW to be invalid, since PSW bit 12
must be one. Thus, if the CPU is placed
in the operating state after a reset
without first introducing a new PSW; a
specification exception is recognized.

Subsystem Reset

Subsystem reset operates only on those
elements in the configuration which are
not CPUs. It performs the following
actions:

1. I/O-system reset is performed by
the channel subsystem (see the
section "I/O-System Reset" in Chap
ter 17, "I/O Support Functions").

2. All floating
tions in the
cleared.

interruption condi
configuration are

As part of I/O-system reset, pending
I/O-interruption conditions are cleared,
and system reset is signaled to all
control units and devices attached to
the channel subsystem (see the section
"I/O-System Reset" in Chapter 17, "I/O
Support Functions"). The effect of
system reset on I/O control units and
devices and the resultant control-unit
and device state are described in the
appropriate System Library publication
for the control unit or device. A
system reset, in general, resets only
those functions in a shared control unit
or device that are associated with the
particular channel path signaling the
reset.

Clear reset combines
reset function with
function which causes
actions:

the initial-CPU
an initializing

the following

1. The general and floating-point
registers are set to zero.

2. The contents of the main storage
and the storage keys in the config-

4-28 370-XA Principles of Operation

uration are set to zero with valid
checking-block code.

3. A SUbsystem reset is performed.

Validation is included in setting regis
ters and in clearing storage and storage
keys.

Programming Notes

1. For the CPU-reset operation not to
affect the contents of fields that
are to be left unchanged, the CPU
must not be executing instructions
and must be disabled for all inter
ruptions at the time of the reset.
Except for the operation of the CPU
timer and for the possibility of a
machine-check interruption occur
ring, all CPU activity can be
quiesced by placing the CPU in the
wait state and by disabling it for
I/O and external interruptions. To
avoid the possibility of causing a
reset at the time that the CPU
timer is being updated or a
machine-check interruption oc~urs,
the CPU must be in the stopped
state.

2. CPU reset, initial CPU re~et,
subsystem reset, and clear reset· do
not affect the value and state of
the TOO clock.

3. The conditions under which the CPU
enters the check-stop state are
model-dependent and include
malfunctions that preclude the
completion of the current
operation. Hence, if CPU reset or
initial CPU reset is executed while
the CPU is in the check-stop state,
the contents of the PSW, registers,
and storage locations, including
the storage keys and the storage
location accessed at the time of
the error, may have unpredictable
values, and, in some cases, the
contents may still be in error
after the check-stop state is
cleared by these resets. In such a
case, a clear reset is required to
clear the error.

Power-On Reset

The power-on-reset function for a compo
nent of the machine is performed as part
of the power-on sequence for that compo
nent.

The power-on sequences for the TOO
clock, main storage, and channel subsys
tem may be included as part of the CPU
power-on sequence, or the power-on
sequence for these units may be initi-

ated separately. The following sections
describe the power-on resets for the
CPU, TOO clock~ main storage, and chan
nel sUbsystem. See also Chapter 17,
"I/O Support Functions," and the appro
priate System Library pUblication for
the channel subsystem, control units,
and I/O devices.

CPU Power-On Reset: The power-on reset
causes initial CPU reset to be performed
and mayor may not cause I/O-system
reset to be performed in the channel
subsystem. The contents of general
registers and floating-point registers
are cleared to zeros with valid
checking-block code.

TOD-Clock Power-On Reset: The power-on
reset causes the value of the TOD clock
to be set to zero and causes the clock
to enter the not-set state.

Main-Storage Power-On Reset: For vola
tile main storage (one that does not
preserve its contents when power is off)
and for storage keys, power-on reset
causes zeros with valid checking-block
code to be placed in these fields. The
contents of nonvolatile main storage,
including the checking-block code,
remain unchanged.

Channel-Subsystem Power-On Reset: The
channel-subsystem power-on reset causes
I/O-system reset to be performed in the
channel subsystem. (See the section
"I/O-System Reset" in Chapter 17, "I/O
Support Functions.")

INITIAL PROGRAM LOADING

Initial program loading (IPl) provides a
manual means for causing a program to be
read from a specified device and for
initiating execution of that program.

Some models may provide additional
controls and indications relating to
IPL; this additional information is
specified in the System Library publica
tion for the model.

IPL is initiated manually by designating
an input device by means of a four-digit
device number with the load-unit-address
controls and subsequently activating the
load-normal or load-clear key. The
load-normal key causes an initial-CPU
reset and a subsystem-reset operation to
be performed on this CPU, and the load
clear key causes a clear-reset operation
to be performed on this CPU. This CPU
then enters the load state. Other CPUs
in the configuration perform CPU reset
and clear reset, respectively. Subse
quently, a channel-program read
operation is initiated from the selected
input device. The effect of executing
the channel program is as if a format-o
CCW in absolute storage location 0 spec-

ified a read command with the modifier
bits zeros, a data address of zero, a
byte count of 24, the chain-command and
SLI flags ones, and all other flags
zeros. This CPU does not necessarily
enter the stopped state during the
execution of the reset operation. The
load indicator is on while the CPU is in
the load state.

The details of the channel-subsystem
portion of the IPl operation are defined
in the section "Initial Program Loading"
in Chapter 17, "I/O Support Functions."

When the IPl I/O operation is completed
successfully, the subsystem ID of the
IPL device is stored in absolute storage
locations 184-187, zeros are stored in
absolute storage locations 188-191, and
a new PSW is loaded from absolute stor
age locations 0-7. If the PSW loading
is successful and if no machine malfunc
tions are detected, this CPU leaves the
load state, and the load indicator is
turned off. If the rate control is set
to the process position, the CPU enters
the operating state, and CPU operation
proceeds under control of the new PSW.
If the rate control is set to the
lnstruction-step position, the CPU
enters the stopped state, with the manu
al indicator on, after the new PSW has
been loaded.

If the IPL I/O operation or the PSW
loading is not completed successfully,
the CPU remains in the load state, and
the load indicator remains on. The
contents of absolute storage locations
0-7 are unpredictable.

STORE STATUS

The store-status operation places the
contents of the CPU registers, except
for the TOD clock, in assigned storage
locations.

The figure "Assigned Storage locations
for Store Status" lists the fields that
are stored, their length, and their
location in main storage.

length
in Absolute

Field Bytes Address

CPU timer 8 216
Clock comparator 8 224
Current PSW 8 256
Prefix 4 264
Fl-pt registers 0-6 32 352
General registers 0-15 64 384
Con~rol regi~ters 0-15 64 448

Assigned Storage locations for Store
Status

Chapter 4. Control 4-29

The contents of the registers are not
changed. If an error 1S encountered
during the operation, the CPU enters the
check-stop state.

The store-status operation can be initi
ated manually by use of the store-status
key (see Chapter 12, "Operator Facili
ties"). The store-status operation can
also be initiated at the addressed CPU
by executing SIGNAL PROCESSOR, specify
ing the stop-and-store-status order.
Execution of SIGNAL PROCESSOR specifying
the store-status~at-address order
permits the same status information to
be stored at a designated address (see
"Signal Processor Orders" in this chap
ter).

MULTIPROCESSING

The multiprocessing facility provides
for the interconnection of CPUs, via a
common main storage, in order to enhance
system availability and to share data
and resources. The multiprocessing
facility includes the following facili
ties:

• Shared main storage

• CPU-to-CPU interconnection

• TOO-clock synchronization

Associated with these facilities are two
external-interruption conditions (TOD
clock-sync check and malfunction alert),
which are described in Chapter 6,
"Interruptions"; and control-register
positions for the TOD-clock-sync-control
bit and for the masks for the external
interruption conditions, which are
listed in the section "Control
Registers" in this chapter.

4-30 370-XA Principles of Operation

The channel subsystem, including all
subchannels, in a multiprocessing
configuration can be accessed by all
CPUs 1n the configuration. 1/0-
interruption conditions are floating and
can be accepted by any CPU in the
configuration.

SHARED MAIN STORAGE

The shared-main-storage facility permits
more than one CPU to have access to
Common main-storage locations. All CPUs
having access to a common main-storage
location have access to the entire
4K-byte block containing that location
and to the associated storage key. The
channel subsystem and all CPUs in the
configuration refer to a shared main
storage location using the same absolute
address.

CPU-ADDRESS IDENTIFICATION

Each CPU has a number assigned, called
its CPU address. A CPU address uniquely
identifies one CPU within a configura
tion. The CPU is designated by specify
ing this address in the CPU-address
field of SIGNAL PROCESSOR. The CPU
signaling a mulfunction alert, emergency
signal, or external call is identified
by storing this address in the CPU
address field with the interruption.
The CPU address is assigned during
system installation and is not changed
as a result of reconfiguration changes.
The program can determine the address of
the CPU by using STORE CPU ADDRESS.

CPU SIGNALING AND RESPONSE

The CPU-signaling-and-response facility
consists of SIGNAL PROCESSOR and a mech
anism to interpret and act on several
order codes. The facility provides for
communications among CPUs, including
transmitting, receiving, and decoding a
set of assigned order codes; initiating
the specified operation; and responding
to the signaling CPU. A CPU can address
SIGNAL PROCESSOR to itself. SIGNAL
PROCESSOR is described in Chapter 10,
"Control Instructions."

SIGNAL-PROCESSOR ORDERS

Th. signal-processor orders are
fied in bit positions 24-31
second-operand address of SIGNAL
SOR and are encoded as shown
figure "Encoding of Orders."

Code

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE

OF-FF

Order

Unassigned
Sense
External call
Emergency signal
Start
Stop
Restart
Unassigned
Unassigned
Stop and store status
Unassigned
Initial CPU reset
CPU reset
Set prefix
Store status at address
Unassigned

Encoding of Orders

speci
of the
PROCES
in the

The orders are defined as follows:

Sense: The addressed CPU presents its
status to the issuing CPU (see the
section "Status Bits" in this chapter
for a definition of the bits). No other
action is caused at the addressed CPU.
The status, if not all zeros, is stored
in the general register designated by
the R t field, and condition code 1 is
set; if all status bits are zeros,
condition code 0 is set.

External Call: An external-call
external-interruption condition is
generated at the addressed CPU. The
interruption condition becomes pending
during the execution of SIGNAL
PROCESSOR. The associated interruption
occurs when the CPU is enabled for that
condition and does not necessarily occur
during the execution of SIGNAL

PROCESSOR. The address of the CPU send
ing the signal is provided with the
interruption code when the interruption
occurs. Only one ext~rnal-call condi
tion can be kept pending in a CPU at a
time. The order is effective only when
the addressed CPU is in the stopped or
operat i ilg sta te.

Emergency Signal: An emergency-signal
external-interruption condition is
generated at the addressed CPU. The
interruption condition becomes pending
during the execution of SIGNAL
PROCESSOR. The associated interruption
occurs when the CPU is enabled for that
condition and does not necessarily occur
during the execution of SIGNAL
PROCESSOR. The address of the CPU send
ing the signal is provided with the
interruption code when the interruption
occurs. At anyone time the receiving
CPU can keep pending one emergency
signal condition for each CPU in the
configuration, including the recelvlng
CPU itself. The order is effective only
when the addressed CPU is in the stopped
or operating state.

Start: The addressed CPU performs the
start function (see the section
"Stopped, Operating, load, and Check
Stop States" in this chapter). The CPU
does not necessarily enter the operating
state during the execution of SIGNAL
PROCESSOR. The order is effective only
when the addressed CPU is in the stopped
state. The effect of performing the
start function is unpredictable when the
stopped state has been entered by reset.

Stop: The addressed CPU performs the
stop function (see the section "Stopped,
Operating, Load, and Check-Stop States"
in this chapter). The CPU does not
necessarily enter the stopped state
during the execution of SIGNAL
PROCESSOR. The order is effective only
when the CPU is in the operating state.

Restart: The addressed CPU performs the
restart oper~tion (see the section
"Restart Interrupt ion" in Chapter 6,
"Interruptions"). The CPU does not
necessarily perform the operation during
the execution of SIGNAL PROCESSOR. The
order is effective only when the
addressed CPU is in the stopped or oper
ating state.

Stop and Store Status: The addressed
CPU performs the stop function, followed
by the store-status function (see the
section "Store Status" in this chapter).
The CPU does not necessarily complete
the operation, or even enter the stopped
state, during the execution of SIGNAL
PROCESSOR. The order is effective only
when the addressed CPU is in the stopped
or operating state.

Initial CPU Reset: The addressed
performs---initial CPU reset (see
section "Resets" in this chapter).

CPU
the
The

Chapter 4. Control 4-31

execution of the reset does not affect
other CPUs and does not cause I/O to be
reset. The reset operation is not
necessarily completed during the
execution of SIGNAL PROCESSOR.

CPU Reset: The
CPU reset (see
this chapter).
reset does not
does not cause
reset operation
completed during
PROCESSOR.

addressed CPU performs
the section "Resets" in

The execution of the
affect other CPUs and
I/O to be reset. The

is not necessarily
the execution of SIGNAL

Set Prefix: The conterits of bit posi
tionS-1-19 of the parameter register of
the SIGNAL PROCESSOR instruction are
treated as a prefix value, which
replaces the contents of the prefix
register of the addressed CPU. Bit 0
and bits 20-31 of the parameter register
are ignored. The order is accepted only
if the addressed CPU is in the stopped
state, the value to be placed in the
prefix register designates a location
which is available in the configuration,
and no other condition precludes accept
ing the order. Verification of the
stopped state of the addressed CPU and
of the availability of the designated
storage is performed during execution of
SIGNAL PROCESSOR. If accepted, the
order is not necessarily completed
during the execution of SIGNAL
PROCESSOR.

The format of the parameter register is:

Pre"fi x Value \/////////////1

o 1 20 31

The set-prefix order is completed as
follows:

• If the addressed CPU is not in the
stopped state, the order is not
accepted. Instead, bit 22 (incor
rect state) of the general register
designated by the R j field of the
SIGNAL PROCESSOR instruction is set
to one, and condition code 1 is
set.

• The value to be placed in the
prefix register of the addressed
CPU is tested for availability.
The absolute address of a 4K-byte
area of storage is formed by
appending 12 zeros to the right of
bits 1-19 of the parameter value.
This address is treated as a 31-bit
absolute address regardless of
whether the sending and receiving
CPUs are in the 24- or 31-bit
addressing mode. The 4K-byte block
of storage at this address is
accessed. The access is not
subject to protection, and the
associated reference bit mayor may
not be set to one. If the block is
not available in the configuration,

4-32 370-XA Principles of Operation

•

•

the order is not accepted by the
addressed CPU, bit 23 (invalid
parameter) of the general register
designated by the Ri field of the
SIGNAL PROCESSOR instruction is set
to one, and condition code 1 is
set.

The value is placed in the prefix
register of the addressed CPU.

The TLB of the addressed CPU is
cleared of its contents.

• A serializing and checkpoint
synchronizing function is performed
on the addressed CPU following
insertion of the new prefix value.

Store Status at Address: The contents
of bit positlOns 1-22 of the parameter
register of the SIGNAL PROCESSOR
instruction are used as the origin of a
512-byte area into which the status of
the addressed CPU is stored. Bit 0 and
bits 23-31 of the parameter register are
ignored.

The order is accepted only if the
addressed CPU is in the stopped state,
the status-area orlg1n designates a
location which is available in the
configuration, and no other condition
precludes accepting the order. Verifi
cation of the stopped state of the
addressed CPU and of the availability of
the designated storage is performed
during execution of SIGNAL PROCESSOR.
If accepted, the order is not necessar
ily completed during the execution of
SIGNAL PROCESSOR.

The format of the parameter register is:

[/J Status-Area Origin 1/////////1

o 1 23 31

The store-status-at-address
completed as follows:

order ;s

• If the addressed CPU is not in the
stopped state, the order is not
accepted. Instead, bit 22 (incor
rect state) of the general register
designated by the Rt field of the
SIGNAL PROCESSOR instruction is set
to one, and condition code 1 is
set.

• The address of the area into which
status i~ to be stored is tested
for availability. The absolute
address of a 512-byte area of stor
age is formed by appending nine
zeros to the right of bits 1-22 of
the parameter value. This address
is treated as a 31-bit absolute
address regardless of whether the
sending and receiving CPUs are in
the 24- or 31-bit addressing mode.
The 512-byte block of storage at
this address is accessed. The

•

•

access is not subject to
protection, and the associated
reference bit mayor may not be set
to one. If the block is not avail
able in the configuration, the
order is not accepted by the
addressed CPU, bit 23 (invalid
parameter) of the general register
designated by the RI field of the
SIGNAL PROCESSOR instruction is set
to one, and condition code 1 is
set.

The status of the addressed CPU is
placed in the designated area. The
information stored, and the format
of the area receiving the informa
tion, are the same as for the
stop-and-store-status order, except
that each field, rather than being
stored at an offset from the begin
ning of absolute storage, is stored
in the designated area at an offset
that is the same as that for the
absolute area. Bytes 0-215,
232-255, and 268-351 of the desig
nated area remain unchanged. (See
the section "Store Status" in this
chapter).

A serializing and checkpoint
synchronization function is
performed on the addressed CPU
following storing of the status.

CONDITIONS DETERMINING RESPONSE

Conditions Precluding Interpretation of
the Order Code

fhe following situations preclude the
initiation of the order. The sequence
in which the situations are listed is
the order of priority for indicating
concurrently existing situations:

1. The access path to the addressed
CPU is busy because a concurrently
issued SIGNAL PROCESSOR is using
the CPU-signaling-and-response
facility. The concurrently issued
instruction mayor may not have
been issued by or to the addressed
CPU and mayor may not have been
issued to this CPU. The order is
rejected. Condition code 2 is set.
This condition cannot arise as a
result of a SIGNAL PROCESSOR by a
CPU addressing itself.

2. The addressed CPU is not opera
tional; that is, it is not provided
in the installation~ it is not in
the configuration, it is in any of
certain customer-engineer test
modes, or its power is off. The
order is rejected. Condition code
3 is set. This condition cannot
arise as a result of a SIGNAL

3.

PROCESSOR by
itself.

a CPU address:ng

One of the following conditions
exists at the addressed CPU:

a. A previously issued start,
stop, restart, stop-and-store
status, set-prefix, or store
status-at-address order has
been accepted by the addressed
CPU, and execution of the func
tion requested by the order has
not yet been completed •

b. A manual start, stop, restart,
or store-status function has
been initiated at the addressed
CPU, and the function has not
yet been completed. This
cond~tion cannot arise as a
result of a SIGNAL PROCESSOR by
a CPU addressing itself.

c. A manual initial-program-load
function has been initiated at
the addressed CPU, and the
reset portion, but not the
program-load portion, of the
function has been completed.
This condition cannot arise as
a result of a SIGNAL PROCESSOR
by a CPU addressing itself.

If the currently specified order is
sense, external call, emergency
signal, start, stop, restart,
stop-and-store-status, set prefix,
or store status at address, then
the order is rejected, and condi
tion code 2 is set. If the
currently specified order is one of
the reset orders, or an unassigned
or not-implemented order, the order
code is interpreted as described in
the section "Status Bits" in this
chapter.

4. One of the following conditions
exists at the addressed CPU:

a. A previously issued initial
CPU-reset or CPU-reset order
has been accepted by the
addressed CPU, and execution of
the function requested by the
order has not yet been
completed.

b. A manual-reset function has
been initiated at the addressed
CPU, and the function has not
yet been completed. The term
"manual-reset function"
includes the reset portion of
IPL. This condition cannot
arise as a result of a SIGNAL
PROCESSOR by a CPU addressing
itself.

If the currently specified order is
sense, external call, emergency
signal, start, stop, restart,
stop-and-store-status, set prefix,

Chapter 4. Control 4-33

or store status at address, then
the order is rejected, and condi
tion code 2 is set. If the
currently specified order is one of
the reset orders, or an unassigned
or not-implemented order, either
the order is rejected and condition
code 2 is set or the order code is
interpreted as described in the
section "Status Bits" in this chap
ter.

When any of the conditions described in
items 3 and 4 exists, the addressed CPU
is referred to as "busy." Busy is not
indicated if the addressed CPU is in the
check-stop state or when the operator
intervening condition exists. A CPU
busy condition is normally of short
duration; however, the conditions
described in item 3 may last indefinite
ly because of a string of interruptions.
In this situation, however, the CPU does
not appear busy to any of the reset
orders.

When the conditions described in items 1
and 2 above do not apply and operator
intervening and receiver-check status
conditions do not exist at the addressed
CPU, reset orders may be accepted
regardless of whether the addressed CPU
has completed a previously accepted
order. This may cause the previous
order to be lost when it is only
partially completed, making unpredict
able whether the results defined for the
lost order are obtained.

Status Bits

Various status conditions are defined
whereby the issuing and addressed CPUs
can indicate their response to the
designated order. The status conditions
and their bit positions in the general
register designated by the R t field of
the SIGNAL PROCESSOR instruction are
shown in the figure "Status Conditions."

Bit
Position

o
1-21
22
23
24
25
26
27
28
29
30
31

Status Condition

Equipment check
Unassigned; zeros stored
Incorrect state
Invalid parameter
External-call pending
Stopped
Operator intervening
Check stop
Unassigned; zero stored
Inoperative
Invalid order
Receiver check

Status Conditions

4-34 370-XA Principles of Operation

The status condition assigned to bit
position 0 is generated by the CPU
executing SIGNAL PROCESSOR. The remain
ing status conditions are generated by
the addressed CPU.

When the equipment-check condition
exists, bit 0 of the general register
designated by the Rt field of the SIGNAL
PROCESSOR instruction is set to one,
unassigned bits of the status register
are set to zeros, and the content~ of
other status bits are unpredictable. In
thi sease, condi ti on code l' is set i nde
pendent of whether the access path to
the addressed CPU is busy and independ
ent of whether the addressed CPU is not
operational, is busy, or has presented
zero status.

When the access path to the addressed
CPU is not busy and the addressed CPU is
operational and does not indicate busy
to the currently specified order, the
addressed CPU presents its status to the
issuing CPU. These status bits are of
two types:

1. Status bits 22-27 and 29 indicate
the presence of the corresponding
conditions in the addressed CPU at
the time the order code is
received. Except in response to
the sense order, each condition is
indicated only when the condition
precludes the successful execution
of the designated order, although
invalid parameter is not necessar
ily indicated when any other
precluding condition exists. In
the case of sense, all existing
status conditions are indicated;
the operator-intervening condition
is indicated if it precludes the
execution of any installed order.

2. Status bits 30 and 31 indicate that
the corresponding conditions were
detected by the addressed CPU
during reception of the order.

If the presented status is all zeros,
the addressed CPU has accepted the
order, and condition code 0 is set at
the issuing CPU; if the presented status
is not all zeros, the order has been
rejected, the status is stored at the
issuing CPU in the general register
designated by the R t field of the SIGNAL
PROCESSOR instruction, zeros are stored
in the unassigned bit positions of the
register, and condition code 1 is set.

The status conditions are defined as
follows:

Equipment Check: This condition exists
when the CPU executing the instruction
detects equipment malfunctioning that
has affected only the execution of this
instruction and the associated order.
The order code mayor may not have been
transmitted and mayor may not have been
accepted, and the status bits provided
by the addressed CPU may be in error.

Incorrect State: A set-prefix or
store-status-at-address order has been
rejected because the addressed CPU is
not stopped. When applicable, this
status is generated during execution of
SIGNAL PROCESSOR and is indicated
concurrently with other indications of
conditions which preclude execution of
the order.

Invalid Parameter: The parameter value
supplied with a set-prefix or store
status-at-address order designates a
storage location which is not available
in the configuration. When applicable,
this status is generated during
execution of SIGNAL PROCESSOR, except
that it is not necessarily generated
when another condition precluding
execution of the order also exists.

External Call Pending: This condition
exists when an external-call inter
ruption condition is pending in the
addressed CPU because of a previously
issued SIGNAL PROCESSOR. The condition
exists from the time an external-call
order is accepted until the resultant
external interruption has been completed
or a CPU reset occurs. The condition
may be due to the issuing CPU or another
CPU. The condition, when present, is
indicated only in response to sense and
to external call.

Stopped: This condition exists when the
addressed CPU is in the stopped state.
The condition, when present, is indi
cated only in response to sense. This
condition cannot be reported as a result
of a SIGNAL PROCESSOR by a CPU address
ing itself.

Operator Intervening: This condition
exists when the addressed CPU is execut
ing certain operations initiated from
local or remote operator facilities.
The particular manually initiated oper
ations that cause this condition to be
present depend on the model and on the
order specified. The operator
intervening condition may exist when the
addressed CPU uses reloadable control
storage to perform an order and the
required microprogram is not loaded.
The operator-intervening condition, when
present, can be indicated in response to
all orders. Operator intervening is
indicated in response to sense if the
condition is present and precludes the
acceptance of any of the installed
orders. The condition may also be indi
cated in response to unassigned or
uninstalled orders. This condition
cannot arise as a result of a SIGNAL
PROCESSOR by a CPU addressing itself.

Check stop: This condition exists ~hen
the addressed CPU is in the check-stop
state. The condition, when present, is
indicated only in response to sen~e,
external call, emergency signal, start,
stop, restart, set prefix, store status
at address, and stop and store status.
The condition may also be indicated in
response to unassigned or uninstalled
orders. This condition cannot be
reported as a result of a SIGNAL PROCES
SOR by a CPU addressing itself.

Inoperative: This condition indicates
that the performance of the order-code
specification requires the use of a
service processor which is inoperative.
The failure of the service processor may
have been previously reported by a
service-processor-damage machine-check
condition. The inoperative condition
cannot occur for the sense, external
call, or emergency-signal order code.

Invalid Order: This condition exists
during the communications associated
with the execution of SIGNAL PROCESSOR
when an unassigned or uninstalled order
code is decoded.

Receiver Check: This condition exists
when the addressed CPU detects malfunc
tioning of equipment during the communi
cations associated with the execution of
SIGNAL PROCESSOR. When this condition
is indlcated, the order has not been
initiated, and, since the malfunction
may have affected the generation of the
remaining receiver status bits, these
bits are not necessarily valid. A
machine-check condition mayor may not
have been generated at the addressed
CPU.

The following chart summarizes
status conditions are presented
issuing CPU in response to each
code.

which
to the
order

Chapter 4. Control 4-35

status Condition

31 Receiver check~
30 Invalid order
29 Inoperative
27 Check stop --------------------~
26 Operator intervening#
25 Stopped ----------~

24 External call pending n
23 Invalid parameter 11
22 Incorrect s~ate ~

Order I
-- .."..".." "'''' "'.."..,,-J.
Sense 0 0 X X X X 0 0 X
External call 0 0 X 0 X X 0 0 X
Emergency signal 0 0 0 0 X X 0 0 X
start 0 0 0 0 X X X 0 X
stop 0 0 0 0 X X X 0 X
Restart 0 0 0 0 X X X 0 X
Stop and store status 0 0 0 0 X X X 0 X
Initial CPU reset 0 0 0 0 X 0 X 0 X
CPU reset 0 0 0 0 X 0 X 0 X
Set prefix X X 0 0 X X X 0 X
Store status at addr. X X 0 0 X X X 0 X
Unassigned order 0 0 0 0 X E X 1 X

Explanation:

o

1

X

E

A zero is presented in this bit
position regardless of the current
state of this condition.

A one is presented in this bit
position.

A zero or a one is presented in
this bit position, reflecting the
current state of the corresponding
condition.

Either a zero or the current state
of the corresponding condition is
indicated.

The current state of the operator
intervening condition may depend on
the order code that is being inter
preted.

* If a one is presented in the
receiver-check bit position, the
values presented in the other bit
positions are not necessarily
valid.

If the presented status bits are all
zeros, the order has been accepted, and
the issuing CPU sets condition code o.
If one or more ones are presented, the
order has been rejected, and the issuing
CPU stores the status in the general
register specified by the R, field of
the SIGNAL PROCESSOR instruction and
sets condition code 1.

4-36 370-XA Principles of Operation

Programming Notes

1. A CPU can obtain the following
functions by addressing SIGNAL
PROCESSOR to itself:

a. Sense indicates whether an
external-call condition is
pending.

b. External call and emergency
sign,~ cauS;--the corresponding
interruption conditions to be
generated. External call can
be r~jected because of a previ
ously generated external-call
condition.

c. Start sets condition code 0 and
has no other effect.

d. stop causes the
condition code 0,
interruptions for
enabled, and enter
state.

CPU to set
take pending
which it is

the stopped

e. Restart provides a means to
store the current PSW.

f. Stop and store status causes
the machine--tO stop and store
all current status.

2. Two CPUs can simultaneously execute
SIGNAL PROCESSOR, with each CPU
addressing the other. When this
occurs, one CPU, but not both, :an
find the access path busy because
of the transmission of the oreer
code or status bits associated with
SIGNAL PROCESSOR that is being
executed by the other CPU. Alter
natively, both CPUs can find the
access path available and transmit
the order codes to each other. In
particular, two CPUs can simultane
ously stop, restart, or reset each
other.

3. To obtain status from another CPU
which is in the check-stop state by
means of the store-status-at
address order, a CPU reset opera
tion should first be used to bring
the CPU to the stopped state. This
reset order does not alter the
status, and, depending on the
nature of the malfunction, provides
the best chance of establishing
conditions in the addressed CPU
which allow status to be obtained.

CHAPTER ~ PROGRAM EXECUTION

Instructions •• 5-2
Operands •••••••••••••••••••••••••••••.•••••••••••••••••• 5-2
Instruction Format •••••••••••••••••••.••••.••••••••••••• 5-2

Register Operands ••••••••••••••••••.•••••••••••••••••• 5-4
Immediate Operands •••••••••••••••••.•••••••••••••••••• 5-4
storage Operands ••.•••••.•••••••....•.•.•• ~ ••••••••••• 5-4

Address Generation ••••••••••••••••.••.•.••••.• r ••••••••••• 5-4
Bimodal Addressing ••••••••••••••••••••••.••••••••••••••• 5-4
Sequential Instruction-Address Generation ••••••••••••••. 5-5
Operand-Address Generation •••••••••••.•••••••••••••••••• 5-5

Formation of the Intermediate Value ••••••••••••••••••. 5-5
Formation of the Address •••••••••••.•••••••••••••••••• 5-5

Branch-Address Generation ••••••••••••••••• ~ ••••••••••••• 5-6
Formation of the Branch Address ••••••.••••.••••••••.•• 5-6

Instruction Execution and Sequencing •••••••••••••••••••••• 5-6
Decision-Making ••• 5-6
Loop Control ••••••••••••••••••.•••.••.•••••••••••••••.•• 5-7
Subroutine Linkage •••.••••••••.•.•.••••••••••••••••••••• 5-7
Interruptions •.••••••••••••••••••••••••••••..••••.•••••. 5-11
Types of Instruction Ending •••••.•••.••.•••••••••••••••• 5-11

Completion •••••••••••••.••.•••.••.••••••.•••.•..•••••• 5-11
Suppression .•••.•••••••••..••••••••••••••••.••..•••••• 5-11
Nullification ••••••••••••••••••••••••.••••••••.••••••. 5-11
Termination •••••••••••••••••••••••••.••••••.•••••••••• 5-11

Interruptible Instructions •••.•••••••••••••.•..••.•••.•. 5-11
Point of Interruption .•••••••••••••••••••••••••••••••• 5-11
Execution of Interruptible Instructions ••••••••••••••• 5-12

Exceptions to Nullification and Suppression ••••••••••••• 5-12
Storage Change and Restoration for DAT-Associated
Access Exceptions ••••••••••••••••••••••••.•••••••••••• 5-13
Modification of DAT-Table Entries ••••.•••••••••••••••• 5-13
Trial Execution for Editing Instructions and
TRANSLATE •••.••••••••••.••••..•••••••••••••.•••••••••• 5-14
Interlocked Update for Nullification and
Suppression ••• 5-14

Authorization Mechanisms •••••.••••••••••••••••.••••••••••• 5-14
Mode Requirements ••••••.••••••••••••.••••••••••••••••• 5-15
Extraction-Authority Control •••••••••.•••••••••••••••• 5-15
PSW-Key Mask ••••.••••••••••••••••••••••••••••••••••••• 5-15
Secondary-Space Control •••••••••.••••.•••••••••••••••• 5-15
Subsystem-Linkage Control ••••••••••••••••••••••••••••• 5-15
ASN-Translation Control ••••••••••••••••••••••••••••••• 5-15
Authorization Index ••••••••••••••••••••••••••••••••••. 5-16

PC-Number Translation .•.•••••••.•••.•.•••••••.•..•••.•.••• 5-17
PC-Number Translation Control ••••••••••••••••••••••••••• 5-18
PC-Number Translation Tables •••••••••••••••••••••••••••• 5-18

Linkage-Table Entries ••••••••••••.•••••••••••••••••••• 5-18
Entry-Table Entries ••••••••••••••••.••••••••••..•••••• 5-18

PC-Number-Translation Process •••••••••••.•••••.••••••••• 5-19
Linkage-Table Lookup ••••••••••••••••••.••••••••••••••• 5-20
Entry-Table Lookup ••••.•••••••••••••..••.•.••••••••••• 5-21
Recognition of Exceptions During PC-Number
Translation ••••..•••••••••••••••••••••.••••••••••••••• 5-21

Sequence of Storage References ••••••••••••••••••••••.••••• 5-21
Interlocks for Virtual-Storage References •••.•••••••••.• 5-22
Instruction Fetching ••••••••••••••••••••.••••••••••••••• 5-23
DAT-Table Fetches .•••••••••••••••••••••••••••••••••••••• 5-24
Storage-Key Accesses •••••••••••••••••••••••••••••••••••. 5-24
Storage-Operand References ••••••••••••••..•••••••••••••• 5-25

Storage-Operand Fetch References ••.••••••••••••••••••. 5-25
Storage-Operand Store References ••.•••.••••••••••••••• 5-25
Storage-Operand Update References •.•••.••••••••••••••. 5-26

Storage-Operand Consistency •••••••...••••.•••.•••••••••• 5-27
Single-Access References ••••••••••.••••••••••••••••.•• 5-27
Multiple-Access Operands ••••••••••••••.••••••••••••••• 5-27
Block-Concurrent References •••••••.•••..•••••••••••••• 5-27
Consistency Specification ••••••••••••••••••••••••••••. 5-27

Relation Between Operand Accesses ••••••••••••••••••••••• 5-28

Chapter 5. Program Execution 5-1

Other Storage References ••••••••••••••.••••••••••••••••• 5-29
Serialization ••• 5-29

CPU Serialization ••••••••••••••••••••••••••••••••••••••• 5-29
Channel-Program Serialization ••••••••••••••••••••••••••• 5-30

Normally, operation of the CPU is
controlled by instructions in storage
that are executed sequentially, one at a
time, left to right in an ascending
sequence of storage addresses. A change
in the sequential operation may be
caused by branching, LOAD PSW, inter
ruptions, SIGNAL PROCESSOR orders, or
manual intervention.

INSTRUCTIONS

Each instruction consists of two major
parts:

• An operation code (op code), which
specifies the operation to be
performed

• The designation of the operands
that participate

OPERANDS

Operands can be grouped in three
classes: operands located in registers,
immediate operands, and operands in
storage. Operands may be either explic
itly or implicitly designated.

Register operands can be located in
general, floating-point, or control
registers, with the type of register
identified by the op code. The register
containing the operand is specified by
identifying the register in a four-bit
field, called the R field, in the
instruction. For some instructions, an
operand is located in an implicitly
designated register, the register being
implied by the op code.

Immediate operands are contained within
the instruction, and the eight-bit field
containing the immediate operand is
called the I field.

Operands in storage may have an implied
length; be specified by a bit mask; be
specified by a four-bit or eight-bit
length specification, called the L
field, in the instruction; or have a
length specified by the contents of a
general register. The addresses of
operands in storage are specified by
means of a format that uses the contents
of a general register as part of the
address. This makes it possible to:

5-2 370-XA Principles of Operation

1. Specify a complete address by using
an abbreviated notation

2. Perform address manipulation using
instructions which employ general
registers for operands

3. Modify addresses by program means
without alteration of the instruc
tion stream

4. Operate independent of the location
of data areas by directly using
addresses received from other
programs

The address used to refer to storage
either is contained in a register desig
nated by the R field in the instruction
or is calculated from a base address,
index, and displacement, designated by
the B, X, and D fields, respectively, in
the instruction.

To describe the execution of
instructions, operands are designated as
first and second operands and, in some
cases, third operands.

In general, two operands participate in
an instruction execution, and the result
replaces the first operand. However,
CONVERT TO DECIMAL, TEST BLOCK, and
instructions with "store" in the
instruction n"me (other than STORE THEN
AND SYSTEM MASK and STORE THEN OR SYSTEM
MASK) use the second-operand address to
designate a location in which to store.
TEST AND SET, COMPARE AND SWAP, and
COMPARE DOUBLE AND SWAP may perform an
update on the second operand. Except
when otherwise stated, the contents of
all registers and storage locations
participating in the addressing or
execution part of an operation remain
unchanged.

INSTRUCTION FORMAT

An instruction is one, two, or three
halfwords in length and must be located
in storage on a halfword boundary. Each
instruction is in one of eight basic
formats: RR, RRE, RX, RS, SI, 5, SSE,
and 55, with two variations of SSe (See
the figure "Basic Instruction Formats.")

Some instructions contain fields ttat
vary slightly from the basic format, and
in some instructions the operation
performed does not follow the general
rules stated in this section. All of

these exceptions are explicitly identi
fied in the individual instruction
descriptions.

The format names indicate, in general
terms, the classes of operands which
participate in the operation:

• RR denotes a register-and-register
operation.

• RRE denotes a register-and-register
operation having an extended
op-code field.

• RX denotes a register-and-indexed
storage operation.

• RS denotes a register-and-storage
operation.

• SI denotes a storage-and-immediate
operation.

• S denotes an operation using an
implied operand and storage.

• SS denotes a storage-and-storage
operation.

• SSE denotes a storage-and-storage
operation having an extended
op-code field.

RR Format

o 8 12 15

RRE Format

Op Code

o 16 24 28 31

31

31

31

16 20 31

B, I ~, B, I EJ
16 20 32 36 47

Op codel l t l2 I B t I ~, I B2 I ~~
0 8 12 16 20 32 36 47

Op cOdel Rt R3 Bt I ~, B2 I ~~
0 8 12 16 20 32 36 47

SSE Format

Op Code I Bt I ~, B2 I ~~
0 16 20 32 36 47

Basic Instruction Formats

The first byte or, in the RRE, S, and
of an

For
all

SSE formats, the first two bytes
instruction contain the op code.
some instructions in the S format,
or a portion of the second byte
ignored.

is

The first two bits of the first or only
byte of the op code specify the length
and format of the instruction, as
follows:

Bit Instruction
Positions length (in Instruction

0-1 Halfwords) Format

00 One RR
01 Two RX
10 Two RRE/RS/RX/S/SI
11 Three SS/SSE

In the format illustration for ~ach
individual instruction description, the
op-code field shows the op code as he.<a
decimal digits within single quob.1s.
The hexadecimal representation uses 0-9
for the binary codes 0000-1001 and A-F
for the binary codes 1010-1111.

The remalnlng fields in the format
illustration for each instruction are
designated by code names, consisting of
a letter and possibly a subscript
number. The subscript number denotes
the operand to which the field applies.

Chapter 5. Program Execution 5-3

Register Operands

In the RR, RRE, RX, and RS formats, the
contents of the register designated by
the R t field are called the first oper
and. The register containing the first
operand is sometimes referred to as the
"first-operand location." In the RR and
RRE formats, the R2 field designates the
register containing the second operand,
and the R2 field may designate the same
register as R t - In the RS format, the
use of the R3 field depends on the
instruction.

The R field designates a general regis
ter in the general and control
instructions and a floating-point regis
ter in the floating-point instructions.
In the instructions LOAD CONTROL and
STORE CONTROL, the R field designates a
control register.

Unless otherwise indicated in the indi
vidual instruction description, the
register operand is one register in
length (32 bits for a general register
or a control register and 64 bits for a
floating-point register), and the second
operand is the same length as the first.

Immediate Operands

In the SI format, the contents of the
eight-bit immediate-data field, the 12
field of the instruction, are used
directly as the second operand. The B t

and 0 1 fields designate the first oper
and, which is one byte in length.

Storage Operands

In the SI, SSE, and SS formats, the
contents of the general register desig
nated by the B t field are added to the
contents of the D t field to form the
first-operand address. In the S, RS,
SSE, and SS formats, the contents of the
general register designated by the B2
field are added to the contents of the
D2 field to form the second-operand
address. In the RX format, the contents
of the general registers designated by
the X2 and B2 fields are ~dded to the
contents of the D2 field to form the
second-operand address.

In the SS format with a single,
eight-bit length field, L specifies the
number of additional operand bytes to
the right of the byte designated by the
first-operand address. Therefore, the
length in bytes of the first operand is
1-256, corresponding to a length code in
L of 0-255. Storage results replace the
first operand and are never stored
outside the field specified by the

5-4 370-XA Principles of Operation

address and length. In this format, the
second operand has the same length as
the first operand, except for the
following instructions: EDIT, EDIT AND
MARK, TRANSLATE, and TRANSLATE AND TEST.

In the SS format, with two length fields
given, It specifies the number of addi
tional operand bytes to the right of the
byte designated by the first-operand
address. Therefore, the length in bytes
of the first operand is 1-16, corre
sponding to a length code in L t of 0-15.
Similarly, L2 specifies the number of
additional operand bytes to the right of
the location designated by the second
operand address. Results replace the
first operand and are never stored
outside the field specified by the
address and length. If the first oper
and is longer than the second, the
second operand is extended on the left
with zeros up to the length of the first
operand. This extension does not modify
the second operand in storage.

In the SS format with two R fields, the
contents of the general register speci
fied by the R t field are a 32-bit
unsigned value called the true length.
The operands are of the same length,
called the effective length. The effec-
tive length is equal to the true length
or 256, whichever is less. The
instructions using this format, which
are MOVE TO PRIMARY, MOVE TO SECONDARY,
and MOVE WITH KEY, set the condition
code to facilitate programming a loop to
move the total number of bytes specified
by the true length.

ADDRESS GENERATION

BIMODAL ADDRESSING

Bit 32 of the current PSW is the
addressing-mode bit. This bit controls
the size of the effective address
produced by address generation. When
bit 32 of the current PSW is zero, the
CPU is in the 24-bit addressing mode,
and 24-bit instruction and operand
effective addresses are generated. When
bit 32 of the current PSW is one, the
CPU is in the 31-bit addressing mode,
and 31-bit instruction and operand
effective addresses are generated.

Execution of instructions by the CPU
involves generation of the addresses of
instructions and operands. This section
describes address generation as it
applies to most instructions. In some
instructions, the operation performed
does not follow the general rules stated
in this section. All of these
exceptions are explicitly identified in
the individual instruction descriptions.

SEQUENTIAL INSTRUCTION-ADDRESS GENER
ATION

When an instruction is fetched from the
location designated by the current PSW,
the instruction address is increased by
the number of bytes in the instruction,
and the instruction is executed. The
same steps are then repeated by using
the new value of the instruction address
to fetch the next instruction. in the
sequence.

In the 24-bit addressing mode, instruc
tion addresses wrap around, with the
halfword at instruction address 224 - 2
being followed by the halfword at
instruction address O. Thus, in the
24-bit addressing mode, any carry out of
PSW bit position 40, as a result of
updating the instruction address, is
lost.

In the 31-bit addressing mode, instruc
tion addresses wrap around, with the
halfword at instruction address 2 31 - 2
being followed by the halfword at
instruction address o. Thus, in the
31-bit addressing mode, any carry out of
PSW bit position 33, as a result of
updating the instruction address, is
lost.

OPERAND-ADDRESS GENERATION

Formation of the Intermediate Value

An operand address that refers to stor
age is derived from an intermediate
value, which either is contained in a
register designated by an R field in the
instruction or is calculated from the
sum of three binary numbers: base
address, index, and displacement.

The base address (B) is a 32-bit number
contained in a general register speci
fied by the program in a four-bit field,
called the B field, in the instruction.
Base addresses can be used as a means of
independently addressing each program
and data area. In array-type calcu
lations, it can specify the location of
an array, and, in record-type
processing, it can identify the record.
The base address provides for addressing
the entire storage. The base address
may also be used for indexing.

The index (X) is a 32-bit number
contained in a general register desig
nated by the program in a Jour-bit
field, called the X field, 1n the
instruction. It is included only in the
address specified by the RX-format
instructions. The RX-format
instructions permit double indexing;
that is, the index can be used to

provide the address of an element within
an array.

The displacement (D) is a 12-bit number
contained in a field, called the D
field, in the instruction. The
displacement provides for relative
addressing of up to 4,095 bytes beyond
the location designated by the base
address. In array-type calculations,
the displacement can be used to specify
one of many items associated with an
element. In the processing of records,
the displacement can be used to identify
items within a record.

In forming the intermediate sum, the
base address and index are treated as
32-bit binary integers. The displace
ment is similarly treated as a 12-bit
unsigned binary integer, and 20 zeros
are appended on the left. The three are
added as 32-bit binary numbers, ignoring
overflow. The sum is always 32 bits
long and is used as an intermediate
value to form the generated address.
The bits of the intermediate value are
numbered 0-31.

A zero in any of the B t , B2 , or X2
fields indicates the absence of the
corresponding address component. For
the absent component, a zero is used in
forming the intermediate sum, regardless
of the contents of general register o.
A displacement of zero has no special
significance.

When an instruction description speci
fies that the contents of a general
register designated by an R field are
used to address an operand in storage,
the register contents are used as the
32-bit intermediate value.

An instruction can designate the same
general register both for address compu
tation and as the location of an
operand. Address computation is
completed before registers, if any, are
changed by the operation.

Unless otherwise indicated in an indi
vidual instruction definition, the
generated operand address designates the
leftmost byte of an operand in storage.

Formation of the Address

The generated operand address is always
31 bits long, and the bits are numbered
1-31. In some portions of this
document, the generated address may be
referred to as being 32 bits long, with
the bits numbered 0-31. Bit 0 of the
generated address is always forced to be
zero. The manner in which the generated
address is obtained from the intermedi
ate value depends on the current
addressing mode. In the 24-bit address
ing mode, bits 0-7 of the intermediate

Chapter 5. Program Execution 5-5

value are ignored, bits 0-7 of the
generated address are forced to be
zeros, and bits 8-31 of the intermediate
value become bits 8-31 of the generated
address. In the 31-bit addressing mode,
bit 0 of the intermediate value is
ignored, bit 0 of the generated address
is forced to be zero, and bits 1-31 of
the intermediate value become bits 1-31
of the generated address.

Programming Note

Negative values may be used in index and
base-address registers. Bit 0 of these
values is always ignored, and, in the
24-bit addressing mode, bits 1-7 of
these values are also ignored.

BRANCH-ADDRESS GENERATION

For branch instructions, the address of
the next instruction to be executed when
the branch is taken is called the branch
address. Depending on the branch
instruction, the instruction format may
be RR, RS, or RX.

In the RS and RX formats, the branch
address is designated by a base address,
a displacement, and, for RX, an index.
In the RS and RX formats, the branch
address generation follows the normal
rules for operand-address generation.

In the RR format, the contents of the
general register designated by the R2
field are used as the intermediate value
from which the branch address is formed.
General register 0 cannot be designated
as containing a branch address. A value
of zero in the R2 field causes the
instruction to be executed without
branching.

Formation of the Branch Address

The branch address is always 31 bits
long, with the bits numbered 1-31. The
branch address replaces bits 33-63 of
the current PSW. The manner in which
the branch address is obtained from the
intermediate value depends on the
addressing mode. For those branch
instructions which change the addressing
mode, the new addressing mode is used.
In the 24-bit addressing mode, bits 1-7
of the intermediate value are ignored,
bits 1-7 of the branch address are made
zeros, and bits 8-31 of the intermediate
value become bits 8-31 of the branch
address. In the 31-bit addressing mode,
bit 0 of the intermediate value is
ignored, and bits 1-31 of the intermedi-

5-6 370-XA Principles of Operation

ate value become bits 1-31 of the brallch
address.

For several branch instructions, branch
ing depends on satisfying a specified
condition. When the condition is not
satisfied, the branch is not taken,
normal sequential instruction execution
continues, and the branch address is not
used. When a branch is taken, bits 1-31
of the branch address replace bits 33-63
of the current PSW. The branch address
is not used to access storage as part of
the branch operation.

A specification exception due to an odd
branch address and access exceptions due
to fetching of the instruction at the
branch location are not recognized as
part of the branch operation but instead
are recognized as exceptions associated
with the execution of the instruction at
the branch location.

A branch instruction, such as BRANCH AND
LINK, can designate the same general
register for branch-address computation
and as the location of an operand.
Branch-address computation is completed
before the remainder of the operation is
executed.

INSTRUCTION EXECUTION AND SEQUENCING

The program-status word (PSW), described
in Chapter 4, "Control," contains infor
mation required for proper program
execution. The PSW is used to control
instruction sequencing and to hold and
indicate the status of the CPU in
relation to the program currently being
executed. The active or controlling PSW
is called the current PSW.

Branch instructions perform the func
tions of decision-making, loop control,
and subroutine linkage. A branch
instruction affects instruction sequenc
ing by introducing a new instruction
address into the current PSW.

DECISION-MAKING

Facilities for decision-making are
provided by BRANCH ON CONDITION. This
instruction inspects a condition code
that reflects the result of a majority
of the arithmetic, logical, and I/O
operations. The condition code, which
consists of two bits, provides for four
possible condition-code settings: 0, 1,
2, and o.
The specific meaning of any setting
depends on the operation that sets the
condition code. For example, the condi
tion code reflects such conditions as
zero, nonzero, first operand high,

equal, overflow, and subchannel busy.
Once set, the condition code remains
unchanged until modified by an instruc
tion that causes a different condition
code to be set. See Appendix C,
"Condition-Code Settings," for a summary
of the instructions which set the condi
tion code.

lOOP CONTROL

loop control can be performed by the use
of BRANCH ON CONDITION to test the
outcome of address arithmetic and count
ing operations. For some particularly
frequent combinations of arithmetic and
tests, BRANCH ON COUNT, BRANCH ON INDEX
HIGH, and BRANCH ON INDEX lOW OR EQUAL
are provided. These branches, being
specialized, provide increased perform
ance for these tasks.

SUBROUTINE lINKAGE'

Subroutine linkage is provided by the
BRANCH AND lINK and BRANCH AND SAVE
instructions, which permit not only the
introduction of a new instruction
address but also the preservation of the
return address and associated informa
tion. Instructions are also provided
which set and save the addressing-mode
bit, PSW bit 32. These instructions
provide the facility for subroutine
linkage between programs using the
24-bit and 31-bit modes. Linkage
between a program and the supervisor or
monitoring program is provided by means
of the SUPERVISOR CAll and MONITOR CALL
instructions.

The instructions PROGRAM CALL and
PROGRAM TRANSFER provide the facility
for linkage between programs of differ-

ent authority and in different address
spaces. PROGRAM CAll permits linkage to
a number of preassigned programs that
may be in either problem or supervisor
state and may be in either the same
address space or an address space
different from that of the caller. In
general, it is used to transfer control
to a program of higher authority.
PROGRAM TRANSFER permits a change of
instruction address, addressing mode,
and address space. PROGRAM TRANSFER
also permits a reduction in PSW-key-mask
authority and a change from supervisor
to problem state. In general, it is
used to transfer control from one
program to another of equal or lower
authority. PROGRAM TRANSFER can be used
to return from a program called by
PROGRAM CAll.

The operation of PROGRAM CAll is
controlled by means of an entry-table
entry, which is located as part of a
table-lookup process during the
execution of the instruction. The
instruction causes the primary address
space to be changed only when the ASN in
the entry-table entry is nonzero. When
the primary address space is changed,
the operation is called PROGRAM CALL
with space switching (PC-ss). When the
primary address space is not changed,
the operation is called PROGRAM CALL to
current primary (PC-cp).

PROGRAM TRANSFER specifies an addressing
mode and an address space which is to
become the new primary address space.
When the primary address space is
changed, the operation is called PROGRAM
TRANSFER with space switching (PT-ss).
When the primary address space is not
changed, the operation is called PROGRAM
TRANSFER to current primary (PT-cp).

The linkage instructions provided and
the functions performed by each are
summarized in the figure "Linkage
Instruction Summary."

Chapter 5. Program Execution 5-7

Instruction Format

BALR*

BAL*

BASR

BAS

BASSM

BSM

MC#2

PC-cp

PC-ss

PT-cp

PT-ss

SVC2

Explanation:

No

RR

RX

RR

RX

RR

RR

SI

S

S

RRE

RRE

RR

Instruction
Address

PSW Bits 33-63

Save Set

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

R2l

Yes

R2l

Yes

R2l

R2l

Yes

Yes

Yes

Addressing
Mode

PSW Bit 32

Save Set

AM

AM

Yes

Yes

Yes

Rt 1

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Problem
State

PSW Bit 15

Save Set

Yes

Yes

Yes

Yes

Yes

Yes

Yes

PASN
CR4

Bits 16-31

Save Set

Yes Yes

Yes

PSW-Key
Mask

Changed
in CR3

"OR" EKM

"OR" EKM

"AND" Rt

"AND" Rt

Trace

Yes

Yes

Yes

Yes

AM Saved only if 31-bit addressing mode is specified.

The action takes place only if the associated R field in the instruction is nonzero.

2 MC and SVC, as part of the interruption, save the entire current PSW and load a new PSW.

In 24-bit addressing mode, the instruction-length-code, condition code, program mask, and
24-bit instruction address are saved, and the 24-bit instruction address is set; in 31-bit
mode, the addressing mode and the 31-bit instruction address are saved, and the 31-bit
instruction address is set.

** A change from supervisor to problem state is allowed; a privileged-operation exception is
recognized when a change from problem to supervisor state is specified.

Monitor-mask bits provide a means of disallowing linkage. or enabling linkage, for selected
classes of events.

Linkage-Instruction Summary

Programming Note

To give the reader a better understand
ing of the utility and intended usage of
the linkage instructions, the following
paragraphs in this note describe various
program linkages and conventions and the
use of the linkage instructions in these
situations.

The linkage instructions are provided to
permit System/370 programs to operate
with no modification or only slight
modification on systems operating in the
370-XA mode and also to provide addi
tional function for those programs which
are designed to take advantage of opera
tion in the 370-XA mode. The
instructions provide the capability for
both old and new programs to coexist in
storage and to communicate with each
other. It is assumed that old, unmodi
fied programs operate in the 24-bit
addressing mode and call, or directly

5-8 370-XA Principles of Operation

communicate with, other programs operat
ing in the 24-bit addressing mode only.
Modified programs normally operate in
the 24-bit addressing mode but may call
programs which operate in either the
24-bit or 31-bit addressing mode. New
programs may be written to operate in
either 24-bit or 31-bit addressing mode,
and in some cases a program may be writ
ten such that it can be invoked in
either mode.

SUPERVISOR CALL is provided for compat
ibility purposes and also because it
provides the simplest mechanism to call
a program which operates in supervisor
state. It has the advantage over
PROGRAM CALL that no general registers
are disturbed, that only two bytes in
storage are required in line, and that a
complete change of PSW status is
provided. The return from a routine
called by SUPERVISOR CALL normally is
accomplished by means of LOAD PSW, which
is a privileged instruction.

PROGRAM CALL is provided for fast commu
nication to a program operating in
supervisor state or higher-authority
problem state, or even to a program with
the same authority. PROGRAM CALL
permits a program to call a program
operating in a different address space.
This would normally be used in the situ
ation where the authorization index
associated with the called address space
had a higher level of authority than
that of the calling address space. The
advantage of PROGRAM CALL over SUPERVI
SOR CALL is in speed, since first- and
second-level interruption-handler
programs are avoided. It also provides
a possible 2 20 different entry points.
The authorization key mask in the
entry-table entry permits a particular
entry point to be available to a limited
subset of the programs in the system.
Thus, some or all of the authority
checking which would otherwise have to
be placed in the called program can be
eliminated. Return from a routine
called by PROGRAM CALL is normally
accomplished by means of the PROGRAM
TRANSFER instruction; however, LOAD PSW
may be used if the called routine is in
supervisor state.

PROGRAM TRANSFER is provided as the
return instruction for PROGRAM CALL. It
is also useful for calling or trans
ferring to programs with the same
authority in another address space.
Although PROGRAM TRANSFER does not save
the current PASN, the instruction
EXTRACT PRIMARY ASH may be used to
provide the PASH for return purposes.

BRANCH AND SAVE AND SET MODE (BASSM) is
intended to be the principal calling
instruction to subroutines outside of an
assembler/linkage-editor control section
(CSECT), for use by all new programs.
BRANCH AND SET MODE (BSM) is intended to
be the return instruction used after a
BASSM. It is assumed that an extension
to the current V-type address constant
(VCON) will be established by the assem
bler and linkage editor which consists
of a 31-bit entry-point address and a
leftmost bit indicating whether the
entry is in the 24-bit or 31-bit
addressing mode. This extended VCON is
shown here as "VCONE." This calling
sequence would normally be:

L 15,VCONE
BASSM 14,15

The return from such a routine would
normally be:

BSM 0,14

The BRANCH AND LINK (BAl, BALR)
instructions are provided primarily for
compatibility reasons. They are defined
to operate in the 31-bit addressing mode
to increase the probability that an old,
straightforward program can be modified
to operate in the 31-bit addressing mode

with minimal or no change. It is recom
mended, however, that BRANCH AND SAVE
(BAS and BASR) be used instead and that
BAL and BALR be avoided since they place
nonzero information in the left part of
the general register in the 24-bit
addressing mode, which may lead to prob
lems. Additionally, BAL and BALR are
likely to be slower than BAS and BASR
because BAS and BASR always save the
right half of the PSW, whereas BAL and
BALR must take additional time to check
the addressing mode, and then even more
time, if in the 24-bit addressing mode,
to construct the ILC, condition code,
and program mask to be placed in the
leftmost byte of the link register.

It is assumed that the normal return
from a subroutine called by BAL or BALR
will be:

BR 14

However, the standard "return instruc
tion":

BSM 0,14

operates correctly for all cases except
for a calling BAL issued in 24-bit
addressing mode. In the 24-bit address
ing mode, BAL caUses an ILC of 10 to be
placed in thp. leftmost two bits of the
link register. Thus, a BSM would return
in the 31-bit addressing mode. Note
that an EXECUTE of BALR in the 24-bit
mode also causes the same ILC effect.

The BRANCH AND SAVE (BAS, BASR)
instructions are provided to be used for
subroutine linkage to any program either
within the same CSECT or known to be in
the same addressing mode. BASR with the
R~ field 0 is also useful for obtaining
addressability to the instruction stream
by getting a 31-bit address, uncluttered
by leftmost fields, in the 24-bit
addressing mode. BAS and BASR are the
fastest linkage instructions since the
linkage information is not mode
sensitive and since the instructions do
not change the addressing mode.

The return instruction from a routine
called by BAS or BASR may be either

BR 14

or

BSM 0,14

In some cases, it may be desirable to
rewrite a program that is called by an
old program which has not been
rewritten. In such a case, the old
program, which operates in the 24-bit
addressing mode, will be given the
address of an intermediate program that
will set up the correct entry and return
modes and then call the rewritten
program. Such a program is sometimes
referred to as a glue module. The

Chapter 5. Program Execution 5-9

instruction BRANCH AND SET MODE (BSM)
with a nonzero Rt field provides the
function necessary to perform this oper
ation efficiently. This is shown in the
figure "Glu~Module."

Note that the "BSM 14,15" in the glue
module causes the addressing mode to be

saved in bit 0 of general register 14
and that bits 1-31 of general register
14 are unchanged. Thus, when "BSM 0,14"
is issued in the new program, control
passes directly back to the old program
without passing through the glue module
again.

Old Program Glue Module New Program

L 15,OLDVCON
BALR 14,15
•
•
•

OLDVCON DC V(GLUE)

Glue Module

GLUE USING *,15
L 15,NEWVCON
BSM 14,15

NEWVCON DC V(NEW)

5-10 370-XA Principles of Operation

NEW USING *,15
•
•
•

BSM 0,14

INTERRUPTIONS

Interruptions permit the CPU to change
state as a result of conditions external
to the system, in subchannels or
input/output (I/O) devices, in other
CPUs, or in the CPU itself. Details are
to be found in Chapter 6,
"Interruptions."

Six classes of interruption conditions
are provided: external, I/O, machine
check, program, restart, and supervisor
call. Each class has two related PSWs,
called old and new, in permanently
assigned real storage locations. In all
classes, an interruption involves stor
ing information identifying the cause of
the interruption, storing the current
PSW at the old-PSW location, and fetch
ing the PSW at the new-PSW location,
which becomes the current PSW.

The old PSW contains CPU-status informa
tion necessary for resumption of the
interrupted program. At the conclusion
of the program invoked by the inter
ruption, the instruction LOAD PSW may be
used to restore the current PSW to the
value of the old PSW.

TYPES OF INSTRUCTION ENDING

Instruction
five ways:
suppression,
completion.

execution ends in one of
completion, nullification,
termination, and partial

Partial completion of instruction
execution occurs only for interruptible
instructions; it is described in the
section "Interruptible Instructions"
later in this chapter.

Completion

Completion of instruction execution
provides results as called for in the
definition of the instruction. When an
interruption occurs after the completion
of the execution of an instruction, the
instruction address in the old PSW
designates the next sequential instruc
tion.

Suppression

Suppression of instruction execution
causes the instruction to be executed as
if it specified "no operation." The
contents of any result fields, including
the condition code, are not changed.
The instruction address in the old PSW
on an interruption after suppression

designates the next sequential instruc
tion.

Nullification

Nullification of instruction execution
has the same effect as suppression,
except that when an interruption occurs
after the execution of an instruction
has been nullified, the instruction
address in the old PSW designates the
instruction whose execution was nulli
fied instead of the next sequential
instruction.

Termination

Termination of instruction execution
causes the contents of any fields due to
be changed by the instruction to be
unpredictable. The operation may
replace all, part, or none of the
contents of the designated result fields
and may change the condition code if
such change is called for by the
instruction. Unless the interruption is
caused by a machine-check condition, the
validity of the instruction address in
the PSW, the interruption code, and the
ILC are not affected, and the state or
the operation of the machine is not
affected in any other way. The instruc
tion address in the old PSW on an
interruption after termination desig
na~es the next sequential instruction.

Programming Note

Although the execution of an instruction
is treated as a no-operation when
suppression or nullification occurs,
stores may be performed as the result of
the implicit tracing action associated
with some ins~ructions. See the section
"Tracing" in Chapter 4, "Control."

INTERRUPTIBLE INSTRUCTIONS

Point of Interruption

For most instructions, the entire
execution of an instruction is one oper
ation. An interruption is permitted
between operations; that is, an inter
ruption can occur after the performance
of one operation and before the start of
a subsequent operation.

For the following instructions, referred
to as interruptible instructions, an

Chapter 5. Program Execution 5-11

interruption is permitted after partial
completion of the instruction:

COMPARE LOGICAL LONG
MOVE LONG
TEST BLOCK

The execution of an interruptible
instruction is considered to consist in
the execution of a number of units of
operation, and an interruption is
permitted between units of operation.
The amount of data processed in a unit
of operation depends on the particular
instruction and may depend on the model
and on the particular condition that
causes the execution of the instruction
to be interrupted.

Whenever points of interruption that
include those occurring within the
execution of an interruptible instruc
tion are discussed, the term "unit of
operation" is used. For a noninterrup
tible instruction, the entire execution
consists, in effect, in the execution of
one unit of operation.

When an instruction consists of a number
of units of operation and an inter
ruption occurs after some, but not all,
units of operation have been completed,
the instruction is said to be partially
completed. In this case, the type of
ending (completion, suppression, nulli
fication) is associated with the unit of
operation. In the case of termination,
the entire instruction is terminated,
not just the unit of operation.

Execution of Interruptible Instructions

The execution of an interruptible
instruction is completed when all units
of operation associated with that
instruction are completed. When an
interruption occurs after completion,
nullification, or suppression of a unit
of operation, all preceding units of
operation have been completed.

On completion of a unit of operation
other than the last one (and on nullifi
cation of any unit of operation), the
instruction address in the old PSW
designates the interrupted instruction,
and the operand parameters are adjusted
such that the execution of the inter
rupted instruction is resumed from the
point of interruption when the old PSW
stored on the interruption is made the
current PSW. It depends on the instruc
tion how the operand parameters are
adjusted.

When a unit of operation is suppressed,
the instruction address in the old PSW
designates the next sequential instruc
tion. The operand parameters, however,
are adjusted so as to indicate the
extent to which instruction execution

5-12 370-XA Principles of Operation

has been completed. If the instruction
is reexecuted after the conditions caus
ing the suppression have been removed,
the execution is resumed from the point
of interruption. As in the case of
completion and nullification, it depends
on the instruction how the operand
parameters are adjusted.

When an exception which causes termi
nation occurs as part of a unit of oper
ation of an interruptible instruction,
the entire operation is terminated, and
the contents, in general, of any fields
due to be changed by the instruction are
unpredictable. On such an interruption,
the instruction address in the old PSW
designates the next sequential instruc
tion.

Programming Notes

1. Any interruption, other than super
visor call and some program inter
ruptions, can occur after a partial
execution of an interruptible
instruction. In particular, inter
ruptions for external, I/O,
machine-check, restart, and program
interruptions for aCcess exceptions
and PER events can occur between
units of operation.

2. The amount of data processed in a
unit of operation of an interrupti
ble instruction depends on the
model and may depend on the type of
condition which causes the
execution of the instruction to be
interrupted or stopped. Thus, when
an interruption occurs at the end
of the current unit of operation,
the length of the unit of operation
may be different for different
types of interruptions. Also, when
the stop function is requested
during the execution of an inter
ruptible instruction, the CPU
enters the stopped state at the
completion of the execution of the
current unit of operation. Simi
larly, in the instruction-step
mode, only a single unit of opera
tion is performed, but the unit of
operation for the various cases of
stopping may be different.

EXCEPTIONS TO NULLIFICATION AND
SUPPRESSION

In certain unusual situations, the
result fields of an instruction having a
store-type operand are changed in spite
of the occurrence of an exception which
would normally result in nullification
or suppression. These situations are
exceptions to the general rule that the
operation is treated as a no-operation

when an exception requlrlng nullifica
tion or suppression is recognized. Each
of these situations may result in the
turning on of the change bit associated
with the store-type operand, even though
the final result in storage may appear
unchanged. Depending on the particular
situation, additional effects may be
observable. The extent of these effects
is described along with each of the
situations.

All of these situations are limited to
the extent that a store access does not
occur and the change bit is not set when
the store access is prohibited. For the
CPU, a store access is prohibited when
ever an access exception exists for that
access, or whenever an exception exists
which is of higher priority than the
priority of an access exception for that
access.

When, in these situations, an interrup
tion for an exception requiring
suppression occurs, the instruction
address in the old PSW designates the
next sequential instruction. When an
interruption for an exception requiring
nullification occurs, the instruction
address in the old PSW designates the
instruction causing the exception even
though partial results may have been
stored.

storage Change and Restoration for
OAT-Associated ACCess Exception-s--

In this section, the term "DAT
associated access exceptions" is used to
refer to those exceptions which may
occur as part of the dynamic-address
translation process. These exceptions
are page translation, segment trans
lation, translation specification, and
addressing due to a DAT-table entry
being specified at a location that is
not available in the configuration. The
first two of these exceptions normally
cause nullification, and the last two
normally cause suppression. Protection
exceptions, including those due to page
protection, are not considered to be
DAT-associated access excepti~ns.

For OAT-associated access exceptions, on
some models, a channel may observe the
effects on storage as described in the
following case.

When, for an instruction having a
store-type operand, a OAT-associated
access exception is recognized for any
operand of the instruction, that
portion, if any, of the store-type oper
and which would not cause an exception
may be changed to an intermediate value
but is then restored to the original
value.

The accesses associated with storage
change and restoration for tAT
associated access exceptions are o,)ly
observable by a channel program and ~re
not observable by another CPU in a
multiprocessing configuration. Except
for instructions which are defined to
have multiple-access operands, the
intermediate value, if any, is always
equal to what would have been the final
value if the OAT-associated access
exception had not occurred.

Programming Notes

1. Storage change and restoration for
OAT-associated access exceptions
occur in two main situations:

a. The exception is recognized for
a portion of a store-type oper
and which crosses a page bound
ary, and the other portion has
no access exception.

b. The exception 1S recognized for
one operand of an instruction
having two storage operands
(for example, an SS-format
instruction or MOVE LONG), and
the other operand, which is a
store-type operand, has no
access exception.

2. To avoid letting a channel program
observe intermediate operand values
due to storage change and restora
tion for OAT-associated access
exceptions (especially when a CCW
chain is modified), the CPU program
should do one of the following:

• Operate on one storage page at
a time

• Perform preliminary t~sting to
ensure that no exceptions occur
for any of the required pages

• Operate with OAT off

Modification of OAT-Table Entries

When a valid and attached OAT-table
entry is changed to a value which would
cause an exception, and when, before the
TLB is cleared of entries which qualify
for substitution for that entry, an
attempt is made to refer to storage by
using a virtual address requiring that
entry for translation, the contents of
any fields due to be changed by the
instruction are unpredictable. Results,
if any, associated with the virtual
address whose OAT-table entry was
changed may be placed in those real
locations originally associated with the
address. Furthermore, it is unpredict-

Chapter 5. Program Execution 5-13

able whether or not an interruption
occurs for an access exception that was
not initially applicable.

Trial Execution for Editing Instructions
and TRANSLATE

For the instructions EDIT, EDIT AND
MARK, and TRANSLATE, the portions of the
operands that are actually used in the
operation may be established in a trial
execution for operand accessibility that
is performed before the execution of the
instruction is started. This trial
execution consists in an execution of
the instruction in which results are not
stored. If the first operand of TRANS
LATE or either operand of EDIT or EDIT
AND MARK is changed by a channel program
or by another CPU, after the initial
trial execution but before completion of
execution, the contents of any fields
due to be changed by the instruction are
unpredictable. Furthermore, it is
unpredictable whether or not an inter
ruption occurs for an access exception
that was not initially applicable.

Interlocked Update for Nullification and
Suppression

When an exception which is defined to
cause suppresSlon or nullification is
recognized for an instruction with a
store-type operand, an interlocked
update which does not change the
contents of the location may occur for
that portion, if any, of the store-type
operand for which no access exception
exists. The interlocked update can
occur only if the priority of the excep
tion is equal to or lower than the
priority of an access exception for the
store-type operand.

When the exception is a specification
exception for a store-type operand which
requires alignment on integral bounda
ries, the interlocked update which may
occur is limited to the single byte at
the location specified by the operand
address.

5-14 370-XA Principles of Operation

Programming Note

The interlocked update is only observa
ble by channel programs; it is not
observable by other CPUs. Examples of
when an interlocked update may occur to
the destination-operand location in
storage are:

• Decimal-divide exception for DIVIDE
DECIMAL

• Specification exception for an odd
register number for COMPARE DOUBLE
AND SWAP

• Data exception for an invalid deci
mal sign for ADD DECIMAL

AUTHORIZATION MECHANISMS

The authorization mechanisms which are
described in this section permit the
control program to establish the degree
of function which is provided to a
particular semiprivileged program. (A
summary of the authorization mechanisms
is given in the figure "Summary of
Authorization Mechanisms.") The authori
zation mechanisms are intended for use
by programs considered to be semiprivi
leged, that is, programs which are
executed in the problem state but which
may be authorized to use additional
capabilities. With these authorization
controls, a hierarchy of programs may be
established, with programs at a higher
level having a greater degree of privi
lege or authority than programs at a
lower level. The range of functions
available at each level, and the ability
to transfer control from a lower to a
higher level, are specified in tables
which are managed by the control
program.

The 13 instructions which are controlled
by the authorization mechanisms are
called semiprivileged instructions and
are described in Chapter 10, "Control
Instructions." The 13 semiprivileged
instructions, along with the privileged
instruction LOAD ADDRESS SPACE PARAME
TERS, are listed in the next figure,
"Summary of Authorization Mechanisms."

The authorization mechanisms are defined
such that if zeros are placed in the
associated control-register positions, a
problem program attempting to use the
semiprivileged instructions causes a
privileged-operation or special
operation exception to be recognized,
and the operation is suppressed.

Mode Requirements

Most of the semiprivileged instructions
can be executed only with DAT on.
PROGRAM CALL and PROGRAM TRANSFER are
valid only in primary-space mode. When
a semiprivileged instruction is executed
in an invalid translation mode, a
special-operation exception is recog
nized.

PROGRAM TRANSFER specifies a new value
for the problem-state bit In the PSW.
If a program in the problem state
attempts to execute PROGRAM TRANSFER and
set the supervisor state, a privileged
operation exception is recognized.

Extraction-Authority Control

The extraction-authority-control bit is
located in bit position 4 of control
register O. In the problem state, bit 4
must be one to allow completion of these
instructions:

EXTRACT PRIMARY ASN
EXTRACT SECONDARY ASN
INSERT ADDRESS SPACE CONTROL
INSERT PSW KEY
INSERT VIRTUAL STORAGE KEY

otherwise, a privileged-operation excep
tion is recognized, and the operation is
suppressed. The extraction-authority
control bit is not examined in the
supervisor state.

PSW-Key Mask

The PSW-key mask consists of bits 0-15
in control register 3. These bits are
used in the problem state to control
which keys and entry points are author
ized for the program. The PSW-key mask
is modified by PROGRAM CALL and PROGRAM
TRANSFER and is loaded by LOAD ADDRESS
SPACE PARAMETERS. The PSW-key mask is
used in the problem state to control the
following.

• The PSW-key values that can be set
by means of the instruction SET PSW
KEY FROM ADDRESS.

•

•

The PSW-key values that are valid
for ~ the three move instructions
that specify a second access key:
MOVE TO PRIMARY, MOVE TO SECONDARY,
and MOVE WITH KEY.

The entry points which can be
called by means of PROGRAM CALL.
In this case, the PSW-key mask is
ANDed with the authorization key
mask in the entry-table entry, and,

if the result is zero, the program
is not a~thorized.

When an instruction in the problem state
attempts to use a key not authorized by
the PSW-key mask, a privileged-operation
exception is recognized, and the opera
tion is suppressed. The same action is
taken when an instruction in the problem
state attempts to call an entry not
authorized by the PSW-key mask. The
PSW-key mask is not examined in the
supervisor state, all keys and entry
points being valid.

Secondary-Space Control

Bit 5 of control register 0 is the
secondary-space-control bit. This bit
provides a mechanism whereby the control
program can indicate whether or not the
secondary segment table has been estab
lished. Bit 5 must be one to allow
completion of these instructions:

MOVE to PRIMARY
MOVE TO SECONDARY
SET ADDRESS SPACE CONTROL

Otherwise, a special-operation exception
is recognized, and the operation is
suppressed. Jhe secondary-space-control
bit is examined in both the problem and
supervisor states.

Subsystem-Linkage Control

Bit 0 of control register 5 is the
subsystem-linkage-control bit. Bit 0
must be one to allow completion of these
instructions:

PROGRAM CALL
PROGRAM TRANSFER

Otherwise, a special-operation exception
is recognized, and the operation is
suppressed. The subsystem-linkage
control bit is examined in both the
problem and supervisor states and
controls both the space-switching and
current-primary versions of the
instructions.

ASN-Translation Control

Bit 12 of control register 14 is the
ASN-translation-control bit. This bit
provides a mechanism whereby the control
program can indicate whether ASN trans
lation may occur while a particular
program is being executed. Bit 12 must
be one to allow completion of these
instructions:

Chapter 5. Program Execution 5-15

LOAD ADDRESS SPACE PARAMETERS
SET SECONDARY ASN
PROGRAM CALL with space switching
PROGRAM TRANSFER with space switch-

ing

Otherwise, a special-operation exception
is recognized, and the operation is
suppressed. The ASN-translation-control
bit is examined in both the problem and
supervisor states.

Authorization Index

The authorization index is contained in
bits 0-15 of control register 4. The
authorization index is associated with
the primary address space and is loaded
along with the PASN when PROGRAM CALL
with space switching, PROGRAM TRANSFER
with space switching, or LOAD ADDRESS
SPACE PARAMETERS is executed. The
authorization index is used to determine
whether a program is authorized to
establish a particular address space. A
program may be authorized to establish
the address space as a secondary-address
space, as a primary-address space, or
both.

Associated with each address space is an
authority table. The authorization
index is used to select an entry in the

5-16 370-XA Principles of Operation

authority table. Each entry contains
two bits, which indicate whether the
program with that authorization index is
permitted to establish the address space
as a primary address space, as a second
ary address space, or both.

The instruction SET SECONDARY ASN with
space switching uses the authorization
index to test the secondary-authority
bit in the authority-table entry to
determine if the address space can be
established as a secondary address
space. The tested bit must be one;
otherwise, a secondary-authority excep
tion is recognized, and the operation is
nullified.

The instruction PROGRAM TRANSFER with
space switching uses the authorization
index to test the primary authority bit
in the authority-table entry to deter
mine if the address space can be estab
lished as a primary address space. The
tested bit must be one; otherwise, a
primary-authority exception is recog
nized, and the operation is nullified.

The instruction PROGRAM CALL with space
switching causes a new authorization
index to be loaded from the ASN-second
table entry. This permits the program
which is called to be given an authori
zation index which authorizes it to
access more address spaces than those
authorized for the calling program.

Authorization Mechanism

ASN- PSW- Space-
Mode Translation- Key Mask Switch-

Requirement Subsystem- Secondary- Control Extraction- (CR3.0-1S) Authori- Event-
linkage Space (CR14.12) Authority zation Control

Priv Trans Control Control Control Bit AND Index Bit
Instr Op Mode (CR5.0) (CRO.S) Un cd Cond (CRO.4) Test AKMI (CR4.0-1S) (CIU .0)

EPAR 50-PS Q
ESAR SO-PS Q
lAC 50-PS Q
IPK Q
IVSK 50-PS Q
lASP P SO CC CC

MVCP 50-PS SO Q
MVCS 50-PS 50 Q
MVCK Q
PC-cp SO-P SO Q
PC-ss SO-P 50 SO Q X

PT-cp QZ 50-P SO
PT-ss QZ SO-P SO SO PA X
SAC SO-PS 50
SPKA Q
SSAR-cp SO-PS SO
SSAR-ss SO-PS SO SA

Explanation:

The PSW-key mask is ANDed with the authorization key mask in the entry-table entry.

The exception is recognized on an attempt to set supervisor state ,when in problem state.

CC Space-switch-event-control bit and authorization index tests cause a condition code to
be set.

CRx.y

P

Control register x, bit position y.

Privileged-operation exception ~or privileged instruction.

PA Authority checked in problem and supervisor states; violation causes a primary-authority
exception.

Q Privileged-operation exception ~or semiprivileged instruction. Authority checked only
in problem state.

SO Authority checked in problem and supervisor states; violation causes a special
operation exception.

SO-PS CPU must be in primary-space mode or secondary-space mode; if the CPU is in real mode,
a special-operation exception is recognized in both problem and supervi~.or states.

SO-P CPU must be in primary-space mode; if the CPU is in secondary-space mode or in real
mode, a special-operation exception is recognized in both problem and supervisor states.

SA Authority checked in problem and supervisor states; violation causes a secondary
authority exception.

X When bit 0 of control register 1 is one, a space-switch event is recognized. The
operation is completed. The event is recognized in both the problem and supervisor
states.

Summary of Authorization Mechanisms

PC-NUMBER TRANSLATION

PC-number translation is the process of
translating the 20-bit PC number to
locate an entry-table entry as part of
the execution of the PROGRAM CALL
instruction. To perform this trans
lation, the 20-bit PC number is divided
into two fields. Bits 12-23 are the
linkage index (LX), and bits 24-31 are
the entry index (EX). The format of the
effective address, from which the

PC-number is taken, is shown in the
following diagram:

1////////////1 LX EX

0 12 24 31

The translation is performed by means of
two tables: a linkage table and an
entry table. Both of these tables
reside in real storage. The linkage
table designation resides in control

Chapter 5. Program Execution 5-17

register 5. The entry table is desig
nated by means of a linkage-table entry.

PC-NUMBER TRANSLATION CONTROL

PC-number translation is controlled by
means of the linkage-table designation
in control register 5. The register has
the following format:

Ivl Linkage-Table Origin LTL

o 1 25 31

Subsystem-Linkage Control (V): Bit 0 of
control register 5 is the sUbsystem
linkage-control bit. Bit 0 must be one
to allow completion of these
instructions:

PROGRAM CALL
PROGRAM TRANSFER

Otherwise, a special-operation exception
is recognized, and the operation is
suppressed. The system-linkage-control
bit is examined in both the problem and
supervisor states and controls both the
space-switching and current-primary
versions of the instructions.

Linkage-Table Origin: Bits 1-24 of
control register 5, with seven zeros
appended on the right, form a 31-bit
real address that designates the begin
ning of the linkage table.

Linkage-Table Length (LTL): Bits 25-31
of control register 5 designate the
length of the linkage table in units of
128 bytes, thus making the length of the
linkage table variable in multiples of
32 four-byte entries. The length of the
linkage table, in units of 128 bytes, is
one more than the value in bit positions
25-31. The linkage-table length is
compared against the leftmost seven bits
of the linkage-index portion of the PC
number to determine whether the linkage
index designates an entry within the
linkage table.

PC-NUMBER TRANSLATION TABLES

The PC-number translation process
consists in a two-level lookup using two

5-18 370-XA Principles of Operation

tables: a linkage table and an entry
table. These tables reside in real
storage.

Linkage-Table Entries

The linkage-index portion of the PC
number is used to select a linkage-table
entry. The entry fetched from the link
age table designates the availability,
origin, and length of the corresponding
entry table.

An entry in the linkage table has the
following format:

III Entry-Table Origin ETL

o 1 26 31

The fields in the linkage-table entry
are allocated as follows:

LX Invalid Bit (I): Bit 0 controls
whether the-entry--table associated with
the linkage-table entry is available.

When the bit is zero, PC-number trans
lation proceeds by using the linkage
table entry. When the bit is one, an
LX-translation exception is recognized,
and the operation is nullified.

Entry-Table Origin: Bits 1-25, with six
zeros appended on the right, form a
31-bit real address that designates the
beginning of the entry table.

Entry-Table Length (ETL): Bits 26-31
designate the length of the entry table
in units of 64 bytes, thus making the
entry table variable in multiples of
four 16-byte entries. The length of the
entry table, in units of 64 bytes, is
one more than the value in bit positions
26-31. The entry-table length is
compared against the leftmost six bits
of the entry index to determine whether
the entry index designates an entry
within the entry table.

Entry-Table Entries

The entry fetched from the entry table
is 16 bytes in length and has the
following format:

Auth Key Mask ASN

o 16 31

IAI Entry Instruction Address Ipt
32 63

Entry Parameter

64 95

I Entry Key Mask 1////////////////1

96 112 127

The fields in the entry-table entry are
allocated as follows:

Authorization Key Mask: Bits 0-15 are
used to verify whether the program issu
ing the PROGRAM CALL instruction, when
in the problem state, is authorized to
call this entry point. The authori
zation key mask and the current PSW-key
mask in control register 3 are ANDed,
and the result is checked for all zeros.
If the result is all zeros, a
privileged-operation exception is recog
nized, and the operation is suppressed.
The test is not performed in the super
visor state.

ASN: Bits 16-31 specify whether a PC-ss
or PC-cp is to occur. When bits 16-31
are zeros, a PC-cp is specified. When
bits 16-31 are not all zeros, a PC-ss is
specified, and the bits contain the ASN
that replaces the primary ASN.

Entry Addressing Mode (A): Bit 32
replaces the addressing-mode bit, bit 32
of the current PSW, as part of the
PROGRAM CALL operation. When bit 32 is
zero, bits 33-39 must also be zero;
otherwise, a PC-translation-specifica
tion exception is recognized, and the
operation is suppressed.

Entry Instruction Address: Bits 33-62,
with a zero appended on the right, form
the instruction address which replaces
the instruction address in the PSW as
part of the PROGRAM CALL operation.

Entry Problem State (P): Bit
replaces the problem-state bit,
of the current PSW, as part
PROGRAM CALL operation.

63
bit 15

of the

Entry Parameter: Bits 64-95 are placed
in general register 4.

Entry Key Mask: Bits 96-111 are ORed
into the PSW key mask in control regis
ter 3 as part of the PROGRAM CALL opera
tion.

Programming Note

The entry parameter is intended to
provide the called program with an
address which can be depended upon and
used as the basis of addressability in
locating necessary information which may
be environment-dependent. The parameter
may be appropriately changed for each
environment by setting up different
entry tables. The alternative-
obtaining this information from the
calling program -- may require extensive
validity checking or may present an
integrity exposure.

PC-NUMBER-TRANSLATION PROCESS

The translation of the PC number is
performed by means of a linkage table
and entry table both of which reside in
real storage.

For the purposes of PC-number trans
lation, the 20-bit PC number is divided
into two parts: the leftmost 12 bits
are called the linkage index (LX), and
the rightmost eight bits are called the
entry index (EX). The LX is used to
select an entry from the linkage table,
the starting address and length of which
are specified by the contents of the
linkage-table designation in control
register 5. This entry designates the
entry table to be used. The EX field of
the PC number is then used to select an
entry from the entry table.

When, for the purposes of PC-number
translation, accesses are made to main
storage to fetch entries from the link
age table and entry table, key
controlled protection does not apply.

The PC-number-translation process is
shown in the figure "PC-Number Trans
lation."

Chapter 5. Program Execution 5-19

CR5

Linkage Table
-~ +

I
R I I ETO IETL

(x64)

1
Entry Table ---.

R AKM IA

R: Address is real

PC-Number Translation

Linkage-Table Lookup

The linkage-index (LX) portion of the PC
number, in conjunct i on wi th the
linkage-table origin, is used to select
an entry from the linkage table.

The 31-bit real address of the linkage
table entry is obtained by appending
seven zeros on the right to the contents
of bit positions 1-24 of control regis
ter 5 and adding the linkage index, with
two rightmost and 17 leftmost zeros
appended. A carry, if any, into bi t
position 0 is ignored. All 31 bits of
the address are used, regardless of
whether the current PSW specifies the
24-bit or 31-bit addressing mode.

As part of the linkage-table-Iookup
process, the leftmost seven bits of the
linkage index are compared against the
linkage-table length, bits 25-31 of
control register 5, to establish whether
the addressed entry is within the link
age table. If the value in the
linkage-table-Iength field is less than

5-20 370-XA Principles of Operation

PC Number

P PARM ////////

the value in the seven leftmost bits of
the linkage index, an LX-translation
exception is recognized.

All four bytes of the linkage-table
entry are fetched concurrently. The
fetch access is not subject to
protection. When the storage address
which is generated for fetching the
linkage-table entry designates a
location which is not available in the
configuration, an addressing exception
is recognized, and the operation is
suppressed.

Bit 0 of the linkage-table entry speci
fies whether the entry table correspond
ing to the linkage index is available.
This bit is inspected, and, if it is
one, an LX-translation exception is
recognized.

When no exceptions are recognized in the
process of linkage-table lookup, the
entry fetched from the linkage table
designates the origin and length of the
corresponding entry table.

Entry-Table lookup

The entry-index (EX) portion of the PC
number, in conjunction with the entry
table origin contained in the linkage
table entry, is used to select an entry
from the entry table.

The 31-bit real address of the entry
table entry is obtained by appending six
zeros on the right to the entry-table
origin and adding the entry index, with
four rightmost and 19 leftmost zeros
appended. A carry~ if any, into bit
position 0 is ignored. All 31 bits of
the address are used, regardless of
whether the current PSW specifies the
24-bit or 31-bit addressing mode.

As part of the entry-table-lookup proc
ess, the six leftmost bits of the entry
index are compared against the entry
table length, bits 26-31 of the
linkage-table entry, to establish wheth
er the addressed entry is within the
table. If the value in the entry-table
length field is less than the value in
the six leftmost bits of the entry
index, an EX-translation exception is
recognized.

The 16-byte entry-table entry is fetched
by using the real address. The entry is
fetched left to right, a word at a time.
The fetch access is not subject to
protection. When the storage address
which is generated for fetching the
entry-table entry designates a location
which is not available in the configura
tion, an addressing exception is
recognized, and the operation is
suppressed.

The use that is made of the information
fetched from the entry-table entry is
described in the definition of the
PROGRAM CAll instruction.

Recognition of Exceptions During
PC-Number Translation

The exceptions which can be encountered
during the PC-number-translation process
and their priority are described in the
definition of the PROGRAM CAll instruc
tion.

SEQUENCE OF STORAGE REFERENCES

Conceptually, the CPU processes
instructions one at a time, with the
execution of one instruction preceding
the execution of the following instruc
tion. The execution of the instruction
specified by a successful branch follows
the execution of the branch. Similarly,
an interruption takes place between

instructions or, for interruptible
instructions, between units of operation
of such instructions.

The sequence of events implied by the
processing just described is sometimes
called the conceptual sequence.

Each operation appears to the program to
be performed sequentially, with the
current instruction being fetched ~fter
the preceding operation is completed and
before the execution of the current
operation is begun. This appearance is
maintained, even though the storoge
implementation characteristics and
overlap of instruction execution with
storage accessi ng may cause actual pr\)c
essing to be different. The results
generated are those that would have been
obtained had the operations been
performed in the conceptual sequence.
Thus, it is possible for an instruction
to modifY the next succeeding instruc
tion in storage.

In simple models in which operations are
not overlapped, the conceptual and actu
al sequences are essentially the same.
However, in more complex machines, over
lapped operation, buffering of operands
and results, and execution times which
are comparable to the propagation delays
between units can cause the actual
sequence to differ considerably from the
conceptual sequence. In these machines,
special circuitry is employed to detect
dependencies between operations and
ensure that the results obtained, as
observed by the CPU which generates
them, are those that would have been
obtained if the operations had been
performed in the conceptual sequence.
However, channel programs, and other CPU
programs may, unless otherwise
constrained, observe a sequence that
differs from the conceptual sequence.
Also, in certain situations involving
dynamic address translation where
different virtual addresses map to the
same real address, the effect of its own
overlapped operation may be observable
by the CPU itself.

It can normally be assumed that the
execution of each instruction occurs as
an indivisible event. However, in actu
al operation, the execution of an
instruction consists in a series of
discrete steps. Depending on the
instruction, operands may be fetched and
stored in a piecemeal fashion, and some
delay may occur between fetching oper
ands and storing results. As a
consequence, a channel or another CPU
may be able to observe intermediate or
partially completed results.

When a program on the CPU interacts with
a channel program or another CPU
program, the programs may have to take
into consideration that a single opera
tion may consist in a series of storage
references, that a storage reference may

Chapter 5. Program Execution 5-21

in turn consist in a series of accesses,
and that the conceptual and actual
sequences of these accesses may differ.
storage references associated with
instruction execution are of the follow
ing types: instruction fetches,
OAT-table fetches, and storage-operand
references. For the purposes of the
following discussion, storage-key
accesses are also considered to be stor
age references.

Programming Note

The sequence of execution may differ
from the simple conceptual definition in
the following ways.

• As viewed by a program in the CPU,
instructions may appear to be
prefetched when different effective
addresses are used. (See the
section "Interlocks for Virtual
Storage References" in this
chapter.)

• As viewed by a channel program or
another CPU program, the execution
of an instruction may appear to be
performed as a sequence of piece
meal steps. This is described for
each type of storage reference in
one of the following sections.

• As viewed by a channel program or
another CPU program, the storage
operand accesses associated with
one instruction are not necessarily
performed in the conceptual
sequence. (See the section
"Relation Between Operand Accesses"
in this chapter.)

• As viewed by a channel program, in
certain unusual situations, the
contents of storage may appear to
change and then be restored to the
original value. (See the section
"Storage Change and Restoration for
OAT-Associated Access Exceptions"
earlier in this chapter.)

INTERLOCKS FOR VIRTUAL-STORAGE REFER
ENCES

As described in the previous section,
CPU operation appears to that CPU to be
performed sequentially; the results
stored by one instruction appear to the
CPU to be completed before the next
instruction is fetched. This appearance
is maintained in overlapped machines by
means of special circuitry to detect
accesses to a common location by compar
ing effective addresses.

For purposes of this definition,
term "effective address" is used

5-22 370-XA Principles of Operation

the
to

denote the address before translation,
if any, regardless of whether the
address is virtual, real, or absolute.
If two effective addresses have the same
value and map to the same absolute
location, thp. effective addresses are
said to be the same even though one may
be real or in a different address space.

When all accesses to a main-storage
location are made by using the same
effective address, then the above rule
is strictly maintained, as observed by
the CPU itself. When different effec
tive addresses are used to access the
common location, the above rule does not
hold in two cases:

1. For some instructions, the defi
nition specifies the results which
must be obtained for overlapping
operands. This definition is spec
ified in terms of the sequence of
the storage accesses; that is, the
results of some or all of the
stores of one operand must be
placed in storage before some pNrts
or all parts of the other operand
are fetched. When the store and
the fetch are performed by means of
different effective addresses, tl1en
the operand may appear to be
fetched before the store.

2. When an instruction changes the
contents of a main-storage location
from which a conceptually subse
quent instruction is to be
executed, either directly or by
means of EXECUTE, and when differ
ent effective addresses are used to
designate that location for storing
the result and fetching the
instruction, the instruction may
appear to be fetched before the
store occurs. This does not occur
if an intervening operation causes
the prefetched instructions to be
discarded. A definition of when
prefetched instructions must be
discarded is included in the
section "Instruction Fetching" in
this chapter.

Any change to the storage key appears to
be completed before the conceptually
following reference to the associated
storage block is made, regardless of
whether the reference to the storage
location is made by a virtual, real, or
absolute address. Analogously, any
conceptually prior references to the
storage block appear completed when the
key fo~ that block is changed or
inspected.

Programming Note

A single main-storage location can be
accessed in several ways by more than
one address.

1. The OAT tables may be set up in
such a way that multiple addresses
in a single address space, or
virtual addresses in different
address spaces, map to a single
real address.

2. The translation of logical,
instruction, and virtual addresses
may be changed by loading the DAT
parameters in the control
registers, by changing the
address-space-control bit in the
PSW, or, for logical and instruc
tion addresses, by turning DAT on
or off.

3. Certain instructions use real
addresses, and the instructions
MOVE TO PRIMARY and MOVE TO SECOND
ARY access two address spaces.

4. Accesses to storage for the purpose
of storing and fetching information
for interruptions is performed by
means of real addresses, and, for
the store-status function, by means
of absolute addresses, whereas
accesses by the program may be by
means of virtual addresses.

5. The real-to-absolute mapping may be
changed by means of the SET PREFIX
instruction or a reset.

6. A main-storage location may be
accessed by channel programs by
means of an absolute address and by
the CPU by means of a real or a
virtual address.

7. A main-storage location may be
accessed by another CPU by means of
one type of address and by this CPU
by means of a different type of
address.

The primary purpose of this section is
to describe the effects caused by case 1
above.

For case 2, the effect is not observable
since prefetched instructions are
discarded and the effect of delayed
stores is not observable to the CPU
itself.

For case 3, for those instructions which
fetch by using real addresses (for exam
ple, LOAD REAL ADDRESS), no effect is
observable. This is because the only
effect across instructions is the
prefetching of instructions, and
instructions which fetch by using real
addresses thus have no special effect.
All instructions which store by using a
real address or which store into another
address space cause prefetched
instructions to be discarded, and no
effect is observable.

Cases 4 and 5 are situations which are
defined to cause serialization, with the
result that prefetched instructions are

discarded. In these cases, no effect is
observable.

The handling of cases 6 and 7 involves
accesses as observed by channel programs
and other CPUs and is covered in the
following sections in this chapter.

INSTRUCTION FETCHING

Instruction fetching consists in fetch
ing the one, two, or three halfwords
specified by the instruction address in
the current PSW. The immediate field of
an instruction is accessed as part of an
instruction fetch. If, however, an
instruction specifies a storage operand
at the location occupied by the instruc
tion itself, the location is accessed
both as an instruction and as a storage
operand. The fetch of the target
instruction of EXECUTE is considered to
be an instruction fetch.

The bytes of an instruction may be
fetched piecemeal and are not necessar
ilyaccessed in a left-to-right direc
tion. The instruction may be fetched
multiple times for a single execution;
for example, it may be fetched for test
ing the addressability of operands or
for inspectio~ of PER events, and it may
be refetched for actual execution.

Instructions ~re not necessarily fetched
in the sequence in which they are
conceptually executed and are not neces
sarily fetched each time they are
executed. In particular, the fetching
of an instruction may precede the
storage-operand references for an
instruction that is conceptually
earlier. The instruction fetch occurs
prior to all storage-operand references
for all instructions that are conceptu
ally later.

An instruction may be prefetched by
using a virtual address only when the
associated DAT table entries are
attached and valid or when entries which
qualify for substitution for the table
entries exist in the TLB. Instructions
which are prefetched may be interpreted
for execution only for the same virtual
address for which the instruction was
prefetched.

No limit is established as to the num,)er
of instructions which m~y be prefetch~d,
and multiple copies of the contents of a
single storage location may be fetched.
As a result, the instruction executed is
not necessarily the most recently
fetched copy. Storing caused by channel
programs or by other CPU programs does
not necessarily change the copy of
prefetched instructions. However, if a
store that is conceptually earlier
occurs on the same CPU using the same
effective address as that by which the

Chapter 5. Program Execution 5-23

instruction is subsequently fetched, the
updated information is obtained.

All copies of prefetched instructions
are discarded when:

• A serializing function is performed

• The CPU enters the operating state

• The CPU changes from one to another
of the following modes: primary
space mode, secondary-space mode,
and real mode

• A change is made to
parameter in control
7 when OAT is on

a translation
register 1 or

Programming Notes

1. As observed by a CPU itself, its
own instruction prefetching is not
normally apparent; the only excep
tion occurs when multiple virtual
addresses in a single address
space, or virtual addresses in
different address spaces, map to a
single real address. This is
described in the section "Inter
locks for Virtual-Storage
References" in this chapter.

2. The following are some effects of
instruction prefetching on the
execution of a CPU program as
viewed by another CPU or channel
program.

If a channel program or another CPU
program changes the contents of a
storage location and then sets a
flag to indicate that the change
has been made, a CPU can test and
find the flag set but subsequently
can branch to the modified location
and execute the original contents.
Additionally, when a channel
program or another CPU program
modifies an instruction, it is
possible for the CPU program to
recognize the changes to some but
not all bit positions of ~he
instruction.

It is possible for a CPU to
prefetch an instruction and subse
quently, before the instruction is
executed, for another CPU to change
the storage key. As a result, a
CPU may appear to execute
instructions from a protected stor
age location.

OAT-TABLE FETCHES

The fetching of dynamic-address
translation (OAT) table entries may

5-24 370-XA Principles of Operation

occur as follows:

1. A OAT-table entry may be prefetched
into the translation-Iookaside
buffer (TLB) and used from the TLB
without refetching from storage,
until the entry is cleared by an
INVALIDATE PAGE TABLE ENTRY, PURGE
TLB, or SET PREFIX instruction or
by CPU reset. OAT-table entries
are not necessarily fetched in the
sequence conceptually called for;
they may be fetched at any time
they are attached and valid,
including during the execution of
conceptually previous instructions.

2. All bytes of a OAT-table entry are
fetched concurrently, as viewed by
all CPUs in the configuration.
However, the reference to the entry
may appear to access a single byte
at a time, as viewed by channel
programs.

3. A OAT-table entry may be fetched
even after some operand references
for the instruction have already
occurred. The fetch may occur as
late as just prior to the actual
byte access requiring the OAT-table
entry.

4. A OAT-table entry may be fetched
for each use of the address,
including any trial execution, and
for each reference to each byte of
each operand.

5. The OAT page-table-entry fetch
precedes the reference to the page.
When no copy of the page-table
entry is in the TLB, the fetch of
the associated segment-table entry
precedes the fetch of the page
table entry.

STORAGE-KEY ACCESSES

References to the storage
handled as follows:

key are

1. Whenever a reference to storage is
made and key-controlled protect10n
applies to the reference, the four
access-control bits and the fetch
protection bit associated with the
storage location are inspected
concurrently with the reference to
the storage location.

2. When storing is performed, the
change bit is set in the associated
storage key concurrently with the
store operation.

3. The instruction SET STORAGE KEY
EXTENDED causes all seven bits to
be set concurrently in the storage
key. The access to the storage key
for SET STORAGE KEY EXTENDED

follows the sequence rules for
storage-operand store references
and is a single-access reference.

4. The INSERT STORAGE KEY EXTENDED
provides a consistent image of bits
0-6 of the storage key. Similarly,
the instructions INSERT VIRTUAL
STORAGE KEY and TEST PROTECTION
provide a consistent image of bits
0-4 of the storage key. The access
to the storage key for all of these
instructions follows the sequence
rules for storage-operand fetch
references and is a single-access
reference.

5. The instruction RESET REFERENCE BIT
EXTENDED modifies only the refer
ence bit. All other bits of the
storage key remain unchanged. The
reference bit and change bit are
examined concurrently to set the
condition code. The access to the
storage key for RESET REFERENCE BIT
EXTENDED follows the sequence rules
for storage-operand update refer
ences. The reference bit is the
only bit which is updated.

The record of references provided by the
reference bit is not necessarily accu
rate, and the handling of the reference
bit is not subject to the concurrency
rules. However, in the majority of
situations, reference recording approxi
mately coincides with the storage
reference.

The change bit may be set in cases when
no storing has occurred. See the
section "Exceptions to Nullification and
Suppression" in this chapter.

STORAGE-OPERAND REFERENCES

A storage-operand reference is the
fetching or storing of the explicit
operand or operands in the storage
locations specified by the instruction.

During the execution of an instruction,
all or some of the storage operands for
that instruction may be fetched, inter
mediate results may be maintained for
subsequent modification, and final
results may be temporarily held prior to
placing them in storage. Stores caused
by channel programs do not necessarily
affect these intermediate results.
Storage-operand references are of three
types: fetches, stores, and updates.

Storage-Operand Fetch References

When the bytes of a storage operand
participate in the instruction execution

only as a source, the operand is called
a fetch-type operand, and the reference
to the location is called a storage
operand fetch reference. A fetch-type
operand is identified in individual
instruction definitions by indicating
that the access exception is for fetch.

All bits within a single byte of a fetch
reference are accessed concurrently.
When an operand consists of more than
one byte, the bytes may be fetched from
storage piecemeal, one byte at a time.
Unless otherwise specified, the bytes
are not necessarily fetched in any
particular sequence.

Storage-Operand Store References

When the bytes of a storage operand
participate in the instruction execution
only as a destination, to the extent of
being replaced by the result, the oper
and is called a store-type operand, and
the reference to the location is called
a storage-operand store reference. A
store-type operand is identified in
individual instruction definitions by
indicating that the access exception is
for store.

All bits within a single byte of a store
reference are accessed concurrently.
When an operand consists of more than
one byte, the bytes may be placed in
storage piecemeal, one byte at a time.
Unless otherwise specified, the bytes
are not necessarily stored in any
particular sequence.

The CPU may delay placing results in
storage. There is no defined limit on
the length of time that results may
remain pending before they are stored.

This delay does not affect the sequence
in which results are placed in storage.
The results of one instruction are
placed in storage after the results of
all preceding instructions have been
placed in storage and before any results
of the succeeding instructions are
stored, as observed by channel programs
and other CPU programs. The results of
anyone instruction are stored in the
sequence specified for that instruction.

The CPU does not fetch operands or
OAT-table entries from a storage
location unti1 all information destined
for that location by the CPU has been
stored. Prefetched instructions may
appear to be updated before the informa
tion appears in storage.

The stores are necessarily completed
only as a result of a serializing opera
tion and before the CPU enters the
stopped state.

Chapter 5. Program Execution 5-25

storage-Operand Update References

In some instructions, the storage
operand location participates both as a
source and as a destination. In these
cases, the reference to the location
consists first in a fetch and subse
quently in a store. The operand is
called an update-type operand, and the
combination of the two accesses is
referred to as an update reference.
Instructions such as MOVE ZONES, TRANS
LATE, OR (OC, 01), and ADD DECIMAL cause
an update to the first-operand location.
In most cases, no special interlock is
provided between the fetch and store,
and accesses by channel programs and
other CPU programs are permitted. An
update-type operand is identified in the
individual instruction definition by
indicating that the access exception is
for both fetch and store. The fetch and
store accesses associated with an update
reference do not necessarily occur one
immediately after the other, and it is
possible for a channel program or anoth
er CPU program to make one or more
interleaved accesses to the same
location. The interleaved accesses can
be either fetches or stores.

The following instructions perform an
update which is interlocked against
accesses by another CPU to the same
location during the execution of the
instruction. The instructions INVALI
DATE PAGE TABLE ENTRY, TEST AND SET,
COMPARE AND SWAP, and COMPARE DOUBLE AND
SWAP cause an interlocked update. On
models in which the STORE CHARACTERS
UNDER MASK instruction with a mask of
zero fetches and stores the byte desig
nated by the second-operand address, the
fetch and store accesses are an inter
locked update.

The fetch and store accesses associated
with an interlocked-update reference do
not necessarily occur one immediately
after the other, but all accesses by
another CPU are prevented from occurring
between the fetch and the store accesses
of an interlocked update. Channel
program accesses may occur during the
interlock period.

Within the limitations of the above
requirements, the fetch and store
accesses associated with an update
follow the same rules as the fetches and
stores described in the previous
sections.

Programming Notes

1. When two CPUs attempt to update
information at a common main-
storage location by an instruction
that causes fetching and subse-
quently storing of the updated

5-26 370-XA Principles of Operation

2.

3.

4.

information, it is possible for
both CPUs to fetch the information
and subsequently make the store
access. The change made by the
first CPU to store the result in
such a case is lost. Similarly, if
one CPU updates the contents of a
field but another CPU makes a store
operation to that field between the
fetch and store parts of the update
reference, the effect of the store
is lost. If, instead of a store
access, a CPU makes an
interlocked-update reference to the
common storage field between the
fetch and store portions of an
update due to another CPU, any
change in the contents produced by
the interlocked update is lost.

Only those bytes which are included
in the result field of both oper
ations are considered to be part of
the common main-storage location.
However, all bits within a common
byte are considered to be common
even if the bits modified by the
two operations do not overlap. As
an example, if (1) one CPU executes
the instruction OR (OC) with a
length of 1 and the value 80 hex in
the second-operand location and
(2) the other CPU executes AND (NC)
with a length of 1 and the value FE
hex in the second-operand location,
and (3) the first operand of both
instructions is the same byte, then
one of the updates can be lost.

When the store access is part of an
update reference by the CPU, the
execution of the storing is not
necessarily contingent on whether
the information to be stored is
different from the original
contents of the location. In
particular, the contents of all
designated byte locations are
replaced, and, for each byte in the
field, the entire contents of the
byte are replaced.

Depending on the model,
to store information
performed, for example,
following cases:

an access
may be

in the

a. Execution of the OR instruction
(01 or OC) with a second oper
and of all zeros.

b. Execution of OR (OC) with the
first- and second-operand
fields coinciding.

c. For those locations of the
first operand of TRANSLATE
where the argument and function
values are the same.

The instructions TEST AND SET,
COMPARE AND SWAP, and COMPARE
DOUBLE AND SWAP facilitate updating
of a common storage field by two

CPUs. In order for the change by
either CPU not to be lost, both
CPUs must use an instruction
providing an interlocked update.
It is possible, however, for a
channel to make an access to the
same storage location between the
fetch and store portions of an
interlocked update.

STORAGE-OPERAND CONSISTENCY

Single-Access References

A fetch reference is said to be a
single-access reference if the value is
fetched in a single access to each byte
of the data field. In the case of over
lapping operands, the location may be
accessed once for each operand. A
store-type reference is said to be a
single-access reference if a single
store access occurs to each byte
location within the data field. An
update reference is said to be s1ngle
access if both the fetch and store
accesses are each single-access.

Except for the accesses associated with
multiple-access operands and the stores
associated with storage change and
restoration for DAT-associated access
exceptions, all storage-operand refer
ences are single-access references.

Multiple-Access Operands

For some instructions, multiple accesses
may be made to all or some of the bytes
of a storage operand. The following
cases may involve multiple-access refer
ences:

1. The storage operands of the follow
ing instructions: CONVERT TO BINA
RY, CONVERT TO DECIMAL, MOVE WITH
OFFSET, PACK, TRANSLATE, TEST
BLOCK, and UNPACK.

2. The operands
instructions.

of the decimal

3. The stores into that portion of the
first operand of MOVE LONG which is
filled with padding bytes.

4. The stores into a trace entry.

When a storage-operand store reference
to a location is not a single-access
reference, the contents placed at a byte
location are not necessarily the same
for each store access; thus, intermedi
ate results in a single-byte location
may be observed by channel programs and
other CPU programs.

Programming Notes

1. When multiple fetch accesses are
made to a single byte that is being
changed by a channel program or
another CPU program, the result is
not necessarily limited to that
which could be obtained by fetching
the bits individually. For
example, the execution of MULTIPLY
DECIMAL may consist in repetitive
additions and subtractions each of
which causes the first operand to
be updated in storage.

2. When CPU instructions are used to
modify storage locations being
accessed by another CPU program or
a channel program simultaneously,
multiple store accesses to a single
byte by the CPU program may result
in intermediate values being
observed by another CPU program or
the channel program. To avoid
these intermediate values (espe
cially when modifying a CCW chain),
only instructions making single
access references should be used.

Block-Concurrent References

For some references, the accesses to all
bytes within a halfword, word, or
doubleword are specified to be block
concurrent as observed by other CPU
programs. These accesses do not neces
sarilyappear to a channel program to
include more than a byte at a time. The
halfword, word, or doubleword is
referred to in this section as a block.
When a fetch-type reference is specified
to be concurrent within a block, no
store access to the block by another CPU
program is permitted during the time
that bytes contained in the block are
being fetched. Channel-program accesses
to the bytes within the block may occur
between the fetches. When a store-type
reference is specified to be concurrent
within a block, no access to the block,
either fetch or store, is permitted by
another CPU program during the time that
the bytes within the block are being
stored. Channel-program accesses to the
bytes in the block may occur between the
stores.

Consistency Specification

The storage-operand references associ
ated with all S-format and RX-format
instructions, with the exception of
EXECUTE, CONVERT TO DECIMAL, CONVERT TO
BINARY, and t.he I/O instructions, are

Chapter 5. Program Execution 5-27

block-concurrent, as observed by all
CPUs, if the operand is addressed on a
boundary which is integral to the size
of the operand.

For the instructions COMPARE AND SWAP
and COMPARE DOUBLE AND SWAP, all
accesses to the storage operand appear
to be block-concurrent as observed by
all CPUs.

The instructions LOAD MULTIPLE and STORE
MULTIPLE, when the operand starts on a
word boundary, and the instructions
COMPARE LOGICAL (CLC), COMPARE LOGICAL
CHARACTERS UNDER MASK, INSERT CHARACTERS
UNDER MASK, and STORE CHARACTERS UNDER
MASK access their storage operands in a
left-to-right direction, and all bytes
accessed within each doubleword appear
to all CPUs to be accessed concurrently.

The instructions LOAD CONTROL and STORE
CONTROL access the storage ope~and in a
left-to-right direction, and all bytes
accessed within each word appear to all
CPUs to be accessed concurrently.

When destructive overlap does not exist,
the operands of MOVE (MVC), MOVE WITH
KEY, MOVE TO PRIMARY, and MOVE TO
SECONDARY are accessed as follows:

1. The first operand is accessed in a
left-to-right direction, and all
bytes accessed within a doubleword
appear to all CPUs to be accessed
concurrently.

2. The second operand is accessed left
to right, and all bytes within a
doubleword in the second operand
that are moved into a single
doubleword in the first operand
appear to all CPUs to be fetched
concurrently. Thus, if the fi rst
and second operands begin on the
same byte offset within a double
word, the second operand appears to
be fetched doubleword-concurrent.
If the offsets within a doubleword
differ by 4, the second operand
appears to be fetched word
concurrent.

Destructive overlap is said to exist
when the result location is used as a
source after the result has been stored,
assuming processing to be performed one
byte at a time.

The operands for MOVE LONG appear to all
CPUs to be accessed doubleword
concurrent when all of the following are
true:

• Both operands start on doubleword
boundaries and are an integral
number of doublewords in length.

•
•

The operands do not overlap.

The nonpadding part of the opera
tion is being executed.

5-28 370-XA Principles of Operation

The operands for COMPARE LOGICAL LONG
appear to all CPUs to be accessed
doubleword-concurrent when both operands
start on doubleword boundaries and are
an integral number of doublewords in
length.

For EXCLUSIVE OR (XC), the operands <'re
processed in a left-to-right direction,
and, when the first and second operands
coincide, all bytes accessed within a
doubleword appear to all CPUs to be
accessed concurrently.

Programming Note

In the case of EXCLUSIVE OR (XC) desig
nating operands which coincide exactly,
the bytes within the field may appear to
be accessed as many as three times, by
two fetches and one store: once as the
fetch portion of the first operand
update, once as the second-operand
fetch, and then once as the store
portion of the first-operand update.
Each of the three accesses appears to
all CPUs to be doubleword-concurrent,
but the three accesses do not necessar
ily appear to occur one immediately
after the other. One or both fetch
accesses may be omitted since the
instruction can be completed without
fetching the operands.

RELATION BETWEEN OPERAND ACCESSES

Storage-operand fetches associated with
one instruction execution appear to
precede all storage-operand references
for conceptually subsequent
instructions. A storage-operand store
specified by one instruction appears to
precede all storage-operand stores spec
ified by conceptually subsequent
instructions, but it does not necessar
ily precede storage-operand fetches
specified by conceptually subsequent
instructions. However, a storage
operand store appears to precede a
conceptually subsequent storage-operand
fetch from the same main-storage
location.

When an instruction has two storage
operands both of which cause fetch
references, it is unpredictable which
operand is fetched first, or how much of
one operand is fetched before the other
operand is fetched. When the two oper
ands overlap, the common locations may
be fetched independently for each oper
and.

When an instruction has two storage
operands the first of which causes a
store and the second a fetch reference,
it is unpredictable how much of the

second operand is fetched before the
results are stored. In the case of
destructively overlapping operands, the
portion of the second operand which is
common to the. first is not necessarily
fetched from storage.

When an instruction has two storage
operands the first.of which causes an
update reference and the second a fetch
reference, it is unpredictable which
operand is fetched first, or how much of
one operand is fetched before the other
operand is fetched. Similarly, it is
unpredictable how much of the result is
processed before it is returned to stor
age. In the case of destructively
overlapping operands, the portion of the
second operand which is common to the
first is not necessarily fetched from
storage.

Programming Note

The independent fetching of a single
location for each of two operands may
affect the program execution in the
following situation.

When the same storage location is desig
nated by two operand addresses of an
instruction, and a channel program or
another CPU program causes the contents
of the location to change during
execution of the instruction, the old
and new values of the location may be
used simultaneously. For example,
comparison of a field to itself may
yield a result other than equal, or
EXCLUSIVE-ORing of a field with itself
may yield a result other than zero.

OTHER STORAGE REFERENCES

The restart, program, supervisor-call,
external, input/output, and machine
check PSWs are accessed doubleword
concurrent as observed by other CPUs.
These references occur after the concep
tually previous unit of operation and
before the conceptually subsequent unit
of operation. The relationship between
the new-PSW fetch, the old-PSW store,
and the interruption-code store is
unpredictable.

Store accesses for interruption codes
are not necessarily single-access
stores. The store accesses for the
external and supervisor-call
interruption codes occur between the
conceptually previous and conceptually
subsequent operations. The store
accesses for the program-interruption
codes may precede the storage-operand
references associated with the instruc
tion which results in the program
interruption.

SERIALIZATION

The sequence of functions performed by a
CPU is normally independent of the func
tions performed by channel programs and
other CPU programs. Similarly, the
sequence of functions performed by a
channel program is normally independent
of the functions performed by other
channel programs and CPU programs.
However, at certain points in its
execution, serialization of the CPU
program occurs. Serialization also
occurs at certain points for channel
programs.

CPU SERIALIZATION

All interruptions and the execution of
certain instructions cause a serializa
tion of CPU operations. A serialization
operation consists in completing all
conceptually previous storage accesses
by the CPU, as observed by channel
programs and other CPU programs, before
the conceptually subsequent storage
accesses occur. Serialization affects
the sequence of all CPU accesses to
storage and to the storage keys, except
for those associated with DAT-table
entry

Serialization is performed by CPU reset,
all interruptions, and by the execution
of the following instructions!

1. The general instructions BRANCH ON
CONDITION (BCR) with the Ml and R2
field containing all ones and all
zeros, respectively, and COMPARE
AND SWAP, COMPARE DOUBLE AND SWAP,
STORE CLOCK, SUPERVISOR CALL, and
TEST AND· SET.

2. LOAD PSW
EXTENDED.

and SET

3. All I/O instructions.

STORAGE KEY

4. PURGE TlB and SET PREFIX, which
also cause the translation
lookaside buffer to be cleared of
entries.

5. SIGNAL PROCESSOR.

6. INVALIDATE PAGE TABLE ENTRY.

7. TEST BLOCK.

8. MOVE TO PRIMARY, MOVE TO SECONDARY,
PROGRAM CALL, PROGRAM TRANSFER, SET
ADDRESS SPACE CONTROL, and SET
SECONDARY ASN.

9. The three trace functions -- branch
tracing, ASN tracing, and explicit

Chapter 5. Program Execution 5-29

tracing -- cause serialization to
be performed before the trace
action and after completion of the
trace action.

The sequence of events associated with a
serializing operation is as follows:

• All conceptually previous storage
accesses by the CPU are completed,
as observed by channel programs and
other CPU programs. This includes
all conceptually previous stores
and changes to the storage keys.

• The normal function associated with
the serializing operation is
performed. In the case of instruc
tion execution, operands are
fetched, and the storing of results
is completed. The exceptions are
LOAD PSW and SET PREFIX, in which
the operand may be fetched before
previous stores have been
compl eted, and interrupt ions, in
which the interruption code and
associated fields may be stored
prior to the serialization. The
fetching of the serializing
instruction occurs before the
execution of the instruction and
may precede the execution of previ
ous instructions, but may not
precede the completion of any
previous serializing operation. In
the case of an interruption, the
old PSW, the interruption code, and
other information, if any, are
stored, and the new PSW is fetched,
but not necessarily in that
sequence.

• Finally, instruction fetch and
operand accesses for conceptually
subsequent operations may begin.

A serializing function affects the
sequence of storage accesses that are
under the control of the CPU program in
which the serializing function takes
place. It does not affect the sequence
of storage accesses under the control of
a channel program or another CPU
program.

Programming Notes

1. The following are some effects of a
serializing operation:

a. When an instruction changes the
contents of a storage location
that is used as a source of a
following instruction and when
different addresses are used to
designate the same absolute
location for storing the result
and fetching the instruction, a
serializing operation following

5-30 370-XA Principles of Operation

the change
modified
executed.

ensures that
instruction

the
is

b. When a serializing operation
takes place, a channel program
and any other CPU programs
observe instruction and operand
fetching and result storing to
take place in the sequence
established by the serializing
operation.

2. Storing into a location from which
a serializing instruction is
fetched does not necessarily affect
the execution of the serializing
instruction unless a serializing
function has been performed after
the storing and before the
execution of the serializing
instruction.

CHANNEL-PROGRAM SERIALIZATION

Serialization of a channel
occurs as follows:

program

1. For a channel program, all storage
accesses and storage-key accesses
by the channel program follow
initiation of the execution of
START SUBCHANNEL, or, if suspended,
RESUME SUBCHANNEL, as observed by
CPU programs or another channel
program. This includes all
accesses for the CCWs, IDAWs, and
data.

2. For a channel program, all storage
accesses and storage-key accesses
are completed, as observed by CPU
programs or another channel
program, before the subchannel
status indicating primary status
pending is made available to any
CPU.

3. For a channel program, if a t'CW
contains a PCI flag or a suspend
flag which is one, all storage
accesses and storage-key accesses
due to CCWs preceding it in the CCW
chain are completed, ~s observed by
CPU programs or another channel
program, before the subchannel
status indicating intermediate
status pending (pel or suspended)
is made available to any CPU.

The serialization of a channel program
does not affect the sequence of storage
accesses or storage-key accesses caused
by CPU programs or another channel
program. It also does not affect the
sequence of storage accesses or
storage-key accesses caused by other
channel programs.

CHAPTER ~ INTERRUPTIONS

Interruption Action ••••••••••••••••••••••••••••••••••••••• 6-2
Interruption Code •••••••••••••••••••••.••••••••••••••••• 6-5
Enabling and Disabling •••••••••••••••••••••••••••••••••• 6-5
Handling of Floating Interruption Conditions ••.••••••••• 6-6
Instruction-Length Code •.•••••••••.•••.••••••••••••••••• 6-6

Zero IlC •...••••••..•..•••.•.••.••••.•••••.••••••••••• 6-6
ILC on Instruction-Fetching Exceptions •..•.••••••.•••• 6-6

Exceptions Associated with the PSW .•••.•••••••.••••••••• 6-8
Early Exception Recognition •••••••••••••••••••••.••••• 6-8
Late Exception Recognition ••••••••••.••••••••••••••••• 6-8

External Interruption •••••••••••••••••••.•••.••.•••••••••. 6-9
Clock Comparator ••••••••••••••••••••••.••••••••••••••••• 6-9
CPU Timer ••.••••.•••• ~ ••••••••.•••••••.••••••••••••••••• 6-10
Emergency Signal •• 6-10
External Call •••••••••••.•••••.••••••..••.•••••••••.•••• 6-10
Interrupt Key •••.•.••••••••••.•.••••••.••••••.•••••••••. 6-10
Malfunction Alert •••••.•••••••••.••••••••••••••••••••••• 6-11
Service Signal •.••••.••••••••••••••••••••••••••••••••••. 6-11
TOO-Clock Sync Check ••••••••••.•••••..••.•••••.••••••.•• 6-11

Input/Output Interruption •••••••••••.••••••••••••••••••••• 6-11
Machine-Check Interruption ••••••••••••••.•••.••••••••••••. 6-12
Program Interruption •••••••.••.•••••••.•.•••.••••.•••.•••. 6-12

Program-Interruption Conditions ..•••...••.••.••••••.•••• 6-13
Addressing Exception •.•••••••••••••.•.•••.•••••••••••. 6-13
AFX-Translation Exception ••••••••••.•••••••••.•••••••• 6-15
ASH-Translation-Specification Exception ••••.•.•••••••. 6-15
ASX-Translation Exception .•••••...••.••••••••••••••••• 6-15
Data Exception •••.•••••••••••••••••••••••• w ••••••••••• 6-15
Decimal-Divide Exception .••••••••••.•••••••••••••••••• 6-16
Decimal-Overflow Exception •.••••••••••.•••••..•••••••• 6-16
Execute Exception ••...•..•••••••..•.•••••.••••••.••••• 6-16
Exponent-Overflow Exception •••.••.•••.•••••••••••••••• 6-16
Exponent-Underflow Exception •••.•••••••••••.••.•.•.•.. 6-16
EX-Translation Exception •.••.••••.••..•••••••••••.•••. 6-17
Fixed-Point-Divide Exception •.•••••••••.•••••••••••••• 6-17
Fixed-Point-Overflow Exception •••••••••••.•.•••••••••• 6-17
Floating-Point-Divide Exception ••.•..••.•••.••.•••••.• 6-17
LX-Translation Exception •.•.••••..•.••••.•.••.•••.••.• 6-17
Monitor Event ••••••••••••.••••••••••••••••••••••••.••• 6-18
Operand Exception ••••••.•.••••••••••••.••.•...•••••••. 6-18
Operation Exception ...•..•.••••••••.•......•..••.•.••. 6-18
Page-Translation Exception •••.•••..•••.••••.••.••••••. 6-19
PC-Translation-Specification Exception ••••••..•••••••• 6-19
PER Event ••••••••••.•••••••••••••••••••••.•••••••••••• 6-19
Pri mary-Authori ty Excepti on •••..•..••.•••••.••.•.•.•.• 6-19
Privileged-Operation Exception ••••••••••••••••.••••.•• 6-20
Protection Exception •••••.••••••••••••.••.••••••.••••. 6-20
Secondary-Authority Exception •••••••••.••.•••..•.••.•• 6-21
Segment-Translation Exception •••••••.•.••..••..•.••.•. 6-21
Significance Exception ..•.•••••••••••••••••••••••••••• 6-21
Spnce-Switch Event •••••..•••••••••••••••••••.••••••••• 6-21
Special-Operation Exception •••••••••.•.•...••..••••••• 6-22
Specificatio~ Exception .•.•.••••.••••••..•.....•..••.. 6-22
Programming Note •••.••.•••••••••••••••••••••••.••••••• 6-23
Trace-Table Exception •••.•••••••••••••••.••••..••••••• 6-23
Translation-Specification Exception ..••.••••••.••..••• 6-23

Collective Program-Interruption Names ••••••••••..••••••• 6-24
Recognition of Access Exceptions ••••••.•••••••••.••••••• 6-24
Multiple Program-Interruption Conditions .••••••..•••••.• 6-26

Access Exceptions •••••..•.••••••.••••••.•••••...••.••• 6-29
ASN-Translation Exceptions ••••••••••••••.•••••.••••••• 6-30
Trace Exceptions ••.••••.••••••••••••.••••••••••••••••• 6-31

Restart Interruption ••••••.•.•••••••••••...•••.•...••••••• 6-31
Supervisor-Call Interruption .•••.•••.•••.•••••.••..••.••.• 6-31
Priority of Interruptions ••••••••••••••••••••••••••••••••• 6-32

Chapter 6. Interruptions 6-1

The interruption mechanism permits the
CPU to change its state as a result of
conditions external to the
configuration, within the configuration,
or within the CPU itself. To permit
fast response to conditions of high
priority and immediate recognition of
the type of condition, interruption
conditions are grouped into six classes:
external, input/output, machine check,
program, restart, and supervisor call.

INTERRUPTION ACTION

An interruption consists in storing the
current PSW as an old PSW, storing
information identifying the cause of the
interruption, and fetching a new PSW.
Processing resumes as specified by the
new PSW.

The old PSW stored
normally contains
instruction that

on an interruption
the address of the

would have been

6-2 370-XA Principles of Operation

executed next had the interruption not
occurred, thus permitting resumption of
the interrupted program. For program
and supervisor-call interruptions, the
information stored also contains a code
that identifies the length of the last
executed instruction, thus permitting
the program to respond to the cause of
the interruption. In the case of some
program conditions for which the normal
response is reexecution of the instruc
tion causing the interruption, the
instruction address directly identifies
the instruction last executed.

Except for restart, an interruption can
occur only when the CPU is in the oper
ating state. The restart interruption
can occur with the CPU in either the
stopped or operating state.

The details of source identification,
location determination, and instruction
execution are explained in later
sections and are summarized in the
figure "Interruption Action."

Mask Bits
in Ctrl Execution of

PSW- Registers Instruction
Source Interruption Mask ILC Identified

Identification Code Bits Reg, Bit Set by Old PSW

MACHIHE CHECK Locations 232-239 1

(old PSW 48,
new PSW 112)

Exigent condition 13 x terminated or
nullified 2

Repressible cond 13 14, 3-7 x unaffected 2

SUPERVISOR CALL Locations 138-139
(old PSW 32,

new PSW 96)

Instruction bits 00000000 55555555 1,2 completed

PROGRAM locations 142-143
(old PSW 40,

new PSW 104) Binary Hex l

Operation 00000000 pOOOOOOl 0001 1,2,3 suppressed
Privileged oper 00000000 pOOOOOlO 0002 1,2 suppressed
Execute 00000000 pOOOOOll 0003 2 suppressed
Protection 00000000 pOOOOlOO 0004 1,2,3 suppressed or

terminated
Addressing 00000000 pOOOOlOl 0005 1,2,3 suppressed or

terminated
Specification 00000000 pOOOOllO 0006 0,1,2,3 suppressed or

completed
Data 00000000 pOOOOlll 0007 2,3 suppressed or

terminated
Fixed-pt overflow 00000000 pOOOlOOO 0008 20 1,2 completed
Fixed-point divide 00000000 pOOOlOP1 0009 1,2 suppressed or

completed
Decimal overflow 00000000 pOOOlOlO OOOA 21 2,3 completed
Decimal divide 00000000 pOO010l1 OOOB 2,3 suppressed
Exponent overflow 00000000 pOO01l00 OOOC 1,2 completed
Exponent underflow 00000000 pOOOl10l 0000 22 1,2 completed
Significance 00000000 pOO011l0 OOOE 23 1,2 completed
Floating-pt divide 00000000 pOOOllll OOOF 1,2 suppressed
Segment transl 00000000 p0010000 0010 1,2,3 nullified
Page translation 00000000 p0010001 0011 1,2,3 nullified
Translation spec 00000000 p0010010 0012 1,2,3 suppressed
Special operation 00000000 pOOlOO11 0013 0, 1 2 suppressed
Operand 00000000 p0010l01 0015 2 suppressed
Trace table 00000000 pOOlOllO 0016 1,2 nullified
ASH-transl spec 00000000 pOOl01ll 0017 2 suppressed
Space-switch event 00000000 pOOlllOO OOlC 1, 0 2 completed
PC-transl spec 00000000 pOOlllll 001F 2 suppressed
AFX translation 00000000 p0100000 0020 2 nullified
ASX translation 00000000 p010000l 0021 2 nullified
LX translation 00000000 p0100010 0022 2 nullified
EX translation 00000000 p01000ll 0023 2 nullified
Primary authority 00000000 pOlO0100 0024 2 nullified
Secondary auth 00000000 pOlOOI01 0025 2 nullified
Monitor event 00000000 plOOOOOO 0040 8, 16-31 2 completed
PER event 00000000 1nnnnnnn 4 0080 1 9, 0-30) 0,1,2,3 completed S

Interruption Action (Part 1 of 2)

Chapter 6. Interruptions 6-3

Mask Bits
in Ctrl Execution of

PSW- Registers Instruction
Source Interruption Mask ILC Identified

Identification Code Bits Reg, Bit Set by Old PSW

EXTERNAL locations 134-135
(old PSW 24,

new PSW 88) Binary Hex

Interrupt key 00000000 01000000 0040 7 0, 25 x unaffected
Malfunction alert 00010010 00000000 1200 7 0, 16 x unaffected
Emergency signal 00010010 00000001 1201 7 0, 17 x unaffected
External call 00010010 00000010 1202 7 0, 18 x unaffected
TOO-clock sync chk 00010000 00000011 1003 7 0, 19 x unaffected
Clock comparator 00010000 00000100 1004 7 0, 20 x unaffected
CPU timer 00010000 00000101 1005 7 0, 21 x unaffected
Service signal 00100100 00000001 2401 7 0, 22 x unaffected
IUCV7 01000000 00000000 4000 7 0, 30 x unaffected
V~1CF7 01000000 00000001 4001 7 0, 31 x unaffected

INPUT/OUTPUT locations 184-191
(old PSW 56,

new PSW 120)

I/O subclass 6 6, 0-7 6 x unaffected

RESTART None
(old PSW 8,

new PSW 0)

Restart key x unaffected

Explanation:

locations for the old PSWs, new PSWs, and interruption codes are real locations.
1 A model-independent machine-check interruption code of 64 bits is stored at

real locations 232-239.
2 The effect of the machine-check condition is indicated by bits in the machine

check interruption code. The setting of these bits indicate the extent of the
damage and whether or not the unit of operation is nullified or unaffected.

3 The interruption code in the column labeled "Hex" is the hex code for the
basic interruption; this code does not show the effects of concurrent inter
ruption conditions represented by n or p in the column labeled "Binary."

4 When the interruption code indicates a PER event, an IlC of 0 may be stored
only when bits 8-15 of the interruption code are 10000110 (PER, specifi
cation).

5 The unit of operation is completed, unless a program exception concurrently
indicated causes the unit of operation to be nullified, suppressed, or
terminated.

6 Bits 0-7 of control register 6 provide detailed masking of I/O-interruption
subclasses 0-7 respectively.

7 This interruption is used only in a virtual machine; in a real machine, this
interruption code is reserved.

~ Additional masks in control register 9, bit positions 16-31, provide detailed
control over the source of general-register-alteration PER events which are
masked by control register 9, bit 3.

n A possible nonzero code indicating another concurrent program-interruption
condition.

p If one, the bit indicates a concurrent PER-event interruption condition.
s Bits of the I field of SUPERVISOR CALL.
x Not stored.

Interruption Action (Part 2 of 2)

6-4 370-XA Principles of Operation

INTERRUPTION CODE

The six classes of interruptions
(external, I/O, machine check, program,
restart, and supervisor call) are
distinguished by the storage locations
at which the old PSW is stored and from
which the new PSW is fetched. For most
classes, the causes are further identi
fied by an interruption code and, for
some classes, by additional information
placed in permanently assigned real
storage locations during the inter
ruption. (See also the section
"Assigned Storage Locations" in Chapter
3, "Storage.") For external, program,
and supervisor-call interruptions, the
interruption code consists of 16 bits.

For external interruptions, the inter
ruption code is stored at real locations
134-135. A parameter may be stored at
real locations 128-131, or a CPU address
may be stored at real locations 132-133.

For I/O interrupti ons, the 1/0-
interruption code is stored at real
locations 184-191. The I/O-interruption
code consists of a 32-bit sUbsystem
identification word and a 32-bit inter
ruption parameter.

For machine-check interruptions, the
interruption code consists of 64 bits
and is stored at real locations 232-239.
Additional information for identifying
the cause of the interruption and for
recovering the state of the machine may
be provided by the contents of the
machine-check failing-storage address
and the contents of the fixed-logout and
machine-check-save areas. (See Chapter
11, "Machine-Check Handling.")

For program interruptions, the inter
ruption code is stored at real locations
142-143, and the instruction-length code
is stored in bit positions 5 and 6 of
real location 141. Further information
may be provided in the form of the
translation-exception identification,
monitor-class number, monitor code, PER
code, and PER address, which are stored
at real locations 144-159.

For restart interruptions, no inter
ruption code is stored.

For supervisor-call interruptions, the
interruption code is stored at real
locations 138-139, and the instruction
length code is stored in bit positions 5
and 6 of real location 137.

ENABLING AND DISABLING

By means of mask bits ir the current PSW
and in control regi ste.·s, the CPU may be
enabled or disabled for all external,
I/O, and machine-check interruptions and

for some program interruptions. When a
mask bit is one, the CPU is enabled for
the corresponding class of
interruptions, and these interruptions
can occur.

When a mask bit is zero, the CPU is
disabled for the corresponding inter
ruptions. The conditions that cause t/O
interrupt ion s rema in pend i r 'g.
External-interruption conditions either
remain pending or persist until the
cause is removed. Machine-check
interruption conditions, depending on
the type, are ignored, remain pending,
or cause the CPU to enter the check-stop
state. The disallowed program
interruption conditions are ignored,
except that some causes are indicated
also by the setting of the condition
code. The setting of the significance
and exponent-underflow program-mask bits
affects the manner in which floating
point operations are completed when the
corresponding condition occurs.

The CPU is always enabled for program
interruptions for which mask bits are
not provided, as well as the
supervisor-call and restart interrup
tions.

The mask bits may allow or disallow all
interruptions within the class, or they
may selectively allow or disallow inter
ruptions for particular causes. This
control may be provided by mask bits in
the PSW that are assigned to particular
causes, such as the bits assigned to the
four maskable program-i~terruption
conditions. Alternatively, there may be
a hierarchy of masks, where a mask bit
in the PSW controls all interruptions
within a type, and mask bits in a
control register provide more detailed
control over the sources.

When the mask bit is one, the CPU is
enabled for the corresponding interrup
tions. When the mask bit is zero, these
interruptions are disallowed. Interrup
tions that are controlled by a hierarchy
of masks are allowed only when all
controlling mask bits are ones.

Programming Notes

,1. Mask bits in the PSW provide a
means of disallowing all maskable
interruptions; thus, subsequent
interruptions can be disallowed by
the new PSW introduced by an inter
ruption. Furthermore, the mask
bits can be used to establish a
hierarchy of interruption priori
ties, where a condition in one
class can interrupt the program
handling a condition in another
class but not vice versa. To
prevent an interruption-handling
routine from being interrupted

Chapter 6. Interruptions 6-5

before th~ necessary housekeeping
steps are performed, the new PSW
must disable the CPU for further
interruptions within the same class
or within a class of lower
priority.

2. Because the mask bits in control
registers are not changed as part
of the interruption procedure,
these masks cannot be used to
prevent an interruption immediately
after a previous interruption in
the same class. The mask bits in
control registers provide a means
for selectively enabling the CPU
for some sources and disabling it
for others within the same class.

HANDLING OF FLOATING INTERRUPTION CONDI
TIONS

An interruption condition which can be
presented to any CPU in the configura
tion is called a floating interruption
condition. The condition is presented
to the first CPU in the configuration
which is enabled for the corresponding
interruption and which can accept the
interruption, and then the condition is
cleared and not presented to any other
CPU in the configuration. A CPU cannot
accept the interruption when it is in
the check-stop state, has an invalid
prefix, is in a string of program inter
ruptions due to a specification
exception of the type which is recog
nized early, or is in the stopped state.
However, a CPU with the rate control set
to instruction step can accept the
interruption when the start key is acti
vated.

Service signal, I/O, and
machine-check conditions are
interruption conditions.

INSTRUCTION-LENGTH CODE

certain
floating

The instruction-length code (ILC) occu
pies two bit positions and provides the
length of the last instruction executed.
It permits identifying the instruction
causing the interruption when the
instruction address in the old PSW
designates the next sequential instruc
tion. The ILC is provided also by the
BRANCH AND LINK instructions in the
24-bit addressing mode.

The ILC for program and supervisor-call
interruptions is stored in bit positions
5 and 6 of the bytes at real locations
141 and 137, respectively. For
external, I/O, machine-check, and
restart interruptions, the ILC is not
stored since it cannot be related to the
length of the last-executed instruction.

6-6 370-XA Principles of Operation

For supervisor-call and program inter
ruptions, a nonzero ILC identifies in
halfwords the length of the instruction
that was last executed. Whenever an
instruction is executed by means of
EXECUTE, instruction-length code 2 is
set to indicate the length of EXECUTE
and not that of the target instruction.

The value of a nonzero instruction
length code is related to the leftmost
two bits of the instruction. The value
does not depend on whether the operation
code is assigned or on whether the
instruction is installed. The following
table summarizes the meaning of the
instruction-length code:

ILC Instr
Bits Instruction

Decimal Binary 0-1 Length

0 00 Not available
1 01 00 One halfword
2 10 01 Tl.JO halfwords
2 10 10 Two halfwords
3 11 11 Three halfwords

Instruction-length code 0, after a
program interruption, indicates that the
instruction address stored in the old
PSW does not identify the instruction
causing the interruption.

An ILC of 0 occurs when a specification
exception due to a PSW-format error is
recognized as part of early exception
recognition and the PSW has been intro
duced by LOAD PSW or an interruption.
(See the section "Exceptions Associated
with the PSW" later in this chapter.)
In the case of LOAD PSW, the instruction
address of the LOAD PSW or EXECUTE has
been replaced by the instruction address
of the new PSW. When the invalid PSW is
introduced by an interruption, the PSW
format error cannot be attributed to an
instruction.

In the case of LOAD PSW and the
supervisor-call int~rruption, a PER
event may be indicated concurrently with
a specification exception having an ILC
of O.

ILC Qll Instruction-Fetching Exceptions

When a program interruption occurs
because of an exception that prohibits
access to the instruction, the
instruction-length code cannot be set on
the basis of the first two bits of the

instruction. As far as the significance
of the ILC for this case is concerned,
the following two situations are distin
guished:

1. When an odd instruction address
causes a specification exception to
be recognized or when an
addressing, protection, or
translation-specification exception
is encountered on fetching an
instruction, the ILC is set to 1,
2, or 3, indicating the multiple of
2 by which the instruction address
has been incremented. It is unpre
dictable whether the instruction
address is incremented by 2, 4, or
6. By reducing the instruction
address in the old PSW by the
number of halfword locations indi
cated in the ILC, the instruction
address originally appearing in the
PSW may be obtained.

2. When a segment-translation or
page-translation exception is
recognized while fetching an
instruction, including the target
instruction of EXECUTE, the ILC is
arbitrarily set to 1, 2, or 3. In
this case, the operation is nulli
fied, and the instruction address
is not incremented.

The IlC is not necessarily related to
the first two bits of the instruction
when the first halfword of an instruc
tion can be fetched but an access excep
tion is recognized on fetching the
second or third halfword. The IlC may
be arbitrarily set to 1, 2, or 3 1n
these cases. The instruction address is
or is not updated, as described in situ
ations 1 and 2 above.

When any exceptions other than segment
translation or page translation are
encountered on fetching the target
instruction of EXECUTE, the ILC is 2.

Programming Notes

1. A nonzero instruction-length code
for a program interruption indi
cates the number of halfword
locations by which the instruction
address in the program old PSW must
be reduced to obtain the instruc
tion address of the last
instruction executed, unless one of
the following situations exists:

a. The interruption
an exception
nullification.

is caused
resulting

by
in

b. An interruption for a PER event
occurs before the execution of
an interruptible instruction is
completed, and no other program

interruption condition is indi
cated concurrently.

c. The interruption is caused by a
PER event due to LOAD PSW or a
branch or linkage instruction,
including SUPERVISOR CALL (but
not including MONITOR CALL).

d. The ~nterruption is caused by
an access exception encountered
in fetching an instruction, and
the instruction address has
been introduced into the PSW by
a means other than sequential
operation (by a branch instruc
tion, LOAD PSW, an
interruption, or conclusion of
an IPL sequence).

e. The interruption is caused by a
specification exception because
of an odd instruction address.

f. The interruption is caused by
an early specification excep
tion or by an access exception
encountered in fetching an
instruction, and changes have
been made to a parameter that
controls the relation between
instruction addresses and real
addresses. The relaTion
between instruction addresses
and real addresses can be
changed without introducing an
entire new PSW by switching
from real mode, primary-space
mode, or secondary-space mode
to a different mode, or by
changing one or more of the
translation parameters in
control registers 1 and 7. The
early specification exception
can be caused by executing
STORE THEN OR SYSTEM MASK or
SET SYSTEM MASK, which switches
to or from real mode while
introducing invalid values in
bit positions 0-7 of the PSW.

For situations a and b above, the
instruction address in the PSW is
not incremented, and the instruc
tion designated by the instruction
address is the same as the last one
executed. These situations are the
only ones in which the instruction
address in the old PSW identifies
the instruction causing the excep
tion.

For situations c, d, and e, the
instruction address has been
replaced as part of the operation,
and the address of the last
instruction executed cannot be
calculated using the one appearing
in the program old PSW.

For situation f, the instruction
address in the PSW has not been
replaced, but the corresponding

Chapter 6. Interruptions 6-7

real address after the change may
be different.

2. The instruction-length code (ILC)
is redundant when a PER event is
indicated since the PER address in
the word at real location 152 iden
tifies the instruction causing the
interruption (or the EXECUTE
instruction, as appropriate).
Similarly, the ILC is redundant
when the operation is nullified,
since in this case the instruction
address in the PSW is not incre
mented. If the ILC value is
required in this case, it can be
derived from the operation code of
the instruction identified by the
old PSW.

EXCEPTIONS ASSOCIATED WITH THE PSW

Exceptions associated with erroneous
information in the current PSW may be
recognized when the information is
introduced into the PSW or may be recog
nized as part of the execution of the
next instruction. Errors in the PSW
which are specification-exception condi
tions are called PSW-format errors.

Early Exception Recognition

For the following error conditions, a
program interruption for a specification
exception occurs immediately after the
PSW becomes active:

•

•

•

A one is introduced into an unas
signed bit position of the PSW
(that is, any of bit positions 0,
2-4, 17, or 24-31).

A zero is introduced into bit posi
tion 32 of the PSW, but bits 33-39
are not all zeros.

A zero is introduced into bit posi
tion 12 of the PSW.

The interruption occurs regardless of
whether the wait state is specified. If
the invalid PSW causes the CPU to become
enabled for a pending I/O, external, or
machine-check interruption, the program
interruption occurs instead, and the
pending interruption is subject to the
mask bits of the new PSW introduced by
the program interruption.

When the execution of LOAD PSW or an
interruption introduces a PSW with one
of the above error conditions, the
instruction-length code is set to 0, and
the newly introduced PSW is stored
unmodified as the old PSW. When one of
the above error conditions is introduced
by execution of SET SYSTEM MASK or STORE

6-8 370-XA Principles of Operation

THEN OR SYSTEM MASK, the instruction
length code is set to 2, and the
instruction address is incremented by 4.
The PSW containing the invalid value
introduced into the system-mask field is
stered as the old PSW.

When a PSW with one of the above error
conditions is introduced during initial
program loading, the loading sequence is
not completed, and the load indicator
remains on.

Late Exception Recognition

For the following conditions, the excep
tion is recognized as part of the
execution of the next instruction:

•

•

A specification exception is recog
nized due to an odd instruction
address in the PSW (PSW bit 63 is
one).

An access exception (addressing,
page-translation, protection,
segment-translation, or
translation-specification) is asso
ciated with the location designated
by the instruction address or with
the location of the second or third
halfword of the instruction start
ing at the designated instruction
address.

The instruction-length code and instruc
tion address stored in the program old
PSW under these conditions are discussed
in the section "ILC on Instruction
Fetching Exceptions" in this chapter.

If an I/O, external, or machine-chQck
interruption condition is pending and
the PSW causes the CPU to be enabled for
that condition, the corresponding int,~r
ruption occurs, and the PSW is tot
inspected for exceptions which are
recognized late. Similarly, a PSW spec
ifying the wait state is not inspected
for exceptions which are recognized
late.

Programming Notes

1. The execution of LOAD ADDRESS SPACE
PARAMETERS, LOAD PSW, PROGRAM CAll,
PROGRAM TRANSFER, SET PREFIX, SET
SECONDARY ASN, SET SYSTEM MASK,
STORE THEN AND SYSTEM MASK, and
STORE THEN OR SYSTEM MASK is
suppressed on an addressing or
protection exception, and hence the
program old PSW provides informa
tion concerning the program causing
the exception.

2. When the first halfword of an
instruction can be fetched but an

access exception is recognized on
fetching the second or third half
word, the ILC is not necessarily
related to the operation code.

3. If the new PSW introduced by an
interruption contains a PSW-format
error, a string of interruptions
may occur (See the section "Priori
ty of Interruptions" in this chap
ter.)

EXTERNAL INTERRUPTION

The external interruption provides a
means by which the CPU responds to vari
ous signals originating from either
inside or outside the configuration.

An external interruption causes the old
PSW to be stored at real location 24 and
a new PSW to be fetched from real
location 88.

The source of the interruption is iden
tified in the interruption code which is
stored at real locations 134-135. The
instruction-length code is not stored.

Additionally, for the malfunction-alert,
emergency-signal, and external-call
conditions, a 16-bit CPU address is
associated with the source of the inter
ruption and is stored at real locations
132-133. When the CPU address is
stored, bit 6 of the interruption code
is set to one. For all other
conditions, no CPU address is stored,
bit 6 of the interruption code is set to
zero, and zeros are stored at real
locations 132-133.

For the service-signal interruption, a
32-bit parameter is associated with the
interruption and is stored at real
locations 128-131. Bit 2 of the
external-interruption code indicates
that a parameter has been stored. When
bit 2 is zero, the contents of real
locations 128-131 remain unchanged.

;

External-interruption conditions are of
two types: those for which an inter
ruption request condition is held pend
ing, and those for which the condition
directly requests the interruption.
Clock comparator, CPU timer, and TOD
clock sync check are conditions which
directly request external interruptions.
If a condition which directly requests
an external interruption is removed
before the request is honored" the
request does not remain pending, and no
interruption occurs. Conversely, the
request is not cleared by the inter
ruption, and if the condition persists,
more than one interruption may result
from a single occurrence of the condi
tion.

When several interruption requests for a
single source are generated before the
interruption occurs, and the inter
ruption condition is of the type which
is held pending, only one request for
that source is preserved and remains
pending.

An external interruption for a partic
ular source can occur only when the CPU
is enabled for interruption by that
source. The external interruption
occurs at the completion of a unit of
operation. The external mask, PSW bit
7, and external subclass-mask bits in
control register 0 control whether the
CPU is enabled for a particular source.
Each source for an external interruption
has a subclass-mask bit assigned to it,
and the source can cause an interruption
only when the external-mask bit is one
and the corresponding subclass-mask bit
is one.

When the CPU becomes enabled for a pend
ing external-interruption condition, the
interruption occurs at the completion of
the instruction execution or inter
ruption that causes the enabling.

More than one source may present a
request for an external interruption at
the same time. When the CPU becomes
enabled for more than one concurrently
pending request, the interruption occurs
for the pending condition or conditions
having the highest priority.

The priorities for external-interruption
requests in descending order are as
follows:

Interrupt key
Malfunction alert
Emergency signal
External call
TOO-clock sync check
Clock comparator
CPU timer
Service signal

All requests are honored one at a time.
When more than one emergency-signal
request exists at a time or when more
than one malfunction-alert request
exists at a time, the request associated
with the smallest CPU address is hon~red
first.

CLOCK COMPARATOR

An interruption request for the clock
comparator exists whenever either of the
following conditions is met:

1. The TOO clock is in the set or
not-set state, and the value of the
clock comparator is less than the
value in the compared portion of
the TOO clock, both compare values

Chapter 6. Interruptions 6-9

being considered unsigned binary
integers.

2. The TOO clock;s ;n the error or
not-operational state.

If the condition responsible for the
request ;s removed before the request is
honored, the request does not remain
pending, and no interruption occurs.
Conversely, the request is not cleared
by the interruption, and, if the condi
tion persists, more than one
interruption may result from a single
occurrence of the condition.

When the TOO clock accessed by a CPU is
set or changes state, interruption
conditions, if any, that are due to the
clock comparator mayor may not be
recognized for up to 1.048576 seconds
after the change.

The subclass-mask bit is in bit position
20 of control register O. This bit is
initi~lized to zero.

The clock-comparator condition is indi
cated by an external-interruption code
of 1004 hex.

CPU TIMER

An interruption request for the CPU
timer exists whenever the CPU-timer
value is negative (bit 0 of the CPU
timer is one). If the value is made
positive before the request is honored,
the request does not remain pending, and
no interruption occurs. Conversely, the
request is not cleared by the inter
ruption, and, if the condition persists,
more than one interruption may occur
from a single occurrence of the condi
tion.

When the TOO clock accessed by a CPU is
set or changes state, interruption
conditions, if any, that are due to the
CPU timer mayor may not be recognized
for up to 1.048576 seconds after the
change.

The subclass-mask bit is in bit position
21 of control register O. This bit is
initialized to zero.

The CPU-timer condition is indicated by
an external-interruption code of 1005
hex.

EMERGENCY SIGNAL

An interruption request for an emergency
signal is generated when the CPU accepts
the emergency-signal order specified by
a SIGNAL PROCESSOR instruction address
ing this CPU. The instruction may have

6-10 370-XA Principles of Operation

been executed by this CPU or by another
CPU in the configuration. The request
is preserved and remains pending in the
receiving CPU until it is cleared. The
pending request is cleared when it caus
es an interruption and by CPU reset.

Facilities are provided for holding a
separate emergency-signal request pend
ing in the receiving CPU for each CPU in
the configuration, including the receiv
ing CPU itself.

The subclass-mask bit is in bit position
17 of control registerO. This bit is
initialized to zero.

The emergency-signal condition is indi
cated by an external-interruption code
of 1201 hex. The address of the CPU
that issued the SIGNAL PROCESSOR
instruction is stored at real locations
132-133.

EXTERNAL CALL

An interruption request for an external
call is generated when the CPU accepts
the external-call order specified by a
SIGNAL PROCESSOR instruction addressing
this CPU. The instruction may have been
executed by this CPU or by another CPU
in the configuration. The request is
preserved and remains pending in the
receiving CPU until it is cleared. The
pending request is cleared when it caus
es an interruption and by CPU reset.

Only one external-call request, along
with the processor address, may be held
pending in a CPU at a time.

The subclass-mask bit is in bit position'
18 of control register O. This bit is
initialized to zero.

The external-call condition is indicated
by an external-interruption code of 1202
hex. The address of the CPU that issued
the SIGNAL PROCESSOR instruction is
stored at real locations 132-133.

INTERRUPT KEY

An interruption request for the inter
rupt key is generated when the operator
activates that key. The request is
preserved and remains pending in the CPU
until it is cleared. The pending
request is cleared when it causes an
interruption und by CPU reset.

When the interrupt key ;s activated
while the CPU is in the load stat., it
depends on the model whether an inter
ruption request is generated or the
condition is lost.

The subclass-mask bit is in bit position
25 of control register O. This bit is
initialized to one.

The interrupt-key condition is indicated
by an external-interruption code of 0040
hex.

MALFUNCTION ALERT

An interruption request for a malfunc
tion alert is generated when another CPU
in the configuration enters the check
stop state or loses power. The request
is preserved and remains pending in the
receiving CPU until it is cleared. The
pending request is cleared when it caus
es an interruption and by CPU reset.

Facilities are provided for holding a
separate malfunction-alert request pend
ing in the receiving CPU for each of the
other CPUs in the configuration.
Removal of a CPU from the configuration
does not generate a malfunction-alert
condition.

The subclass-mask bit is in bit position
16 of control register O. This bit is
initialized to zero.

The malfunction-alert condition is indi
cated by an external-interruption code
of 1200 hex. The address of the CPU
that generated the condition is stored
at real locations 132-133.

SERVICE SIGNAL

An interruption request for a service
signal is generated when the service
processor signals completion of an oper
ation previously initiated by the
program. The program initiates func
tions at the service processor by means
of the model-dependent DIAGNOSE instruc
tion. A 32-bit parameter is provided
with the interruption to assist the
program in determining the operation for
which the interruption is reported.

Service signal is a floating inter
ruption condition and is presented to
the first CPU in the configuration which
can accept the interruption. The pend
ing request is cleared when it causes an
interruption in anyone of the CPUs and
also by sUbsystem reset.

The subclass-mask bit is in bit position
22 of control register o. This bit is
initialized to zero.

The service-signal condition is indi
cated by an external-interruption code
of 2401 hex. A 32-bit parameter is
stored at real locations 128-131.

TOO-CLOCK SYNC CHECK

The TOD-clock-sync-check condition indi
cates that more than one TOO clock
exists in the configuration, and that
the rightmost 32 bits of the clocks are
not running in synchronism.

An interruption request for a TOO-clock
sync check exists when the TOO clock
accessed by this CPU is running (that
is, the clock is in the set or not-set
state), the clock accessed by any other
CPU in the configuration is running, and
bits 32-63 of the two clocks do not
match. When a clock is set or changes
state, or when a running clock is added
to the configuration, a delay of up to
1.048576 seconds (2 20 microseconds) may
occur before the mismatch condition is
recognized.

When only two TOO clocks are in the
configuration and either or both of the
clocks are in the error, stopped, or
not-operational state, it is unpredict
able whether a TOO-clock-sync-check
condition is recognized; if the condi
tion is recognized, it may continue to
persist up to 1.048576 seconds after
both clocks have been running with the
rightmost 32 bits matching. However, in
this case, the condition does not
persist if one of the TOO clocks is
removed from the configuration.

When more than one CPU shares a TOO
clock, only the CPU with the smallest
CPU address among those sharing the
clock indicates a TOO-clock-sync-check
condition associated with that clock.

If the condition responsible for the
request is removed before the request is
honored, the request does not remain
pending, and no interruption occurs.
Conversely, the request is not cleared
by the interruption, and, if the condi
tion persists, more than one
interruption may result from a single
occurrence of the condition.

The subclass-mask bit is in bit position
19 of control register o. This bit is
initialized to zero.

The TOO-clock-sync-check condition is
indicated by an external-interruption
code of 1003 ~ex.

INPUT/OUTPUT INTERRUPTION

The input/output (I/O) interruption
provides a means by which the CPU
responds to conditions originating in
I/O devices and the channel subsystem.

Chapter 6. Interruptions 6-11

A request for an I/O interruption may
occur at any time, and more than one
request may occur at the same time. The
requests are preserved and remain pend
ing until accepted by a CPU, or until
cleared by some other means, for example
SUbsystem reset.

The I/O interruption occurs at the
completion of a unit of operation.
Priority is established among requests
so that in each CPU only one inter
ruption request is processed at a time.
Priority among requests for inter
ruptions of differing interruption
subclass queues is determined on the
basis of the interruption-subclass code
(with zero having the highest priority),
in conjunction with the 1/0-
interruption-subclass mask settings in
control register 6. For more details,
see Chapter 16, "I/O Interruptions."

When a CPU becomes enabled for I/O
interruptions and the channel subsystem
has established priority for a pending
I/O-interruption condition, the inter
ruption occurs at the completion of the
instruction execution or interruption
that causes the enabling.

An I/O interruption causes the old PSW
to be stored at real location 56 and a
new PSW to be fetched from real location
120. Additional information, in the
form of an eight-byte I/O-interruption
code, is stored at real locations
184-191. The I/O interruption code
consists of a 32-bit subsystem
identification word and a 32-bit
interruption parameter.

An I/O interruption can occur only while
a CPU is enabled for the interruption
subclass presenting the request. The
I/O-mask bit, bit 6 of the PSW, and the
I/O-interruption-subclass mask in
control register 6 determine whether the
CPU is enabled for a particular I/O
interruption.

I/O interruptions are grouped into eight
I/O-interruption-subclass queues
numbered from 0-7. Each interruption
subclass queue has an associated 1/0-
interruption-subclass mask in bit
positions 0-7 of control register 6.
Each subchannel has an 1/0-
interruption-subclass-code value
associated with it. The CPU is enabled
for I/O interruptions of a particular
I/O-interruption subclass ~nly when PSW
bit 6 is one and the associated 1/0-
interruption-subclass mask in control
register 6 is also one. If the corre
sponding interruption-subclass mask is
zero, then the CPU is disabled for I/O
interruptions with that subclass value.
I/O interruptions for all subclasses are
disallowed when PSW bit 6 is zero.

6-12 370-XA Principles of Operation

MACHINE-CHECK INTERRUPTION

The machine-check interruption is a
means for reporting to the program the
occurrence of equipment malfunctions.
Information is provided to assist the
program in determining the source of the
fault and extent of the damage.

A machine-check interruption causes the
old PSW to be stored at real location 48
and a new PSW to be fetched from real
location 112.

The cause and severity of the malfunc
tion are identified by a 64-bit
machine-cheek-interruption code stored
at real locations 232-239. Further
information identifying the cause of the
interruption and the location of the
fault may be stored at real locations
216-511.

The interruption action and the storing
of the associated information are under
the control of PSW bit 13 and bits in
control register 14. See Chapter II,
"Machine-Check Handling," for more
detailed information.

PROGRAM INTERRUPTION

Program interruptions are used to report
exceptions and events which occur during
execution of the program.

A program interruption causes the old
PSW to be stored at real location 40 and
a new PSW to be fetched from real
location 104.

The cause of the interruption is identi
fied by the interruption code. The
interruption code is placed at real
locations 142-143, the instruction
length code is placed in bit positions 5
and 6 of the byte at real location 141
with the rest of the bits set to zeros,
and zeros are stored at real location
140. For some causes, additional infor
mation identifying the reason for the
interruption is stored at real locations
144-159.

Except for the PER-event condition, the
condition causing the interruption is
indicated by a coded value placed in the
rightmost seven bit positions of the
interruption code. Only one condition
at a time can be indicated. Bits 0-7 of
the interruption code are set to zeros.

The PER-event condition is indicated by
setting bit 8 of the interruption code
to one, with bits 0-7 set to zeros.
When this is the only condition, bits
9-15 are also set to zeros. When a
PER-event condition is indicated concur~
rently with a~other program interruption
condition, bit 8 is one, and the coded

value for the other condition appears in
bit positions 9-15.

When there is a corresponding mask bit,
a program interruption can occur only
when that mask bit is one. The program
mask in the PSW controls four of the
exceptions, bit 1 in control register 0
controls whether SET SYSTEM MASK causes
a special-operation exception, bits
16-31 in control register 8 control
interruptions due to monitor events, and
a hierarchy of masks control inter
ruptions due to PER events. When any
controlling mask bit is zero, the condi
tion is ignored; the condition does not
remain pending.

Programming Notes

1. When the new PSW for a program
interruption has a PSW-format error
or causes an exception to be recog
nized in the process of instruction
fetching, a string of program
interruptions may occur. See the
section "Priority of Interruptions"
in this chapter for a description
of how such strings are terminated.

2. Some of the conditions indicated as
program exceptions may be recog
nized also by the channel
subsystem, in which case the excep-
tion is indicated in the
subchannel-status word or
extended-status word.

PROGRAM-INTERRUPTION CONDITIONS

The following is a detailed description
of each program-interruption condition.

Addressing Exception

An addressing exception is recognized
when the CPU attempts to reference a
main-storage location that is not avail
able in the configuration. A main
storage location is not available in the
configuration when the location is not
installed, when the storage unit is not
in the configuration, or when power is
off in the storage unit. An address
designating a storage location that is
not available in the configuration is
referred to as invalid.

The operation is suppressed when the
address of the instruction is invalid.
Similarly, the operation is suppressed
when the address of the target instruc
tion of EXECUTE is invalid. Also, the
unit of operation is suppressed when an
addressing exception is encountered in
accessing a table entry. The table
entries to which the rule applies are
entries for the segment table, ~age
table, linkage table, entry table,~nd
author i ty table. Addressi ng except i tIns
result in suppression when they are
encountered for references to the
segment table and page table, in both
implicit references for dynamic 'address
translation and references associated
with the execution of LOAD REAL ADDRESS
and TEST PROTECTION. Except for some
specific instructions whose execution is
suppressed, the operation is terminated
for an operand address that can be
translated but designates an unavailable
location. See the figure "Summary of
Action for Addressing and Protection
Exceptions."

For termination, changes may occur only
to result fields. In this context, the
term "result field" includes the condi
tion code, registers, and any storage
locations that are provided and that are
designated to be changed by the instruc
tion. Therefore, if an instruction is
due to change only the contents of a
field in storage, and every byte of the
field is in a location that is not
available in the configuration, the
operation is suppressed. When part of
an operand location is available in the
configuration and part is not, storing
may be performed in the part that is
available in the configuration.

When an addressing exception occurs
during the fetching of an instruction or
during the fetching of a OAT table entry
associated with an instruction fetch, it
is unpredictable whether the ILC is 1,
2, or 3. When the exception is associ
ated with fetching the target of
EXECUTE, the ILC is 2.

In all cases of addressing exceptions
not associated with instruction
fetching, the ILC is 1, 2, or 3, desig
nating the length of the instruction
that caused the reference.

An addressing exception is indicated by
a program-interruption code of 0005 hex
(or 0085 hex if a concurrent PER event
is i ndi cated).

Chapter 6. Interruptions 6-13

Action on

Table- Instruction
Exception Entry Fetch l Fetch Operand Reference

Addressing Suppress Suppress Suppress for IPTE, lASP,
exception lPSW, MSCH, SCKC, SPT,

SPX, SSCH, SSM, STCRW,.
STNSM, STOSM, TPI, TPROT,
and Tracing 2 •
Terminate for all others. 3

Protection -- Suppress Suppress for IPTE, lASP,
exception lPSW, MSCH, SCKC, SPT,
for key- SPX, SSCH, STNSM, STOSM,
controlled and TPI4.
protection Terminate for all others. 3

Protection -- -- Suppress for STCRW,
exception STNSM, STOSM, and TPI4.
for page
protection Terminate for all others. 3

Protection -- -- Suppress for PC, PT,
exception SSAR, STCRW, STNSM,
for low- STOSM, TPI4, and Tracing 2 •

address
protection Terminate for all others.

Explanation:

-- Not applicable

1

2

3

4

Table entries include segment table, page table, linkage
table, entry table, ASN first table, ASN second table,
and authority table.

The following instructions cause an entry to be made in
the trace table when the corresponding tracing function
is turned on: BALR, BASR, BASSM, PC, PT, SSAR, and
TRACE. The stores into the trace table are subject to
addressing and low-address-protection exceptions. The
operation is suppressed for these exceptions.

For termination, changes may occur only to result
fields. In this context, "result field" includes con
dition code, registers, and storage locations, if any,
which are designated to be changed by the instruction.
However, no change is made to storage location or a
storage key when the reference causes an access excep
tion. Therefore, if an instruction is due to change
only ~he contents of a field in main storage, and every
byte of that field would cause an access exception, the
operation is suppressed.

When the effective address of TPI is zero, the store
access is to implicit real locations 184-191, and key
controlled protection, page protection, and low-address
protection do not apply.

Summary of Action for Addressing and Protection Exceptions

6-14 370-XA Principles of Operation

3

AFX-Translation Exception

An AFX-translation exception is recog
nized when, during ASH translation in
PROGRAM CALL with space switching
(PC-ss), PROGRAM TRAHSFER with space
switching (PT-ss), or SET SECOHDARY ASH
with space switching (SSAR-ss), bit 0 of
the ASH-first-table entry used is not
zero.

The ASH being translated is stored at
real locations 146-147, and real
locations 144-145 are set to zeros.

The operation is nullified.

The instruction-length code is 2.

The AFX-translation exception is indi
cated by a program-interruption code of
0020 hex (or OOAO hex if a concurrent
PER event is indicated).

ASH-Translation-Specification Exception

An ASH-translation-specification excep
tion is recognized during ASH trans
lation in LOAD ADDRESS SPACE PARAMETERS,
PROGRAM CALL with space switching
(PC-55), PROGRAM TRAHSFER with space
switching (PT-ss), or SET SECONDARY ASH
with space switching (SSAR-ss) when
either:

1. Bit positions 28-31 of a valid
ASH-first-table entry do not
contain zeros.

2. Bit positions 30, 31, and 60-63 of
a valid ASH-second-table entry do
not contain zeros.

The operation is suppressed.

The instruction-length code is 2 or 3.

The ASH-translation-specification excep
tion is indicated by a program
interruption code of 0017 hex (or 0097
hex if a concurrent PER event is indi
cated).

ASX-Translation Exception

An ASX-translation exception is recog
nized when, during ASH translation in
PROGRAM CALL with space switching
(PC-ss), PROGRAM TRAHSFER with space
switching (PT-ss), or SET SECOHDARY ASH
with space switching (SSAR-ss), bit 0 of
the ASH-second-table entry used is not
zero.

The ASH being translated is stored at
real locations 146-147, and real
locations 144-145 are set to zeros.

The operation is nullified.

The instruction-length code is 2.

The ASX-translation exception is indi
cated by a program-interruption code of
0021 hex (or 00A1 hex if a concurrent
PER event is ~ndicated).

Data Exception

A data exception is recognized when any
of the following is true:

1. The sign or digit codes of operands
ln the decimal instructions
(described in Chapter 8, "Decimal
Instructions") or in COHVERT TO
BIHARY are invalid.

2. The operand fields in ADD DECIMAL,
COMPARE DECIMAL, DIVIDE DECIMAL,
MULTIPLY DECIMAL, and SUBTRACT
DECIMAL overlap in a way other than
with coincident rightmost bytes; or
operand fields in ZERO AND ADD
overlap, and the rightmost bytp. of
the second operand is to the r)ght
of the rightmost byte of the first
operand.

3. The multiplicand in MULTIPLY DECI
MAL has an insufficient number of
high-order zeros.

The action taken for a data exception
depends on whether a sign code is inval
id. The operation is suppressed when a
sign code is invalid, regardless of
whether any other condition causing the
exception exists; when no sign code is
invalid, the operation is terminated.

For all instructions other than EDIT and
EDIT AND MARK, when the operation is
terminated, the contents of the sign
position in the rightmost byte of the
result field either remain unchanged or
are set to the preferred sign code; the
contents of the remainder of the result
field are unpredictable.

In the case of EDIT and EDIT AHD MARK,
an invalid sign code cannot occur; the
operation is terminated on a data excep
tion for an invalid digit code.

The instruction-length code is 2 or 3.

The data exception is indicated by a
program-interruption code of 0007 hex
(or 0087 hex if a concurrent PER event
is indicated).

Chapter 6. Interruptions 6-15

Programming Notes

1. The definition for data exception
permits termination when digit
codes are invalid but no sign code
is invalid. On some models, valid
digit codes may be placed in the
result field even if the original
contents were invalid. Thus it is
possible, after a data exception
occurs, for all fields to appear
valid.

2. An invalid sign code for the right
most byte of the result field is
not generated when the operation is
terminated. However, an invalid
second-operand sign code is not
necessarily preserved when it is
located in the numeric portion of
the result field.

3. When, after a program interruption
for data exception, a sign code is
found to be invalid, the operation
has been suppressed if both of the
following conditions are met:

a. The invalid sign of the source
field is not located in the
numeric portion of the result
field.

b. The invalid sign code appears
in a position specified by the
instruction to be checked for a
valid sign. (This condition
excludes the first operand of
ZERO AND ADD, both operands of
EDIT, and EDIT AND MARK.)

Decimal-Divide Exception

A decimal-divide exception is recognized
when in decimal division the divisor is
zero or the quotient exceeds the speci
fied data-field size.

The decimal-divide exception is indi
cated only if the sign codes of both the
divisor and dividend are valid and only
if the digit or digits used in estab
lishing the exception are valid.

The operation is suppressed.

The instruction-length code is 2 or 3.

The decimal-divide exception is indi
cated by a program-interruption code of
OOOB hex (or 008B hex if a concurrent
PER event is indicated>.

Decimal-Overflow Exception

A decimal-overflow exception is recog
nized when one or more nonzero digits

6-16 370-XA Principles of Operation

are lost because the destination field
in a decimal operation is too short to
contain the result.

The interruption may be disallowed by
the decimal-overflow mask (PSW bit 21).

Ths operation is completed. The result
is obtained by ignoring the overflow
digits, and condition code 3 is set.

The instruction-length code is 2 or 3.

The decimal-overflow exception is indi
cated by a program-interruption code of
OOOA hex (or 008A hex if a concurrent
PER event is indicated).

Execute Exception

The execute exception is recognized when
the target ~nstruction of EXECUTE is
another EXECUTE.

The operation is suppressed.

The instruction-length code is 2.

The execute exception is indicated by a
program-interruption code of 0003 hex
(or 0083 hex if a concurrent PER event
is indicated).

Exponent-Overflow Exception

An exponent-overflow exception is recog
nized when the result characteristic of
a floating-point operation exceeds 127
and the result fraction is not zero.

The operation is completed. The frac
tion is normalized, and the sign and
fraction of the result remain correct.
The result characteristic is made 128
smaller than the correct characteristic.

The instruction-length code is 1 or 2.

The exponent-overflow exception is indi
cated by a program-interruption code of
OOOC hex (or 008C hex if a concurrent
PER event is indicated).

Exponent-Underflow Exception

An exponent-underflow exception is re
cognized when the result characteristic
of a floating-point operation is less
than zero and the result fraction is not
zero. For an extended-format floating
point result, exponent underflow is
indicated only when the high-order char
acteristic underflows.

The
the
22).

interruption may be disallowed by
exponent-underflow mask (PSW bit

The operation is completed. The
exponent-underflow mask also affects the
result of the operation. When the mask
bit is zero, the sign, characteristic,
and fraction are set to zero, making the
result a true zero. When the mask bit
is one, the fraction is normalized, the
characteristic is made 128 larger than
the correct characteristic, and the sign
and fraction remain correct.

The instruction-length code is 1 or 2.

The exponent-underflow exception is in
dicated by a program-interruption code
of 0000 hex (or 0080 hex if a concurrent
PER event is indicated).

EX-Translation Exception

An EX-translation exception is recog
nized during PC-number translation in
PROGRAM CALL when the entry-table entry
indicated by the entry-table-index part
of the PC number is beyond the length of
the entry table as designated by the
linkage-table entry.

The PC number is stored in bit positions
12-31 of the word at real location 144,
and the leftmost 12 bits of the word are
set to zeros.

The operation is nullified.

The instruction-length code is 2.

The EX-translation exception is indi
cated by a program-interruption code of
0023 hex (or 00A3 hex if a concurrent
PER event is indicated).

Fixed-Point-Divide Exception

A fixed-point-divide exception is recog
nized when in signed binary division the
divisor is zero or when the quotient in
signed binary division or the result of
CONVERT TO BINARY cannot be expressed as
a 32-bit signed binary integer.

In the case of division, the operation
is suppressed. The execution of CONVERT
TO BINARY is completed by ignoring the
leftmost bits that cannot be placed in
the register.

The instruction-length code is 1 or 2.

The fixed-point-divide exception is in
dicated by a program-interruption code
of 0009 hex (or 0089 hex if a concurrent
PER event is indicated).

Fixed-Point-Overflow Exception

A fixed-point-overflow exception is re
cognized when an overflow occurs during
signed binary arithmetic or signed
left-shift operations.

The interruption may be disallowed by
the fixed-poi nt-overflow mask (PSW bit
20).

The operation is completed. The result
is obtained by ignoring the overflow
information, and condition code 3 is
set.

The instruction-length code is 1 or 2.

The fixed-point-overflow exception is
indicated by a program-interruption code
of 0008 hex (or 0088 hex if a concurrent
PER event is indicated).

Floating-Point-Divide Exception

A floating-point-divide exception is
recognized when in floating-point divi
sion the divisor has a zero fraction.

The operation is suppressed.

The instruction-length code is 1 or 2.

The floating-point-divide exception is
indicated by a program-interruption code
of OOOF hex (or OOaF hex if a concurrent
PER event is indicated).

lX-Translation Exception

An LX-translation exception is recog
nized during PC-number translation in
PROGRAM CALL when either:

1. The linkage-table entry indicated
by the linkage-table-index part of
the PC n~mber is beyond the length
of the linkage table as designated
by control register 5.

2. Bit 0 of the linkage-table entry is
not zero.

The PC number is stored in bit positions
12-31 of the word at real location 144,
and the leftmost 12 bits of the word are
set to zeros.

The operation is nullified.

The instruction-length code is 2.

The lX-translation exception is indi
cated by a program-interruption code of

Chapter 6. Interruptions 6-17

0022 hex (or 00A2 hex if a concurrent
PER event is indicated).

Monitor Event

A monitor event is recognized when MONI
TOR CALL is executed and the monitor
mask bit, in control register 8
corresponding to the class specified by
instruction bits 12-15 is one.

Control Register 8:

1///////////////1 Monitor Masks

o 16 31

The monitor-mask bits, bits 16-31 of
control register 8, correspond to moni
tor classes 0-15, respectively. Any
number of monitor-mask bits may be on at
a time; together they specify the class
es of monitor events that are monitored
at that time. The mask bits are
initialized to zero.

When MONITOR CALL is executed and the
corresponding monitor-mask bit is one, a
program interruption for monitor event
occurs.

Additional information is stored at real
locations 148-149 and 156-159. The
format of the information stored at
these locations is as follows:

Real locations 148-149:

o 8

Monitor
Class No.

15

Real locations 156-159:

1
0

I
Monitor Code

o 1 31

The contents of bit positions 8-15 of
the MONITOR CALL instruction are stored
at real location 149 and constitute the
monitor-class number. Zeros are stored
at real location 148. The effective
address specified by the B1 and D1
fields of the instruction forms the
monitor code, which is stored in the
word at real location 156. The value of
the address is under control of the
addressing mode, bit 32 of the current
PSW; in 24-bit mode, bits 0-7 of the
address are zeros, while in 31-bit mode,
bit 0 i s zero.

The operation is completed.

The instruction-length code is 2.

6-18 370-XA Principles of Operation

The monitor exception is indicated by a
program-interruption code of 0040 hex
(or OOCO hex if a concurrent PER event
is i ndi cated) •

Operand Exception

An invalid operand has been encountered
in a CLEAR SUBCHANNEL, HALT SUBCHANNEL,
MODIFY SUBCHANNEL, RESET CHANNEL PATH,
RESUME SUnCHANNEL, SET ADDRESS LIMIT,
SET CHANNEL MONITOR, START SUBCHANNEL,
STORE SUBCHANNEL, or TEST SUBCHANNEL
instruction. For details, see the
section "Unusual Conditions" in the
individual instruction descriptions in
Chapter 14, "I/O Instructions."

The operation is suppressed.

The instruction-length code is 2.

The ope~and exception is indicated by a
program-interruption code of 0015 hex
(or 0095 hex if a concurrent PER event
is i ndi cated).

Operation Exception

An operation exception is recognized
when the CPU attempts to execute an
instruction with an invalid operation
code. The operation code may be unas
signed, or the instruction with that
operation code may not be installed on
the cpu.
For the purpose of checking the opera
tion code of an instruction, the opera
tion code is defined as follows:

1. When the first eight bits of an
instruction have the value B2 or E5
hex, the first 16 bits form the
operation code.

2. In all other cases, the first eight
bits alone form the operation code.

The operation is suppressed.

The instruction-length code is 1, 2, or
3.

The operation exception is indicated by
a program-interruption code of 0001 hex
(or 0081 hex if a concurrent PER event
is indicated).

Programming Notes

1. Some models may offer instructions
not described in this publication,
such as those provided for assists

or as part of special or custom
features. Consequently, operation
codes not described in this publi
cation do not necessarily cause an
operation exception to be recog
nized. Furthermore, these
instructions may cause modes of
operation to be set up or may
otherwise alter the machine so as
to affect the execution of subse
quent instructions. To avoid
causing such an operation, an
instruction with an operation code
not described in this publication
should be issued only when the
specific function associated with
the operation code is desired.

2. The operation code 00, with a two
byte instruction format, currently
is not assigned. It is improbable
that this operation code will ever
be assigned.

Page-Translation Exception

A page-translation exception is recog
nized when either:

1. The page-table entry indicated by
the page-index portion of a virtual
address is outside the page table.

2. The page-invalid bit is one.

The exception is recognized as part of
the execution of the instruction that
needs the page-table entry in the trans
lation of either an instruction or oper
and address, except for the operand
address in LOAD REAL ADDRESS and TEST
PROTECTION, in which case the condition
is indicated by the setting of the
condition code.

The segment-index and page-index portion
of the virtual address causing the
exception is stored at real locations
144-147. Bit 0 of real location 144 is
set to zero if the virtual address was
relative to the primary address space,
or it is set to one if the virtual
address was relative to the secondary
address space. The rightmost 12 bits of
the address stored are unpredictable.

The unit of operation is nullified.

When the exception occurs during fetch
ing of an instruction, it is unpredict
able whether the ILC is 1, 2, or 3.
When the exception occurs during a
reference to the target of EXECUTE, the
ILC is 2.

When the exception occurs during a
reference to an operand location, the
instruction-length code (ILC) is 1, 2,
or 3 and indicates the length of the
instruction causing the exception.

The page-translation exception is indi
cated by a program-interruption code of
0011 hex (or 0091 hex if a concurrent
PER event is indicated).

PC-Translation-Specification Exception

A PC-translation-specification exception
is recognized during PC-number trans
lation in PROGRAM CALL when bit position
32 of the entry-table entry is zero and
bit positions 33-39 are not all zeros.

The operation is suppressed.

The instruction-length code is 2.

The PC-translation-specification
tion is indicated by a
interruption code of 00lF hex
hex if a concurrent PER event
cated).

excep
program
(or 009F
is indi-

A PER event is recognized when the CPU
is enabled for PER by the contents of
control registers 9-11 and one or more
of these events occur.

The interruption may be disallowed by
PSW bit 1.

The unit of operation is completed,
unless another condition has caused the
unit of operation to be nullified,
suppressed, or terminated.

Additional information identifying the
event is stored at real locations
150-155. See the section "Program-Event
Recording" in Chapter 4, "Control," for
a detailed description of the inter
ruption condition.

The instruction-length code is 0, 1, 2,
or 3. Code 0 is set only if a specifi
cation exception is indicated concur
rently.

The PER event is indicated by setting
bit 8 of the program-interruption code
to one.

Primary-Authority Exception

A primary-authority exception is recog
nized during ASN authorization in
PROGRAM TRANSFER with space switching
(PT-ss) when either:

1. The authority-table entry indicated
by the authorization index in
control register 4 is beyond the
length of the authority table

Chapter 6. Interruptions 6-19

designated by the ASN-second-table
entry.

2. The primary-authority bit indicated
by the authorization index is zero.

The ASN being translated is stored at
real locations 146-147, and real
locations 144-145 are set to zeros.

The operation is nullified.

The instruction-length code is 2.

The primary-authority exception is indi
cated by a program-interruption code of
0024 hex (or 00A4 hex if a concurrent
PER event is indicated>.

Privileged-Operation Exception

A privileged-operation exception is
recognized when any of the following is
true:

1. Execution of a privileged instruc
tion is attempted in the problem
state.

2. The value of the rightmost bit of
the general register designated by
the R2 field of the PROGRAM TRANS
FER instruction is zero and would
cause the PSW problem-state bit to
change from problem state, one, to
supervisor state, zero.

3. In the problem state, the key value
specified by the second operand of
the SET PSW KEY FROM ADDRESS
instruction corresponds to a zero
PSW-key-mask bit in control regis
ter 3.

4. In the problem state, the key value
specified by the rightmost byte of
the register designated by the R3
field of the MOVE WITH KEY instruc
tion corresponds to a zero PSW
key-mask bit in control register 3.

5. In the problem state, the key value
specified by the rightmost byte of
the register designated by the R3
field of the instructions MOVE TO
PRIMARY and MOVE TO SECONDARY
corresponds to a zero PSW-key-mask
bit in control register 3.

6. In the problem state, any of the
instructions

EXTRACT PRIMARY ASN
EXTRACT SECONDARY ASH
INSERT ADDRESS SPACE CONTROL
INSERT PSW KEY
INSERT VIRTUAL STORAGE KEY

is encountered, and the
extraction-authority control, bit 4
of control register 0, is zero.

6-20 370-XA Principles of Operation

7. In the problem state, the result of
ANDing the authorization key mask
(AKM) with the PSW-key mask in
control register 3 during PROGRAM
CALL produces a result of zero.

The operation is suppressed.

The instruction-length code is 1, 2, or
3.

The privileged-operation exception is
indicated by a program-interruption code
of 0002 hex (or 0082 hex if a concurrent
PER event is indicated>.

Protection Exception

A protection exception is recognized
when any of the following is true:

1. KeY-Controlled Protection: The CPU
attempts to access a storage
location that is protected against
the type of reference, and the
access key does not match the stor
age key.

2. low-Address Protection: The CPU
attempts a store that is subject to
low-address protection, the effec
tive address is in the range 0-511,
and the low-address protection
control, bit 3 of control register
0, is one.

3. Paqg Protection: The CPU attempts
to store, with DAT on, into a page
which has the page-protection bit
set to one.

The operation is suppressed when the
location of the instruction is protected
against fetching. Similarly, the opera
tion is suppressed when the location of
the largest instruction of EXECUTE is
protected against fetching.

Except for some specific instructions
whose execution is suppressed, the oper
ation is terminated when a protection
exception is encountered during a refer
ence to an operand location. See the
figure "Summary of Action for Protection
and Addressing Exceptions," which is
included in the section "Addressing
Exception" in this chapter.

For termination, changes may occur only
to result fields. In this context, the
term "result field" includes condition
code, registers, and storage locations,
if any, which are designated to be
changed by the instruction. However, no
change is made to a storage location
when a reference to that location causes
a protection exception. Therefore, if
an instruction is due to change only the
contents of a field in storage, and
every byte of that field would cause a

protection exception, the operation is
suppressed. When termination occurs on
fetching, the protected information is
not loaded into an addressable register
nor moved to another storage location.

When the exception occurs during fetch
ing of an instruction, it is unpredict
able whether the IlC is 1, 2, or 3.
When the exception occurs during the
fetching of the target of EXECUTE, the
ILC is 2.

For a protected operand location, the
instruction-length code (IlC) is 1, 2,
or 3, designating the length of the
instruction that caused the reference.

The protection exception is indicated by
a program-interruption code of 0004 hex
(or 0084 hex if a concurrent PER event
is indicated).

Secondary-Authority Exception

A secondary-authority exception is
recognized during ASN authorization in
SET SECONDARY ASN with space switching
(SSAR-ss) when either:

1. The authority-table entry indicated
by the authorization index in
control register 4 is beyond the
length of the authority table
designated by the ASN-second-table
entry.

2. The secondary-authority bit indi
cated by the authorization index is
zero.

The ASN being translated is stored at
real locations 146-147, and real
locations 144-145 are set to zeros.

The operation is nullified.

The instruction-length code is 2.

The secondary-authority exception is
indicated by a program-interruption code
of 0025 hex (or OOA5 hex if a concurrent
PER event is indicated).

Segment-Translation Exception

A segment-translation
recognized when either:

exception is

1. The segment-table entry indicated
by the segment-index portion of a
virtual address is outside the
segment table.

2. The segment-invalid bit is one.

The exception is recognized as part of
the execution of the instruction that

needs the segment-table entry in the
translation of either the instruction or
operand address, except for the operand
address in LOAD REAL ADDRESS and TEST
PROTECTION, in which case the condition
is indicated by the setting of the
condition code.

The segment-index and page-index portion
of the virtual address causing the
exception is stored at real locat:ons
144-147. Bit 0 of real location 144 is
set to zero if the virtual address ~as
relative to the primary address spa~e,
or it is set to one if the virtual
address was relative to the secondary
address space. The rightmost 12 bits of
the address stored are unpredictable.

The unit of operation is nullified.

When the exception occurs during fetch
ing of an instruction, it is unpredict
able whether the ILC is 1, 2, or 3.
When the exception occurs during the
fetching of the target of EXECUTE, the
ILC is 2.

When the exception occurs during a
reference to an operand location, the
instruction-length code (ILC) is 1, 2,
or 3 and indicates the length of the
instruction causing the exception.

The segment-translation exception 1S
indicated by a program-interruption code
of 0010 hex (or 0090 hex if a concurrent
PER event is indicated).

Significance Exception

A significance exception is
when the result fraction in
point addition or subtraction

recognized
floating

is zero.

The interruption may be disallowed by
the significance mask (PSW bit 23).

The operation is completed. The signif
icance mask also affects the result of
the operation. When the mask bit is
zero, the operation is completed by
replacing the result with a true zero.
When the mask bit is one, the operation
is completed without further change to
the characteristic of the result.

The instruction-length code is 1 or 2.

The significance exception is indicated
by a program-interruption code of OOOE
hex (or OOAE hex if a concurrent PER
event is indicated).

Space-Switch Event

A space-switch event is recognized at
the completion of a PROGRAM CAll with

Chapter 6. Interruptions 6-21

space switching (PC-ss) or a PROGRAM
TRANSFER with space switching (PT-ss)
when any of the following is true:

1. The space-switch-event-control bit,
bit 0 of control register 1, is one
before the operation.

2. The space-switch-event-control bit
is one after the operation.

3. A PER event is reported.

The old PASN, which appears in the right
half of control register 4 before the
execution of the instruction PC-ss or
PT-ss, is stored at real locations
146-147. The old space-switch-event
control bit is placed in bit position 0
and zeros are placed in bit positions
1-15 at real locations 144-145.

The operation is completed.

The instruction-length code is 2.

The space-switch event is indicated by a
program-interruption code of 001C hex
(or 009C hex if a concurrent PER event
is indicated).

Programming Notes

1. The space-switch event permits the
control program to galn control
whenever a program enters or leaves
a particular address space. The
space-switch-event-control bit is
loaded into control register 1,
along with the remaining bits of
the primary segment-table desig
nation, whenever control register 1
is loaded.

2. The space-switch event may be
useful in obtaining programmed
authorization checking, in causing
additional trace information to be
recorded, or in enabling or disabl
ing the CPU for PER or tracing.

3. Bit 64 of the ASN-second-table
entry (ASTE) is loaded into bit
position 0 of control register 1 as
part of the PC-ss and PT-ss oper
ations. If bit 64 of the ASTE for
a particular address space is set
to one, then a space-switch event
is recognized when a program enters
or leaves the address space by
means of either a PC-ss or a PT-ss.

4. The occurrence of a space-switch
event at the completion of a PC-ss
or PT-ss when any PER event is
indicated permits the control
program to determine the address
space from which the instruction
causing the PER event was fetched.

6-22 370-XA Principles of Operation

Special-Opera~ion Exception

A special-operation exception is recog
nized when any of the following is true:

1. Execution of SET SYSTEM MASK is
attempted in the supervisor state
and the SSM-suppression control,
bit 1 of control register 0, is
one.

2. Execution of any of the following
instructions is attempted with DAT
off:

EXTRACT PRIMARY ASH
EXTRACT SECONDARY ASN
INSERT ADDRESS SPACE CONTROL
INSERT VIRTUAL STORAGE KEY
MOVE TO PRIMARY
MOVE TO SECONDARY
SET ADDRESS SPACE CONTROL
SET SECONDARY ASN

3. Execution of PROGRAM CALL or
PROGRAM TRANSFER is attempted, c'nd
the CPU is not in primary-space
mode.

4. Execution of LOAD ADDRESS SPACE
PARAMETERS, PROGRAM CALL with space
switching (PC-ss), PROGRAM TRANSFER
with space switching (PT-ss), or
SET SECONDARY ASN (SSAR-cp or
SSAR-ss) is attempted, and the
ASN-translation control, bit 12 of
control register 14, is zero.

5. Execution of PROGRAM CALL or
PROGRAM TRANSFER is attempted and,
the subsystem-linkage control, bit
o of control register 5, is zero.

60 Execution of SET ADDRESS SPACE
CONTROL, MOVE TO PRIMARY, or MOVE
TO SECONDARY is attempted, and the
secondary-space control, bit 5 of
control register 0, is zero.

The operation is suppressed.

The instruction-length code is 1, 2, or
3, and indicates the length of the
instruction causing the exception.

The special-operation exception is indi
cated by a program-interruption code of
0013 hex (or 0093 hex if a concurrent
PER event is indicated).

Specification Exception

A specification exception is recognized
when any of the following is true:

1. The PSW contains an odd instruction
address.

2. An operand address does not desig
nate an integral boundary in an
instruction requiring such
integral-boundary designation.

3. The storage address in INSERT
STORAGE KEY or SET STORAGE KEY does
not have zeros in the four low
order bit positions.

4. An odd-numbered general register is
designated by an R field of an
instruction that requires an even
numbered register designation.

5. A floating-point register other
than 0, 2, 4, or 6 is specified for
a short or long operand, or a
floating-point register other than
o or 4 is specified for an extended
operand.

6. The multiplier or divisor in deci
mal arithmetic exceeds 15 digits
and sign.

7. The length of the first-operand
field is less than or equal to the
length of the second-operand field
in decimal multiplication or divi
sion.

8. Bit positions 8-11 of MONITOR CALL
do not contain zeros.

9. A one is introduced into an unas
signed bit position of the PSW
(that is, any of bit positions 0,
2-4, 17, or 24-31). This is
handled as an early PSW specifica
tion exception.

10. A zero is introduced into bit posi
tion 12 of the PSW. This is
handled as an early PSW specifica
tion exception.

11. A zero is introduced into bit posi
tion 32 of the PSW, but bits 33-39
are not all zeros. This is handled
as an early PSW specification
exception.

12. Bits 20-22 of the second-operand
address of SET ADDRESS SPACE
CONTROL are not all zeros.

13. The addressing bit in the general
register specified by the R2 field
of PROGRAM TRANSFER is zero, but
the high-order seven bits of the
instruction address in the same
register are not all zeros.

The execution of the instruction identi
fied by the old PSW is suppressed.
However, for early PSW specification
exceptions (causes 9-11), the operation
that introduces the new PSW is
completed, but an interruption occurs
immediately thereafter.

Except as noted below, the instruction
length code (ILC) is 1, 2, or 3, desig-

nating the length of the instruction
causing the exception.

When the instruction address is odd
(cause 1), it i5 unpredictable whether
the ILC is 1, 2, or 3.

When the exception is recognized because
of an early PSW specification exception,
and the exception has been introduced by
LOAD PSW or an interruption, the ILC is
o. When the exception is introduced by
SET SYSTEM MASK or by STORE THEN OR
SYSTEM MASK, the ILC is 2.

The specification exception is indicated
by a program-interruption code of 0006
hex (or 0086 hex if a concurrent PER
event is indicated).

Programming Note

See the section "Exceptions Associated
with the PSW" in this chapter for a
definition of when the exceptions asso
ciated with the PSW are recognized.

Trace-Table Exception

A trace-table exception is recogn)zed
when the CPU attempts to store a trcice
table entry which would reach or cross
the next 4K-byte block boundary. ~or
the purpose of recognizing this exc(p
ti on in the TRACE i nstructi on, the
explicit trace entry is treated as being
76 bytes long.

The operation is nullified.

The instruction-length code is 1, 2, or
3, indicating the length of the instruc
tion causing the exception.

The trace-table exception is indicated
by a program-interruption code of 0016
hex (or 0096 hex if a concurrent PER
event is indicated).

Translation-Specification Exception

A translation-specification exception is
recognized when translation of a virtual
address is attempted and any of the
following is true:

1.

2.

Bit positions 8-12 of control
register 0 do not contain the code
10110.

The segment-table entry used for
the translation is valid and bit
position 0 in the entry does not
contain zero.

Chapter 6. Interruptions 6-23

3. The page-table entry used for the
translation is valid and bit posi
tions 0, 20, and 23 in the entry do
not contain zeros.

The exception is recognized only as part
of the execution of an instruction using
address translation, that is, when OAT
is on and a logical address, instruction
address, or virtual address must be
translated, or when LOAD REAL ADDRESS or
INVALIDATE PAGE TABLE ENTRY is executed.
Cause 1 is recognized on any translation
attempt; causes 2 and 3 are recognized
only for table entries that are actually
used.

The unit of operation is suppressed.

When the exception occurs during fetch
ing of an instruction, it is unpredict
able whether the ILC is 1, 2, or 3.
When the exception occurs during the
fetching of the target of EXECUTE, the
ILC is 2.

When the exception occurs during a
reference to an operand location, the
instruction-length code (ILC) is 1, 2,
or 3 and indicates the length of the
instruction causing the exception.

The translation-specification exception
is indicated by a program-interruption
code of 0012 hex (or 0092 hex if a
conc.urrent PER event is i ndi cated).

6-24 370-XA Principles of Operation

Programming Note

When a translation-specification excep
tion is recognized in the process of
translating an instruction address, the
operation is suppressed. In this case,
the instruction-length code (ILC) is
needed to derive the address of the
instruction, as the instruction address
in the old PSW has been incremented by
the amount specified by the ILC. In the
case of segment-translation and page
translation exceptions, the operation is
nullified, the instruction address in
the old PSW identifies the instruction,
and the ILC may be arbitrarily set to 1,
2, or 3.

COLLECTIVE PROGRAM-INTERRUPTION NAMES

For the sake of convenience, certain
program excep~lons are grouped together
under a single collective name. These
collective numes are used when it is
necessary to refer to the complete set
of exceptions, such as in instruction
definitions. Three collective names are
used:

Access exceptions
ASN-translation exceptions
Trace exceptions

The individual exceptions and their
priorities are listed in the section
"Multiple-Program-Interruption Condi
tions" in this chapter.

RECOGNITION OF ACCESS EXCEPTIONS

The figure "Handling of Access
Exceptions" summarizes the conditions
that can cause access exceptions and the
action taken when they are encounterEd.

Condition

Control-register-O contents l

Invalid encoding of bits 8-12

Segment-table entry
Segment-table-length violation
Entry protected against fetching
Invalid address of entry
I bit on
One in a bit position which is

checked for zer0 2

Page-table entry
Page-table-length violation
Entry protected against fetching
Invalid address of entry
I bit on
One in a bit position which is

checked for zer0 2

Access for instruction fetch
location protected
Invalid address

Access for operands
location protected
Invalid address

Explanation:

Translation for
Virtual Addr-ess
of LRA

Indi
cation

TS

cc3

A
cc1

TS

cc3

A
cc2

TS

Action

Suppress

Complete

Suppress
Complete
Suppress

Complete

Suppress
Complete
Suppress

TS
ST
PT
A

Translation-specification exception.
Segment-translation exception.
Page-translation exception.
Addressing exception.

P
cc1
cc2
cc3

Protection exception.
Condition code 1 set.
Condition code 2 set.
Condition code 3 set.
The condition does not apply.

Translation
and Access for
Logical Address
of TPROT

Indi
cation

cc3

A
cc3

TS

cc3

A
cc3

TS

Action

Complete

Suppress
Complete
Suppress

Complete

Suppress
Complete
Suppress

cc set 3 Complete
A Suppress

Translation and
Access for Any
Other Address

Indi
cation

TS

ST

A
ST
TS

PT

A
PT
TS

P
A

P
A

Action

Suppress

Nullify

Suppress
Nullify
Suppress

Nullify

Suppress
Nullify
Suppress

Suppress
Suppress

Term.*
Term.*

* 1
Action is to terminate except where otherwise specified in this publication.
A translation-specification exception for an invalid code in control reg
ister 0, bit positions 8-12, is recognized as part of the execution of the
instruction using address translation; when OAT is on, it is recognized
during translation of the instruction address, and, when OAT is off, it is
only recognized during execution of INVALIDATE PAGE TABLE ENTRY or for
translation of the operand address of LOAD REAL ADDRESS.

2

3

4

A translation-specification exception for a format error in a table entry
is recognized only when the execution of an instruction requires the entry
for translation of an address.
The condition code is set as follows:

o Operand location not protected
1 Fetches permitted, but stores not permitted
2 Neither fetches or stores permitted

A translation specification exception cannot occur for the logical address
of TEST PROTECTION since this exception would have been recognized during
the instruction fetch for the instruction.

~--

Handling of Access Exceptions

Any access exception is recognized as
part of the execution of the instruction
with which the exception is associated.
An access exception is not recognized

when the CPU attempts to fetch from an
unavailable location or detects some
other access-exception condition, but a
branch instruction or an interruption

Chapter 6. Interruptions 6-25

changes the instruction sequence such
that the instruction is not executed.

Every instruction can cause an access
exception to be recognized because of
instruction fetch. Additionally, access
exceptions associated with instruction
execution may occur because of an access
to an operand in storage.

An access exception due to fetching an
instruction is indicated when the first
instruction halfword cannot be fetched
without encountering the exception.
When the first halfword of the instruc
tion has no access exceptions, access
exceptions may be indicated for addi
tional halfwords according to the
instruction length specified by the
first two bits of the instruction;
however, when the operation can be
performed without accessing the second
or third halfwords of the instruction,
it is unpredictable whether the access
exception is indicated for the unused
part. Since the indication of access
exceptions for instruction fetch is
common to all instructions, it is not
covered in the individual instruction
definitions.

Except where otherwise indicated in the
individual instruction description, the
following rules apply for exceptions
associated with an access to an operand
location. For a fetch-type operand,
access exceptions are necessarily indi
cated only for that portion of the
operand which is required for completing
the operation. It is unpredictable
whether access exceptions are indicated
for those portions of a fetch-type oper
and which are not required for
completing the operation. For a store
type operand, access exceptions are
recognized for the entire operand even
if the operation could be completed
without the use of the inaccessible part
of the operand. In situations where the
value of a store-type operand is defined
to be unpredictable, it is unpredictable
whether an access exception is
indicated.

Whenever an access to an operand
location can cause an access exception
to be recognized, the word "access" is
included in the list of program
exceptions in the description of the
instruction. This entry also indicates
which operand can cause the exception to
be recognized and whether the exception
is recognized on a fetch or store access
to that operand location. Access
exceptions are recognized only for the
portion of the operand as defined by
each particular instruction.

6-26 370-XA Principles of Operation

MULTIPLE PROGRAM-INTERRUPTION CONDITIONS

Except for PER events, only one
program-interruption condition is indi
cated with a program interruption. The
existence of one condition, however,
does not preclude the existence of other
conditions. When more than one
program-interruption condition exists,
only the condition having the highest
priority is identified in the inter
ruption code.

With two conditions of the same
priority, it is unpredictable which is
indicated. In particular, the priority
of access exceptions associated with the
two parts of an operand that crosses a
page or protection boundary is unpre
dictable and is not necessarily related
to the sequence specified for the access
of bytes within the operand.

The type of ending which occurs (nulli
fication, suppression, or termination)
is that which is defined for the type of
exception that is indicated in the
interruption code. However, if a condi
tion is indicated which permits
termination, and another condition also
exists which would cause either nullifi
cation or suppression, then the unit of
operation is suppressed.

Th~ figure "Priority of Program
Interruption Conditions" lists the
priorities of all program-interrtiption
conditions other than PER events and
exceptions associated with some of the
more complex control instructions. All
exceptions associated with references to
storage for a particular instruction
halfword or a particular operand byte
are grouped as a single entry called
"access."

The figure "Priority of Access
Exceptions" lists the priority of access
exceptions for a single access. Thus,
the second figure specifies which of
several exceptions, encountered either
in the access of a particular portion of
an instruction or in any particular
access associated with an operand, has
highest priority, and the first figure
specifies the priority of this condition
in relation to other conditions detected
in the operation. Similarly, the prior
ities for exceptions occurring as part
of ASN translation and tracing are
covered in the figures "Priority of
ASH-Translation Exceptions" and "Priori
ty of Trace Exceptions," respectively.

For some instructions, the priority is
shown in the individual instruction
description.

The relative priorities of any two
conditions listed in the figure can be
found by comparing the priority numbers,
as found in the figure, from left to
right until a mismatch is found. If the

first inequality is between numeric
characters, either the two conditions
are mutually exclusive or, if both can
occur, the condition with the smaller
number is indicated. If the first
inequality is between alphabetic charac
ters, then the two conditions are not
exclusive, and it is unpredictable which
is indicated when both occur.

To understand the use of the table,
consider an example involving the
instruction ADD DECIMAL, which is a
six-byte instruction. Assume that the
first four bytes of the instruction can
be accessed but that the instruction
crosses a boundary so that an addressing
exception exists for the last two bytes.
Additionally, assume that the first
operand addressed by the instruction
contains invalid decimal digits and is
in a location that can be fetched from,
but not stored into, because of key
controlled protection. The three
exceptions which could result from
attempted execution of the ADD DECIMAL
are:

Priority
Number Exception

7.B Access exceptions for third
instruction halfword.

8.B Access exceptions (operand 1)
8.E Data exception

Since the first inequality (7~8) is
between numeric characters, the address
ing exception would be indicated. If,
however, the entire ADD DECIMAL instruc
tion can be fetched, and only the second
two exceptions listed above exist, then
the inequality (B*E) is between alpha
betic characters, and it is
unpredictable whether the protection
exception or the data exception would be
indicated.

Chapter 6. Interruptions 6-27

1.

2.

3.

4.

5.

6 •

7.A

7.B

7.C.1

7.C.2

7.C.3

7.C.4

B.A

B.D

B.E

B.F

9_.

Specification exception due to any PSW error of the type that causes an
immediate interruption. 1

Specification exception due to an odd instruction address in the PSW.

Access exceptions for first halfword of EXECUTE.2

Access exceptions for second halfword of EXECUTE.2

Specification exception due to target instruction of EXECUTE not being
specified on halfword boundary.2

Access exceptions for first instruction halfword.

Access exceptions for second instruction halfword. 3

Access exceptions for third instruction halfword. 3

Operation exception.

Privileged-operation exception for privileged instructions.

Execute exception.

Special-operation exception.

Specification exception due to conditions other than those included in
1, 2, and 5 above.

Access exceptions for an access to an operand in storage. s

Access exceptions for any other access to an operand in storage. s

Data exception. 6

Decimal-divide exception. 7

Trace exceptions.

Fixed-point divide, floating-point divide, operand, and conditions, other
than PER events, which result in completion. Either these conditions are
mutually exclusive or their priority is specified in the corresponding
definitions.

Priority of Program-Interruption Conditions (Part 1 of 2)

6-28 370-XA Principles of Operation

Explanation:

Numbers indicate priority, with "1" being the highest priority; letters indicate
no priority.

1

2

3

4

5

6

7

PSW errors which cause an immediate interruption may be introduced by a new
PSW loaded as a result of an interruption or by the instructions LOAD PSW,
SET SYSTEM MASK, and STORE THEN OR SYSTEM MASK. The priority shown in the
chart is for a PSW error introduced by an interruption and may also be con
sidered as the priority for a PSW error introduced by the previous instruc
tion. The error is introduced only if the instruction encounters no other
exceptions. The resulting interruption has a higher priority than any inter'
ruption caused by the instruction which would have been executed next; it hcs
lower priority, however, than any interruption caused by the instruction whi=h
introduced the erroneous PSW.

Priorities 3, 4, and 5 are for the EXECUTE instruction, and priorities start
ing with 6 are for the target instruction. When no EXECUTE is encountered,
priorities 3, 4, and 5 do not apply.

Separate accesses may occur for each halfword of an instruction. The second
instruction halfword is accessed only if bits 0-1 of the instruction are not
both zeros. The third instruction halfword is accessed only if bits 0-1 of
of the instruction are both ones. Access exceptions for one of these half
words are not necessarily recognized if the instruction can be completed
without use of the contents of the halfword or if an exception of lower pri
ority can be determined without the use of the halfword.

As in instruction fetching, separate accesses may occur for each portion of
an operand. Each of these accesses is of equal priority, and the two entries
8.B and 8.C are listed to represent the relative priorities of exceptions as
sociated with any two of these accesses. Access exceptions for INSERT
STORAGE KEY EXTENDED, INSERT VIRTUAL STORAGE KEY, INVALIDATE PAGE TABLE ENTRY,
LOAD REAL ADDRESS, RESET REFERENCE BIT EXTENDED, SET STORAGE KEY EXTENDED,
and TEST PROTECTION are also included in 8.B.

For MOVE LONG and COMPARE LOGICAL LONG, an access exception for a particular
operand can be indicat~d only if the R field for that operand designates an
even-numbered register.

The exception can be indicated only if the sign, digit, or digits responsi
ble for the exception were fetched without encountering an access exception.

The exception can be indicated only if the digits used in establishing the
exception, and also the signs, were fetched without encountering an access
exception, only if the signs are valid, and only if the digits used in estab
lishing the exception are valid.

Priority of Program-Interruption Conditions (Part 2 of 2)

Access Exceptions 4. Addressing (the DAT tables and the
operand or instruction)

The access exceptions consist of those
exceptions which can be encountered
while using an absolute, instruction,
logical, real, or virtual address to
access storage. Thus, with OAT on, the
exceptions are:

5. Protection (key-controlled, page,
and low-address)

With DAT off, the exceptions are:

1. Addressing (the operand or instruc
tion)

1. Translation specification

2. Segment translation

3. Page translation

2. Protection (key-controlled
low-address)

and

Chapter 6. Interruptions 6-29

A.

B.1.

B.2.

B.3.

B.4.

B.S.

B.6.

B.7.

B.8.

B.9.

Protection exception (low-address protection) due to
a store-type operand reference with an effective ad
dress in the range 0-511.

Translation-specification exception due to invalid
encoding of bits 8-12 of control regjster 0. 1

Segment-translation exception due to segment-table
entry being outside table. 2

Addressing exception for access to segment-table
entry.3

Segment-translation exception due to I bit in seg
ment-table entry having the value one. 2

Translation-specification exception due to invalid
ones in segment-table entry.3

Page-translation exception due to page-table entry
being outside table. 2

Addressing exception for access to page-table entry.1

Page-translation exception due to I bit in page-table
entry having the value one. 2

Translation-specification exception due to invalid
ones in page-table entry.3

B.10.A Protection exception (page protection) due to a
store-type operand reference to a virtual address
which is protected against stores. 4

B.10.B Addressing exception for access to instruction or
operand.

B.11. Protection exception (key-controlled protection) due
to attempt to access a protected instruction or op
erand location.

Explanation:

Not applicable when DAT is off, except for execution of
INVALIDATE PAGE TABLE ENTRY and for translation of operand
address of LOAD REAL ADDRESS.

2 Not applicable when DAT is off; not applicable to operand
addresses for LOAD REAL ADDRESS and TEST PROTECTION.

3 Not applicable when DAT is off except for translation of
operand address for LOAD REAL ADDRESS.

4 Not applicable when DAT is off.

Priority of Access Exceptions

ASN-Translation Exceptions

The ASN-translation exceptions are those
exceptions which are common to the proc
ess of translating an ASH in the
instructions PROGRAM CALL, PROGRAM

6-30 370-XA Principles of Operation

TRANSFER, and SET SECONDARY ASN. The
exceptions and the priority in which
they are detected are shown in the
figure "Priority of ASH-Translation
Exceptions."

1.

2.

3.

4.

5.

6.

Addressing exception for access
to ASN-first-table entry.

AFx-translation exception due
to I bit (bit 0) in ASN-first
table entry having the value
one.

ASN-translation-specification
exception due to invalid ones
(bits 28-31) in ASN-first-table
entry.

Addressing exception for access
to ASN-second-table entry.

ASX-translation exception due
to I bit (bit 0) in ASN-second
table entry having the value
one.

ASN-translation-specification
exception due to invalid ones
(bits 30, 31, 60-63) in ASN
second-table entry.

Priority of ASN-Translation Exceptions

Trace Exceptions

The trace exceptions are those
exceptions which can be encountered
while forming a trace-table entry. The
exceptions and their priority are shown
in the figure "Priority of Trace
Exceptions."

A. Protection exception (low
address protection) due to
entry address being in the
range 0-511.

B.1 Trace-table exception due to
new entry reaching or crossing
next 4K-byte boundary.

B.2 Addressing exception for access
to trace-table entry.

Priority of Trace Exceptions

RESTART INTERRUPTION

The restart interruption provides a
means for the operator or another CPU to
invoke the execution of a specified
program. The CPU cannot be disabled for
this interruption.

A restart interruption causes the old
PSW to be stored at real location 8 and
a new PSW, specifying the start of the
program to be executed, to be fetched
from real location o. The instruction
length code and interruption code are
not stored.

If the CPU is in the operating state,
the exchange of the PSWs occurs at the
completion of the current unit of opera
tion and after all other pending inter
ruption conditions for which the CPU is
enebled have been honored. If the CPU
is in the stopped state, the CPU enters
the operating state and exchanges the
PSWs without first honoring any other
pending interruptions.

The restart interruption is initiated by
activating the restart key. In a multi
processing configuration, the operation
can also be initiated at the addressed
CPU by issuing a SIGNAL PROCESSOR
instruction which specifies the restart
order.

When the rate control is set to instruc
tion step, it is unpredictable whether
restart causes a unit of operation or
additional interruptions to be performed
after the PSWs have been exchanged.

Programming Note

To perform a restart when the CPU is in
the check-stop state, the CPU has to be
reset. Resetting with loss of the least
amount of information can be accom
plished by means of the system-reset
normal key, which does not clear the
contents of program-addressable regis
ters, including the control registers,
but causes the channel subsystem to be
reset. The CPU-reset SIGNAL PROCESSOR
order can be used to clear the CPU with
out affecting the channel subsystem.

SUPERVISOR-CALL INTERRUPTION

The supervisor-call interruption oc~urs
when the instruction SUPERVISOR CALL is
executed. The CPU cannot be disabled
for the interruption, and the int~r
ruption occurs immediately upon the
execution of the instruction.

The supervisor-call interruption causes
the old PSW to be stored at real
location 32 and a new PSW to be fetched
from real location 96.

The contents of bit positions 8-15 of
the SUPERVISOR CALL instruction are
placed in the rightmost byte of the
interruption code. The leftmost byte of
the interruption code is set to zero.
The instruction-length code is 1, unless

Chapter 6. Interruptions 6-31

the instruction was executed by means of
EXECUTE, in which case the code is 2.

The interruption code is placed at real
locations 138-139; the instruction
length code is placed in bit positions 5
and 6 of the byte at real location 137,
with the other bits set to zeros; and
zeros are stored at real location 136.

PRIORITY OF INTERRUPTIONS

During the execution of an instruction,
several interruption-causing events may
occur simultaneously. The instruction
may give ri~e to a program interruption,
a request for an external interruption
may be received, equipment malfunction
ing may be detected, an I/O-interruption
request may be made, and the restart key
may be activated. Instead of the
program interruption, a supervisor-call
interruption might occur; or both can
occur if PER is active. Simultaneous
interruption requests are honored in a
predetermined order.

An exigent machine-check condition has
the highest priority. When it occurs,
the current operation is terminated or
nullified. Program and supervisor-call
interruptions that would have occurred
as a result of the current operation may
be eliminated. Any pending repressible
machine-check conditions may be indi
cated with the exigent machine-check
interruption. Every reasonable attempt
is made to limit the side effects of an
exigent machine-check condition, and
requests for external, I/O, and restart
interruptions normally remain unaf
fected.

In the absence of an exigent machine
check condition, interruption requests
existing concurrently at the end of a
unit of operation are honored, in
descending order of priority, as
follows:

Supervisor call
Program
Repressible machine check
External
Input/output
Restart

The processing of multiple simultaneous
interruption requests consists in stor
ing the old PSW and fetching the new PSW
belonging to the interruption first
honored. This new PSW is subsequently
stored without the execution of any
instructions, and the new PSW associated
with the next interruption is fetched.
Storing and fetching of PSWs continues
until no more interruptions are to be
serviced. The priority is reevaluated
after each new PSW is loaded. Each
evaluation takes into consideration any
additional interruptions which may have

6-32 370-XA Principles of Operation

become pending. Additionally,
and I/O interruptions, as
machine-check interruptions
repressible conditions, occur
the current PSW at the instant
ation indicates that the
interruptible for the cause.

external
well as
due to
only if

of evalu
CPU is

Instruction execution is resumed using
the last-fetched PSW. The order of
executing interruption subroutines is,
therefore, the reverse of the order in
which the PSWs are fetched.

If the new PSW for a program inter
ruption does not specify the wait state
and has an odd instruction address, or
causes an access exception to be recog
nized, another program interruption
occurs. Since this second interruption
introduces the same unacceptable PSW, a
string of interruptions is established.
These program exceptions are recognized
as part of the execution of the follow
ing instruction, and the string may be
broken by an external, I/O, machine
check, or restart interruption or by the
stop function.

If the new PSW for a program inter
ruption contains a zero in bit position
12 or a one in an unassigned bit posi
tion or if the high-order seven bits of
the instruction address are not zeros
when bit 32 indicates 24-bit addressing,
another program interruption occurs.
This condition is of higher priority
than restart, I/O, external, or repres
sible machine-check conditions, or the
stop function, and CPU reset has to be
used to break the string of inter
ruptions.

A string of interruptions for other
interruption classes can also exist if
the new PSW allows the interruption
which has jus~ occurred. These include
machine-check interruptions, external
interruptions, and I/O interruptions due
to PCI conditions generated because of
CCWs which form a loop. Furthermore, a
string of interruptions involving more
than one interruption class can exist.
For example, assume that the CPU timer
is negative and the CPU-timer subclass
mask is one. If the external new PSW
has a one in an unassigned bit position,
and the program new PSW is enabled for
external interruptions, then a string of
interruptions occurs, alternating
between external and program. Even more
complex strings of interruptions are
possible. As long as more interruptions
must be serviced, the string of inter
ruptions cannot be broken by employing
the stop function; CPU reset is
required.

Similarly, CPU reset has to be invoked
to terminate the condition that eX1sts
when an interruption is attempted with a
prefi x value desi gnati ng a stor,~ge
location that is not available to the
CPU.

Interruptions for all requests for wh.ch
the CPU is enabled occur before the CPU
is placed in the stopped state. When
the CPU is in the stopped state, restart
has the highest priority.

Programming Hote

The order in which concurrent inter
ruption requests are honored can be
changed to some extent by masking.

Chapter 6. Interruptions 6-33

CHAPTER 1..:. GENERAL INSTRUCTIONS

Data Format •...•••••.•.•.•••••.•••.•••••••••••.•••.•••••.• 7-2
Binary-Integer Representation •••••.•.••••..•.•••••.•.••••• 7-2
Binary Arithmetic ••••••...••..••••....••.•••••••••••..•..• 7-3

Signed Binary Arithmetic ••...•.•..••••...••.....•...•.•• 7-3
Addition and Subtraction .•••••.••••.•••...•.••..•.•••• 7-3
Fixed-Point Overflow ••...••••..•••••..•••.•••••••.•.•• 7-3

Unsigned Binary Arithmetic ..••...••.•...•••...•.....•... 7-3
Signed and Logical Comparison .••....•.•••.•...•.•••.....•• 7-4
Instructions ...••.••••...•••••••••.•..••..•...•..••...•••• 7-4

ADD •••..•••••.•••••••••••••••••..••••..••••••••...•••••. 7-8
ADD HALFWORD ..••••••••••.•••••...••••••.••••..••••...... 7-8
ADD LOGICAL •..•••••••.••••••••.•.••••••..••••.••••.••••. 7-9
AND ...•.••..•••••...••.•.•••..•••..••.••.•••••.•••...••• 7-9
BRANCH AND LINK •.•.•••••.•.•..•••....•••..••••••••••.•.. 7-10
BRANCH AND SAVE ...•••...•.•..•••.••.•••..••••.•••••..•.. 7-10
BRANCH AND SAVE AND SET MODE ..•••...•.•...•..•.•... 7-11
BRANCH AND SET MODE ••..••...•••....••••..••.••.••.•.•••. 7-11
BRANCH ON CONDITION •.•.••••..••••.•••....••.•..•...••... 7-12
BRANCH ON COUNT ..••••••••••.•••••.•••••.••••............ 7-13
BRANCH ON INDEX HIGH ••..••.•.•••...•••...••...•••.•..•.. 7-13
BRANCH ON INDEX LOW OR EQUAL •••.....••.•.•.•..•....•••.. 7-13
COMPARE ..•••.•••••...•.•••.•••...••••.••...•.••...•....• 7-14
COMPARE AND SWAP •••.••••...•.••••••....••..•••...••....• 7-14
COMPARE DOUBLE AND SWAP ••..••..••••....••..•••..•••..•.. 7-14
COMPARE HALFWORD••..•••...••••..••..••....••. 7-16
COMPARE LOGICAL •..•.•••...••...••....••.•.••••..••••..•. 7-16
COMPARE LOGICAL CHARACTERS UNDER MASK •••...••••••••..••• 7-17
COMPARE LOGICAL LONG ••.•.•••...••••..••••.•••.••••..•••. 7-17
CONVERT TO BINARY ..••••..••....•••..••••..•••.••••.••••. 7-19
CONVERT TO DECIMAL •••••••••••..•••••••••••••••.•••..•••. 7-20
DIVIDE ••.•••••••••••..••••.••••.•..••...••...••••••••..• 7-20
EXCLUSIVE OR ••••••••••••.•••••••••.•••••...••••••••••••• 7-21
EXECUTE ...••...•••...•••...••...••••...••..•••.••••..•.. 7-22
INSERT CHARACTER •.•...••••••••..•••••..••••.••.•.•••••.• 7-23
INSERT CHARACTERS UNDER MASK ••••••..•....•..••••..••••.• 7-23
INSERT PROGRAM MASK ••••••••.•••••.•••••.•••..•••...••..• 7-23
LOAD ...•.•...•••...•••..•.••..•••.••••....••..••...••.•. 7-24
LOAD ADDRESS ••••••..••••.••••.••••••••.•••••••..••••...• 7-24
LOAD AND TEST .•••••.••••...•••.•.•••..•••...••••..•.•..• 7-24
LOAD COMPLEMENT •••...•••....•••.••••••..•..•......•••... 7-24
LOAD HALFWORD ••••...••.•...•....•••••..•....••..•••....• 7-25
LOAD MULTIPLE ••••••••••••••••••••••••.••••••••••••.•••.• 7-25
LOAD NEGATIVE .•.••••••...••••••••....•••..•••...•••..••• 7-25
LOAD POSITIVE ••••...••.••..•...••.•••..•••..•••......... 7-26
MONITOR CALL •......•••.•.••..•.•.......•...•....•••..••. 7-26
MOVE ••...•.•...•••••••..•••.•.•..••••...•••••.••.••.•••. 7...;.27
MOVE LONG •..•••••...••..•••••.•.••.•.••••..•.•.••••..••. 7-27
MOVE NUMERICS •••••.•••••••••.••••••••.•••.••••..•.•....• 7-30
MOVE WITH OFFSET ••..•••........•••••...•...•••.•••....•. 7-31
MOVE ZONES•.•..••••.•••••.••....•••. 7-31
MULTIPLY .••..••••...••.....•••...••...•.•.•••••.•....••. 7-32
MULTIPLY HALFWORD •••••••••••••...•••..•••....••..••••..• 7-32
OR ..•....•........•....••....•..........••...••....••... 7-33
PACK ..•......•••.•..•.••.••.•...••••..••....•••.••.••.•• 7-33
SET PROGRAM MASK •..•••••..•••••.••••..•••...••..••••...• 7-34
SHIFT LEFT DOUBLE •..••••••.•••.•..••....•••.•••••.•••... 7-34
SHIFT LEFT DOUBLE LOGICAL •••••••....•.•..••...•••..•.••• 7-35
SHIFT LEFT SINGLE •.••...••••.•.•..••.••••••••••••..•••.. 7-35
SHIFT LEFT SINGLE LOGICAL ••....•••.•.•••..••...••••...•. 7-36
SHIFT RIGHT DOUBLE •..•••.•••••.•••••..•••.••.•••..••..•• 7-36
SHIFT RIGHT DOUBLE LOGICAL .•••...•.••...•...••.••••••..• 7-36
SHIFT RIGHT SINGLE ...•.••.•.••....•.•..••••••••....••... 7-37
SHIFT RIGHT SINGLE LOGICAL •.•••.....•.•..••...•...•.•... 7-37
STORE ..••..••.••.•••••••••••••••.•..•.•.••••.•.••••••••• 7-37
STORE CHARACTER ..•..•....••...•••••...••...•.•.•••...•.. 7-38
STORE CHARACTERS UNDER MASK ••.•••••••.•••••••••••••••••• 7-38
STORE CLOCK ••.•••••••••••••.•••..••••....•••...•..••••.. 7-38
STORE HALFWORD •.••••••••..••.••••••.•.••..••••••••.•.••. 7-39

Chapter 7. General Instructions 7-1

STORE MULTIPLE •• 7-39
SUBTRACT ••.••• 7-40
SUBTRACT HALFWORD ••••••••••••••••••••••••••••••••••••••• 7-40
SUBTRACT LOGICAL •• 7-40
SUPERVISOR CALL ••• 7-41
TEST AND SET •• 7-41
TEST UNDER MASK ••• 7-42
TRANSLATE ••• 7-42
TRANSLATE AND TEST •••••••••••••••••••••••••••••••••••••• 7-43
UNPACK •• 7-44

This chapter includes all the unprivi
leged instructions described 1n this
publication other than the decimal and
floating-point instructions.

DATA FORMAT

The general instructions treat data as
being of four types: signed binary
integers, unsigned binary integers,
unstructured logical data, and decimal
data. Data is treated as decimal by the
conversion, packing, and unpacking
instructions. Decimal data is described
in Chapter 8, "Decimal Instructions."

The general instructions manipulate data
which resides in general registers or in
storage or is introduced from the
instruction stream. Some general
instructions operate on data which
resides in the PSW or the TOO clock.

In a storage-to-storage operation the
operand fields may be defined in such a
way that they overlap. The effect of
this overlap depends upon the operation.
When the operands remain unchanged, as
in COMPARE or TRANSLATE AND TEST, over
lapping does not affect the execution of
the operation. For instructions such as
MOVE and TRANSLATE, one operand is
replaced by new data, and the execution
of the operation may he affected by the
amount of overlap and the manner in
which data is fetched or stored. For
purposes of evaluating the effect of
overlapped operands, data is considered
to be handled one eight-bit byte at a
time. Special rules apply to the oper
ands of MOVE LONG.

BINARY-INTEGER REPRESENTATION

Binary integers are treated as signed or
unsigned.

In an unsigned binary integer, all bits
are used to express the absolute value
of the number. When two unsigned binary
integers of different lengths are added,
the shorter number is considered to be
extended on the left with zeros.

7-2 370-XA Principles of Operation

In some operations, the result is
achieved by the use of the one's comple
ment of the number. The one's comp.',e
ment of a number is obtained by
inverting each bit of the number,
including the sign.

For signed binary integers, the leftmost
bit represents the sign, which is
followed by the numeric field. Positive
numbers are represented in true binary
notation with the sign bit set to zero.
When the value is zero, all bits are
zeros, including the sign bit. Negative
numbers are represented in two's
complement binary notation with a one in
the sign-bit position.

Specifically, a negative number is
represented by the two's complement of
the positive number of the same absolute
value. The two's complement of a number
is obtained by forming the one's comple
ment of the number, adding a value of
one in the rightmost bit position,
allowing a carry into the sign position,
and ignoring any carry out of the sign
position.

This number representation can be
considered the rightmost portion of an
infinitely long representation of the
number. When the number is positive,
all bits to the left of the most signif
icant bit of the number are zeros. When
the number is negative, these bits are
ones. Therefore, when a signed operand
must be extended with bits on the left,
the extension is achieved by setting
these bits equal to the sign bit of the
operand.

The notation for signed binary integers
does not include a negative zero. It
has a number range in which, for a given
length, the set of negative nonzero
numbers is one larger than the set of
positive nonzero numbers. The maximum
positive number consists of a sign bit
of zero followed by all ones, whereas
the maximum negative number (the nega
tive number with the greatest absolute
value) consists of a sign bit of one
followed by all zeros.

A signed binary integer of either sign,
except for zero and the maximum negative
number, can be changed to a number of

the same magnitude but opposite sign by
forming its two's complement. Forming
the two's complement of a number is
equivalent to subtracting the number
from zero. The two's complement of zero
is zero.

The two's complement of the maximum
negative number cannot be represented in
the same number of bits. When an opera
tion, such as LOAD COMPLEMENT, attempts
to produce the two's complement of the
maximum negative number, the result is
the maximum negative number, and a
fixed-point-overflow exception is recog
nized. An overflow does not result,
however, when the maximum negative
number is complemented as an intermedi
ate result but the final result is
within the representable range. An
example of this case is a subtraction of
the maximum negative number from -1.
The product of two maximum negative
numbers of a given length is represent
able as a positive number of double that
length.

In discussions of signed binary integers
in this publication, a signed binary
integer includes the sign bit. Thus,
the expression "32-bit signed binary
integer" denotes an integer with 31
numeric bits and a sign bit, and the
expression "64-bit signed binary
integer" denotes an integer with 63
numeric bits and a sign bit.

In an arithmetic operation, a carry out
of the numeric field of a signed binary
integer is carried into the sign bit.
However, in algebraic left-shifting, the
sign bit does not change even if signif
icant numeric bits are shifted out.

Programming Notes

1. An alternate way of forming the
two's complement of a signed binary
integer is to invert all bits to
the lef~ of the rightmost one bit,
leaving the rightmost one bit and
all zero bits to the right of it
unchanged.

2. The numeric bits of a signed binary
integer may be considered to repre
sent a positive value, with the
sign representing a value of either
zero or the maximum negative
number.

BINARY ARITHMETIC

SIGNED BINARY ARITHMETIC

Addition and Subtraction

Addition of signed binary integers is
performed by adding all bits of each
operand, including the sign bits. When
one of the operands is shorter, the
shorter operand is considered to be
extended on the left to the length of
the longer operand by propagating the
sign-bit value.

Subtraction is performed by adding the
one's complement of the second operand
and a value of one to the first operand.

Fixed-Point Overflow

A fixed-point-overflow condition exists
for signed binary addition or
subtraction when the carry out of the
sign-bit position and the carry out of
the leftmost numeric bit position disa
gree. Detection of an overflow does not
affect the result produced by the addi
tion. In mathematical terms, signed
addition and subtraction produce a
fixed-point overflow when the result is
outside the range of representation for
signed binary integers. Specifically,
for ADD and SUBTRACT, which operate on
32-bit signed binary integers, there is
an overflow when the proper result would
be greater than or equal to +2 31 or less
than -2 31 . The actual result placed in
the general register after an overflow
differs from the proper result by 232.
A fixed-point overflow causes a program
interruption if allowed by the program
mask.

The instructions SHIFT LEFT SINGLE and
SHIFT LEFT DOUBLE produce an overflow
when the result is outside the range of
representation for signed binary inte
gers. The actual result differs from
that for addition and subtraction in
that the sign of the result remains the
same as the original sign.

UNSIGNED BINARY ARITHMETIC

Addition of unsigned binary integers is
performed by adding all bits of each
operand. When one of the operands is
shorter, the shorter operand is consid
ered to be extended on the left with
zeros. Unsigned binary arithmetic is
used in address arithmetic for adding
the X, B, and D fields. (See the

Chapter 7. General Instructions 7-3

section "Address Generation" in Chapter
5, "Program Execution.") It is also used
to obtain the addresses of the function
bytes in TRANSLATE and TRANSLATE AND
TEST. Furthermore, unsigned binary
arithmetic is used on 32-bit unsigned
binary integers by ADD LOGICAL and
SUBTRACT LOGICAL. Given the same two
operands, ADD and ADD LOGICAL produce
the same 32-bit result. The
instructions differ only in the inter
pretation of this result. ADD
interprets the result as a signed binary
integer and inspects it for sign, magni
tude, and overflow to set the condition
code accordingly. ADD LOGICAL inter
prets the result as an unsigned binary
integer and sets the condition code
according to whether the result is zero
and whether there was a carry out of bit
position O. Such a carry is not consid
ered an overflow, and no program
interruption for overflow can occur for
ADD LOGICAL.

SUBTRACT LOGICAL differs from ADD
LOGICAL in that the one's complement of
the second operand and a value of one
are added to the first operand.

Programming Notes

1. Logical addition and subtraction
may be used to program multiple
preC1Slon arithmetic. Thus, for
multiple-precision binary-integer
addition, ADD LOGICAL can be used
to add the corresponding lower
order parts of the operands. If
the condition code indicates a
carry, a value of one should be
added to the sum of the next pair
of integers to the left. If the
integers are signed, ADD should be
used on the leftmost pair. The
condition code then indicates any
overflow or the proper sign and
magnitude of the entire result; an
overflow is also indicated by a
program interruption for fixed
point overflow if allowed by the
program mask. If the integers are
unsigned, ADD LOGICAL should be
used throughout.

2. Another use for ADD LOGICAL is to
increment values representing bina
ry counters, which are allowed to
wrap around from all ones to all
zeros without indicating overflow.

SIGNED AND LOGICAL COMPARISON

Comparison operations determine whether
two operands are equal or not and, for
most operations, which of two unequal
operands is the greater (high).
Signed-binary comparison operations are

7-4 370-XA Principles of Operation

provided which treat the operands as
signed binary integers, and logical
comparison operations are provided which
treat the operands as unsigned binary
integers or as unstructured data.

COMPARE and COMPARE HALFWORD are
signed-binary comparison operations.
These instructions are equivalent to
SUBTRACT and SUBTRACT HALFWORD without
replacing either operand, the resulting
difference being used only to set the
condition code. The operations permit
comparison of numbers of opposite sign
which differ by 2 31 or more. Thus,
unlike SUBTRACT, COMPARE cannot cause
overflow.

Logical comparison of two operands is
performed byt~ by byte, in a left-to
right sequence. The operands are equal
when all their bytes are equal. When
the operands are unequal, the comparison
result is determined by a left-to-right
comparison of corresponding bit posi
tions in the first unequal pair of
bytes: the zero bit in the first
unequal pair of bits indicates the low
operand, and the one bit the high oper
and. Since the remaining bit and byte
positions do not change the comparison,
it is not necessary to continue compar
ing unequal operands beyond the first
unequal bit pair.

INSTRUCTIONS

The general instructions and their
mnemonics, formatsl and operation ccdes
are listed in the figure "Summary of
General Instructions." The figure a~so
indicates when the condition code is set
and the exceptional conditions in oper
and designations, data, or results that
cause a program interruption.

A detailed definition of instruction
formats, operand designation and length,
and address generation is contained in
the section "Instructions" in Chapter 5,
"Program Execution." Exceptions to the
general rules stated in that section are
explicitly identified in the individual
instruction descriptions.

Note: In the detailed descriptions of
the individual instructions, the mnemon
ic and the symbolic operand designations
for the assembler language are shown
with each instruction. For LOAD AND
TEST, for example, LTR is the mnemonic
and Rtl R2 the operand designation.

Programming Note

The general
mode differ
System/370

instructions in the 370-XA
from that provided in the

mode in that

(1) conditional-swapping and branch
and-save facilities which are optional
in the System/370 mode are part of the
standard instruction set in the 370-XA
mode, (2) MOVE INVERSE is not offered by
any machine in the 370-XA mode, and
(3) the following additional general
instructions are available in the 370-XA
mode:

BRANCH AND SAVE AND SET MODE
BRANCH AND SET MODE
INSERT PROGRAM MASK

In general, bimodal addressing affects
the gene:al instructions only in the
manner 1n which logical storage
addresses are handled. The instructions
BRANCH AND LINK (BAL, BALR), COMPARE
LOGICAL LONG, LOAD ADDRESS, MOVE LONG,
and TRANSLATE AND TEST are affected in
that the leftmost byte of the results in
registers is handled differently in the
two modes. Otherwise, the general
instructions are executed the same way
in both the 24-bit and 31-bit addressing
modes.

Chapter 7. General Instructions 7-5

Mne- Op
Name monic Characteristics Code

ADD AR RR C IF R lA
ADD A RX C A IF R SA
ADD HALFWORD AH RX C A IF R 4A
ADD LOGICAL ALR RR C R IE
ADD LOGICAL AL RX C A R 5E

AND NR RR C R 14
AND N RX C A R 54
AND (character> NC SS C A ST 04
AND C1 mmedi ate) NI SI C A ST 94
BRANCH AND LINK BALR RR T B R 05

BRANCH AND LINK BAL RX B R 45
BRANCH AND SAVE BASR RR T B R 00
BRANCH AND SAVE BAS RX B R 40
BRANCH AND SAVE AND SET MODE BASSM RR T B R OC
BRANCH AND SET MODE BSM RR B R OB

BRANCH ON CONDITION BCR RR ~l B 07
BRANCH ON CONDITION BC RX B 47
BRANCH ON COUNT BCTR RR B R 06
BRANCH ON COUNT BCT RX B R 46
BRANCH ON INDEX HIGH BXH RS B R 86

BRANCH ON INDEX LOW OR EQUAL BXLE RS B R 87
COMPARE CR RR C 19
COMPARE C RX C A 59
COMPARE AND SWAP CS RS C A SP $ R ST BA
COMPARE DOUBLE AND SWAP CDS RS C A SP $ R ST BB

COMPARE HALFWORD CH RX C A 49
COMPARE LOGICAL CLR RR C 15
COMPARE LOGICAL CL RX C A 55
COMPARE LOGICAL (character> CLC SS C A 05
COMPARE LOGICAL (immediate> CLI SI C A 95

COMPARE LOGICAL CHARACTERS UNDER MASK CLM RS C A BD
COMPARE LOGICAL LONG CLCL RR C A SP II R OF
CONVERT TO BINARY CVB RX A 0 IK R 4F
CONVERT TO DECIMAL CVD RX A ST 4E
DIVIDE DR RR SP IK R 10

DIVIDE 0 RX A SP IK R 50
EXCLUSIVE OR XR RR C R 17
EXCLUSIVE OR X RX C A R 57
EXCLUSIVE OR (character) XC SS C A ST 07
EXCLUSIVE OR (immediate) XI SI C A ST 97

EXECUTE EX RX AI SP EX 44
INSERT CHARACTER IC RX A R 43
INSERT CHARACTERS UNDER MASK ICM RS C A R BF
INSERT PROGRAM MASK IPM RRE R B222
LOAD LR RR R 18

LOAD L RX A R 58
LOAD ADDRESS LA RX R 41
LOAD AND TEST LTR RR C R 12
LOAD COMPLEMENT LCR RR C IF R 13
LOAD HALFWORD LH RX A R 48

LOAD MULTIPLE LM RS A R 98
LOAD NEGATIVE LNR RR C R 11
LOAD POSITIVE LPR RR C IF R 10
MONITOR CALL MC SI SP MO AF
MOVE (character) MVC SS A ST 02

Summary of General Instructions (Part 1 of 3)

7-6 370-XA Principles of Operation

Mne- Op
Name monic Characteristics Code

MOVE (immediate> MVI SI A ST 92
MOVE LONG MVCL RR C A SP II R ST OE
MOVE NUMERICS MVN SS A ST D1
MOVE WITH OFFSET MVO SS A ST F1
MOVE ZONES MVZ SS A ST D3

MULTIPLY MR RR SP R 1C
MULTIPLY M RX A SP R 5C
MULTIPLY HALFWORD MH RX A R 4C
OR OR RR C R 16
OR 0 RX C A R 56

OR (character> OC SS C A ST D6
OR (immediate> 01 SI C A ST 96
PACK PACK SS A ST F2
SET PROGRAM MASK SPM RR L 04
SHIFT LEFT DOUBLE SLDA RS C SP IF R 8F

SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 8D
SHIFT LEFT SINGLE SLA RS C IF R 8B
SHIFT LEFT SINGLE LOGICAL SLL RS R 89
SHIFT RIGHT DOUBLE SRDA RS C SP R 8E
SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 8C

SHIFT RIGHT SINGLE SRA RS C R 8A
SHIFT RIGHT SINGLE LOGICAL SRL RS R 88
STORE ST RX A ST 50
STORE CHARACTER STC RX A ST 42
STORE CHARACTERS UNDER MASK STCM RS A ST BE

STORE CLOCK STCK S C A $ ST B205
STORE HALFWORD STH RX A ST 40
STORE MULTIPLE STM RS A ST 90
SUBTRACT SR RR C IF R 1B
SUBTRACT S RX C A IF R 5B

SUBTRACT HALFWORD SH RX C A IF R 4B
SUBTRACT LOGICAL SLR RR C R 1F
SUBTRACT LOGICAL SL RX C A R 5F
SUPERVISOR CALL SVC RR ¢ OA
TEST AND SET TS S C A $ ST 93

TEST UNDER MASK TM SI C A 91
TRANSLATE TR SS A ST DC
TRANSLATE AND TEST TRT SS C A GM R DD
UNPACK UNPK SS A ST F3

Summary of General Instructions (Part 2 of 3)

Chapter 7. General Instructions 7-7

Explanation:

9 Causes serialization and checkpoint synchronization
9 1 Causes serialization and checkpoint synchronization when the Mt and R2

fields contain all ones and all zeros, respectively
$ Causes serialization
A Access exceptions for logical addresses
AI Access exceptions for instruction address
B PER branch event
C Condition code is set
D Data exception
EX Execute exception
GM Instruction execution includes the implied use of general registers 1 and 2
IF Fixed-point-overflow exception
II Interruptible instruction
IK Fixed-point-divide exception
L New condition code loaded
MO Monitor event
R PER general-register-alteration event
RR RR instruction format
RRE RRE instruction format
RS RS instruction format
RX RX instruction format
S S instruction format
SI SI instruction format
SP Specification exception
SS SS instruction format
ST PER storage-alteration event
T Trace exceptions (includes trace table, addressing, and low-address

protection)

Summary of General Instructions (Part 3 of 3)

ADD

AR Rt ,R 2 [RR]

'lA' I R t I R2 I
0 8 12 15

A Rt ,D 2 (X 2,B 2) [RX]

'SA' I Rt I X2 I B2 D2

0 8 12 16 20 31

The second operand is added to the first
operand, and the sum is placed in the
first-operand location. The operands
and the sum are treated as 32-bit signed
binary integers.

When there is an overflow, the result is
obtained by allowing any carry into the
sign-bit position and ignoring any carry
out of the sign-bit position, and condi
tion code 3 is set. If the fixed
point-overflow mask is one, a program
interruption for fixed-point overflow
occurs.

Resulting Condition Code:

o Sum is zero
1 Sum is less than zero

7-8 370-XA Principles of Operation

2
3

Sum is greater than zero
Overflow

Program Exceetions:

Access (fetch, operand 2 of A only)
Fixed-point overflow

ADD HALFWORD

AH R t ,D 2 (X 2 ,B 2) [RX]

'4A' I R1 I X2 I B2 D2

o 8 12 16 20 31

The second operand is added to the first
operand, and the sum is placed in the
first-operand location. The second
operand is two bytes in length and is
treated as a l6-bit signed binary inte
ger. The first operand and the sum are
treated as 32-bit signed binary
integers.

When there is an overflow, the result is
obtained by allowing any carry into the
sign-bit position and ignoring any carry
out of the sign-bit position, and condi
tion code 3 is set. If the fixed
point-overflow mask is one, a program
interruption for fixed-point overflow
occurs.

Resulting Condition Code:

o Sum is zero
1 Sum is less than zero
2 Sum is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2)
Fixed-point overflow

Programming Note

An example of the use of ADD HALFWORD is
given in Appendix A.

ADD LOGICAL

ALR R 1 , R2 [RRl

'IE'
I

R t I R2 I
0 8 12 15

AL Rtt D2(X 2,B 2) [RXl

, 5E' I R1 I X2 I B2 D2

o 8 12 16 20 31

The second operand is added to the first
operand, and the sum is placed in the
first-operand location. The operands
and the sum are treated as 32-bit
unsigned binary integers.

Resulting Condition Code:

o
!
2
3

Sum is zero, with no carry
Sum is not zero, with no carry
Sum is zero, with carry
Sum is not zero, with carry

Program Exceptions:

AN,D

NR

o

Access (fetch, operand 2 of AL
only)

[RRl

'14'

8 12 15

N Rt ,D2(X~pB2) [RXl

'54' I Rt I X2 I B2 D2

0 8 12 16 20 31

NI Dt CB t L.I 2 [SI]

'94' I2 B t Dt

0 8 16 20 31

NC Dt CL,B t),D 2CB 2) [SS]

,--_' D_4_' --,-__ L_-LI_B_t---,--1 ~ I I B, I ~;]
o 8 16 20 32 36 47

The AND of the first and second operands
is placed in the first-operand location.

The connective AND is applied to the
operands bit by bit. A bit position in
the result is set to one if the corre
sponding bit positions in both opernnds
contain ones; otherwise, the result bit
is set to zero.

For AND (NC), each operand is processed
left to right. When the operands over
lap, the result is obtained as if thQ
operands were processed one byte at a
time and each result byte were stored
immediately after fetching the necessary
operand bytes.

For AND (NI), the first operand is one
byte in length, and only one byte is
stored.

Resulting Condition Code:

o
1
2
3

Result is zero
Result is not zero

Program Exceptions:

Access (fetch, operand 2, Nand NC;
fetch and store, operand 1, NI
and NC)

Programming Notes

1. An example of the use of AND is
given in Appendix A.

2. The instruction AND may be used to
set a bit to zero.

3. Accesses to the first operand of
AND (NI) and AND (NC) consist in
fetching a first-operand byte from
storage and subsequently storing
the updated value. These fetch and

Chapter 7. General Instructions 7-9

store accesses to a particular byte
do not necessarily occur one imme
diately after the other. Thus, the
instruction AND cannot be safely
used to update a location in stor
age if the possibility exists that
another CPU or channel program may
also be updating the location. An
example of this effect is shown for
OR (01) in the section "Multipro
gramming and Multiprocessing
Examples" in Appendix A.

BRANCH AND LINK

BALR R t' R2 [RR]

, 05 ' I Rt I R2 I
0 8 12 15

BAL Rt ,D 2(X 2,B 2) [RX]

'45' I Rt I X2 I B2 O2

o 8 12 16 20 31

Information from the current PSW,
including the updated instruction
address, is loaded as link information
in the general register designated by
Rt • Subsequently, the instruction
address is replaced by the branch
address.

In the RX format, the second-operand
address is used as the branch address.
In the RR format, the contents of the
general register designated by R2 are
used to generate the branch address;
however, when the R2 field is zero, the
operation is performed without
branching. The branch address is
computed before the register designated
by Rt is changed.

The link information in 24-bit address
ing mode consists of the instruction
length code (ILC), the condition code
(CC), the program-mask bits, and the
rightmost 24 bits of the updated
instruction address, arranged in the
following format:

I I Ipr09 I
ILC CC _Mask Instruction Address

o 2 4 8 31

The instruction-length code is 1 or 2.

The link information in the 31-bit
addressing mode consists of the right
half of the PSW, that is, the
addressing-mode bit (always a one) and a
31-bit updated instruction address,
arranged in the following format:

7-10 370-XA Principles of Operation

111 Instruction Address

o 1 31

Condition Code:
unchanged.

The code remains

Program Exceptions:

Trace (R 2 field nonzero, BALR only)

Programming Notes

1. An example of the use of the BRANCH
AND LINK instruction is given in
Appendix A.

2. When the R2 field in the RR format
is zero, the link information is
loaded without branching.

3. The BRANCH AND LINK instructions
(BAL and BALR) are provided in the
370-XA mode for compatibility
purposes. It is recommended that,
where possible, the BRANCH AND SAVE
instructions (BAS and BASR) be used
and BAL and BALR avoided, since the
latter place nonzero information in
bit positions 0-7 of the link
register in 24-bit addressing mode,
which may lead to problems. Addi
tionally, SAL and BALR may be
slower than BAS and BASR because
BAS and BASR always save the right
half of the PSW, and BAL and BALR,
which do not, may require addi
tional time to test the addres~ing
mode, and even more time, if 24-bit
addressing mode is in effect, to
construct the ILC, condition code,
and program mask to be placed in
the leftmost byte of the link
register.

4. The condition-code and program-mask
information, which is provided in
the leftmost byte of the link
information only in the 24-bit
addressing mode, can be obtained in
both the 24-bit and 31-bit address
ing modes by means of the INSERT
PROGRAM MASK instruction.

BRANCH AND SAVE

BASR [RR]

'00'

o 8 12 15

BAS [RX]

'4D'

o 8 12 16 20 31

Bits 32-63 of the current PSW, including
the updated instruction address, is
saved as link information in the general
register designated by R t • Subsequent
ly, the instruction address is replaced
by the branch address.

In the RX format, the second-operand
address is used as the branch address.
In the RR format, the contents of the
general register designated by R2 are
used to generate the branch -address;
however, when the R2 field is zero, the
operation is performed without
branching. The branch address is
computed before the register designated
by Rt is changed.

Condition Code:
unchanged.---

Program Exceptions:

The code remains

Trace (R 2 field nonzero, BASR only)

Programming Note

The BRANCH AND SAVE instructions (BAS
and BASR) are intended as instructions
to be used for linkage to programs known
to be in the same addressing mode as the
caller. These instructions should be
used in place of the BRANCH AND LINK
instructions (BAL and BALR). See the
programming notes at the end of the
section "Subroutine Linkage" in Chapter
5, "Program Execution," for a detailed
discussion of these and other linkage
instructions. See also the programming
note under BRANCH AND LINK for a
discussion of the advantages of the
BRANCH AND SAVE instructions.

BRANCH AND SAVE AND SET MODE

BASSM Rt ,R 2 [RR]

o 8 12 15

Bits 32-63 of the current PSW, including
the updated instruction address, is
saved as link information in the general
register designated by Rt •

Subsequently, the addressing mode and
instruction address in the current PSW
are replaced from the second operand.
The action associated with the second

operand is not performed if the R2 field
is zero.

The contents of the general register
designated by the R2 field specify the
new addressing mode and branch address;
however when the R2 field is zero, the
operation is performed without branching
and without setting the addressing mode.

When the contents of the general regis
ter designated by the R2 field are used,
bit 0 of the register specifies the new
addressing mode and replaces bit 32 of
the current PSW, and the branch address
is generated from the contents of the
register under the control of the new
addressing mode. The new value for the
PSW is computed before the register
designated by Rt is changed.

Condition Code:
unchanged.---

Program Exceptions:

The code

Trace (R 2 field nonzero)

Programming Note

remains

BRANCH AND SAVE AND SET MODE is intended
to be the principal calling instruction
to subroutines which may operate in a
different addressing mode from that of
the caller. See the programming note at
the end of the section "Subroutine Link
age" in Chapter 5, "Program Execution,"
for a detailed discussion of this and
other linkage instructions.

BRANCH AND SET MODE

BSM [RR]

o 8 12 15

Bit 32 of the current PSW, the addruss
ing mode, is inserted into the f;rst
operand. Subsequently the addressing
mode and instruct i on address in '-he
current PSW are replaced from the second
operand. The action associated with an
operand is not performed if the associ
ated R field is zero.

The value of bit 32 of the PSW is placed
in bit position 0 of the general regis
ter designated by Rt , and bits 1-31 of
the register remain unchanged; however,
when the R t field is zero, the bit is
not inserted, and the contents of gener
al register 0 are not changed.

The contents
designated by

of the general register
the R2 field specify the

Chapter 7. General Instructions 7-11

new addressing mode and branch address;
however~ when the R2 field is zero, the
operation is performed without branching
and without setting the addressing mode.

When the contents of the general regis
ter designated by the R2 field are used,
bit 0 of the register specifies the new
addressing mode and replaces bit 32 of
the current PSW, and the branch address
is generated from the contents of the
register under the control of the new
addressing mode. The new value for the
PSW is computed before the register
designated by R t is changed.

Condition Code: The code
unchanged.---

remains

Program Exceptions: None.

Programming Note

BRANCH AND SET MODE with an R t field of
zero is intended to be the standard
return instruction. BRANCH AND SAVE AND
SET MODE with a nonzero R t field is
intended to be used in a "glue module"
to connect old 24-bit programs and new
programs which may exploit bimodal
addressing. See the programming note at
the end of the section "Subroutine Link
age" in Chapter 5, "Program Execution,"
for a detailed discussion of this and
other linkage instructions.

BRANCH ON CONDITION

BCR Mt ,R 2 [RR]

, 07' I Mt I R2 I
0 8 12 15

BC Mtl D2(X 2,B 2) [RX]

'47' I Mt I X2 I B2 D2

o 8 12 16 20 31

The instruction address in the current
PSW is replaced by the branch address if
the condition code has one of the values
specified by M t ; otherwise, normal
instruction sequencing proceeds with the
updated instruction address.

In the RX format, the second-operand
address is used as the branch address.
In the RR format, the contents of the
general register specified by R2 are
used to generate the branch address;
however, when the R2 field is zero, the
operation is performed without
branching.

7-12 370-XA Principles of Operation

The Mt field is used as a four-bit mask.
The four condition codes (0, 1, 2, and
3) correspond, left to right, with the
four bits of the mask, as follows:

Instruction Mask
Condition Bit No. of Position

Code Mask Value

0 8 8
1 9 4
2 10 2
3 11 1

The current condition code is used to
select the corresponding mask bit. If
the mask bit selected by the condition
code is one, the branch is successful.
If the mask bit selected is zero, normal
instruction sequencing proceeds with the
next sequential instruction.

When the M t and R2 fields of BRANCH ON
CONDITION (BCR) are all ones and all
zeros, respectively, a serialization and
a checkpoint-synchronization function is
performed. CPU operation is delayed
until all previous accesses by this CPU
to storage have been completed, as
observed by other CPU and channel
programs. All previous checkpoints, if
any, are canceled, and the results of
all previous stores are released, if
held exclusive, to permit other CPU and
channel programs to access the results.
No subsequent instructions or their
operands are accessed by this CPU until
the execution of this instruction is
completed.

Condition Code:
unchanged.---

The

Program Excep~ions: None.

Programming Hotes

code remains

1. An example of the use of BRANCH ON
CONDITION is given in Appendix A.

2. When a branch is to depend on more
than one condition, the pertinent
condition codes are specified in
the mask as the sum of their mask
position values. A mask of 12, for
example, specifies that a branch is
to be made when the condition code
i s 0 or 1.

3. When all four mask bits are zero or
when the R2 field in the RR format
contains zero, the branch instruc
tion is equivalent to a
no-operat ion. When all four r,lask
bits are ones, that is, the ~ask
value is 15, the branch is unconii
tional unless the R2 field in the
RR format is zero.

4. Execut 1 on .of BCR 15,0 (that 1 s, an
instruction with a value of 07FO
hex) may result in significant
performance degradation. To ensure
optimum performance, the program
should avoid use of BCR 15,0 except
in cases when the serialization or
the checkpoint-synchronization
function is actually required.

5. Note that the relation between the
RR and RX formats in branch-address
~pecification is not the same as in
operand-address specification. For
branch instructions in the RX
format, the branch address is the
address specified by X2, B2, and
O2; in the RR format, the branch
address is contained in the regis
ter specified by R2 . For operands,
the address specified by X2, B2,
and O2 is the operand address, but
the register specified by R2
contains the operand, not the oper
and address.

BRANCH ON COUNT

BCTR

, 06'

0 8 12 15

BCT Rp D2(X 2,B 2) [RX]

'46' I Rl I X2 I B2 O2

0 8 12 16 20 31

A one is subtracted from the first oper
and, and the result is placed in the
first-operand location. The first oper
and and result are treated as 32-bit
binary integers, with overflow ignored.
When the result is zero, normal instruc
tion sequencing proceeds with the
updated instruction address. When the
result is not zero, the instruction
address in the current PSW is replaced
by the branch address.

In the RX format, the second-operand
address is used as the branch address.
In the RR format, the contents of the
general register specified by R2 are
used to generate the branch address;
however, when the R2 field is zero, the
operation is performed without
branching. The branch address is
computed before the register designated
by Rt is changed.

Condition Code:
unchanged.---

The code remains

Program Exceptions: None.

Programming Notes

1. An example of the use of BRANCH ON
COUNT is given in Appendix A.

2. The first operand and result can be
considered as either signed or
unsigned binary integers since the
result of a binary subtraction is
the same in both cases.

3. An initial count of one results in
zero, and no branching takes place;
an initial count of zero results in
-1 and causes branching to be
executed; an initial count of -1
results in -2 and causes branching
to be executed; and so on. In a
loop, branching takes place each
time the instruction is executed
until the result is again zero.
Note that, because of the number
range, an initial count of -2 31

results in a positive value of
2 31 - 1.

4. Counting is performed without
branching when the R2 field in the
RR format contains zero.

BRANCH ON INDEX HIGH

BXH Rt ,R 3,D 2(B 2) [RS]

'86' I Rt I R3 I B2 D2

0 8 12 16 20 31

BRANCH ON INDEX LOW OR EQUAL

BXLE [RS]

o 8 12 16 20 31

An increment is added to the first oper
and, and the sum is compared with a
compare value. The result of the
comparison determines whether branching
occurs. Subsequently, the sum is placed
in the first-operand location. The
second-operand address is used as a
branch address. The R3 field designates
registers containing the increment and
the compare value.

For BRANCH ON INDEX HIGH, when the sum
is high, the instruction address in the
current PSW is replaced by the branch

Chapter 7. General Instructions 7-13

address. When the sum is low or equal,
normal instruction sequencing proceeds
with the updated instruction address.

For 'BRANCH ON INDEX LOW OR EQUAL, when
the sum is low or equal, the instruction
address in the current PSW is replaced
by the branch address. When the sum is
high, normal instruction sequencing
proceeds with the updated instruction
address.

When the R3 field is even, it designates
a pair of registers; the contents of the
even and odd!registers of the pair are
used as the increment and the compare
value, respectively. When the R3 field
is odd, it designates a single register,
the contents of which are used as both
the increment and the compare value.

For purposes of the addition and compar
ison, all operands and results are
treated as 32-bit signed binary
integers. Overflow caused by the addi
tion is ignored.

The original contents of the compare
value register are used as the compare
value even when that register is also
specified to be the first-operand
location. The branch address is
computed before the register designated
by Rt is changed.

The sum is placed in the first-operand
location, regardless of whether the
branch is taken.

Condition Code:
unchanged.---

The

Program Exceptions: None.

Programming Notes

code remains

1. Several examples of the use of
BRANCH ON INDEX HIGH and BRANCH ON
INDEX LOW OR EQUAL are given in
Appendix A.

2. The word "index" in the names of
these instructions indicates that
one of the major purposes is the
incrementing and testing of an
index value. The increment, being
a signed binary integer, may be
used to increase or decrease the
value in register Rt by an arbi
trary amount.

7-14 370-XA Principles of Operation

COMPARE

CR [RR]

'19' I R t I R2 I
0 8 12 15

C Rtt D2(X 2,B 2) [RX]

'59' I R t I X2 I B2 D2

0 8 12 16 20 31

The first operand is compared with the
second operand, and the result is indi
cated in the condition code. The oper
ands are treated as 32-bit signed binary
integers.

Resulting Condition Code:

o Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:

Access (fetch, operand 2 of Conly)

COMPARE AND SWAP

CS [RS]

'BA'

o 8 12 16 20 31

COMPARE DOUBLE AND SWAP

CDS [RS]

'BB'

o 8 12 16 20 31

The first and second operands are
compared. If they are equal, the third
operand is stored at the second-operand
location. If they are unequal, the
second operand is loaded into the
first-operand location. The result of
the compari son is i ndi cated in the
condition code.

For COMPARE AND SWAP, the first and
third operands are 32 bits in length,
with each op~rand occupying a general
register. Thu second operand is a word
in storage.

For COMPARE DOUBLE AND SWAP, the first
and third operands are 64 bits in
length, with each operand occupying an
even-odd pair of general registers. The
second operand is a doubleword in stor
age.

When the result of the comparison is
unequal, the second-operand location
remains unchanged. However, on some
models, the value may be fetched and
subsequently stored back into the
second-operand location. No access by
another CPU program to the second
operand location is permitted between
the moment that the second operand is
fetched for comparison and the moment
that it is stored.

When an equal comparison occurs, no
access by another CPU program to the
second-operand location 1S permitted
between the moment that the second oper
and is fetched for comparison and the
moment that the third operand is stored
at the second-operand location.

Serialization is performed before the
operand is fetched, and again after the
operation is completed. CPU operation
is delayed until all previous accesses
by this CPU to storage have been
completed, as observed by other CPU and
channel programs, and then the second
operand is fetched. No subsequent
instructions or their operands are
accessed by this CPU until the execution
of this instruction is completed,
including placing the result value, if
any, in storage, as observed by other
CPU and channel programs.

The second operand of COMPARE AND SWAP
must be designated on a word boundary.
The R t and R3 fields for COMPARE DOUBLE
AND SWAP must each designate an even
register, and the second operand for the
CDS instruction must be designated on a
doubleword boundary. Otherwise, a spec
ification exception is recognized.

Resulting Condition Code:

o

1

2
3

First and second
equal, second operand
by third operand
First and second
unequal, first operand
by second operand

Program Exceptions:

operands
replaced

operands
replaced

Access (fetch and store, operand 2)
Specification

Programming Notes

1. Several examples of the use of
COMPARE AND SWAP and COMPARE DOUBLE
AND SWAP are given in Appendix A.

2. COMPARE AND SWAP can be used by CPU
programs sharing common storage
areas in either a multiprogramming
or multiprocessing environment.
Two examples are:

a. By performing the following
procedure, a CPU program can
modify the contents of a stor
age location even though the
possibility exists that the CPU
program may be interrupted by
another program that will
update the location or even
though the possibility exists
that another CPU program may
simultaneously update the
location. First, the entire
word containing the byte or
bytes to be updated is loaded
into a general register. Next,
the updated value is computed
and placed in another general
register. Then COMPARE AND
SWAP is executed with the R1
field designating the register
that contains the original
value and the R3 field desig
nating the register that
contains the updated value. If
condition code 0 is set, the
update has been successful. If
condition code 1 is set, the
storage location no longer
contains the original value,
the update has not been
successful, and the general
register designated by the R t
field of the COMPARE AND SWAP
instruction contains the new
current value of the storage
location. When condition code
1 is set, the CPU program can
repeat the procedure using the
new current value.

b. COMPARE AND SWAP can be used
for controlled sharing of a
common storage area, including
the capability of leaving a
message (in a chained list of
messages) when the common area
is in use. To accomplish this,
a word in storage can be used
as a control word, with a zero
value in the word indicating
that the common area is not in
use and that no messages exist,
a negative value indicating
that the area is in use and
that no messages exist, and a
nonzero positive value indicat
ing that the common area is in
use and that the value is the
address of the most recent
message added to the list.
Thus, any number of CPU

Chapter 7. General Instructions 7-15

programs desiring to seize the
area can use COMPARE AND SWAP
to update the control word to
indicate that the area is in
use or to add messages to the
list. The single CPU program
which has seized the area can
also safely use COMPARE AND
SWAP to remove messages from
the list.

3. COMPARE DOUBLE AND SWAP can be used
in a manner similar to that
described for COMPARE AND SWAP. In
addition, it has another use.
Consider a chained list, with a
control word used to address the
first message in the list, as
described in programming note 2b
above. If multiple CPU programs
are to be permitted to delete
messages by using COMPARE AND SWAP
(and not just the single program
which has seized the common area),
there is a possibility the list
will be incorrectly updated. This
would occur if, for example, after
one program has fetched the address
of the most recent message in order
to remove the message, another
program removes the first two
messages and then adds the first
message back into the chain. The
first program, on continuing,
cannot easily detect that the list
is changed. By increasing the size
of the control word to a doubleword
containing both the first message
address and a word with a change
number that is incremented for each
modification of the list, and by
using COMPARE DOUBLE AND SWAP to
update both fields together, the
possibility of the list being
incorrectly updated is reduced to a
negligible level. That is, an
incorrect update can occur only if
the first program is delayed while
changes exactly equal in number to
a multiple of 2 32 take place and
only if the last change places the
original message address in the
control word.

4. COMPARE AND SWAP and COMPARE DOUBLE
AND SWAP do not interlock against
storage accesses by channel
programs. Therefore, the
instructions should not be used to
update a location into which a
channel program may store, since
the channel-program data may be
lost.

5. For the case of a condition-code
setting of 1, COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP mayor may
not, depending on the model, cause
any of the following to occur for
the second-operand location: a PER
storage-alteration event may be
recognized; a protection exception

7-16 370-XA Principles of Operation

for storing may be recognized; and,
provided no access exception
exists, the change bit may be
turned on.

COMPARE HALFWORD

CH [RX]

o 8 12 16 20 31

The first operand is compared with the
second operand, and the result is indi
cated in the condition code. The second
operand is two bytes in length and is
treated as a 16-bit signed binary inte
ger. The first operand is treated as a
32-bit signed binary integer.

Resulting Condition Code:

o Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:

Access (fetch, operand 2)

Programming Note

An example of the use of COMPARE HALF
WORD is given in Appendix A.

COMPARE LOGICAL

CLR [RR]

'15' I R t I R2 I
0 8 12 15

CL Rf ,D 2(X 2,B 2) [RX]

'55' I R t I X2 I B2 O2

o 8 12 16 20 31

[SI]

o 8 16 20 31

CLC [55]

'---_' 0_5_' ---'-__ L_ I_B_t---l..o-1 ~, I B, I ~J
o 8 16 20 32 36 47

The first operand is compared with the
second operand, and the result is indi
cated in the condition code.

The comparison proceeds left to right,
byte by byte, and ends as soon as an
inequality is found or the end of the
fields is reached. For COMPARE LOGICAL
(CL) and COMPARE LOGICAL (CLC), access
exceptions mayor may not be recognized
for the portion of a storage operand to
the right of the first unequal byte.

Resulting Condition Code:

o
1
2
3

Operands are equal
First operand is low
First operand is high

Program Exceptions:

Access (fetch, operand
ClC; fetch, operand
CLC)

2, CL and
1, ClI and

Programming Notes

1. Examples of the use of COMPARE
LOGICAL are given in Appendix A.

2. COMPARE LOGICAL treats all bits of
each operand alike as part of a
field of unstructured logical data.
For COMPARE LOGICAL (CLC), the
comparison may extend to field
lengths of 256 bytes.

COMPARE LOGICAL CHARACTERS UNDER MASK

o 8 12 16 20 31

The first operand is compared with the
second operand under control of a mask,
and the result is indicated in the
condition code.

The contents of the M3 field are used as
a mask. These four bits, left to right,
correspond one for one with the four
bytes, left to right, of the general
register designated by the R t field.
The byte positions corresponding to ones
in the mask are considered as a contig
uous field and are compared with the
second operand. The second operand is a

contiguous field in storage, starting at
the second-operand address and equal in
length to the number of ones in the
mask. The bytes in the general register
corresponding to zeros in the mask do
not participate in the operation.

The compariso~ proceeds left to right,
byte by byte, and ends as soon as an
inequality is found or the end of the
fields is reached.

When the mask is not zero, exceptions
associated with storage-operand access
are recognized for no more than the
number of bytes specified by the mask.
Access exceptions mayor may not be
recognized for the portion of a storage
operand to the right of the first
unequal byte. When the mask is zero,
access exceptions are recognized for one
byte at the second-operand address.

Resulting Condition Code:

0 Selected bytes are equal, or
mask is zero

1 Selected field of first operand
is low

2 Selected field of first operand
is high

3

Program Exceptions:

Access (fetch, operand 2)

Programming Note

An example of the use of COMPARE LOGICAL
CHARACTERS UNDER MASK is given in Appen
dix A.

COMPARE LOGICAL LONG

CLCL [RR]

, 0 F'

o 8 12 15

The first operand is compared with the
second operand, and the result is indi
cated in the condition code. The short
er operand is considered to be extended
on the right with padding bytes.

The R t and R2 fields each specify an
even-odd pair of general registers and
must designate an even-numbered
registe~; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the
first operand and second operand is
designated by the contents of the gener
al registers specified by the Rt and R2

Chapter 7. General Instructions 7-17

fields, respectively. The number of
bytes in the first-operand and second
operand locations is specified by bits
8-31 of the general registers Rt + 1 and
R2 + 1, respectively. Bit positions 0-7
of register R2 + 1 contain the padding
byte. The contents of bit positions 0-7
of register R t + 1 are ignored.

The handling of the addresses in
general registers specified by the
and R2 fields is dependent on
addressing mode.

24-Bit Addressing Mode

the
R1

the

R t 1////////1 First-Operand Address

0 8

R t + 1 1////////1 First-Operand Length

0 8

31

31

R2 1////////1 Second-Operand Addressl

0 8 31

R2 + 1 Pad I Second-Operand Length I
0 8 31

Register Contents for COMPARE LOGICAL LONG

7-18 370-XA Principles of Operation

In the 24-bit addressing mode, the
contents of bit positions 8-31 of regis
ters Rt and R2 constitute the address,
and the contents of bit positions 0-7
are ignored. In the 31-bit addressing
mode, the contents of bit positions 1-31
of registers R1 and R2 constitute the
address, and the contents of bit posi
tion 0 are ignored.

The contents of the
described are shown in
ister Contents for
LONG."

regi sters just
the figure "Reg

COMPARE LOGICAL

31-Bit Addressing Mode

1/1 First-Operand Address

0 1 31

1////////1 First-Operand Length

0 ~ 31

1/1 Second-Operand Address

0 1 31

Pad Second-Operand Length

0 8 31

The comparison proceeds left to right,
byte by byte, and ends as soon as an
inequality is found or the end of the
longer operand is reached. If the oper
ands are not of the same length, the
shorter operand is considered to be
extended on the right with the appropri
ate number of padding bytes.

If both operands are of zero length, the
operands are considered to be equal.

The execution of the instruction is
interruptible. When an interruption
occurs, other than one that causes
termination, the contents of registers
Rt + 1 and R2 + 1 are decremented by the
number of bytes compared, and the
contents of registers R t and R2 are
incremented by the same number, so that
the instruction, when reexecuted,
resumes at the point of interruption.
The leftmost bits which are not part of
the address in registers Rl and R2 are
set to zeros; the contents of bit posi
tions 0-7 of registers Rl + 1 and R2 + 1
remain unchanged; and the condition code
is unpredictable. If the operation is
interrupted after the shorter operand
has been exhausted, the length field
pertaining to the shorter operand is
zero, and its address is updated accord
ingly.

If the operation ends because of an
inequality, the address fields in regis
ters Rl and R2 at completion identify
the first unequal byte in each operand.
The lengths in bit positions 8-31 of
registers Rl + 1 and R2 + 1 are decre
mented by the number of bytes that were
equal, unless the inequality occurred
with the padding byte, in which case the
length field for the shorter operand is
set to zero. The addresses in registers
Rt and R2 are incremented by the amounts
by which the corresponding length fields
were reduced.

If the two operands, including the
padding byte, if necessary, are equal,
both length fields are made zero at
completion, and the addresses are incre
mented by the corresponding operand
length values. At the completion of the
operation, the leftmost bits which are
not part of the address in registers Rl
and R2 are set to zeros, including the
case when one or both of the initial
length values are zero. The contents of
bit positions 0-7 of registers Rl + 1
and R2 + 1 remain unchanged.

Access exceptions for the portion of a
storage operand to the right of the
first unequal byte mayor may not be
recognized. For operands longer than 2K
bytes, access exceptions are not recog
nized more than 2K bytes beyond the byte
being processed. Access exceptions are
not indicated for locations more than 2K
bytes beyond the first unequal byte.

When the length of an operand is zero,
no access exceptions are recognized for
that operand. Access exceptions are not
recognized for an operand if the R field
associated with that operand is odd.'

Resulting Condition Code:

o Operands are equal, or both
have zero length

1 First operand is low
2 First operand is high
3

Program Exceptions:

Access (fetch, operands 1 and 2)
Specification

Programming Notes

1. An example of the use of
LOGICAL LONG is given in
A.

COMPARE
Appendix

2. When the Rt and R2 fields are the
same, the operation proceeds in the
same way as when two distinct pairs
of registers having the same
contents are specified, and, in the
absence of dynamic modification of
the operand area by another CPU or
channel program, condition code 0
i s set. However, it i s unpred i ct
able whether access exceptions are
recognized for the operand since
the operation can be completed
without storage being accessed.

3. Other programming notes concerning
interruptible instructions are
included in the section "Interrup
tible Instructions" in Chapter 5,
"Program Execution."

4. Special precautions should be taken
when COMPARE LOGICAL LONG is made
the target of EXECUTE. See the
programming note concerning inter
ruptible instructions under
EXECUTE.

CONVERT TO BINARY

o 8 12 16 20 31

The second operand is changed from deci
mal to binary, and the result is placed
in the first-operand location.

The second operand occupies eight bytes
in storage and has the format of packed
decimal data, as described in Chapter 8,

Chapter 7. General Instructions 7-19

"Decimal Instructions." It is checked
for valid sign and digit codes, and a
data exception is recognized when an
invalid code is detected.

The result of the conversion is a 32-bit
signed binary integer, which is placed
in the general register specified by R,.
The maximum positive number that can be
converted and still be contained in a
32-bit register is 2,147,483,647; the
maximum negative number (the negative
number with the greatest absolute value)
that can be converted is -2,147,483,648.
For any decimal number outside this
range, the operation is completed by
placing the 32 rightmost bits of the
binary result in the register, and a
fixed-poi nt-divide exception is recog
nized.

Condition Code:
unchanged.---

The code remains

Program Exceptions:

Access (fetch, operand 2)
Data
Fixed-point divide

Programming Notes

1. An example of the use of CONVERT TO
BINARY is given in Appendix A.

2. When the second operand is
negative, the result is in two's
complement notation.

3. The storage-operand references for
CONVERT TO BINARY may be multiple
access references. (See the
section "Storage-Operand Consisten
cy" in Chapter 5, "Program
Execution.")

CONVERT TO DECIMAL

o 8 12 16 20 31

The first operand is changed from binary
to decimal, and the result is stored at
the second-operand location. The first
operand is treated as a 32-bit signed
binary integer.

The result occupies eight bytes in stor
age and is in the format for packed
decimal data, as described in Chapter 8,
"Decimal Instructions." The low-order
four bits of the result represent the
sign. A positive sign is encoded as

7-20 370-XA Principles of Operation

1100; a negative sign
1101.

is encoded as

Condition Code: The code remains
unchanged.

Program Exceptions:

Access (store, operand 2)

Programming Notes

1. An example of the use of CONVERT TO
DECIMAL is given in Appendix A.

2. The number to be converted is a
32-bit signed binary integer
obtained from a general register.
Since 15 decimal digits are avail
able for the result, and the deci
mal equivalent of 31 bits requires
at most 10 decimal digits, an oVer
flow cannot occur.

3. The storage-operand references for
CONVERT TO DECIMAL may be
multiple-access references. (See
th~ section "Storage-Operand
Consistency" in Chapter 5, "Program
Execution.")

DIVIDE

DR Ru R2 [RRl

'10' I R, I R2 I
0 8 12 . 15

0 R"D 2 (X 2 ,B 2) [RX]

'50' I R t I X2 I B2 O2

0 8 12 16 20 31

The doubleword first operand (the divi
dend) is divided by the second operand
(the divisor), and the remainder and the
quotient are placed in the first-operand
location.

The R, field of the instruction speci
fies an even-odd pair of general regis
ters and must designate an even-numbered
register. Wh~n R, is odd, a specifica
tion exception is recognized.

The dividend is treated as a 64-bit
signed binary integer. The divisor, the
remainder, and the quotient are treated
as 32-bit signed binary integers. The
remainder and quotient replace the divi
dend in the pair of registers specified
by the R, fi eld. The rema i nder is
placed in the even-numbered register,

and the quotient is placed in the odd
numbered register.

The sign of the quotient is determined
by the rules of algebra. The remainder
has the same sign as the dividend,
except that a zero quotient or a zero
remainder is always positive.

When the divisor is zero, or when the
magnitudes of the dividend and divisor
are such that the quotient cannot be
expressed by a 32-bit signed binary
integer, a fixed-point-divide exception
is recognized. This includes the case
of division of zero by zero.

Condition Code: The
unchanged.---

code remains

Program Exceptions:

Access (fetch, operand 2 of D only)
Fixed-point divide
Specification

EXCLUSIVE OR

XR Rt ,R 2 [RR]

, 17 ' I Rt I R2 I
0 8 12 15

X R t ,D 2 (X 2 ,B 2) [RX]

'57' I Rt I X2 I B2 D2

o 8 12 16 20 31

XI [SI]

'97'

o 8 16 20 31

XC [SS]

~'_D_7'~~ ___ L~I_B_t~1 ~, 1 5 2 I ~~
o 8 16 20 32 36 47

The EXCLUSIVE OR of the first and second
operands is placed in the first-operand
location.

The connective EXCLUSIVE OR is applied
to the operands bit by bit. A bit posi
tion in the result is set to one if the
corresponding bit positions in the two

operands are unlike; otherwise, the
result bit is set to zero.

For EXCLUSIVE OR (XC), each operand is
processed left to right. When the oper
ands overlap, the result is obtained as
if the operands were processed one byte
at a time and each result byte were
stored immediately after fetching the
necessary operand bytes.

For EXCLUSIVE OR (XI), the first operand
is one byte in length, and only one byte
is stored.

Resulting Condition Code:

o
1
2
3

Result is zero
Result is not zero

Program Exceptions:

Access (fetch, operand 2, X and XCi
fetch and store, operand 1, XI
and XC)

Programming Notes

1. An example of the use of EXCLUSIVE
OR is given in Appendix A.

2. EXCLUSIVE OR may be used to invert
a bit, an operation particularly
useful in testing and setting
programmed binary bit switches.

3. A field EXCLUSIVE-ORed with itself
becomes all zeros.

4. For EXCLUSIVE OR (XR), the sequence
A EXCLUSIVE-OR B, B EXCLUSIVE-OR A,
A EXCLUSIVE-OR B results in the
exchange of the contents of A and B
without the use of an additional
general register.

5. Accesses to the first operand of
EXCLUSIVE OR (XI) and EXCLUSIVE OR
(XC) consist in fetching a first
operand byte from storage and
subsequently storing the updated
value. These fetch and store
accesses to a particular byte do
not necessarily occur one imme
diately after the other. Thus,
EXCLUSIVE OR cannot be safely used
to updatn a location in storage if
the posslbility exists that another
CPU or channel program may also be
updating the location. An example
of this effect is shown for OR (01)
in the section "Multiprogramming
and Multiprocessing Examples" in
Appendix A.

Chapter 7. General Instructions 7-21

EXECUTE

[RX]

'44'

o 8 12 16 20 31

The single instruction at the second
operand address is modified by the
contents of the general register speci
fied by R t , and the resulting target
instruction is executed.

When the R t field is not zero, bits 8-15
of the instruction designated by the
second-operand address are ORed with
bits 24-31 of the register specified by
R t • The DRing does not change either
the contents of the register specified
by R t or the instruction in storage, and
it is effective only for the interpreta
tion of the instruction to be executed.
When the R t field is zero, no ORing
takes place.

The target instruction may be two, four,
or six bytes in length. The execution
and exception handling of the target
instruction are exactly as if the target
instruction were obtained in normal
sequential operation, except for the
instruction address and the
instruction-length code.

The instruction address of the current
PSW is increased by the length of
EXECUTE. This updated address and the
instruction-length code of EXECUTE are
used, for example, as part of the link
information when the target instruction
is BRANCH AND LINK. When the target
instruction is a successful branching
instruction, the instruction address of
the current PSW is replaced by the
branch address specified by the target
instruction.

When the target instruction is in turn
EXECUTE, an execute exception is recog
nized.

The effective address of EXECUTE must be
even; otherwise, a specification excep
tion is recognized. When the target
instruction is two or three halfwords in
length but can be executed without
fetching its second or third halfword,
it is unpredictable whether access
exceptions are recognized for the unused
halfwords. Access exceptions are not
recognized for the second-operand
address when the address is odd.

The second-operand address of EXECUTE is
as an instruction address rather than a
logical address; thus, when the CPU is

7-22 370-XA Principles of Operation

in secondary-space mode, it is unpre
dictable whether the target instruction
is fetched from the primary space or the
secondary space.

Condition Code: The code may be set by
the target instruction.

Program Exceptions:

Access (fetch, target instruction)
Execute
Specification

Programming Notes

1. An example of the use of EXECUTE is
given in Appendix A.

2. The DRing of eight bits from the
general register with the desig
nated instruction permits the indi
rect specification of the length,
index, mask, immediate-data, regis
ter, or extended-op-code field.

3. The fetching of the target instruc
tion is considered to be an
instruction fetch for purposes of
program-event recording and for
purposes of reporting access
exceptions.

4. An access or specification excep
tion may be caused by EXECUTE or by
the target instruction.

5. When an interruptible instruction
is made the target of EXECUTE, the
program normally should not desig
nate any register updated by the
interruptible instruction as the
Rt , X2 , or B2 register for EXECUTE.
Otherwise, on resumption of
execution after an interruption, or
if the instruction is refetched
without an interruption, the
updated values of these registers
will be used in the execution of
EXECUTE. Similarly, the program
should normally not let the desti
nation field in storage of an
interruptible instruction include
the location of EXECUTE, since the
new contents of the location may be
interpreted when resuming
execution.

6. A program should issue EXECUTE in
secondary-space mode only if the
virtual address of the target
instruction translates to the same
real address by means of both the
primary segment table and secondary
segment table. Otherwise, unpre
dictable results may occur.

INSERT CHARACTER

o 8 12 16 20 31

The byte at the second-operand location
is inserted into bit positions 24-31 of
the general register designated by the
R t field. The remaining bits in· the
register remain unchanged.

Condition Code:
unchanged.---

Program Exceptions:

The code

Access (fetch, operand 2)

INSERT CHARACTERS UNDER MASK

ICM [RS]

o 8 12 16 20

remains

31

Bytes from contiguous locations begin
ning at the second-operand address are
inserted into the first-operand location
under control of a mask.

The contents of the M3 field are used as
a mask. These four bits, left to right,
correspond one for one with the four
bytes, left to right, of the general
register designated by the Rt field.
The byte positions corresponding to ones
in the mask are filled, left to right,
with bytes from successive storage
locations beginning at the second
operand address. When the mask is not
zero, the length of the second operand
is equal to the number of ones in the
mask. The bytes in the general register
corresponding to zeros in the mask
remain unchanged.

The resulting condition code is based on
the mask and on the value of the bits
inserted. When the mask is zero or when
all inserted bits are zeros, the condi
tion code is set to o. When the
inserted bits are not all zeros, the
code is set according to the leftmost
bit of the storage operand: if this bit
is one, the code is set to 1; if this
bit is zero, the code is set to 2.

When the mask is not zero, exceptions
associated with storage-operand access
are recognized only for the number of
bytes specified by the mask. When the
mask is zero, access exceptions are
recognized for one byte at the second
operand address.

0 All ;nserted bits are zeros, or
mask i s zero

1 Leftmost bit of the inserted
field is one

2 leftmost bit of the inserted
field is zero, and not all
inserted bits are zeros

3

Program Exceptions:

Access (fetch, operand 2)

Programming Notes

1. Examples of the use of INSERT CHAR
ACTERS UNDER MASK are given in
Appendix A.

2. The condition code for INSERT CHAR
ACTERS UNDER MASK is defi ned :'iUch
that, when the mask is 1111, the
instruction causes the same con~i
tion code to be set as for lOAD ~ND
TEST. Thus, the instruction may be
used as a storage-to-register
load-and-test operation.

3. INSERT CHARACTERS UNDER MASK with a
mask of 1111 or 0001 performs a
function similar to that of a LOAD
(l) or INSERT CHARACTER (IC)
instruction, respectively, with the
exception of the condition-code
setting. However, the performance
of INSERT CHARACTERS UNDER MASK may
be slower.

INSERT PROGRAM MASK

IPM [RREl

'B222'

o 16 24 28 31

The condition code and program mask from
the current PSWare inserted into bit
positions 2-3 and 4-7, respectively, of
the general register specified by the R t

field. Bits 0 and 1 of the register are
set to zeros; bits 8-31 are left
unchanged.

Bits 16-23 and 28-31 of the instruction
are ignored.

Condition Code: The code
unchanged.---

remains

Program Exceptions: None.

Chapter 7. General Instructions 7-23

LOAD

LR R t' R2 [RR]

'18' I Rt I R2 I
0 8 12 15

L R t ,D 2(X 2,B 2)

'58' I Rt I X2 I
[RX]

B2 D2

Programming Notes

1. An example of the use of LOAD
ADDRESS is given in Appendix A.

2. LOAD ADDRESS may be used to incre
ment the rightmost bits of a gener
al register, other than register 0,
by the contents of the D2 field of
the instruction. The register to
be incremented should be specified
by R t and by either X2 (with B2 set
to zero) or B2 (with X2 set to
zero). The instruction updates 24
bits in the 24-bit addressing mode

0 8 12 16 20 31 and updates 31 bits in the 31-bit
addressing mode.

The second operand is placed unchanged
in the first-operand location.

Condition Code:
unchanged.---

Program Exceptions:

The code remains

Access (fetch, operand 2 of L only)

Programming Note

An example of the use of LOAD is given
in Appendix A.

LOAD ADDRESS

LA Rt ,D:z(X 2,B 2> [RX]

'41' I Rt I X2 I B2 D2

0 8 12 16 20 31

The address specified by the X2, B2, and
D2 fields 1S placed in the general
register specified by the R t field. The
address computation follows the rules
for address arithmetic.

In the 24-bit addressing mode, the
address is placed in bit positions 8-31,
and bits 0-7 are set to zeros. In the
31-bit addressing mode, the address is
placed in bit positions 1-31, and bit 0
is set to zero.

No storage references
place, and the address
for access exceptions.

Condition Code: The
unchanged.---

for operands take
is not inspected

code remains

Program Exceptions: None.

7-24 370-XA Principles of Operation

LOAD AND TEST

LTR [RRl

'12' I R t I R2 I
o 8 12 15

The second operand is placed unchanged
in the first-operand location, and the
sign and magnitude of the second
operand, treated as a 32-bit signed
binary integer, are indicated in the
condition code.

Resulting Condition Code:

o Result is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions: None.

Programming Note

When the R t and R2 fields designate the
same register, the operation is equiv
alent to a test without data movement.

LOAD COMPLEMENT

LCR

'13'

o 8 12 15

The two's compleme~t of the second oper
and is placed 1n the first-operand
location. The second operand and result
are treated as 32-bit' signed binary
integers.

When there is an overflow, the result is
obtained by allowing any carry into the
sign-bit position and ignoring any carry
out of the sign-bit position, and condi
tion code 3 is set. If the fixed
point-overflow mask is one, a program
interruption for fixed-point overflow
occurs.

Resulting Condition Code:

o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Exceptions:

Fixed-point. overflow

The operation complements all numbers.
Zero and the maximum negative number
remain unchanged. An overflow condition
occurs when the maximum negative number
is complemented.

LOAD HALFWORD

LH [RX]

'48'

o 8 12 16 20 31

The second operand is considered to be
extended to a 32-bit signed binary inte
ger and is placed in the first-operand
location. The second operand is two
bytes in length and is considered to be
a 16-bit signed binary integer. The
second operand is extended to 32 bits by
setting each of the 16 leftmost bit
positions equal to the sign bit of the
storage operand.

Condition Code:
unchanged.---

Program Exceptions:

The code

Access (fetch, operand 2)

Programming Note

remains

An example of the use of LOAD HALFWORD
is given in Appendix A.

LOAD MULTIPLE

o 8 12 16 20 31

The set of general registers starting
with the reglst~r specified by R t and
ending with the register specified by R3
is loaded from storage beginning at the
location designated by the second
operand address and continuing through
as many locations as needed.

The general registers are loaded in the
ascending order of their register
numbers, starting with the register
specified by Rt and continuing up to and
including the register specified by R31
with register 0 following register 15.

Condition Code: The
unchanged.---

code remains

Program Exceptions:

Access (fetch, operand 2)

Programming Note

All combinations of register numb~rs
specified by Rt and R3 are valid. When
the register numbers are equal, only
four bytes are transmitted. When the
number specified by R3 is less than the
number specified by Rtl the register
numbers wrap around from 15 to O.

LOAD NEGATIVE

LNR [RR]

'11' I R t I R2 I
o 8 12 15

The two's complement of the absolute
value of the second operand is placed in
the first-operand location. The second
operand and result are treated as 32-bit
signed binary integers.

Resulting Condition Code:

o
1
2
3

Result is zero
Result is less than zero

Program Exceptions: None.

Chapter 7. General Instructions 7-25

Programming Note

The operation complements
numbers; negative numbers
unchanged. The number zero
unchanged.

LOAD POSITIVE

LPR [RR]

'10' I Rt I R2 I
o 8 12 15

positive
remain

remains

The absolute value of the second operand
is placed in the first-operand location.
The second operand and the result are
treated as 32-bit signed binary
integers.

When there is an overflow, the result is
obtained by allowing any carry into the
sign-bit position and ignoring any carry
out of the sign-bit position, and condi
tion code 3 is set. If the fixed
point-overflow mask is one, a program
interruption for fixed-point overflow
occurs.

Resulting Condition Code:

Result is zero o
1
2
3

Result is greater than zero
Overflow

Program Exceptions:

Fixed-point overflow

Programming Note

The operation complements negative
numbers; positive numbers and zero
remain unchanged. An overflow condition
occurs when the maximum negative number
is complemented; the number remains
unchanged.

MONITOR CALL

MC [51]

'AF'

o 8 16 20 31

A program interruption is caused if the
appropriate monitor-mask bit in control
register 8 is one.

7-26 370-XA Principles of Operation

The monitor-mask bits are in bit posi
tions 16-31 of control register 8, which
correspond to monitor classes 0-15,
respectively.

Bit positions 12-15 in the 12 field
contain a binary number specifying one
of 16 monitoring classes. When the
monitor-mask bit corresponding to the
class specified by the 12 field is one,
a monitor-event program interruption
occurs. The contents of the 12 field
are stored at locati~n 149, with zeros
stored at location 148. Bit 9 of the
program-interruption code is set to one.

The first-operand address is not used to
address data; instead, the address spec
ified by the Bt and D, fields forms the
monitor code, which is placed in the
word at location 156. Address computa
tion follows the rules of address
arithmetic; in the 24-bit addressing
mode, bits 0-7 are set to zeros; in the
31-bit addres5ing mode, bit 0 is set to
zero.

When the monitor-mask bit corresponding
to the class specified by bits 12-15 of
the instruction is zero, no interruption
occurs, and the instruction is executed
as a no-operation.

Bit positions 8-11 of the instruction
must contain zeros; otherwise, a spec
ification exception is recognized.

Condition Code: The
unchanged.---

Program Exceptions:

Monitor event
Specification

Programming Notes

code remains

1. MONITOR CALL provides the capabili
ty for passing control to a moni
toring program when selected points
are reached in the monitored
program. This is accomplished by
implanting MONITOR CALL
instructions at the desired points
in the monitored program. This
function may be useful in perform
ing various measurement functions;
specifically, tracing information
can be generated indicating which
programs were executed, counting
information can be generated indi
cating how often particular
programs were used, and timing
information can be generated indi
cating how long a particular
program required for execution.

2. The monitor masks provide a means
of disallowing all monitor-event
program interruptions or allowing

monitor-event program interruptions
for all or selected classes.

3. The monitor code provides a means
of associating descriptive informa
tion, in addition to the class
number, with each MONITOR CALL.
Without the use of a base register,
up to 4,096 distinct monitor codes
can be associated with a monitoring
interruption. With the base regis
ter designated by a nonzero value
in the B t field, each monitoring
interruption can be identified by a
24-bit code in the 24-bit address
ing mode or a 31-bit code in the
31-bit addressing mode.

MOVE

2. It is possible to propagate one
byte through an entire field by
having the first operand start one
byte to the right of the second
operand.

MOVE LONG

MVCL [RR]

o 8 12 15

The second operand is placed in the
first-operand location, provided over
lapping of operand locations would not
affect the final contents of the first
operand location. The remaining right-

[51] most byte positions, if any, of the
first-operand location are filled with
padding bytes.

'92' 12 B t D t

o 8 16 20 31

MVC [55]

'D2' L I B, I ~, I B, I ~~
o 8 16 20 32 36 47

The second operand is placed in the
first-operand location.

For MOVE (MVC), each operand is proc
essed left to right. When the operands
overlap, the result is obtained as if
the operands were processed one byte at
a time and each result byte were stored
immediately after fetching the necessary
operand byte.

For MOVE (MVI), the first operand is one
byte in length, and only one byte is
stored.

Condition Code:
unchanged.---

Program Exceptions:

The code remains

Access (fetch, operand 2 of MVC;
store, operand 1, MVI and MVC)

1. Examples of the use of MOVE are
given in Appendix A.

The R t and R2 fields each specify an
even-odd pair of general registers and
must designate an even-numbered
register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the
first operand and second operand is
designated by the contents of the gener
al registers specified by the R t and R2
fields, respectively. The number of
bytes in the first-operand and second
operand locations is specified by bits
8-31 of general registers R t + 1 and
R2 + 1, respectively. Bit positions 0-7
of register R2 + 1 contain the padding
byte. The contents of bit positions 0-7
of register Rt + 1 are ignored.

The handling of the addresses in the
general registers specified by the Rt
and R2 fields is dependent on the
addressing mode. In the 24-bit address
ing mode, the contents of bit positions
8-31 of registers Rt and R2 constitute
the address, and the contents of bit
positions 0-7 are ignored. In the
31-bit addres~ing mode, the contents of
bit positions 1-31 of registers R t and
R2 constitute the address, and the
contents of bit position 0 are ignored.

The contents of the registers just
described are shown in the figure "Reg
ister Contents for MOVE LONG."

Chapter 7. General Instructions 7-27

24-Bit Addressing Mode

1////////1 First-Operand Address

o 8 31

R, + 1 1////////1 First-Operand Length

o 8 31

1////////1 Second-Operand Addressl

o 8 31

R2 + 1 Pad I Second-Operand Length I
o 8 31

Register Contents for MOVE LONG

The movement starts at the left end of
both fields and proceeds to the right.
The operation is ended when the number
of bytes specified by bit positions 8-31
of register R t + 1 have been moved into
the first-operand location. If the
second operand is shorter than the first
operand, the remaining rightmost bytes
of the first-operand location are filled
with the padding byte.

As part of the execution of the instruc
tion, the values of the two length
fields are compared for the setting of
the condition code, and a check is made
for destructive overlap of the operands.
Operands are said to overlap destruc
tively when the first-operand location
is used as a source after data has been
moved into it, assuming the inspection
for overlap is performed by the use of
logical operand addresses. When the
operands overlap destructively, no move
ment takes place, and condition code 3
i s set.

Operands do not overlap destructively,
and movement is performed, if the left
most byte of the first operand does not
coincide with any of the second-operand
bytes participating in the operation
other than the leftmost byte of the
second operand. When an operand wraps
around from location 224 - 1 (or
2 31 - 1) to location 0, operand bytes in
locations up to and including 224 - 1
(or 2 31 - 1) are considered to be to the
left of bytes in locations from 0 up.

In the 24-bit addressing mode, wrapa
round is from location 224 - 1 to
location 0; in the 31-bit addressing
mode, wraparound is from location
2 31 - 1 to location O.

7-28 370-XA Principles of Operation

31-Bit Addressing Mode

First-Operand Address

o 1 31

1////////1 First-Operand Length

o 8 31

Second-Operand Address

o 1 31

Pad Second-Operand Length

o 8 31

When the length specified by
tions 8-31 of register Rt + 1
no movement takes place, and
code 0 or 1 is set to indicate
tive values of the lengths.

bit posi
is zero,

condition
the rela-

The execution of the instruction is
interruptible. When an interruption
occurs other than one that causes termi
nation, the contents of registers Rt + 1
and R2 + 1 are decremented by the number
of bytes moved, and the contents of
register Rl and R2 are incremented by
the same number, so that the
instruction, when reexecuted, resumes at
the point of interruption. The leftmost
bits which are not part of the address
in registers R t and R2 are set to zeros;
the contents of bit positions 0-7 of
registers R t + 1 and R2 + 1 remain
unchanged; and the condition code is
unpredictable. If the operation is
interrupted during padding, the length
field in register R2 + 1 is 0, the
address in register R2 is incremented by
the original contents of register
R2 + 1, and registers R t and R t + 1
reflect the extent of the padding opera
tion.

When the first-operand location includes
the location of the instruction or of
EXECUTE, the instruction may be
refetched from storage and reinterpreted
even in the absence of an interruption
during execution. The exact point in
the execution at which such a refetch
occurs is unpredictable.

As viewed by other CPU and channel
programs, that portion of the first
operand which is filled with the padding
byte is not necessarily stored into in a
left-to-right direction and may appear
to be stored into more than once.

At the completion of the operation, the
length in register R t + 1 is decremented
by the number of bytes stored at the
first-operand locatlon, and the address
in register R t is incremented by the
same amount. The length in register
R2 + 1 is decremented by the number of
bytes moved out of the second-operand
location, and the address in register R2
is incremented by the same amount. The
leftmost bits which are not part of the
address in registers Rt and R2 are set
to zeros, including the case when one or
both of the original length values are
zeros or when condition code 3 is set.
The contents of bit positions 0-7 of
registers R t + 1 and R2 + 1 remain
unchanged.

When condition code 3 is set, no
exceptions associated with operand
access are recognized. When the length
of an operand is zero, no access
exceptions for that operand are recog
nized. Similarly, when the second
operand is longer than the first
operand, access exceptions are not
recognized for the part of the second
operand field that is in excess of the
first-operand field. For operands long
er than 2K bytes, access exceptions are
not recognized for locations more than
2K bytes beyond the current location
being processed. Access exceptions are
not recognized for an operand if the R
field associated with that operand is
odd. Also, when the R t field is odd,
PER storage alteration is not
recognized, and no change bits are set.

Resulting Condition Code:

o First-operand and second-
operand lengths are ~qual

1 First-operand length is low
2 First-operand length is high
3 No movement performed because

of destructive overlap

Program Exceptions:

Access (fetch, operand
operand 1)

Specification

Programming Notes

2; store,

1. An example of the use of MOVE LONG
is given in Appendix A.

2. MOVE LONG may be used for clearing
storage by setting the padding byte
to zero and the second-operand
length to zero. On most models,
this is the fastest instruction for
clearing storage areas in excess of
256 bytes. However, the stores
associated with this clearing may
be multiple-access stores and
should not be used to clear an area
if the possibility exists that

another CPU or channel program will
attempt to access and use the area
as soon as it appears to be zero.

3. The program should avoid specifica
tion of a length for either operand
which would result in an addressing
exception. Addressing (and also
protection) exceptions may result
in termination of the entire opera
tion, not just the current unit of
operation. The termination may be
such that the contents of all
result fields are unpredictable; in
the case of MOVE LONG, this
includes the condition code and the
two even-odd general-register
pairs, as well as the first-operand
location in main storage. The
following are situations that have
actually occurred on one or more
models:

4.

a. ltJhen a protect i on except ion
occurs on a 4K-byte block, of a
first operand which is several
blocks in length, stores to the
protected block are suppressed.
However, the move continues
into the subsequent blocks of
the first operand, which are
not protected. Similarly, an
addressing exception on a block
does not necessarily suppress
processing of subsequent blocks
which are available.

b. Some models may update the
general registers only when an
external, I/O, repressible
machine-check, or restart
interruption occurs, or when a
program interruption occurs for
which it is required to nullify
or suppress execution. Thus,
if, after a move into several
blocks of the first operand, an
addressing or protection excep
tion occurs, the registers
remain unchanged.

When the first-operand length
zero, the operation consists
setting the condition code
setting the high-order bytes
registers Rt and R2 to zero.

is
in

and
of

5. When the contents of the Rt and R2
fields are the same, the operation
proceeds the same way as when two
distinct pairs of registers having
the sam~ contents are specified.
Condition code 0 is set.

6. The following is a detailed
description of those cases in which
movement takes place, that ls,
where destructive overlap does not
exist. Depending on whether the
second operand wraps around from
location 224 - 1 to location 0, or,
in the 31-bit addressing mode, from
location 2 31 - 1 to location 0,

Chapter 7. General Instructions 7-29

movement takes place in the follow- .
ing cases:

a. When the second operand does
not wrap around, movement is
performed if the leftmost byte
of the first operand coincides
with or is to the left of the
leftmost byte of the second
operand, Q£ if the leftmost
byte of the first operand is to
the right of the rightmost
second-operand byte participat
ing in the operation.

b. When the second operand wraps
around, movement is performed
if the leftmost byte of the
first operand coincides with or
is to the left of the leftmost
byte of the second operand, and
if the leftmost byte of the
first operand is to the right
of the rightmost second-operand
byte participating in the oper
ation.

The rightmost second-operand byte
is determined by using the smaller
of the first-operand and second
operand lengths.

When the second-operand length is
one or zero, destructive overlap
cannot exist.

7. Special precautions must be taken
if MOVE LONG is made the target of
an EXECUTE. See the programming
note concerning interruptible
instructions under EXECUTE.

8. Since the execution of MOVE LONG is
interruptible, the instruction
cannot be used for situations where
the program must rely on uninter-
rupted execution of the
instruction. Similarly, the
program should normally not let the
first operand of MOVE LONG include
the location of the instruction or
of EXECUTE since the new contents
of the location may be interpreted
for a resumption after an inter
ruption, or the instruction may be
refetched without an interruption.

9. Further programming notes con
cerning interruptible instructions
are included in the section "Inter
ruptible Instructions" in Chapter
5, "Program Execution."

7-30 370-XA Principles of Operation

MOVE NUMERICS

MVN [55]

'DI' L I B. I ~. B, I ~;:]
o 8 16 20 32 36 47

The rightmost four bits of each byte in
the second operand are placed in the
rightmost bit positions of the corre
sponding bytes in the first operand.
The leftmost four bits of each byte in
the first operand remain unchanged.

Each operand is processed left to right.
When the operands overlap, the result is
obtained as if the operands were proc
essed one byte at a time and each result
byte were stored immediatelY after
fetching the necessary operand bytes.

Condition Code:
unchanged.-----

Program Exceptions:

The code remains

Access (fetch, operand 2; fetch and
store, operand 1)

Programming Notes

1. An example of the use of MOVE
NUMERICS is given in Appendix A.

2. MOVE NUMERICS moves the numeric
portion of a decimal-data field
that is in the zoned format. The
zoned-decimal format is described
in Chapter 8, "Decimal
Instructions." The operands are
not checked for valid sign and
digit codes.

3. Accesses to the first operand of
MOVE NUMERICS consist in fetching
the rightmost four bits of each
byte in the first operand and
subsequently storing the updated
value of the byte. These fetch and
store accesses to a particular byte
do not necessarily occur one imme
diatelY after the other. Thus,
this instruction cannot be safely
used to update a location in stor
age if the possibility exists that
another CPU or channel program may
also be updating the location. An
example of this effect is shown for
OR (01) in the section "Multipro
gramming and Multiprocessing
Examples" in Appendix A.

MOVE WITH OFFSET

[55]

'F1' I L, I L, I B, I ~, B, ~~
o 8 12 16 20 32 36 47

The second operand is placed to the left
of and adjacent to the rightmost four
bits of the first operand.

The rightmost four bits of
operand are attached as the
bits to the second operand,
operand bits are offset by
positions, and the result is
the first-operand location.

the first
rightmost

the second
four bit
placed in

The result is obtained as if the oper
ands were processed right to left. When
necessary, the second operand is consid
ered to be extended on the left with
zeros. If the first operand is too
short to contain all of the second oper
and, the remaining leftmost portion of
the second operand is ignored. Access
exceptions for the unused portion of the
second operand mayor may not be indi
cated.

When the operands overlap, the result is
obtained as if the operands were proc
essed one byte at a time, as if each
result byte were stored immediately
after fetching the necessary operand
bytes, and as if the left digit of each
second-operand byte were to remain
available for the next result byte and
need not be refetched.

Condition Code:
unchanged.---

Program Exceptions:

The code remains

Access (fetch, operand 2; fetch and
store, operand 1)

Programming Notes

1. An example of the use of the MOVE
WITH OFFSET instruction is given in
Appendix A.

2. Access to the rightmost byte of the
first operand of MOVE WITH OFFSET
consists in fetching the rightmost
four bits and subsequently storing
the updated value of this byte.
These fetch and store accesses to
the rightmost byte of the first
operand do not necessarily occur
one immediately after the other.
Thus, this instruction cannot be
safely used to update a location in
storage if the possibility exists
that another CPU or channel program
may also be updating the location.

An example of this effect is shown
for OR (01) in the section "Multi
programming and Multiprocessing
Examples" in Appendix A.

3. MOVE WITH OFFSET may be used to
shift packed decimal data by an odd
number of digit positions. The
packed-decimal format is described
in Chapter 8, "Decimal
Instructions." The operands are
not checked for valid sign and
digit codes. In many cases, how~v
er, SHIFT AND ROUND DECIMAL may be
mo~e convenient to use.

4. The storage-operand references for
MOVE WITH OFFSET may be multiple
access references. (See the
section "Storage-Operand Consis
tency" in Chapter 5, "Program
Execution.")

MOVE ZONES

MVZ D1 (l,B 1),D 2 (B 2) [55]

'D3' l I B1 I ~, I B2 I ~~
0 8 16 20 32 36 47

The leftmost four bits of each byte in
the second operand are placed in the
leftmost four bit positions of the
corresponding bytes in the first
operand. The rightmost four bits of
each byte in the first operand remain
unchanged.

Each operand is processed left to right.
When the operands overlap, the result is
obtained as if the operands were proc
essed one byte at a time and each result
byte were stored immediately after the
necessary operand byte is fetched.

Condition Code:
unchanged.---

Program Exceptions:

The code remains

Access (fetch, operand 2; fetch and
store, operand 1)

Programming Notes

1. An example of the use of MOVE ZONES
is given in Appendix A.

2. MOVE ZONES moves the zoned portion
of a decimal field in the zoned
format. The zoned format is
described in Chapter 8, "Decimal
Instructions." The operands are
not checked for valid sign and
digit codes.

Chapter 7. General Instructions 7-31

3. Accesses to the first operand of
MOVE ZONES consist in fetching the
leftmost four bits of each byte in
the first operand and subsequently
storing the updated value of the
byte. These fetch and store
accesses to a particular byte do
not necessarily occur one imme
diately after the other. Thus,
this instruction cannot be safely
used to update a location in stor
age if the possibility exists that
another CPU or channel program may
also be updating the location. An
example of this effect is shown for
the OR (01) instruction in the
section "Multiprogramming and
Multiprocessing Examples" in Appen
dix A.

MULTIPLY

MR R t , R2 [RR]

'lC' I R t I R2 I
0 8 12 15

M Rp 0 2(X 2 ,B 2) [RX]

"
'SC' I Rf I X2 I B2 O2

0 8 12 16 20

The second word of the first
(multiplicand) is multiplied
second operand (multiplier),
doubleword product is placed
first-operand location.

31

operand
by the

and the
at the

The R t field of the instruction speci
fies an even-odd pair of general regis
ters and must designate an even-numbered
register. When Rt is odd, a specifica
tion exception is recognized.

Both the multiplicand and multiplier are
treated as 32-bit signed binary
integers. The multiplicand is taken
from the odd-numbered register of the
pair specified by the R t field. The
contents of the even-numbered register
are ignored. The product is a 64-bit
signed binary integer, which replaces
the contents of the even-odd pair of
general registers specified by the Rt
field. An overflow cannot occur.

The sign of the product is determined by
the rules of algebra from the multiplier
and multiplicand sign, except that a
zero result is always positive.

Condition Code:
unchanged.---

The code remains

7-32 370-XA Principles of Operation

Prcgram Exceptions:

Access (fetch, operand 2 of M only)
Specification

Programming Notes

1. An example of the use of MULTIPLY
is given in Appendix A.

2. The significant part of the product
usually occupies 62 bits or fewer.
Only when two maximum negative
numbers are multiplied are 63
significant product bits formed.

MULTIPLY HALFWORO

o 8 12 16 20 31

The first operand (multiplicand) is
multiplied by the second operand (multi
plier), and th~ product is placed at the
first-operand location. The second
operand is two bytes in length and is
considered to be a 16-bit signed binary
integer.

The multiplicand is treated as a 32-bit
signed binary integer and is replaced by
the rightmost 32 bits of the signed
binary-integer product. The bits to che
left of the 32 rightmost bits of the
product are not tested for significance;
no overflow indication is given.

The sign of the product is determined by
the rules of algebra from the multiplier
and multiplicand sign, except that a
zero result is always positive.

Condition Code:
unchanged.---

Program Exceptions:

The code

Access (fetch, operand 2)

Programming Notes

remains

1. An example of the use of MULTIPLY
HALFWORD is given in Appendix A.

2. The significant part of the product
usually occupies 46 bits or fewer.
Only when two maximum negative
numbers are multiplied are 47
significant product bits formed.
Since the rightmost 32 bits of the
product are stored unchanged,

OR

OR

0

0

o

01

o

OC

ignoring all bits to the left, the
sign bit of the result may differ
from the true sign of the product
in the case of overflow. For a
negative product, the 32 bits
placed in register R t are the
rightmost part of the product in
two's-complement notation.

Rt ,R 2 [RR]

, 16 ' I Rt I R2 I
8 12 15

Rt ,D 2(X 2,B 2) [RX]

'56' I Rt I X2 I B2 D2

8 12 16 20 31

[SI]

'96' Dt

8 16 20 31

[SS]

1..-_' D_6 _' ---I-__ L_-LI_B_t---l-1 ~, lB. I ~~
o 8 16 20 32 36 47

The OR of the first and second operands
is placed in the first-operand location.

The connective OR is app!ied to the
operands bit by bit. A bit position in
the resu!t is set to one if the corre
sponding bit position in one or both
operands contains a one; otherwise, the
resu!t bit is set to zero.

For OR (OC), each operand is processed
left to right. When the operands over
lap, the result is obtained as if the
operands were processed one byte at a
time and each result byte were stored
immediately after fetching the necessary
operand bytes.

For OR (01), the first operand is only
one byte in length, and only one byte is
stored.

Resulting Condition Code:

o
1
2
3

Result is zero
Result is not zero

Program Exceptions:

Access (fetch, operand 2, 0 and OC;
fetch and store, operand 1, 01
and OC)

Programming Notes

1. Examples of the use of OR are given
in Appendix A.

2. OR may b~ used to set a bit to one.

3. Accesses to the first operand of OR
(01) and OR (OC) consist in fetch
ing a first-operand byte from stor
age and subsequent!y storing the
updated value. These fetch and
store accesses to a particular byte
do not necessari!y occur one imme
diately after the other. Thus, OR
cannot be safely used to update a
location in storage if the possi
bilityexists that another CPU or
channe! program may also be updat
ing the location. An example of
this effect is shown in the section
"Multiprogramming and Multiprocess
ing Examples" in Appendix A.

PACK

PACK [S5]

'F2 ' I L, I L. I B, I ~, B. ~~
o 8 12 16 20 32 36 47

The format of the second operand is
changed from zoned to packed, and the
result is placed in the first-operand
location. The zoned and packed formats
are described in Chapter 8, "Decimal
Instructions."

The second operand is treated as though
it had the zoned format. The numeric
bits of each byte are treated as a
digit. The zone bits are ignored,
except the zone bits in the rightmost
byte, which are treated as a sign.

The sign and digits are moved unchanged
to the first operand and are not checked
for valid codes. The sign is placed in
the rightmost four bit positions of the
rightmost byte of the result field, and
the digits are placed adjacent to the
sign and to each other in the remainder
of the result field.

The result is obtained as if the oper
ands were processed right to left. When
necessary, the second operand is consid
ered to be extended on the left with
zeros. If the first operand ;s too
short to contain all digits of the

Chapter 7. General Instructions 7-33

second operand, the remalnlng leftmost
portion of the second operand is
ignored. Access exceptions for the
unused portion of the second operand may
or may not be indicated.

When the operands overlap, the result is
obtained as if each result byte were
stored immediately after fetching the
necessary operand bytes. Two second
operand bytes are needed for each result
byte, except for the rightmost byte of
the result field, which requires only
the rightmost second-operand byte.

Condition Code:
unchanged.---

The code remains

Program Exceptions:

Access (fetch, operand 2; store,
operand 1)

Programming Notes

1. An example of the use of PACK is
given in Appendix A.

2. PACK may be used to interchange the
two hexadecimal digits in one byte
by specifying a zero in the Lf and
L2 fields and the same address for
both operands.

3. To remove the zone bits of all
bytes of a field, including the
rightmost byte, both operands must
be extended on the right with a
dummy byte, which subsequently is
ignored in the result field.

4. The storage-operand references for
PACK may be multiple-access refer-
ences. (See the section "Storage-
Operand Consistency" in Chapter 5,
"Program Execution.")

SET PROGRAM MASK

SPM Rf [RR]

o 8 12 15

The contents of the general register
specified by the R t field are used to
set the condition code and the program
mask of the current PSW.

Bits 12-15
ignored.

of the instruction are

Bits 2 and 3 of the register specified
by the R t field replace the condition
code, and bits 4-7 replace the program
mask. Bits 0, 1, and 8-31 of the regis-

7-34 370-XA Principles of Operation

ter specified by the R t field are
ignored.

Resulting Condition Code:

0 Bit 2 is zero, and bit 3 is
zero

1 Bit 2 is zero, and bit 3 is one
2 Bit 2 is one, and bit 3 ;s zero
3 Bit 2 is one, and bit 3 is one

Program Exceptions: None.

Programming Notes

1. Bits 2-7 of the general register
may have been loaded from the PSW
by execution of BRANCH AND LINK in
the 24-bit addressing mode or by
execution of INSERT PROGRAM MASK in
either the 24-bit or 31-bit
addressi"lg mode.

2. SET PROGRAM MASK permits setting of
the condition code and the mask
bits in either the problem or
supervisor state.

3. The program should take into
consideration that the setting of
the program mask can have a signif
icant effect on subsequent
execution of the program. Not only
do the four mask bits control
whether the corresponding inter
ruptions occur, but the exponent
underflow and significance masks
also determine the result which is
obtained.

SHIFT LEFT DOUBLE

SLDA Rt ,D 2(B 2) [RS]

'8F' 1 Rt 1////1 B2 O2
1

0 8 12 16 20 31

The 63-bit numeric part of the signed
first operand is shifted left the number
of bits specified by the second-operand
address.

Bits 12-15
ignored.

of the instruction are

The Rf field of the instruction speci
fies an even-odd pair of general regis
ters and must designate an even-numbered
register. When R t is odd, a specifica
tion exception is recognized.

The second-operand address is not used
to address data; its rightmost six bits
indicate the number of bit positions to
be shifted. The remainder of the
address is ignored.

The first operand is treated as a 64-bit
signed binary integer. The s;gn posi
tion of the even register remains
unchanged. The leftmost bit position of
the odd register contains a numeric bit,
which participates in the shift in the
same manner as the other numeric bits.
Zeros are supplied to the vacated bit
positions on the right.

If one or more bits unlike the sign bit
are shifted out of bit position 1, an
overflow occurs, and condition code 3 is
set. If the fixed-poi nt-overflow mask
bit is one, a program interruption for
fixed-point overflow occurs.

Resulting Condition Code:

o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Exceptions:

Fixed-point overflow
Specification

Programming Notes

1. An example of the use of SHIFT LEFT
DOUBLE is given in Appendix A.

2. The eight shift instructions
provide the following three pairs
of alternatives: left or right,
single or double, and signed or
logical. The signed shifts differ
from the logical shifts in that, in
the signed shifts, overflow is
recognized, the condition code is
set, and the leftmost bit partic
ipates as a sign.

3. A zero shift amount in the two
signed double-shift operations
provides a double-length sign and
magnitude test.

4. The base register participating in
the generation of the second
operand address permits indirect
specification of the shift amount.
A zero in the B2 field indicates
the absence of indirect shift spec
ification.

SHIFT LEFT DOUBLE LOGICAL

SLDL [RS]

'aD'

o a 12 16 20 31

The 64-bit first operand is shifted left
the number of bits specified by the
second-operand address.

Bits 12-15
ignored.

of the instruction are

The R t f;eld of the instruction speci
fies an even-odd pair of general regis
ters and must designate an even-numbered
register. When Rt is odd, a specifica
tion exception is recognized.

The second-operand address is not used
to address data; its rightmost six bits
indicate the number of bit positions to
be shifted. The remainder of the
address is ignored.

All 64 bits of the first operand partic
ipate in the shift. Bits shifted out of
bit position 0 of the even-numbered
register are not inspected and are lost.
Zeros are supplied to the vacated bit
positions on the right.

Condition Code:
unchanged.---

Program Exceptions:

Specification

SHIFT lEFT SINGLE

o a 12

The code remains

16 20 31

The 31-bit numeric part of the signed
first operand is shifted left the number
of bits specified by the second-operand
address.

Bits 12-15
ignored.

of the instruction are

The second-operand address is not used
to address data; its rightmost six bits
indicate the number of bit positions to
be shifted. The remainder of the
address is ignored.

The first operand is treated as a 32-bit
signed binary integer. The sign of the
first operand remains unchanged. All 31
numeric bits of the operand participate
in the left shift. Zeros are supplied
to the vacated bit positions on the
right.

If one or more bits unlike the sign bit
are shifted out of bit position 1, an
overflow occurs, and condition code 3 is
set. If the fixed-poi nt-overflow mask
bit is one, a program interruption for
fixed-point overflow occurs.

Chap.ter 7. General Instruct ions 7-35

Resulting Condition Code:

o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Exceptions:

Fixed-point overflow

Programming Notes

1. An example of the use of SHIFT LEFT
SINGLE is given in Appendix A.

2. For numbers with a value greater
than or equal to -230 and less than
230, a left shift of one bit posi
tion is equivalent to multiplying
the number by 2.

3. Shift amounts from 31 to 63 cause
the entire numeric part to be
shifted out of the register, leav
ing a result of the maximum nega
tive number or zero, depending on
whether or not the initial contents
were negative.

SHIFT LEFT SINGLE LOGICAL

o 8 12 16 20 31

The 32-bit first operand is shifted left
the number of bits specified by the
second-operand address.

Bits 12-15
ignored.

of the instruction are

The second-operand address is not used
to address data; its rightmost six bits
indicate the number of bit positions to
be shifted. The remainder of the
address is ignored.

All 32 bits of the first operand partic
ipate in the shift. Bits shifted out of
bit position 0 are not inspected and are
lost. Zeros are supplied to the vacated
bit positions on the right.

Condition Code:
unchanged.---

The

Program Exceptions: None.

code remains

7-36 370-XA Principles of Operation

SHIFT RIGHT DOUBLE

o 8 12 16 20 31

The 63-bit numeric part of the signed
first operand is shifted right the
number of bits specified by the second
operand address.

Bits 12-15
ignored.

of the instruction are

The Ri field of the instruction speci
fies an even-odd pair of general regis
ters and must designate an even-numbered
register. When R1 is odd, a specifica
tion exception is recognized.

The second-operand address is not used
to address data; its rightmost six bits
indicata the number of bit positions to
be shifted. The remainder of the
address is ignored.

The first operand is treated as a 64-bit
signed binary integer. The sign posi
tion of the even register remains
unchanged. The leftmost bit position of
the odd register contains a numeric bit,
which participates in the shift in the
same manner as the other numeric bits.
Bits shifted, out of bit position 31 of
the odd-numbered register are not
inspected and are lost. Bits equal to
the sign are supplied to the vacated bit
positions on the left.

Resulting Condition Code:

o
1
2
3

Result is zero
Result is less than zero
Result is greater than zero

Program Exceptions:

Specification

SHIFT RIGHT DOUBLE LOGICAL

o 8 12 16 20 31

The 64-bit first operand is shifted
right the number of bits specified by
the second-operand address.

Bits 12-15
ignored.

of the instruction are

The R t field of the instruction speci
fies an even-odd pair of general regls
ters and must designate an even-numbered
register. When R t is odd, a specifica
tion excep~ion is recognized.

The second-operand address is not used
to address data; its rightmost six bits
indicate the number of bit positions to
be shifted. The remainder of the
address is ignored.

All 64 bits of the first operand partic
ipate in the shift. Bits shifted out of
bit position 31 of the odd-numbered
register are not inspected and are lost.
Zeros are supplied to the vacated bit
positions on the left.

Condition Code:
unchanged.---

The code remains

Program Exceptions:

Specification

SHIFT RIGHT SINGLE

SRA [RS]

'8A'

o 8 12 16 20 31

The 31-bit numeric part of the signed
first operand is shifted right the
number of bits specified by the second
operand address.

Bits 12-15
ignored.

of the instruction are

The second-operand address is not used
to address data; its rightmost six bits
indicate the number of bit positions to
be shifted. The remainder of the
address is ignored.

The first operand is treated as a 32-bit
signed binary integer. The sign of the
first operand remains unchanged. All 31
numeric bits of the operand participate
in the right shift. Bits shifted out of
bit position 31 are not inspected and
are lost. Bits equal to the sign are
supplied to the vacated bit positions on
the left.

Resulting Condition Code:

o
1
2
3

Result is zero
Result is less than zero
Result is greater than zero

Program Exceptions: None.

Programming Notes

1. A right shift of one bit position
is equivalent to division by 2 with
rounding downward. When an even
number is shifted right one posi
tion, the result is equivalent to
dividing the number by 2. When an
odd number is shifted right one
position, the result is equivalent
to dividing the next lower number
by 2. For example, +5 shifted
right by one bit position yields
+2, whereas -5 yields -3.

2. Shift amounts from 31 to 63 cause
the entire numeric part to be
shifted out of the register, leav
ing a result of -1 or zero, depend
ing on whether or not the initial
contents were negative.

SHIFT RIGHT SINGLE LOGICAL

SRL [RS]

'88'

o 8 12 16 20 31

The 32-bit first operand is shifted
right the number of bits specified by
the second-operand address.

Bits 12-15
ignored.

of the instruction are

The second-operand address is not used
to address data; its rightmost six bits
indicate the number of bit positions to
be shifted. The remainder of the
address is ignored.

All 32 bits of the first operand partic
ipate in the shift. Bits shifted out of
bit position 31 are not inspected and
are lost. Zeros are supplied to the
vacated bit positions on the left.

Condition Code:
unchanged.---

The

Program Exceptions: None.

STORE

o 8 12 16 20

code remains

31

The first operand is stored at the
second-operand location.

Chapter 7. General Instructions 7-37

The 32 bits in the general register are
placed unchanged at the second-operand
location.

Condition Code:
unchanged.---

Program Exceptions:

The code

Access (store, operand 2)

STORE CHARACTER

o 8 12 16 20

remains

31

Bits 24-31 of the general register
designated by the R1 field are placed
unchanged at the second-operand
location. The second operand is one
byte in length.

Condition Code:
unchanged.---

Program Exceptions:

The code

Access (store, operand 2)

STORE CHARACTERS UNDER MASK

o 8 12 16 20

remains

31

Bytes selected from the first operand
under control of a mask are placed in
contiguous byte locations beginning at
the second-operand address.

The contents of the M3 field are used as
a mask. These four bits, left to right,
correspond one for one with the four
bytes, left to right, of the general
register designated by the Rt field.
The bytes corresponding to ones in the
mask are placed in the same order in
successive and contiguous storage
locations beginning at the second
operand address. When the mask is not
zero, the length of the second operand
is equal to the number of ones in the
mask. The contents of the general
register remain unchanged.

When the mask is not zero, except~ons
associated with storage-operand accesses
are recognized only for the number of
bytes specified by the mask.

7-38 370-XA Principles of Operation

When the mask is zero, the single byte
designated by the second-operand addr~ss
remains unchanged; however, on s(me
models, the value may be fetched and
subsequently stored back at the same
storage location. No access by anothe~
CPU is permitted to the location desig
nated by the second-operand address
between the moment that the value is
fetched and the value is stored.

Condition Code:
unchanged.---

The code remains

Program Exceptions:

Access (store, operand 2)

Programming Notes

1. An example of the use of STORE
CHARACTERS UNDER MASK is given in
Appendix A.

2. STORE CHARACTERS UNDER MASK with a
mask of 0111 may be used to store a
three-byte address, for example, in
modifying the address in a CCW.

3. STORE CHARACTERS UNDER MASK with a
mask of 1111, 0011, or 0001
performs the same function as
STORE, STORE HALFWORD, or STORE
CHARACTER, respectively. However,
on most models, the performance of
STORE CHARACTERS UNDER MASK will be
slower.

4. Using STORE CHARACTERS UNDER MASK
with a zero mask should be avoided
since this instruction, depending
on the model, may perform a fetch
and store of the single byte speci
fied by the second-operand address.
This access is not interlocked
against accesses by channel
programs. In add; ti on, it may
cause any of the following to occur
for the byte specified by the
second-operand address: a PER
storage-alteration event may be
recognized; access exceptions may
be recognized; and, provided no
access exceptions exist, the change
bit may be turned on.

STORE CLOCK

STCK D2 (B 2) [S]

'B205'

o 16 20 31

The current value of the TOD clock is
stored at the eight-byte field desig
nated by the second-operand address,

provided the dlock is in the set,
stopped, or not-set state.

Zeros are stored for the rightmost bit
positions that are not provided by the
clock.

Zeros are stored at the operand location
when the clock is in the error state or
in the not-operational state.

The quality of the clock value stored by
the instruction is indicated by the
resultant condition-code setting.

A serialization function is performed
before the value of the clock is fetched
and again after the value is placed in
storage. CPU operation is delayed until
all previous accesses by this CPU to
storage have been completed, as observed
by other CPU and channel programs, and
then the value of the clock is fetched.
No subsequent instructions or their
operands are fetched by this CPU until
the clock value has been placed in stor
age, as observed by other CPU and
channel programs.

Resulting Condition Code:

o
1
2
:>

Clock in set state
Clock in not-set state
Clock in error state
Clock in stopped state or not
operational state

Program Exceptions:

Access (store, operand 2)

Programming Notes

1. Bit position 31 of the clock is
incremented every 1.048576 seconds;
hence, for timing applications
involving human responses, the
leftmost clock word may provide
sufficient resolution.

2. Condition code 0 normally indicates
that the clock has been set by the
control program. Accordingly, the
value may be used in elapsed-time
measurements and as a valid time
of-day and calendar indication.
Condition code 1 indicates that the
clock value is the elapsed time
since the power for the clock was
turned on. In this case the value
may be used in elapsed-time meas
urements but is not a valid time
of-day indication. Condition codes
2 and 3 mean that the value
provided by STORE CLOCK cannot be
used for time measurement or indi
cation.

3. Condition code 3 indicates that the
clock is either in the stopped
state or not-operational state.

These two states can normally be
distinguished since an all-zero
value is stored when in the not
operational state.

4. If a problem program written for
the 370-XA mode is to be run also
on a system in the System/370 mode,
then the program should take into
account that, in the System/370
mode, the value stored when the
condition code is 2 is not neces
sari ly zero.

STORE HALFWORD

o 8 12 16 20 31

Bits 16-31 of the general register
designated by the R t field are placed
unchanged at the second-operand
location. The second operand is two
bytes in length.

Condition Code: The code
unchanged.---

Program Exceptions:

Access (store, operand 2)

STORE MULTIPLE

STM [RS]

'90'

o 8 12 16 20

The contents of the set of
registers starting with the
specified by R, and ending
register specified by R3 are
the storage area beginning
location designated by the
operand address and continuing
as many locations as needed.

remains

31

general
register

with the
placed in

at the
second
through

The general registers are stored in the
ascending order of register numbers,
starting with the register ~pecified by
R t and continuing up to and including
the register specified by· R3 , with
register 0 following register 15.

Condition Code:
unchanged.---

Program Exceptions:

The code

Access (store, operand 2)

remains

Chapter 7. General Instructions 7-39

An example of the use of STORE MULTIPLE
is given in Appendix A.

SUBTRACT

SR R t , R2 [RR]

'lB' I Rt I R2 I
0 8 12 15

S Ru D2(X 2,B 2) [RX]

'5B' I R t I X2 I B2 D2

0 8 12 16 20 31

The second operand is subtracted from
the first operand, and the difference is
placed in the first-operand location.
The operands and the difference are
treated as 32-bit signed binary
integers.

When there is an overflow, the result is
obtained by allowing any carry into the
sign-bit position and ignoring any carry
out of the sign-bit position, and condi
tion code 3 is set. If the fixed
point-overflow mask is one, a program
interruption for fixed-point overflow
occurs.

Resulting Condition Code:

o
1
2
3

Difference is zero
Difference is less than zero
Difference is greater than zero
Overflow

Program Exceptions:

Access (fetch, operand 2 of S only)
Fixed-point overflow

Programming Notes

1. When, in the RR format, the R, and
R2 fields designate the same regis
ter, subtracting is equivalent to
clearing the register.

2. Subtracting a maximum negative
number from another maximum nega
tive number gives a zero result and
no overflow.

7-40 370-XA Principles of Operation

SUBTRACT HALF~ORD

SH [RX]

o 8 12 16 20 31

The second operand i~ subtracted from
the first operand, and the difference is
placed in the first-operand location.
The second operand 1S two bytes in
length and is treated as a 16-bit signed
binary integer. The first operand and
the difference are treated as 32-bit
signed binary integers.

When there is an overflow, the result is
obtained by allowing any carry into the
sign-bit position and ignoring any carry
out of the sign-bit position, and condi
tion code 3 is set. If the fixed
point-overflow mask is one, a program
interruption for fixed-point over~low
occurs.

Resulting Condition Code:

o Difference is zero
1 Difference is less than zero
2 Difference is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2)
Fixed-point overflow

SUBTRACT LOGICAL

SLR [RR]

'IF' I Rt I R2 I
0 8 12 15

SL Rp D2(X 2,B 2) [RX]

'SF' I Rt I X2 I B2 D2

o 8 12 16 20 31

The second operand is subtracted from
the first operand, and the difference is
placed in the first-operand location.
The operands and the difference are
treated as 32-bit unsigned binary inte
gers.

Resulting Condition Code:

o
1 Difference is not zero, with no

carry
2 Difference is zero, with carry

3 Difference is not zero, with
carry

Program Exceptions:

Access (fetch,
only)

operand 2 of SL

Programming Notes

1 • Logical subtraction is performed by
adding the one's complement of the
second operand and a value of one
to the first operand. The use of
the one's complement and the value
of one instead of the two's comple
ment of the second operand results
in a carry when the second operand
is zero.

2. SUBTRACT LOGICAL differs from
SUBTRACT only in the meaning of the
condition code and in the absence
of the interruption for overflow.

3. A zero difference
panied by a carry
tion o.

is always accom
out of bit posi-

4. The condition-code setting for
SUBTRACT LOGICAL can also be inter
preted as indicating the presence
and absence of a borrow, as
follows:

1 Difference is not zero, wi th
borrow

2 Difference is zero, with no
borrow

3 Difference is not zero, with no
borrow

SUPERVISOR CALL

SV,C I [RR1

'OA' I

o 8 15

The instruction causes a supervisor-call
interruption, with the I field of the
instruction providing the rightmost byte
of the interruption code.

Bits 8-15 of the instruction, with eight
zeros appended on the left, are placed
in the supervisor-call interruption code
that is stored in the course of the
interruption. See "Supervisor-Call In
terruption" in Chapter 6,
"Interruptions."

A serialization and a checkpoint
synchronization function is performed.
CPU operation is delayed until all
previous storage accesses by this CPU to

storage have been completed, as observed
by other CPU and channel programs. All
previous checkpoints, if any, are
canceled, and the results of all previ
ous stores are released, if held
exclusive, to permit other CPU and chan
nel programs to access the results. No
subsequent instructions or their oper
ands are accessed by this CPU until the
execution of this instruction is
completed.

Condition Code: The code
unchanged ana--is saved as part
old PSW. A new condition code is
as part of the supervisor-call
ruption.

Program Exceptions: None.

TEST AND SET

TS [Sl

'93'

o 8 16 20

remains
of the
loaded
inter-

31

The leftmost bit (bit position 0) of the
byte located at the second-operand
address is used to set the condition
code, and then the byte is set to all
ones.

Bits 8-15 of
ignored.

the instruction are

The byte in storage is set to all or,es
as it is fetched for the testing of bit
position o. No access by another CPU to
this location is permitted between the
moment of fetching and the moment of
storing all ones.

A serialization function is performed
before the byte is fetched and again
after the storing of all ones. CPU
operation is delayed until all previous
accesses by this CPU to storage have
been completed, as observed by other CPU
and channel programs, and then the byte
is fetched. No subsequent instructions
or their operands are accessed by this
CPU until the all-ones value has been
placed in storage, as observed by other
CPU and channel programs.

Resulting Condition Code:

o
1

2
3

Leftmost bit of byte specified
was zero
Leftmost bit of byte specified
was one

Program Exceptions:

Access (fetch and store, operand 2)

Chapter 7. General Instructions 7-41

Programming Notes

1. TEST AND SET may be used for
controlled sharing of a common
storage area by programs operating
on different CPUs. This instruc
tion, which is provided primarily
for compatibility with programs
written for System/360, does not
provide suitable functions for
sharing between programs on a
single CPU or for programs that may
be interrupted. COMPARE AND SWAP
and COMPARE DOUBLE AND SWAP provide
these functions. See the
description of these instructions
and the associated programming
notes for details.

2. TEST AND SET does not interlock
against storage accesses by channel
programs. Therefore, the instruc
tion should not be used to update a
location into which a channel
program may store, since the
channel-program data may be lost.

TEST UNDER MASK

TM [SI]

'91'

o 8 16 20 31

A mask is used to select bits of the
first operand, and the result is indi
cated in the condition code.

The byte of immediate data, I 2 , is used
as an eight-bit mask. The bits of the
mask are made to correspond one for one
with the bits of the byte in storage
designated by the first-operand address.

A mask bit of one indicates that the
storage bit is to be tested. When the
mask bit is zero, the storage bit is
ignored. When all storage bits thus
selected are zero, condition code 0 is
set. Condition code 0 is also set when
the mask is all zeros. When the
selected bits are all ones, condition
code 3 is set; otherwise, condition code
1 i s set.

Access exceptions associated with the
storage operand are recognized for one
byte even when the mask is all zeros.

Resulting Condition Code:

o

1

Selected bits all zeros; or the
mask is all zeros
Selected bits mixed zeros and
ones

7-42 370-XA Principles of Operation

2
3 Selected bits all ones

Program Exceptions:

Access (fetch, operand 1)

Programming Note

An example of the use of TEST UNDER MASK
is given in Appendix A.

TRANSLATE

TR [SS]

'DC' L I B. I ~. I B, I ~:J
o 8 16 20 32 36 47

The bytes of the first operand are used
as eight-bit arguments to reference a
list designated by the second-operand
address. Each function byte selected
from the list replaces the corresponding
argument in the first operand.

The L field designates the length of
only the first operand.

The bytes of the first operand are
selected one by one for translation,
proceeding left to right. Each argument
byte is added to the initial second
operand address. The addition is
performed following the rules for
address arit~metic, with the argument
byte treated as an eight-bit unsigned
binary integer and extended with zeros
on the left. The sum is used as the
address of the function byte, which then
replaces the original argument byte.

The operation proceeds until the first
operand field is exhausted. The list is
not altered unless an overlap occurs.

When the operands overlap, the result is
obtained as if each result byte were
stored immediately after fetching the
corresponding function byte.

Access exceptions are recognized only
for those bytes in the second operand
which are actually required.

Condition Code:
unchanged.---

Program Exceptions:

The code re~ains

Access (fetch, operand 2; fetch and
store, operand 1)

Programming Notes

1. An example of the use of TRANSLATE
is given in Appendix A.

2. TRANSLATE may be used to convert
data from one code to another code.

3. The instruction may also be used to
rearrange data. This may be accom
plished by placing a pattern in the
destination area, by designating
the pattern as the first operand of
TRANSLATE, and by designating the
data that is to be rearranged as
the second operand. Each byte of
the pattern contains an eight-bit
number specifying the byte destined
for this position. Thus, when the
instruction is executed, the
pattern selects the bytes of the
second operand in the desired
order.

4. The fetch and subsequent store
accesses to a particular byte in
the first-operand field do not
necessarily occur one immediately
after the other. Thus, this
instruction cannot be safely used
to update a location in storage if
the possibility exists that another
CPU or channel program may also be
updating the location. An example
of this effect is shown for OR (01)
in the section "Multiprogramming
and Multiprocessing Examples" in
Appendix A.

5. Because each eight-bit argument
byte is added to the initial
second-operand address to obtain
the address of a function byte, the
list may contain 256 bytes. In
cases where it is known that not
all eight-bit argument values will
occur, it is possible to reduce the
size of the list.

6. Significant performance degradation
is possible when, with OAT on, the
second-operand address of TRANSLATE
designates a location that is less
than 256 bytes to the left of a
4K-byte boundary. This is because
the machine may perform a trial
execution of the instruction to
determine if the second operand
actually crosses the boundary.

7. The storage-operand references of
TRANSLATE may be multiple-access
references. -(See the section
"Storage-Operand Consistency" in
Chapter 5, "Program Execution.")

TRANSLATE AND TEST

TRT [55]

'DO' L I B, I ~, I B. I ~~
o 8 16 20 32 36 47

The bytes of the first operand are used
as eight-bit arguments to select func
tion bytes from a list designated by the
second-operand address. The first
nonzero. function byte is inserted in
general register 2, and the related
argument address in general register 1.

The L field designates the length of
only the first operand.

The bytes of the first operand are
selected one by one for translation,
proceeding from left to right. The
first operand remains unchanged in stor
age. Calculation of the address of the
function byte is performed as in the
TRANSLATE instruction. The function
byte retrieved from the list is
inspected for a value of zero.

When the function byte is zero, the
operation proceeds with the next byte of
the first operand. When the first
operand field is exhausted before a
nonzero function byte is encountered,
the operation is completed by setting
condition code O. The contents of
general registers 1 and 2 remain
unchanged.

When the function byte is nonzero, the
operation is completed by inserting the
function byte in general register 2 and
the related argument address in general
register 1. This address points to the
argument byte last translated. The
function byte replaces bits 24-31 of
general register 2. In the 24-bit
addressing mode, the address replaces
bits 8-31, and bits 0-7 of general
register 1 remain unchanged. In the
31-bit addressing mode, the address
replaces bits 1-31, and bit 0 of general
register 1 is set to zero. In both
modes, bits 0-23 of general register 2
remain unchanged.

When the function byte is nonzero,
either condition code 1 or 2 is set,
depending on whether the argument byte
is the rightmost byte of the first oper
and. Condition code 1 is set if one or
more argument bytes remain to be trans
lated. Condition code 2 is set if no
more argument bytes remain.

Access exceptions are recognized only
for those bytes in the second operand
which are actually required. Access
exceptions are not recognized for those
bytes in the first operand which are to
the right of the first byte for which a
nonzero function byte is obtained.

Chapter 7. General Instructions 7-43

Resulting Condition Code:

o All function bytes zero
1 Nonzero function byte; first

operand field not exhausted
2 Nonzero function byte; first

operand field exhausted
3

Program Exceptions:

Access (fetch, operands 1 and 2)

Programming Notes

1. An example of the use of TRANSLATE
AND TEST is given in Appendix A.

2. TRANSLATE AND TEST may be used to
scan the first operand for charac
ters with special meaning. The
second operand, or list, is set up
with all-zero function bytes for
those characters to be skipped over
and with nonzero function bytes for
the characters to be detected.

UNPACK

UNPK [SS]

'F3' I L, Il' I 8, I ~, 8, ~~
o 8 12 16 20 32 36 47

The format of the second operand is
changed from packed to zoned, and the
result is placed in the first-operand
location. The packed and zoned formats
are described in Chapter 8, "Decimal
Instructions."

The second operand is treated as though
it had the packed format. Its digits
and sign are placed unchanged in the
first-operand location, using the zoned
format. Zone bits with coding of 1111
are supplied for all bytes except the
rightmost byte, the zone of which
receives the sign of the second operand.
The sign and digits are not checked for
valid codes.

The result is obtained as if the oper
ands were processed right to left. When

7-44 370-XA Principles of Operation

necessary, the second operand is consid
ered to be extended on the left with
zeros. If the first-operand field is
too short to contain all digits of the
second operand, the remaining leftmost
portion of the second operand is
~gnored. Access exceptions for the
unused portion of the second operand may
or may not be indicated.

When the operands overlap, the result is
obtained as if the operands were proc
essed one byte at a time and as if the
first result byte were stored immediate
ly after fetching the first operand
byte. The entire rightmost second
operand byte is used in forming the
first result byte. For the remainder of
the field, information for two result
bytes is obtained from a single second
operand byte, and execution proceeds as
if the leftmost four bits of the byte
were to remain available for the next
result byte and need not be refetched.
Thus, the result is as if two result
bytes were to be stored immediately
after fetching a single operand byte.

Condition Code:
unchanged.-----

Program Exceptions:

The code remains

Access (fetch, operand 2; store,
operand 1)

Programming Notes

1. An example of the use of UNPACK is
given in Appendix A.

2. A field that is to be unpacked can
be destroyed by improper overlap
ping. To save storage space for
unpacking by overlapping the oper
ands, the rightmost byte of the
first operand must be to the right
of the rightmost byte of the second
operand by the number of bytes in
the sec~nd operand minus 2. If
only one or two bytes are to be
unpacked¥ the rightmost bytes of
the two operands may coincide.

3. The storage-operand references of
UNPACK may be multiple-access
references. (See the ~ection
"Storage-Operand Consistency" in
Chapter 5, "Program Execution.")

CHAPTER ~ DECIMAL IHSTRUCTlOHS

Decimal-Humber Formats •••••••••••••••••••••••••••••••••••. 8-1
Zoned Format ..••••.••••••••••••••••••.•....•••.•••.••••. 8-1
Packed Format ••. 8-1
Decimal Codes .•••.•••••••••••••••••.•.•••••.••.••.•••••. 8-2

Decimal Operations ••••••.•••.•••••••.••••••••••.•..••••••• 8-2
Decimal-Arithmetic Instructions•.....•....... 8-2
Editing Instructions ..•••••••.••••••••••••••••.••••••••• 8-3
Execution of Decimal Instructions ••••••••••••••••.•••••• 8-3
Other Instructions for Decimal Operands •..•.•.....•...•. 8-3

Instructions •••.•••.••••••••.•••.•.•••••••.••.••.••.•.•.•• 8-3
ADD DECIMAL ••.•••••.•••••••••••.•••••.•••••.•••••.•••••• 8-5
COMPARE DECIMAL ••• 8-5
DIVIDE DECIMAL •••••..•••••••.••••.•.•.•.•.•.•••••..••••. 8-5
EDIT •.........•••••••••••••••••••••••.•••••••.•••••••••. 8-6
EDIT AHD MARK ..•.••.••.••••••••••.•••.•••.•••••••.•..••. 8-9
MULTIPLY DECIMAL ••••••••••••..••••.••.•••.••....•••..... 8-10
SHIFT AHD ROUND DECIMAL ••••••.•••••••.•.••••...•.•....•. 8-10
SUBTRACT DECIMAL ••••••••.•••.••••••••.••••••.•....•..•.. 8-11
ZERO AND ADD ..••••••••••••••••••••••••••••••••.••.•••.•• 8-11

The decimal instructions of this chapter
perform arithmetic and editing oper
ations on decimal data. Additional
operations on decimal data are provided
by several of the instructions in Chap
ter 7, "General Instructions." Decimal
operands always reside in storage, and
all decimal instructions use the SS
instruction format. Decimal operands
occupy storage fields that can start on
any byte boundary.

DECIMAL-NUMBER FORMATS

Decimal numbers may be represented in
either the zoned or packed format. Both
decimal-number formats are of variable
length; the instructions used to operate
on decimal data each specify the length
of their operands and results. Each
byte of either format consists of a pair
of four-bit codes; the four-bit codes
include decimal-digit codes, sign codes,
and a zone code. Decimal operands occu
py storage fields that can start on any
byte boundary.

ZONED FORMAT

I z I N I z I N I : I z I N Iz/sl N I

In the zoned format, the rightmost four
bits of a byte are called the numeric
bits (H) and normally consist of a code
representing a decimal digit. The left
most four bits of a byte are called the

zone bits (Z), except for the rightmost
byte of a decimal operand, where these
bits may be treated either as a zone or
as a sign (S).

Decimal digits in the zoned format may
be part of a larger character set, which
includes also alphabetic and special
characters. The zoned format is, there
fore, suitable for input, editing, and
output of numeric data in human-readable
form. There are no decimal-arithmetic
instructions which operate directly on
decimal numbers in the zoned format;
such numbers must first be converted to
the packed format.

The editing instructions produce a
result of up to 256 bytes; each byte may
be a decimal digit in the zoned format,
a message byte, or a fill byte.

PACKED FORMAT

D D D D D D D S

In the packed format, each byte contains
two decimal digits (D), except for the
rightmost byte, which contains a sign to
the right of a decimal digit. Decimal
arithmetic is performed with operands in
the packed format and generates results
in the packed format.

The packed-format operands and results
of decimal-arithmetic instructions may
be up to 16 bytes (31 digits and sign),
except that the maximum length of a
multiplier or divisor is eight bytes (15

Chapter 8. Decimal Instructions 8-1

digits and sign). In division, the sum
of the lengths of the quotient and
remainder may be from two to 16 bytes.
The editing instructions can fetch as
many as 256 decimal digits from one or
more decimal numbers of variable length,
each in the packed format.

DECIMAL CODES

The decimal digits 0-9 have the binary
encoding 0000-1001.

The preferred sign codes are 1100 for
plus and 1101 for minus. These are the
sign codes generated for the results of
the decimal-arithmetic instructions and
the CONVERT TO DECIMAL instruction.

Alternate sign codes are also recognized
as valid when appearing in the sign
position: 1010, 1110, and 1111 are
alternate codes for plus, and 1011 is an
alternate code for minus. Alternate
sign codes are accepted for any decimal
operand, but never appear in the
completed result of a decimal-arithmetic
instruction or CONVERT TO DECIMAL, even
when an operand remains otherwise
unchanged, such as when adding zero to a
number. An alternate sign code is,
however, left unchanged by MOVE
NUMERICS, MOVE WITH OFFSET, MOVE ZONES,
PACK, and UNPACK.

When an invalid sign or digit code is
detected, a data exception is
recognized. For the decimal-arithmetic
instructions and CONVERT TO BINARY, the
action taken for a data exception
depends on whether a sign code is inval
id. When a sign code is invalid, the
operation is suppressed regardless of
whether any other condition causing a
data exception exists. When invalid
digit codes are detected but no sign
code is invalid, the operation is termi
nated.

For the editing instructions EDIT and
EDIT AND MARK, an invalid sign code is
not recognized. The operation is termi
nated for a data exception due to an
invalid digit code. No validity check
ing is performed by MOVE NUMERICS, MOVE
WITH OFFSET, MOVE ZONES, PACK, and
UNPACK.

The zone code 1111 appears in the left
four bit positions of each byte repres
enting a decimal digit in zoned-format
results. Zoned-format results are
produced by EDIT, EDIT AND MARK, and
UNPACK, except that the left four bit
positions of the rightmost byte produced
by UNPACK contain whatever code exists
in the sign position of the packed oper
and. The right four bit positions of
each result byte in the zoned format for
EDIT and EDIT AND MARK contain a
decimal-digit code.

8-2 370-XA Principles of Operation

The meaning of the decimal codes is
summarized in the figure "Summary of
Digit and Sign Codes."

Programming Note

Since 1111 is both the zone code and an
alternate code for plus, unsigned (posi
tive) decimal numbers may be represented
in the zoned format with 1111 zone codes
in all byte positions. The result of
the PACK instruction converting sULh a
number to the packed format may be used
di rectly as an operand for deci :llal
instructions.

Recognized As

Code Digit Sign

0000 0 Invalid
0001 1 Invalid
0010 2 Invalid
0011 3 Invalid
0100 4 Invalid
0101 5 Invalid
0110 6 Invalid
0111 7 Invalid
1000 8 Invalid
1001 9 Invalid
1010 Invalid Plus
1011 Invalid Minus
1100 Invalid Plus (preferred)
1101 Invalid Minus (preferred)
1110 Invalid Plus
1111 Invalid Plus (zone)

Summary of Digit and Sign Codes

DECIMAL OPERATIONS

The decimal instructions in this chapter
consist of two classes, the decimal
arithmetic instructions and the editing
instructions.

DECIMAL-ARITHMETIC INSTRUCTIONS

The decimal-arithmetic instructions per
form addition, subtraction, multiplica
tion, division, comparison, and
shifting.

Operands of the decimal-arithmetic
instructions are in the packed format
and are treated as signed decimal inte
gers. A decimal integer is represented
in true form as an absolute value with a
separate plus or minus sign. It

contains an odd number of decimal
digits, from one to 31, and the sign;
this corresponds to an operand length of
one to 16 bytes.

A decimal zero normally has a plus sign,
but multiplication, division, and over
flow may produce a zero value with a
minus sign. Such a negative zero is a
valid operand and is treated as equal to
a positive zero by COMPARE DECIMAL.

Th~ lengths of the two operands speci
fied in the instruction need not be the
same. If necessary, the shorter operand
is considered to be extended with zeros
on the left. Results, however, cannot
exceed the first-operand length as spec
ified in the instruction.

When a carry or leftmost nonzero digits
of the result are lost because the
first-operand field is too short, the
result is obtained by ignoring the over
flow digits, condition code 3 is set,
and, if the decimal-overflow mask bit is
one, a program interruption for decimal
overflow occurs. The operand lengths
alone are not an indication of overflow;
nonzero digits must have been lost
during the operation.

The operands of decimal-arithmetic
instructions should not overlap at all
or should have coincident rightmost
bytes. In ZERO AND ADD, the operands
may also overlap in such a manner that
the rightmost byte of the first operand
(which becomes the result) is to the
right of the rightmost byte of the
second operand. For these cases of
proper overlap, the result is obtained
as if operands were processed right to
left. Because the codes for digits and
signs are verified during the perform
ance of the arithmetic, improperly
overlapping operands are recognized as
data exceptions.

Programming Note

The same decimal field in storage may be
specified for both operands of ADD DECI
MAL, COMPARE DECIMAL, DIVIDE DECIMAL,
MULTIPLY DECIMAL, and SUBTRACT DECIMAL.
Thus, a decimal number may be added to
itself, compared to itself, etc.
SUBTRACT DECIMAL may be used to set a
decimal field in storage to zero.

EDITING INSTRUCTIONS

The editing instructions are EDIT and
EDIT AND MARK. For these instructions,
only the first operand (the pattern) has
an explicitly specified length. The
second operand (the source) is consid-

ered to have as many digits as necessary
for the completion of the operation.

Overlapping
instructions
suIts.

IJperands
yield

for the editing
unpredictable re-

EXECUTION OF DECIMAL INSTRUCTIONS

During the execution of a decimal
instruction, all bytes of the operands
are not necessarily accessed concurrent
ly, and the fetch and store accesses to
a single location do not necessarily
occur one immediately after the other.
Furthermore, for decimal instructions,
data in source fields may be accessed
more than once, and intermediate values
may be placed in the result field that
may differ from the original operand and
final result values. (See the section
"Storage-Operand Consistency" in Chapter
5, "Program Execution.") Thus, in a
multiprocessing configuration, an
i nstructi on such as ADD DECIMAL car,not
be safely used to update a shared stor
age location when the possibility exi.sts
that another CPU may also be updatlng
that location.

OTHER INSTRUCTIONS FOR DECIMAL OPERANDS

In addition to the decimal instructions
in this chapter, MOVE NUMERICS and MOVE
ZONES are provided for operating on data
of lengths up to 256 bytes in the zoned
format. Two instructions are provided
for converting data between the zoned
and packed formats: PACK transforms
zoned data of lengths up to 16 bytes
into packed data, and UNPACK performs
the reverse transformation. MOVE WITH
OFFSET can operate on packed data of
lengths up to 16 bytes. Two
instructions are provided for conversion
between the packed-decimal and signed
binary-integer formats. CONVERT TO
BINARY converts packed decimal to
binary, and CONVERT TO DECIMAL converts
binary to packed decimal; the length of
the packed decimal operand of these
instructions is eight bytes (15 digits
and sign). These seven instructions are
not considered to be decimal
instructions and are described in Chap
ter 7, "General Instructions." The
editing instructions in this chapter may
also be used to change data from the
packed to the zoned format.

INSTRUCTIONS

The decimal instructions and their
mnemonics, formats, and operation codes

Chapter 8. Decimal Instructions 8-3

are listed in the figure "Summary of
Decimal Instructions." The figure also
indicates when the condition code is set
and the exceptional conditions in oper
and designations, data, or results that
cause a program interruption.

Note: In the detailed descriptions of
the individual instructions, the mnemon
ic and the symbolic operand designation
for the assembler language are shown
with each instruction. For ADD DECIMAL,
for example, AP is the mnemonic and
Dt(Lt,Bt),D2(L2,B2) the operand desig
nation.

Mne-
Name monic

ADD DECIMAL AP
COMPARE DECIMAL CP
DIVIDE DECIr1AL DP
EDIT EO
EDIT AND MARK EDMK

MULTIPLY DECIMAL MP
SHIFT AND ROUND DECIMAL SRP
SUBTRACT DECIMAL 5P
ZERO AND ADD ZAP

EXElanation:

A Access exceptions for logical addresses
C Condition code is set
D Data exception
DF Decimal-overflow exception
DK Decimal-divide exception

Programming Note

The decimal instructions for the 370-XA
mode and the System/370 mode are identi
cal, with the exception that, in the
31-bit addressing mode, EDIT AND MARK
places a 31-bit address in general
register 1. In the 24-bit addressing
mode, EDIT AND MARK operates as in the
System/370 mode; that is, a 24-bit
address is placed in general register I,
and the leftmost byte of general regis
ter 1 is unchanged.

Op
Characteristics Code

55 C A 0 OF 5T FA
55 C A 0 F9
S5 A 5P 0 OK 5T FO
S5 C A 0 5T DE
S5 C A D G1 R 5T DF

55 A 5P 0 5T FC
55 C A 0 OF ST FO
55 C A 0 OF 5T FB
55 C A 0 DF ST F8

Gl Instruction execution includes the implied use of general register 1
R PER general-register-alteration event
SP Specification exception
SS SS instruction format
5T PER storage-alteration event

Summary of Decimal Instructions

8-4 370-XA Principles of Operation

ADD DECIMAL

[SS]

'FA' I It I l, I B t I ~t B, EJ
o 8 12 16 20 32 36 47

The second operand is added to the first
operand, and the resulting sum is placed
in the first-operand location. The
operands and result are in the packed
format.

Addition is algebraic, taking into
account the signs and all digits of both
operands. All sign and digit codes are
checked for validity.

If the first operand is too short to
contain all leftmost nonzero digits of
the sum, decimal overflow occurs. The
operation is completed. The result is
obtained by ignoring the overflow
digits, and condition code 3 is set. If
the decimal-overflow mask is one, a
program interruption for decimal over
flow occurs.

The sign of the sum is determined by the
rules of algebra. In the absence of
overflow, the sign of a zero result is
made positive. If overflow occurs, a
zero result is given either a positive
or negative sign, as determined by what
the sign of the correct sum would have
been.

Resulting Condition Code:

o Sum is zero
1 5um is less than zero
2 5um is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2; fetch and
store, operand 1)

Data
Decimal overflow

Programming Note

An example of the use of ADD DECIMAL is
given in Appendix A.

COMPARE DECIMAL

[SS]

, F9' I l, I l, I B, I ~, B, EJ
o 8 12 16 20 32 36 47

The first operand is compared with the
second operand, and the result is indi
cated in the condition code. The oper
ands are in the packed format.

Comparison is algebraic and follows the
procedure for decimal subtraction,
except that both operands remain
unchanged. When the difference is zero,
the operands are equal. When a nonzero
difference is positive or negative, the
first operand is high or low, respec
tively.

Overflow cannot occur
difference is discarded.

because the

All sign and digit codes are checked for
validity.

Resulting Condition Code:

o Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:

Access (fetch, operands 1 and 2)
Data

1. An example of the use of COMPARE
DECIMAL is given in Appendix A.

2. The preferred and alternate sign
codes for a particular sign are
treated as equivalent for compar
ison purposes.

3. A negative zero and a positive zero
compare equal.

DIVIDE DECIMAL

DP [55]

'FD' I l til, I B, I ~, I B, I ~~
o 8 12 16 20 32 36 47

The first operand (the dividend) is
divided by the second operand (the divi
sor). The resulting quotient and
remainder are placed in the first
operand location. The operands and
results are in the packed format.

The quotient is placed leftmost in the
first-operand location. The number of
bytes in the quotient field is equal to
the difference between the dividend and
divisor lengths (If - l2). The remain
der is placed rightmost in the first
operand location and has a length equal

Chapter 8. Decimal Instructions 8-5

to the divisor length. Together, the
quotient and remainder fields occupy the
entire first operand; therefore, the
address of the quotient is the address
of the first operand.

The divisor length cannot exceed 15
digits and sign (L 2 not greater than
seven) and must be less than the divi
dend length (L 2 less than L t);

otherwise, a specification exception is
recognized.

The dividend, divisor, quotient, and
remainder are each signed decimal inte
gers in the packed format and are
right-aligned in their fields. All sign
and digit codes of the dividend and
divisor are checked for validity.

The sign of the quotient is determined
by the rules of algebra from the divi
dend and divisor signs. The sign of the
remainder has the same value as the
dividend sign. These rules hold even
when the quotient or remainder is zero.

Overflow cannot occur. If the divisor
is zero or the quotient is too large to
be represented by the number of digits
specified, a decimal-divide exception is
recognized. This includes the case of
division of zero by zero. The decimal
divide exception is indicated only if
the sign codes of both the dividend and
divisor are valid, and only if the digit
or digits used in establishing the
exception are valid.

Condition Code:
unchanged.-----

Program Exceptions:

The code remains

Access (fetch, operand 2; fetch and
store, operand 1)

Data
Decimal divide
Specification

Programming Notes

1. An examplQ of the use of DIVIDE
DECIMAL is given in Appendix A.

2. The dividend cannot exceed 31
digits and sign. Since the remain
der cannot be shorter than one
digit and sign, the quotient cannot
exceed 29 digits and sign.

3. The condition for a decimal-divide
exception can be determined by a
trial comparison. The leftmost
digit of the divisor is aligned one
digit to the right of the leftmost
dividend digit. When the divisor,
so aligned, is less than or equal
to the dividend, ignoring signs, a
divide exception is indicated.

8~6 370-XA Principles of Operation

4. If a data exception does not exist,
a decimal-divide exception occurs
when the leftmost dividend digit is
not zero.

EDIT

ED [55]

~'_D_E'~~ __ L~I_B_t~1 ~t I B, I ~~
o 8 16 20 32 36 47

The second operand (the source), which
normally contains one or more decimal
numbers in the packed format, is changed
to the zoned format and modified under
the control of the first operand (the
pattern). The edited result replaces
the first operand.

The length field specifies the length of
the first operand, which may contain
bytes of any value.

The length of the source is determined
by the operation according to the
contents of the pattern. The source
normally consists of one or more decimal
numbers, each in the packed format. The
leftmost four bits of each source byte
must specify a decimal digit code
(0000-1001); a sign code (1010-1111) is
recognized as a data exception. The
rightmost four bits may specify either a
sign or a decimal digit. Access and
data exceptions are recognized only for
those bytes in the second operand which
are actually required.

The result is obtained as if both oper
ands were processed left to right one
byte at a time. Overlapping pattern and
source fields give unpredictable
results.

During the editing process, each byte of
the pattern is affected in one of three
ways:

1. It is left unchanged.

2. It is roplaced by a source digit
expanded to the zoned format.

3. It is replaced by the first byte in
the pattern, called the fill byte.

Which of the three actions
is determined by one or
following: the type of
byte, the state of the
indicator, and whether the
examined is zero.

takes place
more of the
the pattern
significance
source digit

Pattern Bytes: There are four types of
pattern bytes: digit selector, signif
icance starter, field separator, and
message byte. Their coding is as
follows:

Name Code

Digit selector 0010 0000
Significance starter 0010 0001
Field separator 0010 0010
Message byte Any other

The detection of either a digit selector
or a significance starter in the pattern
causes an examination to be made of the
significance indicator and of a source
digit. As a result, either the expanded
source digit or the fill byte, as appro
priate, is selected to replace the
pattern byte. Additionally, encounter
ing a digit selector or a significance
starter may cause the significance indi
cator to be changed.

The field separator identifies individ
ual fields in a multiple-field editing
operation. It is always replaced in the
result by the fill byte, and the signif
icance indicator is always off after the
field separator is encountered.

Message bytes in the pattern are either
replaced by the fill byte or remain
unchanged in the result, depending on
the state of the significance indicator.
They may thus be used for padding, punc
tuation, or text in the significant
portion of a field or for the insertion
of sign-dependent symbols.

Fill Byte: The first byte of the
pattern is used as the fill byte. The
fill byte can have any code and may
concurrently specify a control function.
If this byte is a digit selector or
significance starter, the indicated
editing action is taken after the code
has been assigned to the fill byte.

Source Digits: Each time a digit selec
tor or significance starter is encount
ered in the pattern, a new source digit
is examined for placement in the pattern
field. Either the source digit is
disregarded, or it is expanded to the
zoned format, by appending the zone code
1111 on the left, and stored in place of
the pattern byte.

Execution is as if the source digits
were selected one byte at a time and as
if a source byte were fetched for
inspection only once during an editing
operation. Each source digit is exam
ined only once for a zero value. The
leftmost four bits of each byte are
examined first, and the rightmost four
bits, when they represent a decimal
digit code, remain available for the
next pattern byte that calls for a digit
examination. When the leftmost four
bits contain an invalid digit code, a
data exception is recognized, and the
operation is terminated.

At the time the left digit of a source
byte is examined, the rightmost four

bits are checked for the existence of a
sign code. When a sign code is encount
ered in the rightmost four bit
positions, these bits are not treated as
a decimal-digit code, and a new source
byte is fetched from storage when the
next pattern byte calls for a source
digit examination.

When the pattern contains no digit
selector or significance starter, no
source bytes are fetched and examined.

Siqnificance Indicator: The signifi
cance indicator is turned on or off to
indicate the significance or nonsignif
icance, respectively, of subsequent
source digits or message bytes. Signif
icant source digits replace their corre
sponding digit selectors or significance
starters in the result. Significant
message bytes remain unchanged in the
result.

The significance indicator, by its on or
off state, indicates also the negative
or positive value, respectively, of a
completed source field and is used as
one factor in the setting of the condi
tion code.

The significance indicator is set to off
at the start of the editing operation,
after a field separator is encountered,
or after a source byte is examined that
has a plus code in the rightmost four
bit positions.

The significance indicator is set to on
when a significance starter is encount
ered whose source digit is a valid deci
mal digit, or when a digit selector is
encountared whose source digit is a
nonzero decimal digit, provided that in
both instances the source byte does not
have a plus code in the rightmost four
bit positions.

In all other situations, the signif
icance indicator is not changed. A
minus sign code has no effect on the
significance indicator.

of an editing
is equal in

It is composed
bytes, and zoned

Result Bytes: The result
operation replaces and
length to the pattern.
of pattern bytes, fill
source digits.

If the pattern byte is a message byte
and the significance indicator is on,
the message byte remains unchanged in
the result. If the pattern byte is a
field separator or if the significance
indicator is off when a message byte is
encountered in the pattern, the fill
byte replaces the pattern byte in the
result.

If the digit selector or significance
starter is encountered in the pattern
with the significance indicator off and
the source digit zero, the source digit
is considered nonsignificant, and the

Chapter 8. Decimal Instructions 8-7

fill byte replaces the pattern byte. If
the digit selector or significance star
ter is encountered with either the
significance indicator on or with a
nonzero decimal source digit, the source
digit is considered significant, is
changed to the zoned format, and
replaces the pattern byte in the result.

Condition Code~ The sign and magnitude
of the last field edited are used to set
the condition code. The term "last
field" refers to those source bytes in
the second operand selected by digit
selectors or significance starters after
the last field separator. When the
pattern contains no field separator,
there is only one field, which is
considered to be the last field. The
last field is considered to be of zero
length if no digit selectors or signif
icance starters appear in the pattern,
if none appear after the last field
separator, or if the last byte in the
pattern is a field separator.

Condition code 0 is set when the last
field edited is zero or of zero length.

Condition code 1 is set when the last
field edited is nonzero and the signif
icance indicator is on. (This indicates
a result less than zero if the last
source byte examined contained a sign
code in the rightmost four bits.)

Condition code 2 is set when the last
field edited is nonzero and the signif
icance indicator is off. (This indi
cates a result greater than zero if the
last source byte examined contained a
sign code ;n the rightmost four bits.)

The figure "Summary of Editing
Functions" summarizes the functions of
the EDIT and EDIT AND MARK operations.
The leftmost four columns list all the
significant combinations of the four
conditions that can be encountered in
the execution of an editing operation.
The rightmost two columns list the
action taken for each case -- the type
of byte placed in the result field and
the new setting of the significance
indicator.

Resulting Condition Code:

o last field is zero or of zero
length

1 last field is less than zero
2 last field is greater than zero
3

Program Exceptions:

Access (fetch, operand 2; fetch and
store, operand 1)

Data

8-8 370-XA Principles of Operation

Programming Notes

1. Examples of the use of EDIT are
given in Appendix A.

2. Editing includes sign and punc~u
ation control, and the suppression
and protection of leading zeros by
replacing them with blanks or
asterisks. It also facilitates
programmed blanking of all-zero
fields. Several fields may be
edited in one operation, and numer
ic information may be combined with
text.

3. In most cases, the source is short
er than the pattern because each
four-bit source digit produces an
eight-bit byte in the result.

4. The total number of digit selectors
and significance starters in the
pattern always equals the number of
source digits edited.

5. If the'fill byte is a blank, if no
significance starter appears in the
pattern, and if the source digit
examined for each digit selector is
zero, the editing operation blanks
the result field.

6. The resulting condition code indi
cates whether or not the last field
is all zeros and, if nonzero,
reflects the state of the signif
icance indicator. The significance
indicator reflects the sign of the
source field only if the last
source byte examined contains a
sign code in the rightmost four
bits. For multiple-field editing
operations, the condition code
reflects the sign and value only of
the field following the last field
separator.

7. Significant performance degradation
is possible when, with OAT on, the
second-operand address of EDIT
designates a location that is less
than the length of the first oper
and to the left of a 4K-byte
boundary. This is because the
machine may perform a trial
execution of the instruction to
determine if the second operand
actually crosses the boundary. The
second operand of EDIT, while
normally shorter than the first
operand, can in the extreme case
have the same length as the first.

Pattern Byte

Digit selector

Significance starter

Field separator

Message byte

Explanation:

Conditions

Previous
State of
Significance
Indicator

Off

On

Off

On

*
Off
On

Right Four
Source Source Bits
Digit Are Plus Code

0 * 1-9 No
1-9 Yes
0-9 No
0-9 Yes

0 No
0 Yes
1-9 No
1-9 Yes
0-9 No
0-9 Yes

** **
** ** ** **

Results

State of
Significance
Indicator at
End of Digit

Result Byte Examination

fill byte Off
Source digit" On
Source digit" Off
Source digit On
Source digit Off

Fill byte On
Fill byte Off
Source digit" On
Source digittt Off
Source digit On
Source digit Off

Fill byte Off

Fill byte Off
Message byte On

* No effect on result byte or on new state of significance indicator ** Not applicable because source is not examined
tt For EDIT AND MARK onlYI the address of the rightmost such result byte is

placed in general 'register 1.
~--,----

Summary of Editing Functions

EDIT AND MARK

EDMK [55]

~' __ D __ F' ____ ~ ____ L~I __ B __ t~1 ~I I 8, I ~~
o 8 16 20 32 36 47

The second operand (the source)1 which
normally contains one or more decimal
numbers in the packed format, is changed
to the zoned format and modified under
the control of the first operand (the
pattarn). The address of each first
significant result byte is inserted in
general register 1. The edited result
replaces the pattern.

EDIT AND MARK is identical to EDITI
except for the additional function of
inserting the address of the result byte
in general register 1 whenever the
result byte is a zoned source digit and
the significance indicator was off
before the examination. If no result
byte meets the criteria, general regis
ter 1 remains unchanged.

In the 24-bi t addressi ng model' the
address replaces bits 8-31 of general
register 11 and bits 0-7 of the register
are not changed. In the 31-bit address
ing mode, the address replaces bits 1-31

of general register 1, and bit 0 of the
register is set to zero.

See the figure "Summary of Editing Func
tions" under EDIT for a summary of the
EDIT and EDIT AND MARK operations.

Resulting Condition Code:

o Last field is zero or of zero
length

1 Last field is less than zero
2 Last field is greater than zero
3

Program Exceptions:

Access (fetch, operand 2; fetch and
store, operand 1)

Data

Programming Notes

1. Examples of the use of EDIT AND
MARK are given in Appendix A.

2. EDIT AND MARK facilitates the
programming of floating currency
symbol insertion. Using appro
priate source and pattern data, the
address inserted in general regis
ter 1 is one greater than the

Chapter 8. Decimal Instructions 8-9

address where a floating currency
sign would be inserted. BRANCH ON
COUNT (BCTR), with zero in the R2
field, may be used to reduce the
inserted address by one.

3. No address is inserted in general
register 1 when the significance
indicator is turned on as a result
of encountering a significance
starter with the- corresponding
source digit zero. To ensure that
general register 1 contains a prop
er address when this occurs, the
address of the pattern byte that
immediately follows the appropriate
significance starter could be
placed in the register beforehand.

4. When multiple fields are edited
with one EDIT AND MARK, the address
inserted in general register 1
applies only to the last field
edited.

5. See also the programming note under
EDIT regarding performance degrada
tion due to a possible trial
execution.

MULTIPLY DECIMAL

MP [SS]

'FC' III Il' I BI I ~I B, ~:l
o 8 12 16 20 32 36 47

The product of the first operand (the
multiplicand) and the second operand
(the multiplier) is placed in the
first-operand location. The operands
and result are in the packed format.

The multiplier length cannot exceed 15
digits and sign (L 2 not greater than
seven) and must be less than the multi
plicand length (L 2 less than L t); other
wise, a specification exception is
recognized.

The multiplicand must have at least as
many bytes of leftmost zeros as the
number of bytes in the multiplier;
otherwise, a data exception is recog
nized. This restriction ensures that no
product overflow occurs.

The multiplicand, multiplier, and prod
uct are each signed decimal integers in
the packed format and are right-aligned
1n their fields. All sign and digit
codes of the multiplicand and multiplier
are checked for validity.

The sign of the product is determined by
the rules of algebra from the multiplier
and multiplicand signs, even if one or
both operands are zeros.

8-10 370-XA Principles of Operation

Condition Code: The code remains
unchanged.---

Program Exceptions:

Access (fetch, operand 2; fetch and
storp-, operand 1)

Data
Specification

Programming Notes

1. An example of the use of MULTIPLY
DECIMAL is given in Appendix A.

2. The product cannot exceed 31 digits
and sign. The leftmost digit of
the product is always zero.

SHIFT AND ROUND DECIMAL

SRP [SS]

'FO' III I I, I BI I ~I B, [fJ
o 8 12 16 20 32 36 47

The first operand is shifted in the
direction and for the number of
decimal-digit positions specified by the
second-operand address, and, when shift
ing to the right is specified, the abso
lute value of the first operand is
rounded by the rounding digit, 1 3 • The
first operand and the result are in the
packed format.

The first operand is considered to be in
the packed-decimal format. Only its
digit portion is shifted; the sign posi
tion does not participate in the shift
ing. Zeros are supplied for the vacated
digit positions. The result replaces
the first operand. Nothing is stored
outside of the specified first-operand
location.

The second-operand address, specified by
the B2 and D2 fields, is not used to
address data; bits 26-31 of that address
are the shift value, and the leftmost
bits of the address are ignored.

The shift value is a six-bit signed
binary integer, indicating the direction
and the number of decimal-digit posi
tions to be shifted. Positive shift
values specify shifting to the left.
Negative shift values, which are repres
ented in two's complement notation,
specify shifting to the right. The
following are examples of the interpre
tation of shift values.

Shift Value Amount and Direction

011111 31 digits to the left
000001 One digit to the left
000000 No shift
111111 One digit to the right
100000 32 digits to the right

For a right shift, the 13 field, bits
12-15 of the instruction, are used as a
decimal rounding digit. The first oper
and, which is treated as positive by
ignoring the sign, is rounded by deci
mally adding the rounding digit to the
leftmost of the digits to be shifted out
and by propagating the carry, if any, to
the left. The result of this addition
is then shifted right. Except for
validity checking and the participation
in rounding, the digits shifted out of
the rightmost decimal-digit position are
ignored and are lost.

If one or more nonzero digits are shift
ed out during a left shift, decimal
overflow occurs. The operation is
completed. The result is obtained by
ignoring the overflow digits, and condi
tion code 3 is set. If the decimal
overflow mask is one, a program
interruption for decimal overflow
occurs. Overflow cannot occur for a
right shift, with or without rounding,
or when no shifting is specified.

In the absence of overflow, the sign of
a zero result is made positive. If
overflow occurs, the sign of the result
is the same as the original sign but
with the preferred sign code.

A data exception is recognized when the
first operand does not have valid sign
and digit codes or when the rounding
digit is not a valid digit code. The
validity of the first-operand codes is
checked even when no shift is specified,
and the validity of the rounding digit
is checked even when no addition for
rounding takes place.

Resulting Condition Code:

o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Exceptions:

Access (fetch and store, operand 1)
Data
Decimal overflow

Programming Notes

1. Examples of the use of SHIFT AND
ROUND are given in Appendix A.

2. SHIFT AND ROUND can be used for
shifting up to 31 digit positions
left and up to 32 digit positions
right. This is sufficient to clear
all digits of any decimal number
even with rounding.

3. For right shifts, the rounding
digit 5 provides conventional
rounding of the result. The round
ing digit 0 specifies truncation
without rounding.

4. When the B2 field is zero, the
six-bit shift value is obtained
directly from bits 42-47 of the
instruction.

SUBTRACT DECIMAL

SP [S5]

'FB' Il, Il. I B, I ~, B. ~~
o 8 12 16 20 32 36 47

The second operand is subtracted from
the first operand, and the resulting
difference is placed in the first
operand location. The operands and
result are in the packed format.

SUBTRACT DECIMAL is executed the same as
ADD DECIMAL, except that the second
operand is considered to have a sign
opposite to the sign in storage. The
second operand in storage remains
unchanged.

Resulting Condition Code:

o Difference is zero
1 Difference is less than zero
2 Difference is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2; fetch and
store, operand 1)

Data
Decimal overflow

ZERO AND ADD

ZAP

'F8 ' I l, I l. I B, I ~, lB. I ~~
o 8 12 16 20 32 36 47

The second operand is placed in the
first-operand location. The operation
is equivalent to an addition to zero.
The operand and result are in the packed
format.

Chapter 8. Decimal Instructions 8-11

Only the second operand is checked for
valid sign and digit codes. Extra zeros
are supplied on the left for the shorter
operand if needed.

If the first operand is too short to
contain all leftmost nonzero digits of
the second operand, decimal overflow
occurs. The operation is completed.
The result is obtained by ignoring the
overflow digits, and condition code 3 is
set. If the decimal-overflow mask is
one, a program interruption for decimal
overflow occurs.

In the absence of overflow, the sign of
a zero result is made positive. If
overflow occurs, a zero result is given
the sign of the second operand but with
the preferred sign code.

The two operands may
the rightmost byte of
is coincident with or
the rightmost byte

overlap, provided
the first operand
to the right of
of the second

8-12 370-XA Principles of Operation

operand. In this case the result is
obtained as if the operands were proc
essed right to left.

Resulting Condition Code:

o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2; store,
operand 1)

Data
Decimal overflow

Programming Note

An example of the use of ZERO AND ADD is
given in Appendix A.

CHAPTER ~ FLOATING-POINT INSTRUCTILNS

Floating-Point Number Representation •••••••••••••••••••••• 9-1
Normalization ••••••••••••••••••.••••••••.••••••••••••••••• 9-2·
Floating-Point-Data Format .••••..•••••.•.•.•••••.••••••.•• 9-2
Instructions •••..•••••••••••••••.••••••••••••••••••••••••• 9-4

ADD NORMALIZED ••••••••••••••.•.•••••••.•.•••.••.•••••••• 9-6
ADD UNNORMALIZED •••••••••••••..•••...•.•.••.••.••••••.•• 9-7
COMPARE .•.••••••••••••.•••••....••••••.••••.•••.••••.•.• 9-8
DIVIDE •••••••••••••••••••••••••.•••••••••••••••••••••••• 9-8
HALVE ••..•••••••••••••••••••.•••••••••.••••.•••••••••••• 9-10
LOAD ••...••••.•••••••••••.••••••••.••..•.••••••••••.•••• 9-10
LOAD AND TEST •.•••••••••.•••••..••••••.••••••••••••••.•• 9-11
LOAD COMPLEMENT •••••••••••.•••••••••••.••••••••••••••••• 9-11
LOAD NEGATIVE ••••••••••••••••.••••••••.••••.•.•••••••••. 9-11
LOAD POSITIVE •.••••••••••.•.••.•••••.•.•••••••••••••.••• 9-12
LOAD ROUNDED ••••••••••••••••••..••••••••..•••••••••••••• 9-12
MULTIPLY •••••••••••••••••.•••••.••••••.••••••••••••••••• 9-13
STORE •..••••.••••••••••••••.••..•.••••.••••••.•••..••••• 9-14
SUBTRACT NORMALIZED •.•••••••.••••••••••••••••••••••••••• 9-14
SUBTRACT UNNORMALIZED ••••••••••••••••••••••••••••••••••• 9-15

Floating-point instructions are used to
perform calculations on operands with a
wide range of magnitude and to yield
results scaled to preserve precision.

The floating-point instructions provide
for loading, rounding, adding, subtract
ing, comparing, multiplying, dividing,
and storing, as well as controlling the
sign of short, long, and extended oper
ands. Short operands generally permit
faster processing and require less stor
age than long or extended operands. On
the other hand, long and extended oper
ands permit greater precision in
computation. Four floating-point regis
ters are provided. Instructions may
perform either register-to-register or
storage-and-register operations.

Most of the instructions generate
normalized results, which preserve the
highest precision in the operation. For
addition and subtraction, instructions
are also provided that generate unnor
malized results. Either normalized or
unnormalized numbers may be used as
operands for any floating-point opera
tion.

FLOATING-POINT NUMBER REPRESENTATION

A floating-point number consists of a
signed hexadecimal fraction and an
unsigned seven-bit binary integer called
the characteristic. The characteristic
represents a signed exponent and is
obtained by adding 64 to the exponent
value (excess-64 notation). The range
of the characteristic is 0 to 127, which

corresponds to an exponent range of -64
to +63. The value of a floating-point
number is the product of its fraction
and the number 16 raised to the power of
the exponent which is represented by its
characteristic.

The fraction of a floating-point number
is treated as a hexadecimal number
because it is considered to be multi
plied by a number which is a power of
16. The name, fraction, indicates that
the radix point is assumed to be imme
diately to the left of the leftmost
fraction digit. The fraction is repres
ented by its absolute value and a
separate sign bit. The entire number is
positive or negative, depending on
whether the sign bit of the fraction is
zero or one, respectively.

When a floating-point operation would
cause the result exponent to exceed 63,
the characteristic wraps around from 127
to 0, and an exponent-overflow condition
exists. The result characteristic is
then too small by 128. When an opera
tion would cause the exponent to be less
than -64, the characteristic wraps
around from 0 to 127, and an exponent
underflow condition exists. The result
characteristic is then too large by 128,
except that a zero characteristic is
produced when a true zero is forced.

A true zero is a floating-point number
with a zero characteristic, zero frac
tion, and plus sign. A true zero may
arise as the normal result of an arith
metic operation because of the partic
ular magnitude of the operands. The
result is forced to be a true zero when:

Chapter 9. Floating-Point Instructions 9-1

1. An exponent underflow occurs and
the exponent-underflow mask bit in
the PSW is zero,

2. The result fraction of an addition
or subtraction operation is zero
and the significance mask bit in
the PSW is zero, or

3. The operand of the HALVE instruc
tion, one or both operands of the
MULTIPLY instruction, or the divi
dend in the DIVIDE instruction has
a zero fraction.

When a program interruption for exponent
underflow occurs, a true zero is not
forced; instead, the fraction and sign
remain correct, and the characteristic
is too large by 128. When a program
interruption for significance occurs,
the fraction remains zero, the sign is
positive, and the characteristic remains
correct.

The sign of a sum, difference, product,
or quotient with a zero fraction is
positive. The sign of a zero fraction
resulting from other operations is
established from the operand sign, the
same as for nonzero fractions.

NORMALIZATION

A quantity can be represented with the
greatest precision by a floating-point
number of a given fraction length when
that number is normalized. A normalized
floating-point number has a nonzero
leftmost hexadecimal fraction digit. If
one or more leftmost fraction digits are
zeros, the number is said to be unnor
malized.

Unnormalized numbers are normalized by
shifting the fraction left, one digit at
a time, until the leftmost hexadecimal
digit is nonzero and reducing the char
acteristic by the number of hexadecimal
digits shifted. A number with a zero
fraction cannot be normalized; its char
acteristic either remains unchanged, or
it is made zero when the result is
forced to be a true zero.

Addition and subtraction with extended
operands, as well as the MULTIPLY,
DIVIDE, and HALVE operations, are
performed only with normalization.
Addition and subtraction with short or
long operands may be specified as either
normalized or unnormalized. For all
other operations, the result is produced
without normalization.

With unnormalized operations, leftmost
zeros in the result fraction are not
eliminated. The result mayor may not
be in normalized form, depending upon
the original operands.

9-2 370-XA Principles of Operation

In both normalized and unnormalized
operations, the initial operands need
not bein normalized form. The operands
for multiplication and division are
normalized before the arithmetic
process. For other normalized oper
ations, normalization takes place when
the intermediate arithmetic result is
changed to the final result.

When the intermediate result of
addition, subtraction, or rounding ca~s
es the fraction to overflow, the fr~c
tion is shifted right by one
hexadecimal-digit position and the value
one is placed in the vacated leftmost
digit position. The fraction is then
truncated to the final result length,
while the characteristic is increased by
one. This adjustment is made for both
normalized and unnormalized operations.

Programming Note

Up to three leftmost bits of the frac
tion of a normalized number may be
zeros, since the nonzero test applies to
the entire leftmost hexadecimal digit.

FLOATING-POINT-DATA FORMAT

Floating-point numbers have a 32-bit
(short) format, a 64-bit (long) format,
or a 128-bit (extended) format. Numbers
in the short and long formats may be
designated as operands both in storage
and in the floating-point registers,
whereas operands having the extended
format can be designated only in the
floating-point registers.

The floating-point registers contain 64
bits each and are numbered 0, 2, 4, and
6. A short or long floating-point
number requires a single floating-point
register. An extended floating-point
number requires a pair of these regis
ters: either registers 0 and 2 or
registers 4 and 6; the two register
pairs are designated as 0 or 4, respec
tively. When the R t or R2 field of a
floating-point instruction designates
any register number other than 0, 2, 4,
or 6 for the short or long format, or
any register number other than 0 or 4
for the extended format, a program
interruption for specification exception
occurs.

Short Floating-Point Number

r-1 s==1 =C=h=a=r=a=c=t=-e_ -_r=i=s=t=i=c==1 ===6=-=D='=9=-i_-.... t-=~=r=a=c=t=i=o=n===
018 31

Long Floating-Point Number

I rS-rI-C-h-a-r-a-c-t-e--r-i-s-t-i-c-rI---1-4---D-i-9--i~--F-r-a-c-t--i-o-n--'
~~ ______________ -L ___________ / ____________ ~

018

Extended Floating-Point Number

High-Order Part

63

r-~---------------r---------/-------------'

High-Order Leftmost 14 Digits
Characteristic of 28-Digit Fraction

~~ ______________ -L _________ / ____________ ~

o 1 8 63

Low-Order Part
r-~---------------r---------/-------------'

Low-Order Rightmost 14 Digits
Characteristic of 28-Digit Fraction

~~--------------~---------/------------~
64 72 127

In all formats, the first bit (bit 0) is
the sign bit (S). The next seven bits
are the characteristic. In the short
and long formats, the remalnlng bits
constitute the fraction, which consists
of six or 14 hexadecimal digits, respec
tively.

A short floating-point number occupies
only the leftmost 32 bit positions of a
floating-point register. The rightmost
32 bit positions of the register are
ignored when used as an operand in the
short format and remain unchanged when a
short result is placed in the register.

An extended floating-point number has a
28-digit fraction and consists of two
long floating-point numbers which are
called the high-order and low-order
parts. The high-order part may be any
long floating-point number. The frac
tion of the high-order part contains the
leftmost 14 hexadecimal digits of the
28-digit fraction. The characteristic
and sign of the high-order part are the
characteristic and sign of the extended
floating-point number. If the high
order part is normalized, the extended
number is considered normalized. The
fraction of the low-order part contains
the rightmost 14 digits of the 28-digit
fraction. The sign and characteristic
of the low-order part of an extended
operand are ignored.

When a result in the extended format is
placed in a register pair, the sign of
the low-order part is made the same as
that of the high-order part, and, unless
the result is a true zero, the low-order
characteristic is made 14 less than the
high-order characteristic. When the
subtraction of 14 would cause the low
order characteristic to become less than
zero, the characteristic is made 128
greater than its correct value. Expo
nent underflow is indicated only when

the high-order characteristic
underflows.

When an extended result is made a true
zero, both the high-order and low-order
parts are made a true zero.

The range covered by the magnitude (M)
of a normalized floating-point number
depends on the format.

In the short format:

16- 65 ~ M ~ (1 - 16- 6) x 16 63

In the long format:

16- 65 ~ M ~ (1 - 16- 14) x 16 63

In the extended format:

16- 65 ~ M ~ (1 - 16-28) x 16 63

In all formats, approximately:

5.4 x 10-79 ~ M ~ 7.2 X 10 75

Although the final result of a
floating-point operation has six hexade
cimal fraction digits in the short
format, 14 fraction digits in the long
format, and 28 fraction digits in the
extended format, intermediate results
have one additional hexadecimal digit on
the right. This digit is called the
guard digit. The guard digit may
increase the precision of the final
result because it participates in addi
tion, subtraction, and comparison
operations and in the left shift that
occurs during normalization.

The entire set of floating-point oper
ations is available for both short and
long operands. These instructions
generate a result that has the same
format as the operands, except that for
the MULTIPLY instruction, a long product
is produced from a short multiplier and
multiplicand. Extended floating-point
instructions are provided only for
normalized addition, subtraction, multi
plication, and division. Two additional
multiplication instructions generate an
extended product from a long multiplier
and mUltiplicand. The rounding
instructions provide for rounding from
extended to long format and from long to
short format.

Programming Notes

1. A long floating-point number can be
converted to the extended format by
appending any long floating-point
number having a zero fraction,
including a true zero. Conversion
from the extended to the long
format can be accomplished by trun
cation or by means of the LOAD
ROUNDED instruction.

Chapter 9. Floating-Point Instructions 9-3

2. In the absence of an exponent over
flow or exponent underflow, the
long floating-point number consti
tuting the low-order part of an
extended result correctly expresses
the value of the low-order part of
the extended result when the char
~cteristic of the high-order part
is 14 or higher. This applies also
when the result is a true zero.
When the high-order characteristic
is less than 14 but the number is
not a true zero, the low-order
part, when considered as a long
floating-point number, does not
express the correct characteristic
value.

3. The entire fraction of an extended
result participates in normaliza
tion. The low-order part alone may
or may not appear to be a normal
ized long floating-point number,
depending on whether the 15th digit
of the normalized 28-digit fraction
is nonzero or zero.

INSTRUCTIONS

The floating-point instructions and
their mnemonics, formats, and operation
codes are listed in the figure "Summ~ry
of Floating-Point Instructions." The
figure also indicates when the condition
code is set and the exceptional condi
tions in operand designations, data, or
results that cause a program inter
ruption.

9-4 370-XA Principles of Operation

Mnemonics for the floating-point
instructions have an R as the last
letter when the instruction is in the RR
format. For instructions where all
operands are the same length, certain
letters are used to represent operand
format length and normalization, as
follows:

E short normalized
U short unnormalized
D long normalized
W long unnormalized
X extended normalized

Note: In the detailed descriptions of
the individual instructions, the mnemon
ic and the symbolic operand designa~ion
for the assembler language are shown
with each instruction. For a register
to-register operation using LDAD
(short), for example, LER is the mnem0n
ic and R t ,R 2 the operand designation.

Programming Note

The only difference between the
floating-point instructions for the
370-XA mode and the System/370 mode is
that, in the 370-XA mode, DIVIDE with
extended operands (DXR) has been added,
and the floating-point instructions,.
including the extended-precision
instructions, are part of the standard
instruction set.

Mne- Op
Name monic Characteristics Code

ADD NORMALIZED (extended) AXR RR C SP EU EO lS 36
ADD NORf"A L IZED (long) ADR RR C SP EU EO lS 2A
ADD NORt'lA L IZED (long) AD RX C A SP EU EO LS 6A
ADD NORMALIZED (short) AER RR C SP EU EO lS 3A
ADD NOR~1ALIZED (short) AE RX C A SP EU EO lS 7A

ADD UNNORtlAL IZED (long) AL,JR RR C SP EO LS 2E
ADD UNNORf1AL IZED (long) AW RX C A SP EO LS 6E
ADD UNtWRt1ALIZED (short) AUR RR C SP EO lS 3E
ADD UNNORMALIZED (short) AU RX C A SP EO LS 7E
cor" PAR E (Ion g) CDR RR C SP 29

COtlPARE (long) CD RX C A SP 69
COr-lPARE (short) CER RR C SP 39
COr1PARE (short) CE RX C A SP 79
DIVIDE (extended) DXR RRE SP EU EO FK B22D
DIVIDE (long) DDR RR SP EU EO FK 2D

DIVIDE (long) DD RX A SP EU EO FK 6D
DIVIDE (short) DER RR SP EU EO FK 3D
DIVIDE (short) DE RX A SP EU EO FK 7D
HALVE (long) HDR RR SP EU 24
HALVE (short) HER RR SP EU 34

LOAD (long) LDR RR SP 28
LOAD (long) LD RX A SP 68
LOAD (short) LER RR SP 38
LOAD (short) LE RX A SP 78
LOAD AND TEST (long) LTDR RR C SP 22

LOAD AND TEST (short) LTER RR C SP 32
LOAD COMPLEMENT (long) LCDR RR C SP 23
LOAD COMPLEMENT (short) LCER RR C SP 33
LOAD NEGATIVE (long) LHDR RR C SP 21
LOAD NEGATIVE (short) LIIER RR C SP 31

LOAD POSITIVE (long) LPDR RR C SP 20
LOAD POSITIVE (short) LPER RR C SP 30
LOAD ROUNDED (extended to long) LRDR RR SP EO 25
LOAD ROUNDED (long to short) LRER RR SP EO 35
r'1UL TIPL Y (extended) r'lXR RR SP EU EO 26

MULTIPLY (long) t1DR RR SP EU EO 2C
~'UL TIP L Y (long) nD RX A SP EU EO 6C
~1UL TIP L Y (long to extended) f'lXDR RR SP EU EO 27
~lUL TIP L Y (long to extended) MXD RX A SP EU EO 67
MULTIPLY (short to long) MER RR SP EU EO 3C

MULTIPLY (short to long) ~'E RX A SP EU EO 7C
STORE (long) STD RX A SP ST 60
STORE (short) STE RX A SP ST 70
SUBTRACT NORMALIZED (extended) 'SXR RR C SP EU EO LS 37
SUBTRACT NORMALIZED (long) SDR RR C SP EU EO LS 2B

SUBTRACT NORt'lA L I ZED (long) SD RX C A SP EU EO LS 6B
SUBTRACT NORf'lA L I ZED (short) SER RR C SP EU EO LS 3B
SUBTRACT NORMALIZED (short) SE RX C A SP EU EO LS 7B
SUBTRACT UHNORMALIZED (long) Sl~R RR C SP EO LS 2F
SUBTRACT UNNORMALIZED (long) St~ RX C A SP EO LS 6F

SUBTRACT UNNORMALIZED (short) SUR RR C SP EO LS 3F
SUBTRACT UNNORt1A LIZ ED (short) SU RX C A SP EO LS 7F

Summary of Floating-Point Instructions (Part 1 of 2)

Chapter 9. Floating-Point Instructions 9-5

-"'.

Explanation:

A Access exceptions for logical addresses
C Condition code is set
EO Exponent-overflow exception
EU Exponent-underflow exception
FK Floating-point-divide exception
LS Significance exception
RR RR instruction format
RRE RRE instruction format
RX RX instruction format
SP Specification exception
ST PER storage-alteration event

Summary of Floating-Point Instructions (Part 2 of 2)

ADD NORMALIZED

AER [RR, Short Operands]

o 8 12 15

AE

'7A'

o 8 12 16 20 31

ADR R t , R2 [RR, Long Operands]

'2A' I Rt I R2

o 8 12 15

AD [RX, long Operands]

'6A'

o 8 12 16 20 31

AXR R f , R2 [RR, Extended Operands]

o 8 12 15

The second operand is added to the first
operand, and the normalized sum is
placed'in the first-operand location.

Addition of two floating-point numbers
consists in characteristic comparison,
fraction alignment, and signed fraction
addition. The characteristics of the
two operands are compared, and the frac
tion accompanying the smaller
characteristic is aligned with the other
fraction by a right shift, with its
characteristic increased by one for each

9-6 370-XA Principles of Operation

hexadecimal digit of shift until the two
characteristics agree.

When a fraction is shifted right during
alignment, the leftmost hexadecimal
digit shifted out is retained as a guard
digit. The fraction that is not shifted
is considered to be extended with a zero
in the guard-digit position. When no
alignment shift occurs, both operands
are considered to be extended with zeros
in the guard-digit position. The frac
tions with signs are then added
algebraically to form a signed interme
diate sum.

The intermediate-sum fraction consists
of seven (short format), 15 (long
format), or 29 (extended format) hexade
cimal digits, including the guard digit,
and a possible carry. If a carry is
present, the sum is shifted right one
digit position so that the carry becomes
the leftmost digit of the fraction, and
the characteristic is increased by one.

If the addition produces no carry, the
intermediate-sum fraction is shifted
left as necessary to eliminate any lead
ing hexadecimal zero digits resulting
from the addition, provided the fraction
is not zero. Vacated rightmost digit
positions are filled with zeros, and the
characteristic is reduced by the number
of hexadecimal digits of shift. The
fraction thus normalized is then trun
cated on the right to six (short
format), 14 (long format), or 28
(extended format) hexadecimal digits.
In the extended format, a characteristic
is generated for the low-order part,
which is 14 less than the high-order
characteristic.

The sign of the sum is determined by the
rules of algebra, unless all digits of
the intermediate-sum fraction are zero,
in which case the sign is made plus.

An exponent-overflow exception is recog
nized when a carry from the leftmost
position of the intermediate-sum frac
tion would cause the characteristic of
the normalized sum to exceed 127. The
operation is completed by making the

result characteristic 128 less than the
correct value, and a program inter
ruption for exponent overflow takes
place. The result sign and fraction
remain correct, and, for AXR, the char
acteristic of the low-order part remains
correct.

An exponent-underflow exception is
recognized when the characteristic of
the normalized sum would be less than
zero and the fraction is not zero. If
the exponent-underflow mask bit is one,
the operation is completed by making the
result characteristic 128 greater than
the correct value. The result sign and
Traction remain correct, and a program
interruption for exponent underflow
takes place. When exponent underflow
occurs and the exponent-underflow mask
bit is zero, a program interruption does
not take place; instead, the operation
is completed by making the result a true
zero. For AXR, no exponent underflow is
recognized when the characteristic of
the low-order part would be less than
zero but the characteristic of the
high-order part is zero or greater.

The result fraction is zero when the
intermediate-sum fraction, including the
guard digit, is zero. With a zero
result fraction, the action depends on
the setting of the significance mask
bit. If the significance mask bit is
one, no normalization occurs, the inter
mediate and final result characteristics
are the same, and a program interruption
for significance takes place. If the
significance mask bit is zero, the
program interruption does not occur;
instead, the result is made a true zero.,

The R, field for AER, AE, ADR, and AD,
and the R2 field for AER and ADR must
designate register 0, 2, 4, or 6. The
R, and R2 fields for AXR must designate
register 0 or 4. Otherwise, a specifi
cation exception is recognized.

Resulting Condition Code:

o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:

Access (fetch, operand 2 of AE and
AD only)

Exponent overflow
Exponent underflow
Significance
Specification

1. An example of the use of ADD
NORMALIZED is given in Appendix A.

2. Interchanging the two operands in a
floating-point addition does not
affect the value of the sum.

3. The ADD NORMALIZED instruction
normalizes the sum but not the
operands. Thus, if one or both
operands are unnormalized, preci
sion may be lost during fraction
alignment.

ADD UNNORMALIZED

AUR Rt ,R 2 [RR, Short Operands]

'3E' I R t I R2

0 8 12 15

AU Rt ,D 2 (X 2 ,B 2) [RX, Short Operands]

'7 E' I R t I X2 I B2 I D2

0 8 12 16 20 31

AWR [RR, Long Operands]

'2E' I R t I R2

o 8 12 15

AW [RX, Long Operands]

'6E'

o 8 12 16 20 31

The second operand is added to the first
operand, and the unnormalized sum is
placed in the first-operand location.

The execution of ADD
identical to that of
except that:

UNNORMALIZED is
ADD NORMALIZED,

1. When no carry is present after the
addition, the intermediate-sum
fraction is truncated to the proper
result-fraction length without a
left shift to eliminate leading
hexadecimal zeros and without the
corresponding reduction of the
characteristic.

2. Exponent underflow cannot occur.

3. The guard digit does not partici
pate in the recognition of a zero
result fraction. A zero result
fraction is recognized when the
fraction, that is, the
intermediate-sum fraction, exclud
ing the guard digit, is zero.

Chapter 9. Floating-Point Instructions 9-7

The R t and R2 fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Resulting Condition Code:

o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:

Access (fetch, operand 2 of AU and
AW only)

Exponent overflow
Significance
Specification

Programming Notes

1. An example of the use of ADD UNNOR
MALIZED is given in Appendix A.

2. Except when the result is made a
true zero, the characteristic of
the result of ADD UNNORMALIZED is
equal to the greater of the two
operand characteristics, increased
by one if the fraction addition
produced a carry, or set to zero if
exponent overflow occurred.

COMPARE

CER Rt , R2 [RR, Short Operands]

'39' I R t I R:z

0 8 12 15

CE Rt ,D 2(X 2,B 2) [RX, Short Operands]

'79'

o 8 12 16 20 31

CDR [RR, Long Operands]

'29'

o 8 12 15

CD [RX, Long Operands]

o 8 12 16 20 31

9-8 370-XA Principles of Operation

The first operand is compared with the
second operand, and the condition code
is set to indicate the result.

The comparison is algebraic and follows
the procedure for normalized floating
point subtraction, except that the
difference is discarded after setting
the condition code and both operands
remain unchanged. When the difference,
including the guard digit, is zero, the
operands are equal. When a nonzero
difference is positive or negative, the
first operand is high or low, respec
tively.

An exponent-overflow, exponent
exception underflow, or significance

cannot occur.

The R t and R2 fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Resulting Condition Code:

o Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:

Access (fetch, operand 2
CD only)

Specification

of CE and

Programming Notes

1. Examples of the use of COMPARE are
given in Appendix A.

2. An exponent inequality alone is not
sufficient to determine the
inequality of two operands with the
same sign, because the fractions
may have different numbers of lead
ing hexadecimal zeros.

3. Numbers with zero fractions compare
equal even when they differ in sign
or characteristic.

DIVIDE

DER [RR, Short Operands]

'3D'

o 8 12 15

DE

o 8 12 16 20 31

DDR [RR, Long Operands]

'2D' I R t I R2

o 8 12 15

DD [RX, Long Operands]

'6D'

o 8 12 16 20 31

DXR [RRE, Extended Operands]

'B22D'

o 16 24 28 31

The first operand (the dividend) is
divided by the second operand (the divi
sor), and the normalized quotient is
placed in the first-operand location.
No remainder is preserved.

Floating-point division consists in
characteristic subtraction and fraction
division. The operands are first
normalized to eliminate leading hexade
cimal zeros. The difference between the
dividend and divisor characteristics of
the normalized operands, plus 64, is
used as the characteristic of an inter
mediate quotient.

All dividend and divisor fraction digits
participate in forming the fraction of
the intermediate quotient. The
intermediate-quotient fraction can have
no leading hexadecimal zeros, but a
right-shift of one digit position may be
necessary with an increase of the char
acteristic by one. The fraction is then
truncated to the proper result-fraction
length.

An exponent-overflow exception is recog
nized when the characteristic of the
final quotient would exceed 127 and the
fraction is not zero. The operation is
completed by making the characteristic
128 less than the correct value. If,
for the DIVIDE (DXR) instruction, the
low-order characteristic would also
exceed 127, it, too, is decreased by
128. The result is normalized, and the
sign and fraction remain correct. A
program interruption for exponent over
flow occurs.

An exponent-underflow exception exists
when the characteristic of the final
quotient would be less than zero and the
fraction is not zero. If the exponent
underflow mask bit is one, the operation
is completed by making the character
istic 128 greater than the correct
value, and a program interruption for
exponent underflow occurs. The result
is normalized, and the sign and fraction
remain correct. If the exponent
underflow mask bit is zero, a program
interruption does not take place;
instead, the operation is completed by
making the quotient a true zero. For
the DXR instruction, exponent underflow
is not recognized when the low-order
characteristic is less than zero but the
high-order characteristic is equal to or
greater than zero.

Exponent underflow does not occur when
an operand characteristic becomes less
than zero during normalization of the
operands or when the intermediate
quotient characteristic is less than
zero, as long as the final quotient can
be represented with the correct charac
teristic.

When the divisor fraction is zero, a
floating-point-divide exception is
recognized. This includes the case of
division of zero by zero.

When the dividend fraction is zero, but
the divisor fraction is nonzero, the
quotient is made a true zero. No expo
nent overflow or exponent underflow
occurs.

The sign of the quotient is determined
by the rules of algebra, except that the
sign is always plus when the quotient is
made a true zero.

The R t field for DER, DE, DDR, and DD,
and the R2 field for DER and DDR, must
designate register 0, 2, 4, or 6. The
R1 and R2 fields for DXR must designate
register 0 or 4. Otherwise, a specifi
cation exception is recognized.

Cor-dition Code:
unchanged.---

Program Exceptions:

The code remains

Access (fetch, operand 2 of DD and
DE only)

Exponent overflow
Exponent underflow
Floating-point divide
Specification

Programming Note

Examples of the use of the DIVIDE
instruction are given in Appendix A.

Chapter 9. Floating-Point Instructions 9-9

HALVE

HER [RR, Short Operands]

o 8 12 15

HDR [RR, Long Operands]

'24 ' I R t I R:r

o 8 12 15

The second operand is divided by 2, and
the normalized quotient is placed in the
first-operand location.

The fraction of the second operand is
shifted right one bit position, placing
the contents of the rightmost blt posi
tion into the leftmost bit position of
the guard digit and introducing a zero
into the leftmost bit position of the
fraction. The intermediate result,
including the guard digit, is then
normalized, and the final result is
truncated to the proper length.

An exponent-underflow exception exists
when the characteristic of the final
result would be less than zero and the
fraction is not zero. If the exponent
underflow mask bit is one, the operation
is completed by making the character
istic 128 greater than the correct
value, and a program interruption for
exponent underflow occurs. The result
is normalized, and the sign and fraction
remain correct. If the exponent
underflow mask bit is zero, a program
interruption does not take place;
instead, the operation is completed by
making the result a true zero.

When the fraction of the second operand
is zero, the result is made a true zero,
and no exponent underflow occurs.

The sign of the result is the same as
that of the second operand, except that
the sign is always plus when the
quotient is made a true zero.

The R t and R:r fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Condition Code:
unchanged.---

Program Exceptions:

The

Exponent underflow
Specification

code remains

9-10 370-XA Principles of Operation

Programming Notes

1. An example of the use of HALVE is
given in Appendix A.

2. With short and long operands, the
halve operation is identical to a
divide operation with the number 2
as divisor. Similarly, the result
of HDR is identical to that of MD
or MDR with one-half as a multipli
er. No multiply operation
corresponds to HER, since no multi
ply operation produces short
results.

3. The result of HALVE is zero only
when the second-operand fraction is
zero, or when exponent underflow
occurs with the exponent-underflow
mask set to zero. A fraction with
zeros in every bit position, except
for a one in the rightmost bit
position, does not become zero
after the right shift. This is
because the one bit is preserved in
the guard-digit position and, when
the result is not made a true zero
because of exponent underflow,
becomes the leftmost bit after
normalization of the result.

LOAD

LER R t , R2 [RR, Short Operands]

'38' I Rt I R2

0 8 12 15

LE Rt,D2(XlPB2) [RX, Short Operands]

'78'

o 8 12 16 20 31

LDR [RR, Long Operands]

'28' I R t I R:r

o 8 12 15

LD [RX, Long Operands]

o 8 12 16 20 31

The second operand is placed unchanged
in the first-operand location.

The R, and R:z fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Condition Code:
unchanged.---

The code remains

Program Exceptions:

Access (fetch, operand 2 of LE and
LD only)

Specification

LOAD AND TEST

[RR, Short Operands]

o 8 12 15

[RR, Long Operands]

o 8 12 15

The second operand is placed unchanged
in the first-operand location, and its
sign and magnitude are tested to deter
mine the setting of the condition code.

The R, and R:z fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Resulting Condition Code:

o
1
2
3

Result fraction is zero
Result is less than zero
Result is greater than zero

Program Exceptions:

Specification

Programming Note

When the same register is specified as
the first-operand and second-operand
location, the operation is equivalent to
a test without data movement.

LOAD COMPLEMENT

LCER R 1 , R:z [RR, Short Operands]

'33' I R, I R:z

0 8 12 15

LCDR R l' R:z [RR, Long Operands]

'23' I R, I R:z

0 8 12 15

The second operand is placed in the
first-operand location with the sign bit
inverted.

The sign bit is inverted, even if the
fraction is zero. The characteristic
and fraction are not changed.

The Rt and R:z fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Resulting Condition Code:

o
1
2
3

Result fraction is zero
Result is less than zero
Result is greater than zero

Program Exceptions:

Specification

LOAD NEGATIVE

[RR, Short Operands]

'31'

o 8 12 15

[RR, Long Operands]

o 8 12 15

The second operand is
first-operand location
made minus.

placed in the
with the sign

The sign bit is made one, even if the
fraction is zero. The characteristic
and fraction are not changed.

The R, and R:z fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Chapter 9. Floating-Point Instructions 9-11

Resulting Condition Code:

o Result fraction is zero
1 Result is less than zero
2
3

Program Exceptions:

Specification

LOAD POSITIVE

[RR~ Short Operands]

o 8 12 15

[RR~ Long Operands]

o 8 12 15

The second operand is
first-operand location
made plus.

placed in the
with the sign

The sign bit is made zero. The charac
teristic and fraction are not changed.

The Rt and R2 fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Resulting Condition Code:

o Result fraction is zero
1
2 Result is greater than zero
3

Program Exceptions:

Specification

LOAD ROUNDED

LRER Rt1R2

[RR~ Long Operand 2, Short Operand 1]

'35'

o 8 12 15

9-12 370-XA Principles of Operation

LRDR Rt1R2

o

[RR , Extended Operand 2~
Long Operand 1]

'25' I R t I R2 I
8 12 15

The second operand is rounded to the
next shorter format~ and the result is
placed in the first-operand location.

Rounding consists in adding a one in bit
position 32 or 72 of the long or
extended second operand, respectively,
and propagating any carry to the left.
The sign of the fraction is ignored, and
addition is performed as if the frac
tions were positive.

If rounding causes a carry out of the
leftmost hexadecimal digit position of
the fraction, the fraction is shifted
right one digit position so that the
carry becomes the leftmost digit of the
fraction, and the characteristic is
increased by one.

The intermediate fraction is then trun
cated to the proper result-fraction
length.

The sign of the result is the same as
the sign of the second operand. There
is no normalization to eliminate lead~ng
zeros.

An exponent-overflow exception exists
when shifting the fraction right would
cause the characteristic to exceed 127.
The operation is completed by loading a
number whose characteristic is 128 less
than the correct value, and a program
interruption for exponent overflow
occurs. The result is normalized , and
the sign and fraction remain correct.

Exponent-underflow and
exceptions cannot occur.

significance

The R t field must designate register 0 ,
2, 4, or 6; the R2 field of LRER must
designate register 0, 2, 4, or 6; and
the R2 field of LRDR must designate
register 0 or 4. Otherwise, a specifi
cation exception is recognized.

Condition Code:
unchanged.---

Program Exceptions:

The

Exponent overflow
Specification

code remains

MULTIPLY

MER Rtt R2

o

[RR, Short Multiplier and Multiplicand,
Long Product]

8 12 15

ME Rtt D2 (X 2 ,B 2)

o

[RX~ Short Multiplier and Multiplicand,
Long Product]

8 12 16 20 31

MDR [RR, Long Operands]

o 8 12 15

MD [RX, Long Operands]

o 8 12 16 20 31

MXDR R t ,R 2

o

[RR, Long Multiplier and Multiplicand,
Extended Product]

, 27' I R t I R 2 I
8 12 15

MXD Rt ,D 2 (X 2 ,B 2)

o

[RX, Long Multiplier and Multiplicand,
Extended Product]

'67']
8 12 16 20 31

MXR [RR, Extended Operands]

'26' I R t I R2 I
o 8 12 15

The normalized product of the second
operand (the multiplier) and the first
operand (the multiplicand) is placed in
the first-operand location.

Multiplication of two floating-point
numbers consists in exponent addition
and fraction multiplication. The oper
ands are first normalized to eliminate
leading hexadecimal zeros. The sum of
th€ characteristics of the normalized
operands, less 64, is used as the char
acteristic of the intermediate product.

The fraction of the intermediate product
is the exact product of the normalized
operand fractions. When the
intermediate-product fraction has one
leading hexadecimal zero digit, the
fraction is shifted left one digit posi
tion, bringing the contents of the
guard-digit position into the rightmost
position of the result fraction, and the
intermediate-product characteristic is
reduced by one. The fraction is then
truncated to the proper result-fraction
length.

For MER and ME, the multiplier and
multiplicand fractions have six hexade
cimal digits; the product fraction has
the full 14 digits of the long format,
with the two rightmost fraction digits
always zeros. For MDR and MD, the
multiplier and multiplicand fractions
have 14 digits, and the final product
fraction is truncated to 14 digits. For
MXDR and MXD, the multiplier and multi
plicand fractions have 14 digits, with
the multiplicand occupying the high
order part of the first operand; the
final product fraction contains 28
digits and is an exact product of the
operand fractions. For MXR, the multi
plier and multiplicand fractions have 28
digits, and the flnal product fraction
is truncated to 28 digits.

An exponent-overflow exception is recog
nized when the characteristic of the
final product would exceed 127 and the
fraction is not zero. The operation is
completed by making the characteristic
128 less than the correct value. If,
for extended results, the low-order
characteristic would also exceed 127,
it, too, is decreased by 128. The
result is normalized, and the sign and
fraction remain correct. A program
interruption for exponent overflow
occurs.

Exponent overflow is not recognized when
the intermediate-product characteristic
is initially 128 but is brought back
within range by normalization.

An exponent-underflow exception exists
when the characteristic of the final
product would be less than zero and the
fraction is not zero. If the exponent
underflow mask bit is one, the operation
is completed by making the character
istic 128 greater than the correct
value, and a program interruption for
exponent underflow occurs. The result
is normalized, and the sign and fraction
remain correct. If the exponent-

Chapter 9. Floating-Point Instructions 9-13

underflow mask bit is zero, program
interruption does not take place;
instead, the operation is completed by
making the product a true zero. For
extended results, exponent underflow is
not recognized when the low-order char
acteristic would be less than zero but
the high-order characteristic is equal
to or greater than zero.

Exponent underflow does not occur when
the characteristic of an operand becomes
less than zero during normalization of
the operands, as long as the final prod
uct can be represented with the correct
characteristic.

When either or both operand fractions
are zero, the result is made a true
zero, and no exponent overflow or expo
nent underflow occurs.

The sign of the product is determined by
the rules of algebra, except that the
sign is always zero when the result is
made a true zero.

The R t field for MER, ME, MDR, and MD,
and the R2 field for MER, MDR, and MXDR
must designate register 0, 2, 4, or 6.
The R t field for MXDR, MXD, and MXR, and
the R2 field for MXR must designate
register 0 or 4. Otherwise, a specifi
cation exception is recognized.

Condition Code:
unchanged.---

The code remains

Program Exceptions:

Access (fetch, operand 2 of ME, MD,
and MXD only)

Exponent overflow
Exponent underflow
Specification

Programming Notes

1. An example of the use of MULTIPLY
is given in Appendix A.

2.

STORE

STE

Interchanging the two operands
floating-point multiplication
not affect the value of
product.

, 70'

o 8 12 16 20

9-14 370-XA Principles of Operation

ina
does
the

31

STD [RX, Long Operands]

'60'

o 8 12 16 20 31

The first operand is placed unchanged in
the second-operan~ location.

The Rt field must designate register 0,
2, 4, or 6; otherwise, a specification
exception is recognized.

Condition Code:
unchanged.---

The code remains

Program Exceptions:

Access (store, operand 2)
Specification

SUBTRACT NORMALIZED

SER R t ,R 2 [RR, Short Operands]

'3B' I R t I R2

0 8 12 15

SE R t ,D 2(X 2,B 2) [RX, Short Operands]

'7B'

o 8 12 16 20 31

SDR [RR, Long Operands]

, 2B ' I R t I R 2

o 8 12 15

SD [RX, Long Operands]

'6B' I R t I X2 I B2

o 8 12 16 20 31

SXR [RR, Extended Operands]

'37'

o 8 12 15

The second operand is subtracted from
the first operand, and the normalized
difference is placed in the first
operand location.

The execution of SUBTRACT NORMALIZED 1S
identical to that of ADD NORMALIZED,
except that the second operand partic-

ipates in the operation with its sign
bit inverted.

The R t field of SER, SE, SOR, and SO,
and the R2 field of SER and SDR must
designate register 0, 2, 4, or 6. The
R t and R2 fields ~f SXR must designate
register 0 or 4. Otherwise, a specifi
cation exception is recognized.

Resulting Condition Code:

o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:

Access (fetch, operand 2 of SE and
SO only)

Exponent overflow
Exponent underflow
Significance
Specification

SUBTRACT UNNORMALIZEO

SUR Ru R2 [RR,

'3F' I Rt I R2

0 8 12 15

SU R t ,02(X 2,B 2) [RX,

o 8 12 16

Short Operands]

Short Operands]

20 31

SWR [RR, Long Operands]

'2F' I R t I R2

o 8 12 15

SW [RX, Long Operands]

o 8 12 16 20 31

The second operand is subtracted from
the first operand, and the unnormalized
difference is placed in the first
operand location.

The execution of SUBTRACT UNNORMALIZED
is identical to that of ADD
UNNORMALIZED, except that the second
operand participates in the operation
with its sign bit inverted.

The Rt and R2 fields must designate
register 0, 2, 4, or 6; otherwise, a
specification exception is recognized.

Resulting Condition Code:

o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:

Access (fetch, operand 2 of SU and
SW only)

Exponent overflow
Significance
Specification

Chapter 9. Floating-Point Instructions 9-15

CHAPTER 10. CONTROL INSTRUCTIONS

DIAGNOSE •.••••.•••••••••.•••••••••••••••••••••••••••..•• 10-4
EXTRACT PRIMARY ASN •••••••••••••••••••••••••.••••••••••• 10-5
EXTRACT SECONDARY ASN •••....•.•••••.•.•.•.•••...•••••••• 10-5
INSERT ADDRESS SPACE CONTROL •••••..••.•.•••••...••.••..• 10-6
INSERT PSW KEY •••.••••....•••.•••.•.•.•••.•.•..•••.••..• 10-7
INSERT STORAGE KEY EXTENDED .•.••••...••••.•........•...• 10-7
INSERT VIRTUAL STORAGE KEY •...•..•...•..•••......••..••. 10-7
INVALIDATE PAGE TABLE ENTRY •••••.•••.••••.......••.••••• 10-8
LOAD ADDRESS SPACE PARAMETERS •••••.••..•••..••....•.•••. 10-10
LOAD CONTROL •.••••.••••...•.•••••••...••.•..•...••.•••.. 10-17
LOAD PSW .•.••..•••.•..••.••.•••••••......•.••.••..•••..• 10-17
LOAD REAL ADDRESS •••.•..•................•.•.....•...... 10-18
MOVE TO PRIMARY .••••••••.••...•.•••.••..•.••....•.••.... 10-19
MOVE TO SECONDARY •••••....••••••.•.•.••...•..•...••..... 10-19
MOVE WITH KEY ..•••.••••.•...••..•.••..•.•••.•••..••.•.•. 10-20
PROGRAM CALL .••.••••••••.•.••••.•••..•••••..•••..••..••. 10-22
PROGRAM TRANSFER ••.••..••..••...••.•..•................. 10-28
PURGE TLB •............••......•....................••... 10-33
RESET REFERENCE BIT EXTENDED ••••••.•..••...••.....••..•. 10-33
SET ADDRESS SPACE CONTROL •••..••••••.•••..•••..••...•... 10-33
SET CLOCK .••...•..••..••.••••.••..•..................•.. 10-34
SET CLOCK COMPARATOR .•••.•••.•••••••..•••..••..•••..••.. 10-35
SET CPU TIMER .••.••••••..••..•.•.••..••.•.•.......••.... 10-35
SET PREFIX .•..•.•...••.•.••.••.•••••.•...••..•••..••..•. 10-36
SET PSW KEY FROM ADDRESS .•••.••..•.•.....•...•.•...•.... 10-36
SET SECONDARY ASN .••.•••.•••••••.•••.•...•••••••••.••... 10-37
SET STORAGE KEY EXTENDED .••.••.•••.•...••••.••.•.••..••. 10-40
SET SYSTEM MASK .••.••••....••....•.•.•.•.•.....•.•..•... 10-40
SIGNAL PROCESSOR ..•......•.....•...•...•....•....•...... 10-41
STORE CLOCK COMPARATOR ••••••••.•.•••.•..•••.•..•.•••.••• 10-42
STORE CONTROL •.•••••••••••••••••.•••.•••.••.•..•.•••••.. 10-42
STORE CPU ADDRESS •••••••.•..••...•.•.•.•.••.•••..•....•. 10-43
STORE CPU ID .•.•••••••.•••..••.....•....••....•.•••...•. 10-43
STORE CPU TIMER .••••••.••••.•••.••.•.•...••..•.••.••.... 10-43
STORE PREFIX .••••••••.••••......••••.....•...•••..••.... 10-44
STORE THEN AND SYSTEM MASK .•...••......•....••....•...•. 10-44
STORE THEN OR SYSTEM MASK •.............................. 10-44
TEST BLOCK .•..••..••..••••••.•••.•••..••.•.•••..•.•...•• 10-45
TEST PROTECTION ..••.•.••......•.••.....•.••••.....•..... 10-47
TRACE ..•...••••..••.•.•..•••.•.•.•...•.•..•.....•..•..•. 10-48

This chapter includes all privileged and
semiprivileged instructions described in
this pUblication, except the
input/output instructions, which are
described in Chapter 14, "I/O
Instructions."

Privileged instructions may be executed
only when the CPU is in the supervisor
state. An attempt to execute a prlVl
leged instruction in the problem state
generates a privileged-operation excep
tion.

The semiprivileged instructions are
those instructions that can be executed
in the problem state when certain
authority requirements are met. An
attempt to execute a semiprivileged
instruction in the problem state when
the authority requirements are not met
generates a privileged-operation excep
tion or some other program-interruption

condition depending on the particular
requirement which is violated. Those
requirements which cause a privileged
operation exception to be generated in
problem state are not enforced when
execution is attempted in the supervisor
state.

The control instructions and their
mnemonics, formats, and operation codes
are listed in the figure "Summary of
Control Instructions." The figure also
indicates when the condition code is set
and the exceptional conditions in oper
and designations, data, or results that
cause a program interruption.

For those control instructions which
have special rules regarding the handl
ing of exceptional situations, a section
called "Special Conditions" is included.
This section indicates the type of
ending (suppression, nullification, or

Chapter 10. Control Instructions 10-1

completion) only for those exceptions
for which the ending may vary.

Note: In the detailed descriptions of
the individual instructions, the mnemon
ic and the symbolic operand designation
for the assembler language are shown
with each instruction. For LOAD PSW,
for example, LPSW is the mnemonic and
D2 (B 2) the operand designation.

Programming Note

The control instructions in the 370-XA
mode differ from those offered in the

10-2 370-XA Principles of Operation

System/370 mode in that the following
instructions, which are offered either
as standard or as optional in the
System/370 mode, are not offered in the
370-XA mode:

CONNECT CHANNEL SET
DISCONNECT CHANNEL SET
INSERT STORAGE KEY
READ DIRECT
RESET REFERENCE BIT
SET STORAGE KEY
WRITE DIRECT

The following additional instruction is
available only in the 370-XA mode:

TRACE

Mne- Op
Name monic Characteristics Code

DIAGNOSE DM P DM 83
EXTRACT PRIMARY ASN EPAR RRE Q SO R B226
EXTRACT SECONDARY ASN ESAR RRE Q SO R B227
INSERT ADDRESS SPACE CONTROL lAC RRE C Q SO R B224
INSERT PSW KEY IPK S Q G2 R B20B

INSERT STORAGE KEY EXTENDED ISKE RRE P B229
INSERT VIRTUAL STORAGE KEY IVSK RRE Q Al SO R B223
INVALIDATE PAGE TABLE ENTRY IPTE RRE P Al $ B221
LOAD ADDRESS SPACE PARAMETERS LASP SSE C P AS SP SO ESOO
LOAD CONTROL LCTL RS P A SP B7

LOAD PSW LPSW S l P A SP ¢ 82
LOAD REAL ADDRESS LRA RX C P Al R B1
~10VE TO PRIMARY tlVCP 55 C Q Al SO ¢ ST DA
MOVE TO SECONDARY NVCS 55 C Q Al SO ¢ ST DB
MOVE L.JITH KEY tlVCK SS C Q A ST D9

PROGRAM CALL PC S Q AT Zl T ¢ GM B R B218
PROGRAM TRANSFER PT RRE Q AT SP Z2 T ¢ B B228
PURGE TLB PTLB S P $ B20D
RESET REFERENCE BIT EXTENDED RRBE RRE C P B22A
SET ADDRESS SPACE CONTROL SAC 5 SP SO ¢ B219

SET CLOCK SCK S C P A SP B204
SET CLOCK COMPARATOR SCKC S P A SP B206
SET CPU TIMER SPT 5 P A SP B208
SET PREFIX SPX 5 P A SP $ 8210
SET PSW KEY FROM ADDRESS SPKA 5 Q 820A

SET SECONDARY ASN SSAR RRE AT Z3 T ¢ B225
SET STORAGE KEY EXTENDED SSKE RRE P ¢ B22B
SET SYSTEf1 MASK SSM S P A SP SO 80
SIGNAL PROCESSOR SIGP RS C P $ R AE
STORE CLOCK COMPARATOR STCKC S P A SP ST B207

STORE CONTROL STCTl RS P A SP ST 86
STORE CPU ADDRESS STAP S P A SP ST B212
STORE CPU ID STIDP 5 P A SP ST B202
STORE CPU TIMER STPT S P A SP ST B209
STORE PREFIX STPX S P A SP ST B211

STORE THEN AND SYSTEM MASK STNSM SI P A ST AC
STORE THEN OR SYSTEM MASK STosrl SI P A SP ST AD
TEST BLOCK TB RRE C P Al II $ GO R B22C
TEST PROTECTION TPROT SSE C P Al E501
TRACE TRACE RS P A SP T ¢ 99

Summary of Control Instructions (Part 1 of 2)

Chapter 10. Control Instructions 10-3

Explanation:

¢ Causes serialization and checkpoint synchronization
$ Causes serialization
A Access exceptions for logical addresses
Al Access exceptions; not all access exceptions may occur; see instruction

description for details
AS Access exceptions and ASH-translation-specification exception; see instruc

tion description for details
AT ASH-translation exceptions (which include addressing, ASH-translation speci~

fication, AFX translation, and ASX·translation)
B PER branch event
C Condition code is set
DM Depending on the model, DIAGNOSE may generate various program exceptions and

may change the condition code
GO Instruction execution includes the implied use of general register 0
G2 Instruction execution includes the implied use of general register 2
GM Instruction execution includes the implied use of general registers 2 and 14
II Interruptible instruction
l Hew condition code is loaded
P Privileged-operation exception
Q Privileged-operation exception for semiprivileged instructions
R PER general-register alteration event
RR RR instruction format
RRE RRE instruction format
RS RS instruction format
RX RX instruction format
S S instruction format
SI SI instruction format
SO Special-operation exception
SP Specification exception
SS SS instruction format
SSE SSE instruction format
ST PER storage-alteration event
T Trace exceptions (which include trace table, addressing, and low-address

protection)
Zl Additional exceptions and events for PROGRAM CAll (which include addressing,

EX-translation, lX-translation, PC-tran~lation-specification, and special
operation exceptions and space-switch event)

Z2 Additional exceptions and events for PROGRAM TRANSFER (which include ad
dressing, primary-authority, and special-operation exceptions and space
switch event)

Z3 Additional exceptions for SET SECONDARY ASN (which include addressing,
secondary authority, and special operation)

Summary of Control Instructions (Part 2 of 2)

DIAGNOSE

'83'

o 8 31

The CPU performs built-in diagnostic
functions, or other model-dependent
functions. The purpose of the diagnos
tic functions is to verify proper func
tioning of equipment and to locate
faulty components. Other model-
dependent functions may include
disabling of failing buffers, reconfig
uration of CPUs, storage, and channel
paths, and modification of control stor
age.

Bits 8-31 may be used as in the SI or RS

fy the particular diagnostic function.
The use depends on the model.

The executio:'l of the instruction may
affect the state of the CPU and the
contents of a register or storage
location, as well as the progress of an
I/O operation. Some diagnostic func
tions may cause the test indicator to be
turned on.

Condition Code: The code is unpredict-
able. ---

Program Exceptions:

Privileged operation
Depending on the model, other

exceptions may be recognized.

-_-£0_r'laa±_s4~~~_o_m_e_o_theJ'~_w_aY-t-----±_o_s"-fp""--,e",,-,c~i _-_________________________ _

10-4 370-XA Principles of Operation

Programming Notes

1. Since the instruction is not
intended for problem-program or
control-program use, DIAGNOSE has
no mnemonic.

2. DIAGNOSE, unlike other
instructions, does not follow the
rule that programming errors are
distinguished from equipment
errors. Improper use of DIAGNOSE
may result in false machine-check
indications or may cause actual
machine malfunctions to be ignored.
It may also alter other aspects of
system operation, including
instruction execution and channel
program operation, to an extent
that the operation does not comply
with that specified in this publi
cation. As a result of the
improper use of DIAGNOSE, the
system may be left in such a condi
tion that the power-on reset or
initial-microprogram-Ioading (IML)
function must be performed. Since
the function performed by DIAGNOSE
may differ from model to model and
between versions of a model, the
program should avoid issuing DIAG
NOSE unless the program recognizes
both the model number and version
code stored by STORE CPU 10.

EXTRACT PRIMARY ASN

EPAR [RREJ

'B226'

o 16 24 28 31

The 16-bit PASH, bits 16-31 of control
register 4, is placed in bit positions
16-31 of the general register designated
by the Rt field. Bits 0-15 of the
general register are set to zeros.

Bits 16-23 and 28-31 of the instruction
are ignored.

Special Conditions

The instruction must be issued with OAT
on; otherwise, a special-operation
exception is recognized. The special
operation exception is recognized 1n
both the problem and supervisor states.

In the problem state, the extraction
authority control, bit 4 of control
register 0, must be one; otherwise, a
privileged-operation exception is recog
nized. In the supervisor state, the

extraction-authority-control bit is not
examined.

The priority of recognition of program
exceptions for the instruction is shown
in the figure "Priority of Execution:
EXTRACT PRIMARY ASN."

Condition Code:
unchanged.-----

The code remains

Program Exceptions:

Privileged operation (extraction
authority control is zero in
problem state)

Special operation

1.-6. Exceptions with the same pri
ority as the priority of pro
gram-interruption conditions
for the general case.

7.A Access exceptions for second
instruction halfword.

7.B Special-operation exception
due to OAT being off.

8. Privileged-operation exception
due to extraction-authority
control, bit 4 of control reg
ister 0, being zero.

Priority of Execution: EXTRACT
PRIMARY ASH

EXTRACT SECONDARY ASN

ESAR [RREJ

'B227'

o 16 24 28 31

The 16-bit SASN, bits 16-31 of control
register 3, is placed in bit positions
16-31 of the general register designated
by the Rt field. Bits 0-15 of the
general register are set to zeros.

Bits 16-23 and 28-31 of the instruction
are ignored.

Special Conditions

The instruction must be issued with DAT
oni otherwise, a special-operation
exception is recognized. The special
operation exception is recognized in
both the problem and supervisor stat~s.

Chapter 10. Control Instructions 11-5

In the problem state, the extraction
authority control, bit 4 of control
register 0, must be one; otherwise, a
privileged-operation exception is recog
nized. In the supervisor state, the
extraction-authority-control bit is not
examined.

The priority of recognition of program
exceptions for the instruction is shown
in the figure "Priority of Execution:
EXTRACT SECONDARY ASN."

Condition Code:
unchanged.-----

The code remains

Program Exceptions:

Privileged operation (extraction
authority control is zero in
problem state)

Special operation

1.-6. Exceptions with the same pri
ority as the priority of pro
gram interruption conditions
for the general case.

7.A

7.B

8.

Access exceptions for second
instruction halfword.

Special-operation exception
due to DAT being off.

Privileged-operation exception
due to extraction-authority
control, bit 4 of control
register 0, being zero.

Priority of Execution: EXTRACT
SECONDARY ASN

INSERT ADDRESS SPACE CONTROL

lAC [RRE]

'B224'

o 16 24 28 31

The address-space-control bit, bit 16 of
the current PSW, is placed in bit posi
tion 23 of the general register desig
nated by the R1 field. Bits 16-22 of
the register are set to zeros, and bits
0-15 and 24-31 of the register remain
unchanged. The address-space-control
bit is also used to set the condition
code.

Bits 16-23 and 28-31 of the instruction"
are ignored.

10-6 370-XA Principles of Operation'

Special Conditions

The instruction must be issued with DAT
on; otherwise, a special-operation
exception is recognized. The special
operation exception is recognized 1n
both the problem and supervisor states.

In the problem state, the extraction
authority control, bit 4 of control
register 0, must be one; otherwise, a
privileged-operation exception is recog
nized. In the supervisor state, the
extraction-authority-control bit is not
examined.

The priority of recognition of program
exceptions for the instruction is shown
in the figure "Priority of Execution:
INSERT ADDRESS SPACE CONTROL."

Resulting Condition Code:

o
1
2
3

PSW bit 16 is zero
PSW bit 16 is one

Program Exceptions:

Privileged operation (extraction
authority control is zero in
problem state)

Special operation

1.-6. Exceptions with the same pri
ority as the priority of pro
gram interruption conditions
for the general case.

7.A Access exceptions for second
instruction halfword.

7.B Special-operation exception
due to DAT being off.

8. Privileged-operation exception
due to extraction-authority
control, bit 4 of control
register 0, being zero.

Priority of Execution: INSERT ADDRESS
SPACE CONTROL

Programming ~otes

1. Bits 16-~2 of the general register
designated by the R1 field are
reserved for. expansion for use with
possible future facilities. The
program should not depend on these
bits being set to zero. Similarly,
condition codes 2 and 3 may be set
as a result of future facilities.

2. INSERT ADDRESS SPACE CONTROL and
SET ADDRESS SPACE CONTROL are
defined to operate on the third
byte of a general register so that
the address-space-control bit can
be saved in the same general regis
ter as the PSW key, which is placed
in the fourth byte of general
register 2 by INSERT PSW KEY.

INSERT PSW KEY

IPK [S]

'B20B' 1////////////////1

o 16 31

The four-bit PSW-key, bits 8-11 of the
current PSW, is inserted in bit posi
tions 24-27 of general register 2, and
bits 28-31 of that register are set to
zeros. Bits 0-23 of general register 2
remain unchanged.

Bits 16-31
ignored.

of the

Special Conditions

instruction are

In the problem state, the extraction
authority control, bit 4 of control
register 0, must be one; otherwise, a
privileged-operation exception is recog
nized. In the supervisor state, the
extraction-authority-control bit is not
examined.

Condition Code: The code remains
unchanged.

Program Exceptions:

Privileged operation (extraction
authority control is zero in
problem state)

INSERT STORAGE KEY EXTENDED

ISKE [RRE]

'B229'

o 16 24 28 31

The storage key for the block that is
addressed by the contents of the general
register designated by the R2 field is
inserted in the general register desig
nated by the R t field.

Bits 16-23
ignored.

of the instruction are

In 24-bit addressing mode, bits 8-19 of
the register designated by the R2 fi lId
specify a block of 4K bytes in rtal
storage, and bits 0-7 and 20-31 of the
register are ignored. In 31 bit
addressing mode, bits 1-19 of the regis
ter designated by by R2 field specify a
block of 4K bytes in real storage, and
bits 0 and 20-31 of the register are
ignored.

The address designating the storage
block, being a real address, 1S not
subject to dynamic address translation.
The reference to the storage key is not
subject to a protection exception.

The seven-bit storage key is inserted in
bit positions 24-30 of the register
designated by the R t field, and bit 31
is set to zero. The contents of bit
positions 0-23 of the register remain
unchanged.

Condition Code:
unchanged.-----

Program Exceptions:

The code

Addressing (operand 2)
Privileged operation

INSERT VIRTUAL STORAGE KEY

[RRE]

'B223'

remains

o 16 24 28 31

The storage key for the location desig
nated by the virtual address in the
general register designated by the R2
field is inserted in the general regis
ter designated by the Rt field.

Bits 16-23
ignored.

of the instruction are

Selected bits of the register designated
by the R2 field are used as a virtual
address. In the 24-bit addressing mode,
the address is designated by bits 8-31
of the register, and bits 0-7 are
ignored. In the 31-bit addressing mode,
the address is designated by bits 1-31,
and bit 0 is ignored.

The address is a virtual address and is
subject to the address-space-control
bit, bit 16 of the current PSW. In the
primary-space mode, the address is
treated as a primary virtual address; in
the secondary-space mode, the address is
treated as a secondary virtual address.
The reference to the storage key is not
subject to a protection exception.

Chapter 10. Control Instructions 10-7

Bits 0-4 of the storage key, which are
the access-control bits and the fetch
protection bit, are placed in bit posi
tions 24-28 of the register designated
by the R t field, with bits 29-31 set to
zeros. The contents of bit positions
0-23 of the register remain unchanged.
The change and reference bits in the
storage key are not inspected. The
change bit is not affected by the opera
tion. The reference bit, depending on
the model, mayor may not be set to one
as a result of the operation.

The following diagram shows the storage
key and the register positions just
described.

o

Special Conditions

Storage Key
for the
Location

IACC IFIRlcl

"eros
'" I

,..------tj '"

24 28 31

The instruction must be issued with DAT
on; otherwise, a special-operation
exception is recognized.

In the problem state, the extraction
authority control, bit 4 of control
register 0, must be one; otherwise, a
privileged-operation exception is recog
nized. In the supervisor state, the
extraction-authority-control bit is not
examined.

The priority of recognition of program
exceptions for the instruction is shown
in the figure "Priority of Execution:
INSERT VIRTUAL STORAGE KEY."

Condition Code: Unchanged.

Program Exceptions:

Access (except for protection,
address specified by R2)

Privileged operation (extraction
authority control is
problem state)

Special operation

zero

10-8 370-XA Principles of Operation

in

1.-6. Exceptions with the same pri
ority as the priority of pro
gram interruption conditions
for the general case.

7.A Access exceptions for second
instruction halfword.

7.B Special-operation exception due
to DAT being off.

8. Privileged-operation exceptit'n
due to extraction-authority
control, bit 4 of control reg
ister 0, being zero.

9. Access exceptions except for
protection.

Priority of Execution: INSERT VIRTUAL
STORAGE KEY

Programming Note

Since all bytes in a 4K-byte block are
associated with the same page and the
same storage key, bits 20-31 of the
general register specified by R2 essen
tially are ignored.

INVALIDATE PAGE TABLE ENTRY

IPTE [RREl

'B221'

o 16 24 28 31

The designated page-table entry ;s
invalidated, and the translation
lookaside-buffers (TLBs) in all CPUs in
the configuration are cleared of the
associated entries.

The contents of the register designated
by the R t field have the format of a
segment-table entry with only the page
table origin used. The contents of the
register designated by the R2 field have
the format of a virtual address with
only the page index used. The contents
of fields that are not part of the
page-table origin or page index are
ignored.

Graphically, the contents of the regis
ters just described are as follows:

Page-Table Origin

o 1 26 28 31

o 1 12 20 31

The page-table origin and the page index
designate a page-table entry, following
the dynamic-address-translation rules
for page-table lookup. The page-table
origin is treated as a 31-bit address,
and the addition is performed using the
rules for 31-bit arithmetic, regardless
of the setting of the addressing mode,
specified by bit 32 of the current PSW.
Carries into bit position 0 as a result
of the addition of the page index and
page-table orlgln are ignored. The
address formed from these two components
is a real address. The page-invalid bit
of this page-table entry is set to one.
During this procedure, no page-table
length check is made, and the page-table
entry is not inspected for availability
or format errors. Additionally, the
page-frame real address contained in the
entry is not checked for an addressing
exception.

The entire page-table entry is fetched
concurrently from storage. Subsequently
the byte containing the page-invalid bit
is stored. The fetch access to the
page-table entry is subject to key
controlled protection, and the store
access is subject to key-controlled
protection and low-address protection.
No access by another CPU is permitted to
the byte location between the moment the
byte is fetched and the moment the byte
is stored.

A serialization function is performed on
the CPU which executes this instruction.
The CPU 'operati on is delayed unti I all
previous storage accesses by this CPU
have been completed, as observed by
other CPU and channel programs, and then
the page-table entry is fetched. No
subsequent instructions or their oper
ands are accessed by this CPU until the
execution of this instruction is
completed.

If successful in setting the page
invalid bit to one, this CPU clears
selected entries from its TLB and
signals all CPUs in the configuration to
clear selected entries from their TLBs.
Each TLB is cleared of at least those
entries that have been formed using all
of the following:

•

•

The page-table origin specified by
the first operand

The page index specified by the
second operand

• The P3ge-frame real address
contained in the designated page
table entry

The execution of INVALIDATE PAGE TABLE
ENTRY is not completed on the CPU which
executes it until (1) all entries corre
sponding to the specified parameters
have been cleared from the TLB on this
CPU and (2) all other CPUs in the
configuration have completed any storage
accesses, including the updating of the
change and reference bits, by using TLB
entries corresponding to the specified
parameters.

Special Conditions

When bit positions 8-12 of control
register 0 contain an invalid code, a
translation-specification exception is
recognized. The exception is recognized
regardless of whether DAT is on or off.

The operation is suppressed on all
addressing and protection exceptions.

Condition Code:
unchanged.---

Program Exceptions:

The code remains

Addressing (page-table entry)
Privileged operation
Protection (fetch and store, page

table entry, key-controlled
protection and low-address
protection)

Translation specification (bits
8-12 in control register 0
only)

Programming Notes

1. The selective clearing of entries
may be implemented in different
ways, depending on the model, and,
in general, more entries may be
cleared than the mlnlmum number
required. Some models may clear
all entries which contain the spec
ified page-frame real address.
Others may clear all entries which
contain the specified page index,
and some implementations may clear
precisely the minimum number of
entries required. Therefore, in
order for a program to run on all
models, the program should not take
advantage of any properties
obtained by a less selective clear
ing on a particular model.

2. The clearing of TLB entries may
make use of the page-frame real
address in the page-table entry.
Therefore, if the page-table entry,

Chapter 10. Control Instructions 10-9

when in the attached state, ever
contained a page-frame real address
that is different from the current
value, copies of the previous
values may remain in the TLB.

3. INVALIDATE PAGE TABLE ENTRY cannot
be safely used to update a shared
location in main storage if the
possibility exists that a channel
program may also be updating the
location.

4. The address of the page-table entry
for INVALIDATE PAGE TABLE ENTRY is
a 31-bit real address, and the
address arithmetic is performed by
following the normal rules for
31-bit address arithmetic with
wraparound at 2 31 - 1. Contrast
this with implicit translation and
the translation for LOAD REAL
ADDRESS, both of which, depending
on the model, may treat addresses
of DAT-table entries as either real
or absolute and may result either
in wraparound or in an addressing
exception when a carry occurs into
bit position O. Accordingly, the
DAT tables should not be specified
to wrap from maximum storage
locations to location 0 and should
not be placed at storage locations
whose real and absolute addresses
are different.

LOAD ADDRESS SPACE PARAMETERS

LASP [SSE]

'"-__ 'E_5_00_'_--LI_B_t-J...-1 ~, I B. I ~:J
o 16 20 32 36 47

The contents of the doubleword at the
first-operand location contains values
to be loaded into control registers 3
and 4, including a secondary ASN and a
primary ASH. Execution of the instruc
tion consists in performing four major
steps: PASN translation, SASN trans
lation, SASN authorization, and
control-register loading. Each of these
steps mayor may not be performed,
depending on the outcome of certain
tests and on the setting of bits 29-31
of the second-operand address. These
steps, when successful, obtain addi
tional values, which are loaded into
control registers 1, 5, and 7. When the
steps are not successful, no control
registers are changed, and the reason is
indicated in the condition code.

The doubleword first operand contains a
PSW-key mask (PKM), a secondary ASH
(SASH), an authorization index (AX), and
a primary ASH (PASH). The primary ASH
is translated by means of the address
space tables to obtain a PSTD, LTD, and,

10-10 370-XA Principles of Operation

optionally, an AX. The secondary ASH is
translated by means of the address-space
tables to obtain an SSTD, and,
optionally, an authority check is made
to ensure that the new AX is authorized
to establish the new SASH.

The doubleword at the first-operand
location has the following format:

PKM-d SASH-d AX-d PASH-d

o 16 32 48 63

The "d" stands for designated doubleword
and is used to distinguish these fields
from other fields with similar names
which are referred to in the definition.
The current contents of the correspond
ing fields in the control registers are
referred to as PKM-old, SASH-old, etc.
The updated contents of the control
registers are referred to as PKM-new,
SASN-new, etc.

The second-operand address is not used
to address data; instead, the rightmost
three bits are used to control portions
of the operation. The remainder of the
second-operand address is ignored. Bits
29-31 of the second-operand address are
used as folloa..ls:

Function Specified
in Second Operand

Bit When Bit Is Zero When Bit Is One

29 ASH translation ASH translation
performed only performed.*
when new ASH and
old ASH are dif-
ferent.

30 Use AX associ- Use AX from
ated with PASH. first operand.

31 SASH authoriza- SASN authoriza-
tion performed.* tion not per-

formed.

* SASN translation and SASH authori-
zation are performed only when
SASH-d is not equal to PASH-d.
When SASH-d is equal to PASH-d,
the SSTD is loaded from the PSTD,
and no authorization is performed.

The operation of LOAD ADDRESS SPACE
PARAMETERS is depicted in the figure
"Execution of LOAD ADDRESS SPACE PARAME
TERS."

PASH Translation

In the PASH translation process, the
PASN-d is translated by means of the ASH
first table and the ASH second table.

The STD and LTD fields and, optionally,
the AX field, obtained from the ASN
second-table entry are subsequently used
to update the corresponding control
registers.

When bit 29 of the second-operand
address is one, PASN translation is
always performed. When bit 29 is zero,
PASN translation is performed only when
PASN-d is not equal to PASN-old. When
bit 29 is zero and PASN-d is equal to
PASN-old, the PSTD-old and lTD-old are
left unchanged in the control registers
and become the PSTD-new and LTD-new,
respectively. In this case, if bit 30
i s zero, then the AX-old is left
unchanged in the control register and
becomes the AX-new.

The PASN translation follows the normal
rules for ASH translation, except that
the invalid bits, bit 0 in the ASN
first-table entry and bit 0 in the ASN
second-table entry, when ones, do not
result in an ASN-translation exception,
and the space-switch-event-control bit
in the ASN-second-table entry, when one,
does not result in a space-switch event.
When either of the invalid bits is one,
condition code 1 is set. When the ASN
second-table entry is valid and either
the current space-switch-event-control
bit in control register 1 is one or the
space-switch-event-control bit in the
ASH-second-table entry is one, condition
code 3 is set. When condition code 1 or
3 is set, the control registers remain
unchanged.

The contents of the AX, STD, and LTD
fields in the ASN-second-table entry
which is accessed as a result of the
PASN translation are referred to as
AX-p, STD-p, and LTD-p, respectively.

SASN Translation

In the SASN-translation process, the
SASN-d is translated by means of the ASN
first table and the ASN second table.
The STD field obtained from the ASN
second-table entry is subsequently used
to update the secondary-segment-table
designation (SSTD) in control register
7. The ATD and ATl fields obtained are
used in the SASN authorization, if it
occurs.

SASN translation is performed only when
SASN-d is not equal to PASN-d. When
SASN-d is equal to PASN-d, the SSTD-new
is set to the same value as PSTD-new.
When SASN-d is equal to SASN-old, bit 29
(force ASN translation) is zero, and bit
31 (skip SASN authorization) is one,
then SASN translation is not performed,
and SSTD-old becomes SSTD-new.

The SASN translation follows the normal
rules for ASN translation, except that

the invalid bits, bit 0 in the ASN
first-table entry and bit 0 in the ASN
second-table entry, when ones, do not
result in an ASN-translation exception.
When either or both of the invalid bits
are ones, condition code 2 is set, and
the control registers remain unchanged.

The contents of the STD, ATD, and ATl
fields in the ASN-second-table entry
which is accessed as a result of the
SASN translation are ref~rred to as
STD-s, ATD-s, and ATl-s, respectively.

SASN Authorization

SASN authorization is performed when bit
31 of the second-operand address is zero
and SASN-d is not equal to PASN-d. When
SASN-d is equal to PASN-d or when bit 31
of the second-operand address is one,
SASN authorization is not performed.

SASN authoriz.3tion is performed by using
ATD-s, ATl-s , and the intended value for
AX-new. When bit 30 of the second
operand address is zero and PASN trans
lation was performed, the intended value
for AX-new is AX-p. When bit 30 of that
address is zero and PASN translation was
not performed, the AX is not changed,
and AX-new is the same as AX-old. When
bit 30 of that address is one, the
intended value for AX-new is AX-d. SASN
authorization follows the normal rules
for secondary authorization, except
that, if the SASH is not authorized,
condition code 2 is set, and none of the
control registers are updated.

Control-Register loading

When the PASN-translation, SASN
translation, and SASN-authorization
functions, if called for in the opt~ra
ti on, are performed wi thout encountet'i ng
any exceptions, the operation is
completed by replacing the contents of
control registers 1, 3, 4, 5, and 7 wlth
the new values, and condition code 0 is
set. The control registers are loaded
as follows:

The PSW-key-mask and SASN fields in
control register 3 are replaced by the
PKM-d and SASN-d fields from the first
operand location.

The PASN, bits 16-31 of control register
4, is replaced by the PASN-d field from
the first-operand location.

The authorization index,
control register 4, is
follows:

bits 0-15
replaced

of
as

When bit 30 of the second-operand
address is one, from AX-d.

Chapter 10. Control Instructions 10-11

• When bit 30 of the second-operand
address is zero and PASN trans
lation is performed, from AX-p.

• When bit 30 of the second-operand
address is zero and PASN trans
lation is not performed, the
authorization index is not changed.

The primary-segment-table designation in
control register 1 and the linkage-table
designation in control register 5 are
replaced as follows:

•

•

When PASH translation is performed,
the primary-segment-table designa
tion in control register 1 and the
linkage-table designation in
control register 5 are replaced
from the STD-p and LTD-p fields,
re~pectively, which are obtained
during PASH translation.

When PASH translation is not
performed, the primary-segment
table-designation and linkage
table-designation fields remain
unchanged.

The contents of the s~condary-segment
table designation in control register 7
are replaced as follows:

•

•

When SASH-d equals PASH-d, by the
new contents of control register 1,
the primary-segment-table desig
nation.

When SASH translation is performed,
by the contents of the SSTD-s.

When SASN-d does not equal PASH-d and
SASN translation is not performed, the
secondary-segment-table designation re
mains unchanged.

When PASN translation is called for and
cannot be completed because bit 0 is one
in either the ASH-first-table or the
ASN-second-table entries, condition code
1 is set, and the control registers are
not changed.

When (1) PASN translation is called for
and completed and (2) either the current
space-switch-event-control bit, bit 0 of
control register 1 is one or the space-

10-12 370-XA Principles of Operation

switch-event-control bit in the ASH
second-table entry is one, condition
code 3 is set, and the control registers
are not changed.

When SASH translation is called for and
the translation cannot be completed
because bit 0 is one in either the ASH
first-table or ASH-second-table entries,
or because SASH authorization is called
for and the SASH is not authorized,
condition code 2 is set, and the control
registers are not changed.

Special Conditions

The instruction can be executed only
when the ASH-translation control, bit 12
of control register 14, is one. If the
ASN-translation-control bit is zero, a
special-operation exception is recog
nized.

The first operand must be designated on
a doubleword boundary; otherwise, a
specification exception is recognized.

The operation is suppressed on all
addressing and protection exceptions.

The figures "Summary of Actions: LOAD
ADDRESS SPACE PARAMETERS" and "Priority
of Execution: LOAD ADDRESS SPACE PARAM
ETERS" summarize the functions of the
instruction and the priority of recogni
tion of exceptions and condition codes.

Resulting Condition Code:

o
1

2

3

Translation and authorization
complete; parameters loaded
Primary ASH not available;
parameters not loaded
Secondary ASH not available or
not authorized; parameters not
loaded
Space-switch event specifiedj
parameters not loaded

Program Exceptions:

Access (fetch, operand 1)
Addressing (ASN-first-table entry,

ASH-second-table entry, author
ity-table entry)

ASH-translation specification
Privileged operation
Special operation
Specification

1.-6. Exceptions with the same priority as the priority of program-
interruption conditions for the general case.

7.A Access exceptions for second and third instruction halfwords.

7.B.l Privileged-operation exception.

7.B.2 Special-operation exception due to the ASN-translation control,
bit 12 of control register 14, being zero.

8. Specification exception.

9. Access exceptions for the first operand.

10. Execution of PASN translation (when performed).

10.1 Addressing exception for access to ASN-first-table entry.

10.2 Condition code 1 due to I bit (bit 0) in ASH-first-table entry
having the value one

10.3 ASH-translation-specification exception due to invalid ones (bits
28-31) in ASN-first-table entry.

10.4 Addressing exception for access to ASH-second-table entry.

10.5 Condition code 1 due to I bit (bit 0) in ASH-second-table entry
having the value one.

10.6 ASH-translation-specification exception due to invalid ones (bits
30, 31, 60-63) in ASN-second-table entry.

10.7 Condition code 3 due to either the old or new space-switch-event
control bit having the value one.

11. Execution of SASH translation (when performed).

11.1 Addressing exception for access to ASH-first-table entry.

11.2 Condition code ·2 due to I bit (bit 0) in ASN-first-table entry
having the value one.

11.3 ASH-translation-specification exception due to invalid ones (bits
28-31) in ASH-first-table entry.

11.4 Addressing exception for access to ASH-second-table entry.

11.5 Condition code 2 due to I bit (bit 0) in ASH-second-table entry
having the value one.

11.6 ASH-translation-specification exception due to invalid ones (bits
30, 31, 60-63) in ASH-second-table entry.

12. Execution of secondary authorization (when perfo,'med).

12.1 Condition code 2 due to authority-table entry being outside table.

12.2 Addressing exception for access to authority-table entry.

12.3 Condition code 2 due to S bit i.n authority-table entry being zero.

Priority of Execution: LOAD ADDRESS SPACE PARAMETERS

Chapter 1~. Control Instructions 10-13

Second-
Operand-
Address

PASH-d Bits* PASH Result Field
Equals Translation
PASH-old 29 30 Performed PSTD-new AX-new LTD-new PKM";'new SASH-new PASN-new

Yes 0 0 No PSTD-old AX-old LTD-old PKM-d SASN-d PASN-d
Yes 0 1 Ho PSTD-old AX-d LTD-old PKM-d SASH-d PASN-d
Yes 1 0 Yes STD-p AX-p lTD-p PKM-d SASH-d PASN-d
Yes 1 1 Yes STD-p AX-d LTD-p PKM-d SASH-d PASN-d
Ho - 0 Yes STD-p AX-p lTD-p PKM-d SASH-d PASN-d
Ho - 1 Yes STD-p AX-d LTD-p PKM-d SASH-d PASN-d

Summary of Actions: lOAD ADDRESS SPACE PARAMETERS (Part 1 of 2)

Second-Ope rand-
SASH-d SASH-d Address Bits* SASH SASN
Equals Equals Translation I\'uthor i zat ion R£5Ult Field
PASN-d SASN-old 29 31 Performed PerformedH SSTD-new

Yes - - - Ho Ho PSTD-new
No Yes 0 1 Ho No SSTD-old
No Yes 1 1 Yes Ho STD-s
Ho Yes - 0 Yes Yes STD-s
Ho No - 1 Yes No STD-s
Ho No - 0 Yes Yes STD-s

Explanation:

- Action in this case is the same regardless of the outcome of this
comparison or of the setting of this bit.

n SASH authorization is performed using ATO-s, ATl-s, and AX-new.

* Second-operand-address bits:
29 Force ASH translation
30 Use AX from first operand
31 Skip secondary authority test

Summary of Actions: LOAD ADDRESS SPACE PARAMETERS (Part 2 of 2)

Programming Notes

1. Bits 29 and 31 in the second
operand address are intended prima
rily to provide improved
performance for those cases where
the associated action is unneces
sary.

When bit 29 is set to zero, the
action of the instruction is based
on the assumption that the current
values for PSTD-old, lTD-old, and
AX-old are consistent with PASH-old
and that SSTD-old is consistent
with SASH-old. When this is not
the case, bit 29 should be set to
one.

Bit 31, when one, eliminates the
SASH-authorization test. The

10-14 370-XA Principles of Operation

program may be able to determine in
certain cases that the SASH is
authorized, either because of prior
use or because the AX being loaded
is authorized to access all address
spaces.

2. The SASH-translation and SASH
authorization steps are not
performed when SASH-d is equal to
PASH-d. This is consistent with
the action in SET SECOHDARY ASH to
current primary (SSAR-cp), which
does not perform the translation or
ASH authorization.

3. See the figure "Summary of Abbrevi
ations" for a listing of abbrevia
tions used in this instruction
description.

Abbreviation for
Control-
Register Previous Subsequent

Number.Bit Contents Contents

1.0-31 PSTD-old PSTD-new
3.0-15 PKM-old PKf'l-new
3.16-31 SASN-old SASN-new
4.0-15 AX-old AX-new
4.16-31 PASN-old PASN-new
5.0-31 LTD-old LTD-new
7.0-31 SSTD-old SSTD-new

First-Operand
Bit Positions Abbreviation

0-15 PKM-d
16-31 SASN-d
32-47 AX-d
48-63 PASN-d

Abbreviation Used for
the Field When Accessed

as Part of
Field in ASN-
Second-Table PASN SASN

Entry Translation Translation

1-29 - ATO-s
32-47 AX-p -
48-59 - ATL-s
64-95 STD-p STD-s
96-127 LTD-p -

Exelanation:

- The field is not used in this
case.

Summary of Abbreviations

Chapter 10. Control Instructions 10-15

Fetch op-l doubleword

.J,
.J,

PASN-d = PASN-old
lASH ? I

No
AND Ho available

Op-2-addr bit 29 = 0 I ? Yes

~11 ~ Cond codel

.J,

Yes
.J, Either old or new Yes

space-switch-event-
PSTD-old -~ PSTD-tmp control bit = 1 ?

1----+13 ~ Cone Code I
LTD-old

AX-old

Yes I

-~ LTD-tmp
-~ AX-tmp

I
1

SA - = - '1 I

SASN-d = SASN-old
AND

Op-2-addr bit 29 = 0 No
AND ~------~

Op-2-addr bit 31 = 1
?

Yes

I No
.J,

STD-p -~ PSTD-tmp
LTD-p -~ LTD-tmp

AX-p -~ AX-tmp

J

.J,

lASH ? I No
available

I Yes
.J,

PSTD-tmp-~ SSTD-tmp ISSTD-Old ~ SSTD-tmpl

IOP-2-addr bit 30 = 1 ?~
I Yes · I
.J, .J,

IAX-d -~ Ax-newl AX-tmp -~

I
.J,

AX-new

~OP-2-addr bit 31 = 0 ?I

I Yes
.J,

.J,

) 12 ~ Cond codel

I"--__ ~ Yes No
~~------~IAuthorized ?1~--------+)12 -~ Cond Codel

PSTD-tmp -~ PSTD-new PKM-d -~ PKM-new
LTD-tmp -~ LTD-new SASN-d -~ SASN-new

SSTD-tmp -~ SSTD-new PASN-d ~ PASN-new
~Io -~ Cond codel

Execution of LOAD ADDRESS SPACE PARAMETERS

10-16 370-XA Principles of Operation

LOAD CONTROL

LCTL [RS]

'B7'

o 8 12 16 20 31

The set of control registers starting
with the control register designated by
the R t field and ending with the control
register designated by the R3 field is
loaded from the locations designated by
the second-operand address.

The storage area from which the contents
of the control registers are obtained
starts at the location designated by the
second-operand address and continues
through as many storage words as the
number of control registers specified.
The control registers are loaded in
ascending order of their register
numbers, starting with the control
register designated by the R t field and
continuing up to and including the
control register designated by the R3
field, with control register 0 following
control register 15. The second operand
remains unchanged.

Special Conditions

The second operand must be designated on
a word boundary; otherwise, a specifica
tion exception is recognized.

Condition Code:
unchanged.---

Program Exceptions:

The code

Access (fetch, operand 2)
Privileged operation
Specification

Programming Notes

remains

1. To ensure that existing programs
run if and when new facilities
using additional control-register
positions are defined, only zeros
should be loaded in unassigned
control-register positions.

2. Loading of control registers on
some models may require a signif
icant amount of time. This is
particularly true for changes in
significant parameters. For exam
ple, the TLB may be cleared of
entries as a result of changing or
enabling the program-event
recording parameters in control
registers 9-11. Where possible,
the program should avoid loading

unnecessary control registers. In
loading control registers 9-11, the
model attempts to optimize for the
case when the bits of control
register 9 are zeros.

LOAD PSW

o 8 16 20

The current PSW is replaced
contents of the doubleword
location des~gnated by the
operand address.

31

by the
at the
second-

Bits 8-15 of the instruction are ig
nored.

A serialization and checkpoint
synchronization function is performed at
the beginning and also at the completion
of the operation. The CPU operation is
delayed until all previous storage
accesses by this CPU have been
completed, as observed by other CPU and
channel programs. All previous check
points, if any, are canceled, and the
results of all previous stores are
released, if held exclusive, to permit
channels and other CPUs to access the
results.

When the operation is completed, a
second serialization and checkpoint
synchronization function is performed,
as follows. The CPU operation is
delayed until all storage accesses due
to this instruction have been complet~d,
as observed by other CPU and chanr'el
programs. All previous checkpoints, if
any, for this instruction are canceled.

Special Conditions

The operand must be designated on a
doubleword boundary; otherwise, a spec
ification exception is recognized.

The value which is to be loaded by the
instruction is not checked for validity
befo re it i s loaded. However, i mme
diately after loading, a specification
exception is recognized and a program
interruption occurs when the newly load
ed PSW contains a zero in bit position
12, or the contents of bit positions 0,
2-4, 17, and 24-31 are not all zeros, or
bit position 32 contains a zero and the
contents of bit positions 33-39 are not
all zeros. In these cases, the opera
tion is completed, and the resulting
instruction-length code is zero.

Chapter 10. Control Instructions 10-17

The specification exception, which in
this case is listed as a program excep
tion in this instruction, is described
in the section "Early Exception Recogni
tion" in Chapter 6, Interruptions." It
may be considered as occurring early in
the process of preparing to execute the
following instruction.

The operation is suppressed on all
addressing and protection exceptions.

Condition Code: The code is set as
specified in the new PSW loaded.

Program Exceptions:

Access (fetch, operand 2)
Privileged operation
Specification

LOAD REAL ADDRESS

o 8 12 16 20 31

The real address corresponding to the
second-operand virtual address is placed
in the general register designated by
the R t field.

The virtual address specified by the X2 ,

B2 , and D2 fields is translated by means
of the dynamic-address-translation
facility, regardless of whether DAT is
on or off.

The translation is performed by using
the contents of control register 1 as a
segment-table designation when bit 16 of
the current PSW is zero or the contents
of control register 7 as a segment-table
designation when bit 16 of the current
PSW is one.

The translation is performed without the
use of the translation-lookaside buffer
(TlB). Sufficient zeros are appended on
the left of the resultant real address
to produce a 32-bit result, which is
then placed in the general register
designated by the Rt field. The trans
lated address is not inspected for
boundary alignment or for addressing or
protection exceptions.

The virtual-address computation is
performed according to the current
addressing mode, specified by bit 32 of
the current PSW.

The addresses of the segment-table entry
and page-table entry are treated as
31-bit addresses, regardless of the
current addressing mode specified by bit
32 of the current PSW. It is unpredict-

10-18 370-XA Principles of Operation

able whether the addresses of these
entries are treated as real or absolute
addresses. A carry into bit position 0
as a result of the addition done either
to compute the address of the s~gment
table entry or page-table entry may be
ignored or may result in an addressing
exception.

Condition code 0 is set when translation
can be completed, that is, when the
entry in each table lies within the
specified table length and its I bit is
zero.

When the I oit in the segment-table
entry is one, condition code 1 is set,
and the real address of the segment
table entry is placed in the register
designated by the Rt field. When the I
bit in the page-table entry is one,
condition code 2 is set, and the real
address of the page-table entry is
placed in the register designated by the
Rt field. When either the segment-table
entry or the page-table entry is outside
the table, condition code 3 is set, and
the register designated by the Rt field
contains the real address of the entry
that would have been fetched if the
length violation did not occur. In all
these cases, zeros are appended on the
left of the real address, and the 32-bit
result is placed in the register.

Special Conditions

A translation-specification exception is
recognized when bits 8-12 of control
register 0 contain an invalid code, or
the segment-table entry or page-talle
entry has the I bit off and has a format
error.

A carry into bit position 0 as a result
of the addition done either to compute
the address of the segment-table entry
or page-table entry may be ignored or
may result in an addressing exception.

The operation is suppressed on all
addressing exceptions.

Resulting Condition Code:

o T~anslation available
1 Segment-table entry invalid (I

bit is one)
2 Page-table entry invalid (I bit

is one)
3 Segment- or page-table length

exceeded

Program Exceptions:

Addressing (segment-table entry or
page-table entry)

Privileged operation
Translation specification

Programming Note

Caution must be observed in the
execution of LOAD REAL ADDRESS in a
multiprocessing configuration. Since
INVALIDATE PAGE TABLE ENTRY may turn on
the I bit in storage before causing the
corresponding entries in TLBs of other
CPUs to be cleared, the simultaneous
execution of LOAD REAL ADDRESS on this
CPU and INVALIDATE PAGE TABLE ENTRY on
another CPU may produce inconsistent
results. Because LOAD REAL ADDRESS
accesses the tables in storage, the
page-table entry may appear to be inval
id (condition code 2) even though the
corresponding TLB entry has not yet been
cleared, and the TLB entry may remain in
the TLB until the completion of INVALI
DATE PAGE TABLE ENTRY on the other CPU.
There is no guaranteed limit to the
number of instructions which may occur
between the completion of LOAD REAL
ADDRESS and the TLB being cleared of the
entry.

MOVE TO PRIMARY

[SS]

'DA' I R, I R, I B, I ~, B2 EJ
o 8 12 16 20 32 36 47

MOVE TO SECONDARY

MVCS DtCRt,Bt),D2CB2),R3 [SS]

'DB' I Rt I Rl I B t I ~, I B2 I ~:J
0 8 12 16 20 32 36 47

The first operand is replaced by the
second operand. One operand is in the
primary address space, and the other is
in the secondary address space. The
accesses to the operand in the primary
space are performed using the PSW key;
the accesses to the operand in the
secondary space are performed by using
the key specified by the third operand.

The addresses of the first and second
operands are virtual, one operand
address being translated by means of the
primary segment-table designation and
the other ,by means of the secondary
segment-table designation. Operand
address translation is performed by
ignoring the state of the address
space-control bit in the current PSW.

For MOVE TO PRIMARY, movement is to the
primary space from the secondary space.

The first-operand address is translated
using the primary segment table, and the
second-operand address is translated
using the secondary segment table.

For MOVE TO SECONDARY, movement is to
the secondary space from the primary
space. The first-operand address is
translated using the secondary segment
table, and the second-operand address is
translated using the primary segment
table.

Bit positions 24-27 of the general
register specified by the R3 field are
used as the secondary-space access key.
Bit positions 0-23 and 28-31 of the
register are ignored.

The contents of the general register
specified by the Rt field are a 32-bit
unsigned value called the true length.

Graphically, the contents of the general
registers just described are as follows:

True Length

o 31

o 24 28 31

The first and second operands are the
same length, called the effective
length. The effective length is equal
to the true length, or 256, whichever is
less. Access exceptions for the first
and second operands are recognized only
for that portion of the operand within
the effective length. When the effec
tive length is zero, no access
exceptions are recognized for the first
and second operands, and no movement
takes place.

Each storage operand is processed left
to right. The storage-operand
consistency rules are the same as for
MOVE CMVC) I except that when the oJ:1er
ands overlap in virtual or in real stor
age, the use of the common real-stor~)ge
locations is not necessarily recogniz~d.

As part of the execution of the instruc
tion, the value of the true length 1S
used to set the condition code. If the
true length 1 s 256 or less, i ncludi ng
zero, the' true length and effective
length are equal, and condition code 0
is set. If the true length is greater
than 256, the effective length is 256,
and condition code 3 is set.

For both MOVE TO PRIMARY and MOVE TO
SECONDARY, a serialization and check
point-synchronization function is
performed at the beginning and also at
the completion of the operation.

Chapter 10. Control Instructions 10-19

The CPU operation is delayed until all
previous storage accesses by this CPU
have been completed, as observed by
other CPU and channel programs. All
previous checkpoints, if any, are
canceled, and the results of all previ
ous stores are released, if held
exclusive, to permit other CPU and chan
nel programs to access the results.

When the operation is completed, a
second serialization and checkpoint
synchronization function is performed,
as follows. The CPU operation is
delayed until all storage accesses due
to this instruction have been completed,
as observed by other CPU and channel
programs. All previous checkpoints, if
any, for this instruction are canceled,
and the results of all stores for this
instruction are released, if held exclu
sive, to permit other CPU and channel
programs to access the results.

Special Conditions

Since the secondary space is accessed,
the operation is performed only when the
secondary-space control, bit 5 of
control register 0, is one and DAT is
on. When either the secondary-space
control is zero or DAT is off, a
special-operation exception is recog
nized. The special-operation exception
is recognized in both the problem and
supervisor states.

In the problem state, the operation is
performed only if the secondary-space
access key is valid, that is, if the
corresponding PSW-key-mask bit in
control register 3 is one. Otherwise, a
privileged-operation exception is recog
nized. In supervisor state, any value
for the secondary-space access key is
valid.

The priority of the recognition of
exceptions and condition codes is shown
1n the figure "Priority of Execution:
MOVE TO PRIMARY and MOVE TO SECONDARY."

Resulting Condition Code:

o True length less than or equal
to 256

1
2
3 True length greater than 256

Program Exceptions:

Access (fetch, primary virtual ad
dress operand 2, MVCSj fetch,
secondary virtual address, op
erand 2, MVCP; store, secondary
virtual address, operand 1,
MVCSj store, primary virtual
address, operand 1, MVCP)

10-20 370-XA Principles of Operation

Privileged operation (selected
PSW-key-mask bit is zero in
problem state)

Special operation

1.-6. Exceptions with the same pri
ority as the priority of pro
gram interruption conditions
for the general case.

7.A Access exceptions for second
and third instruction half
words.

7.B Special-operation exception due
to the secondary-space control,
bit 5 of control register 0,
being zero or to DAT being off.

8. Privileged-operation exception
due to selected PSW-key-mask
bit being zero in problem
state.

9. Completion due to length zero.

10. Access exceptions for operands.

Priority of Execution: MOVE TO PRIMARY
and MOVE TO SECONDARY

Programming Notes

1. MOVE TO ?RIMARY and MOVE TO SECOND
ARY can be used in a loop to move a
variable number of bytes of any
length. See the programming note
under MOVE WITH KEY.

2. MOVE TO PRIMARY and MOVE TO SECOND
ARY should be used only when move
ment is between different address
spaces. The performance of these
instructions on most models may be
significantly slower than MOVE WITH
KEY, MOVE (MVC), or MOVE LONG. In
addition, the definition of over
lapping operands for MOVE TO
PRIMARY and MOVE TO SECONDARY is
not compatible with the more
precise definitions for MOVE (MVC),
MOVE WITH KEY, or MOVE LONG.

MOVE WITH KEY

[55]

'D9' I R, I R, I B, I ~, B. ~~
o 8 12 16 20 32 36 47

The first operand is replaced by the
second operand. The fetch accesses to
the second-operand location are
performed using the key specified in the
third operand, and the store accesses to
the first-operand location are performed
using the PSW key.

Bit positions 24-27 of the general
register specified by the R3 field are
used as the source access key. Bit
positions 0-23 and 28-31 of the register
are ignored.

The contents of the general register
specified by the Rt field are a 32-bit
unsigned value called the true length.

Graphically, the contents of the general
registers just described are as follows:

True Length

o 31

R3 I////////////////////////\Key \////\

o 24 28 31

The first and second operands are the
same length, called the effective
length. The effective length is equal
to the true length, or 256, whichever is
less. Access exceptions for the first
and second operands are recognized only
for that portion of the operand within
the effective length. When the effec
tive length is zero, no access
exceptions are recognized for the first
and second operands, and no movement
takes place.

Each storage operand is processed left
to right. When the storage operands
overlap, the result is obtained as if
the operands were processed one byte at
a time and each result byte were stored
immediately after the necessary operand
byte was fetched. The storage-operand
consistency rules are the same as for
the MOVE (MVC) instruction.

As part of the execution of the instruc
tion, the value of the true length is
used to set the condition code. If the
true length is 256 or less, including
zero, the true length and effective
length are equal, and condition code 0
is set. If the true length is greater
than 256, the effective length is 256,
and condition code 3 is set.

Special Conditions

In the problem state, the operation is
performed only if the source access key
is valid, that is, if the corresponding
PSW-key-mask bit in control register 3

is one. Otherwise, a privileged
operation exception is recognized. In
superVlsor state, any value for the
source access key is valid.

The priority of the recognition of
exceptions and condition codes is shown
in the figure "Priority of Execution:
MOVE WITH KEY Instruction."

Resulting Condition Code:

o True length less than or equal
to 256

1
2
3 True length greater than 256

Program Exceptions:

Access (fetch, operand 2; store,
operand 1)

Privileged operation (selected
PSW-key-mask bit is zero in
prcbl:::7l stcte)

1.-6. Exceptions with the same pri
ority as the priority of pro
gram interruption conditions
for the general case.

7.A

8.

9.

10.

Access exceptions for second
and third instruction half
words.

Privileged-operation exception
due to selected PSW key mask
being zero in problem state.

Completion due to length zero.

Access exceptions for operands.

Priority of Execution: MOVE WITH KEY

Programming Notes

1. MOVE WITH KEY can be used in a loop
to move u variable number of bytes
of any length, as follows:

LOOP

END

LA
MVCK
BC
AR
AR
SR
B

RW,256
Dt(Rt,Bt),D2(B2),R3
8,END
B t , Rt.J
B:I' RW
R

"
RW

LOOP

2. The performance of MOVE WITH KEY on
most models may be significantly
slower than that of the MOVE (MVC)
and MOVE LONG instructions. There
fore, MOVE WITH KEY should not be

Chapter 10. Control Instructions 10-21

used if the key of the source and
the target are the same.

PROGRAM CAll

[S]

'B218'

o 16 20 31

A two-level lookup is performed to
locate an entry-table entry (ETE). The
ETE contains an authorization key mask;
an ASH; an entry parameter, which is
loaded into general register 4; and
information to update the PSW-key mask
in control register 3 and to replace the
problem-state bit, addressing bit, and
instruction address in the PSW. The
original contents of the control
register and the PSW fields are saved in
general registers 3 and 14.

The ETE also causes a space-switching
operation to occur if it specifies a
nonzero ASH. When the ETE specifies a
zero ASH, the operation is called
PROGRAM CAll to current primary (PC-cp);
when the ETE specifies a nonzero ASH,
the operation is called PROGRAM CAll
with space switching (PC-ss). When
space switching is specified, the new
PASH is loaded into control register 4
from the ETE and is used in a two-level
lookup to locate an ASH-second-table
entry (ASTE). From this ASTE, a new
PSTD, AX, and LTD are loaded into
control registers 1, 4, and 5, respec
tively. Whether or not space switching
is specified, the previous PASH and PSTD
are placed in the SASH and SSTD, respec
tively, and the previous PASH is saved
in general register 3.

PROGRAM CALL PC-Humber Translation

The second-operand address is not used
to address data; instead, the rightmost
20 bits of the address are used as a
program-call number and have the follow
ing format:

Second-Operand Address:

Program-Call Humber

\////////////1 LX EX

o 12 24 31

linkage Index (lX): Bits 12-23 of the
second-operand address are the linkage
index and are used to select an entry

10-22 370-XA Principles of Operation

from the linkage table designated by the
linkage-table designation in control
register 5.

Entry Index (EX): Bits 24-31 of the
second-operand address are the entry
index and are used to select an entry
from the entry table designated by the
linkage-table entry.

Bits 0-11 of the second-operand address
are ignored.

The linkage-table and entry-table lookup
process is depicted in part 1 of the
figure "Execution of PROGRAM CAll." The
detailed definition for this table
lookup process is in the section
"PC-Number Translation" in Chapter 5,
"Program Execution." The entry-table
entry has the following format:

AKM ASH I A I IA I pi
0 16 32 63

I PARM EKM 1/////////1

64 96 112 127

When bit 32 of the ETE is zero (24-bit
addressing mode), then bits 33-39 of the
ETE must be zeros; otherwise, a
PC-translation exception is recognized.

After the entry-table entry has been
fetched, if the current PSW specifies
the problem state, the current PSW-key
mask in control register 3 is tested
against the AKM field in the entry-table
entry to determine whether the program
is authorized to access this entry. The
AKM and PSW-key mask are AHDed, and if
the result is zero, a privileged
operation exception is recognized. When
PROGRAM CALL is executed in supervisor
state, the AKM field is ignored.

If the result of the AHD of the AKM and
the PSW-key mask is not zero, or if the
CPU is in the supervisor state, the
execution of the instruction continues.

The PSW-key mask, bits 0-15 of control
register 3, is placed in bit positions
0-15 of general register 3, and the
current PASH, bits 16-31 of control
register 4, is placed in bit positions
16-31 of general register 3.

The current PSTD, bits 0-31 of control
register 1, is placed in control regis
ter 7 to become the current SSTD.

The current PASH, bits 16-31 of control
register 4, is placed in bit positions
16-31 of control register 3 to become
the current ShSH.

Bits 32-62 of the current PSW (the
addressing bit and the updated instruc
tion address) are placed in bit posi-

tions 0-30 of general register 14. Bit
15 of the PSW (the problem-state bit) is
placed in bit position 31 of general
register 14.

Bits 32-62 of the ETE, with a zero
appended on the right, are placed in PSW
bit positions 32-63 (the addressing bit
and the instruction address). Bit 63 of
the ETE is placed in PSW bit position 15
(the problem-state bit).

Bits 64-95 of the ETE (the entry parame
ter) are loaded into general register 4.

Bits 96-111 of the ETE (the EKM) are
ORed with the PSW-key mask, bits 0-15 of
control register 3, and the result
replaces the PSW-key mask in control
register 3.

PROGRAM CALL to Current Primary (PC-cp)

If bits 16-31 of the ETE (the ASH) are
zeros, a PROGRAM CALL to current primary
(PC-cp) is specified, and the operation
is completed after performing those
actions as described above.

The PC-cp operation is depicted in parts
1 and 2 of the figure "Execution of
PROGRAM CALL."

PROGRAM CALL with Space Switching
(PC-ss) --

If the ASH in the ETE is nonzero, a
PROGRAM CALL with space switching
(PC-ss) instruction is specified, and
the ASH is translated by means of a
two-level table lookup.

The PC-ss operation is depicted in parts
1, 2 and 3 of the figure "Execution of
PROGRAM CALL." The PC-ss operation is
completed as follows:

Bits 16-25 of the ETE are used as a
10-bit AFX to index into the ASH first
table, and bits 26-31 are used as a
six-bit ASX to index into the ASN second
table specified by the AFX. The ASH
table-lookup process is described in the
section "ASH Translation" in Chapter 3,
"Storage." The exceptions associated
with ASH translation are collectively
called ASH-translation exceptions.
These exceptions and their priority are
described in Chapter 6, "Interruptions."

Bits 16-31 of the entry-table entry are
placed in bit positions 16-31 of control
register 4 as the new PASH.

Bits 64-95 of the ASH-second-table entry
(the STD) are loaded into control regis
ter 1 as the new PSTO.

Bits 32-47 of the ASH-second-table entry
(the AX) are loaded into bit positions
0-15 of control register 4 as the new
authorization index.

Bits 96-127 of the ASN-second-ta~le
entry (the L TO) are loaded into contt'ol
register 5 as the new linkage-table
designation.

PROGRAM CALL Serialization

For both the PC-cp and
a serialization and
ronization function is
beginning and also at
the operation.

PC-ss operations,
checkpoint-synch

performed at the
the completion of

The CPU operation is delayed until all
previous storage accesses by this CPU
have been completed, as observed by
other CPU and channel programs. All
previous checkpoints, if any, are
canceled, and the results of all previ
ous stores are released, if held
exclusive, to permit other CPU and chan
nel programs to access the results.

When the operation is completed, a
second serialization and checkpoint
synchronization function is performed,
as follows. The CPU operation is
delayed until all storage accesses due
to this instruction have been completed,
as observed by other CPU and channel
programs. All previous checkpoints, if
any, for this instruction are canceled.

Special Conditions

The instruction can be executed only
when the CPU is in primary-space mode
and the subsystem-linkage control, bit 0
of control register 5, is one. If the
CPU is in real mode or secondary-space
mode, or if the subsystem-linkage
control is zero, a special-operation
exception is recognized. In addition,
the PC-ss instruction can be executed
only when the ASH-translation control,
bit 12 of control register 14, is one.
If PC-ss is attempted with the ASH
translation control zero, a special
operation exception is recognized. The
special-operation exception is recog
nized in both the problem and supervisor
states.

When, for PC-55, the space-switch
event-control bit, bit 0 of control
register 1, is one either before or
after the execution of the instruction,
a space-switch-event program inter
ruption occurs after the operation is
completed. A space-switch-event program
interruption also occurs after the
completion of a PC-ss operation if a PER
event is reported.

Chapter 10. Control Instructions 10-23

The operation is suppressed on all
addressing exceptions.

The priority of recognition of program
exceptions for the instruction is shown
in the figure "Priority of Execution:
PROGRAM CALL."

Condition Code:
unchanged.-----

Program Exceptions:

The code remains

Addressing (linkage-table entry or

entry-table entry)
ASH translation (PC-ss only)
EX translation
LX translation
PC-translation specification
Privileged operation (AND of AKM

and PSW-key mask is zero in
problem state)

Space-switch event (PC-55 only)
Special operation
Trace

1.-6. Exceptions with the same priority as the priority of program
interruption conditions for the general case.

7.A Access exceptions for second instruction halfword.

7.B Special-operation exception due to OAT being off, the CPU
being in secondary-space mode, or the subsystem-linkage
control bit in control register 5 being zero.

8.A Trace exceptions.

8.B.1 LX-translation exception due to linkage-table entry being
outside table.

8.B.2 Addressing exception for access to linkage-table entry.

8.B.3 LX-translation exception due to I bit (bit 0) in linkage-table
entry having the value one.

8.B.5 EX-translation exception due to entry-table entry being out
side table.

8.B.6 Addressing exception for access to entry-table entry.

8.B.7 PC-translation-specification exception due to invalid combi
nation (bit 32 is zero and bits 33-39 not zeros) in entry
table entry.

8.B.8 Privileged-operation exception due to a zero result from
ANDing PSW-key mask and AKM in problem state.

8.B.9 Special-operation exception due to the ASH-translation con
trol, bit 12 of control register 14, being zero. (PC-ss only)

8.B.10 ASH-translation exceptions. (PC-ss only)

9. Space-switch event. (PC-ss only)

Priority of Execution: PROGRAM CALL

10-24 370-XA Principles of Operation

CR5

R I ETO ETl

(x64)

PROGRAM CAll Instruction

'B218' IB21 D2

I Operand-2
'" Address

G Entry Table

-t~I--------_____ ~_~---I
R AKM IA P PARM ////////

R: Address is real

Execution of PROGRAM CAll (Part 1 of 3): PC-Humber Translation

Chapter 10. Control Instructions 10-25

"Entry-Table Entry

f AKM I ASH I A I IA Ipi PARM I EKM 1////////1

I I
.J,

GR4
afterl PARM I

0
I

.J, .J, '" .J, CR1 I PSW [/1[/
IAI 10 1

beforel PSTD
after / P / IA

I .J,
.J,

HD ~PrivOp CR7 I if zero in afterl SSTD .,.. problem state

CR3 CR4
beforel PKM I SASH I beforel AX I PASH .J,

I I .J,
.(-I I PSW [/ Ipi /

fA I 10 1
.J, .J, before / IA

I /
R

r-,-------
.J,

CR3 -------~~------~
afterl PKM SASH .J, .J, .J,

GR14 ~~~-----~~
aft e r L-I A I __ I_A _----L.I--'p I

.J,

GR3 r------~~------~
afterl PKM PASH

.J,

I Yes B H_O __ I
.J, '" PC-cp PC-ss

Instruction ASH trans-
complete lation

Execution of PROGRAM CAll (Part 2 of 3): PC-cp and PC-ss

10-26 370-XA Principles of Operation

CR14

Entry-Table Entry

IA PARM EKM 1////////1

~-------------~.--~---,
I
.J,

(x4) (x16)

~ ASH F;~st Table

~ L t---r-------r--

R I ASTO o
(x16)

ASH Second Table

R I I ATO 10 1 AX I ATllol

~
CRI
afterl PSTO

R: Address is real

STO I lTO

!
I CR4 I afterl AX

I

CR5 r----------------~
after I l TO

Execution of PROGRAM CAll (Part 3 of 3): ASH Translation for PC-ss

Chapter 10. Control Instructions 10-27

PROGRAM TRANSFER

[RRE]

'B228' \////////1 Rt

o 16 24 28 31

The contents of the general register
specified by the Rt field are used to
update the PSW-key mask and the PASN.
The contents of the register specified
by the R2 field are used to update the
problem-state bit, addressing-mode bit,
and instruction address in the current
PSw.

Bits 16-23
ignored.

of the

The format of the two
fied by the Rt and
follows:

PSW-Key Mask

o 16

instruction are

registers speci
R2 fields is as

ASN

31

R21 ~A_.~I ______ I_n_s_t_r_u_c_t __ i_o_n __ A_d_d_r_e_s_s ______ ~I_p~1
o 1 31

When the contents of bit positions 16-31
of the general register specified by the
Rt field are equal to the current PASN,
the operation is called PROGRAM TRANSFER
to current primary (PT-cp); when ,the
fields are not equal the operation is
called PROGRAM TRANSFER with space
switching (PT-ss).

The contents of the general register
specified by the R2 field are used to
update the problem-state bit, the
addressing-mode bit, and the instruction
address of the current PSW. Bit 31 of
the general register specified by the R2
field is placed in the problem-state-bit
position, PSW bit position 15, unless
the operation would cause PSW bit 15 to
change from one to zero (problem state
to supervisor state). If such a change
would occur, a privileged-operation
exception is recognized. Bits 0-30 of
the general register specified by the R2
field replace the addressing-mode bit
and the instruction address, bits 32-62
of the current PSW. Bit 63 of the PSW
is set to zero.

Bits 0-15 of the general register speci
fied by the R t field are ANDed with the
PSW-key mask, bits 0-15 of control
register 3, and the result replaces the
contents of the PSW-key mask.

In both the PT-ss and PT-cp
instructions, the ASN specified by bits
16-31 of general register Rt replaces

10-28 370-XA Principles of Operation

the SASN in control register 3, and the
SSTD in control register 7 is replaced
by the final contents of control regis
ter 1.

PROGRAM TRANSFER to Current Primary
(PT-cp)

The PROGRAM TRANSFER to current primary
(PT-cp) operation is depicted in part 1
of the figure "Execution of PROGRAM
TRANSFER." On a PT-cp operation, the
operation is completed when the common
portion of the PROGRAM TRANSFER opera
tion, described above, is completed.
The authorization index, PASN, primary
STD, and linkage-table designation are
not changed by PT-cp.

PROGRAM TRANSFER with Space Switching
(PT-ss)

If the ASN in bits 16-31 of the register
specified by the Rt field is not equal
to the current PASH, a PROGRAM TRANSFER
with space switching (PT-ss) is speci
fied, and the ASN is translated by means
of a two-level table lookup.

The PT-ss operation is depicted in parts
1 and 2 of the figure "Execution of
PROGRAM TRANSFER." The PT-ss operation
is completed as follows:

For a PT-ss, the contents of bit posi
tions 16-31 of the general register
specified by the Rl field are used as an
ASH, which is translated by means of a
two-level table lookup.

Bits 16-25 of the general register are
used as a 10-bit AFX to index into the
ASN first table. Bits 26-31 are used as
a six-bit ASX to index into the ASN
second table. The ASH table-lookup
process is described in the section "ASN
Translation" in Chapter 3, "Storage."
The exceptions associated with ASN
translation are collectively called
"ASH-translation exceptions." These
exceptions and their priority are
described in Chapter 6, "Interruptions."

The authoritv-table orlg1n from the
ASN-second-table entry is used as the
base for a ~hird table lookup. The
current authorization index, bits 0-15
of control register 4, is used, after it
has been checked against the authority
table length, as the index to locate the
entry in the authority table. The
authority-table lookup is described in
the section "ASN Authorization" in Chap
ter 3, "Storage."

The PT-5s operation is completed by
placing bits 64-95 of the ASN-second
table entry in both the PSTD and SSTD,

bit positions 0-31 of control registers
1 and 7, respectively. The contents of
bit positions 32-47 of the ASN-second
table entry are placed in the authori
zation index, bit positions 0-15 of
control register 4. The contents of bit
positions 96-127 of the ASN-second-table
entry are placed in the LTD, bit posi
tions 0-31 of control register 5. The
ASN, bits 16-31 of the general register
specified by the Rt field, is placed in
the SASN and PASN, bit positions 16-31
of control registers 3 and 4.

PROGRAM TRANSFER Serialization

For both PT-cp and PT-ss, a serializa
tion and checkpoint-synchronization
function is performed at the beginning
and also at the completion of the opera
tion.

The CPU operation is delayed until all
previous storage accesses by this CPU
have been completed, as observed by
other CPU and channel programs. All
previous checkpoints, if any, are
canceled, and the results of all previ
ous stores are released, if held
exclusive, to permit other CPU and chan
nel programs to access the results.

When the operation is completed, a
second serialization and checkpoint
synchronization function is performed,
as follows. The CPU operation is
delayed until all storage accesses due
to this instruction have been completed,
as observed by other CPU and channel
programs. All previous checkpoints, if
any, for this instruction are canceled.

The instruction can be executed only
when the CPU is i.n primary-space mode
and the subsystem-linkage control, bit 0
of control register 5, is one. If the
CPU is in real mode or secondary-space
mode, or the subsystem-linkage control
is zero, a special-operation exception
is recognized.

Bit 31 of the general register specified
by the R2 field is placed in the

problem-state-bit position, PSW bit
position 15, unless the operation could
cause PSW bit 15 to change from one to
zero (problem state to supervisor
state). If such a change would occur, a
privileged-operation exception is recog
nized.

The instruction is completed only if
bits 0-7 of the register specify a valid
combination for PSW bits 32-39. If the
contents of bit position 0 of the gener
al register specified by the R2 field is
zero and bits 1-7 are not zeros, a spec
ification exception is recognized.

In addition to the above requirements,
when a PT-ss instruction is specified,
the ASH-translation control, bit 12 of
control register 14, must be one; other
wise, a special-operation exception is
recognized.

When, for PT-ss, the space-switch
event-control bit, bit 0 of control
register 1,' is one either before or
after the execution of the instruction,
a space-switch-event program inter
ruption occurs after the operation is
completed. A space-switch-event program
interruption also occurs after the
completion of a PT-ss operation if a PER
event is reported.

The operation is suppressed on all
addressing exceptions.

The priority of recognition of program
exceptions for the instruction is shown
in the figure "Priority of Execution:
PROGRAM TRANSFER."

Condition Code:
unchanged.-----

Program Exceptions:

The code remains

Addressing (authority-table entry,
PT-ss only)

ASH translation (PT-ss only)
Primary authority (PT-ss only)
Privileged operation (attempt to

set supervisor state in problem
state)

Space-switch event (PT-ss only)
Special operation
Specific3tion
Trace

Chapter 10. Control Instructions 10-29

1.-6. Exceptions with the same priority as the priority of program
interruption conditions for the general case.

7.A Access exceptions for second instruction halfword.

7.B Special-operation exception due to OAT being off, the CPU
being in secondary-space mode, or the subsystem-linkage
control bit in control register 5 being zero.

8.A Trace exceptions.

8.B.1 Privileged-operation exception due to attempt to set super
visor state when in problem state.

8.B.2 Specification exception due to a value of zero in bit 0 and a
nonzero value in bits 1-7 of R2•

8.B.3 Special-operation exception due to the ASN-translation con
trol, bit 12 of control register 14, being zero. (PT-ss only)

8.B.4 ASN-translation exceptions. (PT-ss only)

8.B.5 Primary-authority exception due to authority-table entry
being outside table. (PT-ss only)

8.B.6 Addressing exception for access to authority-table entry.
(PT-ss only)

8.B.7 Primary-authority exception due to P bit in authority-table
entry being zero. (PT-ss only)

9. Space-switch event. (PT-ss only)

Priority of Execution: PROGRAM TRANSFER

Programming Notes

1. The operation of PROGRAM TRANSFER
(PT) is such that it may be used to
restore the CPU to the state saved
by a previous PROGRAM CALL. This
restoration is accomplished by
issuing PT 3,14. Though general
registers 3 and 14 are not restored
to their original values, the PASN,
PSW-key mask, problem-state bit,
addressing mode, and instruction
address are restored, and the
authorization index, PSTD, and LTD
are made consistent with the
restored PASN.

2. With proper authority, and while
executing in a common area, PROGRAM
TRANSFER may be used to change the
primary address space to any
desired space. The secondary
address space is also changed to be
the same as the new primary address
space.

3. Unlike the RR-format branch in-
structions, a value of zero in the
R2 field for PROGRAM TRANSFER
designates general register 0, and
branching occurs.

10-30 370-XA Principles of Operation

PROGRAM TRANSFER
Instruction

'B228' 111/IIRt1R21

~--------~I ~I __ ~ I I
.J, .J,

IA

CR3 ~------~------~
beforel~ ___ p~K~M __ ~ __ S_A_S_N __ ~

CR3
after

I
.J,

~
.J,

PKM

~I -.
CR1

.J, before PSTD

SASN

o
I

.J,

10 I

(PT-cp only)

CR4 ~------~~------~
before_I ___ A_X __ ~~_P_A~S~N __ ~

I
.J, .J,

I
Ye 5 I:It-N_o_---,

L.:...J I
.J,

PT-cp
Instruction
complete

.J,

PT-ss
See following
figure

.J,

CR7 ~--------------~
afterl~ ______ S_S_T_D ______ ~

Execution of PROGRAM TRANSFER (Part 1 of 2): PT-cp and PT-ss

Chapter 10. Control Instructions 10-31

CR14 I

1

t
R

I
t

- ~t
R

oJ,

~~~ 
R 

TI AFTO I AFX IASXI 

(x4096) I (x4) (x16) 

ASH First Table 

I I ASTO 10 
CR4 

(x16) beforel AX 1 
(xl/4) 

ASH Second Table 

I I I I I I 

I ATO STO 

(x4) 

Authority Table r--------. I 
oJ, 

CR1 
afterl PSTD 

..s, 

CR7 r after SSTD 

~Primary-authority exception if P bit is 
zero, or if table length is exceeded. 

R: Address is real 

Execution of PROGRAM TRANSFER (Part 2 of 2): PT-ss 

10-32 370-XA Principles of Operation 

Rt I PKM ASH 

I 
oJ, 

--------+--.--+-----~ 

PASH I 

I 

LTD 

CR4 ~------~------~ 
afterl~ ___ A_X __ ~~ __ P_A_S_H~ 

CR5 ~----------------~ 
after I LTD 



PURGE TlB 

PTlB [5] 

'B20D' 1////////////////1 

o 16 31 

The translation-Iookaside buffer (llB) 
of this CPU is cleared of entries. No 
change is made to the contents of 
addressable storage or registers. 

Bits 16-31 
ignored. 

of the instruction are 

The TlB appears cleared of its original 
contents beginning with the fetching of 
the next sequential instruction. The 
operation is not signaled to any other 
CPU. 

A serialization function is performed. 
The CPU operation is delayed until all 
previous storage accesses by this CPU 
have been completed, as observed by 
other CPU and channel programs. No 
subsequent instructions, their operands, 
or dynamic-address-translation entries 
are fetched by this CPU until the 
execution of this instruction is 
complete. 

Condition Code: 
unchanged. 

Program Exceptions: 

The code 

Privileged operation 

RESET REFERENCE BIT EXTENDED 

RRBE [RRE] 

'B22A' 

remains 

o 16 24 28 31 

The reference bit in the storage key for 
the 4K-byte block that is addressed by 
the contents of the general register 
designated by the R2 field is set to 
zero. The contents of the general 
register designated by the R t field are 
ignored. 

Bits 16-23 
ignored. 

of the instruction are 

In 24-bit addressing mode, bits 8-19 of 
the register designated by the R2 field 
specify a block of 4K bytes in real 
storage, and bits 0-7 and 20-31 of the 
register are ignored. In 31 bit 
addressing mode, bits 1-19 of the regis
ter designated by the R2 field specify a 
block of 4K bytes in real storage, and 

bits 0 and 20-31 of the register are 
ignored. 

The address designating the ~torage 
block, being a real address, 1S not 
subject to dynamic address translation. 
The reference to the storage key is not 
subject to a protection exception. 

The remaining bits of the storage key, 
including the change bit, are not 
affected. 

The condition code is set to reflect the 
state of the reference and change bits 
before the reference bit is set to zero. 

Resulting Condition Code: 

0 Reference bit zero, 
zero 

1 Reference bit zero, 
one 

2 Reference bit one, 
zero 

3 Reference bit one, 
one 

Program Exceptions: 

Addressing (operand 2) 
Privileged operation 

SET ADDRESS SPACE CONTROL 

SAC [S] 

'B219' 

o 16 20 

change bit 

change bit 

change bit 

change bit 

31 

Bits 20-23 of the second-operand address 
are used as a code to set the address
space-control bit in the PSW. The 
second-operand address is not used to 
address data; instead, bits 20-23 form 
the code. Bits 0-19 and 24-31 of the 
second-operand address are ignored. 
Bits 20-22 of the second-operand address 
must be zero; otherwise, a specification 
exception ;s recognized. 

The following figure summarizes the 
operation of SET ADDRESS SPACE CONTROL: 

Second-Operand Address 

I////////////////////Icodel////////I 

o 20 24 31 

0000 
0001 
All others 

Primary space 
Secondary space 
Invalid 

Result in 
PSW Bit li 

o 
1 

Unchanged 

Chapter 10. Control Instructions 10-33 



A serialization and checkpoint-synchron
ization function is performed at the 
beginning and also at the completion of 
the operation. 

The CPU operation is delayed until all 
previous storage accesses by this CPU 
have been completed, as observed by 
other CPU and channel programs. All 
previous checkpoints, if any, are 
canceled, and the results of all previ
ous stores are released, if held 
exclusive, to permit other CPU and chan
nel programs to access the results. 

When the operation is completed, a 
second checkpoint-synchronization func
tion is performed, as follows. The CPU 
operation is delayed until all previous 
checkpoints, if any, for this instruc
tion are canceled. 

Special Conditions 

The operation is performed only when the 
secondary-space control, bit 5 of 
control register 0, is one and DAT is 
on. When either the secondary-space 
control is zero or DAT is off, a 
special-operation exception is recog
nized. The special-operation exception 
is recognized in both the problem and 
supervisor states. 

The priority of recognition of program 
exceptions for the instruction is shown 
in the figure "Priority of Execution: 
SET ADDRESS SPACE CONTROL." 

Condition Code: Unchanged. 

Program Exceptions: 

Special operation 
Specification 

1.-6. Exceptions with the same pri
ority as the priority of pro
gram-interruption conditions 
for the general case. 

7.A Access exceptions for second 
instruction halfword. 

7.8 Special-operation exception 
due to DAT being off or the 
secondary-space control, bit 
5 of control register 0, 
being zero. 

8. Specification exception due to 
nonzero value in bits 20-22 of 
the second-operand address. 

Priority of Execution: SET ADDRESS 
SPACE CONTROL 

10-34 370-XA Principles of Operation 

Programming Notes 

1. SET ADDRESS SPACE CONTROL is 
defined in such a way that the mode 
to be set can be placed directly in 
the displacement field of the 
instruction or can be specified 
from the same bit positions of a 
general register as saved by INSERT 
ADDRESS SPACE CONTROL. 

2. Predictable program operation is 
ensured in secondary mode only when 
the instructions are fetched from 
virtual-address locations which 
translate to the same real address 
by means of both the primary and 
secondary segment tables. Thus, a 
program should not enter secondary 
mode if it is not aware of the 
virtual-to-real mapping in both the 
primary ~nd secondary spaces. 

SET CLOCK 

SCK [S] 

'8204' B2 D2 

o 16 20 31 

The current value of the TOO clock is 
replaced by the contents of the double
word designated by the second-operand 
address, and the clock enters the 
stopped state. 

The doubleword operand replaces the 
contents of the clock, as determined by 
the resolution of the clock. Only those 
bits of the operand are set in the clock 
that correspond to the bit positi )ns 
which are updated by the clock; the 
contents of the remaining rightmost bit 
positions of the operand are ignored and 
are not preserved in the clock. In some 
models, starting at or to the right of 
bit position 52, low-order bits of the 
second operand are ignored, and the 
corresponding positions of the clock 
which are implemented are set to zeros. 

After the clock value is set, the clock 
enters the stopped state. The clock 
leaves the stopped state to enter the 
set state and resume incrementing under 
control of the TOD-clock-sync control 
(bit 2 of control register 0). When the 
bit is zero, the clock enters the set 
state at the completion of the instruc
tion. When the bit is one, the clock 
remains in the stopped state either 
until the bit is set to zero or until 
any other running TOD clock in the 
configuration is incremented to a value 
of all zeros in bit positions 32-63. 



When the TOO clock is shared by another 
CPU, the clock remains in the stopped 
state under control of the TOD-clock
sync control bit of the CPU which set 
the clock. If, while the clock is 
stopped, it is set by another CPU, then 
the clock comes under control of the 
TOD-clock-sync control bit of the CPU 
which last set the clock. 

The value of the clock is changed and 
the clock is placed in the stopped state 
only if the manual TOO-clock control of 
any CPU in the configuration is set to 
the enable-set position. If the TOD
clock control is set to the secure 
position, the value and the state of the 
clock are not changed. The two results 
are distinguished by condition codes 0 
and 1, respectively. 

When the clock is not operational, the 
value and state of the clock are not 
changed, regardless of the setting of 
the TOO-clock control, and condition 
code 3 is set. 

Special Conditions 

The operand must be designated on a 
doubleword boundary; otherwise, a spec
ification exception is recognized. 

Resulting Condition Code: 

Clock value set 
Clock value secure 

o 
1 
2 
3 Clock in not-operational state 

Program Exceptions: 

Access (fetch, operand 2) 
Privileged operation 
Specification 

SET CLOCK COMPARATOR 

SCKC [5] 

'B206' 

o 16 20 31 

The current value of the clock compara
tor is replaced by the contents of the 
doubleword designated by the second
operand address. 

Only those bits of the operand are set 
in the clock comparator that correspond 
to the bit positions to be compared with 
the TOO clock; the contents of the 

remaining rightmost bit positions of the 
operand are ignored and are not 
preserved in the clock comparator. 

Special Conditions 

The operand must be designated on a 
doubleword boundary; otherwise, a spec
ification exception is recognized. 

The operation is suppressed on all 
addressing and protection exceptions. 

Condition Code: 
unchanged.-----

The code remains 

Program Exceptions: 

Access (fetch, operand 2) 
Privileged operation 
Specification 

SET CPU TIMER 

SPT [5] 

'B208' B2 

o 16 20 31 

The current value of the CPU timer is 
replaced by the contents of the double
word designated by the second-operand 
address. 

Only those bits of the operand are 
in the CPU timer that correspond to 
bit positions to be updated; 
contents of the remaining rightmost 
positions of the operand are ignored 
are not preserved in the CPU timer. 

Special Conditions 

set 
the 
the 
bit 
and 

The operand must be designated on a 
doubleword boundary; otherwise, a spec
ification exception is recognized. 

The operation is suppressed on all 
addressing and protection exceptions. 

Condition Code: The code 
unchanged.-----

Program Exceptions: 

Access (fetch, operand 2) 
Privileged operation 
Specification 

remains 

Chapter 10. Control Instructions 10-35 



SET PREFIX 

SPX [S] 

'B210' 

o 16 20 31 

The contents of the prefix register are 
replaced by the contents of bit posi
tions 1-19 of the word at the location 
designated by the second-operand 
address. The translation-Iookaside 
buffer (TLB) of this CPU is cleared of 
entries. 

After the second operand is fetched, the 
value is tested for validity before it 
is used to replace the contents of the 
prefix register. Bits 1-19 of the oper
and with 12 low-order zeros appended are 
used as an absolute address of the 
4K-byte new prefix area in storage. The 
prefix value is treated as a 31-bit 
address, regardless of the addressing 
mode specified by bit 32 of the current 
PSW. The 4K-byte block within the new 
prefix area is accessed; if it is not 
available, an addressing exception is 
recognized, and the operation is 
suppressed. The access to the block is 
not subject to protection; however, the 
access may cause the reference bits to 
be turned on. 

If the operation is completed, the new 
prefix 1S used for any interruptions 
following the execution of the instruc
tion and for the execution of subsequent 
instructions. The contents of bit posi
tions 0 and 20-31 of the operand are 
ignored. 

The translation-lookaside buffer (TLB) 
is cleared of entries. The TLB appears 
cleared of its original contents, begin
ning with the fetching of the next 
sequential instruction. 

A serialization function is performed 
before or after the operand is fetched 
and also at the completion of the opera
tion. The CPU operation is delayed 
until all previous storage accesses by 
this CPU have been completed, as 
observed by other CPU and channel 
programs. No subsequent instructions, 
operands, or dynamic-address-translation 
entries are fetched by this CPU until 
the execution of this instruction is 
completed. 

Special Conditions 

The operand must be designated on a word 
boundary; otherwise, a specification 
exception is recognized. 

10-36 370-XA Principles of Operation 

The operation is suppressed on all 
addressing and protection exceptions. 

Condition Code: 
unchangad.-----

Program Exceptions: 

The code 

Access (fetch, operand 2) 
Addressing (new prefix area) 
Privileged operation 
Specification 

SET PSW KEY FROM ADDRESS 

SPKA [S] 

'B20A' 

o 16 20 

remains 

31 

The four-bit PSW key, bits 8-11 of the 
current PSW, is replaced by bits 24-27 
of the second-operand address. 

The second-operand address is not used 
to address data; instead, bits 24-27 of 
the address form the new PSW key •. Bits 
0-23 and 28-31 of the second-operand 
address are ignored. 

Special Conditions 

In the problem state, the execution of 
the instruction is subject to control by 
the PSW-key mask 1n control register 3. 
When the bit in the PSW-key mask corre
sponding to the PSW-key value to be set 
is one, the instruction is executed 
successfully. When the selected bit in 
the PSW-key mnsk is zero, a privileged
operation exception is recognized. In 
the supervisor state, any value for the 
PSW key is valid. 

Condition Code: 
unchanged.-----

Program Exceptions: 

The code 

Privileged operation 
PSW-key-mask bit is 
problem state) 

Programming Notes 

remains 

(selected 
zero in 

1. The format of SET PSW KEY FROM 
ADDRESS permits the program to set 
the PSW key either from the general 
register designated by the B2 f~eld 
or from the D2 field in the 
instruction itself. 



2. When one program requests another 
program to access a location speci
fied by the requesting program, SET 
PSW KEY FROM ADDRESS can be used by 
the called program to verify that 
the requesting program is author
ized to make this access, provided 
the storage location of the called 
program is not protected against 
fetching. The called program can 
perform the verification by replac
ing the PSW key with the 
requesting-program PSW key before 
making the access and subsequently 
restoring the called-program PSW 
key to its original value. Caution 
must be observed, however, in 
handling any resulting protection 
exceptions since such exceptions 
may cause the operation to be 
terminated. See TEST PROTECTION 
and the associated programming 
notes for an-alternative approach 
to the testing of addresses passed 
by a calling program. 

SET SECONDARY ASN 

SSAR [RREl 

'B225' 

o 16 24 28 31 

The ASH specified in bit positions 16-31 
of the general register specified by the 
R1 field replaces the secondary ASH in 
control register 3, and the segment
table designation corresponding to that 
ASN replaces the SSTD in control regis
ter 7. 

Bits 16-23 and 28-31 of the instruction 
are ignored. The contents of bit posi
tions 0-15 of the register specified by 
the R t field are ignored. 

The contents of bit positions 16-31 of 
the register specified by the Rt field 
are called the new ASH. First the new 
ASN is compared with the current PASH. 
If the new ASH is equal to the PASN, the 
operation is called SET SECONDARY ASH to 
current primary (SSAR-cp). If the new 
ASN is not equal to the current PASH, 
the operation is called SET SECONDARY 
ASN with space switching (SSAR-ss). The 
SSAR-cp and SSAR-S5 operations are 
depicted in the figure "Execution of SET 
SECONDARY ASN." 

SET SECOHDARY ASH to Current Primary 
(SSAR-cp) 

The new ASN replaces the SASH, bits 
16-31 of control register 3; the PSTD, 
bits 0-31 of control register 1, 

replaces the SSTD, bits 
register 7; and the 
completed. 

0-31 of control 
operation is 

SET SECONDARY ASN with Space Switching 
<SSAR-ss) ---

The new ASH is translated by means of 
the ASH translation tables, and then the 
current AX, bits 0-15 of control regis
ter 4, is used to test whether the 
program is ~uthorized to access the 
specified ASN. 

The new ASH is translated by means of a 
two-level table lookup. Bits 0-9 of the 
new ASH (bits 16-25 of the register) are 
used as a 10-bit AFX to index into the 
ASH first table. Bits 10-15 of the new 
ASH (bits 26-31 of the register) are 
used as a six-bit ASX to index into the 
ASH second table. The two-level lookup 
is described in the section "ASH Trans
lation" in Chapter 3, "Storage." The 
exceptions associated with ASH trans
lation are collectively called "ASH
translation exceptions." These 
exceptions and their priority are 
described in Chapter 6, "Interruptions." 

The AST entry obtained as a result of 
the second lookup contains the segment
table designation and the authority
table origin and length associated with 
the ASH. 

The authority-table origin from the ASH 
second-table entry is used as a base for 
a third table lookup. The current 
authorization index, bits 0-15 of 
control register 4, is used, after it 
has been checked against the authority
table length, as the index to locate the 
entry in the authority table. The 
authority-table lookup is described in 
the section "ASH Authorization" in Chap
ter 3, "Storage." 

The new ASH, bits 16-31 of the general 
register specified by the R t field, is 
placed in the SASH, bit positions 16-31 
of control register 3. The segment
table designation, bits 64-95 of the AST 
entry, is placed in the SSTD, bits 0-31 
of control register 7. 

SET SECOHDARY ASH Serialization 

For both SSAR-cp and SSAR-ss, a serial
ization and checkpoint-synchronization 
function is performed at the beginning 
and also at the completion of the opera
tion. 

The CPU operation is delayed until all 
previous storage accesses by this CPU 
have been completed, as observed by 
other CPU and channel programs. All 

Chapter 10. Control Instructions 10-37 



previous checkpoints, if any, are 
canceled, and the results of all previ
ous stores are released, if held 
exclusive, to permit other CPU and chan
nel programs to access the results. 

When the operation is completed, a 
second serialization and checkpoint
synchronization function is performed, 
as follows. The CPU operation is 
delayed until all storage accesses due 
to this instruction have been completed, 
as observed by other CPU and channel 
programs. All previous checkpoints, if 
any, for this instruction are canceled. 

Special Conditions 

The operation is performed only when the 
ASN-translation control, bit 12 of 
control register 14, is one and DAT is 

on. When either the ASN-translation
control bit is zero or DAT is off, a 
special-operation exception is recog
nized. The special-operation exception 
is recognized in both the problem and 
supervisor states. 

The priority of recognition of program 
exceptions for the instruction is shown 
in the figure "Priority of Execution: 
SET SECONDARY ASN." 

Condition Code: 
unchanged.-----

Program Exceptions: 

The code remains 

Addressing (authority-table entry, 
SSAR-ss only) 

ASN translation (SSAR-ss only) 
Secondary authority (SSAR-ss only) 
Special operation 
Trace 

1.-6. Exceptions with the same priority as the priority of program
interruption conditions for the general case. 

7.A Access exceptions for second instruction halfword. 

7.B Special-operation exception due to DAT being off, or the ASN
translation control, bit 12 of control register 14, being 
zero. 

8.A Trace exceptions. 

8.B.1 ASN-translation exceptions. (SSAR-ss only) 

8.B.2 Secondary-authority exception due to authority-table entry 
being outside table. (SSAR-ss only) 

8.B.3 Addressing exception for access to authority-table entry. 
(SSAR-ss only) 

8.B.4 Secondary-authority exception due to S bit in authority
table entry being zero. (SSAR-ss only) 

Priority of Execution: SET SECONDARY ASN 

10-38 370-XA Principles of Operation 



CR14 I 

1 

~~ 
R 

.J, 

""---~~~ 
R 

R 

ASH .J, 

TI AFTO I ~. AFXI ASX I 

(X4096ll (x4) (x16) 

ASH First Table 

I I ASTO 10 

(x16) 

ASN Second Table 
(accessed for SSAR-ss 

I 
I ATO 

(x4) 

Authority Table 
(accessed for 
SSAR-ss only) 

I I 

CRI 

only) 

I 

before PSTD 

CR4 
before 

I I 

AX 

SET SECOHDARY ASH 
Instruction 

I 'B225' 

I 

Rt ! 

I PASH 

(x1/4) I 

STD 

!////!Rt 

I 

I 

I ASH 

I 
.J, 

~.--~------~ 

I 

I 
.J, 

.J, .J, 
Yes FEn 

.J, .J, 
SSAR-cp SSAR-ss 

I 
LTD 

CR3 ~------~~------~ 
before~l __ p_K_M~~~_S_A_S_H __ ~ 

(SSAR-cp only) (SSAR-ss only) I 
.J, 

CR7 ~--------------~ 
afterl~ _____ S_S_T_D ______ ~ 

Secondary-authority exception if S bit ;s 
zero, or if table length is exceeded. 
(SSAR-ss only) 

.J, 
CR3 ~------__ r-------~ 
afterl PKM SASN 

R: Address is real 

Execution of SET SECONDARY ASN 

Chapter 10. Control Instructions 10-39 



SET STORAGE KEY EXTENDED 

SSKE [RRE] 

'B22B' 

o 16 24 28 31 

The storage key for the 4K-byte block 
that is addressed by the contents of the 
general 'register designated by the R2 
field are replaced by the contents of 
the general register designated by the 
R t field. 

Bits 16-23 of the instruction are 
ignored. 

In 24-bit addressing mode, bits 8-19 of 
the register designated by the R2 field 
specify a block of 4K-byte bytes in real 
storage, and bits 0-7 and 20-31 of the 
register are ignored. In 31-bit 
addressing mode, bits 1-19 of the regis
ter designated by the R2 field specify a 
block of 4K-byte bytes in real storage, 
and bits 0 and 20-31 of the register are 
ignored. 

The address designating the ~torage 
block, being a real address, 1S not 
subject to dynamic address translation. 
The reference to the storage key is not 
subject to a protection exception. 

The new seven-bit storage-key value is 
obtained from bit positions 24-30 of the 
register designated by the R t field. 
The contents of bit positions 0-23 and 
31 of the register are ignored. 

A serialization and checkpoint
synchronization function is performed at 
the beginning and also at the completion 
of the operation. 

The CPU operation is delayed until all 
previous storage accesses by this CPU 
have been completed, as observed by 
other CPU and channel programs. All 
previous checkpoints, if any, are 
canceled, and the results of all previ
ous stores are released, if held 
exclusive, to permit other CPU and chan
nel programs to access the results. 

When the operation is completed, a 
second serialization and checkpoint
synchronization function is perform~d at 
the completion of the operation, as 
follows. The CPU operation is delayed 
until all storage accesses due to this 
instruction have been completed, as 
observed by other CPU and channel 
programs. All previous checkpoints, if 
any, for this instruction are canceled. 

10-40 370-XA Principles of Operation 

Condition Code: 
unchanged. 

The code 

Program Exceptions: 

SET 

SSM 

0 

Addressing (operand 2) 
Privileged operation 

SYSTEM MASK 

D2 (B 2 ) [5] 

'80' 1////////1 B2 

8 16 20 

D2 

remains 

31 

Bits 0-7 of the current PSW are replaced 
by the byte at the location designated 
by the second-operand address. 

Bits 8-15 of 
ignored. 

the instruction are 

Special Conditions 

When the SSM-suppression-control bit, 
bit 1 of control register 0, is one and 
the CPU is in the supervisor state, a 
special-operation exception is recog
nized. 

The value to be loaded into the PSW is 
not checked for validity before loading. 
However, immediately after loading, a 
specification exception is recognized, 
and a program interruption occurs, if 
the contents of bit positions 0 and 2-4 
of the PSW are not all zeros. In this 
case, the instruction is completed, and 
the instruction-length code is set to 2. 
The specification exception, which in 
this case is listed as a program excep
tion in this instruction, is described 
in th~ section "Early Exception Recogni
tion" in Chapter 6, Interruptions." It 
may be considered as occurring early irr 
the process of preparing to execute the 
following instruction. 

The operation is suppressed on all 
addressing and protection exceptions. 

Condition Code: 
unchanged.-----

Program Exceptions: 

The code 

Access (fetch, operand 2) 
Privileged operation 
Special operation 
Specification 

remains 



SIGNAL PROCESSOR 

[RS] 

o 8 12 16 20 31 

An eight-bit order code and, if called 
for, a 32-bit parameter are transmitted 
to the CPU designated by the CPU address 
contained in the third operand. The 
result is indicated by the condition 
code and may be detailed by status 
assembled in the first-operand location. 

The second-operand address is not used 
to address data; instead, bits 24-31 of 
the address contain the eight-bit order 
code. Bits 0-23 of the second-operand 
address are ignored. The order code 
specifies the function to be performed 
by the addressed CPU. The assignment 
and definition of order codes appear in 
the section "CPU Signaling and Response" 
in Chapter 4, "Control." 

The 16-bit binary number contained in 
bit positions 16-31 of the general 
register designated by the R3 field 
forms the CPU address. Bits 0-15 of the 
register are ignored. 

The register containing the 32-bit 
parameter is R t or R1+1, whichever is 
the odd-numbered register. It depends 
on the order whether a parameter is 
provided and for what purpose it is 
used. 

A serialization function is performed at 
the beginning and also at the completion 
of the operation. The CPU operation is 
delayed until all previous storage 
accesses by this CPU have been 
completed, as observed by other CPU and 
channel programs, and then the signaling 
occurs. No subsequent instructions or 
their operands are accessed by this CPU 
until the execution of the instruction 
is completed. 

When the order code is accepted and no 
nonzero status is returned, condition 
code 0 is set. When status information 
is generated by this CPU or returned by 
the addressed CPU, the status is placed 
in the general register designated by 
the R t field, and condition code 1 is 
set. 

When the access path to the addressed 
CPU is busy, or the addressed CPU is 
operational but in a state where it 
cannot respond to the order code, condi
tion code 2 is set. 

When the addressed CPU is not opera
tional (that is, it is not provided in 
the installation, it is not in the 
configuration, it is in any of certain 

customer-engineer test modes, or its 
power is off), condition code 3 is set. 

A more detailed discussion 
condition-code settings for 
PROCESSOR is contained in the 
"CPU Signaling and Response" in 
4, "Control." 

of the 
SIGNAL 

section 
Chapter 

The format ~f the operands of the 
instruction are illustrated below. 

General register designated by R t : 

Status 

o 31 

General register designated by Rt or 
R1 + 1, whichever is the odd-numbered 
register: 

Parameter 

o 31 

General register designated by R3: 

1////////////////1 CPU Address 

o 16 31 

Second-operand address: 

//////////////////////// 

o 24 31 

Resulting Condition Code: 

o Order code accepted 
1 Status stored 
2 Busy 
3 Not operational 

Program Exceptions: 

Privileged operation 

Programming Notes 

1. To ensure that presently written 
programs will be executed properly 
when new facilities using addi
tional bits are installed, only 
zeros should appear in the unused 
bit positions of the second-operand 
address and in bit positions 0-15 
of the register designated by the 
R:s field. 

Chapter 10. Control Instructions 10-41 



2. Certain SIGNAL PROCESSOR orders are 
provided with the expectation that 
they will be used primarily in 
special circumstances. Such orders 
may be implemented with the aid of 
an auxiliary maintenance or service 
processor, and, thus, the execution 
time may take several seconds. 
Unless all of the functions 
provided by the order are required, 
combinations of other orders, in 
conjunction with appropriate 
programming support, can be 
expected to provide a specific 
function more rapidly. The 
emergency-signal, external-call, 
and sense orders are the only 
orders which are intended for 
frequent use. The following orders 
are intended for infrequent use, 
and the performance therefore may 
be much slower than for the 
frequently used orders: restart, 
set prefix, store status at 
address, start, stop, stop and 
store status, and all the reset 
orders. An alternative to the 
set-prefix order, for faster 
performance when the receiving CPU 
is not already stopped, is the use 
of the emergency-signal or 
external-call order, followed by 
the execution of a SET PREFIX 
instruction on the addressed CPU. 
Clearing the TlB of entries is 
ordinarily accomplished more rapid
ly through the use of the 
emergency-signal or external-call 
order, followed by execution of the 
PURGE TLB instruction on the 
addressed CPU, than by use of the 
set-prefix order. 

STORE CLOCK COMPARATOR 

[S] 

'B207' 

o 16 20 31 

The current value of the clock compara
tor is stored at the doubleword location 
designated by the second-operand 
address. 

Zeros are provided for the rightmost bit 
positions of the clock comparator that 
are not compared with the TOO clock. 

10-42 370-XA Principles of Operation 

Special' Conditions 

The operand must be designated on a 
doubleword boundary; otherwise, a spec
ification exception is recognized. 

Condition Code: 
unchanged.---

Program Exceptions: 

The code 

Access (store, operand 2) 
Privileged operation 
Specification 

STORE CONTROL 

o 8 12 16 20 

remains 

31 

The set of control registers starting 
with the control register designated by 
the R t field and ending with the control 
register designated by the R3 field is 
stored at the locations designated by 
the second-operand address. 

The storage area where the contents of 
the control registers are placed starts 
at the location designated by the 
second-operand address and continues 
through as muny storage words as the 
number of control registers specified. 
The contents of the control registers 
are stored in ascending order of their 
register numbers, starting with the 
control register designated by the R t 
field and continuing up to and including 
the control register designated by the 
R3 field, with control register 0 
following control register 15. The 
contents of the control registers remain 
unchanged. 

Special Conditions 

The second operand must be designated on 
a word boundary; otherwise, a specifica
tion exception is recognized. 

Condition Code: 
unchanged.---

Program Exceptions: 

The code 

Access (store, operand 2) 
Privileged operation 
Specification 

remains 



STORE CPU ADDRESS 

STAP [S] 

'B212' 

o 16 20 31 

The CPU address by which this CPU is 
identified in a multiprocessing config
uration is stored at the halfword 
location designated by the second
operand address. 

Seecial Conditions 

The operand must be designated on a 
halfword boundary; otherwise, a specifi
cation exception is recognized. 

Condition Code: 
unchanged.---

Program Exceptions: 

The code 

Access (store, operand 2) 
Privileged operation 
Specification 

STORE CPU ID 

[S] 

'B202' 

o 16 20 

remains 

31 

Information identifying the CPU is 
stored at the doubleword location desig
nated by the second-operand address. 

The format of the information is as 
follows: 

o 

32 

8 

Model 
Number 

CPU Identification 
Number 

31 

100000000000000001 

48 63 

Bit positions 0-7 contain the version 
code. The format and significance of 
the version code depend on the model. 

Bit positions 8-31 contain the CPU iden
tification number, consisting of six 
four-bit digits. Some or all of these 
digits are selected from the physical 

serial number stamped on the CPU. The 
contents of the CPU-identification
number field, in conjunction with the 
model number, permit unique identifica
tion of the CPU. 

Bit positions 32-47 
number of the CPU. 
contain zeros. 

contain the model 
Bit positions 48-63 

Special Conditions 

The operand must be designated on a 
doubleword boundary; otherwise, a spec
ification exception is recog~ized. 

Condition Code: 
unchanged.---

The code remains 

Program Exceptions: 

Access (store, operand 2) 
Privileged operation 
Specification 

Programming Notes 

1. The program should 
possibility that the 
cation number may 
digits A-F as well 
0-9. 

allow for the 
CPU identifi
contain the 

as the digits 

2. The CPU identification number, in 
conjunction with the model number, 
provides a unique CPU identifica
tion that can be used in associat
ing results with an individual 
machine, particularly in regard to 
functional differences, performance 
differences, and error handling. 

STORE CPU TIMER 

STPT [S] 

'B209' 

o 16 20 31 

The current value of the CPU timer is 
stored at the doubleword location desig
nated by the second-operand address. 

Zeros are provided for the rightmost bit 
positions that are not updated by the 
CPU timer. 

Special Conditions 

Chapter 10. Control Instructions 10-43 



The operand must be designated on a 
doubleword boundary; otherwise, a spec
ification exception is recognized. 

Condition Code: 
unchanged.-----

Program Exceptions! 

The code 

Access (store, operand 2) 
Privileged operation 
Specification 

STORE PREFIX 

STPX [S] 

'B211' 

o 16 20 

remains 

31 

The contents of the prefix register are 
stored at the word location designated 
by the second-operand address. Zeros 
are provided for bit positions 0 and 
20-31. 

Special Conditions 

The operand must be designated on a word 
boundary; otherwise, a specification 
exception is recognized. 

Condition Code: 
unchanged.-----

Program Exceptions: 

The code 

Access (store, operand 2) 
Privileged operation 
Specification 

STORE THEN AND SYSTEM MASK 

[SI] 

'AC' 

o 8 16 20 

remains 

31 

Bits 0-7 of the current PSW are stored 
at the first-operand locati~n. Then the 
contents of bit positions 0-7 of the 
current PSW are replaced by the logical 
AND of their original contents and the 
second operand. 

10-44 370-XA Principles of Operation 

Special Conditions 

The operation is suppressed on address
ing and protection exceptions. 

Condition Code: 
unchanged.-----

Program Exceptions: 

The code 

Access (store, operand 1) 
Privileged operation 

Programming Note 

remains 

STORE THEN AND SYSTEM MASK permits the 
program to set selected bits in the 
system mask to zeros while retaining the 
original contents for later restoration. 
For example, it may be necessary that a 
program, which has no record of the 
present status, disable program-event 
recording for a few instructions. 

STORE THEN OR SYSTEM MASK 

[51] 

'AD' 

o 8 16 20 31 

Bits 0-7 of the current PSW are stored 
at the first-ope~and location. Then the 
contents of bit positions 0-7 of the 
current PSW are replaced by the logical 
OR of their original contents and the 
second operand. 

Special Conditions 

The value to be loaded into the PSW is 
not checked for validity before loading. 
However, immediately after loading, a 
specification exception is recognized, 
and a program interruption occurs, if 
the contents of bit positions 0 and 2-4 
of the PSW are not all zeros. In this 
case, the instruction is completed, and 
the instruction-length code is set to 2. 
The specification exception, which in 
this cese is listed as a program excep
tion in this instruction, is described 
in the section "Early Exception Recogni
tion" in Chapter 6, Interruptions." It 
may be considered as occurring early in 
the process of preparing to execute the 
following instruction. 

The operation is suppressed on addr~ss
ing and protection exceptions. 



Condition Code: 
unchanged.---

Program Exceptions: 

The code remains 

Access (store, operand 1) 
Privileged operation 
Specification 

Programming Note 

STORE THEN OR SYSTEM MASK permits the 
program to set selected bits in the 
system mask to ones while retaining the 
original contents for later restoration. 
For example, the program may enable the 
CPU for I/O interruptions without having 
available the current status of the 
external-mask bit. 

TEST BLOCK 

[RRE] 

'B22C' 

o 16 24 28 31 

The storage locations and storage key of 
a 4K-byte block are tested for 
usability, and the result of the test is 
indicated in the condition code. The 
block tested is addressed by the 
contents of the general register desig
nated by the R2 field. The test for 
usability is based on the susceptibility 
to the occurrence of invalid checking
block code. 

Bits 16-23 
ignored. 

of the instruction are 

A complete testing operation is neces
sarily performed only when the initial 
contents of general register 0 are zero. 
The contents of general register 0 are 
set to zero at the completion of the 
operation. 

The contents of the 
designated by the Rt 
Bits 16-23 of the 
ignored. 

general register 
field are ignored. 

instruction are 

If the block is found to be usable, the 
4K bytes of the block are cleared to 
zeros, the contents of the storage key 
are unpredictable, and condition code 0 
is set. If the block is found to be 
unusable, the data and the storage key 
are set, as far as is possible by the 
model, to a value such that subsequent 
fetches to the area do not cause a 
machine-check condition, and condition 
code 1 is set. 

In 24-bit addressing mode, bits 8-1~ of 
the register designated by the R2 field 
specify a block of 4K bytes in r\~al 
storage, and bits 0-7 and 20-31 of the 
register are ignored. In 31-bit 
addressing mode, bits 1-19 of the regis
ter designated by the R2 field specify a 
block of 4K bytes in real storage, and 
bits 0 and 20-31 of the register are 
ignored. 

The address of the block is a real 
address, and the accesses to the block 
designated by the second-operand address 
are not subject to key-controlled and 
page protection. Low-address protection 
does apply. The operation is terminated 
on addressing and protection exceptions; 
that is, the condition code and the 
contents of general register 0 are 
unpredictable. The contents of the 
storage block and its associated storage 
key are not changed when these 
exceptions occur. 

Depending on the model, the test for 
usability may be performed (1) byalter
nately storing and reading out test 
patterns to the data and storage key in 
the block or (2) by reference to an 
internal record of the usability of the 
blocks which are available in the 
configuration, or (3) by using a combi
nation of both mechanisms. 

In models in which an internal record is 
used, the block is indicated as unusable 
if a solid failure has been previously 
detected, or if intermittent failures in 
the block have exceeded the threshold 
implemented by the model. In such 
models, depending on the criteria, 
attempts to store mayor may not occur. 
Thus, if block 0 is not usable, and no 
store occurs, low-address protection may 
or may not be indicated. 

In models in which test patterns are 
used, TEST BLOCK may be interruptible. 
When an interruption occurs after a unit 
of operation, other than the last one, 
the condition code is unpredictable, and 
the contents of general register 0 may 
contain a record of the state of inter-
mediate steps. When execution is 
resumed after an interruption, the 
condition code is ignored, but the 
contents of general register 0 may be 
USEd to determine the resumption point. 

If (1) TEST BLOCK is issued with an 
initial value other than zero in general 
register 0, or (2) the interrupted 
instruction is resumed after an inter
ruption with a value in general register 
o other than the value which was present 
at the time of the interruption, or 
(3) the block is accessed by another CPU 
or channel program during the execution 
of the instruction, then the contents of 
the storage block, its associated stor
age key, and general register 0 are 
unpredictable, along with the resultant 
condition-code setting. 

Chapter 10. ~ontrol Instructions 10-45 



Invalid checking-block-code errors 
initially found in the block or encount
ered during the test do not normally 
result in machine-check conditions. The 
test-block function is implemented in 
such a way that the frequency of 
machine-check interruptions due to the 
instruction is not significant. 
However, if, during the execution of 
TEST BLOCK for an unusable block, that 
block is accessed by another CPU or 
channel program, error conditions may be 
reported to either or both programs. 

A serialization function is performed 
before the block is accessed and again 
after the operation is completed (or 
partially completed). The CPU operation 
is delayed until all previous storage 
accesses by this CPU have been 
completed, as observed by other CPU and 
channel programs, and then the accesses, 
if any, to the block occur. No subse
quent instructions or their operands are 
accessed by this CPU until the execution 
of this instruction is completed (or 
partially completed), as observed by 
other CPU and channel programs. 

The priority of the recognition of 
exceptions and condition codes is shown 
in the figure "Priority of Execution: 
TEST BLOCK." 

Resulting Condition Code: 

o 

1 
2 
3 

Block is usable, and the 
contents of storage in the 
block have been set to zeros 
Block is not usable 

Program Exceptions: 

Addressing (fetch and store, oper
and 2) 

Privileged operation 
Protection (store, operand 2, low

address protection only) 

10-46 370-XA Principles of Operation 

r-------------------------------------------
1.-6. Exceptions with the same pri

ority as the priority of pro
gram-interruption conditions 
for the general case. 

7.A Access exceptions for second 
instruction halfword. 

7.B Privileged-operation exception. 

8. Addressing exception due to 
block not being available in 
the configuration. l 

9.A Condition code .1, block not 
usable. l 

9.B Protection exception due low
address protection. 

9.C Condition code 0, block usable 
and set to zeros. 

Explanation: 

1 The operation is terminated on 
addressing and protection excep
tions. In this case, the condi
tion code may be unpredictable. 

Priority of Execution: TEST BLOCK 

Programming Notes 

1. The execution of TEST BLOCK on most 
models is significantly slower than 
that of the MOVE LONG instruction 
with padding; therefore, the 
instruction should not be used for 
the normal case of clearing 
storage. 

2. The program should use TEST BLOCK 
at initial program loading and as 
part of the vary-storage-on-line 
procedure to determine if blocks of 
storage exist which should not be 
used. 

3. The program should use TEST BLOCK 
when an error is detected in either 
the data or storage key of a block 
that has been in use and the 
program chooses to mark the block 
unusable. This is because in the 
execution of TEST BLOCK the attempt 
is made, as far as is possible on 
the model, to leave the contents of 
a block in such a state that subse
quent prefetches or unintended 
references to the block do not 
cause machine-check conditions. 
The program should ignore the 
resulting condition code in this 
case since, depending on the model, 
on the type of error, and on the 



threshold implemented by the model, 
the condition code may indicate a 
usable block, even though the 
program has decided otherwise. 

4. The model mayor may not be 
successful in removing the errors 
from a block when TEST BLOCK is 
executed. The program therefore 
should take every reasonable 
precaution to avoid referencing an 
unusable block. For example, the 
program should not place the page
frame real address of an unusable 
block in an attached and valid 
page-table entry. 

5. On some models, machine checks may 
be reported for a block even though 
the block is not referenced by the 
program. When a machine check is 
reported for a storage-key error in 
a block which has been marked as 
unusable by the program, it is 
possible that SET STORAGE KEY may 
be more effective than TEST BLOCK 
in validating the storage key. 

TEST PROTECTION 

[SSE] 

,"-__ ' E_5_0 1_' _---'-I_B_,-.L..-I ~ t I 8, I ~:J 
o 16 20 32 36 47 

The location specified by the first
operand address is tested for protection 
excepti~ns using the access key speci
fied in bits 24-27 of the second-operand 
address. 

The second-operand address is not used 
to address data; instead, bits 24-27 of 
the address form the access key to be 
used in testing. Bits 0-23 and 28-31 of 
the second-operand address are ignored. 

The first-operand address is a logical 
address and thus is subject to trans
lation when OAT is on. When OAT is on 
and the first-operand address cannot be 
translated because of a situation that 
would normally cause a page-translation 
or segment-translation exception, the 
instruction is completed by setting 
condition code 3. 

When translation of the first-operand 
address can be completed, or when OAT is 
off, the storage key for the block 
designated by the first-operand address 
is tested against the access key speci
fied in bits 24-27 of the second-operand 
address, and the condition code is set 
to indicate whether store and fetch 
accesses are permitted, taking into 
consideration all applicable protection 
mechanisms. Thus, for example, if low
address protection is active and if the 

first-operand effective address is less 
than 512, then a store access is not 
permitted. Page protection and fetch
protection override are also taken into 
account. 

The contents of storage, including the 
change bit, are not affected. Depending 
on the model, the reference bit for the 
first-operand address may be set to "ne, 
even for the case in which the loca{ion 
is protected against fetching. 

Special Conditions 

When OAT is on, an addressing exception 
is recognized when the address of the 
segment-table entry, the page-table 
entry, or the operand real address after 
translation designates a location which 
is not available in the configuration. 
Also, when OAT is on, a translation
specification exception is recognized 
when the segment-table entry or page
table entry has a format error. When 
DAT is off, only the addressing excep
tion due to the operand real address 
applies. For all of these cases, the 
operation is suppressed. 

Resulting Condition Code: 

0 Both fetching and storing are 
permitted 

1 Fetching is permitted, but 
storing is not 

2 Neither fetching nor storing 
are permitted 

3 Translation not available 

Program Exceptions: 

Addressing (operand 1) 

Privileged operation 
Translation specification 

Programming Notes 

1. TEST PROTECTION permits a program 
to check the validity of an address 
passed from a calling program with
out incurring program exceptions. 
The instruction sets a condition 
code to indicate whether fetching 
or storing is permitted at the 
location specified by the first
operand address of the instruction. 
The instruction takes into consid
eration all of the protection 
mechanisms in the machine: 
key-controlled, page, fetch 
protection override, and low
address protection. Additionally, 
since segment translation and page 
translation may be a program 
substitute for a protection 
violation, these situations are 

Chapter 10. Control Instructions 10-47 



used to set the condition code 
rather than cause a program excep
tion. 

2. See the programming notes under SET 
PSW KEY FROM ADDRESS for more 
details and for an alternative 
approach to testing validity of 
addresses passed by a calling 
program. The approach using TEST 
PROTECTION has the advantage of a 
test which does not result in 
interruptions; however, the test 
and use are separated in time and 
may not be accurate if the possi
bility exists that the storage key 
of the location in question can 
change between the time it is test
ed and the time it is used. 

3. In the handling of dynamic address 
translation, TEST PROTECTION is 
similar to LOAD REAL ADDRESS in 
that the instructions do not cause 
page-translation and segment
translation exceptions. Instead, 
these situations are indicated by 
means of a condition-code setting. 
Situations which result in condi
tion codes 1, 2, and 3 for LOAD 
REAL ADDRESS result in condition 
code 3 for TEST PROTECTION. Howev
er, the instructions differ in 
several respects. TEST PROTECTION 
has a logical address and thus is 
not subject to translation when OAT 
is off. LOAD REAL ADDRESS has a 
virtual address which is always 
translated. TEST PROTECTION may 
use the TLS for translation of the 
address, whereas LOAD REAL ADDRESS 
does not use the TLS. 

When OAT is off for LOAD REAL 
ADDRESS, the translation specifica
tion for an invalid value of bits 
8-12 of control register 0 occurs 
after instruction fetching as part 
of the execution portion of the 
instruction. This situation cannot 
occur for TEST PROTECTION since the 
operand address is a logical 
address and does not result in 
examination of control register 0 
when DAT is off. When DAT is on, 
the exception would be recognized 
during instruction fetch. Since 
the instruction-fetch portion of an 
instruction is common for all 
instructions, access exceptions 
associated with instruction fetch
ing are not described in the 
individual instruction definition. 

10-48 370-XA Principles of Operation 

TRACE 

[RS] 

'99' 

o 8 12 16 20 31 

When explicit tracing is on (bit 31 of 
control register 12 is one), the second 
operand, which is a 32-bit word in stor
age, is fetched, and bit 0 of the word 
is examined. If bit 0 of the second 
operand is zero, a trace entry is formed 
at the real-storage location specified 
by control reyister 12. 

If explicit tracing is 
control register 12 is 
o of the second operand 
entry is formed, and no 
are recognized. 

off (bit 31 of 
zero), or if bit 
is one, no trace 
trace exceptions 

The trace entry is composed of an 
entry-type identifier, a count of the 
number of general registers whose 
contents are placed in the entry, bits 
16-63 of the TOD clock, the second oper
and, and the contents of a range of 
general registers. The general regis
ters are stored in ascending order of 
their register numbers, starting with 
the register specified by R t and contin
uing up to and including the register 
specified by R3 , with register 0 follow
ing register 15. The trace table and 
the trace-entry formats are des~ribeJ in 
the section "Tracing" in Chapter 4, 
"Control." 

When a trace entry is made, a serializa
tion and checkpoint-synchronization 
function is performed at the beginning 
and also at the completion of the opera
tion. 

The CPU operation is delayed until all 
previous storage accesses by this CPU 
have been completed, as observed by 
other CPU and channel programs. All 
previous checkpoints, if any, are 
canceled, and the results of all previ
ous stores are released, if held 
exclusive, to permit other CPU and chan
nel programs to access the results. 

When the operation is completed, a 
second serialization and checkpoint
synchronization function is performed, 
as follows: The CPU operation is 
delayed until all storage accesses due 
to this instruction have been completed, 
as observed by other CPU and channel 
programs. All previous checkpoints, if 
any, for this instruction are canceled, 
and the results of all stores for this 
instruction are released, if held exclu
sive, to permit other CPU and channel 
programs to access the results. 



Special Conditions 

A privileged-operation exception ;s 
recognized in the problem state, even 
when explicit tracing is off or bit 0 of 
the second operand is one. 

The second operand must be designated on 
a word boundary; otherwise, a specifica
tion exception is recognized. It is 
unpredictable whether the specification 
exception is recognized when explicit 
tracing is off. 

It is unpredictable whether access 
exceptions are recognized for the second 
operand when explicit tracing is off. 

Condition Code: 
unchanged.-----

Program Exceptions: 

The code 

Access (fetch, operand 2) 
Privileged operation 
Specification 
Trace 

Programming Note 

Bits 1-15 of the second operand are 
reserved for model-dependent functions 
and should therefore be set to zeros. 

Chapter 10. Control Instructions 10-49 





CHAPTER 11. MACHINE-CHECK HANDLING 

Machine-Check Detection ••••••••••••••••••••••••••••••••••• 11-2 
Correction of Machine Malfunctions •••••••••••••••••••••••• 11-2 

Error Checking and Correction •••••••••••••..••...•..•••• 11-2 
CPU Retry ...•.......•..•••.•.•.•••••••.•.•••••.••.••.••• 11-2 

Effects of CPU Retry ••••••••••••••••.••••.••••••.••••• 11-3 
Checkpoint Synchronization .•••••.•••••.••••••••••••••• 11-3 
Handling of Machine Checks During Checkpoint 
Synchronization ....••.•..•.••••.••..••.••.•••••••••••• 11-3 
Checkpoint-Synchronization Operations ••••••••••••••••• 11-3 
Checkpoint-Synchronization Action ••••••••••••.•••••••• 11-4 

Channel-Subsystem Recovery •••••••••..•.••.••••.•••.•.••• 11-4 
Unit Deletion ••.••.•••••••••••••••••••••.••••••••••••••• 11-4 

Handling of Machine Checks •••••••••••••••••••.•••••••••••. 11-4 
Validation ••••••••••••.••••••••••••••.•••.•.••.••••.•••• 11-5 
Invalid CBC in Storage .••••••••••••••.....•.••.••••.•.•. 11-6 

Programmed Validation of Storage •••••••.••••.•.••••.•. 11-7 
Invalid CBC in Storage Keys ••••••••••.•••.•••••••••••••• 11-7 
Invalid CBC in Registers .••••..•..•••.•...••••..•.••••.• 11-9 

Check-Stop State •.•..•.•.••••.••••••.....••.••••.•••.••••• 11-10 
System Check Stop ••••••••••••••••••.••••••••.•.•.••••• 11-11 

Machine-Check Interruption •••••••••••••.•••••.•••••••••••• 11-11 
Exigent Conditions .••..••••••.•••••••.•..••..••••••••••. 11-11 
Repressible Conditions .•.••.•.••••••••••.••••••••••••••• 11-11 
Interruption Action •••.••••••••••••••.•••••.•••••••••••. 11-12 
Point of Interruption ...••...••••••......•....•.......•. 11-13 

Machine-Check-Interruption Code ••••••••.••••••.•.•...••••• 11-14 
Subclass •••• 0 ••••••••••••••••••••••••••••••••••••••••••• 11-15 

System Damage •.••••••••••••••••••••.••.••.•••••••••••• 11-15 
Instructi on-Processi ng Damage ••••••.•••.•..•.•...••.•. 11-15 
System Recovery ..••••••.•.•••.•.••..••.••.••••••••••.• 11-16 
Timing-Facility Damage •••••••••••••.•••••••••••••••••. 11-16 
Degradation •••••.•••.••••••••••••••••.•••••••••••••••• 11-16 
Warning ..•.......•••.••••.••••.••...•••.••••••.•.••••• 11-16 
Channel Report Pending •••.••••••••..••••••.••••••••••• 11-17 
Service-Processor Damage •••••••••••.•••••..••••••••••• 11-17 
Channel-Subsystem Damage ••••.••••••••••••••••••••••••. 11-17 

Time of Interruption Occurrence ••...•.••..•.•••••..•••.• 11-17 
Backed Up ••••...••..•••••.•••••.•••.•••••..••••••••••• 11-17 

Synchronous Machine-Check Interruption Conditions ••••••• 11-17 
Processing Backup •••.••••••••••••••••..•.•.•.•••••.••. 11-17 
Processing Damage ••••.•.•••.•••.•...•..••••..•••.•.•• ~11-18 

Storage-Error Type ••••..••.••••••••.•.•.••...••••••••••• 11-18 
Storage Error Uncorrected ••••••••••.•.••••.••••••••••• 11-18 
Storage Error Corrected ••.•.••.•••.........•.••..•••.. 11-18 
Storage-Key Error Uncorrected ••••.•...•••..•.•••.•.••• 11-18 

Machine-Check Interruption-Code Validity Bits ••••••.•••• 11-19 
PSW-MWP Validity ••....•••.•••••••••.••.••. M ••••••••••• 11-19 
PSW Mask and Key Validity ••••.•••••.•..•••.••••••••••• 11-19 
PSW Program-Mask and Condition-Code Validity •••••••••• 11-19 
PSW-Instruction-Address Validity •.•.•.••...•.••••...•• 11-19 
Failing-Storage-Address Validity •••••••••.•••••••••.•• 11-19 
Floating-Point-Register Validity •••.••.•••.••.••••••.• 11-19 
General-Register Validity ••••••••.•••••••.•.•••••.•••. 11-19 
Control-Register Validity ••••••••••••••••••••••••••• · •• 11-20 
Storage Logical Validity •••••••.•.••••.••.••••••••••.• 11-20 
CPU-Timer Validity ••..••••••.••••••••••••••••.•.•••••• 11-20 
Clock-Comparator Validity ••••••••.•.•••••..••••••••••• 11-20 

Machine-Check Extended Interruption Information ••••••••••• 11-20 
Register-Save Areas ••...••••••••.•..•.••••••••.•••••••.• 11-20 
Failing-Storage Address ••.••••••••••..••••...••••••••••• 11-21 

Handling of Machine-Check Conditions ••••••••••..•••••••••• 11-21 
Floating Interruption Conditions •••••••.•••••••••••••••. 11-21 

Floating Machine-Check-Interruption Conditions •••••••. 11-21 
Floating I/O Interruptions •••••••••••••••••••••••••••• 11-21 

Machine-Check Masking ••••••••••••••••••.••••••.••••••••••• 11-21 
Channel-Report-Pending Subclass Mask •••••..••••••••••• 11-22 
Recovery Subclass Mask •..••••••••••••••••.•.••••••••.• 11-22 
Degradation Subclass Mask ••••••••••••••••••••••••••••• 11-22 

Chapter 11. Machine-Check Handling 1t-1 



Timing-Facility-Damage Subclass Mask •••••••••••••••••• 11-22 
Warning Subclass Mask •••••..•••••••••••••••••...•••••• 11-22 

Machine-Check Logout ••••••.•••...•..••.•.•...••••...••.••• 11-22 
Summary of Machine-Check Masking ••••••••••.••.••••.••••••• 11-22 

The machine-check-handling mechanism 
provides extensive equipment-malfunction 
detection to ensure the integrity of 
system operation and to permit automatic 
recovery from some malfunctions. Equip
ment malfunctions and certain external 
disturbances are reported by means of a 
machine-check interruption to assist in 
program-damage assessment and recovery. 
The interruption supplies the program 
with information about the extent of the 
damage and the location and nature of 
the cause. Equipment malfunctions, 
errors, and other situations which can 
cause machine-check interruptions are 
referred to as machine checks. 

MACHINE-CHECK DETECTION 

Machi ne-check-detecti on mechanisms may 
take many forms, especially in control 
functions for arithmetic and logical 
processing, addressing, sequencing, and 
execution. For program-addressable 
information, detection is normally 
accomplished by encoding redundancy into 
the information in such a manner that 
most failures in the retention or trans
mission of the information result in an 
invalid code. The encoding normally 
takes the form of one or more redundant 
bits, called check bits, appended to a 
group of data bits. Such a group of 
data bits and the associated check bits 
are called a checking block. The size 
of the checking block depends on the 
model. 

The inclusion of a single check bit in 
the checking block allows the detection 
of any single-bit failure within the 
checking block. In this arrangement, 
the check bit is sometimes referred to 
as a "parity bit." In other arrange
ments, a group of check bits is included 
to permit detection of multiple errors, 
to permit error correction, or both. 

For checking purposes, the ,entire 
contents of a checking block, including 
the redundancy, is called a checking
block code (CBC). When a CBC completely 
meets the checking requirements (that 
is, no failure is detected), it is said 
to be valid. When both detection and 
correction are provided and a CBC is not 
valid but satisfies the checking 
requirements for correction (the failure 
is correctable), it is said to be near
valid. When a CBC does not satisfy the 
checking requirements (the failure is 

11-2 370-XA Principles of Operation 

uncorrectable), 
invalid. 

it is said to 

CORRECTION OF MACHINE MALFUNCTIONS 

be 

Four mechanisms may be used to provide 
recovery from machine-detected malfunc
tions: error checking and correction, 
CPU retry, channel-subsystem recovery, 
and unit deletion. 

Machine failures which are corrected 
successfully mayor may not be reported 
as machine-check interruptions. If 
reported, they are system-recovery 
conditions, which permit the program to 
note the cause of CPU delay and to keep 
a log of such incidents. 

ERROR CHECKING AND CORRECTION 

When sufficient redundancy is included 
in circuitry or 1n a checking block, 
failures can be corrected. For example, 
circuitry can be triplicated, with a 
voting circuit to determine the correct 
value by selecting two matching results 
out of three, thus correcting a single 
failure. An arrangement for correction 
of failures of one order and for 
detection of failures of a higher order 
is called error checking and correction 
(ECC). Commonly, ECC allows correction 
of single-bit failures and detection of 
double-bit failures. 

Depending on the model and the portion 
of the machine in which ECC is applied, 
correction may be reported as system 
recovery, or no report may be given. 

Uncorrected errors in storage and in the 
storage key may be reported, along with 
a failing-storage address, to indicate 
where the error occurred. Depending on 
the situation, these errors may be 
reported along with system recovery or 
with the da~age or backup condition 
resulting from the error. 

CPU RETRY 

In some models, information about some 
portion of the state of the machine is 
saved periodically. The point in the 
processing at which this information is 



saved is called a checkpoint. The 
information saved is referred to as the 
checkpoint information. The action of 
saving the information is referred to as 
establishing a checkpoint. The action 
of discarding previously saved informa
tion is called invalidation of the 
checkpoint information. The length of 
the interval between establishing check
points is model-dependent. Checkpoints 
may be established at the beginning of 
each instruction or several times within 
a single instruction, or checkpoints may 
be established less frequently. 

Subsequently, this saved information may 
be used to restore the machine to the 
state that existed at the time when the 
checkpoint was established. After 
restoring the appropriate portion of the 
machine state, processing continues from 
the checkpoint. The process of restor
ing to a checkpoint and then continuing 
is called CPU retry. 

CPU retry may be used for machine-check 
recovery, to effect nullification and 
suppreSSlon of instruction execution 
when certain program interruptions 
occur, and in other model-dependent 
situations. 

Effects of CPU Retry 

CPU retry is, in general, performed so 
that there is no effect on the program. 
However, change bits which have been 
changed from zeros to ones are not 
necessarily set back to zeros. As a 
result, change bits may appear to be set 
to ones for blocks which would have been 
accessed if restoring to the checkpoint 
had not occurred. If the path taken by 
the program is dependent on information 
that may be changed by another CPU or 
channel program or if an interruption 
occurs, then the final path taken by the 
program may be different from the earli
er path; therefore, change bits may be 
ones because of stores along a path 
apparently never taken. 

Checkpoint Synchronization 

Checkpoint synchronization consists in 
the following steps. The CPU operation 
is delayed until all conceptually previ
ous storage accesses are completed, both 
for purposes of machine-check detection 
and as observed by other CPU and channel 
programs. The. checkpoint information 
for all previous checkpoints, if any, is 
invalidated. Optionally, a new check
point is established. The CPU operation 
is delayed until all of these actions 
appear to be completed, as observed by 
other CPU and channel programs. 

Handling of Machine Checks During Check
point Synchronization 

When, in the process of completing all 
previous stores as part of the 
checkpoint-synchronization action, the 
machine is unable to complete all stores 
successfully but can successfully 
restore the machine to a previous check
point, processing backup is reported. 

When, in the process of completing all 
stores as part of the checkpoint
synchronization action, the machine is 
unable to complete all stores success
fully and cannot successfully restore 
the machine to a previous checkpoint, 
the type of machine-check-interruption 
condition reported depends on the origin 
of the store. Failure to successfully 
complete stores associated with instruc
tion execution may be reported as 
instruction-processing damage, or some 
less critical machine-cheek-interruption 
condition may be reported with the 
storage-logical-validity bit set to 
zero. A failure to successfully 
complete stores associated with the 
execution of an interruption, other than 
program or supervisor call, is reported 
as system damage. 

When the machine check occurs as part of 
a checkpoint-synchronization action 
before the execution of an instruction, 
the execution of the instruction is 
nullified. When it occurs before the 
execution of an interruption, the inter
ruption condition, if the interruption 
is external, I/O, or restart, is held 
pending. If the checkpoint-
synchronization operation was a 
machine-check interruption, then along 
with the originating condition, either 
the storage-logical-validity bit is set 
to zero or instruction-processing damage 
is also reported. Program 
interruptions, if any, are lost. 

Checkpoint-Synchronization Operations 

All interruptions and the execution of 
certain instructions cause a 
checkpoint-synchronization action to be 
performed. The operations which cause a 
checkpoint-synchronization action are 
called checkpoint-synchronization oper
ations and include: 

1. CPU reset. 

2. All interruptions: external, I/O, 

3. 

machine check, program, restart, 
and supervisor call. 

The BRANCH 
instruction 

ON 
with 

CONDITION 
the Mt 

(BCR) 
and R2 

Chapter 11. Machine-Check Handlirig 11-3 



fields containing all ones and all 
zeros, respe~tively. 

4. The instructions LOAD PSW, SET 
STORAGE KEY, SET STORAGE KEY 
EXTENDED, and SUPERVISOR CALL. 

5. All I/O instructions. 

6. The instructions MOVE TO PRIMARY, 
MOVE TO SECONDARY, PROGRAM CALL, 
PROGRAM TRANSFER, SET ADDRESS SPACE 
CONTROL, and SET SECONDARY ASN. 

7. The three trace functions: branch 
tracing, ASN tracing, and explicit 
tracing. 

Programming Note 

The instructions which are defined to 
cause the checkpoint-synchronization 
action invalidate checkpoint information 
but do not necessarily establish a new 
checkpoint. Additionally, the CPU may 
establish a checkpoint between any two 
instructions or units of operation, or 
within a single unit of operation. 
Thus, the point of interruption for the 
machine check is not necessarily at an 
instruction defined to cause a 
checkpoint-synchronization action. 

Checkpoint-Synchronization Action 

For all interruptions except I/O inter
ruptions, a checkpoint-synchronization 
action is performed at the completion of 
the interruption. For I/O 
interruptions, a checkpoint-
synchronization action mayor may not be 
performed at the completion of the 
interruption. For all interruptions 
except program, supervisor-call, and 
exigent machine-check interruptions, a 
checkpoint-synchronization action is 
also performed before the interruption. 
The fetch access to the new PSW may be 
performed either before or after the 
first checkpoint-synchronization action. 
The store accesses and the changing of 
the current PSW associated with the 
interruption are performed after the 
first checkpoint-synchronization action 
and before the second. 

For all checkpoint-synchronization in
structions except BRANCH ON CONDITION 
(BCR), I/O instructions, and SUPERVISOR 
CALL, checkpoint-synchronization actions 
are performed before and after the 
execution of the instruction. For BCR, 
only one checkpoint-synchronization 
act ion is necessari ly p'erformed, and it 
may be performed either before or after 
the instruction address is updated. For 
SUPERVISOR CALL, a checkpoint
synchronization action is performed 

11-4 370-XA Principles 6f Operation 

before the instruction is executed, 
including the updating of the instruc
tion address 1n the PSW. The 
checkpoint-synchronization action taken 
after the supervisor-call interruption 
is considered to be part of the inter
ruption action and not part of the 
instruction execution. For I/O 
instructions, a checkpoint-synchroniza
tion action is always performed before 
the instruction is executed and mayor 
may not be performed after the instruc
tion is executed. 

The three trace functions -- branch 
tracing, ASN tracing, and explicit 
tracing -- cause checkpoint-synchroniza
tion actions to be performed before the 
trace action and after completion of the 
trace action. 

CHANNEL-SUBSYSTEM RECOVERY 

When errors are detected in the channel 
subsystem, the channel subsystem 
attempts to analyze and recover the 
internal state associated with the vari
ous channel-subsystem functions and the 
state of the channel subsystem and vari
ous subchannels. This process, which is 
called channel-subsystem recovery, may 
result in a complete recovery or may 
result in the termination of one or more 
I/O operations and the clearing of the 
affected subchannels. Special channel
report-pending machine-check-interrup
tion conditions may be generated to 
indicate to the program the status of 
the channel-subsystem recovery. 

Malfunctions associated with the I/O 
operations, depending on the severity of 
the malfunction, may be reported by 
means of the I/O-interruption mechanism 
or by m~ans of the channel report pend
ing and channel-subsystem damage 
machine-check-interruption conditions. 

UNIT DELETION 

In some models, malfunctions in certain 
units of the system can be circumvented 
by discontinuing the use of the unit. 
Examples of cases where unit deletion 
may occur include the disabling of all 
or a portion of a cache or of a 
translation-Iookaside buffer (TLB). 
Unit deletion may be reported as a 
degradation machine-check-interruption 
condition. 

HANDLING OF MACHINE CHECKS 

A machine check is caused by a machine 
malfunction and not by data or 



instructions. This is ensured during 
the power-on sequence by initializing 
the machine controls to a valid state 
and by placing valid CSC in the CPU 
registers, in the storage keys, and in 
main storage. 

Specification of an unavailable compo
nent, such as a storage location, 
subchannel, or I/O device, does not 
cause a machine-check indication. 
Instead, such a condition is indicated 
by the appropriate program or I/O inter
ruption or condition-code setting. In 
particular, an attempt to access a stor
age location which is not in the 
configuration, or which has power off at 
the storage unit, results in an address
ing exception when detected by the CPU 
and does not generate a machine-check 
condition, even though the storage 
location or its associated storage key 
has invalid CSC. Similarly, if the 
channel subsystem attempts to access 
such a location, an I/O-interruption 
condition indicating program check is 
generated rather than' a machine-check 
condition. 

A machine check is indicated whenever 
the result of an operation could be 
affected by information with invalid 
CSC, or when any other malfunction makes 
it impossible to establish reliably that 
an operation can be, or has been, 
performed correctly. When information 
with invalid CSC is fetched but not 
used, the condition mayor may not be 
indicated, and the invalid CSC is 
preserved. 

When a machine malfunction is detected, 
the action taken depends on the model, 
the nature of the malfunction, and the 
situation in which the malfunction 
occurs. Malfunctions affecting 
operator-facility actions may result in 
machine checks or may be indicated to 
the operator. Malfunctions affecting 
certain other operations such as SIGNAL 
PROCESSOR may be indicated by means of a 
condition code or may result in a 
machine-check interruption condition. 

A malfunction detected as part of an I/O 
operation may cause a machine-check
interruption condition, an I/O-error 
condition, or both. I/O-error condi
tions are indicated by an I/O inter-
ruption or by the appropriate 
condition-code setting during the 
execution of an I/O instruction. When 
the machine reports a failing-storage 
location detected during an I/O opera
tion, both I/O-error and machine-check 
conditions may be indicated. The 1/0-
error condition is the primary 
indication to the program. The 
machine-check condition 1S a secondary 
indication, which is presented as system 
recovery together with a failing-storage 
address. 

Certain malfunctions detected as part of 
I/O instructions and I/O operations are 
reported by means of special machine
check conditions called I/O machine
check conditions. Thus, malfunctions 
detected as part of an operation which 
is I/O related may be reported, depend
ing on the error, in any of three ways: 
I/O error condition, I/O machine-check 
condition, or non-I/O machine-check 
condition. In some cases the definition 
requires the error to be reported by 
only one of these mechanisms; in other 
cases, anyone, or in some cases, more 
than one, may be indicated. 

Programming Note 

Although the definition for machine
check conditions is that they are caused 
by machine malfunctions and not by data 
and instructions, there are certain 
unusual situations in which machine
check conditions'are caused by events 
which are not machine malfunctions. Two 
examples: 

1. In some cases, the channel-report
pending machine-check-interruption 
condition indicates a non-error 
situation. For example, this 
condition is generated at the 
completion of the function speci
fied by RESET CHANNEL PATH. 

2. Improper use of DIAGNOSE may result 
in machine-check conditions. 

VALIDATION 

Machine errors can be generally classi
fied as solid or intermittent, according 
to the persistence of the malfunction. 
A persistent machine error is said to be 
solid, and one that is not persistent is 
said to be intermittent. In the case of 
a register or storage location, a third 
type of error must be considered, called 
externally generated. An externally 
generated error is one where no failure 
exists in the register or storage 
location but invalid CSC has been intro
duced into the location by actions 
external to the location. For example, 
the value could be affected by a power 
transient, or an incorrect value may 
have been introduced when the informa
tion was placed in the location. 

Invalid CSC is preserved as invalid when 
information with invalid CSC is fetched 
or when an attempt is made to update 
only a· portion of the checking block. 
When an attempt is made to replace the 
contents of the entire checking block 
and the block contains invalid CSC, it 
depends on the operation and the model 
whether the block remains with invalid 

Chapter 11. Machine-Check Handling 11-5 



CBC or is replaced. An operation which 
replaces the contents of a checking 
block with valid CBC, while ignoring the 
current contents, is called a validation 
operation. Validation is used to intro
duce a valid CBC into a register or 
location which has an intermittent or 
externally generated error. 

Validating a checking block does not 
ensure that a valid CBC will be observed 
the next time the checking block is 
accessed. If the failure is solid, 
validation is effective only if the 
information placed in the checking block 
is such that the failing bits are set to 
the value to which they fail. If an 
attempt is made to set the bits to the 
state opposite to that in which they 
fail, then the validation will not be 
effective. Thus, for a solid failure, 
validation is only useful to eliminate 
the error condition, even though the 
underlying failure remains, thereby 
reducing the exposure to additional 
reports. The locations, however, cannot 
be used, since invalid CBC will result 
from attempts to store other values in 
the location. For an intermittent fail
ure, however, validation is useful to 
restore a valid CBC such that a subse
quent partial store into the checking 
block (a store into a checking block 
without replacing the entire checking 
block) by either a CPU or a channel 
program will be permitted. 

When a checking block consists of multi
ple bytes in storage, or multiple bits 
in CPU registers, the invalid CBC can be 
made valid only when all of the bytes or 
bits are replaced simultaneously. 

For each type of field in the system, 
certain instructions are defined to 
validate the field. Depending on the 
model, additional instructions may also 
perform validation; or, in some models, 
a register is automaticallY validated as 
part of the machine-cheek-interruption 
sequence after the original contents of 
the register are placed in the appropri
ate save area. 

When an error occurs in a checking 
block, the original information 
contained in the checking block should 
be considered lost even after 
validation. Automatic register vali
dation leaves the contents 
unpredictable. Programmed and manual 
validation of checking blocks causes the 
contents to be changed explicitly. 

Programming Hote 

The machine-check-interruption handler 
must assume that the registers require 
validation. Thus, each register should 
be loaded, using an instruction defined 

11-6 370-XA Principles of Operation 

to validate, before the register is used 
or stored. 

INVALID CBC IN STORAGE 

The size of the checking block in stor-
age depends on the model but is never 
mor~ than 4K bytes. 

When invalid CBC is detected in storage, 
a machine-chack condition may occur; 
depending on the circumstances, the 
machine-check condition may be system 
damage, instruction-processing damage, 
or system recovery. If the invalid CBC 
is detected as part of the execution of 
a channel program, the error is reported 
as an I/O-error condition. When a CCW, 
indirect-data-address word, or data is 
prefetched from storage, is found to 
have invalid CSC, but is not used in the 
channel program, the condition is not 
reported as an I/O-error condition. The 
condition mayor may not be reported as 
a machine-check-interruption condition. 
Invalid CBC detected during accesses to 
storage for other than CPU-related 
accesses may be reported as system 
recovery with storage error uncorrected 
indicated, since the primary error indi
cation is reported by some other means. 

When the storage checking block consists 
of multiple bytes and contains invalid 
CSC, special storage-validation pr0ce~ 
dures are generally necessary to restore 
or place new information in the checking 
block. Validation of storage is 
provided with the manual load-clear and 
system-reset-clear operations and is 
also provided as a program function. 
Programmed storage validation is done, 
one block at a time, by executing the 
privileged instruction TEST BLOCK. 
Manual storage validation by clear reset 
validates all blocks which are available 
in the configuration. 

A checking block with invalid CBC is 
never validated unless the entire 
contents of the checking block are 
replaced. An attempt to store into a 
checking block having invalid CSC, with
out replacing the entire checking block, 
leaves the data in the checking block 
(including the check bits) unchanged. 
Even when an instruction or a channel 
program input operation specifies that 
the entire contents of a checking block 
are to be replaced, validation mayor 
may not occur, dependin~ on the opera
tion and the model. 

Programming Note 

Machine-check conditions may be reported 
for prQfetched and unused data. Depend
ing on the model, such situations may, 



or may not, be successfully retried. 
For example, a BRANCH AND LINK (BALR) 
instruction which specifies an R2 field 
of zero will never branch, but on some 
models a prefetch of the location speci
fied by register zero may occur. Access 
exceptions associated with this prefetch 
will not be reported. However, if an 
invalid checking-block code is detected, 
CPU retry may be attempted. Depending 
on the model, the prefetch may recur as 
part of the retry, and thus the retry 
will not be successful. Even when the 
CPU retry is successful, the performance 
degradation of such a retry is signif
icant, and system recovery will be 
presented, normally with a failing
storage address. The program in this 
case should initiate proceedings to 
eliminate use of, and validate the 
location, to avoid continued degrada
tion. 

Programmed Validation of storage 

Provided that an invalid CBC does not 
exist in the storage key associated with 
a 4K-byte block, the instruction TEST 
BLOCK causes the entire 4K-byte block to 
be set to zeros with a valid CBC, 
regardless of the current contents of 
the storage. TEST BLOCK thus removes an 
invalid CSC from a location in storage 
which has an intermittent, or one-time, 
failure. However, if a permanent fail
ure exists in a portion of the storage, 

a subsequent fetch may find an invalid 
CBC. 

INVALID CBC IN STORAGE KEYS 

Depending on the model, each storage key 
may be contained in a single checking 
block, or the access-control and fetch
protection bits and the reference and 
change bits may be in separate checking 
blocks. 

The figure "Invalid CBC in Storage Keys" 
describes the action taken when the 
storage key has invalid CBC. The figure 
indicates the action taken for the case 
when the access-control and fetch
protection bits are in one checking 
block and the reference and change bits 
are in a separate checking block. In 
machines where both fields are included 
in a single checking block, the action 
taken is the combination of the actions 
for each field in error, except that 
completion is permitted only if an error 
in all affected fields permits 
completion. References to main storage 
to which key-controlled protection does 
not apply are treated as if an access 
key of zero is used for the ~eference. 
This includes such references as 
channel-program references during 
initial program loading and implicit 
references, such as interruption action 
and OAT-table accesses. 

Chapter 11. Machine-Check Handling 11-7 



Action Taken on Invalid CBC 

For Access-Control and For Reference and 
Type of Reference Fetch-Protection Bits Change Bits 

SET STORAGE KEY 
EXTENDED 

Complete; validate. Complete; validate. 

INSERT STORAGE KEY 
EXTENDED 

PD; preserve. PD; preserve. 

RESET REFERENCE BIT 
EXTENDED 

PO or complete; PO; preserve. 
preserve. 

INSERT VIRTUAL STORAGE PO; preserve. 
KEY or TEST PROTEC
TION 

CPU prefetch (informa- CPF; preserve. 
tion not used) 

Channel-program pre
fetch information 
not used) 

IPF; preserve. 

Fetch, nonzero access MC; preserve. 
key 

store4 , nonzero access MCI; preserve. 
key 

Fetch, zero access 
k.ey2 

Store 4 , zero access 
key2 

Explanation: 

MC or complete; 
preserve. 

MC or complete; 
preserve. 

CPF; preserve. 

CPF; preserve. 

IPF; preserve. 

MC or complete; 
preserve. 

MC and preserve; or 
complete 3 and correct. 

MC or complete; 
preserve. 

MC and preserve; or 
complete 3 and correct. 

1 The contents of the main-storage location are not changed. 

2 

3 

4 

Complete 

The action shown for an access key of zero is also appli
cable to references to which key-controlled protection 
does not apply. 

The contents of the reference and change bits are set 
to ones if the "complete" action is taken. 

CPU virtual- and logical-address store accesses are sub
ject to page protection. When the page-protection bit 
is one, the location will not be changed; however, the 
machine may indicate a machine-check condition if the 
storage key or the data itself has invalid CBC. 

The condition does not cause termination of the execution 
of the instruction and, unless an unrelated condition pro
hibits it, the execution of the instruction is completed, 
ignoring the error condition. No machine-cheek-damage 
conditions are generated, but a system-recovery condition 
may be generated. 

Invalid CBC in Storage Keys (Part 1 of 2) 

11-8 370-XA Principles of Operation 



Explanation (Continued): 

Correct The reference and change bits are set to ones with valid 
CBC. 

Preserve The contents of the entire checking block having invalid 
CBC are left unchanged. 

Validate The entire key is set to the new value with valid CBC. 

CPF Invalid CBC in the storage key for a CPU prefetch which 
is unused, or for instructions which do not examine the 
reference and change bits, may result in any of the fol
lowing situations: 
• The operation is completed, and no machine-check con

dition is reported. 
• The operation is completed, and system recovery, with 

storage-key error uncorrected and a failing-stor.age 
address, is reported. 

• Instruction-processing damage (either with or without 
backup), with storage-key error uncorrected and a 
failing-storage address, is reported. 

IPF Invalid CBC in the storage key for a channel-program pre
fetch which is unused may result in any of the following: 
• The I/O operation is completed, and no machine-check 

condition is reported. 
• The I/O operation is completed, and system recovery, 

with storage-key error uncorrected and a failing
storage-address, is reported. 

MC Same as PD for CPU references, but a channel-subsystem 
reference may result in the following combinations of 
I/O-error conditions and machine-check conditions: 
• An I/O-error condition is reported, and no machine

check condition is reported. 
• An I/O-error condition is reported; system recovery, 

with or without storage-key error uncorrected and a 
failing-storage address, is reported. 

PD Instruction-processing damage (either with or without 
backup), with or without a storage-key error uncorrected 
and failing-storage address, is reported. 

Invalid CBC in Storage Keys (Part 2 of 2) 

INVALID CBC IN REGISTERS 

When invalid CBC is detected in a CPU 
register, a machine-check condition may 
be recognized. CPU registers include 
the general, floating-point, and control 
registers, the current PSW, the prefix 
register, the TOD clock, the CPU timer, 
and the clock comparator. 

When a machine-check interruption 
occurs, whether or not it is due to 
invalid CBC in a CPU register, the 
following actions affecting the CPU 
registers, other than the prefix regis
ter and the TOO-clock, are taken as part 
of the interruption. 

1 •. The contents of the registers are 
saved in assigned storage 
locations. Any register which is 
in error is identified by a corre
sponding validity bit of zero in 
the machine-cheek-interruption 

code. Malfunctions detected during 
register saving do not result in 
additional machine-check
interruption conditions; instead, 
the correctness of all the informa
tion stored is indicated by the 
appropriate setting of the validity 
bits. 

2. On some models, registers with 
invalid cac are then validated, 
their actual contents being unpre
dictable. On other models, 
programmed validation is required. 

The prefix register and the TaD clock 
are not stored during a machine-check 
interruption, have no corresponding 
validity bit, and are not validated. 

On those models in which registers are 
not automaticallY validated as part of 
the machine-check interruption, a regis
ter with invalid cac will not cause a 
machine-cheek-interruption condition 

Chapter 11. Machine-Check Handling 11-9 



unless the contents of the register are 
actuallY used. In these models, each 
register may consist of one or more 
checking blocks, but multiple registers 
are not included in a single checking 
block. When only a portion of a regis
ter is accessed, invalid CBC in the 
unused portion of the same register may 
cause a machine-cheek-interruption 
condition. For example, invalid CBC in 
the right half of a floating-point 
register may cause a machine-check
interruption condition if a LOAD (LE) 
operation attempts to replace the left 
half, or short form, of the register. 

Invalid CBC associated with the prefix 
register cannot safely be reported by 
the machine-check interruption, since 
the interruption itself requires that 
the prefix value be applied to convert 
real addresses to the corresponding 
absolute addresses. Invalid CBC in the 
prefix register causes the CPU to enter 
the check-stop state immediately. 

On those models which do not validate 
registers during a machine-check inter
ruption, the following instructions will 
cause validation of a register, provided 
the information in the register is not 
used before the register is validated. 
Other instructions, although they 
replace the entire contents of a regis
ter, do not necessarily cause 
validation. 

General registers are validated by 
BRANCH AND LINK (BAL, BALR), BRANCH AND 
SAVE (BAS, BASR), LOAD (LR), and LOAD 
ADDRESS. LOAD (L) and LOAD MULTIPLE 
validate if the operand is on a word 
boundary, and LOAD HAlFWORD validates if 
the operand is on a halfword boundary. 

Floating-point registers are validated 
by LOAD (LDR) and, if the operand is on 
a doubleword boundary, by LOAD (LD). 

Control registers may be validated 
either singly or in groups by using the 
instruction LOAD CONTROL. 

The CPU timer, clock comparator, and 
prefix register are validated by SET CPU 
TIMER, SET CLOCK COMPARATOR, and SET 
PREFIX, respectively. 

The TOD clock is validated by SET CLOCK 
if the TOD-clock control is in the 
enable-set position. 

Programming Note 

Depending on the register, and the 
model, the contents of a register may be 
validated by the machine-check inter
ruption or the model may require that a 
program issue a validating instruction 
after the machine-check interruption has 

11-10 370-XA Principles of Operation 

occurred. In the case of the CPU timer, 
depending on the model, both the 
machine-check interruption and validat
ing instructions may be required to 
restore the CPU timer to full working 
order. 

CHECK-STOP STATE 

In certain situations it is impossible 
or undesirable to continue operation 
when a machine error occurs. In these 
cases, the CPU may enter the check-stop 
state, which is indicated by the check
stop indicator. 

In general, the CPU may enter the 
check-stop state whenever an uncorrecta
ble error or other malfunction occurs 
and the machine is unable to recognize a 
specific machine-cheek-interruption 
condition. 

The CPU always enters the check-stop 
state if any of the following conditions 
exists: 

• PSW bit 13 is zero and an exigent 
machine-check condition is gener
ated. 

• During the execution of an inter
ruption due to one exigent 
machine-check condition, another 
exigent machine-check condition is 
detected. 

• During a machine-check interrup
tion, the machine-cheek-interrup
tion code cannot be stored 
successfully or the new PSW be 
fetched successfully. 

• 

• 

Invalid CBC is detected in the 
prefix register. 

A malfunction in the recelvlng CPU, 
which is detected after accepting 
the order, prevents the successful 
completion of a SIGNAL PROCESSOR 
order and the order was a reset, or 
the receiving CPU cannot determine 
what the order was. The receiving 
CPU enters the check-stop state. 

There may be many other conditions for 
particular models when an error may 
cause check stoP. 

When the CPU is in the check-stop state, 
instructions and interruptions are not 
executed. The TOD clock is normally not 
affected by the check-stop state. The 
CPU timer mayor may not run in the 
check-stop state, depending on the error 
and the model. The start key and ~top 
key are not effective in this state. 

The CPU may be removed from the check
stop state by CPU reset. 



In a multiprocessing configuration, a 
CPU entering the check-stop state gener
ates a request for a malfunction-alert 
external interruption to all CPUs in the 
configuration. Except for the reception 
of a malfunction alert, other CPUs and 
the I/O system are normally unaffected 
by the check-stop state in a cPU. 
However, depending on the nature of the 
condition causing the check stop, other 
CPUs may also be delayed or stopped, and 
channel subsystem and I/O activity may 
be affected. 

System Check Stop 

In a multiprocessing configuration, some 
errors, malfunctions, and damage condi
tions are of such severity that the 
condition causes all CPUs in the config
uration to enter the check-stop state. 
This condition is called a system check 
stoP. The state of the channel subsys
tem and I/O activity is unpredictable. 

MACHINE-CHECK INTERRUPTION 

A request for a machine-check inter
ruption, which is made pending as the 
result of a machine check, is called a 
machine-check-interruption condition. 
There are two types of machine-check
interruption conditions: exigent condi
tions and repressible conditions. 

EXIGENT CONDITIONS 

Exigent machine-check-interruption con
ditions are those in which damage has or 
would have occurred such that the 
current instruction or interruption 
sequence cannot safely continue. 
Exigent conditions are of two classes: 
instruction-processing damage and system 
damage. In addition to indicating 
specific exigent conditions, system 
damage is used to report any malfunction 
or error which cannot be isolated to a 
less severe report. 

Exigent conditions for instruction 
sequences are classified as two types, 
nullifying exigent conditions and termi
nating exigent conditions, according to 
whether the instructions affected are 
nullified or terminated. Exigent condi
tions for interruption sequences are 
classified as terminating exigent condi
tions. The terms "nullification" and 
"termination" have the same meaning as 
that us~d in Chapter 6, "Interruptions," 
except that more than one instruction 
may be involved. Thus a nullifying 
exigent condition indicates that the CPU 
has returned to the beginning of a unit 

of operation prior to the error. A 
terminating exigent condition means ~hat 
the results of one or more instructions 
may have unpredictable values. 

REPRESSIBLE CONDITIONS 

Repressible machine-check-interruption 
conditions are those in which the 
results of the instruction-processing 
sequence have not been affected. 
Repressible conditions can be delayed, 
until the completion of the current 
instruction or even longer, without 
affecting the integrity of CPU 
operation. Repressible conditions are 
of three classes: recovery, alert, and 
repressible damage. Each class has one 
or more subclasses. 

A malfunction in the CPU, storage, or 
operator facilities which has been 
successfully corrected or circumvented 
internally without logical damage is 
called a recovery condition. Depending 
on the model and the type of 
malfunction, some or all recovery condi
tions may be discarded and not reported. 
Recovery conditions that are reported 
are grouped in one subclass, system 
recovery. 

A machine-check-interruption condition 
not directly related to a machine 
malfunction is called an alert 
condition. The alert conditions are 
grouped in two subclasses: degradation 
and warning. 

A malfunction resulting in an incorrect 
state of a portion of the system not 
directly affecting sequential CPU opera
tion is called a repressible-damage 
condition. Repressible-damage condi
tions are divided into three subclasses, 
according to the function affected: 
timing-facility damage, channel report 
pending, and channel-subsystem damage. 

Programming Notes 

1. Even though repressible conditions 
are usually reported only at normal 
points of interruption, they may 
also be reported with exigent 
machine-check conditions. Thus, if 
an exigent machine-check condition 
causes an instruction to be abnor
mally terminated and a machine
check interruption occurs to report 
the exigent condition, any pending 
repressible conditions may also be 
reported. The meaningfulness of 
the validity bits depends on what 
exigent condition is reported. 

2. Classification of a damage condi
tion as repressible does not imply 

Chapter 11. Machine-Check Handling 11-11 



that the damage is necessarily less 
severe than damage classified as an 
exigent condition. The distinction 
is whether action must be taken as 
soon as the damage is detected 
(exigent) or whether the CPU can 
continue processing (repressible). 
For a repressible condition, the 
current instruction can be 
completed before taking the 
machine-check interruption if the 
CPU is enabled for machine checks; 
if the CPU is disabled for machine 
checks, the condition can safely be 
kept pending until the CPU is again 
enabled for machine checks. 

For example, the CPU may be disa
bled for machine-check inter
ruptions because it is handling an 
earlier instruction-processing
damage interruption. If, during 
that time, an I/O operation 
encounters a storage error, that 
condition can be kept pending 
because it is not expected to 
interfere with the current 
machine-check processing. If, 
however, the CPU also makes a 
reference to the area of storage 
containing the error . before 
re-enabling machine-check interrup
tions, another instruction
processing-damage condition is 
created, which is treated as an 
exigent condition and causes the 
CPU to enter the check-stop state. 

3. A repressible condition may be a 
floating condition. A floating 
repressible condition is eligible 
to cause an interruption on any CPU 

Information Stored (Fetched) _. 
Old PSW 
New PSW (fetched) 
Machine-cheek-interruption code 
Failing-storage address 
Register-save areas 

CPU timer 
Clock comparator 
Floating-point registers 0, 2, 4, 6 
General registers 0-15 
Control registers 0-15 

Fixed logout area 

EXElanation: 

* All locations are in real storage. 

Machine-Cheek-Interruption locations 

11-12 370-XA Principles of Operation 

in the configuration. At the point 
when a CPU accepts an interruption 
for a floating repressible condi
tion, the condition is no longer 
eligible to cause an interruption 
on the remalnlng CPUs in the 
configuration. 

INTERRUPTION ACTION 

A machine-check interruption causes the 
following actions to be taken. The PSW 
reflecting the point of interruption is 
stored as the machine-check old PSW at 

.real location 48. The contents of otJer 
registers are stored in register-save 
areas at real locations 216-231 and 
352-511. After the contents of the 
registers are stored in register-save 
areas, depending on the model, the 
registers may be validated with the 
contents being unpredictable. A 
failing-storage address may be stored at 
real location 248. A machine-cheek
interruption code (MCIC) of eight bytes 
is placed at real location 232. The new 
PSW is fetched from real location 112. 
Additionally, a machine-check logout may 
have occurred. The machine-generated 
addresses to access the old and new PSW, 
the MCIC, extended interruption informa
tion, and the fixed-logout area are all 
real addresses. 

The fields accessed during the machine
check interruption are summarized in the 
figure "Machine-Cheek-Interruption 
locations." 

Starting length 
location* in Bytes 

48 8 
112 8 
232 8 
248 4 

216 8 
224 8 
352 32 
384 64 
448 64 
256 16 



If the machine-cheek-interruption code 
cannot be stored successfully or the new 
PSW cannot be fetched successfully, the 
CPU enters the check-stop state. 

A repressible machine-check condition 
can initiate a machine-check inter
ruption only if both PSW bit 13 is one 
and the associated subclass mask bit, if 
any, in control register 14 is also one. 
When it occurs, the interruption does 
not terminate the execution of the 
current instruction; the interruption is 
taken at a normal point of interruption, 
and no program or supervisor-call inter
ruptions are eliminated. If the machine 
check occurs during the execution of a 
machine function, such as a CPU-timer 
update, the machine-check interruption 
takes place after the machine function 
has been completed. 

When the CPU is disabled for a partic
ular repressible machine-check 
condition, the condition remains 
pending. Depending on the model and the 
condition, multiple repressible condi
tions may be held pending for a 
particular subclass, or only one condi
tion may be held pending for a 
particular subclass, regardless of the 
number of conditions that may have been 
detected for that subclass. 

When a repressible machine-check inter
ruption occurs because the interruption 
condition is in a subclass for which the 
CPU is enabled, pending conditions in 
other subclasses may also be indicated 
in the same interruption code, even 
though the CPU is disabled for those 
subclasses. All indicated conditions 
are then cleared. 

If a machine check which is to be 
reported as a system-recovery condition 
is detected during the execution of the 
interruption procedure due to a previous 
machine-check condition, the system
recovery condition may be combined with 
the other conditions, discarded, or held 
pending. 

An exigent machine-check condition can 
cause a machine-check interruption only 
when PSW bit 13 is one. When a nullify
ing exigent condition causes a machine
check interruption, the interruption is 
taken at a normal point of interruption. 
When a terminating exigent condition 
causes a machine-check interruption, the 
interruption terminates the execution of 
the current instruction and may elimi
nate the program and supervisor-call 
interruptions, if any, that would have 
occurred if execution had continued. 
Proper execution of the interruption 
sequence, including the storing of the 
old PSW and other information, depends 
on the nature of the malfunction. When 
an exigent machine-check condition 
occurs during the execution of a machine 
function, such as a CPU-timer update, 

the sequence 
completed. 

not necessarily 

If, during the execution of an inter
ruption due to one exigent machine-check 
condition, another exigent machine check 
is detected, the CPU enters the check
stop state. If an exigent machine check 
is detected during an interruption due 
to a repressible machine-check 
condition, system damage is reported. 

When PSW bit 13 is zero, an exigent 
machine-check condition causes the CPU 
to enter the check-stop state. 

Machine-check-interruption conditions 
are handled in the same manner regard
less of whether the wait-state bit in 
the PSW is one or zero: a machine-check 
condition causes an interruption if the 
CPU is enabled for that condition. 

Machine checks which occur while the 
rate control is set to the instruction 
step position are handled in the 5ame 
manner as when the control is set to the 
process position; that is, reco\"ery 
mechanisms are active, and machine-check 
interruptions occur when allow~d. 
Machine checks occurring during a manLal 
operation may be indicated to the opera
tor, may generate a system-recovery 
condition, may result in system damage, 
or may cause a check stop, depending on 
the model. 

Every reasonable attempt is made to 
limit the side effects of any machine 
check and the associated interruption. 
Normally, interruptions, as well as the 
progress of I/O operations, remain unaf
fected. The malfunction, however, may 
affect these activities, and, if the 
currently active PSW has bit 13 set to 
one, the machine-check" interruption will 
indicate the total extent of the damage 
caused, and not just the damage which 
originated the condition. 

POINT OF INTERRUPTION 

The point in the processing which is 
indicated by the interruption and used 
as a reference point by the machine to 
determine and indicate the validity of 
the status stored is referred to as the 
point of interruption. 

Because of the checkpoint capability in 
models with CPU retry, the interruption 
resulting from an exigent machine
check-interruption condition may indi
cate a point 1n the CPU processing 
sequence which is logically prior to the 
error. Additionally, the model may have 
some choice as to which point in the CPU 
processing sequence the interruption is 
indicated, and, in some cases, the 
status which can be indicated as valid 
depends on the point chosen. 

Chapter 11. Machine-Check Handling 11-13 



Only certain points in the processing 
may be used as a point of interruption. 
For repressible machine-check inter
ruptions, the point of interruption must 
be after one unit of operation is 
completed and any associated program or 
supervisor-call interruption is taken, 
and before the next unit of operation is 
begun. 

Exigent machine-check conditions for 
instruction sequences are those in which 
damage has or would have occurred to the 
instruction stream. Thus, the damage 
can normally be associated with a point 
part way though an instruction and this 
point is called the point of damage. In 
some cases there may be one or more 
instructions separating the point of 
damage and the point of interruption, 
and the processing associated with one 
or more instructions may be damaged. 
When the point of interruption is a 
point prior to the point of damage due 
to a nullifiable exigent machine-check 
condition, the point of interruption can 
be only at the same points as for 
repressible machine-check conditions. 

In addition to the point of interruption 
permitted for repressible machine-check 
conditions, the point of interruption 
for a terminating exigent machine-check 
condition may also be after the unit of 
operation is completed but before any 
associated program or supervisor-call 
interruption occurs. In this case, a 
valid PSW instruction address is defined 
as that which would have been stored in 
the old PSW for the program or 
supervisor-call interruption. Since the 
operation has been terminated, the 
values in the result fields, other than 
the instruction address, are unpredict
able. Thus the validity bits associated 
with fields which are due to be changed 
by the instruction stream are meaning
less when a terminating exigent 
machine-check condition is reported. 

11-14 370-XA Principles of Operation 

When the point of interruption and the 
point of damage due to an exigent 
machine-check condition are separated by 
a checkpoint-synchronizatiori function, 
the damage has not been isolated to a 
particular program, and system damage is 
indicated. 

Programming Note 

When an exigent machine-check-interrup
tion condition occurs, the point of in
terruption which is chosen affects the 
amount of damage which must be 
indicated. An attempt is made, when 
possible, to choose a point of inter
ruption which permits the mtntmum 
indication of damage. In general, the 
preference is the interruption point 
immediately preceding the error. 

When all the status information stored 
as a result of an exigent machine
check-interruption condition does not 
reflect the same point, an attempt is 
made when possible to choose the point 
of interruption so that the instruction 
address which is stored in the, machine
check old PSW is valid. 

MACHINE-CHECK-INTERRUPTION CODE 

On all machine-check interruptions, a 
machine-cheek-interruption code (MCIC)' 
is stored at the doubleword starting at 
real location 232 and has the format 
shown in the figure "Machine-ChQck 
Interruption-Code Format." 

Bits in the MCIC which are not assigned, 
or not implemented by a particular 
model, are stored as zeros. 



o 4 

D C S C 
G W P P K 

7 14 16 

W M P I F 
P SMA A 

20 27 31 

o 0 000 0 000 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

32 46 48 63 

o System damage (SD) 
1 Instruction-processing damage (PD) 
2 System recovery (SR) 
4 Timing-facility damage (CD) 
7 Degradation (DG) 
8 Warning (W) 
9 Channel report pending (CP) 

10 Service-processor damage (SP) 
11 Channel-subsystem damage (CK) 
14 Backed up (B) 
16 Storage error uncorrected (SE) 
17 Storage error corrected CSC) 
18 Storage-key error uncorrected (KE) 
20 PSW-MWP validity (WP) 
21 PSW mask and key validity (MS) 
22 PSW program-mask and condition-code validity (PM) 
23 PSW-instruction-address validity (IA) 
24 Failing-storage-address validity (FA) 
27 Floating-point-register validity (FP) 
28 General-register validity (GR) 
29 Control-register validity (CR) 
31 Storage logical validity (ST) 
46 CPU-timer validity (CT) 
47 Clock-comparator validity (CC) 

Note: All other bits of the MCIC are unassigned and stored as zeros. 

Machine-Check Interruption-Code Format 

Programming Note 

The program should not depend on unas
signed bits in the machine-check
interruption code being zeros, so as to 
ensure that existing programs run if and 
when new facilities using these bits are 
defined. 

SUBCLASS 

Bits 0-2, 4, and 7-11 are the subclass 
bits which identify the type of 
machine-check condition causing the 
interruption. At least one of the 
subclass bits is stored as a one. When 
multiple errors have occurred, several 
of the defined bits may be set to ones. 

System Damage 

Bit 0 (SD), when one, indicates that 
damage has occurred which cannot be 

isolated to one or more of the less 
severe machine-check subclasses. When 
system damage is indicated, the remain
ing bits in the machine-check
interruption code are not meaningful, 
and information stored in the register
save areas, machine-check extended
interruption fields, and failing
storage-address field is not meaningful. 
System damage is a terminating exigent 
condition. 

Instruction-Processing Damage 

Bit 1 (PD), when one, indicates that 
damage has occurred to the instruction 
processing of the CPU. 

The exact meaning of bit 1 depends on 
the setting of the backed-up bit, bit 
14. When the backed-up bit is one, the 
condition is called processing backup. 
When the backed-up bit is zero, the 
condition is called processing damage. 
These two conditions are described in 
the section "Synchronous Machine-Check-

Chapter 11. Machine-Check Handling 11-15 



Interruption Conditions" in this chap
ter. 

Instruction-processing damage is a 
nullifying or terminating exigent condi
tion. 

System Recovery 

Bit 2 (SR), when one, indicates that 
malfunctions were detected but did not 
result in damage or have been success
fully corrected. Some malfunctions 
detected as part of an 1/0 operation may 
result in a system-recovery condition in 
addition to an I/O-error condition. The 
presenCQ and extent of the system
recovery capability depend on the model. 

System recovery is a repressible condi
tion. 

Programming Notes 

1. System recovery may be used to 
report a failing-storage address 
detected by a CPU prefetch or by an 
I/O operation. 

2. Unless the corresponding validity 
bits are ones, the indication of 
system recovery does not imply 
storage logical validity, or that 
the fields stored as a result of 
the machine-check interruption are 
valid. 

Timing-Facility Damage 

Bit 4 (CD), when one, indicates that 
damage has occurred to the TOO clock, 
the CPU timer, the clock comparator, or 
to the CPU-timer or clock-comparator 
external-interruption conditions. The 
timing-facility-damage machine-check 
condition is set whenever any of the 
following occurs: 

1. The TOO clock accessed by this CPU 
enters the error or not-operational 
state. 

2. The CPU timer is damaged, and the 
CPU is enabled for CPU-timer 
external interruptions. On some 
models, this condition may be 
recognized even when the CPU is not 
enabled for CPU-timer 
interruptions. Depending on the 
model, the machine-check condition 
may be generated only as the CPU 
timer enters an error state. Or, 
the machine-check condition may be 
continuously generated whenever the 
CPU is enabled for CPU-timer inter-

11-16 370-XA Principles of Operation 

ruptions, until the CPU timer is 
validated. 

3. The clock comparator is damaged, 
and the CPU is enabled for clock
comparator external interruptions. 
On some models, this condition may 
be recognized even when the CPU is 
not enabled for clock-comparator 
interruptions. 

Timing-facility damage may also be set 
along with instruction-processing damage 
when an instruction which accesses the 
TOO clock, CPU timer, or clock compara
tor produces incorrect results. Depend
ing on the model, the CPU timer or clock 
comparator may be validated by the 
interruption which reports the CPU timer 
or clock comparator as invalid. 

Timing-facility damage is a repressible 
condition. 

Programming Note 

Timing-facility-damage conditions for 
the CPU timer and the clock comparator 
are not recognized on most models when 
these facilities are not in use. The 
facilities are considered not in use 
when the CPU is disabled for the corre
sponding external interruptions (PSW bit 
7, or the subclass-mask bits, bits 20 
and 21 of control register 0, are 
zeros), and when the corresponding set 
and store instructions are not issued. 
Timing-facility-damage conditions that 
are already pending remain pending, 
however, when the CPU is disabled for 
the corresponding external interruption. 

Timing-facility-damage conditions due to 
damage to the TOO clock are always 
recognized. 

Degradation 

Bit 7 (DG), when one, indicates that 
continuous degradation of system 
performance, more serious than that 
indicated by system recovery, has 
occurred. Degradation may be reported 
when system-recovery conditions exceed a 
machine-preestablished threshold or when 
unit deletion has occurred. The pres
ence and extent of the degradation
report capability depends on the model. 

Degradation is a repressible condition. 

Warning 

Bit 8 (W), when one, indicates that 
damage is imminent in some part of the 



system (for example, that power ;s about 
to fail, or that a loss of cooling is 
occurring). Whether warning conditions 
are recognized depends on the model. 

If the condition responsible for the 
imminent damage is removed before the 
interruption request is honored (for 
example, if power is restored), the 
request does not remain pending, and no 
interruption occurs. Conversely, the 
request is not cleared by the inter
ruption, and, if the condition persists, 
more than one interruption may result 
from the same condition. 

Warning is a repressible condition. 

Channel Report Pending 

Bit 9 (CP), when one, indicates that a 
channel report, consisting of one or 
more channel-report words, has been made 
pending, and the contents of the 
channel-report words describe, in 
further detail, the effect of the 
malfunction and the results of analysis 
or action performed. A channel report 
becomes pending when one of the follow
ing conditions has occurred: 

1. Channel-subsystem recovery has been 
completed. The channel-subsystem 
recovery may have been initiated 
with no prior notice to the program 
or may have been a result of a 
condition previously reported to 
the program. 

2. The function specified by RESET 
CHANNEL PATH has been completed. 

The channel-report words which make up 
the channel report may be cleared, one 
at a time, by execution of the instruc
tion STORE CHANNEL REPORT WORD, which is 
described in Chapter 14, "I/O 
Instructions." 

Bit 9 is meaningless when channel
subsystem damage is reported. 

Channel report pending is a floating 
repressible condition. 

Service-Processor Damage 

Bit 10 eSP), when one, indicates that 
damage has oc~urred to the service 
processor. When service-processor 
damage occurs, a machine-check inter
ruption is made pending at all CPUs in 
the configuration. Service-processor 
damage has no subclass-mask bit and is a 
repressible condition. 

Channel-Subsystem Damage 

Bit 11 (CK), when one, indicates that an 
error or malfunction has occurred in the 
channel subsystem, or that the channel 
subsystem is in the check-stop state. 
The channel subsystem enters the check
stop state when a malfunction occurs 
which is so severe that the channel 
subsystem cannot continue, or if power 
is lost in the channel subsystem. 

Channel-subsystem damage 
subclass-mask bit and is 
repressible condition. 

has no 
a floating 

TIME OF INTERRUPTION OCCURRENCE 

Bit 14 of the machine-check-interruption 
code indicates when the interruption 
occurred in relation to the error. 

Backed !!p 

Bit 14 (B), when one, indicates that the 
point of interruption is at a checkpoint 
before the point of error. This bit is 
meaningful only when the instruction
processing-damage bit, bit 1, is also 
set to one. The presence and extent of 
thE capability to indicate a backed-up 
condition depends on the model. 

SYNCHRONOUS MACHINE-CHECK INTERRUPTION 
CONDITIONS 

The instruction-processing damage and 
backed-up bits, bits 1 and 14 of the 
machine-cheek-interruption code, identi
fy, in combination, two conditions. 

Bit 1 

1 
1 

Bit 11 

o 
1 

Processing Backup 

Name of Condition 

Processing damage 
Processing backup 

The processing-backup condition indi
cates that the point of interruption is 
prior to the point, or points, of error. 
This is a nullifying exigent condition. 
When all of the validity bits associated 
with CPU status are indicated as valid, 
the machine has successfully returned to 
a checkpoint prior to the malfunction, 
and no damage has yet occurred. The 
validity bits in the machine-check
interruption code which must be one for 
this to be the case ar9 as follows: 

Chapter 11. Machine-Check Handling (1-17 



MCIC Bit 

20 
21 
22 

23 
27 
28 
29 
31 

46 
47 

Programming Hote 

Fields Covered ~ Bit 

PSW MWP bits 
PSW mask and key 
PSW program mask and 

condition code 
PSW instruction address 
Floating-point registers 
General registers 
Control registers 
Storage logical validity 

(result fields within 
current checkpoint 
interval) 

CPU timer 
Clock comparator 

The processing-backup condition is 
reported rather than system recovery to 
indicate that a malfunction or failure 
stands in the way of continued operation 
of the CPU. The malfunction has not 
been circumvented and damage would have 
occurred if instruction processing had 
continued. 

Processing Damage 

The processing-damage condition indi
cates that damage has occurred to the 
instruction processing of the CPU. The 
point of interruption is a point beyond 
some or all of the points of damage. 
Processing damage is a terminating 
exigent condition; therefore, the 
contents of result fields may be unpre
dictable and still indicated as valid. 

Processing damage may include malfunc
tions in program-event recording, moni
tor call, tracing, and dynamic address 
translation. Processing damage causes 
any supervisor-calI-interruption condi
tion and program-interruption condition 
to be discarded. However, the contents 
of the old PSW and interruption-code 
locations for these interruptions may be 
set to unpredictable values. 

STORAGE-ERROR TYPE 

Bits 16-18 of the machine-check
interruption code are used to indicate 
an invalid CBC or a near-valid CBC 
detected in main storage or an invalid 
CBC in a storage key. The failing
storage-address field, when indicated as 
valid, identifies an address within the 
storage checking block containing the 
error, or, for storage-key error uncor
rected, within the block associated with 
the storage key. The portion of the 

11-18 370-XA Principles of Operation 

configuration affected by an invalid CBC 
is indicated in the subclass field of 
the machine-cheek-interruption code. 
Storage errors detected for a channel 
program, when indicated as I/O-error 
conditions, may also be reported as 
system recovery. CBC errors that occur 
in storage or in the storage key and 
that are detected on prefetched or 
unused data for a CPU program mayor may 
not be reported, depending on the model. 

Storage Error Uncorrected 

Bit 16 (SE), when one, indicates that a 
checking block in main storage contained 
invalid CBC and that the information 
could not be corrected. The contents of 
the checking block in main storage have 
not been changed. The location reported 
may have been accessed or prefetched for 
this CPU program or another CPU or chan
nel program, or accessed as the result 
of a model-dependent storage access. 

Storage Error Corrected 

Bit 17 (SC), when one, indicates that a 
checking block in main storage contained 
near-valid CBC and that the information 
has been corrected before being used. 
Depending oh the model, the contents of 
the checking block in main storage may 
or may not have been restored to valid 
CBC. The location reported may have 
been accessed for this CPU program or 
another CPU or channel program, or its 
contents may have been prefetched for a 
CPU or a channel program, or fetched as 
the result of a model-dependent storage 
access. The presence and extent of the 
storage-error-correction capability de
pends on the model. 

Storage-Key Error Uncorrected 

Bit 18 (KE), when one, indicates that a 
storage key contained invalid CBC and 
that the information could not be 
corrected. The contents of the checking 
block in the storage key has not been 
changed. The storage key may have been 
accessed or prefetched for this CPU 
program or another CPU or channel 
program, or accessed as the result of a 
model-dependent storage access. 

Programming Hote 

The storage-error-uncorrected and 
storage-key-error-uncorrected bits do 
not in themselves indicate the occur-



rence of damage because the error 
detected may not have affected a result. 
The accompanying subclass bits of the 
interruption code indicate the area 
affected by the error. 

MACHINE-CHECK INTERRUPTION-CODE VALIDITY 
BITS 

Bits 20-24~ 27-31~ 46, and 47 of the 
machine-check-interruption code are 
validity bits. Each bit indicates the 
validity of a .particular field in stor
age. With the exception of the 
storage-logical-validity bit (bit 31), 
each bit is associated with a field 
stored during the machine-check inter
ruption. When a validity bit is one, it 
indicates that the saved value placed in 
the corresponding storage field is valid 
with respect to the indicated point of 
interruption and that no error was 
detected when the data was stored. 

When a validity bit is zero~ one or more 
of the following conditions may have 
occurred: the original information was 
incorrect~ the original information had 
invalid CBC~ additional malfunctions 
were detected while storing the informa
tion, or none or only part of the 
information was stored. Even though the 
information is unpredictable, the 
machine attempts~ when possible, to 
place valid CBC in the storage field and 
thus reduce the possibility of addi
tional machine checks being caused. 

The validity bits for the floating-point 
registers, general registers, control 
registers, CPU timer, and clock compara
tor indicate the validity of the saved 
value placed in the corresponding save 
area. The information in these regis
ters after the machine-check 
interruption is not necessarily correct 
even when the correct value has been 
placed in the save area and the validity 
bit set to one. The use of the regis
ters and the operation of the facility 
associated with the control registers, 
CPU timer, and clock comparator~ are 
unpredictable until these registers are 
validated. (See the section "Invalid 
CBC in Registers" earlier in this chap
ter.) 

PSW-MWP Validity 

Bit 20 (WP), when one, indicates that 
bits 12-15 of the machine-check old PSW 
are correct. 

PSW Mask and Key Validity 

Bit 21, when one, indicates that the 
system mask~ PSW key, and miscellaneous 
bits of the machine-check old PSW are 
correct. Specifically, this bit covers 
bits 0-11, 16, 17, and 24-31 of the PSW. 

PSW Program-Mask and Condition-Code 
Validity 

Bit 22 (PM), when one, indicates that 
the program mask and condition code of 
the machine-check old PSW are correct. 

PSW-Instruction-Address Validity 

Bit 23 (IA), when one, indicates that 
the addressing mode and instruction 
address (bits 32-63) of the machine
check old PSW are correct. 

Failing-Storage-Address Validity 

Bit 24 (FA), when one, indicates that a 
correct failing-storage address has been 
placed at real location 248 after a 
storage error uncorrected, storage-key 
error uncorrected, or storage error 
corrected. The presence and extent of 
the capability to identify the failing 
storage location depend on the model. 
When no such errors are reported, that 
is, bits 16-18 of the machine-check
interruption code are zeros, the 
failing-storage address is meaningless, 
even though it may be indicated as 
valid. 

Floating-Point-Register Validity 

Bit 27 (FP), when one, indicates that 
the contents of the floating-point
register save area at real locations 
352-383 reflect the correct state of the 
floating-point registers at the point of 
interruption. 

General-Register Validity 

Bit 28 (GR), when one, indicates that 
the contents of the general-register 
save area at real locations 384-447 
reflect the correct state of the general 
registers at the point of interruption. 

Chapter 11. Machine-Check Handling 11-19 



Control-Register Validity 

Bit 29 (CR), when one, indicates that 
the contents of the control-register 
save area at real locations 448-511 
reflect the correct state of the control 
registers at the point of interruption. 

storage logical Validity 

Bit 31 (ST), when one, indicates that 
the storage locations, the contents of 
which are modified by the instructions 
being executed, contain the correct 
information relative to the point of 
interruption. That is, all stores 
before the point of interruption are 
completed, and all stores, if any, after 
the point of interruption are 
suppressed. When a store before the 
point of interruption is suppressed 
because of an invalid CBC, the storage
logical-validity bit may be indicated as 
one, provided that the invalid CBC has 
been preserved as invalid. 

When instruction-processing damage is 
indicated but proces~ing backup 1S not 
indicated, the storage-logical-validity 
bit has no meaning. 

Storage logical validity reflects only 
the instruction-processing activity and 
does not reflect errors in the state of 
storage as the result of I/O operations, 
or of the storing of the old PSW and 
other interruption information. 

CPU-Timer Validity 

Bit 46 (CT), when one, indicates that 
the CPU timer is not in error and that 
the contents of the CPU-timer save area 
at real location 216 reflect the correct 
state of the CPU timer at the time the 
interruption occurred. 

Clock-Comparator Validity 

Bit 47 (CC), when one, indicates that 
the clock comparator is not in error and 
that the contents of the clock
comparator save area at real location 
224 reflect the correct state of the 
clock comparator. 

Programming Note 

The validity bits must be used in 
conjunction with the subclass bits and 

11-20 370-XA Principles of Operation 

the backed-up bit in order to determine 
the extent of the damage caused by a 
machine-check condition. No damage has 
occurred to the system when all of the 
following are true: 

• The four PSW-validity bits, the 
three register-validity bits, the 
two timing-facility-validity bits, 
and the storage-Iogical-validity 
bit are all ones. 

• The damage-subclass bits 0, 4, and 
11 are zeros. 

• The instruction-processing-daMage 
bit is zero or, if one, the 
backed-up bit is also one. 

MACHINE-CHECK EXTENDED INTERRUPTION 
INFORMATION 

As part of the machine-check interrup
tion, in some cases, extended inter
ruption information is plac~din fixed 
areas assigned in storage. The contents 
of registers associated with the CPU are 
placed in register-save areas. When 
storage error uncorrected, storage error 
corrected, or storage-key error uncor
rected is indicated, the failing-storage 
address is saved. 

Each of these fields has associated with 
it a validity bit in the machine-check
interruption code. If, for any reason, 
the machine cannot store the proper 
information in the field, the associated 
validity bit is set to zero. 

REGISTER-SAVE AREAS 

As part of the machine-check inter
ruption, the current contents of the CPU 
registers, except for the prefix regis
ter and the TOO clock, are stored in 
five register-save areas assigned in 
storage. Each of these areas has asso
ciated with it a validity bit in the 
machine-cheek-interruption code. If, 
for any reason, the machine cannot store 
the proper information in the field, the 
associated validity bit is set to zero. 

The following are the fi·ve sets of 
registers and the real locations in 
storage where their contents are saved 
during a machine-check interruption. 

locations 

216-223 
224-231 
352-383 

384-447 
448-511 

Registers 

CPU timer 
Clock comparator 
Floating-point regis-

ters 0, 2, 4, 6 
General registers 0-15 
Control registers 0-15 



FAILING-STORAGE ADDRESS 

When storage error uncorrected, storage 
error corrected, or storage-key error 
uncorrected is indicated in the 
machine-cheek-interruption code, the 
associated address, called the failing
storage address, is stored in bit posi
tions 1-31 of the word at real location 
248. Bit 0 of that word is set to zero. 
The field is valid only if the failing
storage-address validity bit, bit 24 of 
the machine-cheek-interruption code, is 
one. 

In the case of storage errors, the 
failing-storage address may designate 
any byte within the checking block. For 
storage-key error uncorrected, the 
failing-storage address may designate 
any address within the block of storage 
associated with the storage key that is 
in error. When an error is detected in 
more than one location before the inter
ruption, the failing-storage address may 
designate any of the failing locations. 
The address stored is an absolute 
address; that is, the value stored is 
the address that is used to reference 
storage after dynamic address trans
lation and prefixing have been applied. 

HANDLING OF MACHINE-CHECK CONDITIONS. 

FLOATING INTERRUPTION CONDITIONS 

An interruption condition which is made 
available to any CPU in a multiprocess
ing configuration is called a floating 
interruption condition. The first CPU 
that accepts the interruption clears the 
interruption condition, and it is no 
longer available to any other CPU in the 
configuration. 

Floating interruption conditions include 
service-signal external-interruption and 
I/O-interruption conditions. Two 
machine-check interruption conditions, 
channel report pending and channel
subsystem damage, are floating 
interruption conditions. Depending on 
the model, some machine-check inter
ruption conditions associated with 
system recovery and warning may also be 
floating interruption conditions. 

A floating interruption is presented to 
the first CPU in the configuration which 
is enabled for the interruption condi
tion and can accept the interruption. A 
CPU cannot accept the interruption when 
it;s in the check-stop state, has an 
invalid prefix, is performing an unend
i ng stri ng of 'i nterrupti ons due to a 
PSW-format error of the type that is 
recognized early or is in the stopped 
state. However, a CPU with the rate 

control set to instruction step can 
accept the interruption when the start 
key is activated. 

When a CPU enters the check-stop state 
in a multiprocessing configuration, the 
program on another CPU can determine 
whether a floating interruption may have 
been reported to the failing CPU and 
then lost. This can be accomplished if 
the interruption program places zeros in 
the real storage locations containing 
old PSWs and interruption codes after 
the interruption has been handled (or 
has been moved into another area for 
later processing). After a CPU enters 
the check-stop state, the program in 
another CPU can inspect the old-PSW and 
interruption-code locations of the fail
ing CPU. A nonzero value in an old PSW 
or interruption code indicates that the 
CPU has been interrupted but the program 
did not complete the handling of the 
interruption. 

Floating Machine-Check-Interruption 
Conditions 

Floating machine-cheek-interruption con
ditions are reset only by the manually 
initiated resets through the operator 
facilities. When a machine check occurs 
which prohibits completion of a floating 
machine-check interruption, the inter
ruption condition is no longer 
considered a floating interruption 
condition, and system damage is indi
cated. 

Floating I/O Interruptions 

The detection of a machine malfunction 
by the channel SUbsystem, while in the 
process of presenting an 1/0-
interruption request for a floating I/O 
interruption, may be reported as channel 
report pending or as channel-subsystem 
damage. Detection of a machine malfunc
tion by a CPU, while in the process of 
accepting a floating I/O interruption, 
is reported as system damage. 

MACHINE-CHECK MASKING 

All machine-check interruptions are 
under control of the machine-check mask, 
PSW bit 13. In addition, some machine
check conditions are controlled by 
subclass masks in control register 14. 

Chapter 11. Machine-Check Handling 11-21 



The exigent machine-check conditions 
(system damage and instruction
processing damage) are controlled only 
by the machine-check mask, PSW bit 13. 
When PSW bit 13 is one, an exigent 
condition causes a machine-check inter
ruption. When PSW bit 13 is zero, the 
occurrence of an exigent machine-check 
condition causes the CPU to enter the 
check-stop state. 

The repressible machine-check 
conditions, except channel-subsystem 
damage, are controlled both by the 
machine-check mask, PSW bit 13, and by 
five subclass-mask bits in control 
register 14. If PSW bit 13 is one and 
one of the subclass-mask bits is one, 
the associated condition initiates a 
machine-check interruption. If a 
subclass-mask bit is zero, the associ
ated condition does not initiate an 
interruption but is held pending. 
However, when a machine-check inter
ruption is initiated because of a 
condition for which the CPU is enabled, 
those conditions for which the CPU is 
not enabled may be presented along with 
the condition which initiates the inter
ruption. All conditions presented are 
then cleared. 

Control Register 14 

o 3 7 

Bits 3-7 of control register 14 are the 
subclass masks for repressible machine
check conditions. In addition, bit 0 of 
control register 14 is initialized to 
one, but is otherwise ignored by the 
machine. 

Programming Note 

The program should avoid, whenever 
possible, operating with PSW bit 13, the 
machine-check mask, set to zero, since 
any exigent machine-check condition 
which is recognized during this situ
ation will cause the CPU to enter the 
check-stop state. In particular, the 
program should avoid issuing I/O 
instructions or allowing I/O inter
ruptions with PSW bit 13 zero. 

Channel-Report-Pending Subclass Mask 

Bit 3 (CM) of control register 14 con
trols channel-report-pending interrup-

11-22 370-XA Principles of Operation 

tion conditions. This bit is 
initialized to zero. 

Recovery Subclass Mask 

Bit 4 (RM) of control register 14 con
trols system-recovery-interruption con
ditions. This bit is initialized to 
zero. 

Degradation Subclass Mask 

Bit 5 
troIs 
tions. 

(DM) of control register 14 con
degradotion-interruption condi
This bit is initialized to zero. 

Timing-Facility-Damage Subclass Mask 

Bit 6 (TM) of control register 14 con
trols timing-facility-damage interrup
tion conditions. This bit is 
initialized to one. 

Warning Subclass Mask 

Bit 7 (WM) of control register 14 con
trols warning-interruption conditions. 
This bit is initialized to zero. 

MACHINE-CHECK lOGOUT 

As part of the machine-check interrup
tion, some models may place model
dependent information in the fixed
logout area. This area is 16 bytes in 
length and starts at real location 256. 

SUMMARY OF MACHINE-CHECK MASKING 

A summary of machine-check masking is 
given in the figures "Machine-Check
Condition Masking" and "Machine-Check 
Control-Register Bits." 



MCIC 
Bit 

o 
1 
2 
4 
7 
8 
9 

10 
11 

Machine-Check Condition 

Subclass 

System damage 
Instruction-processing damage 
System recovery 
Timing-facility damage 
Degradation 
Warning 
Channel report pending 
Service-processor damage 
Channel-subsystem damage 

Explanation: 

Sub
Class 
Mask 

RM 
TM 
DM 
WM 
CM 

Action When CPU 
Disabled 

for Subclass 

Check stop 
Check stop 

y 
P 
P 
p 
P 
P 
P 

- The condition does not have a subclass mask. 

P Indication held pending. 

Y Indication may be held pending or may be discarded. 

CM Channel-report-pending subclass mask (bit 3 of CR14). 

DM Degradation subclass mask (bit 5 of CR14). 

TM Timing-facility-damage subclass mask (bit 6 of CR14). 

RM Recovery subclass mask (bit 4 of CR14). 

WM Warning subclass mask (bit 7 of CR14). 

Machine-Cheek-Condition Masking 

Control state of Bit 
Register 14 on Initial 

Bit Description Bit Position CPU Reset 

Channel-report-pending subclass mask 3 0 
Recovery subclass mask 4 0 
Degradation subclass mask 5 0 
Timing-facility-damage subclass mask 6 1 
Warning subclass mask 7 0 

Machine-Check Control-Register Bits 

Chapter 11. Machine-Check Handling 11-23 





CHAPTER 12. OPERATOR FACILITIES 

Manual Operation •••••••••••• ~ •••••••••• : •••••••••..•.••••• 12-1 
Basic Operator Facilities ...••..••••••••••....••••.•.••.•• 12-1 

Address-Compare Controls ..•••.•••••••••.•.•••.•.•.•••••• 12-1 
Alter-and-Display Controls •••.•.••.••••••••••••.•••••••. 12-2 
Architectural-Mode Indicator •.•••••••••.•••.•••••.•••.•. 12-2 
Architectural-Mode-Selection Controls ••••.•.••.••••..•.. 12-2 
Check-Stop Indicator ••••••••••••.••••••••••••••••••••••• 12-2 
IML Controls •.•.•••••••••••••••.•••••••••••.••••..••••.• 12-3 
Interrupt Key ••••••••••••••••••.••••.••••••.•••..•..••.. 12-3 
Load Indicator •.••••••••••.• ~ ••.••.••••.•••••.••••••..•• 12-3 
Load-Clear Key •••.••••••.•••••••••••••••••••••••••.••••• 12-3 
Load-Normal Key ••••••••••••••••••••••••••••••••••••••••• 12-3 
Load-Unit-Address Controls ••.••..•.••••.••..•..•••.•.••. 12-3 
Manual Indicator .•.•.••••••••.••.••••••••..•••.•••••.••• 12-3 
Power Controls •.••.••••••.••••••••••••••••.••••..•.••••• 12-3 
Rate Control •••••••••••.•••••••.••••••••••••••••••.••••• 12-4 
Restart Key ••.•.••••.•••..••..•....••.••..•.••••••.••••. 12-4 
Start Key ••.•.••••.•...•••••..••...•••.•.••.••.•••..••.• 12-4 
Stop Key .••.•.•.••.•.•..•.•••••••.•••••.•••••....•...... 12-4 
Store-Status Key ••.•••••.•••••••••.•••.••.••••..••.•.... 12-4 
System-Reset-Clear Key •.•.••.•••.•••••....••...••••.•.•• 12-5 
System-Reset-Hormal Key .••••••••••.••.••••.•••••••••.•.. 12-5 
Test Indicator .•••••••••••••••.•••.••.••••••••••••.•••.• 12-5 
TOO-Clock Control ••••••.••••.••••••••...••••..••••....•. 12-5 
Wait Indicator ..•.••••....••.....•.••....•.............. 12-5 

Multiprocessing Configurations •••••••••.••••••.•••••.••••• 12-5 

MANUAL OPERATION 

The operator facilities provide func
tions for the manual operation and 
control of the machine. The functions 
include operator-to-machine communica
tion, indication of machine status, 
control over the setting of the TOO 
clock, initial program loading, resets, 
and other manual controls for operator 
intervention in normal machine oper
ation. 

A model may provide additional operator 
facilities which are not described in 
this chapter. Examples are the means to 
indicate specific error conditions in 
the equipment, to change equipment con-
figurations, and to facilitate 
maintenance. Furthermore, controls 
covered in this chapter may have addi
tional settings which are not described 
here. Such additional facilities and 
settings are contained in the appropri
ate System Library publication. 

Most models provide, in association with 
the operator facilities, a console 
device which may be used as an I/O 
device for operator communication with 
the program; this console device may 
also be used to implement some or all of 
the facilities described in this 
chapter. 

The operator facilities may be imple
mented on different models in various 
technologies and configurations. On 
some models, more than one set of phys
ical representations of some keys, 
controls, and indicators may be 
provided, such as on multiple local or 
remote operating stations, which may be 
effective concurrently. 

A machine malfunction that prevents a 
manual operation from being performed 
correctly, as defined for that 
operation, may cause the CPU to enter 
the check-stop state or give some other 
indication to the operator that the 
operation has failed. Alternatively, a 
machine malfunction may cause a 
machine-cheek-interruption condition to 
be recognized. 

BASIC OPERATOR FACILITIES 

ADDRESS-COMPARE CONTROLS 

The address-compare controls provide a 
way to stop the CPU when a preset 
address matchas the address used in a 
specified type of main-storage 
reference. 

Chapter 12. Operator Facilities 12-1 



One of the address-compare controls is 
used to set up the address to be 
compared with the storage address. 

Another control provides at least two 
positions to specify the action, if any, 
·to be taken when the address match 
occurs: 

1. The normal position disables the 
address-compare operation. 

2. The stop position causes the CPU to 
enter the stopped state on an 
address match. When the control is 
in this setting, the test indicator 
is on. Depending on the model and 
the type of reference, pending I/O, 
external, and machine-check inter
ruptions mayor may not be taken 
before entering the stopped state. 

A third control may specify the type of 
storage reference for which the address 
comparison is to be made. A model may 
provide one or more of the following 
positions, as well as others: 

1. The any position causes the address 
comparison to be performed on all 
storage references. 

2. The data-store position causes 
address comparison to be performed 
when storage is addressed to store 
data. 

3. The I/O position causes address 
comparison to be performed when 
storage is addressed by the channel 
subsystem to transfer data or to 
fetch a channel-command or in
direct-data-address word. Whether 
references to the measurement 
block, interruption-response block, 
channel-path~status word, channel~ 
report word, subchannel-status 
word, subchannel-information block, 
and operation-request block cause a 
match to be indicated depends on 
the model. 

4. The instruction-address position 
causes address comparison to be 
performed when storage is addressed 
to fetch an instruction. The 
rightmost bit of the address 
setting mayor may not be ignored. 
The match is indicated only when 
the first byte of the instruction 
is fetched from the selected 
location. It depends on the model 
whether a match is indicated when 
fetching the target instruction of 
EXECUTE. 

Depending on the model and the type of 
reference, address comparison may be 
performed on virtual, real, or absolute 
addresses, and it may be possible to 
specify the type of address. 

In a multiprocessing configuration, it 
depends on the model whether the address 

12-2 370-XA Principles of Operation 

setting applies to one or all CPUs in 
the configuration and whether an address 
match causes one or all CPUs in the 
configuration to stoP. 

ALTER-AND-DISPLAY CONTROLS 

The operator facilities provide controls 
and procedures to permit the operator to 
alter and display the contents of 
locations in storage, the storage keys, 
the general, floating-point, and control 
registers, the prefix, and the PSW. 

Before alter-and-display operations may 
be performed, the CPU must first be 
placed in the stopped state. During 
alter-and-display operations, the manual 
indicator may be turned off temporarily, 
and the start and restart keys may be 
inoperative. 

Addresses used to select storage loca
tions for alter-and-display operations 
are real addresses. The capability of 
specifying logical, virtual, or absolute 
addresses may also be provided. 

ARCHITECTURAL-MODE INDICATOR 

The architectural-mode indicator shows 
the architectural mode of operation 
(System/370 mode or 370-XA mode) 
selected by the last architectural
mode-selection operation. 

ARCHITECTURAL-MODE-SELECTION CONTROLS 

The architectural-mode-selection con
trols provide for the selection of 
either the 370-XA architectural mode of 
operation or the System/370 architec
tural mode of operation. Depending on 
the model, the architectural-mode 
selection may be provided as part of the 
IML operation or may be a separate oper
ation. 

As part of the architectural-mode
selection process, all CPUs and the 
associated channel-subsystem components 
in a particular configuration are placed 
in the same architectural mode. 

CHECK-STOP INDICATOR 

The check-stop indicator is on when the 
CPU is in the check-stop state. Reset 
operations normally cause the CPU to 
leave the check-stop state and thus turn 
off the indicator. The manual indicator 
may also be on in the check-stop state. 



IML CONTROLS 

The IML controls provided with some 
models perform initial microprogram 
loading (IML). The IML operation, when 
provided, may be used to select the 
370-XA mode or the System/370 mode of 
operation. 

When the IML operation is completed, the 
state of the affected CPUs, channel 
SUbsystem, storage, and operator facili
ties is the same as if a power-on reset 
had been performed, except that the 
value and state of the TOD clock are not 
changed. 

The IML controls are effective while the 
power is on. 

INTERRUPT KEY 

When the interrupt key is activated, an 
external-interruption condition indi
cating the interrupt key is generated. 
(See the section "Interrupt Key" in 
Chapter 6, "Interruptions.") 

The interrupt key is effective when the 
CPU is in the operating or stopped 
state. It depends on the model whether 
the interrupt key is effective when the 
CPU is in the load state. 

LOAD INDICATOR 

The load indicator is on during initial 
program loading, indicating that the CPU 
is in the load state. The indicator 
goes on when the load-clear or load
normal key is activated and the corre
sponding operation is started. It goes 
off after the new PSW is loaded success
fully. For details, see the section 
"Initial Program Loading" in Chapter 4, 
"Control." 

LOAD-CLEAR KEY 

Activating the load-clear key causes a 
clear-reset operation to be performed 
and initial program loading to be start
ed by using the I/O devjce specified by 
the load-unit-address controls. In a 
multiprocessing configuration, a clear 
reset is propagated to all CPUs and 
storage units in the configuration, and 
a subsystem reset is perform~d on the 
remainder of the configuration. For 
details, see the sections "Resets" and 
"Initial Program Loading" in Chapter 4, 
"Control." 

The load-clear key is effective when the 
CPU is in the operating, stopped, load, 
or check-stop state. 

LOAD-NORMAL KEY 

Activating the load-normal key causes an 
initial-CPU-reset and a subsystem-reset 
operation to be performed and initial 
program loading to be started using the 
I/O device specified by the load-unit
address controls. In a multiprocessing 
configuration, a CPU reset is propagated 
to all other CPUs in the configuration. 
For details, see the sections "ResQts" 
and "Initial Program Loading" in Cha~ter 
4, "Control." 

The load-normal key is effective when 
the CPU is in the operating, stopped, 
load, or check-stop state. 

LOAD-UNIT-ADDRESS CONTROLS 

The load-unit-address controls select 
four hexadecimal digits, which provide 
the device number used for initial 
program loading. For details, see the 
section "Initial Program Loading" in 
Chapter 4, "Control." 

MANUAL INDICATOR 

The manual indicator is on when the CPU 
is in the stopped state. Some functions 
and several manual controls are effec
tive only when the CPU is in the stopped 
state. 

POWER CONTROLS 

The power controls are used to turn the 
power on and off. 

The CPUs, storage, channel subsystem, 
operator facilities, and I/O devices may 
all have their power turned on and off 
by common controls, or they may have 
separate power controls. When a partic
ular unit has its power turned on, that 
unit is reset. The sequence is 
performed so that no instructions or I/O 
operations are performed until explicit
ly specified. The controls may also 
permit power to be turned on in stages, 
but the machine does not become opera
tional until power-on is complete. 

When the power is completely turned on, 
an IML operation is performed on models 
which have an IML function. A power-on 
reset is then initiated (see the section 

Chapter 12. Operator Facilities 12-3 



"Resets" in Chapter 4, "Control"). It 
depends on the model whether the archi
tectural mode of operation can be 
selected when the power is turned on, or 
whether the mode-selection controls have 
to be used to change the mode after the 
power is on. 

RATE CONTROL 

The setting of the rate control deter
mines the. effect of the start function 
and the manner in which instructions are 
executed. 

The rate control has at least two posi
tions. The normal position is the proc
ess position. Another position is the 
instruction-step position. When the 
rate control is set to the process posi
tion and the start function is 
performed, the CPU starts operating at 
normal speed. For details, see the 
section "Stopped, Operating, Load, and 
Check-Stop States" in Chapter 4, "Con
trol." 

The test indicator is on while the rate 
control is not set to the process posi
tion. 

If the setting of the rate control is 
changed while the CPU is in the operat-
1ng or load state, the results are 
unpredictable. 

RESTART KEY 

Activating the restart key 
restart interruption. (See 
"Restart Interruption" in 
"Interruptions.") 

initiates a 
the section 
Chapter 6, 

The restart key is effective when the 
CPU is in the operating or stopped 
state. The key is not effective when 
the CPU is in the check-stop state. It 
depends on the model whether the restart 
key is effective when the CPU is in the 
load state. 

START KEY 

Activating the start key causes the CPU 
to perform the start function. (See the 
section "Stopped, Operating, Load, and 
Check-Stop States" in Chapter 4, "Con
trol.") 

The start key is effective only when the 
CPU is in the stopped state. The effect 
is unpredictable when the stopped state 
has been entered by a reset. 

12-4 370-XA Principles of Operation 

STOP KEY 

Activating the stop key causes the CPU 
to perform the stop function. (See the 
section "Stopped, Operating, Load, and 
Check-Stop States" in Chapter 4, "Con
trol.") 

The stop key is effective only when the 
CPU is in the operating state. 

Operation Note 

Activating the stop key has no effect 
when: 

• An unending string 
program or external 
occurs. 

of certain 
interruptions 

• The prefix register contains an 
invalid address. 

• The CPU is in the load or check
stop state. 

STORE-STATUS KEY 

Activating the store-status key initi
ates a store-status operation. (See the 
section "Store Status" in Chapter 4, 
"Control.") 

The store-status key is effective only 
when the CPU is in the stopped state. 

Operation Note 

The store-status operation may be used 
in conjunction with a standalone dump 
program for the analysis of major 
program malfunctions. For such an oper
ation, the following sequence would be 
called for: 

1. Activation of the stop or system
reset-normal key 

2. Activation of the store-status key 

3. Activation of the load-normal key 
to enter a standalone dump program 

The system-reset-normal key 
activated in step 1 when (1) 
key is not effective because 
uous string of interruptions 
ring, (2) the prefix register 
an invalid address, or (3) the 
the check-stop state. 

must be 
the stop 
a contin
is occur-
contains 

CPU is in 



SYSTEM-RESET-CLEAR KEY 

Activating the system-reset-clear key 
causes a clear-reset operation to be 
performed. In a multiprocessing config
uration, a clear reset is propagated to 
all CPUs and storage units in the 
configuration, and a subsystem reset is 
performed on the remainder of the 
configuration. For details, see the 
section "Resets" in Chapter 4, 
"Control." 

The system-reset-clear key is effective 
when the CPU is in the operating, 
stopped, load, or check-stop state. 

SYSTEM-RESET-NORMAL KEY 

Activating the system-reset-normal key 
causes a CPU-reset operation and a 
subsystem-reset operation to be 
performed. In a multiprocessing config
uration, a CPU reset is propagated to 
all CPUs in the configuration. For 
details, see the section "Resets" in 
Chapter 4, "Control." 

The system-reset-normal key is effective 
when the CPU is in the operating, 
stopped, load, or check-stop state. 

TEST INDICATOR 

The test indicator is on when a manual 
control for operation or maintenance is 
in an abnormal position that can affect 
the normal operation of a program. 

Setting the address-compare controls to 
the stop position or setting the rate 
control to the instruction-step position 
turns on the test indicator. 

The test indicator may be on when one or 
more diagnostic functions under the 
control of DIAGNOSE are activated, or 
when other abnormal conditions occur. 

Operation Note 

If a manual control is left in a setting 
intended for maintenance purposes, such 
an abnormal setting may, among other 
things, result in false machine-check 
indications or cause actual machine 
malfunctions to be ignored. It may also 
alter other aspects of machine 
operation, including instruction 
execution, channel-subsystem operation, 
and the functioning of operator controls 
and indicators, to the extent that oper
ation of the machine does not comply 
with that described in this publication. 

The abnormal setting of a manual control 
causes the test indicator of the 
affected CPU to be turned on. 

TOD-CLOCK CONTROL 

When the TOD-clock control is not acti
vated, that is, the control is set to 
the secure position, the state and value 
of the TOD clock are protected against 
unauthorized or inadvertent change by 
not permitting the instructions SET 
CLOCK or DIAGNOSE to change the state or 
value. 

When the TOD-clock control is activated, 
that is, tha control is set to the 
enable-set position, alteration of the 
clock state or value by means of SET 
CLOCK or DIAGNOSE is permitted. This 
setting is momentary, and the control 
automatically returns to the secure 
position. 

In a multiprocessing configuration, 
activating the TOD-clock control enables 
all TOD clocks in the configuration to 
be set. If there is more than one phys
ical representation of the TOD-clock 
control, no TOD clock is secure unless 
all TOD-clock controls in the configura
tion are set to the secure position. 

WAIT INDICATOR 

The wait indicator is on when the wait
state bit in the current PSW is one. 

MULTIPROCESSING CONFIGURATIONS 

In a multiprocessing configuration, one 
of each of the following keys and 
controls is provided for each CPU: 
alter and display, interrupt, rate, 
restart, start, stop, and store status. 
The load-clear key, load-normal key, and 
load-unit-address controls are provided 
for each CPU capable of performing I/O 
operations. Alternatively, a single set 
of initial-program-Ioading keys and 
controls may be used together with a 
control to select the desired CPU. 

There need not be more than one of each 
of the following keys and controls in a 
multiprocessing configuration: address 
compare, IML, power, system reset clear, 
system reset normal, and TOD clock. 

One check-stop, manual, test, and wait 
indicator is provided for each CPU. A 
load indicator is provided only on a CPU 
capable of performing I/O operations. 
Alternatively, a single set of indica-

Chapter 12. Operator Facilities 12-5 



tors may be switched to more than one 
CPU. 

There need not be more than one mode 
indicator in a multiprocessing config
uration. 

12-6 370-XA Principles of Operation 

In a system capable of reconfiguration, 
there must be a separate set of keys, 
controls, and indicators in each config
uration. 



CHAPTER 13. I/O OVERVIEW 

Comparison with System/370 •••..•••••••••••••••••.••••••••. 13-1 
The Channel Subsystem ••••••.•..••.•••.•••.•••.•.•..•.••.•• 13-2 

Subchannel s ••...•.••..•••••••.•.•••••••••••.••••••••••.• 13-2 
Attachment of Input/Output Devices ••••••••••••••••••••••.. 13-3 

Channel Paths .•.••••.••.•.••••••.••.•••.••••••••.•..•..• 13-3 
Control Units ••.....•.••..•......•..•••••.••••••.•.•.... 13-4 
I/O Devices .•.•••••.•••••••••.•••••.•••.••••••••.••••.•• 13-4 

I/O Addressing •.••••.•••.•.••••••.••••••••••••••••.•.••••• 13-5 
Channel-Path Identifier ••••.•.•••.••••..•.•.••••.•.••... 13-5 
Subchannel Number ••..••.•.....••.•..•••.•••.••.••....••• 13-5 
Device Number .••••••.•..•.•••.•••.•.•.•.•.••••••••••.••• 13-5 
Addresses Dependent on Channel-Path Type ••••••••.•.•...• 13-5 

I/O Operations ..•......••.......•••••.•••••.•••••••.•••... 13-6 
Start-Function Initiation ••.•...•...•••••.•.•••••••••••• 13-6 
Path Management •••..•••.••..•••.•••.•••.•••.•.••••.••..• 13-6 
Channel-Program Execution .•••••••••.•••••••••.••.••••••• 13-7 
Conclusi on of I/O Operat ions •••••••.•••.••.........•..•• 13-7 
I/O Interruptions ....•......•••.••..•••.•.•••..•••.••••• 13-8 

COMPARISON WITH SYSTEM/370 

Readers familiar with System/370 will 
find that the greatest difference 
between systems operating in the 
System/370 mode and systems operating in 
the 370-XA mode;s in the input/output 
(I/O) facilities provided. "Inp~t" and 
"output" are terms used to describe the 
transfer of information between I/O 
devices and main storage. An operation 
involving this kind of transfer is 
referred to as an input/output (I/O) 
operation. In the 370-XA mode, the I/O 
facilities are collectively called the 
channel subsystem. The channel subsys
tem has a different logical structure 
from that of the I/O facilities provided 
in System/370, with the result that I/O 
instructions, channels, channel sets, 
and I/O addressing are replaced in the 
370-XA mode by a new set of I/O 
instructions, by logical device address
ing, and by device-accessing mechanisms 
that together provide more function, 
flexibility, and extensibility. Compat
ibility with System/370 has been 
maintained in two areas: (1) CCWs, 
IDAWs, and channel programs, and (2) the 
physical attachment of control units and 
I/O devices to the system. 

In System/370, with some exceptions, 
each channel has a single physical path 
and data-transfer mechanism between the 
channel and its attached control units, 
and the path and channel have often been 
thought of as one. In the 370-XA mode, 
because the architecture permits up to 
256 channel paths to be supported by the 
channel subsystem, the term "channel 
path" is specifically used whenever 
referring to the physical path between 
the channel subsystem and one or more 

control units. In most cases, the 
370-XA term "channel path" is synonymous 
with the System/370 term "channel" when 
"channel" is used to mean the physical 
path for attachment of control units to 
the system. 

In System/370, a channel has (1) a 
unique address within its channel set 
and (2) logically separate and distinct 
facilities for communicating with its 
attached I/O devices and with the CPU to 
which it is connected. For example, 
when an I/O device is attached to more 
than one channel, each channel has a 
separate subchannel that can be used to 
communicate with the I/O device. 
Subchannels are never shared among chan
nels, and each subchannel is associated 
with only one channel path. 

In the 370-XA mode, however, a single 
channel subsystem having a single set of 
subchannels is provided. Each subchan
nel is uniquely associated with one I/O 
device, and that I/O device is uniquely 
associated with that one subchannel 
within the channel subsystem, regardless 
of the number of channel paths by which 
the I/O device is accessible to the 
channel subsystem. Therefore, the chan
nel subsystem has both the attributes of 
a single channel -- a unique address 
(si-nce there is only one, addressing is 
implicit) and a single set of subchan
nels for all its attached devices -- and 
the attributes of multiple channels, 
since it provides for up to 256 channel 
paths and for up to 64K devices. 

Although the logical structures of the 
I/O facilities provided by the two modes 
differ, channel programs that can be 
executed by System/370 channels can be 
executed by the channel subsystem. 

Chapter 13. I/O Overview 13-1 



Control units that are designed to 
attach to System/370 channels via the 
IBM I/O interface can attach to the 
channel subsystem via the same 1/0 
interface. This interface is described 
in the System Library publication IBM 
System/360 and System/370 I/O Interface 
Channel to Control Unit Original Eguip
ment Manufacturers' Information, 
GA22-6974. 

THE CHANNEL SUBSYSTEM 

The channel subsystem directs the flow 
of information between I/O devices and 
main storage. It relieves CPUs of the 
task of communicating directly with I/O 
devices and permits data processing to 
proceed concurrently with 1/0 
processing. The channel subsystem uses 
one or more channel paths as the commu
nication link in managing the flow of 
information to or from I/O devices. As 
part of I/O processing, the channel 
subsystem also performs the path
management function of testing for 
channel-path availability, selecting an 
available channel path, and initiating 
execution of the operation with the I/O 
device. 

Within the channel subsystem are 
subchannels. One subchannel is provided 
for and dedicated to each I/O device 
accessible to the channel subsystem. 
Each subchannel contains storage for 
information concerning the associated 
I/O device and its attachment to the 
channel subsystem. The subchannel also 
provides storage for information 
concerning I/O operations and other 
functions involving the associated I/O 
device. Information contained in the 
subchannel can be accessed by CPUs using 
I/O instructions as well as by the chan
nel subsystem and serves as the means of 
communication between any CPU and the 
channel subsystem concerning the associ
ated I/O device. The actual number of 
subchannels provided depends on the 
model and the configuration; the maximum 
addressability is 64K. 

I/O devices are attached through control 
units to the channel subsystem via chan
nel paths. Control units may be 
attached to the channel subsystem via 
more than one channel path, and an I/O 
device may be attached to more than one 
control unit. In all, an individual I/O 
device may be accessible to the channel 
subsystem by as many as eight different 
channel paths, depending on the model 
and the configuration. The total number 
of channel paths provided by a channel 
subsystem depends on the model and the 
configuration; the maximum address
ability is 256. 

The performance 
depends on its 

of a channel subsystem 
use and on the system 

13-2 370-XA Principles of Operation 

model in which it is implemented. Chan
nel paths are provided with different 
data-transfer capabilities, and an I/O 
device designed to transfer data only at 
a specific rate (a magnetic-tape unit or 
a disk storage, for example) can operate 
only on a channel path that can accommo
date at least this data rate. 

SUBCHANNELS 

The channel-subsystem facilities re
quired for sustaining a single I/O oper
ation are termed a subchannel. The 
subchannel contains information in the 
form of a CCW address, channel-path 
identifier, device number, count, iden
tification of functions pending or in 
execution, status indications, 
interruption-subclass code, and path
availability information. I/O 
operations are initiated with a device 
by I/O instructions that specify the 
subchannel associated with the device. 

The logical appearance of a device to 
the program is as the subchannel for 
that device. Each device has one 
subchannel per channel subsystem by 
which the device is accessible. Each 
device is assigned to a subchannel 
during an installation procedure. The 
device may be a physically identifiable 
unit, or it may be housed internal to a 
control unit. For example, in certain 
models of the IBM 3380 Direct-Access 
Storage, each actuator used in retriev
ing the data is considered to be a 
device. In all cases, a device, from 
the point of view of the channel subsys
tem, is an entity that is uniquely 
associated with one subchannel and that 
responds to selection by the channel 
subsystem by using the communication 
protocols defined for the type of chan
nel path by which it is accessible. 

In some models, subchannels are provided 
in blocks. In these models, more 
subchannels may be provided than there 
are attached devices. Subchannels that 
are provided but do not have devices 
assigned to them are not used by the 
channel subsystem to perform any func
tion and are indicated by storing the 
associated device-number-valid bit as 
zero in the subchannel-information block 
of the subchannel. 

The number of subchannels provided by 
the channel subsystem is independent of 
the number of channel paths to the asso
ciated devices. For example, a device 
accessible through alternate channel 
paths still is represented by a single 
subchannel. Each subchannel is 
addressed by using a 16-bit binary 
subchannel number. 

After the operation 
has been requested 

with the subchannel 
by executing START 



SUBCHANNEL, the CPU is released for 
other work, and the channel subsystem 
assembles or disassembles data and 
synchronizes the transfer of data bytes 
between the I/O device and main storage. 
To accomplish this, the channel subsys
tem maintains and updates an address and 
a count that describe the destination or 
source of data in main storage. Simi
larly, when an I/O device provides 
signals that should be brought to the 
attention of the program, the channel 
subsystem transforms the signals into 
status information and stores the infor
mation in the subchannel, where it can 
be retrieved by the program. 

The channel subsystem contains common 
facilities for the control of I/O oper
ations. When these facilities are 
provided in the form of separate, auton
omous equipment designed specifically to 
control I/O devices, I/O operations are 
completely overlapped with the activity 
in CPUs. The only main-storage cycles 
required by the channel subsystem during 
I/O operations are those needed to 
transfer data and control information to 
or from the final locations in main 
storage, along with those cycles that 
may be required for the channel subsys
tem to access the subchannels when they 
are implemented as part of nonaddress
able main storage. These cycles do not 
delay CPU programs, except when both the 
CPU and the channel subsystem concur
rently attempt to refer to the same 
main-storage area. 

ATTACHMENT OF INPUT/OUTPUT DEVICES 

CHANNEL PATHS 

The channel subsystem communicates with 
I/O devices by means of channel paths 
between the channel subsystem and 
control units. A control unit may be 
accessible by the channel SUbsystem via 
more than one channel path. Similarly, 
the I/O device may be accessible by the 
channel subsystem via more than one 
control unit, each having one or more 
channel paths to the channel subsystem. 

Devices that are attached to the channel 
subsystem via multiple channel paths may 
be accessed by the channel subsystem by 
using any of the available channel 
paths. Similarly, devices having the 
dynamic-reconnection facility and oper
ating in multi path mode may choose any 
channel path to which they are attached 
when logically reconnecting to the chan
nel subsystem to continue a chain of I/O 
operations. 

The definition of the type of channel 
path used by the channel subsystem is 
given in the System Library publication 

IBM System/360 and System/370 I/O Inter
face Channel to Control Unit OEMI, 
GA22-6974. 

An I/O operation occurs on a channel 
path in one of two modes, depending on 
the facilities provided by the channel 
path and the I/O device. The modes are 
burst and byte-multiplex. 

In burst mode, the I/O device monopo
lizes a channel path and stays logically 
connected to the channel path for the 
transfer of a burst of information. No 
other device can communicate over the 
channel path during the time a burst is 
transferred. The burst can consist of a 
few bytes, a whole block of data, a 
sequence of blocks with associated 
control and status information (the 
block lengths may be zero), or status 
information which monopolizes the chan
nel path. The facilities of the channel 
path capable of operating in burst mode 
may be shared by a number of concurrent
ly operating I/O devices. 

Some channel paths can tolerate an 
absence of data transfer for about a 
half minute during a burst-mode opera
tion, such as occurs when a long gap on 
magnetic tape is read. An equipment 
malfunction may be indicated when an 
absence of data transfer exceed the 
prescribed limit. 

In byte-multiplex mode, the I/O device 
stays logically connected to the channel 
path only for a short interval of time. 
The facilities of a channel path capable 
of operating in byte-multiplex mode may 
be shared by a number of concurrently 
operating I/O devices. In this mode all 
I/O operations are split into short 
intervals of time during which only a 
segment of information is transferred 
over the channel path. During such an 
interval, only one device and its asso
ciated subchannel are logically 
connected to the channel path. The 
intervals associated with the concurrent 
operation of multiple I/O devices are 
sequenced in response to demands from 
the devices. The channel-subsystem 
facility associated with a subchannel 
exercises its controls for anyone oper
ation only for the time required to 
transfer a segment of information. The 
segment can consist of a single byte of 
data, a few bytes of data, a status 
report from the device, or a control 
sequence used for the initiation of a 
new operation. 

Ordinarily, devices with high data
transfer-rate requirements operate with 
the channel path in burst mode, and 
slower devices run in byte-multiplex 
mode. Some control units have a manual 
switch for setting the desired mode of 
operation. 

For improved performance, some 
paths and control units are 

channel 
provided 

Chapter 13. I/O Overview 13-3 



with facilities for high-speed transfer 
and data-streaming. See the System 
library publication IBM System/360 and 
System/370 110 Interface Channel to 
Control Unit Original Eguipment t1anufac
turers' Information, GA22-6974, for a 
description of those two facilities. 

The modes and features described above 
affect only the protocol used to trans
fer information over the channel path 
and the speed of transmission. No 
effects are observable by CPU or channel 
programs with respect to the way these 
programs are executed. 

CONTROL UNITS 

A control unit provides the logical 
capabilities necessary to operate and 
control an 110 device and adapts the 
characteristics of each device so that 
it can respond to the standard form of 
control provided by the channel subsys
tem. 

Communication between the control unit 
and the channel subsystem takes place 
over a channel path. The control unit 
accepts control signals from the channel 
subsystem, controls the timing of data 
transfer over the channel path, and 
provides indications concerning the 
status of the device. 

The 110 device attached to the control 
unit may be designed to perform only 
certain limited operations, or it may 
perform many different operations. A 
typical operation is moving a recording 
medium and recording data. To accom
plish its operations, the device needs 
detailed signal sequences peculiar to 
its type of device. The control unit 
decodes the commands received from the 
channel subsystem, interprets them for 
the particular type of device, and 
provides the signal sequence required 
for execution of the operation. 

A control unit may be housed separately, 
or it may be physically and logically 
integrated with the 1/0 device, the 
channel subsystem, or a CPU. In the 
case of most electromechanical devices, 
a well-defined interface exists between 
the device and the control unit because 
of the difference in the type of equip
ment the control unit and the device 
require. These electromechanical 
devices often are of a type where only 
one device of a group attached to a 
control unit is required to transfer 
data at a time (magnetic-tape units or 
disk-access mechanisms, for example), 
and the control unit is shared among a 
number of 110 devices. On the other 
hand, in some electronic I/O devices, 
such as the channel-to-channel adapter, 
the control unit does not have an iden
tity of its own. 

13-4 370-XA Principles of Operation 

From the programmer's point of view, 
most functions performed by the control 
unit can be merged with those performed 
by the I/O device. Therefore, this 
publication normally makes no specific 
mention of the control-unit function; 
the execution of 110 operations is 
described as if the 1/0 devices communi
cated directly with the channel 
subsystem. Reference is made to the 
control unit only when emphasizing a 
function performed by it or when 
describing how the sharing of the 
control unit among a number of devices 
affects the execution of 110 operations. 

I/O DEVICES 

An inputloutput (I/O) device provides 
external storage, a means of commu1i
cat i on between data-processi ng systel'lS, 
or a means of communication between a 
system and its environment. 110 devices 
include such equipment as card readers, 
card punches, magnetic-tape units, 
direct-access-storage devices (for exam
ple, disks), display units, typewriter
keyboard devices, printers, 
teleprocessing devices, and sensor-based 
equipment. An 110 device may be phys
ically distinct equipment, or it may 
share equipment with other 110 devices. 

The term "110 device," as it is used in 
this publication, refers to an entity 
with which the channel subsystem can 
directly communicate. For example, the 
IBM 2540 Card Reader-Punch is considered 
to be two separate 110 devices from the 
point of view of the channel subsystem 
since the reader portion and the punch 
portion are individually accessible. 

Most types of I/O devices, such as prin
ters, card equipment, or tape devices, 
use external media, and these devices 
are physically distinguishable and iden
tifiable. Other types are solely elec
tronic and do not directly handle 
physical recording media. The channel
to-channel adapter, for example, 
provides for data transfer between two 
channel paths, and the data never 
reaches a physical recording medium 
outside main storage. Similarly, the 
IBM 3705 Communications Controller 
handles the transmission of information 
between the data-processing system and a 
remote station, and its input and output 
are signals o~ a transmission line. 

In the simplest case, an 110 device is 
attached to one control unit and is 
accessible from one channel path. 
Switching equipment is available to make 
some devices accessible from two or more 
channel paths by switching devices among 
control units and by switching control 
units among channel paths. Such switch
ing equipment provides multiple paths by 



which an I/O device may be accessed. 
Multiple channel paths to an I/O device 
are provided to improve performance or 
I/O availability, or both, within the 
system. The management of multiple 
paths to devices is under the control of 
the channel subsystem and the device, 
but the paths may indirectly be 
controlled by the program. 

I/O ADDRESSING 

Four different types of I/O addressing 
are provided by the channel subsystem 
for the necessary addressing of the 
various components: channel-path iden
tifiers, subchannel numbers, device 
numbers, and, though not visible to 
programs, addresses dependent on the 
channel-path type. 

CHANNEL-PATH IDENTIFIER 

A channel-path identifier (CHPID) is a 
system-unique eight-bit value assigned 
to each installed channel path of the 
system. The CHPID identifies the phys
ical channel path. The CHPID is speci
fied by the operand of RESET CHANNEL 
PATH to select which physical channel 
path is to be reset. The channel paths 
by which an I/O device is accessible are 
indicated in the subchannel-information 
block (SCHIB) when STORE SUBCHANNEL is 
executed. The CHPID is also used in 
operator messages when it is necessary 
to identify a particular channel path. 
The maximum number of channel paths and 
the assignment of CHPIDs to channel 
paths depends on the system model. A 
system model may provide as many as 256 
channel paths. 

SUBCHANNEL NUMBER 

A subchannel number is a system-unique 
16-bit binary number used to address a 
subchannel. The subchannel is addressed 
by seven I/O instructions: CLEAR 
SUBCHANNEL, HALT SUBCHAHNEL, MODIFY 
SUBCHANNEL, RESUME SUBCHANNEL, START 
SUBCHAHNEL, STORE SUBCHAHNEL, and TEST 
SUBCHAHNEL. Each I/O device accessible 
to the channel subsystem is assigned a 
dedicated subchannel at installation 
time. All I/O functions relative to a 
specific I/O device are specified by the 
program by addressing the subchannel 
assigned to the I/O device. Subchannels 
are always assigned subchannel numbers 
within a single range of contiguous 
numbers. The lowest-numbered subchannel 
is subchannel o. The hi'ghest-numbered 
subchannel of the channel subsystem has 

a subchannel number equal to one less 
than the number of subchannels provided. 
A maximum of 64K subchannels can be 
provided. Normally, subchannel numbers 
are only used in communication between 
the CPU program and the channel subsys
tem. 

DEVICE NUMBER 

Each subchannel that has an I/O device 
assigned to it also contains a system
unique I/O-device identifier called the 
device number. The device number is a 
16-bit binary number that is assigned to 
a field of the subchannel at the time 
the device is assigned to the 
subchannel. 

The device number provides a means to 
identify a device, independent of any 
limitations imposed by the system model, 
the configuration, or channel-path 
protocols. The device number is used in 
communications concerning the device 
that takes place between the system and 
the system operator. For example, the 
device number is entered by the system 
operator to specify the input device to 
be used for initial program loading. 

ADDRESSES DEPENDENT ON CHANNEL-PATH T~'PE 

In addition to the use of the subchannel 
number and the device number, one or 
more different sets of addresses, not 
apparent to the program, may be used by 
the channel subsystem to communicate 
with 1/0 devices. The type of address
ing used depends on the specific 
channel-path type and the protocols 
provided. 

The channel-path type used by the chan
nel subsystem is described in the System 
Library publication IBM Svstem/360 and 
System/370 I/O Interface Channel to 
Control Unit OEMI, GA22-6974. For this 
type of channel path, an I/O device is 
addressed by the channel subsystem by 
using a device address consisting of an 
eight-bit binary number. 

The device address identifies the 
particular I/O device and control unit 
associated with a subchannel. The 
device address may identify, for 
example, a particular magnetic-tape 
drive, disk-access mechanism, or trans
mission line. Any number in the range 
0-255 can be used as a device address 
for the respective channel path. 

For further information about lID-device 
addresses used with the IBM lID inter
face, see the publication referred to 
above. 

Chapter 13. I/O Overview 13-5 



Programming Note 

The device number is assigned at 
device-installation time and may have 
any value so long as it is system
unlque. Device numbers may be assigned 
installation-unique values in multicom
puter installations in order to avoid 
ambiguity, particularly where a device 
can be switched between two or more 
systems. 

In installations in which a system may 
be operated sometimes in the System/370 
mode and sometimes in the 370-XA mode, 
it is advisable to make the 370-XA 
device number and System/370 device 
address equivalent to prevent opera
tional problems in such mixed 
environments. 

Additionally, the user must observe any 
restrictions on device-number assignment 
required by the control program, support 
programs, or specified control units or 
I/O devices. Any restrictions are 
described in the System Library publica
tion for the program, the I/O device, 
the control unit, or the system model, 
as appropriate. 

I/O OPERATIONS 

I/O operations are initiated and 
controlled by information with three 
types of formats: the instruction START 
SUBCHANNEL, channel-command words 
(CCWs), and orders. The START SUBCHAH
NEL instruction is executed by a CPU and 
is part of the CPU program that super
vises the flow of requests for 
input/output operations from other 
programs that manage or process the 
input/output data. When START SUBCHAH
NEL is executed by a CPU, parameters are 
passed to the target subchannel request
ing that the channel subsystem perform a 
start function with the I/O devica asso
ciated with the subchannel. The channel 
subsystem performs the start function by 
using information in the subchannel, 
including the information passed during' 
the execution of the START SUBCHANNEL 
instruction, to find an accessible path 
to the device. Once the device has been 
selected, execution of an I/O operation 
is accomplished by the decoding and 
executing of a CCW by the channel 
subsystem and the I/O device. One or 
more CCWs arranged for sequential 
execution form a channel program and are 
executed as one or more I/O operations, 
respectively. Both instructions and 
CCWs are fetched from main storage, and 
their formats are common for all types 
of I/O devices, although the modifier 
bits in the command code of a CCW may 
specify device-dependent conditions for 
the execution of an operation at the 
device. 

13-6 370-XA Principles of Operation 

Operations peculiar to a device, such as 
rewinding tape or positioning the access 
mechanism on a disk drive, are specified 
by orders. Orders are decoded and· 
executed by I/O devices. The control 
information specifying an order may 
appear in the modifier bits of a CCW 
control-command code, may be transferred 
to the device as data during a control 
or write operation, or may be made 
available to the device by other means. 

START-FUNCTION INITIATION 

CPU programs initiate I/O operations 
with the instruction START SUBCHANNEL. 
This instruction passes the contents of 
an operation-request block (ORB) to the 
subchannel. The contents of the ORB 
include the subchannel key, the address 
of the first ccw to be executed, and the 
format of the CCWs. The CCW specifies 
the command to be executed and the stor
age area, if any, to be used. 

When the ORB contents have been passed 
to the subchannel, the execution of 
START SUBCHANNEL is complete. The 
results of the execution of the instruc
tion are indicated by the condition code 
set in the program-status word. 

When facilities become available, the 
channel subsystem fetches the first ccw 
and decodes it according to the format 
bit specified in the ORB. If the format 
bit is zero, format-O (System/370-
compatible) CCWs are specified. If the 
format bit is one, format-1 CCWs are 
specified. Format-O and format-l CCWs 
contain the same information, but the 
fields are arranged differently in the 
format-l CCW so that 31-bit addresses 
can be specified directly in the CCW, 

PATH MANAGEMENT 

If the first CCW passes certain validity 
tests and does not have the suspend flag 
specified, the channel subsystem next 
attempts to select the device via an 
available channel path, as indicated in 
the subchannel. A control unit that 
recognizes the device identifier 
connects itself logically to the channel 
path and responds to its selection. The 
channel subsystem subsequently sends the 
command-code part of the CCW over the 
channel path, and the device responds 
with a status byte indicating whether 
the command can be executed. The 
control unit may logically disconnect 
from the channel path at this time, or 
it may remain connected to initiate data 
transfer. 



If the attempted selection does not 
occur either as a result of a busy indi
cation or no response, the channel 
subsystem attempts to select the device 
by an alternate channel path if one is 
available. When selection has been 
attempted on all paths available for 
selection and the busy condition 
persists, the operation remains pending 
until a path becomes free. If no 
response was received on one or more of 
the selected channel paths, the program 
is alerted by a subsequent I/O inter
ruption. The I/O interruption occurs 
either upon execution of the channel 
program (assuming the device was 
selected on an alternate channel path) 
or as a result of the execution being 
abandoned, no response having been 
received on all of the selected channel 
paths. 

CHANNEL-PROGRAM EXECUTION 

If the command is initiated at the 
device and command execution does not 
require any data to be transferred to or 
from the device, the device may signal 
the end of the operation immediately on 
receipt of the command code. In oper
ations that involve the transfer of 
data, the subchannel is set up so that 
the channel subsystem will respond to 
service requests from the device and 
assume further control of the operation. 

An I/O operation may involve the trans
fer of data to one storage area, desig
nated by a single CCW, or to a number of 
noncontiguous storage areas. In the 
latter case, generally a list of CCWs is 
used for execution of the I/O operation, 
each CCW designating a contiguous stor
age area, and the CCWs are coupled by 
data chaining. Data chaining is speci
fied by a flag in the CCW and causes the 
channel subsystem to fetch another CCW 
upon the exhaustion or filling of the 
storage area designated by the current 
CCW. The storage area designated by a 
CCW fetched on data chaining pertains to 
the I/O operation already in progress at 
the I/O device, and the I/O device is 
not notified when a new CCW is fetched. 

Provision is made in the CCW format for 
the programmer to specify that, when the 
CCW is decoded, the channel request an 
I/O interruption as soon as possible, 
thereby notifying a CPU program that 
chaining has progressed at least as far 
as that CCW in the channel program. 

To complement dynamic address trans
lation in CPUs, CCW indirect data 
addressing is provided. A flag in the 
CCW specifies that an indirect-data
address list is to be used to designate 
the storage areas for that CCW. Each 
time the boundary of a 2K-byte block of 

storage is reached, the list is refer
enced to determine the next block of 
storage to be used. CCW indirect data 
addressing permits essentially the same 
CCW sequences to be used for a program 
running with dynamic address translation 
active in a CPU as would be used if the 
CPU were operating with equivalent 
contiguous real storage. CCW indirect 
data addressing permits the program to 
specify data blocks having absolute 
storage addresses up to 2 31 _1, independ
ent of whether format-O or format-l CCWs 
have been specified in the ORB. 

CONCLUSION OF I/O OPERATIONS 

The conclusion of an I/O operation 
normally is indicated by two status 
conditions: channel end and device end. 
The channel-end condition indicates that 
the I/O device has received or provided 
all data associated with the operation 
and no longer needs channel-subsystem 
facilities. This condition is called 
the primary-interruption condition, and 
the channel end in this case is the 
primary status. Generally, the 
primary-interruption condition is any 
interruption condition that relates to 
an I/O operation and that signals the 
conclusion at the subchannel of the I/O 
operation or chain of I/O operations. 

The device-end signal indicates that the 
I/O device has concluded execution and 
is ready to execute another operation. 
This condition is called the secondary
interruption condition, and the device 
end in this case is the secondary 
status. Generally, the secondary
interruption condition is any 
interruption condition that relates to 
an I/O operation and that signals the 
conclusion at the device of the I/O 
operation or chain of operations. The 
secondary-interruption condition can 
occur concurrently with, or later than, 
the primary-interruption condition. 

Concurrent with the primary- or 
secondary-interruption conditions, both 
the channel SUbsystem and the I/O device 
can provide indications of unusual situ
ations. 

The conditions signaling the conclu~ion 
of an I/O operation can be brought to 
the attention of the program by X/O 
interruptions or, when the CPUs ere 
disabled for I/O interruptions, by 
programmed interrogation of the channel 
subsystem. In the former case, these 
conditions cause storing of the 1/0-
interruption code, which contains 
information concerning the interrupting 
source. In the latter case, the inter
ruption code is stored as a result of 
the execution of TEST PENDING INTER
RUPTION. 

Chapter 13. I/O Overview 13-7 



At the time the primary-interruption 
condition is generated, the channel 
subsystem identifies to the program, via 
an interruption request, that a subchan
nel contains information describing the 
conclusion of an I/O operation at the 
subchannel. The information, in the 
form of a subchannel-status word (SCSW), 
identifies the last CCW used and may 
provide its residual byte count, thus 
describing the extent of main storage 
used. Both the channel subsystem and 
the I/O device may provide additional 
indications of unusual conditions as 
part of either the primary- or 
secondary-interruption condition. The 
SCSW is retrieved by the instruction 
TEST SUBCHANNEL. 

Facilities are provided for the program 
to initiate. execution of a chain of I/O 
operations with a single START SUBCHAN
NEL. When the current CCW specifies 
command chaining and no unusual condi
tions have been detected in the 
operation, the receipt of the device-end 
signal causes the channel subsystem to 
fetch a new CCW and, if the suspend flag 
is not specified in the new CCW, to 
initiate execution of a new command at 
the device. If the suspend flag is 
specified, execution of the new command 
is not initiated, and command chaining 
is concluded. 

Execution of the new command is initi
ated by the channel subsystem in the 
same way as the previous operation. The 
ending signals occurring at the conclu
sion of an operation caused by a CCW 
specifying command chaining are not made 
available to the program. When another 
I/O operation is initiated by command 
chaining, the channel subsystem contin
ues execution of the channel program. 
If, however, an unusual condition has 
been detected, the ending signals cause 
suppression of command chaining and 
termination of the channel program. 

The suspend-and-resume function provides 
the program with control over the 
execution of a channel program. The 
initiation of the suspend function is 
controlled by the setting of the 
suspend-control bit in the ORB. The 
suspend function is signaled to the 
channel subsystem during channel-program 
execution by specifying the suspend (S) 
flag in the first CCW or in a CCW 
fetched during command chaining. 

Suspension occurs when the channel 
subsystem fetches a CCW with a valid S 
flag. The command in this CCW is not 
sent to the I/O device, and the device 
is signaled that the chain of commands 
is concluded. A subsequent RESUME 
SUBCHANNEL instruction informs the chan
nel subsystem th"at the CCW that caused 
suspension may have been modified and 
that the channel subsystem must refetch 
the CCW and examine the current setting 
of the suspend flag. If the suspend 

13-8 370-XA Princlples of Operation 

flag is found to be not specified in the 
CCW, the channel subsystem resumes 
execution of the chain of commands with 
the I/O device. 

Channel-program execution may be termin
ated prematurely by HALT SUBCHANHEL or 
CLEAR SUBCHAHNEL. The execution of HALT 
SUBCHANNEL causes the channel subsystem 
to issue the halt signal to the I/O 
device and terminate channel-program 
execution at the subchannel. The 
program is notified of the termination 
by HALT SUBCHANNEL via an 1/0-
interruption request generated when the 
I/O device presents status for the 
terminated operation, or, if the halt 
signal was issued to the device during 
command chaining after the receipt of 
device end but before the next command 
was transferred to the device, the 1/0-
interruption request is generated by the 
channel subsystem after the device has 
been signaled. In the latter case, the 
device-status field of the SCSW contains 
zeros. The execution of CLEAR SUBCHAN
NEL clears the subchannel of indications 
of the channel program in execution, 
causes the channel subsystem to issue 
the clear signal to the I/O device, and 
causes the channel subsystem to generate 
an I/O interruption to notify the 
program of the completion of the clear 
function. 

I/O INTERRUPTIONS 

Conditions that initiate I/O interrup
tions are asynchronous to activity in 
CPUs, and more than one condition can 
occur at the same time. The conditions 
are preserved in the subchannels until 
accepted by a CPU, cleared by a TEST 
SUBCHANNEL or CLEAR SUBCHANNEL, or reset 
by an I/O-system reset. 

When an I/O-lnterruption condition has 
been recognized by the channel subsystem 
and indicated in the subchannel, an 
I/O-interruption request is made pending 
for the I/O-interruption subclass speci
fied in the subchannel. The 
interruption subclass for which the 
interruption is made pending is under 
programmed control through the use of 
MODIFY SUBCHANNEL. A pending I/O inter
ruption may be accepted by any CPU that 
is enabled for interruptions from its 
subclass. Each CPU has eight mask bits 
in control register 6 which control the 
enabling of that CPU for each of the 
eight I/O-interruption subclasses, with 
the I/O mask (bit 6) in the PSW the 
master I/O-interruption mask for the 
CPU. 

When a CPU performs an I/O interruption, 
the I/O-interruption code is stored in 
the I/O-communication area of that CPU, 
and the I/O-interruption request is 
cleared. The I/O-interruption code 



1dent1f1es the subchannel for wh1ch the 
1nterrupt10n was pend1ng. The cond1-
tions causing the generat10n of the 
1nterruption request may then be 
retrieved from the subchannel explicitly 
by TEST SUBCHANNEL. 

A pending I/O interruption may also be 
cleared by TEST PENDING INTERRUPTION 
when the correspond1ng subclass is 
enabled but the PSW has I/O inter
ruptions disabled or TEST SUBCHANNEL 
when the CPU 1S d1sabled for I/O inter
ruptions from the corresponding 
subclass. 

Regardless of how the pending interrup
tion request is cleared, the program 
executes TEST SUBCHANNEL to obtain 
information concerning the execution of 
the operation and to clear the inter
ruption condition from the subchannel. 

In general, execution of an I/O oper
ation or chain of operations involves as 
many as three levels of participation: 

1. Except for effects due to the inte
gration of CPU and channel
sUbsystem equipment, a CPU is busy 
for the duration of the execution 
of START SUBCHANNEL, which lasts 
until the addressed subchannel has 
been passed the ORB contents. 

2. The subchannel is busy for a new 
START SUBCHANHEL from the receipt 
of the ORB contents until the 
primary-interruption condition is 
cleared from in the subchannel. 

3. The I/O device is busy from the 
initiation of the first operation 
at the device until either the 
subchannel becomes suspended or the 
s~condary-interruption condition is 
placed in the subchannel. In the 
case of a suspended subchannel, the 
device again becomes busy when 
execution of the suspended channel 
program is resumed. 

Chapter 13. I/O Overview 13-9 





CHAPTER 14. I/O INSTRUCTIONS 

Introduction ••.••••••••••••••••••••••.•••••••••••••.•••..• 14-1 
I/O-Instruction Formats ••••••••••••••••••••••••••••••••••• 14-1 
I/O-Instruction Execution •••.••••.•••••••••••••••••••••••• 14-1 

Serialization •••••••••••....••.•.•••.•••.•...••.••.••••. 14-1 
Operand Access ••••••••••.•••.•.•.••••.•.••.••.•..•.••••• 14-2 
Condition Code .••...••••••••••..•••.••..•••••••••••••••• 14-2 
Program Excepti ons ••••••••••.••••••••••••••.••.•.••••.•• 14-2 

Instructions •.••••.•••••••••.•••••••.••..••••..•.••••.•••. 14-2 
CLEAR SUBCHANNEL •.•••••••••••.•••••••••••••••••••••••••. 14-3 
HALT SUBCHANNEL •••• ~ •••••••••••••••••.•••.•.•.•••••.•••• 14-4 
MODIFY SUBCHANNEL •••••••••••••••••••••••••••••..•••••••• 14-6 
RESET CHANNEL PATH ••••••••••.••••••••.••.••.•••••••••••• 14-6 
RESUME SUBCHANNEL ••••••••••••••.•••••.•••••••••••••••••. 14-8 
SET ADDRESS LIMIT ••••••••••••..••••••••••••••••.•••.••.• 14-9 
SET CHANNEL MONITOR ••••.•••••••.•••.•.•••.•...•....••.•• 14-10 
START SUB CHANNEL •.•••••.•••.•..•••••••.••••••.••••.••••. 14-11 
STORE CHANNEL PATH STATUS ••••••••••.•••.••..••.••.•••••. 14-13 
STORE CHANNEL REPORT WORD ••••.•••••••••••••.•••••..••••• 14-13 
STORE SUBCHANNEL •••••••••.•••.•.•..••..••••.••.•••..•••• 14-14 
TEST PENDING INTERRUPTION ••.•..••••••.•••..••...•.•.••.• 14-15 
TEST SUBCHANNEL ••••••••••••••••••••••••••••••.•••••.•••• 14-16 

INTRODUCTION 

The I/O instructions include all 
instructions that are provided for the 
control of channel-subsystem operations. 
The 13 I/O instructions are listed in 
the figure "Summary of I/O 
Instructions." All of the I/O 
instructions are privileged instruc
tions. 

Several I/O instructions result in the 
channel subsystem being signaled to 
perform functions asynchronous to the 
execution of the instructions. The 
description of each instruction of this 
type contains a section called "Associ
ated Functions," which summarizes the 
asynchronous functions. 

I/O-INSTRUCTION FORMATS 

All I/O instructions use the S format: 

Op Code 

o 16 20 31 

The use of the second-operand address 
and general registers 1 and 2 (as 
implied operands) depends on the I/O 
instruction. The figure "Summary of 
I/O-Instruction Characteristics" defines 
which operands are used to execute each 

I/O instruction. In addition, detailed 
information regarding operand usage 
appears in the description of each I/O 
instruction. 

All I/O instructions that reference a 
subchannel use the contents of general 
register 1 as an implied operand. For 
these I/O instructions, general register 
1 contains the subsystem-identification 
word. The subsystem-identification word 
has the following format: 

0000000000000001 

o 16 

Subchannel 
Number 

31 

Bits 16-31 form the binary number of the 
subchannel to be used for the function 
specified by the instruction. 

I/O-INSTRUCTION EXECUTION 

SERIALIZATION 

The execution of any I/O instruction 
causes serialization and checkpoint 
synchronization to occur. For a defi
nition of the serialization of CPU oper
ations, see the section "CPU 
Serialization" in Chapter 5, "Program 
Execution." 

Chapter 14. I/O Instructions 14-1 



OPERAND ACCESS 

During execution of an I/O instruction, 
the order in which fields of the operand 
and fields of the subchannel (if appli
cable) are accessed is unpredictable. 
It is also unpredictable as to whether 
fetch accesses are made to fields of an 
operand or the subchannel (as 
applicable) when those fields are not 
needed to complete execution of the I/O 
instruction. (See the section "Relation 
Between Operand Accesses" in Chapter 5, 
"Program Execution.") 

CONDITION CODE 

During the execution of some I/O 
instructions, the results of certain 
tests are used to set one of four condi
tion codes in the PSW. The I/O 
instructions for which execution can 
result in the setting of the condition 
code are designated in the figure "Sum
mary of I/O Instruction Characteris
tics." The condition code indicates the 
result of the execution of the I/O 
instruction. The general meaning of the 
condition code for I/O instructions is 
given below; the meaning of the condi
tion code for a specific instruction 
appears in the description of that 
instruction. 

Condition Code 0: Instruction execution 
produced t~expected or most probable 
result. (See the section "Deferred
Condition-Code Contents" in Chapter 16, 
"I/O Interruptions," for a description 
of conditions that can be encountered 
subsequent to the presentation of condi
tion code 0 that result in a nonzero 
deferred condition code.) 

Condition Code 1: Instruction execution 
produced t~aTternate or second-most
probable result, or status conditions 
were present that mayor may not have 
prevented the expected result. 

Condition Code ~ Instruction execution 
was ineffective because the target 
subchannel or channel-subsystem facility 
was busy with a previously initiated 
function. 

Condition Code 3: Instruction execution 
was ineffective- because the target 

14-2 370-XAPrinciples of Operation 

element was not operational or because 
some condition precluded initiation of 
the normal function. 

In situations where conditions exist 
that could cause more than one nonzero 
condition code to be set, the condition 
code having precedence is as follows: 

Condition code 3 has precedence over 
condition codes 1 and 2. 

Condition code 1 has precedence over 
condition code' 2. 

PROGRAM EXCEPTIONS 

The program exceptions that the I/O 
instructions can encounter are access, 
operand, privileged-operation, and spec
ification exceptions. The figure "Sum
mary of I/O-Instruction Characteristics" 
shows the exceptions that are applicable 
to each of the I/O instructions. The 
execution of the instruction is 
suppressed for privileged-operation, 
operand, and specification exceptions. 
Except as indicated otherwise in the 
section "Special Conditions" for each 
instruction, the ending for access 
exceptions is as described in the 
section "Recognition of Access 
Excepti ons" in Chapter 6 "Inten'up
tions." 

INSTRUCTIONS 

The mnemonics, format, and operation 
codes of the I/O instructions are given 
in the figure "Summary of I/O Instruc
tion Characteristics." The figure also 
indicates the conditions that can cause 
a program interruption and whether the 
condition code is set. 

In the detailed descriptions of the 
individual instructions, the mnemonic 
and the symbolic operand designation for 
the assembly language are shown with 
each instruction. In the case of START 
SUBCHANNEL, for example, SSCH is the 
mnemonic and D2 (B 2 ) the operand desig
nation. 



Mne- Op 
Name monic Characteristics Code 

CLEAR SUBCHANHEL CSCH S C P OP ¢ GS 8230 
HALT SUBCHAtlNEL USCH S C P OP ¢ GS B231 
MODIFY SUBCHANNEL t'1SCH S C P A SP OP ¢ GS B232 
RESET CHANNEL PATH RCHP S C P OP ¢ Gl 823B 
RESUME SUBCHANHEL RSCH S C P OP ¢ GS B238 

SET ADDRESS LIMIT SAL S P OP ¢ Gl B237 
SET CHANHEL MONITOR SCHM S P OP ¢ GM B23C 
START SUBCUAtHlEL SSCH S C P A SP OP ¢ GS B233 
STORE CHAtlUEL PATH STATUS STCPS S P A SP ¢ ST B23A 
STORE CHANHEL REPORT WORD STCRW S C P A SP ¢ ST B239 

STORE SUBCHANNEL STSCH S C P A SP OP ¢ GS ST 8234 
TEST PEHDING INTERRUPTION TPI S C P Al SP ¢ ST B236 
TEST SUBCUANNEL TSCH S C P A SP OP ¢ GS ST B235 

Explanation: 

¢ Causes serialization and checkpoint synchronization. 
A Access exceptions for logical addresses. 
Al When the effective address is zero, it 1S not used ~o access storage, and no 

access exceptions can occur. 
C Condition code is set. 
Gl Instruction execution includes the implied use of general register 1 as a 

parameter. 
GM Instruction execution includes the implied use of multiple general registers. 

General register 1 is used as a parameter, and general register 2 maybe used 
as a parameter depending on the contents of general register 1. 

GS Instruction execution includes the implied use of general register 1 as the SID. 
OP Operand exception. 
P Privileg~d-operation exception. 
S S instruction format. 
SP Specification exception. 
ST PER storage-alteration event. 

Summary of lID Instructions 

CLEAR SUBCHANNEL 

CSCH [5] 

'B230' I11111111111111111 

o 16 31 

The specified subchannel is cleared, the 
current start or halt function, if any, 
is terminated at the specified subchan
nel, and the channel SUbsystem is 
signaled to asynchronously perform the 
clear function at the specified subchan
nel and at the associated device. 

General register 1 contains 
subsystem-identification word, 
specifies the subchannel that is 
cleared. 

the 
which 
to be 

If conditions allow, the following func
tions are performed: 

If a start or halt function is in 
progress, it is terminated at the sub
channel. 

The status-pending bit of the status
control field is set to zero in the 
specified subchannel. 

The activity-control (AC) field of the 
specified subchannel is set to Zeros, 
except for the clear-pending bit, which 
is set to one. 

The function-control (FC) field of the 
specified subchannel is set to zeros, 
except for the clear-function bit, which 
is set to one. 

The channel subsystem is signaled to 
asynchronously perform the clear func
tion. The clear function is summarized 
below in the section "Associated Func
tions" and is described in detail in the 
section "Clear-Function Execution" in 
Chapter 15, "Basic lID Functions." 

Condition code 0 is set to indicate tlat 
the actions described above have been 
taken. 

Chapter 14. lID Instructions 14-3 



Associated Functions 

Subsequent to the execution of CLEAR 
SUBCHANNEL, the channel subsystem 
asynchronously performs the clear func
tion. If conditions allow, the channel 
subsystem selects a channel path and 
attempts to issue the clear signal to 
the device to terminate the I/O opera
tion, if any. The subchannel then 
becomes status-pending. Conditions 
encountered by the channel subsystem 
that preclude lssuing the clear signal 
to the device do not prevent the 
subchannel from being made status
pending (see the section "Clear-Function 
Execution" in Chapter 15, "Basic I/O 
Functions"). 

When the subchannel becomes status
pending as a result of executing the 
clear function, data transfer, if any, 
with the associated device has been 
terminated. The SCSW stored when the 
resulting status is cleared by TEST 
SUBCHANNEL has the clear-function bit 
stored as one. If the clear signal was 
issued to the device, the clear-pending 
bit is stored as zero in the SCSW. 
Otherwise, the clear-pending bit is 
stored as one, and other indications are 
provided that describe in greater detail 
the condition that was encountered. 
(See the section "Interruption-Response 
Block" in Chapter 16, "I/O 
Interruptions.") 

Measurement parameters are not accumu
lated and the device connect time is not 
stored in the extended-status word for 
the subchannel for a start function that 
is terminated by CLEAR SUBCHANNEL. 

Special Conditions 

Condition code 3 is set and no other 
action is taken when the subchannel is 
not operational for CLEAR SUBCHANNEL. A 
subchannel is not operational for CLEAR 
SUBCHANNEL when the subchannel is not 
provided in the channel subsystem, has 
no valid device number assigned to it, 
or is not enabled. 

CLEAR SUBCHANNEL can encounter the 
program exceptions that are listed 
below. An operand exception is recog
nized when bit positions 0-15 of general 
register 1 do not contain 0001 hex. 

Resulting Condition Code: 

o Clear function initiated 
1 
2 
3 Not operational 

Program Exceptions: 

Operand 

14-4 370-XA Principles of Operation 

Privileged operation 

HALT SUBCHANNEL 

HSCH [S] 

'B231' 1////////////////1 

o 16 31 

The current start function, if any, is 
terminated at the specified subchannel, 
and the channel subsystem is signaled to 
asynchronously perform the halt function 
at the specified subchannel and at the 
associated device. 

General register 1 contains 
subsystem-identification word, 
specifies the subchannel that is 
halted. 

the 
which 
to be 

If conditions allow, the following func
tions are performed: 

If a start function is in progress, it 
is terminated at the subchannel. 

The halt-pending and halt-function bits 
of the subchannel are set to ones. 

When HALT SUBCHANNEL is issued to a 
subchannel that is subchannel-and
device-active and intermediate-status
pending, the status-pending indication 
is eliminated (see the discussion of 
bits 24, 25, and 28 in the section 
"Activity Control" in Chapter 16, "I/O 
Interruptions"). The status-pending 
condition is reestablished as part of 
the halt function (see the section 
"Associated Functions" below). 

The channel subsystem is signaled to 
asynchronously perform the halt 
function. Tha halt function is summa
rized below in the section "Associated 
Functions" and is described in detail in 
the section "Halt-Function Execution" in 
Chapter 15, "Basic I/O Functions." 

Condition code 0 is set to indicate that 
the actions described above have been 
taken. 

Associated Functions 

Subsequent to the execution of HALT 
SUBCHANNEL, the channel subsystem 
asynchronously performs the halt func
tion. If conditions allow, the channel 
subsystem selects a channel path and 
attempts to issue the halt signal to the 
device to terminate the I/O operation, 
if any. The subchannel then becomes 
status-pending. 



When the subchannel becomes status
pending as a result of executing the 
halt function, data transfer, if any, 
with the associated device has been 
terminated. The SCSW stored when the 
resulting status is cleared by TEST 
SUBCHAHHEL has the halt-function bit 
stored as one. If the halt signal was 
issued to the device, the halt-pending 
bit is stored as zero. Otherwise, the 
halt-pending bit is stored as one, and 
other indications are provided that 
describe in greater detail the condition 
that was encountered. (See the section 
"Interruption-Response Block" in Chapter 
16, "I/O Interruptions," and the section 
"Halt-Function Execution" in Chapter 15, 
"Basic I/O Functions.") 

In some models, path availability is 
tested as part of the halt function 
(rather than as part of the execution of 
the instruction). In these models, when 
no channel path is available for 
selection, the halt signal is not 
issued, and the subchannel is made 
status-pending. When the status-pending 
condition is subsequently cleared by 
TEST SUBCHAHHEL, the halt-pending bit is 
stored as one in the SCSW. 

When a status-pending condition is elim
inated during execution of HALT SUBCHAH
NEL, this condition is reestablished 
along with the other status conditions 
when completion of the halt-function 
execution is indicated to the program. 

The halt-pending condition may not be 
recognized by the channel subsystem if a 
status-pending condition has been gener
ated. This situation could occur, for 
example, when alert status is presented 
while the subchannel was start-pending 
or when primary status is presented 
during initiation of the start function. 
In either case, if recognition of the 
status-pending condition by the channel 
subsystem has occurred logically prior 
to recognition of the halt-pending 
condition, the SCSW, when cleared by 
TEST SUBCHAHHEL, has the halt-pending 
bit stored as one. When the halt
pending bit ;s stored as one, the halt 
signal was not issued to the device. 

If measurement parameters are being 
accrued when a start function is termi
nated by HALT SUBCHANHEL, the measure
ment parameters continue to be accrued 
for the subchannel and reflect the 
extent of subchannel and device usage, 
if any, required in executing the 
currently terminated start function. 
The measurement parameters, if any, are 
accumulated in the measurement block for 
the subchannel or placed in the 
extended-status word, as appropriate, 
when the subchannel becomes status
pending with primary status. (For a 

description of channel-subsystem moni
toring, see the section "Channel
Subsystem Monitoring Facilities" in 
Chapter 17, "I/O Support Functions.") 

Special Conditions 

Condition code 1 is set and no other 
action is taken when the subchannel is 
status-pending alone or is status
pending with any combination of alert, 
primary, or secondary status. 

Condition code 2 is set and no other 
action is taken when the subchannel is 
busy for HALT SUBCHANNEL. The subchan
nel is busy for HALT SUBCHANHEL when a 
halt function or clear function is in 
progress at the subchannel. 

Condition code 3 is set and no other 
action is taken when the subchannel is 
not operational for HALT SUBCHAHNEL. A 
subchannel is not operational for HALT 
SUBCHANHEL when the subchannel is not 
provided in the channel subsystem, has 
no valid device number assigned to it, 
or is not enabled. In some models, a 
subchannel is also not operational for 
HALT SUBCHANHEL when no channel paths 
are available for selection of the 
device. (See the section "Channel-Path 
Availability" in Chapter 15, "Basic I/O 
Functions," for a description of channel 
paths that are available for selection.) 

HALT SUBCHANHEL can encounter the 
program exceptions listed below. An 
operand exception is recognized when bit 
positions 0-15 of general register 1 do 
not contain 0001 hex. 

Resulting Condition Code: 

o Halt function initiated 
1 Status other than intermediate 

status pending 
2 Busy 
3 Hot operational 

Program Exceptions: 

Operand 
Privileged operation 

Programming Note 

After execution of HALT SUBCHANNEL, the 
status-pending condition indicating the 
completion o~ execution of the halt 
function may be delayed for an extended 
period of time, for example, if the 
device was a magnetic-tape unit execut
ing a rewind command. 

Chapter 14. I/O Instructions 14-5 



MODIFY SUBCHANNEL Condition code 3 is set and no ot~er 
action is taken when the subchannel is 
not operational for MODIFY SUBCHANNll. 

MSCH [S] A subchannel ;s not operational for 
MODIFY SUBCHANNEl when thesubchannelis 
not provided in the channel subsystem. 

'B232' 

o 16 20 31 

The program-modifiable fields of the 
specified subchannel-information block 
(SCHIB) are placed in the specified 
subchannel. As a result, the program 
influences, for that subchannel, certain 
aspects of I/O processing relative to 
the clear, halt, resume, and start func
tions and certain I/O support functions. 

General register 1 
subsystem-identification 
specifies the subchannel 
receive the contents of 
modifiable fields of the 
second-operand address is 
address of the SCHIB and 
on a word boundary. 

contains the 
word, which 
that is to 

the program
SCHIB. The 
the logical 

is designated 

The channel-subsystem operations that 
are affected by the program-modifiable 
fields of the SCHIB are (1) the use of 
the subchannel for I/O processing (E 
field), (2) interruption processing 
(interruption parameter and ISC field), 
(3) path management (0, LPM, and POM 
fields), and (4) the use of the monitor
ing and address-limit-checking 
facilities (measurement-block index and 
LM and MM fields). Bits 0-1 and 5-7 of 
word 1 and bits 0-31 of word 6 of the 
SCHIB operand must be specified as 
zeros, and bits 9-10 of word 1 must not 
both b.e ones. The remaining fields of 
the SCHIB that are designated by the 
second-operand address are ignored and 
do not affect the processing of MODIFY 
SUBCHANNEL. (See the section 
"Subchannel-Information Block" in Chap
ter 15, "Basic I/O Functions.") 

Condition code 0 is set to indicate that 
the program-modifiable fields of the 
SCHIB have been placed in the 
subchannel. 

Special Conditions 

Condition code 1 is set and no other 
action is taken when the subchannel is 
status-pending. (See the section "Sta
tus Control" in Chapter 16, "I/O Inter
ruptions.") 

Condition code 2 is set and no other 
action is taken when a clear, halt, or 
start function is in progress at the 
subchannel. (See the section "Function 
Control" in Chapter 16, "I/O Inter
ruptions.") 

14-6 370-XA Principles of Operation 

MODIFY SUBCHANNEl can encounter the 
program exceptions listed below. The 
execution of MODIFY SUBCHANNEL is 
suppressed on all addressing and 
protection exceptions. An operand 
exception is recognized when bit posi
tions 0-15 of general register 1 do not 
contain 0001 hex. An operand exception 
is also recognized when bits 0-1 and 5-7 
of word 1 and bits 0-31 of word 6 of the 
SCHIB operand are not specified as zeros 
or when bits 9-10 of word 1 are both 
specified as ones. A specification 
exception is recognized when the second 
operand is not designated on a word 
boundary. 

Resulting Condition Code: 

o SCHIB information placed in the 
subchannel 

1 Subchannel status-pending 
2 Subchannel busy 
3 Not operational 

Program Exceptions: 

Access (fetch, operand 2) 
Operand 
Privileged operation 
Specification 

Programming Note 

While a subchannel is disabled, unsolic
ited status that is presented by the 
associated device is discarded by the 
channel subsystem. This should be taken 
into account when the program uses MODI
FY SUBCHANNEL to enable a subchannel. 
For example, the medium on the associ
ated device that was present when the 
subchannel became disabled may have been 
replaced, and, therefore, the program 
should verify the integrity of that 
medium. 

RESET CHANNEL PATH 

RCHP 

'B23B' 

o 

[S] 

I//////////////~ 
16 31 

The channel-path-reset facility is 
signaled to perform the channel-path
reset function on the specified channel 
path. 



General register 1 contains~ in bit 
positions 24-31, the channel-path iden
tifier (CHPID) of the channel path on 
which the channel-path-reset function is 
to be performed. Bit positions 0-23 of 
general register 1 are reserved and must 
contain zeros; otherwise, an operand 
exception is recognized. 

GRI 

10000 0000 0000 0000 0000 00001 CHPID 

o 24 31 

If conditions allow, the channel-path
reset facility is signaled to asynchro
nously perform the channel-path-reset 
function on the specified path. The 
channel-path-reset function 1S summa
rized below in the section "Associated 
Functions" and is described in detail in 
the section "Channel-Path Reset" in 
Chapter 17, "I/O Support Functions." 

Condition code 0 is set to indicate that 
the channel-path-reset facility has been 
signaled. 

Associated Functions 

Subsequent to the execution of RESET 
CHANNEL PATH the channel-path-reset 
facility asynchronously performs the 
channel-path-reset function: Certain 
indications are reset in all subchannels 
that have access to the specified chan
nel path, and the reset signal is issued 
on that channel path. Any I/O functions 
in progress at the devices are' reset, 
but only for the channel path on which 
the reset signal is received. An I/O 
operation or chain of I/O operations 
taking place in multi path mode may be 
able to continue to execute on other 
channel paths in the multi path group, if 
any. (See the section "Channel-Path
Reset-Function Execution" in Chapter 15, 
"Basic I/O Functions.") 

The result of performing the channel
path-reset function on the designated 
channel path is communicated to the 
program via a channel report (see the 
section "Channel Report" in Chapter 17, 
"I/O Support Functions"). If the speci
fied channel path is physically 
available when condition code 0 is set 
for RESET CHANNEL PATH, the error
recovery code of the first CRW of the 
channel report can indicate initialized, 
permanent error with facility initial
ized, or permanent error with facility 
not initialized. In those models that 
set condition code 0 for RESET CHANNEL 
PATH when the specified channel path is 
not physically available, the error
recovery code of the first CRW of the 
channel report can only indicate perma
nent error with facility initialized or 
permanent error with facility not 

initialized. When either of the two 
types of permanent error is indicated, 
the designated channel path is in the 
check-stop state, and the corresponding 
PAM bit is zero. In all cases, since 
the report is made pending as a direct 
result of action that is taken by the 
program, the first CRW of the channel 
report is specified as being solicited. 

Special Conditions 

Condition code 2 is set and no other 
action is taken when, on some models, 
the channel-path-reset facility is busy 
performing the channel-path-reset func
tion for a previous RESET CHANNEL PATH. 

Condition code 3 is set and no other 
action is taken when, on some models, 
the designated channel path is not oper
ational for RESET CHANNEL PATH. On 
these models, the channel path is not 
operational for RESET CHANNEL PATH when 
the designated channel path is not phys
icallyavailable. 

If the channel-path-reset facility is 
busy and the designated channel path is 
not physically available, it depends on 
the model whether condition code 2 or 3 
is set. 

RESET CHANNEL PATH can encounter the 
program exceptions listed below. An 
operand exception is recognized when bit 
positions 0-23 of general register 1 do 
not contain zeros. 

Resulting Condition Code: 

o 
1 

Channel-path-reset 
initiated 

2 Busy 
3 Not operational 

Program Exceptions: 

Operand 
Privileged operation 

Programming Hote 

function 

To eliminate the possibility of a data
integrity exposure for devices that have 
the capability of generating unsolicited 
device-end status, I/O operations in 
progress with such devices via the chan
nel path to which RESET CHANNEL PATH is 
to be issued must be terminated by HALT 
SUBCHANNEL or CLEAR SUBCHANNEL. Other
wise, an unsolicited device end 
presented by the device subsequent to 
receiving the reset signal could possi
bly be interpreted by the channel 
subsystem as a solicited device end and 
cause command chaining to occur. 

Chapter 14. I/O Instructions 14-7 



RESUME SUBCHAHHEL 

RSCH [S] 

'B238' \////////////////1 

o 16 31 

The channel sUbsystem is signaled to 
perform the resume function on the spec
ified subchannel. 

General register 1 contains the 
subsystem-identification word, which 
specifies the subchannel on which the 
resume function is to be performed. 

If conditions allow, the following func
tions are performed: 

The resume-pending bit of the subchannel 
is set to one. 

Logically prior to the setting of condi
tion code 0 and only if the subchannel 
is currently in the suspended state, the 
path-not-operational mask (PHON) of the 
subchannel is set to zeros. 

The channel subsystem is signaled to 
asynchronously perform the resume func
tion. The resume function is summarized 
below in the section "Associated Func
tions" and is described in detail in the 
section "Start-Function and Resume
Function Execution" in Chapter 15, 
"Basic I/O Functions." 

Condition code 0 is set to indicate that 
the actions described above have been 
taken. 

Associated Functions 

Subsequent to the execution of RESUME 
SUBCHANHEL, the channel subsystem 
asynchronously executes the resume func
tion. Execution of the resume function 
causes the execution of a currently 
suspended channel-program to be resumed 
with the associated device if, for the 
current CCW, the suspend flag causing 
suspension has been set to zero by the 
program. If the suspend flag remalns 
set to one, channel-program execution 
remains suspended. (See the section 
"Start-Function and Resume-Function 
Execution" in Chapter 15, "Basic I/O 
Functions.") 

Special Conditions 

Condition code 1 is set 
action is taken· when the 
status-pending. 

and no other 
subchannel is 

14-8 370-XA Principles of Operation 

Condition code 2 is set and no other 
action is taken when the resume function 
is not applicuble. The resume function 
is not applicable when the subchannel 
(1) has any function other than the 
start function alone specified, (2) has 
no function specified, (3) is resume
pending, or (4) does not have suspend 
control specified for the start function 
in progress. 

Condition code 3 is set and no other 
action is taken when the subchannel is 
not operational for the resume function. 
A subchannel is not operational for the 
resume function if the subchannel is not 
provided in the channel subsystem, has 
no valid device number assigned to it, 
or is not enabled. 

RESUME SUBCHANNEL can encounter the 
program exceptions listed below. An 
operand exception is recognized when bit 
positions 0-15 of general register 1 do 
not contain 0001 hex. 

Resulting Condition Code: 

o Resume function initiated 
l' Subchannel status-pending 
2 Resume function not applicable 
3 Not operational 

Program Exceptions: 

Operand 
Privileged operation 

Programming Hotes 

1. When channel-program execution is 
resumed from the suspended state, 
the device views the resumption as 
the beginning of a new chain of 
commands. When the suspend-and
resume facility is used with 
devices that require certain 
commands to be first or to appear 
only once in a chain of commands 
(for example, direct-access-storage 
devices), the program must ensure 
that the appropriate commands in 
the proper sequence are fetched by 
the channel subsystem subsequent to 
the resumption of channel-program 
execution. One way the program can 
ensure proper sequencing of 
commands at the device is by allow
ing the optional subchannel
suspended I/O interruption. 

The use of the PCI flag in the CCW 
containing the S flag for notifica
tion that the subchannel is 
suspended is not a reliable method 
of notification because the PCI I/O 
interruption may occur before the 
subchannel has been suspended. The 
SCSW would indicate that an I/O 
operation is in progress at the 
subchannel and device in this case. 



To ensure consistent resu!ts, the 
suspend f!ag of the target CCW 
should be set to zero before 
executing RESUME SUBCHANHEL. This 
ensures that a CCW that previously 
had the suspend flag set to orle 
does not cause the channel program 
to remain suspended in spite of the 
RESUME SUBCHANNEL. If RESUME 
SUBCHANNEL is executed prior to 
setting the CCW suspend flag to 
zero, it is possible that the chan
nel sUbsystem will recognize the 
resume-pending condition, refetch 
the CCW with the suspend flag still 
one, and, accordingly, reset the 
resume-pending condition and 
suspend the execution of the chan
nel program, all before the CCW 
suspend flag is set to zero by the 
program. 

2. Some models recognize a resume
pending condition only after a CCW 
having a valid S flag set to one is 
fetched. Therefore, if a subchan
nel is resume-pending and, during 
execution of the channel program, 
no CCW is fetched having a va!id S 
flag set to one, the resume-pending 
bit remains one until the primary
interruption condition is cleared 
by TEST SUBCHANHEL. 

3. Path availability is not 
during the execution of 
SUBCHAHNEL. Instead, path 
ability is tested when the 
subsystem begins execution 
resume function. 

tested 
RESUf-1E 
avail-

channel 
of the 

4. The contents of the CCW fetched 
during execution of the resume 
function may be different from the 
contents of the same CCW when it 
was previously fetched and 
contained a valid S flag. 

SET ADDRESS LIMIT 

SAL [S] 

'B237' 1////////////////1 

o 16 31 

The address-limit-checking facility is 
signaled to use the specified address as 
the address-limit value, and the speci
fied address is .passed to the facility. 

Genera! register 1 contains the address 
to be used as the address-limit value. 
The address is designated on a 64K-byte 
boundary, and the leftmost bit of gener
al register 1 is zero. 

GR1 

101 Address-Limit Value 

o 1 31 

Associated Functions 

The address limit that is recognized by 
the address-!imit-checking facility on a 
data access to main storage is called 
the address-limit va!ue. The initial 
address-limit value (immediately follow
ing the system IPL procedure) is zero. 
This address is used by the address
limit-checking facility until the 
facility recognizes a signal (caused by 
SET ADDRESS LIMIT) to use a specified 
address. The setting of the address
limit value to the address (referred to 
as the specified address) that is passed 
by SET ADDRESS LIMIT occurs asynchro
nously with respect to the execution of 
the instruction. The effect of the 
specified address on a data access 
during channel-program execution depends 
on whether SET ADDRESS LIMIT was 
executed prior to, during, or subsequent 
to the execution of the START SUBCHANNEL 
that initiated I/O processing for that 
subchannel. If SET ADDRESS LIMIT is 
executed prior to START SUBCHAHNEL, the 
access to storage is under control of 
the specified address. If SET ADor~ESS 
LIMIT is executed during or subseqLent 
to START SUBCHANHEL, control over the 
access of storage at a specified addr~ss 
is unpredictab!e for that channe!
program execution. 

The address-limit va!ue is used by the 
address-!imit-checking facility in a 
comparison with the absolute storage 
address each time a data access to main 
storage is attempted. The result of the 
address comparison is used to determine 
whether an address-limit violation 
exists when the subchannel for which the 
data access is being made designates 
address-!imit checking. (5ee the 
section "Program Check" in Chapter 16, 
"I/O Interruptions.") A subchannel 
designates address-limit checking when 
the address-limit-checking-contro! bit 
passed in the operation-request b!ock 
(ORB) is set to one and the limit-mode 
bits of the subchannel-information block 
(SCHIB) are set to some value other than 
all zeros. (See the sections 
"Subchannel-Information Block" and 
"Operation-Request Block" in Chapter 15, 
"Basic I/O Functions.") 

Special Conditions 

SET ADDRESS LIMIT can encounter the 
program exceptions listed below. An 

Chapter 14. I/O Instructions 14-9 



operand exception is recognized when the 
address in general register 1 is not 
designated on a 64K-byte boundary or 
when the leftmost bit is not zero. 

Condition Code: 
unchanged.---

The code remains 

Program Exceptions: 

Operand 
Privileged operation 

SET CHANNEL MONITOR 

SCHM [5] 

'B23C' 1////////////////1 

o 16 31 

The monitoring modes of the channel 
subsystem are made either active or 
inactive, depending on the setting of 
the measurement-mode-control bits in 
general register 1. Depending on the 
setting of the measurement-mode-control 
bit for the measurement-block-update 
mode, the channel subsystem is signaled 
to make the mode active, or the mode is 
made inactive. 

Depending on the setting of the 
measurement-mode-control bit for the 
device-connect-time-measurement mode, 
the mode is made active or inactive. 

The format of general registers 1 and 2 
is as follows: 

GRI 

IMBK 100000000000000000000000000iMIDI 

o 4 30 31 

GR2 

10 I MBO Address 

o 1 31 

Bit positions 0-3 of general register 1 
contain the measurement-block key (MBK). 
When the measurement-mode~control bit 
(M) is one, MBK specifie~ the access key 
that is to be used by the channel 
subsystem when it accesses the 
measurement-block area. Otherwise, bit 
positions 0-3 of general register 1 are 
ignored. 

Bit positions 4-29 of general register 1 
contain zeros. 

Bit 30 (M) of general register 1 is the 
measurement-mode-control bit that 

14-10 370-XA Principles of Operation 

controls the 
mode. 

measurement-block-update 

When the M bit is one and conditions 
allow, the measurement-block-update 
facility is signaled to asynchronously 
make the measurement-block-update mode 
active. In addition, the MBO address 
(in general register 2) and the 
measurement-block key (MBK) (in general 
register 1) are passed to the 
measurement-block-update facility. The 
asynchronous functions that are 
performed by the measurement-block
update facility are summarized below in 
the section "Associated Functions" and 
are described in detail in the section 
"Channel-Subsystem-Monitoring Facili
ties" in Chapter 17, "I/O Support 
Functions." 

When the M bit is zero and conditions 
allow, the measurement-block-update mode 
i s made i nact i ve i fit i s act i va or 
remains inactive if it is inactive. The 
contents of bit positions 0-3 (MBK) of 
general register 1 and the contents of 
general regi5~er 2 are ignored. 

Bit 31 CD) of general register 1 is the 
measurement-mode-control bit that con
trols the device-connect-time-measure
ment mode. 

When the D bit is one and conditions 
allow, the device-connect-time-measure
ment mode is made active if it is inac
tive or remains active if it is active. 

When the D bit is zero and conditions 
allow, the device-connect-time-measure
ment mode is made inactive if it is ac
tive or remains inactive if it is inac
tive. 

Bit position 0 of general register 2 
must contain a zero when the M bit is 
one. Otherwise, bit position 0 of 
general register 2 is ignored. 

Bit positions 1-31 of general registur 2 
contain the absolute address of the 
measurement-block orlgln (MBO). W,en 
the M bit is one, the MBO address speci
fies the beginning address of the 
measurement-block area and is designated 
on a 32-byte boundary. The MBO address 
is to be used by the channel subsystem 
to locate measurement blocks. When the 
M bit is zero, the contents of general 
register 2 are ignored. 

If the channel-subsystem timer that is 
used by the measurement facilities is in 
the error state, the state is reset. 
This happens, independent of the setting 
of the two measurement-made-control 
bits. (See the section "Channel
Subsystem-Timing Facility" in Chapter 
17, "I/O Support Functions.") 



Associated Functions 

When the measurement-block-update facil
ity is signaled (by means of SET CHANNEL 
MONITOR) to make the measurement-block
update mode active, the operations that 
are performed by the facility depend 
upon whether or not the mode is already 
active when the signal is generated. 

If the measurement-block-update mode is 
not active when the signal is generated, 
the mode remains inactive until the 
measurement-block-update facility recog
nizes the signal. When the measure
ment-block-update facility recognizes 
the signal, the measurement-block-update 
mode is made active, and the MBK and MBO 
that were passed when the signal was 
generated are used to control the stor
ing of measurement data. 

If the measurement-block-update mode is 
active when the signal is generated, the 
mode remains active, and the MBK and MBO 
that were passed by a previous SET CHAN
NEL MONITOR continue to be used to 
control the storing of measurement data 
until the measurement-block-update 
facility recognizes the signal. When 
the measurement-block-update facility 
recognizes the signal, the MBK and MBO 
that were passed when the signal was 
generated are used instead of the MBK 
and MBO that were passed by a previous 
SET CHANNEL MONITOR. 

In either of the above cases, the 
measurement-block-update facility recog
nizes the signal during, or subsequent 
to, the SET CHANNEL MONITOR that caused 
the signal to be generated and logically 
prior to the execution of a start func
tion initiated by a subsequent START 
SUBCHANNEL for any subchannel that is 
enabled for measurement by this 
facility. If a subchannel that is 
enabled for measurement by this facility 
has a start function in progress when 
the signal is generated, it is unpre
dictable when measurement data for that 
subchannel is stored with the use of the 
MBK and MBO that were passed when the 
signal was generated. 

While the measurement-block-update mode 
is active, measurements of resource 
utilization are accumulated for subchan
nels that are enabled for measuring by 
the measurement-block-update facility. 
Measurements for a subchannel are accu
mulated in a single 32-byte measurement 
block within the measurement-block area. 
A subchannel is enabled for measurement 
by the measurement-block-update facility 
when the measurement-block-update-enable 
bit is set to one for that subchannel by 
MODIFY SUBCHANNEL. The measurement 
block that is used to accumulate meas
urements for a subchannel is determined 
by the measurement-block index that is 
contained in the subchannel. 

When the device-connect-time-measurement 
mode is active, measurements of the 
length of time that the device is 
actively communicating with the channel 
subsystem during the execution of a 
channel program are accumulated for 
subchannels that are enabled for measur
ing by the device-connect-time
measurement facility. Measurements for 
a subchannel are provided in the ESW of 
the IRB. A subchannel is enabled for 
measurement by the device-connect-time
measurement facility when the device
connect-time-measurement-enable bit is 
set to one for that subchannel by MODIFY 
SUBCHANNEL. 

For a more detailed description of the 
measurement-block-update mode, the 
format and contents of the measurement 
block, and the device-connect-time
measurement mode, see the section 
"Channel-Subsystem-Monitoring Facil
ities" in Chapter 17, "I/O Support 
Functions." 

Special Conditions 

SET CHANNEL MONITOR can encounter the 
program exceptions listed below. An 
operand exception is recognized when 
bits 4-29 of general register 1 are not 
all zeros. When bit 30 of general 
register 1 is one, an operand exception 
is also recognized if bit 0 of general 
register 2 is not zero or if the MBO 
address in general register 2 is not 
specified on a 32-byte boundary. 

Condition Code: 
unchanged.-----

Program Exceptions: 

Operand 

The 

Privileged operation 

Programming Note 

code remains 

When the channel subsystem is initial
ized, the measurement-block-update and 
device-connect-time modes are made inac
tive. 

START SUBCHANNEL 

SSCH [S] 

'B233' 

o 16 20 31 

The channel subsystem is signaled to 
asynchronously perform the start func-

Chapter 14. I/O Instructions 14-11 



tion for the associated device, and the 
execution parameters that are contained 
in the specified ORB are placed in the 
specified subchannel. (See the section 
"Operation-Request Block" in Chapter 15, 
"Basic I/O Functions.") 

General register 1 contains the 
subsystem-identification word, which 
specifies the subchannel that is to be 
started. The second-operand address is 
the logical address of the ORB and is 
designated on a word boundary. 

If conditions allow, the following func
tions are performed: 

The execution parameters contained in 
the ORB are placed in the subchannel. 

For some models, when START SUBCHANNEl 
is executed and the subchannel is 
status-pending with only secondary 
status, the status-pending condition is 
discarded at the subchannel. 

The start-pending and start-function 
bits of the subchannel are set to ones. 

logically prior to the setting of condi
tion code 0, the path-not-operational 
mask (PNOM) of the subchannel is set to 
zeros. 

The channel subsystem is signaled to 
asynchronously perform the start func
tion. The start function is summarized 
below in the section "Associated Func
tions" and is described in detail in the 
section "Start-Function and Resume
Function Execution" in Chapter 15, 
"Basic I/O Functions." 

Condition code 0 is set to indicate that 
the actions described above have been 
taken. 

Associated Functions 

Subsequent to the execution 
SUBCHANNEl, the channel 
asynchronously performs the 
tion. 

of START 
subsystem 

start func-

The contents of the ORB, other than the 
fields that must contain' all zeros, are 
checked for validity. In some models, 
the fields of the ORB that must contain 
zeros are also checked asynchronously 
(rather than during the execution of the 
instruction). The detection of invalid 
fields causes the subchannel to become 
primary-, secondary-, and alert-status
pending with deferred condition code 1 
and program check indicated. (See the 
section "Program Check" in Chapter 16, 
"I/O Interruptions.") In this 
situation, the I/O operation or chain of 
I/O operations is not initiated at the 
device, and the condition is indicated 
by the start-pending bit being stored as 

14-12 370-XA Principles of Operation 

one. (See the 
Status Word" in 
Interruption~."). 

section "Subchannel
Chapter 16, "I/O 

In some models, path availability is 
tested asynchronously (rather than as 
part of the execution of the 
instruction). When no channel path is 
available for selection, the subchannel 
becomes primary-and-secondary status
pending with deferred condition code 3 
indicated. The I/O operation or chain 
of I/O operations is not initiated at 
the device, and this condition is indi
cated by the start-pending bit being 
stored as one when the SCSW is cleared 
by TEST SUBCHANNEl. 

If conditions allow, the channel subsys
tem selects a path and initiates the 
execution of the channel program that is 
specified in the ORB. (See the section 
"Start-Function and Resume-Function 
Execution" in Chapter 15, "Basic I/O 
Functions.") 

Special Conditions 

Condition code 1 is set and no other 
action is taken if the subchannel is 
status-pending when START SUBCHANNEl is 
executed. In some models, condition 
code 1 is not set when the subchannel is 
status-pending with only secondary 
status. These models discard the 
status-pending condition. 

Condition code 2 is set and no other 
action is taken when a start, halt, or 
clear function is currently in progress 
at the subchannel (see the section 
"Function Control" in Chapter 16, "1(0 
Interruptions"). 

Condition code 3 is set and no other 
action is taken when the subchannel is 
not operational for START SUBCHANNEl. A 
subchannel is not operational for START 
SUBCHANNEl if the subchannel is not 
provided in the channel subsystem, has 
no valid dev1ce number assigned to it, 
or is not enabled. 

A subchannel is also not operational for 
START SUBCHANNEL, in some models, when 
no channel path is available for 
selection. In these models, the lack of 
an available channel path is detected as 
part of START SUBCHANNEl execution. In 
other models, channel path availability 
is only tested as part of the asynchro
nous start function. 

START SUBCHANNEl can encounter the 
program exceptions listed below. The 
execution of START SUBCHANNEl is 
suppressed on all addressing and 
protection exceptions. An operand 
exception is recognized when bit posi
tions 0-15 of general register 1 do not 
contain 0001 hex. An operand exception 



is also recognized in some models when 
bits 5-7, 13-15, and 24-31 of word 1 and 
bit 0 of word 2 of ~he ORB are not all 
zeros. In other models, these bits are 
not tested for zeros as part of START 
SUBCHANNEL execution but rather as part 
of the asynchronous start function. A 
specification exception is recognized 
when the second operand is not desig
nated on a word boundary_ The execution 
of START SUBCHANNEL is suppressed. 

Resulting Condition Code: 

o Start function initiated 
1 Subchannel status-pending 
2 Subchannel busy 
3 Not operational 

Program Exceptions: 

Access (fetch, operand 2) 
Operand 
Privileged operation 
Specification 

STORE CHANNEL PATH STATUS 

[S] 

'B23A' 

o 16 20 31 

A channel-path-status word of 
bits is stored at the 
location. 

up to 256 
specified 

The second-operand address is the 
logical address of the location where 
the channel-path-status word is to be 
stored and is designated on a 32-byte 
boundary. 

The channel-path-status word specifies 
which channel paths are being used in 
active communication with a device at 
the time STORE CHANNEL PATH STATUS is 
executed. Bit positions 0-255 corre
~pond, respectively, to the channel 
paths having the channel-path identi
fiers 0-255. Each of the 256 bits at 
the specified location is set to one, 
set to zero, or left unchanged, as 
follows: 

• 

• 

For all channel paths in the 
configuration that are actively 
communicating with devices at the 
time STORE CHANNEL PATH STATUS is 
executed, the corresponding bits 
are stored as ones. 

For all channel paths that are 
(1) provided in the system (PIM bit 
is one) and (2) in the confi~ura
tion, but not currently being used 
by the channel subsystem in active
ly communicating with devices, the 

• 

• 

corresponding bits are stored as 
zeros. 

For all channel paths that are not 
provided in the system (PIM bit is 
zero), the corresponding bits 
either are not stored or are stored 
as zeros. 

For all channel paths in the 
configuration that are in the 
channel-path terminal-error state 
or are not physically available 
(the corresponding PAM bit is 
zero), the corresponding bits are 
stored as zeros. 

Special Conditions 

STORE CHANNEL PATH STATUS can encounter 
the program exceptions listed below. 
The execution of STORE CHANNEL PATH 
STATUS is suppressed on all addressing 
and protection exceptions. A specifica
tion exception is recognized when the 
second operand is not designated on a 
32-byte boundary. 

Condition Code: 
unchanged. 

Program Exceptions: 

The code 

Access (store, operand 2) 
Privileged operation 
Spgcification 

Programming Note 

remains 

To ensure a consistent interpretation of 
channel-path-status-word bits, the 
program should, prior to the initial use 
of the area, store zeros at the location 
where the channel-path-status word is to 
be stored. 

STORE CHANNEL REPORT WORD 

[S] 

B239 

o 16 20 31 

A CRW containing information affecting 
the channel subsystem is stored at the 
specified location. 

The second-operand address is the 
logical address of the location where 
the CRW is to be stored and is desig
nated on a word boundary. 

Chapter 14. I/O Instructions 14-13 



When a malfunction or other condition 
affecting channel-subsystem operation is 
recognized, a channel report (consisting 
of one or more CRWs) describing the 
condition is made pending for retrieval 
and analysis by the program. The chan
nel report contains information 
concerning the identity and state of a 
facility of the channel subsystem 
following the detection of the malfunc
tion or other condition. For a 
description of the channel report, the 
CRW, and program-recovery actions 
related to the channel subsystem, see 
the section "Channel-Subsystem Recovery" 
in Chapter 17, "I/O Support Functions." 

When one or more channel reports are 
pending, the instruction causes a CRW to 
be stored at the specified location and 
condition code 0 to be set. A pending 
CRW can only be stored by executing 
STORE CHANNEL REPORT WORD and, once 
stored, is no longer pending. Thus, 
each pending CRW is presented only once 
to the program. 

When no channel reports are pending in 
the channel subsystem, execution of 
STORE CHANNEL REPORT WORD causes zeros 
to be stored at the specified location 
and condition code 1 to be set. 

Special Conditions 

STORE CHANNEL REPORT WORD can encounter 
the program exceptions listed below. 
The execution of STORE CHANNEL REPORT 
WORD is suppressed on all addressing and 
protection exceptions. A specification 
exception is recognized when the second 
operand is not designated on a word 
boundary. 

Resulting Condition Code: 

o CRW stored; CRW was pending 
1 Zeros stored; CRW was not pend-

2 
3 

ing 

Program Exceptions: 

Access (store, operand 2) 
Privileged operation 
Specification 

Programming Notes 

1. CRW overflow conditions may occur 
if STORE CHANNEL REPORT WORD is not 
executed to clear pending channel 
reports. If the overflow condition 
is encountered, one or more 
channel-report words have been 
lost. (See the section "Channel-

14-14 370-XA Principles of Operation 

Subsystem Recovery" in Chapter 17, 
"I/O Support Functions," for 
details.) 

2. A pending CRW can be cleared by cny 
CPU in the configuration executing 
STORE CHANNEL REPORT WORD, regard
less of whether a machine-check 
interruption has occurred in any 
CPU. 

STORE SUBCHANNEl 

[S] 

'B234' 

o 16 20 31 

Control and status information for the 
specified subchannel is stored in the 
specified SCHIB. 

General register 1 
subsystem-identification 
specifies the subchannel 
information is to be 
second-operand address is 
address of the SCHIB and 
on a word boundary. 

contains the 
word, which 

for which the 
stored. The 
the logical 

is designated 

The information that is stored in the 
SCHIB consists of the path-management
control word, the SCSW, and three words 
of model-dependent information. (See 
the section "Subchannel-Information 
Block" in Chapter 15, "Basic I/O Func
tions.") 

The execution of STORE SUBCHANNEl does 
not change any information contained in 
the subchannel. 

Condition code 0 is set to indicate that 
control and status information for the 
specified subchannel has been stored in 
the SCHIB. 

Special Conditions 

Condition code 3 is set and no other 
action is taken when the indicated 
subchannel is not operational for STORE 
SUBCHANNEl. A subchannel is not opera
tional for STORE SUBCHANNEl if the 
sutchannel is not provided in the chan
nel subsystem. 

STORE SUBCHANNEl can encounter the 
program exceptions listed below. An 
operand exception is recognized when bit 
positions 0-15 of general register 1 do 
not contain 0001 hex. A specification 
exception is recognized when the second 
operand is not designated on a word 
boundary. 



Resulting Condition Code: 

o SCHIB stored 
1 
2 
3 Not operational 

Program Exceptions: 

Access (store, operand 2) 
Operand 
Privileged operation 
Specification 

Programming Note 

Repeated execution of STORE SUBCHANNEL, 
without an intervening delay to deter
mine, for example, when a subchannel 
changes state, should be avoided because 
repeated CPU accesses to the subchannel 
may delay access of the subchannel by 
the channel subsystem in updating the 
subchannel. 

TEST PENDING INTERRUPTION 

TPI [S] 

'B236' 

o 16 20 31 

The interruption code for a pending 
subchannel interruption is stored at the 
specified location, and the pending 
interruption request is cleared. 

The second-operand address, when 
nonzero, is the logical address of the 
location where the interruption code is 
to be stored and is designated on a word 
boundary. 

If the second-operand address is zero, 
the interruption code is stored in real 
locations 184-191. In this case, low
address protection and key-controlled 
protection do not apply. If the 
second-operand address is nonzero, the 
interruption code is stored as specified 
by the address. The interruption code 
that is stored during execution of the 
instruction is defined as follows: 

Word 0 Subsystem-Identification Word 

1 Interruption Parameter 

o 31 

Subsystem-Identification Word: See the 
section "I/O-Instruction Formats" in 
this chapter. 

Interruption Parameter: Word 1 contains 
a four-byte parameter which is specified 
by the program and which previously was 
passed to the subchannel in word 0 of 
the ORB or the path-management-control 
word. When a device presents alert 
status and the parameter was not passed 
previously to the subchannel by START 
SUBCHANNEL or MODIFY SUBCHANNEL, this 
field contains zeros. 

Pending interruption requests are 
accepted only for those I/O-interruP'tion 
subclasses allowed by the J/O
interruption-subclass ma?k in coni"rol 
register 6 of the CPU executing the 
instruction. If no I/O-interruption 
requests exist that are allowed by 
control register 6, the interruption 
code is not stored, the second operand 
location is not modified, and condition 
code 0 is set. 

If a pending interruption request is 
accepted, the interruption code is 
stored, the pending interruption request 
is cleared, and condition code 1 is set. 
The interruption code that is stored is 
the same as would be stored if an I/O 
interruption had occurred. However, 
PSWs are not swapped, as when an inter
ruption occurs. 

Special Conditions 

TEST PENDING INTERRUPTION can encounter 
the program exceptions listed below. 
The execution of TEST PENDING INTER
RUPTION is suppressed on all addressing 
and protection exceptions. A specifica
tion exception is recognized when the 
second operand is not designated on a 
word boundary. The execution of TEST 
PENDING ,INTERRUPTION is suppressed. 

Resulting Condition Code: 

o Interruption code not stored 
1 Interruption code stored 
2 
3 

Program Exceptions: 

Access (store, operand 2, second
operand address nonzero only) 

Privileged operation 
Specification 

Programming Note 

TEST PENDING INTERRUPTION with a 
second-operand address of zero should 
only be executed when I/O interruptions 
are masked off. Otherwise, an inter
ruption code stored at real locations 
184-191 by the instruction may be lost 
if an I/O interruption occurs. The 

Chapter 14. I/O Instructions 14-15 



interruption code that identifies the 
source of the interruption is stored at 
real locations 184-191, replacing the 
code that is stored by the instruction. 

TEST SUBCHANNEL 

TSCH [S] 

'B235' 

o 16 20 31 

Control and status information for the 
specified subchannel is stored in the 
specified IRB. 

General register 1 contains the 
subsystem-identification word, which 
specifies the subchannel for which the 
information is to be stored. The 
second-operand address is the logical 
address of the IRB and is designated on 
a word boundary. 

The information that is stored in the 
IRB consists of the SCSW, the extended
status word, and the extended-control 
word. (See the section "Interruption
Response Block" in Chapter 16, "I/O 
Interruptions.") 

The subchannel is 
pending for TEST 
status-pending bit 
field is stored as 
the subchannel is 
effect on the 
performed when 
executed. 

said to be status
SUBCHANNEL if the 

of the status-control 
one. Whether or not 

status-pending has an 
functions that are 

TEST SUBCHANNEL is 

When the subchannel is status-pending 
and TEST SUBCHANNEL is executed, infor
mation (as described above) is stored in 
the IRB, followed by the clearing of 
subchannel-control bits in the subchan
nel (as described in the figure 
"Subchannel-Control Bits Cleared by TEST 
SUBCHANNEL"). If an interruption 
request is pending for the subchannel, 
the request is cleared. Condition code 
o is set to indicate that these actions 
have been taken. 

When the subchannel is 
pending and TEST SUBCHANHEL 
information (as described 
stored in the IRB, and no 
control bits are cleared. 
code 1 is set to indicate 
actions have been taken. 

not status
is executed, 

above) is 
subchannel

Condition 
that these 

The figure "Subchannel-Control Bits 
Cleared by TEST SUBCHAHNEL" describes 
which subchannel-control bits are 
cleared by TEST SUBCHANHEL when the 
subchannel is status-pending. All other 
fields in the subchannel remain 
unchanged. 

14-16 370-XA Principles of Operation 

Subchannel State* 

Alert Int Pri Sec Sta 
Sta Sta Sta Sta Pdg 

Field Pdg Pdg Pdg Pdg Alone 

Function C N C C C 
Control 

Activity Cp N Cp C Cp 
Control 

Status Cs Cs Cs Cs Cs 
Control 

Explanation: 

* Note that the rightmost column 
applies to status pending when it 
is alone. The other four status
pending states result in the 
clearing actions given. These 
action apply both when a single 
status-pending state occurs and 
when a combination of the four 
status-pending states occurs. In 
the combination case, all the 
clearing actions of the individu~l 
cases apply. 

C Cleared. 
Cp The resume-, start-, halt-, clear

pending, and suspended bits are 
cleared. 

Cs The status-pending bit is cl~ared. 
N Not changed unless function con

trol indicates the halt function. 
If so, fields are cleared as for 
status-pending alone. 

Subchannel-Control Bits Cleared by 
TEST SUBCHANNEL 

Special Conditions 

Condition code 3 is set and no other 
action is taken when the subchannel is 
not operational for TEST SUBCHAHHEL. A 
subchannel is not operational for TEST 
SUBCHAHNEL if the subchannel is not 
provided, has no valid device number 
assigned to it, or is not enabled. 

TEST SUBCHAHNEL can encounter the 
program exceptions listed below. When 
the ex~cution of TEST SUBCHAHNEL is 
terminated on addressing and protection 
exceptions, the state of the subchannel 
is not changed. An operand exception is 
recognized when bit positions 0-15 of 
general register 1 do not contain 0001 
hex. A specification exception is 
recognized when the second operand is 
not designated on a word boundary. 



Resulting Condition Code: 

o IRB stored; subchannel was 
status-pending 

1 IRB stored; subchannel was not 
status-pending 

2 
3 Not operational 

Program Exceptions: 

Access (store, operand 2) 
Operand 
Privileged operation 
Specification 

1. Device status that is stored in the 
SCSW may include device-busy, 
control-unit-busy, or control
unit-end indications. 

2. The information that is 
the IRB is obtained 
subchannel. The TEST 
instruction does not 
channel sUbsystem to 
the addressed device. 

stored in 
from the 

SUBCHANNEL 
cause the 

interrogate 

3. When an I/O interruption occurs, it 
is the result of a status-pending 
condition in the subchannel, and 
typically TEST SUBCHANNEL is issued 
to clear the status. TEST SUBCHAN-

NEL may also be issued at any other 
time to sample conditions existing 
at the subchannel. 

4. Repeated execution of TEST SUBCHAN
NEL to determine when a start func
tion has been completed should be 
avoided when no CPU in the config
uration is enabled for I/O inter
ruptions. In such a situation, the 
start-function completion may never 
be indicated. For example, if the 
channel subsystem is holding an 
interface-control-check (IFCC) 
condition in abeyance (for any 
subchannel) because I/O inter
ruptions (for that subchannel) are 
disabled in all CPUs, and if the 
start function being tested by TEST 
SUBCHAHNEL has as the only path 
available for selection the channel 
path with the IFCC condition, then 
the start function is not initiated 
until the CPU is enabled for the 
required I/O-interruption subclass, 
allowing the IFCC condition to be 
indicated in the subchannel to 
which it applies. 

5. Repeated execution of TEST SUBCHAN
NEL with~ut an intervening delay, 
for example, to determine when a 
subchannol changes state, should be 
avoided because repeated CPU 
accesses to the subchannel may 
delay access of the subchannel by 
the channel subsystem in updating 
the subchannel. 

Chapter 14. I/O Instructions 14-17 





CHAPTER 15. BASIC I/O FUNCTIONS 

Control of Basic I/O Functions •••••••••••••••••••••••••••• 15-1 
Subchannel-Information Block (SCHIB) •••••••••••.•••••••• 15-1 

Path-Management-Control Word .••••••••••••••••••••••••• 15-2 
Subchannel-Status Word •••.••••.•••••.•••.•••.••••••••• 15-6 
Model-Dependent Area •••••.••••.•••.••••••••••••••••••• 15-6 
Summary of Modifiable Fields •••••••.•••.•••••..••..••. 15-6 

Channel-Path Allegiance •••••••••.••••••••••••••••••.••••.• 15-9 
Working Allegiance ••••.•••••.•••••••••••••••••••.••••••• 15-9 
Active Allegiance ••••••••••••••••••••••••••••••••••••••• 15-9 
Dedicated Allegiance •••••••••••••••••••••••••••••••••••• 15-10 
Channel-Path Availability •••••••••••••••.••••..••..••••• 15-10 
Control-Unit Type •.•.•••••••••.•••••••••••••.••••..••••• 15-11 

Clear-Function Execution ••••••••••••••••••.••••••••••••••• 15-11 
Halt-Function Execution ••••••••••••••••••••••••••••••••••• 15-13 
Start-Function and Resume-Function Execution •••••••.•••... 15-15 
Execution of I/O Operations ••••••••.•••..••••.••.••••.•••• 15-17 

Programming Note •••••••••••••••••••••••••••••••••••••• 15-17 
Blocking of Data .•••••.••••••••••••••••••••••••••••••••• 15-18 
Operation-Request Block (ORB) ••••••••.••••••••.••.•••••. 15-19 
Channel-Command Word ••.••••.••.••••••••••••••••••••••••• 15-20 
Command Code •.•••.••••••••••••••••••••••••••.•••••••.••• 15-22 
Designation of Storage Area •••••.••••.•••••••••••..••••• 15-22 
Chaining .••.••••••••••.•.•••.•••.•.••••.•..•.••••••••.•• 15-23 

Data Chaining ••••••••••••.•••••••••••••••••••••..••••• 15-26 
Command Chaining •••••••••••••••••••••••••••••••••••••• 15-27 

Skipping •••••.•••••••••••••••..••••.•.•.•••.••••••.••••• 15-28 
Program-Controlled Interruption ••••••..•.•••••. ~ ••••.••• 15-29 
CCW Indirect Data Addressing •.•••.•••.•••••.•••••••••••• 15-30 
Suspension of Channel-Program Execution ••••••.•••••••••• 15-31 
Commands •••••••••••.••.••••.•.•••••••.••••••.••••••••••• 15-32 

Write ••••...•••..••..•••...•....•.•.••....••.••.•.•.•• 15-33 
Read ••.••••••••••••••••••••.•••••••.••••••••••••.••••• 15-34 
Read Backward ••••••••••••••••••••••••••.•••.•••••••••• 15-34 
Control ••••.•.••••.•.••••••.••••••..•.•••.•••.••.••••. 15-35 
Sense •.•••••••••••••.••••••..••••••.•••••••••••.•••••• 15-36 
Sense ID •.•••••••••••••••.•••••.•••••••••.•••••••••••• 15-38 
Transfer in Channel ••••••••••••••••.•••••••••••..••.•. 15-39 

Command Retry .•.••.••••••••••.....•.•..•.••••.•••.••.••• 15-39 
Concluding I/O Operations During Initiation •••••••••.••.•• 15-39 
Immediate Conclusion of I/O Operations •.•••••••••••••••••. 15-40 
Concluding I/O Operations During Data Transfer •..••.•.•••• 15-41 
Channel-Path-Reset-Function Execution ••.•••.•••••••••••.•• 15-42 

Some I/O instructions designate to the 
channel subsystem that a specific func
tion is to be performed. Collectively, 
these designated functions are referred 
to as the basic I/O functions. The 
basic I/O functions are the clear, halt, 
start, resume, and channel-path-reset 
functions. 

CONTROL OF BASIC I/O FUNCTIONS 

Information that is contained in the 
subchannel controls how the clear, halt, 
resume, and start functions are 
executed. This information is communi
cated to the program in the subchannel
information block during execution of 
STORE SUBCHANNEL. 

SUBCHANNEL-INFORMATION BLOCK (SCHIB) 

The subchannel-information block (SCHIB) 
is the operand of the MODIFY SUBCHANNEL 
and STORE SUBCHANNEL instructions. The 
two rightmost bits of the SCHIB address 
are zeros, specifying the SCHIB on a 
word boundary. The SCHIB contains three 
major fields: the path-management 
control word (PMCW), the subchannel
status word (SCSW), and a model
dependent area. 

STORE SUBCHANNEl is used to store the 
current PMCW, the SCSW, and model
dependent data of the indicated subchan
nel. MODIFY SUBCHANNEL alters certain 

Chapter 15. Basic I/O Functions 15-1 



PMCW fields at the subchannel. When the 
program needs to change the contents of 
one or more of the PMCW fields, the 
normal procedure is (1) to issue STORE 
SUBCHANNEL to obtain the current 
contents, (2) to perform the required 
modifications to the PMCW in main stor
age, and (3) to issue MODIFY SUBCHANNEL 
to pass the new information to the 
subchannel. The SCHIB has the following 
format: 

Word 0 

1 

2 
Path-Management-Control Word 

3 

4 

5 

6 

7 

8 Subchannel-Status Word 

9 

10 

11 Model-Dependent Area 

12 

Path-Management-Control Word 

The path-management-control word (PMCW) 
has the format shown in the figure "PMCW 

15-2 370-XA Principles of Operation 

Format" when the subchannel is valid 
(see the discussion of device-number
valid bit later in this section). 

Interruption Parameter: Bits 0-31 of 
word 0 contain the interruption parame
ter that is stored as word 1 of the 
interruption code. The interruption 
parameter can be set to any value by 
START SUBCHANNEL and MODIFY SUBCHANNEL. 
The initial value of the interruption 
parameter is zero. 

Interruption-Subclass Code (ISC): Bits 
2-4 of word 1 contain a binary number 
(0-7) specifying the bit number of the 
interruption-subclass-mask bit in 
control register 6 of each CPU in the 
configuration. The setting of that mask 
bit in control register 6 of a CPU 
controls the recognition of interruption 
requests relating to this subchannel by 
that CPU (see the section "Priority of 
Interruptions" in Chapter 16, "I/O 
Interruptions"). The ISC can be set to 
any value by MODIFY SUBCHAHNEL. The 
initial value of the ISC is zero. 

Reserved: Bits 0-1 and 5-7 of word 1 
are reserved and stored as zeros by 
STORE SUBCHAHNEL. They must be zeros 
when MODIFY SUBCHANNEL is executed; 
otherwise, an operand exception is 
recognized. 

Enabled (E): Bit 8 of word 1, when one, 
indicates that the subchannel is enabled 
for all I/O functions. When the' E bit 
is zero, status presented by the device 
is not made available to the program, 
and I/O instructions other than MODIFY 
SUBCHANNEL and STORE SUBCHAHHEL issued 
to the subchannel cause condition code 3 
to be set. The E bit can be set to any 
value by MODIFY SUBCHANNEL. The initial 
value of the E-bit is zero. 



Word 0 

1 

2 

3 

4 

5 

6 

o 

Interruption 

OOIISCloOO E I U11 Mt11 D I T I V 

LPM PNOM 

MBI 

CHPID-O CHPID-l 

CHPID-4 CHPID-5 

00000000 00000000 

16 

Parameter 

Device 

LPUM 

POM 

CHPID-2 

CHPID-6 

00000000 

PMCW Format 

Limit Mode (LM): Bits 9-10 of word 1 
define~e--rTmit mode (LM) of the 
subchannel. The limit mode is used by 
the channel subsystem when address-limit 
checking is invoked for an I/O 
operation. (See the section "Address
Limit Checking" in Chapter 17, "I/O 
Support Functions.") Address-limit 
checking is under the control of the 
address-limit-checking-control bit that 
is passed to the 5ubchannel in the 
operation-request block (ORB) during the 
execution of START SUBCHAHNEL. (See the 
section "Operation-Request Block" later 
in this chapter.) The definitions of 
these bits, whose values are used during 
data transfer, are as follows: 

Bits 
111 Function 

0 0 Initialized value. No Ii mi t 
checking is performed for this 
subchannel. 

0 1 Data address must be equal to, 
or greater than, the current 
address limit. 

1 0 Data address must be less than 
the current address limit. 

1 1 Reserved. 

The LM can be set to any of the first 
three bit combinations shown above by 
MODIFY SUBCHANNEL. Specification of the 
reserved bit combination in the operand 
causes an operand exception to be recog
nized when MODIFY SUBCHANNEL is 
executed. 

Measurement Mode Enable (MM): Bits 11 
and 12 o-f---word r---enable the 
measurement-block-update mode and the 
device-connect-time-measurement mode, 
respectively, of the subchannel. These 
bits can be set to any value by MODIFY 
SUBCHANNEL. The definitions of these 
bits are as follows: 

Bit 11, Measurement-Block-Update Enable: 

Number 

o 

1 

PIM 

PAM 

CHPID-3 

CHPID-7 

00000000 

31 

Initialized value. The subchannel 
is not enabled for the 
measurement-block update. Storing 
of measurement-block parameters 
does not occur. 

The subchannel is enabled for 
measurement-block update. If the 
measurement-block-update mode of 
the channel sUbsystem is active, 
the measurement parameters are 
accumulated in the measurement 
block at the time channel-program 
execution is completed or suspended 
at the subchannel, provided no 
error conditions described by 
subchannel logout have been 
detected. If the measurement-
block-update mode is not active, no 
measurement-block parameters are 
stored. 

Bit 12, Device-Connect-Time-Measurement 
Enable: 

o Initialized value. The subchannel 
is not enabled for device-connect
time measurement. Storing of the 
device-connect-time interval in the 
extended-status word (ESW) does not 
occur. 

1 The subchannel is enabled for 
device-connect-time measurement. 
If the device-connect-time-measure
ment mode is active and timing 
facilities are provided for the 
subchannel, the value of the 
device-connect-time interval is 
stored in the ESW when TEST SUB
CHANNEL is executed after channel
program execution is completed or 
suspended at the subchannel, pro
vided no error conditions described 
by subchannel logout have been 
detected. If the device-connect
time-measurement mode is not active 
no measurement values are stored in 
the ESW. 

The meaning of the measurement-mode (MM) 
enable bits described above applies when 
the timing-facility bit for the subchan
nel is one. When the timing-facility 

Chapter 15. Basic I/O Functions 15-3 



bit is zero, the effect of the MM bits 
is changed, as described below under 
"Timing Facility." (For more discussion 
on measurement modes, see the sections 
"Measurement-Block-Update Facility" and 
"Device-Connect-Time-Measurement Facili
ty" in Chapter 17, "I/O Support 
Functions.") 

Multipath Mode (D): Bit 13 of word 1, 
when one, indicates that the subchannel 
operates in multi path mode when execut
ing an I/O operation or chain of I/O 
operations. For proper operation in 
multi path mode when more than one chan
nel path is available for selection, the 
associated device must have the 
dynamic-reconnection feature installed 
and must be set up for multi path-mode 
operation. During execution of a start 
function in multipath mode, a device is 
allowed to request service from the 
channel subsystem over any of the chan
nel paths designated in the subchannel 
as being available for selection (see 
the discussions of logical-path mask and 
path-available mask later in this 
section). Bit 13, when zero, indicates 
that the subchannel operates in single
path mode when executing an I/O 
operation or chain of I/O operations. 
In single-path mode, the entire start 
function is executed by using the chan
nel path on which the first command of 
the I/O operation or chain of I/O oper
ations was accepted by the device. The 
initial value of the D bit is zero. 

Timing Facility (T): Bit 14 of word I, 
when one, indicates that the channel 
subsystem timing facility is available 
for the subchannel and is under the 
control of the two measurement-mode
enable bits (MM) and SET CHANNEL 
MONITOR. Bit 14, when zero, indicates 
that the channel-subsystem timing facil
ity is not available for the subchannel. 
When bit 14 is zero, the START SUBCHAN
NEL count is the only parameter that can 
be accumulated in the measurement block 
for the subchannel. Storing of the 
START SUBCHANNEL count is under the 
control of bit 11 and SET CHANNEL MONI
TOR, as described above under 
"Measurement Mode Enable." Similarly, 
if the T bit is zero, no device
connect-time-interval values can be 
measured for the subchannel. (See the 
sections "Measurement-Block-Update 
Facility" and "Device-Connect-Time
Measurement Facility" in Chapter 17, 
"I/O Support Functions.") 

Device Number Valid (V): Bit 15 of word 
1, when one, indicates--that the device
number field (see below) contains a 
valid device number and that a device 
associated with this subchannel may be 
physically installed. Bit 15 when zero 

'indicates that the subchannel is not 
valid, there is no I/O device currently 
associated with the subchannel, and the 
contents of all other defined fields of 
the SCHIB are unpredictable. 

15-4 370-XA Principles of Operat~on 

Device Humber: Bits 16-31 of word 1 
contain the binary representation of the 
four-digit hexadecimal device number of 
the device that is associated with this 
subchannel. The device number is a 
system-unique parameter that is assigned 
to the subchannel and the associated 
device when the device is installed. 

Logical-Path Mask (LPM): Bits 0-7 of 
word 2 indicate the logical availability 
of paths to the associated device. A 
bit set to one means that the corre
sponding path is logically available; a 
zero means the corresponding path is 
logically not available. When a channel 
path is logically not available, the 
channel subsystem does not use that 
channel path to initiate execution of 
any clear, halt, resume, or start furc
tion, except when a dedicated allegiance 
exists for that channel path. When a 
dedicated allegiance exists at the 
subchannel for a channel path, the LPM 
is ignored whenever a clear, halt, 
resume, or start function is executed. 
(See the section "Channel-Path Alle
giance" later in this chapter). If the 
subchannel is idle, the LPM is ignored 
whenever the control unit initiates a 
request to present alert status to the 
channel subsystem. The LPM can be set 
to any value by START SUBCHANNEL and 
MODIFY SUBCHANNEL. The initial value of 
the LPM is the same as that of the 
path-installed mask (PIM) defined later 
in this section. 

Path-Not-Operational Mask (PHOM): Bits 
8-15 of word 2, when ones, fndicate 
those paths having a corresponding 
path-operational-mask (POM) bit (see 
below) that was set to one when the 
device appeared not operational while 
trying to perform either a start, 
resume, halt, or clear function. If the 
PNOM contains all zeros, then a not
operational condition was not 
encountered on any paths whose corre
sponding POM bit was one. The initial 
value of the PNOM is all zeros. 

Programming Note: The PHOM field does 
not always reflect the current state of 
the associated channel paths. For exam
ple, during attempted initiation of a 
start function, a path-not-operational 
condition may be specified in the PHOM; 
however, the channel path may subse
quently have been used as a result of 
the device reconnecting to the channel 
path to continue command chaining, or 
the path may have appeared operational 
to the channel subsystem during 
execution of a subsequent start 
function. Consequently, the program 
should associate the POM with the PNOM 
whenever attempting to determine those 
channel paths that are in the path-not
operational state. 



last-Path-Used Mask (lPUM): Bits 16-23 
of word 2 indicate the channel path that 
was last used for communicating or 
transferring information between the 
channel subsystem and the device. The 
bit corresponding to the path in use is 
set whenever one of the following 
occurs: 

1. The first command of a start or 
resume function is accepted by the 
device (see the section "Activity 
Control" in Chapter 16, "I/O Inter
ruptions"). 

2. The device and channel subsystem 
are actively communicating when the 
suspend function is performed for 
the channel program in execution. 

3. Status has been accepted from the 
device that is recognized as an 
interruption condition, or a condi
tion has been recognized that 
suppresses command chaining (see 
the section "Interruption Condi
tions" in Chapter 16, "I/O 
Interruptions"). 

4. An interface-control-check condi
tion has been recognized (see the 
section "Interface-Control Check" 
in Chapter 16, "I/O Interrup
tions"), and no logout information 
is currently present in the 
subchannel. 

The lPUM field of the PMCW contains the 
most recent setting. The initial value 
of the lPUM is zero. 

Path-Installed Mask (PIM): Bits 24-31 
of word 2 indicate which of the logical 
paths 0-7 to the I/O device are phys
ically installed. The PIM indicates the 
validity of the channel-path identifiers 
(see below) for those logical paths that 
are physically installed. A PIM bit 
stored as one indicates that the corre
sponding channel path is installed. A 
PIM bit stored as zero indicates that 
the corresponding channel path is not 
installed. The PIM always reflects the 
full complement of installed paths to 
the device, regardless of how the system 
is configured. Therefore, some of the 
paths indicated in the PIM may not be 
physically available in that configura
tion, as indicated by the bit settings 
in the path-available mask (see below). 
The initial value of the PIM indicates 
all the physically installed paths to 
the device. 

Measurement-Block Index (MBI): Bits 
0-15 of word 3 forman index value used 
by the measurement-block-update facility 
when the measurement-block-update mode 
is active (see the section "SET CHANNEL 
MONITOR" in Chapter 14, "I/O 
Instructions") and the subchannel is 
enabled for the mode (see the discussion 
of the measurement-mode-enable bi ts, . 
bits 11-12, earlier in this section). 

When used, five zero bits are appended 
on the right and the result added to the 
measurement-block-origin address speci
fied by SET CHANNEL MONITOR. The 
calculated address, called the 
measurement-block address, specifies the 
beginning of a 32-byte storage area 
where 16 bytes of measurement parameters 
are stored (see the section "Measurement 
Block" in Chapter 17, "I/O Support Func
tions"). The initial value of the MBI 
is zero. The MBI may be set to any 
value by MODIFY SUBCHANNEl. 

Path-Operational Mask (POM): Bits 16-23 
of word 3, unless modified by the 
program, indicate the last-known opera
tional state of the device on the corre
sponding paths. If a POM bit is one, 
then the device was operational on the 
corresponding path the last time the 
device was ~elected on that channel 
path, or no attempt has been made to 
select the device since the bit was last 
set to one. If a POM bit is zero, the 
device appeared not operational on the 
corresponding channel path the last time 
there was an attempt to select the 
device to initiate or resume execution 
of a start function, or the program set 
it to zero. In this situation, if the 
device now appears operational, the POM 
bit is set to one and remains until the 
device next appears not-operational on 
that path. Th~ initial value of the POM 
is all ones. The POM can be set to any 
value by MODIFY SUBCHANNEL. 

Path-Available Mask (PAM): Bits 24-31 
of word 3 indicate the physical avail
ability of installed paths. A PAM bit 
of one indicates that the corresponding 
channel path is physically available for 
use in accessing the device. A PAM bit 
of zero indicates the channel path is 
not physically available for use in 
accessing the device. When a PAM bit is 
zero, the corresponding channel path 
may, depending upon the model and the 
extent of failure, be used during 
execution of the reset-channel-path 
function. A PAM bit may be set to zero 
as a result of reconfiguring the system, 
or it may occur because the correspond
ing channel path is in the check-stop 
state. 

The initial value of the PAM reflects 
the complement of paths by which the I/O 
device is physically accessible at the 
time of initialization. 

Note: The change in the availability of 
a channel path is indicated by a change 
in the setting of the corresponding PAM 
bit in all subchannels having access to 
that channel path. Whenever the setting 
of a PAM bit is referred to in conjunc
tion with the availability status of a 
channel path, for brevity, reference is 
made in this chapter to a single PAM bit 
instead of to the respective PAM bits in 
all of the affected subchannels. 

Chapter 15. Basic I/O Functions 15-5 



Channel-Path Identifiers (CHPIDs): Words 
4 and 5 contain eight one-byte channel
path identifiers corresponding to the 
logical paths 0-7 of the PIM. A CHPID 
is valid if the corresponding PIM bit is 
one. Each valid CHPID contains the 
identifier of a physical channel path to 
a control unit by which the associated 
I/O device may be accessed. A unique 
CHPID is assigned to each physical chan
nel path in the system. 

Different devices that are accessible by 
the same physical channel path have, in 
their respective subchannels, the same 
CHPID value. The CHPID value may, 
however, appear in each subchannel in 
different -locations in the CHPID fields 
0-7. 

Subchannels that share an identical set 
of channel paths have the same corre
sponding PIM bits set to ones. The 
channel-path identifiers (CHPIDs) for 
these channel paths are the same and 
occupy the same respective locations in 
each SCHIB. 

Reserved: Word 6 of the SCHIB is 
reserved and is stored as zeros by STORE 
SUBCHANHEL. Bits 0-31 of word 6 of the 
SCHIB operand must be zero when MODIFY 
SUBCHANNEL is executed; otherwise, an 
operand exception is recognized. 

Subchannel-Status Word 

Words 7-9 contain a copy of the SCSW, 
whose format is described in the section 

15-6 370-XA Principles of Operation 

"Subchannel-Status Word" in Chapter 16, 
"I/O Interruptions." The validity of 
the SCSW fields stored when STORE 
SUBCHANNEL is executed is the same as if 
TEST SUBCHANNEL were executed (see ~ne 
section "TEST SUBCHANNEL" in Chapter 14, 
"I/O Instructions"). 

Model-Dependent Area 

Words 10-12 contain model-dependent 
data. The definition and use of infor
mation in this area depends on the model 
and is described in the System Library 
publication f~r the model. 

Summary of Modifiable Fields 

The figure "Modification of Subchanne1 
Fields" lists the initial settings for 
fields in a subchannel whose device
number-valid bit is set to one, and 
indicates what modifies the fields. 

All of the PMCW fields contain valid 
information when STORE SUBCHANNEL is 
issued to an idle subchannel. Subchan
nel fields that the channel subsystem 
does not modify contain valid informa
tion whenever STORE SUBCHANNEL is 
issued. The validity of the subchannel 
fields that are modifiable by the chan
nel subsystem depends upon the state of 
the subchannel at the time STORE 
SUBCHANNEL is issued. 



Subchannel Field 

Interruption parameter 

Interruption-subclass 
code 

Enabled 

limit mode 

Measurement mode 

Multipath mode 

Timing facility 

Device number valid 

Device number 

logical-path mask 

Path-not-operational 
mask 

last-path-used mask 

Path-installed mask 

Measurement-block index 

Path-operational mask 

Path-available mask 

Channel-path ID 0-7 

Subchannel-status word 

Model-dependent area 

Program 
Initial Modifies 

Value l Via 

Zeros MSCH,SSCH 

Zeros MSCH 

Zero MSCH 

Zeros MSCH 

Zeros MSCH 

Zero MSCH 

Installed None 
value 2 

Installed None 
value 2 

Installed None 
value 2 

Equal to MSCH,SSCH 
path-
installed 
mask value 

Zeros CSCH,SSCH, 
RSCH6 

Zeros CSCH 

Installed None 
value 2 

Zeros MSCH 

Ones CSCH,MSCH 

Installed None 
values 2 3 

Installed None 
value 

Zeros TSCH 

* None 

Modified 
by 

Channel 
SubsystemS 

No 

No 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

No 

No 

Yes 

No 

Yes 

Modification of Subchannel Fields (Part 1 of 2) 

Chapter 15. Basic I/O Functions 15-7 



Explanation: 

1 

4 

5 

6 

These fields are meaningless if the subchannel is 
not valid. Initializing of a subchannel is per
formed when I/O-system reset occurs. (See the 
section "I/O-System Reset" in Chapter 17, "I/O 
Support Functions.") One or more of the installed
value parameters that are unmodifiable by the pro
gram may be set when the subchannel is idle. In 
this case, all the program-modifiable fields are 
set to their initialized values, and the program is 
notified of such a change by a channel report. 
(See the section "CRW Contents" in Chapter 17, "I/O 
Support Functions.") 

This information is entered when the channel
sUbsystem configuration is established. 

The channel subsystem may modify the PAM to reflect 
changes in the system configuration caused by par
titioning or unpartitioning paths because of recon
figuration or permanent failure of part of the I/O 
system. 

When any of the following error conditions assoc
iated with the measurement-block-update-mode are 
detected, the measurement-block-update mode is dis
abled by the channel subsystem (bit 11, word 1, of 
the SCHIB zero) in the affected subchannel. The 
device-connect-time-measurement-mode-enable bit 
(bit 12, word 1 of the SCHIB) is never modified by 
the channel subsystem. 

Measurement program check 
Measurement protection check 
Measurement data check 
Measurement key check 

Subchannel fields that are not normally modifiable 
by the channel subsystem may be modified by exter
nal means. When this occurs, the program is noti
fied of the change via a channel report made pending 
at the time of the change. 

The mask is modified via RSCH only when the sub
channel is in the suspended state at the time RSCH 
is executed. 

Model-dependent. 

Modification of Subchannel Fields (Part 2 of 2) 

Programming Notes 

1. System performance may be degraded 
in the event that the lPM is not 
used to make paths logically not 
available that have been indicated 
to be not operational via the PNOM. 

2. If, during execution of a start 
function, a PAM bit is set to zero 
because a channel-path failure has 
been recognized, continued 
execution of the start function may 
be precluded. That is, the program 
mayor may not be notified, and the 
subchannel may remain in the 
subchannel and device-active state 

15-8 370-XA Principles of Operation 

until cleared by execution of the 
clear function. 

3. If the 3ame MBI is placed in more 
than one subchannel by the program, 
the moni~oring facility updates the 
same locations with measurement 
data relating to more than one 
subchannel. Since the update mech
anism on some models may not be 
synchronized among subchannels, the 
resulting values of the measurement 
parameters in main storage may be 
unpredictable. (See the section 
"Measurement-Block-Update Facility" 
in Chapter 17, "I/O Support Func
tions.") 



4. Modification of the I/O config
uration (reconfiguration) may be 
accomplished in various ways 
depending on the model. When the 
physical availability of a channel 
path is affected, the reconfig
uration procedure results in a 
change in the setting of the corre
sponding PAM bit. 

5. The definitions of the PNOM and POM 
are such that a path-not
operational condition is reported 
to the program only the first time 
the condition is detected by the 
channel subsystem after the corre
sponding POM bit is set to one. 

For example, if every channel path 
available for selection is found to 
be not operational while the chan
nel subsystem is attempting to 
initiate a start function at the 
device, the channel subsystem makes 
the subchannel status-pending, with 
deferred condition code 3 and with 
the N bit stored as one. The PNOM 
in the SCHIB indicates which path 
or paths were found to be not oper
ational, and the corresponding POM 
bits have been set to zeros. The 
next START SUBCHANNEL causes the 
channel subsystem to again attempt 
selection via all channel paths 
that are available for selection. 
If selection is again not success
ful, deferred condition code 3 is 
set, but the H bit in the SCSW is 
zero. The POM contains zeros in at 
least those bit positions that 
correspond to the paths that are 
available for selection. (See the 
section "Channel-Path Availability" 
later in this chapter for a 
description of the term "available 
for selection.") When the N bit in 
the SCSW is zero, the PNOM is also 
zeros. 

CHANNEL-PATH ALLEGIANCE 

The channel subsystem establishes alle
giance conditions between subchannels 
and channel paths. The kind of alle
giance established at a subchannel for a 
channel path or set of channel paths 
depends upon the state of the 
subchannel, the device, and the informa
tion, if any, transferred between the 
channel subsystem and device. The way 
in which path management is handled 
during the execution of a clear, halt, 
resume, or start function is determined 
by the kind of allegiance, if any, 
currently recognized between a subchan
nel and a channel path. 

Execution of the clear function at a 
subchannel clears any currently existing 
allegiance condition in the subchannel 
for all channel paths. 

Execution of the reset-channel-path 
function clears all currently existing 
allegiances for that channel path in all 
subchannels. 

When a PAM bit is set to zero, all 
internal indications of prior allegiance 
conditions are cleared in all subchan
nels having access to the designated 
channel path. 

WORKING ALLEGIANCE 

A subchannel has a working allegiance 
for a channel path when the subchannel 
becomes device-active. Once a working 
allegiance is established, the subchan
nel maintains it for the channel path 
until either the subchannel is no longer 
device-active or a dedicated allegiance 
is recognized, whichever occurs earlier. 
Unless a dedicated allegiance is recog
nized, a working allegiance for a 
channel path is extended to the set of 
channel paths that are available for 
selection if the device is specified to 
be operating in multipath mode (that is, 
the multipath-mode bit is stored as one 
in the SCHIB). Otherwise, the working 
allegiance remains only for that channel 
path over which the start function was 
initiated. 

Once a working allegiance is established 
for a channel path or set of channel 
paths, the working allegiance is not 
changed until the device is no longer 
device-active. If a dedicated alle
giance is recognized or if the 
subchannel is operating in single-path 
mode, a working allegiance is maintained 
only for a single path. 

A working allegiance is cleared in any 
subchannel having access to a channel 
path if the corresponding PAM bit is set 
to zero. 

ACTIVE ALLEGIANCE 

A subchannel has an active allegiance 
established for a channel path no later 
than when act~ve communication has been 
initiated on that path with an I/O 
device. The subchannel can have an 
active allegiance to only one channel 
path at a time. While the subchannel 
has an active allegiance for a channel 
path, the channel SUbsystem does not 
actively communicate with that device on 
any. other channel path except to accept 
no-longer-busy indications. An active 
allegiance at a subchannel for a channel 
path is terminated when the channel 
subsystem is no longer actively communi
cating with the I/O device on that 
channel path. 

Chapter 15. Basic I/O Functions 15-9 



A working allegiance 
active allegiance. 

DEDICATED ALLEGIANCE 

can become an 

If the PAM bit corresponding to a chan
nel path is one, a dedicated allegiance 
may be recognized for that channel path. 
If the PAM bit is zero, a dedicated 
allegiance cannot be recognized for the 
corresponding channel path. The 
subchannel establishes a dedicated alle
giance for a channel path when the 
channel subsystem accepts from the 
device a status byte containing unit 
check. A dedicated allegiance is main
tained until the subchannel is no longer 
start-pending (unless it becomes 
suspended) or resume-pending following 
execution of the next start-, clear-, or 
reset-channel-path function or the next 
resume function if applicable. If the 
subchannel becomes suspended, the dedi
cated allegiance remains until the 
resume function is initiated and the 
subchannel is no longer resume-pending. 
Unless a clear- or reset-channel-path 
function is executed, the subchannel 
establishes a working allegiance when 
the dedicated allegiance ends. This 
occurs when the subchannel becomes 
subchannel-and-device-active. While a 
dedicated allegiance exists in a 
subchannel, only that path is available 
for selection until the dedicated alle
giance condition is cleared. 

A dedicated allegiance can become an 
active allegiance. While a dedicated 
allegiance exists, an active allegiance 
can only occur for the same path. 

A currently existing dedicated alle
giance is cleared in any subchannel 
having access to a channel path when the 
corresponding PAM bit is set to zero or 
whenever the device appears not opera
tional on the channel path for which the 
dedicated allegiance exists. 

15-10 370-XA Principles of Operation 

CHANNEL-PATH AVAILABILITY 

When a channel path is not physically 
available, the channel subsystem does 
not use the channel path to perform any 
of the basic I/O functions except, in 
some cases, the ~hannel-path-reset func
tion and does not respond to any 
control-unit-initiated requests via that 
path. A channel path is said to be not 
physically available when the corre
sponding path-available-mask (PAM) bit 
is zero in all subchannels by which the 
device is accessible via that channel 
path (see the description of the PAM in 
the section "Path-Management-Control 
Word" earlier in this chapter). 

Unless a dedicated allegiance exists at 
a subchannel for the channel path, a 
channel path becomes available for 
selection if it is logically available 
and physically available (the bits in 
the LPM and PAM corresponding to the 
channel path are ones). If a dedicated 
allegiance exists at a subchannel for 
the channel path, only that path is 
available for selection, and the setting 
of the corresponding LPM bit is ignored. 
If the channel path is currently being 
used and a dedicated allegiance exists 
at the subchannel for the channel path, 
selection of the device is delayed until 
the channel path is no longer being 
used. 

The availability status of the eight 
logical paths to the associated device 
described in the figure "Path Condition 
and Path-Availability status for PIM, 
PAM and LPM Values" is determined by the 
hierarchical arrangement of the corre
sponding bit values contained in the 
PIM, PAM, and LPM and by existing condi
tions, if any, recognized by the channel 
subsystem. 



Value of 
Bit 'n' 

Path 
PIM PAM LPM Condition 2 Path State 

0 0 1 - X Not installed 

1 0 - X Not physically 
available 

1 1 0 3 X Not logically 
available 

1 1 1 3 Active Available for 
selection 4 

1 1 1 Not active Available for 
selection 

Explanation: 

1 A PAM bit cannot have the value one 
when the corresponding PIM bit has 
the value zero. 

2 If the channel path is recognized 
as being used in actively communi
cating with a device, the path con
dition is described as active. If 
the channel path is recognized as 
not being used in active communica
tion, the condition is described as 
not active. 

3 If a dedicated allegiance exists to 
this path for this subchannel, the 
state of this bit is ignored, and 
the path is considered to be avail
able for selection. 

4 The channel path may appear to be 
active when a channel-path-terminal 
condition has been recognized (see 
the discussion of "Channel Path 
Terminal" in Chapter 17, "I/O Sup
port Functions"). 

X Path condition is not meaningful. 

- Bit value is not meaningful. 

Path Condition and Path-Availability 
Status for PIM, PAM and LPM Values 

CONTROL-UNIT TYPE 

In the sections "Clear-Function 
Execution," "Halt-Function Execution," 
and "Start-Function and Resume-Function 
Execution" that follow, reference is 
made to type 1, type 2, and type 3 
control units. For a description of 
these control-unit types, see the System 
Library publication IBM System/360 and 
System/370 I/O Interface Channel to 
Control Unit OEMI. GA22-6974. 

CLEAR-FUNCTION EXECUTION 

Subsequent to execution of CLEAR SUB
CHANNEL, the channel . subsystem performs 
the clear function. Execution of the 
clear function consists in (1) executing 
a path-management operati1n, 
(2) modifying fields in the subchannt·l, 
and (3) issuing the clear signal to the 
associated device and causing the 
subchannel to be made status-pending, 
indicating conclusion of the clear
function execution. 

Clear-Function Path Management: A path 
management operation is performed by the 
channel subsystem during execution of 
the clear function to identify and 
choose an available channel path or set 
of available channel paths of which one 
can be used in issuing the clear signal 
to the associated device. The actions 
taken are as follows: 

1. If the device to be signaled is 
currently communicating with the 
channel subsystem on a channel path 
and, for the associated subchannel, 
either an allegiance to that path 
exists or the device is attempting 
to establish an allegiance to that 
path, or no allegiance exists for 
any channel path, then that channel 
path is chosen. 

2. If the device to be signaled is not 
communicating with the channel 
SUbsystem on any channel path, the 
channel path or set of channel 
paths is chosen as follows: 

a. If a dedicated allegiance for a 
channel path exists in the 
associated subchannel, that 
channel path is the only path 
chosen. 

b. If no channel paths are avail
able for selection and no dedi
cated allegiance exists in the 
subchannel for a channel path, 
a channel path is not chosen. 

c. If a working allegiance exists 
in the subchannel for a channel 
path or set of channel paths, 
the channel path or set of 
channel paths, as appropriate, 
is chosen. 

d. If no allegiance exists in the 
subchannel for any channel path 
but a last-used channel path is 
specified that is available for 
selection, that path is the 
only path chosen. 

e. If a last-used channel path is 
specified but it is not avail
able for selection, then, 

Chapter 15. Basic I/O Functions 15-11 



depending upon the model, the 
remaining set of channel paths 
available for selection is 
chosen or no paths are chosen. 

f. If no allegiance exists 1n the 
subchannel and no last-used 
channel path is specified, the 
set of channel paths that is 
available for selection is 
chosen. If no paths are avail
able for selection, a channel 
path is not chosen. 

3. When the set of channel paths has 
been chosen, one of those paths 
from the set is selected. The 
state of the selected path may, 
however, prevent the channel 
subsystem from signaling the 
device. In this situation, 
execution of the clear function is 
ended, and an interruption condi
tion is recognized. Execution of 
the clear function may be ended for 
any of the following reasons: 

a. An active allegiance exists in 
some other subchannel for the 
channel path that has been 
selected. 

b. The device to be signaled is 
attached to a type-1 control 
unit, and an allegiance exists 
for the same path in another 
subchannel whose device is 
attached to the same control 
unit. If the existing alle
giance for the other subchannel 
is recognized to be a working 
allegiance, execution of the 
clear function is ended if 
primary status has not been 
received for that subchannel. 
Otherwise, execution of the 
clear function is not ended, 
the device to be signaled is 
selected using that channel 
path, and the clear signal is 
issued. 

c. The device to be signaled is 
attached to a type-3 control 
unit, and a dedicated alle
giance exists for the same 
channel path in another 
subchannel whose device is 
attached to the same control 
unit. 

d. A busy, path not-operational, 
or error condition has been 
recognized on the selected 
channel path. 

4. If the device to be signaled is 
attached to a type-2 control unit, 
a channel path is selected from the 

-chosen set of channel paths, 
subject to actions 1-3, and this 
occurs independent of the states of 
other subchannels associated with 
devices attached to the same 

15-12 370-XA Principles of Operation 

control unit or allegiances to 
channel paths for those same de
vices. 

Programming Note 

Subsequent to the execution of the clear 
function, any nonzero status, except 
control-unit end alone, that is 
presented to the channel subsystem by 
the device is passed to the program as 
unsolicited alert status. Unsolicited 
status consisting of control-unit end 
alone or zero status is not presented to 
the program. 

Clear-Function Subchannel Modification: 
Path-management-control fields of the 
subchannel are modified during execution 
of the clear function. This modifica
tion occurs starting at a point of 
execution that is (1) logically after 
channel-path selection has occurred or 
(2) logically after it is determined 
that no channel path is available for 
selection, but (3) prior to attem~ting 
actual selection of the device and issu
ing the clear signal if a channel path 
was available for selection. The path
management-control fields that are 
modified are as follows: 

1. The path-operational mask (POM) is 
set to all ones. 

2. The last-path-used mask (lPUM) is 
set to all zeros. 

3. The path-not-operational mask 
(PNOM) is set to all zeros. 

Clear-Function Signaling and Completion: 
Subsequent to selecting the channel path 
and modifying the path-management
control fields, the channel SUbsystem 
attempts to select the device to issue 
the clear signal and then cause the 
subchannel to be made status-pending. 
(See the section "Clear Signal" in Chap
ter 17, "I/O Support Functions.) If the 
associated device is currently executing 
an operation with the channel subsystem, 
that operation is terminated at the 
subchannel and, if conditions allow, is 
also terminated at the device. When the 
subchannel is set status-pending, 
execution of the clear function is 
considered to be completed independent 
of whether the clear signal was success
fully issued to the device. 

If the clear signal is not issued to the 
device because of any of the following 
reasons, the subchannel is made status
pending with the clear-pending bit set 
to one. 

a. The physically available channel 
path by which the clear signal is 
to be issued is not available for 
selection because (1) the channel 



path is currently being used to 
actively communicate with a differ
ent device, (2) the channel path 
has been recognized to be in the 
terminal state and appears to be in 
use (see the section "Channel
Subsystem Recovery" in Chapter 17 
"I/O Support Functions", or (3) no 
dedicated allegiance exists and the 
corresponding bits in the PAM and 
lPM are not both ones. 

b. No control unit responded when the 
channel subsystem attempted to 
select the device to issue the 
clear signal. 

c. The control unit or device signaled 
a busy condition when the channel 
subsystem attempted to issue the 
clear signal. 

d. An error condition was encountered 
while attempting to issue the clear 
signal. 

e. The device is attached to a type-1 
control unit, and the subchannel 
for another device attached to the 
same control unit has an allegiance 
to the same channel path (except 
for a working allegiance when the 
subchannel is no longer 
subchannel-active). 

f. The device is attached to a type-3 
control unit and the subchannel for 
another device attached to the same 
control unit has a dedicated alle
giance to the same channel path. 

Subsequently, if, during execution of a 
clear function, a path-not-operational 
condition has been recognized, the bit 
settings in the PNOM field are preserved 
until the subchannel next becomes 
clear-pending or start-pending, at which 
time the PNOM is again set to zeros. 

HALT-FUNCTION EXECUTION 

Subsequent to the execution of HALT 
SUBCHANNEl, the channel subsystem 
performs the halt function. Execution 
of the halt function consists in: 
(1) executing a path-management oper
ation and (2) issuing the halt signal to 
the associated device and causing the 
subchannel to be made status-pending, 
indicating conclusion of the halt
function execution. 

Halt-Function Path Management: A path
management operation is performed by the 
channel subsystem during execution of 
the halt function to identify and choose 
an available channel path or set of 
available channel paths of which one can 
be used in issuing the halt signal to 
the associated device. The actions 
taken are as follows: 

1. If the device to be signaled is 
currently communicating with the 
channel subsystem on a channel path 
and, for the associated subchannel, 
either an allegiance to that path 
exists, or the device is attempting 
to establish an allegiance to that 
path, or no allegiance exists for 
any channel path, then that channel 
path is chosen. 

2. If the device to be signaled is not 
communicating with the channel 
subsystem on any channel path, the 
channel path or set of channel 
paths is chosen as follows: 

a. If a dedicated allegiance for a 
channel path exists in the 
subchannel, that channel path 
is the only path chosen. 

b. If no dedicated allegiance 
exists in the subchannel for a 
channel path and no channel 
paths are available for 
selection, a channel path is 
not chosen. 

c. If a working allegiance exists 
in the subchannel for a channel 
path or set of channel paths, 
the channel path or set of 
channel paths, as appropriate, 
is chosen. 

d. If no allegiance exists in the 
subchannel for any channel path 
but a last-used channel path is 
specified that is available for 
selection, that path is the 
only path chosen. 

e. If a last-used channel path is 
specified but it it not avail
able for selection, then, 
depending upon the model, the 
remaining set of channel paths 
available for selection is 
chosen or no paths are chosen. 

f. If no allegiance exists in the 
subchannel and no last-used 
channel path is specified, the 
set of channel paths that is 
available for selection is 
chosen. If no paths are avail
able for selection, a channel 
path is not chosen. 

3. When the set of channel paths has 
been chosen, one of those paths is 
selected for issuing the halt 
signal to the device. The state of 
the selected path may, however, 
prevent the channel subsystem from 
signaling the device. In this 
situation, the halt function 
remains pending until the selected 
channel path can be used in signal
ing the device. 

Chapter 15. Basic I/O Functions 15-13 



4. The halt function remains pending 
at the subchannel for any of the 
following reasons: 

a. An active allegiance eXlsts in 
some other subchannel for the 
channel path that has been 
selected. 

b. The device to be signaled is 
attached to a type-l control 
unit, and an allegiance exists 
for the same channel path in 
another subchannel whose device 
is attached to the same control 
unit. If the existing alle
giance for the other subchannel 
is recognized to be a working 
allegiance, execution of the 
halt function remains pending 
if primary status has not been 
received for that subchannel. 
Otherwise, the device to be 
signaled is selected using that 
channel path and the halt func
tion is executed. 

c. The device to be signaled is 
attached to a type-3 control 
unit, and a dedicated alle
giance exists for the same 
channel path in another 
subchannel whose devfce is 
attached to the same control 
unit. 

5. If the device to be signaled is 
attached to a type-2 control unit, 
a channel path is selected from the 
chosen set of channel paths, 
subject to the above actions, and 
this occurs independent of the 
states of other subchannels associ
ated with devices attached to the 
same control unit or allegiances to 
channel paths for those same 
devices. 

Halt-Function Signaling and Completion: 
Subsequent to selecting the channel 
path, the channel subsystem attempts to 
select the device to issue the halt 
signal and cause the subchannel to be 
set status-pending with status presented 
by the device, if any. (See the section 
"Halt Signal" in Chapter 17, "I/O 
Support Functions.") When the subchan
nel is subchannel-and-device-active or 
only device-active during execution of 
the halt function, the state continues 
until the subchannel is made status
pending because (1) the device has 
provided ending status or (2) the chan
nel subsystem has dete.rmined, because of 
an existing condition, that ending 
status is unavailable. When the 
subchannel is idle, start-pending, 
start-pending and resume-pending, 
suspended, or suspended and resume
pending, or when the halt signal is 
issued during command chaining after the 
receipt of device end but before the 
next command is transferred to the 
device, no operation is in progress at 

15-14 370-XA Principles of Operation 

the device, and therefore no status is 
generated by the device as a result of 
receiving the halt signal. In this 
situation, the status-pending inter
ruption condition is generated after the 
halt signal is issued or after the chan
nel SUbsystem has determined that an 
abnormal condition precludes issuing the 
halt signal to the device. In the case 
when the halt signal is i.ssued during 
command chaining after the receipt of 
device end but before the next command 
is transferred to the device, no opera
tion is in progress at the device, so 
the subchannel is made primary-and
secondary-status-pending after the halt 
signal is issued. The device-status 
field of the SCSW contains zeros in this 
case. When the subchannel is set 
status-pending, execution of the halt 
function is considered to be completed 
independent o~ whether or not the halt 
signal was sllccessfully issued to the 
device. 

If the channel subsystem is unable to 
issue the halt signal because of any of 
the following reasons, the subchannel is 
made status-pending with combinations of 
primary, secondary, and alert status as 
a function of the subchannel state and 
the status presented by the device, if 
any. The halt-pending bit, however, is 
stored as one when TEST SUBCHANNEl is 
executed. 

a. 

b. 

c. 

Prior to 
pending 
becomes 
other 
alone. 

recognition of the halt
condition, the subchannel 

status-pending with status 
than intermediate status 

The installed channel path by which 
the halt signal is to be issued is 
not available for selection. 

The device appeared not operatio~al 
on the selected channel path. 

d. An error condition was encountered 
while attempting to issue the halt 
signal to the I/O device. 

If the control unit or device indicates 
busy, the halt function is held pending 
until either the no-longer-busy indi
cation is received or the device 
attempts to communicate with the channel 
subsystem to continue the chain of 
commands. When either the no-longer
busy indication is received by the 
channel subsystem or the attempt to 
communicate with the channel subsystem 
is successful, the halt signal is issued 
on that channel path. 

The effect of the halt signal at the 
device depends partially on the type of 
device and its state. The effect of the 
halt signal on devices that are not 
active or that are executing a mechan
ical operation in which data is not 
transferred across the channel path, 
such as rewinding tape or positioning a 



disk-access mechanism, depends upon the 
control-unit or device model and is 
described in the appropriate System 
Library publication. If the device;s 
executing a type of operation that is 
unpredictable in duration or in which 
data is transferred across the channel 
path, the control unit interprets the 
signal as one to terminate the 
operation. Pending status conditions at 
the device are not reset. When the 
control unit recognizes the halt signal, 
it immediately ceases all communication 
with the channel subsystem until it has 
reached the normal ending point. The 
control unit then attempts to select the 
channel subsystem to present any gener
ated status. 

If the subchannel is involved in the 
data-transfer portion of an I/O opera
tion, data transfer is terminated during 
execution of the halt function, and the 
device is logically disconnected from 
the channel path. If the halt function 
is addressed to a subchannel executing a 
chain of I/O operations and the device 
has already provided channel end for the 
current I/O operation, the channel 
subsystem causes the device to be 
disconnected and command chaining or 
command retry to be suppressed. If the 
subchannel is executing a chain of I/O 
operations with the device and the halt 
signal is issued during command chaining 
at a point after the receipt of device 
end for the previous I/O operation but 
before the next command is transferred 
to the device, the subchannel is made 
status-pending immediately after the 
halt signal is issued. If the halt 
function is addressed to a subchannel 
that is start-pending and the halt
pending condition is recognized before 
initiation of the start function, initi
ation of the start function is not 
attempted, and the subchannel becomes 
status-pending after the device has been 
signaled. 

When the subchannel is not executing an 
I/O operation with the associated 
device, the device is selected, and an 
attempt is made to issue the halt signal 
as the device responds. If the subchan
nel is in the device-active state, the 
subchannel becomes status-pending, only 
after receiving the device-end status 
from the halted device. If the sU'bchan
nel is neither subchannel-and-device
active nor device-active, the subchannel 
becomes status-pending immediately after 
selecting the device and issuing the 
halt signal. The SCSW for the latter 
case has the status-pending bit set to 
one (see the section "Subchannel-Status 
Word" in Chapter 16, "I/O Interrup
tions"). 

The termination of an I/O operation by 
execution of the halt function can 
result in as many as two distinct inter
ruption conditions. 

The first interruption condition occurs 
when the device generates the channel
end condition. The channel subsystem 
handles this condition as it would any 
other interruption condition from the 
device, with the exception that the 
command address in the associated SCSW 
indicates the point at which the I/O 
operation was terminated, and the 
subchannel-status bits may reflect 
unusual conditions that were detected. 
If the halt signal was issued before all 
data specified for the operation has 
been transferred, incorrect length is 
indicated, subject to the control of the 
SLI flag in the current CCW. 

The second interruption condition occurs 
if device-end status was not presented 
with the channel-end interruption condi
tion. In this situation, the SCSW 
contains unpredictable values in the 
subchannel-key, command-address, and 
count fields. 

When HALT SUBCHANNEL terminates an I/O 
operation, the method of termination 
differs from that used upon exhaustion 
of count or upon detection of. program
ming errors to the extent that termi
nation by HALT SUBCHANNEL is not 
contingent on the receipt of a service 
request from the associated device. 

Programming Note 

When, after an operation is terminated 
by HALT SUBCHANNEL, the subchannel is 
status-pending with primary, primary and 
secondary, or secondary status, the 
extent of data transferred as described 
by the count field is unpredictable. 

START-FUNCTION AND RESUME-FUNCTION 
EXECUTION - -

Subsequent to execution of START 
SUBCHANNEL and RESUME SUBCHANNEL, the 
channel SUbsystem performs the start and 
resume functions, respectively, to 
initiate an I/O operation with the asso
ciated device. Execution of a start or 
resume function consists in: 
(1) executing a path-management opera
tion, (2) executing an I/O operation or 
chain of I/O operations with the associ
ated device, and (3) causing the 
subchannel to be made status-pending, 
indicating completion of the start
function execution. (Conclusion of a 
start function is described in Chapter 
16, "I/O Interruptions.") Execution of 
the resume function, in effect, causes a 
start function to be performed. The 
difference between the start and resume 
functions is that the start function 
initiates execution of a currently pend
ing channel program, while the resume 

Chapter 15. Basic I/O Functions 15-15 



function initiates execution of a 
suspended channel program, i'f any. 
Otherwise, the resume function is 
executed as if it were a start function 
(see the discussion on the resume
pending bit in the section "Activity 
Control" in Chapter 16, "I/O Inter
ruptions"). 

Start-Function and Resume-Function Path 
Management: A path-management operation 
is performed by the channel subsystem 
during execution of either a start or 
resume function to identify and select 
an available channel path that can be 
used in initiating an I/O operation with 
the associated device. The actions 
taken are as follows: 

1. If the subchannel is currently 
start-pending and device-active, 
the start function remains pending 
at the subchannel until the second
ary status for the previous start 
function has been accepted from the 
associated device and the subchan
nel is made start-pending alone. 
If the subchannel is currently 
start-pending alone, execution of 
the start function is initiated as 
described below. 

2. If a dedicated allegiance exists at 
the subchannel for a channel path, 
the channel subsystem selects that 
path. If a busy condition is 
encountered while attempting to 
select the device and a dedicated 
allegiance exists at the 
subchannel, the start function 
remains pending until a no-Ionger
busy indication is received on that 
channel path. When the no-Ionger
busy indication is received, 
execution of the pending start 
function is initiated on that chan
nel path. 

3. If no channel paths are available 
for selection and no dedicated 
allegiance exists in the subchannel 
for a channel path, a channel path 
is not chosen. 

4. If all channel paths that are 
available for selection have been 
tried and one or more of them are 
being used to actively communicate 
with other devices, or alternative
ly if the channel SUbsystem has 
encountered either a control-unit 
or device-busy condition on one or 
more of those paths, or a combina
tion of those conditions on one or 
more of those paths, the start 
function remains pending at the 
subchannel until a channel path, 
control unit, or device, as appro
priate, becomes available. 

5. If (1) the start function is to be 
initiated on a channel path with a 
device attached to a type-1 control 
unit and (2) no other device is 

15-16 370-XA Principles of Operation 

attached to the same control unit 
whose subchannel has either a dedi
cated allegiance to the same 
channel path or a working alle
giance to the same channel path 
where primary status has not been 
received for that subchannel, then 
that path is selected if it is 
available for selection; otherwise, 
that channel path is not chosen~ 
If, however, another channel path 
to the device is available for 
selection and if no allegiances 
exist as described above, that path 
is chosen. If no other paths are 
available for selection, the start 
or resume function, as appropriate, 
remains pending until a channel 
path becomes available. 

6. If the device is attached to a 
type-3 control unit and if at least 
one other device is attached to the 
same control unit whose subchannel 
has a dedicated allegiance to the 
same channel path, another path 
that is available for selection may 
be chosen, or the start function 
remains pending until the dedicated 
allegiance for the other device is 
cleared. 

7. If a channel path has been chosen 
and a busy indication is received 
during a selection of the device to 
initiate execution of the first 
command of a pending channel 
program, the path over which the 
busy indication is received is not 
used again for that device or 
control unit (depending on the 
device-busy or control-unit-busy 
indication received) until a no
longer-busy indication is received. 
The no-longer-busy indications for 
control-:Jnit busy and device busy 
are control-unit end and device 
end, respectively. 

8. Except when a dedicated allegiance 
exists at the subchannel for a 
channel path and unless multi path 
mode is specified in the subchannel 
when the channel subsystem receives 
a busy indication as described in 
action 7, the channel subsystem 
attempts selection of the device by 
choosing an alternate channel path 
that is available for selection and 
continues this process until either 
the start function is initiated or 
selection of the device has been 
attempted on all channel paths that 
are available for selection. In 
the latter case, the start function 
remains pending until a no-Ionger
busy indication of either control
unit end or device end is received 
from the device, whichever is 
applicable. (See the sec~ion 
"Subchannel-Information BILck" 
earlier in this chapter, concerning 
multipath mode.) If the subchannel 



has a dedicated allegiance, action 
2 applies. 

9. When, during the selection attempt 
to transfer the first command, the 
device appears not operational and 
the corresponding bit in the POM is 
currently one, a path-not-
operational condition is 
recognized, the corresponding bit 
in the PNOM is set to one, and the 
corresponding bit in the POM is set 
to zero (see the section 
"Subchannel-Information Block" 
earlier in this chapter). The bit 
settings in the PNOM field are 
preserved until the subchannel next 
becomes clear-pending, start
pending, or resume-pending (if the 
subchannel was suspended), at which 
time the PNOM is again set to 
zeros. If, however, the corre
sponding bit in the POM is 
currently zero, the path-not
operational condition is ignored, 
and the condition is not indicated 
in the PNOM. When the device 
appears not operational during the 
selection attempt to transfer the 
first command on a channel path 
that is available for selection, 
one of the following actions 
occurs: 

a. If a dedicated allegiance 
exists for that channel path, 
then it is the only path that 
is available for selection, so 
further attempts to initiate 
the start or resume function 
are abandoned, and an inter
ruption condition is 
recognized. 

b. If no dedicated allegiance 
exists and there are alternate 
channel paths available for 
selection which have not been 
tried, one of these channel 
paths is chosen to attempt 
selection of the device and 
transfer the first command. 

c. If no dedicated allegiance 
exists, no alternate channel 
paths are available for 
selection which have not been 
tried, and the device has 
appeared operational on at 
least one of the channel paths 
that were tried, the start or 
resume function remains pending 
at the subchannel until either 
a channel path, a control unit, 
or the device, as appropriate, 
becomes available. 

d. If no dedicated allegiance 
exists, no alternate channel 
paths are available for 
selection which have not been 
tried, and the device has 
appeared not operational on all 
channel paths that were tried, 

further attempts to initiate 
the start or resume function 
are abandoned, and an inter
ruption condition is recog
nized. 

10. When the subchannel is active and 
an I/O operation is to be initiated 
with a device, all selections of 
the device occur according to the 
LPUM if the multipath mode is not 
specified in the subchannel. For 
example, if command chaining is 
indicated, the channel subsystem 
transfers the first and all subse
quent commands describing a chain 
of I/O operations over the same 
path. 

EXECUTION OF I/O OPERATIONS 

Subsequent to channel-path selection, 
the channel subsystem, if conditions 
allow, initiates execution of an I/O 
operation with the associated device. 
Execution of additional I/O operations 
may follow initiation and execution of 
the first I/O operation. The channel 
subsystem can execute seven commands! 
write, read, read backward, control, 
sense, sense ID, and transfer in 
channel. Each command, except transfer 
in channel, initiates a corresponding 
I/O operation. Except for periods while 
channel-program execution is suspended 
at the subchannel (see the section "Sus
pension of Channel-Program Execution" 
later in this chapter), the subchannel 
is active with the execution of the 
start function from the acceptance of 
the first command by the device and 
until the primary-interruption condition 
is received at the subchannel. 
Normally, the primary-interruption 
condition is the channel-end signal or, 
in the case of command chaining, the 
channel-end signal for the last CCW of 
the chain. (See the section "Primary
Interruption Condition" in Chapter 16, 
"I/O Interruptions.") The operation at 
the device lasts until the secondary
interruption condition is signaled to 
the channel subsystem. Normally, the 
secondary-interruption condition is the 
device-end signal or, in the case of 
command chaining, the device-end signal 
for the last CCW of the chain of oper
ations. (SeQ the section "Secondary
Interruption Condition" in Chapter 16, 
"I/O Interruptions.") 

Programming Note 

An I/O operation or chain of I/O oper
ations is normally executed by the chan
nel SUbsystem and the device operating 
in single-path mode. In single-path 
mode, all transfers of commands, data, 

Chapter 15. Basic I/O Functions 15-17 



and status for the I/O operation or 
chain of I/O operations occur on the 
channel path over which the first 
command was transferred to the device. 
When the device has the dynamjc
reconnection feature installed~ an 
additional mode of execution is 
possible. This second mode of execution 
occurs when the channel SUbsystem and 
the device having the dynamic
reconnection feature installed execute 
an I/O operation or chain of I/O oper
ations in multi path mode. To operate in 
multi path mode~ both the subchannel and 
the device must be set up for 
multipath-mode operation. The subchan
nel is set up for multipath-mode 
operation by using MODIFY SUBCHANNEL to 
set the multi path-mode (D) bit to one in 
the subchannel. (See the description of 
the multi path-mode bit in the section 
"Subchannel-Information Block" eariler 
in this chapter.) A device having the 
dynamic-reconnection feature installed 
is set up for multipath-mode operation 
by issuing to the device the specific 
commands for that purpose~ as described 
in the System Library pUblication for 
the device. "The general procedures for 
setting up a device for multi path-mode 
operation and for returning to single
path mode are as follows: 

1. A set-multipath-mode-type command 
must be successfully executed by 
the device on each channel path 
that is to be a member of the 
multipath group being set up; 
otherwise~ the multipath mode of 
operation may give unpredictable 
results at the subchannel. If~ for 
any reason, one or more physically 
available channel paths to the 
device are not included in the 
multi path group~ these paths must 
be made logically not available for 
selection by having the correspond
ing lPM bits set to zeros while the 
subchannel is operating in multi
path mode (that is~ while the 
multi path-mode bit in the subchan
nel is one). 

2. When a set-multipath-mode-type 
command is issued to a device, the 
lPM must specify only a single path 
as logically available in order to 
disable alternate path selection 
for the execution of that start 
function; otherwise~ device-busy 
conditions may be detected by the 
channel subsystem on more than one 
channel path which may cause unpre
dictable results for subsequent 
multi path-mode operations. 

3. Procedures analogous to those above 
should be used whenever the member
ship of a multipath group is 
changed. 

4. To leave multi path mode and contin
ue processing in single-path mode~ 

15-18 370-XA Principles of Operation 

either of the following two proce
dures may be used: 

a. Successful execution of a dis
band-multipath-mode-type com
mand by the device on any 
channel path of the multi path 
group must be followed by 
either (1) the execution of 
MODIFY SUBCHAHHEL to turn off 
multipath mode at the subchan
nel~ or (2) the specification 
of only a single channel path 
as logically available in the 
lPM. No start function must be 
issued to a subchannel operat
ing in multi path mode with 
multiple paths available for 
selection while the device is 
operating in single-path mode; 
otherwise~ unpredictable 
results may occur at the 
subchannel for that function or 
subsequent start functions. 

b. Successful execution of a 
resign-multipath-mode-type com
mand by the device on each 
channel path of the multi path 
group (the reverse of setting 
up the multi path group 
described in item 1 above) must 
be followed by either (1) the 
execution of MODIFY SUBCHAHNEl 
to turn off multi path mode at 
the subchannel, or (2) the 
specification of only a single 
channel path as logically 
available in the lPM. No start 
function must be issued to a 
subchannel operating in multi
path mode with multiple path 
available for selection while 
the device is operating in 
single-path mode; otherwise, 
unpredictable results may occur 
at the subchannel for that or 
subsequent start functions. 

BLOCKING OF DATA 

Data recorded by an I/O device is 
divided into blocks. The length of a 
block depends on the device; for 
example, a block can be a card, a line 
of printing~ or the information recorded 
between two consecutive gaps on magnetic 
tape. 

The maximum amount of information that 
can be transferred in one I/O operation 
is one block. An I/O operation is 
terminated when the associated main
storage area is exhausted or the end of 
the block is reached~ whichever occurs 
first. For some operations~ such as 
writing on a magnetic-tape unit or at an 
inquiry station, blocks are not defined~ 
and the amo~nt of information trans
ferred is r.ontrolled only by the 
program. 



OPERATION-REQUEST BLOCK (ORB) 

The operation-request block (ORB) is the 
operand of START SUBCHANNEL. The ORB 
specifies the parameters to be used in 
controlling that particular start func
tion. These parameters include the 
interruption parameter, the subchannel 
key, the address of the first CCW, 
operation-control bits, and a specifica
tion of the logical availability of 
channel paths. The contents of the ORB 
are passed to the channel subsystem 
during the execution of START 
SUBCHANNEL. The two rightmost bits of 
the ORB address must be zeros, placing 
the ORB on a word boundary; otherwise, a 
specification exception is recognized. 

The ORB has the following format: 

Word 

o 
1 

Interruption Parameter 

2 Channel-Program Address 

o 31 

The fields in the ORB are defined as 
follows: 

Interruption Parameter: Bits 0-31 of 
word 0 are preserved unmodified in the 
subchannel until replaced by a subse
quent START SUBCHAHHEL or MODIFY 
SUBCHANNEL. These bits are placed in 
word 1 of the interruption code at 
I/O-interruption time and when an inter
ruption request is cleared by TEST PEND
ING INTERRUPTION. 

Subchannel Key: Bits 0-3 of word 1 form 
the subchannel key for all fetching of 
CCWs, IDAWs, and output data and for the 
storing of input data associated with 
the start function initiated by START 
SUBCHANNEL. This key is matched with a 
storage key during these storage refer
ences. For details, see the section 
"Key-Controlled Protection" in Chapter 
3, "Storage." 

Suspend Control (S): Bit 4 of word 1 
controls execution of the suspend func
tion for the channel program identified 
in the ORB. The setting of the S bit 
applies to all CCWs of the channel 
program specified by the ORB (see the 
section "Commands" later in this 
chapter) • When bit 4 i s one, su spend 
control is specified, and channel
program suspension occurs when a valid 
suspend flag is detected in a CCW. If 
bit 4 is ~ero, suspend control is not 
specified, and the presence of the 
suspend flag in any CCW of the channel 
program causes a program-check condition 
to be recognized. 

Reserved: Blts 5-7 of word 1 are 
reserved for future use and must be 
zeros; otherwise, depending upon the 
model, either an operand exception or a 
program-check condition is recognized. 

Format Control (F): Bit 8 of word 1 
specifies the format of the channel
command words (CCWs) which make up the 
channel program designated by the 
channel-program-address field. If bit 8 
of word 1 is zero, format-O CCWs are 
specified. If it is one, format-1 CCWs 
are specified. (See the section 
"Channel-Command Word" later in this 
chapter, for the definition of the CCW 
formats). 

Prefetch Control (P): Bit 9 of word 1 
indicates whethe-r---or not unlimited 
prefetching of CCWs is allowed for the 
channel program. If this bit is zuro, 
no prefetching is allowed, except in the 
case of data chaining on output, where 
the prefetchi ng of one CCW i s allow,~d. 
If this bit is one, unlimited prefet~h
i ng is allowed. 

Initial-Status-Interruption Control 
(1): Bit 10 of word 1 indicates whether 
or-not the channel subsystem must verify 
to the program that the device has 
accepted the first command associated 
with a start or resume function. If the 
I bit is specified as one in the ORB, 
then when initial status is received and 
the subchannel becomes active, indicat
ing that the first command has been 
accepted for this start or resume func
tion, the Z bit (see the section 
"Subchannel-Status Word" in Chapter 16, 
"I/O Interruptions") is set to one in 
this subchannel, and the subchannel 
becomes intermediate-status-pending. 

If the subchannel does not become 
active -- for example, when the device 
signals channel end immediately upon 
receiving the first command, command 
chaining is not specified in the CCW, 
and command retry is not signaled -- the 
command-accepted condition (Z bit set to 
one) is not generated; instead, the 
subchannel becomes primary-status-
pending. Intermediate-status-pending 
may also be indicated in this case when 
the command is accepted if the first CCW 
contained the PCI flag. 

Address-Limit-Checking Control (A): Bit 
11 of word 1 indicates whether or not 
address-limit checking is specified for 
the channel program. If this bit is 
zero, no address-limit checking is 
performed for the execution of the chan
nel program, independent of the setting 
of. the limit-mode bits in the subchannel 
(see the section "Path-Management
Control Word" earlier in this chapter). 
If this bit is one, address-limit check
ing is allowed for the channel program, 
subject to the setting of the limit-mode 
bits in the subchannel. 

Chapter 15. Basic I/O Functions 15-19 



Suppress-Suspended-Interruptlon Control 
(U): Bit 12 of word 1, when one, indi
cates that the channel subsystem 
suppresses the generation of a 
subchannel-suspended-interruption condi
tion when the subchannel is suspended. 
When bit 12 is zero, the channel subsys
tem generates an intermediate
interruption condition whenever the 
subchannel is suspended during execution 
of the channel program. 

Reserved: Bits 13-15 of word 1 are 
reserved for future use and must be 
zeros; otherwise, an operand exception 
or a program-check condition is recog
nized, dependihg on the model. 

logical-Path Mask (lPM): Bits 16-23 of 
word 1 are preserved unmodified in the 
subchannel and indicate to the channel 
subsystem which of the logical paths 0-7 
are to be considered logically 
~vailable, as viewed by the program. A 
bit setting of one means that the corre
sponding path is to be considered as 
being logically available; a zero speci
fies that the corresponding path is 
recognized as being logically not avail
able. If a path is specified by the 
program as being logically not 
available, the channel subsystem does 
not use that path to execute clear, 
halt, resume, or start functions when 
requested by the program, except when a 
dedicated-allegiance condition exists 
for a path. If a dedicated-allegiance 
condition exists, the setting of the lPM 
is ignored, and a resume, start, halt, 
or clear function is performed by using 
the channel path having the dedicated
allegiance 

Reserved: Bits 24-31 of word 1 are 
reserved for futur~ use and must be set 
to zeros; otherwise, an operand excep
tion or a program-check condition is 
recognized, depending on the model. 

Channel-Program Address: Bits 0-31 of 
word 2 designate the location of the 
first CCW in absolute storage. If 
format-O CCWs have been specified in bit 
8 of word 1, then bits 0-7 of word 2 
must be zeros. If format-l CCWs have 
been specified, then bit 0 of word 2 
must be zero. If bit 0 is not zero, an 
operand exception or a program-check 
condition is recognized, depending on 
the model. If format-O CCWs have been 
specified and bits 1-7 do not contain 
zeros, a program-check condition is 
recognized. 

The three rightmost bits of the 
channel-program address must be zeros, 
specifying the CCW on a doubleword boun
dary; otherwise, a program-check condi
tion is recognized. 

If the CCW address specifies a location 
protected against fetching or specifies 
a location outside the storage of the 

15-20 370-XA Principles of Operation 

particular installation, the start func
tion is not initiated at the device. In 
this situation, the subchannel becomes 
status-pending with primary, secondary, 
and alert status. 

Programming Notes 

1. Bit positions of the ORB which 
presently are specified to contain 
zeros may in the future be assigned 
for the control of new functions. 

2. The interruption parameter may 
contain any information, but ordi
narily the information is of 
significance to the program handl
ing the I/O interruption. 

CHANNEL-COMMAND WORD 

The channel-command word (CCW) specifies 
the command to be executed and, for 
commands initiating certain I/O oper
ations, it designates the storage area 
associated with the operation, the 
action to be taken whenever transfer to 
or from the area is completed, and other 
options. 

A channel program consists of one or 
more CCWs that are logically linked such 
that they are fetched by the channel 
subsystem and executed in the sequence 
specified by the CPU program. Contig
uous CCWs are linked by the use of the 
chain-data or chain-command flags, and 
noncontiguous CCWs may be linked by a 
CCW specifying the transfer-in-channel 
command. 

As each CCW is executed, it is recog
nized as the current CCW. A CCW becomes 
current (1) when it is the first CCW of 
a channel program and has been fetched, 
(2) when, during command chaining, the 
new CCW is logically fetched, or 
(3) when, during data chaining, the new 
CCW takes over control of the I/O opera
tion (see the section "Data Chaining" 
later in this chapter). When chaining 
is not specified, a CCW is no longer 
current after TEST SUBCHANNEl clears the 
start-function bit in the subchannel. 

The location of the first CCW of a chan
nel program is specified in the ORB that 
is the operand of START SUBCHANNEl. The 
first CCW is fetched subsequent to the 
execution of the instruction. The 
format of the CCWs fetched by the chan
nel subsystem is specified by bit 8 of 
word 1 of the ORB. Each additional CCW 
in the channel program is obtained when 
the CCW is needed. Fetching of the CCWs 
by the channel subsystem does not affect 
those locations in main storage. 



CCWs have either of two different 
formats. The two formats do not differ 
in the information contained in the CCW 
but only in the arrangement of the 
fields within the CCW. 

The formats are designated format-O and 
format-l CCWs and are defined as 
follows: 

Format-O CCW 

Icmd codel Data Address 

o 8 31 

Flags 101////////1 Count 

32 39 48 63 

Format-l CCW 

Icmd cOdel Flags 101 Count 

o 8 15 31 

Data Address 

32 63 

Format-O CCWs can be located anywhere in 
the first 16,777,216 bytes of main stor
age. 

Format-l CCWs can be located anywhere in 
main storage. 

The fields in the CCWs are defined as 
follows: 

Command Code: Bits 0-7 (both formats) 
specify the operation to be performed. 

Data Address: Bits 8-31 (format 0) or 
bits 33-63 (format 1) specify a location 
in absolute storage. It is the first 
location referred to in the area desig
nated by the CCW. If a byte count of 
zero is specified, this field is not 
checked. 

Chain-Data (CD) Flag: Bit 32 (format 0) 
or bit 8 (format 1), when one, specifies 
chaining of data. It causes the storage 
area designated by the next CCW to be 
used with the current I/O operation. 
When the CD flag is on in a CCW, the 
chain-command and suppress-length
indication flags (see below) are 
ignored. 

Chain-Command (CC) Flag: Bit 33 ~format 
0) or bit 9 (format 1), when one, and 
when the CD flag and S flag are both 
zero, specifies chaining of commands. 
It causes the operation specified by the 
command code in the next CCW to be 
initi~ted on normal completion of the 
current operation. 

Suppress-length-Indication (SlI) Flag: 
Bit 34 (format 0) or bit 10 (format 1) 
controls whether an incorrect-length 
condition is to be indicated to the 
program. When this bit is one and the 
CD flag is zero, the incorrect-length 
indication is suppressed. When both the 
CC and SlI flags are one, and the CD 
flag is zero, command chaining takes 
place, regardless of the presence of an 
incorrect-length condition. This bit is 
indicated in ~ll CCWs where suppression 
of an incorrect-length indication is 
required. 

Skip (SKIP) Flag: Bit 35 (format 0) or 
bit 11 (format 1), when one, specifies 
the suppression of transfer of informa
tion to storage during a read, read
backward, sense 10, or sense operation. 

Program-Controlled-Interruption (PCI) 
Flag: Bit 36 (format 0) or bit 12 (for
mat 1), when one, causes the channel 
subsystem to generate an intermediate
interruption condition by using the 
appropriate subchannel when the CCW 
takes control of the I/O operation. 
When the PCI flag bit is zero, normal 
operation takes place. 

Indirect-Data-Address (IDA) Flag: Bit 
37 (format 0) or bit 13 (format 1), when 
one, specifies indirect data addressing. 

Suspend (S) Flag: Bit 38 (format 0) or 
bit 14 (format 1), when one, specifies 
suspension of channel-program execution. 
When valid, it causes channel-program 
execution to be suspended prior to 
execution of the CCW containing the S 
flag. The S flag is valid when bit 4, 
word 1 of the associated ORB is one. 

Count: Bits 48-63 (format 0) or bits 
16-31 (format 1) specify the number of 
bytes in the storage area designated by 
the CCW. 

Bit position 39 (format 0) or bit posi
tion 15 (format 1) of every CCW other 
than a format-O CCW specifying transfer 
in channel must contain zeros. Addi
tionally, if indirect data addressing is 
specified, bits 30-31 (format 0) or bits 
62-63 (format 1) of the CCW must be 
zeros, indicating a word boundary, and 
bit 0 of the first entry of the 
indirect-data-address list must be zero. 
Otherwise, depending upon the model, a 
program-check condition may be generated 
(see the section "CCW Indirect Data 
Addressing" later in this chapter). 
Detection of this condition during data 
chaining causes the I/O device to be 
signaled to conclude the operation. 
When the absence of these zeros is 
detected during command chaining or 
subsequent to the execution of START 
SUBCHANNEl, the new operation is not 
initiated, and an interruption condition 
is generated. 

Chapter 15. Basic I/O Functions 15-21 



The contents of bit positions 40-47 of a 
format-O CCW are ignored. 

Programming Note 

Bit position 39 of a format-O CCW or bit 
position 15 of a format-1 CCW, which 
presently must contain zero, may in the 
future be assigned for the control of 
new functions. It is recommended, 
therefore, that this bit position not be 
set to one for the purpose of obtaining 
an intentional program-check indication. 

COMMAND CODE 

The command code, bit positions 0-7 of 
the CCW, specifies to the channel 
sUbsystem and the I/O device the opera
tion to be performed. A detailed 
description of each command appears 
under "Commands," later in this chapter. 

The two rightmost bits or, when these 
bits are zeros, the four rightmost bits 
of the command code identify the opera
tion to the channel subsystem. The 
channel subsystem distinguishes among 
the following four operations: 

Output forward (write, control) 
Input forward (read, 's~nse, sense 

ID) 
Input backward (read backward) 
Branching (transfer in channel) 

The channel subsystem ignores the left
most bits of the command code, except in 
a format-1 CCW specifying transfer in 
channel. In this situation, all bits of 
the command code are decoded by the 
channel subsystem. 

Commands that initiate I/O operations 
(write, read, read backward, control, 
sense, and sense ID) cause all eight 
bits of the command code to be trans
ferred to the control unit. In these 
command codes, the leftmost bit posi
tions contain modifier bits. The 
modifier bits specify to the device how 
the command is to be executed. They 
may, for example, cause the device to 
compare data received during a write 
operation with data previously recorded, 
and they may specify such conditions as 
recording density and parity. For the 
control command, the modifier bits may 
contain the order code specifying the 
control function to be performed. The 
meaning of the modifier bits depends on 
the type of I/O device and is specified 
in the System library publication for 
the device. 

The command-code assignment is listed in 
the figure "Command-Code Assignment." 
The symbol x indicates that the bit 

15-22 370-XA Principles of Operation 

position is ignored; m identifies a 
modifier bit. 

Code Command 

xxxx 0000 Invalid 
mmmm 0100 Sense 
1110 0100 Sense ID 
xxxx 1000 Transfer in channell 
0000 iooo Transfer in channel 2 

mmmm 1000 Invalid3 

mmmm 1100 Read backward 
mmmm mmOl Write 
mmmm mm10 Read 
mmmm mm11 Control 

Exelanation: 

m Modifier bit. 

x Bit is ignored. 

1 Format-O CCW. 

2 Format-1 CCW. 

3 Format-l CCW with any of 
bits 0-3 nonzero. 

Command-Code Assignment 

Whenever the channel subsystem detects 
an invalid command code during the 
initiation of command execution, the 
program-check~interruption condition is 
generated and channel-program execution 
is terminated. The command code is 
ignored during data chaining, unless it 
specifies transfer in channel. 

DESIGNATION OF STORAGE AREA 

Note: For a description of the storage 
area associated with a CCW when indirect 
data addressing is invoked, see the 
section "CCW Indirect Data Addressing" 
later in this chapter. 

The main-storage area associated with an 
I/O operation is defined by one or more 
CCWs. A CCW defines an area by specify
ing the address of the first byte to be 
transferred and the number of consec
utive bytes contained in the area. The 
address of the first byte appears in the 
data-address field of the CCW. The 
number of bytes contained in the storage 
area is specified in the count field. 

In write, read, control, and sense oper
ations, storage locations are used in 
ascending order of addresses. As infor
mation is transferred to or from main 
storage, the address from the address 
field is incr~mented, and the count from 
the count field is decremented. The 



read-backward operation places data in 
storage in a descending order of 
addresses, and both the count and the 
address are decremented. When the count 
reaches 0, the storage area defined by 
the CCW is exhausted. 

Any main-storage location available to 
the start function can be used in the 
transfer of data to or from an I/O 
dev ice" pro v i ded that the locat ion is 
not protected against that type of 
reference. Format-O CCWs can be located 
in any available part of the first 16M 
bytes of storage, and format-1 CCWs may 
be located in any part of available 
storage provided in both cases that the 
location is not protected against a 
fetch-type reference. When the channel 
subsystem attempts to refer to a 
protected location, the protection-check 
condition is generated, and the device 
is signaled to terminate the operation. 

A main-storage location is available if 
it is provided and access to it is not 
prevented by the address-limit-checking 
facility. If a main-storage location is 
not available, it is said to have an 
invalid address. 

In the event the channel subsystem 
refers to a location not provided in the 
system, the program-check condition is 
generated. When the first CCW desig
nated by the channel-program address is 
at a nonexistent location, the start 
function is not initiated at the device, 
the status portion of the SCSW is 
updated with the program-check indi
cation, and the subchannel becomes 
primary-and-secondary status-pending, 
with a deferred condition code 1 indi
cated. Invalid data addresses, as well 
as any invalid CCW addresses detected on 
chaining or subsequent to the execution 
of START SUBCHAHHEL, are indicated to 
the program with the interruption condi
tions at the conclusion of the operation 
or chain of operations. 

During an output operation, the channel 
subsystem may fetch data from the main 
storage before the time the I/O device 
requests the data. Any number of bytes 
specified by the current CCW may be 
prefetched and buffered. When data 
chaining during an output operation, the 
channel subsystem may fetch the next CCW 
at any time during the execution of the 
current CCW. If unlimited prefetching 
is allowed by the setting of the 
prefetch-control bit 1n the ORB, then 
any number of CCWs may be prefetched by 
the channel subsystem. When the ·1/0 
operation uses data and CCWs from 
locations near the end of the available 
storage, such prefetching may cause the 
channel subsystem to refer to locations 
that do not exist. Invalid addresses 
detected during prefetching of data or 
CCWs do not affect the execution of the 
operation and do not cause error indi
cations until the I/O operation actually 

attempts to use the information. If the 
operation is concluded by the I/O device 
or by HALT SUBCHANNEL or CLEAR SUBCHAN
NEL before the invalid information is 
needed, the condition is not brought to 
the attention of the program. 

The count field in the CCW can specify 
any number of bytes up to 65,535. In 
format-O CCWs, the count field is always 
nonzero unless the command code speci
fies transfer in channel, in which case 
the count field is ignored. In format-1 
CCWs, the count field may contain the 
value zero unless data chaining is spec
ified or the CCW is fetched while data 
chaining. Whenever (1) the count field 
in a format-l CCW contains a zero, 
(2) data chaining is either not speci
fi~d or is not in effect, and (3) data 
transfer is requested by the device, the 
device is signaled to stop, and the I/O 
operation is terminated. The channel 
subsystem sets the jncorrect-Iength 
condition if the SLI flag is not one in 
the CCW. No data is transferred. If 
the device does not request data trans
fer, the operation proceeds to the 
normal ending point. 

If a zero byte count is contained in a 
format-O CCW, or if a zero-byte count is 
contained in a format-l CCW that speci
fies data chaining, or was fetched while 
data chaining, a program-check condition 
is recognized, and the subchannel is 
made status-p~nding with combinations of 
primary, secondary, and alert status as 
a function of the state of the subchan
nel and the status received from the 
device. 

CHAINING 

When the channel subsystem has performed 
the transfer of information specified by 
a CCW, it can continue executing the 
start function by fetching a new CCW. 
Such fetching of a new CCW is called 
chaining, and the CCWs belonging to such 
a sequence are said to be chained. 

Chaining takes place between CCWs 
located in successive doubleword 
locations in storage. It proceeds in an 
ascending order of addresses; that is, 
the address of the new CCW is obta\ned 
by adding 8 to the address of the 
current CCW. Two chains of CCWs located 
in noncontiguous storage areas can be 
coupled for chaining purposes by a 
transfer-in-channel command. All CCWs 
in a chain apply to the I/O device that 
is associated with the subchannel speci
fied by the original START SUBCHANNEL. 

Two types of chaining are 
provided: chaining of data and chaining 
of commands. Chaining is controlled by 
the chain-data (CD) and chain-command 
(CC) flags in conjunction with the 

Chapter 15. Basic I/O Functions 15-23 



suppress-length-indication (SLI) flag in 
the CCW. These flags specify the action 
to be taken by the channel sUbsystem 
upon the exhaustion of the current CCW 
and upon receipt of ending status from 
the device, as shown in the figure 
"Subchannel-Chaining Action." 

The specification of chaining is effec
tively propagated through a transfer
in-channel command. When, in the 
process of chaining, a transfer-in
channel command is fetched, the CCW 

15-24 370-XA Principles of Operation 

designated by the transfer in channel is 
used for the type of chaining specified 
in the CCW preceding the transfer in 
channel. 

The CD and CC flags are ignored in a 
format-Q CCW specifying the transfer
in-channel command. In a format-1 CCW 
specifying the transfer-in-channel 
command, the CD and CC flags must be 
zeros; otherwise, a program-check condi
tion is recognized. 



Action in the Subchannel upon Exhaustion of 
Flags in Count or Receipt of Channel End 
Current 
CCW Immediate Operation Regular Operation 

CD CC SlI I II III IV V VI 

0 0 0 End, - End, - End, 9 stop, Il End, - End, Il 
0 0 1 End, - End, - End, - Stop, - End, - End, -
0 1 0 CC CC End, 9 Stop, Il CC End, Il 
0 1 1 CC CC CC stop, CC CC CC 

1 0 0 End, - PC End, IL CD * End, Il 
1 0 1 End, - PC End, Il CD * End, Il 
1 1 0 End, - PC End, Il CD * End, Il 
1 1 1 End, - PC End, Il CD * End, Il 

Explanation: 

I 

II 

III 

IV 

V 

VI 

End 

Stop 

Il 

CC 

Immediate operation with format-O CCWs. The 
count field must contain a nonzero value or 
the operation is terminated by a program-check 
condition. 

Immediate operation with format-l CCW and CCW 
count field zero. 

Immediate operation with format-1 CCW and CCW 
count field nonzero. 

Count exhausted, and end of block at device 
not reached. 

Count exhausted, and channel end from device. 

Count not exhausted, and channel end from 
device. 

Operation is terminated. 

Device is signaled to terminate data transfer, 
but subchannel remains active until channel 
end is received. 

Incorrect length is indicated with the subse
quent interruption condition generated at the 
subchannel. 

Incorrect length is not indicated with the sub
sequent interruption condition generated at the 
subchannel. 

Command chaining is performed by the channel 
subsystem-upon receipt of device end. 

Subchannel-Chaining Action (Part 1 of 2) 

Chapter 15. Basic I/O Functions 15-25 



Explanation (Continued): 

CD The chain-data flag causes the channel sub
subsystem to immediately fetch a new CCW for 
the same operation, and the operation normally 
continues. However, any CCW that has a count 
field containing the value zero and that 
either is fetched while data chaining or has 
the chain-data flag set to one causes the 
channel subsystem to terminate the 9peration 
with a program-check condition. 

PC The channel subsystem recognizes a program
check condition when a format-l CCW having a 
count field containing the value zero either 
has the chain-data flag set to one or is 
fetched while data chaining. Therefore, these 
situations cannot occur validly. 

¢ The incorrect-length indication mayor may not 
be indicated. 

* The situation where the residual count is zero 
but data chaining is indicated at the time the 
device provides channel end cannot validly 
occur. When data chaining is indicated, the 
new CCW takes control of the operation after 
transferring the last byte of data designated 
by the current CCW, but before the device pro
vides the next request for data or status 
transfer. As a result, the channel end from 
the device is recognized only after the new 
CCW, which cannot contain a count of zero un
less a programming error has been made, is in 
control of the operation. 

Subchannel-Chaining Action (Part 2 of 2) 

Programming Note 

When bit 9 of ORB word 1 is one, unlim
ited fetching of chained CCWs by the 
channel subsystem is permitted. When 
prefetching is allowed by the ORB, no 
modification of the channel program 
should be performed after START SUBCHAN
NEL is issued and ,before the primary
interruption condition for the operation 
has been received unless the subchannel 
is currently suspended and is not 
resume-pending. 

Data Chaining 

During data chaining, the new CCW 
fetched by the channel subsystem defines 
a new storage area for the original I/O 
operation. Execution of the operation 
at the I/O device is not affected. When 
all data designated by the current CCW 
has been transferred to main storage or 
to the device, data chaining causes the 
operation to continue, using the storage 
area designated by the new CCW. The 
contents of the command-code field of 
the new CCW are ignored, unless they 
specify transfer in channel. 

15-26 370-XA Principles of Operation 

Data chaining is considered to occur 
immediately after the last byte of data 
designated by the current CCW has been 
transferred to main storage or to the 
device. When the last byte of the data 
transfer has been placed in main storage 
or accepted by the device, the new CCW 
takes over the control of the operation. 
If the device sends channel end after 
exhausting the count of the current CCW 
but before transferring any data to or 
from the storage area designated by the 
new CCW, the SCSW associated with the 
concluded operation pertains to the new 
ccw. 
If programming errors are detected in 
the new CCW or during its fetching, the 
error indication is generated, and the 
device is signaled to conclude the oper
ation when it attempts to transfer data 
designated by the new CCW. If the 
device signals the channel-end condition 
before transferring any data designated 
by the new CCW, program check or 
protection check is indicated in the 
SCSW associated with the termination. 
The contents of the SCSW pertain to the 
new CCW unless the address of the new 
CCW is invalid, the location is 
protected against fetching, or program
ming errors are detected in an 



intervening transfer-in-channel command. 
A data address referring to a nonexist
ent or protected area causes an error 
indication only after the I/O device has 
attempted to transfer data to or from 
the invalid location. 

Data chaining during an input operation 
causes the new CCW to be fetched when 
all data designated by the current CCW 
has been placed in main storage. On an 
output operation, the channel subsystem 
may fetch the new CCW from main storage 
before data chaining occurs. Any 
programming errors in the prefetched 
CCW, however, do not affect the 
execution of the operation until all 
data designated by the current CCW has 
been transferred to the I/O device. If 
the device concludes the operation 
before all data designated by the 
current CCW has been transferred, the 
conditions associated with the 
prefetched CCW are not indicated to the 
program. Unlimited prefetching is 
allowed under the control of the 
prefetch bit specified in the ORB. (See 
the section "Operation-Request Block" 
earlier in this chapter.) 

Programming Notes 

1. If the ORB does not specify unlim
ited prefetching, no prefetching of 
CCWs is performed, except in the 
case of data chaining on an output 
operation where one CCW may be 
prefetched at a time. 

2. 

If the ORB for the I/O operation 
specifies that prefetching is 
allowed, any number of CCWs may be 
prefetched and buffered in the 
channel subsystem. 

The same actions for signaling 
errors and terminating operations 
take place when unlimited prefetch
ing is allowed by the ORB as when 
it is not allowed. Therefore, 
neither the program nor the I/O 
device is aware of any differences 
whether or not prefetching of CCWs 
is being performed by the channel 
subsystem. 

When prefetching has been specified 
in the ORB, the result of modifica
tions to CCWs after START SUBCHAN
NEl has been issued or after self
describing channel programs have 
been used, is unpredictable. (See 
Note 2 for the definition of self
describing channel programs.) 

Data chaining may be used to rear
range information as it is trans
ferred between main storage and an 
I/O device. Data chaining permits 
blocks of information to be trans
ferred to or from noncontiguous 

areas of storage, and, when used in 
conjunction with the skipping func
tion, data chaining enables the 
program to place in main storage 
selected portions of a block of 
data. 

When, during an input operation, 
the program specifies data chaining 
to a location into which data has 
been placed under the control of 
the current CCW, the chan,el 
subsystem, in fetching the n~xt 
CCW, fetches the new contents of 
the location. This is true even if 
the location contains the last byte 
transferred under the control of 
the current CCW. When a channel 
program data-chains to a CCW placed 
in storage by the CCW specifying 
data chaining, the input block is 
said to be self-describing. A 
self-describing block contains one 
or more CCWs that specify storage 
locations and counts for subsequent 
data in the same input block. 

The use of self-describing blocks 
is equivalent to the use of 
unchecked data. An I/O data
transfer malfunction that affects 
validity of a block of information 
is signaled only at the completion 
of data transfer. The error condi
tion normally does not prematurely 
terminate or otherwise affect the 
execution of the operation. Thus, 
there is no assurance that a CCW 
read as data is valid until the 
operation is completed. If the CCW 
thus read is in error, use of the 
CCW in the current operation may 
cause subsequent data to be placed 
in wrong locations in main storage 
with resultant destruction of its 
contents, subject only to the 
control of the protection key and 
the address-limit-checking facil
ity, if used. 

3. When, during data chaining, a 
device transfers data by using the 
data-streaming facility, an overrun 
or chaining-check condition may be 
recognized when a small byte-count 
value is specified in the CCW. The 
minimum acceptable number of bytes 
that can be specified varies as a 
function of the system model and 
system activity. Refer to the 
appropriate System library publica
tion for the system model to 
determine the most reasonable mini
mum byte count that can be handled 
by the channel subsystem. 

Command Chaining 

During command 
fetched by the 

chaining, the new CCW 
channel subsystem speci-

Chapter 15. Basic I/O Functions 15-27 



fies a new I/O operation. The channel 
subsystem fetches the new CCW upon the 
receipt of the device-end signal for the 
current operation. If the new CCW does 
not specify an S flag and if no unusual 
conditions are detected, the channel 
subsystem initiates the new operation. 
The presence of either condition causes 
command chaining to be suppressed. When 
command chaining takes place, the 
completion of the current operation does 
not cause an I/O interruption, and the 
count indicating the amount of data 
transferred during the current operation 
is not made available to the program. 
For operations involving data transfer, 
the new command always applies to the 
next block of data at the device. 

Command chaining takes place and the new 
operation is initiated only if no unusu
al conditions have been detected in the 
current operation. In particular, the 
channel subsystem initiates a new I/O 
operation by command chaining upon 
receipt of a status byte containing only 
the following bit combinations: device 
end, device end and status modifier, 
device end and channel end, and device 
end and channel end and status modifier. 
In the former two cases, a channel end 
is signaled before device end, with all 
other status bits off. If a condition 
such as attention, unit check, unit 
exception, incorrect length, program 
check, or protection check has occurred, 
the sequence of operations is concluded, 
and the status associated with the 
current operation causes an interruption 
condition to be generated. The new CCW 
in this case is not fetched. The 
incorrect-length condition does not 
suppress command chaining if the current 
CCW has the SLI flag on. 

An exception to sequential chaining of 
CCWs occurs when the I/O device presents 
the status-modifier condition with the 
device-end signal or channel-end and 
device-end signals. When command chain
ing is specified and no unusual 
conditions have been detected, or when 
command retry has been previously 
signaled and an immediate retry could 
not be performed, the combination of 
status-modifier· and device-end bits 
causes the channel SUbsystem to alter 
the sequential execution of CCWs. If 
command chaining was specified, status 
modifier and device end cause the chan
nel SUbsystem to fetch and chain to the 
CCW whose main-storage address is 16 
higher than that of the CCW that speci
fied chaining. If command retry was 
previously signaled and immediate retry 
could not be performed, the status caus
es the channel SUbsystem to command 
chain to the CCW whose storage address 
is 8 higher than that of the CCW for 
which retry was initially signaled. 

15-28 370-XA Principles of Operation 

When both command and data chaining are 
used, the first CCW associated with the 
operation specifies the operation to be 
executed, and the last CCW indicates 
whether another operation follows. 

Programming Note 

Command chaining makes it possible for 
the program to initiate transfer of 
multiple blocks of data by means of a 
single START SUBCHANNEL. It also 
permits a subchannel to be set up for 
execution of auxiliary functions, such 
as positioning the disk-access 
mechanism, and for data-transfer oper
ations without interference by the 
program at the end of each operation. 
Command chaining, in conjunction with 
the status-modifier condition, perl.lits 
the channel subsystem to modify the 
normal sequence of operations in 
response to signals provided by the I/O 
device. 

SKIPPING 

Skipping causes the suppression of 
main-storage references during an I/O 
operation. It is defined only for read, 
read-backward, sense ID, and sense oper
ations, and is controlled by the skip 
flag, which can be specified individual
ly for each CCW. When the skip flag is 
one, skipping occurs; when it is zero, 
normal operation takes place. The 
setting of the skip flag is ignored in 
all other operations. 

Skipping affects only the handling of 
information by the channel subsystem. 
The operation at the I/O device proceeds 
normally, and information is 
transferred. The channel subsystem 
keeps updating the count but does not 
place the information in main storage. 
Chaining is not precluded by skipping. 
In the case of data chaining, normal 
operation is resumed if the skip flag in 
the new CCW is zero. 

No ch~cking for invalid or protected 
data addresses takes place during skip
ping. 

Programming Note 

Skipping, when combined with data chain
ing, permits the program to place in 
main storage selected portions of a 
block of information from an I/O device. 



PROGRAM-CONTROLLED INTERRUPTION 

The program-controlled-interruption 
(PCI) function permits the program to 
cause an I/O interruption during 
execution of an I/O operation. The 
function is controlled by the PCI flag 
in the CCW. The flag can be on either 
in the first CCW specified by the 
channel-program address or in a CCW 
fetched during chaining. Neither the 
PCI flag nor the associated interruption 
affects the execution of the current 
operation. 

Whenever the PCI flag in the CCW is one, 
the subchannel becomes status-pending, 
with the intermediate-interruption 
condition indicated, and an 1/0-
interruption request is generated. When 
the first CCW associated with an opera
tion contains the PCI flag, the 
subchannel becomes status-pending only 
after initial status is received indi
cating that the command has been 
accepted. The PCI flag in a CCW fetched 
on data chaining causes the status
pending condition to occur after all 
data designated by the preceding CCW has 
been transferred. The PCI flag on in a 
CCW fetched by command chaining may 
cause an interruption as early as imme
diately upon that CCW taking control of 
the operation. The time of the inter
ruption, however, depends on the current 
activity in the system and may be 
delayed even if the subchannel is not 
masked. No predictable relation exists 
between the time the interruption due to 
the PCI flag occurs and the progress of 
data transfer to or from the area desig
nated by the CCW. However, all the 
fields within the SCSW pertain to the 
same instant of time. 

If chaining occurs before the inter
ruption due to the PCI flag has taken 
place, the PCI condition is carried over 
to the new CCW. This carryover occurs 
both on data and command chaining and, 
in either case, the condition is propa
gated through the transfer-in-channel 
command. The PCI conditions are not 
stacked; that is, if another CCW is 
fetched with a PCI flag before the 
intermediate-status condition due to the 
PCI flag of the previous CCW has been 
cleared, only one interruption takes 
place. 

An SCSW containing the PCI bit may be 
signaled by an interruption while the 
operation is still proceeding or upon 
the termination of the operation. All 
PCls are presented to the system by TEST 
SUBCHANNEL even while the subchannel is 
active. 

When an SCSW indicating intermediate
status-pending is stored by TEST 
SUBCHANNEL before the operation or chain 

of operations has been concluded (that 
is, when the activity-control field 
indicates subchannel-and-device-active 
or suspended), the command address is 
eight higher than the address of the CCW 
causing the intermediate-status-pending 
condition or eight higher than some CCW 
fetched subsequently. In this 
situation, the device-status field 
contains zeros, and count is unpredict
able. If the channel subsystem has 
detected any actually or potentially 
unusual conditions, such as channel-data 
check, or protection check, by the time 
the SCSW is stored, the corresponding 
subchannel-status bit may be one. The 
unusual condition in the subchannel is 
not reset by TEST SUBCHANNEL unless the 
subchannel is also status-pending with 
primary status and, unless it is 
primary-status-pending, it mayor may 
not be indicated again. If the unusual 
condition actually occurs, the condition 
is indicated when the subchannel subse
quently becomes primary-status-pending 
upon the conclusion of the operation at 
the subchannel. 

The primary-status bit set to one in the 
SCSW indicates that the operation or 
chain of operations has been concluded 
at the subchannel. In this case, the 
status-control field indicates the 
primary-interruption condition in addi
tion to the intermediate condition. The 
SCSW in this case has its regular format 
with the PCI bit added. 

When the interruption condition due to 
the pcr flag has been delayed until the 
operation at the device has been 
concluded, a single interruption occurs, 
and TEST SUBCHANNEL stores an SCSW 
containing both the PCI and the ending 
status. 

The setting of the PCI flag is inspected 
in every CCW except for the format-o CCW 
specifying transfer in channel, where it 
is ignored. In a format-1 CCW specify
ing transfer in channel, the PCI flag 
must be zero. The PCI flag is also 
ignored during initial program loading. 

Programming Notes 

1. The program-controlled interruption 
provides a means of alerting the 
program to the progress of chaining 
during an I/O operation. It 
permits programmed dynamic main
storage allocation. 

2. A CCW with the PCI flag on may, if 
retried because of command retry, 
cause multiple PCI interruptions to 
occur. (See the section "Command 
Retry" later in this chapter.) 

Chapter 15. Basic I/O Functions 15-29 



CCW INDIRECT DATA ADDRESSING 

CCW indirect data addressing, a compan
ion facility to dynamic address trans
lation, provides assistance in translat
ing data addresses for I/O operations. 
It permits a single channel-command word 
to control the transfer of data that 
spans noncontiguous pages in real main 
storage. The use of CCW indirect data 
addressing also allows the program to 
specify data addresses above 16M for 
both format-O and format-1 CCWs. 

CCW indirect data addressing is speci
fied by a flag bit in the CCW which, 
when one, indicates that the data 
address is not used to directly address 
data. Instead, the address points to a 
list of words, called indirect-data
address words (IDAWs), each of which 
contains an absolute address designating 
a data area within a 2K-byte block of 
main storage. 

When the indirect-data-addressing bit in 
the CCW is one, the data-address field 
of the CCW specifies the location of the 
first IDAW to be used for data transfer 
for the command. Additional IDAWs, if 
needed for completing the data transfer 
for the CCW, are in successive locations 
in storage. The number of IDAWs 
required for a CCW is determined by the 
count field of the CCW and by the data 
address in the initial IDAW. When, for 
example, the CCW count field specifies 
4K bytes and the first IDAW specifies a 
location in the middle of a 2K-byte 
block, three IDAWs are required. 

Each IDAW is used for the transfer of up 
to 2K bytes. The IDAW specified by the 
CCW can designate any location. Data is 
then transferred, for read, write, 
control, sense ID, and sense commands, 
to or from successively higher storage 
locations or, for a read-backward 
command, to successively lower storage 
locations, until a 2K-byte block bounda
ry is reached. The control of data 
transfer is then passed to the next 
IDAW. The second and any subsequent 
IDAWs must specify, depending on the 
command, the first or last byte (for 
read backward) of a 2K-byte block. 
Thus, for read, write, control, sense 
ID, and sense commands, these IDAWshave 
zeros in bit positions 21-31. For a 
read-backward command, these IDAWs have 
ones in bit positions 21-31. 

Except for the unique restrictions on 
the specification of the data addr3ss by 
the IDAW, all other actions taken for 
the data address, such as for protected 
storage and invalid addresses, and the 
actions taken for data prefetching are 
the same as when indirect data address
ing is not used. 

Any of the IDAWs pertaining 
current CCW or a prefetched CCW 

to the 
may be 

15-30 370-XA Principles of Operation 

prefetched. An IDAW takes control of 
data transfer when the last byte has 
been transferred for the previous IDAW. 
The same actions take place as with data 
chaining regarding when an IDAW takes 
control of data transfer during an I/O 
operation. That is, when the count for 
the CCW has not reached zero, a new IDAW 
takes control of the data transfer when 
the last byte has been transferred for 
the previous IDAW for that CCW, even in 
situations where (1) channel end, (2) 
channel end and device end, or (3) chan
nel end, device end, and status modifier 
are received prior to transfer of any 
data bytes pertaining to the new IDAW. 
A prefetched IDAW does not take control 
of an I/O operation if the count in the 
CCW has reached 0 with the transfer of 
the last byte of data for the previous 
IDAW for that CCW. Errors detected in 
prefetched IDAWs are not indicated until 
the IDAW takes control of the data 
transfer. 

The format of the IDAW and the signif
icance of its fields are as follows: 

Data Address 

o 31 

Bit 0 is reserved for future use and 
must be zero. Otherwise, a program
check condition may be recognized, as 
described below. 

Bits 1-31 specify the location of the 
first byte to be used in the data trans
fer. In the first IDAW for a CCW, any 
location can be specified. For subse
quent IDAWs, depending on the command, 
either the first or the last location of 
a 2K-byte block located on a 2K-byte 
boundary must be specified. For read, 
write, control, and sense commands,-the 
beginning of the block must be 
specified, that is, bits 21-31 of the 
IDAW must be zeros. For a read-back~ard 
command, the end of the block must be 
specified (bits 21-31 all one~). 
Improper data-address specification 
causes the program-check condition to be 
generated and the operation to be termi
nated. 

When the IDAW flag of the CCW is set to 
one and any of the following conditions 
occurs: 

1. The address in the CCW does not 
designate the first IDAW on an 
integral word boundary, 

2. The address in the CCW designated a 
storage location which is not 
available. 

3. Access to the storage location 
specified by the address in the CCW 
is prohibited by protection, or 



4. Bit 0 of the first IDAW is not 
zero, 

then, depending on the model, one of the 
following two actions is taken independ
ent of the setting of the skip flag. 

1. The above conditions are checked 
before initiating the operation at 
the device. If any of these condi
tions is recognized, initiation of 
the I/O operation does not occur, 
and the subchannel is made status
pending with primary, secondary, 
and alert status. 

2. The operation is initiated at the 
device prior to checking for these 
conditions. If the device attempts 
to transfer data, the device is 
signaled to terminate the I/O oper
ation, and the subchannel is made 
status-pending with primary, 
secondary, and alert status as a 
function of the subchannel state 
and the status presented by the 
device. 

SUSPENSION OF CHANNEL-PROGRAM EXECUTION 

The suspend function, when used in 
conjunction with RESUME SUBCHANNEL, 
provides the program with a means to 
stop and restart the execution of a 
channel program. The initiation of the 
suspend function is controlled by the 
setting of the suspend-control bit in 
the ORB (bit 4 of word 1). The suspend 
function is signaled when the suspend
control bit is set to one in the ORB and 
a valid CCW containing the S flag set to 
one becomes the current CCW. The flag 
can be indicated either in the first CCW 
of the channel program or in a CCW 
fetched while command chaining. The S 
flag is not valid and causes a program
check condition to be recognized if 
(1) the ORB contains the suspend-control 
bit set to zero, or (2) if the CCW is 
fetched while data chaining (see the 
section "Data Chaining" earlier in this 
chapter, concerning the handling of 
programming errors detected during data 
chaining). 

Upon recognition of the suspend 
function, suspension of channel-program 
execution occurs when the CCW becomes 
current (see the section "Channel
Command Word" earlier in this chapter, 
for a definition of when a CCW becomes 
current). If suspension occurs during 
command chaining, the device is signaled 
that command chaining is no longer in 
effect. 

RESUME SUBCHANNEL signals that the CCW 
that caused channel-program suspension 
may have been modified, that the CCW 
must be refetched, and that the contents 
of that CCW must be examined to deter-

mine the settings of the flags. If the 
S flag is one, execution of that CCW 
does not occur. If the CCW is valid and 
the S flag in the CCW is zero, execution 
is initiated (see the section "RESUME 
SUBCHAHHEL" in Chapter 14, "I/O 
Instructions" and the section "Start
Function and Resume-Function Execution" 
earlier in this chapter). 

When a valid CCW that contains a valid S 
flag becomes the current CCW during 
command chaining and the resume-pending 
condition is not recognized, the suspend 
function is performed and causes the 
following actions to occur in the order 
given: 

1. The device 
chain of 
concluded. 

is signaled 
operations 

that 
has 

the 
been 

2. Channel-program execution is sus
pended at the subchanneli all 
prefetched IDAWs ,CCWs, and data 
are discarded; and the subchannel 
is set up to perform the resume 
function when the subchannel is 
next recognized to be resume
pending. 

3. The accrued values of the mea
surement-block parameters, includ
ing the start-subchannel and sample 
count, are added to the accumulated 
values in the measurement block for 
the subchannel if the measurement
block-update mode is active and the 
subchannel is enabled for the mode. 
The start-subchannel count is the 
only parameter updated in the meas
urement block if the timing 
facility is not available for the 
subchannel. (See the section 
"Channel-Subsystem Monitoring Fa
cilities" in Chapter 17, "I/O 
Support Functions" for more infor
mation.) 

4. The subchannel is placed in the 
suspended state. 

5. If the subchannel is not resume-
pending at this point, the 
subchannel-suspended-interruption 
condition is recognized if the 
suppress-suspended-interruption bit 
of the ORB is zero; otherwise, the 
resume function is performed 
instead. 

When a valid CCW that contains a val)d S 
flag becomes the current CCW during 
command chaining and the resume-pending 
condition is recognized, the res~me 
function is performed instead of the 
suspend function. 

When the first CCW of a channel program 
contains a valid S flag and the resume
pending condition is not recognized, the 
suspend function is performed and causes 
the following actions to occur in the 
order given: 

Chapter 15. Basic I/O Functions 15-31 



1. Channel-program execution is 
suspended prior to selection of the 
device. 

2. The subchannel is set up to perform 
the resume function when the 
subchannel is next recognized to be 
resume-pending. 

3. If the measurement-block-update 
mode i s active and the subchannel 
is enabled for the mode, the START 
SUBCHAHNEL count and the accrued 
function-pending time (a function 
of the setting of the timing-
facility bit) are incremented in 
the measurement block for the 
subchannel. 

4. The subchannel is placed in the 
suspended state. 

5. If the subchannel is not resume-
pending at this point, the 
subchannel-suspended-interruption 
condition is recognized if the 
suppress-suspended-interruption bit 
of the ORB is zero; otherwise, the 
resume function is performed 
instead. 

When the first CCW of a channel program 
contains a valid S flag and the resume
pending condition is recognized, the 
resume function is performed instead of 
the suspend function. 

Programming Notes 

1. A suspended subchannel is busy for 
MODIFY SUBCHANNEL and START 
SUBCHAHNEL because the start
function bit remains set to one in 
the subchannel while the subchannel 
is in the suspended state. 

15-32 370-XA Principles of Operation 

2. 

3. 

In certain situations, normal 
resumption of a suspended channel 
program may not be desired. Normal 
termination of the suspended 
channel-program execution may be 
accomplished by: 

a. Executing HALT SUBCHANNEL 
addressed to the subchannel. 

b. Modifying the CCWs in storage 
such that when channel-program 
execution is resumed, the 
command issued to the device is 
a control command with modifier 
bits all zeros (no-operation) 
and with no chain-command flag; 
and by issuing RESUME SUBCHAN
NEL. 

If the suspended interruption is 
suppressed, the Nand DCTI values 
applicable to the preceding 
subchannel-active period are not 
made available to the program. The 
execution of RESUME SUBCHANNEL when 
the subchannel is in the suspended 
state causes the PHOM and the N bit 
to be reset to zeros. The PNOM and 
the N bit are not modified when 
RESUME SUBCHAHNEL is issued to a 
subchannel that is not in the 
suspended state. 

COMMANDS 

The figure "Command Codes" lists the 
command codes for the seven commands and 
indicates which flags are defined for 
each command. Except for a format-l CCW 
specifying transfer-in-channel, the 
flags are ignored for all commands for 
which they are not defined. The flags 
are reserved in a format-l CCW specify
ing transfer-in-channel and must be 
zeros. 



Name Code 

t.Jr i te MMf>1t1 MM01 CD CC SlI 
Read MMt1M ~1~11 0 CD CC SlI 
Read backward Mr1~'1M 1100 CD CC SlI 
Control ~1~'r1M Mfi111 CD CC SlI 
Sense MI"1MM 0 1 0 0 CD CC SlI 
Sense 10 1110 0100 CD CC SlI 
Transfer in channel 

Explanation: 

Chain command 
Chain data 

XXXX 1000 (See note 

Indirect data addressing 
Modifier bit 
Program-controlled interruption 
Suspend 
Skip 
Suppress-length indication 

Flags 

PCI IDA S 
SKIP PCI IDA S 
SKIP PCI IDA S 

PCI IDA S 
SKIP PCI IDA S 
SKIP PCI IDA S 
below) 

CC 
CD 
IDA 
M 
PCI 
S 
SKIP 
SlI 
X Ignored in a format-O CCWi must be zero in a 

format-1 CCW 

Note: Flags are ignored in a format-O transfer-in
channel CCW and must be zeros in a format-l 
transfer-in-channel CCW. 

Command Codes 

All flags have individual significance, 
except that the CC and SlI flags are 
ignored when the CD flag is on. The 
presence of the SlI flag is ignored for 
immediate operations involving format-O 
CCWs, in which case the incorrect-length 
indication is suppressed regardless of 
the setting of the flag. When executing 
format-1 CCWs, it is unpredictable 
regarding whether or not the incorrect
length indication is suppressed. The 
PCI flag is ignored during initial 
program loading. All flags, except the 
PCI flag, are ignored when the S flag is 
one. 

Each command is described below, with an 
illustration of its CCW formats. 

Programming Notes 

1. A malfunction that affects the 
validity of data transferred in an 
I/O operation is signaled at the 
end of the operation by means of 
unit check or channel-data check, 
depending on whether the device 
(control unit) or the channel 
subsystem detected the error. In 
order to make use of the checking 
facilities provided in the system, 
data read in an input operation 
should not be used until the end of 
the operation has been reached and 
the validity of the data has been 
checked. Similarly, on writing, 

the copy of data in main storage 
should not be destroyed until the 
p~ogram has verified that no 
malfunction affecting the transfer 
and recording of data was detected. 

2. An error condition may be recog
nized and the I/O operation termi
nated when 256 or more chained 
commands are executed with a device 
and none of the executed commands 
result in the transfer of any data. 
When this condition is recognized, 
program check is indicated. 

3. All CCWs that require suppression 
of incorrect-length indicatio~s 
must use the SlI flag. 

Format 0 

Data Address 

o 8 31 

C C S P I 
0 C l / C 0 S o //////// Count 

I I A 

32 35 40 48 63 

Chapter 15. Basic I/O Functions 15-33 



Format 1 

C C S P I 
MMMMMMOl D C L / C D S 0 Count 

I I A 

o 8 11 16 31 

Data Address 

32 63 

A write operation is initiated at the 
I/O device, and the subchannel is set up 
to transfer data from main storage to 
the I/O device. Data in storage is 
fetched in an ascending order of 
addresses, starting with the address 
specified in the ecw. 
A CCW used in a write operation is 
inspected for the CD, ce, SLI, PCI, IDA, 
and S flags. The setting of the skip 
flag is ignored. Bit positions 0-5 of 
the ecw contain modifier bits. 

Programming Note 

When writing on devices for which the 
block length is not defined, such as a 
magnetic-tape unit or an inquiry 
station, the amount of data written is 
controlled only by the count in the CCW. 
Every operation terminated under count 
control causes the incorrect-length 
indication, unless the indication is 
suppressed by the SlI flag. 

Format 0 

Format 1 

S 

1 
c C 5 K P I 

MMMMMMI0 D C l I C D S 0 Count 
I P I A 

o 8 16 31 

Data Address 

32 63 

A read operation is initiated at the I/O 
device, and the subchannel is set up to 
transfer data from the device to main 
storage. For devices such as magnetic
tape units, disk storage, and card 
equipment, the bytes of data within a 
block are provided in the same sequence 
as written by means of a write command. 
Data in storage is placed in an ascend
ing order of addresses, starting with 
the address specified in the CCW. 

A read command code containing zeros for 
the six modifier bits is also called an 
initial-read command. This command is 
used by those devices that can perf~rm 
the initial-program~loading function if 
the command is the first to be executed 
after a system-reset signal is received. 

A CCW used in a read operation is 
inspected for everyone of the seven 
flags -- CD, CC, SLI, SKIP, PCI, IDA, 
and S. Bit positions 0-5 of the CCW 
contain modifier bits. 

Read Backward 

Format 0 

I~M_M_M_M_M_M_l_0~1 ________ Da_t_a __ A_d_d_r_e_s_s ______ ~1 [MMMMll00Ia 
Data Address 

31 
o 8 31 

S 
S C C S K P I 

C C S K P I D C L I C D S 0 //////// Count 
D C L I C D S o //////// Count I P I A 

I P I A 
32 40 48 63 

32 40 48 63 

15-34 370-XA Principles of Operation 



Format 1 

S 
C C S K P I 

MMMM1100 D C L I C D S 0 Count 
I P I A 

o 8 16 31 

Data Address 

32 63 

A read-backward operation is initiated 
at the I/O device, and the subchannel is 
set up to transfer data from the device 
to main storage. On magnetic-tape 
units, read backward causes reading to 
be performed with the tape moving back
ward. The bytes of data within a block 
are sent in a sequence opposite to that 
on writing. The bytes are placed in 
storage in a descending order of 
addresses, starting with the address 
specified in the CCW. The bits within 
an eight-bit byte are in the same order 
as sent to the device on writing. 

A CCW used in a read-backward operation 
is inspected for everyone of the seven 
flags -- CD, CC, SLI, SKIP, PCI, IDA, 
and S. Bit positions 0-3 of the CCW 
contain modifier bits. 

Control 

Format 0 

Data Address 

o 8 31 

C C S P I 
D C L / C D S 0 //////// Count 

I I A 

32 35 40 48 63 

Format 1 

C C S P I 
MMMMMM11 D C L / C 0 S 0 Count 

I I A 

o 8 11 16 31 

H ~ _____ Dat_a_Add_re_ss ____ J 
32 63 

A control operation is initiated at the 
I/O device, and the subchannel is set up 
to transfer data from main storage to 
the device. The device interprets the 
data as control information. The 
control information, if any, is fetched 
from storage in an ascending order of 
addresses, starting with the address 
specified in the CCW. A control command 
may be used to initiate at the device an 
I/O operation not involving transfer of 
data, such as backspacing or rewinding 
magnetic tape or positioning a disk
access mechanism. 

For many control functions, the entire 
operation is specified by the modifier 
bits in the command code, and the func
tion is performed over the channel path 
as an immediate operation (see the 
section "Immediate Conclusion of I/O 
Operations" later in this chapter). If 
the command code does not specify the 
entire control function, the data
address field of the CCW designates the 
location containing the required addi
tional information. This control 
information may include an order code 
further specifying the operation to be 
perf9rmed or an address, such as the 
disk address for the seek function, and 
is transferred in response to requests 
by the device. 

A control-command code containing zeros 
for the six modifier bits is defined as 
a no-operation. If the command is 
accepted, the no-operation order causes 
the addressed device to respond with 
channel end and device end without caus
ing any action at the device. The order 
can be executed as an immediate opera
tion, or the device can delay the status 
until after the initial selection 
sequence is completed. Other operations 
that can be initiated by means of the 
control command depend on the type of 
I/O device. These operations and their 
codes are specified in the System 
Library pUblication for the device. 

A CCW used in a control operation is 
inspected for the CD, CC, SLI, PCI, IDA, 
and S flags. The setting of the skip 
flag is ignored. Bit positions 0-5 of 
the CCW contain modifier bits. 

Chapter 15. Basic I/O Functions 15-35 



Programming Notea 

1. Since a format-1 CCW with a count 
of zero is valid, the program can 
use the CCW count field to specify 
that no data be transferred to the 
I/O device. If the device requests 
a data transfer, the device is 
signaled to terminate data 
transfer. If the SLI and chain
command flags are also specified, 
and no unusual conditions are 
encountered subsequent to signaling 
the device to terminate data trans
fer, then the new operation is 
initiated upon receipt of device 
end from the device. 

2. If format-O CCWs are being used and 
the operation is executed as an 
immediate operation, incorrect 
length is not indicated, regardless 
of the setting of the SLI flag. If 
format-1 CCWs are being used, it is 
unpredictable whether incorrect 
length is indicated when a nonzero 
count is specified and the opera
tion is executed as an immediate 
operation. 

Format 0 

Data Address 

o 8 31 

S 
C C S K P I 
0 C L I C 0 S 0 //////// Count 

I P I A 

32 40 48 63 

Format 1 

S 
C C S K P I 

MMMMOI00 0 C L I C 0 S 0 Count 
I P I A 

o 8 16 31 

Oata Address 

32 63 

15-36 370-XA Principles of Operation 

A sense operation is initiated at the 
I/O device, and the subchannel is set up 
to transfer ~ense data from the device 
to storage. The data is placed in stor
age in an ascending order of addresses, 
starting with the address specified in 
the CCW. 

The basic sense command is specified 
when the modifier bits are all zeros. 
Data transferred during a basic sense 
operation provides information con
cerning both unusual conditions detected 
by the device and the status of the 
device. The information provided by the 
basic sense command is more detailed 
than that supplied by the device-status 
byte and may describe reasons for the 
unit-check indication. It may also 
indicate, for example, if the device is 
in the not-ready state, if the tape unit 
is in the file-protected state, or if 
magnetic tape is positioned beyond the 
end-of-tape mark. 

The first six bits of the first se~se
data byte (sense byte 0) are common to 
all I/O devices. The six bits, when ~et 
to ones, designate the following: 

Bit Oesignation 

0 Command reject 
1 Intervention required 
2 Bus-out check 
3 Equipment check 
4 Data check 
5 Overrun 

The following is the meaning of the 
first six bits: 

Command Reiect: The device has 
detected a programming error. A 
command has been received which the 
device is not designed to execute, 
such as read backward issued to a 
direct-access-storage device, or 
which the device cannot execute 
because of its present state, such 
as write issued to a file-protected 
tape unit. Command reject is also 
indicated when the program issues 
an invalid sequence of commands, 
such as write to a direct-access
storage device without previously 
designating the data block. 

Command reject may also be indi
cated when invalid data is trans
ferred and the data is treated as 
an extension of the command. For 
example, command reject is indi
cated when an invalid seek argument 
is transferred to a direct-access 
storage device. 

Intervention Required: The last 
operation could not be executed 
because of a condition requlrlng 
some type of intervention at the 
device. This bit set to one indi-



cates conditions such as an empty 
hopper in a card punch or the prin
ter being out of paper. It is also 
set to one when the addressed 
device is in the not-ready state, 
is in test mode, or on some control 
units when the device is not 
provided on the control unit. 

Bus-Out Check: The device has 
received a data byte or a command 
code with invalid parity over the 
channel path. During writing, 
bus-out check indicates that incor
rect data may have been recorded at 
the device, but the condition does 
not cause the operation to be 
terminated prematurely unless the 
operation is such that an error 
precludes meaningful continuation 
of the operation. Parity errors on 
command codes and control informa
tion cause the operation to be 
immediately terminated and suppress 
checking for command-reject and 
intervention-required conditions. 

Equipment Check: During the last 
operation, the device has detected 
equipment malfunctioning, such as 
an invalid card-hole count or a 
printer-buffer parity error. 

Data Check: The device has 
detected a data error other than 
one included in bus-out check. 
Data check identifies errors asso
ciated with the recording medium 
and includes conditions such as 
reading an invalid card code or 
detecting invalid parity on data 
recorded on magnetic tape. 

On an input operation, data check 
indicates that incorrect data may 
have been placed in main storage. 
The device forces correct parity on 
data sent to the channel subsystem. 
On writing, this condition indi
cates that incorrect data may have 
been recorded at the device. 
Unless the operation is of a type 
where the error precludes meaning
ful continuation, data errors on 
reading and writing do not cause 
the operation to be terminated 
prematurely. 

Overrun: The overrun condition 
occurs when t~e channel subsystem 
fails to respond to the control 
unit in the anticipated time inter
val to a request for service from 
the I/O device. When the total 
activity initiated by the program 
exceeds the capability of the chan
nel subsystem, an overrun may occur 
when data is transferred to or from 
a control unit that is either using 
the data-streaming facility or is 
not buffered. An overrun condition 
also may occur when the device 
receives the new command too late 
during command chaining. The 

data-streaming facility is 
described in the System library 
pUblication IBM System/360 and 
System/370 I/O Interface Channel to 
Control Unit OENI, GA22-6974. 
Refer to the System library publi
cation for the system model for 
information concerning the avail
ability of the data-streaming 
facility for that model. 

All information significant to the use 
of the device normally is provided in 
the first sen3e byte. Any bit positions 
following those used for programming 
information may contain diagnostic 
information, and the total number of 
sense bytes provided by the device for 
the basic sense command (command code 04 
hex) may extend up to 32 bytes, as need
ed. The number and the meaning of the 
sense bytes extending beyond the first 
sense byte are peculiar to the type of 
I/O device and are specified in the 
System Library publication for the 
device. 

The basic sense command initiates a 
sense operation on all devices and 
cannot cause the command-reject, 
intervention-required, data-check, or 
overrun bit to be set to one. If the 
control unit detects an equipment 
malfunction, or invalid parity on the 
sense-command code, the equipment-check 
or bus-out-check bit is set to one, and 
unit check is indicated in the dev1ce
status byte. 

Devices that can provide special di~g
nostlc sense information or that can be 
instructed to perform other special 
functions by use of the sense command 
may define modifier bits for the control 
of these functions. The special sense 
operations may be initiated by a unique 
combination of modifier bits (see the 
section "Sense 10" later in this 
chapter), or a group of codes may speci
fy the same function. Any remaining 
sense-command codes may be considered 
invalid, thus causing the unit-check 
indication, or may cause the same action 
as the basic sense command, depending 
upon the type of device. 

The sense information pertaining to the 
last I/O operation or device action may 
be reset any time after the completion 
of a sense command addressed to that 
device. Except for the no-operation 
command, any other command addressed to 
the device may be allowed to reset the 
sense information, provided that the 
busy bit is not included in the initial 
status. The sense information may also 
be changed as a result of asynchronous 
actions, for example, when the device 
changes from the not-ready to ready 
state. 

A CCW used in a sense operation is 
inspected for everyone of the seven 
flags -- CD, CC, SLI, SKIP, PCI, IDA, 

Chapter 15. Basic I/O Functions 15-37 



and S. Bit positions 0-3 of the CCW 
contain modifier bits. 

Format 0 

Data Address 

o 8 31 

S 
C C S K P I 
0 C L I C 0 S o //////// Count 

I P I A 

32 40 48 63 

Format 1 

s 
C C S K P I 

11100100 0 C L I C 0 S 0 Count 
I P I A 

o 8 16 31 

Data Address 

32 63 

Execution of the sense-IO command 
proceeds exactly as for a read command, 
except that the data is obtained from 
sensing indicators rather than from a 
record source. The data transferred can 
be up to seven bytes in length. ~ 

The control unit and I/O device may 
properly execute the sense-IO command, 
may execute the command as the basic 
sense command, or may reject the sense
ID command with unit-check status. 
Refer to the System Library publication 
for the control unit and device. 

The sense-IO command does not initiate 
any operations other than the sensing of 
the type/model number. If the control 
unit and I/O device are available, then 
execution of the sense-IO command is 
performed even if the device is absent 
or not ready. 

Basic sense 
result of 
command. 

data may be reset as a 
executing the sense-IO 

15-38 370-XA Principles of Operation 

The bytes sent in response to the 
sense-IO command are defined as follows: 

Byte 0 
Byte 1 
Byte 2 
Byte 3 
Byte 4 
Byte 5 
Byte 6 

FF hex 
Control-unit type number 
Control-unit type number 
Control-unit model number 
Device type number 
Device type number 
Device model number 

All unused sense bytes are set to zeros. 

Bytes 1 and 2 contain the four-decimal
digit control-unit type number that 
corresponds directly with the control
unit type number attached to the control 
unit. 

Byte 3 contains the control-unit model 
number, if applicable. If not applica
ble, byte 3 is a byte of all zeros. 

Bytes 4 and 5 contain the four-decimal
digit device type number that corre
sponds directly with the device type 
number attached to the I/O device. 

Byte 6 contains the device model number, 
if applicable~ If not applicable, byte 
6 is a byte of all zeros. 

Whenever a control unit is not separate
ly addressable from the attached device 
or devices, the response to the sense-IO 
command is a concatenation of the 
control-unit type number and the device 
type number. 

If a control unit can be addressed sepa
rately from the attached device or 
devices, then the sense data source for 
the sense-IO command is four bytes in 
length. (A subchannel is assigned for 
this type of control unit.> If a 
control unit is addressed, the response 
to the sense-IO command is bytes 0, 1, 
2, and 3. If the device is addressed, 
the response to the sense-IO command is 
bytes 0, 4, 5, and 6. 

For communication controllers utili2ing 
indirect addressing to end devices, ~nd 
for cases where the control uni t ilnd 
device are not distinct, the sense data 
source consists solely of bytes 0, 1, 2, 
and 3. 

A CCW used in a sense-IO operation is 
inspected for every flag CD, CC, SLI, 
SKIP, PCI, IDA, and S. 



Transfer in Channel 

Format 0 

CCW Address 

o 4 8 31 

///////////////////////////////// 

32 63 

Format 1 

10000100010000000000000000000000001 

o 8 31 

CCW Address 

32 63 

The next CCW is fetched from the 
location in absolute main storage desig
nated by the data-address field of the 
CCW specifying transfer in channel. The 
transfer-in-channel command does not 
initiate any I/O operation, and the I/O 
device is not signaled of the execution 
of the command. The purpose of the 
transfer-in-channel command is to 
provide chaining between CCWs not 
located in adjacent doubleword locations 
in an ascending order of addresses. The 
command can occur in both data and 
command chaining. 

To address a CCW on integral boundaries 
for doublewords, a CCW specifying trans
fer in channel must contain zeros in the 
three low-order bit positions of the 
data-address field. Furthermore, a CCW 
specifying a transfer in channel may riot 
be fetched from a location designated by 
an immediately preceding transfer in 
channel. When either of these errors is 
detected or when an invalid address is 
specified in transfer in channel, the 
program-check condition is generated. 
When the transfer-in-channel command 
designates a CCW in a location protected 
against fetching, the protection-check 
condition is generated. Detection of 
these errors during data chaining causes 
the operation at the I/O device to be 
terminated and an interruption condition 
to be generated, whereas during command 
chaining it causes only an interruption 
condition to be generated. 

The contents of the second half of the 
format-O CCW, bit positions 32-63, are 
ignored. Similarly, the contents of bit 
positions 0-3 of the format-O CCW are 
ignored. 

Bit positions 0-3 and 8-32 of the 
format-1 CCW must contain zeros; other-

wise, a program-check condition 
generated. 

COMMAND RETRY 

is 

The channel subsystem has the capability 
to perform command retry, a procedure 
that causes a command to be retried 
without requiring an I/O interruption. 
This retry is initiated by the control 
unit presenting either of two status-bit 
combinations by means of a special 
sequence. When immediate retry can be 
performed, it presents a channel-end, 
unit-check, and status-modifier status
bit combination, together with device 
end. When immediate retry cannot be 
performed, the presentation of device 
end is delayed until the control unit is 
prepared. When the device end is 
presented alone, the previous command is 
reissued. If device end is accompanied 
by status modifier, command retry is not 
performed, and the channel subsystem 
command chains to the CCW following the 
one for which command retry was signaled 
(see the section "Status Modifier" in 
Chapter 16, "I/O Interruptions"). When 
the channel subsystem is not capable of 
performing command retry due to an error 
condition, or when any status bit other 
than device end or device end and status 
modifier accompanies the requested 
command retry initiation, the retry is 
suppressed, and the subchannel becomes 
status-pending. The SCSW stored by TEST 
SUBCHANNEL contains the channel-end, 
unit-check, and status-modifier statu~ 
indications, ~long with any other appro
priate status. 

Programming Note 

The following possible results of a 
command retry must be anticipated by the 
program: 

1. A CCW containing a PCI may, if 
retried because of command retry, 
cause multiple PCI interruptions to 
occur. 

2. If a CCW used in an operation is 
changed before that operation has 
been successfully completed, the 
results are unpredictable. 

CONCLUDING I/O OPERATIONS DURING INITt
ATION 

After the addressed subchannel has been 
determined to be in a state where START 
SUBCHANNEL can be executed, certain 
tests are performed on the validity of 
the information specified by the program 

Chapter 15. Basic I/O Functions 15-39 



and on the logical availability of the 
associated I/O device. This testing 
occurs during or subsequent to the 
execution of START SUBCHANNEL and during 
command chaining and command retry. 

A data-transfer operation is initiated 
at the subchannel and device only when 
no programming or equipment errors are 
detected by the channel subsystem and 
when the device responds with zero 
status during the initiation sequence. 
When the .channel subsystem detects or 
the device signals any unusual condition 
during the initiation of an I/O opera
tion, the command is said to be not 
accepted. In this case, the subchannel 
becomes primary-, secondary-, and 
alert-status-pending. Deferred condi
tion code 1 is set, and the start
pending bit remains set to one. 

Conditions that preclude the initiation 
of an I/O operation are detailed in the 
SCSW stored by TEST SUBCHANNEL. In this 
situation, the device is not started, no 
interruption conditions are generated 
subsequent to TEST SUBCHANNEL, and the 
subchannel is idle. The device is imme
diately available for the initiation of 
another operation, provided the command 
was not rejected because of the busy or 
not-operational condition. 

When an unusual condition causes a 
command to be not accepted during the 
initiation of an I/O operation by 
command chaining or command retry, an 
interruption condition is generated, and 
the subchannel becomes status-pending 
with combinations of primary, secondary, 
and alert status as a function of the 
status signaled by the device. The 
status describing the condition remains 
at the subchannel until cleared by TEST 
SUBCHANNEL. The conditions are indi
cated to the program by means of the 
corresponding status bits in the SCSW. 
A path-not-operational condition recog
nized during command chaining is 
signaled to the program by means of an 
interface-control-check indication. The 
new I/O operation at the device is not 
started. 

START SUBCHANNEL is executed indepen
dently of its associated device. Tests 
on most program-specified information, 
on device availability and unit status, 
and on most error conditions are 
performed subsequent to the execution of 
START SUBCHANNEL. When any conditions 
are detected that preclude execution of 
the start function, an interruption 
condition is generated by the channel 
subsystem and placed in the subcha~nel, 
causing it to become status-pending. 

15-40 370-XA Principles of Operation 

IMMEDIATE CONCLUSION OF I/O OPERATIONS 

During the initiation of an I/O opera
tion, the device can accept the command 
and signal the channel-end condition 
immediately upon receipt of the command 
code. An I/O operation causing the 
channel-end condition to be signaled 
during the initiation sequence is called 
an immediate operation. Status gener
ated by the device for the immediate 
command, when command chaining is not 
specified and command retry is not 
signaled, causes the subchannel to 
become status-pending with combinations 
of primary, secondary, intermediate, and 
alert status as a function of indi
cations provided in the ORB and CCW and 
status presented by the device. A 
deferred condition code 1 is set and 
accompanies the status indications. If 
intermediate status is indicated, the 
indication can occur only as a result of 
the CCW having the PCI flag set to one 
(see the section "Program-Controlled 
Interruption" later in this chapter). 

Whenever command chaining is specified 
after an immediate operation and no 
unusual conditions have been detected 
during the execution, or when command 
retry occurs for an immediate operation, 
an interruption condition is not gener
ated. The subsequent commands in the 
chain are handled normally, and, 
usually, the channel-end condition for 
the last CCW generates a primary
interruption condition. If device end 
is signaled with channel end, a 
secondary-interruption condition is also 
generated. 

Whenever immediate completion of an I/O 
operation is signaled, no data has been 
transferred to or from the device, and 
the data address in the CCW is not 
checked for validity. In the case of 
format-O CCWs, incorrect length is not 
in~icated to the program, and command 
chaining is performed when so specified. 
In the case of format-l CCWs, it is 
unpredictable whether incorrect length 
and command chaining are under control 
of the chain-command and SLI flags if a 
nonzero count was specified in the CCW. 

Programming Note 

I/O operations for which the entire 
operation is specified in the command 
code may be executed as immediate oper
ations. Whether the command is executed 
as an immediate operation depends on the 
operation and type of device and is 
specified in the System Library publica
tion for the device. 



CONCLUDING I/O OPERATIONS DURING DATA 
TRANSFER ---

When the subchannel has been passed the 
contents of an ORB, the subchannel is 
said to be start-pending. When the I/O 
operation has been initiated and the 
command has been accepted, the subchan
nel becomes subchannel-and-device active 
and remains in that state unless the 
channel subsystem detects an equipment 
malfunction, the operation is concluded 
by CLEAR SUBCHANNEL or HALT SUBCHANNEL, 
or primary-interruption status (usually 
the channel-end signal) is received from 
the device. When no command chaining or 
command retry is specified or when 
chaining is suppressed because of unusu
al conditions, primary-interruption 
status causes the operation at the 
subchannel to be terminated and an 
interruption condition to be generated. 
The status bits in the associated SCSW 
indicate the primary status and the 
unusual conditions, if any. The device 
can signal primary-interruption status 
at any time after the initiation of the 
I/O operation, and the signal may occur 
before any data has been transferred. 

For operations not involving data trans
fer, the device normally controls the 
timing of the channel-end condition. 
The duration of data-transfer operations 
may be variable and may be controlled by 
the device or the channel sUbsystem. 

Excluding equipment errors, CLEAR 
SUBCHANNEL, HALT SUBCHANNEL, and RESET 
CHANNEL PATH, the channel subsystem 
signals the device to conclude execution 
of an I/O operation during data transfer 
whenever any of the following conditions 
occurs: 

• The storage areas specified for the 
operation are exhausted or filled. 

• A program-check condition is detec
ted. 

• A protection-check condition is de
tected. 

• A chaining-check condition is de
tected. 

• A channel-control-check condition 
is detected that does not affect 
the control of the I/O operation. 

The first of these conditions occurs 
when the channel SUbsystem has decre
mented the count to zero in the last CCW 
associated with the operation. A count 
of zero indicates that the channel 
subsystem has transferred all informa
tion specified by the I/O operation. The 
other four conditions are due to errors 
and cause a premature conclusion of data 
transfer. In either case, the conclu
sion is signaled in response to a 
service request from the device and 

causes data transfer to cease. If the 
device has no blocks defined for the 
operation (such as writing on magnetic 
tape), it concludes the operation and 
generates the channel-end condition. 

The device can control the duration of 
an operation and the timing of channel 
end by blocking of data. On certain 
operations for which blocks are defined 
(such as reading on magnetic tape), the 
device does not provide the channel-end 
signal until the end of the block is 
reached, regardless of whether the 
device has been previously signaled to 
conclude data transfer. 

Checking for the validity of the data 
address is performed only as data is 
transferred to or from main storage. 
When the initial data address in the CCW 
is invalid, no data is transferred 
during the operation, and the device is 
signaled to conclude the operation in 
response to the first service request. 
On writing, devices such as magnetic
tape units request the first byte of 
data before any mechanical motion is 
started and, if the initial data address 
is invalid, the operation is concluded 
before the recording medium has been 
advanced. However, since the operation 
has been initiated at the I/O device, 
the device generates a channel-end 
primary-interruption condition. Subse
quently, the device also generates a 
device-end secondary interruption condi
tion. Whether a block at the device is 
advanced when no data is transferred 
depends on the type of device and is 
specified in the System Library publica
tion for the device. 

When command chaining takes place, the 
subchannel is in the subchannel-and
device-active states from the time the 
first I/O operation is initiated at the 
device until the device signals the 
channel-end condition of the last I/O 
op€ration of the chain. The subchannel 
remains in the device-active state until 
the device signals the device-end condi
tion of the last I/O operation of the 
chain. 

Any unusual conditions cause command 
chaining to be suppressed and a 
primary-interruption condition to be 
generated. The unusual conditions can 
be detected by either the channel 
subsystem or the device, and the device 
can provide the indications with channel 
end, control-unit end, or device end. 
When the channel subsystem is aware of 
the unusual condition by the time the 
channel-end signal for the operation is 
received, the chain is ended as if the 
operation dut'ing which the condition 
occurred were the last operation of the 
chain. The device-end signal subse
quently is processed as a secondary
interruption condition. When the device 
signals unit check or unit exception 
with control-unit end or device end as 

Chapter 15. Basic I/O Functions 15-41 



the primary-interruption condition, the 
subchannel-and-device-active state of 
the subchannel is terminated, and the 
subchannel is made status-pending with 
primary, secondary, and alert status. 
Intermediate status may also be indi
cated as a function of the PCI flag 
specified in the CCW. The channel-end 
indication which was presented to the 
channel subsystem previously when 
command chaining was signaled is not 
made available to the program. 

CHANNEl-PATH-RESET-FUNCTION EXECUTION 

Subsequent to the execution of RESET 
CHANNEL PATH, the channel-path-reset 
function is performed. Execution of the 
function consists in: (1) issuing the 
reset signal on the designated channel 
path and (2) causing a channel report to 
be made pending, indicating completion 
of the channel-path-reset function. 

Channel-Path-Reset-Function Signaling: 
Subsequent to channel-path selection, 
the channel sUbsystem issues the reset 
signal on the specified channel path. 
As part of this operation, the following 
actions are taken: 

1. All internal indications relative 
to prior control-unit busy, device 
busy, and allegiance conditions for 
the designated channel path are 
reset. These indications are reset 
in all subchannels that have access 
to the designated channel path. 
The reset function has no other 
effect on subchannels, including 
those having I/O operations in 
progress. 

2. If the channel path fails to 
respond properly to the reset 
signal (see the discussion of the 
reset signal in the section "1/0-
System Reset" in Chapter 17, "I/O 
Support Functions," for a detailed 
description) or, because of a 
malfunction, the reset signal could 
not be issued, the corresponding 
bit in the path-available mask 
(PAM) is set to zero in each appli
cable subchannel. 

3. If an I/O operation is in progress 
at the device and the device is 
activelY communicating over the 
channel path in the performance of 
that I/O operation when the reset 
signal is received on that path, 
the I/O operation is reset, and the 
control unit and device immediately 
terminate current communication 
with the channel subsystem. (But 
see programming note 2 below.) 

4. If an I/O operation is in progress 
in multi path mode at the device and 
the device is not currently commu-

15-42 370-XA Principles of Operation 

nicating over the channel path in 
performance of that I/O opera~ion 
when the reset signal is received, 
then whether the I/O operation is 
reset depends on whether there is 
another channel path that is avail
able for selection in the same 
multi path group for the device. If 
there is at least one other channel 
path in the multi path group for the 
device that is available for 
selection~ the I/O operation is not 
reset. However, the path over 
which the system reset is received 
is removed from the current set of 
paths that form the multi path 
group. If the channel path over 
which the reset signal is received 
is either the only channel path of 
a multipath group or the device is 
operating in single-path mode, the 
I/O operation is reset. 

5. The channel-path-reset function 
causes I/O operations to be termi
nated at the device as described 
above; however, I/O operations are 
never terminated at the subchannel 
by the channel-path-reset function. 

If an I/O operation is in progress 
at the subchannel and the channel 
path currently being used is the 
same channel path as specified when 
execution of the channel-path-reset 
function is performed, the subchan
nel mayor may not accurately 
reflect the progress of the I/O 
operation up to that point in time. 
The subchannel remains in the state 
that exists at the time channel
path reset is performed until the 
state is changed because of some 
action taken by the program or by 
the device. 

Channel-Path-Reset Function-Completion 
Signaling: After the reset signal has 
been issued, an attempt has been made by 
the channel subsystem to issue the reset 
signal, or the channel subsystem has 
determined that the reset signal cannot 
be issued, the reset function is 
completed. (See the section "Reset 
Signal" in Chapter 17, "I/O Support 
Functions.") 

As a result of the channel-path-reset 
function being performed, a channel 
report is made pending (see the section 
"Channel-Subsystem Recovery" in Chapter 
17, "I/O Support Functions") to report 
the results. If the channel path 
responds properly to the system-reset 
signal, the channel report indicates 
that the channel path has been initial
ized and is physically available for 
use. If the reset signal was issued but 
either the channel path failed to 
respond properly or the corresponding 
bit in the. PAM for all subchannels 
having access to that path was already 
zero, the channel report indicates that 
the channel path has been initialized 



but is not physically available for use. 
If, because of a malfunction or because 
the specified channel path is not in the 
configuration, the system-reset signal 
could not be issued, the channel report 
indicates that the channel path has not 
been initialized and is not physically 
available for use. 

Programming Notes 

1. If an I/O operation is in progress 
in multi path mode when channel-path 
reset is performed on a channel 
path of the multipath group, it is 
possible for the I/O operation to 
be continued on a remaining path of 
the group. 

2. When the performance of the 
channel-path-reset function causes 
the I/O operation at the device to 
be reset, unsolicited device-end 
status presented by the device, if 
any, may be erroneously interpreted 

by the channel sUbsystem to be 
chaining status and thus cause the 
channel subsystem to continue the 
chain of commands. In such a situ
ation, tne device end is not made 
available to the program and the 
reselectTon of the device by the 
channel subsystem may be treated by 
the device as the beginning of a 
new channel program. This possi
bility can be avoided by issulng 
CLEAR SUBCHANNEL or HALT SUBCHANNEL 
to the affected subchannels prior 
to issuing RESET CHANNEL PATH. 

3. Execution of the channel-path-reset 
function may, on some models, cause 
overruns to occur on other channel 
paths. 

4. Even though reset is signaled on 
the designated channel path, alle
giances to that channel path by one 
or more devices may not have been 
reset because of a malfunction in a 
control unit or a malfunction in 
the physical path to the control 
unit. 

Chapter 15. Basic I/O Functions 15-43 





CHAPTER 16. I/O INTERRUPTIONS 

Interruption Conditions ••••••••••••••••••••••••••••••••••• 16-2 
Unsolicited Interruption Condition •.•••••••••••••••••• 16-3 
Solicited Interruption Condition •••••••••••••••••••••• 16-3 

Intermediate Interruption Condition ••.••••••.••••••••••• 16-4 
Primary Interruption Condition •••••••.•••••••••••••••••• 16-4 
Secondary Interruption Condition •••••.••.•.••••••••••••• 16-4 
Alert Interruption Condition •••••••••••••••••••••••••••• 16-5 

Priority of Interruptions ••••••••••••••.••••••••••.••••••• 16-5 
Interruption Action ••••••••••••••••••••.•••••••••••••••••• 16-6 
Interruption-Response Block (IRB) ••••••••••••••••••••••••• 16-6 

Subcha~nel-Status Word (SCSW) ••••••.••.••••••••••••••• 16-7 
Extended-Status Word •.•••••••••••••.••••••.••••••••••• 16-8 
Extended-Control Word ••••••••••••••••••••••••••••••••• 16-8 

Subchannel-Status-Word.Contents ••••••••••••••••••••••••••• 16-8 
Subchannel Key ••.••••••••••••••••••.•••••.•••••••••••• 16-8 
Suspend Control (S) •••.•••••••••.•••••.••••••••••••••• 16-8 
Extended-Status-Word Format (l) .•••••••••••••••••••••• 16-8 

Deferred-Condition-Code Contents ••••.••••••••.••••••.••• 16-9 
Forma t (F) .••••••••••••••••••••.••.•••••.••••••••••••. 16 -11 
Prefetch (P) ••••••••.•••••••••••••••••.••••••••••••••• 16-11 
Initial-Status-Interruption Request (I) ••••••••••••••• 16-12 
Address-limit-Checking Control (A) .•••••••••••.••••••• 16-12 
Suppress-Suspended Interruption (U) ••••••••.•••••••••• 16-12 

Subchannel-Control-Field Contents ••••••••••••.•••••••••• 16-12 
Zero Condition Code (Z) ••••••••••••••••••• ~ •••••••••.. 16-12 
Extended Control (E) •••••••••••••••••••••• ~ .•••••••••• 16-12 
Path Not Operational (N) •••••••••••••••••••••••••••••• 16-13 
Function Control •••••••••••••••••••••••••••••••••••••• 16-13 
Activity Control •••••..•••••••••.•.•••.••••. ~ ••••• ~ ••. 16-14 
Status Control .•••••••••••••••••.••••••••••••••••••••• 16-16 

Device-Status Conditions ••••••••••••••••.••••.•••••••••. 16-18 
Attention ••••••••••••••••••••••••••••••••••••••••••••. 16-19 
Status Modifier •••••••••.•••••••.••••••••••.•••••••••• 16-19 
Control-Unit End •••••••••••••••••••••••••••.•••••••••• 16-19 
Busy ••••••••••••.••••••••••••••••••••••••••••••••••••• 16-21 
Channel End •••••••••••.•••••••.••••••••••••••••••••••. 16-21 
Device End •••••••••.•••••••••••••••••••••••••••••••.•• 16-21 
Unit Check •.•••••••••••••••••••••••••••••••••••••••••• 16-22 
Unit Exception •••••••••••••••••••••••..••••.•••••••••• 16-23 

Subchannel-Status Conditions ••••.••••••••••••••••••••••• 16-23 
Program-Controlled Interruption ••••••••••••••••••••••• 16-24 
Incorrect length •••••••••••••••••••••.•••••••••••••••• 16-24 
Program Check ••••••••••••••••••••••••••.•...•••••••••• 16-24 
Protection Check •••••••••••••••••••••••••••••••••••••• 16-25 
Channel-Data Check •••••••••••••••••••••••••••••••••••• 16-26 
Channel-Control Check ••••••••••••••.•••••••••••••••••• 16-26 
Interface-Control Check ••••••••••••••••••••••••••••••• 16-27 
Chaining Check .•••••••••••••••••••••••••.•.•••••••••••• 16-27 

CCW-Address-Field Contents •••••••••••••••••••••••••••••• 16-28 
Count-Field Contents •••••••••••••••••••••••.••••••••••.• 16-33 

Extended-Status-Word Contents •••••••••••.••••••••••••••••• 16-35 
Extended-Status Format 0 •••••••••••••••••••••••••••••••• 16-36 
Extended-Status Format 1 •••••••••••••.•••••••••••••••••• 16-40 
Extended-Status Format 2 •••••••••.•••••••••••••••.•••••• 16-40 
Extended-Status Format 3 •••••••••.•••••••••••••••••••••• 16-41 

Extended-Control Word •..•••.••••••.•••..•.•••••••••••••••• 16-43 

When an I/O operation or sequence of I/O 
operations initiated by START SUBCHANNEl 
is ended, the channel subsystem and the 
device generate status conditions. The 
generation of these conditions can be 
brought to the attention of the program 
by means of an I/O interruption or by 

TEST PENDING INTERRUPTION. (During cer
tain abnormal situations, these condi
tions can be brought to the attention of 
the program via a machine-check inter
ruption. See the section "Channel
Subsystem Recovery" in Chapter 17, "I/O 
Support Functions," for details.) The 

Chapter 16. I/O Interruptions 16-1 



status conditions, as well as an address 
and a count indicating the extent of the 
operation sequence, are presented to the 
program in the form of a subchannel
status word (SCSW). The SCSW is stored 
in an interruption-response block (IRB) 
during the execution of TEST SUBCHANNEL. 

Normally an I/O operation is in 
execution until the device signals 
primary interruption status. Primary 
interruption status can be signaled 
during initiation of an I/O operation, 
or later. An I/O operation can be 
terminated by the channel subsystem 
executing a clear or halt function when 
it detects an equipment malfunction, a 
program check, a chaining check, a 
protection check, or an incorrect-length 
condition, or by executing a clear, 
halt, or channel-path-reset function as 
a result of the program issuing CLEAR 
SUBCHANNEL, HALT SUBCHANNEL, or RESET 
CHANNEL PATH, respectively. 

I/O interruptions provide a means for 
the CPU to change its state in response 
to conditions that occur at I/O devices 
or subchannels. These conditions can be 
caused by the program, by the channel 
subsystem, or by an external event at 
the device. 

INTERRUPTION CONDITIONS 

The conditions causing requests for I/O 
interruptions to be initiated are called 
I/O-interruption conditions. When an 
interruption condition is recognized by 
the channel subsystem, it is indicated 
at the appropriate subchannel. The 
subchannel is then said to be status
pending. The subchannel becoming 
status-pending causes the channel 
subsystem to generate an 1/0-
interruption request. An 1/0-
interruption request can be brought to 
the attention of the program only once. 

An I/O-interruption request remains 
pending until it is accepted by a CPU in 
the configuration, is withdrawn by the 
channel subsystem, or is cleared by TEST 
PENDING INTERRUPTION, TEST SUBCHANNEL, 
CLEAR SUBCHANNEL, or subsystem reset. 
When a CPU accepts' an interruption 
request and stores the associated inter
ruption code, the interruption request 
is cleared. Alternatively, an 1/0-
interruption request can be cleared by 
TEST PENDING INTERRUPTION. In either 
case, the subchannel remains status
pending until the associated 
interruption condition is cleared when 
TEST SUBCHANNEL is executed or the 
subchannel is reset. 

An I/O-interruption condition is normal
ly cleared by TEST SUBCHANNEL. If TEST 
SUBCHANNEL is' issued to a subchannel 
that has an I/O-interruption request 

16-2 370-XA Principles of Operation 

pending, both the interruption request 
and the interruption condition at the 
subchannel are cleared. The inter
ruption request and the interruption 
condition can also be cleared by CLEAR 
SUBCHANNEL. 

A device-end status condition generated 
by the I/O device and presented follow
ing the conclusion of the last I/O oper
ation of a start function is reset at 
the subchannel by the channel subsystem 
without generating an I/O-interruption 
condition or I/O-interruption request if 
the subchannel is currently start
pending and if the status contains 
device end alone or accompanied by 
control-unit end. If any other status 
bits accompany the device-end status 
bit, then the channel subsystem gener
ates an I/O-interruption request with 
deferred condition code 1 indicated. 

When an I/O operation is terminated 
because of an unusual condition detected 
by the channel subsystem during the 
command initiation sequence, status 
describing the interruption condition is 
placed at the subchannel, causing it to 
become status-pending. If the unusual 
condition is detected by the device, the 
device-status field of the associated 
SCSW identifies the condition. 

When command chaining takes place, the 
generation of status by the device does 
not cause an interruption, and the 
stotus is not made available to the 
program. 

When the channel subsystem detects any 
of the following interruption condi
tions, it initiates a request for an I/O 
interruption without necessarily commu
nicating with, or having received the 
status byte from, the device: 

• A programming error associated with 
the contents of the ORB passed to 
the subchannel by the previous 
START SUBCHANNEL 

• A valid suspend flag in the first 
CCW fetched that initiates 
channel-program execution for 
either a START SUBCHANHEL or RESUME 
SUBCHANNEL, and suppress suspended 
interruption not specified in the 
ORB 

• A programming error associated with 
the first CCW or first IDAW 

These interruption conditions from the 
subchannel, except for the suspended 
condition, can be accompanied by other 
subchannel-status indications, but none 
of the device-status bits are on. 

The channel subsystem issues the clear 
signal to the device when status 
containing unit check is presented to a 
subchannel that is disabled or when the 
device is not associated with any 



subchannel. However, if the presented 
status does not contain unit check, the 
status is accepted by the channel 
subsystem and discarded without causing 
the subchannel to be set status-pending. 

An interruption condition caused by the 
device may be accompanied by multiple 
device-status conditions. Further, more 
than one interruption condition associ
ated with the same device can be 
accepted by the channel subsystem with
out an intervening I/O interruption. As 
an example, when the channel-end condi
tion is not cleared at the device by the 
time device end is generated, both 
conditions may be cleared at the device 
concurrently and indicated in the SCSW 
together. Alternatively, channel~end 
status may have been previously accepted 
at the subchannel, and an I/O inter
ruption may have occurred; however, the 
associated status-pending condition may 
not have been cleared by TEST SUBCHANNEL 
by the time device-end status was 
accepted at the subchannel. In this 
situation, the device-end status may be 
merged with the channel-end status with
out causing an additional I/O 
interruption. Whether an interruption 
condition may be merged at the subchan
nel with other existing interruption 
conditions depends upon whether the 
interruption condition is unsolicited or 
solicited. 

Unsolicited Interruption Condition 

An unsolicited interruption condition is 
any interruption condition which is 
unrelated to the execution of a clear, 
halt, resume, or start function. An 

unsolicited interruption condition is 
identified at the subchannel as alert 
status. An unsolicited interruption 
condition can be generated only when the 
subchannel is not device-active. 

The subchannel and device status associ
ated with an unsolicited interruption 
condition is never merged with that of 
any currently existing interruption 
condition. If the subchannel is 
currently status-pending, the unsolicit
ed interruption condition is held in 
abeyance in either the channel subsystem 
or the device, as appropriate, until the 
status-pending condition has been 
cleared. 

Solicited Interruption Condition 

A solicited interruption condition is 
any interruption condition generated as 
a direct consequence of executing or 
attempting to execute a clear, halt, 
resume, or start function. Solicited 
interruption conditions include any 
interruption condition generated while 
the subchannel is either subchannel
and-device-active or device-active. The 
subchannel and device status associated 
with a solicited interruption condition 
may be merged at the subchannel with 
that of another currently existing 
solicited interruption condition. The 
figure "Interruption Condition for 
Status-Control-Bit Combinations" 
describes the interruption condition 
that results from any combination of 
bits in the status-control field of the 
SCSW. 

Chapter 16. I/O Interruptions 16-3 



Status-Control Field Status-Control-Bit Combinations 

Alert 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
Primary 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 
Secondary 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 
Intermediate 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 
Status pending 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Resulting interrup- E S S S S S I S S S S S S I S S 
tion condition 

Ex~lanation: 

0 Indicates the bit stored as zero 

1 Indicates the bit stored as one 

E Unsolicited or solicited interruption condition 

S Solicited interruption condition 

I Combination invalid 

Interruption Condition for Status-Control-Bit Combinations 

INTERMEDIATE INTERRUPTION CONDITION 

An intermediate interruption condition 
is a solicited interruption condition 
that indicates that an event for which 
the program had previously requested 
notification has occurred. An interme
diate interruption condition is 
described by solicited subchannel 
status, the Z bit, the subchannel
suspended condition, or any combination 
of the three. An intermediate inter
ruption condition can occur only after 
it has been requested by the program 
through the use of flags in the ORB or a 
CCW. Depending on the state of the 
subchannel, execution or suspension of 
the I/O operation continues, unaffected 
by the setting of the intermediate
status bit. 

An intermediate interruption condition 
can occur only when the subchannel is in 
one of the following states: 

1. Subchannel-active 

2. Status-pending with primary status 
alone 

3. Status-pending with primary status 
together with alert status and/or 
secondary status 

4. Suspended 

If only the intermediate-status bit and 
the status-pending bit of the status
control field are ones during the 
execution of TEST SUBCHANNEL, the 
device-status field is zero. 

16-4 370-XA Principles of Operation 

PRIMARY INTERRUPTION CONDITION 

A primary interruption condition is a 
solicited interruption condition that 
indicates execution of the start func
tion is completed at the subchannel. A 
primary interruption condition is 
described by the SCSW stored as a result 
of executing TEST SUBCHANNEL while the 
subchannel is primary-status-pending. 
Once the primary interruption condition 
is indicated at the subchannel, the 
channel subsystem is no longer actively 
participating in the I/O operation by 
transferring commands .or data. When a 
subchannel is status-pending with a 
primary interruption condition, 
execution of any of the following 
instructions results in the setting of a 
nonzero condition code: HALT 
SUBCHANNEL, MODIFY SUBCHANNEL, RESUME 
SUeCHANNEL, and START SUBCHANHEL. Once 
the primary interruption condition is 
cleared by issuing TEST SUBCHANNEL, the 
subchannel accepts the START SUBCHANHEL 
instruction. (See the section "START 
SUBCHANNEL" in Chapter 14, "I/O 
Instructions.") 

SECONDARY INTERRUPTION CONDITION 

A secondary interruption condition is a 
solicited interruption condition that 
normally indicates the termination of an 
I/O operation at the device. A second
ary interruption is generated by the 
channel subsy~tem when the start func
tion is terminated because a solicited 
alert condition is recognized prior to 
initiating the first I/O operation at 
the device. A secondary interruption 



condition is described by the SCSW 
stored as a result of executing TEST 
SUBCHANNEL while the subchannel is 
secondary-status-pending. Once the 
device has signaled the secondary inter
ruption condition to the channel 
subsystem, execution of the start func
tion is completed at the device. 

ALERT INTERRUPTION CONDITION 

An alert interruption condition is 
either a solicited interruption condi
tion that indicates the occurrence of an 
unusual condition in a halt, resume, or 
start function or an unsolicited inter
ruption condition that describes a 
condition unrelated to the execution of 
a halt, resume, or start function. An 
alert interruption condition is 
described by the SCSW stored as a result 
of executing TEST SUBCHAHNEL while the 
subchannel is alert-status-pending. An 
alert-interruption condition may be 
generated by either the channel subsys
tem or the device. Nonzero alert status 
is always brought to the attention of 
the program. Whenever the subchannel is 
idle and zero status is presented by the 
device, the status is discarded. 

PRIORITY OF INTERRUPTIONS 

All requests for an I/O interruption are 
asynchronous to any activity in any CPU, 
and interruption requests associated 
with more than one subchannel can exist 
at the same time. The priority of 
interruptions is controlled by two types 
of mechanisms -- one establishes within 
the channel SUbsystem the priority among 
interruption requests from subchannels 
associated with the same interruption
subclass code, and another establishes 
within a given CPU the priority among 
requests from subchannels with different 
interruption-subclass codes. The chan
nel subsystem requests an I/O 
interruption only after it has estab
lished priority among requests from its 
subchannels. The conditions responsible 
for the requests are preserved at the 
subchannels until cleared by a CPU issu
ing TEST SUBCHAHNEL or CLEAR SUBCHANNEL 
or until I/O-system reset is performed. 

Assignment of priority by the channel 
subsystem to requests for I/O inter
ruptions is in the order that the need 
for interruption requests is recognized 
by the channel subsystem. The order of 
recognition by the channel subsystem is 
a function of the type of interruption 
condition and the type of channel path. 
For the I/O interface channel-path type, 
the order depends on the electrical 
position of the device on the channel 

path to which it is attached. A 
device's electrical position on the I/O 
interface is not related to its device 
address. 

The channel subsystem requests an I/O 
interruption by logically enqueuing the 
corresponding subchannel on the appro
priate I/O-interruption-subclass queue, 
as specified by the I/O-interruption
subclass code contained in the 
subchannel. 

Among subchannels requesting I/O inter
ruptions with the same interruption
subclass code (that is, that are in the 
same interruption-subclass queue), 
priority for interruption is based on 
position within the queue. The highest 
priority is implicitly assigned to the 
subchannel that is logically enqueued 
first. The subchannel that is logically 
enqueued first is determined by the 
subchannel that first identifies itself 
with an interruption condition. 

When the highest-priority interruption 
request in a given interruption-request 
queue is accepted by a CPU, the corre
sponding subchannel is logically removed 
from that subclass queue so that the 
interruption request is not 
re-presented. 

The priority of interruption handling by 
a CPU can be modified by TEST SUBCHAHNEL 
and CLEAR SUBCHAHNEL. When either of 
these i nstructi ons is issued to a 
subchannel that has an interruption 
request pending, the subchannel is 
logically removed from the appropriate 
interruption-subclass queue, regardless 
of its priority within the queue. The 
relative priority of the remalnlng 
subchannels logically in the queue is 
unchanged. 

The assignment of priority among 
requests for interruption from subchan
nels logically enqueued on different 
interruption-subclass queues is deter
mined by the CPU according to the 
interruption-subclass-code numerical 
value (with zero having highest 
priority), in conjunction with the 1/0-
interruption-subclass-enable-mask set
tings in control register 6. The 
numerical value of the interruption
subclass code is directly related to the 
bit position in the I/O-interruption
subclass-enable-mask register of a CPU. 
If in any CPU an interruption-subclass
enable-mask bit is zero, then all 
subchannels having an interruption
subclass code numerically equal to the 
associated position in the mask register 
are said to be masked off in the respec
tive CPU. Therefore, a CPU accepts the 
highest-priority I/O-interruption 
request from the lowest-numbered 
interruption-subclass queue that is not 
masked off by a corresponding bit in 
control register 6 of that CPU. 

Chapter 16. I/O Interruptions 16-5 



Programming Notes 

1. The I/O-interruption-subclass-en
able masks are in control register 
6, which has the following format: 

Reserved 

o 8 31 

2. Control register 6 is set to all 
zeros during initial CPU reset. 

INTERRUPTION ACTION 

An I/O interruption can occur only when 
the I/O-interruption subclass-mask bit 
associated with the subchannel is one 
and the CPU is enabled for I/O inter
ruptions. The interruption occurs at 
the completion of a unit of operation 
(see the section "Point of Interruption" 
in Chapter 5, "Program Execution"). If 
the channel subsystem established the 
priority among requests for interruption 
from subchannels while the CPU was disa
bled for I/O interruptions, the 
interruption occurs immediately after 
completion of the instruction enabling 
the CPU and before the next instruction 
is executed, provided that the 1/0-
interruption subclass-mask bit 
associated with the subchannel is one. 
Alternatively, if the channel subsystem 
has established the priority among 
requests for interruption from subchan
nels while the I/O-interruption 
subclass-mask bit is zero for each 
subchannel which is status-pending, the 
interruption occurs immediately after 
completion of the instruction which sets 
at least one of the I/O-interruption 
subclass-mask bits to one, provided that 
the CPU is also enabled for I/O inter
ruptions. This interruption is 
associated with the highest-priority 
I/O-interruption request, as established 
by the CPU. 

If the channel subsystem has not estab
lished the priority among requests for 
interruption from the subchannels by the 
time the interruption is allowed, the 
interruption does not necessarily occur 
immediately after completion of the 
instruction enabling the CPU. A delay 
can occur regardless of how long the 
interruption condition has existed at 
the subchannel. 

The interruption causes the current PSW 
to be stored as tha old PSW at real 
location 56 and causes the 1/0-
interruption code associated with the 
interruption to be stored at real 
locations 184-191 of the CPU allowing 
the interruption. Subsequently, a new 
PSW is loaded from real location 120, 

16-6 370-XA Princjples of Operation 

and processing resumes in the CPU state 
indicated by that PSW. The subchannel 
causing the interruption is identified 
by the interruption code. The 1/0-
interruption code has the following 
format when it is stored: 

Hex. Dec. 

B8 184 Subsystem-Identification Word 

BC 188 Interruption Paramater 

o 31 

At the time a CPU is taking an inter
ruption from an interruption-subclass 
queue, no other CPU can take an inter
ruption from the same queue. However, 
other CPUs may take interruptions from 
other interruption-subclass queues. 
After interruption information has been 
taken from an interruption-subclass 
queue, a previously contending CPU is 
permitted to take interruption informa
tion from the same queue. 

Programming Note 

The I/O-interruption-subclass code for 
all subchannels is set to zero during 
the performance of I/O-system reset. It 
may be set to any of values 0-7 by using 
MODIFY SUBCHANNEL. (The operation of 
the instruction is described in the 
section "MODIFY SUBCHANNEL" in Chapter 
14, "I/O Instructions.") 

INTERRUPTION-RESPONSE BLOCK (IRB) 

The interruption-response block (IRB) is 
the operand of TEST SUBCHANNEL. The two 
low-order bits of the IRB address are 
zeros, specifying the IRB on a word 
boundary. The IRB contains three major 
fields: the subchannel-status word, the 
extended-status word, and the extended
control word. The format of the IRB is 
as follows: 

Word 0 

1 Subchannel-Status Word 

2 

3 Extended-Status Word 

4 

/ Extended-Control Word / 

151 I 



The length of the subchannel-status and 
extended-status words is 12 bytes and 
four bytes, respectively. The length of 
the extended-control word is 48 bytes. 
When the extended-control bit (bit 14, 
word 0) of the SCSW is zero, words 8-15 
of the extended-control word mayor may 
not be stored. 

Subchannel-Status Word (SCSW) 

The subchannel-status word (SCSW) 
provides to the program indications 
describing the status of a subchannel 
and its associated device. If execution 
of a halt, resum~, or start function has 
occurred, the SCSW may describe the 
conditions under which the operation was 
concluded. 

The SCSW is stored when TEST SUBCHANNEl 
is issued to an operational subchannel. 
The SCSW is placed in words 0-2 of the 
IRB that is specified as the TEST 
SUBCHANNEl operand. When STORE SUBCHAN
NEl is issued, the SCSW is stored in 
words 7-9 of the subchannel-information 
block (described in the section 
"Subchannel-Information Block" in Chap
ter 15, "Basic I/O Functions.") The 
SCSW is described in detail in the 
section "Subchannel-Status-Word Con
tents." The format of the SCSW is as 
follows: 

o 

1 CCW Address 

2 D Status S Status 

o 8 16 

Ctrl 

Count 

31 

The SCSW fields are described briefly 
below. For a detailed description of 
the contents of each field, see the 
section "Subchannel-Status-Word Con
tents" later in this chapter. 

The following fields, when valid, 
contain the same information that was 
previously passed to the subchannel in 
the ORB when the start function was 
accepted: 

Bits Designation 

0-3 Subchannel key 
4 Suspend control (S) 
8 Format (F) 
9 Prefetch (P) 

10 Initial-status interrupti~n 
request (I) 

11 Address-limit-checking con
trol (A) 

12 Suppress-suspended inter
ruption (U) 

Extended-Status-Word Format (l): 
of word 0 indicates whether 
information has been stored 
extended-status word. 

Bit 5 
logout 

in the 

Deferred Condition Code (CC): When the 
start function is specified, bits 6-7 of 
word 0 indicate the general reason that 
the subchannel was status-pending when 
TEST SUBCHANNEl was issued. 

SUBCHANNEl CONTROL: Bits 13-31 of word 
o contain information of a supervisory 
nature relating to conditions at the 
subchannel. The subchannel-control 
field has the following format: 

I, SC I 

13 17 20 27 31 

Zero Condition Code (Z): Bit 13 of word 
o may indicate whether the channel 
program has been initiated or resumed at 
the device. 

Extended Control (E): Bit 14 of word 0 
may indicate th~ additional model
dependent information has been stored in 
the IRB. 

Path Not-Operational (N): Bit 15 of 
word 0 indicates whether the PNOM 
contains nonzero bits. 

Function Control (FC): Bits 17-19 of 
word 0 identify the I/O function in 
progress at the subchannel. 

Bit Designation 

17 Start function 
18 Halt function 
19 Clear function 

Activity Control (AC): Bits 20-26 of 
word 0 identify~ current activity 
associated with an I/O function. 

Bit Designation 

20 Resume-pending 
21 Start-pending 
22 Halt-pending 
23 Clear-pending 
24 Subchannel-active 
25 Device-active 
26 Suspended ' 

,::tatus Control (SC): Bits 27-31 of word 
o identify and explain the existence of 
combinations of subchannel control and 
status bits described by the zero
condition-code bit (word 0, bit 13), the 
suspended bit (wor:i 0, bit 26), the 
device-status field (word 2, bits 0-7), 
and the subchannel-status field (word 2, 
bits 8-15). 

Chapter 16. I/O Interruptions 16-7 



Bit Designation 

27 Alert status 
28 Intermediate status 
29 Primary status 
30 Secondary status 
31 Status pending 

CCW Address: Bits 1-31 of word 1 form 
an-absolute address. The address indi
cated is a function of the subchannel 
state when the SCSW is stored by TEST 
SUBCHANNEl. 

Device (D) Status: Bits 0-7 of word 2 
identifY--the conditions in the device 
that caused the subchannel to become 
status-pending. Each of the eight bits 
represents one condition, as follows: 

Bit Designation 

o Attention 
1 Status modifier 
2 Control-unit end 
3 Busy 
4 Channel end 
5 Device end 
6 Unit check 
7 Unit exception 

Subchannel (S) Status: Bits 8-15 of 
word 2 identify the conditions in the 
subchannel that caused the subchannel to 
become status-pending. Each of the 
eight bits represents one condition, as 
follows: 

Bit Designation 

8 Program-controlled inter
ruption 

9 Incorrect length 
10 Program check 
11 Protection check 
12 Channel-data check 
13 Channel-control check 
14 Interface-control check 
15 Chaining check 

Count: Bits 16-31 of word 2 contain the 
residual count. 

Extended-Status Word 

The extended-status word (ESW) provides 
additional information to the program 
about the subchannel and its associated 
device. See the section "Extended
Status-Word Contents" later in this 
chapter for a detailed description of 
the contents of the ESW. 

Extended-Control Word 

The extended-control word (ECW) provides 
additional information to the program 

16-8 370-XA Principles of Operation 

describing conditions that may exist at 
the channel subsystem, subchannel, or 
device. The setting of the extended
status-word-format (l) bit a~d the 
extended-control (E) bit, bits 5 and i4 
of word 0, respectively, specify the 
contents of the extended-control word. 
See the section "Extended-Control-Word 
Contents" later in this chapter for a 
detailed description of the contents of 
the ECW. 

SUBCHANNEl-STATUS-WORD CONTENTS 

The contents of the subchannel-status 
word (SCSW) depend on the state of the 
subchannel when the SCSW was stored. 
The fields of the SCSW may contain 
information pertaining to the last oper
ation, may contain information unrelated 
to the execution of an operation, may 
contain zeros, or may contain a value of 
no meaning, depending on the state of 
the subchannel and device. The follow
ing descriptions indicate when an SCSW 
field contains valid information. 

Subchannel Key 

Bits 0-3 of word 0 form the access key 
used during execution of the associated 
start function. These bits are identi
cal with the key specified in the ORB 
(bits 0-3, word 1). The subchannel key 
is valid when the start-function bit 
(bit 17 of word 0) is one. 

Suspend Control (S) 

Bit 4 of word 0 controls execution of 
the suspehd function for the channel 
program identified by the ORB. The 
setting of bit 4 applies to all 
channel-command words (CCWs) of a chan
nel program. When bit 4 is one in the 
ORB, suspension of the channel-program 
execution occurs when a valid S flag is 
recognized in a CCW by the channel 
subsystem. When bit 4 is zero, the 
suspend-control function is not speci
fied, and the presence of an S flag 1n 
any CCW causes the channel subsystem to 
recognize a program-check condition. 

The suspend-control bit is valid when 
the start-function bit (bit 17 of word 
0) is one. 

Extended-Status-Word Format (l) 

Bit 5 of word 0, when one, indicates 
that logout information has been stored 



in the extended-status word. Logout 
information is provided whenever the 
following conditions are detected: 

Channel-data check 
Channel-control check 
Interface-control check 
Measurement-block-program check 
Measurement-block-data check 
Measurement-block-protection check 

The extended-status-word bit is valid 
whenever the subchannel is status
pending alone or is status--pending with 
any combination of primary, secondary, 
and alert status. This bit remains 
valid until the interruption condition 
is cleared by TEST SUBCHANNEL. 

DEFERRED-CONDITION-CODE CONTENTS 

When valid, bits 6-7 of word 0 indicate 
the general reason that the subchannel 
was status-pending when TEST SUBCHANNEL 
was issued. The deferred-condition-code 
field is only valid when a start func
tion is specified (bit 17 of word 0 is 
one) and th~ subchannel is either 
status-pending alone or status-pending 
with any combination of primary, second
ary, and alert status. The meaning of 
these bits for each possible setting 
when the subchannel is status-pending is 
given in the figure "Deferred
Condition-Code Meaning for Status
Pending Subchannel." 

The deferred condition code, if not 
zero, is used to indicate whether condi
tions have been encountered that 
preclude the subchannel becoming 
subchannel-and-device-active while the 
subchannel is either start-pending or 
suspended. The def~rred condition code 
is valid when the subchannel is status
pending with any combination of status 
and only when the start-function bit of 
the function-control field in the SCSW 
is one. 

Deferred Condition Code!l A normal I/O 
interruption has taken place. 

Deferred Condition Code 1: status is 
present in the SCSW tha~ was presented 
by the associated I/O device or gener
ated by the channel subsystem subsequent· 
to the setting of condition code 0 for 
START SUBCHANNEL or RESUME SUBCHANNEL. 
If only the alert-status bit and the 
status-pending bit of the status-control 
field of the SCSW are ones, the status 
present is not related to the channel 
program implied by the preceding START 
SUBCHANNEL or RESUME SUBCHANNEL. If the 
intermediate-status, primary-status, or 
primary-and-secondary-status bits are 
set to one, the status is related to 
execution of the channel program implied 
by the preceding START SUBCHANNEl or 
RESUME SUBCHANNEl. (See the section 

"Immediate Conclusion of I/O Operations" 
in Chapter 15, "Basic I/O Functions.") 
If the secondary-status bit is one and 
the primary-status bit is zero, the 
status present is related to the channel 
program implied by the START SUBCHANNEl 
or RESUME SUBCHANNEl preceding the last 
executed START SUBCHANNEL. 

Deferred Condition Code 2: This code is 
not set and is reserved for future use. 

Deferred Condition Code 3: An attempted 
selection of a device--has occurred, and 
a path-not-operational condition has 
been detected on all of the channel 
paths that were available for selection 
of the device. 

A device appears not-operational when it 
does not respond to a selection attempt 
by the channel subsystem. This occurs 
when the control unit is not provided in 
the system, when power is off in the 
control unit, or when the control unit 
has been logically switched off the 
channel path. The not-operational state 
is also indicated when the control unit 
is provided and is capable of attaching 
the device, but the device has not been 
installed and the control unit is not 
designed to recognize the device being 
selected as one of its attached devices. 
(See also the section "I/O Addressing" 
in Chapter 13, "I/O Overview.") 

A deferred condition code 3 also can be 
set by the channel subsystem if no chan
nel paths to the device are available 
for selection. (See the figure 
"Deferred-Condition-Code Meaning for 
Status-Pending Subchannel.") 

Programming Notes 

1. If, during execution of a start 
function, the device being selected 
is not installed or has been 
logically removed from the control 
unit, but the associated control 
unit is operational and the control 
unit recognizes the device being 
selected as one of its devices (for 
example, access mechanism 7 on the 
IBM 3830 Storage Control that has 
only access mechanisms 0-3 
installed), the control unit, 
depending upon the model, either 
fails to recognize the address of 
the device or considers the device 
to be not ready. In the former 
case, a path-not-operational condi
tion is recognized, subject to the 
setting of the path-operational 
mask. (See the discussion of 
path-operational mask in the 
section "Subchannel-Information 
Block" in Chapter 15, "Basic I/O 
Functions.") In the latter case, 
the not-ready condition is indi
cated when the control unit 

Chapter 16. I/O Interruptions 16-9 



responds to the selection and indi
cates unit check whenever the 
not-ready state precludes success
ful initiation of the operation at 
the device. In this case, unit
check status is indicated in the 
SCSW, the subchannel becomes prima
ry-, secondary-, and alert-status
pending, and deferred condition 
code 1 is set. (See the section 
"Unit Check" in this chapter.) 
Refer to the System Library publi
cation for the control unit to 
determine how the condition is 
indicated. 

16-10 370-XA Principles of Operation 

2. The deferred condition code is 1 
and the status-control field indi
cates intermediate status pending 
or intermediate and alert status 
pending when HALT SUBCHANNEl has 
been issued to a subchannel that is 
suspended and intermediate-status
pending. The alert-status 
condition, if any, is set when 
logout information is generated as 
a result of attempting to issue the 
halt signal to the device. 



status 
Bit 6 Bit 7 Control l Meaning 

0 0 A I P S X Normal I/O interruption. 
A I P - X 
A - P S X 
A - P - X 
- I P S X 
- I P - X 
- - P S X 
- - p - X 

0 1 A I P S X Either an immediate operation, wi th 
A I P - X chaining not specified, has ended nor-
A I - - X mally, or the setting of some status 
A - P S X condition precluded the initiation or 
A - P - X resumption of a requested I/O opera-
A - - S X tion at the device. 
A - - - X 
- I P S X 
- I P - X 
- I - - X3 
- - P S X 
- - P - X 
- - - S X2 
- - - - X2-3 

1 0 Reserved Reserved 

1 1 - - P S X The device is not operational via any 
- I P S X available path or, if a dedicated-

allegiance condition exi sts, the 
device is not operational via the path 
to which dedicated allegiance is owed. 

Explanation: 

1 The allowed combinations of status-control-bit settings 
when the start-function bit is one in the function-control 
field. 

2 

3 

A 
I 
P 
S 
X 

The condition is encountered after the execution of HALT 
SUBCHANNEl when the subchannel is currently start-pending. 
The condition is encountered after the execution of HALT 
SUBCHANNEl when the subchannel is currently suspended. 
Alert status. 
Intermediate status. 
Primary status. 
Secondary status. 
Status pending. 
Bit is zero. 

Deferred-Condition-Code Meaning for Status-Pending Subchannel 

Format (F) 

Bit 8 of word 0 specifies the format of 
the CCWs associated with an I/O opera
tion. The format bit is valid when the 
start-function bit (~it 17 of word 0) is 
one. If bit 8 of word 0 is zero, 
format-O CCWs are specified. If it is 
one, format-1 CCWs are specified. (See 
the section "Channel-Command Word" in 
Chapter 15, "Basic I/O Functions" for 
the description of the two CCW formats.) 

Prefetch (P) 

Bit 9 of word 0 indicates whether or not 
unlimited prefetching of CCWs is 
allowed. The prefetch bit is valid when 
the start-function bit (bit 17 of word 
0) is one. If bit 9 is zero, prefetch
ing of one CCW is allowed during 
output-data-chaining operations and is 
not allowed during any other operations. 
If bit 9 is one, unlimited prefetching 
of CCWs is allowed. 

Chapter 16. I/O Interruptions 16-11 



Initial-Status-Interruption Request (I) 

Bit 10 of word 0, when one, indicates 
that the channel subsystem has been 
requested by the program to verify 
device acceptance of the first command 
associated with a channel program (see 
the description of bit 10, word 1, in 
the section "Operation-Request Block" in 
Chapter 15, "Basic I/O Functions"). 
This may occur as a result of initiating 
execution of either a start or resume 
function. The initial-status-interrup
tion-request bit is valid when the 
start-function bit (bit 17 of word 0) is 
one. 

Address-Limit-Checking Control (A) 

Bit 11 of word 0, when one, indicates 
the channel subsystem has been requested 
by the program to perform address-limit 
checking, subject to the setting of the 
limit-mode bits at the subchannel (see 
the description of bit 11, word 1, in 
the section "Operation-Request Block" in 
Chapter 15, "Basic I/O Functions"). The 
address-limit-checking-control bit is 
valid when the start-function bit (bit 
17 of word 0) is one. 

Suppress-Suspended Interruption (U) 

Bit 12 of word 0, when one, indicates 
that the channel subsystem has been 
requested by the program to suppress the 
generation of a subchannel-suspended 
interruption condition when the subchan
nel is suspended (see the description of 
bit 12, word 1, in the section 
"Operation-Request Block" in Chapter 15, 
"Basic I/O Functions"). When bit 12 is 
zero, the channel SUbsystem generates an 
intermediate-interruption condition 
whenever the subchannel is suspended 
during execution of the associated chan
nel program. The suppress-suspended
interruption bit is valid when the 
start-function bit (bit 17 of word 0) is 
one. 

SUBCHANNEL-CONTROL-FIELD CONTENTS 

The following subchannel-control-infor
mation descriptions apply to the 
subchannel-control field (bits 13-31 of 
word 0) of the SCSW. 

16-12 370-XA Principles of Operation 

Zero Condition Code eZ) 

Bit 13 of word 0, when one, indicates 
that conditions have been encountered, 
subsequent to the setting of a condition 
code 0 for a START SUBCHANNEL or RESUME 
SUBCHANNEL, which confirm that the chan
nel program has been initiated at the 
device. The I/O operation is considered 
to be initiated when the subchannel
active bit is set to one. (See the 
section "Activity Control" later in this 
chapter.) The setting of the Z bit is 
under the control of the I bit (bit 10, 
word 1) of the ORB that was the operand 
of the initiating START SUBCHANNEL 
execution (see the section "Operation
Request Block" in Chapter 15, "Basic I/O 
Functions"). If the I bit is one in the 
ORB, at the time the ORB is passed to 
the subchannel by execution of START 
SUBCHANNEL, then when the subchannel 
becomes active, the Z bit is set to one, 
and the subchannel is made 
intermediate-status-pending. The valid
ity of the Z bit is maintained from the 
time the subchannel becomes active until 
the intermediate-interruption condition 
is cleared. If the I bit is zero in the 
ORB, the Z bit remains zero, and the 
subchannel is not made status-pending 
with intermediate status when the 
subchannel-active bit is set to one. 

Extended Control eE) 

Bit 14 of word 0, in conjunction with 
bit 5 of word 0, describes the contents 
of the extended-control word (ECW). 
When bit 17 is zero, regardless of the 
setting of bit 5, words 0-3 of the ECW 
are stored as zeros and words 4-11 of 
the ECW if stored, are undefined. The 
setting of bits 14 and 5 to one and 
zero, respectively, is currently 
reserved; therefore, words 0-11 of the 
ECW are currently undefined. If both 
bits 14 and 5 are one, zeros are stored 
in words 0-3 of the ECW, and model
dependent information is stored in words 
4-11 of the ECW (see the figure "Infor
mation in Extended-Control Word"). The 
E bit is valid whenever the subchannel 
is status-pending or is status-pending 
with any combination of primary, second
ary, or alert status. 

Programming Note 

During execution of TEST SUBCHANNEL, the 
storing of words 4-11 of the ECW is a 
model-dependent function subject to the 
settings of ~its 5 and 14 as described 
above. Therefore, the program should 
always provide sufficient storage to 
accommodate the storing of a 64-byte 
IRB. 



Path Hot Operational (N) 

Bit 15 of word 0, when one, indicates 
that the channel subsystem encountered 
one or more not-operational conditions, 
on paths whose corresponding POM bits 
were ones, while attempting to select 
the device in order to perform a clear, 
halt, resume, or start function. The 
path or paths over which the device was 
found to be not operational are indi
cated by corresponding bits set to ones 
in the PNOM. The presence of nonzero 
bits in the PNOM is signaled to the 
program by storing the path-not
operational (H) bit as one in the SCSW. 

When the channel subsystem performs an 
alternate-path selection because of a 
not-operational-path condition, and the 
corresponding POM bit is one; the corre
sponding bit in the PHOM is set to one. 
The channel subsystem then repeats the 
selection-attempt process by using 
another available path, if any. 

If device selection results in a not
operational-path condition and the 
corresponding POM bit is zero, then the 
corresponding PNOM bit is not set to 
one, the H condition is not i~dicated, 
and the channel subsystem attempts 
selection by another available path, if 
any. 

1. A not-operational-path condition 
does not imply a malfunctioning 
path. A malfunctioning path causes 
the generation of an error indi
cation, such as interface-control 
check •. 

2. When a path~not-operational condi
tion has been recognized and the 
subchannel subsequently becomes 
status-pending with only intermedi
ate status, the path-not
operational condition continues to 
be recognized until the subchannel 
becomes status-pending with primary 
status or becomes suspended and is 
indicated by storing the path-not
operational bit as a one during the 
execution of TEST SUBCHAHNEL. When 
a path-not-operational condition 
has been recognized and the 
channel-program execution subse
quently becomes suspended, the 
path-not-operational condition does 
n~t remain pending if channel
program execution is subsequently 
resumed. Instead, the old indi
cation is lost, and the path-not
operational indication, if any, 
pertains to the attempt by the 
channel subsystem to resume 
channel-program execution. 

Function Control 

The function-control field indicates the 
basic I/O functions that are speciTied 
for the subchannel. This field may 
indicate the acceptance of as many as 
two functions. The function-cont-ol 
field is contained in bit posititns 
17-19 of the first word of the SCSW. 
The function-control field is valid at 
an installed subchannel whenever the 
device-number-valid bit is one (see the 
section "Subchannel-Information Block" 
in Chapter 15, "Basic I/O Functions"). 
The function-control field contains all 
zeros whenever both the activity- and 
status-control fields contain all zeros. 
The meaning of the individual bits is as 
follows: 

Start Function (Bit 17): When one, bit 
~dicates that a--start function is 
specified for the subchannel. A start 
function has been requested by issuing 
START SUBCHANNEL to the subchannel. 
This bit is set to one when condition 
code 0 is set for START SUBCHANNEL. Bit 
17 is set to zero at the subchannel when 
any combination of alert, primary, or 
secondary status-pending conditions or 
the status-pending condition alone is 
cleared by TEST SUBCHANNEL. Bit 17 is 
also set to zero during the execution of 
CLEAR SUBCHANNEL. 

Halt Function (Bit 18): When one, bit 18 
indicates that-a-halt function is speci
fied for the subchannel. A halt func
tion has been requested by issuing HALT 
SUBCHANt~EL to the subchannel. In normal 
operations, this function is indicated 
together with bit 17; that is, there is 
an I/O operation either pending or in 
progress which is to be halted. This 
bit is set to one when condition code 0 
is set for HALT SUBCHANNEL. Bit 18 is 
reset to zero when the next status
pending condition occurs and is cleared 
by TEST SUBCHANNEL. Depending on the 
state of the subchannel when HALT 
SUBCHANNEL is executed, the next 
status-pending condition can be either 
status-pending alone or status-pending 
with at least primary and/or secondary 
status indicated. Bit 18 is also set to 
zero during the execution of CLEAR 
SUBCHAHNEL. 

Clear Function (Bit 19): When one, bit 
~dicates that a--cTear function is 
specified for the subchannel. A clear 
function has been requested by issuing 
CLEAR SUBCHAHNEL to the subchannel. 
This bit is set to one when condition 
code 0 is set for CLEAR SUB CHANNEL (see 
the section "CLEAR SUBCHANNEL" in Chap
ter 14, "I/O Instructions"). Bit 19 is 
set to zero when the resulting status
pending condition is cleared by TEST 
SUBCHANNEL. 

Chapter 16. I/O Interruptions 16-13 



Activity Control 

The activity-control field is contained 
in bit positions 20-26 of the first word 
of the SCSW. This field indicates the 
current progress of a basic I/O function 
previously accepted by the subchannel. 
By using the contents of this field, the 
program can determine the degree of 
completion of the basic I/O function. 
The activity-control field is valid at 
an installed subchannel whenever the 
device-number-valid bit is one (see the 
section "Subchannel-Information Block" 
in Chapter 15, "Basic I/O Functions"). 
The activity-control bits are defined as 
follows: 

Bit Designation 

20 Resume pending 
21 Start pending 
22 Halt pending 
23 Clear pending 
24 Subchannel active 
25 Device active 
26 Suspended 

When an SCSW is stored that has the 
status-pending bit of the status-control 
field zero and all zeros in the 
activity-control field, the subchannel 
is said to be idle or in the idle state. 

Hote: All bits in the function-control 
field and the resume-, start-, halt-, 
clear-pending, subchannel-active, and 
suspended bits in the activity-control 
field are set to zeros at the subchannel 
when primary status, alert status, or 
the status-pending condition (in the 
cases of CLEAR SUBCHANHEL and HALT 
SUBCHAHHEL) is cleared by TEST SUBCHAH
HEL. 

Resume-Pending (Bit 20): When one, bit 
20 indicates that a resume function is 
currently pending at the subchannel. 
The subchannel can be resume-pending 
only when a start function is in 
progress at thesubchannel. The start 
function previously specified by a START 
SUBCHANHEL is start-pending, is current
ly being executed, is currently 
suspended, or is primary-status-pending. 
The resume-pending bit is set to one 
when condition code 0 is set for RESUME 
SUBCHANNEL. The point at which bit 20 
is set to zero is a function of the 
subchannel state existing when the 
resume-pending condition is recognized 
and the state of the device if channel
program execution is resumed. If the 
subchannel is in the suspended state 
(the suspended bit of the activity
control field is one) when the resume
pending condition is recognized, the CCW 
that caused the suspension is refetched, 
and the setting of the suspend flag is 
examined. 

1. If the CCW suspend flag is one, the 
device is not selected, the 

16-14 370-XA Principles of Operation 

subchannel resume-pending bit is 
reset to zero, and the subchannel 
remains suspended. 

2. If the CCW suspend flag is zero, 
the channel subsystem attempts to 
resume channel-program execution by 
performing a modified start func
tion. The resumption of channel
program execution appears to the 
device as the initiation of a new 
channel-program execution. The 
resume function causes the channel 
subsystem to execute the path
management function as if a new 
start function is being initiated 
using the ORB parameters previously 
passed to the subchannel by START 
SUBCHAHNEL, with the exception ~hat 
the channel-program address is the 
address of the CCW that previou3ly 
caused suspension of chann~l
program execution. In this 
situation, the resume-pending bit 
is reset to zero when any of the 
following events occurs: 

a. The subchannel becomes 
subchannel-and-device-active 
(bits 24 and 25 are set to one) 
with the start function. 

b. An initial-status byte is 
accepted from the device for 
the first command which 
contains channel end in the 
absence of busy. 

c. CLEAR SUBCHAHHEL is executed. 

d. TEST SUBCHAHNEL clears any 
combination of alert and prima
ry status or clears the 
status-pending condition alone. 

If the subchannel is not in the 
suspended state (that is, the suspended 
bit of the activity-control field is 
zero) when the resume-pending condition 
is recognized, the CCW suspend flag of 
the most recently fetched CCW (if any) 
is examined and the following actions 
are taken: 

1. If a CCW has not been fetched or 
the suspend flag of the most 
recently fetched CCW is zero the 
subchannel resume-pending bit is 
reset to zero and the resume func
tion is not performed. 

2. If the suspend flag of the most 
recently fetched CCW is one, the 
resume-pending bit is reset to 
zero, and the CCW is refetched. 
The subchannel proceeds with 
channel-program execution if the 
suspend flag of the refetched CCW 
is zero. The subchannel suspends 
channel-program execution if the 
suspend flag of the refetched CCW 
is one. 



Some models recognize a resume-pending 
condition only after a CCW having a 
valid S flag set to one is fetched. 
Therefore, if a subchannel is resume
pending and, during execution of the 
channel program, no CCW is fetched that 
has a valid S flag set to one, the 
resume-pending bit remains one until the 
primary-interruption condition is 
cleared by TEST SUBCHANNEL. 

Start-Pending (Bit 21): When one, bit 
21 indicates that the I/O function spec
ified by a START SUBCHAHHEL is pending 
at the subchannel, awaiting execution. 
Bit 21 is set to one when condition code 
o is set for START SUBCHANNEL. 

Bit 21 is set to zero at the subchannel 
when any of the following occurs: 

1. The subchannel becomes subchannel
and-device-active (bits 24 and 25 
are set to ones) with the start 
function. 

2. An initial status byte is accepted 
from the device for the first 
command which contains channel end 
in the absence of busy. 

3. The subchannel becomes suspended 
(bit 26 is set to one) because of a 
valid suspend flag in the first 
CCW. 

4. CLEAR SUBCHANNEL is executed. 

5. TEST SUBCHANNEL clears any combina
tion of alert and primary status, 
clears the status-pending condition 
alone, or clears the secondary 
status after the execution of a 
halt function. 

Halt-Pending (Bit 22): When one, bit 22 
indicates that the halt function speci
fied by HALT SUBCHANNEL is pending at 
the subchannel, awaiting execution. Bit 
22 is set to one when condition code 0 
is set for HALT SUBCHANNEL. Bit 22 is 
set to zero when the halt signal has 
been issued to the device or when CLEAR 
SUBCHANHEL is executed. The halt
pending bit remains one (unless CLEAR 
SUBCHANNEL is executed) if the channel 
subsystem determines that the halt 
signal cannot be issued to the device 
(see the discussion of path management 
in the section "Halt-Function Execution" 
in Chapter 15, "Basic I/O Functions") 
and is set to zero at the subchannel 
when TEST SUBCHANHEL clears any combina
tion of primary, secondary, and alert 
status or clears the status-pending 
condition alone. 

Clear-Pending (Bit 23): When one, bit 
23 indicates that the clear function 
specified by CLEAR SUBCHANNEL is pending 
at the subchannel, awaiting execution. 
Bit 23 is set to one when condition code 
o is set for CLEAR SUBCHANNEL and is set 

to zero when the clear signal has been 
issued to the device. The clear-pending 
bit remains one if the channel SUbsystem 
determines that the clear signal cannot 
be issued to the device (see the 
discussion of path management in the 
section "Cle3r-Function Execution" in 
Chapter 15, ~Basic I/O Functions") and 
is set to zero at the subchannel when 
TEST SUBCHANHEL clears the status
pending condition alone. 

Subchannel Active (Bit 24): When one, 
bit 24 indicates that an I/O operation 
is currently in execution at the 
subchannel. Bit 24 is set to one only 
when the device has accepted the first 
command describing an I/O operation and 
the start function or resume function is 
not immediately concluded at the 
subchannel as a result of solicited 
device status received as initial status 
for the command (see the section "Imme
diate Conclusion of I/O Operations" in 
Chapter 15, "Basic I/O Functions"). The 
above conditions are satisfied when any 
of the following initial-device-status 
combinations are accepted from the 
device: 

1. All zeros 

2. Unit check, status modifier, and 
channel end (command ret~y, 
delayed) 

3. Unit check, status modifier, chan
nel end, and device end (command 
retry, immediate) 

4. Channel end when the chain-command 
flag is one in the CCW 

5. Channel end and'device end when the 
chain-command flag is one in the 
CCW 

6. Channel end, device end, and status 
modifier when the chain-command 
flag is one in the CCW. 

(See the section "Command Retry" in 
Chapter 15, "Basic I/O Funttions," for 
the description of the command-retry 
procedure.) 

The subchannel-active bit is not set to 
one during execution of the function 
specified by either a HALT SUBCHANNEL or 
a CLEAR SUBCHANNEL instruction. 
Subchannel active (bit 24) is set to 
zero when the channel subsystem is no 
longer activelY participating in the 
execution of the function. The end of 
channel subsystem participation is 
signaled by the subchannel when either 
the primary-status bit or the suspended 
bit is set to one. The subchannel
active bit is also set to zero during 
the execution of CLEAR SUBCHAHNEL and 
when the device appears not operational 
during execution of a halt function. 

Chapter 16. I/O Interruptions 16-15 



Device Active (Bit 25): When one, bit 
25 indicates that an--I/O operation is 
currently in progress at the associated 
device~ Bit 25 is set to one (1) when 
the device has accepted the first 
command describing an I/O operation, as 
described under "Subchannel Active" 
above, and (2) when status containing 
channel end but neither busy nor device 
end is presented by the device as 
initial status for the first command 
transferred to the device as a result of 
a start or resume function, and command 
chaining is not specified in the CCW. 
(See the section "Immediate Conclusion 
of I/O Operations" in Chapter 15, "Basic 
I/O Functions.") The device-active bit 
is set to zero (1) when status is 
received from the device indicating that 
the previous I/O operation has been 
completed at the device, (2) when the 
device appears not operational during 
execution of a halt function, or 
(3) when the subchannel becomes 
suspended. If the subchannel is not 
start-pending or if the status received 
from the device also describes an alert 
condition, the subchannel becomes 
status-pending with the secondary
interruption condition. After the 
secondary-interruption condition has 
been placed in the subchannel, the 
device is capable of accepting a command 
for executing a new I/O operation. If 
the subchannel is start-pending and if 
the secondary-device status is device 
end or device end with control-unit end, 
then the channel subsystem discards the 
secondary status and initiates the new 
I/O operation by sending the first 
command to the device by taking the 
normal path-management actions for path 
selection (see the discussion of path 
management in the section "Start
Function Execution" in Chapter 15, 
"Basic I/O Functions"). In this situ
ation, the subchannel does not become 
status-pending with the secondary
interruption condition, and the status 
is not made available to the program. 
The device-active bit is not set to one 
during execution of the functions speci
fied by either a HALT SUBCHANHEL or a 
CLEAR SUBCHAHNEL instruction. The 
device-active bit 1S set to zero during 
the execution of CLEAR SUBCHAHNEL. 

SusEended (Bit 26): When one, bit 26 
indicates that channel-program execution 
is currently suspended. Bit 26 is set 
to one at the subchannel as part of the 
suspend function (see the section "Sus
pension of Channel-Program Execution" in 
Chapter 15, "Basic I/O Functions"). 

Bit 26 is reset to 
nel under any of 
tions: 

zero at the subchan
the following condi-

1. As part of the resume function 
following the execution of RESUME 
SUBCHANNEL when the subchannel
active bit is set to one. 

16-16 370-XA Principles of Operation 

2. When the resume function has been 
initiated at the device and the 
solicited device status received as 
initial status for the first 
command contains channel ~nd. 

3. As part of the clear function 
following the execution of CLEAR 
SUBCHANNEL. 

4. When TEST SUBCHANNEL clears any 
combination of primary, secondary, 
or alert status or clears the 
status-pending condition when it 
appears alone. 

Status Control 

The status-control field is contained in 
bit positions 27-31 of the first word of 
the SCSW. This field provides the 
program with a summary-level indication 
of the interruption condition described 
by either subchannel or device status, 
the Z bit, or, in the case of the 
subchannel-suspended interruption, the 
suspended bit (bit 26). More than one 
summary indication may be signaled as a 
result of existing conditions at the 
subchannel. Whenever the subchannel is 
enabled (see the description of bit 8, 
word 1, in the section "Subchannel
Information Block" in Chapter 15, "Basic 
I/O Functions") and at least bit 31 is 
one, the subchannel is said to be 
status-pending. Whenever the subchannel 
is disabled, the subchannel is not made 
status-pending. Bit 31 of SCSW word 0 
is always valid; bits 27-30 are valid 
when bit 31 is one. The status-control 
bits are defined as follows: 

Alert Status (Bit 27): When one (and 
when the status-pending bit is also one) 
in an SCSW stored by TEST SUBCHANNEL, 
bit 27 indicates an alert-interruption 
condition exists. In such a case, the 
subchannel is said to be status-pending 
with alert sta~us. The status-pending 
bit and the alert-status bit are set to 
ones when an alert-interruption condi
tion exists at the subchannel. An 
alert-interruption condition is recog
nized when alert status is stored at the 
subchannel. Alert status may be 
subchannel status or device starus. 
Alert status is status generated by 
either the channel subsystem or the 
device under any of the following condi
tions: 

• 

• 

• 

The subchannel is idle (activity
control bits 20-26 and status
control bit 31 are zeros). 

The subchannel is start-pending, 
and the status condition precludes 
initiation of the I/O operation. 

The subchannel is subchannel-and
device-active, and the status 



• 

• 

• 

condition has suppressed command 
chaining or would have suppressed 
command chaining if chaining had 
been specified (see the section 
"Channel-Command Word" in Chapter 
15, "Basic I/O Functions"). 

The subchannel is subchannel-and
device-active, command chaining is 
not specified, execution of the 
channel program has just been 
concluded, and the status presented 
by the device is attempting to 
alter the sequential execution of 
commands (see the section "Status 
Modifier" later in this chapter). 

The subchannel is device-active 
only, and the status presented by 
the device is other than device 
end, control-unit end, or device 
end and control-unit end. 

The subchannel is suspended (bit 26 
is one). 

If the subchannel is start-pending when 
an alert-interruption condition is 
recognized, the subchannel becomes 
status-pending with alert status, 
deferred condition code 1 is set, the 
start-pending bit remains one, and 
execution of the pending I/O operation 
is not initiated. 

When TEST SUBCHANNEL is executed, thus 
storing an SCSW with the alert-status 
bit as one in the IRB, the alert-status 
bit and the status-pending bit are reset 
to zeros at the subchannel. These bits 
are also reset to zeros at the subchan
nel during execution of CLEAR 
SUBCHANNEL. 

Whenever an alert-status condition 
exists, it is brought to the attention 
of the program. Examples of alert 
status include incorrect length, program 
check, unit check, a device end signal
ing a not-ready-to-ready transition, and 
attention. 

Intermediate Status (Bit 28): When one 
(and when the status=pending bit is also 
one) in an SCSW stored by TEST SUBCHAN
NEL, bit 28 indicates an intermediate
interruption condition exists. In such 
a case, the subchannel is said to be 
status-pending with intermediate status. 
Intermediate status can be indicated 
when the Z bit (of the subchannel
control field), the suspended bit (of 
the activity-control field), or the PCI 
bit (of the subchannel-status field) is 
one. The intermediate-status bit and 
the status-pending bit are set to ones 
when an intermediate-interruption condi
tion exists at the subchannel. 

When the initial-status interruption
request bit is one in an ORB, the 
subchannel becomes status-pending with 
intermediate status (the Z bit 
indicated) only after initial status is 

received for the first CCW of the chan
nel program and the subchannel is 
subchannel-active (bit 24 is one at the 
subchannel). If the subchannel does not 
become subchannel-active, the Z condi
tion is not generated. 

When the suspend flag is indicated in a 
CCW, suspend control is indicated in the 
ORB, and the subchannel-suspended inter
ruption condition is not suppressed in 
the ORB, then the intermediate-status 
bit and the status-pending bit are set. 
When the suspended flag is indicated in 
the first CCW of a channel program, the 
subchannel is suspended and becomes 
status-pending with intermediate status 
(the suspended bit indicated) before the 
command in the first CCW is transferred 
to the device. When the suspend flag is 
indicated in a CCW fetched during 
command chaining, the subchannel is 
suspended and becomes status-pending 
with intermediate status (the suspended 
bit indicated) only after execution of 
the preceding CCW is complete. 

When the PCI flag is indicated in a CCW, 
the setting of the intermediate-status 
bit and the status-pending bit is 
dependent on whether the CCW is the 
first CCW of the channel program. When 
the PCI flag is indicated in the first 
CCW of a channel program, the subchannel 
becomes statu5-pending with intermediate 
status (the PCI bit indicated) only 
after initial status is received for the 
first CCW of the channel program indi
cating the command has been accepted. 
When the PCI flag is indicated in a CCW 
fetched while chaining, the subchannel 
becomes status-pending with intermediate 
status (the PCI bit indicated) only 
after execution of the preceding CCW is 
complete. If chaining occurs before an 
interruption condition containing PCI is 
cleared by TEST SUBCHANNEL, thecondi
tion is carried over to the next CCW. 
This carryover occurs during both data 
and command chaining, and, in either 
case, the condition is propagated 
through the transfer-in-channel command. 

.If the subchannel is status-pending with 
intermediate status when HALT SUBCHANNEL 
is executed, the intermediate-st~tus 
condition remains pending at the 
subchannel, but the interrupt ion 
request, if any, is withdrawn, and the 
status-pending bit is reset to ze~o. 
The status-pending bit remains z~ro 
until execution of the halt function has 
ended. The subchannel then becomes 
status-pending with intermediate status 
indicated (possibly together with any 
combination of primary, secondary, and 
alert status). 

When TEST SUBCHANNEL is executed, thus 
storing an SCSW with the intermediate
status bit as one in the IRB, the 
intermediate-status bit and the status
pending bit are reset to zeros at the 
subchannel. These bits are also reset 

Chapter 16. I/O Interruptions 16-17 



to zeros at the subchannel during the 
execution of CLEAR SUBCHANNEL. 

Primary status (Bit 29): When one (and 
when the status-pending bit is also one) 
in an SCSW stored by TEST SUBCHANNEL, 
bit 29 indicates a primary-interruption 
condition exists. In such a case, the 
subchannel is said to be status-pending 
with primary status. A primary
interruption condition is a solicited 
interruption condition that indicates 
the termination of the start function at 
the subchannel. The primary inter
ruption condition is described by the 
SCSW stored as a result of executing 
TEST SUBCHANNEL. When an I/O operation 
is terminated by HALT SUBCHANNEL but the 
halt signal is not issued to the device 
because the device appeared not opera
tional, the subchannel is mad~ primary
status-pending (and secondary-status
pending) with both the subchannel-status 
field and the device-status field set to 
zero. 

When TEST SUBCHANNEL is executed, thus 
storing an SCSW with the primary-status 
bit as one in the IRB, the primary
status bit and the status-pending bit 
are reset to zeros at the subchannel. 
These bits are also reset to zeros at 
the subchannel during the execution of 
CLEAR SUBCHANNEL. 

Secondary Status (Bit 30): When one 
(and when the status-pending bit is also 
one) in an SCSW stored by TEST SUBCHAN
NEL, bit 30 indicates a secondary
interruption condition exists. In such 
a case, the subchannel is said to be 
status-pending with secondary status. A 
secondary-interruption condition is a 
solicited interruption condition that 
normally indicates the termination of 
the I/O operation at the device. The 
secondary-interruption condition. is 
described by the SCSW stored as a result 
of executing TEST SUBCHANNEL. 

When an I/O operation is terminated by 
HALT SUBCHANNEL but the halt signal is 
not issued to the device because the 
device appeared not operational, the 
subchannel is made secondary-status
pending (and primary-status-pending if 
the subchannel is also subchannel
active) with zeros for subchannel and 
device status. 

When TEST SUBCHANNEL is executed, thus 
storing an SCSW with the secondary
status bit as one in the IRB, the 
secondary-status bit and the status
pending bit are reset to zeros at the 
subchannel. These bits are also reset 
to zeros at the subchannel during 
execution of CLEAR SUBCHANNEL. 

Status-Pending (Bit 31): Whenever an 
interruption condition is generated at 
the subchannel, bit 31 is set to one, 
indicating that the subchannel is 
status-pending and that information 

16-18 370-XA Principles of Operation 

describing the cause of the interruption 
condition is available to the program. 
The subchannel becomes status-pending 
whenever intermediate, primary, second
ary, or aiert status is generated. When 
HALT SUBCHANNEL is issued to a subchan
nel that is idle, the subchannel becomes 
status-pending subsequent to execution 
of the halt function to notify the 
program that the halt function has been 
completed. When CLEAR SUBCHANNEL is 
issued to an operational subchannel, the 
subchannel becomes status-pending subse
quent to execution of the clear function 
to notify the program that the clear 
function has been completed. 

Note: The status-pending bit, in 
conjunction with the remaining bits of 
the status-control field, specifies the 
type of status condition. For example, 
if bits 29 and 31 are ones, the subchan
nel is primary-status-pending. Alterna
tively, if only bit 31 is one, then the 
subchannel is said to be status-pending 
or status-pending alone. If only bit 31 
is one in the status-control field, the 
settings of all bits in the subchannel
and device-status fields are unpredict
able. If bit 31 is not one, then the 
remaining bits of the status-control 
field have no meaning. 

DEVICE-STATUS CONDITIONS 

Device-status conditions are generated 
by the I/O device and are presented to 
the channel subsystem over the channel 
path. The timing and causes of these 
conditions for each type of device are 
specified in the System Library publica
tion for the device. The device-status 
field is valld whenever the subchannel 
is status-pending with any combination 
of primary, secondary, intermediate, or 
alert status. Whenever the subchannel 
is intermediate-status-pending alone, 
the device-status field is zero. When 
the subchannel-status field indicates 
channel-control check, channel-data 
check, or interface-control check, the 
device-status field is usable for recov
ery purposes if the device-status 
field-validity flag in the ESW is one. 

If, within a system, the I/O device is 
accessible from more than one channel 
path, status related to channel
subsystem-initiated operations in single 
path mode (solicited status) is signaled 
over the initiating channel path. 
Devices operating in multi path mode may 
signal solicited status over any channel 
path that belongs to the same path group 
as the initiating channel path. The 
handling of conditions not associated 
with I/O operations (unsolicited alert 
status), such as attention, unit ex~ep
tion, and device end due to transition 
from the not-ready to the ready sta~e, 
depends on the type of device and conci-



tion and is specified in the System 
Library publication for the device. 

The channel subsystem does not modify 
the status bits received from the I/O 
device. These bits appear in the SCSW 
as received over the channel path. 

Attention 

Attention is generated when the device 
detects an asynchronous condition that 
is significant to the program. The 
condition may also be described by other 
status indications that accompany atten
tion. Attention is interpreted by the 
program and is not associated with the 
initiation, execution, or conclusion of 
an I/O operation. 

The device can signal the attention 
condition to the channel SUbsystem when 
no operation is in progress at the I/O 
device. Attention can be indicated with 
device end upon completion of an opera
tion, and it can be presented to the 
channel subsystem during the initiation 
of a new I/O operation. 

When the device signals attention during 
the initiation of an operation, the 
operation is not initiated. Attention 
accompanying device end causes command 
chaining and command retry to be 
suppressed. 

An I/O device may present attention 
accompanied by device end and unit 
exception when a not-ready-to-ready
state transition is signaled (see the 
section "Device End" later in this chap
ter). 

Status Modifier 

Status modifier is generated by the 
device when the device cannot provide 
its current status in response to inter
rogation by the channel subsystem, when 
the control unit is busy, when the 
normal sequence of commands has to be 
modified, or when command retry is to be 
initiated. 

When the device is interrogated and the 
status-modifier condition signaled, in 
the absence of any other status bit, 
this indicates that the device cannot 
provide its current status. The inter
ruption condition, which may be pending 
at the device, is not cleared. The 2702 
Transmission Control is an example of a 
type of device that cannot provide its 
current status as a result of channel
subsystem interrogation. 

Presence of status modifier and device 
end means that the normal sequence of 

commands must be modified. The handling 
of this set of bits by the channel 
subsystem depends on the operation. If 
command chaining is specified in the 
current CCW and no unusual conditions 
have been detected, presence of status 
modifier and device end causes the chan
nel subsystem to fetch and chain to the 
CCW whose main-storage address is 16 
higher than that of the current CCW. If 
the I/O device signals the status
modifier condition at a time when no 
command chaining is specified, or when 
any unusual conditions have been 
detected, no action is taken by the 
channel subsystem, and the status
modifier bit is placed in the SCSW. 

Status modifier is presented in combina
tion with unit check and channel end to 
initiate the command-retry procedure. 

Control units that recognize special 
conditions that must be brought to the 
attention of the program present status 
modifier along with other status indi
cations in order to modify the meaning 
of the status. The status presented is 
unrelated to the execution of an I/O 
operation. 

When status modifier is generated 
together with the busy status bit, it 
indicates that the busy condition 
pertains to the control unit associated 
with the addressed I/O device. The 
control unit appears busy when it is 
executing a type of operation that 
precludes the acceptance and execution 
of any command and may appear busy when 
it contains status or sense information 
for a device other than the one 
addressed. The status may be control
unit end or channel end following the 
execution of the halt function. The 
busy state occurs for operations such as 
backspace tape file, in which case the 
control unit remains busy after provid
ing channel end for operations concluded 
by HALT SUBCHANNEL. The busy state 
temporarily occurs on the IBM 3705 
Communication Controller after initi
ation of an operation on a device 
accommodated by the control unit. A 
control unit accessible from two or more 
channel paths appears busy to the other 
channel paths when it is communicating 
with any of the channel paths. 

Control-Unit End 

Control-unit end indicates that the 
control unit has become available for 
use for another operation. 

The control-unit-end condition is 
provided only by control units shared by 
I/O devices or control units accessible 
by two or more channel paths, and only 
when one or b~th of the following condi
tions have occurred: 

Chapter 16. I/O Interruptions 16-19 



1. The channel subsystem had previous
ly caused the control unit to be 
interrogated while the control unit 
was busy. The control unit is 
considered to have been interro
gated in the busy state when a 
command has been issued to a device 
on the control unit, and the 
control unit had responded with 
busy and status modifier in the 
device status byte. 

2. The control unit detected an unusu
al condition during the portion of 
the operation after channel end had 
been signaled to the channel 
subsystem. The indication of the 
unusual condition accompanies 
control-unit end. However, the 
signaling of control-unit end and 
device end does not necessarily 
describe an unusual condition. 

The two conditions described above are 
reset by the reset signal and the clear 
signal. Therefore, if one of these 
signals occurs before control-unit end 
is generated, no control-unit end is 
generated. If control-unit end has been 
generated but not presented to the chan
nel subsystem by the time one of the 
signals occurs, the pending control-unit 
end is reset. 

If the control unit remains busy with 
the execution of an operation after 
signaling channel end but has not 
detected any unusual conditions and has 
not been interrogated by the channel 
subsystem, control-unit end is not 
generated. Similarly, control-unit end 
is not provided when the control unit 
has been interrogated and could perform 
the indicated function. The latter case 
is indicated by the absence of busy and 
status modifier in the response to the 
interrogation. 

When the busy condition of the control 
unit is temporary, control-unit end may 
be included with busy and status modifi
er in response to the interrogation even 
though the control unit has not yet been 
freed. The busy condition is considered 
to be temporary if its duration is 2 
milliseconds or less. If a temporary 
busy condition is indicated, the channel 
subsystem assumes the responsibility to 
periodically reinterrogate the control 
unit until it is no longer busy. The 
IBM 3705 Communications Controller is an 
example of a device in which the control 
unit may be busy temporarily and which 
includes control-unit end with busy and 
status modifier. 

The control-unit end condition can be 
signaled with channel end, with device 
end, or between the two. 

Control-unit end may be signaled at 
other times and may be accompanied by 
other status bits. When control-unit 
end is signaled in the absence of any 

16-20 370-XA Principles of Operation 

other status, the status may be identi
fied with any device recognized by the 
control unit. For control units ~ttach
ing more than a single I/O device, a 
pending control-unit end for one I/O 
device does not necessarily preclude 
initiation of new operations with other 
attached devices. Whether the control 
unit allows initiation of other oper
ations is at the option of the control 
unit. 

When control-unit end is presented to 
the channel subsystem subsequent to the 
acceptance of channel end and is accom
panied by other status indications, 
command chaining is suppressed, if indi
cated, and an interruption condition may 
be generated indicating one or more of 
the following conditions: 

1. A secondary-interruption condition, 
in the following cases: 

a. Control-unit end ~ccompanied by 
device end and other status 
indications, or 

b. Control-unit end accompanied by 
only de~ice end while the 
subchannel is not start
pending. 

2. An alert-interruption condition, in 
the following cases: 

a. Control-unit end accompanied by 
device end while the subchannel 
is subchannel-active, or 

b. Control-unit end accompanied by 
status other than device end. 

3. A primary-interruption condition if 
the subch~nnel is subchannel
active. 

When c~ntrol-unit end alone is presented 
to the channel subsystem, the channel 
subsystem resets internal indications of 
control-unit busy and discards the 
control-unit-end status without recog
nizing an interruption condition, unless 
all of the following conditions are met: 

1. The control-unit end is presented 
on the channel path with which the 
channel subsystem is maintaining a 
working allegiance for this 
subchannel. 

2. The device is not operating in 
multipath mode (see the discussion 
of multi path mode in the section 
"Path-Management-Control Word" in 
Chapter 15, "Basic I/O Functions"). 

3. The subchannel is subchannel-and
device-active. 

4. Channel-end status has been previ
ously pr~sented, and command chain
ing is indicated. 



If all of the above conditions are met, 
the channel subsystem suppresses command 
chaining and recognizes an interruption 
condition indicating primary, secondary, 
and alert status. 

Control-unit end presented with channel 
end is unusual status and causes the 
channel sUbsystem to suppress command 
chaining, if indicated, and recognize an 
interruption condition for the subchan
nel with primary and alert status 
indicated. 

Busy indicates that the device cannot 
execute the command because (1) it is 
executing a previously initiated opera
tion, (2) it has pending status which 
must be presented to the channel subsys
tem, (3) the device is currently inac
cessible because of a busy shared 
facility existing between the control 
unit and device, as in the case of the 
string-switch feature on the IBM 3830 
Model 2, or (4) a self-initiated func
tion is being performed. The pending 
status for the addressed device, if any, 
accompanies the busy indication. If the 
busy condition applies to the control 
unit, busy is accompanied by status 
modifier. 

Whenever the device indicates that a 
busy condition exists and it is unable 
to execute an operation, the device 
responds to the channel subsystem when 
it becomes no longer busy (see the 
section "Device End" later in this chap
ter). 

Channel End 

Channel end is caused by the completion 
of the portion of an I/O operation 
involving transfer of data or control 
information between the I/O device and 
the channel subsystem. 

Each I/O operation initiated at the I/O 
device causes a channel-end condition to 
be generated, and there is only one 
channel end for an operation. The 
channel-end condi ti-on is not generated 
when programming errors or equipment 
malfunctions are detected during initi
ation of the operation. When command 
chaining takes place, only the channel 
end of the last operation of the chain 
is made available to the program. The 
channel-end condition is not made avail
able to the program when a chain of 
commands is prematurely concluded 
because of an unusual condition indi
cated with device end or during the 
initiation of a chained command. 

The instant within an I/O operation when 
channel end is generated depends on the 
operation and the type of device. For 
operations such as writing on magnetic 
tape, the channel-end condition occurs 
when the block has been written. On 
devices that verify the writing, channel 
end mayor may not be delayed ulltil 
verification is performed, dependins on 
the dev ice. When magnet i c tape is bed ng 
read, the channel-end condition occurs 
when the gap on tape reaches the read
write head. On devices equipped with 
buffers, such as the IBM 3211 Printer 
Model 1, the channel-end condition 
occurs upon completion of data transfer 
between the channel subsystem and the 
buffer. During control operations, 
channel end is generated when the 
control information has been transferred 
to the devices, although for short oper
ations the condition may be delayed 
until completion of the operation. 
Operations that do not cause any data to 
be transferred can provide the channel
end condition during the initiation 
sequence. 

Channel end is presented in combination 
with status modifier and unit check with 
a channel-path-type-dependent signal 
sequence to initiate the command-retry 
procedure. 

Device End 

Device end is indicated (1) when the 
completion of an I/O operation occurs at 
the I/O device, (2) when the device 
signals that a change from the not-ready 
to ready state has occurred, (3) when 
the termination of an activity has 
occurred which previously caused a 
response of busy to the channel subsys
tem, and (4) when the I/O device signals 
that an asynchronous condition has been 
recognized. Device end normally indi
cates that the I/O device has become 
available for use for another operation. 

Each I/O operation initiated at the I/O 
device causes one and only one device 
end for an I/O operation. The device
end condition is not generated when any 
programming or equipment malfunction is 
detected during initiation of the opera
tion. When command chaining is 
specified and the suspend flag is zero 
in the next CCW, receipt of the device
end signal, in the absence of any 
unusual conditions, causes the channel 
subsystem to initiate transfer of the 
next command. When command chaining 
takes place, the only device end made 
available to the program is that of the 
last operation of the chain, unless an 
unusual condition is detected during the 
initiation of a chained command. If an 
unusual condition is detected during the 
initiation of a chained command, the 
subchannel becomes primary-and-secondary 

Chapter 16. I/O Interruptions 16-21 



status-pending, with the SCSW indicating 
the unusual condition without including 
the device-end indication. 

The device-end condition associated with 
an I/O operation is generated either 
simultaneously with the channel-end 
condition or later. For data transfer 
on some I/O devices, the I/O operation 
is completed at the time channel end is 
generated, and both device end and chan
nel end occur together. The time at 
which device end is presented depends 
upon the I/O-device type and the kind of 
command executed. For most I/O devices, 
device end is presented when the the I/O 
operation is complet~d at the I/O 
device. In some cases, for reasons of 
performance, device end is presented 
before the I/O operation has actually 
been completed at the I/O device. 
However, in all cases, when device end 
is presented, the I/O device is avail
able for execution of an immediately 
following CCW if command chaining was 
specified in the previous CCW. 

On buffered devices, such as an IBM 3211 
Printer Model 1, the device-end condi
tion occurs upon completion of the 
mechanical operation. When device end 
is generated later than channel end for 
the last I/O operation of a channel 
program, the program may elect to 
request the initiation of another start 
function prior to receiving the device
end indication. If the device-end 
indication is solicited and the subchan
nel is start-pending for a new start 
function, the device-end indication is 
discarded by the channel subsystem, and 
the pending I/O operation is initiated. 

For control operations, device end is 
generated at the completion of the oper
ation at the device. The operation may 
be completed at the time channel end is 
generated or later. 

When the state of a device is changed 
from not ready to ready, either device 
end or device end, attention, and unit 
exception are indicated. Refer to the 
System library publication for the 
device to determine which indication is 
given. 

Unit check indicates that the I/O device 
has detected an unusual condition that 
is detailed by the information available 
to a sense command. Unit check may 
indicate that a programming or an equip
ment error has been detected, that the 
not-ready state of the device has 
affected the execution of the command, 
or that an exceptional condition other 
than the one identified by unit excep
tion has occurred. The unit-check bit 

16-22 370-XA Principles of Operation 

provides a summary indication of the 
conditions identified by sense data. 

An error condition causes the unit-check 
indication when it occurs during the 
execution of a command, during some 
activity associated with an I/O opera
tion, or when an unusual condition is 
detected that is unrelated to execution 
of an I/O operation. Unless the error 
condition pertains to the activity 
initiated by a command or is of immedi
ate significance to the program, the 
condition does not cause the program to 
be alerted after device end has been 
signaled to the channel subsystem; a 
malfunction may, however, cause the 
device to become not ready. If an error 
condition of immediate significance to 
the program occurs while there is no I/O 
operation in progress, unit check is 
presented together with attention, 
control-unit end, or device end as un50-
licited alert status. 

Unit check is indicated when the exist
ence of the not-ready state precludes a 
satisfactory execution of the command, 
or when the command, by its nature, 
tests the state of the device. When no 
status condition is pending for the 
addressed device at the control unit, 
the control unit signals unit check when 
a command is issued to a not-ready 
device. In the case of no-operation, 
the command is rejected, and channel end 
and device end do not accompany unit 
check. 

Unless the command is designed to cause 
unit check, such as rewind and ~nload on 
magnetic tape, unit check is not indi
cated if the command is properly 
executed, even though the device has 
become not ready during or as a result 
of the operation. Similarly, unit check 
is not indicated if the command can be 
executed with the device not ready. 
Selection of a device in the not-ready 
state does not cause a unit-check indi
cation when the sense command is issued, 
and whenever a status condition is pend
ing at the addressed device. 

If the device detects during the initi
ation sequence that the command cannot 
be executed, unit check is presented to 
the channel subsystem and appears with
out channel end, or device end. Such 
device status indicates that no action 
has been taken at the device in response 
to the command. If the condition 
precluding proper execution of the oper
ation occurs after the command has been 
accepted, unit check is accompanied by 
channel end, or device end, depending on 
when the condition was detected. Any 
errors associated with an ~peration, but 
detected after device end has been 
signaled to the channel SUbsystem, are 
indicated by signaling unit check with 
attention. 



Errors, such as invalid command code or 
invalid command-code parity, do not 
cause unit check when the device is 
active or contains a pending-status 
condition at the time of selection. 
Under these circumstances, the device 
responds by providing the busy bit and 
indicating the pending-status condition, 
if any. The command-code invalidity is 
not indicated. 

Conclusion of an operation with the 
unit-check indication causes command 
chaining and command retry to be 
suppressed. 

Unit check is presented in combination 
with channel end and status modifier to 
initiate the command-retry procedure. 

Programming Notes 

1. Unit-check status presented either 
in the absence of or accompanied by 
other status indicates only that 
sense information is available to 
the basic sense command. Presenta
tion of either channel end and unit 
check or channel end, device end, 
and unit check does not provide any 
indication as to the kind of condi
tions encountered by the control 
unit, the state of the 1/0 device, 
or whether execution of the 1/0 
operation ever was initiated even 
though the command may have been 
accepted. Descriptions of these 
conditions are provided in the 
sense information. 

2. START SUBCHANNEL, HALT SUBCHANNEL, 
or CLEAR SUBCHANNEL may be issued 
to a subchannel whose associated 
device is attached to the same 
control unit that is currently 
holding sense data relative to a 
unit-check condition signaled by 
another attached device. The chan
nel subsystem ensures that no sense 
data is lost. The execution of the 
function of the instruction may be 
delayed, however, until the sense 
data has been cleared from the 
control unit, or it may not take 
place at all, as in the case of 
CLEAR SUBCHANNEL. The sense data 
may be retrieved (or reset) by 
lssuing START SUBCHANNEL to the 
subchannel that reported the unit 
check. Sense information is also 
reset when CLEAR SUBCHANNEL is 
issued to the subchannel, resulting 
in a clear signal on the channel 
path which presented unit check, 
and when RESET CHANNEL PATH is 
issued to the channel path which 
presented unit check. 

Unit Exception 

Unit exception is caused when the 1/0 
device detects a condition that usually 
does not occur. Unit exception includes 
a condition such as recognition of a 
tape mark and does not necessarily indi
cate an error. During execution of an 
1/0 operation unit exception has only 
one meaning for any particular command 
and type of dovice. 

The unit-exception condition can be 
generated only when the device is 
executing an 1/0 operation, or when the 
device is involved with some activity 
associated with an 1/0 operation and the 
condition is of immediate significance 
to the program. If the device detects 
during the initiation sequence that the 
operation cannot be executed, unit 
exception is presented and appears with
out channel end or device end. Such 
unit status indicates that no action has 
been taken at the device in response to 
the command. If the condition preclud
ing normal execution of the operation 
occurs after the command has been 
accepted, unit exception is accompanied 
by channel end, or device end, depending 
on when the condition was detected. Any 
unusual conditions associated with an 
operation, but detected after device end 
has been cleared, are indicated by 
signaling unit exception with attenti~n. 

If the 1/0 device responds with busy 
status to a command, the generation of 
unit exception is suppressed even when 
execution of that command usually causes 
unit exception to be indicated. 

Concluding an operation with 
exception indication causes 
chaining and command retry 
suppressed. 

the unit
command 
to be 

Some 1/0 devices present unit exception 
accompanied by device end and attention 
whenever the device changes from the 
not-ready state to the ready state (see 
the section "Device End" earlier in this 
chapter). 

SUBCHANNEL-STATUS CONDITIONS 

Subchannel-status conditions are 
detected and indicated in the SCSW by 
the channel sUbsystem. Except for the 
conditions caused by equipment malfunc
tioning, they can occur only while the 
channel subsystem is involved with the 
execution of a halt, resume, or start 
function. The subchannel-status field 
is valid whenever the subchannel is 
status-pending with any combination of 
primary, secondary; intermediate, or 
alert status. 

Chapter 16. 1/0 Interruptions 16-23 



Program-Controlled Interruption 

An intermediate interruption condition 
is generated after a CCW with the 
program-controlled-interruption (PCI) 
flag set to one becomes the current CCW. 
The I/O interruption due to the PCI flag 
may be delayed an unpredictable amount 
of time because of masking of the inter
ruption request or other activity in the 
system. (See the section "Program
Controlled Interruption" in Chapter 15, 
"Basic I/O Functions.") 

Detection of the PCI condition does not 
affect the progress of the I/O 
operation. 

Incorrect length 

Incorrect length occurs when the number 
of bytes contained in the storage areas 
assigned for the I/O operation is not 
equal to the number of bytes requested 
or offered by the I/O device. Incorrect 
.length is indicated for one of the 
following reasons: 

lon~ Block on Input: During a read, 
read-backward, or sense operation, the 
device attempted to transfer one or more 
bytes to storage after the assigned 
storage areas were filled. The extra 
bytes have not been placed in main stor
age. The count in the SCSW is zero. 

Long Block Qll Output: During a write or 
control operation the device requested 
one or more bytes from the channel 
subsystem after the assigned main
storage areas were exhausted. The count 
in the SCSW is zero. 

Short Block Qll Input: The number of 
bytes transferred during a read, read
backward, or sense operation is insuffi
cient to fill the storage areas assigned 
to the operation. The count in the SCSW 
is not zero. 

Short Block Qll Output: The device 
terminated a write or control operation 
before all information contained in the 
assigned storage areas was transferred 
to the device. The count in the SCSW is 
not zero. 

The incorrect-length i ndi cati on is 
suppressed when the current CCW has the 
SlI flag set to one and the CD flag set 
to zero. The indication does not occur 
for operations rejected during the 
initiation sequence. The indication 
also does not occur for immediate oper
ations specified by format-O CCWs. The 
indication is unpredictable for immedi
ate operations specified by format-1 
CCWs when the count field does not spec
ify zero. 

16-24 370-XA Principles of Operation 

Presence of the incorrect-length condi
tion suppresses command chaining unless 
the SlI flag in the CCW is on or unless 
the condition occurs in an immediate 
operation specified by a format-O CCW. 

Program Check 

Program check occurs when programming 
errors are detected by the channel 
subsystem. The condition can be due to 
the following causes: 

Invalid CCW-Address Specification: The 
channel-program address (CPA) or the 
transfer-in-channel command does not 
designate the CCW on a doubleword bound
ary or bit 0 of the CPA or bit 32 of TIC 
(Format 1) is not zero. 

Invalid CCW Address: The channel 
subsystem has attempted to fetch a CCW 
from a main-storage location which is 
not available. An invalid CCWaddress 
can occur because the program has speci
fied an invalid address in the CPA or in 
the transfer-in-channel command or 
because, on chaining, the channel 
subsystem attempts to fetch a CCW from 
an unavailable location. A main-storage 
location is unavailable either because 
the absolute address does not correspond 
to a physical location or because format 
o has been specified in the ORB and the 
absolute address specifies a location 
greater than 16,777,215. 

Invalid Command Code: The command code 
in the first CCW designated by the CPA 
or in a CCW fetched on command chaining 
has four low-order zeros. The command 
code is not tested for validity during 
data chaining. 

Invalid Count, Format ~ A CCW, which 
is other than a CCW specifying transfer 
in channel, contains zeros in bit po~i
tions 48-63. 

Invalid Count, Format ~ A CCW that 
specifies data chaining or a CCW fetched 
while data chaining contains zeros in 
bit positions 16-31. 

Invalid IDAW-Address Specification: 
Indirect data addressing is specified, 
and the contents of the data-address 
field in the CCW do not designate the 
first IDAW on an integral word boundary. 

Invalid IDAW Address: The channel 
subsystem has attempted to fetch an IDAW 
from a main-storage location which is 
not available~ An invalid IDAW address 
can occur because the program has speci
fied an invalid address in a CCW that 
specifies indirect data addressing or 
because the channel subsystem, on 
sequentially fetching IDAWs, attempts to 
fetch from an unavailable location. A 
main-storage location is unavailable 



either because the absolute address does 
not correspond to a physical location or 
because format 0 has been specified in 
the ORB and the absolute address speci
fies a location greater than 16,777,215. 

Invalid Data-Address Specification: Bit 
32 of a format-l CCW is not zero. 

Invalid Data Address: 
followi nQCondi trans 
invalid data address 
the channel subsystem. 

When one of the 
is detected, an 
is recognized by 

1. Use of the data address has caused 
the channel subsystem to attempt to 
wrap from the maximum storage 
address to zero. 

2. Use of the data address has caused 
the channel subsystem to attempt to 
wrap from zero to the maximum stor
age address during a read-backward 
operation. 

3. The channel subsystem has attempted 
to transfer data to or from a stor
age location which is either not 
available or is outside the 
addressing range specified by SET 
ADDRESS LIMIT and the limit mode in 
the subchannel. 

An invalid data address can occur 
because the program has specifi~d an 
invalid address in the CCW or 1n an 
IDAW, or because a limit-mode violation 
is detected when the address exceeds the 
boundary address specified by SET 
ADDRESS LIMIT, or because the channel 
subsystem, on sequentially accessing 
storage, attempted to access an unavail
able location. A main-storage location 
is unavailable either because the abso
lute address does not correspond to a 
physical location or because format 0 
has been specified in the ORB, indirect 
data addressing has not been specified, 
and the absolute address obtained by 
sequentially accessing storage specifies 
a location greater than 16,777,215. The 
boundary condition specified by SET 
ADDRESS LIMIT is under the control of 
the limit mode in the subchannel. 

Note: The maximum storage address is 
determined as a function of whether 
24-bit or 31-bit addressing is used. If 
format 0 is specified in the ORB, the 
maximum storage address recognized by 
the channel subsystem is 16,777,215 
unless indirect data addressing is spec
ified. Otherwise, the maximum storage 
address is 2,147,483,647. If format 1 
is specified in the ORB, the maximum 
storage address recognized by the chan
nel sUbsystem is 2,147,483,647. 

Invalid IDAW Specification: Bit 0 of 
the IDAW is not zero, or the second or a 
subsequent IDAW does not specify the 
beginning or, for read-backward oper
ations, the ending byte of a 2K-byte 
block. 

Invaliq CCW, Format ~ A CCW other than 
a CCW specifying transfer in channel 
does not contain a zero in bit position 
39. 

Invalid CCW, Format ~ A CCW other than 
a CCW specifying transfer in channel 
does not contain zeros in bit position 
15, or a CCW specifying transfer in 
channel does not contain zeros in bit 
positions 0-3 and 8-31. 

Invalid Suspp.nd Flag: A format-O or 
format-1 CCW fetched during data chain
ing, other than a CCW specifying trans
fer in channel, does not contain a zero 
in bit position 38 or 14, respectively. 
A CCW other than a CCW specifying trans
fer in channel does not contain a zero 
in bit position 38 for a format-O CCW or 
bit position 14 for a format-l CCW, and 
suspend control was not specified in the 
ORB (bit 4 of word 1). 

Invalid ORB Format: The ORB does not 
contain zeros in bit positions 5-7, 
13-15, and 24-31 of word 1. 

Invalid ~uence: The channel subsystem 
has fetched two successive CCWs both of 
which specify transfer in channel, or, 
depending on the model, a sequence of 
256 or more CCWs with command chaining 
specified was executed by the channel 
subsystem and did not result in the 
transfer of any data to or from an I/O 
device. 

Detection of the program-check condition 
during the initiation of an operation at 
the device causes the operation to be 
suppressed and the subchannel to be made 
status~pending with primary, secondary, 
and alert status. Whan the condition is 
detected after the I/O operation has 
been initiated at the device, the device 
is signaled to conclude the operation 
the next time the device requests or 
offers a byte of data or status. In 
this situation, the subchannel is made 
status-pending as a function of the 
status received from the device. The 
program-check condition causes command 
chaining and command retry to be 
suppressed. 

Protect i on check occurs when the chamlel 
subsystem attempts a storage access ttat 
is prohibited by the protection mech
anism. Protection applies to the fetch
ing of CCWs, IDAWs, and output data, and 
to the storing of input data. Storage 
accesses associated with each I/O opera
tion are performed using the key 
provided in the ORB associated with that 
operation. 

Chapter 16. I/O Interruptions 16-25 



When the protection-check condition 
occurs during the fetching of the first 
CCW or IDAW, the operation is not initi
ated. When protection check is detected 
after the I/O operation has been initi
ated at the device, the device is 
signaled to conclude the operation the 
next time it requests or offers a byte 
of data. However, if the device signals 
the channel-end condition before trans
ferring any data designated by the CCW 
or IDAW, the status is accepted, and the 
subchannel becomes status-pending with 
protection check indicated. Other indi
cations may accompany the protection
check indication as a function of the 
operation specified by the CCW and the 
current state of the subchannel. The 
protection-check condition causes 
command chaining and command retry to be 
suppressed. 

Channel-Data Check 

Channel-data check indicates that an 
uncorrected storage error has been 
detected involving data, contained in 
main storage, that is currently used in 
the execution of an I/O operation. If 
the condition is detected but the data 
is not used, for example, when prefetch
ing, the condition is not indicated. 
Channel-data check is indicated when 
data or the associated key has an inval
id checking-block code (CBC) in main 
storage when that data is referenced by 
the channel subsystem. 

When, on an input operation, the channel 
subsystem attempts to store less than a 
complete checking block, and invalid CBC 
is detected on the checking block in 
storage, the contents of the location 
remain unchanged, with invalid CBC. On 
an output operation, whenever channel
data check is indicated, no bytes from 
the checking block with invalid CBC are 
transferred to the device. 

During a storage access, the maximum 
number of bytes that can be transferred 
by a channel path is model-dependent. 
If a channel-data-check condition is 
recognized during that storage access, 
the number of bytes transferred to or 
from storage may not be detectable by 
the channel SUbsystem. Consequently, 
the number of bytes transferred to or 
from storage may not be correctly 
reflected by the residual count. Howev
er, the residual count that is stored in 
the SCSW, when used in conjunction with 
the storage-access code and the CCW 
address, specifies a byte location with
in the page in which the channel-data
check condition was recognized. 

A condition indicated as channel-data 
check causes the current operation, if 
any, to be terminated immediately. The 
subchannel becomes status-pending with~ 

16-26 370-XA Principles of Operation 

pr~mary and alert status or with 
prlmary, secondary, and alert status as 
a function of the status received from 
the device. The extended-status-word 
bit is one, and subchannel-Iogout infor
mation is stored in the ESW when TEST 
SUBCHAHNEl is executed. 

Whenever channel-data check is 
indicated, no measurement parameters for 
the subchannel are stored. 

Channel-Control Check 

Channel-control check is caused by any 
machine malfunction affecting channel
SUbsystem controls. The condition 
includes invalid CBC on CCW and data 
addresses and invalid CBC on the associ
ated keys or on the contents of CCWs and 
IDAWs. If an invalid CBC condition is 
detected on a CCW, data address, IDAW, 
or associated key that is not used, for 
example, when prefetching, the condition 
is not indicated. 

Channel-control check may also indicate 
that an error has been detected in the 
information transferred to or from main 
storage during an I/O operation. Howev
er, when this condition is detected, the 
error has occurred inboard of the chan
nel path: in the channel subsystem or 
in the path between the channel subsys
tem and main storage. 

Detection of the channel-control-check 
condition causes the current operation, 
if any, to be immediately concluded. 
The subchannel is made status-pending 
with primary and alert status or with 
primary, secondary, and alert status as 
a function of the type of termination, 
the current subchannel state, and the 
device status presented, if any. The 
extended-status-word bit is one and 
subchannel-Iogout information is stored 
in the ESW when TEST SUBCHANNEl is 
executed. 

In some situations in which a channel
subsystem malfunction exists the 
channel-control-check condition may be 
reported as a machine-check condition. 

Whenever channel-control check is indi
cated, no measurement parameters for the 
subchannel are stored. 

Programming Note 

If the SCSW indicates alert-status
pending but the field-validity flag 
indicates invalid device status, the 
program should assume that the channel
control-check condttion occurred while 
the channel subsystem was accepting 
alert status from the device. 



Interface-Control Check 

Interface-control check indicates that 
an invalid signal has occurred on the 
channel path. The condition is detected 
by the channel subsystem and usually 
indicates malfunctioning of an I/O 
device. Interface-control check can 
occur for the following reasons: 

1. The data or status byte received 
from a device while the subchannel 
is subchannel-and-device-active or 
device-active has invalid parity. 

2. 

3. 

4. 

5. 

The status byte received from a 
device while the subchannel is 
idle, start-pending, suspended, or 
halt-pending has invalid parity, 

A device responded with an address 
other than the address specified by 
the channel subsystem during initi
ation of an operation: 

During command chaining, the device 
appeared not operational. 

A signal from an I/O device either 
did not occur or occurred at an 
invalid time or had an invalid 
duration. 

6. The channel sUbsystem recognized 
the I/O-error-alert condition (see 
the discussion of I/O-error alert 
in the section "Extended-Status 
Format 0" later in this chapter). 

7. The device responded with a status 
byte, which, although valid, was 
presented at an improper time. 

Detection of the interface-control-check 
condition causes the current operation, 
if any, to be immediately concluded, and 
the subchannel is made status-pending 
with alert status, primary and alert 
status, or primary, secondary, and alert 
status as a function of the type of 
termination, the current subchannel 
state, and the device status presented, 
if any. The extended-status-word-format 
bit is one and subchannel-logout infor
mation is stored in the ESW when TEST 
SUBCHANNEL is executed. 

If, while initiating a signaling 
sequence with the channel subsystem for 
the purpose of presenting status or 
transferring data, the device presents 
an address with invalid parity, the 
error condition is not made available to 
the program since the identity of the 
device and associated subchannel are 
unknown. 

Whenever interface-control check is 
indicated, no measurement parameters for 
the subchannel are stored. 

If the SCSW indicates alert-status
pending but the field-validity flag 
indicates invalid device status, the 
program should assume that the interface 
control-check condition occurred while 
the channel subsystem was accepting 
alert status from the device and take 
the appropriate action for alert status 
even though the status itself has been 
lost. 

Chaining check is caused by channel
sUbsystem overrun during data chaining 
on input operations. The condition 
occurs when the I/O-data rate is too 
high for the particular resolution of 
data addresses. Chaining check cannot 
occur on output operations. 

Detection of the chaining-check condi
tion causes the I/O device to be 
signaled to conclude the operation. It 
causes command chaining to be 
suppressed. 

Chapter 16. I/O Interruptions 16-27 



CCW-ADDRESS-FIElD CONTENTS 

Bits 1-31 of word 1 form an absolute 
address. The address indicated is a 
function of the subchannel state when 
the SCSW is stored by TEST SUBCHANNEl, 
as indicated in the figure "CCW Address 
as Function of Subchannel State." When 
the subchannel-status field indicates 
channel-control check, channel-data 
check, or interface-control check, the 
CCW-address field is usable for recovery 
purposes if the CCW-address field
validity flag in the ESW is one. 

Programming Note 

When a CCW address, either detected in 
the CPA (see the section "Operation
Request Block" in Chapter 15, "Basic 1/0 
Functions") or generated during 
chaining, would cause the channel 
subsystem to fetch a CCW from a location 
greater than 16,777,215 while format-O 
CCWs are specified for the operation, 
the invalid address is stored in the 
CCW-address field of the SCSW without 
truncation. If the invalid address 
causes the channel subsystem, while 
chaining, to fetch a CCW from a location 
greater than 2,147,483,647 while in 
31-bit addressing mode, the rightmost 31 
bits of the invalid address are stored 
in the CCW-address field. 

16-28 370-XA Principles of Operation 



Subchannel State l 

Start-pendingS (UUUUO/AIPSX) 

Start-pendingS and device-active 
(UUUUO/AIPSX) 

Subchannel-and-device-activeS 

(UUUUO/AIPSX) 

CCW Address 2 

Unpredictable 

Unpredictable 

Unpredictable 

Device-active only (UUUUO/AIPSX) Unpredictable 

SuspendedS (YYYYY/AIPSX) 

Status-pending (lOOOl/AIPSX) 
because of unsolicited alert 
status from the device while the 
subchannel was start-pendingS 

status-pending (OOlll/AIPSX) 
because the device appeared 
not operational on all pathsS 

Status-pending (10011/AIPSX) 
because of solicited alert status 
from the device while the sub
channel was start-pending and 
device-activeS 

status-pending (10111/AIPSX) 
because of solicited alert status 
generated by the channel subsys
tem while the subchannel was 
start-pendingS or start-pending 
and device-activeS 

status-pending (OlOOl/AIPSX) 
while the subchannel was sub
channel-and-device-activeS 

Status-pendingS (lYIY1/AIPSX). 
Termination occurred because of 
program check 

Unused bits in ORB not set to 
zeros 

See note 1. 

Channel-program address 
(CPA) + 8 

CPA + 8 

CPA + 8 

See note 2. 

CCW + 8 of the CCW that con
tained the last recognized PCI, 
or 8 higher than a CCW which has 
subsequently become current 

CPA + 8 

Invalid CCW-address specifica- Address of TIC + 8 
tion in transfer in channel 
(TIC) 

Invalid CCW-address specifica- Invalid CPA address + 8 
tion in the channel-program 
address (CPA) 

Invalid CCW address in TIC Address of TIC + 8 

Invalid CCW address in the CPA Invalid CPA + 8 

Invalid CCW address while Invalid CCW address + 8 
chaining 

CCW Address as Function of Subchannel State (Part 1 of 4) 

Chapter 16. I/O Interruptions 16-29 



Subchannel State l CCW Address 2 

Invalid command code Address of invalid CCW + 8 3 

Invalid count Address of invalid CCW + 8 3 

Invalid IDAW-address specifi- Address of invalid CCW + 8 3 

cation 

Invalid IDAW address in a CCW Address of invalid CCW + 8 3 

Invalid IDAW address while Address of current CCW + 8 
sequentiallY fetching IDAWs 

Invalid data-address specifi- Address of invalid CCW + 8 3 

cation, format 1 

Invalid data address in a CCW Address of invalid CCW + 8 3 

Invalid data address while Address of current CCW + 8 
sequentially accessing storage 

Invalid data address in IDAW Address of current CCW + 8 

Invalid IDAW specification Address of current CCW + 8 

Invalid CCW, format 0 or 1, Address of invalid CCW + 8 3 

for a CCW other than a TIC 

Invalid CCW, format 1, for a Address of TIC + 8 
TIC 

Invalid sequence -- two TICs Address of second TIC + 8 

Invalid sequence -- 256 or Address of 256th CCW + 8 
more CCWs without data trans-
fer 

Status-pendingS (1Y1Y1/AIPSX). 
Termination occurred because 
of protection check 

On a CCW access 

On data or an IDAW access 

Status-pendingS (1Y1Y1/AIPSX). 
Termination occurred because 
of chaining check 

Status-pending S (YY1Y1/AIPSX). 
Termination occurred under 
count control 

Status-pendingS (1Y1Y1/AIPSX). 
Operation prematurely terminated 
by the device because of alert 
status 

Address of the protected CCW 
+ 8 3 

Address of current CCW ~ 8 

Address of current CCW + 8 

Address of current CCW + 8 4 

Address of current CCW + 8 4 

CCW Address as Function of Subchannel State (Part 2 of 4) 

16-30 370-XA Principles of Operation" 



Subchannel State 1 

Status-pending S (YYYYl/AIPSX) 
after termination by HALT 
SUBCHANNEL and the activity
control-field bits indicated 
below set to one 

Status-pending alone 

Start pendingS 

Device active and start 
pendingS 

Device active 

Subchannel active and device 
activeS 

Suspended 

Suspended and resume pending 

Status-pending (OOOOI/AIPSX) 
after termination by CLEAR 
SUB CHANNEL 

Status-pending S (YYIYl/AIPSX). 
Operation terminated normally by 
the device 

status-pending (OOOll/AIPSX) 

Status-pending (lOOOl/AIPSX) 

Status-pending (OOOOl/AIPSX) 

Status-pendingS (lY111/AIPSX). 
Command chaining suppressed 
because of alert status other 
than channel-control check or 
interface-control check 

Status-pendingS (1YYY1/AIPSX) 
because of alert status for 
channel-control check or 
interface-control check 

Status-pendingS (1Y1Yl/AIPSX) 
because of channel-data check 

CCW Address 2 

Unpredictable 

Unpredictable 

Unpredictable 

Unpredictable 

CCW + 8 of the last executed CCW 

Address of CCW + 8 of CCW causing 
suspension 

Unpredictable 

Unpredictable 

CCW + 8 of the last executed CCW 4 

Unpredictable 

Unpredictable 

Unpredictable 

Address of current CCW + 8 4 

See note 3. 4 

Address of current CCW + 8 4 

CCW Address as Function of Subchannel State (Part 3 of 4) 

Chapter 16. I/O Interruptions 16-31 



Explanation: 

1 

2 

3 

4 

5 

Notes: 

The meaning of the notation used in this column is as 
follows: 

A Alert Status 
I Intermediate Status 
P Primary Status 
S Secondary Status 
X Status Pending 

The possible combination of status-control-bit settings is 
shown to the left of the "/" symbol by the use,of these 
symbols: 

o Corresponding condition is not indicated. 
1 Corresponding condition is indicated. 
U Unpredictable. The corresponding condition is 

meaningless when the subchannel is not status-pending. 
Y The corresponding condition is not significant and is 

indicated as a function of the subchannel state. 

A CCW becomes current when (1) it is the first CCW of a chan
nel program and has been fetched, (2) while command chaining, 
the previous CCW is no longer current and the new CCW has 
been fetched, or (3) in the case of data chaining, the new 
CCW takes over control of the I/O operation (see the section 
"Data Chaining" in Chapter 15, "Basic I/O Function~"). If 
chaining is not specified or is suppressed, a CCW is no 
longer current and becomes the last-executed CCW when second
ary status has been accepted by the channel subsystem. During 
command chaining, a CCW is no longer current when device-end 
status has been accepted or, in the case of data chaining, 
when the last byte of data for that CCW has been accepted. 

The stored address is the address of the current CCW + 8 even 
though it is either invalid or protected. 

Incorrect length is indicated as a function of the setting 
of suppress-length-indication flag in the current CCW (see 
the section "Channel-Command Word" in Chapter 15, "Basic I/O 
Funct ion s"). 

The subchannel may also be resume-pending. 

1. Unless the subchannel is also resume-pending, the address 
stored is the address of the CCW that causes suspension, 
plus 8. Otherwise, the address stored is unpredictable. 

2. The address of the CCW is given as a function of the alert 
status indicated. For example, if a program-check or pro
tection-check condition is recognized, the CCW address stored 
is the same as for the entry for program check or protection 
check, respectively, in this table. Alternatively, if alert 
status for interface-control check or channel-control check 
is indicated, the CCW address stored is either CPA + 8 or 
invalid as specified by the field-validity flags in the 
subchannel logout.· 

3. Bit 21 of the subchannel-logout information, when stored 
as one, indicates that the address is CCW + 8 of the last
fetched CCW if the command for the CCW has not been accepted 
by the device. If the command has been accepted by the 
device at the time the error condition was recognized, then 
the address stored is the address of the CCW + 8 of the last 
executed CCW. 

CCW Address as Function of Subchannel State (Part 4 of 4) 

16-32 370-XA Principles of Operation 



COUNT-FIELD CONTENTS 

Bits 16-31 of word 2 contain the resi
dual count. The count is to be used in 
conjunction with the original count 
specified in the last CCW and, depending 
upon existing conditions (see th~ figure 
"ccw Address as Function of Subchannel 
state"), indicates the number of bytes 
transferred to or from the area desig
nated by the CCW. The count field is 
valid whenever the subchannel is 
primary-status-pending with (1) device 
status only or (2) subchannel status of 
incorrect length only and device status. 

In the figure "Contents of Count Field 
in the SCSW," the contents of the count 
field are listed for all cases where the 
subchannel is either start-pending, 
subchannel-and-device-active, device
active, suspended, or status-pending. 

Chapter 16. I/O Interruptions 16-33 



Subchannel State l Count 

Start-pending2(UUUUO/AIPSX) Hot meaningful 3 

Start-pending and status- Hot meaningful 3 

pending 2 (lOYYl/AIPSX) 

Start-pending and device- Hot meaningful 3 

active2 (UUUUO/AIPSX) 

Suspended2 (YYYYY/AIPSX) Hot meaningful 3 

Subchannel-and-device-active2 Hot meaningful 3 

(UUUUO/AIPSX) 

Device-active (UUUUO/AIPSX) Hot meaningful 3 

Status-pending (Ol001/AIPSX) Hot meaningful 3 

because of program-control led-
interruption condition or 
initial status interruption 

Status-pending2 (lYIYl/AIPSX). 
Termination occurred because 
of: 

Program check 
Protection check 
Chaining check 
Channel-control check 
Interface control check 
Channel-data check 

Hot meaningful 3 

Hot meaningfu1 3 

Hot meaningfu1 3 

See note 1. 
Not meaningful 3 

See note 2. 

Status-pending2 (YYIYl/AIPSX). Correct 
Termination occurred under 
count control. 

Status-pending2(YOOll/AIPSX) 

Status-pending2(lYIYl/AIPSX) 

Not meaningful 3 

Correct. Residual count of 
last CCW used in terminated 
operation. 

Status-pending2 (lYlll/AIPSX). Correct. Residual count of 
Command chaining suppressed last CCW used in terminated 
because of alert status. operation. 

Termination by 
HALT SUBCHANNEL2 

Termination by CLEAR SUB
CHANNEL (OOOOI/AIPSX) 

Unpredictable 

Not meaningful 3 

Status-pending (YYIYl/AIPSX). Correct. Indicates the resid
Operation terminated normally ual count. 
by the device. 2 

Status-pending (1Y111/AIPSX). 
Command chaining terminated 
because of alert status. 2 

status-pending (lOOOl/AIPSX) 
because of alert status. 

Correct. Original count of CCW 
specifying the new I/O oper
ation 

Hot meaningful 3 

Contents of Count Field in the SCSW (Part 1 of 2) 

16-34 370-XA Principles of Operation 



Explanation: 

1 

2 

3 

Notes: 

In situations where more than a single condition exists 
because of, for example, alert status that is described 
by program check and unit check, the entry appearing 
first in the table takes precedence. 

The meaning of the notation in this column is as 
follows: 

A Alert status 
I Intermediate status 
P Primary status 
S Secondary status 
X Status pending 

The allowed combination of status-control-bit settings 
is shown to the left of the "/" symbol. 

Bit settings are specified as follows. 

o Corresponding condition is not indicated. 
1 Corresponding condition is indicated. 
U Unpredictable. The corresponding condition is 

meaningless when the subchannel is not status
pending. 

Y The corresponding condition is not significant 
and is indicated as a function of the subchannel 
state. 

The subchannel may also be resume-pending. 

The contents of the count field are not meaningful 
because the count field is not valid when the SCSW is 
stored and the subchannel is in the given state. 

1. The count is unpredictable unless IDAW check is in
dicated, in which case the count is correct, specifying 
the residual count of the last CCW used in the termin
ated operation. 

2. During a storage access, the maximum number of bytes 
that can be stored by a channel subsystem is model 
dependent. If a channel-data-check condition is recog
nized during that access, the number of bytes transfer
red to or from storage may not be detectable by the 
channel subsystem. Consequently, the number of bytes 
transferred to or from storage many not be correctly 
reflected by the residual count. However, the residual 
count that is stored when used in conjunction with the 
storage-access code and the CCW address specifies a 
byte location within the page in which the channel
data-check condition was recognized. 

Contents of Count Field in the SCSW (Part 2 of 2) 

EXTENDED-STATUS-WORD CONTENTS 

The extended-status word (ESW) provides 
additional information to the program 
about the subchannel and its associated 
device. The ESW is stored when TEST 
SUBCHANNEl is issued to an operational 
subchannel and is placed in word 3 of 
the IRB that is specified as the TEST 
SUBCHANNEl operand. If the subchannel 
is status-pending or status-pending with 
any combination of primary, secondary, 

intermediate, or alert status (except as 
noted in the next paragraph) when TEST 
SUBCHANNEl is executed, the ESW may 
contain one of the following types of 
extended-status formats: 

Format 0: Subchannel logout stored 
in bytes 0-3 

Format 1: Zeros stored in bytes 0 
and 2-3, and the lPUM stored in 
byte 1 

Chapter 16. I/O Interruptions 16-35 



Format 2: Zeros stored in byte 0, 
the lPUM stored in byte 1, and the 
device-connect time stored in bytes 
2-3 

Format 3: Zeros stored in byte 0, 
and the lPUM stored in byte 1, with 
bytes 2-3 containing unpredictable 
values 

Bytes 0-3 of the ESW contain unpredict
able values if any of the following 
conditions is met: 

1. The subchannel 
pending. 

is not status-

2. The subchannel is status-pending 
alone, and the extended-status
word-format bit is zero. 

3. The subchannel is intermediate
status-pending alone for other than 
the suspended-interruption condi
tion. 

The type of extended-status format 
stored depends upon conditions existing 
at the subchannel at the time TEST 
SUBCHANNEl is executed. The conditions 
under which each of the types of formats 
is stored are described in the remainder 
of this section. 

EXTENDED-STATUS FORMAT 0 

A format-O ESW is stored by TEST 
SUBCHANNEl when the extended-status
word-format bit (bit 5, word 0 of the 
SCSW) is one and the subchannel is 
status-pending with any combination of 
status as defined in the figure 
"Relationship between logout Data and 
SCSW Bits." In this case, subchannel
logout information is stored in the 
extended-status word. Subchannel logout 
provides detailed model-independent 
information, relating to a subchannel 
and describing equipment errors detected 
by the channel subsystem. The informa
tion is provided to aid the recovery of 
an I/O operation, a device, or both. 
Whenever subchannel logout is provided, 
the error conditions relate only to the 
subchannel reporting the error. If I/O 
operations involving other subchannels 
have been affected by the error condi
tion, those subchannels also provide 
similar logout information. 

Subchannel logout is not provided (and 
the extended-status bit is not valid) 
when the subchannel is status-pending 
with intermediate status alone. 

The ESW has the following format: 

o 1 8 16 22 24 27 31 

16-36 370-XA Principles of Operation 

Extended-Status Flags (ESF): Any of the 
bits 1-7, when one, specify that an 
error-check condition has been detected 
by the channel subsystem. The following 
indications are provided in the ESF 
field: 

1. Key Check. Bit I, when one, indi
cates either that the channel 
SUbsystem, when accessing data, 
when attempting to update the meas
urement block, or when attempting 
to fetch either a CCW or an IDAW, 
has detected an invalid checking
block code (CBC) on the associated 
storage key. The channel-data
check bit, bit 12 of word 2 of the 
SCSW, or the measurement-block 
data-check bit, CCW-check bit, or 
IDAW-check bit (bits 3, 5, and 6 of 
the ESW) identifies the source of 
the key error. 

Note: If an invalid checking-block 
code on a key is detected but the 
data, CCW, or IDAW is not used, for 
example, when prefetching, the 
condition is not indicated to the 
program. 

2. Measurement-Block Program Check. 
Bit 2, when one, indicates that the 
channel subsystem, in attempting to 
update the measurement block, has 
detected an invalid absolute 
address when combining the 
measurement-block origin with the 
measurement-block index for this 
subchannel. 

3. Measurement-Block Data Check. Bit 
3, when one, indicatesthat a 
machine error has been detected 
involving the parameters of the 
measurement block in main storage. 
(See the section "Measurement 
Block" in Chapter 17, "I/O Support 
Functions.") Measurement-block data 
check is indicated when the parame
ters or the associated key have an 
invalid checking-block code (CBC) 
in main storage when the measure
ment block is updated by the 
channel subsystem. When invalid 
CBC on the associated key is 
detected, the key-check bit, bit 1 
of the ESF field, is also stored as 
one. 

4. Measurement-Block Protection Check. 
Bit 4, when one, indicates that the 
channel subsystem, when attempting 
to update the measurement parame
ters, has been prohibited from 
accessing the measurement block 
because the storage key does not 
match the measurement-block key 
(see the section "Measurement 
Block" in Chapter 17, "I/O Support 
Functions"). Measurement-block 
storage accesses associated with 
each update operation are performed 



by using a key provided 
CHANNEL MONITOR (see the 
"SET CHANNEL MONITOR" in 
14, "I/O Instructions"). 

by SET 
section 
Chapter 

Note: Whenever any of the 
measurement-check conditions, bits 
2-4, i s i ndi cated, the channel 
subsystem sets the subchannel 
measurement-block-update-mode-enable 
bit to zero, disabling the storing 
of measurement parameters for the 
subchannel (see the section "Path
Management-Control Word" in Chapter 
15, "Basic I/O Functions"). 

5. CCW Check. Bit 5, when one, indi
cates that an invalid CBC on the 
contents of the CCW or its associ
ated key has been detected. When 
either of these conditions is 
detected, the I/O operation is 
terminated, the subchannel becomes 
status pending with primary and 
alert status, the extended-status
word-format bit in the SCSW is 
stored as one, and channel-control 
check is indicated in the 
subchannel-status field. The 
subchannel also becomes secondary
status-pending as a function of 
status received from the device. 
When invalid CBC on the associated 
key is detected, the key-check bit, 
bit 1 of the ESF field, is also 
stored as one. 

6. IDAW Check. Bit 6, when one, indi
cates that an invalid CBC on the 
contents of an IDAW or its associ
ated key has been detected. When 
either of these conditions is 
detected, the I/O operation is 
terminated with the device, the 
subchannel becomes status-pending 
with primary and alert status, the 
extended-status-word-format bit in 
the SCSW is one, and channel
control check is indicated in the 
subchannel-status field. The 
subchannel also becomes secondary
status-pending as a function of 
status received from the device. 
When invalid eBC on the associated 
key is detected, the key-check bit, 
bit 1 of the ESF field, is also 
one. 

Note: Detection of a channel
data-check condition does not cause 
the CCW and IDAW check bits to be 
stored as ones. 

7. Reserved. Bit 7 is stored as zero. 

Last-Path-Used Mask (lPUM): Bits 8-15 
indicate the channel path that was last 
used for communicating or transferring 
information between the channel subsys
tem and the device. The bit correspond
ing to the path in use is set whenever 
one of the following occurs: 

1 . The first command of a start
subchann~l function is accepted by 
the device (see the section "Activ
ity Control" earlier in this chap
ter). 

2. The device and channel subsystem 
are actively communicating when the 
channel subsystem performs the 
suspend function for the channel 
program in execution. 

3. The channel subsystem accepts 
status from the device that 1S 

recognized as an interruption 
condition, or a condition has been 
recognized that suppresses command 
chaining (see the section "Inter
ruption Conditions" earlier in this 
chapter). 

4. The channel subsystem recognizes an 
interface-control-check condition 
(see the section "Interface-Control 
Check" earlier in this chapter), 
and no logout information is 
currently present in the 
subchannel. 

The lPUM field contains the most rec&nt 
setting and is valid whenever the ESW 
contains information in one of the 
formats 0-3 (see the section, 
"Extended-Status-Word Contents," earlier 
in this chapter) and the sesw is stored. 
When logout information is present in 
the ESW, a zero lPUM-field-validity flag 
indicates that the LPUM setting is not 
consistent with the other logout indi
cations. 

Field-Validity Fla9~ (FVF): Bits 17-21 
specify the validity of the information 
stored in the designated fields of 
either the SCSW or the extended-status 
word. When the validity bit is one, the 
designated field has been stored and is 
usable for recovery purposes. When the 
validity bit is zero, the field is not 
usable. 

This bit-significant field has meaning 
when channel-data check, channel-control 
check, or interface-control check is 
indicated in the SCSW. When these 
checks are not indicated, this field, as 
well as the termination-code and 
sequence-code fields, has no meaning. 
Further, when these checks are not indi
cated, the last-path-used mask, device
status, and CCW-address fields are all 
valid. 

The fields designated are: 

17 Last-path-used mask 
18 Termination code 
19 Sequence code 
20 Device status 
21 CCW address 

Storage-Access Code (SA): Bits 22-23 
indicate the type of storage access that 
was being performed by the channel 

Chapter 16. I/O Interruptions 16-37 



subsystem at the time of error. It 
pertains only to the access of storage 
for the purpose of fetching or storing 
data during execution of an I/O opera
tion. This encoded field has meaning 
only when channel-data check, channel
control check, or interface-control 
check is indicated in the subchannel 
status. The access-code assignments are 
as follows: 

00 Access type unknown 
01 Read 
10 Write 
11 Read backward 

Termination Code (TC): Bits 24~25 indi
cate the type of~mination that has 
occurred. This encoded field has mean
ing only when channel-data check, 
channel-control check, or interface
control check is indicated in the SCSW. 

00 Halt signal issued 
01 Stop, stack, or normal termi

nation 
10 Clear signal issued 
11 Reserved 

When at least one channel check is indi
cated in the SCSW but the termination
code-field-validity flag is zero, it is 
unpredictable which, if any, termination 
has been signaled to the device. If 
more than one channel-check condition is 
indicated in the SCSW, the device may 
have been issued one or more termination 
codes that are the same or different. 
In this situation, if the termination
code-field-validity flag is one, the 
termination code indicates the most 
severe of the terminations signaled to 
the device. The termination codes, in 
order of increasing severity, are: 
stop, stack, or normal termination (01); 
halt signal issued (00); and clear 
signal issued (10). 

Secondary Error (E): Bit 27, when one, 
indicates that a malfunction of a system 
component which mayor may not have been 
directly related to any activity involv
ing subchannels or I/O devices has 
occurred. Subsequent to this 
occurrence, the activity related to this 
subchannel and the associated I/O device 
was affected and caused the subchannel 
to be set status-pending with one of the 
following indications: 

Channel-control check 

Interface-control check 

I/O-Error Alert (A): Bit 28, when one, 
indicates that subchannel logout in the 
ESW resulted from the signaling of 1/0-
error alert. The I/O-error-alert signal 
indicates that the control unit or 
device has detected a malfunction that 
must be reported to the channel subsys
tem. The channel subsystem, in 
response, issues a clear signal and, 

16-38 370-XA Principles of Operation 

except as de3cribed in the next para
graph, causes interface-control check to 
be set and extended-status-format-O 
(logout) information to be stored in the 
ESW. 

When I/O-error alert is signaled and the 
subchannel has previously been set disa
bled or no subchannel is associated with 
the device, selective reset is issued to 
the device, and the I/O-error-alert 
indication is ignored by the channel 
subsystem. 

Sequence Code (SC): Bits 29-31 identify 
the I/O sequence in progress at the time 
of error. It pertains only to the state 
of operations initiated by START 
SUBCHANNEl. This encoded field has 
meaning only when channel-data check, 
channel-control check, or interface
control check is indicated in the SCSW. 

The sequence-code assignments are: 

000 Reserved 

001 A nonzero command byte has b~en 
sent by the channel subsystem, but 
device status has not yet been 
analyzed by the channel subsystem. 
This code is set during initial 
selection. 

010 The command has been accepted by 
the device, but no data has been 
transferred. This code is set 
during initial selection, if the 
initial status is (1) channel end 
alone, (2) channel end and device 
end, (3) channel end, device end, 
and status modifier, or (4) all 
zeros. 

011 At least one byte of data has been 
transferred between the channel 
subsystem and the device. This 
code may be used when the channel 
path is in an idle or polling 
state. 

100 The command in the current CCW 
either has not yet been sent to 
the device, was sent but not 
accepted by the device, or was 
sent and accepted but command
retry status was signaled. This 
code is set when one of the 
following conditions occurs: 

1. When the command address is 
updated during command chain
ing or the initiation of a 
start or resume function at 
the device. 

2. When during initial selection 
the status includes attention, 
control-unit end, unit check, 
unit exception, busy, status 
modifier (without channel end 
and device end), or device end 
(without channel end). 



101 

Key 

3. 

4. 

When command retry is 
signaled. 

When the channel subsystem 
interrogates the device in the 
process of clearing an inter
ruption condition. 

The command in the current CCW has 
been accepted, but data transfer 
is unpredictable. This code 
applies from the time a device is 
logically connected to a channel 
path until the time it is deter
mined that a new sequence code 
applies. This code may also be 
used when the channel SUbsystem 

logout Condition Indicated 

check 

Measurement-block~program check l 

Measurement-block-data checkl 

Measurement-block-protection check l 

CCW check 

IDAW check 

last-path-used mask 3 

Field-validity flags 

Termination code 3 

Secondary error 

I/O-error alert 

Sequence code 3 

Exelanation: 

0 No relationship 

V Bit setting valid 

CCC Channel-control check 

CDC Channel-data check 

IFCC Interface-control check 

places a channel path into the 
polling or idle state and it is 
impossible to determine that code 
010 or 011 applies. It may also 
be used at other times when a 
channel path cannot distinguish 
between code 010 or 011. 

110 Reserved. 

111 Reserved. 

between logout 
defines the 

indications 
the appro-

The figure "Relationship 
Data and SCSW Bits" 
relationship between 
provided as logout data and 
priate SCSW bits. 

logout Condi ti on'· 
for SCSW 

Indication of2 

CDC CCC IFCC 

V V 0 

0 0 0 

0 0 0 

0 0 0 

0 V 0 

0 V 0 

V V V 

V V V 

V V V 

0 V V 

0 0 V 

V V V 

1 Measurement-check indications are mutually exclusive 
with each other. 

2 When more than one SCSW indication is signaled, the 
logout conditions that are valid are the logical OR 
for each of the respective SCSW indications. 

3 This field has a field-validity flag. 

Relationship between logout Data and SCSW Bits 

Chapter 16. I/O Interruptions 16-39 



EXTENDED-STATUS FORMAT 1 

A format-l ESW is stored by TEST 
SUBCHANNEL when all the following three 
conditions are met: 

1. The extended-status bit (bit 5, 
word 0 of the SCSW is zero. 

2. The subchannel is status-pending 
with 

a. Primary status alone, or 

b. Primary status together with 
other status, or 

c. Intermediate status alone for 
the suspended-interruption 
condition. 

3. One of the following conditions is 
indicated: 

a. The device-connect-time-mea-
surement mode is not active, 

b. The timing-facility bit (bit 
14, word 1 of the PMCW) is 
zero, or 

c. The device-connect-time-mea-
surement-enable bit (bit 12, 
word 1 of the PMCW) is zero. 

Zeros are stored in bytes 0 and 2-3, and 
the LPUM is stored in byte 1. 

The device-connect-time-measurement mode 
is made not active when SET CHANNEL 
MONITOR is executed and bit 31 of gener
al register 1 is zero. 

A format-l ESW has this format: 

1000000001 LPUM \00000000\000000001 

o 8 16 24 31 

Last-Path-Used Mask (LPUM): For a defi
nition of the LPUM, see the description 
of bits 8-15 in the section "Extended
Status Format 0" earlier in this 
chapter. 

EXTENDED-STATUS FORMAT 2 

A format-2 ESW is stored 
SUBCHANNEL when: 

by TEST 

1. The extended-status bit (bit 5, 
word 0 of the SCSW) is zero, 

2. The timing-facility bit (bit 14, 
word 1 of the PMCW is one, 

16-40 370-XA Principles of Operation 

3. The device-connect-time-measure-

4. 

ment-enable bit (bit 12, word 1 of 
the PMCW) is one, 

The device-connect-time-measurement 
mode is active, and 

5. The subchannel is status-pending 
with either: 

a. Primary status alone, 

b. Primary status together with 
other status conditions, or 

c. Intermediate status alone for 
the suspended-interruption con
dition. 

Zeros are stored in byte 0, the LPUM is 
stored in byte 1, and the device connect 
time is stored in bytes 2-3. 

A format-2 ESW has this format: 

1000000001 LPUM DCTI 

o 8 16 31 

Last-Path-Used Mask (LPUM): For a defi
nition of the LPUM, see the description 
of bits 8-15 in the section "Extended
Status Format 0" earlier in this 
chapter. 

Device-Connect-Time Interval (DCTI): 
Bits 16-31 contain the binary count of 
time increments accumulated by the chan
nel subsystem during the time that the 
channel subsystem and the device were 
actively communicating and the subchan
nel was active. The time increment of 
the DCTI is 128 microseconds. 

If the above conditions for the storing 
of device-connect-time information in 
the ESW are met but the device-connect
time-measurement mode was made active by 
SET CHANNEL MONITOR subsequent to 
execution of START SUBCHANNEL for this 
subchannel, the DCTI value stored is 
greater than or equal to zero and less 
than or equal to the correct DCTI value. 

Note: The DCTI value stored in the ESW 
is the same as that used to update the 
corresponding parameter of the measure
ment block for the subchannel if the 
measurement-block-update mode is in use 
for the subchannel. If the 
measurement-block-update mode for the 
channel subsystem is active and the 
subchannel is enabled for the devi~e
connect-time-measurement mode but no 
DCTI value is stored in the ESW (because 
of the presence of logout information), 
or if the DCTI is zeros, then nothing is 
added to the corresponding measurement
block parameter. 



EXTENDED-STATUS FORMAT 3 

A format-3 ESW ;s stored by TEST 
SUBCHANNEL when the extended-status bit 
(bit 5, word 0 of the SCSW) is zero and 
the subchannel is status-pending with 
any combination of secondary and alert 
status. Zeros are stored in byte 0, the 
LPUM is stored in byte 1, and bytes 2-3 
contain unpredictable values. 

A format-3 ESW has this format: 

1000000001 LPUM 1 XXXXXXXX 1 XXXXXXXX I 
o 8 16 24 31 

Last-Path-Used Mask (LPUM): For a defi
nition of the LPUl1; see the description 
of bits 8-15 in the section "Extended
Status Format 0" earlier in this 
chapter. 

An "X" in the format indicates the bit 
may be zero or one. 

The figure "Information Stored in 
summarizes the conditions at 
subchannel under which each type 
information is stored in the ESW. 

ESW" 
the 
of 

Chapter 16. I/O Interruptions 16-41 



Subchannel Conditions Under Which 
ESW is Stored by TSCH 

SCSW PMCW 
Extended-

Device- Status 
Connect Device- Word(ESW) 

Status- Time Connect 
Control Measmnt Time Contents 
Field Timing- Mode Measmnt 

L Facility Enable Mode Byte 
AIPSX Bit Bit Bit Active 0123 Format 

10001 1 * * Y/N RRRR 0 
11001 1 * * Y/N RRRR 0 
10011 1 * * Y/N RRRR 0 
**1*1 1 * * Y/N RRRR 0 
0*001 1 * * Y/N RRRR 0 

**1*1 0 0 * Y/N ZMZZ 1 
**1*1 0 * 0 Y/N ZMZZ 1 
**1*1 0 * * N ZMZZ 1 
01001 1 - 0 * Y/N Zt-1ZZ 1 
01001 1 - * 0 Y/N ZMZZ 1 
01001 1 - * * N Zt1ZZ 1 

**HEl 0 1 1 Y ZMDD 2 
01001 1 - 1 1 Y Zr1DD 2 

*00*1 2 0 * * Y/N ZM** 3 

--0 - * * Y/N **** U 
00001 ' 0 * * Y/N **** U 
01001 1 - * * Y/N **** U 

Explanation: 

~ Not meaningful. 
* Bits may be zeros or ones. 
1 If the subchannel is intermediate-status-pending 

alone for the suspended-interruption condition, 
either a format-1 or a format-2 ESW is stored, 
depending upon the setting of the other fields 
shown in this figure. If the subchannel is 
intermediate-status-pending alone for other than 
the suspended-interruption condition, bytes 0-3 
of the ESW contain unpredictable values. 

2 Either the alert-status bit, the secondary-status 
bit, or both must be ones. 

A Alert status. 
D Accumulated device-connect-time-interval (DCTI) 

value is stored in bytes 2-3. 
I Intermediate status. 
L Extended-status-word format. 
M Last-path-used mask (LPUM) is stored in byte 1. 
N No. 
P Primary status. 
R Bytes 0-3 contain subchannel-logout information. 
S Secondary status. 
U No format defined. 
X Status pending. 
Y Yes .. 
Z Bits are stored as zeros. 

Information Stored in ESW 

16-42 370-XA Principles of Operation 



EXTENDED-CONTROL WORD 

The extended-control word provides addi
tional information to the program 
describing conditions that may exist at 
the channel subsystem, subchannel, or 
device. The setting of the extended
status-word-format (l) bit and the 
extended-control (E) bit, bits 5 and 14 
of word 0, respectively, specify the 
contents of the extended-control word. 

The information provided in the 
extended-control word is given in the 
figure "Information in·Extended-Control 
Word." 

Bits* ECW ECW 
5 14 Words 0-3 Words 4-11 

0 0 Zeros Not defined 
1 0 Zeros Not defined 
1 1 Zeros Model-dependent 

information stored 

* The combination 01 is reserved for 
future use. 

Information in Extended-Control Word 

Unused bits in the model-dependent 
information are stored as zeros. 

Chapter 16. I/O Interruptions 16-43 





CHAPTER 17. I/O SUPPORT FUNCTIONS 

Address-Limit Checking •••••••.•••••••••.•••••••••••••••••• 17-1 
Channel-Subsystem-Monitoring Facilities .••••••••••••.•••.• 17-2 

Channel-Subsystem Timing Facility ••••.•••••••••••••••••• 17-2 
Channel-Subsystem Timer ••••••.••••..••••.•••••••••.••. 17-2 

Measurement-Block-Update Facility ••••.•••••••••••••••••• 17-4 
Measurement Block •.•..••..••..•••••.•••••••.•..••••••• 17-4 
Measurement-Block Origin ••••.••••••.•..••••.••••••.••• 17-5 
Measurement-Block Key ••••••••.•••••••••••••••••••••••• 17-5 
Measurement-Block Index •••.••.•••••••••••••••••••••••• 17-6 
Measurement-Block-Update Mode ••••••.•••••••••..•.••••• 17-6 
Measurement-Block-Update Enable ••••.•••••••••••••••••• 17-6 
Time-Interval-Measurement Accuracy •..••.•.•.••••••.••• 17-6 

Device-Connect-Time-Measurement Facility ..••••..••.•••.• 17-7 
Device-Connect-Time-Measurement ~lode ••..•••.••••••.••• 17-7 
Device-Connect-Time-Measurement Enable •••••..••••••.•• 17-7 

Signals and Resets •••••••••.•.••••••••..•••••.•..•••••..•• 17-8 
Signals •••••••••••.•••••..•...•...•.•...•••.•......••.•• 17-8 

Halt Signal ............................................ 17-8 
Clear Signal •••••••••••••••••••••••.•••••••••••••••••• 17-8 
Reset Signal ••••••••••••••••••.••••.••••••••••••••••.• 17-8 

Resets •...•••.•.•••••••••.•••••..•••..••••..•••.•.•••.•. 17-9 
Channel-Path Reset •••••••••••••••••.•••••••••••••••••• 17-9 
I/O-System Reset •••••••••••••••••••.•••••••••••••••••• 17-9 

Externally Initiated Functions •••••••••.•••••••••••••••••• 17-12 
Initial Program Loading ••...••.•.•.••.••.•.•.•.•.•••..•• 17-12 
Reconfiguration of the I/O System ••••.•••••••••••••••.•• 17-14 

Channel-Subsystem Recovery •.•••••.•••••..••••.•••••••••••• 17-14 
Channel-Report Word (CRW) ••••.•••••••.•••..•••••.••••.•• 17-15 
Channel Report •••••••••••••••••.••••..••••..••.•.•••...• 17-15 
CRW Contents •••••••••••••••••••••••••.••••••••••••••••.• 17-16 

The I/O support functions are those 
functions of the channel subsystem that 
are not directly related to the initi
ation or control of I/O operations. The 
following I/O support functions are 
described in this chapter: address
limit checking, channel-subsystem 
monitoring, signals and resets, exter
nally initiated functions, and channel
subsystem recovery. 

the subchannel key is zero or matches 
the key in storage. 

ADDRESS-LIMIT CHECKING 

The address-limit-checking facility 
provides a storage-protection mechanism 
for I/O data accesses to storage that 
augments key-controlled protection. 
When address-limit checking is used, 
absolute storage is divided into two 
parts by a program-controlled address
limit value. I/O data accesses can then 
be optionally restricted to only one of 
the two parts of absolute storage by 
program-controlled mode bits in each 
subchannel. The address-limit 
constraint operates at a higher priority 
than key-controlled protection so that 
I/O data accesses to the protected part 
of main storage are prevented even when 

The address-limit-checking facility 
consists of the following elements: 

• The I/O instruction SET ADDRESS 
LIMIT. 

• 

• 

The limit-mode 
subchannel. 

bits in each 

The address-limit-checking-control 
bit in the ORB. 

Execution of SET ADDRESS LIMIT passes 
the contents of general register 1 to 
the address-limit-checking facility to 
be used as the address-limit value. 
Bits 0 and 16-31 of general register 1 
must centain zeros to specify a valid 
absolute address on a 64K-byte boundary; 
otherwise, an operand exception is 
recognized, and execution of the 
instruction is suppressed. 

The setting of the limit-mode bits in 
each subchannel specifies how the 
address-limit checking is to be 
performed. The limit-mode bits are set 
by establishing the desired value in 
bits 9-10 of word 1 in the SCHIB and 
executing MODIFY SUBCHANNEL. The 

Chapter 17. I/O Support Functions 17-1 



settings of these bits in the subchannel 
have the following meanings: 

00 No limit checking (initialized 
value). 

01 ( Data address must be equal to 
or greater than the current 
address limit. 

10 Data address must be less than 
the current address limit. 

11 Reserved. An attempt to set 
this combination in the 
subchannel causes an operand 
exception when MODIFY SUBCHAN
NEL is executed. 

The address-limit-checking-control bit 
in the ORB (bit 11 of word 1) controls 
the application of address-limit check
ing for the start function accepted when 
the execution of START SUBCHANNEL causes 
the contents of the ORB to be passed to 
the subchannel. If the address-limit
checking-control bit is zero when the 
contents of the ORB are passed, 
address-limit checking is not specified 
for that start function. If the bit is 
one, address-limit checking is specified 
and is under the control of the current 
address limit and the current setting of 
the limit-mode bits in the subchannel. 

During the start-function execution, an 
attempt to access an absolute storage 
location for data that is protected by 
an address limit (either high or low) is 
recognized as an address-limit 
violation, and the access is not 
allowed. A program-check condition is 
recognized, and channel-program 
execution is terminated, just as when an 
attempt is made to access an invalid 
address. 

CHANNEL-SUBSYSTEM-MONITORING FACILITIES 

Monitoring facilities are provided in 
the channel subsystem which give the 
program the ability to retrieve measured 
values for several I/O resource-usage 
parameters on a subchannel basis. The 
use of these facilities is under program 
control by SET CHANNEL MONITOR and 
program-modifiable enabling bits in each 
subchannel. 

The channel-subsystem-monitoring facili
ties are the channel-subsystem timing 
facility, measurement-block-update fa
cility, and device-connect-time-mea
surement facility. The latter two 
facilities are logically distinct and 
operate independent of one another. 
Each of the three facilities that 
constitute the channel-subsystem
monitoring, facilities is described in 
this section. 

17-2 370-XA Principles of Operation 

CHANNEL-SUBSYSTEM-TIMING FACILITY 

The channel-subsystem-timing facility 
provides the channel subsystem with the 
capability of measuring the elapsed time 
required for executing several different 
phases in processing a start function 
initiated by START SUBCHANNEL. These 
elapsed-time measurements are used by 
both the measurement-block-update facil
ity and the device-connect-time
measurement facility to provide 
subchannel performance information to 
the program. 

While every channel subsystem has a 
channel-subsystem timing facility, it 
mayor may not be provided for use with 
all subchannels. Subchannels for which 
the facility is provided have the 
timing-facility bit (bit 14 of word 1) 
stored as one in the associated 
subchannel-information block. (See the 
section "Subchannel-Information Block" 
in Chapter 15, "Basic I/O Functions.") 
If the channel-subsystem timing facility 
is not provided for the subchannel, its 
timing-facility bit is stored as zero. 

Subchannels that do not have the 
channel-subsy~tem timing facility 
provided are those for which the charac
teristics of the associated device, the 
manner in which it is attached to the 
channel subsystem, or the channel
subsystem resources required to support 
the device are such that use of the 
channel-subsystem timing facility is 
precluded. Information concerning these 
restrictions can be found in the System 
Library publication for the system model 
and for the device. 

The channel-subsystem timing facility 
consists of at least one channel
subsystem timer and the associated logic 
and storage required for computing and 
recording the elapsed-time intervals for 
use by the two measurement facilities. 
The aspects of the channel-subsystem 
timing facility that are of import~nce 
to the program are described below. 

Channel-Subsystem Timer 

Each channel-subsystem timer is a binary 
counter, not accessible to the program. 
The channel-subsystem timer is incre
mented by adding a one to the rightmost 
bit position every 128 microseconds. 
When incrementing the channel-subsystem 
timer causes a carry out of the leftmost 
bit position, the carry is ignored, and 
counting continues from zero. No indi
cations are generated as a result of the 
overflow. 



Just as every CPU has access to a TOO 
clock, every channel subsystem has 
access to at least one channel-subsystem 
timer. In configurations where a 
particular channel SUbsystem has multi
ple channel-subsystem timers, they are 
synchronized with each other if all of 
the TOO clocks in the configuration are 
running and synchronized. If the TOO 
clocks are not synchronized, the elapsed 
times measured by the channel-sUbsystem 
timing facility have unpredictable 
values for some or all of the subchan
nels, depending on how the associated 
devices are physically attached to the 
system. The values are unpredictable 
for those devices attached to the system 
by separately configurable paths whose 
associated CPU TOO clocks are not 
synchronized. 

TOO-Clock Relationship: The channel
SUbsystem timer is incremented every 128 
microseconds when bit position 44 of the 
associated TOO clock is incremented. 
When bit position 28 of the TOO clock is 
incremented, the channel-subsystem timer 
is set to the same value as the corre
sponding bits of the associated TOO 
clock. When the channel-subsystem timer 
and the associated TOO clock are 
synchronized, the channel-subsystem 
timer contains the same value as TOD
clock bits 29-44 (plus or minus one 
increment of the channel-SUbsystem 
timer). (See the figure "Logical 
Relationship Between a "Channel
Subsystem Timer and the Associated TOO 
Clock.") 

Synchronization: Each channel-subsystem 
timer is automatically synchronized with 
the associated TOO clock every time 
TOO-clock bit position 28 is 
incremented. Continued synchronization 
is checked by the channel-subsystem 
timing facility within the approximately 
8-second resynchronization cycle. If 
either the measurement-block-update mode 
or device-connect-time-measurement mode 
is active and any channel-subsystem 
timer and the associated TOO clock are 
found to be out of synchronization, a 
channel-subsystem-timer-sync check is 
recognized, and a channel report is 
generated to alert the program (see the 
section "Channel-Subsystem Recovery" 
later in this chapter). If neither of 
these modes is active, the lack of 
synchronization with the TOO clock is 
not recognized. 

Since each channel-subsystem timer is 
automatically synchronized with its 
associated TOO clock, the synchroniza
tion of multiple channel-subsystem 
timers is dependent upon their multiple 
associated TOO clocks being synchronized 
with each other. TOO-clock synchroniza
tion is performed by the program using 
the SET CLOCK instruction. (See the 
section "Time-of-Day Clock" in Chapter 
4, "Control.") 

Loss of synchronization among channel
subsystem timers due to a loss of 
synchronization of their associated TOO 
clocks is not detected by the channel
subsystem timing facility. 

r-80388608 seconds 

r-
128 microseconds 

r 1 microsecond 
~ ~ ~ 

TOD I 
clock. 

I I I I I I 

0 28 44 51 63 

I I 
~Reset ~Increment 

Channel-subsystem timer 
I I I 

0 15 

Logical Relationship between a Channel-Subsystem Timer and 
the Associated TOO Clock 

Chapter 17. I/O Support Functions 17-3 



MEASUREMENT-BLOCK-UPDATE FACILITY 

The measurement-block-update facility 
provides the program with the capability 
of accumulating resource-usage informa
tion on a subchannel basis. The program 
designates a contiguous area of absolute 
storage and subdivides this area into 
32-byte blocks, one block for each 
subchannel for which resource-usage 
information is to be accumulated. 
Resource-usage information is accumu
lated in the block specified by the 
program each time an I/O operation or 
chain of I/O operations initiated by 
START SUBCHANNEL is suspended or 
completed. Accumulation of performance 
information by the measurement-block
updat~ facility is under control of the 
program by use of the SET CHANNEL MONI
TOR measurement-block-update mode
control bit"and the corresponding enable 
bit in the subchannel. Five parameters 
are accumulated by the measurement
block-update facility: 5SCH+R5CH count, 
sample count, device-connect time, 
function-pending time, and dev;ce
disconnect time. 

Measurement Block 

The measurement block is a 32-byte area 
at the location specified by the program 
using the measurement-block origin in 
conjunction with the measurement-block 
index. The measurement block contains 
the accumulated values of the measured 
parameters described below. When the 
measurement-block-update mode is active 
and the subchannel is enabled for meas
uring, the measurement-block-update 
facility measures the values for the 
parameters that accrue during the 
execution of an I/O operation or chain 
of I/O operations initiated by START 
SUBCHANNEL. 

When the I/O operation or chain of I/O 
operations is suspended or completed at 
the subchannel and no error condition is 
encountered, the accrued values are 
added to the accumulated values in the 
measurement block for that subchannel. 
If an error condition is detected and 
logout information is stored in the 
extended-status word (E5W), the accrued 
values are not added to the accumulated 
values in the measurement block for the 
subchannel, and the two count fields are 
not incremented. 

If any of the accrued time values is 
detected to exceed the internal storage 
provided for accruing these values, none 
of the accrued values are added to the 
measurement block for the subchannel, 
the sample count is not incremented, but 
the SSCH+RSCH count is incremented. 

17-4 370-XA Principles of Operation 

Accesses to the measurement block by the 
measurement-block-update facility, in 
order to increment the parameters at the 
suspension or completion of an I/O func
tion, appear block-concurrent to CPUs. 
CPU accesses to the block, either fetch
es or stores, are inhibited during the 
time the measurement-block-update is 
being performed by the measurement
block-update facility. 

The measurement block has the following 
format: 

Word 0 

1 

2 

3 

4 

5 

6 

7 

55CH Count I Sample Count 

Device Connect Time 

Function-Pending Time 

Device-Disconnect Time 

Reserved 

S5CH+R5CH Count: Bits 0-15 of word 0 
are used as a binary counter. When 
either the suspend function ;s performed 
or the primary-interruption condition is 
recognized during the execution of a 
start function, the measurement parame
ters are stored, and the counter is 
incremented by adding one in bit posi
tion 15. The counter wraps around from 
the maximum value of 65,535 to O. The 
program is not alerted when counter 
overflow occurs. 

If the measurement-block-update mode is 
active and the subchannel is enabled for 
measuring, the S5CH+R5CH count is incre
mented even when the lack of measured 
value for an individual start function 
precludes the updating of the sample 
count and words 1-3, or when the 
timing-facility bit for the subchannel 
is zero. The 5SCH+RSCH count is not 
incremented if the measurement-block
update mode is not active, if the 
subchannel is not enabled for the 
measurement-block update, or if logout 
information has been generated for the 
start function. 

Sample Count: Bits 16-31 of word 0 are 
used as a binary counter. When words 1, 
2, and 3 of the measurement parame~ers 
a re updated, the counter i s i ncremellted 
by adding one in bit position 31. On 
some models, certain conditions ;l1ay 
preclude the measurement-block-updite 
facility obtaining measured values for 
the parameters for an individual start 
function, even when the measurement
block-update mode is active and the 
subchannel is enabled for that mode. In 



this situation, the sample-count field 
is not incremented. 

The counter wraps around from the maxi
mum value of 65,535 to O. The program 
is not alerted when counter overflow 
occurs. This field is ,not updated if 
the channel-subsystem timing facility is 
not provided for the subchannel. 

The System library publication for the 
system model specifies the conditions, 
if any, that preclude the updating of 
the sample count and words 1, 2, and 3 
of the measurement-block parameters. 

Device-Connect Time: Bits 0-31 of word 
1 contain the accumulation of measured 
device-connect-time intervals. The 
device-connect-time interval (DCTI) is 
the sum of the time intervals measured 
whenever the device is logically 
connected to a channel path for purposes 
of transferring information between it 
and the channel subsystem. 

The time intervals are measured using a 
resolution of 128 microseconds. The 
accumulated value is modulo approximate
ly 152.71 hours, and the program is not 
alerted when an overflow occurs. This 
field is not updated if (1) the 
channel-subsystem timing facility is not 
provided for the subchannel, (2) the 
measurement-block-update mode is inac
tive, or (3) any of the three time 
values accrued for the current start 
function has been detected to exceed the 
internal storage in which it was 
accrued. 

Accumulation of device-connect-time 
intervals for a subchannel and provision 
of this parameter in the ESW are not 
affected by whether the measurement
block-update mode is active. (See the 
section "Device-Connect-Time-Measurement 
Facility" later in this chapter.) 

Function-Pending Time: Bits 0-31 of 
word 2 contain the accumulated SSCH- and 
RSCH-functi9n-pending time. Function
pending time is the time interval 
between acceptance of the start function 
(or resume function if the subchannel is 
in the suspended state) at the subchan
nel and acceptance of the first command 
associated with the initiation or 
resumption of channel-program execution 
at the device. 

When channel-program execution is 
suspended because of a suspend flag in 
the first CCW of a channel program, the 
suspension occurs prior to transferring 
the first command to the device. In 
this case, the function-pending time 
accumulated up to that point is added to 
the value in the function-pending-time 
field of the measurement block. 
Function-pending time is not accrued 
while the subchannel is suspended. 
Function-pending time begins to be 

accrued again, in this case, when RESUME 
SUBCHANNEl is subsequently issued to the 
subchannel while it is in the suspended 
state. 

The function-pending-time interval is 
measured using a resolution of 128 
microseconds. The accumulated value is 
modulo approximately 152.71 hours, and 
the program is not alerted when an over
flow occurs. This field is not updated 
if the channel-subsystem timing facility 
is not provided for the subchannel. 

Device-Disconnect Time: Bits 0-31 of 
word 3 contain the--accumulated device
disconnect time. Device-disconnect time 
is the sum of the time intervals meas
ured whenever the device is logically 
disconnected from the channel subsystem 
while the subchannel is active. 

Device-disconnect time is not accrued 
while the subchannel is in the suspended 
state. Device-disconnect time begins to 
be accrued again, in this case, on the 
first device disconnection after 
channel-program execution has been 
resumed at the device (subchannel 
active). 

The device-disconnect-time interval is 
measured by using a resolution of 128 
microseconds. The accumulated value is 
modulo approximately 152.71 hours; the 
program is not alerted when an overflow 
occurs. This field is not updated if 
the channel-subsystem timing facility is 
not provided for the subchannel. 

Words 4-7 of the measurement block are 
not updated, but are reserved for future 
use. 

Measurement-Block Origin 

The measurement-block origin specifies 
the absolute address of the beginning of 
the measurement-block area on a 32-byte 
boundary in main storage. The 
measurement-block origin is passed from 
general register 2 to the measurement
block-update facility when SET CHANNEL 
MONITOR is executed with bit 30 of 
general register 1 set to one. 

Measurement-Block Key 

Bits 0-3 of general register 1 form the 
four-bit access key to be used for 
subsequent measurement-block updates 
when SET CHANNEL MONITOR causes the 
measurement-block-update mode to be made 
active. The measurement-block key is 
passed to the measurement-block-update 
facility whenever the measurement-block 
origin is passed. 

Chapter 17. I/O Support Functions 17-5 



Measurement-Block Index 

The measurement-block index is set in 
the subchannel through the execution of 
MODIFY SUBCHANNEl. The measurement
block index specifies which 32-byte 
measurement block, relative to the 
measurement-block origin, is to be used 
for accumulating the measurement-block 
parameters for that subchannel. The 
location of the measurement block of a 
subchannel is computed by ,the 
measurement-block-update facility by 
appending five rightmost zeros to the 
measurement-block index of the subchan
nel and adding the result to the 
measurement-block origin. The result is 
the absolute address of the 32-byte 
measurement block for that subchannel. 
When the computed measurement-block 
address exceeds 2 31 - 1, a measurement
block program-check condition is 
recognized, and measurement-block up
dating does not occur for the preceding 
subchannel-active period. 

Programming ~ote 

The initial value of the measurement
block index is zero. The program is 
responsible for setting the measure
ment-block index to the proper value 
prior to enabling the subchannel for the 
measurement-block-update mode and making 
the mode active. To preclude the possi
bility of unpredictable results for the 
measured parameters in the measurement 
block, each subchannel for which meas
ured parameters are to be accumulated 
must have a different value for its 
measurement-block index. 

Measurement-Block-Update Mode 

The measurement-block-update mode is 
made active by executing SET CHANNEL 
MONITOR when bit 30 of general register 
1 is one. If bit 30 of general register 
1 is zero when SET CHANNEL MONITOR is 
executed, the mode is made inactive. 
When the measurement-block-update mode 
is inactive, no measurement values are 
accumulated in main storage. When the 
measurement-block-update mode is made 
active, the contents of general register 
2 are passed to the measurement-block
update facility as the absolute address 
of the measurement-block origin. Bits 
0-3 of general register 1 are also 
passed to the measurement-block-update 
facility as the access key to be used 
when updating the measurement block for 
each subchannel. When the measurement
block-update mode . is active, the 
measurement-block-update facility accum-
ulates measurements in individual 
measurement blocks within the 

17-6 370-XA Principles of Operation 

measurement-block area for subchannels 
whose measurement-block-update-enable 
bit is one. (See the section "Measure
ment Block" earlier in this chapter for 
a description of the measured 
parameters.) 

If the measurement-block-update mode is 
already active when SET CHANNEL MONITOR 
is executed, the values for the 
measurement-block orlgln and measure
ment-block key that are used for a 
subchannel enabled for measuring by the 
measurement-block-update facility are 
dependent upon whether SET CHANNEL MONI
TOR is executed prior to, during, or 
subsequent to execution of START 
SUBCHANNEl for that subchannel. If SET 
CHANNEL MONITOR is executed prior to 
START SUBCHANNEl, the current measure
ment-block origin and measurement-block 
key are in control. If SET CHANNEL 
MONITOR is executed during or subsequent 
to execution of START SUBCHANNEL, it is 
unpredictable whether the measurement
block origin and measurement-block key 
that are in control are old or current. 

Measurement-Block-Update Enable 

Bit 11, word 1, of the SCHIB is the 
measurement-block-update-enable bit. 
This bit provides the capability of 
controlling the accumulation of 
measurement-block parameters on a 
subchannel basis. The initial value of 
the enable bit is zero. When MODIFY 
SUBCHANNEl is executed with the enable 
bit set to one in the SCHIB, the 
subchannel is enabled for the 
measurement-block-update mode. If the 
measurement-block-update mode is active, 
the measurement-block-update facility 
accumulates measurement-block parameters 
for the subchannel, starting with the 
next START SUBCHANNEl issued to that 
subchannel. Similarly, if MODIFY 
SUBCHANNEl is executed with bit 11 of 
word 1 of the SCHIB operand set to zero 
by the program, the subchannel is disa
bled for the measurement-block-update 
mode, and no additional measurement
block parameters are accumulated for 
that subchannel. 

Time-Interval-Measurement Accuracy 

On some models, when time intervals are 
to be measured and condition code 0 is 
set for START SUBCHANNEl (or RESUME 
SUBCHANNEl in the case of a suspended 
subchannel), a period of latency may 
occur prior to the initiation of the 
function-pending time measurement. The 
System library pUblication. for the 
system model specifies the mean latency 
value and variance for each of the meas
ured time intervals. 



Programming Notes 

1. Excessive delays may be encountered 
by the channel subsystem when 
attempting to update measurement 
parameters if the program is con
currently accessing the same mea
surement-block area. A programming 
convention is desirable that 
ensures the storage block desig
nated by SET CHANNEL MONITOR is 
made read-only for the duration of 
time that the measurement-block
update mode is active. 

2. To ensure that programs written to 
support measurement functions are 
executed properly, the program 
should initialize all the measure
ment blocks to zeros prior to 
making the measurement-block-update 
mode active. Only zeros should 
appear in the unused words (words 
4-7) of the measurement blocks. 

3. When the incrementing of an accumu
lated value causes a carry to be 
propagated out of bit position 0, 
the carry is ignored, and accumu
lating continues from zero on. 

DEVICE-CONNECT-TIME-MEASUREMENT FACILITY 

The device-connect-time-measurement fa
cility provides the program with the 
capability of retrieving the length of 
time that a device is actively communi
cating with the channel subsystem while 
executing a channel program. The meas
ured length of time that the device 
spends actively communicating on a chan
nel path during the execution of a 
channel program is called the device
connect-time interval (DCTI). If timing 
facilities are provided for the subchan
nel, the DCTI value is passed to the 
program in the extended-status word 
(ESW) at the completion of the operation 
when the primary-status condition is 
cleared by TEST SUBCHANNEL and when TEST 
SUBCHANNEL clears an intermediate-status 
condition alone while the subchannel is 
suspended. The DCTI value passed in the 
ESW pertains to the previous sub
channel-active period. The passing of 
the DCTI in the ESW is under program 
control by the SET CHANNEL MONITOR 
device-connect-time-measurement mode
control bit and the corresponding enable 
bit in the subchannel. However, the 
DCTI value is not stored in the ESW if 
the I/O function initiated by START 
SUBCHANNEl is terminated because of an 
error condition that is described by 
subchannel logout (see the section 
"Extended-Status Format 0" in Chapter 
16, "I/O Interruptions"). In this case, 
the extended-status bit (l) of the SCSW 
is stored as one, indicating that the 
ESW contains logout information describ-

ing the error condition. See the 
section "Extended-Status Word" in Chap
ter 16, "I/O Interruptions," for the 
description of the logout informatlon. 
If the accrued DCTI value exceeded 
8.388608 seconds during the previ~us 
subchannel-active period, then the ma~i
mum value (FFFF hex) is passed in the 
ESL~ • 

Device-Connect-Time-Measurement Mode 

The device-connect-time-measurement mode 
is made active by executing SET CHANNEL 
MONITOR when bit 31 of general register 
1 is one. If bit 31 of general register 
1 is zero when SET CHANNEL MONITOR is 
executed, the mode is made inactive, and 
DCTls are not passed to the program. 
When timing facilities are provided for 
the subchannel, the device-connect
time-measurement mode is active, and the 
subchannel is enabled for the mode, the 
DCTI value is passed to the program in 
the ESW stored when TEST SUBCHANNEl 
(1) clears the primary-interruption 
condition with no logout information 
indicated in the SCSW (extended-status
word-format bit is zero) or (2) clears 
the intermediate-status condition alone 
while the subchannel is suspended. 

If a start function is currently being 
executed with a subchannel enabled for 
the device-connect-time-measurement mode 
when SET CHANNEL MONITOR makes this mode 
active for the channel subsystem, the 
value of the DCTI stored under the 
appropriate conditions may be zero, a 
partial result, or the full and correct 
value, depending on the model and the 
progress of the start function at the 
time the mode was activated. 

Provision of the DCTI value in the 
measurement-block area is not affected 
by whether the device-connect-time
measurement mode is active. 

Device-Connect-Time-Measurement Enable 

Bit 12, word 1, of the SCHIB is the 
device-connect-time measurement-mode 
enable bit. This bit provides the 
program with the capability of selec
tively controlling the storing of DCTI 
values for a subchannel when the 
device-connect-time-measurement mode is 
active. The initial value of the enable 
bit is zero. When this enable bit is 
one in the SCHIB and MODIFY SUBCHANNEl 
is executed, the subchannel is enabled 
for the device-connect-time-measurement 
mode. If the device-connect-time
measurement mode is active, the device
connect-time-measurement facility begins 
providing DCTI values for the 
subchannel, starting with the next START 

Chapter 17. I/O Support Functions 17-7 



SUBCHANNEl issued to the subchannel. In 
this situation, the DCTI values are 
provided in the ESW (see the section 
"Extended-Status Format 2" in Chapter 
16, "I/O Interruptions"). Similarly, if 
MODIFY SUBCHANNEl is executed with bit 
12, word 1, of the SCHIB operand set to 
zero by the program, the subchannel is 
disabled for the device-connect-time
measurement mode, and no further DCTI 
values are passed to the program for 
that subchannel. 

SIGNALS AND RESETS 

During system operation, it may become 
necessary to te~minate an I/O operation 
or to reset either the I/O system or a 
portion of the I/O system. (The I/O 
system consists of the channel subsystem 
plus all of the attached control units 
and devices.) Various signals and 
resets are provided for this purpose. 
Three signals are provided for the chan
nel subsystem to notify an I/O device to 
terminate an operation and/or perform a 
reset function. Two resets are provided 
to cause the channel subsystem to reini
tialize certain information contained 
either at the I/O device or at the chan
nel subsystem. 

SIGNALS 

The request that the 
initiate a signaling 
by: 

channel subsystem 
sequence is made 

1. The program executing the CLEAR 
SUBCHANNEl, HALT SUBCHANNEl, or 
RESET CHANNEL PATH instruction, 

2. The I/O device signaling I/O error 
alert, or 

3. The channel subsystem itself upon 
detecting certain error conditions 
or equipment malfunctions. 

The three signals are the halt signal, 
the clear signal, and the reset signal. 

Halt Signal 

The halt signal is provided so the chan
nel subsystem can terminate an I/O oper
ation. The halt signal is issued by the 
channel subsystem as part of the halt 
function performed subsequent to the 
execution of HALT SUBCHANNEl. The halt 
signal is also issued by the channel 
SUbsystem when certain error conditions 
are encountered. The halt signal 
results in the channel subsystem using 
the interface-disconnect sequence 

17~8 370-XA Principles of Operation 

control defined in the System library 
publication IBM System/360 and 
System/370 I/O Interface Channel to 
Control Unit OEMI, GA22-6974. 

Clear Signal 

The clear signal is provided so the 
channel subsystem can terminate an I/O 
operation and reset status and control 
information contained at the device. 
The clear signal is issued as part of 
the clear function performed subsequent 
to the execution of CLEAR SUBCHANtlEL. 
The clear signal is also issued by the 
channel subsystem when certain er~or 
conditions or equipment malfunctions ere 
detected by the I/O device or the chan
nel subsystem. The clear signal results 
in the channel subsystem using the 
selective-reset sequence control defined 
in the System library publication IBM 
System/360 and System/370 I/O Interface 
Channel to Control Unit OEMI, GA22-6974. 

If an I/O operation is in progress at 
the device and the device is actively 
communicating over a channel path in the 
performance of that I/O operation when a 
clear signal is received on that path, 
the device immediately disconnects from 
that channel path. Data transfer and 
any operation using the facilities of 
the control unit are immediately 
concluded, and the I/O device is not 
necessarily positioned at the beginning 
of a block. Mechanical motion not 
involving the use of the control unit, 
such as rewinding magnetic tape or posi
tioning a disk-access mechanism, 
proceeds to the normal stopping point, 
if possible. The device may appear busy 
until termination of the mechanical 
motion or the inherent cycle of opera
tion, if any, whereupon it becomes 
available. Status information in the 
device and control unit is reset, but an 
interruption condition may be generated 
upon the completion of any mechanical 
operation. 

Reset Signal 

The reset signal is provided so the 
channel subsystem can reset all I/O 
devices on a channel path. The reset 
signal is issued by the channel subsys
tem as part of the channel-path-reset 
function performed subsequent to the 
execution of RESET CHANNEL PATH. The 
reset signal is also issued by the chan
nel subsystem as part of the 1/0-
system-reset function. The reset signal 
results in the channel subsystem using 
the system-reset-sequence control 
defined in the System library publica
tion IBM System/360 and System/370 I/O 



Interface Channel to Control Unit OEMI, 
GA22-6974. 

RESETS 

Two resets are provided so the channel 
subsystem can reinitialize certain 
information contained at either the I/O 
device or the channel subsystem. The 
request that the channel subsystem 
initiate one of the reset functions is 
made by: 

1. The program executing the RESET 
CHANNEL PATH instruction, 

2. The operator activating a system
reset operator control or an 
initial-program-Ioad operator 
control, or 

3. The channel SUbsystem itself upon 
detecting certain error conditions 
or equipment malfunctions. 

The resets are channel-path reset and 
I/O-system reset. 

Channel-Path Reset 

Channel-path reset occurs when the chan
nel subsystem performs the channel
path-reset function initiated by RESET 
CHANNEL PATH. (See the section "RESET 
CHANNEL PATH" in Chapter 14, "I/O 
Instructions.") All internal indi
cations of dedicated allegiance, 
control-unit busy, and device busy that 
pertain to the specified channel path 
are cleared in all subchannels, and 
reset is signaled on that channel path. 
The receipt of the reset signal by 
control units attached to that channel 
path causes all operations in progress 
and all status, mode settings, and alle
giance pertaining to that channel path 
of the control unit and its attached 
devices to be reset. (See also the 
description of the system-reset-signal 
actions in the section "I/O-System 
Reset" in this chapter.) 

The results of the channel-path-reset 
function on the specified channel path 
are communicated to the program by means 
of a subsequent machine-check interrup
tion condition generated by the channel 
(see the section "Channel-Subsystem 
Recovery" in this chapter). 

I/O-System Reset 

The I/O-system-reset functi~n is per
formed when the channel subsystem is 

powered on, when initial program loading 
is initiated manually (see the section 
"Initial Program Loading" later in this 
chapter), and when the system-reset
clear or system-reset-normal key is 
activated. The I/O-system-reset func
tion cannot be initiated under program 
control; it must be initiated manually. 
I/O-system reset is performed as part of 
subsystem reset, which also resets all 
floating interruption requests, includ
ing pending I/O interruptions. (See the 
section "Subsystem Reset" in Chapter 4, 
"Control.") Detailed descriptions of 
the effects of I/O-system reset on the 
various components of the I/O system 
appear later in this chapter. 

I/O-system r~set provides a means for 
placing the channel subsystem and its 
attached I/O devices in the initialized 
state. I/O-system reset affects only 
the channel-subsystem configuration in 
which it is performed, including all 
channel-subsystem components configured 
to that channel subsystem. I/O-system 
reset has no effect on any system compo
nents that are not part of the channel
subsystem configuration that is being 
reset. The effects of I/O-system reset 
on the configured components of the 
channel subsystem are described in the 
following sections. 

Channel-Subsystem State: I/O-system 
reset causes the channel subsystem to be 
placed in the initialized state with all 
the channel-subsystem components in the 
states described in the following 
sections. All operations in progress 
are terminated and reset, and all indi
cations of prior conditions are re3et. 
These indications include status in~or
mati on, interruption conditions (but not 
pending interruptions), dedicated
allegiance conditions, pending channel 
reports, and all internal information 
regarding prior conditions and oper
ations. In the initialized state the 
channel subsystem has no activity in 
progress and is ready to perform the 
initial-program load (IPL) function or 
respond to I/O instructions, as 
described in Chapter 14, "I/O 
Instructions." 

Control Units and Devices: I/O-system 
reset causes a reset signal to be sent 
on all configured channel paths, includ
ing those in the check-stop state (PAM 
is zero) because of a permanent error 
condition detected earlier. When the 
reset signal is received by a control 
unit, control-unit functions in 
progress, control-unit status, control
unit allegiance, and control-unit modes 
for the resetting channel path are 
reset. Device operations in progress, 
device status, device allegiance, and 
device mode for the resetting channel 
path are also reset. Control-unit and 
device mode, allegiance, status, and I/O 
functions in progress for other channel 
paths are not affected. 

Chapter 17. I/O Support Functions 17-9 



The term "operation in progress" used in 
the preceding paragraph has a slightly 
different meaning for devices that have 
the dynamic-reconnection facility and 
are operating in multi path mode than it 
does for devices that do not have that 
facility. For devices that are operat
ing in single-path mode, an operation 
can be in progress for, at most, one 
channel path. Devices that are operat
ing in multi path mode, however, have the 
capability to establish an allegiance to 
a group of channel paths during an I/O 
operation, where all the channel paths 
of the group are configured to the same 
channel subsystem. Therefore, if an 
operation is in progress in single path 
mode and the reset signal is received on 
that channel path, the operation in 
progress is reset. If, on the other 
hand, an operation is in progress in 
multipath mode and the reset signal is 
received on one of the channel paths of 
that grou~, then the operation in 
progress 1S reset for the resetting 
channel path ~ This means that the 
operation in progress cannot continue on 
the resetting channel path but can 
continue on the other channel paths of 
the group, subject to the following 
restrictions: 

1. If the device is actively communi
cating with the channel subsystem 
on a channel path when it receives 
the reset signal on that channel 
path, then the operation is reset 
unconditionally, regardless of path 
groups. 

2. If the operation is in progress in 
multi path mode but the path group 
consists only of the resetting 
path, then the operation is reset. 

3. Except as noted in item 2 above, if 
the operation in progress is 
currently in a disconnected state 
(device not actively communicating 
with the channel subsystem) or is 
active on another channel path of a 
path group, system reset has no 
effect upon continued execution of 
the operation. 

In summary, system reset always causes 
an operation in progress to be reset for 
the channel path on which the reset 
signal is received. If the resetting 
channel path is the only channel path 
for which the operation is in progress, 
then the operation is completely reset. 
If a device is actively communicating on 
a channel path over which the reset 
signal is received, then the operation 
in progress is unconditionally and 
completely reset. 

A control unit is completely reset after 
the reset signal has been received on 
all its channel paths, provided no new 
activity is initiated at the control 
unit between the receipt of the first 
and last reset signal. "Completely 

17-10 370-XA Principles of Operation 

reset" means that the current operation, 
if any, at the control unit is termi
nated and that control-unit allegiance, 
control-unit status, and the control
unit mode, if any, are reset. 

A device is completely reset after the 
reset signal has been received on all 
channel paths of all control units by 
which the device is accessible, provided 
no new activity is initiated at the 
device between the receipt of the first 
and last reset signal. "Completely 
reset" means that the current operation, 
if any, at the device is terminated and 
that device allegiance, device status, 
and the device mode are reset. 

The reset signal is not received by 
control unit5 and devices on channel 
paths from which the control unit has 
been partitioned. A control unit is 
partitioned from a channel path by means 
of an enable/disable switch on the 
control unit for each channel path by 
which it is accessible. Multitagged, 
unsolicited status, if any, remains 
pending at the control unit for such a 
channel path in this case. However, 
from the point of view of the program, 
the control unit and device appear to be 
completely reset if the reset signal is 
received by the control unit on all the 
channel paths by which it is currently 
accessible. 

The resultant reset state of individual 
control units and devices is described 
in the System Library publication for 
the control unit. 

Channel Paths: I/O-system reset causes 
a reset signal to be sent on all config
ured channel paths and causes the ch~n
nel subsystem to be placed in the re~et 
and initialized state, as described in 
the previous sections. As a result of 
these actions, all communication between 
the channel subsystem and its attached 
control units and devices is terminated 
and the components reset, and all 
configured channel paths are made quies
cent. The channel subsystem uses the 
system-reset sequence control defined in 
the System library publication IBM 
System/360 and System/370 I/O Interface 
Channel to Control Unit OEMI, GA22-6974, 
to bring the channel paths into the 
quiescent state. 

Subchannels: I/O-system reset causes 
all operations on all subchannels to be 
concluded. Status information, all 
interruption conditions (but not pending 
interruptions), dedicated-allegiance 
conditions, and internal indications 
regarding prior conditions and oper
ations in all subchannels are reset, and 
all valid subchannels are placed in the 
initialized state. 

In the initialized state, the subchannel 
parameters of all valid subchannels have 
their initial values. The initial 



values of the following 
fields are zeros: 

subchannel 

Interruption parameter 
Interruption-subclass code 
Enabled bit 
limit mode 
Multipath-mode bit 
Measurement-mode bits 
Path-not-operational mask 
last-path-used mask 
Measurement-block index 

The initial values of the following 
subchannel parameters are assigned as 
part of the installation procedure for 
the device associated with each valid 
subchannel: 

Timing facility 
Device number 
logical-path mask (same value as 

path-installed mask) 
Path-installed mask 
Path-available mask 
Channel-path ID 0-7 

The values assigned may depend upon the 
particular system model and the config
uration; dependencies, if any, are 
described in the System library publica
tion for the system model. Programming 
considerations may further constrain the 
values assigned. 

The initial value of the 
operational mask is all ones. 

path-

The device-number-valid bit is one for 
all subchannels having an assigned I/O 
device. 

The initial value of the model-dependent 
area of the subchannel-information block 
is described in the System library 
publication for the system model. 

The initial value of the subchannel
status word and extended-status word is 
all zeros. 

The initialized state of the subchannel 
is the state specified by the initial 
values for the subchannel parameters 
described above. The description of the 
subchannel parameters can be found in 

the section "Subchannel-Information 
Block" in Chapter 15, "Basic I/O Func
tions"; the section "Subchannel-Status 
Word" in Chapter 16, "I/O 
Interruptions"; and in the section 
"Extended-Status Word" in Chapter 16, 
"I/O Interruptions." 

Channel-Path-Reset Facility: I/O-system 
reset causes the channel-path-reset 
facility to be reset. A channel-path
reset function initiated by RESET CHAN
NEL PATH, either pending or in progress, 
is overridden by I/O-system reset. The 
machine-check-interruption condition, . 
which normally signals the completion of 
a channel-path-reset function, is not 
generated for a channel-path-reset func
tion that is pending or in progress at 
the time I/O-system reset occurs. 

Address-limit-Checking Facility: 1/0-
system reset causes the address-limit
checking facility to be reset. The 
address-limit value is initialized to 
all zeros and validated~ 

Channel-Subsystem-Monitoring Facilities: 
I/O-system reset causes the channel
subsystem-monitoring facilities to be 
reset. The measurement-block-update mode 
and the device-connect-time-measurement 
mode, if active, are made inactive. The 
measurement-block origin and the mea
surement-blockkey are both initialized 
to zeros and validated. 

Pending Channel Reports: I/O-system 
reset causes pending channel reports to 
be reset. 

Channel-Subsystem Timer: I/O-system 
reset does not necessarily affect the 
contents of the channel-subsystem timer. 
In models that provide channel
subsystem-timer checking, I/O-system 
reset may cause the channel-subsystem 
timer to be validated. 

Pendi n9 I/O Interrupt ions: I/O-system 
reset does not affect pending I/O inter
ruptions. However, during subsystem 
reset, I/O interruptions are cleared 
concurrently with the execution of 
I/O-system reset. See the secti on "~iub
system Reset" in Chapter 4, "Control." 

Chapter 17. I/O Support Functions 17-11 



Area Affected 

Channel-subsystem state 
Control units and devices 
Channel paths 
Subchannels 
Interruption parameter 
Interruption-subclass code 
Enabled bit 
Address-limit-mode bits 
Timing-facility bit 
Multipath-mode bit 
Measurement-mode bits 
Device-number-valid bit 
Device number 
Logical-path mask 

Path-not-operational mask 
Last-path-used mask 
Path-installed mask 
Measurement-block index 
Path-operational mask 
Path-available mask 
Channel-path 10 0-7 
Subchannel-status word 
Extended-status word 
Model-dependent area 

Channel-path-reset facility 
Address-limit-checking facility 
Address-limit value 

Channel-subsystem-monitoring 
facility 
Measurement-block-update mode 
Device-connect-time

measurement mode 
Measurement-block origin 
Measurement-block key 

Pending channel-report words 
Channel-subsystem timer 

Explanation: 

Effect of I/O-System Reset l 

Reset and initialized 
Reset 
Quiescent 
Reset and initialized 
Zeros 2 

Zeros 2 

Zero 2 

Zeros 2 

Installed value 2 

Zer0 2 

Zeros 2 

Installed value2 

Installed value2 

Equal to path-installed 
mask value 2 

Zeros 2 

Zeros 2 

Installed value 2 

Zeros 2 

Ones 2 

Installed value 2 3 
Installed value 2 

Zeros 2 

Zeros 2 

Model dependent 2 
Reset 
Reset and initialized 
Zeros 2 

Reset and initialized 

Inactive2 

Inactive2 

Zeros 2 

Zeros 2 

Cleared 
Unchanged/validated 

1 For a detailed description of the effect of I/O-system 
reset on each area, see the text. 

2 Initialized value. 

3 Also subject to model-dependent configuration controls, 
if any. 

Summary of I/O-System-Reset Actions 

EXTERNALLY INITIATED FUNCTIONS 

I/O-system reset, which is an externally 
initiated function, is described in the 
section "I/O-System Reset" earlier in 
this chapter. 

INITIAL PROGRAM LOADING 

Initial-program-Ioading (IPL) provides a 
manual means for causing a program to be 
read from a specified device and for 
initiating execution of that program. 

17-12 370-XA Principles of Operation 

Some models may provide additional 
controls and indications relating to 
IPL. This additional information is 
specified in the System Library publica
tion for the model. 

IPL is initiated manually by designating 
an input device with the load-unit
address controls and subsequently acti
vating the load-normal or load-clear 
key. The load-normal key causes an 
initial-CPU-reset and a subsystem-reset 
operation to be performed, and the 
load-clear key causes a clear-reset 
operation to be performed. Other crus 
in the configuration perform CPU reset 
and clear reset, respectively. 



Subsequently, a read operation is initi
ated from the selected input device and 
associated subchannel. The CPU does not 
necessarily enter the stopped state 
during execution of the reset operation. 
The load indicator is on while the CPU 
is in the load state. 

The read operation is performed as if a 
START SUBCHANNEl instruction were 
executed that specified (1) the subchan
nel corresponding to the device number 
designated by the load-unit-address 
controls and (2) an ORB containing all 
zeros, except for a byte of all ones in 
the logical-path mask field. The ORB 
parameters are interpreted by the chan
nel subsystem as follows: 

Interruption parameter: all zeros 

Subchannel key: all zeros 

Suspend control: zero (suspension 
not allowed) 

CCW format: zero 

CCW prefetch: 
not allowed) 

zero (prefetching 

Initial-status request: zero (no 
request) 

Address-limit-checking 
zero (no checking) 

control: 

Suppress-suspended interruption: 
zero (suppression not allowed) 

logical-path mask: ones (all paths 
logically available) 

Channel-program address: 
address 0 

absolute 

The first CCW to be executed may be 
either an actual CCW stored at absolute 
location 0 or implied. In either case, 
the effect i~ as if a format-O CCW were 
executed that has the following format: 

loc. 

00 00000010 00000000 0000000000000000 

04 01100000 ////////10000000000011000 

o 8 16 31 

The above CCW specifies a read command 
with the modifier bits zeros, a data 
address of 0, a byte count of 24, the 
chain-command flag one, the suppress
incorrect-length-indication one, the 
chain-data flag zero, the skip flag 
zero, the program-control led
interruption (PCI) flag zero, the 
indirect-data-address (IDA) flag zero, 
and the suspend flag zero. The CCW 
fetched, as a result of command 
chaining, from location 8 or 16, as well 
as any subsequent CCW in the IPl 
sequence, is interpreted the same as a 

CCW in any I/O operation, except that 
any PCI flags that are specified in the 
IPl channel program are ignored. 

At the time the subchannel is made 
start-pending for the IPl read, it is 
also enabled, which ensures proper 
handling of subsequent status from the 
device by the channel subsystem and 
facilitates subsequent I/O operations 
using the IPl device. (Except for the 
subchannel used by the IPl I/O 
operation, each subchannel must first be 
made enabled by MODIFY SUBCHANNEl before 
it can accept a start function or any 
status from the device.) 

When the IPl subchannel becomes status
pending for the last operation of the 
IPl channel program, no I/O-interruption 
condition is generated. Instead, the 
subsystem ID is stored in absolute 
locations 184-187, zeros are stored in 
absolute locations 188-191, and the 
subchannel is cleared of the pending 
status as if TEST SUBCHANNEl had been 
executed, but without storing informa
tion usually stored in an IRB. If the 
subchannel-status field is all zeros and 
the device-status field contains only 
the channel-end indication with or with
out the device-end indication, the IPl 
I/O operation is considered to be 
completed successfully. If the device
end status for the IPl I/O operation is 
provided separately after channel-end 
status, it causes an I/O-interruption 
condition to be generated. When the IPl 
I/O operation is completed successfully, 
a new PSW is loaded from absolute 
locations 0-7. If the PSW loading i~ 
successful and if no machine malfunc
tions are detected, the CPU leaves the 
load state, and the load indicator is 
turned off. If the rate control is set 
to the process position, the CPU enters 
the operating state, and CPU operation 
proceeds under control of the new PSW. 
If the rate control is set to the 
instruction-step position, the CPU 
enters the stopped state, with the manu
al indicator on, after the new PSW has 
been loaded. 

If the IPl I/O operation or the PSW 
loading is not completed successfully, 
the CPU remains in the load state, and 
the load indicator remains on. 

IPl is unsuccessful when any of the 
following occurs: 

• No subchannel contains 
device number equal to 
device number designated 
load-unit-address controls. 

a valid 
the IPL 

by the 

• A machine malfunction is detected 
in the CPU, main storage, or chan
nel subsystem during the IPL opera
tion. 

• Unsolicited alert status is 
presented by the device between the 

Chapter 17. I/O Support Functions 17-13 



• 

• 

• 

• 

time the subchannel is made start
pending for the IPL read and the 
IPl subchannel becomes subchannel
active. The IPL read operation is 
not initiated in this case. 

The IPL device appeared not opera
tional on all available channel 
paths to the device, or there were 
no available channel paths. 

The IPL device presented a status 
byte containing indications other 
than channel end, device end, 
status modifier, control-unit end, 
control-unit busy, device busy, or 
retry status during the IPL I/O 
operation. Whenever control-unit 
end~ control-unit busy, or device 
busy is presented in the status 
byte, normal path-management 
actions are taken. 

A subchannel-status indication 
other than PCI was generated during 
the IPL I/O operation. 

The PSW loaded 
locations 0-7 has 
error of the type 
nized early. 

from absolute 
a PSW-format 

that is recog-

Except in the cases of no corresponding 
subchannel for the device number entered 
or a machine malfunction, the subsystem 
ID of the IPL device is stored in abso
lute locations 184-187; otherwise, the 
contents of these locations are unpre
dictable. In all cases of unsuccessful 
IPL, the contents of absolute locations 
0-7 are unpredictable. 

Subsequent to a successful IPL, the 
subchannel parameters contain the normal 
values as if an actual START SUBCHANNEL 
had been executed specifying the ORB as 
described above. 

Programming Notes 

1. The information read and placed at 
absolute locations 8-15 and 16-23 
may be used as CCWs for reading 
additional. information during the 
IPL I/O operation: the CCW at 
location 8 may specify reading 
additional CCWs elsewhere in stor
age, and the CCW at absolute 
location 16 may specify the 
transfer-in-channel command, caus
ing transfer to these CCWs. 

2. The status-modifier bit has its 
normal effect during the IPL I/O 
operation, causing the channel 
subsystem to fetch and chain to the 
CCW whose address is 16 higher than 
that of the current CCW. This 
applies also to the initial chain
ing that occurs after completion of 

17-14 370-XA Principles of Operation 

the read operation specified by the 
implicit cew. 

3. The PSW that is loaded at the 
completion of the IPL operation may 
be provided by the first eight 
bytes of the IPL I/O operation or 
may be placed at absolute locations 
0-7 by a subsequent eew. 

4. Activating the load-normal key 
implicitly apecifies the use of the 
first 24 bytes of main storage and 
the eight bytes at absolute 
locations 184-191. Since the 
remainder of the IPl program may be 
placed in any part of storage, it 
is possible to preserve such areas 
of storage as may be helpful in 
debugging or recovery. When the 
load-clear key is activated, the 
IPl program starts with a cleared 
machine in a known state, except 
that information on external stor
age remains unchanged. 

5. When the PSW at absolute location 0 
has bit 14 set to one, the CPU is 
placed in the wait state after the 
IPl operation is completed; at that 
point, the load and manual indica
tors are off, and the wait 
indicator is on~ 

RECONFIGURATION OF THE I/O' SYSTEM 

Reconfiguration of the 1/0 system is 
handled in a model-dependent manner. 
For example, changes may be made under 
program control, by using the model
dependent DIAGNOSE instruction; or manu
ally, by using system-operator 
configuration controls; or by using a 
combination of DIAGNOSE and manual 
controls. The method used depends on 
the system model. The System Library 
publication for the system model speci
fies how the changes are made. The 
partitioning of channel paths because of 
reconfiguration is reflected in the 
setting of the PAM bits in the affected 
subchannels (see the section 
"Subchannel-Information Block" in Chap
ter 15, "Basic I/O Functions"). 

CHANNEL-SUBSYSTEM RECOVERY 

The channel-subsystem-recovery mechanism 
provides for extensive detection of 
machine malfunctions to ensure the 
integrity of channel-subsystem operation 
and to achieve automatic recovery of 
some malfunctions. Various reporting 
methods are used by the channel
subsystem recovery mechanism to assist 
in program recovery, maintenance and 
repair. 



The method used to report a particular 
channel-subsystem malfunction is depend
ent upon the severity of the malfunction 
and the degree to which the malfunction 
can be isolated. Malfunctions in the 
channel sUbsystem are indicated to the 
program by information being stored by 
one of the following methods: 

1. Information is provided in the IRB 
describing a condition that has 
been recognized by either the chan
nel subsystem ~r device that must 
be brought to the attention of the 
program. Generally,. this informa
tion is made available to the 
program by the execution of TEST 
SUBCHANNEL, which is usually issued 
in response to the occurrence of an 
I/O interruption. (See Chapter 16, 
"I/O Interruptions," for a defi
nition of the information stored, 
as well as Chapter 6, "Inter
ruptions." 

2. Information is provided in a chan
nel report describing a machine 
malfunction affecting a specific 
facility within the channel subsys
tem. This information is made 
available to the program by the 
execution of STORE CHANNEL REPORT 
WORD, which is usually issued in 
response to the occurrence of a 
machine-check interruption. (See 
Chapter 11, "Machine-Check 
Handling," for a description of the 
machine-cheek-interruption mech
anism and the contents of the 
machine-cheek-interruption code.) 

3. Information is provided in a chan
nel report describing a machine 
malfunction affecting a collection 
of channel-subsystem facilities. 
This information is made available 
to the program as indicated in item 
2. 

4. Information is provided in the 
machine-check-interruption code 
(MCIC) describing a machine 
malfunction affecting the continued 
operational integrity of the chan
nel subsystem. (See the section 
"Channel-Subsystem Damage" in Chap
ter 11, "Machine-Check Handling." 

5. Information is provided in the MCIC 
describing a machine malfunction 
affecting continued operational 
integrity of a process or of the 
system (see the sections 
"Instruction-Processing Damage" and 
"System Damage" in Chapter 11, 
"Machine-Check Handling." 

The channel-report facility is intended 
to be used to report malfunctions only 
when the use of the I/O-interruption 
facility is not appropriate and in pref
erence to reporting channel-subsystem 
damage, instruction-processing damage, 
or system damage. 

CHANNEL-REPORT WORD (CRW) 

The channel-report word (CRW) provides 
error-related information to the program 
that can be used to facilitate the 
recovery of an I/O operation, a device, 
or some element of the chan,'lel 
SUbsystem, such as a channel path or 
subchannel. Each CRW has the CRW format 
described in the section "CRW Contents" 
later in this chapter. Execution of 
recovery actions by the program or by 
external means may be required to gain 
recovery from the error condition. The 
CRW specifies the error environment and 
the severity of the error to the extent 
necessary for selecting the proper 
recovery action. 

CHANNEL REPORT 

When a malfunction or other condition 
affecting elements of the channel 
SUbsystem has been recognized, a channel 
report is generated. A channel report 
consists of one or more channel-report 
words (CRWs) that have been generated 
from an analysis of the malfunction or 
other condition. The inclusion of two 
or more CRWs within a channel report is 
indicated by the chaining flag being 
stored as one in all of the CRWs except 
the last one in the chain. 

When a channel report is made pending by 
the channel subsystem for retrieval and 
analysis by the program (by means of 
STORE CHANNEL REPORT WORD), a malfunc
tion or other condition that affects the 
normal operation of one or more of the 
channel-subsystem facilities has been 
recognized. If the channel report that 
is made pending is an initial channel 
report, a machine-check-interruption 
condition is generated that indicates 
one or more CRWs are pending at the 
channel subsystem. A channel report is 
initial if it is either the first chan
nel report to be generated after the 
initial-program-load procedure or if no 
previously generated reports are pending 
and the last STORE CHANNEL REPORT WORD 
instruction that was executed resulted 
in the setting of condition code 1, 
indicating that no channel report was 
pending. When the machine-check inter
ruption occurs and bit 9 of the 
machine-cheek-interruption code (channel 
report pending) is one, a channel report 
is pend i ng~' I n the event that the 
program clears the first CRW of a report 
before the associated machine-check 
interruption has occurred, some models 
may reset the machine-check-interruption 
condition, and the associated machine
check interruption does not occur. The 
ability of the channel subsystem to 

Chapter 17. I/O Support Functions 17-15 



cause a machine-check interruption indi
cating that a channel report is pending 
is subject to the setting of the 
machine-check mask, PSW bit 13, and the 
channel-report-pending subclass mask, 
bit 3 of control register 14. Both of 
these bits must be one for the inter
ruption to take place. 

If the channel report that is made pend
ing is not an initial channel report, 
the program is not notified that the 
channel report was generated. 

The CRW that is presented to the program 
in response to the first STORE CHANNEL 
REPORT WORD instruction that is executed 
after a machine-check interruption may 
or may not be part of the initial chan
nel report that caused the machine-check 
condition to be generated. A pending 
channel-report word is cleared by any 
CPU executing STORE CHANNEL REPORT WORD, 
regardless of whether a machine-check 
interruption has occurred in any CPU. 
If a CRW is not pending and STORE CHAN
NEL REPORT WORD is executed, condition 
code 1 is set, and zeros are stored at 
the location designated by the second
operand address. During execution of 
STORE CHANNEL REPORT WORD as a result of 
recelvlng a machine-check interruption, 
condition code 1 may be set, and zeros 
may be stored because (1) the related 
channel report has been cleared by 
another CPU or (2) a malfunction 
occurred during the generation of a 
channel report. In the latter case, if, 
during a subsequent attempt, a valid 
channel report can be made pending, an 
additional machine-cheek-interruption 
condition is generated. 

When a channel report consists of multi
ple chained CRWs, they are presented to 
the program in the same order that they 
are placed in the chain by the channel 
subsystem and as the result of consec
utive executions of STORE CHANNEL REPORT 
WORD. If, for example, the first CRW of 
a chain is presented to the program as a 
result of executing STORE CHANNEL REPORT 
WORD, then the CRW that is presented as 
a result of the next execution of STORE 
CHANNEL REPORT WORD is the second CRW of 
the same chain, and not a CRW that is 
part of another channel report. 

Channel reports are not presented to the 
program in any special order, except for 
channel reports whose first or only CRW 
designates the same reporting-source 
code and the same reporting-source ID. 
These channel reports are presented to 
the program in the same order that they 
are generated by the channel subsystem, 
but they are not necessarily presented 
consecutively. For example, suppose the 
channel subsystem generates channel 
reports A, B, and C, in that order. The 
first CRWof channel reports Band C 
designates the same reporting-source 
code and the same reporting-source ID. 
Channel report B is presented to the 

17-16 370-XA Principles of Operation 

program before channel report 
presented, but channel report A 
presented after channel report 
before channel report C. 

Programming ~~tes 

C is 
may be 
Band 

1. The information that is provided in 
a single CRW may be made obsolete 
by another CRW that is subsequently 
generated for the same channel
subsystem facility. Therefore, the 
information that is provided in one 
channel report should be interpret
ed in light of the information 
provided by all of the channel 
reports that are pending at a given 
point in time. 

2. A machine-check interruption condi
tion is not always generated when a 
channel report is made pending. 
The conditions that result in a 
machine-check interruption condi
tion being generated are described 
earlier in this section. 

3. After a machine-check interruption 
has occurred with bit 9 of the 
machine-cheek-interruption code set 
to one, successive executions of 
STORE CHANNEL REPORT WORD should be 
performed until all of the pending 
channel reports have been cleared 
and condition code 1 has been set. 

4. A CRW-overflow condition can occur 
IT the program does not execute 
successive STORE CHANNEL REPORT 
WORD instructions in a timely 
manner after the machine-check 
interruption occurs. 

5. The number of CRWs that can be 
pending at the same time is model
dependent. While the overflow 
condition exists, CRWs that would 
have otherwise been made pending 
are lost and are never presented to 
the program. 

CRW CONTENTS 

The format of the CRW is as follows. 
Bits 0 and 8-9 are reserved and are 
always stored as zeros. 

1 
·1 1 1 1 1 1 1 Rapo. rtinlgD-sourcel ~O S R C RSCOO ERC _ _ 

o 1 234 8 10 16 31 

Solicited CRW (S): Bit 1, when one, 
specifies -a-solicited CRW. A CRW is 
considered by the channel subsystem to 



be solicited if it is made pending as 
the direct result of some action that is 
taken by the program. For example, the 
solicited CRW bit is stored as one, 
indicating a channel-path-initialized 
condition when the CRW is made pending 
as the result of RESET CHANNEL PATH 
being executed and the channel-path
reset function being performed 
successfully. When bit 1 is zero, the 
CRW is unsolicited and has been made 
pending as the result of an action taken 
by the channel subsystem that is inde
pendent of the program. For example, 
the solicited CRW bit is zero when a CRW 
is made pending as a result of the chan
nel subsystem recognizing a channel
path-terminal condition. 

Overflow (R): Bit 2, when one, speci
fies that a CRW-overflow condition has 
been recognized since this CRW became 
pending and that one or more CRWs have 
been lost. This bit is one in the CRW 
that has most recently been set pending 
when the overflow condition is recog
nized. When bit 2 is zero, a CRW
overflow condition has not been 
recognized. 

A CRW that is part of a channel report 
is not made pending, even though the 
overflow condition does not exist, if an 
overflow condition prevented a previous 
CRW of that report from being made pend
ing. 

Chaining (C): Bit 3, when one, and when 
the overflow flag is zero, specifies 
chaining of associated CRWs. Chaining 
of CRWs is specified whenever a machine 
malfunction is described by more than a 
single CRW. The chaining flag is zero 
if the channel report is described by a 
single CRW or if the CRW is the last CRW 
of a channel report. 

The chaining flag is meaningless if the 
overflow bit, bit 2, is one. 

Reporting-Source Code (RSC): Bits 4-7 
specify the channel-subsystem facility 
that has been associated with the 
malfunction. Some facilities are 
further identified in the reporting
source-idQntification field (see below). 
The following combinations of bits iden
tify the facilities: 

Bits 
12.6.2 

o 0 1 0 
001 1 
o 1 0 0 
100 1 

Designation 

Monitoring facility 
Subchannel 
Channel path 
Configuration-alert 

facility 

All other bit combinations in the 
reporting-source-code field are 
reserved. 

Error-Recovery Code (ERC): Bits 10-15 
contain the error-recovery code which 
defines the recovery state of the 
channel-subsystem facility identified in 
the reporting-source code. This field, 
when used in conjunction with the 
reporting-source code, can be used by 
the program to determine whether the 
reporting-source facility has already 
been recovered and is available for use 
or whether recovery actions are still 
required. The following error-recovery 
codes are possible: 

Bits 
llll 1£ U. 14 1.2. Error State 

0 0 0 0 0 1 Available 
0 0 0 0 1 0 Initialized 
0 0 0 0 1 1 Temporary error 
0 0 0 1 0 0 Installed parameters 

initialized 
0 0 0 1 0 1 Terminal 
0 0 0 1 1 0 Permanent error with 

facility not 
initialized 

0 0 0 1 1 1 Permanent err'or with 
facility 
initialized 

All other bit combinations in the 
error-recovery-code field are reserv~d. 

The specific meaning of each err~r
recovery code is dependent on the 
particular reporting-source code that 
accompanles it in a CRW. The error
recovery codes are defined as follows: 

Available: The designated facility 
is in the same state that the 
program would expect if the CRW had 
not been generated. 

Initialized: The designated facil
ity is in the same state that 
existed immediately following the 
I/O-system reset that was part of 
the most recent system IPl. 

Temporary: The designated facility 
is not operating in a normal manner 
or has recognized the occurrence of 
an abnormal event. It is expected 
that subsequent actions either will 
restore the facility to normal 
operation or will record the appro
priate information describing the 
abnormal event. 

Installed Parameters Initialized: 
This state is the same as the 
initialized state, except that one 
or more parameters that are associ
ated with the facility and that are 
not modifiable by the program may 
have been changed. 

Terminal: The designated facility 
is in such a state that an opera
tion that was in process can 
neither be completed nor terminated 
in the normal manner. 

Chapter 17. 1/0 Support Functions 17-17 



Permanent Error Wlth Facility Not 
Initialized: The designated facil
ity is in a state of malfunction, 
and the channel subsystem has not 
caused a reset function to be 
performed for that facility. 

Permanent Error. With Facility 
Initialized: The designated facil
ity is in a state of malfunction, 
and the channel subsystem has 
caused or may have caused a reset 
function to be performed for that 
facility. 

Reporting-Source ID CRSID): Bits 16-31 
contain the reporting-source ID which 
may, depending upon the machine malfunc
tion and the reporting-source code, 
either further identify the channel
subsystem facility affected by the 

17-18 370-XA Principles of Operation 

malfunction or provide additional infor
mation describing the malfunction. The 
RSID field has the following format as a 
function of the bit settings of the 
reporting-source code. 

Reporting
Source Code 

Notes: 

i.2.~1 

o 0 1 0 
o 0 1 1 
o 1 0 0 
1 0 0 1 

Reporting-Source ID 

0000 0000 
XXXX XXXX 
0000 0000 
0000 0000 

0000 0000 
XXXX XXXX 
yyyy yyyy 
yyyy yyyy 

x = Subchannel number 
y = Chan~el-path ID (CHPID) 



APPENDIX ~ NUMBER REPRESENTATION AND INSTRUCTION-USE EXAMPLES 

Number Representation •••.••••••••••..••....••••.•.••.•.••• A-2 
Binary Integers ..•.••.••.•••..•..•.••...•.••••••.••••••• A-2 

Signed Binary Integers .••••.•....•......•..••...•...•. A-2 
Unsigned.Binary Integers .......•......•.•....•..•.•... A-4 

Decimal Integers •....•...•••...•..•....•.•.•..•.•..•.•.. A-5 
Floating-Point Numbers ...........•..•..•.•••.••.•.••••.. A-5 
Conversion Example ...•..••......•........•.••.•...• r •••• A-7 

Instruction-Use Examples .•.•......•...•...•••......•.••.•. A-7 
Machine Format •..•.•..•.•....•..•..•...•.•.........•..•. A-7 
Assembler-language Format .••••••..•.•..•.••.•••••..••••. A-7 

Addressing Mode in Examples ••.•.........•..•.•........ A-8 
General Instructions •.•....•.••.••.•.•....•••.••.•..•.•... A-8 

ADD HAlFWORD (AH) •...•.•.•..•.••....•....•.•..•.••.•.•.• A-8 
AND (N, NR, NI, NC) ••.••....•.•..•.••...•........•.••... A-8 

And (NI) •....•..•....•....•.....•.•....•.••.•.••.•.•.. A-8 
BRANCH AND lINK (BAl, BAlR) .•..••••••....•..•••.••.••... A-9 
BRANCH ON CONDITION (BC, BCR) .......................•.•. A-9 
BRANCH ON COUNT (BCT, BCTR) .•.....•............•........ A-IO 
BRANCH ON INDEX HIGH (BXH) ..•....••..................... A-IO 

BXH Example 1 ••....•..••.•..•.•....•••••••••••.•..•..• A-I0 
BXH Example 2 ....•••..••.•.•.....•..•.•.•.•..•.•.....• A-IO 

BRANCH ON INDEX lOW OR EQUAL (BXlE) ....•...•••••....••.. A-I1 
COMPARE HALFWORD (CH) ....•..•.....•....•.•.••.•.•..•.••. A-li 
COMPARE lOGICAL (Cl, ClC, ClI, ClR) •.•.••••..•.•.•..•... A-ll 

Compare logical (ClC) .••.•...• ~ .•..•••..•............. A-II 
Compare logical (CLI) •..•.•.............••••••••.•.... A-12 
Compare Logical (CLR) .•.•.•......•....•...•.••.••.•••. A-12 

COMPARE lOGICAL CHARACTERS UNDER MASK (ClM) .•••••.•..... A-12 
COMPARE LOGICAL LONG (CLCL) ............•••...•.•...•.... A-13 
CONVERT TO BINARY (CVB) ••......••....•.•.....•.••.•...•. A-14 
CONVERT TO DECIMAL (CVD) .......•....•.•.••••.•.......... A-14 
DIVIDE (D, DR) •.••.•..••.•.••.•..•..•.•..•..•.•••••••.•. A-15 
EXCLUSIVE OR (X, XC, XI, XR) ...•............•.•..•....•. A-15 

Exclusive Or (XC) ...............•.••.•.•....•..•.•.•.. A-15 
Exclusive Or (XI) •.......•.....•..•......••.•.••...... A-16 

EX E CUT E (EX) .••...••...•••..•.•..•.••.•..•.•..•.••.•.... A -17 
INSERT CHARACTERS UNDER MASK (ICM) •.•....•...•••.•..•.•. A-17 
LOAD (L, LR) •.••.•..•.••.••..•...•....••....•.••••.•.... A-18 
LOAD ADDRESS (LA) •....•..•.......•..•..•......•.••.••... A-18 
LOAD HALFWORD (lH) .•...•...•..........................•. A-19 
MOVE (MVC, MVI) •..•........•.•...............•.••....•.. A-19 

Move (MVC) •••.•..•.••.••.•..•.•..•••••••.••••.••.••••. A-19 
Move (MVI) ............................................. A-20 

MOVE LONG (MVCL) .......•..•....•.•..•.......••....•.•••. A-20 
MOVE NUMERICS (MVN) ••...............•..•.•..••...••.•... A-21 
MOVE WITH OFFSET (MVO) ..•.••.•.•..••••.••.••••..•••.•••• A-21 
MOVE ZONES (MVZ) ••.•..••.........••...•.•..•.••.••...•.. A-22 
MULTIPLY (M, MR) ...••.•.•..•....................•.••..•. A-22 
MULTIPLY HALFWORD (MH) •.....•••...•.•.•..•...•..•..•.•.. A-23 
OR (0, OR, 01, OC) ....•..•..•.•••.•••.•................. A-23 

Or (01) •..........••.•.••.•...•...............•....... A-23 
PACK (PACK) ..............••.••.•..•.......•......•.•.... A-23 
SHIFT lEFT DOUBLE (SlDA) .••.•..•....•••.......•.•.••.•.. A-24 
SHIFT lEFT SINGLE (SLA) •..•••.....•.......•.•.••••••.... A-24 
STORE CHARACTERS UNDER MASK (STCM) .•......•.....•....••• A-24 
STORE MULTIPLE (STM) ....................•....•.••...••.• A-25 
TEST UNDER MASK (TM) •.•.•.......•.....•....•••.•.•.•.•.. A-25 
TRANSLATE (TR) •.•••.••••.••.••...••....•••.••.••.•••.••. A-26 
TRANSLATE AND TEST (TRT) ••...•...•......•.........•..•.. A-26 
UNPACK (UNPK) ....•..•.••....•.•........•.•.••.•••••.•... A -28 

Decimal Instructions •.••••.••••••...•...•••.••••.•.••.••.. A-28 
ADD DECIMAL (AP) ..•••••..••.••.•...•.........•.•........ A-28 
COMPARE DECIMAL (CP) ..•..........•.•....••.•..•..•.•.... A-29 
DIVIDE DECIMAL (DP) ••••••.•.••••••••...•.•••.•.••••...•. A-29 
EDIT (ED) .........•..•..•..•..•.....•.•..•.•..•.••.•....• A-29 
EDIT AND MARK (EDMK) ..•••.•.•..•.•••....••••.•..•..•.•.. A-3I 
MULTIPLY DECIMAL (MP) ....•..•..•••.....•..•••••••••••.•. A-32 
SHIFT AND ROUND DECIMAL (SRP) ••...••...••••..••••..•.•.. A-32 

Appendix A. Number Representation and Instruction-Use Examples A-I 



Decimal Left Shift •••••••••••••••••••••••••••••••••••• A-32 
Decimal Right Shift •••••••••••••••••••••••••••.••••••• A-33 
Decimal Right Shift and Round •••..••..•••••••••••••••• A-33 
Multiplying by a Variable Power of 10 ••••••••••••••••• A-33 

ZERO AND ADD (ZAP) ••••••••••••••••••••••••••••.••••••••• A-34 
Floating-Point Instructions .•..•..••.•..•..•.•.....•••..•• A-34 

ADD NORMALIZED (AD, ADR, AE, AER, AXR) •.•••••.••.••••••• A-34 
ADD UNNORMALIZED (AU, AUR, AW, AWR) ••••••••••••••••••••• A-34 
COMPARE (CD, CDR, CE, CER) •••••••••••••••••••••••••••••• A-35 
DIVIDE (DO, DDR, DE, DER) ..•..••••.••.••••••••.••••••••• A-35 
HAL V E ( ·H 0 R , HER) •.••....••.•••.••••••••.•.••.••••••••••• A - 3 6 
MULTIPLY (MD, MDR, ME, MER, MXD, MXDR, MXR) •.••••••••••• A-36 
Floating-Point-Number Conversion •••••••••••••••••••••••• A-36 

Fixed Point to Floating Point ~ •••••••.•••••.••..•••••• A-37 
Floating Point to Fixed Point .•••••••.••••••.••••••••• A-37 

Multiprogramming and Multiprocessing Examples •••.••••••.•. A-38 
Example of a Program Failure Using OR Immediate •..•••••• A-38 
COMPARE AND SWAP (CS, CDS) ••.•••••.••.•.•.•.••.•.••••••. A-38 

Setting a Single Bit •••••••••.•••••••••••••••••••••••• A-39 
Updating Counters ••••.•.•••.•.•••••.•.•.••.•••.••••••• A-39 

Bypassing POST AND WAIT •••••.••••.•••.••..••..•••••••.•• A-40 
BYPASS POST Routine .•••••.•...•••••••••••••••••••••••. A-40 
BYPASS WAIT Routine ••••••.•••.•••••••.•••••.•••••••••. A-40 

LOCK/UNLOCK ••••••••.••••.••••••••••••.•••••.•••••••••.•• A-40 
LOCK/UNLOCK with LIFO Queuing for Contentions ••••.•••. A-41 
LOCK/UNLOCK with FIFO Queuing for Contentions ••••••••. A-42 

Free-Pool Manipulation ••••••••••••••••••.••••••••••.•••• A-44 

NUMBER REPRESENTATION the decimal value +26 is made negative 
(-2~) in the following manner: 

BINARY INTEGERS 

Signed Binary Integers 

Signed binary integers are most commonly 
represented as halfwords (16 bits) or 
words (32 bits). In both lengths, the 
leftmost bit (bit 0) is the sign of the 
number. The remaining bits (bits 1-15 
for halfwords and 1-31 for words) are 
used to designate the magnitude of the 
number. Binary integers are also 
referred to as fixed-point numbers, 
because the radix point (binary point) 
is considered to be fixed at the right, 
and any scaling is done by the program
mer. 

Positive binary integers are in true 
binary notation with a zero sign bit. 
Negative binary integers are in two's
complement notation with a one bit in 
the sign position. In all cases, the 
bits between the sign bit and the left
most significant bit of the integer are 
the same as the sign bit (that is, all 
zeros for positive numbers, all ones for 
negative numbers). 

Negative binary integers are formed in 
two's-complement notation by inverting 
each bit of the positive binary integer 
and adding one. As an example using the 
halfword format, the binary number with 

A-2 370-XA Principles of Operation 

+26 0 000 0000 0001 1010 
Invert 1 111 1111 1110 0101 
Add 1 1 

-26 1 111 1111 1110 0110 (Two's 
complement 
form) 

(S is the sign bit.) 

This is equivalent to subtracting the 
number: 

from 
00000000 00011010 

1 00000000 00000000 

Negative binary integers are changed to 
positive in the same manner. 

The following addition examples illus
trate two's-complement arithmetic and 
overflow conditions. Only eight bit 
positions are used. 

1. +57 = 0011 1001 
+35 = 0010 0011 

+92 = 0101 1100 

2. +57 = 0011 1001 
-35 = 1101 1101 

+22 = 0001 0110 No overflow -- carry 
into leftmost posi-
tion and carry out. 



3. +35 = 0010 0011 
-57 = 1100 0111 

-22 = 1110 1010 Sign change only -
no carry into left
most position and no 
carry out. 

4. -57 = 1100 0111 
-35 = 1101 1101 

-92 = 1010 0100 No overflow -- carry 
into leftmost posi
tion and carry out. 

5. +57 = 0011 1001 
+92 = 0101 1100 

+149 =*1001 0101 *Overflow -- carry 
into leftmost posi
tion, no carry out. 

6. -57 = 1100 0111 
-92 = 1010 0100 

-149 =*0110 1011 *Overflow -- no carry 
into leftmost posi
tion but carry out. 

The presence or absence of an overflow 
condition may be recognized from the 
carries: 

• There is no overflow: 

a. If there is no carry into the 
leftmost bit position and no 
carry out (examples 1 and 3). 

2 31 _1 = 2 147 483 647 = 0 111 1111 
2 16 = 65 536 = 0 000 0000 
2° = 1 = 0 000 0000 
0 = a = 0 000 0000 

-2° = -1 = 1 111 1111 
-2 1 = -2 = 1 111 1111 
-2 16 = -65 536 = 1 111 1111 
-2 31 +1 = -2 147 483 647 = 1 000 0000 
-2 31 = .. 2 147 483 648 = 1 000 0000 

32-Bit Signed Binary Integers 

1111 
0000 
0000 
0000 
1111 
1111 
1111 
0000 
0000 

• 

b. If there is a carry into the 
leftmost position and also a 
carry out (examples 2 and 4). 

There is an overflow: 

a. If there is a carry into the 
leftmost position but no carry 
out (example 5). 

b. If there is no carry into the 
leftmost position but there is 
a carry out (example 6). 

The following are 16-bit signed binary 
integers. The first is the maximum 
positive 16-bit binary integer. The 
last is the maximum negative 16-bit 
binary integer (the negative 16-bit 
binary integer with the greatest abso
lute value). 

2 15 _1 = 32,767 
2° = 1 
0 = 0 

-2° = -1 
-2 15 = -32,768 

= 0 
= 0 
= 0 
= 1 
= 1 

111 
000 
000 
111 
000 

1111 1111 1111 
0000 0000 0001 
0000 0000 0000 
1111 1111 1111 
0000 0000 0000 

The following figure illustrates several 
32-bit signed binary integers arranged 
in descending order. The first is the 
maximum positive binary integer that can 
be represented by 32 bits, and the last 
is the maximum negative binary integer 
that can be represented by 32 bits. 

1111 1111 1111 1111 1111 
0001 0000 0000 0000 0000 
0000 0000 0000 0000 0001 
0000 0000 0000 0000 0000 
1111 1111 1111 1111 1111 
1111 1111 1111 1111 1110 
1111 0000 0000 0000 0000 
0000 0000 0000 0000 0001 
0000 0000 0000 0000 0000 

Appendix A. Number Representation and Instruction-Use Examples A-3 



Unsigned Binary Integers 

Certain instructions, such as ADD 
LOGICAL, treat binary integers as 
unsigned rather than signed. Unsigned 
binary integers have the same format as 
signed binary integers, except that the 
leftmost bit is interpreted as another 
numeric bit rather than a sign bit. 
There is no complement notation because 
all unsigned binary integers are consid
ered positive. 

The following examples illustrate the 
addition of unsigned binary integers. 
Only eight bit positions are used. The 
examples are numbered the same as the 
corresponding examples for signed binary 
integers. 

1 • 57 = 0011 1001 
35 = 0010 0011 

92 = 0101 1100 

2. 57 = 0011 1001 
221 = 1101 1101 

278 =*0001 0110 *Carry out of 
leftmost position 

2 32 -1 = 4 294 967 295 = 1111 1111 1111 
2 31 = 2 147 483 648 = 1000 0000 0000 
2 31 _1 = 2 147 483 647 = 0111 1111 1111 
2 16 = ·65 536 = 0000 0000 0000 
2° = 1 = 0000 0000 0000 
0 = 0 = 0000 0000 0000 

32-Bit Unsigned Binary Integers 

A-4 370-XA Principles of Operation 

3. 35 = 0010 0011 
199 = 1100 0111 

234 = 1110 1010 

4. 199 = 1100 0111 
221 = 1101 1101 

420 =*1010 0100 *Carry out of 
leftmost position 

5. 57 = 0011 1001 
92 = 0101 1100 

149 = 1001 0101 

6. 199 = 1100 0111 
164 = 1010 0100 

363 =*0110 1011 *Carry out of 
leftmost position 

A carry out of the leftmost bit position 
may or may not imply an . overflow, 
depending on the application. 

The following figure illustrates several 
32-bit unsigned binary integers arranged 
in descending order. 

1111 1111 1111 1111 1111 
0000 0000 0000 0000 0000 
1111 1111 1111 1111 1111 
0001 0000 0000 0000 0000 
0000 0000 0000 0000 0001 
0000 0000 0000 0000 0000 



DECIMAL INTEGERS 

Decimal integers consist of one or more 
decimal digits and a sign. Each digit 
and the sign are represented by a 4-bit 
code. The decimal digits are in 
binary-coded decimal (BCD) form, with 
the values 0-9 encoded as 0000-1001. 
The sign is usually represented as 1100 
(C hex) for plus and 1101 (D hex) for 
minus. These are the preferred sign 
codes, which are generated by the 
machine for the results of decimal
arithmetic operations. There are also 
several alternate sign codes (1010, 
1110, and 1111 for plus; 1011 for 
minus). The alternate sign codes are 
accepted by the machine as valid in 
source operands but are not generated 
for results. 

Decimal integers may have different 
lengths, from one to 16 bytes. There 
are two decimal formats: packed and 
zoned. In the packed format, each byte 
contains two decimal digits, except for 
the rightmost byte, which contains the 
sign code in the right half. For deci
mal arithmetic, the number of decimal 
digits in the packed format can vary 
from one to 31. Because decimal inte
gers must consist of whole bytes and 
there must be a sign code on the right, 
the number of decimal digits is always 
odd. If an even number of significant 
digits is desired, a leading zero must 
be inserted on the left. 

In the zoned format, each byte consists 
of a decimal digit on the right and the 
zone code 1111 (F hex) on the left, 
except for the rightmost byte where the 
sign code replaces the zone code. Thus, 
a decimal integer in the zoned format 
can have from one to 16 digits. The 
zoned format may be used directly for 
input and output in the extended 
binary-coded-decimal interchange code 
(EBCDIC), except that the sign must be 
separated from the rightmost digit and 
handled as a separate character. For 
positive (unsigned) numbers, however, 
the sign can simply be represented by 
the zone code of the rightmost digit 
because the zone code is one of the 
acceptable alternate codes for plus. 

In either format, negative decimal inte~ 
gers are represented in true notation 
with a separate sign. As for binary 
integers, the radix point (decimal 
point) of decimal integers is considered 
to be fixed at the right, and any scal
ing is done by the programmer. 

The following are some examples of deci
mal integers shown in hexadecimal nota
tion: 

Decimal Packed Zoned 
Value Format Format 

+123 12 3C Fl F2 C3 
or or 
12 3F F1 F2 F3 

-4321 04 32 lD F4 F3 F2 Dl 

+000050 00 00 05 OC FO FO FO FO F5 CO 
or or 
00 00 05 OF FO FO FO FO F5 FO 

-7 7D D7 

00000 00 00 OC FO FO FO FO CO 
or or 
00 00 OF FO FO FO FO FO 

Under some circumstances, a zero with a 
minus sign (negative zero) is produced. 
For example, the multiplicand: 

00 12 3D (-123) 

times the multiplier: 

OC (+0) 

generates the product: 

00 00 00 (-0) 

because the product sign follows the 
algebraic rule of signs even when the 
value is zero. A negative zero, 
however, is equivalent to a positive 
zero in that they compare equal in a 
decimal comparison. 

FLOATING-POINT NUMBERS 

A floating-point number ;s expressed as 
a hexadecimal fraction multiplied by a 
separate power of 16. The term floating 
point indicates that the placement, of 
the radix (hexadecimal) point, or scal
ing, is automatically maintained by the 
machine. 

The part of a floating-point number 
which represents the significant digits 
of the number is called the fraction. A 
second part specifies the power (expo
nent) to which 16 is raised and indi
cates the location of the radix point of 
the number. The fraction and exponent 
may be represented by 32 bits (short 
format), 64 bits (long format), or 128 
bits (extended format). 

Short Floating-Point Number 

IsICharacter;st;cI6-D;9;t ~ract;onl 
o 1 8 31 

Appendix A. Number Representation and Instruction-Use Examples A-5 



long Floating-Point Number 

IS!Characteristic! 14-0i 9 it:Fraction 

o 1 8 63 

Extended Floating-Point Number 

High-Order Part 
~r-------------~~--------/----------~ 

High-Order leftmost 14 Digits 
Characteristic of 28-Digit Fraction 

~~------------~~--------/----------~ 
o 1 8 63 

low-Order Part 
~r-------------~~--------/----------~ 

low-Order Rightmost 14 Digits 
Characteristic of 28-Digit Fraction 

~~------------~~--------/----------~ 
64 72 127 

A floating-point number has two signs: 
one for the fraction and one for the 
exponent. The fraction sign, which is 
also the sign of the entire number, is 
the leftmost bit of each format (0 for 
plus, 1 for minus). The numeric part of 
the fraction is in true notation regard
less of the sign. The numeric part is 
contained in bits 8-31 for the short 
format, in bits 8-63 for the long 
format, and in bits 8-63 followed by 
bits 72-127 for the extended format. 

The exponent sign is obtained by 
expresslng the exponent in excess-64 
notation; that is, the exponent is added 
as a signed number to 64. The resulting 
number is called the characteristic. It 
is located in bits 1-7 for all formats. 
The characteristic can vary from 0 to 
127, permitting the exponent to vary 
from -64 through 0 to +63. This 
provides a scale multiplier in the range 
of 16- 64 to 16+ 63 • A nonzero fraction, 
if normalized, has a value less than one 
and greater than or equal to 1/16, so 

1.0 = +1/16x16 1 = 0 100 0001 
0.5 = +8/16x16° = 0 100 0000 
1/64 = +4/16x16- 1 = 0 011 1111 
0.0 = +0 x16- 64 = 0 00'0 0000 

-15.0 = -15/16x16 1 = 1 100 0001 
5.4x10- 79 ,., +1/16x16- 64 = 0 000 0000 
7.2x1075 ,., (1-16- 6 )x16 63 = 0 111 1111 

that the range covered by the magnitude 
M of a normalized floating-point number 
is: 

In decimal terms: 

16-65 is approximately 5.4 x 10- 79 

16 63 is approximately 7.2 x 10 75 

More precisely, 

In the short format: 

16-65 ~ M ~ (1 - 16- 6 ) x 16 63 

In the long format: 

16-65 ~ M ~ (1 - 16- 14 ) x 16 63 

In the extended format: 

16-65 ~ M ~ (1 - 16-28 ) x 16 63 

Within a given fraction length (6, 14, 
or 28 digits), a floating-point opera
tion will provide the greatest precision 
if the fraction is normalized. A frac
tion is normalized when the leftmost 
digit (bit positions 8, 9, 10, and 11) 
is nonzero. It is unnormalized if the 
leftmost digit contains all zeros. 

If normalization of the operand is 
desired, the floating-point instructi~ns 
that provide automatic normalization are 
used. This automatic normalization is 
accomplished by left-shifting the frac
tion (four bits per shift) until a 
nonzero digit occupies the leftmost 
digit position. The characteristic is 
reduced by one for each digit shifted. 

The following figure illustrates sample 
normalized short floating-point numbers. 
The last two numbers represent the smal
lest and the largest positive normalized 
numbers. 

0001 0000 0000 0000 0000 0000{2} 
1000 0000 0000 0000 0000 0000{2} 
0100 0000 0000 0000 0000 0000{2} 
0000 0000 0000 0000 0000 0000{2} 
1111 0000 0000 0000 0000 0000{2} 
0001 0000 0000 0000 0000 0000{2} 
1111 1111 1111 1111 1111 1111{2} 

[The symbol N means "approximately equal."] 

Normalized Short Floating-Point Numbers 

A-6 370-XA Principles of Operation 



CONVERSION EXAMPLE 

Convert the decimal number 59.25 to a 
short floating-point number. (In anoth
er appendix are tables for the conver
sion of hexadecimal and decimal integers 
and fractions.) 

1. The number is separated into a 
decimal integer and a decimal frac
tion. 

59.25 = 59 plus 0.25 

2. The decimal integer is converted to 
its hexadecimal representation. 

59{10} = 3B{16} 

3. The decimal fraction is converted 
to its hexadecimal representation. 

0.25{10} = 0.4{16} 

4. The integral and fractional parts 
are combined and expressed as a 
fraction times a power of 16 (expo
nent). 

5. 

6. 

7. 

3B.4{16} = 0.3B4{16} x 16 2 

The characteristic is developed 
from the exponent and converted to 
binary. 

base + exponent = characteristic 
64 + 2 = 66 = 1000010 

The fraction is converted to binary 
and grouped hexadecimally. 

.3B4{16} = .0011 1011 0100 

The characteristic and the fraction 
are stored in the short format. 
The sign position contains the sign 
of the fraction. 

~ Char 

o 1000010 

Fraction 

0011 1011 0100 0000 
0000 0000 

Examples of instruction sequences 
that may be used to convert between 
signed binary integers and 
floating-point numbers are shown in 
the section "Floating-Point-Number 
Conversion" later in this appendix. 

INSTRUCTION-USE EXAMPLES 

The following examples illustrate the 
use of many of the unprivileged 
instructions. Before studying one of 
these examples, the reader should 
consult the instruction description. 

The instruction-use examples are written 
principally for assembler-language 

programmers, to be used in conjunction 
with the appropriate assembler-language 
manuals. 

Most examples present one particular 
instruction, both as it is written in an 
aS5embler-language statement and as it 
appears when assembled in storage 
(machine format). 

In the instruction-use examples, the 
notation {2}, {10}, or {16} may be used, 
indicating that the preceding number is 
binary, decimal, or hexadecimal, respec
tively. 

MACHINE FORMAT 

All machine-format values are given in 
hexadecimal notation unless otherwise 
specified. S~orage addresses are also 
given in hexadecimal. Hexadecimal oper
ands are shown converted into binary, 
decimal, or both if such conversion 
helps to clarify the example for the 
reader. 

ASSEMBLER-LANGUAGE FORMAT 

In assembler-language statements, regis
ters and lengths are presented in deci
mal. Displacements, immediate operands, 
and masks may be shown in decimal, hexa
decimal, or binary notation; for 
example, 12, X'C', and B'1100' represent 
the same value. Whenever the value in a 
register or storage location is referred 
to as "not significant," this value is 
replaced during the execution of the 
instruction. 

When SS-format instructions are written 
in the assembler language, lengths .lre 
given as the total number of bytes in 
the field. This differs from the 
machine definition, in which the length 
field specifies the number of bytes to 
be added to the field address to obtain 
the address of the last byte of the 
field. Thus, the machine length is one 
less than the assembler-language length. 
The assembler program automatically 
subtracts one from the length specified 
when the instruction is assembled. 

In some of the examples, symbolic 
addresses are used in order to simplify 
the examples. In assembler-language 
statements, a symbolic address is 
represented as a mnemonic term written 
in all capitals, such as FLAGS, which 
may denote the address of a storage 
location containing data or program
control information. When symbolic 
addresses are used, the assembler 
supplies actual base and displacement 
values according to the programmer's 
specifications. Therefore, the actual 

Appendix A. Number Representation and Instruction-Use Examples A-7 



values for base and displacement are not 
shown in the assembler-language format 
or in the machine-language format. For 
assembler-language formats, in the 
labels that designate instruction 
fields, the letter "S" is used to indi
cate the combination of base and 
displacement fields for an operand 
address. (For example, S2 represents 
the combination of B2 and D2.) In the 
machine-language format, the base and 
displacement address components are 
shown as asterisks (****). 

Addressing Mode in Examples 

Except where otherwise specified, the 
examples assume the 24-bit addressing 
mode. For the 31-bit addressing mode, 
the use of the BRANCH AND SAVE (BAS, 
BASR) instructions is recommended in 
place of the BRANCH AND LINK (BAL, BALR) 
instructions illustrated in this appen
dix. 

GENERAL INSTRUCTIONS 

(See Chapter 
description 
instructions.) 

ADD HAlFWORD (AH) 

7 
of 

for a 
the 

complete 
general 

The ADD HALFWORD instruction algebra
ically adds the contents of a two-byte 
field in storage to the contents of a 
register. The storage operand is 
expanded to 32 bits after it is fetched 
and before it is used in the add opera
tion. The expansion consists in propa
gating the leftmost (sign) bit 16 
positions to the left. For example, 
assume that the contents of storage 
locations 2000-2001 are to be added to 
register 5. Initially: 

Register 5 contains 00 00 00 19 = 
2S{10}. 

Storage locations 2000-2001 contain FF 
FE = -2{10}. 

Register 12 contains 00 00 18 00. 
Register 13 contains 00 00 01 50. 

The format of the required instruction 
is: 

A-8 370-XA Principles of Operation 

Machine Format 

Op Code 

4A 5 D 

Assembler Format 

Op Code R t ,D 2 (X 2 ,B 2 ) 

AH 5,X'6BO'(13,12) 

After the instruction is executed, 
register 5 contains 00 00 00 17 = 
23{10}. Condition code 2 is set to 
indicate a result greater than zero. 

AND (N, NR, NI, NC) 

When the Boolean operator AND is applied 
to two bits, the result is one when both 
bits are one; otherwise, the result is 
zero. When two bytes are ANDed, each 
pair of bits is handled separately; 
there is no connection from one bit 
position to another. The following is 
an example of ANDing two bytes: 

First-operand byte: 0011 0101{2} 
Second-operand byte: 0101 1100{2} 

Result byte: 0001 0100{2} 

A frequent use of the AND instruction is 
to set a particular bit to zero. For 
example, assume that storage location 
4891 contains 0100 0011{2}. To set the 
rightmost bit of this byte to zero 
wi thout affe(:ti ng the other bi ts, the 
following instruction can be used 
(assume that register 8 contains 00 00 
48 90): 

Machine Format 

Op Code 12 

94 FE 8 

Assembler Format 

Op Code D t (B t ),I 2 

HI 1(8),X'FE' 

When this instruction is executed, the 
byte in storage is ANDed with the lume-



diate byte (the I2 
instructions): 

field of 

Location 4891: 0100 0011{2} 
Immediate byte: 1111 lll0{2} 

Result: 0100 0010{2} 

the 

The resulting byte, with bit 7 set to 
zero, is stored back in location 4891. 
Condition code 1 is set. 

BRANCH AND LINK (BAL, BALR) 

The BRANCH AND LINK instructions are 
commonly used to branch to a subroutine 
with the option of later returning to 
the main instruction sequence. For 
example, assume that a branch to a 
subroutine at storage address 1160 is 
required. Also assume: 

The contents of register 2 are not 
significant. 

Register S contains 
Address 00 00 C6 

instruction, so 
the address of 
instruction. 

00 00 11 SO. 
contains the BAL 
that 00 00 CA i s 

the next sequential 

The format of the BAL instruction is: 

Machine Format 

Op Code 

45 2 o 

Assembler Format 

BAL 2,X'10'(0,S) 

After the instruction is executed: 

Register 2 (bits 8-31) contains 00 00 
CA. 

PSW bits 40-63 contain 00 11 60. 

Register 2 also contains other informa
tion from the PSW in bits 0-7. 

The program can return to the main 
instruction sequence at any time with a 
BRANCH ON CONDITION (BCR) instruction 
that specifies register 2 and a mask of 
lS{lO}, provided that bits 8-31 of 
register 2 have not meanwhile been 
disturbed. 

The BALR instruction with the R2 field 
set to zero may be used to load a regis
ter for use as a base register. For 
example, in the assembler language, the 
sequence of statements: 

BALR 
USING 

15,0 
*,IS 

tells the assembler program that, when 
the program is executed, the address of 
the next sequential instruction follow
ing the BALR will be placed in register 
15, which is to be used as a base regis
ter from here on. (The USING statement 
is an "assembler instruction" and is 
thus not a part of the object program.) 

As another example, BALR 6,0 may be used 
to preserve the current condition code 
in bits 2 and 3 of register 6 for future 
inspection. 

Note that, in all three examples, a 
value of zero in the X2 or R2 field 
indicates that the indexing or branching 
function, respectively, is not to be 
performed; it does not refer to register 
o. Register 0 can be designated by the 
Rt field, however. 

BRANCH ON CONDITION (BC, BCR) 

The BRANCH ON CONDITION instructions 
test the condition code to see whether a 
branch should or should not be taken. 
The branch is taken only if the current 
condition code corresponds to a one bit 
in a mask specified by the instruction. 

Condition 
Code 
-0-

1 
2 
3 

Instruction 
(Masl<) Bit 

8-
9 

10 
11 

Mask 
Value 
-8-

4 
2 
1 

For example, assume that an ADD (A or 
AR) operation has been performed and 
that a branch to address 60S0 is desired 
if the sum i~ zero or less (condition 
code is 0 or 1). Also assume: 

Register 10 contains 00 00 So 00. 
Register 11 contains 00 00 10 00. 

The RX form of the instruction performs 
the required test (and branch if neces
sary) when written as: 

Machine Format 

Op Code Mt 

47 C B A I Osol 

Assembler Format 

Op Code Mt ,D 2(X 2,B 2) 

BC 12,X'SO'(11,10) 

Appendix A. Number Representation and Instruction-Use Examples A-9 



A mask of 12{10} means that there are 
ones in instruction bits 8 and 9 and 
zeros in bits 10 and 11, so that branch
ing takes place when the condition code 
is either 0 or 1. 

A mask of 15 would indicate a branch on 
any condition (an unconditional branch). 
A mask of zero would indicate that no 
branch is to occur (a no-operation). 

BRANCH ON COUNT (BCT, BCTR) 

The BRANCH ON COUNT instructions are 
often used to execute a program loop for 
a specified number of times. For exam
ple1 assume that the following repres
ents some lines of coding in an 
assembler-language program: 

. 
lUPE AR 8,1 

. 
BACK BCT 6,lUPE 

where register 6 contains 00 00 00 03 
and the address of lUPE is 6826. Assume 
that, in order to address this location, 
register 10 is used as a base register 
and contains 00 00 68 00. 

The format of the BCT instruction is: 

Machine Format 

Op Code Rt 

46 6 o A 

Assembler Format 

Op Code Rt ,D 2(X 2,B 2) 

BeT 6,X'26'(O,10) 

The effect of the coding is to execute 
three times the loop defined by the 
instructions labeled lUPE through BACK, 
while register 6 is decremented from 
three to zero. 

A-I0 370-XA Principles of Operation 

BRANCH ON INDEX HIG~ (BXH) 

BXH Example 1 

The BRANCH ON INDEX HIGH instruction is 
an index-incrementing and loop
controlling instruction that causes a 
branch whenever the sum of an index 
value and an increment value is greater 
than some compare value. For example, 
assume that: 

Register 4 contains 00 00 00 8A = 
138{10} = the index. 

Register 6 contains 00 00 00 02 = 2{10} 
= the increment. 

Register 7 contains 00 00 00 AA = 
170{10} = the compare value. 

Register 10 contains 00 00 71 30 = the 
branch address. 

The format of the instruction is: 

Machine Format 

Op Code 

86 4 6 A 

Assembler Format 

Op Code Rt1R3,D2(B2) 

BXH 4,6,0(10) 

When the instruction is executed, first 
the contents of register 6 are added to 
register 4, second the sum is compared 
with the contents of register 7, and 
third the decision whether to branch is 
made. After execution: 

Register 4 contains 00 00 00 8C = 
140{10} 

Registers 6 and 7 are unchanged. 

Since the new value in register 4 is not 
yet greater than the value in register 
71 the branch to address 7130 is not 
taken. Repeated use of the instruction 
will eventually cause the branch to be 
taken when the value in register 4 
reaches 172{10}. 

BXH Example 2. 

When the register used to contain the 
increment is odd, that register also 
becomes the compare-value register. The 
following assembler-language subroutine 
illustrates how this may be used to 
search a table. 



Table 

2 Bytes 2 Bytes 

ARG1 FUNCTI 
ARG2 FUNCT2 
ARG3 FUNCT3 
ARG4 FUNCT4 
ARG5 FUNCT5 
ARG6 FUNCT6 

Assume that: 

Register 8 contains the search 
argument. 

Register 9 contains the width of the 
table in bytes (00 00 00 04). 

Register 10 contains the length of the 
table in bytes (00 00 00 18). 

Register 11 contains the starting 
address of the table. 

Register 14 contains the return address 
to the main program. 

As the following subroutine is executed, 
the argument in register 8 is succes
sively compared with the arguments in 
the table, starting with argument 6 and 
working backward to argument 1. If an 
equality is found, the corresponding 
function replaces the argument in regis
ter 8. If an equality is not found, 
zero replaces the argument in register 
8. 

SEARCH LNR 9,9 
NOTEQUAL BXH 10,9,LOOP 
NOT FOUND SR 8,8 

BCR 15,14 
LOOP CH 8,0(10,11) 

BC 7,NOTEQUAL 
LH 8,2CI0,11) 
BCR 15,14 

The first instruction (LNR) causes the 
value in register 9 to be made negative. 
After execution of this instruction, 
register 9 contains FFFFFFFC = -4{10}. 
Considering the case when no equality is 
found, the BXH instruction will be 
executed seven times. Each time BXH is 
executed, a value of -4 is added to 
register 10, thus reducing the value in 
register 10 by 4. The new value in 
register 10 is compared with the -4 
value in register 9. The branch is 
taken each time until the value in 
register 10 is -4. Then the branch is 
not taken, and the SR instruction sets 
register 8 to zero. 

BRANCH ON INDEX LOW OR EQUAL (BXLE) 

This instruction is similar to BRANCH ON 
INDEX HIGH except that the branch is 

successful when the sum is low or equal 
compared to the co~pare value. 

COMPARE HALFWORD (CH) 

The COMPARE HALFWORD instruction 
compares a 16-bit signed binary integer 
in storage with the contents of a regis
ter. For example, assume that: 

Register 4 contains FF FF 80 00 = 
-32,768{10}. 

Register 13 contains 00 01 60 50. 
Storage locations 16080-16081 contain 

8000 = -32,768{10}. 

When the instruction: 

Machine Format 

Op Code 

49 4 o D 

Assembler Format 

Op Code R"D 2 (X 2 ,B 2 ) 

CH 4,X'30'CO,13) 

is executed, the contents of locations 
16080-16081 are fetched, expanded to 32 
bits (the sign bit is propagated to the 
IQft), and compared with the contents of 
register 4. Because the two numbers are 
equal, condition code 0 is set. 

COMPARE LOGICAL (CL, CLC, CLI, CLR) 

The COMPARE LOGICAL instructions differ 
from the signed-binary comparison 
instructions (C, CH, CR) in that all 
quantities are handled as unsigned bina
ry integers or as unstructured data. 

Compare Logical (CLC) 

The COMPARE LOGICAL (CLC) instruction 
can be used to perform the byte-by-byte 
comparison of storage fields up to 256 
bytes in length. For example, assume 
that the following two fields of data 
are in storage: ' 

Appendix A. Number Representation and Instruction-Use Examples A-II 



Field 1 
1886 1891 

1011061C810SIE210610S16BIC114BIC214BI 

Field 2 
1900 190B 

1011061C81051E210610516BI Cl l4BIC314BI 

Also assume: 

Register 9 contains 00 00 18 80. 
Register 7 contains 00 00 19 00. 

Execution of the instruction: 

Machine Format 

Op Code L 

os OB 9 0061 7 0001 

Assembler Format 

Op Code D,(L,B t ),02(B 2) 

CLC 6(12,9),0(7) 

sets condition code 1, indicating that 
the contents of field 1 are lower in 
value than the contents of field 2. 

Because the collating sequence of the 
EBCOIC code is determined simply by a 
logical comparison of the bits in the 
code, the ClC instruction can be used to 
collate EBCOIC-coded fields. For exam
ple, in EBCOIC, the above two data 
fields are: 

Field 1: JOHNSON,A.B. 
Field 2: JOHNSON,A.C. 

Condition code 1 indicates that 
A.B.JOHNSON should precede A.C.JOHNSON 
for the names to be in alphabetic 
sequence. 

Compare Logical (CLI) 

The COMPARE LOGICAL (CLI) instruction 
compares a byte from the instruction 
stream with a byte from storage. For 
example, assume that: 

Register 10 contains 00 00 17 00. 
Storage location 1703 contains 7E. 

Execution of the instruction: 

A-12 370-XA Principles of Operation 

Machine Format 

Op Code 12 

95 AF 

Assembler Format 

Op Code 01(B 1),I 2 

CLI 3(10),X'AF' 

sets condition code 1, indicating that 
the first operand (the quantity in main 
storage) is lower than the second (imme
diate) operand. 

Compare Logical (CLR) 

Assume that: 

Register 4 contains 00 00 00 01 = 1. 
Register 7 contains FF FF FF FF = 

232 - 1. 

Execution of the instruction: 

Machine Format 

Op Code R, 

1S 4 7 

Assembler Format 

Op Code R t ,R 2 

CLR 4,7 

sets condition code 1. Condition code 1 
indicates that the first operand is 
lower than the second. 

If, instead, the signed-binary compar
ison instruction COMPARE (CR) had been 
executed, the contents of register 4 
would have been interpreted as +1 and 
the contents of register 7 as -1. Thus, 
the first operand would have been 
higher, so that condition code 2 would 
have been set. 

COMPARE LOGICAL CHARACTERS UNDER MASK 
(ClM) 

The COMPARE LOGICAL CHARACTERS UNOER 
MASK (CLM) instruction provides a means 
of comparing bytes selected from a 
general register to a contiguous field 
of bytes in storage. The MJ field of 
the CLM instruction is a four-bit mask 



that selects zero to four bytes from a 
general register, each mask bit corre
sponding, left to right, to a register 
byte. In the comparison, the register 
bytes corresponding to ones in the mask 
are treated as a contiguous field. The 
operation proceeds left to right. For 
example, assume that: 

storage locations 10200-10202 contain 
FO BC 7B. 

Register 12 contains 10000. 
Register 6 contains FO BC 5C 7B. 

Execution of the instruction: 

Machine Format 

Op Code 

BD 6 D C 

Assembler Format 

CLM 6,B'1101',X'200'(12) 

causes the following comparison: 

Register 6: FO BC 5C 7B 
Mask M3: 1 1 0 1 

FO BC 7B 

storage I ; I locations 
10200-10202: FO BC 7B 

Because the selected bytes are equal, 
condition code 0 is set. 

COMPARE LOGICAL LONG (CLCL) 

The COMPARE LOGICAL LONG (CLCL) instruc
tion is used to compare two operands in 
storage, byte by byte. Each operand can 
be of any length. Two even-odd pairs of 
general registers (four registers in 
all) are used to locate the operands and 
to control the execution of the CLCL 
instruction, as illustrated in the 
following diagram. The first register 
of each pair must be an even register, 
and it contains the storage address of 
an operand. The odd register of each 
pair contains the length of the operand 
it covers, and the leftmost byte of the 
second-operand odd register contains a 
padding byte which is used to extend the 
shorter operand, if any, to the same 
length as the longer operand. 

The following illustrates the assignment 
of registers: 

R t 1////////1 First-Operand Address 
(even) 

0 8 31 

R t +1 1////////1 First-Operand Length 1 (odd) 
0 8 31 

R2 !////////!second-Operand Address! 
(even) 

0 8 31 

R2+1 Ipad By tel Second-Operand Length 1 (odd) 
0 8 31 

Since the CLCL instruction may be inter
rupted during execution, the interrupt
ing program must preserve the contunts 
of the four registers for use when the 
instruction is resumed. 

The following instructions set up two 
register pairs to control a text-string 
comparison. For example, assume: 

Operand 1 

Address: 20800{16} 
Length: 100{10} 

Operand Z 
Address: 20AOO{16} 
Length: 132{10} 

Padding Byte 

Address: 20003{16} 
Length: 1 
Value: 40{16} 

Register 12 contains 00 02 00 00 

The setup instructions are: 

LA 4,X'800'(12) Set register 4 to 
start of first 
operand 

LA 5,100 Set register 5 to 
length of first 
operand 

LA 8,X'AOO'(12) Set register 8 to 
start of second 
operand 

LA 9,132 Set register 9 to 
length of second 
operand 

ICM 9,B'1000',3(12) Insert padding byte 
in leftmost byte 
position of regis-
ter 9. 

Register pair 4,5 defines the first 
operand. Bits 8-31 of register 4 
contain the storage address of the start 
of an EBCDIC text string, and bits 8-31 
of register 5 contain the length of the 
string, in this case 100 bytes. 

Appendix A. Number Representation and Instruction-Use Examples A-13 



Register pair 8,9 defines the second 
operand, with bits 8-31 of register 8 
containing the starting location of the 
second operand and bits 8-31 of register 
9 containing the length of the second 
operand, in this case 132 bytes. Bits 
0-7 of register 9 contain an EBCDIC 
blank character (X'40') to pad the 
shorter operand. In this example, the 
padding byte is used in the first oper
and, after the 100th byte, to compare 
with the remaining bytes in the second 
operand. 

With the register pairs thus set up, the 
format of the CLCL instruction is: 

Machine Format 

Op Code 

OF 4 8 

Assembler Format 

Op Code R t ,R 2 

CLCL 4,8 

When this instruction is executed, the 
comparison starts at the left end of 
each operand and proceeds to the right. 
The operation ends as soon as an 
inequality is detected or the end of the 
longer operand is reached. 

If this CLCL instruction is interrupted 
after 60 bytes have compared egual, the 
operand lengths in registers 5 and 9 
will have been decremented to X'28' and 
X'48', respectively. The operand 
addresses in registers 4 and 8 will have 
been incremented to X'2083C' and 
X'20A3C'; the leftmost byte of registers 
4 and 8 will have been set to zero. The 
padding byte X'40' remains in register 
9. When the CLCL instruction is reis
sued with these register contents, the 
comparison resumes at the point of 
interruption. 

Now, assume that the instruction is 
interrupted after 110 bytes. That is, 
the first 100 bytes of the second oper
and have compared equal to the first 
operand, and the next 10 bytes of the 
second operand have compared equal to 
the padding byte (blank). The residual 
operand lengths in registers 5 and 9 are 
o and X'16', respectively, and the oper
and addresses in registers 4 and 8 are 
X'20864' (the value when the first oper
and was exhausted, and X'20A6E' (the 
current value for the second operand). 

When the comparison ends, the condition 
code is set to 0, 1, or 2, depending on 

A-14 370-XA Principles of Operation 

whether the first operand is equal to, 
less than, or greater than the second 
operand, respectively. 

When the operands are unequal, the 
addresses in registers 4 and 8 indicate 
the bytes that caused the mismatch. 

CONVERT TO BI~ARY (CVB) 

The CONVERT TO BINARY instruction 
converts an eight-byte, packed-decimal 
number into a signed binary integer and 
loads the result into a general 
register. After the conversion opera
tion is completed, the number is in the 
proper form for use as an operand in 
signed binary arithmetic. For example, 
assume: 

storage locations 7608-760F contain a 
decimal number in the packed 
format: 00 00 00 00 00 25 59 4C 
(+25,594). 

The contents of register 7 are not 
significant. 

Register 13 contains 00 00 76 00. 

The format of the conversion instruction 
is: 

Machine Format 

Op Code 

4F 7 o D 008 1 

Assembler Format 

CVB 7,8(0,13) 

After the instruction is executed, 
register 7 contains 00 00 63 FA. 

CONVERT TO DECIMAL (CVD> 

The CONVERT TO DECIMAL instruction is 
the opposite of the CONVERT TO BINARY 
instruction. CVD converts a signed 
binary integer in a register to packed 
decimal and stores the eight-byte 
result. For example, assume: 

Register 1 contains the signed binary 
integer: 00 00 OF OF. 

Register 13 contains 00 00 76 00. 

The format of the instruction is: 



Machine Format 

Op Code 

4E 1 o D 008 1 

Assembler Format 

Op Code Rt ,D 2 (X 2 ,B 2 ) 

CVD 1,8(0,13) 

After the instruction is executed, stor
age locations 7608-760F contain 00 00 00 
00 00 03 85 5C (+3855). 

The plus sign generated is the preferred 
plus sign, 1100{2}. 

DIVIDE (D, DR) 

The DIVIDE instruction divides the divi
dend in an even-odd register pair by the 
divisor in a register or in storage. 
Since the instruction assumes the divi
dend to be 64 bits long, it is important 
first to extend a 32-bit dividend on the 
left with bits equal to the sign bit. 
For example, assume that: 

Storage locations 3550-3553 contain 00 
00 08 DE = 2270{10} (the 
dividend). 

Storage locations 3554-3557 contain 00 
00 00 32 = 50{10} (the divisor). 

The initial contents of registers 6 and 
7 are not significant. 

Register 8 contains 00 00 35 50. 

The following assembler-language state
ments load the registers properly and 
perform the divide operation: 

Statement Comments 

L 6,0(0,8) Places 00 00 08 DE into 
register 6. 

SRDA 6,32(0) Shifts 00 00 08 DE into 
register 7. Register 
6 is filled with zeros 
(sign bits). 

D 6,4(0,8) Performs the division. 

The machine format of the above DIVIDE 
instruction is: 

Machine Format 

Op Code R t X2 B2 D:z 

5D 6 0 8 004 1 

After the instructions listed above are 
executed: 

Register 6 contains 00 00 00 14 = 
20{10} = the remainder. 

Register 7 contains 00 00 00 2D = 
45{10} = the quotient. 

Note that if the dividend had not been 
first placed in register 6 and shifted 
into register 7, register 6 might not 
have been filled with the proper 
dividend-sign bits (zeros in this exam
ple), and the DIVIDE instruction might 
not have given the expected results. 

EXCLUSIVE OR (X, XC, XI, XR) 

When the Boolean operator EXCLUSIVE OR 
is applied to two bits, the result is 
one when either, but not both, of the 
two bits is one; otherwise, the result 
is zero. When two bytes are EXCLUSIVE 
ORed, each pair of bits is handled sepa
rately; there is no connection from one 
bit position to another. The following 
is an example of the EXCLUSIVE OR of two 
bytes: 

First-operand byte: 0011 010l{2} 
Second-operand byte: 0101 1100{2} 

Result byte: 0110 1001{2} 

Exclusive Or (XC) 

The EXCLUSIVE OR (XC) instruction can be 
used to exchange the contents of two 
areas in storage without the use of an 
intermediate storage area. For example, 
assume two three-byte fields in storage: 

359 35B 

Field 1 1001171901 

360 362 

Field 2 1001141011 

Execution of the instruction (assume 
that register 7 contains 00 00 03 58): 

Appendix A. Number Representation and Instruction-Use Examples A-IS 



Machine Format 

Op Code L 

D7 02 
7 '0011 7 '" 0081 

Assembler Format 

Op Code 0,(L,B,),02(B 2 ) 

XC 1(3,7),8(7) 

Field 1 is EXCLUSIVE ORed with field 2 
as follows: 

Field 1 : 00000000 00010111 10010000{2} 
= 00 17 90{16} 

Field 2: 00000000 00010100 00000OOl{2} 
= 00 14 01{16} 

Result: 00000000 00000011 10010001{2} 
= 00 03 91{16} 

The result replaces the former contents 
of field 1. Condition code 1 is set to 
indicate a nonzero result. 

Now, execution of the instruction: 

Machine Format 

Op Code L Ot 

D7 02 7 008 1 

Assembler Format 

Op Code Dt (L,B t ),D 2 (B 2 ) 

XC 8(3,7),1(7) 

produces the following result: 

Field 1 : 00000000 00000011 10010001{2} 
= 00 03 91{16} 

Field 2: 00000000 00010100 00000001{2} 
= 00 14 01{16} 

Result: 00000000 00010111 10010000{2} 
= 00 17 90{16} 

The result of this operation replaces 
the former contents of field 2. Field 2 
now contains the original value of field 
1. Condition code 1 is set to indicate 
a nonzero result. 

Lastly, execution of the instruction: 

A-16 370-XA Principles of Operation 

Machine Format 

Op Code L 

07 02 7 I 001' 7 008
1 

Assembler Format 

XC 1(3,7),8(7) 

produces the following result: 

Field 1 : 00000000 00000011 10010001{2} 
= 00 03 91{16} 

Field 2: 00000000 00010111 10010000{2} 
= 00 17 90{16} 

Result: 00000000 00010100 0OOOOO01{2} 
= 00 14 01{16} 

The result of this operation replaces 
the former contents of field 1. Field 1 
now contains the original value of field 
2. Condition code 1 is set to indicate 
a nonzero result. 

Exclusive Or (XI) 

A frequent usa of the EXCLUSIVE" OR (XI) 
instruction is to invert a bit (change a 
zero bit to n one or a one bit to a 
zero). For example, assume that storage 
location 8082 contains 0110 1001{2}. To 
invert the leftmost and rightmost bits 
without affecting any of the other bits, 
the following instruction can be used 
(assume that register 9 contains 00 00 
80 80): 

Machine Format 

Op Code 

97 81 9 

Assembler Format 

Op Code 0,(B , ),I 2 

XI 2(9),X'81' 

When the instruction is executed, "the 
byte in storage is EXCLUSIVE ORed wlth 
the immediate byte (the 12 field of the 
instruction): 

Location 8082: 0110 1001{2} 
Immediate byte: 1000 0001{2} 

Result: 1110 1000{2} 



The resulting byte is stored back in 
location 8082. Condition code 1 is set 
to indicate a nonzero result. 

Notes: 

1. With the XC instruction, fields up 
to 256 bytes in length can be 
exchanged. 

2. Wi th the XR instruct ion, the 
contents of two registers can be 
exchanged. 

3. Because the X instruction operates 
storage to register only, an 
exchange cannot be made solely by 
the use of X. 

4. A field EXCLUSIVE ORed with itself 
is cleared to zeros. 

5. For additional examples of the use 
of EXCLUSIVE OR, see the section 
"Floating-Poi nt-Number Conversion tf 

later in this appendix. 

EXECUTE (EX) 

The EXECUTE instruction causes one 
target instruction in main storage to be 
executed out of sequence without actual
ly branching to the target instruction. 
Unless the R t field of the EXECUTE 
instruction is zero, bits 8-15 of the 
target instruction are ORed with bits 
24-31 of the R t register before the 
target instruction is executed. Thus, 
EXECUTE may be used to supply the length 
field for an SS instruction without 
modifying the SS instruction in storage. 
For example, assume that a MOVE (MVC) 
instruction is the target that is 
located at address 3820, with a format 
as follows: 

Machine Format 

Op Code L 

02 00 C 0001 

Assembler Format 

Op Code Dt (L,B t ),D 2(B 2) 

MVC 3(1,12),0(13) 

where register 12 contains 00 00 89 13 
and register 13 contains 00 00 90 AD. 

Further assume that at storage address 
5000, the following EXECUTE instruction 
is located: 

Machine Format 

Op Code Rt 

44 1 ° A 0001 

Assembler Format 

Op Code Ri ,D 2(X 2,B 2) 

EX 1,0(0,10) 

where register 10 contains 00 00 38 20 
and register 1 contains 00 OF FO 03. 

When the instruction at 5000 is 
executed, the rightmost byte of register 
1 is ORed with the second byte of the 
target instruction: 

Instruction byte: 
Register byte: 

0000 OOOO{2} = 00 
0000 OOll{2} = 03 

Result: 0000 0011{2} = 03 

causing the instruction at 3820 to 
executed as if it originally were: 

Machine Format 

Op Code L B t Dt B2 O2 

02 03 C 003
1 

0 0001 

Assembler Format 

MVC 3(4,12),0(13) 

However, after execution: 

Register 1 is unchanged. 

be 

The instruction at 3820 is unchanged. 
The contents of the four bytes starting 

at location 90AO have been moved to 
the four bytes starting at location 
8916. 

The CPU next executes the instruction 
at address 5004 (PSW bits 40-63 
contain 00 50 04). 

INSERT CHARACTERS UNDER MASK (ICM) 

The INSERT CHARACTERS UNDER MASK (ICM) 
instruction mHY be used to replace all 
or selected bytes in a general register 
with bytes from storage and to set the 
condition code to indicate the value of 
the inserted field. 

For example, if it is desired to insert 
a three-byte address from FIELDA into 

Appendix A. Number Representation and Instruction-Use Examples A-17 



register 5 and leave the leftmost byte 
of the register unchanged, assume: 

Machine Format 

Op Code R t 

BF 5 7 * * * * 

Assembler Format 

ICM 5,B'0111',FIELDA 

FIELDA: 
Register 5 (before): 
Register 5 (after): 
Condition code (after): 

As another example: 

Machine Format 

Op Code S2 

FE DC BA 
12 34 56 78 
12 FE DC BA 
1 (leftmost 

bit of 
inserted 
field is 
one) 

BF 6 9 * * * * 

Assembler Format 

ICM 6,B'100l',FIELDB 

FIELDB: 
Register 6 (before): 
Register 6 (after): 
Condition code (after): 

12 34 
00 00 00 00 
12 00 00 34 
2 (inserted 

field is 
nonzero 
with left
most zero 
bit) 

When the mask field contains 1111, the 
ICM instruction produces the same result 
as LOAD (L) (provided that the indexing 
capability of the RX format is not need
ed), except that ICM also sets the 
condition code. The condition-code 
setting is useful when an all-zero field 
(condition code 0) or a leftmost one bit 
(condition code 1) is used as a flag. 

A-18 370-XA Principles of Operation 

LOAD (L, LR) 

The LOAD instructions take four bytes 
from storage or from a general register 
and place them unchanged into a general 
register. For example, assume that the 
four bytes starting with location 21003 
are to be loaded into register 10. 
Initially: 

Register 5 contains 00 02 00 00. 
Register 6 contains 00 00 10 03. 
The contents of register 10 are not 

significant. 
Storage locations 21003-21006 contain 

00 00 AB CD. 

To load register 10, the RX form of the 
instruction can be used: 

Machine Format 

Op Code R t 

58 A 5 6 0001 

Assembler Format 

L 10,0(5,6) 

After the instruction is executed, 
register 10 contains 00 00 AB CD. 

LOAD ADDRESS (LA) 

The LOAD ADDRESS instruction provides a 
convenient way to place a nonnegative 
binary integer up to 4095{10} in a 
register without first defining a 
constant and then using it as an 
operand. For example, the following 
instruction places the number 2048{10} 
in register 1: 

Machine Format 

Op Code 

41 1 o o I 800 1 

Assembler Format 

LA 1,2048(0,0) 

The LOAD ADDRESS instruction can also be 
used to increment a register by an 
amount up to 409S{lO} specified in the 
D2 field. Depending on the addressing 



mode, only the rightmost 24 or 31 bits 
of the sum are retained, however. The 
leftmost bits of the 32-bit result are 
set to zeros. For example, assume that 
register 5 contains 00 12 34 56. 

The instruction: 

Machine Format 

Op Code 

41 5 o 5 

Assembler Format 

LA 5,10(0,5) 

adds 10 (decimal) to the contents of 
register 5 as follows: 

Register 5 (old): 00 12 34 56 
D2 field: 00 00 00 OA 

Register 5 (new): 00 12 34 60 

The register may be specified as either 
B2 or X2 • Thus, the instruct i on LA 
5,10(5,0) produces the same result. 

As the most general example, the 
instructiDn LA 6,10(5,4) forms the sum 
of three values: the contents of regis
ter 4, the contents of register 5, and a 
displacement of 10 and places the 24- or 
31-bit sum with zeros appended on the 
left in register 6. 

LOAD HALFWORD (LH) 

The LOAD 
unchanged 
the right 
half of 
zeros or 
(leftmost 

HALFWORD instruction places 
a halfword from storage into 
half of a register. The left 
the register is loaded with 

ones according to the sign 
bit) of the halfword. 

For example, assume that the two bytes 
in storage locations 1803-1804 are to be 
loaded into register 6. Also assume: 

The contents of register 6 are not 
significant. 

Register 14 contains 00 00 18 03. 
Locations 1803-1804 contain 00 20. 

The instruction required to load the 
register is: 

Machine Format 

Op Code Rt 

48 6 o E 000-1 

Assembler Format 

LH 6,0(0,14) 

After the instruction is executed, 
register 6 contains 00 00 00 20. If 
locations 1803-1804 had contained a 
negative number, for example, A7 B6, a 
minus sign would have been propagated to 
the left, giving FF FF A7 B6 as the 
final result in register 6. 

MOVE (MVC, MVI) 

The MOVE (MVC) instruction can be used 
to move data from one storage location 
to ano'ther. For example, assume that 
the following two fields are in storage: 

2048 2052 

Fi!ld IC11C2lC3lC4lC51C61C71C81C91CAiCBI 

3840 3848 

Fi~ld IF11F21F31F41F51F61F71F81F91 

Also assume: 

Register 1 contains 00 00 20 48. 
Register 2 contains 00 00 38 40. 

With the following instruction, the 
first eight bytes of field 2 replace the 
first eight bytes of field 1: 

Machine Format 

Op Code L 

D2 07 1 0001 2 I 0001 

Assembler Format 

MVC 0(8,1),0(2) 

After the instruction is executed, field 
1 becomes: 

Appendix A. Number Representation and Instruction-Use Examples A-19 



2048 ~052 

Fl~ld IFI1F21F31F41 FS IF61F71F81C91CAICBI 

Field 2 is unchanged. 

MVC can also be used to propagate a byte 
through a field by starting the first
operand field one byte location to the 
right of the second-operand field. For 
example, suppose that an area in storage 
starting with address 358 contains the 
following data: 

358 360 

lool F1 lF21F31F41FsI F6 lF71F81 

With the following MVC instruction, the 
zeros in location 358 can be propagated 
throughout the entire field (assume that 
register 11 contains 00 00 03 58): 

Machine Format 

Op Code l 

02 07 B B 0001 

Assembler Format 

MVC 1(8,11),0(11) 

Because MVC is executed as if one byte 
were processed at a time, the above 
instruction, in effect, takes the byte 
at address 358 and stores it at 359 (359 
now contains 00), takes the byte at 359 
and stores it at 35A, and so on, until 
the entire field is filled with zeros. 
Note that an MVI instruction could have 
been used originally to place the byte 
of zeros in location 358. 

Notes: 

1. Although the field occupying 
locations 358-360 contains nine 
bytes, the length coded in the 
assembler format is equal to the 
number of moves (one less than the 
field length). 

2. The order of operands is important 
even though only one field is 
involved. 

The MOVE (MVI) instruction places one 
byte of information from the instruction 
stream into storage. For example, the 
instruction: 

A-20 370-XA Principles of Operation 

Machine Format 

Op Code 12 

92 5B 1 0001 

Assembler Format 

Op Code D1 (B 1 ),I 2 

MVI 0(1),C'$' 

may be used, in conjunction with the 
instruction EDIT AND MARK, to insert the 
EBCDIC code for a dollar symbol at tha 
storage address contained in general 
register 1 (see also the example for 
EDIT AND MARK). 

MOVE LONG (MVCL) 

The MOVE LONG (MVCL) instruction can be 
used for moving data in storage as in 
the first example of the MVC 
instruction, provided that the two oper
ands do not overlap. MVCL differs from 
MVC in that the address and length of 
each operand are specified in an even
odd pair of general registers. 
Consequently, MVCl can be used to move 
more than 256 bytes of data with one 
instruction. As an example, assume: 

Register 2 contains 00 OA 00 00. 
Register 3 contains 00 00 08 00. 
Register 8 contains 00 06 00 00. 
Register 9 contains 00 00 08 00. 

Execution of the instruction: 

Machine Format 

Op Code R t R2 

DE 8 2 

Assembler Format 

MVCl 8,2 

moves 2,048{10} bytes from locations 
AOOOO-A07FF to locations 60000-607FF. 
Bits 8-31 of registers 2 and 8 are 
incremented by 800{16}, and bits 0-7 of 
registers 2 and 8 are set to zeros. 
Bits 8-31 of registers 3 and 9 are 
decremented to zero. Condition code 0 
is set to indicate that the operand 
lengths are equal. 



If register 3 had contained FO 00 04 00, 
only the l,024{lfr} bytes from locations 
AOOOO-A03FF would have been moved to 
locations 60000-603FF. The remalnlng 
locations 60400-607FF of the first oper
and would have been filled with 1,024 
copies of the padding byte X'FO', as 
specified by the leftmost byte of regis
ter 3. Bits 8-31 of registers 2 and 8 
would have been incremented by 400{16}, 
and bits 0-7 of registers 2 and 8 set to 
zeros. Bits 8-31 of registers 3 and 9 
would still have been decremented to 
zero. Condition code 2 would have been 
set to indicate that the first operand 
was longer than the second. 

The technique for setting a field to 
zeros that is illustrated in the second 
example of MVC cannot be used with MVCl. 
If the registers were set up to attempt 
such an operation with MVCl, no data 
movement would take place and condition 
code 3 would indicate destructive over
lap. 

Instead, MVCl may be used to clear a 
storage area to zeros as follows. 
Assume register 8 and 9 are set up as 
before. Register 3 contains only zeros, 
specifying zero length for the second 
operand and a zero padding byte. Regis
ter 2 is not used to access storage, and 
its contents are not significant. 
Executing the instruction MVCl 8,2 caus
es locations 60000-607FF to be filled 
with zeros. Bits 8-31 of register 8 are 
incremented by 800{16}, and bits 0-7 of 
registers 2 and 8 are set to zeros. 
Bits 8-31 of register 9 are decremented 
to zero, and condition code 2 is set to 
indicate that the first operand is larg
er than the second. 

MOVE NUMERICS (MVN) 

Two related instructions, MOVE NUMERICS 
and MOVE ZONES, may be used with decimal 
data in the zoned format to operate 
separately on the rightmost four bits 
(the numeric bits) and the leftmost four 
bits (the zone bits) of each byte. Both 
are similar to MOVE (MVC), except that 
MOVE NUMERICS moves only the numeric 
bits and MOVE ZONES moves only the zone 
bits. 

To illustrate the operation of the MOVE 
NUMERICS instruction, assume that the 
following two fields are in storage: 

7090 7093 

Field A \C6IC7\C8\C91 

7041 7046 

Field B IFOIFIIF2\F3IF4\F5\ 

Also assume: 

Register 14 r.ontains 00 00 70 90. 
Register 15 contains 00 00 70 40. 

After the instruction: 

Machine Format 

Op Code l B t D t B2 D2 

01 03 F 001
1 

E oooJ 

Assembler Format 

MVN 1(4,15),0(14) 

is executed, field B becomes: 

7041 7046 

IF6\F7IF8IF9IF4\F51 

The numeric bits of the bytes at 
locations 7090-7093 have been stored in 
the numeric bits of the bytes at 
locations 7041-7044. The contents of 
locations 7090-7093 and 7045-7046 are 
unchanged. 

MOVE WITH OFFSET (MVO) 

MOVE WITH OFFSET may be used to shift a 
packed-decimal number an odd number of 
digit positions or to concatenate a sign 
to an unsigned packed-decimal number. 

Assume that the three-byte 
packed-decimal number in 
locations 4500-4502 is to be 
locations 5600-5603 and given 
of the packed-decimal number 
location 5603. Also assume: 

unsigned 
storage 

moved to 
the sign 

ending at 

Register 12 contains 00 00 56 00. 
Register 15 contains 00 00 45 00. 
Storage locations 5600-5603 contain 77 

88 99 ~C. 
Storage locations 4500-4502 contain 12 

34 56. 

After the instruction: 

Appendix A. Number Representation and Instruction-Use Examples A-21 



Machine Format 

Op Code 

F1 3 2 C 000 I F 0001 

Assembler Format 

MVO 0(4,12),0(3,15) 

is executed, the storage locations 
5600-5603 contain 01 23 45 6C. Note 
that the second operand is extended on 
the left with one zero to fill out the 
first-operand field. 

MOVE ZONES (MVZ) 

The MOVE ZONES instruction can operate 
on overlapping or nonoverlapping fields, 
as can the instructions MOVE (MVC) and 
MOVE NUMERICS. When operating on nono
verlapping fields, MOVE ZONES works like 
the MOVE NUMERICS instruction (see its 
example), except that MOVE ZONES moves 
only the zone bits of each byte. To 
illustrate the use of MOVE ZONES with 
overlapping fields, assume that the 
following data field is in storage: 

800 805 

IFI1C21F31C41F51C61 

Also assume that register 15 contains 00 
00 08 00. The instruction: 

Machine Format 

Op Code L 

03 04 F 0001 

Assembler Format 

Op Code Ot(L,B t ),02(B 2) 

MVZ 1(5,15),0(15) 

propagates the zone bits from the byte 
at address 800 through the entire field, 
so that the field becomes: 

800 805 

IF11F21F31F41F51F61 

A-22 370-XA Principles of Operation 

MULTIPLY (M, MR) 

Assume that a number in register 5 is to 
be multiplied by the contents of a 
four-byte field at address 3750. 
Initially: 

The contents of register 4 are not 
significant. 

Register 5 contains 00 00 00 9A = 
154{10} = the multiplicand. 

Register 11 contains 00 00 06 00. 
Register 12 contains 00 00 30 00. 
Storage locations 3750-3753 contain 00 

00 00 83 = 131{10} = the 
multiplier. 

The instruction required for performing 
the multiplication is: 

Machine Format 

Op Code Rt X2 B2 O2 

5C 4 B C 150
1 

Assembler Format 

Op Code Rt ,02(X 2,B 2) 

M 4,X'150'(11,12) 

After the instruction is executed, the 
product is in the register pair 4 and 5: 

Register 4 contains 00 00 00 00. 
Register 5 contains 00 00 4E CE = 

20,174{10}. 
Storage locations 3750-3753 are 

unchanged. 

The RR format of the instruction cen be 
used to square the number in a register. 
Assume that register 7 contains 00 01 00 
05. The contents of register 6 are not 
significant. The instruction: 

Machine Format 

Op Code 

1C 6 7 

Assembler Format 

MR 6,7 

multiplies the number in register 7 by 
itself and places the result in the pair 
of registers 6 and 7: 

Register 6 contains 00 00 00 01. 
Register 7 contains 00 OA 00 19. 



MULTIPLY HALFWORD (MH) 

The MULTIPLY HALFWORD instruction is 
used to multiply the contents of a 
register by a two-byte field in storage. 
For example, assume that: 

Register 11 contains 00 00 00 15 
=21{10} = the multiplicand. 

Register 14 contains 00 00 01 00. 
Register 15 contains 00 00 20 00. 
Storage locations 2102-2103 contain FF 

D9 = -39{10} = the multiplier. 

The instruction: 

Machine Format 

Op Code 

4C B E F 

Assembler Format 

MH 11,2(14,15) 

multiplies the two numbers. The 
product, FF FF FC CD = -819{10}, 
replaces the original contents of regis
ter 11. 

Only the rightmost 32 bits of a product 
are stored in a register; any signif
icant bits on the left are lost. No 
program interruption occurs on overflow. 

OR (0, OR, 01, OC) 

When the Boolean operator OR is applied 
to two bits, the result 1S one when 
either bit is one; otherwise, the result 
is zero. When two bytes are ORed, each 
pair of bits is handled separately; 
there is no connection from one bit 
position to another. The following is 
an example of ORing two bytes: 

First-operand byte: 0011 0101{2} 
Second-operand byte: 0101 1100{2} 

Result byte: 0111 1101{2} 

A frequent use of the OR instruction is 
to set a particular bit to one. For 
example, assume that storage location 
4891 contains 0100 0010{2}. To set the 
rightmost bit of this byte to one with-

out affecting the other bits, 
following instruction can be 
(assume that register 8 contains 
48 90): 

Machine Format 

Op Code D, 

96 01 8 

Assembler Format 

01 1(8) ,X' 01' 

the 
used 

00 00 

When this instruction is executed, the 
byte in storage is ORed with the immedi
ate byte (the 12 field of the instruc
tion): 

Location 4891: 
Immediate byte: 

Result: 

0100 00lO{2} 
0000 000I{2} 

0100 0011{2} 

The resulting byte with bit 7 set to one 
is stored back in location 4891. Condi
tion code 1 is set. 

PACK (PACK) 

Assume that storage locations 1000-1003 
contain the following zoned-decimal 
number that is to be converted to a 
packed-decimal number and left in the 
same location: 

1000 1003 

Zoned number IF1IF21F31C41 

Also assume that register 12 contains 00 
00 10 00. After the instruction: 

Machine Format 

Op Code 

F2 3 3 C 000 I C 0001 

Assembler Format 

PACK 

is executed, 
1000-1003 is 
format: 

the result in locations 
in the packed-decimal 

Appendix A. Number Representation and Instruction-Use Examples A-23 



1000 1003 

Packed number 10010112314cI 

Notes: 

1. This example illustrates the opera
tion of PACK when the first- and 
second-operand fields overlap 
completely. 

2. During the operation, the second 
operand was extended on the left 
with zeros. 

SHIFT LEFT DOUBLE (SLDA) 

The SHIFT LEFT DOUBLE instruction shifts 
the 63 numeric bits of an even-odd 
register pair to the left, leaving the 
sign bit unchanged. Thus, the instruc
tion performs an algebraic left shift of 
a 64-bit signed binary integer. 

For example, if the contents of regis
ters 2 and 3 are: 

00 7F OA 72 FE DC BA 98 = 
00000000 01111111 00001010 01110010 
11111110 11011100 10111010 10011000{2} 

The instruction: 

Machine Format 

Op Code 

8F 2 1////1 o I 01FI 

Assembler Format 

SLDA 2,31(0) 

results in registers 2 and 3 both being 
left-shifted 31 bit positions, so that 
their new contents are: 

7F 6E 5D 4C 00 00 00 00 = 
01111111 01101110 01011101 01001100 
00000000 00000000 00000000 00000000{2} 

Because significant bits are shifted out 
of bit position 1 of register 2, over
flowis indicated by setting condition 
code 3, and, if the fixed-poi nt-overflow 
mask bit in the PSW is one, a fixed
point-overflow program interruption 
occurs. 

A-24 370-XA Principles of Operation 

SHIFT LEFT SINGLE (SLA) 

The SHIFT LEFT SINGLE 
similar to SHIFT LEFT 
that it shifts only the 
of a single register. 
instruction performs an 
shift of a 32-bit signed 

instruction is 
DOUBLE, except 
31 numeric bits 
Therefore, this 
algebraic left 
binary integer. 

For example, if the contents of register 
2 are: . 

00 7F OA 72 = 00000000 01111111 00001010 
01110010{2} 

The instruction: 

Machine Format 

Op Code 

o 008 1 

Assembler Format 

Op Code R1 ,D 2 (B 2 ) 

SLA 2,8(0) 

results in register 2 being shifted left 
eight bit positions so that its new 
contents are: 

7F OA 72 00 = 01111111 00001010 01110010 
00000000{2} 

Condition code 2 is set to indicate that 
the result is greater than zero. 

If a left shift of nine places had been 
specified, a significant bit would have 
been shifted out of bit position 1. 
Condition code 3 would have been set to 
indicate this overflow and, if the 
fixed-poi nt-overflow mask bit in the PSW 
were one, a fixed-point overflow inter
ruption would have occurred. 

STORE CHARACTERS UNDER MASK (STCM) 

STORE CHARACTERS UNDER MASK (STeM) may 
be used to place selected bytes from a 
register into storage. For example, if 
it is desired to store a three-byte 
address from general register 8 into 
location FIELD3, assume: 



Machine Format 

Op Code 

BE 8 1 

Register Format 

Op Code R t ,M 3 ,S2 

* * * * 

STCM B,B'0111',FIELD3 

Register 8: 
FIELD3 (before): 
FIELD3 (after): 

12 34 56 18 
not significant 
34 56 18 

As another example: 

Machine Format 

Op Code 

BE 9 5 

Register Format 

Op Code R t ,M 3 ,S2 

* * * * 

STCM 9,B'0101',FIELD2 

Register 9: 01 23 45 61 
FIELD2 (before): not significant 
FIELD2(after): 23 61 

STORE MULTIPLE (STM) 

Assume that the contents of general 
registers 14, 15, 0, and 1 are to be 
stored in consecutive four-byte fields 
starting with location 4050 and that: 

Register 14 contains 00 00 25 63. 
Register 15 contains 00 01 21 36. 
Register 0 contains 12 43 00 62. 
Register 1 contains 13 26 12 51. 
Register 6 contains 00 00 40 00. 
The initial contents of locations 

4050-405F are not significant. 

The STORE MULTIPLE instruction allows 
the use of just one instruction to store 
the contents of the four registers: 

Machine Format 

Op Code 

90 E 1 6 050
1 

Assembler Format 

Op Code R"R 3 ,D 2 (B 2 ) 

STM 14,1,X'50'(6) 

After the instruction is executed: 

Locations 4050-4053 contain 
00 00 25 63. 

Locations 4054-4051 contain 
00 01 21 36. 

Locations 4058-405B contain 
12 43 00 62. 

Locations 405C-405F contain 
13 26 12 51. 

TEST UNDER MASK (TM) 

The TEST UNDER MASK instruction examines 
selected bits of a byte and sets the 
condition code accordingly. For 
example, assume that: 

Storage location 9999 contains FB. 
Register 1 contains 00 00 99 90. 

Assume the instruction to be: 

Machine Format 

Op Code 

91 C3 1 

Assembler Format 

TM 9(1),B'11000011' 

The instruction tests only those bits of 
the byte in storage for which the mask 
bits are ones: 

FB = 1111 1011{2} 
Mask = 1100 0011{2} 

Test = 11xx xx11{2} 

Condition code 3 is set: all selected 
bits in the test result are ones. (The 
bits marked "x" are ignored.) 

If location 9999 had contained B9, the 
test would have been: 

Appendix A. Humber Representation and Instruction-Use Examples A-25 



B9 = 1011 1001{2} 
Mask = 1100 0011{2} 

Test = 10xx xx01{2} 

Condition code 1 is set: the selected 
bits are both zeros and ones. 

If location 9999 had contained 3C, the 
test would have been: 

3C = 0011 1100{2} 
Mask = 1100 0011{2} 

Test = OOxx xxOO{2} 

Condition code 0 is set: 
bits are zeros. 

all selected 

Note: Storage location 9999 remains 
unchanged. 

TRANSLATE (TR) 

The TRANSLATE instruction can be used to 
translate data from any character code 
to any other desired code, provided that 
each character code consists of eight 
bits or fewer. An appropriate trans
lation table is required in storage. 

In the following example, EBCDIC code is 
translated to ASCII code. The first 
step is to create a 256-byte table in 
storage locations 1000-10FF. This table 
contains the characters of the ASCII 
code in the sequence of the binary 
representation of the EBCDIC code; that 
is, the ASCII representation of a char
acter is placed in storage at the 
starting address of the table plus the 
binary value of the EBCDIC represen
tation of the same character. 

For simplicity, the example shows only 
the part of the table containing the 
decimal digits: 

10FO 10F9 

130(31(321331341351361371381391 

Assume that the four-byte field at stor
age location 2100 contains the EBCDIC 
code for the digits 1984: 

Locations 2100-2103 contain Fl F9( F8 
F4. 

Register 12 contains 00 00 21 00. 

A-26 370-XA Principles of Operation 

Register 15 contains 00 00 10 00. 

As the instruction: 

Machine Format 

Op Code L 

DC 03 C I 000 I F 0001 

Assembler Format 

TR 0(4,12),0(15) 

is executed, the binary value of each 
EBCDIC byte is added to the starting 
address of the table, and the resulting 
address is used to fetch an ASCII byte: 

Table starting address: 
First EBCDIC byte: 

1000 
F1 

Address of ASCII byte: 10F1 

After execution of the instruction: 

Locations 2100-2103 contain 31 39 38 
34. 

Thus, the ASCII code for the digits 1984 
has replaced the EBCDIC code in the 
four-byte field at storage location 
2100. 

TRANSLATE AND TEST (TRT) 

The TRANSLATE AND TEST instruction can 
be used to scan a data field for charac
ters with a special meaning. To indi
cate which characters have a special 
meaning, a table similar to the one used 
for the TRANSLATE instruction is set up, 
except that zeros in the table indicate 
characters without any special meaning 
and nonzero values indicate characters 
with a special meaning. 

The figure "Translate-and-Test Table" 
that follows has been set up to distin
guish alphameric characters (A to Z and 
o to 9) from blanks, certain special 
symbols, and all other characters which 
are considered invalid. EBCDIC coding 
is assumed. The 256-byte table is 
assumed stored at locations 2000-20FF. 



o 123 4 5 6 7 8 9 ABC D E F 

200_ 

201 

202_ 

203_ 

204_ 

205_ 

206_ 

207 

208_ 

209_ 

20A 

20B_ 

20C_ 

20D_ 

20E_ 

20F_ 

40 

40 

40 

40 

04 

14 

24 

40 

40 

40 

40 

40 

40 

40 

40 

00 

40 

40 

40 

40 

40 

40 

28 

40 

40 

40 

40 

40 

00 

00 

40 

00 

40 40 

40 40 

40 40 

40 40 

40 40 

40 40 

40 40 

40 40 

40 40 

40 40 

40 40 

40 40 

00 00 

00 00 

00 00 

00 00 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 40 

00 00 00 00 

00 00 00 00 

00 00 00 00 

00 00 00 00 

40 40 40 40 40 40 40 40 

40 40 40 40 40 40 40 40 

40 40 40 40 40 40 40 40 

40 40 40 40 40 40 40 40 

40 40 40 08 40 OC 10 40 

40 40 40 18 1C 20 40 40 

40 40 40 2C 40 40 40 40 

40 40 40 30 34 38 3C 40 

40 40 (.0 40 40 40 40 40 

40 40 40 40 40 40 40 40 

40 40 40 40 40 40 40 40 

40 40 40 40 40 40 40 40 

00 00 40 40 40 40 40 40 

00 00 40 40 40 40 40 40 

00 00 40 40 40 40 40 40 

00 00 40 40 40 40 40 40 

Note: If the character codes in the statement being 
translated occupy a range smaller than 00 through 
FF{16}, a table of fewer than 256 bytes can be used. 

Translate and Test Table 

The table entries for the alphameric 
characters in EBCDIC are 00; thus, the 
letter A (code C1) corresponds to byte 
location 20Cl, which contains 00. 

The 15 special symbols have nonzero 
entries from 04{16} to 3C{16} in incre
ments of 4. Thus, the blank (code 40) 
has the entry 04{16), the period (code 
4B) has the entry 08{16), and so on. 

All other table positions have the entry 
40{16} to indicate an invalid character. 

The table entries are chosen so that 
they may be used to select one of a list 
of 16 words containing addresses of 
different routines to be entered for 
each special symbol or invalid character 
encountered during the scan. 

Assume that this list of 16 branch 
addresses is stored at locations 
3004-3043. 

Starting at storage location CA80, there 
is the following sequence of 21{10) 
EBCDIC characters, where "b" stands for 
a blank. 

Locations 
UNPKbPROUT(9),WORD(5) 

CA80-CA94: 

Also assume: 

Register 1 contains 00 00 CA 7F. 
Register 2 contains 00 00 30 00. 
Register 15 contains 00 00 20 00. 

As the instruction: 

Machine Format 

Op Code L 8 t Dt 8 2 D2 

DD 14 1 001
1 

F 0001 

Assembler Format 

TRT 1(21,1),0(15) 

is executed, the value of the first 
source byte, the EBCDIC code for the 
letter U, is added to the starting 
address of the table to produce the 
address of the table entry to be exam
ined: 

Appendix A. Number Representation and Instruction-Use Examples A-27 



Table starting address 
First s~urce byte (U) 

Address of table entry 

2000 
E4 

20E4 

Because zeros were placed in storage 
location 20E4~ no special action occurs. 
The operation continues with the second 
and subsequent source bytes until it 
reaches the blank in location CA84. 
When this symbol is reached, its value 
is added to the starting address of the 
table~ as usual: 

Table starting address 
Source byte (blank) 

2000 
40 

Address of table entry 2040 

Because location 2040 contains a nonzero 
value~ the following actions occur: 

1. The address of the source byte, 
OOCA84~ 1S placed in the rightmost 
24 bits of register 1. 

2. The table entry~ 04, is placed in 
the rightmost eight bits of regis
ter 2, which now contains 00 00 30 
04. 

3. Condition code 1 is set (scan not 
completed). 

The TRANSLATE AND TEST instruction may 
be followed by instructions to branch to 
the routine at the address found at 
location 3004~ which corresponds to the 
blank character encountered in the scan. 
When this routine is completed, program 
control may return to the TRANSLATE AND 
TEST instruction to continue the scan, 
except that the length must first be 
adjusted for the characters already 
scanned. 

For this purpose, the TRANSLATE AND TEST 
may be executed by the use of an EXECUTE 
instruction, which supplies the length 
specification from a general register. 
In this way, a complete statement scan 
can be performed with a single TRANSLATE 
AND TEST instruction used repeatedly by 
means of EXECUTE, and without modifying 
any instructions in storage. In the 
example, after the first execution of 
TRANSLATE AND TEST, register 1 contains 
the address of the last source byte 
translated. It is then a simple matter 
to subtract this address from the 
address of the last source byte (CA94) 
to produce a length specification. This 
length minus one is placed in the regis
ter that is referenced as the Rl field 
of the EXECUTE instruction. (Note that 
the length code in the machine format is 
one less than the total number of bytes 
in the field.) The second-operand 
address of the EXECUTE instruction 
points to the TRANSLATE AND TEST 

A-28 370-XA Principles of Operation 

instruction, which is the same as illus
trated above, except for the length (l) 
which is set to zero. 

UNPACK (UNPK) 

Assume that storage locations 2501-2502 
contain a signed, packed-decimal number 
that is to be unpacked and placed in 
storage locations 1000-1004. Also 
assume: 

Register 12 contains 00 00 10 00. 
Register 13 contains 00 00 25 00. 
Storage locations 2501-2502 contain 12 

3D. 
The initial contents of storag9 

locations 1000-1004 are not signif
icant. 

After the instruction: 

Machine Format 

Op Code 

F3 4 1 C 0001 

Assembler Format 

UNPK 0(5,12),1(2,13) 

is executed~ the storage locations 
1000-1004 contain FO FO Fl F2 D3. 

DECIMAL INSTRUCTIONS 

(See Chapter 8 for a complete descrip
tion of the decimal instructions.) 

ADD DECIMAL (AP) 

Assume that the signed, packed-decimal 
number at storage locations 500-503 is 
to be added to the signed, packed
decimal number at locations 2000-2002. 
Also assume: 

Register 12 contains 00 00 20 00. 
Register 13 contains 00 00 05 00. 
Storage locations 2000-2002 contain 38 

46 OD.·(a negative number). 
Storage lo6ations 500-503 contain 01 12 

345C ~a positive number). 

After the instruction: 



Machine Format 

Op Code 

FA 2 3 C 000 I D 0001 

Assembler Format 

AP 0(3,12),0(4,13) 

is executed, the storage 
2000-2002 contain 73 88 5Ci 
code 2 is set to indicate 
result is greater than zero. 

locations 
condition 
that the 

Note that: 

1. Because the two numbers had differ
ent signs, they were in effect 
subtracted. 

2. Although the second operand is 
longer than the fir5t opcr~nd, no 
overflow interruption occurs 
because the result can be entirely 
contained within the first operand. 

COMPARE DECIMAL (CP) 

Assume that the signed, packed-decimal 
contents of storage locations 700-703 
are to be algebraically compared with 
the signed, packed-decimal contents of 
locations 500-502. Also assume: 

Register 12 contains 00 00 06 00. 
Register 13 contains 00 00 03 00. 
storage locations 700-703 contain 17 25 

35 60. 
Storage locations 500-502 contain 72 14 

20. 

After the instruction: 

Machine Format 

Op Code 

F9 3 2 C 

Assembler Format 

CP X'100'(4,12),X'200'(3,13) 

is executed, condition code 1 is set, 
indicating that the first operand (the 
contents of locations 700-703) is less 
than the second. 

DIVIDE DECIMAL (DP) 

Assume that the signed, packed-decimal 
number at sturage locations 2000-2004 
(the dividend) is to be divided by the 
signed, packed-decimal number at 
locations 3000-3001 (the divisor). Also 
assume: 

Register 12 contains 00 00 20 00. 
Register 13 contains 00 00 30 00. 
Storage locations 2000-2004 contain 01 

23 45 67 8C. 
Storage locations 3000-3001 contain 32 

10. 

After the instruction: 

Machine Format 

Op Code L , L 2 B, D, B 2 

0001 

Assembler Format 

DP 0(5,12),0(2,13) 

is executed, the dividend is entirely 
replaced by the signed quotient and 
remainder, as follows: 

2000 2004 

locations 2000-2004 13s14610010118cI 

quotient I remainder 

Notes: 

1. Because the dividend' and divisor 
have different signs, the quotient 
receives a negative sign. 

2. The remainder receives the sign of 
the dividend and the length of the 
divisor. 

3. If an attempt were made to divide 
the dividend by the one-byte field 
at location 3001, the quotient 
would be too long to fit within the 
four bytes allotted to it. A 
decimal-divide exception would 
exist, causing a program inter
ruption. 

EDIT (ED) 

Before decimal 
can be used in 
and signs must 
characters. 
marks, such 

data in the packed format 
a printed report, digits 

be converted to printable 
Moreover, punctuation 

as commas and decimal 

Appendix A. Number Representation and Instruction-Use Examples A-29 



points, may have to be inserted in 
appropriate places. The highly flexible 
EDIT instruction performs these func
tions in a single instruction execution. 

This example shows step-by-step one way 
that the EDIT instruction can be used. 
The field to be edited (the source) is 
four bytes long; it is edited against a 
pattern 13 bytes long. The following 
symbols are used: 

Symbol Meaning 

b (Hexadecimal 40) Blank character 
( (Hexadecimal 21) Significance 

starter 
d (Hexadecimal 20) Digit selector 

Assume that register 12 contains: 

00 00 10 00 

and that the source and pattern fields 
are: 

Source 

1200 1203 

1021S714216CI 
.,.. 

L+ 

A-30 370~XA Principles of Operation 

Pattern 

1000 100C 

14012012016BI2012l12014s120120140lC3lD91 

b d d d d d d b C R 

Execution of the instruction: 

Machine Format 

Op Code L B. Dt B2 O2 

DE OC C 0001 C I 200
1 

Assembler Format 

ED 0(13,12),X'200'(12) 

alters the pattern field as follows: 



Significance 
Indicator Location 

Pattern Digit (Before/After) Rule 1000-100C 

b off/off leave(l) bdd,d(d.ddbCR 
d 0 off/off fill bbd,d(d.ddbCR 
d 2 off/on(2) digit bb2,d(d.ddbCR 
, on/on leave same 
d 5 on/on digit bb2,5(d.ddbCR 
( 7 on/on digit bb2,57d.ddbCR 
d 4 on/on digit bb2,574.ddbCR 
. on/on leave same 
d 2 on/on digit bb2,574.2dbCR 
d 6+ on/off(3) digit bb2,574.26bCR 
b off/off fill same 
C off/off fill bb2,574.26bbR 
R off/off fill bb2,574.26bbb 

Notes: 

1. This character is the fill byte. 

2. First nonzero decimal source digit turns on significance 
indicator. 

3. Plus sign in the four rightmost bits of the byte turns 
off significance indicator. 

Thus, after the instruction is executed, 
the pattern field contains the result as 
follows: 

Pattern 

1000 100C 

140140lF216BIF51F71F414BIF2tF6t401401401 

b b 2 574 2 6 b b b 

When printed, the new pattern field 
appears as: 

2,574.26 

The source field remains unchanged. 
Condition code 2 is set because the 
number was greater than zero. 

If the number in the source field is 
changed to the negative number 00 00 02 
6D and the original pattern is used, the 
edited result this time is: 

Pattern 

1000 100C 

140140140140140140lFOl4BIF21F6140lC31D91 

b b b b b b 0 2 6 b C R 

This pattern field prints as: 

0.26 CR 

The significance starter forces the 
significance indicator to the on state 
and hence causes a leading zero and the 
decimal point to be preserved. Because 

the minus-sign code has no effect on the 
significance indicator, the characters 
CR are printed to show a negative (cred
it) amount. 

Condition code 1 is set (number less 
than zero). 

EDIT AND MARK (EDMK) 

The EDIT AND MARK instruction may be 
used, in addition to the functions of 
EDIT, to insert a currency symbol, such 
as a dollar sign, at the appropriate 
position in the edited result. Assume 
the same source in storage locations 
1200-1203, the same pattern in locations 
IOOO-100C, and the same contents of 
general register 12 as for the ~DIT 
instruction above. The previlus 
contents of general register 1 (GRl) ,re 
not significant; a LOAD ADDRESS instruc
tion is used to set up the first digit 
position that is forced to print if no 
significant digits occur to the left. 

The instructions: 

LA 1,6(0,12) Load address of 
forced significant 
digit into GR1. 

EDMK 0(13,12),X'200'(12) Leave address 
of first signif
icant digit in GRI. 

BCTR 1,0 Subtract 1 from 
address in GR1. 

MVI O(l),C'$' store dollar sign 
at address in GR1. 

Appendix A. Number Representation and Instruction-Use Examples A-31 



produce the following results for the 
two examples under EDIT: 

Pattern 

1000 100C 

140lSBIF216BIFSIF71F414BIF21F61401401401 

b $ 2 S 7 4 2 6 b b b 

This pattern field prints as: 

$2,S74.26 

Condition code 2 is set to indicate that 
the number edited was greater than zero. 

Pattern 

1000 lOOC 

140140140140140lSSlFOl4BIF21F6140lC31D91 

b b b b b $ 0 2 6 b C R 

This pattern field prints as: 

$0.26 CR 

Condition code 1 is set because the 
number is less than zero. 

MULTIPLY DECIMAL (MP) 

Assume that the signed, packed-decimal 
number in storage locations 1202-1204 
(the multiplicand) is to be multiplied 
by the signed, packed-decimal number in 
locations SOO-SOl (the multiplier). 

1202 1204 

Multiplicand 13814610DI 

SOO SOl 

Multiplier ~ 
The multiplicand must first be extended 
to have at least two bytes of leftmost 
zeros, corresponding to the multiplier 
length, so as to avoid a data exception 
during the multiplication. ZERO AND ADD 
can be used to move the multiplicand 
into a longer field. Assume: 

Register 4 contains 00 00 12 00. 
Register 6 contains 00 00 OS 00. 

Then execution of the instruction: 

ZAP X'100'(S,4),2(3,4) 

sets up a new multiplicand in storage 
locations 1300-1304: 

A-32 370-XA Principles of Operation 

1300 1304 

Multiplicand (new) 10010013814610DI 

Now, after the instruction: 

Machine Format 

Op Code 

FC 4 1 4 0001 

Assembler Format 

MP X'100'(S,4),0(2,6) 

is executed, storage locations 1300-1304 
contain the product: n1 23 4S 66 OC. 

SHIFT AND ROUND DECIMAL (SRP) 

The SHIFT AND ROUND DECIMAL (SRP) 
instruction can be used for shifting 
decimal numbers in storage to the left 
or right. When a number is shifted 
right, rounding can also be done. 

Decimal Left Shift 

In this example, the contents of storage 
location FIELD1 are shifted three places 
to the left, effectively multiplying the 
contents of r-IELD1 by 1000. FIELD1 is 
six bytes long. The following instruc
tion performs the operation: 

Machine Format 

Op Code 

FO S o 

Assembler Format 

SRP FIELD1(6),3,0 

FIELD1 (before): 00 01 23 4S 67 8C 

FIELD1 (after): 12 34 S6 78 00 OC 

The second-operand address in this 
i nstructi on speci fi es the shi ft amo.Jnt 
(three places). The rounding digit, 1 3 , 

is not used in a left shift, but it must 
be a valid decimal digit. After 
execution, condition code 2 is set to 
show that the result is greater than 
zero. 



Decimal Right Shift 

In this example, the contents of storage 
location FIELD2 are shifted one place to 
the right, effectively dividing the 
contents of FIELD2 by 10 and discarding 
the remainder. FIELD2 is five bytes in 
length. The following instruction 
performs this operation: 

Machine Format 

Op Code 

FO 4 

Assembler Format 

SRP FIELD2(5),64-1,0 

If 
OO~ 

6-bit two's 
complement 
for -1 

FIELD 2 (before): 01 23 45 67 8C 

FIELD 2 (after): 00 12 34 56 7C 

In the SRP instruction, shifts to the 
right are specified in the second
operand address by negative shift 
values, which are represented as a 
six-bit value in two's complement form. 

The six-bit two's complement of a 
number, n, can be specified as 64 - n. 
In this example, a right shift of one is 
represented as 64 - 1. 

Condition code 2 is set. 

Decimal Right Shift and Round 

In this example, the contents of storage 
location FIELD3 are shifted three places 
to the right and rounded, in effect 
dividing by 1000 and rounding up. 
FIELD3 is four bytes in length. 

Machine Format 

Op Code L 1 

FO 3 

Assembler Format 

00111101 

I 
6-bit two's 
complement 
for -3 

SRP FIELD3(4),64-3,5 

FIELD 3 (before): 12 39 60 OD 

FIELD 3 (after): 00 01 24 OD 

The shift amount (three places) is spec
ified in the D2 field. The I3 field 
specifies a rounding digit of 5. The 
rounding digit is added to the last 
digit shifted out (which is a 6), and 
the carry is propagated to the left. 
The sign is ignored during the addition. 

Condition code 1 is set because the 
result is less than zero. 

Multiplying ~ g Variable Power of 1Q 

Since the shift value designated by the 
SRP instruction specifies both the 
direction and amount of the shift, the 
operation is equivalent to multiplying 
the decimal first operand by 10 raised 
to the power specified by the shift 
value. 

If the shift value is to be variable, it 
may be specified by the B2 field instead 
of the displacement D2 of the SRP 
instruction. The general register 
designated by B2 should contain the 
shift value (power of 10) as a signed 
binary integer. 

A fixed scale factor modifying the vari
able power of 10 may be specified by 
using both the B2 field (variable part 
in a general register) and the D2 field 
(fixed part in the displacement). 

The SRP instruction uses only the right
most six bits of the effective address 
D2 (B 2 ) and interprets them as a six-bit 
signed binary integer to control the 
left or right shift as in the preceding 
shift examples. 

Appendix A. Number Representation and Instruction-Use Examples A-33 



ZERO AND ADD (ZAP) 

Assume that the signed, packed-decimal 
number at storage locations 4500-4502 is 
to be moved to locations 4000-4004 with 
four leading zeros in the result field. 
Also assume: 

Register 9 contains 00 00 40 00. 
Stor~ge locations 4000-4004 contain 12 

34 56 78 90. 
Storage locations 4500-4502 contain 38 

46 00. 

After the instruction: 

Machine Format 

Op Code B t 

F8 4 2 9 000 I 9 500 1 

Assembler Format 

Op Code Dt(Lt,Bt),D2(L2,B2) 

ZAP 0(5,9),X'500'(3,9) 

;s executed, the storage locations 
4000-4004 contain 00 00 38 46 OD; condi
tion code 1 is set to indicate a nega
tive result without overflow. 

Note that, because the first operand is 
not checked for valid sign and digit 
codes, it may contain any combination of 
hexadecimal digits before the operation. 

FLOATING-POINT INSTRUCTIONS 

(See Chapter 9 for a 
tion of the 
instructions.) 

complete descrip
floating-point 

In this section, the abbreviations FPRO, 
FPR2, FPR4, and FPR6 stand for 
floating-point registers 0, 2, 4, and 6 
respectively. 

ADD NORMALIZED (AD, ADR, AE, AER, AXR) 

The ADD NORMALIZED instructions perform 
the addition of two floating-point 
numbers and place the normalized result 
in a floating-point register. Neither 
of the two numbers to be added must 
necessarily be in normalized form before 
addition occurs. For example, assume 
that: 

FPR6 contains the unnormalized number 
C3 08 21 00 00 00 00 00 = -82.1{16} = -130.06{10} approximately. 

Storage locations 2000-2007 contalo the 
normalized number 41 12 34 56 00 00 

A-34 370-XA Principles of Operation 

00 00 = +1.23456{16} = +1.14{10} 
approximately. 

Register 13 contains 00 00 20 00. 

The instruction; 

Machine Format 

Op Code 

7A 6 o D 0001 

Assembler Format 

Op Code Rt ,D 2(X 2,B 2) 

AE 6,0(0,13) 

performs the short-precision addition of 
the two operands, as follows. 

The characteristics of the two numbers 
(43 and 41) are compared. Since the 
number in storage has a characteristic 
that is smaller by 2, it is right
shifted two hexadecimal digit positions. 
One guard digit is retained on the 
right. The fractions of the two numbers 
are then added algebraically: 

Fraction GDl 
FPR6 -43 08 21 00 
Shifted number from +43 00 12 34 5 

storage 

Intermediate sum -43 08 OE CB B 
Left-shifted sum -42 80 EC BB 

1 Guard digit 

Because the intermediate sum is unnor
malized, it is left-shifted to form the 
normalized floating-point number 
-80.ECBB{16} = -128.92{10} 
approximately. Combining the sign with 
the characteristic, the result is C2 80 
EC BB~ which replaces the left half of 
FPR6. The right half of FPR6 and the 
contents of storage locations 2000-2007 
are unchanged. Condition code 1 is set 
to indicate a result less than zero. 

If the long-precision instruction AD 
were used, the result in FPR6 would be 
C2 80 EC BA AO 00 00 00. Note that use 
of the long-precision instruction would 
avoid a loss of precision in this exam
ple. 

ADD UNNORMALIZED (AU, AUR, AW, AWR) 

The ADD UNNOR~ALIZED instructions oper
ate the same as the ADD NORMALIZED 
instructions, except that the final 
result is not normalized. For example, 
using the the same operands as in the 
example for ADD NORMALIZED, when the 
5hort-prec~s~cn instruction: 



Machine Format 

Op Code R t 

7E 6 o o I 0001 

Assembler Format 

Op Code R t ,D 2 (X 2 ,B 2 ) 

AU 6,0(0,13) 

is executed, the two numbers are added 
as follows: 

FPR6 
Shifted number from 

storage 

Intermediate sum 

1 Guard digit 

Fraction GDl 
-43 08 21 00 
+43 00 12 34 5 

-43 08 DE CB B 

The guard digit participates in the 
addition but is discarded. The unnor
malized sum replaces the left half of 
FPR6. Condition code 1 is set because 
the result is less than zero. 

The truncated result in FPR6 (C3 08 DE 
CB 00 00 00 00) shows a loss of a 
significant digit when compared to the 
result of short-precision normalized 
addition. 

COMPARE (CD, CDR, CE, CER) 

Assume that FPR4 contains 43 00 00 00 00 
00 00 00 (zero), and FPR6 contains 35 12 
34 56 78 9A BC DE (a positive number). 
The contents of the two registers are to 
be compared using a long-precision 
COMPARE instruction. 

Machine Format 

Op Code 

29 4 6 

Assembler Format 

CDR 4,6 

The number with the smaller character
istic, which is in register FPR6, is 
right-shifted 43 - 35 hex (67 - 53 deci
mal) or 14 digit positions, so that the 
two characteristics agree. The shifted 

number is 43 00 00 00 00 00 00 00, with 
a guard digit of one. Therefore, when 
the two numbers are compared, condition 
code 1 is set, indicating that operard 1 
in FPR4 is less than operand 2 in FPR6. 

If the example is changed to a second 
operand with a characteristic of 34 
instead of 35, so that FPR6 contains 34 
12 34 56 78 9A BC DE, the operand is 
right-shifted 15 positions, leaving all 
fraction digits and the guard digit as 
zeros. Condition code 0 is set, indi
cating equality. This example shows 
that two floating-point numbers with 
different characteristics or fractions 
may compare equal if the numbers are 
unnormalized or zero. 

As another example of comparing unnor
mali zed floating-point numbers, 41 00 12 
34 56 78 9A BC compares equal to all 
numbers of the form 3F 12 34 56 78 9A BC 
OX (X represents any hexadecimal digit). 
When the COMPARE instruction is 
executed, the two rightmost digits are 
shifted right two places, the 0 becomes 
the guard digit, and the X does not 
participate in the comparison. 

However, when two normalized floating-
point numbers are compared, the 
relationship between numbers that 
compare equal is unique: each digit in 
one number must be the same as the 
corresponding digit in the other number. 

DIVIDE (DD, DDR, DE, DER) 

Assume that the first operand (the divi
dend) is in FPR2 and the second operand 
(the divisor) in FPRO. If the operands 
are in the short-precision format, the 
resulting quotient is returned to FPR2 
by the instruction: 

Machine Format 

Op Code 

3D 2 o 

Assembler Format 

DER 2,0 

Several examples of short-precision 
floating-point division, with the divi
dend in FPR2 and the divisor in FPRO, 
are shown below. For case A, the 
result, which replaces the dividend, is 
obtained in the following steps. 

Appendix A. Number Representation and Instruction-Use Examples A-35 



7.2522F 

.1234001.821000 
7F6COO 

2A400 0 
24680 0 

5D80 00 
5B04 00 

27C 000 
246 800 

35 8000 
24 6800 

11 18000 
11 10COO 

7400 

FPR2 Before FPRO 
Case (Dividend) (Divisor) 

A -43 082100 +43 001234 
B +42 101010 +45 111111 
C +48 30000F +41 400000 
D +48 30000F +41 200000 
E +48 180007 +41 200000 

FPR2 After 
(guotient) 

-42 72522F 
+3D FOFOFO 
+47 COO03C 
+48 180007 
+47 COO038 

Case C shows a number being divided by 
4.0. Case D divides the same number by 
2.0, and case E divides the result of 
case D again by 2.0. The results of 
cases C and E differ in the rightmost 
hexadecimal digit position, which illus
trates an effect of result truncation. 

HALVE (HDR, HER) 

HALVE produces the same result as 
floating-point DIVIDE with a divisor of 
2.0. Assume FPR2 contains the long
precision number +48 30 00 00 00 00 00 
OF. The following HALVE instruction 
produces the result +48 18 00 00 00 00 
00 07 in FPR2: 

Machine Format 

Op Code 

24 2 2 

Assembler Format 

HDR 

A-36 370-XA Principles of Operation 

MULTIPLY (MD, MDR, ME, MER, MXD, MXDR, 
MXR) 

For this example, the following long
precision ope~ands are in FPRO and FPR2: 

FPRO: -33 606060 60606060 
FPR2: -SA 200000 20000020 

A long-precision product is generated by 
the instruction: 

Machine Format 

Op Code 

2C o 2 

Assembler Format 

Op Code R t ,R 2 

MDR 0,2 

If the operands were not already normal
ized, the instruction would first 
normalize them. It then generates an 
intermediate result consisting of the 
full 28-digit hexadecimal product frac
tion obtained by multiplying the 
14-digit hexadecimal operand fractions, 
together with the appropriate sign and a 
characteristic that is the sum of the 
operand characteristics less 64 (40 
hex> : 

The fraction multiplication is performed 
as follows: 

.60606060606060 

.20000020000020 

COCOCOCOCOCOCOO 
COCOCOCOCOCOCO 

COCOCOCOCOCOCO 

.OCOCOC181818241818180COCOCOO 

Attaching the sign and characteristic to 
the fraction gives: 

+4D OCOCOC 18181824 1818180C OCOCOO 

Because this intermediate product has a 
leading zero, it is then normalized. 
The truncated final result placed in 
FPRO is: 

+4C COCOC1 81818241 

FLOATING-POINT-NUMBER CONVERSION 

The following examples illustrate one 
method of converting between binary 
fixed-point numbers (32-bit signed bina
ry integers) and normalized floating
point numbers. Conversion must provide 
for the different representations used 



with negative numbers: the two's
complement form for signed binary 
integers, and the signed-absolute-value 
form for the fractions of floating-point 
numbers. 

Fixed Point to Floating Point 

The method used here inverts the left
most bit of the 32-bit signed binary 
integer, which is equivalent to adding 
2 31 to the number and considering the 
result to be positive. This changes the 
number from a signed integer in the 
range 2 31 - 1 through -2 31 to an 
unsigned integer in the range 2 32 - 1 
through o. After conversion to the long 
floating-point format, the value 2 31 is 
subtracted again. 

Assume that general register 9 (GR9) 
contains the integer -59 in two's
complement form: 

GR9: FF FF FF C5 

Further, assume two eight-byte fields in 
storage: TEMP, for use as temporary 
storage, and TW031, which contains the 
floating-point constant 2 31 in the 
following format: 

TW031: 4E 00 00 00 80 00 00 00 
'. 

This is an unnormalized long floating
point number with the characteristic 4E, 
which corresponds to a radix point (hex
adecimal point) to the right of the 
number. 

The following instruction 
performs the conversion: 

Result 

X 9,TW031+4 GR9: 
7FFF FFC5 

ST 9,TEMP+4 TEMP: 
xxxx xxxx 

MVC TEMP(4),TW031 TEMP: 
4EOO 0000 

LD 2,TEMP FPR2: 
4EOO 0000 

SD 2,TW031 FPR2: 
C23B 0000 

sequence 

7FFF FFC5 

7FFF FFC5 

7FFF FFC5 

0000 0000 

The EXCLUSIVE OR (X) instruction inverts 
the leftmost bit in general register 9, 
using the right half of the constant as 
the source for a leftmost one bit. The 
next two instructions assemble the modi
fied number in an unnormalized long 
floating-point format, using the left 
half of the constant as the plus sign, 
the characteristic, and the leading 
zeros of the fraction. LOAD (LO) places 

the number unchanged in floating-point 
register 2. The SUBTRACT NORMALIZED 
(SD) instruction performs the final two 
steps by subtracting 2 31 in floating
point form and normalizing the result. 

Floating Point to Fixed Point 

The procedure described here consists 
basically in reversing the steps of the 
previous procedure. Two additional 
considerations must be taken into 
account. First: the floating-point 
number may not be an exact integer. 
Truncating the excess hexadecimal digits 
on the right requires shifting the 
number one digit position farther to the 
right than desired for the final result, 
so that the units digit occupies the 
position of the guard digit Second: the 
floating-point number may have to be 
tested as to whether it is outside the 
range of numbers representable as a 
32-bit signed binary integer. 

Assume that floating-point register 6 
contains the number 59.25{10} = 3B.4{16} 
in normalized form: 

FPR6: 42 3B 40 00 00 00 00 00 

Further, assume three eight-byte fields 
in storage: TEMP, for use as temporary 
storage, and the constants 2 32 (TW032) 
and 2 31 (TW031R) in the following 
formats: 

TW032: 
TW031R: 

4E 00 00 01 00 00 00 00 
4F 00 00 00 08 00 00 00 

The constant TW031R is shifted right one 
more position than the constant TW031 of 
the previous example, so as to force the 
units digit into the guard-digit posi
tion. 

The following instruction sequence 
performs the integer truncation, range 
tests, and conversion to a signed binary 
integer in general register 8 (GR8): 

Result 

SO 6,TW031R FPR6: 
C87F FFFF C500 0000 

BC 11,OVERFLOW Branch to overflow 
routine if result 
is greater than or 
equal to zero 

AW 6,TW032 FPR6: 
4EOO 0000 8000 003B 

BC 4,OtJERFLOW Branch to overflow 
routine if result 
is less than zero 

STD 6,TEMP TEMP: 
4EOO 0000 8000 003B 

XI TEMP+4,X'80' TEMP: 
4EOO 0000 0000 003B 

L 8,TEMP+4 GR8: 
0000 003B 

Appendix A. Number Representation and Instruction-Use Examples A-37 



The SUBTRACT NORMALIZED (SD) instruction 
shifts the fraction of the number to the 
right until it lines up with TW03lR, 
which causes the fraction digit 4 to 
fall to the right of the guard digit and 
be lost; the result of subtracting 2 31 

from the remaining digits is renormal
ized. The result should be less than 
zero; if not, the original number was 
too large in the positive direction. 
The first BRANCH ON CONDITION (BC) 
performs this test. 

The ADD UNNORMALIZED (AW) instruction 
adds 232 : 2 31 to correct for the previ
ous subtraction and another 231 to 
change to an all-positive range. The 
second BC tests for a result less than 
zero, showing that the original number 
was too large in the negative direction. 
The unnormalized result is placed in 
temporary storage by the STORE (STD) 
instruction. There the leftmost bit of 
the binary integer is inverted by the 
EXCLUSIVE OR (XI) instruction to 
subtract 231 and thus convert the 
unsigned number to the signed format. 
The final result is loaded into GRS. 

MULTIPROGRAMMING AND MULTIPROCESSING 
EXAMPLES -

When two or more programs sharing common 
storage locations are running concur
rently in a multiprogramming or multi
processing environment, one program may, 
for example, set a flag bit in the 
common-storage area for testing by 
another program. It should be noted 
that the instructions AND (NI or NC), 
EXCLUSIVE OR (XI or XC), and OR (01 or 
OC) could be used to set flag bits in a 
multiprogramming environment; but the 
same instructions may cause program 
logic errors in a multiprocessing 
configuration where two or more CPUs can 
fetch, modify, and store data in the 
same storage locations simultaneously. 

EXAMPLE OF A PROGRAM FAILURE USING OR 
IMMEDIATE 

Assume that two independent programs try 
to set different bits to one in a common 
byte in storage. The following example 
shows how the use of the instruction OR 
immediate (01) can fail to accomplish 
this, if the programs are executed 
simultaneously on two different CPUs. 
One of the possible error situations is 
depicted. 

A-3S 370-XA Principles of Operation 

Execution of 
instruction 
01 FLAGS,X'Ol' 
on CPU A 

Fetch 
FLAGS X'OO' 

OR X'O!' 
into X'OO' 

Store X'Ol' 
into FLAGS 

Execution of 
instruction 

FLAGS 01 FLAGS,X'SO' 
on CPU B 

X'OO' Fetch 
FLAGS X'OO' 

X'OO' 

X' 00' OR X' 80' 
into X'OO' 

X'OO' 

X'SO' Store X'80' 
into FLAGS 

X'Ol' 

FLAGS should have value of X'Sl' 
following both updates. 

The problem shown here is that the value 
stored by the 01 instruction executed on 
CPU A overiays the value that was stored 
by CPU B. The X'80' flag bit was erro
neously turned off, and the data is now 
invalid. 

The COMPARE AND SWAP instruction has 
been provided to overcome this and simi
lar problems. 

COMPARE AND SWAP (CS, CDS) 

The COMPARE AND SWAP (CS) and COMPARE 
DOUBLE AND SWAP (CDS) instructions can 
be used in multiprogramming or multi
processing environments to serialize 
access to counters, flags, control 
words, and other common storage areas. 

The following examples of the use of the 
COMPARE AND SWAP and COMPARE DOUBLE AND 
SWAP instructions illustrate the appli
cations for which the instructions are 
intended. It is important to note that 
these are examples of functions that can 
be performed by programs running enabled 
for interruption (multiprogramming) or 
by programs that are running on a multi
processing configuration. That is, the 
routine allows a program to modify the 
contents of a storage location while 
running enabled, even though the routine 
may be interrupted by another program on 
the same CPU that will update the 
location, and even though the possibil
ity exists that another CPU may 
simultaneously update the same location. 

The CS instruction first checks the 
value of a storage location and then 
modifies it only if the value is what 
the program expects; normally this would 
be a previously fetched value. If the 
value in storage is not what the program 
expects, then the location is not modi
fied; instead, the current value of the 
location is loaded into a general regis-



ter, in preparation for the program to 
loop back and try again. During the 
execution of CS, no other CPU can access 
the specified location. 

Setting g Single Bit 

The following instruction sequence shows 
how the CS instruction can be used to 
set a single bit in storage to one. 
Assume that the first byte of a word in 
storage called "WORD" contains eight 
flag bits. 

LA 6,X'80' 

SLL 6,24 

L 

RETRY LR 
OR 
CS 

BC 

7,WORD 

8,7 
8,6 
7,8,WORD 

4,RETRY 

Put bit to be ORed 
into GR6 

Shift left 24 places 
to align the byte 
to be ORed with 
the location of 
the flag bits 
within WORD 

Fetch current flag 
values 

Load flags into GR8 
Set bit to one 
Store new flags if 

current flags un
changed, or re
fetch current 
flag values if 
changed 

If new flags are not 
stored, try again 

The format of the CS instruction is: 

Machine Format 

Op Code 

BA 7 

Assembler Format 

CS 7,8,WORD 

The CS instruction compares the first 
operand (general register 7 containing 
the current flag values) to the second 
operand in storage (WORD) while no CPU 
other than the one executing the CS 
instruction is permitted to access the 
specified storage location. 

If the comparison is successful, indi
cating that the flag bits have not been 
changed since they were fetched, the 
modified copy in general register 8 is 
stored into WORD. If the flags have 
been changed, the compare will not be 
successful, and their new values are 
loaded into general register 7. 

The conditional branch (BC) instruction 
tests the condition code and reexecutes 
the flag-modifying instructions if the 
CS instruction indicated an unsuccessful 
comparison (condition code 1). When the 
CS instruction is successful (condition 
code 0), the flags contain valid data, 
and the program exits from the loop. 

The branch to RETRY will be taken only 
if some other program modifies the 
contents of WORD. This type of a loop 
differs from the typical "bit-spin" 
loop. In a bit-spin loop, the program 
continues to loop until the bit changes. 
In this example, the program continues 
to loop only if the value does change 
during each iteration. If a number of 
CPUs simultaneously attempt to modify a 
single location by using the sample 
instruction sequence, one CPU will fall 
through on the first try, another will 
loop once, and so on until all CPUs have 
succeeded. 

Updating Counters 

In this example, a 32-bit counter is 
updated by a program using the CS 
instruction to ensure that the counter 
will be correctly updated. The original 
value of the counter is obtained by 
loading the word containing the counter 
into general register 7. This value is 
moved into general register 8 to provide 
a modifiable copy, and general register 
6 (containing an increment to the count
er) is added to the modifiable copy to 
provide the updated counter value. The 
CS instruction is used to ensure valid 
storing of tha counter. 

The program updating the counter checks 
the result by examining the condition 
code. The condition code 0 indicates a 
successful update, and the program can 
proceed. If the counter had been 
changed between the time that the 
program loaded its original value and 
the time that it executed the CS 
instruction, the CS instruction would 
have loaded the new counter value into 
general register 7 and set the condition 
code to 1, indicating an unsuccessful 
update. The program then must update 
the new counter value in general regis
ter 7 and retry the CS instruction, 
retesting the condition code, and retry
ing until a successful update is 
completed. 

The following instruction 
performs the above procedure: 

sequence 

Appendix A. Number Representation and Instruction-Use Examples A-39 



LA 6,1 Put increment (1) i nt-o 
GR6 

L 7,CNTR Put original counter 
value into GR7 

LOOP LR 8,7 Set up copy in GR8 to 
modify 

AR 8,6 Increment copy 
CS 7,8,CNTR Update counter in 

storage 
BC 4,LOOP If original value had 

changed, update new 
value 

The following shows two CPUs, A and B, 
executing' this instruction sequence 
simultaneously: both CPUs attempt to 
add one to CNTR. 

CPU A CPU B Comments 
GR7 GR8 CNTR GR7 GR8 

16 
16 16 CPU A loads GR7 

and GR8 from 
CNTR 

16 16 CPU B loads GR7 
and GR8 from 
CNTR 

17 CPU B adds one 
to GR8 

17 CPU A adds one 
to GR8 

17 CPU A executes 
CS; successful 
match, store 

17 CPU B executes 
CS; no match, 
GR7 changed to 
CNTR value 

18 CPU B loads GR8 
from GR7, adds 
one to GR8 

18 CPU B executes 
CS; successful 
match, store 

BYPASSING POST AND WAIT 

BYPASS POST Routine 

The following routine allows the SVC 
"POST" as used in OS/VS to be bypassed 
whenever the corresponding WAIT has not 
yet been issued, provided that the 
supervisor WAIT and POST routines use 
COMPARE AND SWAP to manipulate event 
control blocks (ECBs). 

Initial Conditions: 

GRI contains the address of the ECB. 
GRO contains the POST code. 

A-40 370-XA Principles'of Operation 

HSPOST L 3,0(1) GR3 = contents 
of ECB 

LTR 3,3 ECB marked 
'waiting'? 

BC 4,PSVC Yes, issue post 
SVC 

CS 3,0,0(1) No, store post 
code 

BC 8,EXITHP Continue 
PSVC POST (1),(0) ECB address is 

in GRl, post 
code in GRO 

EXITHP [Any instruction] 

The following routine may be used in 
place of the previous HSPOST routine if 
the ECB is assumed to contain zeros when 
it is not marked "WAITING." 

HSPOST SR 3,3 
CS 3,0,0(1) 
BC 8,EXITHP 
POST (1),(0) 

EXITHP [Any instruction] 

BYPASS WAIT Routine 

A BYPASS WAIT function, corresponding to 
the BYPASS POST, does not use the CS 
instruction, but the FIFO LOCK/UNLOCK 
routines which follow assume its use. 

HSl~AIT TM 
BC 

0(1),X'40' 
I,EXITHW If bit 1 is one, 

then ECB is al
ready posted; 
branch to exit 

WAIT ECB=(I) 
EXITHW [Any instruction] 

LOCK/UNLOCK 

When a common storage area larger than a 
doubleword is to be updated, it is 
usually necessary to provide special 
interlocks to ensure that a single 
program at a time updates the common 
area. Such an area is called a serially 
reusable resource (SRR). 

In general, updating a list, or even 
scanning a list, cannot be safely accom
plished without first "freezing" the 
list. However, the COMPARE AND SWAP 
instructions can be used in certain 
restricted situations to perform queuing 
and list manipulation. Of prime impor
tance is the capability to perform the 
lock/unlock functions and to provide 
sufficient queuing to resulve 
contentions, either 1n a LIFO or fIFO 
manner. The lock/unlock functions :an 
then be used as the interlock mechan~sm 
for updating an SRR of any complexity. 



The lock/unlock functions are based on 
the use of a "header" associated with 
the SRR. The header is the common 
starting point for determining the 
states of the SRR, either free or in 
use, and also is used for queuing 
requests when contentions occur. 
Contentions are resolved using WAIT and 
POST. The general programming technique 
requires that the program that encount
ers a "locked" SRR must "leave a mark on 
the wall" indicating the address of an 
ECB on which it will WAIT. The "unlock
ing" program sees the mark"and posts the 
ECB, thus permitting the waiting program 
to continue. In the two examples given, 
all programs using a particular SRR must 
use either the LIFO queuing scheme or 
the FIFO scheme; the two cannot be 
mixed. When more complex queuing is 
required, it is suggested that the queue 
for the SRR be locked using one of the 
two methods shown. 

LOCK/UNLOCK with LIFO Queuing for 
Contentions 

The header consists of a word, that is, 
a four-byte field aligned on a word 
boundary. The word can contain zero, a 
positive value, or a negative value. 

• A zero value indicates that the 
serially reusable resource (SRR) is 
free. 

• A negative value indicates that the 
SRR is in use but no additional 
programs are waiting for the SRR. 

• A positive value indicates that the 
SRR is in use and that one or more 
additional programs are waiting for 
the SRR. Each waiting program is 
identified by an element in a 
chained list. The positive value 
in the header is the address of the 
element most recently added to the 
list. 

Each element consists of two words. The 
first word is used as an ECB; the second 
word is used as a pointer to the next 
element in the list. A negative value 
in a pointer indicates that the element 
is the last element in the list. The 
element is required only if the program 
finds the SRR locked and desires to be 
placed in the list. 

The following chart describes the action 
taken for LIFO LOCK and LIFO UNLOCK 
routines. 

Appendix A. Number Representation and Instruction-Use Examples A-41 



Action 

Header Contains Header Contains Header Contains 
Function Zero Positive Value Negative Value 

LIFO LOCK SRR is free. SRR is in use. Store the 
(the incoming Set the header contents of the header into 
element is at to a negative location A+4. Store address A 
location A) value. Use the into the header. WAIT; the ECB 

SRR. is at location A. 

LIFO UNLOCK Error Some program is The list is 
waiting for the empty. Store 
SRR. Move the zeros into the 
pointer from header. The SRR 
the "last in" is free. 
element into 
the header. 
POST; the ECB 
is in the "last 
in" element. 

The following routines allow enabled 
code to perform the actions described in 
the previous chart. 

LIFO LOCK Routine: 

Initial Conditions: 

GR1 contains the address of the incom
ing element. 

GR2 contains the address of the header. 

LLOCK SR 
ST 
LNR 

3,3 
3,0(1) 
0,1 

GR3 = 0 
Initialize the ECB 
GRO = a negative 

value 
TRYAGN CS 3,0,0(2) Set the header to 

a negative value 
if the header 

USE 

BC 

ST 

CS 

LA 
BC 

8,USE 

3,4(1) 

contains zeros 
Did the header 

contain zeros? 
No, store the 

value of the 
header into the 
pointer in the 
incoming element 

3,1,0(2) Store the address 
of the incoming 
element into the 
header 

3,0(0) GR3 = ° 
7,TRYAGN Did the header get 

updated? 
WAIT ECB=(l) Yes, wait for the 

resource;the 

[Any instruction] 

ECB is in the 
incoming element 

LIFO UNLOCK Routine: 

Initial Conditions: 

GR2 contains the address of the header. 

A-42 370-XA Principles of Operation 

LUNLK L 

A LTR 

BC 
L 
CS 

BC 

4,B 
0,4(1) 
1,0,0(2) 

GR1 = the contents 
of the header 

Does the header 
contain a neg
ative value? 

No, load the 
pointer from the 
"last in" element 
and store it in 
the header 

Did the header get 
updated? 

POST (1) Yes, post the "last 
in" element 

Continue 
B 

EXIT 

BC 
SR 
CS 

BC 
[Any 

15,EXIT 
0,0 
1,0,0(2) 

The header contains 
a negative value; 
free the header 

7,A and continue 
instruction] 

Note that the load instruction L 1,0(2) 
at location LUNLK would have to be CS 
1,1,0(2) if it were not for the rule 
concerning storage-operand consistency. 
This rule requires the load instruction 
to fetch a four-byte operand aligned on 
a word boundary such that, if another 
CPU changes the word being fetched, 
either the entire new or the entire old 
value of the word is obtained, and not a 
combination of the two. (See the 
section "Storage-Operand Consistency" in 
Chapter 5, "Program Execution.") 

LOCK/UNLOCK with FIFO Queuing for 
Contentions 

The header always contains the address 
of the most recently entered element. 
The header is originally initialized to 
contain the address of a posted ECB. 
Each program using the serially reusable 
resource (SRR) must provide an element 
regardless of whether contention occurs. 
Ea~h program then enters the address of 



the element which it has provided into 
the header, while simultaneously it 
removes the address previously contained 
in the header. Thus, associated with 
any particular program attempting to use 
the SRR are two elements, called the 
"entered element" and the "removed 
element." The "entered element" of one 
program becomes the "removed element" 
for the immediately following program. 
Each program then waits on the removed 
element, uses the SRR, and then posts 
the entered element. 

When no contention occurs, that is, when 
the second program does not attempt to 
use the SRR until after the first 
program is finished, then the POST of 
the first program occurs before the WAIT 
of the second program. In this case, 
the bypass-post and bypass-wait routines 
described in the preceding section are 
applicable. For simplicity, these two 
routines are shown only by name rather 
than as individual instructions. 

In the example, the element need be only 
a single word, that is, an ECB. 
However, in actual practice, the element 
could be made larger to include a point
er to the previous element, along with a 
program identification. Such informa
tion would be useful in an error 
situation to permit starting with the 
header and chaining through the list of 
elements to find the program currently 
holding the SRR. 

It should be noted that the element 
provided by the program remains pointed 
to by the header until the next program 
attempts to lock. Thus, in general, the 
entered element cannot be reused by the 
program. However, the removed element 
is available, so each program gives up 
one element and gains a new one. It is 
expected that the element removed by a 
particular program during one use of the 
SRR would then be used by that program 
as the entry element for the next 
request to the SRR. 

It should be noted that, since the 
elements are exchanged from one program 
to the next, the elements cannot be 
allocated from storage that would be 
freed and reused when the program ends. 
It is expected that a program would 
obtain its first element and release its 
last element by means of the routines 
described in the section "Free-Pool 
Manipulation" in this ~ppendix. 

The following chart describes the action 
taken for FIFO LOCK and FIFO UNLOCK. 

Function Action 

FIFO LOCK Store address A 
into the header. 

(the incoming WAIT; the ECB is at 
element is at the location addres-
location A) sed by the old con-

tents of the header. 

FIFO UNLOCK POST; the ECB is at 
location A. 

The following routines allow enabled 
code to perform the actions described in 
the previous chart. 

FIFO LOCK Routine: 

Initial conditions: 

GR3 contains the address of the header. 
GR4 contains the address, A, of the 

element currently owned by this 
program. This element becomes the 
entered element. 

FLOCK LR 2,4 

SR 
ST 
L 

TRYAGN CS 

BC 

LR 

1,1 
1,0(2) 
1,0(3) 

1,2,0(3) 

7,TRYAGN 

4,1 

HSWAIT 

GR2 now contains 
address of ele
ment to be 
entered 

GRI = 0 
Initialize the ECB 
GRI = contents of 

the header 
Enter address A 

into header 
while remember
ing old contents 
of header into 
GRl; GRI now 
contains address 
of removed 
element 

Removed element 
becomes new cur
rently owned 
element 

Perform bypass
wait routine; if 
ECB already 
posted, con
tinue; if not, 
wait; GRI con
tains the ad
dress of the ECB 

USE [Any instruction] 

FIFO UNLOCK Routine: 

Initial conditions: 

GR2 contains the address of the removed 
element, obtained during the FLOCK 
routine. 

Appendix A. Number Representation and Instruction-Use Examples A-43 



FUNLK LR 1,2 Place address of en-
tered element in 
GRl; GR1 = address 
of ECB to be posted 

SR 0,0 GRO = 0; GRO has a 
post code of zero 

HSPOST Perform bypass-post 
routine; if ECB has 
not been waited on, 
then mark posted 
and continue; if it 
has been waited on, 
then post 

CONTINUE [Any instruction] 

FREE-POOL MANIPULATION 

It is anticipated that a program will 
need to add and delete items from a free 
list without using the lock/unlock 
routines. This is especially likely 
since the lock/unlock routines require 
storage elements for queuing and may 
require working storage. The 
lock/unlock routines discussed previous
ly allow simultaneous lock routines but 
permit only one unlock routine at a 
time. In such a situation, multiple 
additions and a single deletion to the 
list may all occur simultaneously, but 
multiple deletions cannot occur at the 
same time. In the case of a chain of 
pointers containing free storage 
buffers, multiple deletions along with 
additions can occur simultaneouslY. In 
this case, the removal cannot be done 
using the CS instruction without a 
certain degree of exposure. 

Consider a chained list of the type used 
in the LIFO lock/unlock example. Assume 
that the first two elements are at 
locations A and B, respectively. If one 
program attempted to remove the first 
element and was interrupted between the 
fourth and fifth instructions of the 
LUNLK routine, the list could be changed 
so that elements A and C are the first 
two elements when the interrupted 

A-44 370-XA Principles of Operation 

program resumes execution. The CS 
instruction would then succeed in stor
ing the value B into the header, thereby 
destroying the list. 

The probability of the occurrence of 
such list destruction can be reduced to 
near zero by appending to the header a 
counter that indicates the number of 
times elements have been added to the 
list. The use of a 32-bit counter guar
antees that the list will not be 
destroyed unless the following events 
occur, in the exact sequence: 

1. An unlock routine is interrupted 
between the fetch of the pointer 
from the first element and the 
update of the header. 

2. The list is manipulated, including 
the deletion of the element ref~r
enced in 1, and exactly 2 32 -1 addi
tions to the list are performed. 
Note that this takes on the order 
of days to perform in any practical 
situation. 

3. The element referenced in 1 is 
added to the list. 

4. The unlock routine interrupted in 1 
resumes execution. 

The following routines use such a count
er in order to allow multiple, simul
taneous additions and removals at the 
head of a chain of pointers. 

The list consists of a doubleword header 
and a chain of elements. The first word 
of the header contains a pointer to the 
first element in the list. The second 
word of the header contains a 32-bit 
counter indicating the number of addi
tions that have been made to the list. 
Each element contains a pointer to the 
next element in the list. A zero value 
indicates the end of the list. 

The following chart describes the free
pool-list manipulation. 



Action 

Function Header = O,Count Header = A,Count 

ADD TO LIST Store the first word of the header into 
(the incoming location A. Store the address A into the 
element is at first word of the header. Decrement the 
location A) second word of the header by one. 

DELETE FROM The list is empty. Set the first word of the 
LIST header to the value of 

the contents of location 
A. Use element A. 

The following routines 
code to perform the 
manipulation described 
chart. 

allow enabled 
free-pool-list 

in the above 

ADD TO FREE LIST Routine: 

Initial Conditions: 

GR2 contains the address of the element 
to be added. 

GR4 contains the address of the header. 

ADDQ LM 0,1,0(4) 

TRYAGN ST 0,0(2) 

LR 3,1 

BCTR 3,0 
CDS 0,2,0(4) 
BC 7,TRYAGN 

GRO,GR1 = contents 
of the header 

Point the new ele
ment to the top 
of the list 

Move the count to 
GR3 

Decrement the count 
Update the header 

DELETE FROM FREE LIST Routine: 

Initial conditions: 

GR4 contains the address of the header. 

DELETQ LM 2,3,0(4) GR2,GR3 = con-
tents of the 
header 

TRYAGN LTR 2,2 Is the list 
empty? 

BC 8,EMPTY Yes, get help 
L 0,0(2) No, GRO = the 

pointer from 
the first 
element 

LR 1,3 Move the count 
to GR1 

CDS 2,0,0(4) Update the 
header 

BC 7,TRYAGN 
USE [Any instruction] The address of 

the removed 
element is in 
GR2 

Note that the LM instructions at 
locations ADDQ and DELETQ would have to 
be CDS instructions if it were not for 
the rule concerning storage-operand 
consistency. This rule requires the LM 
instructions to fetch an eight-byte 
operand aligned on a doubleword boundary 
such that, if another CPU changes the 
doubleword being fetched, either the 
entire new or the entire old value of 
the doubleword is obtained, and not a 
combination of the two. (See the 
section "Storage-Operand Consistency~ in 
Chapter 5, "Program Execution.") 

Appendix A. Number Representation and Instruction-Use Examples A-45 





The following 
instructions by 
operation code. 
instructions that 
figures, such as 
assists or as part 
features. 

three figures list 
name, mnemonic, and 
Some models may offer 

do not appear in the 
those provided for 
of special or custom 

The operation code 00 with a two-byte 
instruction format is allocated for use 
by the program when an indication of an 
invalid operation is required. It is 
improbable that this operation code will 
ever be assigned to an instruction 
implemented in the CPU. 

Explanation of Symbols in "Character
istics" Columns 

¢ Causes serialization and checkpoint 
synchronization 

¢l Causes serialization and checkpoint 
synchronization when the Mt and R2 
fields contain all ones and all 
zeros, respectively 

$ Causes serialization 
A Access exceptions for logical 

addresses 
Al Access exceptions; not all access 

exceptions may occur; see instruc
tion description for details 

AI Access exceptions for instruction 
address 

AS Access exceptions and ASN
translation-specification 
exception; see instruction descrip
tion for details 

AT ASH-translation exceptions (which 
include addressing, ASH-translation 
specification, AFX translation, and 
ASX translation) 

B PER branch event 
C Condition code is set 
D Data exception 
DF Decimal-overflow exception 
DK Decimal-divide exception 
DM Depending on the model, DIAGNOSE 

may generate various program excep
tions and may change the condition 
code 

EO Exponent-overflow exception 
EU Exponent-underflow exception 

EX 
FK 
GO 

Gl 

G2 

GM 

GS 

IF 
II 
IK 
L 
LS 
MO 
OP 
P 
Q 

R 

RR 
RRE 
RS 
RX 
S 
SI 
SO 
SP 
SS 
SSE 
ST 
T 

APPEHDIX ~ LISTS OF INSTRUCTIONS 

Execute exception 
Floating-point-divide exception 
Instruction execution includes the 
implied use of general register 0 
Instruction execution includes the 
implied use of general register 1 
Instruction execution includes the 
implied use of 
Instruction execution includes the 
implied use of multiple general 
registers 
Instruction execution includes the 
implied use of general register 1 
as the SID 
Fixed-point-overflow exception 
Interruptible instruction 
Fixed-point-divide exception 
New condition code is loaded 
Significance exception 
Monitor event 
Operand exception 
Privileged-operation exception 
Privileged-operation exception for 
semiprivileged instructions 
PER general-register alteration 
event 
RR instruction format 
RRE instruction format 
RS instruction format 
RX instruction format 
S instruction format 
SI instruction format 
Special-operation exception 
Specification exception 
SS instruction format 
SSE instruction format 
PER storage-alteration event 
Trace exceptions (which include 
trace table, addressing, and low
address protection) 
Additional exceptions and events 
for PROGRAM CALL (which include 
addressing, EX translation, LX 
translation, PC-translation speci
fication, and special-operation 
exceptions and space-switch event) 
Additional exceptions and events 
for PROGRAM TRANSFER (which include 
addressing, primary-authority, and 
special-operation exceptions and 
space-switch event) 
Additional exceptions for SET 
SECONDARY ASH (which include ad
dressing, secondary authority, and 
special operation) 

Appendix B. Lists of Instructions B-1 



Mne- Op Page 
Name monic Characteristics Code No. 

ADD AR RR C IF R 1A 7-8 
ADD A RX C A 

, 
IF R 5A 7-8 

ADD DECIMAL AP 5S C A D DF ST FA 8-5 
ADD HALFWORD AH RX C A IF R 4A 7-8 
ADD LOGICAL ALR RR C R 1E 7-9 

ADD LOGICAL AL RX C A R 5E 7-9 
ADD NORMALIZED (extended) AXR RR C SP EU EO LS 36 9-6 
ADD NORMALIZED (long) ADR RR C SP EU EO LS 2A 9-6 
ADD NOR~1ALIZED (long) AD RX C A SP EU EO LS 6A 9-6 
ADD NORf-lALIZED (zhort) AER RR C SP EU EO LS 3A 9-6 

ADD NORMALIZED (short) AE RX C A SP EU EO LS 7A 9-6 
ADD UNNORMALIZED (long) Al.JR RR C SP EO LS 2E 9-7 
ADD UNNORMALIZED (long) AL-J RX C A SP EO LS 6E 9-7 
ADD UNHORMALIZED (short) AUR RR C SP EO LS 3E 9-7 
ADD UHNORMALIZED (short) AU RX C A SP EO LS 7E 9-7 

AND HR RR C R 14 7-9 
AND N RX C A R 54 7-9 
AHD (character) NC S5 C A ST D4 7-9 
AND (immediate) tu 51 C A ST 94 7-9 
BRANCH AND LINK BALR RR T B R 05 7-10 

BRANCH AND LINK BAL RX B R 45 7-10 
BRANCH AND SAVE BASR RR T B R OD 7-10 
BRANCH AND SAVE BAS RX B R 4D 7-10 
BRANCH AND SAVE AND SET MODE DASSM RR T B R OC 7-11 
BRANCH AND SET MODE BSM RR B R OB 7-11 

BRANCH ON CONDITION BCR RR 9 1 B 07 7-12 
BRANCH ON CONDITION BC RX B 47 7-12 
BRANCH ON COUNT SCTR RR B R 06 7-13 
BRANCH ON COUNT BCT RX B R 46 7-13 
BRANCH ON INDEX HIGH BXH RS B R 86 7-13 

BRANCH ON IHDEX LOW OR EQUAL BXLE RS B R 87 7-13 
CLEAR SUBCHANNEL CSCH S C P OP 9 GS B230 1(.-3 
COt·1PARE CR RR C 19 7-14 
COt'1PARE C RX C A 59 7-14 
COr1PARE (long) CDR RR C SP 29 9-8 

COr'1P ARE (long) CD RX C A SP 69 9-8 
CO~1PARE (short) CER RR C SP 39 9-8 
COMPARE (short) CE RX C A SP 79 9-8 
CO~1PARE AND SloJAP CS RS C A SP $ R ST BA 7-14 
Cm1PARE DECIMAL CP S5 C A D F9 8-5 

COt1PARE DOUBLE AND SWAP CD5 R5 C A SP $ R ST BB 7-14 
COf1PARE HALFWORD CH RX C A 49 7-16 
COf'1PARE LOGICAL CLR RR C 15 7-16 
CO~1PARE LOGICAL CL RX C A 55 7-16 
COMPARE LOGICAL (character) CLC 55 C A D5 7-16 

COtlPARE LOGICAL (immediate) CLI 51 C A 95 7-16 
CO~1P ARE LOGICAL CHARACTERS UNDER MASK CLM RS C A DO 7-17 
COMPARE LOGICAL LONG CLCL RR C A SP II R OF 7-17 
CONVERT TO BINARY CVB RX A D IK R 4F 7-19 
CONVERT TO DECnlAL CVD RX A ST 4E 7-20 

DIAGNOSE OM P DM 83 10-4 
DIVIDE DR RR SP IK R 1D 7-20 
DIVIDE D RX A SP IK R 5D 7-20 
DIVIDE (extended) DXR RRE SP EU EO FK B22D 9-8 
DIVIDE (long) DDR RR SP EU EO FK 2D 9-8 

Instructions Arranged by Name (Part 1 of 4) 

B-2 370-XA Principles of Operation 



Mna- Op Page 
Name monic Characteristic!! Code No. 

DIVIDE (long) DD RX A SP EU EO FK 6D 9-8 
DIVIDE (short) DER RR SP EU EO FK 3D 9-8 
DIVIDE (short) DE RX A SP EU EO FK 70 9-8 
DIVIDE DECIMAL DP SS A SP 0 DK ST FD· 8-5 
EDIT ED SS C A D ST DE 8-6 

EDIT AND MARK EDMK SS C A D G1 R ST OF 8-9 
EXCLUSIVE OR XR RR C R 17 7-21 
EXCLUSIVE OR X RX C A R 57 7-21 
EXCLUSIVE OR (character) XC SS C A ST D7 7-21 
EXCLUSIVE OR (immediate) XI SI C A ST 97 7-21 

EXECUTE EX RX AI SP EX 44 7-22 
EXTRACT PRIMARY ASN EPAR RRE Q SO R B226 10-5 
EXTRACT SECONDARY ASN ESAR RRE Q SO R B227 10-5 
HALT SUBCHANNEL HSCH S C P OP ¢ GS B231 14-4 
HALVE (long) HDR RR SP EU 24 9-10 

HALVE (short) HER RR SP EU 34 9-10 
INSERT ADDRESS SPACE CONTROL lAC RRE C Q SO R B224 10-6 
INSERT CHARACTER IC RX A R 43 7-23 
INSERT CHARACTERS UNDER MASK ICM RS C A R BF 7-23 
INSERT PROGRAM MASK IPM RRE R B222 7-23 

INSERT PSW KEY IPK S Q G2 R B20B 10-7 
INSERT STORAGE KEY EXTENDED ISKE RRE P B229 10-7 
INSERT VIRTUAL STORAGE KEY IVSK RRE Q Al SO R B223 10-7 
INVALIDATE PAGE TABLE ENTRY IPTE RRE P Al $ B221 10-8 
LOAD LR RR R 18 7-24 

LOAD L RX A R 58 7-24 
LOAD (long) LDR RR SP 28 9-10 
LOAD (long) LD RX A SP 68 9-10 
LOAD (short) LER RR SP 38 9-10 
LOAD (short) LE RX A SP 78 9-10 

LOAD ADDRESS LA RX R 41 7-24 
LOAD ADDRESS SPACE PARAMETERS LASP SSE C P AS SP SO E500 10-10 
LOAD AND TEST LTR RR C R 12 7-24 
LOAD MID TEST (long) LTDR RR C SP 22 9-11 
LOAD AND TEST (short) LTER RR C SP 32 9-11 

LOAD COr1PL EMENT LCR RR C IF R 13 7-24 
LOAD CO~1PLEMENT (long) LCDR RR C SP 23 9-11 
LOAD CO~'PL EMENT (short) LCER RR C SP 33 9-11 
LOAD CONTROL LCTL RS P A SP B7 10-17 
LOAD HALFWORD LH RX A R 48 7-25 

LOAD MULTIPLE LM RS A R 98 7-25 
LOAD NEGATIVE UlR RR C R 11 7-25 
LOAD NEGATIVE (long) LNDR RR C SP 21 9-11 
LOAD NEGATIVE (short) LNER RR C SP 31 9-11 
LOAD POSITIVE LPR RR C IF R 10 7-26 

LOAD POSITIVE (long) LPDR RR C SP 20 9-12 
LOAD POSITIVE (short) LPER RR C SP 30 9-12 
LOAD PSW LPSt·J S L P A SP ¢ 82 10-17 
LOAD REAL ADDRESS LRA RX C P Al R B1 10-18 
LOAD ROUNDED (extended to long) LRDR RR SP EO 25 9-12 

LOAD ROUNDED (long to short) LRER RR SP EO 35 9-12 
MODIFY SUBCHANNEL ~15CH S C P A SP OP ¢ GS B232 14-6 
MONITOR CALL MC 51 SP MO AF 7-26 
MOVE (character) MVC SS A ST D2 7-27 
MOVE (immediate) t1V I SI A ST 92 7-27 

Instructions Arranged by Hame (Part 2 of 4) 

Appendix B. Lists of Instructions B-3 



Mne- Op Page 
Name monic Characteristics Code No. 

MOVE LONG MVCL RR C A SP II R ST OE 7-27 
MOVE NUMERICS MVN SS A ST D1 7-30 
~10VE TO PRIMARY MVCP S5 C Q Al SO ¢ ST DA 10-19 
MOVE TO SECONDARY MVCS SS C Q Al SO ¢ ST DB 10-19 
MOVE WITH KEY MVCK SS C Q A ST 09 10-20 

MOVE WITH OFFSET MVO SS A ST F1 7-31 
MOVE ZONES MVZ SS A ST 03 7-31 
MULTIPLY MR RR SP R 1C 7-32 
MULTIPLY M RX A SP R 5C 7-32 
MULTIPLY (extended) t1XR RR SP EU EO 26 9-13 

MULTIPLY (long to extended) MXDR RR SP EU EO 27 9-13 
MULTIPLY (long to extended) MXD RX A SP EU EO 67 9-13 
MULTIPLY (long) t1DR RR SP EU EO 2C 9-13 
MULTIPLY (long) t1D RX A SP EU EO 6C 9-13 
MULTIPLY (short to long) MER RR SP EU EO 3C 9-13 

MULTIPLY (short to long) ME RX A SP EU EO 7C 9-13 
MULTIPLY DECIMAL MP 5S A SP D ST FC 8-10 
MULTIPLY HALF~JORD ~1H RX A R 4C 7-32 
OR OR RR C R 16 7-33 
OR 0 RX C A R 56 7-33 

OR (character) OC 5S C A ST D6 7-33 
OR (;mmediate) 01 SI C A ST 96 7-33 
PACK PACK 5S A ST F2 7-33 
PROGRAM CALL PC S Q AT Zl T ¢ GM B R B218 10-22 
PROGRAM TRANSFER PT RRE Q AT SP Z2 T ¢ B B228 10-28 

PURGE TLB PTLB S P $ B20D 10-33 
RESET CHANNEL PATH RCHP 5 C P OP ¢ G1 B23B 14-6 
RESET REFERENCE BIT EXTENDED RRBE RRE C P B22A 10-33 
RESUME SU8CHANNEL RSCH S C P OP ¢ GS B238 14-8 
SET ADDRESS LIMIT SAL S P OP ¢ G1 B237 14-9 

SET ADDRESS SPACE CONTROL SAC S SP SO ¢ B219 10-33 
SET CHANNEL MONITOR SCHM S P OP ¢ GM B23C 14-10 
SET CLOCK SCK S C P A SP 8204 10-34 
SET CLOCK COMPARATOR 5CKC S P A SP 8206 10-35 
SET CPU TH1ER srT S P A SP 8208 10-35 

SET PREFIX SPX S P A SP $ B210 10-36 
SET PROGRAM MASK SPM RR L 04 7-34 
SET PSW KEY FROM ADDRESS SPKA S Q B20A 10-36 
SET SECONDARY ASN SSAR RRE AT Z3 T ¢ B225 10-37 
SET STORAGE KEY EXTENDED SSKE RRE P ¢ B22B 10-40 

SET SYSTEM ~lASK SSM S P A SP SO 80 10-40 
SHIFT AND ROUND DECIMAL SRP SS C A D DF ST FO 8-10 
SHIFT LEFT DOUBLE SLDA RS C SP IF R 8F 7-34 
SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 8D 7-35 
SHIFT LEFT SINGLE SLA RS C IF R 8B 7-35 

SHIFT LEFT SINGLE LOGICAL SLL RS R 89 7-36 
SHIFT RIGHT DOUBLE SRDA RS C SP R 8E 7-36 
SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 8C 7-36 
SHIFT RIGHT SINGLE SRA RS C R 8A 7-37 
SHIFT RIGHT SINGLE LOGICAL SRL RS R 88 7-37 

SIGNAL PROCESSOR SIGP RS C P $ R AE 10-41 
START SUBCHANUEL SSCH S C P A SP OP ¢ GS B233 14-11 
STORE ST RX A ST 50 7-37 
STORE (long) STD RX A SP ST 60 9-14 
STORE (short) STE RX A SP ST 70 9-14 

Instructions Arranged by Name (Part 3 of 4) 

B-4 370-XA Principles of Operation 



Mne- Op Page 
Harne monic Characteristics Code 1'10. 

STORE CHANNEL PATH STATUS STCPS S P A SP ¢ ST B23A 14-13 
STORE CHANNEL REPORT WORD S TCR~J S C P A SP ¢ ST B239 14-13 
STORE CHARACTER STC RX A ST 42 7-38 
STORE CHARACTERS UNDER MASK STCM RS A ST BE 7-38 
STORE CLOCK STCK S C A $ ST B205 7-38 

STORE CLOCK COMPARATOR STCKC S P A SP ST B207 10-42 
STORE CONTROL STCTL RS P A SP ST B6 10-42 
STORE CPU ADDRESS STAP S P A SP ST B212 10-43 
STORE CPU ID STIDP S P A SP ST B202 10-43 
STORE CPU TIMER STPT S P A SP ST B209 10-43 

STORE HALFWORD STH RX A ST 40 7-39 
STORE MULTIPLE STM RS A ST 90 7-39 
STORE PREFIX STPX S P A SP ST B211 10-44 
STORE SUBCHANUEL STSCH S C P A SP OP ¢ GS ST B234 14-14 
STORE THEN AND SYSTEM MASK S TNS~l S1 P A ST /l.C 10-44 

STORE THEN OR SYSTEM MASK STOSM SI P A SP ST AD 10-44 
SUBTRACT SR RR C IF R IB 7-40 
SUBTRACT S RX C A IF R 5B 7-40 
SUBTRACT DECIMAL SP SS C A D DF ST FB 8-11 
SUBTRACT HALFl~ORD SH RX C A IF R 4B 7-40 

SUBTRACT LOGICAL SLR RR C R IF 7-40 
SUBTRACT LOGICAL SL RX C A R 5F 7-40 
SUBTRACT NORr'1ALIZED (extended) SXR RR C SP EU EO lS 37 9-14 
SUBTRACT NORt'1A L IZED (long) SDR RR C SP EU EO lS 2B 9-14 
SUBTRACT NORrlALIZED (long) SD RX C A SP EU EO lS 6B 9-14 

SUBTRACT NORMALIZED (short) SER RR C SP EU EO LS 3D 9-14 
SUBTRACT NORMALIZED (short) SE RX C A SP EU EO LS 7B 9-14 
SUBTRACT UNNORMAlIZED (long) S~JR RR C SP EO LS 2F 9-15 
SUBTRACT UNtIOR~1A l IZED (long) SL.J RX C A SP EO LS 6F 9-15 
SUBTRACT UNNORMALIZED (short) SUR RR C SP EO LS 3F 9-15 

SUBTRACT UHHORMAlIZED (short) SU RX C A SP EO LS 7F 9-15 
SUPERVISOR CALL SVC RR ¢ OA 7-41 
TEST AND SET TS S C A $ ST 93 7-41 
TEST BLOCK TB RRE C P Al II $ GO R B22C 10-45 
TEST PENDING INTERRUPTION TP1 S C P Al SP ¢ ST 8236 14-15 

TEST PROTECTION TPROT SSE C P Al E50l 10-47 
TEST SUB CHANNEL TSCH S C P A SP OP ¢ GS ST B235 14-16 
TEST UNDER MASK TM S1 C A 91 7-42 
TRACE TRACE RS P A SP T ¢ 99 10-48 
TRANSLATE TR SS A ST DC 7-42 

TRANSLATE AND TEST TRT SS C A GM R DD 7-43 
UNPACK UUPK SS A ST F3 7-44 
ZERO AND ADD ZAP SS C A D DF ST F8 8-11 

Instructions Arranged by Name (Part 4 of 4) 

Appendix B. Lists of Instructions B-5 



Mne- Op Page 
monic Name Characted st i cs Code No. 

DIAGNOSE DM P Dr1 83 10-4 
A ADD RX C A IF R 5A 7-8 
AD ADD NORMALIZED (long) RX C A SP EU EO LS 6A 9-6 
ADR ADD NOR~lAL IZED (long) RR C SP EU EO LS 2A 9-6 
AE ADD NORMALIZED (short) RX C A SP EU EO LS 7A 9-6 

AER ADD NORMALIZED (short) RR C SP EU EO LS 3A 9-6 
AH ADD HALFWORD RX C A IF R 4A 7-8 
AL ADD LOGICAL RX C A R 5E 7-9 
ALR ADD LOGICAL RR C R IE 7-9 
AP ADD DECH1AL SS C A D DF ST FA 8-5 

AR ADD RR C IF R lA 7-8 
AU ADD UNUORMALIZED (short) RX C A SP EO LS 7E 9-7 
AUR ADD UNNORMALIZED (short) RR C SP EO LS 3E 9-7 
AW ADD UUUORMALIZED (long) RX C A SP EO LS 6E 9-7 
AWR ADD UNNORr1A L IZED (long) RR C SP EO LS 2E 9-7 

AXR ADD NORMALIZED (extended) RR C SP EU EO LS 36 9-6 
BAL BRANCH AND LI NK RX B R 45 7-10 
BALR BRANCH ANO LINK RR T B R 05 7-10 
BAS BRANCH AND SAVE RX B R 40 7-10 
BASR BRANCH AND SAVE RR T B R 00 7-10 

BASSM BRANCH AND SAVE AND SET MODE RR T B R OC 7-11 
BC BRANCH ON CONDITION RX B 47 7-12 
nCR BRANCH ON CONDITION RR 9 1 B 07 7-12 
BCT BRANCH ON COUNT RX B R (.6 7-13 
BCTR llRANCH ON COUNT RR B R 06 7-13 

BSM BRANCH AND SET MODE RR B R OB 7-11 
BXH BRANCH OU INDEX HIGH RS B R 86 7-13 
BXLE BRANCH ON INDEX LOW OR EQUAL RS B R 87 7-13 
C COf'lPARE RX C A 59 7-14 
CD CO~lPARE (long) RX C A SP 69 9-8 

CDR Cor'lPARE (long) RR C SP 29 9-8 
CDS COMPARE DOUBLE AND SWAP RS C A SP $ R ST BB 7-14 
CE CotlPARE (short) RX C A SP 79 9-8 
CER COMPARE (short) RR C SP 39 9-8 
CH COtlPARE HALFWORD RX C A 49 7-16 

CL Cor1PARE LOGICAL RX C A 55 7-16 
CLC COtlPARE LOGICAL (character) SS C A D5 7-16 
CLCL CONPARE LOGICAL LONG RR C A SP II R OF 7-17 
CLI COtrlPARE LOGICAL (immediate) SI C A 95 7-16 
CLM CONPARE LOGICAL CHARACTERS UNDER MASK RS C A BO 7-17 

CLR COMPARE LOGICAL RR C 15 7-16 
CP CmlPARE DECIMAL 5S C A D F9 8-5 
CR Cot1PARE RR C 19 7-14 
CS COr·1PARE AND SWAP RS C A SP $ R ST BA 7-14 
CSCH CLEAR SUBCHANNEL S C P OP 9 GS B230 14-3 

CVB CONVERT TO BINARY RX A D IK R 4F 7-19 
CVD CONVERT TO DECIMAL RX A ST 4E 7-20 
D DIVIDE RX A 5P IK R 50 7-20 
DD DIVIDE (long) RX A 5P EU EO FK 60 9-8 
DDR DIVIDE (long) RR SP EU EO FK 20 9-8 

DE DIVIDE (short) RX A SP EU EO FK 70 9-8 
DER DIV'IDE (short) RR SP EU EO FK 30 9-8 
DP DIVIDE DECIMAL SS A 5P D DK ST FO 8-5 
DR DIVIDE RR SP IK R 10 7-20 
DXR DIVIDE (extended) RRE SP EU EO FK B220 9-8 

Instructions Arranged by Mnemonic (Part 1 of 4) 

8-6 370-XA Principles of Operation 



Mne- Op Page 
monic Name Characteristics Code No. 

ED EDIT SS C A D ST DE 8-6 
EDMK EDIT AND MARK SS C A D Gl R ST DF 8-9 
EPAR EXTRACT PRIMARY ASH RRE Q SO R B226 10-5 
ESAR EXTRACT SECONDARY ASN RRE Q SO R B227 10-5 
EX EXECUTE RX AI SP EX 44 7-22 

HDR HALVE (long) RR SP EU 24 9-10 
HER HALVE (short) RR SP EU 34 9-10 
HSCH HALT SUBCHAHNEL S C P OP 9 GS B231 14-4 
lAC INSERT ADDRESS SPACE CONTROL RRE C Q SO R B224 10-6 
IC INSERT CHARACTER RX A R 43 7-23 

ICM INSERT CHARACTERS UNDER MASK RS C A R BF 7-23 
IPK INSERT PSW KEY S Q G2 R B20B 10-7 
IPM INSERT PROGRAM MASK RRE R B222 7-23 
IPTE INVALIDATE PAGE TABLE ENTRY RRE P Al $ B221 10-8 
ISKE INSERT STORAGE KEY EXTENDED RRE P B229 10-7 

IVSK INSERT VIRTUAL STORAGE KEY RRE Q Al SO R B223 10-7 
L LOAD RX A R 58 7-24 
LA LOAD ADDRESS RX R 41 7-24 
LASP LOAD ADDRESS SPACE PARAMETERS SSE C P AS SP SO E500 10-10 
LCDR LOAD COMPLEMENT (long) RR C SP 23 9-11 

LCER LOAD COf1PL EMEHT (short) RR C SP 33 9-11 
LCR LOAD COMPLEMENT RR C IF R 13 7-24 
LCTL LOAD CONTROL RS P A SP 87 10-17 
LD LOAD (long) RX A SP 68 9-10 
LDR LOAD (long) RR SP 28 9-10 

LE LOAD (short) RX A SP 78 9-10 
LER LOAD (short) RR SP 38 9-10 
LH LOAD HALFWORD RX A R 48 7-25 
LM LOAD MULTIPLE RS A R 98 7-25 
LNDR LOAD NEGATIVE (long) RR C SP 21 9-11 

LNER LOAD NEGATIVE (short) RR C SP 31 9-11 
LNR LOAD NEGATIVE RR C R 11 7-25 
LPDR LOAD POSITIVE (long) RR C SP 20 9-12 
LPER LOAD POSITIVE (short) RR C SP 30 9-12 
LPR LOAD POSITIVE RR C IF R 10 7-26 

LPSW LOAD PSW S L P A SP 9 82 10-17 
LR LOAD RR R 18 7-24 
LRA LOAD REAL ADDRESS RX C P Al R B1 10-18 
LRDR LOAD ROUNDED (extended to long) RR SP EO 25 9-12 
LRER LOAD ROUNDED (long to short) RR SP EO 35 9-12 

LTDR LOAD AND TEST (long) RR C SP 22 9-11 
L TER LOAD AND TEST (short) RR C SP 32 9-11 
LTR LOAD AND TEST RR C R 12 7-24 
M r1UL TIPL Y RX A SP R 5C 7-32 
MC MONITOR CALL 51 5P MO AF 7-26 

MD MULTIPLY (long) RX A SP EU EO 6C 9-13 
MDR MULTIPLY (long) RR 5P EU EO 2C 9-13 
ME MULTIPLY (short to long) RX A 5P EU EO 7C 9-13 
MER MULTIPLY (short to long) RR SP EU EO 3C 9-13 
MH MULTIPLY HALFWORD RX A R 4C 7-32 

MP r1UL TIPL Y DECIMAL SS A SP D ST FC 8-10 
MR MULTIPLY RR SP R 1C 7-32 
MSCH MODIFY SUBCHANNEL S C P A SP OP 9 GS B232 14-6 
rowc MOVE (character) SS A ST D2 7-27 
MVCK MOVE WITH KEY SS C Q A ST D9 10-20 

Instructions Arranged by Mnemonic (Part 2 of 4) 

Appendix B. Lists of Instructions B-7 



Mne- Op Page 
monic Name Characteristics Code No. 

MVCL MOVE LONG RR C A SP II R ST OE 7-27 
MVCP NOVE TO PRIMARY SS C Q Al SO ¢ ST DA 10-19 
MVCS MOVE TO SECONDARY' SS C Q Al SO ¢ ST DB 10-19 
MVI MOVE (immediate) SI A ST 92 7-27 
MVN MOVE NUMERICS 55 A 5T Dl 7-30 

MVO MOVE WITH OFFSET SS A ST Fl 7-31 
MVZ MOVE ZONES SS A S1 D3 7-31 
MXD MULTIPLY (long to extended) RX A SP EU EO 67 9-13 
MXDR MULTIPLY (long to extended) RR SP EU EO 27 9-13 
~1XR MULTIPLY (extended) RR SP EU EO 26 9-13 

N AND RX C A R 54 7-9 
NC AND (character) SS C A ST D4 7-9 
NI AND (immediate) SI C A ST 94 7-9 
NR AND RR C R 14 7-9 
0 OR RX C A R 56 7-33 

OC OR (character) SS C A ST D6 7-33 
01 OR (immediate) SI C A ST 96 7-33 
OR OR RR C R 16 7-33 
PACK PACK SS A ST F2 7-33 
PC PROGRAM CALL S Q AT Zl T ¢ GM B R B218 10-22 

PT PROGRAM TRANSFER RRE Q AT SP Z2 T ¢ B B228 10-28 
PTLB PURGE TLB S P $ B20D 10-33 
RCHP RESET CHANNEL PATH S C P OP ¢ Gl B23B 14-6 
RRBE RESET REFERENCE BIT EXTENDED RRE C P B22A 10-33 
RSCH RESUME SUBCHANNEL S C P OP ¢ GS B238 14-8 

I 

S SUBTRACT RX C A IF R 5B 7-40 
SAC SET ADDRESS SPACE CONTROL S SP SO ¢ B219 10-33 
SAL SET ADDRESS LIMIT S P OP ¢ Gl B237 14-9 
SCHM SET CHANNEL NONITOR S P OP ¢ GM B23C 14-10 
SCK SET CLOCK S C P A SP B204 10-34 

SCKC SET CLOCK COMPARATOR S P A SP B206 10-35 
SD SUBTRACT NORMALIZED (long) RX C A SP EU EO LS 6B 9-14 
SDR SUBTRACT NORMALIZED (long) RR C SP EU EO LS 2B 9-14 
SE SUBTRACT NORMALIZED (short) RX C A SP EU EO LS 7B 9-14 
SER SUBTRACT NOR~1ALIZED (short) RR C SP EU EO LS 3B 9-14 

SH SUBTRACT HALFWORD RX C A IF R 4B 7-40 
SIGP SIGNAL PROCESSOR RS C P $ R AE 10-41 
SL SUBTRACT LOGICAL RX C A R SF 7-40 
SLA SHIFT LEFT SINGLE RS C IF R 8B 7-35 
SLDA SHIFT LEFT DOUBLE RS C SP IF R 8F 7-34 

SLDL SHIFT LEFT DOUBLE LOGICAL RS SP R 8D 7-35 
SLL SHIFT LEFT SINGLE LOGICAL RS R 89 7-36 
SLR SUBTRACT LOGICAL RR C R IF 7-40 
SP SUBTRACT DECIMAL SS C A D DF ST FB 8-11 
SPKA SET PSW KEY FROM ADDRESS S Q B20A 10-36 

SPM SET PROGRAM ~1ASK RR L 04 7-34 
SPT SET CPU TIMER S P A SP B208 10-35 
SPX SET PREFIX S P A SP $ B210 10-36 
SR SUBTRACT RR C IF R IB 7-40 
SRA SHIFT RIGHT SINGLE RS C R 8A 7-37 

SRDA SHIFT RIGHT DOUBLE RS C SP R 8E 7-36 
SRDL SHIFT RIGHT DOUBLE LOGICAL RS SP R 8e 7-36 
SRL SHIFT RIGHT SINGLE LOGICAL RS R 88 7-37 
SRP SHIFT AND ROUND DECIMAL SS C A D DF ST FO 8-10 
SSAR SET SECONDARY ASN RRE AT Z3 T ¢ B225 10-37 

Instructions Arranged by Mnemonic (Part 3 of 4) 

S-8 370-XA Principles of Operation 



Mne- Op Page 
monic Name Characteristics Code No. 

SSCH START SUB CHANNEL S C P A SP OP ¢ GS B233 14-11 
SSKE SET STORAGE KEY EXTENDED RRE P ¢ B22B 10-40 
SSM SET SYSTEM MASK S P A SP SO 80 10-40 
ST STORE RX A ST 50 7-37 
STAP STORE CPU ADDRESS S P A SP ST 8212 10-43 

STC STORE CHARACTER RX A ST 42 7-38 
STCK STORE CLOCK S C A $ ST B205 7-38 
STCKC STORE CLOCK COMPARATOR S P A SP ST B207 10-42 
S TCt1 STORE CHARACTERS UNDER MASK RS A ST BE 7-38 
STCPS STORE CHANI~EL PATH STATUS S P A SP ¢ ST B23A 14-13 

S TCRL.J STORE CHANNEL REPORT WORD S C P A SP ¢ ST B239 14-13 
STCTL STORE CONTROL RS P A SP ST B6 10-42 
STD STORE (long) RX A SP ST 60 9-14 
STE STORE (short) RX A SP ST 70 9-14 
STH STORE HALFWORD RX A ST 40 7-39 

STIDP STORE CPU ID S P A SP ST B202 10-43 
STM STORE MULTIPLE RS A ST 90 7-39 
STNSM STORE THEN AND SYSTEM MASK SI P A ST AC 10-44 
STOSM STORE THEN OR SYSTH1 MASK SI P A SP ST AD 10-44 
STPT STORE CPU TIMER S P A SP ST B209 10-43 

STPX STORE PREFIX S P A SP ST B211 10-44 
STSCH STORE SUBCHANNEL S C P A SP OP ¢ GS ST B234 14-14 
SU SUBTRACT UNNORMALIZED (short) RX C A SP EO LS 7F 9-15 
SUR SUBTRACT UNNORMALIZED (short) RR C SP EO LS 3F 9-15 
SVC SUPERVISOR CALL RR ¢ OA 7-41 

SW SUBTRACT UNNORMALIZED (long) RX C A SP EO LS 6F 9-15 
5L.JR SUBTRACT UNNORMALIZED (long) RR C SP EO LS 2F 9-15 
SXR SUBTRACT NORMALIZED (extended) RR C SP EU EO LS 37 9-14 
TB TEST BLOCK RRE C P Al II $ GO R B22C 10-45 
TM TEST UNDER MASK SI C A 91 7-42 

TPI TEST PENDING INTERRUPTION S C P Al SP ¢ ST B236 14-15 
TPROT TEST PROTECTION SSE C P Al E501 10-47 
TR TRANSLATE 55 A ST DC 7-42 
TRACE TRACE R5 P A SP T ¢ 99 10-48 
TRT TRANSLATE AND TEST SS C A GM R DD 7-43 

TS TEST AND SET S C A $ ST 93 7-41 
TSCH TEST SUBCHANNEL S C P A SP OP ¢ GS ST 6235 14-16 
UNPK UNPACK 5S A ST F3 7-44 
X EXCLUSIVE OR RX C A R 57 7-21 
XC EXCLUSIVE OR (character) S5 C A ST D7 7-21 

XI EXCLUSIVE OR (immediate) SI C A ST 97 7-21 
XR EXCLUSIVE OR RR C R 17 7-21 
ZAP ZERO AND ADD S5 C A D DF ST F8 8-11 

Instructions Arranged by Mnemonic (Part 4 of 4) 

Appendix B. lists of Instructions 8-9 



Op Mne- Page 
Code Name monic Characteristics No. 

04 SET PROGRAM MASK SPt'l RR L 7-34 
05 BRANCH AND LINK BALR RR T B R 7-10 
06 BRANCH ON CoUtn BCTR RR B R 7-13 
07 BRANCH ON CONDITION BCR RR 9 1 B 7-12 
OA SUPERVISOR CALL SVC RR 9 7-41 

OB BRANCH AND SET MODE BSM RR B R 7-11 
OC BRANCH AND SAVE AND SET MODE BASSM RR T B R 7-11 
OD BRANCH AND SAVE BASR RR T B R 7-10 
OE ~1OVE LONG ~1VCL RR C A SP II R ST 7-27 
OF CO~'PARE LOGICAL LONG CLCL RR C A SP II R 7-17 

10 LOAD POSITIVE LPR RR C IF R 7-26 
11 LOAD NEGATIVE LNR RR C R 7-25 
12 LOAD AND TEST LTR RR C R 7-24 
13 LOAD COMPL Er'lENT LCR RR C IF R 7-24 
14 AND NR RR C R 7-9 

15 COt'1PARE LOGICAL CLR RR C 7-16 
16 OR OR RR C R 7-33 
17 EXCLUSIVE OR XR RR C R 7-21 
18 LOAD LR RR R 7-24 
19 COMPARE CR RR C 7-14 

lA ADD AR RR C IF R 7-8 
IB SUBTRACT SR RR C IF R 7-40 
lC MULTIPLY t1R RR SP R 7-32 
ID DIVIDE DR RR SP IK R 7-20 
IE ADD LOGICAL ALR RR C R 7-9 

IF SUBTRACT LOGICAL SLR RR C R 7-40 
20 LOAD POSITIVE (long) LPDR RR C SP 9-12 
21 LOAD NEGATIVE (long) UWR RR C SP 9-11 
22 LOAD AND TEST (long) LTDR RR C SP 9-11 
23 LOAD COMPLEMENT (long) LCDR RR C SP 9-11 

24 HALVE (long) HDR RR SP EU 9-10 
25 LOAD ROUNDED (extended to long) LRDR RR SP EO 9-12 
26 MULTIPLY (extended) t1XR RR SP EU EO 9-13 
27 MULTIPLY (long to extended) t'lXDR RR SP EU EO 9-13 
28 LOAD (long) LDR RR SP 9-10 

29 COMPARE (long) CDR RR C SP 9-8 
2A ADD NORMALIZED (long) ADR RR C SP EU EO LS 9-6 
2B SUBTRACT NORMALIZED (long) SDR RR C SP EU EO LS 9-14 
2C MULTIPLY (long) r'toR RR SP EU EO 9-13 
20 DIVIDE (long) DDR RR SP EU EO FK 9-8 

2E ADD UNNORMALIZED (long) At,JR RR C SP EO LS 9-7 
2F SUB TRACT UNHORt'lAL IZED (long) SL~R RR C SP EO LS 9-15 
30 LOAD POSITIVE (short) LPER RR C SP 9-12 
31 LOAD NEGATIVE (short) LNER RR C SP 9-11 
32 LOAD AND TEST (short) LTER RR C SP 9-11 

33 LOAD COMPLEMENT (short) LCER RR C SP 9-11 
34 HALVE (short) HER RR SP EU 9-10 
35 LOAD ROUNDED (long to short) LRER RR SP EO 9-12 
36 ADD ~ORMALIZED (extended) AXR RR C SP EU EO LS 9-6 
37 SUBTRACT NORnALIZED (extended) SXR RR C SP EU EO LS 9-14 

38 LOAD (short) LER RR SP 9-10 
39 COt'lPARE (short) CER RR C SP 9-8 
3A ADD NORMALIZED (short) AER RR C SP EU EO LS 9-6 
3B SUBTRACT NORMALIZED (short) SER RR C SP EU EO LS 9-14 
3C MULTIPLY (short to long) MER RR SP EU EO 9-13 

Instructions Arranged by Operation Code (Part 1 of 4) 

B-10 370-XA Principles of Operation 



Op Mne- Page 
Code Name mon;c Character; st; cs No. 

3D DIVIDE (short) DER RR SP EU EO FK 9-8 
3E ADD UNNORMALIZED (short) AUR RR C SP EO LS 9-7 
3F SUBTRACT UNIIORf1ALIZED (short) SUR RR C SP EO LS 9-15 
40 STORE HALFWORD STH RX A ST 7-39 
41 LOAD ADDRESS LA RX R 7-24 

42 STORE CHARACTER STC RX A ST 7-38 
43 INSERT CHARACTER IC RX A R 7-23 
44 EXECUTE EX RX AI SP EX 7-22 
45 BRANCH AND LINK BAL RX B R 7-10 
46 BRANCH ON COUNT BCT RX B R 7-13 

47 BRANCH ON CONDITION BC RX B 7-12 
48 LOAD HALFWORD LH RX A R 7-25 
{.9 COMPARE HALFWORD CH RX C A 7-16 
4A ADD HALHJORD AH RX C A IF R 7-8 
4B SUBTRACT HALFWORD SH RX C A IF R 7-40 

4C MULTIPLY HALFWORD MH RX A R 7-32 
4D BRANCH AND SAVE BAS RX B R 7-10 
4E CONVERT TO DECIMAL CVD RX A ST 7-20 
4F CONVERT TO BINARY CVB RX A D IK R 7-19 
50 STORE ST RX A ST 7-37 

54 AND N RX C A R 7-9 
55 CO~lPARE LOGICAL CL RX C A 7-16 
56 OR 0 RX C A R 7-33 
57 EXCLUSIVE OR X RX C A R 7-21 
58 LOAD L RX A R 7-24 

59 COt1PARE C RX C A 7-14 
SA ADD A RX C A IF R 7-8 
5B SUBTRACT S RX C A IF R 7-40 
5C MULTIPLY t1 RX A SP R 7-32 
5D DIVIDE D RX A SP IK R 7-20 

5E ADD LOGICAL AL RX C A R 7-9 
5F SUBTRACT LOGICAL SL RX C A R 7-40 
60 STORE (long) SrD RX A SP ST 9-14 
67 ~1UL TIPLY (long to extended) f1XD RX A SP EU EO 9-13 
68 LOAD (long) LD RX A SP 9-10 

69 CmlPARE (long) CD RX C A SP 9-8 
6A ADD NORMALIZED (long) AD RX C A SP EU EO LS 9-6 
6B SUBTRACT NORMALIZED (long) SD RX C A SP EU EO LS 9-14 
6C ~lUL TIPL Y (long) MD RX A SP EU EO 9-13 
6D DIVIDE (long) DO RX A SP EU EO FK 9-8 

6E ADD UNNORMALIZED (long) AW RX C A SP EO LS 9-7 
6F SUBTRACT UNNORMALIZED (long) SW RX C A SP EO LS 9-15 
70 STORE (short) STE RX A SP ST 9-14 
78 LOAD (short) LE RX A SP 9-10 
79 COMPARE (short) CE RX C A SP 9-8 

7A ADD NORMALIZED (short) AE RX C A SP EU EO lS 9-6 
7B SUBTRACT NORMALIZED (short) SE RX C A SP EU EO LS 9-14 
7C MULTIPLY (short to long) ME RX A SP EU EO 9-13 
7D DIVIDE (short) DE RX A SP EU EO FK 9-8 
7E ADD UNNORMALIZED (short) AU RX C A SP EO lS 9-7 

7F SUBTRACT UNNORMAlIZED (short) SU RX C A SP EO lS 9-15 
80 SET SYSTEM ~lASK SSM S P A SP SO 10-40 
82 LOAD PSW lPSW S l P A SP ~ 10-17 
83 DIAGNOSE DM P DM 10-4 
86 BRANCH ON INDEX HIGH BXH RS B R 7-13 

Instructions Arranged by Operation Code (Part 2 of 4) 

Appendix B. lists of Instructions B-11 



Op Mne- Page 
Code Name monic Characteristics No. 

87 BRANCH ON INDEX LOW OR EQUAL BXLE RS B R 7-13 
88 SHIFT RIGHT SINGLE LOGICAL SRL RS R 7-37 
89 SHIFT LEFT SINGLE LOGICAL SLL RS R 7-36 
8A SHIFT RIGHT SINGLE SRA RS C R 7-37 
8B SHIFT LEFT SINGLE SLA RS C IF R 7-35 

8C SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 7-36 
8D SHIFT LEFT DOUllLE LOGICAL SLDL RS SP R 7-35 
8E SHIFT RIGHT DOUBLE SRDA RS C SP R 7-36 
8F SHIFT LEFT DOUBLE SLDA RS C SP IF R 7-34 
90 STORE t1ULTIPLE STM RS A ST 7-39 

91 TEST UNDER MASK H1 SI C A 7-42 
92 MOVE (immediate) MVI SI A ST 7-27 
93 TEST AND SET TS S C A $ ST 7-41 
94 AND (immediate) HI 51 C A ST 7-9 
95 COMPARE LOGICAL (immediate) CLI SI C A 7-16 

96 OR (immediate) 01 SI C A ST 7-33 
97 EXCLUSIVE OR (immediate) XI SI C A ST 7-21 
98 LOAD MULTIPLE LM RS A R 7-25 
99 TRACE TRACE RS P A SP T ¢ 10-48 
AC STORE THEN AND SYSTEM MASK S TNS~1 SI P A ST 10-44 

AD STORE THEN OR SYSTEM MASK STOSM SI P A SP ST 10-44 
AE SIGNAL PROCESSOR SIGP RS C P $ R 10-41 
AF ~10NITOR CALL ~1C SI SP MO 7-26 
B1 LOAD REAL ADDRESS LRA RX C P Al R 10-18 
B202 STORE CPU ID STIDP S P A SP ST 10-43 

B204 SET CLOCK SCK S C P A SP 10-34 
B205 STORE CLOCK STCK S C A $ ST 7-38 
B206 SET CLOCK COMPARATOR SCKC S P A SP 10-35 
B207 STORE CLOCK COMPARATOR STCKC S P A SP ST 10-42 
B208 SET CPU TH1ER SPT S P A SP 10-35 

B209 STORE CPU TIMER STPT S P A SP ST 10-43 
B20A SET PSW KEY FROM ADDRESS SPKA S Q 10-36 
B20B INSERT PS~J KEY IPK S Q G2 R 10-7 
B20D PURGE TLB PTLS S P $ 10-33 
8210 SET PREFIX SPX S P A SP $ 10-36 

B211 STORE PREFIX STPX S P A SP ST 10-44 
B212 STORE CPU ADDRESS STAP S P A SP ST 10-43 
B218 PROGRM1 CALL PC S Q AT Zl T ¢ GM B R 10-22 
B219 SET ADDRESS SPACE CONTROL SAC S SP SO ¢ 10-33 
B221 INVALIDATE PAGE TABLE ENTRY IPTE RRE P Al $ 10-8 

B222 INSERT PROGRAM MASK IP~l RRE R 7-23 
B223 INSERT VIRTUAL STORAGE KEY IVSK RRE Q Al SO R 10-7 
B224 INSERT ADDRESS SPACE CONTROL lAC RRE C Q SO R 10-6 
B225 SET SECONDARY ASN SSAR RRE AT Z3 T ¢ 10-37 
B226 EXTRACT PRIMARY ASN EPAR RRE Q SO R 10-5 

B227 EXTRACT SECONDARY ASH ESAR RRE Q SO R 10-5 
B228 PROGRAM TRANSFER PT RRE Q AT SP Z2 T ¢ B 10-28 
B229 INSERT STORAGE KEY EXTENDED ISKE RRE P 10-7 
B22A RESET REFERENCE BIT EXTENDED RRBE RRE C P 10-33 
B22B SET STORAGE KEY EXTENDED SSKE RRE P ¢ 10-40 

B22C TEST BLOCK TB RRE C P Al II $ GO R 10-45 
B22D DIVIDE (extended) DXR RRE SP EU EO FK 9-8 
8230 CLEAR SUBCHAHHEL CSCH S C P OP ¢ GS 14-3 
B231 HALT SUBCHAHNEL HSCH S C P OP ¢ GS 14-4 
B232 MODIFY SUBCHANNEl ~lSCH S C P A SP OP ¢ GS 14-6 

Instructions Arranged by Operation Code (Part 3 of 4) 

B-12 370-XA Principles of Operation 



Op Mne- Page 
Code Name monic Characteristics No. 

B233 START SUBCHANNEL SSCH S C P A SP OP ¢ GS 14-11 
B234 STORE SUBCHANNEL STSCH S C P A SP OP ¢ GS ST 14-14 
B235 TEST SUBCHANNEL TSCH S C P A SP OP ¢ GS ST 14-16 
B236 TEST PENDING INTERRUPTION TPI S C P Al SP ¢ ST 14-15 
B237 SET ADDRESS LIMIT SAL S P OP ¢ G1 14-9 

B238 RESUME SUBCHANNEL RSCH S C P OP ¢ GS 14-8 
B239 STORE CHANNEL REPORT WORD STCRW S C P A SP ¢ ST 14-13 
B23A STORE CHANNEL PATH STATUS STCPS S P A SP ¢ ST 14-13 
B23B RESET CHANNEL PATH RCHP S C P OP ¢ Gl 14-6 
B23C SET CHANNEL MONITOR SCHM S P OP ¢ GM 14-10 

B6 STORE CONTROL STCTL RS P A SP ST 10-42 
B7 LOAD CONTROL LCTL RS P A SP 10-17 
BA COMPARE AND SWAP CS RS C A SP $ R ST 7-14 
BB COMPARE DOUBLE AND SWAP CDS RS C A SP $ R ST 7-14 
BD COMPARE LOGICAL CHARACTERS UNDER MASK CLM RS C A 7-17 

BE STORE CHARACTERS UNDER MASK STCM RS A ST 7-38 
BF INSERT CHARACTERS UNDER MASK IeM RS C A R 7-23 
01 l'IOVE NUl'1ERIC5 f'IVN 5S A ST 7-30 
D2 MOVE (character> rwc SS A ST 7-27 
D3 MOVE ZONES MVZ SS A ST 7-31 

04 AND (character) NC SS C A ST 7-9 
D5 COMPARE LOGICAL (character> CLC SS C A 7-16 
D6 OR (character) OC SS C A ST 7-33 
D7 EXCLUSIVE OR (character> XC SS C A ST 7-21 
D9 MOVE WITH KEY MVCK SS C Q A ST 10-20 

DA MOVE TO PRIMARY MVCP SS C Q Al SO ~ ST 10-19 
DB MOVE TO SECONDARY MVC5 55 C Q Al 50 ~ ST 10-19 
DC TRANSLATE TR SS A ST 7-42 
DD TRANSLATE AND TEST TRT SS C A GM R 7-43 
DE EDIT ED S5 C A D ST 8-6 

DF EDIT AND MARK EDMK SS C A D G1 R ST 8-9 
E500 LOAD ADDRESS SPACE PARAMETERS LASP SSE C P AS SP SO 10-10 
E501 TEST PROTECTION TPROT SSE C P Al 10-47 
FO SHIFT AND ROUND DECIMAL SRP SS C A D DF ST 8-10 
Fl MOVE WITH OFFSET MVO SS A ST 7-31 

F2 PACK PACK SS A ST 7-33 
F3 UNPACK UNPK SS A ST 7-44 
F8 ZERO AND ADD ZAP SS C A D DF ST 8-11 
F9 COMPARE DECIMAL CP SS C A D 8-5 
FA ADD DECIMAL AP 55 C A D DF 5T 8-5 

FB SUBTRACT DECIMAL SP SS C A 0 DF ST 8-11 
FC MULTIPLY DECIMAL MP S5 A SP D ST 8-10 
FD DIVIDE DECIMAL DP SS A 5P D DK 5T 8-5 

Instructions Arranged by Operation Code (Part 4 of 4) 

Appendix B. lists of Instructions B-13 





This appendix lists the condition-code 
setting for all instructions in the 
370-XA architecture which set the condi
tion code. In addition to those 
instructions listed which set the condi
tion code, the condition code may be 
changed by DIAGNOSE and the target of 

Instruction 

ADD, ADD HALFWORD 
ADD DECIMAL 
ADD LOGICAL 

ADD NORMALIZED 
ADD UNNORMALIZED 

AND 
CLEAR SUB CHANNEL 

COMPARE (gen, fl pt) 
COMPARE HALFWORD 
COMPARE AND SWAP 

COt-1PARE DECIMAL 
COMPARE DOUBLE AND SWAP 
COt-WARE LOGICAL 
COMPARE LOGICAL CHARACTERS 

UNDER MASK 
COMPARE LOGICAL LONG 

EDIT, EDIT AND MARK 
EXCLUSIVE OR 
HALT SUBCHANNEL 

zero 
zero 
zero, 

o 

no carry 
zero 
zero 

zero 
function 

accepted 
equal 
equal 
equal 

equal 
equal 
equal 
equal 

equal 

zero 
zero 
function 

accepted 

INSERT ADDRESS SPACE CONTROL zero 
INSERT CHARACTERS UNDER MASK all zeros 

LOAD ADDRESS SPACE 
PARAMETERS 

LOAD AND TEST (gen, fl pt) 
LOAD COMPLEMENT (gen) 
LOAD COMPLEMENT (fl pt) 
LOAD NEGATIVE (gen, fl pt) 

LOAD POSITIVE (gen) 
LOAD POSITIVE (fl pt) 
LOAD REAL ADDRESS 

MODIFY SUBCHANNEL 

MOVE LONG 

parameters 
loaded 

zero 
zero 
zero 
zero 

zero 
zero 
translation 

available 
function 

executed 

length equal 

APPENDIX ~ CONDITION-CODE SETTINGS 

EXECUTE. The condition code is loaded 
by LOAD PSW, by SET PROGRAM MASK, and by 
an interruption. The condition code is 
set to zero by initial CPU reset and is 
loaded by the successful conclusion of 
the initial-program-Ioading sequence. 

COl'ldition Code 

1 

< zero 
< zero 
not zero, 

no carry 
< zero 
< zero 

not zero 

low 
low 
not equal 

low 
not equal 
low 
low 

low 

< zero 
not zero 
status pending, 

function not 
executed 

one 
first bit one 

primary ASN 
not available 

< zero 
< zero 
< zero 
< zero 

ST entry 
invalid 

status pending, 
function not 
executed 

length low 

> zero 
> zero 
zero, 

carry 
> zero 
> zero 

--
--
high 
high 
--
high 
--
high 
high 

high 

> zero 
--
busy 

2 3 

overflow 
overflow 
not zero, 

carry 

unsuccessful 

unsJccessful 

first bit zero --

secondary ASN 
not available 
or not 
authorized 

> zero 
> zero 
> zero 

> zero 
> zero 
PT entry 

i nval1 d 
busy 

length high 

space-switch 
event 

overflow 

overflow 

length 
violation 

unsuccessful 

destr overlap 

Summary of·Condition-Code Settings (Part 1 of 2) 

Appendix C. Condition-Code Settings C-l 



Instruction 

MOVE TO PRIMARY~ MOVE TO 
SECONDARY 

MOVE WITH KEY 
OR 
RESET CHANNEL PATH 

RESET REFERENCE BIT 
EXTENDED 

RESUME SUBCHAHNEL 

SET CLOCK 
SHIFT AND ROUND DECIMAL 
SHIFT LEFT (DOUBLE/SINGLE) 
SHIFT RIGHT (DOUBLE/SINGLE) 

SIGNAL PROCESSOR 
START SUBCHANNEL 

STORE CHANNEL REPORT WORD 
STORE CLOCK 
STORE SUB CHANNEL 

SUBTRACT~ SUBTRACT HAlFWORD 
SUBTRACT DECIMAL 
SUBTRACT LOGICAL 

SUBTRACT NORMALIZED 
SUBTRACT UNNORMAlIZED 

TEST AND SET 
TEST BLOCK 
TEST PENDING INTERRUPTION 

TEST PROTECTION 

TEST SUBCHANNEL 

TEST UNDER MASK 
TRANSLATE AND TEST 
ZERO AND ADD 

Explanation: 

o 
length =< 256 

length =< 256 
zero 
function 

accepted 
R bit zero~ 

C bit zero 

resume 
initiated 

set 
zero 
zero 
zero 

order accepted 
ORB accepted 

CRW stored 
set 
SCHIB stored 

zero 
zero 

zero 
zero 

left bit zero 
usable 
int code not 

stored 
can fetch, 

can store 
status pending, 

function 
executed 

all zeros 
all zeros 
zero 

> zero 
< zero 
=< 256 
> 256 
high 
low 
length 

Result is greater than zero 
Result is less than zero 
Equal to~ or less than~ 256 
Greater than 256 
First operand compares high 
First operand compares low 
Length o~ first operand 

Condition Code 

1 

not zero 

R bit zero, 
C bit one 

status pending 

secure 
< zero 
< zero 
< zero 

status stored 
status pending, 

ORB not 
accepted 

CR~J not stored 
not set 

< zero 
< zero 
not zero, 

no carry 
< zero 
< zero 

2 

busy 

R bit one, 
C bit zero 

resume not 
applicable 

> zero 
> zero 
> zero 

busy 
busy 

error 

> zero 
> zero 
zero, 

carry 
> zero 
> zero 

left bit one --
not usable --
int code stored --

can fetch, cannot fetch, 
cannot store cannot store 

not status --
pending, 
function 
executed 

mixed 
incomplete 
< zero 

complete 
> zero 

Summary of Condition-Code Sett;ngs (Part 2 of 2) 

C-2 370-XA Principles of Operation 

3 

length > 256 

length > 256 

unsuccessful 

R bit one, 
C bit one 

not operational 

not operational 
overflow 
overflow 

not operational 
unsuccessful 

not operational 
unsuccessful 

overflow 
overflow 
not zero, 

carry 

translation not 
aJailable 

un sl:ccessfu 1 

all ones 

overflow 



APPENDIX ~ COMPARISON BETWEEN SYSTEM/370 AND 370-XA MODES 

New Facilities in 370-XA Mode ••••••••••.•••••••••••.••.••• 0-1 
Bimodal Addressing ••.•••..•••••..•.••.•••.•••.••.••••••• 0-1 
31-Bit Logical Addressing ••.•••••••••.•.•.•.•••••••••••• 0-1 
31-Bit Real and Absolute Addressing .•.•••.•.••••••••••.. 0-1 
Page Protection ••..••••••.•••••.......•...•••.......•••. 0-2 
Tracing •..•....••••..•••.••.•••....••.••.••••••.•••.••.. 0-2 

Comparison of Facilities •••.•.•.•••••••.••.•..•••••.•••.•• 0-2 
Summary of Changes •.••••••..•••..••••••••.•••.•..•.••.•••• 0-4 

Changes in Instructions Provided .•..•.......•.....•.•..• 0-4 
Input/Output Compari son •••.••..•••.••.•••.•.••••••..•.•• 0-6 
Comparison of PSW Formats •••••••••.••..••••••••••••••••• 0-7 
Changes in Control-Register Assignment •••.•.•••..•.••... 0-7 
Changes in Assigned Storage Locations .•......••..••.•••. 0-9 
SIGNAL PROCESSOR Changes ..•••.•.••.••••••••••.•.•••••••. 0-9 
Machine-Check Changes ..•.••...•••.•••.••.•••••••••.••.•• 0-9 
Changes to Addressing Wraparound .••...•...•.•.....••.••. 0-10 
Changes to LOAD REAL AOORESS ....•.....•..•••.•.••.•••••• 0-10 
Changes to 31-Bit Real Operand Addresses ••...•..•.....•• 0-10 

This appendix provides (1) a list of the 
new facilities in the 370-XA mode that 
are not provided in the System/370 mode, 
(2) a description of the handling in the 
370-XA mode of the facilities available 
in the System/370 mode, and (3) a list 
of changes between the System/370 mode 
and the 370-XA mode. 

NEW FACILITIES 1M 370-XA MODE 

The following facilities are new with 
the 370-XA mode and are not provided in 
the System/370 mode. 

BIMODAL AOORESSING 

Two modes of operation are provided: a 
24-bit addressing mode, for running old 
programs, and a 31-bit addressing mode. 
The mode is controlled by bit 32 in the 
PSW, and unprivileged instructions are 
provided that examine and set the mode. 
These instructions conveniently permit 
combining old programs, which must oper
ate in the 24-bit addressing mode, and 
new programs which can take advantage of 
the 31-bit addressing mode. 

31-BIT LOGICAL AOORESSING 

The 31-bit logical addressing includes 
the ability to perform either 24-bit or 
31-bit address arithmetic for operand 
address generation and includes exten-

sions to the following addresses, which 
are always 31 bits, regardless of the 
addressing mode: 

Instruction address in PSW bits 
33-63 

PER starting address in control 
register 10 

PER ending address in control 
register 11 

Translation-exception identifica
tion stored at real locations 
144-147 

PER address stored at real loca
tions 152-155 

Monitor code stored at real loca
tions 156-159 

Entry instruction address in the 
entry-table entry 

31-BIT REAL ANO ABSOLUTE ADDRESSING 

The following fields provide the left
most part of 31-bit addresses, or the 
entire address, as appropriate, regard
less of the addressing mode. Except 
where indicated, the addresses are real. 

Prefix register (absolute) 

Primary segment-table origin* in 
control register 1 

Linkage-table origin in control 
register 5 

Appendix O. Comparison Between System/370 and 370-XA Modes D-1 



Secondary segment-table origin* in 
control register 7 

ASN-first-table origin in control 
register 14 

Page-table origin in the segment
table entry 

Page frame real address in the 
page-table entry 

ASN-second-table origin in the AFT 
entry 

Segment-table origin*, linkage
table origin, and authority-table 
origin in the AST entry 

Entry-table origin in the linkage
table entry 

Address in format-1 CCWs (absolute) 

* Unpredictable whether address is 
real or absolute 

PAGE PROTECTION 

A page-protection bit is provided in the 
page-table entry. Page protection can 
be used in a manner similar to the 
System/370-mode segment protection, 
which is not offered in the 370-XA mode. 

TRACING 

Included are a trace-table origin, 
branch trace control, ASN trace control, 

D-2 370-XA Principles of Operation 

and explicit trace-control bits in 
control register 12. Also included are 
the instruction TRACE and a new 
program-interruption condition called 
trace-table exception. When branch 
tracing is on, a trace entry is made for 
the successful execution of the follow
ing instructions: 

BRANCH AND LINK (BALR) when the R2 
field is nonzero 

BRANCH AND SAVE (BASR) when the R2 
field is nonzero 

BRANCH AND SAVE AND SET MODE 
(BASSM) when the R2 field is nonze
ro 

When ASN tracing is on, an entry is made 
in the trace table for each execution of 
the following instructions: 

PROGRAM CALL 
PROGRAM TRANSFER 
SET SECONDARY ASN 

When explicit tracing is 
of TRACE causes a trace 
made. 

COMPARISON OF FACILITIES 

on, execution 
entry to be 

The figure "Availability of System/370 
Facilities in 370-XA Mode" shows the 
facilities offered in System/370 and 
whether or not the facility is provided 
in the 370-XA mode. 



System/370 Facility 

Commercial instruction set 
Block-multiplexer channels 
Branch and save 
Byte-multiplexer channels 
Channel indirect data 

addressing 

Channel-set switching 
Clear I/O 
Command retry 
Conditional swapping 
CPU timer and clock comparator 

Direct control 
Dual address space 
Extended 
Extended-precision floating 

point 
Extended real addressing 

External signals 
Fast release 
Floating point 
Halt device 
I/O extended logout 

limited channel logout 
~1ove inverse 
Multiprocessing 
PSW-key handling 
Recovery extensions 

Segment protection 
Selector channels 
Service signal 
Start-I/O-fast queuing 
Storage-key-instruction 

extensions 

Storage-key 4K-byte block 
Suspend and resume 
Test block 
Translation 
31-bit IDAWs 

Availa
bility 
in 
370-XA 
fl10de 

pl 
F 
S 
F 
S 

F 
F 
S 
S 
S 

p2 
p3 
S 

F 
S 
F 

F 

SS 
S 

p7 
F 
S 
pS 
S 

Availability of System/370 Facilities 
in 370-XA Mode (Part 1 of 2) 

Explanation: 

F Facility is not provided, but a 
comparable function is provided by 
the channel subsystem. 

p Facility is partially available in 
the 370-XA mode. 

R Facility is replaced with a com
parable facility. 

S Facility is standard in the 370-XA 
mode. 

- Facility is not provided in the 
370-XA mode. 

I The following items, which are part 
of the basic computing function in 
the System/370 mode, are not pro
vided in the 370-XA mode: BC-mode, 
interval timer, and 2K-byte pro
tection blocks. Also see the fol
lowing instruction lists for those 
instructions standard in the 
System/370 mode which are not pro
vided in the 370-XA mode. 

2 All of the dual-address-space fa
cility is provided except for DAS 
tracing. 

3 See the following instruction list 
for those instructions that are 
part of the System/370 extended fa
cility and that are provided in the 
370-XA mode. 

4 Replaced with 31-bit real address
ing. 

S With the exception of the inclusion 
of more than one CPU, all the func
tions associated with the System/370 
multiprocessing facility are stan
dard. 

6 Replaced by page protection. 
7 Only single-key 4K-byte protection 

blocks are provided, but the stor
age-key-exception control is not. 

s The 370-XA translation provides only 
the 4K-byte page size and only the 
1M-byte segment size. See also the 
following instruction lists. 

Availability of System/370 Facilities 
in 370-XA Mode (Part 2 of 2) 

Appendix D. Comparison Between System/370 and 370-XA Modes D-3 



SUMMARY OF CHANGES 

CHANGES IN INSTRUCTIONS PROVIDED 

The following figures show those 
instructions which are optional or not 
provided in either the System/370 or the 
370-XA mode. Those instructions which 
are standard in both modes are not 
shown. 

Mne-
Instruction Name* monic 

BRANCH AND SAVE BASR 
BRANCH AND SAVE BAS 
BRANCH AND SAVE AND SET MODE BASSM 
BRANCH AND SET MODE BS~1 

COMPARE AND SWAP CS 
COMPARE DOUBLE AND SWAP CDS 
DIVIDE (extended) DXR 
INSERT PROGRAM MASK IPM 
MOVE INVERSE MVCIN 

Explanation: 

Instruction is not provided. 

System/ 
Op 370 370-XA 
Code Mode Mode 

OD BS S 
4D BS S 
OC - S 
OB - S 

BA SW S 
BB SW S 
B22D - S 
B222 - S 
E8 MI -

Those instructions which are part of the floating-point 
and extended-precision floating-point facilities in the 
System/370 mode are standard in the 370-XA mode and are 
not shown. 

BS 
MI 
S 
SW 

Branch-and-save facility. 
Move-inverse facility. 
Instruction is standard. 
Conditional-swapping facility. 

Unprivileged Instructions Provided 

D-4 370-XA Principles of Operation 



Instruction Name 

CONNECT CHANNEL SET 
DISCONNECT CHANNEL SET 
EXTRACT PRIMARY ASN 
EXTRACT SECONDARY ASH 
INSERT ADDRESS SPACE CONTROL 

INSERT PSW KEY 
INSERT STORAGE KEY 
INSERT STORAGE KEY EXTENDED 
INSERT VIRTUAL STORAGE KEY 
INVALIDATE PAGE TABLE ENTRY 

LOAD ADDRESS SPACE PARAMETERS 
LOAD REAL ADDRESS 
MOVE TO PRIt1ARY 
MOVE TO SECONDARY 
MOVE ~JITH KEY 

PROGRAM CALL 
PROGRAM TRANSFER 
PURGE TLB 
READ DIRECT 
RESET REFERENCE BIT 

RESET REFERENCE BIT EXTENDED 
SET ADDRESS SPACE CONTROL 
SET CLOCK COMPARATOR 
SET CPU TIMER 
SET PREFIX 

SET PSW KEY FROM ADDRESS 
SET SECONDARY ASH 
SET STORAGE KEY 
SET STORAGE KEY EXTENDED 
SIGNAL PROCESSOR 

STORE CLOCK COMPARATOR 
STORE CPU ADDRESS 
STORE CPU TINER 
STORE PREFIX 
STORE THEN AND SYSTEM MASK 

STORE THEN OR SYSTEM MASK 
TEST BLOCK 
TEST PROTECTION 
TRACE 
WRITE DIRECT 

Explanation: 

Instruction is not provided. 

System/ 
Mne- Op 370 370-XA 
monic Code Mode Mode 

CONCS B200 CS -
DISCS B201 CS -
EPAR B226 DU S 
ESAR B227 DU S 
lAC B224 DU S 

IPK 
ISK 
ISKE 
IVSK 
IPTE 

LASP 
LRA 
MVCP 
r'lVCS 
f\lVCK 

PC 
PT 
PTLB 
RDD 
RRB 

RRBE 
SAC 
SCKC 
SPT 
SPX 

SPKA 
SSAR 
SSK 
SSKE 
SIGP 

B20B 
09 
B229 
B223 
B221 

ESOO 
Bl 
DA 
DB 
D9 

B218 
B228 
B20D 
85 
B213 

B22A 
B219 
B206 
B208 
B210 

B20A 
B225 
08 
B22B 
AE 

STCKC B207 
STAP B212 
STPT B209 
STPX B211 
STNSM AC 

S TOSt1 AD 
TB B22C 
TPROT ESOI 
TRACE 99 
l.JRD 84 

PK 
S 
EK 
DU 
EF 

DU 
TR 
DU 
DU 
DU 

DU 
DU 
TR 
DC 
TR 

EK 
DU 
CK 
CK 
MP 

PK 
DU 
S 
EK 
MP 

CK 
MP 
CK 
MP 
TR 

TR 
TB 
EF 

DC 

S 

S 
S 
S 

S 
S 
S 
S 
S 

S 
S 
S 

S 
S 
S 
S 
S 

S 
S 

S 
S 

S 
S 
S 
S 
S 

S 
S 
S 
S 

CK 
CS 
DC 
DU 
EF 
EK 
MP 
PK 
S 
TB 
TR 

CPU-timer and clock-comparator facility. 
Channel-set-switching facility. 
Direct-control facility. 
Dual-address-space facility. 
Extended facility. 
Storage-key-instruction-extension facility. 
Multiprocessing facility. 
PSW-key-handling facility. 
Instruction is standard. 
Test-block facility. 
Translation facility. 

Control Instructions Provided 

Appendix D. Comparison Between System/370 and 370-XA Modes D-5 



Mne-
Instruction Name monic 

CLEAR CHANNEL CLRCH 
CLEAR I/O CLRIO 
HALT DEVICE HDV 
HALT I/O HIO 
RESUME I/O RIO 

START I/O SIO 
START I/O FAST RELEASE SIOF 
STORE CHANNEL 10 STIDC 
TEST CHANNEL TCH 
TEST I/O TIO 

CLEAR SU8CHANNEL CSCH 
HALT SUBCHANNEL HSCH 
MODIFY SUBCHANNEL MSCH 
RESET CHANNEL PATH RCHP 
RESUME SUBCHANNEL RSCH 

SET ADDRESS LIMIT SAL 
SET CHANNEL MONITOR SCHM 
START SUBCHANNEL SSCH 
STORE CHANNEL PATH STATUS STCPS 
STORE CHANNEL REPORT WORD STCR~J 

STORE SUBCHANNEL STSCH 
TEST PENDING INTERRUPTION TPI 
TEST SUBCHANNEL TSCH 

EXElanation: 

- Instruction is not provided. 
RE Recovery-extension facility. 
S Instruction is standard. 
SR Suspend-and-resume facility. 

I/O Instructions Provided 

INPUT/OUTPUT COMPARISON 

The channel subsystem has a different 
logical structure from that of the I/O 
facilities provided in System/370, with 
the result that I/O instructions, chan
nels, channel sets, and I/O addressing 
are replaced in the 370-XA mode by a new 
set of I/O instructions, by logical 
device addressing, and by device
accessing mechanisms. 

Compatibility with System/370 has been 
maintained in the CCWs (format 0), 
31-bit IDAWs, and channel programs. 

In the System/370 mode, subchannels are 
not shared among channels, and each 
subchannel is associated with only one 
channel path. In 370-XA mode, each 
subchannel is uniquely associated with 
one I/O device, and that I/O device is 
uniquely associated with that one 
subchannel within the channel subsystem, 
regardless of the number of channel 
paths by which the I/O device is acces
sible to the channel subsystem. 

0-6 370-XA Principles of Operation 

System/ 
Op 370 370-XA 
Code Mode Mode 

9FOl RE -
9D01 S -
9EOl S -
9EOO S -
9C02 SR -
9COO S -
9C01 S -
8203 S -
9FOO S -
9DOO S -
B230 - S 
B231 - S 
B232 - S 
B238 - S 
B238 - S 

B237 - S 
B23C - S 
B233 - S 
B23A - S 
B239 - S 

B234 - S 
B236 - S 
B235 - S 

Functions are provided in the channel 
subsystem in the 370-XA mode to detect 
malfunctions, to recover from these 
malfunctions if possible, and to report 
to the program via a channel report. 

In the System/370 mode, I/O inter
ruptions are accepted only by the CPU to 
which the channel set is currently 
connected. The I/O interruption ca'lses 
the I/O address identifying the charnel 
and device causing the interruption to 
be stored at locati ons 186-187, and -~he 
measurement byte to be stored at rEal 
location 185. In the 370-XA mode, I/O 
interruptions can be accepted by any CPU 
in the configuration. The subsystem 10 
and I/O-interruption parameter are 
stored at the doubleword at real 
location 184. 

Associated with the new I/O instructions 
is a new program-interruption condition 
called operand exception. 



COMPARISON OF PSW FORMATS 

The figure "Comparison of PSW Formats" 
shows those bits and fields in the PSW 
which are different between the 
System/370 mode and the 370-XA mode. 

System/ 
Name of PSW 370 370-XA 

Bit or Field Bit Mode Mode 

PER Mask 1 TR S 
OAT Mode 5 TR S 
EC Mode 12 

Bit 12 = 0 S NP 
(BC Mode) 

Bit 12 = 1 TR SI 
(EC Mode) 

Address-space 16 DU S 
control 

Addressing mode 32 NP S 
Instruction address * S S 

Explanation: 

* The instruction address is in PSW 
bits 40-63 in the System/370 mode 
and bits 33-63 in the 370-XA mode. 

1 In the 370-XA mode, PSW bit 12 
must be one, and the term "EC 
mode" is not used. 

DU Provided as part of the dual-
address-space facility. 

NP Mode is not provided. 
S Standard. 
TR Provided as part of the transla

tion facility. 

Comparison of PSW Formats 

CHANGES IN CONTROL-REGISTER ASSIGNMENT 

The figure "Differences in Control
Register Assignments" shows those bits 
and fields in the control registers 
which are different between the 
System/370 mode and the 370-XA mode. 

Appendix D. Comparison Between System/370 and 370-XA Modes D-7 



Hame of Bit or Field 

Block-multiplexing control 
Fetch-protection override 
Storage-key-exception control 
Page-fault-assist control 
Interval-timer subclass mask 

External-signal subclass mask 
Space-switch-event control 
Primary segment-table origin 
Primary segment-table length 
Channel masks 

linkage-table orlgln 
I/O-interruption subclass mask 
VM assists 
Virtual problem state 
ISK-SSK inhibit 

360 operations only 
SVC inhibit 
Shadow-table-validation inhibit 
Expanded VM and CP 
Virtual interval timer 

Virtual-machine parameter list 
VM extended facility 
Secondary segment-table length 
Secondary segment-table origin 
PER starting address 

PER ending address 
Branch-trace control 
Trace-entry address 
ASN-trace control 
Explicit-trace control 

Check-stop control 
Synchronous-MCEl control 
I/O-extended-logout control 
Channel-status subclass mask 
External-damage subclass mask 

Timing-facility-damage subclass 
mask 

Asynchronous-MCEl control 
Asynchronous-fixed-log control 
ASN-first-table origin 
MCEL address 

Explanation: 

NP Bit or field is not provided. 

Control-Registe~ Position 
for 

System/370 
Mode 

0.0 
NP 
0.7 
0.13 
0.24 

0.26 
1.31 
1.8 - 1.25 
1.0 - 1.7 
2.0 - 2.31 

5.8 - 5.24 
NP 
6.0 
6.1 
6.2 

6.3 
6.4 
6.5 
6.6 
6.7 

6.8 - 6.28 
6.29 
7.0 - 7.7 
7.8 - 7.25 

10.8 - 10.31 

11.8 - 11.31 
NP 
NP 
NP 
NP 

14.0 
14.1 
14.2 

NP 
14.4 

* 

NP 
0.6 
NP 
NP 
NP 

NP 
1.0 

370-XA 
Mode 

1.1 - 1.19 
1.25 - 1.31 
NP 

5.1 - 5.24 
6.0 - 6.7 
NP 
NP 
NP 

NP 
NP 
NP 
NP 
NP 

NP 
NP 
7.25 - 7.31 
7.1 - 7.19 

10.1 - 10.31 

11.1 - 11.31 
12.0 
12.1 - 12.29 
12.30 
12.31 

NP 
NP 
NP 

14.3 

* 
14.4 

14.8 NP 
14.9 NP 
14.20 - 14.31 14.13 - 14.31 
15.8 - 15.28 NP 

* Bit is provided, but with a different name. 

Differences in Control-Register Assignments 

D-8 370-XA Principles of Operation 



CHANGES IN ASSIGNED STORAGE LOCATIONS 

The figure "Differences in Assigned 
Storage Locations" shows those as
signed-storage locations where changes 
have been made between the System/370 
mode and the 370-XA mode. 

Assigned 
Storage 
Location and 
Length* for 

System/ 
370 370-XA 

Name of Bit or Field Mode Mode 

Channel-status word 64 
Channel-address word 72 
Interval timer 80 
Trace-table designation 84 
MAPL address 164 

Channel ID 168 
IOEl address 172 
Limited channel logout 176 
Subsystem ID NP 
Measurement-byte 185 

I/O address 
I/O-interruption 

parameter 
External-damage code 
Region code 

186 
NP 

8 NP 
4 HP 
4 NP 
4 NP 
4 NP 

4 NP 
4 NP 
4 NP 

184 4 
1 NP 

2 NP 
188 4 

4 NP 
4 NP 

Fixed Logout 

244 
252 
256 96 256 16 

Store-status model
dependent save area 

CPU identity 

Explanation! 

268 

795 

4 NP 

1 NP 

* The first number is the address, 
the second the length. 

NP Field is not provided. 

Differences in Assigned Storage 
Locations 

SIGNAL PROCESSOR CHANGES 

The figures "Signal-Processor Orders" 
and "Signal-Processor Status Bits" show 
those SIGNAL PROCESSOR orders and status 
codes where changes have been made 
between the System/370 mode and the 
370-XA mode. In addition to these 
changes, a parameter is provided as part 

of the SIGNAL PROCESSOR instruction in 
the 370-XA mode. The parameter is used 
by the store-status-at-address and set
prefix orders. 

Order Code 

System/ 
370 370-XA 

Name of Order Mode Mode 

Initial program reset 07 NP 
Program reset 08 NP 
Initial microprogram OA NP 

load 
Set prefix NP OD 
Store status at NP OE 

address 

EXElanation: 

NP Order is not provided. 

Signal-Processor Orders 

Bit Position 

System/370 370-XA 
Name of Status Bit Mode Mode 

Incorrect state NP 22 
Invalid parameter NP 23 
Not ready 28 NP 
Inoperative 29 29 

EXElanation: 

NP Status bit is not provided. 

Signal-Processor Status Bits 

MACHINE-CHECK CHANGES 

The figure "Machine-Cheek-Interrupti on
Code Bits" summarizes those bits and 
fields in the machine-cheek-interruption 
code (MCIC) where changes have been made 
between the System/370 mode and the 
370-XA mode. In addition to these 
changes, the region code, the external 
damage code, the machine-cheek-extended 
logout, and asynchronous fixed logouts 
have been eliminated in the 370-XA mode. 

Appendix D. Comparison Between System/370 and 370-XA Modes D-9 



MCIC Bits 

Machine-Check- System/ 
Interruption Condition 370 370-XA 

or Field Mode Mode 

Interval-timer damage 3 NP 
External damage 5 NP 
Channel report pending NP 9 
Channel-subsystem NP 11 

damage 
Delayed 15 NP 
Region-code validity 25 NP 
External-damage-code 26 NP 

validity 
Logout validity 30 NP 
MeEL length 48-63 NP 

EXElanation: 

NP Condition or field is not provided. 

Machine-Check-Interruption-Code Bits 

CHANGES TO ADDRESSING WRAPAROUND 

In the System/370 mode, addresses wrap 
from 224 - 1 to zero (or vice versa). 
In the 370-XA mode, the following items 
cause an I/O program check instead of 
wraparound: 

Successive CCWs of a CCW list 
Successive IDAWs of an IDAW list 
Successive bytes of I/O data 

D-I0 370-XA Principles Df Operation 

For DAT-table entries, it is model
dependent whether addresses wrap or 
cause an addressing exception. 

CHANGES TO LOAD REAL ADDRESS 

For LOAD REAL ADDRESS, the addressing of 
DAT tables is changed to be unpredict
able with respect to whether prefixing 
is applied and to be unpredictable with 
respect to whether an addressing excep
tion is recognized or wraparound occurs 
when the calculated address of a page
table or segment-table entry exceeds 
2 31 - 1. 

CHANGES TO 31-BIT REAL OPERAND ADDRESSES 

The following instructions operate by 
using 31-bit real addresses in the 
System/370 mode. In the 370-XA mode, 
these instructions operate under control 
of the addressing mode, bit 32 of the 
PSW. As a result, in 24-bit mode, these 
instructions operate by using 24-bit 
addresses. 

INSERT STORAGE KEY EXTENDED 
RESET REFERENCE BIT EXTENDED 
SET STORAGE KEY EXTENDED 
TEST BLOCK 



APPENDIX b TABLE OF POWERS OF .a 
PLIIS MINUS 

1 0 1.0 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.0625 
32 5 0.03125 
64 6 0.01562 5 

128 7 0.00781 25 

256 8 0.00390 625 
512 9 0.00195 3125 

1,024 10 0.00097 65625 
2,048 11 0.00048 82812 

4,096 12 0.00024 41406 25 
8,192 13 0.00012 20703 125 

16,384 14 0.00006 10351 5625 
32,768 15 0.00003 05175 78125 

65,536 16 0.00001 52587 89062 5 
131,072 17 0.00000 76293 94531 25 
262,144 18 0.00000 38146 97265 625 
524.288 19 0.00000 19073 48632 8125 

1,048,576 20 0.00000 09536 74316 40625 
2,097,152 21 0.00000 04768 37158 20312 5 
4.194.304 22 0.00000 02384 18579 10156 25 
8,388,608 23 0.00000 01192 09289 55078 125 

16,777,216 24 0.00000 00596 04644 77539 0625 
33,554,432 25 0.00000 00298 02322 38769 53125 
67,108,864 26 0.00000 00149 01161 19384 76562 5 

134,217,728 27 0.00000 00074 50580 59692 38281 25 

268,435.456 28 0.00000 00037 25290 29846 19140 625 
536,870.912 29 0.00000 00018 62645 14923 09570 3125 

1.073.741.824 30 0.00000 00 009 31322 57461 54785 15625 
2.147,483.648 31 0.00000 00004 65661 28730 77392 57812 

4.294.967.296 32 0.00000 00002 32830 64365 38696 28906 25 
8.589.934.592 33 0.00000 00001 16415 32182 69348 14453 125 

17,179.869.184 34 0.00000 00000 58207 66091 34674 07226 5625 
34.359.738.368 35 0.00000 00000 29103 83045 67337 03613 28125 

68.719.476.736 36 0.00000 00000 14551 91522 83668 51806 64062 5 
137.438.953.472 37 0.00000 00000 07275 95761 41834 25903 32031 25 
274.877.906.944 38 0.00000 00000 03637 97880 70917 12951 66015 625 
549.755.813.888 39 0.00000 00000 01818 98940 35458 56475 83 007 8125 

1.099.511.627.776 40 0.00000 00000 00909 49470 17729 28237 91503 90625 
2.199.023,255.552 41 0.00000 00000 00454 74735 08864 64118 95751 95312 5 
4.398.046.511.104 42 0.00000 000 00 00227 37367 54432 320 59 47875 97656 25 
8.796.093.022.208 43 0.00000 00000 00113 68683 77216 16029 73937 98828 125 

17.592.186.044.416 44 0.00000 00000 00056 84341 88608 08014 86968 99414 0625 
35.184.372.088.832 45 0.00000 00000 00028 42170 94304 04007 43484 49707 03125 
70.368.744.177.664 46 0.00000 00000 00014 21085 47152 02003 71742 24853 51562 5 

140.737.488.355,328 47 0.00000 00000 00007 10542 73576 01001 85871 12426 75781 25 

281.474.976.710.656 48 0.00000 00000 00003 55271 36788 00500 92935 56213 37890 625 
562.949.953.421.312 49 0.00000 00000 00001 77635 68~94 00250 46467 78106 68945 3125 

1.125.899.906.842.624 50 0.00000 00000 00000 88817 84197 00125 23233 89053 34472 65625 
2.251.799.813.685.248 51 0.00000 00000 00000 44408 92098 50062 61616 94526 67236 32812 

4.503.599.627.370.496 52 0.00000 00000 00000 222 04 46049 25031 30808 47263 33618 16406 25 
9.007.199.254.740.992 53 0.00000 00 000 00000 11102 23024 62515 65404 23631 66809 08203 125 

18,014.398,509.481.984 54 0.00000 00000 00000 05551 1151 ? 31257 82702 11815 83404 54101 5625 
36.028,797.018.963.968 55 O.noooo 00000 00000 02775 55756 15628 91351 05907 91702 27050 78125 

72.057.594.037.927.936 56 0.00000 00000 00000 01387 77878 07814 45675 52953 95851 13525 39062 5 
144,115.188.075.855,872 57 0.00000 00000 00000 00693 8ff939 03907 22837 76476 97925 56762 69531 25 
288.230.376,151.711,744 58 0.00000 00000 00000 00346 94469 51953 61418 88238 48962 78381 34765 625 
576.460,752.303.423.488 59 0.00000 00000 00000 00173 47234 75976 80709 44119 24481 39190 67382 8125 

1.152.921.504.606.846,976 60 0.00000 00000 00000 00086 73617 37988 40354 72059 62240 69595 33691 40625 
2.305.843.009.213.693.952 61 0.00000 00000 00000 00043 36808 68994 20177 36029 81120 34797 66845 70312 5 
4,611.686.018.427.387,904 62 0.00000 00000 00000 00021 68404 34497 100A8 68014 90560 17398 83422 85156 25 
9.223,372.036,854.775.808 63 0.00000 00000 00000 00010 84202 17248 55044 34007 45280 08699 41711 42578 125 

18,446,744.073.709,551,616 64 0.00000 00000 00000 00005 42101 08624 27522 17003 72640 04349 70855 71289 0625 

Powers of 2 (Part 1 of 2) 

Appendix E. Table of Powers of 2 E-l 



18,446,744,0/3,709,551,616 6~ 

36,893.488,147,419,10;,232 65 
73,786,q7~,'94,838.206,464 66 

147.573.952,589.676,412.928 67 

295,147.905.179.352,825.856 ~8 
590.295.81C.358,705,651.7~2 ~9 

1.180.~91.620.717.411,303.q24 70 
2,361,183.241,434,822,606,848 71 

~,722,366,482,869.645,213,696 72 
9,444,732,965,739.290,427.392 73 
18.889.465,931.478.5aO,85~.784 74 
37.778,931,862,957.161,709,568 75 

75.557,863.725.914.323.419,136 76 
151.115,727.451,828.646.838.272 77 
302.231,454,903,657.293,676.544 78 
604.452.909,807,31_.587,353,088 79 

1.208.925.819.614,629,174,706.176 80 
2.417.851.639.729,258,1~9,412,1~2 31 
4.835.703,278,459,516.698,824.704 82 
9.671.406.556,917.033.397,649.408 83 

19,342.813,113.834,066,795.298,916 8~ 

38,685.626,227.668,133,590,597,632 85 
77,371,252,455.336.267.181,195,264 86 

154.742.504,910,672,534,362,390,528 87 

309,4B5.009,821.345,06B,724,781.056 88 
618,970,019.6 4 2.590,137.449,562.112 89 

1,237,940,039,185.38 0 ,274,899,124.224 90 
2,475,880.078.570,760,54~,798,248,448 91 

4,951.760.157,141.521,099,596,496,896 92 
9,903,520,314,293.0~2,1g~,192.993,792 93 

19,807,040,628.566.084.398.385,987.584 94 
~9,61~,Oal.257.132,168.796,771.975,168 95 

79,228,162.514.264.337,593,543,950.336 96 
158,456,325.028,528.675.187.087,900,672 97 
316,912,650.057.057.350,374.175.801,344 ~8 

633,825,300.114.114,700.748,351,602,688 99 

1,267,650,600.228.229,401,496.703,205.376 100 
2.535,301,200,456,458.802,993.406,410,752 101 
5,070,602.400.912.917.605,986,812,821,504 102 

10,141,204,801.825,835,211.973,625.643,008 103 

20,282,409,603,651,670,423.947.251.286,016 104 
~O,564,819,207,303.340.a47.894,502,572.032 105 
81.129,638.414.606,681.695,789.00~.144.064 106 

162,259,276,829,213.363.391.578,010,288.128 107 

324.518,553,658.426.725,783.156.020.576,256 108 
6~9.'37,107,316,853.453.566.312.041,15?512 109 

1,298.074,214,633.706.907.132.624,082.305.024 110 
2.596,148,429,267,413.814,265.248.164,610.048 111 

5,192,296.858.534.827.628.530,496.329.220,096 112 
10,384,593,717.069.655,257.060.992,658,440,192 113 
20,769,187.434,139.310.514.121.985,316,880.384 114 
41,538,374,868.278,621,028.243.970.633.760,768 115 

B3,076.749,736,557,242.056.487.941,267.521.536 116 
166,153,499,473.114.484,112.975,882.535,0 4 3.072 117 
332,306.998,946,228,969,225.951.765.070.086,144 118 
664,613,997,892.457.936,451,903,530.140,172,~88 119 

1.329,227,995,784,915,872.903,807.060,280,344,576 120 
2.658,~55,991.569,831,745.807,614.120.560.689,152 121 
5.316,911,983,139,663.491,~15,228,241.121.378,304 122 

10.633,B23,966,279,326.983.23C,456.482,242,756,608 123 

21.267,647.932,558.653,966.460.312,964,485.513.216 124 
42.535,295,965.117,307,932,g21,e25.~28,971.026.432 125 
85,070,591,730.234.615.865.843.651.A57,942,OS?,8f,4 126 

1 7 0,141,183,460,469.231.731,687.303.715,884.105.728 127 

Powers of 2 (Part 2 of 2) 

E-2 370-XA Principles of Operation 



The following tables aid in converting hexadecimal values 
to decimal values, or the reverse. 

Direct Conversion Table 

This table provides direct conversion of decimal and 
hexadecimal numbers in these ranges: 

Hexadecimal 
000 to FFF 

Decimal 
0000 to 4095 

To convert numbers outside these ranges, and to con
vert fractions, use the hexadecimal and decimal conver
sion tables that follow the direct conversion table in this 
Appendix. 

0 1 2 3 4 5 6 

00_ 0000 0001 0002 0003 0004 0005 0006 
01_ 0016 0017 0018 0019 0020 0021 0022 
02_ 0032 0033 0034 0035 0036 0037 0038 
03_ 0048 0049 0050 0051 0052 0053 0054 
04_ 0064 0065 0066 0067 0068 0069 0070 
05_ 0080 0081 0082 0083 0084 0085 0086 
06_ 0096 0097 0098 0099 0100 0101 0102 
07_ 0112 Oll3 Oll4 Oll5 0116 Oll7 Oll8 
08_ 0128 0129 0130 0131 0132 0133 0134 
09_ 0144 0145 0146 0147 0148 0149 0150 
OA_ 0160 0161 0162 0163 0164 0165 0166 
OB_ 0176 0177 0178 0179 0180 0181 0182 
OC_ 0192 0193 0194 0195 0196 0197 0198 
OD_ 0208 0209 0210 02ll 0212 0213 0214 
OE - 0224 0225 0226 0227 0228 0229 0230 
OF_ 0240 0241 0242 0243 0244 0245 0246 

10_ 0256 0257 0258 0259 0260 0261 0262 
11 - 0272 0273 0274 0275 0276 0277 0278 
12_ 0288 0289 0290 0291 0292 0293 0294 
13_ 0304 0305 0306 0307 0308 0309 0310 
14_ 0320 0321 0322 0323 0324 0325 0326 
15_ 0336 0337 0338 0339 0340 0341 0342 
16_ 0352 0353 0354 0355 0356 0357 0358 
17_ 0368 0369 0370 0371 0372 0373 0374 
18_ 0384 0385 0386 0387 0388 0389 0390 
19_ 0400 0401 0402 0403 0404 0405 0406 
lA_ 0416 0417 0418 0419 0420 0421 0422 
IB_ 0432 0433 0434 0435 0436 0437 0438 
1C_ 0448 0449 0450 0451 0452 0453 0454 
ID_ 0464 0465 0466 0467 0468 0469 0470 
IE - 0480 0481 0482 0483 0484 0485 0486 
IF_ 0496 0497 0498 0499 0500 0501 0502 

APPENDIX ~ HEXADECIMAL TABLES 

7 8 9 A B C D E F 

0007 0008 0009 0010 OOll 0012 0013 0014 0015 
0023 0024 0025 0026 0027 0028 0029 0030 0031 
0039 0040 0041 0042 0043 0044 0045 0046 0047 
0055 0056 0057 0058 0059 0060 0061 0062 0063 
0071 0072 0073 0074 0075 0076 0077 0078 0079 
0087 0088 0089 0090 0091 0092 0093 0094 0095 
0103 0104 0105 0106 0107 0108 0109 OllO 01ll 
0119 0120 0121 0122 0123 0124 0125 0126 0127 
0135 0136 0137 0138 0139 0140 0141 0142 0143 
0151 0152 0153 0154 0155 0156 0157 0158 0159 
0167 0168 0169 0170 0171 0172 0173 0174 0175 
0183 0184 0185 0186 0187 0188 0189 0190 0191 
0199 0200 0201 0202 0203 0204 0205 0206 0207 
0215 0216 0217 0218 0219 0220 0221 0222 0223 
0231 0232 0233 0234 0235 0236 0237 0238 0239 
0247 0248 0249 0250 0251 0252 0253 0254 0255 

0263 0264 0265 0266 0267 0268 0269 0270 0271 
0279 0280 0281 0282 0283 0284 0285 0286 0287 
0295 0296 0297 0298 0299 0300 0301 0302 0303 
0311 0312 0313 0314 0315 0316 0317 0318 0319 
0327 0328 0329 0330 0331 0332 0333 0334 0335 
0343 0344 0345 0346 0347 0348 0349 0350 0351 
0359 0360 0361 0362 0363 0364 0365 0366 0367 
0375 0376 0377 0378 0379 0380 0381 0382 0383 
0391 0392 0393 0394 0395 0396 0397 0398 0399 
0407 0408 0409 0410 0411 0412 0413 0414 0415 
0423 0424 0425 0426 0427 0428 0429 0430 0431 
0439 0440 0441 0442 0443 0444 0445 0446 0447 
0455 0456 0457 0458 0459 0460 0461 0462 0463 
0471 0472 0473 0474 0475 0476 0477 0478 0479 
0487 0488 0489 0490 0491 0492 0493 0494 0495 
0503 0504 0505 0506 0507 0508 0509 0510 05ll 

Appendix F. Hexadecimal Tables F-l 



0 1 2 3 4 5 6 7 8 9 A B C D E F 

20_ 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
21_ 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
22_ 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 
23_ 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 
24 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 
25_ 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 
26 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 
27_ 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 
28_ 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
29_ 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2A - 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 06'84 0685 0686 0687 
2B_ 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 
2C_ 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 
2D_ 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2E - 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 
2F_ 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 
30_ 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 
3L 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
32_ 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 
33_ 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 
34_ 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 
35_ 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 
36_ 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 
37_ 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 
38_ 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 
39_ 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 3A_ 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 3B_ 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 
3C_ 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
3D_ 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 3E_ 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 3F_ 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

40_ 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
41_ 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 
42 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
43_ 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 
44_ 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 
45_ 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 
46_ 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 
47_ 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 
48_ 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
49_ 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 
4A_ 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 
4B_ 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 
4C_ 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
4D_ 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4E - 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4F_ 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 
50_ 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
5L 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
52_ 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
53_ 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 
54_ 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
55_ 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
56_ 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
57_ 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 
58_ 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
59_ 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
5A_ 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
5B_ 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 
5C_ 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
5D_ 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 
5E_ 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 
5F_ 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 

F-2 370-XA Pr;nc;ples of Operat;on 



0 1 2 3 4 5 6 7 8 9 A B C D E F 

60_ 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 
61_ 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
62_ 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
63_ 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 
64_ 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
65_ 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
66_ 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
67_ 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 
68_ 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
69_ 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6A_ 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
6B_ 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 
6C_ 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
6D_ 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6E_ 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6F_ 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 
70_ 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
71_ 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
72_ 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
73_ 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 
74_ 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
75_ 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
76_ 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
77_ 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 
78_ 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 J935 
79_ 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7A_ 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
7B_ 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 198.1 1982 1983 
7C_ 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
7D_ 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7E_ 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
7F_ 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

80_ 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
81_ 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
82_ 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
83_ 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 
84_ 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
85_ 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
86_ 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
87_ 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 
88_ 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
89_ 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
8A_ 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
8B_ 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 
8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
8D_ 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8E_ 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8F - 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 
90_ 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
9L 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
92_ 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
93_ 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 
94_ 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
95_ 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
96_ 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2,*14 2415 
97_ 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 
98_ 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
99_ 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9A_ 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
9B_ 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 
9C_ 2496 2497 2498 2499 2.500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
9D_ 2512 2513 2514 2515 2516 2517 2518 25-19 2520 2521 2522 2523 2524 2525 2526 2527 
9E_ 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9F_ 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

Appendix F. Hexadecimal Tables F-3 



0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

AO_ 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
AL 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A2_ 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A3_ 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 
A4_ 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 
A5_ 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A6_ 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 
A7_ 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 
A8_ 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A9_ 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AA_ 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
AB_ 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 
AC_ 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 
AD_ 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AE_ 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AF_ 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 
BO_ 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
BL 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B2_ 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B3_ 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 
B4_ 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B5_ 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B6_ 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 
B7_ 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 
B8_ 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
B9_ 2960 2961 2962 2963 2964 296.5 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 
BA_ 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BB_ 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 
BC_ 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 
BD_ 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BE_ 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BF - 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

CO_ 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
CL 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 
C2_ 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 
C3 - 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 
C4_ 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 
C5_ 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 
C6_ 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 
C7_ 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 
C8_ 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 
C9_ 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 
CA_ 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 
CB_ 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 
CC_ 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 
CD_ 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CE_ 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CF_ 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 
DO_ 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
D1 - 3344 3345 3346 3347 3348 3349 3350 33.51 3352 3353 3354 3355 3356 3357 3358 3359 
D2_ 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 
D3_ 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 
D4_ 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
D5_ 3-408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
D6_ 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
D7_ 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 
D8_ 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 D9_ 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 DA_ 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
DB - 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 
DC_ 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 
DD - 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 
DE - 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
DF - 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

F-4 370-XA Principles of Operation 



0 1 2 3 4 5 6 7 8 9 A B C D E F 

EO_ 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
El_ 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E2_ 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
E3_ 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 
E4_ 3648 3649 3650 3651 3652 3653 3654 3655· 3656 3657 3658 3659 3660 3661 3662 3663 
E5_ 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E6_ 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
E7_ 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 
E8_ 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E9_ 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EA_ 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EB_ 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 
EC_ 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
ED_ 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EE_ 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
EF..:.. 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

FO_ 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
Fl_ 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F2_ 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
F3_ 3888 3889 3890 3891 3892 3893 3894 3895 3896 .3897 3898 3899 3900 3901 3902 3903 
F4_ 3904 3905 3906 3907 3908· 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F5_ 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F6_ 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F7_ 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 
F8_ 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
F9_ 3984 3985 3986 3987 3988 3989, 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FA_ 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
FB_ 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 
FC_ 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FD_ 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FE_ 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FF_ 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 

Appendix F. Hexadecimal Tables F-5 



Conversion Table: Hexadecimal and Decimal Integers 

HALFWORD 

BYTE BYTE 

BITS: 0123 4567 0123 4567 

Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex 

° ° 9 0 0 ° 0 0 ° 1 268,435,456 1 16,777,216 1 1 048 576 1 65,536 1 
2 53£;870,912 2 33,554,432 2 2,097,152 2 131,072 2 
3 A05, 306 , 368 3 50,331,648 3 3 145 728 3 196 608 3 

4 1 073 741,824 4 67,108,864 4 4 194 304 4 262 144 4 
5 1,342,177 ,280 5 83,886,080 5 5,242,880 5 327,680 5 
6 1,610,612,736 6 100,663,296 6 6,291,456 6 393,216 6 
7 1,879,048,192 7 117,440,512 7 7 340 032 7 458 752 7 
8 2,1.47,483,648 8 134,217,728 8 8,388,608 8 524,288 8 
9 2,415,919,104 9 150,994,944 9 9,437,184 9 589,824 9 
A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360 A 
B 2952 790.016 B 184,549.376 E 11 534336 B 720 896 B 
C 3 221 225 472 C 201.326,592 C 12 582 912 C 786 432 C 
D 3,489,660,928 D 218,103,808 D 13,631 488 D 851,968 D 

'E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504 E 
F 14,026,531,840 F 1251,658,240 F 15,728,640 F 983,040 F 

8 7 6 5 

TO CONVERT HEXADECIMAL TO DECIMAL 
EXAMPLE 

1. Locate the column of decimal numbers corresponding to Conversion of 
the left-most digit or letter of the hexadecimal; select Hexadecimal Value D34 
from this column and record the number that corresponds 
to the position of the hexadecimal digit or letter. 1. D 3328 

2. Repeat step 1 for the next (second from the left) 
2. 3 48 position. 

3. Repeat step 1 for the units (third from the left) 3. 4 4 
position. 

4. Add the numbers selected from the table to form the 4. Decimal 3380 

decimal number. 

TO CONVERT DECIMAL TO HEXADECIMAL 
EXAMPLE 

1. (a) Select from the table the highest decimal number 
Conversion of that is equal to or less than the number to be con-
Decimal Value 3380 

verted. 
(b) Record the hexadecimal of the column containing 

1. D -3328 
the se lected number. -s2 
(c) Subtract the selected decimal from the number to 
be converted. 2. 3 -48 

2. Using the remainder from step 1 (c) repeat all of step 1 --4 

to develop the second position of the hexadecimal 
(and a remainder) . 3. 4 -4 

3. Using the remainder from step 2 repeat all ofstep 1 to 4. Hexadecimal D34 
develop the units position of the hexadecimal. 

4. Combine terms to form the hexadecimal number. 

POWERS OF 16 TABLE 

Example: 268,435,45610 = (2.68435456 x 108)10 = 1000 000016 = (107)16 

16n n 

1 0 
16 1 

256 2 
4 096 3 

65 536 4 
1 048 576 5 

16 m 216 6 
268 435 456 7 

4 294 967 296 8 
68 719 476 736 9 

1 099 511 627 776 10 = A 
17 592 186 044 416 11 = B 

281 474 976 710 656 12 =C 
4 503 599 627 370 496 13 = D 

72 057 594 037 927 936 14 = E 

\ 1 152 921 504 606 846 976 15",= F 
_ . .x .. 
Uecimal Values 

F-6 370-XA Principles of Operation 

HALIWORD 

BYTE BYTE 

0123 4567 0123 4567 

Decimal Hex Decimal Hex Decimal Hex Decimal 

0 0 0 ° 0 0 0 
4,096 1 256 1 16 1 1 
8,192 2 512 2 32 2 2 

12,288 3 768 3 48 3 3 
16384 4 1.024 4 64 4 4 
20,480 5 1,280 5 80 5 5 
24,576 6 1,536 6 96 6 6 
28,672 7 1.792 7 112 7 7 
32768 8 2,048 8 128 8 8 
36,864 9 2,304 9 144 9 9 
40,960 A 2,560 A 160 A 10 
45 056 B 2 816 B 176 B 11 
49 152 C 3.072 C 192 C 12 
53 248 D 3 328 D 208 D 13 
57,344 E 3,584 E 224 E 14 
61,440 F 3,840 F 240 F 15 

4 3 2 1 

To convert integer numbers greater than the capacity of 
table, use the techniques below: 

HEXADECIMAL TO DECIMAL 

Successive cumulative multipl ication from left to right , 
adding units pasition. 

Example: D3416 = 338010 

DECIMAL TO HEXADECIMAL 

D = 13 
.ill.. 
208 

3 = + 3 
2iT 
x16 

3376 
4= +4 

3380 

Divide and collect the remainder in reverse oreler. 



Conversion Table: Hexadecimal and Decimal Fractions 

HALFWORD 

BYTE BYTE 

BlrS 0123 4567 0123 4567 

Hex Decimal Hex Decimal Hex Decimal Hex Decimal Equivalent 

.0 .0000 .00 .0000 0000 .000 .0000 0000 

.1 .0625 .01 .0039 0625 .001 .0002 4414 

.2 .1250 .02 .0078 1250 .002 .0004 8828 

.3 .1875 .03 .0117 1875 .003 .0007 3242 

.4 .2500 .04 .0156 2500 .004 .0009 7656 

.5 .3125 .05 .0195 3125 .005 .0012 2070 

.6 .3750 .06 .0234 3750 .006 .0014 6484 

.7 .4375 .07 .0273 4375 .007 .0017 0898 

.8 .5000 .08 .0312 5000 .008 .0019 5312 

.9 .5625 .09 .0351 5625 .009 .0021 9726 

.A .6250 .OA .0390 6250· .OOA .0024 4140 

.B .6875 .OB .0429 6875 .OOB .0026 8554 

.C .7500 .OC .0468 7500 .OOC .0029 2968 

.0 .8125 .00 .0507 8125 .000 .. 0031 7382 

.E .8750 .OE .0546 8750 .OOE .0034 1796 

.F .9375 .OF .0585 9375 .OOF .0036 6210 

1 2 3 

TO CONVERT .ABC HEXADECIMAL TO DECIMAL 

Flnd.A in position 1 .6250 

Find .OB in polltion 2 .0429 6875 

Find .OOC in politi on 3 .0029 2968 7500 

• ABC Hex lsequal to .6708 9843 7500 

TO CONVERT .13 DECIMAL TO HEXADECIMAL 

I. Find. 1250 next lowest to .1300 
subtract -. 1250 = .2Hex 

2. Find .0039 0625 next lowest to .0050 0000 
-.0039 0625 = .01 

3. Find .0009 7656 2500 .00109375 0000 
-.0009 7656 2500 = .004 

4. Find .0001 0681 1523 4375 .0001 1718 7500 0000 
-.0001 0681 1523 4375 = .0007 

.0000 1037·5976 5625 = .2147 Hex 

5. .13 Decimal is approximately equal to ---------'. 

0000 .0000 .0000 0000 0000 0000 
0625 .0001 .0000 1525 8789 0625 
1250 .0002 .0000 3051 7578 1250 
1875 .0003 .0000 4577 6367 1875 
2500 .0004 .0000 6103 5156 2500 
3125 .0005 .0000 7629 3945 3125 
3750 .0006 .0000 9155 2734 3750 
4375 .0007 .0001 0681 1523 4375 
5000 .0008 .0001 2207 0312 5000 
5625 .0009 .0001 3732 9101 5625 
6250 .OOOA .0001 5258 7890 6250 
6875 .000B .0001 6784 6679 6875 
7500 .000C .0001 8310 5468 7500 
8125 .0000 .0001 9836 4257 8125 
8750 .OOOE .0002 1362 3046 8750 
9375 .OOOF .0002 2888 1835 9375 

4 

To convert fr<;lctions beyond the capacity of table, use techniques below: 

HEXADECIMAL FRACTION TO DECIMAL 

Convert the hexadecimal fraction to its decimal equivalent using the same 
technique as for integer numbers. Divide the results by 16n (n is the 
number of fraction positions) • 
Example: .8A7 = .54077110 

8A716 = 221510 .540771 
163 = 4096 409612215.000000 

DECIMAL FRACTION TO HEXADECIMAL 

Collect integer parts of product in the order of calculation. 

Example: .540810 = .8A716 

.5408 
x16 

1
8 ~ []].6528 

x16 
A ~ [QJ.4448 

x16 
7 ~ [].1168 

Appendix F. Hexadecimal Tables F-7 



Hexadecimal Addition and Subtraction Table 

Example: 6 + 2 = 8, 8 - 2 = 6, and 8 - 6 = 2 

1 2 3 4 5 6 7 8 9 A 8 C 0 E F 

1 02 03 04 05 06 07 08 09 OA 08 OC 00 OE OF 10 

2 03 04 05 06 07 08 09 OA 08 OC 00 OE OF 10 11 

3 04 05 06 07 08 09 OA 08 OC 00 OE OF 10 11 12 

4 05 06 07 08 09 OA 08 OC 00 OE OF 10 11 12 13 

5 06 07 08 09 OA 08 OC 00 OE OF 10 11 12 13 14 

6 07 08 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 

7 08 09 OA 08 OC 00 OE OF 10 11 12 12 14 15 16 

8 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 16 17 

9 OA 08 OC 00 OE OF 10 11 12 13 14 15 16 17 18 

A 08 OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 

8 OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 1A 

C 00 OE OF 10 11 12 13 14 15 16 17 18 19 lA 18 

0 OE OF 10 11 12 13 14 15 16 17 18 19 lA 18 1C 

E OF 10 11 12 13 14 15 16 17 18 19 lA 18 lC 10 

F 10 11 12 13 14 15 16 17 18 19 1A 18 1C 10 1E 

Hexadecimal Multiplication Table 
Example: 2 x 4 = 08, F x 2 = 1E 

1 2 3 4 5 6 7 8 9 A B C 0 E F 

1 01 02 03 04 05 06 07 08 09 OA 08 OC 00 OE OF 

2 02 04 06 08 OA OC OE 10 12 14 16 18 1A 1C 1E 

3 03 06 09 OC OF 12 15 18 18 1E 21 24 27 2A 20 

4 04 08 OC 10 14 18 1C 20 24 28 2C 30 34 38 3C 

5 05 OA OF 14 19 1E 23 28 20 32 37 3C 41 46 48 

6 06 OC 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A 

7 07 OE 15 1C 23 2A 31 38 3F 46 40 54 58 .62 69 

8 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78 

9 09 12 18 24 20 36 3F 48 51 5A 63 6C 75 7E 87 

A OA 14 IE 28 32 3C 46 50 5A 64 6E 78 82 8C 96 

8 08 16 21 2C 37 42 40 58 63 6E 79 84 8F 9A AS 

C OC 18 24 30 3C 48 54 60 6C 78 84 90 9C AS B4 

0 00 1A 27 34 41 4E 58 68 75 82 8F 9C A9 86 C3 

E OE lC 2A 38 46 54 62 70 7E 8C 9A AS 86 C4· 02 

F OF IE 20 3C 48 5A 69 78 87 96 AS 84 C3 02 El 

F-8 370-XA Principles of Operation 



APPENDIX ~ EBCDIC CHART 

EXTENDED BINARY-CODED-DECIMAL INTER
CHANGE CODE (EBCDIC) 

The 256-position EBCDIC table shows 
graphic-character, control-character, 
and formatting-character representations 
for EBCDIC. The bit-position numbers, 
bit patterns, hexadecimal represent
ations, and card-hole patterns for these 
and other possible EBCDIC characters are 
also shown. 

To find the card-hole pattern for most 
characters, partition the table into 
four blocks, as follows: 

1 3 

2 4 

Block 1 : Zone punches at top of table; 
digit punches at left 

Block 2: Zone punches at bottom of 
table; digit punches at left 

Block 3: Zone punches at top of table; 
digit punches at r;ght 

Block 4: Zone punches at bottom of 
table; digit punches at right 

Fifteen positions in the table are 
exceptions to the above arrangement. 
Each such position is indicated by a 
circled number in the upper right corner 
of the box for that position. The 
card-hole patterns for these positions 
are shown beneath the table. 
Bit-position numbers, bit patterns, and 
hexadecimal representations for these 
positions are found in the usual manner. 

Appendix G. EBCDIC Chart G-l 



The EBCDIC table shows 94 graphic
character positions. Some products have 
used an 88-character, 63-character, or 
62-character subset of these graphic 
characters. 

The 94-character set consists of all 
graphic characters shown in the EBCDIC 
table. This character set can be used 
forJ nterchange with other systems; 
those systems may use codes, other than 
EBCDIC, which have 94 graphic 
characters. 

An 88-character set that has been used 
consists of the 94-character set with 
the graphic characters at 6A, 79, Al, 
CO, DO, and EO hex omitted. This char
acter set has been used for 44-key 
keyboard applications which require both 
uppercase and lowercase alphabetic char
acters. 

A 63-character set that has been used 
consi sts of the--94-character set wi th 
the lowercase alphabetic characters 
omitted and with the graphic characters 
at 6A, 79, Al, CO, and DO hex omitted. 
This character set has been used for 
interchange with other systems; those 
systems may have used codes, other than 
EBCDIC, which have 63 graphic 
characters. 

A 62-character set that has been used 
consists of the---63-character set with 
the graphic character at EO hex omitted. 
This character set has been used for 
44-key keyboard applications which do 
not require lowercase alphabetic charac
ters. 

Character Type Bit Pattern Hex Hole Pattern 

Thirteen positions (4A, 4F, 5A, 5B, 5F, 
6A, 79, 7B, 7C, Al, CO, DO, and EO hex) 
are defined in the table as Data Proc
essing National Use positions. Each 
such p~sition contains a triangle in the 
top left corner ( ) of the box for 
that position. The graphic characters 
provided in these positions on printing 
and display devices may differ from one 
language to another or from one country 
to another. The characters provided for 
use in data-processing applications by 
the English (U.S.) version of EBCDIC are 
shown in the table. 

The other graphic characters shown in 
the EBCDIC table are provided for data
processing applications in the English 
(U.S.) version of EBCDIC and in addi
tional versions of EBCDIC in other 
languages which use a Latin-based alpha
bet. Products designed for data
processing applications in a language 
which does not use a Latin-based alpha
bet support character sets meeting the 
particular requirements of that 
language. 

Word-processing products normally 
support a character set slightly differ
ent from the one shown in the table. 
Additionally, a number of application 
areas (such as printing and publishing, 
magnetic-ink character recognition, and 
some programming languages) also require 
unique character-set support. 

Some examples of the use of the EBCDIC 
table are shown in the following figure: 

Zone Punches I Digit Punches 

SEL Control Character 
% Special Graphic 
R Upper Case 
a Lower Case 

Control Character, 
function not yet 
assigned 

00000100 
01 101100 
11011001 
10000001 
0011 0000 

.... 
Bit Positions 
01 234567 

04 12 - 9 1
- 4 

6C 0-8-4 
09 11,- 9 
81 12 - 01- 1 
30 12 - 11 - 0 - 91- 8-1 

I 
1 

G-2 370-XA Principles of Operation 



jSit Positions 0,1 
r--.--_.---.----~--r_--r__.--_+--_.--_,--_.----+_--.__.--_,--~ 

ISit Positions 2,3 
~~~--r---~----r---4----+---4--~----+---~----~--~---+--~----r---~ I First Hexadecimal Digit 

RSP

DC2 FS SYN K

DC3 WUS III C

RES{
EN

BYP/ PP
INP 0 M U 4

NL LF TRN N V

BS ETB NBS 0 W

POC ESC EOT G X

CAN SA SBS H Q Y

EM SFE IT Z

UBS SM/SW RFF SHY

CUI CSP CU3

IFS MFA DC4 < % @

IGS ENQ NAK

IRS ACK >

Card Hole Patterns
Formotting Character Representations

CD 12-0-9-8-1 CD 12-11-0-9-8-1 CD 11 ® 11-0 ® 0-1 NSP Numeric Space
RSP Required Space CD 12-11-9-8-1 CD No Punches CD 12-11-0 ® 0-8-2 ® 11-0-9-1 SP Space

CD 11-0-9-8-1 CD CD ® ® 12-11 SHY Syllable Hyphen
12 12-0

Control Character Representations Special Graphic Characters
ACK Acknowledge E1X tnd of Text RFF R",quired Form Feed Cent Sign Commo
BEL Bell FF Form Feed RNL Required New line Period, DecimC'1 Point % Percent
BS Backspace FS Field Separator RPT Repeat < Less-than Sign Underscore BYP/INP Bypass/lnhibi t Presentation GE Graphi c Escape SA Set Attribute (Left Parenthesis > Greater-than Sign CAN Cancel HT Horizontal Tab SBS Subscript
CR Carriage Return IFS Interchange Fi Ie Separator SEl S .. Ip.ct Plus Sign Question Mark
CSP Control Sequence Prefix IGS Interchange Group Separator SFE Start Fie Id Extenc!ed I Logical OR Grave Accent
CUI Customer Use 1 IR Index Return SI Shift In & Ampersand Colon
CU3 Customer Use 3 IRS Inte·rchange Record Seporator SM/SW Set Mode/Switch Exclamation Point # Number Sign
DCl Device Cantrall IT Indent Tab SO Shift Out Dollar Sign @ At Sign
DC2 Device· Control 2 IUS/ITB Interchange Unit Separator/ SOH Stort of Headi ng Asterisk Prime, Apostrophe DC3 Device Control 3 Intermediate Transmission Block SOS Start of Signifi cance

Right Parenthesis Equal Sign DC4 Device Control 4 LF Line Feed SPS Superscript
DEL Delete MFA Modify Field Attribute STX Start of Text Semicolon Quotation Mark
OLE Dota link Escape NAK Negative Acknowledge SUB Substitute Logical NOT Tilde
OS Digit Select NBS Numeri c Backspace SYN Synchronous Idle Mi nus Sign, Hyphen { Openinq Broce
EM End of Medium NL New line TRN Transparent / Slash } Closing Broce ENQ Enquiry NUL Null UBS Uni t ~ackspace Vertical Line \ Reverse Slant EO Eight Ones POC Program - Opera tor VT Vertical Tab
EOT End of Transmission Communi co tion WUS Ward Underscore
ESC E~aDe PP Presentation Posi tion
ETB End of Transmission Block RES/ENP Restore/Enable Presentation

Appendix G. EBCDIC Chart G-3

A
A (ADD) binary instruction 7-8
abbreviations, list of vii
absolute address 3-4
absolute storage 3-4
access-control bits in storage key 3-8
access exceptions 6-24

priority of 6-26
access key 3-9

for channel-program execution 3-10
for channel-subsystem monitoring

3-10
for CPU 3-10

access, storage 5-21
(See also reference)

active allegiance 15-9
activity-control field (SCSW) 16-14
AD (ADD NORMALIZED) instruction 9-6

example A-34
ADD (A,AR) binary instructions 7-8
ADD DECIMAL (AP) instruction 8-5

example A-28
ADD HALFWORD (AH) instruction 7-8

example A-8
ADD LOGICAL (AL,ALR) instructions 7-9
ADD NORMALIZED (AD,ADR,AE,AER,AXR)

instructions 9-6
example A-34

ADD UNNORMALIZED (AU,AUR,AW,AWR)
instructions 9-7

example A-34
address 3-2

absolute 3-4
arithmetic 3-5,5-5

unsigned binary 7-3
base 5-5
channel program

in ORB 15-20
used for IPL 17-13

comparison 12-1
effect on CPU state 4-2

CPU 4-30
data (I/O) 15-22

invalid specification 16-25
effective (See effective address)
failing-storage (See failing-storage
address)

format 3-2
generation 5-4

for storage addressing 3-6
I/O (See I/O addressing)
instruction (See instruction
address)

instruction 3-5
invalid 6-13
limit-checking control (I/O)

in IRB 16-12
in ORB 15-19
used for IPL 17-13

limit-checking facility (I/O)
definition 17-1
effect of I/O-system reset 17-11
limit mode (bits in PMCW) 15-3

logical (See logical address)
numbering of byte locations 3-2
PER 4-12
primary virtual 3-5
real 3-4

secondary virtual 3-5
size of 3-6

controlled by addressing mode 5-4
storage 3-2
summary information 3-36
transformation 3-4

by OAT 3-21
by prefixing 3-12

translation (OAT) 3-21
by LOAD REAL ADDRESS instruction

10-18
control of 3-22

type of 3-4
virtual 3-5
wraparound (See wraparound)
24-bit and 31-bit 0-1,3-2,5-5

address-compare controls 12-1
address space 3-13

control bit
in PSW 4-6
use in address translation 3-22

created by OAT 3-21
number (See ASN)

addressing exception 6-13
as an access exception 6-24

addressing mode 5-4,5-5
bit in entry-table entry 5-19
bit in PSW 4-6
effect on address size 3-6
effect on operand-address generation

5-5
effect on sequential

instruction-address generation 5-5
effect on wraparound 3-6
in examples A-8
programming note describing use of
5-8

with BRANCH AND SAVE AND SET MODE
instruction 7-11

with BRANCH AND SET MODE instruction
7-11

ADR (ADD NORMALIZED) instruction 9-6
AE (ADD NORMALIZED) instruction 9-6

ex.ample A-34
AER (ADD NORMALIZED) instruction 9-6
AFT (ASN first table) 3-15
AFTE (ASN-first-table entry) 3-15
AFTO (ASN-first-table origin) 3-14
AFX (ASN-first-table index) 3-14

invalid bit 3-15
translation exception 6-15

AH (ADD HALFWORD) instruction 7-8
example A-8

AKM (authorization key mask) 5-19
AL (ADD LOGICAL) instruction 7-9
alert

as class of machine-check conditions
11-11

interruption condition (I/O) 16-5
status bit (I/O) 16-16

allegiance
active 15-9
channel path 15-9
dedicated 15-10
effect of CLEAR SUBCHANNEL 15-9
working 15-9

allowed interruptions 6-5
ALR (ADD LOGICAL) instruction 7-9

Index X-I

alter-and-display controls 12-2
alteration

general-register (PER event) 4-15
storage (PER event) 4-15

AND (N,NC,NI,NR) instructions 7-9
examples A-8

AP (ADD DECIMAL) instruction 8-5
example A-28

AR (ADD) binary instruction 7-8
architectural mode 1-1

indication of 12-2
selection by

architectural-mode-selection
controls 12-2

IML controls 12-3
arithmetic

binary 7-3
decimal (See decimal instructions)
floating-point (See floating-point

instructions)
logical (See unsigned binary arith
metic)

ASCII, handled by architecture iv
ASN (address-space number) 3-13

authorization 3-18
first table (AFT) 3-15

index (AFX) 3-14
origin (AFTO) 3-14

in entry-table entry 5-19
second table (AST) 3-15

index (ASX) 3-14
origin (ASTO) 3-15

trace-control bit 4-8
translation 3-14

exceptions 6-30
specification exception 6-15

translation controls 3-14
ASN-translation-control bit 3-14,5-15
assembler language A-7

instruction formats in (See individ
ual instruction descriptions)

assigned storage locations 3-38
comparison with System/370 D-9

assists for MVS/XA v
AST (ASN second table) 3-15
ASTE (ASN-second-table entry) 3-15
ASTO (ASN-second-table origin) 3-15
ASX (ASN-second-table index) 3-14

invalid bit 3-15
translation exception 6-15

AT (authority table) 5-16
ATL (authority-table length) 3-15
ATO (authority-table origin) 3-15
attached segment-table or page-table

entry 3-31
attachment of I/O devices 13-3
attention (I/O-device status) 16-19
AU (ADD UNNORMALIZED) instruction 9-7

example A-34
AUR (ADD UNNORMALIZED) instruction 9-7
authority

table (AT) 5-16
designation 3-15

testing for 3-18
authorization

index (AX) 3-18,5-16
key mask (AKM) 5-19

auxiliary storage 3-2,3-21
AW (ADD UNNORMALIZED) instruction 9-7
AWR (ADD UNNORMALIZED) instruction 9-7
AX (authorization index) 5-16
AXR (ADD NORMALIZED) instruction 9-6

X-2 370-XA Principles of Operation

B
B field of instruction 5-5
backed-up bit 11-17
backup condition 11-17
BAL (BRANCH AND LINK) instruction 7-10

example A-9
BALR (BRANCH AND LINK) instruction 7-10

example A-9
BAS (BRANCH AND SAVE) instruction 7-10
base address 5-5

register 2-3
basic I/O functions 15-1
basic operator facilities 12-1
basic sense command 15-36
BASR (BRANCH AND SAVE) i nstructi on 7',10
BASSM (BRANCH AND SAVE AND SET MODE)

instruction 7-11
BC (BRANCH ON CONDITION) instruction

7-12
example A-9

BCR (BRANCH ON CONDITION) instruction
7-12

BCT (BRANCH ON COUNT) instruction 7-13
example A-I0

BCTR (BRANCH ON COUNT) instruction 7-13
example A-I0

bimodal addressing D-l,5-4
(See also addressing mode)

binary
(See also fixed point)
arithmetic 7-3
negative zero 7-2
number representation 7-2

examples A-2
overflow 7-3

example A-2
sign bit 7-2

binary-to-decimal conversion 7-20
bit numbering 3-2
block-concurrent storage references

5-27
block of I/O data 15-18
block of storage 3-4

(See also page)
testing for usability 10-45

borrow 7-41
boundary alignment 3-3

for instructions 5-2
branch address 5-6

in trace entry 4-10
BRANCH AND LINK (BAL,BALR) instructions

7-10
examples A-9

BRANCH AND SAVE (BAS,BASR) instructions
7-10

BRANCH AND SAVE AND SET MODE (BASSM)
instruction 7-11

BRANCH AND SET MODE (BSM) instruction
7-11

BRANCH ON CONDITION (BC,BCR)
instructions 7-12

example A-9
BRANCH ON COUNT (BCT,BCTR) instructions

7-13
example A-I0

BRANCH ON INDEX HIGH (BXH) instruction
7-13

examples A-I0
BRANCH ON INDEX LOW OR EQUAL (BXLE)

instruction 7-13
branch-trace-control bit 4-8

branching 5-6
BSM (BRANCH AND SET MODE) instruction

7-11
buffer storage (cache) 3-2
burst mode (channel-path operation)

13-3
bus-out check (bit in I/O sense data)

15-31
busy

as I/O-device status 16-21
control unit 16-19,16-21
handling in I/O 13-6
in I/O operations 13-9
in SIGNAL PROCESSOR 4-33

BXH (BRANCH ON INDEX HIGH) instruction
1-13

examples A-I0
BXLE (BRANCH ON INDEX LOW OR EQUAL)

instruction 1-13
byte 3-2
byte index (BX) 3-22
byte-multiplex mode (channel-path opera
tion) 13-3

C
C (COMPARE) binary instruction 7-14
cache 3-2
carry 7-3
CBC (checking-block code) 11-2

in registers 11-9
in storage 11-6
in storage keys 11-1

CCW (channel-command word) 15-20
address

in ORB 15-20
in SCSW 16-28

byte count 15-21
chaining 15-23

command 13-8,15-21,15-21
data 13-8,15-21,15-26

check (in subchannel logout) 16-37
command codes (See I/O commands)
current 15-20
designation of storage area

15-21,15-22
format control

in IRB 16-11
in ORB 15-19
used for IPL 17-13

format-O and -1 contents 15-21
in IPL, assigned storage locations
for 3-38

indirect data addressing 13-1,15-30
invalid address 16-24
invalid format 16-25
prefetch control

in IRB 16-11
in ORB 15-19
used for IPL 17-13

prefetching 15-27
role in I/O operations 13-6

CD (COMPARE) floating-point instruction
9-8

CDR (COMPARE) floating-point instruction
9-8

examples A-35
CDS (COMPARE DOUBLE AND SWAP) instruc
tion 7-14

CE (COMPARE) floating-point instruction
9-8

central processing unit (See CPU)

CER (COMPARE) floating-point instruction
9-8

CH (COMPARE HALFWORD) instruction 7-16
example A-II

chaining
check (I/O-subchannel status) 16-27
of CCWs 13-8,15-23

command 15-21,15-21
data 15-21,15-26

of CRWs 17-16,17-17
change

bit in storage key 3-8
recording 3-11

channel
command word (See CCW)
commands (See I/O commands)
control check (I/O-subchannel status)

16-26
data check (I/O-subchannel status)

16-26
end (I/O-device status) 16-21
program 13-6,15-20

requirements for RESUME SUBCHANNEL
14-8

program serialization 5-30
report 17-15

generated as a result of RCHP
14-7

pending 17-15
report word (See CRW)

channel path 13-1,13-3,13-4
active allegiance 15-9
available for selection 15-10
dedicated allegiance 15-10
effect of I/O-system reset 17-10
identifier (See CHPID)
not operational 16-13
reset 17-9

effect of I/O-system reset 11-11
reset function

execution of 15-42
initiation by RESET CHANNEL PATH
14-6

reset signal 11-8
status word 14-13
storing of status 14-13
type::; 13-5
working allegiance 15-9

channel report pending 11-11
subclass-mask bit 11-22

channel subsystem 2-5
addressing 13-5
damage 11-17
effect of I/O-system reset 11-9
monitoring facilities 11-2

effect of I/O-system reset 17-11
operations 15-17
power-on reset 4-29
recovery 11-4,17-14
structure 13-2
timer 17-2

effect of I/O-system reset 11-11
timing facility 17-2

characteristic (of floating-point
number) 9-1

check bits 3-2,11-2
check stop 11-10

as signal-processor status 4-35
indicator 12-2
state 4-2

due to malfunctioning manual oper
ation 12-1

effect on CPU timer 4-23
entering of 11-10,11-13

Index X-3

malfunction alert when entering
6-11

system 11-11
checking block 11-2

code (See CBC)
checkpoint 11-2

synchronization 11-3
CHPID (channel-path identifier) 13-5

u~ed in RESET CHANNEL PATH 14-6
CHPID (channel-path identifier) in PMCW

15-5
CL (COMPARE lOGICAL) instruction 7-16
CLC (COMPARE LOGICAL) instruction 7-16

example A-II
ClCl (COMPARE LOGICAL LONG) instruction

7-17
example A-13

clear function
clear signal 17-8
execution of 15-11
indication of 16-13
initiated by CLEAR SUBCHANNEl 14-3
pending 16-15
signaling 15-12
subchannel modification 15-12

clear reset 4-28
clear signal 17-8

issued as part of CSCH 15-12
CLEAR SUBCHANNEL (CSCH) instruction

14-3
after RESET CHANNEL PATH 14-7
clear signal 17-8
effect on device status 15-12
function initiated by 15-11
path management for 15-11

clearing operation
by clear-reset function 4-28
by load-clear key 12-3
by system-reset-clear key 12-5
by TEST BLOCK instruction 10-45

CLI (COMPARE lOGICAL) instruction 7-16
example A-12

ClM (COMPARE lOGICAL CHARACTERS UNDER
MASK) instruction 7-17

example A-12
clock (See TOO clock)
clock comparator 4-21

external interruption 6-9
save areas for 3-40
subclass-mask bit 6-10
validity bit for 11-20

clock unit 4-21
ClR (COMPARE LOGICAL) instruction 7-16

example A-12
code

checking-block (See CBC)
condition (See condition code)
decimal digit and sign 8-2
instruction-length (See IlC)
interruption (See interruption code)
monitor (See monitor code)
operation 5-2
PER (See PER code)
version 10-43

codes, interruption, summary of 6-2
command

chaining 13-8,15-27
(See also chaining of CCWs)
effect of status modifier 15-28

code in CCW 15-21,15-22
invalid 16-24

reject (bit in I/O sense data) 15-36
retry 15-39

X-4 370-XA Principles of Operation

effect on PCI 15-29
commands (Sea I/O commands)
common-segment bit 3-24
COMPARE (C,CR) binary instructions 7-14
COMPARE (CD,CDR,CE,CER) floating-point

instructions 9-8
examples A-35

COMPARE AND SWAP (CS) instruction 7-14
examples A-38

COMPARE DECIMAL (CP) instruction 8-5
example A-29

COMPARE DOUBLE AND SWAP (CDS) instruc
tion 7-14

COMPARE HAlFWORD (CH) instruction 7-16
example A-II

COMPARE LOGICAL (CL,ClC,CLI,CLR)
instructions 7-16

examples A-II
COMPARE LOGICAL CHARACTERS UNDER MASK

(CLM) instruction 7-17
example A-12

COMPARE LOGICAL LONG (CLCL) instruction
7-17

example A-13
comparison

address 12-1
decimal 8-5
floating-point 9-8
logical 7-4
signed-binary 7-4
TOD-clock 4-22

comparison between System/370 and 370-XA
modes D-l

compatibility 1-3
I/O-operation 13-1

completion
of instruction execution 5-11
of unit of operation 5-12

conceptual sequence 5-21
effect on storage-operand accesses

5-28
conclusion

of I/O operations 13-7,16-1
during data transfer 15-41
during initiation 15-39
for immediate commands 15-40

of instruction execution 5-11
concurrency of storage references 5-27
condition code 5-6

deferred 16-9
for I/O operations 14-2
in PSW 4-6
summary C-l
tested by BRANCH ON CONDITION

instruction 7-12
validity bit for 11-19

conditions for interruption (See inter
ruption)

configuration 2-2
of storage 3-4

connective (See logical connective)
consistency (storage operand) 5-27

example A-42,A-45
console device 12-1
control 4-1

as an I/O command 15-35
instructions 10-1
manual (See manual operations)
register 2-3

comparison with System/370 D-7
description and assignments 4-6
save areas for 3-41
validity bit for 11-20

control-registe~ assignment
(CRx.y indic~tes control register x,
bit position y)

CRO.l:
SSM-suppression-control bit

6-22,10-40
CRO.2:

TOD-clock-sync-control bit
4-19,4-21

CRO.3:
low-address-protection-control bit
3-11

CRO.4:
extraction-authority-control bit

5-15
CRO.5:

secondary-space-control bit
3-23,5-15

CRO.6:
fetch-protection-override control
bit 3-10

CRO.8-12:
translation format 3-23

CRO.16:
malfunction-alert subclass-mask
bit 6-11

CRO.17:
emergency-signal subclass-mask bit

6-10
CRO.18:

external-call subclass-mask bit
6-10

CRO.19:
TOO-clock sync-check subclass-mask
bit 6-11

CRO.20:
clock-comparator subclass-mask bit

6-10
CRO.21:

CPU-timer subclass-mask bit 6-10
CRO.22:

service-signal subclass-mask bit
6-11

CRO.25:
interrupt-key subclass-mask bit
6-10

CRl.0:
space-switch-event-control bit
3-23,6-21

CRl.I-19:
primary segment-table origin

(PSTO) 3-23
CRl.25-31:

primary segment-table length
(PSTL) 3-23

CR3.0-15:
PSW-key mask (PKM) 5-15

CR3.16-31:
secondary ASH (SASH) 3-14

CR4.0-15:
authorization index (AX)

3-18,5-16
CR4.16-31:

primary ASH (PASH) 3-14
CR5.0:

subsystem-linkage-control bit
5-15,5-18

CR5.1-24:
linkage-table origin (LTO) 5-18

CR5.25-31:
linkage-table length (LTL) 5-18

CR6.0-7:
I/O-interruption subclass-mask
bits 6-12

CR7.1-19:
secondary segment-table origin

(SSTO) 3-24
CR7.25-31:

secondary segment-table length
(SSTL) 3-24

CR8.16-31:
monitor-mask bits 6-18

CR9.0:
PER
successful-branching-event-mask
bit 4-11

CR9.1:
PER
instruction-fetching-event-mask
bit 4-11

CR9.2:
PER storage-alteration-event-mask
bit 4-11

CR9.3:
PER
general-register-alteration-event-mask
bit 4-11

CR9.16-31:
PER general-register-mask bits

4-11
CRI0.1-31:

PER starting address 4-11
CRll.1-31:

PER ending address 4-11
CR12.0:

branch-trace-control bit 4-8
CR12.1-29:

trace-entry address 4-8
CR12.30:

ASN-trace-control bit 4-8
CR12.31:

explicit-trace-control bit 4-~
CR14.3: .

channel-report-pending
subclass-mask bit 11-22

CRI4.4:
recovery subclass-mask bit 11-22

CR14.5:
degradation subclass-mask bit
11-22

CR14.6:
timing-facility-damage
subclass-mask bit 11-22

CRI4.7:
warning subclass-mask bit 11-22

CR14.12:
ASH-translation-control bit
3-14,5-15

CRI4.13-31:
ASN-first-table origin (AFTO)

3-14
control unit 2-5,13-4

busy 16-19,16-21
effect of I/O-system reset 17-9
end (I/O-device status) 16-19
model and type number in basic sense

data 15-38
sharing of 13-4
type 15-11

conversion
binary-to-decimal 7-20
decimal-to-binary 7-19
floating-point-humber

basic example A-7
instruction-sequence examples
A-36

CONVERT TO BINARY (CVB) instruction
7-19

Index X-5

example A-14
CONVERT TO DECIMAL (CVD> instruction

7-20
example A-14

count field
in CCW 15-21

invalid 16-24
in SCSW 16-33

counter updating (example> A-39
counting operations 7-13
CP (COMPARE DECIMAL) instruction 8-5

example A-29
CPU (central processing unit) 2-2

address 4-30
assigned storage locations for

3-39
when stored during external inter

ruptions 6-9
checkpoint 11-2
hangup due to string of interruptions

4-3
identification (ID) 10-43
model number 10-43
power-on reset 4-29
registers 2-2

save areas for 3-40
reset 4-27

as signal-processor order 4-32
retry 11-2
serialization 5-29
signaling 4-31
state 4-2

no effect on TOD clock 4-18
timer 4-22

external interruption 6-10
save areas for 3-40
subclass-mask bit 6-10
validity bit for 11-20

version code 10-43
CR (See control register)
CR (COMPARE) binary instruction 7-14
CRW (channel-report word) 17-15

chaining 17-16,17-17
contents of 17-16
overflow 17-17
solicited 17-16
storing 14-13

CS (COMPARE AND SWAP) instruction 7-14
examples A-38

CSCH (See CLEAR SUBCHANNEL instruction)
current CCW 15-20
current PSW 4-3,5-6

(See also PSW)
stored during interruption 6-2

CVB (CONVERT TO BINARY) instruction
7-19

example A-14
CVD (CONVERT TO DECIMAL) instruction

7-20
example A-14

D
D (DIVIDE) binary instruction 7-20

example A-15
D field of instruction 5-5
damage

channel-subsystem 11-17
instruction-processing 11-15
processing 11-18
system 11-15
timing-facility 11-16

mask bit for 11-22

X-6 370-XA Principles of Operation

DAT (See dynamic address translation)
DAT mode (bit in PSW) 4-5

use in address translation 3-22
data

address (I/O) 15-22
invalid 16-25

chaining of (I/O) 13-7,15-26
check

bit in I/O sense data 15-37
measurement block 16-36

exception 6-15
format for

decimal instructions 8-1
floating-point instructions 9-2
general instructions 7-2

indirect addressing of (I/O)
13-7,15-30

prefetching for I/O operation 15-23
streaming (I/O) 13-3

effect of CCW count on 15-27
DCTI (device-connect-time interval)

in ESW 16-40
in measurement block 17-5

DD (DIVIDE) floating-point instruction
9-8

DOR (DIVIDE) floating-point instruction
9-8

DE (DIVIDE) floating-point instruction
9-8

decimal
comparison 8-5
digit codes 8-2
divide exception 6-16
instructions 8-1

examples A-28
number representation 8-1

examples A-5
operand overlap 8-3
overflow

exception 6-16
mask in PSW 4-6

sign codes 8-2
decimal-to-binary conversion 7-19
dedicated allegiance 15-10
deferred condition code 16-9
degradation (machine-check condition>

11-16
degradation subclass-mask bit 11-22
delay in storing 5-25
deletion of malfunctioning unit 11-4
DER (DIVIDE) floating-point instruction

9-8
examples A-35

designation (origin and length)
authority-table 3-15
entry-table 5-18
linkage-table 5-18

in AST entry 3-16
of storage area for data (I/O) 15-22
page-table 3-24
primary segment-table 3-23
secondary segment-table 3-24
segment-table 3-23

in AST entry 3-15
destructive overlap 5-28,7-28
device 2-5,13-4

active 16-15
address 13-5
busy 16-21
connect-time interval (DCTI)

in ESW 16-40
in measurement block 17-5

connect-time measurement 17-7
effect of suspension 15-32

enable 15-3,17-7
console 12-1
disconnect-time interval, in measure-

ment block 17-5
effect of I/O-system reset 17-9
end (I/O-device status) 16-21
model and type number in basic sense
data 15-38

not ready 15-36
number 13-5

assignment of 13-6
in PMCW 15-4
valid bit in PMCW 15-4

ready 16-22
status conditions 16-18

DIAGNOSE instruction 10-4
used for service-processor communi-
cation 4-23

digit codes (decimal) 8-2
digit selector 8-6
direct-access storage 3-2
disabling, for interruptions 6-5
disallowed interruptions 6-5
displacement 5-5
display (manual controls) 12-2
DIVIDE (D,DR) binary instructions 7-20

example A-15
DIVIDE (DD,DDR,DE,DER, DXR)
floating-point instructions 9-8

DIVIDE (DD,DDR,DE,DER) floating-point
instructions, examples A-35

DIVIDE DECIMAL (DP) instruction 8-5
example A-29

divide exception
decimal 6-16
fixed-point 6-17
floating-point 6-17

doubleword 3-3
concurrency of reference 5-27

DP (DIVIDE DECIMAL) instruction 8-5
example A-29

DR (DIVIDE) binary instruction 7-20
dump (standalone) 12-4
dynamic address translation (DAT) 3-21

mode bit in PSW 4-5
sequence of table fetches 5-24

E
early exception recognition 6-8
EBCDIC, handled by architecture iv
ECC (error checking and correction)

11-2
ECW (extended-control word) 16-8,16-43

format bit in SCSW 16-12
ED (EDIT) instruction 8-6

examples A-29
EDIT (ED) instruction 8-6

examples A-29
EDIT AND MARK (EDMK) instruction 8-9

example A-31
editing instructions 8-3
EDMK (EDIT AND MARK) instruction 8-9

example A-31
effective address 3-5

~ontrolled by addressing mode 5-4
generation 5-4
used for storage interlocks 5-22

effective segment-table designation
3-26

EKM (entry key mask) 5-19
emergency signal

as signal-processor order 4-31

external interruption 6-10
subclass-mask bit 6-10

enabled (bit in PMCW) 15-2
enabling

for interruptions 6-5
of subchannel 15-2,16-6

ending of instruction execution 5-11
entry

index (EX) 5-17
table (ET) 5-18

designation 5-18
trace 4-9

EPAR (EXTRACT PRIMARY ASH) instruction
10-5

epoch (for TOD clock) 4-20
equipment check

as signal-processor status 4-35
bit in I/O sense data 15-37

ERC (error-recovery code) 17-17
error

checking and correction 11-2
effect of DIAGNOSE instruction 10-5
I/O alert 16-38
in PSW format 6-8
intermittent 11-5
recovery code (ERC) 17-17
solid 11-5
state of TOD clock 4-19
storage 11-18
storage-key 11-18

ESAR (EXTRACT SECONDARY ASN) instruction
10-5

ESW (extended-status word) 16-8,16-35
format bit in SCSW 16-8
format 0 16-36
format 1 16-40
format 2 16-40
format 3 16-41

ET (entry table) 5-18
ETL (entry-table length) 5-18
ETO (entry-table origin) 5-18
event 6-12

monitor 7-26
PER 4-11
space-switch 6-21

EX (entry index) 5-17
translation exception 6-17

EX (EXECUTE) (See EXECUTE instruction)
exceptions 6-12

access 6-24
addressing 6-13
AFX-translation 6-15
ASH-translation 6-30
ASN-translation-specification 6-15
associated with PSW 6-8
ASX-translation 6-15
data (decimal) 6-15
decimal-divide 6-16
decimal-overflow 6-16
early recognition of 6-8
EX-translation 6-17
execute 6-16
exponent-overflow 6-16
exponent-underflow 6-16
fixed-point-divide 6-17
fixed-poi nt-overflow 6-17
floating-point-divide 6-17
for invalid translation addresses and

formats 3-30
late recognition of 6-8
LX-translation 6-17
operand 6-18
operation 6-18
page-translation 6-19

Index X-7

PC-translation-specification 6-19
primary-authority 6-19
privileged-operation 6-20
protection 6-20
secondary-authority 6-21
segment-translation 6-21
significance 6-21
special-operation 6-22
specification 6-22
trace 6-31
trace-table 6-23
translation-specification 6-23

EXCLUSIVE OR (X,XC,XI,XR) instructions
7-21

examples A-15
EXECUTE (EX) instruction 7-22

effect of address comparison 12-1
example A-17
exceptions while fetching target 6-7
PER event for target 4-14

execute exception 6-16
exigent machine-check condition 11-11
explicit-trace-control bit 4-9
exponent 9-1

(See also floating point)
overflow 9-1

exception 6-16
underflow 9-1

exception 6-16
mask in PSW 4-6

extended-control word (See ECW)
extended floating-point number 9-2
extended-status flags (in subchannel

logout) 16-36
extended-status word (See ESW)
external

call
as signal-processor order 4-31
external interruption due to 6-10
pending (signal-processor status)

4-35
subclass-mask bit 6-10

interruption 6-9
clock-comparator 4-22,6-9
CPU-timer 4-22,6-10
emergency-signal 6-10
external-call 6-10
interrupt-key 6-10
malfunction-alert 6-11
service-signal 4-23,6-11
TOD-clock-sync-check 6-11

mask in PSW 4-5
externally initiated functions 4-23

I/O 17-12
EXTRACT PRIMARY ASN (EPAR) instruction
10-5

EXTRACT SECONDARY ASH (ESAR) instruction
10-5

extraction-authority-control bit 5-15

F
facilities, comparison with System/370

D-l
failing-storage address 11-21

assigned storage locations for 3-41
validity bit for 11-19

fetch protection 3-9
bit in storage key 3-8
override-control bit 3-10

fetch reference 5-25
access exceptions for 6-26

fetching

X-8 370-XA Principles of Operation

of OAT-table entries 5-24
of instructions 5-23

field 3-2
field separator 8-6
field-validity flags (in subchannel

logout) 16-37
fill byte 8-6
fixed-length field 3-2
fixed logout

assigned storage locations for 3-41
machine-check 11-22

fixed point
(See also binary)
divide exception 6-17
overflow exception 6-17

mask in PSW 4-6
floating interruption conditions
6-6,11-21

clearing of 4-28
floating point

(See also exponent)
comparison 9-8
conversion

basic example A-7
instruction-sequence examples

A-36
data format 9-2
divide exception 6-17
instructions 9-1

examples A-34
numbers 9-1

examples A-5
register 2-3

save areas for 3-41
validity bit for 11-19

shifting (See normalization)
format

CCW (channel-command word) 15-21
control 15-35
read 15-34
read backward 15-35
sense 15-36
sense ID 15-38
write 15-34

decimal data 8-1
floating-point data 9-2
general data 7-2
IDAW 15-30
information 3-2
instruction 5-2
PSW 4-5

fraction 9-1
fullword (SeQ word)
function control 16-13

clear function 16-13
halt function 16-13
start function 16-13

function-pending time
accumulated 17-4
in measurement block 17-5

G
G (giga), multiplier iv
general instructions 7-2

examples A-8
general registers 2-3

alteration-event-mask bit 4-11
alteration of (PER event) 4-15
PER-mask bits 4~11
save areas for 3-41
validity bit for 11-19

glue module 5-9
guard digit 9-3

H
halfword 3-3

concurrency of reference 5-27
halt function

execution of 15-13
halt signal 17-8
indication of 16-13
initiated by HALT SUBCHANNEL 14-4
pending 16-15
signaling 15-14

halt signal 17-8
issued as part of HSCH 15-14

HALT SUBCHANNEL (HSCH) instruction 14-4
after RESET CHANNEL PATH 14-7
effect on SCSW count field 15-15
function initiated by 15-13
halt signal 17-8
path management for 15-13

HALVE (HDR,HER) instructions 9-10
example A-36

HDR (HALVE) instruction 9-10
example A-36

HER (HALVE) instruction 9-10
hexadecimal (hex) representation 5-3
high-speed data transfer (I/O) 13-3
HSCH (See HALT SUBCHANNEL instruction)

I
I field of instruction 5-4
I/O (input/output) 2-5

address-limit-checking facility 17-1
addressing 13-5

channel-path identifier (See
CHPID)

device address 13-5
device number 13-5
subchannel number 13-5

basic functions 15-1
commands 15-22,15-32

(See also particular command)
comparison with System/370 D-6
control unit (See control unit)
data blocking 15-18
device (See device)
effect on CPU timer 4-22
error

alert (in subchannel logout)
16-38

with machine check 11-5
externally initiated functions 17-12

I/O-system reconfiguration 17-14
initial program loading (IPL)
17-12

instructions 14-1,14-2
condition code 14-2
deferred condition code 16-9
format 14-1

interface, OEMI v
interruption 6-11,16-1

(See also interruption)
action 16-6
alert condition 16-5
clearing of 13-8
conditions 13-8,16-2
i~itial-status control (in IRB)
16-12

initial-status control (in ORB)
15-19

initial-status indication (in IRB)
16-12

intermediate condition 16-4
masks 13-8

parameter 15-2,15-19
parameter, assigned storage
locations for 3-40

primary condition 13-7,16-4
priority 16-5
program-controlled (See PCI)
secondary condition 13-7,16-4
solicited condition 16-3
subclass 13-8,16-5
subclass code in PMCW 15-2
subclass mask 16-6
subclass-mask bits 6-12
unsolicited condition 16-3
zero condition code (in IRB)

16-12
mask in PSW 4-5
monitoring (See measurement)
operations 13-6,15-17

conclusion (See conclusion of I/O
operations)

immediate 15-40
initiated 16-12
initiation of 13-6
suspend-control 15-19
suspension of 13-8,15-31
termination (See conclusion of

I/O operations)
sense data 15-36

(See also particular sense bit)
support functions 17-1
system reset 17-9

as part of subsystem reset 4-28
lAC (INSERT ADDRESS SPACE CONTROL)
instruction 10-6

IC (INSERT CHARACTER) instruction 7-23
IC (instruction counter) (See instruc
tion address)

ICM (INSERT CHARACTERS UNDER MASK)
instruction 7-23

examples. A-17
ID (See CPU identification and also
sense ID)

IDA (indirect-data-address) flag (in
CCW) 15-21

IDAW (indirect-data-address word) 15-30
check (in subchannel logout) 16-37
contents of 15-30
invalid address specification 16-24
invalid specification 16-25

idle subchannel 16-14
ILC (instruction-length code) 6-6

assigned storage locations for 3-39
for program interruptions 6-12
for supervisor-call interruption

6-31
IML (initial microprogram loading),
controls 12-3

immediate operand 5-4
immediate operation 15-40
incorrect length (I/O-subchannel status)
16-24

for control command 15-36
for write command 15-34

incorrect state (signal-processor
status) 4-35

index
for address generation 5-5

instructions for handling 7-13
into ASN first and second tables
3-14

into authority table 5-16
into entry and linkage tables 5-17
into measurement-block area (I/O)
17-6

Index X-9

register 2-3
indicator

check-stop 12-2
load 12-3
manual 12-3
mode 12-2
test 12-5
wait 12-5

indirect data address
flag (IDA flag in CCW) 15-21
role in I/O operations 15-30
word (See IDAW)

indirect data addressing (I/O) 15-30
information format 3-2
initial CPU reset 4-27

as signal-processor order 4-32
initial microprogram loading (IML),
controls 12-3

initial program loading (See IPL)
initial-status-interruption control

in IRB 16-12
in ORB 15-19
used for IPL 17-13

inoperative (signal-processor status)
4-35

input/output (See I/O)
INSERT ADDRESS SPACE CONTROL (lAC)
instruction 10-6

INSERT CHARACTER (IC) instruction 7-23
INSERT CHARACTERS UNDER MASK (ICM)
instruction 7-23

examples A-17
INSERT PROGRAM MASK (IPM) instruction
7-23

INSERT PSW KEY (IPK) instruction 10-7
INSERT STORAGE KEY EXTENDED (ISKE)
instruction 10-7

INSERT VIRTUAL STORAGE KEY (IVSK)
instruction 10-7

installation 2-2
instruction address

handling by DAT 3-22
in address translation 3-5
in entry-table entry 5-19
in PSW 4-6

validity bit for 11-19
instruction-fetching-event mask 4-11
instructions

(See also by name and mnemonic)
backing up of 11-17
classes of 2-2
comparison with System/370 0-4
control 10-1

,damage to 11-15,11-18
decimal 8-1

examples A-28
ending, types of 5-11
examples of use A-7
execution 5-6
fetching of 5-23

access exception for 6-26
PER event 4-14

floating-point 9-1
examples A-34

format 5-2
general 7-2

examples A-8
I/O, role in I/O operations 13-6
interruptible 5-11
length of 5-3
list of B-1
modification by EXECUTE instruction

7-22
prefetching of 5-23

X-10 370~XA Principles of Operation

privileged 4-5
for control 10-1

processing damage 11-15,11-18
semiprivileged 4-5,10-1
sequence of execution 5-2
stepping of (rate control) 12-4

effect on CPU state 4-2
effect on CPU timer 4-23

integer
binary 7-2

address as 5-5
examples A-2

decimal 8-2
integral boundary 3-3
interface

control check (I/O-subchannel status)
16-27

I/O, OEMI v
interlock of storage 5-22

for update references 5-26
intermediate interruption condition

er/O) 16-4
intermediate-status bit (I/O) 16-17
intermittent errors 11-5
internal storage 2-2
interrupt key 12-3

external interruption 6-10
subclass-mask bit 6-10

interruptible instructions 5-11
COMPARE LOGICAL LONG 7-19
MOVE LONG 7-28
PER event affecting the ending of

4-13
stopping of 4-2
TEST BLOCK 10-45

interruption 6-2
(See also masks)
action 6-2

I/O 16-6
machine-check 11-12

classes 6-5
code 6-5

assigned storage locations for
3-39

external 6-9
I/O 6-12,14-15,16-6
program 6-12
summary of 6-2
supervisor-call 6-31

conditions 6-2
alert (I/O) 16-5
clearing of 4-27
floating 6-6,11-21
I/O 13-8,16-2
intermediate (I/O) 16-4
primary (I/O) 16-4
secondary (I/O) 16-4
solicited (I/O) 16-3
unsolicited (I/O) 16~3

effect on instruction sequence 5-11
external 6-9
I/O (See I/O interruption)
identification, assigned storage
locations for 3-39

machine-check
(See machine-check interruption)
code 11-14

masking of 6-5
parameter (I/O)

assigned storage locations for
3-40

in ORB 15-19
in PMCW 15-2
used for IPL 17-13

pending 6-5
external 6-9
machine-check 11-13
relation to CPU state 4-2

priority 6-32
access exceptions for 6-26
ASN-translation exceptions 6-30
external 6-9
I/O 16-5
PER event 4-13
program-interruption conditions

6-26
trace exceptions 6-31

program (See program interruption)
program-controlled (I/O) (See PCI)
response block (See IRB)
restart 6-31
string (See string of interruptions)
subclass code (I/O) 15-2
supervisor-call 6-31
suppress-suspended-interruption
control (I/O)

in IRB 16-12
in ORB 15-19

intervention required (bit in I/O sense
data) 15-36

invalid
address 6-13
ASN-first-table entry 3-15
ASN-second-table entry 3-15
CBC 11-2

in registers 11-9
in storage 11-6
in storage keys 11-7

linkage-table entry 5-18
operation code 6-18
order (signal-processor status) 4-35
page 3-25
parameter (signal-processor status)

4-35
segment 3-24
translation address 3-30
translation format 3-23

exception recognition 3-30
INVALIDATE PAGE TABLE ENTRY (IPTE)
instruction 10-8

effect when CPU is stopped 4-2
IPK (INSERT PSW KEY) instruction 10-7
IPL (initial program loading)
4-29,17-12

assigned storage locations for 3-38
effect on CPU state 4-3

IPM (INSERT PROGRAM MASK) instruction
7-23

IPTE (INVALIDATE PAGE TABLE ENTRY)
instruction 10-8

IRB (interruption-response block)
contents of 16-6
extended-control word (See ECW)
extended-status word (See ESW)
subchannel-status word (See SCSW)

ISKE (INSERT STORAGE KEY EXTENDED)
instruction 10~7

IVSK (INSERT VIRTUAL STORAGE KEY)
instruction 10-7

K
K (kilo), multiplier tV
key

access (See access key)
check (in subchannel logout) 16-36
manual (See manual operations)

mask
authorization 5-19
entry 5-19
PSW (PKM) 5-15

PSW (See PSW key)
storage (See storage key)
subchannel (See subchannel key)

key-controlled protection 3-9
exception for 6-20

L
L (LOAD) binary instruction 7-24

example A-18
L fields of instruction 5-4
LA (LOAD ADDRESS) instruction 7-24

examples A-18
LASP (LOAD ADDRESS SPACE PARAMETERS)
instruction 10-10

last-path-used mask (See LPUM)
late exception recognition 6-8
LCDR (LOAD COMPLEMENT) floating-point
instruction 9-11

LCER (LOAD COMPLEMENT) floating-point
instruction 9-11

LCR (LOAD COMPLEMENT) binary instruction
7-24

LCTL (LOAD CONTROL) instruction 10-17
lD (LOAD) floating-point instruction

9-10
LDR (LOAD) floating-point instruction

9-10
LE (LOAD) floating-point instruction

9-10
left-to-right addressing 3-2
length

field 3-2
instruction 5-3
register operand 5-4
variable (storage operands) 5-4

lER (LOAD) floating-point instruction
9-10

LH (LOAD HALFWORD) instruction 7-25
examples A-19

limit mode 15-3
link information

for BRANCH AND LINK instruction 7-10
for BRANCH AND SAVE AND SET MODE

instruction 7-11
for BRANCH AND SAVE instruction 7-10

linkage (subroutine) 5-7
linkage index (LX) 5-17
linkage table (LT) 5-18

designation (LTD) 5-18
in AST entry 3-16

length (LTL) 5-18
origin (LTO) 5-18

LM (LOAD MULTIPLE) instruction 7-25
LNDR (LOAD NEGATIVE) floating-point
instruction 9-11

LNER (LOAD NEGATIVE) floating-point
instruction 9-11

LNR (LOAD NEGATIVE) binary instruction
7-25

LOAD (L,LR) binary instructions 7-24
example A-18

LOAD (LD,LDR,LE,LER) floating-point
instructions 9-10

LOAD ADDRESS (LA) instruction 7-24
examples A-18

LOAD ADDRESS SPACE PARAMETERS (LASP)
instruction 10-10

Index X-I!

LOAD AND TEST (LTDR,LTER) floating-point
instructions 9~11

LOAD AND TEST (LTR) binary instruction
7-24

load-clear key
LOAD COMPLEMENT
floating-point

LOAD COMPLEMENT
7-24

12-3
(LCDR,LCER)
instructions 9-11
(LCR) binary instruction

LOAD CONTROL (LCTL) instruction 10-17
LOAD HALFWORD (LH) instruction 7-25

examples A-19
load indicator 12-3
LOAD MULTIPLE (LM) instruction 7-25
LOAD NEGATIVE (LNDR,LNER) floating-point
instructions 9-11

LOAD NEGATIVE (LNR) binary instruction
7-25

load-normal key 12-3
LOAD POSITIVE (LPDR,LPER) floating-point
instructions 9-12

LOAD POSITIVE (LPR) binary instruction
7-26

LOAD PSW (LPSW) instruction 10-17
LOAD REAL ADDRESS (LRA) instruction

10-18
LOAD ROUNDED (LRDR,LRER) instructions

9-12
load state 4-2

assigned storage while in 3-38
in IPL 4-29

load-unit-address controls 12-3
loading, initial (See IPL, IML)
location not provided 6-13
logical

address 3-5
handling by DAT 3-22

arithmetic (See unsigned binary
arithmetic)

comparison 7-4
connective

AND 7-9
EXCLUSIVE OR 7-21
OR 7-33

data 7-2
logical-path mask (See LPM)
logout

fixed
assigned storage locations for

3-41
machine-check 11-22

subchannel (I/O) 16-36
long floating-point number 9-2
long I/O block 16-24
loop control 5-7
loop of interruptions (See string of
interruptions)

low-address protection 3-11
control bit 3-11
exception for 6-20

LPDR (LOAD POSITIVE) floating-point
instruction 9-12

LPER (LOAD POSITIVE) floating-point
instruction 9-12

LPM (logical-path mask) 15-4
effect on system performance 15-8
in ORB 15-20
used for IPL 17-13

LPR (LOAD POSITIVE) binary instruction
7-26

LPSW (LOAD PSW) instruction 10-17
LPUM (last-path-used mask) 15-4

in ESW 16-37

X-12 370-XA Principles of Operation

LR (LOAD) binary instruction 7-24
LRA (LOAD REAL ADDRESS) instruction
10-18

LRDR (LOAD ROUNDED) instruction 9-12
LRER (LOAD ROUNDED) instruction 9-12
LT (linkage table) 5-18
LTD (linkage-table designation) 5-18
LTDR (LOAD AND TEST) floating-point
instruction 9-11

LTER (LOAD AND TEST) floating-point
instruction 9-11

LTL (linkage-table length) 5-18
LTO (linkage-table origin) 5-18
LTR (LOAD AND TEST) binary instruction
7-24

LX (linkage index) 5-17
invalid bit 5-18
translation exception 6-17

M
M (mega), multiplier iv
M (MULTIPLY) binary instruction 7-32

example A-22
machine check 11-2

(See also malfunction)
comparison with System/370 D-9
fixed logout 11-22
interruption 6-12,11-11

action 11-12
code (MCIC) 3-40,11-14
floating conditions 11-21

logout 11-22
mask in PSW 4-5
subclass masks 11-21

main storage 3-2
(See also storage)
power-on reset 4-29
shared, in multiprocessing 4-30

malfunction 11-2
(See also machine check)
correction of 11-2
effect of DIAGNOSE instruction 10-5
effect on manual operation 12-1
indication of 11-4

malfunction alert (external
interruption) 6-11

subclass-mask bit 6-11
when entering check-stop state 11-10

manual indicator 12-3
(See also stopped state)

manual operations 12-1
controls

address-compare 12-1
alter-and-display 12-2
IML 12-3
load-unit-address 12-3
power 12-3
rate 12-4
TOD-clock 12-5

effect on CPU signaling 4-33
keys

interrupt 12-3
load-clear 12-3
load-normal 12-3
restart 12-4
start 12-4
stop 12-4
store-status 12-4
system-reset-clear 12-5
system-reset-normal 12-5

masks 6-5
(See also interruption)
in BRANCH ON CONDITION instruction
7-12

in COMPARE LOGICAL CHARACTERS UNDER
MASK instruction 7-17

in INSERT CHARACTERS UNDER MASK
instruction 7-23

in PSW 4-5
in STORE CHARACTERS UNDER MASK
instruction 7-38

monitor 6-18
PER event 4-11
PER general-register 4-11
program-interruption 6-13
subclass

external 6-9
I/O 6-12
machine check 11-21

maximum negative number 7-2
MC (MONITOR CALL) instruction 7-26
MCIC (machine-check-interruption code)

11-14
MD (MULTIPLY) floating-point instruction

9-13
MDR (MULTIPLY) floating-point instruc

tion 9-13
example A-36

ME (MULTIPLY) floating-point instruction
9-13

measurement
block (I/O) 17-4

data check 16-36
index 15-5,15-8,17-6
key 17-5
key, used as access key 3-10
origin 17-5
program check 16-36
protection check 16-36
update enable 15-3,17-6
update facility 17-4
update mode 17-6

device-connect-time-measurement
facility (I/O) 17-7

mode control 15-3
parameters (I/O)

accrued 17-4
effect of CSCH 14-4
effect of HSCH 14-5

MER (MULTIPLY) floating-point instruc
tion 9-13

message byte 8-6
MH (MULTIPLY HALFWORD) instruction 7-32

example A-23
microprogram, initial loading of 12-3
mode

addressing (See addressing mode)
architectural (See architectural

mode)
burst (channel-path operation) 13-3
byte-multiplex (channel-path opera
tion) 13-3

device-connect-time measurement (I/O)
17-7

indicator 12-2
measurement block update (I/O) 17-6
multi path (See multi path mode)
primary-space 3-22
real 3-22
requirements for semiprivileged
instructions 5-15

secondary-space 3-22
single-path (See single-path mode)
System/370 (See System/370 mode)

model, CPU 10-43
MODIFY SUBCHANNEL (MSCH) instruction

14-6
MONITOR CALL (MC) instruction 7-26
monitor-class number 6-18

assigned storage locations for 3-40
monitor code 6-18

assigned storage locations for 3-40
monitor event 6-18
monitor masks 6-18
monitoring

(See also measurement)
channel-subsystem facilities 17-2
for PER events (See PER)
with MONIT1R CALL 6-18,7-26

MOVE (MVC,MVI) instructions 7-27
examples A-17,A-19

MOVE LONG (MVCL) instruction 7-27
examples A-20

MOVE NUMERICS (MVN) instruction 7-30
example A-21

MOVE TO PRIMARY (MVCP) instruction
10-19

MOVE TO SECONDARY (MVCS) instruction
10-19

MOVE WITH KEY (MVCK) instruction 10-20
MOVE WITH OFFSET (MVO) instruction 7-31

example A-21
MOVE ZONES (MVZ) instruction 7-31

example A-22
MP (MULTIPLY DECIMAL) instruction 8-10

example A-32
MR (MULTIPLY) binary instruction 7-32

example A-22
MSCH (MODIFY SUBCHANNEL) instruction

14-6
multi path mode 15-4

entering 15-18
multiple-access reference 5-27
MULTIPLY (M,MR) binary instructions

7-32
examples A-22

MULTIPLY (MD,MDR,ME,MER,MXD,MXDR,MXR)
floating-point instructions 9-13

example A-36
MULTIPLY DECIMAL (MP) instruction 8-10

example A-32
MULTIPLY HALFWORD (MH) lnstruction 7-32

example A-23
multiprocessing 4-30

manual operations for 12-5
programming considerations for

A-38,8-3
timing-facility interruptions for

4-21
TOD clock for 4-18

multiprogramming examples A-38
MVC (MOVE) instruction 7-27

examples A-17,A-19
MVCK (MOVE WITH KEY) instruction 10-20
MVCL (MOVE LONG) instructinn 7-27

examples A-20
MVCP (MOVE TO PRIMARY) instruction

10-19
MVCS (MOVE TO SECONDARY) instruction

10-19
MVI (MOVE) instruction 7-27

example A-20
MVN (MOVE NUMERICS) instruction 7-30

example A-21
MVO (MOVE WITH OFFSET) instruction 7-31

example A-21
MVS/XA assists v
MVZ (MOVE ZONES) instruction 7-31

Index X-13

example A-22
MXD (MULTIPLY) floating-point instruc

tion 9-13
MXDR (MULTIPLY) floating-point instruc

tion 9-13
MXR (MULTIPLY) floating-point instruc
tion 9-13

N
N (AND) instruction 7-9

example A-8
NC (AND) instruction 7-9

example A-8
near-valid CBC 11-2

in storage 11-5
negative zero

binary 7-2
decimal 8-3

example A-5
new PSW 4-3

assigned storage locations for 3-38
fetched during interruption 6-2

NI (AND) instruction 7-9
example A-8

no-operation
as an I/O command (control) 15-35
instruction (BRANCH ON CONDITION)
7-12

nonvolatile storage 3-2
normalization 9-2
not operational

as CPU state 4-33
as TOO-clock state 4-19

not set (TOO-clock state) 4-19
NR (AND) instruction 7-9

example A-8
nullification of instruction execution

5-11
exceptions to 5-12
for exigent machine-check conditions

11-11
numbering

addresses (byte locations) 3-2
bits 3-2

numbers
binary 7-2

examples A-2
CPU-model 10-43
decimal 8-1

examples A-5
floating-point 9-1

examples A-5
numeric bits 8-1

moving of 7-30

o
o (OR) instruction 7-33
OC (OR) instruction 7-33
OEMI (original equipment manufacturers'

information), I/O interface v
01 (OR) instruction 7-33

example A-23
of problem with OR immediate A-38

old PSW 6-2
assigned storage locations for 3-38

one's complement binary notation 7-2
used for SUBTRACT LOGICAL instruction

7-41
op code (Sse operation code)
operand 5-2

X-14 370-XA Principles of Operation

address generation for 5-5
exception 6-18
immediate 5-4
length 5-2
overlap 7-2

decimal 8-3
register 5-4
sequence of references for 5-25
storage 5-4
types (fetch, store, and update)
5-25

used for result 5-2
operating state 4-2
operation

code (op code) 5-2
invalid 6-18

exception 6-18
unit of 5-11

operation-request block (See ORB)
operator facilities 2-5,12-1

basic 12-1
operator intervening (signal-processor
status) 4-35

OR (O,OC,OI,OR) instructions 7-33
example of problem with OR immediate

A-38
examples A-23

ORB (operatio~-request block)
channel-program address 15-20
contents ;'5-19
interruption parameter 15-19
invalid 16-25
logical-path mask (LPM) 15-20

orders (signal-processor) 4-31
conditions precluding response 4-33
CPU reset 4-32
emergency signal 4-31
external call 4-31
initial CPU reset 4-32
restart 4-31
sense 4-31
set prefix 4-32
start 4-31
stop 4-31
stop and store status 4-31
store status at address 4-32

orders in I/O command code 13-6,15-22
overflow

binary 7-3
example A-2

decimal 6-16
exponent (See exponent overflow)
fixed-point 6-17,7-3
in CRW 17-17

overlap
destructive 7-28
operand 7-2

decimal 8-3
operation 5-21

overrun (bit in I/O sense data) 15-37

P
PACK (PACK) instruction 7-33

example A-23
packed decimal numbers 8-1

conversion from zoned format 7-33
conversion to zoned format 7-44
examples A-5

padding byte
for COMPARE LOGICAL LONG instruction

7-17
for MOVE LONG instruction 7-27

page 3-22
index (PX) 3-22
invalid bit 3-25
protection 0-2,3-10

bit for 3-25
exception for 6-20

swapping 3-21
table 3-25

designation 3-24
length (PTl) 3-25
lookup 3-29
origin (PTO) 3-24

translation exception 6-19
as an access exception 6-24

page-frame real address (PFRA) 3-25
PAM (path-available mask) 15-5

effect of reconfiguration on 15-8
effect of resetting 15-8
effect on allegiance 15-9

parameter register for SIGNAL PROCESSOR
4-32,10-41

parameters, translation 3-22
parity bit 11-2
partial completion of instruction
execution 5-12

PASN (primary address-space number)
3-14

in trace entry 4-10
path

available mask (See PAM)
installed mask (See PIM)
management 13-6

control word (See PMCW)
for CLEAR SUBCHANNEl 15-11
for HALT SUBCHANNEL 15-13
for RESUME SUB CHANNEL 15-15
for START SUBCHANNEl 15-15

multi path mode (bit in PMCW) 15-4
not operational mask (See PNOM)
operational mask (See POM)

pattern for editing 8-6
PC (PROGRAM CALL) instruction 10-22
PC-cp (PROGRAM CALL instruction, to
current primary) 10-23

PC number
in trace entry 4-10
translation 5-17

PC-ss (PROGRAM CAll instruction, with
space switching) 10-23

PC-translation-specification exception
6-19

PCl (program-controlled interruption)
description 15-29
flag in CCW 15-21
I/O-subchannel status 16-24

pending channel reports, effect of
I/O-system reset 17-11

pending interruption (See interruption,
pending)

PER (program-event recording) 4-11
address 4-12

assigned storage locations for
3-40

wraparound 4-14
code 4-12

assigned storage locations for
3-40

ending address 4-12
events 4-11

general-register-alteration 4-15
instruction-fetching 4-14
masks 4-11
priority of interruptions 4-13

program-interruption condition
6-19

storage alteration 4-15
storage-area designation 4-14
successful branching 4-14

general-register-mask bits 4-11
mask (in PSW) 4-5

subclass masks 4-11
starting address 4-12

PFRA (page-frame real address) 3-25
PIM (path-installed mask) 15-5
PKM (PSW-key mask) 5-15
PMCW (path-management-control word)

15-2
channel-path identifiers (CHPIO)

15-5
PNOM (path-not-operational mask) 15-4

effect of POM on 15-9
point of damage 11-14
point of interruption 5-11

for machine check 11-13
POM (path-operational mask) 15-5

effect on PHOM 15-9
postnormalization 9-2
power controls 12-3
power-on reset 4-28
precision (floating-point) 9-1
preferred sign codes 8-2
prefetching

for I/O 15-23
of OAT-table entries 5-24
of instructions 5-23

prefix 3-12
set by signal-processor order 4-32
store-status save area for 3-41

prenormalization 9-2
primary address space 3-13
primary ASH (PASN) 3-14
primary authority 3-19

exception 6-19
primary interruption condition (I/O)

16-4
primary segment-table designation (PSTO)
3-23

primary segment-table length (PSTL)
3-23

primary segment-table origin (PSTO)
3-23

primary-space mode 3-22
primary-status bit (I/O) 16-18
primary virtual address 3-5

effective segment-table designation
for 3-26

priority (See interruption)
of interruptions 6-32
of program-interruption conditions

6-26
privileged instructions 4-5

for control 10-1
for I/O 14-1

privileged-operation exception 6-20
problem state 4-5

bit in entry-table entry 5-19
processing backup 11-17
processing damage 11-18
prOC95sor (See CPU)
program

check
I/O-subchannel status 16-24
measurement block 16-36

controlled-interruption (I/O) (See
PCI)

event recording (See PER)
events (See PER events)

Index X-15

exceptions 6-12
execution 5-2
initial loading of 4-29
interruption 6-12

priority 6-26
mask (in PSW) 4-6

validity bit for 11-19
modifiable fields of SCHIB 15-6
status word (See PSW)

PROGRAM CAll (PC) instruction 10-22
trace entry for 4-10

PROGRAM TRANSFER (PT) instruction 10-28
trace entry for 4-10

protection
check

I/O-subchannel status 16-25
measurement block 16-36

exception 6-20
as an access exception 6-24

of storage (See storage protection)
PSTD (primary segment-table designation)

3-23
PSTL (primary segment-table length)

3-23
PSTO (primary segment-table origin)

3-23
PSW (program-status word) 2-3,4-3

assigned storage locations for 3-38
comparison with System/370 0-7
current 4-3,5-6
exceptions associated with 6-8
format error 6-8
in IPL, assigned storage locations
3-38

in program execution 5-6
validity bits for 11-19

PSW key 4-5
in trace entry 4-10
mask (PKM) 5-15
used as access key 3-10
validity bit for 11-19

PT (PROGRAM TRANSFER) instruction 10-28
PT-cp (PROGRAM TRANSFER instruction, to
current primary) 10-28

PT-ss (PROGRAM TRANSFER instruction,
with space switching) 10-28

PTL (page-table length) 3-25
PTlS (PURGE TLB) instruction 10-33
PTO (page-table origin) 3-24
PURGE TlB (PTLB) instruction 10-33
PX (page index) 3-22

R
R field of instruction 5-4
range, floating-point 9-1
rate control 12-4
RCHP (See RESET CHANNEL PATH instruc-
tion)

read (I/O command) 15-34
read backward (I/O command) 15-35
real address 3-4
real mode 3-22
real storage 3-5
receiver check (signal-processor status)

4-35
reconfiguration of the I/O system 17-14
recovery

condition 11-11
system 11-16

recovery subclass-mask bit 11-22
redundancy 11-2
reference

X-16 370-XA Principles of Operation

bit in storage key 3-8
multiple access 5-27
recording 3-11
sequence for storage 5-21

OAT-table entries 5-24
instructions 5-23
operands 5-25
storage keys 5-24

single-access 5-27
register

base-address 2-3
control 2-3
designation of 5-4
floating-point 2-3
general 2-3
index 2-3
prefix 3-12
save areas 3-40,11-20
validation 11-9
validity bits for 11-19

remote operating stations 12-1
reporting-source code (See RSC)
reporting-source 10 (See RSID)
repressible machine-check condition
11-11

RESET CHANNEL PATH (RCHP) instruction
14-6

channel-path reset 17-9
function initiated by 15-42
reset signal 17-8

RESET REFERENCE BIT EXTENDED (RRBE)
instruction 10-33

reset signal
definition 17-8
in channel-path reset 17-9
in I/O-system reset 17-9,17-10
issued as part of RCHP 15-42

resets 4-24,17-9
channel-path 17-9
effect on CPU state 4-2
effect on TOO clock 4-18
I/O system 17-9

resolution
of clock comparator 4-22
of CPU timer 4-22
of TOO clock 4-18

restart
as signal-processor order 4-31
interruption 6-31
key 12-4

result operand 5-2
resume function

execution of 15-15
initiated by RESUME SUBCHANNEL 14-8
pending 16-14

RESUME SUBCHANNEl (RSCH) instruction
14-8

channel-program requirements 14-8
count in measurement block 17-4
function initiated by 15-15
path management for 15-15

retry
CPU 11-2
I/O command (See command retry)

rounding (decimal) 8-10
example A-33

RR instruction format 5-3
RRBE (RESET REFERENCE BIT EXTENDED)

instruction 10-33
RRE instruction format 5-3
RS instruction format 5-3
RSC (reporting-source code) 17-17
RSCH (See RESUME SUBCHANNEL

instruction)

RSIO (reporting-source 10) 17-18
running (of TOO clock) 4-19
RX instruction format 5-3

S
S (SUBTRACT) binary instruction 7-40
S instruction format 5-3
SAC (SET ADDRESS SPACE CONTROL) instruc
tion 10-33

SAL (SET ADDRESS LIMIT) instruction
14-9

sample count (in ESW) 17-4
SASN (secondary address-space number)

3-14
in trace entry 4-10

save areas for registers 3-40,11-20
SCHIB (subchannel-information block)

contents 15-1
model-dependent area 15-6
path-management-control word (PMCW)

15-2
subchannel-status word (SCSW) 15-6
summary of modifiable fields 15-6

SCHM (See SET CHANNEL MONITOR instruc
tion)

SCK (SET CLOCK) instruction 10-34
SCKC (SET CLOCK COMPARATOR) instruction

10-35
SCSW (subchannel-status word) 16-7

activity-control field 16-14
CCW address 16-28
contents of 16-8
count 16-33
device-status field 16-18
function-control field 16-13
in SCHIB 15-6
status-control field 16-16
subchannel-control fields 16-12
subchannel-status field 16-23

SD (SUBTRACT NORMALIZED) instruction
9-14

SDR (SUBTRACT NORMALIZED) instruction
9-14

SE (SUBTRACT NORMALIZED) instruction
9-14

secondary address space 3-13
secondary ASN (SASN) 3-14
secondary authority 3-19

exception 6-21
secondary error (in subchannel logout)

16-38
secondary interruption condition (I/O)

16-4
secondary segment-table designation

(SSTD) 3-24
secondary segment-table length (SSTL)

3-24
secondary segment-table origin (SSTO)

3-24
secondary-space-control bit 3-23,5-15
secondary-space mode 3-22
secondary-status bit (I/O) 16-18
secondary virtual address 3-5

effective segment-table designation
for 3-26

segment 3-22
index (SX) 3-22
invalid bit 3-24
table 3-24

lookup 3-29
translation exception 6-21

as an access exception 6-24

segment-table designation (STD) 3-23
effective 3-26
primary 3-23
secondary 3-24

self-describing block of I/O data 15-27
semiprivileged, instructions 4-5,10-1
semiprivileged programs, authorization
of 5-14

sense
as an I/O command 15-36
as signal-processor order 4-31

sense data (I/O) 15-36
indication 16-22

sense ID (I/O command) 15-38
sequence

code (in subchannel logout) 16-38
conceptual 5-21
instruction-execution 5-2
of storage references 5-21

SER (SUBTRACT NORMALIZED) instruction
9-14

serialization 5-29
channel-program 5-30
completion of store operations 5-25
CPU 5-29

service processor 2-5,4-23
damage 11-17

service signal
called by DIAGNOSE 4-23
external interruption 6-11
subclass-mask bit 6-11

SET ADDRESS LIMIT (SAL) instruction
14-9

SET ADDRESS SPACE CONTROL (SAC) instruc
tion 10-33

SET CHANNEL MONITOR (SCHM) instruction
14-10

effect on measurement modes 17-2
SET CLOCK (SCK) instruction 10-34
SET CLOCK COMPARATOR (SCKC) instruction

10-35
SET CPU TIMER (SPT) instruction 10-35
set prefix (signal-processor order)

4-32
SET PREFIX (SPX) instruction 10-36
SET PROGRAM MASK (SPM) instruction 7-34
SET PSW KEY FROM ADDRESS (SPKA) instruc-
tion 10-36

SET SECONDARY ASN (SSAR) instruction
10-37

set state (TOD clock) 4-19
SET STORAGE KEY EXTENDED (SSKE) instruc-
tion 10-40

SET SYSTEM MASK (SSM) instruction 10-40
SH (SUBTRACT HALFWORD) instruction 7-40
shared storage (See storage, shared)
shared TOO clock 4-18
SHIFT AND ROUND DECIMAL (SRP) instruc
tion 8-10

examples A-32
SHIFT LEFT DOUBLE (SLDA) instruction

7-34
example A-24

SHIFT LEFT DOUBLE LOGICAL (SLDL)
instruction 7-35

SHIFT LEFT SINGLE (SLA) instruction
7-35

example A-24
SHIFT LEFT SHIGLE LOGICAL (SLL) instruc
tion 7-36

SHIFT RIGHT DOUBLE (SRDA) instruction
7-36

SHIFT RIGHT DOUBLE LOGICAL (SRDL)
instruction 7-36

Index X-17

SHIFT RIGHT SINGLE (SRA) instruction
7-37

SHIFT RIGHT SINGLE LOGICAL (SRL)
instruction 7-37

shifting, floating-point (See normal-
ization)

short floating-point number 9-2
short I/O block 16-24
SI instruction format 5-3
SID (subsystem-identification word)

14-1
, assigned storage locations for 3-40

sign bit
binary 7-2
floating-point 9-1

sign codes (decimal) 8-2
SIGNAL PROCESSOR (SIGP) instruction

10-41
order codes 4-31

SIGNAL PROCESSOR instruction, comparison
with System/370 D-9

signals (I/O) 17-8
clear signal (See clear signal)
halt signal (See halt signal)
reset signal (See reset signal)

signed binary
arithmetic 7-3
comparison 7-4
integer 7-2

examples A-2
significance

exception 6-21
loss 9-2,9-7
mask in PSW 4-6
starter 8-6

SIGP (SIGNAL PROCESSOR) instruction
10-41

single-access reference 5-27
single-path mode 15-4,15-17
size

notation for iv
of address 3-6

controlled by addressing mode 5-4
skip flag

effect on data transfer 15-28
in CCW 15-21

skipping data transfer (I/O) 15-28
SL (SUBTRACT LOGICAL) instruction 7-40
SLA (SHIFT LEFT SINGLE) instruction

7-35
example A-24

SLDA (SHIFT LEFT DOUBLE) instruction
7-34

example A-24
SLDL (SHIFT LEFT DOUBLE LOGICAL)

instruction 7-35
SLL (SHIFT LEFT SINGLE LOGICAL) instruc
tion 7-36

SLR (SUBTRACT LOGICAL) instruction 7-40
solicited interruption condition (I/O)

16-3
solid errors 11-5
source, of interruption 6-5
SP(SUBTRACT DECIMAL) instruction 8-11
space-switch event

control bit 6-21
after ASN translation 3-16
in translation control 3-23

program-interruption condition 6-21
special-operation exception 6-22
specification exception 6-22
SPKA (SET PSW KEY FROM ADDRESS) instruc
tion 10-36

SPM (SET PROGRAM MASK) instruction 7-34

X-18 370-XA Principles of Operation

SPT (SET CPU TIMER) instruction 10-35
SPX (SET PREFIX) instruction 10-36
SR (SUBTRACT) binary instruction 7-40
SRA (SHIFT RIGHT SINGLE) instruction

7-37
SRDA (SHIFT RIGHT DOUBLE) instruction

7-36
SRDL (SHIFT RIGHT DOUBLE LOGICAL)

instruction 7-36
SRL (SHIFT RIGHT SINGLE LOGICAL)
instruction 7-37

SRP (SHIFT AND ROUND DECIMAL) instruc
tion 8-10

examples A-32
SS instruction format 5-3
SSAR (SET SECONDARY ASN) instruction

10-37
SSAR-cp (SET SECONDARY ASN instruction,

to current primary) 10~37
SSAR-ss (SET SECONDARY ASN instruction,
with space switching) 10-37

SSCH (See START SUBCHANNEL instruction)
SSE instruction format 5-3
SSKE (SET STORAGE KEY EXTENDED) instruc-
tion 10-40

SSM (SET SYSTEM MASK) instruction 10-40
SSM-suppression-control bit 6-22,10-40
SSTD (secondary segment-table desig-
nation) 3-24

SSTL (secondary segment-table length)
3-24

SSTO (secondary segment-table origin)
3-24

ST (STORE) binary instruction 7-37
standalone dump 12-4
standard epoch (for TOD clock) 4-20
STAP (STORE CPU ADDRESS) instruction

10-43
start

as signal-processor order 4-31
function 4-2
key 12-4

start function (I/O)
execution of 15-15
indication of 16-13
initiated by START SUBCHANNEL 14-11
initiation 13-6
overview 13-6
pending 16-15

START SUBCHANNEL (SSCH) instruction
14-11

count in measurement block 17-4
deferred condition code (IRB) 16-~
function initiated by 15-15
operation-request block (ORB) 15-19
path management for 15-15

state
CPU (See CPU state)
TOO clock 4-19

status
alert 16-16
control field in SCSW 16-16
device 16-18

attention 16-19
busy 16-21
channel end 16-21
control-unit end 16-19
device end 16-21
effect of CSCH 15-12
status modifier 16-19
unit check 16-22
unit exception 16-23
while disabled 14-6

intermediate 16-17

modifier
effect of in command chaining

15-28
I/O-device status 16-19

pending 16-18
primary 16-18
program (See PSW)
register for SIGP 4-31~10-41
resulting from signal-processor
orders 4-34

secondary 16-18
storing of 4-30

manual key for 12-4
subchannel 16-23

chaining check 16-27
channel-control check 16-26
channel-data check 16-26
incorrect length 16-24
interface-control check 16-27
program check 16-24
program-controlled interruption

(PCI) 16-24
protection check 16-25
while disabled 14-6

STC (STORE CHARACTER) instruction 7-38
STCK (STORE CLOCK) instruction 7-38
STCKC (STORE CLOCK COMPARATOR) instruc-
tion 10-42

STCM (STORE CHARACTERS UNDER MASK)
instruction 7-38

examples A-24
STCPS (STORE CHANNEL PATH STATUS)

instruction 14-13
STCRW (See STORE CHANNEL REPORT WORD

instruction)
STCTL (STORE CONTROL) instruction 10-42
STD (segment-table designation) 3-23
STD (STORE) floating-point instruction

9-14
STE (STORE) floating-point instruction

9-14
STH (STORE HALFWORD) instruction 7-39
STIDP (STORE CPU ID) instruction 10-43
STL (segment-table length) 3-23
STM (STORE MULTIPLE) instruction 7-39

example A-25
STNSM (STORE THEN AND SYSTEM MASK)

instruction 10-44
STO (segment-table origin) 3-23
stop

as signal-processor order 4-31
function 4-2
key 12-4

stop and store status (signal-processor
order) 4-31

stopped bit (in signal-processor status)
4-35

stopped state
of CPU 4-2

effect on completion of store
operations 5-25

of TOD clock 4-19
storage 3-2

absolute 3-4
access code (in subchannel logout)

16-37
address wraparound (See wraparound)
addressing 3-2

(See also address)
alteration

event mask 4-11
manual control for 12-2
PER event 4-15

area designation

for I/O operations 15-22
for PER events 4-14

assigned locations in 3-38
comparison with System/370 D-9

auxiliary 3-2,3-21
block 3-4

testing for usability 10-45
buffer (cache) 3-2
clearing (See clearing operation)
configuration of 3-4
direct-access 3-2
display 12-2
error 11-18
failing address (See failing-storage
address)

interlocks 5-22
internal 2-2
key 3-8

error 11-18
sequence of references to 5-24
testing for usability 10-45
validation of 11-7

logical validity bit for 11-20
main 3-2
nonvolatile 3-2
operand 5-4

consistency 5-27
consistency example A-42~A-45
fetch reference 5-25
store reference 5-25
update reference 5-26

prefixing for 3-12
protection 3-8

during tracing 4-10
real 3-5
sequence of references 5-21
shared

by address spaces 3-21
by the channel subsystem and CPUs

3-4
examples A-38
in multiprocessing 4-30

size, notation for iv
validation 11-6
virtual 3-21
volatile 3-2

effect of power-on reset 4-29
STORE (ST) binary instruction 7-37
STORE (STD,STE) floating-point

instructions 9-14
STORE CHANNEL PATH STATUS (STCPS)

instruction 14-13
STORE CHANNEL REPORT WORD (STCRW)

instruction 14-13
channel-report word (CRW) 17-15

STORE CHARACTER (STC) instruction 7-38
STORE CHARACTERS UNDER MASK (STCM)

instruction 7-38
examples A-24

STORE CLOCK (STCK) instruction 7-38
STORE CLOCK COMPARATOR (STCKC) instruc
tion 10-42

STORE CONTROL (STCTL) instruction 10-42
STORE CPU ADDRESS (STAP) instruction

10-43
STORE CPU ID (STIDP) instruction 10-43
STORE CPU TIMER (STPT) instruction

10-43
STORE HALFWORD (STH) instruction 7-39
STORE MULTIPLE (STM) instruction 7-39

example A-25
STORE PREFIX (STPX) instruction 10-44
store reference 5-25

access exceptions for 6-26

Index X-19

store status 4-29
as signal-processor order 4-31
key 12-4

store status at address
(signal-processor order) 4-32

STORE SUBCHANNEL (STSCH) instruction
14-14

STORE THEN AND SYSTEM MASK (STNSM)
instruction 10-44

STORE THEN OR SYSTEM MASK (STOSM)
instruction 10-44

STOSM (STORE THEN OR SYSTEM MASK)
instruction 10-44

STPT (STORE CPU TIMER) instruction
10-43

STPX (STORE PREFIX) instruction 10-44
string of interruptions 4-3,6-32

by clock comparator 4-22
by CPU timer 4-23

STSCH (STORE SUBCHANNEL) instruction
14-14

SU (SUBTRACT UNNORMALIZED) instruction
9-15

subchannel 13-2
active 16-15
active allegiance 15-9
addressing 13-5
control information in SCSW 16-12
dedicated allegiance 15-10
effect of I/O-system reset 17-10
enabled bit in PMCW 15-2
idle 16-14
information block (See SCHIB)
key

check (in subchannel logout)
16-36

in IRB 16-8
in ORB 15-19
used as access key 3-10
used for IPL 17-13

logout 16-36
number 13-5
status (See status, subchannel)
status word (See SCSW)
working allegiance 15-9

subclass-mask bits 6-5
external-interruption 6-9
machine-check 11-21

subroutine linkage 5-7
subsystem-identification word (See SID)
subsystem-linkage-control bit 5-15,5-18
subsystem reset 4-28
SUBTRACT (S,SR) binary instructions

7-40
SUBTRACT DECIMAL (SP) instruction 8-11
SUBTRACT HALFWORD (SH) instruction 7-40
SUBTRACT LOGICAL (SL,SLR) instructions

7-40
SUBTRACT NORMALIZED (SD,SDR,SE,SER,SXR)

instructions 9-14
SUBTRACT UNNORMALIZED (SU,SUR,SW,SWR)

instructions 9-15
successful branching (PER event) 4-14
successful-branching-event mask 4-11
SUPERVISOR CALL (SVC) instruction 7-41
supervisor-call interruption 6-31
supervisor state 4-5
support functions (I/O) 17-1
suppress-length-indication (SLI) flag in

CCW 15-33
suppression

of instruction execution 5-11
exceptions to 5-12

of unit of operation 5-12

X-20 370-XA Principles of Operation

SUR (SUBTRACT UNNORMALIZED) instruction
9-15

suspend
control bit

in IRB 16-8
in ORB 15-19
used for IPL 17-13

flag in CCW 15-21
invalid 16-25

suppress-suspended-interruption
control (I/O)

in IRB 16-12
in ORB 15-19
used for IPL 17-13

suspend and resume 13-8,15-31
suspended bit (in IRB) 16-16
suspension of channel-program execution
15-19,15-21,15-31

effect on DCTI 15-32
SVC (SUPERVISOR CALL) instruction 7-41
SW (SUBTRACT UNNORMALIZED) instruction

9-15
swapping

by COMPARE (DOUBLE) AND SWAP
instructions 7-14

by EXCLUSIVE OR instruction 7-21
SWR (SUBTRACT UNNORMALIZED) instruction

9-15
SX (segment index) 3-22
SXR (SUBTRACT NORMALIZED) instruction

9-14
synchronization

checkpoint 11-3
CPU timer with TOO clock 4-22
of TOD clocks 4-19,4-21

synchronous machine-check interruption
ccnditions 11-17

system
check stop for 11-11
damage 11-15
manual control of 12-1
mask (in PSW) 4-3

validity bit for 11-19
organization 2-1
recovery 11-16
reset (See resets)

clear key 12-5
,I/O (See I/O system reset)
normal key 12-5

System/370 mode

T

comparison with. 370-XA mode D-1
selection

by architectural-mode-selection
controls 12-2

by IML controls 12-3
for compatibility 1-4

target instruction (See EXECUTE
instruction)

TB (TEST BLOCK) instruction 10-45
termination

code (in subchannel logout) 16-38
of 1/0 operations (See conclusion of

I/O operations)
of instruction execution 5-11

for exigent machine-check condi
tions 11-11

of unit of operation 5-12
TEST AND SET (TS) instruction 7-41
TEST BLOCK (TB) instruction 10-45
test indicator 12-5

TEST PENDING INTERRUPTION (TPI) instruc
tion 14-15

interruption code stored 16-6
TEST PROTECTION (TPROT) instruction

10-47
TEST SUBCHANNEL (TSCH) instruction

14-16
interruption-response block (IRB)
16-6

TEST UNDER MASK (TM) instruction 7-42
examples A-25

testing for storage-block and
storage-key usability 10-45

TIC (I/O command) (See transfer in
channel)

time-of-day clock (See TOO clock)
timer, CPU (See CPU timer)
timing facilities 4-18

bit in PMC~ 15-4
channel-subsystem 17-2
damage 11-16

for TOO clock 4-19
timing-facility damage, subclass-mask
bit 11-22

TLB (translation-lookaside buffer) 3-30
entry

clearing of 3-34
effect of translation changes

3-34
state 3-31

TM (TEST UNDER MASK) instruction 7-42
examples A-25

TOO clock 4-18
effect of power-on reset 4-29
effect on clock-comparator inter

ruption 6-10
effect on CPU-timer decrementing

4-23
effect on CPU-timer interruption

6-10
manual control 4-19,12-5
sync check (external interruption)
6-11

sync-check subclass-mask bit 6-11
unique values 4-20
validation 11-9
value in trace entry 4-10

TOD-clock-sync-control bit 4-19,4-21
TOD-clock-synchronization facility 4-21
TPI (See TEST PENDING INlERRUPTION

instruction)
TPROT (TEST PROTECTION) instruction

10-47
TR (TRANSLATE) instruction 7-42

example A-26
trace 0-2,4-8
TRACE (TRACE) instruction 10-48

trace entry for 4-10
trace

entries 4-9
entry address 4-8
exceptions 6-31

trace-table exception 6-23
transfer in channel (I/O command) 15-39

invalid sequence 16-25
TRANSLATE (TR) instruction 7-42

example A-26
TRANSLATE AND TEST (TRT) instruction

7-43
example A-26

translation
address 3-21
ASN 3-13
exception identification 3-40

format 3-23
lookaside buffer (See TLB)
parameters 3-22
PC number 5-17
specification exception 6-23
tables for 3-24

trial execution 5-14
PER events during 4-12

TRT (TRANSLATE AND TEST) instruction
7-43

example A-26
true zero 9-1
TS (TEST AND SET) instruction 7-41
TSCH (See TEST SUBCHANNEL instruction)
two's complement binary notation 7-2

examples A-2

U
underflow (See exponent underflow)
unit check (I/O-device status) 16-22

dedicated allegiance 15-10
unit exception (I/O-device status)

16-23
unit of operation 5-11
unnormalized floating-point number 9-2
UNPACK (UNPK) instruction 7-44

example A-28
UNPK (UNPACK) instruction 7-44

example A-28
unsigned binary

arithmetic 7-3
integer 7-2

examples A-4
in address generation 5-5

unsolicited interruption condition (I/O)
16-3

update reference 5-26
usable TLB entry 3-31

V
valid eBC 11-2
valid segment-table or page-table entry

3-31
validation 11-5

of registers 11-9
of storage 11-6
of storage key 11-7
of TOO clock 11-9

validity bits (in
machine-check-interruption code) 11-19

validity bits (in subchannel logout)
16-37

variable-length field 3-3
version code 10-43
virtual address 3-5
virtual storage 3-21
volatile storage 3-2

effect of power-on reset 4-29

W
wait indicator 12-5
wait state (bit in PSW) 4-5
warning (machine-check condition) 11-16

subclass-mask bit 11-22
word 3-3

concurrency of reference 5-27
working allegiance (I/O) 15~9

Index X-21

wraparound
of instruction addresses 5-5
of PER addresses 4-14
of register numbers

for LOAD MULTIPLE instruction
7-25

for STORE MULTIPLE instruction
7-39

of storage addresses 3-6
comparison with System/370 D-I0
for MOVE LONG instruction 7-28

of TOD clock 4-18
write (I/O command) 15-34

x
X (EXCLUSIVE OR) instruction 7-21
X field of instruction 5-5
XC (EXClUSIVEUR) instruction 7-21

examples A-15
XI (EXCLUSIVE OR) instruction 7-21

example A-16
XR (EXCLUSIVE OR) instruction 7-21

X-22 370-XA Principles of Operation

Z
Z bit (zero condition-code bit) 16-12
ZAP (ZERO AND ADD) instruction 8-11

example A-34
zero

condition-code (Z) bit in IRB 16-12
instruction-length code 6-6
true 9-1

ZERO AND ADD (ZAP) instruction 8-11
example A-34

zone bits 8-1
moving of 7-31

zoned decimal numbers 8-1
examples A-5

3
370-XA mode

highlights of 1-1
selection by

architectural-mode-selection
controls 12-2

IML controls 12-3

IBM Systemj370
Extended Architecture
Principles of Operation

Order No. SA22-7085-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understanding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

Number oflatest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the front cover or title page.)

SA22-7085-0

Reader's Comment Form

Fold and tape

Fold and tape

--------- - ------- - ---- - - ----------_.-
®

Please Do Not Staple

III " I
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department B98
P.O. Box 390
Poughkeepsie, New York 12602

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

Fold and tape

OJ
s:
CJ)
-<
VI
.-+
Cl)

3 -w

" o
m
x
.-+
Cl)

:J
c..
Cl)

c..
»
o
::J'"
;::t.
Cl)
n
.-+
C
~
Cl)

"'tJ
~.
:J
~.

"Q.
Cl)
VI

o -o
"0
Cl)
~
Ql
!:t.
o
:J

-n
(0

Z
$:>
CJ)
w

" o
6
~

