
Program Product

SC33-0037 -1

File No. S360/S370-29

OS
PL/I Optimizing Compiler:
CMS User's Guide

Program Numbers 5734-PL 1
5734-LM4
5734-LM5

(These program products are available
as composite package 5734-PL3)

§~£Qn~Eg!~!Q~ (June 1973)

IThis is a major revision of and obsoletes SC33-0037-0. This edition
lapplies to Version 1 Release 2 Modification 0 of the optimizing compiler
land to all subsequent releases until otherwise indicated in new editions
lor Technical Newsletters. Information has been included on the
I facilities that have been introduced with release 2 of the compiler~ and
Ion the alterations that have been made -to improve PL/I under CMS.
J
A number of changes have been made to the compiler options.

The COUNT option has been introduced. This results in code being
generated that will produce a count of the number of times each
statement has been executed during a program.

The INCLUDE option has been introduced. This allows secondary text
to be included without the overhead of using the complete
preprocessor facility.

The MARGINS -and SEQUENCE options have been altered so that two
default values are set up when the compiler is installed. One value
is for F-format records and one for V or U-format records. This
simplifies the compilation of source programs with V-format records.

A NOSEQUENCE option has been introduced.

All these changes are described in chapter 3.

Changes have also been made in the execution time options. A method has
been introduced whereby they can be specified within the PL/I program.
COUNT and NOCOUNT and FLOW and NOFLOW have alos been introduced as
execution time options. giving the programmer control of whether COUNT
or FLOW output is generated for a particular run of a program. These
changes are described in chapter 4.

Changes have also been made in the conventions that apply when passing
parameters to the main PL/I procedure. These are described in chapter
2. Improved messages which are generated when an attempt is ~ade to use
a PL/I facility that is not available under CMS are also listed in this
chapter .•

Additionally two new sections have been added in chapter 1. The first
describes the action required if you wish to write source statements to
be included as secondary input text to your PL/I program. The second
describes the action required if you wish to produce compiled modules
that can be included in a text library. A number of minor altera-tions
and corrections have also been made throughout the book. Changes are
marked with a vertical line to the left of the change.

Changes are continually being made to the information herein; before
using this publication in connection with the operation of IBM systems.,
consult the latest IBM system/360 Bibliography SRL newsletter, Order NO.
GN20-0360, for the editions that are applicable and current.

IChanges are continually being made to the information herein; before
lusing this publication in connection with the operation of IBM systems,
Iconsult the latest IBM System/360 and System/370 Bibliography, Order
INo. GA22-6822, and associated Technical Newsletters for the editions
Ithat are applicable and current.
I
JRequests for copies of IBM publications should be made to your IBM
Jrepresentative or to the IBM branch office serving your locality.
I
IA form for reader's comments is provided at the back of this
I publication. If the form has been removed~ comments may be addressed to
IIBM united Kingdom Laboratories Ltd., programming publications, Hursley
/Park, Winchester, Hampshire. England.

© Copyright International Business Machines Corporation 1973

Preface

This reanual explains, for the users of the Conversational Monitor System
(CMS) component of the IBM Virtual Machine Facility/370, how to invoke
the PL/I Optimizing Compiler and use its conversational I/O
capabilities.

The reader is assumed to have a basic knowledge of PL/I and of CMS.

Chapter 1 is an introduction to PL/I under CMS. It aims to give enough
information to allow the reader to enter, compile, and execute a
straightforward PL/I program under CMS. It also aims to act as a guide
to further sources of information and to provide enough background
material to allow the reader to make full use of the potentialities of
the optimizing compiler under CMS.

Chapter 2 is the reference source for the special restrictions and
conventions that apply to PL/I when it is compiled by the optimizing
compiler and executed under CMS.

Chapter 3 is the reference source for the PLIOPT command and its
options.

Chapter 4 is the reference source for the execution time options that
are available when executing programs compiled by the PL/I Optimizing
Compiler.

Figure P.l is a guide to using this book.

REFERENCE PUBLICATIONS

This book makes reference to the following publications for related
information that is beyond its scope.

IBM Vir~ual Machine ~~£~!itYL~IO:~~Guid~, Order No. GC20-l80S-0

IBM Virt~al~~£hin~_[~~!~~YL~IO:_!~min~!_~2~~~2_§uid~,
Order No. GC20-l8l0-0

Q~PL/I_OPtimizin~mE!1~~~_RfQg~mmer~2~~!g~, Order No. SC33-0006-l

Q§_PL/I-2E!imizin~QIDE~~prQg~m Log!£, Order No. SC33-0006-0

AVAILABILITY OF PUBLICATIONS

The availability of a publication is indicated by its Y2~r~~' the first
letter in the order number. The use keys are:

G - General: available to users of IBM systems, products, and
services without charge, in quantities to meet their normal
requirements; can also be purchased by anyone through IBM
branch offices.

3

4

S - Sell: can be purchased by anyone through IBM branch offices.

L - Licensed materials, property of IBM: available only to
licensees of the related program products under the terms of
the license agreement.

~ Start

Yes

<
Yes

Yes

No

No
The PUI language is described in
the PUI Checkout and Optimizing
Compilers Language Reference Manual.

>--------------.......... This publication gives a brief introduction.
No Further information is available in VM/370

Command Language User's Guide.

>--------------~ These are described in chapter 2 of this
No manual.

":>0--------------........ These are described in chapter 3 of this
Yes manual. An example and description of

the PliOPT command is given in chapter
" and in a foldout at the end of this manual.

'">--------------.... ~ These are described in chapter 4 of this
Yes manual.

Figure p.l. How to use this took

5

Contents

CHAPTER 1: WRITING AND RUNNING A
PL/I PROGRAM UNDER CMS • • • • • 9

INTRODUCTION • • • • 9
Starting the Session - the LOGIN

Command • • • • • • • •• 10
Summary • • • • • • • 10

Example of use of the LOGIN
Command • •• • • • • • •• 10

BACKGROUND • • • • • • • • 10
CP and Your Virtual Machine 10

Sources of Further Information 11
Invoking CMS - the IPL Command 12

Summary • • • • • • 12
Example of use of the IPL

command • • • • • • • • • • 12
Background • • • • • • • • • • 12

Entering Data Under CMS • 12
Profile EXEC • • • • • • • • •• 14

Sources of Further Information •• 14
Entering the Program - The Edit and
File Comrrands •••• • • • •• 15

summary • • • • •• • • • •• 15
Examples of Use of the EDIT and

FILE Commands • • • • 16
Background. • • •• • • • 17

The EDIT Facility of CMS • • 17
Correcting Typing Errors • 18
Format of PLIOPT files • • 18

Special considerations • • 18
Lowercase Character String
constants • • • • • • • • 18

Sources of Further Information
Topic
Reference source 20

Compiling the Program - the PLIOPT
Command 21

Summary 21
Example of Use of the PLIOPT

Command • • • • • • • • 22
Background Information • • • 22

Compiler Output and its
Destination • • • • • • • 22

Choosing the Information to be
sent to your Terminal - Listing
Options • • • • • • • • 23

Compiler Options • • • • • • •• 24
Files used by the compiler • •• 24

Special Considerations • • • • •• 24
Secondary Input Text - %INCLUDE

Statements •••••••••• 24
Compiling a Program to be
Executed Under OS • • 25

Sources of Further Information •• 26
Executing a PL/I Program • • • • 27

Summary • • • • • • • • • • • •• 27

6

Examples of Executing a PL/I
Program • • • • • • • • • • • •

Background • • • • • • • • • •
MODULE and TEXT Files
PL/I Files and CMS Defaults
An Alternative Method of

Executing a MODULE File • •
Special considerations • • • •

Passing Parameters and Execution
Time Options ••• • • • • • •

Executing a File Not Compiled
Under CMS or Corrpiled with the
OSDECK Option • • • • • • •

Sources of Further Information
Ending the Terminal Session - The

LOGOUT Comrnand • • • • • • • • •
Summary • • • • • • • • • • •

Example of ending the session
Background • • • • • • • • • • • •

Deleting Files • • •
special Considerations

Retaining a Switched Line
Connection • • • • • • • •

Source of Further Information

CHAPTER 2: PL/I CONVENTIONS AND
RESTRICTIONS UNDER CMS

Restrictions • • • • • • • • • • • •
Conventions • • • • • • • • • • •

Stream I/O Conventions at the
Terminal •••••••

Formatting Conventions for PRINT
Files • • • • • . • • • . • • .

Automatic Prompting
Spacing and Punctuation

Conventions for Input •
Simplified Punctuation for GET

LIST and GET DATA Statements
Endfile • • • • • • • • •

Display and Reply Under CMS

CHAPTER 3: THE PLIOPT COMMAND AND
ITS OPTIONS

syntax Notation • •
PLIOPT Command

Usage • • • •
PLIOPT Options and Compiler

Options • • • • • • • • •
Relationship of Statement

Numbering Options .• • • • •
Alphabetical List of Options •

CHAPTER 4: EXECUTION TIME OPTIONS
List of Execution Time Options

28
30
30
30

31
31

31

32
32

33
33
33
33
33
34

34
34

35
35
37

37

37
38

39

39
40 .
40

41
41
43
44

44

44
49

61
61

Figure P.l. How to use this book.. 5
Figure 1.1. The steps involved in
entering and executing a PL/I
program under CMS • • • • • • 8

Figure 1.2. The disks on which the
compiler ou1:put is stored 23

Figure 1.3. Files that may be used
by the compiler •• • • • • • • •• 24

Figures

Figure 2.1. Restrictions on the PL/I
that can be executed under CMS. 35

Figure 2.2. PAGELENGTH defines the
size of your paper, PAGESIZE the
number of lines printed in the main
printing area. • • • • • • • ~ • •• 38

Figure 3.1. (Part 1 of 3) Compiler
options arranged by function • • •• 46

7

Return to correct errors

C Start

LOGIN command

Starts the terminal
session

IPL eMS command
Makes your eMS virtual
machine available

EDIT & FILE commands

Enable you to enter
or correct your PL/I
program and store it
as a eMS PLiOPT file

PLiOPT command

Enables you to compile
your PL/I program
producing a eMS TEXT
file of machine code

GLOBAL command
Makes the PL I
library available

LOAD & START commands

Resolve addresses
(LOAD), and execute the
program (START) *

LOGOUT command
Ends the terminal
session

END

Return to correct errors

r-------l
I * The program can be retained I
I in an executable form by use I

of the GENMOD command
I to create a MODULE file I
L _______ J

Figure 1.1. The steps involved in entering and executing a PL/I
program under eMS

8

Chapter 1: Writing and Running a PL/I Program Under
CMS

Introduction

Executing a PL/I program under CMS is a very simple process. You will
need to carry out the following six steps using CMS coromands at a
terminal.

1. LOGIN at the terminal.

2. IPL CMS.

3. Write or alter a source program using the CMS editor.

4. Compile the source program using the PLIOPT command.

5. Execute the compiled program using the GLOBAL co~rrand to access the
PL/I libraries followed by the LOAD and START commands. Or create
a MODULE file using the GLOBAL, LOAD, and GENMOD commands for
subsequent execution without further use of the LOAD command.

6. End the session.

The remainder of this chapter leads you through the steps listed above
one by one. A standard approach has been adopted for each step. The
format is:

1. Summary and examElg. 'Ihese give you the essential information to
run straightforward programs and list any special cases that
require additional action. These are the only sections you will
need to look at during your first CMS sessions.

2. Ba£~9Eoun9_info~mation. This amplifies the information in the
summary and is intended to enable the user to get the best possible
results from using PL/I under CMS.

3. §Eeci~1-f2n~ide~atio~. This explains what to do in the special
cases listed in the summary. Special cases have been kept separate
to prevent them making a simple process appear corrplex. This
section is omitted where there are no special cases.

4. Sources of further information. 'Ihis lists the rranuals that you
will require for any further information you may need.

A sample terminal session can be folded out from the end of the book.
This shows all\seven steps involved on one page and can be used for
quick reference.

ether chapters in this book are for reference. Chapter 2 lists the
special restrictions and conventions that apply to PL/I that is compiled
by the optimizing compiler and executed under CMS. Chapter 3 lists the
options and syntax of the PLIOPT corrmand. Chapter 4 lists the execution
time options that are available for programs compiled by the optimizing
compiler.

Isystem-f~~ir~~~: The PL/I Optimizing Compiler requires a minimurr of
1320K bytes of virtual storage for the CMS virtual machine. This figure
lis the sarre as the suggested minimum for CMS.

The next page shows you how to start a CMS session.

Chapter 1: Writing and Running a PL/I Program Under CMS 9

Starting the Session-The LOGIN Command

SUMMARY

To start a terminal session, you switch on the terminal and enter the
LOGIN command, specifying the identifier of your virtual machine. The
terminal responds by requesting your password if one is required by your
installation. After you have entered the password, the system responds
with a log message. YoU are now in the control program environment of
VM/370, and can invoke CMS.

r--,
I EXAMPLE OF LOGIN
1--
ITerminal printout Notes and comments

(you switch on the terminal)

VM/370 ONLINE
(you may have to press attention
key to unlock the terminal keyboard.)

I
login skylark

I
I
I

ENTER PASSWORD:
(password entered here)
I
I
I
I

LOGMSG - 09:12:09 04/02/72
RUNNING SYS010 - COLD START AT 09:00
LOGIN AT 09:13:04 THURSDAY 04/02/72

I

Message shows a virtual machine
is available.

LOGIN command followed by
identifier for your virtual
machine.

system requests password.
You enter password. The printing
of the password will normally be
suppressed or overprinted for
security.

Log message showing time and
date of message, system identi
fication and start time, time
and date of signing on.

1. A carriage return is assumed after all programmer input.

2. The character I in column two implies spacing has been added to
accorrmodate notes.

3. System response is in upper case (capital) letters; programmer
input in lower case.

L--___________ -----------------J

BACKGROUND

When you have keyed in your LOGIN command and your password, you are in
control of a virtual machine. Your terminal can be considered as the

10

console of your virtual machine. You can thus carry out many of the
operations of the operator of the real machine. This includes the
ability to invoke a number of operating systems, among them CMS.

Your virtual machine is controlled in the real machine by a control
program known as Control program/370 (CP/370). When you have received
the log message., you are in control of your virtual machine and said to
be in the "CP environment".

SOURCES OF FURTHER INFORMATION

Topic ~fere~_sour~

LOGIN command VM/370 Command Language user's Guide

LOGMSG meaning VM/370 Terminal User's Guide

Chapter 1: Writing and Running a PL/I Program Under CMS 11

Invoking CMS-The IPL Command

SUMMARY

To invoke eMS, you issue the IPL (Initial Program Load) command.

r--,
EXAMPLE OF IPL

Terminal Printout Notes and comments

ipl cms The IPL CMS command.
I
CMS 1,.0 PLC 5 WEDNESDAY 04/07/72 09.13.50
I
I Message confirms CMS is invoked and
I that CMS commands may be entered.

1. A carriage return is assumed after all programmer input.

2. system response is in upper case (capital) letters, programmer
input in lower case.

L---_J

EACKGROUND

Unless you are operating in a submode of CMS, such as INPUT mode within
the editor, everything you enter at the terminal is taken to be a CMS
command. If the command is correct, it is carried out and a READY
message typed to confirm that the command is comflete and that the
system is ready for further commands. If the command is not correct, an
error message is typed. Data is transmitted to the system when you press
the carriage return key.

When a CMS command is being executed, the terminal keyboard is locked
so that you cannot enter any further data until the system is ready to
receive it,.

VM/370 provides four characters to alter, delete, or split up the line
you key in at the terminal. These four characters are known as !!ne
~Q!~inq ~~£~~2 and are @, ~, #, and" by default. For some
terminals ~ becorres [or (. They are removed from your input and
treated as editing characters unless they are preceded by the escape
character (see "Using line editing characters as normal characters"
below). The line editing characters can be used to alter or delete
lines before you press the carriage return key, or to enter a number of
commands on one line to save time.

12

~eletin9-~li~~: If you wish to delete a line you are typing and to
reenter it completely you should use the logical line delete character
and then press the carriage return key. By default the logical line
delete character is~. Thus to delete a line you might enter:

this is an example of deleting a line ~

(~ becomes [or (on some terminals.)

~!~ering_~li~~: If you wish to alter a line and then transmit it to
the system, you must use the logical character delete character,
(sometimes called the logical backspace character). By default the
logical character delete character is~. If the logical character
delete character is entered once it deletes the previous character, if
it is entered twice it deletes the previous two characters, and so on.
Thus to alter the line you are typing you might enter:

this is an example of altering a wine@@~@line

Many programmers prefer to use the actual backspace key on the terminal
as the character delete character. This saves the trouble of having to
count back to the character you wish to change. Instead you can just
backspace to the incorrect character and reenter the line from that
point. TO set the backspace as the character delete character you ~ust
use the terminal command thus:

TERMINAL CHARDEL (you press the backspace key at this point)

(Note: This cannot be done in EDIT mode.)

~!!~~in9_mo~_th~!!--2~~_£2!m!!~!!~!:_li~: If you want to save time at
the terminal by entering more than one command per line you must use the
logical line end character. By default this is #. The characters
following the # are treated as a new line. The line end character can
be used to split any type of input although its chief use is for
commands. For example if you wanted to split a line you might enter:

this is an example of splitting#a line

~silliL!!~ed!~inSL_.sh&!.f2.£ters~2-!!Q!:!!!2..!_.sb2.~£!~f§': If you wish to use
any of the line editing characters as a normal character you must
precede it with the escape character. By default this is ". For
example to enter the line 'this is an example of using the escape
character to enter @' you would enter:

this is an example of using the escape character to enter "@

The escape character can be used preceding itself.

~!~entio~~~: If you press the attention key, or its equivalent once
while under the control of CMS, it causes an attention interrupt. If a
CMS corrmand is being executed, this allows you to key in further CMS
commands that will normally be executed when the current command has
been completed. However, there are a number of commands that are
executed immediately. These are called immediate commands. HT - halt
typing, HX - halt execution and RT - resume typing can be useful when
running PL/I programs. The immediate commnads are described in the
command Language User's Guide.

If a CMS corrmand is not being executed, pressing the attention key once
deletes anything entered on the current line, but otherwise has no
effect.

If you press the attention button twice while in the CMS environment,
control is returned to CP. The system then types "CP" at your terminal.
If you wish to return to CMS, you can press the attention button again
or enter the CP BEGIN command and control will be returned to CMS.

chapter 1: Writing and Running a PL/I Program Under CMS 13

Pro!ile EXEC

When the first CMS command after IPL is executed, a CMS disk must be
accessed. If the first command is an ACCESS command, the disk accessed
will be the disk named in the ACCESS corrroand. If any other command is
used, the 191 disk will be accessed by default and set up as your A
disk.

when the first disk is accessed, the disk is searched for a CMS EXEC
procedure with the name PROFILE. CAn EXEC procedure is a set of CMS
commands that. typically, carry out repetitive housekeeping tasks such
as defining files. These commands are executed by calling the EXEC
procedure.) If an EXEC procedure with the name PROFILE is found on the
first disk accessed, it is automatically executed. Many installaticns
use this feature to handle repetitive housekeeping tasks that need to be
done at the start of every session.

Information on issuing and writing a PROFILE EXEC is given in the VM/370
Command Language Reference.

SOURCES OF FURTHER INFORMATION

!~~ Befer~~-2Q~£~

CMS background VM/370 Command Language User's Guide

IPL conmand VM/370 Command Language User's Guide

PROFILE EXECs VM/370 Command Language User's Guide

14

Entering the Program-The EDIT and FILE Commands

SUMMARY

To enter or alter a PL/I source program under CMS, it is necessary to
use the CMS editor. You enter the EDIT command followed by the file
name of your choice and the file type PLIOPT or PLI. You then use the
editing facilities either to enter new input or, if you are updating, to
alter the existing program. The facilities available for manipulating
and altering text using the editor are not described in this manual. If
you are net aware of them, you will find them in the CMS Edit Guide.
The facilities for correcting lines before yeu press the carriage return
key are described in the previous section under the heading "Line
Editing Characters".

When you are satisfied with your input or alterations, you use the
FILE subcommand to create a CMS file that can be compiled using the
PLIOPT command. In addition to creating a file, the FILE subcommand
also ends the edit submode.

If you are entering a new PL/I program you must choose a new filename
which follows the CMS conventions. That is. the name can consist of up
to eight characters, which may be any alphameric character plus the
special characters $, @, and #. (Remember however that @ and # are
default line editing characters and special action may be required if

IYou wish to use them. Also care should be taken not to choose a CMS or
ICP command as a name, because this can cause problems if you wish te
Icreate a module file.) If you are altering an existing program, you
specify the existing filename. Your input must be typed in columns 1
through 71. The editor will insert one blank to the left of your input
so that the actual margins will be 2,72. You can type your input in
either capitals or lowercase letters or any combination of the two.

If you intend to ~!~~~~ your program under CMS, you should be aware
of the special conventions and restrictions that apply to PL/I when it
is used under CMS. These are listed in chapter 3 of this manual. If
you intend to compile your program under CMS but to execute it under the
control of as then there are no special restrictions on the language you
may use.

1. If your program uses lower case character string constants.

2. If you wish to use a *PROCESS statement.

3. If you' wish to use any of the line editing characters as normal
characters in your program. The line editing characters are @, #, ~,
and " by default.

14. If you wish to create a file of secondary input text for inclusion by
I use of the %INCLUDE statement.

The action is described under the beading "Special Considerations"
below.

Chapter 1: Writing and Running a PL/I Program Under CMS 15

Examples of Use of the EDIT and F~LE eomm~ds

r--,
EXAMPLE OF ENTERING A NEW PROGRAM

Terminal Printout

edit rabbit pliopt
I
I

NEW FILE:
I
I

EDIT:
I

input
I
I

INPUT:
rabbit:proc options (main);

display

I
I
I

('the rabbit squeaks to the
end;

EDIT:
I

top
I

TOF
I
I

type *
I
RABBIT: PROe OPTIONS (MAIN);

Notes and comments

The EDIT command followed by file
name and file type.

Message shows that you have no PLIOPT
file called "rabbit".

Message shows you are in EDIT mode.

INPUT subcommand causes the INPUT
mode to be entered.

Message shows you are in INPUT mode.
PL/I must appear in columns 1 through
71.

world');

Null line (carriage return only on a
line) causes return from INPUT to
EDI'! mode.

Message shows change of mode.

Places the line pointer at the
top of the file.
Message shows pointer is at top of
file.

Have the contents of the file
displayed at the terminal.

DISPLAY ('THE RAEBIT SQUEAKS TO THE WORLD');
END;

FOF
file

I
I
I

Ri
I

Means end of file reached
FILE command results in your input
being stored with the filename and
type you specified. It also ends EDIT
mode.
READY message indicates further
commands can be entered.

------~-------~----------------------~~---~---------------------~-----

1. A carriage return is assumed after all programmer input.

2. The character I in column two implies spacing has been added to
accoITmodate notes in the right hand column.

3. system response is in uppercase (capital) letters, programmer
input in lowercase.

L--_----------_J

16

r--,
1 EXAMPLE OF ALTERING AN EXISTING PROGRAM
1--
ITerminal Printout Notes and comments

(This example assumes that you are correcting an error cn line 10)

edit dig pliopt
I

EDIT:
I
I
I
I
I
I

next 10
I

PHT EDIT (X) (A) ;
I

c/ht/ut
PUT EDIT (X) (A) ;

I
I
I

file
I
I
I
I

Ri
I

Issue EDIT command s~ecifying exist
ing PLIOPT file "dig".

system ccnfirms that it is in EDIT
mode with a copy of the file
available. (If there was nc PLIOPT
file "dig" it would res~ond "NEW
FILE:".) The line pointer is placed
at the top of the file.

Position line pointer to incorrect
line.
~he tenth line beyond the original
line pointer position is displayed.
CHANGE subcommand.
Corrected line displayed. For
details of CHANGE and other edit
subcommands see CMS Edit Guide

FILE command requests that the
altered copy be stored as the file
"dig" and that the previous copy be
discarded.

READY message indicates fUrther CMS
commands may be entered.

1. A carriage return is assumed after all programmer input.

2. The character I in column two implies spacing has been added to
acco~modate notes in the right hand column.

3. System response is in upper case (capital) letters, prograrrmer
input in lowercase. L------------------------_____________________________ -----------------J

BACKGROUND

The EDIT facility of CMS allows you to create and update sequential
files frorr your terminal. It is used to create PLIOPT or PLI files

Iwhich can be compiled by the PL/I Optirr.izing Com~iler. (PLI files were
Ithe filetype available for PL/I under CP/67 and can still be used under
the VM/370 system. Their format is identical to PLIOPT files.) The EDIT
facility has two modes, the EDIT mode and the INPUT mode. The EDIT
mode allows you to use various EDIT subcommands to change, rearrange, or
add to the copy of the file in main storage. The INPUT mode assumes
that all items keyed in at the terminal are to be included in the file
you are creating. To enter the INPUT roode, you issue the subcommand
INPUT. To return from the INPUT mode to the EDIT mode, you enter a null
line; that is, a line that consists only of a carriage return. (If you
want a blank line in your PLIOPT file you must, therefore, key in at

Chapter 1: Writing and Running a PL/I Program Under CMS 17

least one blank in the line.)

When you issue the EDIT command, you must specify a file name and a
file tYfe. CMS searches your disks for the file and if you have such a
file brings a copy of it into main storage and types the message "EDIT:"
indicating that you are in EDIT mode. If you do not have such a file,
it assumes you intend to create one and types the message "NEW FILE" and
"EDIT". To enter the INPUT mode you must enter the INPUT subcommand.

To return from the EDIT mode to CMS, you must issue a command that
specifies what is to be done to the copy of the file that you have been
editing. This can be done by using either the FILE command or the QUIT
command. The FILE command stores the copy of the file you have been
creating and discards the previous cOfY, if any. The QUIT command
discards the copy of the file that you have been editing. If you wish
to retain both the original copy of the file and the cOfY of the file
that you have been editing, you can use the FNAME subcommand to rename
the copy of the file on which you are working. You could enter:

fname rabbit2

Then, when you issued the FILE command, the altered file would be stored
with the narre rabbit2 and the original file rabbit would still be
available.

If you wish to save your input and still remain in EDIT mode you can use
the SAVE command.

A full description of the EDIT comrrand and EDIT subcomreands is given
in the VM/370 Edit Guide.

If you wish to correct a line before pressing the carriage return key
you can use the line editing characters described under the heading
"Line Editing characters" in the previous section of this chapter. If
you wish to correct a line when it has been transmitted, you must use
the editing facilities which are described in the CMS Edit Guide.

PLIOPT and PLI files created by the editor have 80 byte fixed length
records. sequence numbers are in columns 73 through 80. Further
information can be found in the EDIT Guide. PLI files are an
alternative type of file that can be handled by the optimizing compiler.

SPECIAL CONSIDERATIONS

When you are editing a PLIOPT file, the CMS editor automatically
translates any lower case charactE~rs you enter to upper case. If YOU
wish to enter lower case character string constants in your program it
is necessary to take special action. Enter:

CASE M

This must be done when you are in EDIT mode. Your input will then be

18

transmitted as entered. As the PL/I optimizing compiler accepts both
u~per and lowercase input, you can still enter your ~rogram in either
u~percase or lowercase. During compilation the compiler will translate
all PL/I into uppercase. Items appearing between quotes or comment
delimiters will not be translated. The listing will show your program
with everything except comments and data between quotes in upper case.

To return to automatic translation to upper case during your edit
session issue a CASE U subcommand. First enter a null line (carriage
return only on a line) to return to the edit mode, then enter:

CASE U

Qse_Q!_!~RO£~§§_§ta~~~~n~§

special action is required if you use the *PROCESS statement. This is
because the * must appear in column 1 and, by default, the editor moves
all input to PLIOPT files one coluren to the right. Accordingly the
backspace key must be used before the *. The *PROCESS staterrent takes
the form:

(you press the backspace key)*process attributes xref;

If you are using the backspace as a character delete character it must
be preceded by the escape character. (See nLine Editing Characters"
under "Invoking CMS - the IPL Command" earlier in this chapter.)

If you wish to use any of the line editing characters as normal input to
your program you must precede them by the escape character. By default,
the line editing characters are @, #, ~, ", but all or any of thero rray
be changed with the TERMINAL command, and ~ becomes [or (on certain
terminals. If the defaults are in effect, and you wish to refer to a
variable called DOCUMENT#2, it is necessary to enter the #, which is the
default line-end character, preceded by " which is the default esca~e
character, thus:

DOCUMENTn #2

Details of the line editing characters are given in the previous section
of this chapter under the heading nLine Editing Characters".

1~~~~!i~g_~fi!~_!2E-in£!~§io~_QY-!!~£~QDE~~~i~~~n~
I
IIf you wish to create a file of secondary input text that you will
I~ubsequently be able to include in your program by use of the %INCLUDE
I,;tate~ent, you will need to create a COpy file and to store it on a
Irracro library by use of the MACLIB command.
I
I creating a copy file is similar to creating a PLIOPT file, however,
Idata ~ust be typed in columns 2 through 72 if you intend to use the
I~;tandard PL/I margins. This is necessary because the text is not
Ishifted one colurrn to the right as it is for PLIOPT files. When you
Ihave created your copy file and used the FILE command to store it, you
Iwill need to issue a MACLIB command to place it on a macro library. The
I~ACLIE corrmand takes the form:
I
I P.ACLIE {ADD}file-name macro-library-name
I GEN
I
IIf you are adding a new file to an existing library you use "ADD" as the

chapter 1: Writing and Running a PL/I Program Under CMS 19

~second operand. If you are creating the macro library you use "GEN" as
lthe second operand. An example of creating a file of inclusion by the
luse of IINCLUDE statements is shown below.
!

I r--,
I EXAMPLE OF CREATING SECONDARY INPUT TEXT FOR INCLUSION
I EY %INCLUDE STATEMENTS
I ==
I edit cuckoo copy

NEW FILE:
EDIT:
input
INPUT:

Filetype COpy must be used

Enter EDI'! mode
Enter INPUT submode

DISPLAY ('TEST
I

DATA FOR %INCLUDE'); Column 1 must be left blank to
allow for standard PL/I margins

I

EDIT
file
Ri
maclib add mylib cuckoo

i
I
I
I

Ri

Null line causes return to EDIT mode.
Return from INPUT to EDIT mode.
Store the file.

Store the file on the macro library ~ylib.
If the macro library did not exist, you
would use "GEN" instead of "ADD" this
would generate a macro library called
"mylil::".

1. A carriage return is assumed after all programmer input.

2. The charactei I in column two implies spacing has been added to
accorrmodate notes in the right hand column.

3. System response is in upper case (capital) letters, programmer
input in lower case. L--------------------------------·----------------------________________ J

SOURCES OF FURTHER INFORMATION
~QJ2i£

Format of PLIOPT and PLI files

Using the VM/370 editor

Using your terminal

20

CMS EDIT Guide

CMS EDIT Guide

CMS Terminal User's Guide

Compiling the Program-The PLIOPT Command

SUMMARY

To compile a program under CMS. you use the PLIOPT command followed by
the name of the file that contains the source program. If you wish to
specify any compiler or PLIOPT options, these must follow the file name
and be preceded by a left parenthesis. options are separated from each
other by blanks. the abbreviated forms should always be used.

During compilation, two new disk files will be produced. They will
have the file types TEXT and LISTING and the same file name as the file
specified in the PLIOPT command. The TEXT file contains the compi·led
code. The LISTING file contains the listings produced during
compilation. Any error messages produced will be transmitted to your
terminal.

If compilation reveals source program errors, you can alter the
PLIOPT file that contains the source ty use of the CMS editor. You can
then reissue the PLIOPT command. ~his results in the creation of new
TEXT and LISTING files corresponding to the newly edited source program.
If previous versions were available they will be overwritten. When you
have a satisfactory compilation, you can execute the program, which is
now in the form of a TEXT file. The next section of the chapter tells
you how to do this.

Sgecial action ~ill_Qg_reguired~~h~toIIQ~!ng_2ir2ums~~nce~:

1. If your source uses the %INCLUDE statement to incorporate secondary
input text.

2. If your source program is not on a CMS disk.

3. If you intend to execute your program under the control of OS.

4. If you wish to place the compiled program on a text library.

The action required is described in the sections below under the
heading "Special considerations."

Chapter 1: Writing and Running a PL/I Program Under CMS 21

r--,
EXAMPLE OF USE OF THE PLIOPT COMMAND

Terminal Printout

pliopt rabbit (xref

Notes and comments

The PLIOP7 command

1. options must appear after a left
parenthesis and be separated by blanks.
If any exceed 8 characters see "Special
considerations" below.

2. The right parenthesis is not necessary.

3. During compilation the system will
issue an in-operation signal for every
2 seconds of virtual CPU time used,
this is known as the BLIP signal.

NO MESSAGES PRODUCED FOR THIS COMPILATION
COMPILE TIME 0.01 MINS SPILL FILE 0 RECORDS SIZE 4051

I
R;

I
I

READY message. If the compiler failed or
found errors of severity W or higher, CMS
responds R(return code);

.\ conven:!:.if!!~:
j
:11.
II
12.
:1

Ii

A carriage return is assumed after all programmer input.

The character I in column two implies spacing has been added to
accorrmodate notes in the right hand column.

13. system response is in upper case (capital) letters, programmer
I input in lower case.
L---------------------------~---------------------------_______________ J

BACKGROUNC INFORMATION

When you issue the PLIOPT command, CMS calls the PL/I Optimizing
compiler to compile your source program. The compiler creates two new
files during its execution. One file contains the compiled code that
will be executed when you wish to execute your program. The other file
contains diagnostic messages about the compilation, and, optionally,
listings of your source program and the compiled code. (The various
options ccntrolling the listing produced by the compiler are described
in chapter 3 of this manual.)

By default, the two newly created files will be placed on CMS disks.
They will have the same file name as the file that contains the source
program but a different file type. The corrpiled code will have the file
type TEXT and the listing will have the file type LISTING. Thus, if you
compiled a PLIOPT file called ROBIN you would, by default, create two
further files called ROBIN; a TEXT file containing the compiled code and
a LISTING file containing the listing information. These files would be
placed on your CMS disks according to the rules shown in figure 1.2.
(The relationship between eMS disks is explained in the VM/370 Command
Language User's Guide.)

22

The creation of the LISTING file can be suppressed by use of the
NOPRINT oFtion of the PLIOPT command. (See below under "Listing
Options".) The creation of the ~EXT file can be suppressed by use of
the NOOBJECT option of the PLIOPT command.

r--,
SOURCE DISK OUTPUT DISK

===~====

source disk read/write

source disk read/only with
parent disk read/write

source disk read/only with
parent disk read/only and
A disk read/write

source disk read only with
no parent and A disk read/write

source disk read/only with no
parent disk or parent disk
read/only and A disk read/
only

source disk

parent disk

A disk

A disk

program terminates unless you
have directed output to a non
DASD device by using a CMS
FILEDEF command. (See CMS
Comffand Language User's Guide
for information on how to do
this)

L--J
Figure 1.2. The disks on which the compiler output is stored

Qhoosing_th~Informatio~£Q_Q~_~~~_£2_You~_!~~~!~al_= Li2~i~9
Options

Options of the PLIOPT command and other CMS facilities offer you a wide
choice in the amount of listing information that can be made availacle
to you at the terminal.

Three factors are relevant:

1. The compiler option TERMINAL which allows you to have sections of
the listing printed at the terminal as well as being included in
the normal listing file. TERMINAL can be followed by a
parenthesized options lists specifying those parts of the listing
that you wish to be transmitted to your terminal. chapter 3 of
this manual gives details. By default the TERMINAL option is
specified without an options list and compiler diagnostic messages
are transmitted to the terminal.

2. The CMS option PRINTIDISKINOPRINT, which allows you to direct the
listing to a printer PRINT), to a CMS file (DISK ••• This is the
default) or to have the listing file discarded (NOPRINT).

3. The ability to direct the listing information directly to the
terminal by issuing the FILEDEF command "FILEDEF LISTING TERM"

The TERMINAL and PRINT options are described in chapter 3 of this
manual. The FILEDEF command is described in the VM/370 Command Language
User's Guide~

The CMS defaults are TERMINAL with no options list and DISK. When
you have received the messages passed to your file as specified in the
TERMINAL option, you can decide whether to examine the LISTING file
using the EDIT mode, to pass it to a printer, or to discard it.

Chapter 1: Writing and Running a PL/I Program Under CMS 23

Only one copy of the listing is transmitted to the terrrinal if you
use both the TERMINAL option and assign the listing file to the
terminal.

The PLIOPT command expects all op·tions to be not more than eight
characters long. It is therefore, necessary to use the abbreviated forro
of certain compiler options such as A~~RIBUTES, and advisable always to
use the abbreviated form. All options and sub-options must be separated
by blanks. Parentheses need not be separated from options or suboptions
even if the option has a length of more than 8 characters. Thus
TERMINAL(XREF A) is acceptable, although the total length is greater
than 8 characters. -rs

During compilation the compiler uses a number of files. These files are
allocated by the interface module that invokes the compiler. The files
used are shown in figure 1.3.

r----------------------- --,
Name Function Device ~ype When Required

PLIOPT System input DASD,
magnetic tape,
card reader

LISTING System print DASD,
magnetic tape,
printer

TEXT System load DASD,
magnetic tape

SYSPUNCH system punch DASD,
magnetic tape,
card punch

SYSUT1 Spill DASD

MACLIB Preprocessor DASD
%INCLUDE

Always

Always

When object module is to
be created

When object module
required in card image
format

When insufficient main
storage available

When %INCLUDE is used

L---------------------------------·--------------------------------_----J
J~igure 1.3. Files that may be used by the corr.piler

SPECIAL CONSIDERATIONS

If your program uses %INCLUDE statements to include previously written
l?L/I statements or procedures, the libraries on which they are held must

24

be made available to CMS before issuing the PLIOPT command. To do this
you must insert the statements into a CMS MACLIB using the MACLIB
command. You then issue a GLOBAL com~and taking the form nGLOBAL MACLIB
filename. n For example, if your secondary input text was held in MACLIB
called nmylib" you would enter:

global maclib mylib

before issuing the PLIOPT command. The PLIOPT command must specify
either the INCLUDE or the MACRO option.

If your source program is not held on a CMS disk you can either read or
move it to a CMS disk from a card reader or tape using the READCARD or
MOVEFILE commands of CMS, or issue a FILEDEF command to define the PL/I
source as coming from either the reader or tape device and then coropile
it.

Moving the file onto a CMS disk offers the advantage that the source
can subsequently be altered from the terminal. This may be necessary if
compilaticn reveals errors in the source program. The method is given
in the VM/370 Command Language User's Guide.

To compile a program held on card or tape it is necessary to issue a
FILEDEF command before the PLIOPT command. Thus to compile a program
held on card you might use the following sequence:

FILEDEF PLIOPT READER (LRECL 80 RECFM F BLOCK 80

PLIOPT fname (option 1 •••• option n)

Any filename can be used for "fname n• The name specified will ce
given to the LISTING, TEXT, and UTILITY files produced by the compiler.

A description of the FILEDEF command is given in the VM/370 command
language reference.

If you intend to execute your program under OS, you should specify the
OSDECK option thus:

PLIOPT RAEBIT (OSDECK

This prevents the compiler from issuing a CMS loader ENTRY command,
specifying the CMS execution time interface module. An attempt to
execute a program compiled without the OSDECK option under OS, results
in an OS linkage editor error of severity level 8.

It is possible to execute a program compiled with the OSDECK option
under CMS, but special action is required. See nExecuting a File not
Compiled Under CMS or Compiled with the OSDECK option" in the following
section, nExecuting a PL/I Program. n

IQQmEilin~-EEQ~E~m_tQ_Qg_2!~£~g_Qn~_~ext_!i~~~Y
I
IIf you intend to include the compiled ~EXT file as a member of a text
I library it is necessary to use the NAME option when you specify the
IPLIOPT corrmand. This is because memcers of a TXTLIB file are given the

chapter 1: Writing and Running a PL/I Program Under CMS 25

Iname of their primary entry point if they have no external name. The
I primary entry point of every TEXT file produced by the optimizing
Icompiler is the same, consequently only one compiled program can be
jincluded in a TXTLIB if the NAME option is not used. (The NAME option
Igives the TEXT file an external name.)

:1

~ Code required to create a TEXT file suitable for including in a
!TXTLIB is shown below. This code gives the file the external name used
~in the PLIOPT command. However any other name can be used, provided
!Ithat it does not exceed six characters. It should ne noted that, if the
lname exceeds six characters the NAME option will be ignored.
!
tThe code below compiles a PLIOPT file RABBIT with the external name
RABBIT and adds it to an existing text library called BIOLIB.

I

I
jpliopt rabbit (name('rabbit'
I
I (compiler messages etc)
I
ltxtlib add biolib rabbit

SOURCES OF FURTHER INFORMATION

Error message explanations
eMS (numbered DMSxxxx)

PL/I (numbered IELxxxx)

FILEDEF command

GLOBAL corrmand

MOVEFILE corrmand

PL/I language

PLIOPT command

READCARD command

TXTLIB corrmand

26

VM/370 system Messages Manual

PL/I Optimizing Compiler Messages

VM/370 corrmand Language User's Guide

VM/370 Command Language User's Guide

VM/370 command Language User's Guide

PL/I Checkout and Optimizing Compilers
Language Reference Manual

Chapter 3 of this manual

VM/370 Corr:mand Language Reference

VM/370 Command Language Reference

Executing a PLII Program

SUMMARY

To execute a PL/I program under CMS, you must have either a CMS TEXT
file or a CMS MODULE file. If your program is not in either of these
forms, see the earlier sections of this chapter. (A MODULE file is
created by using the LOAD command to resolve addresses in a TEXT file.
Details are given below.)

If you have a TEXT file execution requires three steps:

1. Issuing a GLOBAL command for the PL/I libraries.

2. Issuing the LOAD command with the START option if you wish
execution to begin.

3. If the START option was not issued with the LOAD command#
issuing the START command.

These steps are shown in example 1 below.

If you have a MODULE file execution requires 2 steps:

1. Issuing a GLOBAL command for the PL/I libraries.

2. Issuing the filename as a CMS command.

These steps are shown in example 3 below.

To create a MODULE file, you issue the GENMOD comreand after issuing the
IGLOBAL and LOAD commands, see example 2 below. You must specify a
Ifilename with the GENMOD command, otherwise the resulting module file
will be called DMSIBM.

The PL/I standard files, SYSIN, SYSPRINT, and PLIDUMP are automatically
assigned cefore the PL/I program begins execution. SYSIN and SYSPRINT
are assigned to the terminal, and PLIDUMP is assigned to a printer. If
you wish to override these assignments you must issue FILEDEF commands
before the start of execution. See "PL/I Files and CMS Defaults" below.

§£gcial_~cti2n_~il!_£~_~gui£~~_i~_~fol!Q~igg_£iE~Bm§!~n£~§~

1. If you wish to pass parameters to your program.

2. If your program uses any PL/I files that do not match the CMS
default definitions.

3. If you wish to execute a program that was compiled under OS, or was
compiled under CMS with the OS DECK option.

The action required is described in the sections below under the heading
"Special considerations."

Chapter 1: Writing and Runping a PL/I Program Under CMS 27

r--,
EXAMPLE 1. EXECUTING A TEXT FILE

Terminal ~rintout

global txt lib plilib
I
I

R;
I

load rabbit
I
I
I
I
I

R;
I

start
I
I
I
I
I
I
I

EXECUTION BEGINS •••
I
I
I

THE RAEBIT SQUEAKS TO THE
WORLD

I I
R;

I

Notes and comments

GLOBAL command makes the PL/I libraries
available.

READY message.

LOAD command generates an executable
program in main storage from the TEXT
file. (An alternative is
LOAD RABBIT (START, if you want immediate
execution) •

READY message.

START command starts execution

1. If you wish to pass parameters, follow
"start" with a blank, an asterisk,
another blank, and then the ~arameters;
thus: start * / 123. See "S~ecial
considerations" below.

Message at start of execution. For every
2 seconds of CPU time used an in-operation
signal is given.

The message in the sample program is
passed to the terminal.

~he READY message indicates that further
CMS commands may be entered.

1. A carriage return is assumed after all programmer input.

2. The character I in column two implies spacing has been added to
accorrmodate notes in the right hand column.

3. system response is in upper case (capital) letters, programmer
input in lower case. L---·-------------------------------__________________ ------------------J

28

r--, 1 EXAMPLE 2. CREATING A MODULE FILE ,
1--1
ITerminal Printout Notes and Comments I
1--1
glObal txtlib plilib Make PL/I libraries available I

I I
Ri I
load rabbit LOAD command creates an executable I

1 program from TEXT file and library
I modules.
1

genmod rabbit
I
I
I
I
I
I
I
I
I

Ri

Conventions:

Creates a copy of the loaded program
as a CMS MODULE file. This can now
be execut~d by use of the file narre
as a command. If you issue a genrrod
command without a filename the
resulting file will be called DMSIBM
tecause this is the name of the first
entry point in every module file
produced by the compiler.

1. A carriage return is assumed after all programmer input.

2. The character 1 in column two implies spacing has been added to
accorrmodate notes in the right hand column.

3. system response is in upper case (capital) letters, prograrrmer
input in lower case. L--------_-----_______________________________________ -----------------J

Chapter 1: Writing and Running a PL/I Program Under eMS 29

r--,
EXAMPLE 3. EXECUTING A MODULE FILE

Terminal Printout

global txtlib plilib
I
I
I
I

R;
I

rabbit
I
I
I
I
I
I
I
I

THE RABBIT SQUEAKS TO THE WORLD
I
I

R;
I

Notes and corr.ments

GLOBAL corr-mand makes the PL/I
libraries available. This is
necessary as some library modules are
loaded dynamically.

READY message

For a MODULE file the filename can be
used as a CMS command.

1. If you wish to pass parameters,
they must appear after the file
name and be preceded by a blank J

thus: rabbit / 1234. See "Special
considerations" below.

~he message in the sample program is
passed to the terminal.

~he READY message indicates that
further CMS commands may be entered.

1. A carriage return is assumed after all programmer input.

2. The character I in column two implies spacing has been added to
accorrmodate notes.

3. System response is in upper case (capital) letters, prograrrmer
input in lower case.

L--J

BACKGROUND

During compilation the PL/I optimizing compiler produces code that
requires further processing before it can be executed. Addresses within
the code must be resolved and external modules referenced within the
code must be included. These references will always include modules
from the PL/I library.

The resolution of addresses is initiated by the LOAD command. The
processed data can then be retained with the addresses resolved by the
use of a GENMOD command specifying the filename. This command produces
a CMS MODULE file that can be executed without going through the process
of issuing the LOAD command on each occasion.

PL/I Files and CMS Defaults
---------------------~-----

The FILEDEF command gives the CMS user the ability to simulate OS DD
stat,ements when using CMS. The use of FILEDEF statements is necessary
for any PL/I programs that use record or stream I/O statements. (It is

30

I

possible to use the DISPLAY statement and the REPLY option to simulate
conversation I/O under CMS. See chapter 2.)

I To assign the terminal to a file it is necessary only to use TER~ in
Iyour FILECEF command. For example if you wished to assign a file called
IOUTPUT1 to the terminal you would do it as follows:
I
IFILEDEF OUTPUT1 TERM
I
I Because synchonization is only automatically handled for STREAM files,
IRECORD files should not normally be assigned to the terminal.
I

I

A number of FILEDEF commands are issued by the interface module
DMSIBM. They assign SYSIN and SYSPRIN~ to the terminal for
conversational I/O and PLIDUMP to a printer. If you wish to override
these default assignments, you must issue suitable FILEDEF commands
before starting the execution of the PL/I program.

The differences in syntax between the FILEDEF command and the as DD
statement are considerable and the user should consult the VM/370
Command Language User's Guide before attempting to use the FILEDEF
command. If the FILEDEF command is not used and an attempt is made to
open the file CMS defaults are applied. rhe default is a FILEDEF
command to device disk with filename FILE and file type ddnarne.

A module file can be executed by a LOAD MOD command followed by a START
command.

SPECIAL CONSIDERATIONS

When passing parameters two sets of restrictions have to be corn in
mind, those that are imposed by CMS, and those imposed by the PL/I
optimizing compiler.

Under CMS, parameters must be passed to the program in tokens
containing no more than eight characters. These tokens must ce
separated by blanks.

The PL/I optirr.izing compiler allows you to pass two types of
parameters to a PL/I program. The first is a set of execution time
options, sometimes called program management parameters (these are
listed in Chapter 4 of this manual). ~he second is a single parameter
that is passed to the PL/I main procedure. The two types of parameter
are separated by a / symbol which must itself have a blank on either
side. Anything preceding this symcol is taken to be an execution time
option. If no execution time option is passed, the main procedure
parameter must be preceded by the three characters
blank, oblique stroke, and blank(/).

I Under the PL/I optimizing Compiler, the main procedure parameter must
Ice a character string, and, cecause blanks are used as delimiters in CMS
Iblanks cannot be passed in the string. Blanks are removed from the
Istring and the two separated items concatenated.
I
I Suppose you wished to pass to a program the execution time options
I NOSPIE AND REPORT and a character string consisting of a name of more
Ithan eight characters and three sets of figures, this could be passed in

Chapter 1: Writing and Running a PL/I Program Under CMS 31

Ithe form:
I
Istart * NOSPIE REPORT / CARPENTE R,38,24, 38
I
Ithis would be passed to the program in the form of
I
ICARPENTER,38,24,38

If you wish to execute under CMS a program that was compiled under OS
or was compiled under CMS with the OSDECK option, it is necessary to
explicitly load the execution time interface module. (An entry
statement for this module is automatically included in the TEXT file for
any PL/I ~rogram compiled under CMS without the OSDECK option.)
Assuming the program that you wish to execute is on a CMS TEXT file and
is called SEAGULL, the following commands are required.

global txtlib plilib
load seagull dmsibm
start dmsibm

The GLOBAL and LOAD commands make the PL/I library available and load
the program and the interface module. rhe START command passes control
to the interface module, which, in turn, passes control to the program.

If you wish to create a MODULE file from the load module you have
created, you must issue a GENMOD command after the LOAD command. This
will produce a MODULE file with the name of the file used in the LOAD
command (SEAGULL in the example). The MODULE file can then be executed
in the normal manner.

SOURCES OF FURTHER INFORMATION

IOE~C Bg!~gn£g ... $!.Q!:!f£g

FILEDEF command VM/370 Coromand Language User's Guide

filenarre as a corrmand VM/370 Command Language User's Guide

GENMOD corrmand VM/370 Command Language User's Guide

GLOBAL command VM/370 Coremand Language User's Guide

LOADMOD command VM/370 Command Language User·s Guide

START comIrand VM/370 Command Language User's Guide

32

Ending the Terminal Session-The LOGOUT Command

SUMMARY

To end a CMS session you enter the CP LOGOUT command from the CMS or the
CP environment.

Before finishing the session you may wish to erase some of the files.
This is done by using the ERASE command.

§E~cial_~ctio~will b~reguired-if-~~_~2ing_~_§~i!Sh~9_1!~~
£Qg~~£!!Q~~9_YQ~~Q~ot~i§h-to b~i§£2B~~£~~9. See "s~ecial
Considerations" below.

r--,
EXAMPLE OF LOGOUT

Terminal Printout Notes and comments

logout You enter the LOGOUT command.

CONNECT=hh:mm:ss VIRTCPU=mm.ss.ss TOTCPU=mm:ss.ss
I
I Message tells you the connect time
I The actual length of the session.
I and virtual and the real CPU time in
I minutes, seconds, and hundredths
I of seconds.
LOGOUT AT hh:mm:ss (zone) dayrof-week mm/dd/yy
I
I Message shows time and date of
I logging off.
(you switch off terminal)

Conventions:

1. A carriage return is assumed after all programmer input.

2. The character I in column two implies spacing has been added.

3. system response is in upper case (capital) letters, programmer
in~ut in lower case.

L-"---J

BACKGROUND

If you wish to delete files you use the ERASE command. The command must
specify the file name and the file type. For example if you wished to
delete the PLIOPT file "rattit", you would enter:

erase rabtit pliopt

Chapter 1: Writ~ng and Running a PL/I Program Under CMS 33

If you wished to delete all the files called "rabbit" you would enter:

erase rabbit *

SPECIAL CONSIDERATIONS

If you are using a switched line to a computer, the use of the LOGOUT
command as shown results in the connection to the computer being l::;roken.
If ~(Ou wish to retain the connection, you must enter "logout hold". The
action is the same as for logout except that the switched line is not
disconnected.

SOURCE OF FURTHER INFORMATION

Reference source
~---------------

ERASE comrrand VM/370 Command Language User's Guide

LOGOUT command VM/370 Corrrnand Language User's Guide

34

I

Chapter 2: PL/I Conventions and Restrictions Under
CMS

Restrictions

The PL/I features that may not be used under CMS and restrictions on
other features are shown in figure 2.1.

r--,
DO NOT USE UNDER CMS

ASCII data sets

BACKWARDS attribute with magnetic tapes

FETCH and RELEASE statements

INDEXED files

PL/I checkFoint restart facilities (PLICKPT)

PL/I sort facilities (PLISORT)

Tasking

TeleFrocessing files

VS or VES record formats

VSAM files

OTHER RESTRICTIONS UNDER CMS

READ •••• EVENT can only be used if the NCP parameter is included in
the ENVIRONMENT option of the PL/I file.

Blanks cannot be passed in the parameter string to the main
procedure. The blanks are removed from the string and
the items separated by them are concatenated. L------------------------------___________ -___________ -----------------J

Figure 2.1. Restrictions on the PL/I that can be executed under CMS.

The results of using PL/I features that are not available under CMS are
summarized below.

I MULTITASKING PL/I error message number IBM5761 will be generated.
This reads "ATTEMPT ~O CALL A TASK IN NON-TASKING
ENVIRONMENT" The associated ONCODE is 3915.

I
I
I
ISORT
I
I
I

The ERROR condition will be raised and PL/I error
message 8811 will be generated. This reads "SORT/MERGE
NOT SUPPORTED IN CMS". The associated ONCODE is 9201.

I FETCH/RELEASE The ERROR condition will be raised and PL/I error
message 5921 will be generated. This reads
"FETCH/RELEASE NOT SUPPORTED IN CMS". The associated
ONCODE is 9252.

I
1
I
I
I CHECKPOINT/RESTART
I PL/I error message 9261 will be generated and execution
I will continue without a checkpoint being taken. The
I message reads "CHECKPOINT RESTART NOT SUPPORTED IN

ChaFter 2: PL/I Conventions and Restrictions Under CMS 35

ISAM FILES

CMS". There is no ONCODE as the ERROR condition is not
raised.

The UNDEFINEDFILE condition is raised.

Use of TCAM, Or spanned records on BDAM, or the BACKWARDS attribute.

36

CMS error message number DMSOP063E will be generated~
This reads "OPEN ERROR CODE x ON ddname."

Conventions

Two types of convention apply to PL/I when used under CMS. The first
are those adopted to make input/output simpler and more efficient at the
terminal. The second type are those that result from the terminal being
considered as the console of a virtual machine. These affect the DISPLAY
statement and the REPLY option.

INO prompting or other facilities are provided for record I/O at the
I terminal. yOU are therefore strongly advised to use stream I/O for any
I transmission to or from a terminal.

STREAM I/O CONVENTIONS AT THE TERMINAL

TO simplify input/output at the terminal various conventions have been
adopted fer stream files that are assigned to the terminal. Three areas
are affected.

1. The forrr.atting of PRINT files

2. The automatic prompting feature

3. The spacing and punctuation rules for input

When a PRINT file is assigned to the terminal, it is assumed that it
will be read as it is being printed. Spacing is therefore reduced to a
minimum to reduce printing time. The following rules apply to the PAGE,
SKIP, and ENDPAGE keywords.

• PAGE options or format items result in three lines being skipped.

• SKIP options or format items larger than SKIP (2) result in three
lines being skipped. SKIP (2) or less is treated in the usual manner.

• The ENDPAGE condition is never raised.

Qverrigi.!l9-.th.§--fQm~~~illil conventions~or PRI!!±._f!!~2.: If you wish
normal spacing to apply to output from a PRINT file at the terminal, it
is necessary to supply your own tab table for PL/I. This is done by
declaring an external structure called PLITABS in the program and
initializing the element PAGELENGTH to the number of lines that can fit
on your page. This value differs from PAGESIZE which defines the number
of lines you want to be printed on the page before ENDPAGE is raised,
see figure 2.2. If you required a pagelength of 64 lines you would
declare PLITAES thus:

DCL 1 PLITAES S'IATIC EXTERNAL,
(2 OFFSET INIT (14),

2 PAGESIZE INIT (60),
2 LINESIZE INIT (120),
2 PAGELENGTH INIT (64),
2 FILL1INIT (0),
2 FILL2 INIT (0),
2 FILL3 INIT (0),
2 NUMEER OF TABS INIT (5),
2 TAB1INIT-(25),
2 TAE2 INIT (49),

Chapter 2: PL/I Conventions and Restrictions Under CMS 37

2 TAB3 INIT (73),
2 TAB4 INIT (97),
2 TABS INIT (121» FIXED BIN (15,0);

This declaration gives the standard page size, line size and tabulating
positions.

PAGESIZE

PAGELENGTH

____ 19

PAGE LENGTH: is the number of lines that could be printed on a page.

PAGESIZE: is the number of lines that will be printed on a page before the
ENDPAGE condition is raised.

Figure 2.2. PAGELENGTH defines the size of your paper, PAGESIZE
the number of lines printed in the main printing area.

When the program requires input from a file that is associated with a
terminal, it issues a prompt. This takes the form of printing a colon on
the next line and then skipping to column 1 on the line following the
colon. This gives you a full line to enter your input thus:

(space for entry of your data)

This type of prompt is referred to as a primary prompt.

If the data you transmit from the terminal does not complete the
requirements of the GET statement, a further prompt is issued. This
takes the form of printing a plus sign followed by a colen thus:

+:(space for entry of your data)

This type of prompt is referred to as the secondary prompt.

38

Qverrid!~g_AU~Qm~tic E~2mE!ing: It is possible to override the primary
prompt by making a colon the last item in the request for the data. The
secondary prompt cannot be overridden. Take the two PL/I statements

PUT SKIP EDIT ('ENTER TIME OF PERIHELION')i
GET EDIT (PERITIME) (A(lO));

As they stand they would result in the terminal printing

ENTER TIME OF PERIHELION
(automatic prompt)

(space for entry of data)

However, if the first statement had a colon at the end of the output
thus:

PUT EDIT ('ENTER TIME OF PERIHELION:') (A}i

the sequence would be:

ENTER TIME OF PERIHELION: (space for entry of data)

~otg: The automatic-prompt override works by maintaining a check on the
last item transmitted to your terminal. If the last item in the current
session was a colon, the prompt will be overridden. Care should
therefore be taken not to override the automatic prompt ty mistake. If
a program relies on automatic prompting at one point and overrides
automatic prompting at another, problems are likely tc arise. This is
because the prompt override stays in force not for one GET statement but
for all GET statements until data that does not end with a colon is
transmitted to the terminal.

~in~gtin~~!Qg-2h~~~£!~. If you wish to transmit as one data item
data that requires 2 or more lines of space at the terminal a hyphen
must be typed as the last character in each line except the last line.
For example, if you wanted to transmit the sentence "this data must be
transmitted as one unit" you could enter:

this data must be transmitted -
as one unit.

Transmission would not occur until the carriage return after the word
"unit". The hyphen would be removed. The item transmitted is referred
to as a "logical line".

~Qi~: This convention means that a line whose last character is a hyphen
or a PL/I minus sign can only be transmitted by entering two hyphens at
the end of the line and following them by a carriage return only en the
next line thus:

xyz--
(carriage return only on this line.)

For GET LIST and GET DATA statements, a comma is added to the end of
each logical line transmitted from the terminal if it is omitted ty the
programmer. Thus there is no need to enter blanks or commas to delimit
items if they are entered on separate logical lines. For the PL/I

Chapter 2: PL/I Conventions and Restrictions Under CMS 39

statement GET LIST(A,E,C); you could enter at the terminal.

1
+:2
+:3

However this rule also applies when entering character string data. A
character string must therefore be transmitted as one logical line,
otherwise commas are placed at the break points. For example. if you
entered:

'COMMAS SHOULD NOT BREAK
+: UP A CLAUSE'

The resulting string would read 'COMMAS SHOULD NOT BREAK, UP A CLAUSE'

~ut2!!]ati£~addi!!g-i2!:~ET_~Q.!I: For a GET EDIT statement there is no
need to enter blanks at the end of the line. The item will be padded to
the specified length. Thus for the PL/I statement GET EDIT (NAME)
(A(lS»; you could enter SMITH followed immediately by a carriage
return. The item would automatically be padded with ten blanks so that
the program received the fifteen characters "SMITH

~Q~~: This means that a single item must be transmitted as a logical
line, otherwise the first line transmitted will be padded with the
necessary blanks and considered to be the complete item.

Q~_.2L§!iIP--1.Q!_~er~!!@1 inpJ:!~: SKIP in a GET statement has little
meaning if the file involved is allocated to a terminal. The program is
apparently being asked to skip data that has not yet been keyed in. For
this reason, all uses of SKIP for input are taken to be SKIP(l) when the
file is allocated to the terminal. SKIP(l) is treated as an instruction
to ignore all unused data on the currently available logical line.

The end of file can be entered at the terminal by keying in a logical
line that contains the characters "/*" followed by a carriage return.
Any further attempts to use the file without closing it and re-opening
it result in the ENDFILE condition being raised.

DISPLAY AND REPLY UNDER CMS

Because the terminal is considered to be the console of the virtual
machine, the DISPLAY statement and the REPLY option can be used to
create conversational programs. The DISPLAY statement transmits the
message to your terminal, and the REPLY option allows you to respond.
For example~ the PL/I statement:

DISPLAY (. ENTER NAME') REPLY (NAME);

would result in the message "ENTER NAME" being printed at your terminal.
The program would then wait for your response and your data would be
placed in the variable NAME after you pressed the carriage return key.
The terminal printout would look like this:

ENTER NAME
JOHN TAYLOR

40

Chapter 3: The PLIOPT Command and its Options

This chapter shows the syntax of the PLIOPT command, the options that
can be used with the command, and the standard defaults that will a~ply
if you do not specify values for certain options.

There are five sections:

1. A summary of the syntax notation used.

2. A description of the PLIOPT corrrrand and its options showing the
default option values suggested by IBM.

3. A discussion of two general pOints. First the differences
tetween options of the PLIOPT command and options of the PL/I
optimizing Compiler, and, second, the relationship between the
various statement numbering options.

4. A table of options listed by function.

5. An alphabetical list of options with detailed descriptions and
syntax notation.

If you wish to accept the default options, you will only need to look
at the section on the PLIOPT command and possibly the section on syntax
notation if you are not already familiar with this. It should be noted
that the default values may have been altered by your installation and
may not correspond to those shown in the table. If you wish to look up
a particular option, you should look for it in the alphabetical section.
If you want a summary of the options that are available, or if you are
looking for an option to serve a specific purpose, you should look in
the table of options listed by function. Before using an option found
in this table you should check in the alphabetical section to discover
the syntax.

If you intend to use options in a *PROCESS statement, you should read
the discussion headed npLIOPT Options and Compiler Options". It should
not be necessary to read the section headed "Relationship of statement
NUmbering Options" unless you need amplification of the information
supplied in the descriptions of the statement numbering options in the
alphabetical section.

A general discussion of the PLIOPT command is given in chapter 2
under the heading "Compiling the Program the PLIOPT Command".

Syntax Notation

The syntax notation used to illustrate the command in this part of the
manual is the sarre as that used in the VM/370 Command ~~ng~~g~ ~2~!~2
§~!Q~. Briefly, the conventions are as follows~------

Items in brackets] are optional.

Items in braces { } are alternatives; choose only one.

An item underlined ap~lies unless an alternative is specified.

Note: Defaults shown are suggested defaults and may have been changed
for your system.

Chapter 3: The PLICPT Command and its Options 41

Items written in uppercase (capital) letters are keywords and must be
spelled as shown.

Items written in lowercase letters must be replaced by appropriate names
or values.

Separate the command name from the operands, options and suboptions by
one or more blanks.

~he four special characters I{). (single quote, left parenthesis, right
parenthesis and asterisk) must be included where shown.

42

PLIOPT Command

The PLIOPT command invokes the PL/I Optimizing Compiler to compile a
program written in PL/I source language. The compiler produces a TEXT
file containing machine code and a LISTING file containing listings and
diagnostics. Other files may be produced depending on compiler options.

Format:

r--,
PLIOPT filename [(optionl [option2] ••• [)]]

AGINAG
AINA
CHARSET ([481&Q](EBCDI£IBCO])
COMPILEINC[(WIEI~)]
CONTROL('password')
COUNT I NOCOUNT
DECK I NODEC!S
DUMPINODUMP .
ESDI~OES~
FLAG [(I I W I E IS)]
FLOW[(n m)] I NOFLOW
GONUMBERI~§~-
GOSTMTINOGOSTMT
INCLUDEININC--
IMPI~E
INSOURCEI~IS
LC(n) ILC(55)
LIST[(m n)] I~ST
LMESSAGEI§~~~~
MACRO I NOMACRO
MAP I NOMAR -
MARGINI('c') INMI
MARGINS(m n(c]) I MARGINS (2 72)
MDECK I NO~!S ---~----

NAME (• name')
NEST I NONEST
!'!!IMB§EINONUMBER
~JECTINCCBJECT
OFFSETINOO£:!:~~l:
OPTIMIZE(TIMEIOI2) IOPTIMISE(TIMEIOI2) I!,!OPI
OPTIONSINOOPl:ION§ ~
OSDECK 1
PRINTIDISKINOPRINT 1

SEQUENCE(m n) I NOSEQYENCE
SIZE (yyyyYYYYIYyyyyKlMAX)
SOURCE I NOSOURCE ~~-
STMTINCSTMT---
STORAGE I NST§
SYNTAXINSY!,![(WIEI~)]
TERMINAL(opt-list)]INTERM
XREFI NOXRE£:

1Note: These are options of the PLIOPT command and not
compiler options, see discussion below.

L--J

filename

Is the name of the file that contains the PL/I source program. The

Chapter 3: The PLIOPT Command and its Options 43

file type must be PLIOPT or PLI.

option1 option2

USAGE

are a series of compiler or PLIOPT options. They must be
separated from each other by at least one blank. The right
hand parenthesis is optional. If contradicting options are
specified y the rightmost option applies.

The PLIOPT command compiles a PL/I program or a series of PL/I programs
into machine language object code. If the program is held as a CMS file
on disk it must have the file type PLIOPT or PLI. If it is not on disk,
it must be defined to the system with a FILEDEF command.

The options governing compiler operation and output are specified in any
order. Any combination of options is accepted. When conflicting optLons
are specified, the last specified option is used. The majority of
options have positive and negative forms one of which is used by default
if neither form is specified. Figure 3.1 summarizes the compiler
options by function and enable you to quickly grasp the possibilities
available with the PL/I Optimizing Compiler.

PLIOPT OPTIONS AND COMPILER OPTIONS

The majority of options of the PLIOPT command are options of the
optimizing compiler. This means that they can be specified in the
*PROCESS statement as well as in the PLIOPT command. All options
except DISK, NOPRINT, OSDECK, and PRINT can be specified in the *
PROCESS statement. DISK, NOPRINT, OSDECK, and PRINT cannot be specified

Ibecause they are PLIOPT options and not a compiler options. DUMP cannot
Ibe specified in the * PROCESS statement unless it is also specified in
Ithe PLIOPT corr.mand. This is because extra space must be acquired for
Ithe DUMP option before the * PROCESS statement is processed.

Where options of the PLIOPT command contradict those of the *PROCESS
statement, the options in the *PROCESS statement override those in the
PLIOPT corrrr,and. For options whose length is greater than eight
characters, the abbreviation for that option must be used in the PLIOPT
command.

The optimizing compiler provides two methods of numbering statements.
Staterr.ents can have their numbers taken from the sequence field of the
record; this is the method used when NUMBER or GONUMBER is specified and
is the default for CMS. Alternatively, they can be numbered
sequentially starting from 1; this is the rr.ethod used when STMT or
GOSTMT is specified.

The numbers of the statements are used in compiler diagnostic messages
and listings. If the GONUMBER or GOSTMT option is specified, the
numbers are retained in a table generated by the compiler and are used
in execution time diagnostic messages. When numbers are required during
execution, the same numbering system as that which applied during

44

compilation will be used. This means that specifying certain options
implies that certain other options will be used. Three rules apply:

1. Because one or other statement numbering system must be used during
compilation, NOSTMT is taken as equivalent to NUMBER, and
similarlYJ NONUMBER is taken as equivalent to STMT.

2. Because the same numbering system must be used during compilation
and execution, either of the GO options is taken to imply that the
corresponding numbering system is to apply during compilation.
Thus GONUMBER implies NUMBER and GOSTMT implies STMT.

3. It is not possible to use both numbering systems in one compilation
therefore GOSTMT implies NOGONUMBER, and GONUMBER implies NOGOSTMT.

If contradictory options are specified, the last option found is used
and any implications are taken from that option.

The use of GO NUMBER or GOSTMT involves a space overhead because the
numbers are retained in a table generated by the compiler. If statement
numbers are not retained into execution. execution-time diagnostic
messages identify the location of the error by an offset from a
procedure entry point. The use of the OFFSET option results in the
generation of a listing at compile time that associates statement
numbers with offsets and consequently enables you to identify the PL/I
statement mentioned in an execution time error message.

The OFFSET option is separate from the numbering options and must be
specified if required.

Chapter 3: The PLIOPT Command and its Options 45

r--·-----------------------------,
OPTIONS LISTED BY FUNCTION PART 1 I

--1
LISTING OPTIONS 1

Control destination of listing file

Control listings
produced

PRINTIDISKINOPRIN~*

AGGREGATE

ATTRIBUTES

ESD

INSOURCE

FLAG(IIWIEIS)

LIST

MAP

OPTIONS

SOURCE

STORAGE

XREF

Improve readibility of source listing

NEST

MARGINI

Control lines per page of listing

LINECOUNT

Determine whether listing
goes to printer, CMS disk, or
is discarded.

list of aggregates and their
sizes.

list of attributes of all
identifiers.

list of external symbol
dictionary.

list of preprocessor input.

suppress diagnostic messages
below a certain severity.

list of compiled code produced
by compiler.

list contents of static control
section produced by compiler.

list of options used.

list of source program or
preprocessor output.

list of storage used.

list of statements in which each
identifier is used.

indicates do-group and block
level by numbering in margin.

highlights any source outside
margins.

specifies number of lines per
page on listing.

1* options marked thus are ignored if used in the *PROCESS staterrent

I
I
1
I
1
1
I
I
J

L--------------------------------_____________________ -----------------J
Figure 3.1. (Part 1 of 3) Compiler options arranged by function

46

r--,
OPTIONS LISTED BY FUNCTION PART 2

INPUT OPTIONS

TO define character set and margins of input
CHARSET identify the character set used

in source.
MARGINS identify the columns used for

source program, and
identify position of a carriage
control character

SEQUENCE identify the columns used for
I sequence numbers.
1--1
IOPTIONS TO PREVENT UNNECESSARY PROCESSING
I

I 1
1

Control whether compilation should end if errors above a certain level
are found

NOSYNTAX(WIEIS)

NOCOMPILE(WIEIS)

OPTIONS FOR PREPROCESSING

MACRO

INCLUDE

MDECK

stop processing after errors are
found in preprocessing.

stop processing after errors are
found in syntax checking.

allows full use of the
preprocessor facility.

allows. inclusion of text without
overheads incurred MACRO.

produces a source deck from
preprocessor output.

OPTIONS TO USE WHEN PRODUCING AN OBJECT MODULE

OBJECT

NAME

DECK

OPTIONS TO CONTROL STORAGE USED

SIZE

produce an object module frow
translated output.

specify the name of the object
module produced.

produce an object module on
punched cards.

controls the amount of storage
used by the compiler.

OPTIONS TO IMPROVE USABILITY AT A TERMINAL

TERMINAL specifies how much of listing is
transmitted to terminal.

I SMESSAGE/LMESSAGE enables you to specify concise
I or full message format. L----------___ -----------------J
Figure 3.1. (Part 2 of 3) Compiler options arranged by function

Chapter 3: The PLIOPT Command and its Options 47

r--,
I OPTIONS LISTED BY FUNCTION PAR'I 3
1--
IOPTIONS TO SPECIFY STATEMENT NUMBERING SYSTEM USED
I
1
J

NUMBER & GONUMBER

STMT & GOSTM'I

OFFSET

OPTIONS FOR USE WHEN DEBUGGING

FLOW

COUNT

numbers statements according to
line on which they start.

numbers statements sequentially.

specifies that a listing
associating statement numbers
with offsets will be generated
Thus enabling you to identify
statements from offsets given
in execution time error
messages.

generate code that will result
in a trace of executed
statements being retained.

generate code that will result
in a count of the nurrber of
times each statement is executed
being printed at the end of the
program.

OPTION TO IMPROVE COMPILATION/EXECUTION SPEED

OPTIMIZE(TIME)

NOOPTIMIZE

OPTION TO ALLOW EXECUTION UNDER OS

OSDECK*

reduce execution time at the
expense of compilaticn.

reduce compilation tirr.e at the
expense of execution.

specifies that coropiler will
produce OS compatible code.

OPTION FOR USE WHEN DEBUGGING THE COMPILER

DUMP produces a dump if the corrpiler
terminates abnormally.

OPTION FOR USE ON IMPRECISE INTERRUPl MACHINES

IMPRECISE

OPTIONS FOR SYSTEMS PROGRAMMING

allows imprecise interrupts
to be correctly handled.

CONTROL('password') allows access to deleted options
for those who know password.

* Options marked thus are ignored if used in the *PROCESS staterrent
l--J
Figure 3.1. (Part 3 of 3) Compiler options arranged by function

48

ALPHAEETICAL LIST OF OPTIONS

AGGREGATEI~OAGGR~GA!~
AGINA§

The abbreviated form must be used in PLIOPT command.

The AGGREGATE option specifies that the compiler is to produce
an aggregate length tacle, giving the lengths of all arrays and
major structures in the source program.

ATTRIEUTESI~Q~!IEIBy!~§
AINA

The abbreviated form must be used in PLIOPT command.

The ATTRIBUTES option specifies that the compiler is to include
in the compiler listing a table of source-program identifiers
and their attributes. If both ATTRIBUTES and XREF apply, the
two tables are combined.

CHARSET([481~Q]~ [EEC~ICIBCD])
C S ([4 8 I ~Q] I [~~ I B])

The CHARSET option specifies the character set and data code
that you have used to create the source program. The compiler
will accept source programs written in the 60-character set or
the 48-character set, and in the Extended Binary Coded Decimal
Interchange Code (EBCDIC) or Einary Coded Decimal (BCD).

~Q=-2L~8-char~£~~!:: If the source program is written in
the 60-character set, specify CHARSET (60); if it is written in
the 48-character set, specify CHARSET (48). The language
reference manual for this compiler lists both of these
character sets. (The compiler will accept source programs
written in either character set if CHARSET(48) is specified.
However, if the reserved keywords, for example CAT or LE are
used as identifiers in a program using the 60 character set,
errors rray occur if it is compiled with the CHARSET(48)
option).

BC~2f~BCQ!£: If the source program is written in BCD, specify
CHARSET (BCD); if it is written in EBCDIC, specify CHARSET
(EECDIC). The language reference rranual for this compiler lists
the EBCDIC representation of coth the 48-character set and the
60-character set.

If two arguments (48 and ECD or 60 and EBCDIC) are specified,
either argument may appear first. One or more blanks ~ust
separate the arguments.

COMPILEINOCOME!~~[(WIEI§)]
C I ~£ I [(W I E IS)]

The abbreviated form must be used in PLIOPT command for
NOCOMPILE.

The COMPILE option specifies that the compiler is to compile
the source program unless an unrecoverable error was detected
during preprocessing or syntax checking. The NOCOMPILE option
without an argument causes processing to stop unconditionally
after syntax checking. With an argument, continuation depends
on the severity of errors detected after the syntax checking

Chapter 3: The PLIOPT Command and its Options 49

Fhase as follows:

NOCOMPILE(W} No compilation if a warning, error,
severe error, or unrecoverable
error is detected.

NOCOMPILE(E} No compilation, if error, severe
error, or unrecoverable error is
detected.

NOCOMPILE(S} No compilation if a severe error or
unrecoverable error is detected.

CONTROL('password'}

The CONTROL option specifies that any compiler
options deleted for your installation are to te
available for this compilation. You must still be
specify the appropriate keywords to use the
options. The CONTROL option must te specified with
a password that is established for each
installation; use of an incorrect password will
cause processing to be terminated.

'password' is a character string, not exceeding six characters
in length.

ICOUNTINOCOUNT
ICTINCT
I
I
I
I
I
I
I
J
I
I
I
I
I
I
I
I
I
I
I
I

The COUNT option specifies that code will be generated to allow
a count to be kept of the number of times each statement is
executed in a particular run of a program to be generated at
the end of the run.

Unless overridden at execution time by the NOCCUNT option, it
will result in a count of the number of times each statement in
a program has been executed teing printed on the PLIDUMP file
or, if there is none, on the SYSPRINl file, after the execution
of the compiled program.

The CODE generated for the COUNT option also allows a trace of
the most recently executed statements to be retained if the
FLOW option is specified at execution time.

The COUNT option implies the GONUMBER option if the NUMBER
option is in effect and the GOSTMT option if the STMT option is
in effect.

JJECKIN012~CK

DI~Q

The DECK option specifies that the compiler is to produce an
object module in the form of 80-column card images and store it
in the data set defined by the DD statement with the name
SYSPUNCH. Columns 73-76 of each card contain a code to
identify the object module; this code comprises the first four
characters of the first label in the external procedure
represented by the object module. Columns 77-80 contain a 4-
digit decimal number: the first card is numbered 0001, the
second 0002, and so on.

DUMPI~QQQ~!:
DUINDQ

50

Do not use in *PROCESS statement unless also used in the PLIOPT
£2~rr~n~---------------~---------------------------------------

The DUMP option specifies that the compiler is to produce a
formatted dump of main storage if the compilation terminates
abnormally (usually due to an I/O error or compiler error).
~his dump is written on the file associated with ddname
SYSPRINT. Details of the suboptions of DUMP are given in the
OS PL/I Optimizing Compiler Program Logic.

The ESD option specifies that the external symbol dictionary
(ESD) is to be listed in the compiler listing.

FLAG(II~IEIS)
F(IJ~IEIS)

~he FLAG option specifies the minimum severity of error that
requires a message to be listed in the compiler listing. The
format of the FLAG option is:

FLAG(I)

FLAG(W)

FLAG (E)

FLAG(S)

FLOW(n m) I~OFLOW

List all messages.

List all except informatory
messages. If you specify FLAG,
FLAG(W) is assumed.

List all except warning and
informatory messages.

List only severe error and
unrecoverable error messages.

The FLOW COMPILER OPTION SPECIFIES THAT CODE WILL BE PRODUCED
ENABLing the transfers of control most recently executred in a
frog ram to be listed when an ON statement with the SNAP option,
or when a CALL PLIDUMP statement is executed. This enables you
to follow the path through the most recently executed
statements. The format of the FLOW option is:

FLOW(n m)

where "n"

where "m"

is tbe number of transfers of control that
will be listed with associated stateIT;ent
numbers.

is the number of transfers of control
between procedures that will be listed with
associated procedure names.

nand m must be decimal integers and may not exceed 32768. If
either value is zero, the associated listing will not be
produced.

The list will start with the earliest available information and
continue to the point where the CALL PLIDUMP statement or the
ON statement with the SNAP option was executed.

The code generated for the FLOW compiler option allows the
COUNT execution time option to be used if it is specified at
executicn time.

Chapter 3: The PLIOP~ Command and its Options 51

GONUMBERINOGONUME§B
GNI.tlGN

The abbreviated form must be used in the PLIOPT command for
NOGONUMBER.

The GONUMBER options specifies that the compiler is to produce
additional information that will allow line numbers from the
source program to be included in execution-time messages.
Alternatively, these line numbers can be derived by using the
offset address, which is always included in execution-time
messages, and the table produced by the OFFSET option.

Use of the GCNUMBER option implies that the NUMBER option will
apply. See "Relationship of Statement NUmbering Options n at
the start of this chapter.

GOSTMTINO§Q§I!1!
GSINGS

The GOSTMT option specifies that the compiler is to produce
additional information that will allow statement numbers from
the source program to be included in execution-time messages.
Alternatively, these statement numbers can be derived by using
the offset address, which is always included in execution-time
rressages, and the table produced by the OFFSET option.

Use of the GOSTMT option implies that the STM~ option will also
apply. See "Relationship of Statement Numbering Options n at
the-start of this chapter.

IMPRECISEI~Ql!1~RE~l§E
IMPI~IMR

The abbreviated form mu~t be used in the PLIOPT command.

The IMPRECISE option specifies that the compiler is to include
extra text in the object module to localize imprecise
interrupts when executing the program with an IBM System/360
Model 91 or 195, or System 370 model 195. This extra text
ensures that if interrupts occur, the correct en-units will be
entered.

INCLUDEI~Q1~£~UD~
INCJNI!i£

The INCLUDE option specifies that %INCLUDE statements are to be
handled without the overhead of using the full preprocessor
facilities. If preprocessor statements other than %INCLUDE are
used in the program the MACRO option must be used.

The INCLUDE option will be overridden if the MACRO option is
also specified.

;~NSOUB£§I NOINSOURCE
;~§I NIS

52

The abbreviated form must be used in the PLIOPT command for
NOINSOURCE.

The INSOURCE option specifies that the compiler is to include a
listing of the source program (including preprocessor

statements) in the compiler listing. This option is applicable
only when the preprocessor is used, therefore the MACRO option
~ust also ap~ly.

LINECOUNT(n)11INEfOU~I1221
LC (n)

The abbreviated form must be used in the PLIOPT corerrand.

The LINECOUNT option specifies the number of lines to be
included in each page of the compiler listing, including
heading lines and blank lines. The format of the LINECOUNT
c~tion is:

LINECOUNT(n)

where "n" is the number of lines. It must be in the
range 1 through 32767, but if you specify less
than 7, only the heading of the listing will be
~rinted.

LIST [(m n)] I ~Q1!'§~

The LIST option specifies that the compiler is to include a
listing of the object module (in a form similar to IBM
System/360 assembler language instructions) in the compiler
listing.

m and n allow you to specify the range of statements for which
the list will be produced. If m and n are omitted the complete
program is included in the listing.

LMESSAGE\SM£~~~§';
LMSGI~~~§

The LMESSAGE and SMESSAGE options specify that the compiler is
to produce messages in a long forro (s~ecify LMESSAGE) or in a
short form (specify SMESSAGE). Short messages save printing
time at the terminal.

MACRO\NOMACRO
MI~~ -----

~he MACRO option specifies that the source program is to be
processed by the preprocessor.

~he MAP option specifies that the compiler is to produce tables
showing the organization of the static storage for the object
module. These tables consist of a static internal storage map
and the static external control sections. The MAP option is
normally used with the LIST o~tion.

Use of the MAP option also results in the generation of a
variables offset map which lists Static internal and autoroatic
variables with the offsets from their defining bases. This
simplifies finding variables in a dump.

MARGINI('c')INOMAEGI~l
MI P c') J NMI

Chapter 3: The PLIOPT Comrrand and its Options 53

The abbreviated form must be used in the PLIOPT command for
NOMARGINI.

The MARGINI option specifies that the compiler is to indicate
the ~osition of the margins by including in the listings of the
PL/I program a specified character in the column preceding the
left-hand margin, and in the column following the right-hand
rrargin. Any text in the source input which precedes the left
hand margin will be shifted left one column, and any text that
follows the right-hand margin will be shifted right one column.
Thus the text outside the source margins can be easily
detected. The MARGINI option applies to both the SOURCE and
INSOURCE listings.

The MARGINI o~tion has the format:

l-lARGINI (• c')

where ncR is the character to be printed as
indicator.

the margin

1~~g§I~§1~Ll~12 (F-format records)
IMARGINS (10,100,0) (V-format records)
I

IMAR(m n
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

54

[c])

The MARGINS option specifies which part of each compiler input
record contains PL/I statements, and the position of the ANS
control character that formats the listing. The MARGINS option
is used to override the default margin positions that are set
u~ during compiler installation by the FMARGINS and VMARGINS
options.

The FMARGINS default applies to F-format records and the
VMARGINS default applies to V-format or U-format records. Only
one of these defaults is overridden by the MARGINS option. If
the first in~ut record to the compiler is F-format, the
FMARGINS default is overridden. If the first input record to
the compiler is a V- or U-format record the VMARGINS default is
overridden by the MARGINS option. Default values are assurred
if a record with a different type of format is encountered by
the compiler.

The forrrat of the MARGINS options is:

MARGINS9m,n,c)

where:

rr is the column number of the leftmost column that will be
scanned by the compiler. m must not exceed 100.

n is the column number of the rightmost column that will be
scanned by the compiler. n must not be less than ro, nor
greater than 100.

c is the column of the ANS printer control character. It must
not exceed 100 and it must be outside the values specified for
IT and n. A value of 0 for c indicates that no ANS control
character is present. The control character applies only to
listings on a line printer; it is ignored in conversational
rrode listings at the terminal. only the following control can
be used:

(blank) Skip one line before printing.

0 Skip two lines before printing.

Skip three lines tefore printing.

+ Skip no lines before printing.

1 start new page.

Any other character is taken to be blank. If the value c is
greater than the maximum length of a source statement record
the compiler will not be able to recognize it; consequently the
listing will not have the required format.

MDECKINOMDECK
MDINMQ-------

The MDECK option specifies that the preprocessor is to produce
a copy of its output (see MACRO option) and write it to the
file defined by the ddname SYSPUNCH. The MACRO option produces
84 byte records; however, the last four bytes, which contain
sequence numbers, are ignored for the output from MDECK option.
Thus MDECK allows you to retain the output from the
preprocessor as a deck of 80-column punched cards.

NAME I ('object-module-name')
N('object-roodule-name')

No default applies. NAME must be specified if required.

The NAME option specifies that the TEXT file created ty the
compiler will be given the specified external name. This
allows you to create more than one text file when doing batch
corrpilation and also allows you to produce TEXT files suitable
for inclusion in a text library (see section headed "Compiling
the Program - the PLIOPT Command".)

The name oFt ion has the format:

NESTINO~EST

NAME('object-module-name')

where "object-module-narne" has from one through six
characters, and begins with an alphabetic
character.

The NEST option specifies that the listing resulting from the
SOURCE option will indicate, for each statement, the begin
block level and the do-group level.

NUMBERINONUMBER
~y~TNNUM

The NUMBER option specifies that the numbers sFecified in the
sequence fields in the source input records are to be used to
derive the statement numbers used in the compiler listings.

The Fosition of the sequence field can be specified in the
SEQUENCE option. Alternatively, the following default positions

Chapter 3: The PLICPT Command and its Options 55

are assumed:

• Last 8 columns for fixed-length source input records.

• First 8 columns for undefined-length or variable-length
source input recordso In this case, 8 is added to the
values used in the MARGINS option.

These defaults are the positions used for line numbers
generated by CMS; thus it is not necessary to specify the
SEQUENCE option, or change the MARGINS defaults when using the
line numbers generated by CMS. Note that the preprocessor
output has fixed-length records irrespective of the format of
the primary input. Any sequence numbers in the primary input
are repositioned in columns 73-80.

The line number is calculated from the five right-hand
characters of the sequence number (or the number specified, if
less than five). These characters are converted to decimal
digits if necessary. Each time a line number is found which is
not greater than the preceding one, 100000 is added to this and
all following line numbers.

If there is more than one statement on a line, a suffix is used
to identify the actual statement in the messages. For example,
the second statement beginning on the line 40 is numbered 40.2.
The maximum value for this suffix is 31. Thus the thirty-first
and subsequent statements on a line have the same number.

The use of NONUMBER is equivalent to the use of STMT, and
GONUMBER implies NUMBER see "Relationship of Statement
Nurrbering Options" at the start of this chapter.

Q~~EG!INOOBJECT
Q~~JNOBJ

The OBJECT option specifies that the compiler is to create an
object module and store it on the TEXT file.

OFFSETINOOFf§~!
OFINOF

The OFFSET option specifies that the compiler is to print a
table of statement numbers for each procedure with their offset
addresses relative to the primary entry point of the procedure.
This table can be used to identify a statement fro« an
execution-time error message if the GONUMBER or GOSTMT option
is not in effect.

OPTIMIZE(TIMEIQI2) I~QQ~I!MI~~
OPT(TIMEIQI2) I NOEI

56

The abbreviated form must be used in the PLIOPT command for
NOOPTIMIZE.

The OPTIMIZE option specifies the type of optimization
required:

NOOPTIMIZE specifies fast compilation speed, but inhibits
optimization for faster execution and reduced
main storage requirements.

OPTIMIZE (TIME) specifies that the compiler is to optimize the
machine instructions generated to produce a very

OPTIMIZE(O)

OPTIMIZE(2)

efficient object program. A secondary effect of
this type of optimization can be a reduction in
the amount of main storage required for the
object module. The use of OPTIMIZE(TIME) could
result in a substantial increase in compile time
over NOOPTIMIZE.

is the equivalent of NOOPTIMIZE.

is the equivalent of OPTIMIZE(TIME).

The language reference manual for this compiler includes a full
discussion of optimization. CPTIMIZE will be accefted if
spelled OPTIMISE.

OPTIONSINOOPT1Q~§
OPINOP

OSDECK
OSD

The abbreviated form must be used in the PLIOPT command for
NOOPTIONS.

The OPTIONS option specifies that the compiler is to include in
the compiler listing a list showing the compiler oftion used
during this compilation. This list includes all those ofticns
applied by default, those specified in the PARM parameter of an
EXEC statement, and those specified in a *PROCESS statement.

This_i~_~_~&IO~I-2E~i2~~~2-i§~or~9_if_us~9_in th~_~RBCC~§§
statement.

The OSDECK option specifies that the compiler will produce
output that can be executed under the control of as. If the
OSDECK option is not used, the first record in the TEXT and
SYSPUNCH files is a CMS loader control card specifying the
execution time interface module as the entry foint. This
record results in an error of severity level 8 if it is passed
to the as linkage editor.

There is no negative form, and OSDECK must be specified
if it is required.

PRINTIQ!§~INOPRINT
PRIJQ!INOPRI

Directs the comfiler listing file to the printer (PRINT) or to
disk (DISK -- this is the default). If NOPRINT is specified
the file is not written.

SEQUENCE(rr n) I NOSEQUENCE
SEQ{m n)INSEQ

IBM-default: F-format records SEQUENCE{73 80)
v- or U-format records SEQUENCE{l 8)

The SEQUENCE option defines the section of the input record
from which the compiler will take the sequence number.
(sequence numbers are used to calculate statement numbers if

Chapter 3: The PLIcpr Command and its Options 57

the NUMBER option is in effect.)

During compiler installation, two default values are set up.
One value is for F-format records, the other is for V- or u
format records. The SEQUENCE option overrides only one of
these values. The value overridden is the value that applies
to the first record read cy the compiler. If a second type of
record is found the default sequence values will apply to this
type of record.

SEQUENCE (n m)

where:

rr specifies the column number of the leftmost digit of the
sequence number.

n specifies the column number of the rightmost digit of the
sequence number

SIZE(YYYYYYYYlyyyyyKIMA~)
SZ(YYYYYYYYlyyyyyKIMA~)

58

This option can be used to limit the amount of main storage
used by the compiler. This is of value, for example, when
dynamically invoking the compiler, to ensure that space is left
for other purposes. The SIZE option can be expressed in three
forms:

SIZE (yyyyyyyy)

SIZE (yyyyyK)

specifies that the compiler should attempt
to obtain YYYYYYYY bytes of main storage
for compilation. Leading zeros are not
required.

specifies that the compiler should attempt
to obtain YYYYYK bytes of main storage for
compilation C1K=1024). Leading zeros are
not required.

SIZECMAX) obtain as much main storage as it can.

The IBM default, and the most usual value to be used, is
SIZECMAX), which permits the compiler to use as much main
storage in the partition or region as it can.

When a limit is specified, the amount of main storage used by
the compiler depends on how the operating system has been
generated, and the method used for storage allocation. The
compiler assumes that buffers, data management routines, and
processing phases take up a fixed amount of main storage, but
this amount can vary unknown to the compiler.

No~~: Under CMS, SIZECMAX) should always be used unless it is
essential to limit the space used. If a limit is set in the
SIZE option, the value used will exceed that which is
specified. This is because storage is handled by a
CMS/compiler interface routine and not directly by the
compiler.

The value specified in the SIZE option cannot exceed the main
storage available for the job step and cannot be changed after
processing has begun. This rr.eans that in a batched compilation
the value established when the compiler is invoked cannot be
changed for later programs in the batch. Thus it is ignored if
specified in a *PROCESS staterr.ent.

The SOURCE option specifies that the compiler is to include in
the compiler listing a listing of the source program. The
source program listed is either the original source input or,
if the MACRO option applies, the output from the preprocessor.

STMTINO§IMT

The STMT option specifies that statements in the source program
are to te counted, and that the resulting number is to be used
to identify statements in the compiler listings. If NCSTMT is
specified, NUMBER is implied. STMT is implied by NON UMBER or
GOSTMT. (For further information see "Relationship of
Statement Numbering Optionsn earlier in this chapter.)

STORAGEINOSIQB~§E
STGJNST@

The abbreviated form must be used in the PLIOPT command for
NOSTORAGE.

The STORAGE option specifies that the compiler is to include in
the com~iler listing a tatle giving the main storage
requirements for the object module.

SYNTAXI~QSY~I~~[(WIEIS)]
SYNI~SY~[(WIEIS)]

The SYNTAX option specifies that the compiler is to continue
into syntax checking after initialization (or after
preprocessing if the MACRO option applies) unless an
unrecoverable error is detected. The NOSYNTAX option without an
argurr.ent causes processing to stop unconditionally after
initialization (or preprocessing). With an argument,
continuation depends on the severity of errors detected during
preprocessing, as follows:

NOSYNTAX(W)

NOSYNTAX(E)

NOSYNTAX(S)

No syntax checking if a warning~ error, severe
error, or unrecoverable error is detected.

No syntax checking if an error, severe error, or
unrecoveratle error is detected.

No syntax checking if a severe error or
unrecoveratle error is detected.

If the SOURCE option applies, the compiler will generate a
source listing even if syntax checking is not performed.

The use of this option can prevent wasted runs when detugging a
PL/I program that uses the preprocessor.

IERMINA~[(Opt-list)]INOTERMINAL
lER~[{opt-list)] INTERM

The abbreviation must be used in the PLIOPT command for
NOTERMINAL.

The TERMINAL option is applicable only in a conversational
environment. It specifies that some or all of the compiler
listing is to be printed at the terminal. If TERMINAL is
specified without an options list, diagnostic and informatory

Chapter 3: The PLIOPT Command and its Options 59

messages are printed at the terminal. You can add an argument,
which takes the form of an oftion list, to sfecify other parts
of the comfiler listing that are to be printed at the terminal.

The listing at the terminal is independent of that written on
the LISTING file. However, if the ddname LISTING is associated
with the terminal, only one copy of each listing requested will
be printed, even if it is requested in the TERMINAL option and
also as an independent option. The following option keywords,
their negative forms, or their abbreviated forms, can be
specified in the option list:

AGGREGATE, ATTRIBUTES, ESD. INSOURCE, LIST, MAP, OPTIONS,
SOURCE, STORAGE, and XREF.

In the PLIOPT command, abbreviatons must be used for any option
that exceeds eight characters in length. Values for the other
options that relate to the listing <that is, FLAG, NUMBER,
STMT, LINECOUNT, LMESSAGE/SMESSAGE. MARGINI, NEST, and NUMBER)
will be the same as for the LISTING file.

XREFI~QKREF
XI~~

60

The XREF option specifies that the compiler is to include in
the compiler listing a list of all identifiers used in the PL/I
program, together with the numbers of the statements in which
they are declared or referenced. <rhe only exception is that
label references on END statements are not included.
For example, assume that statement number 20 in the procedure
FROCl is END FROC1;e In this situation statement number 20
will not appear in the cross reference listing for FROC1.)

If both ATTRIBUTES and XREF apply, the two listings are
corrbined into one table.

Chapter 4: Execution Time Options

The PL/I Optimizing Compiler produces compiled code to which various
execution time options may be passed. These options enable you to
control the amount of storage used during execution, and to override the
PL/I error handler's attempts to intercept program check interrupts and
ABENDs. and, provided that either FLOW or COUNT HAS BEEN SPECIFIED as a
compiler option y to specify that a count of the number of times each
statement has been executed be generated or that a trace of the most
recently executed statements be retained, or both. Execution time
options are sometimes called program management parameters.

A set of default execution time options are established during system
generation. These can be overridden by options specified in a PL/I
variable PLIXOPT, and these in turn can be overridden by options
specified with the START command or with the filename when it is used as
a comn;and.

To specify execution time options within a PL/I program, you must use
the following declaration:

DCL PLIXOPT CHARClen) VAR INIT C'strg') STATIC EXTERNAL;

where "strg" is a list of options separated by blanks or comn;as, and
"len" is a constant equal to or greater than the length of "strg".

If more than one external procedure in a job declares PLIXOPT as STATIC
EXTERNAL, the string in the first program passed to the loader will be
taken as the list of options and the second and subsequent strings
ignored.

The execution time options can be specified with the START command or
with the filename of a MODULE file when it is used as a command. If a
parameter is also being passed to the main procedure, it must follow any
execution time oFtions and be preceded by the characters blank, oblique
stroke, blank(/). Program management parameters must be separated
from each other by blanks.

A typical START command specifying execution time options (NCSPIE and
REPORT) and a main procedure parameter (734) might be:

start * ncsFie report / 734

List of Execution Time Options

The following is a list of execution time options:

COUNT

I NOCOUNT
I

specifies that a COUNT of the number of times each statement in
the program was executed will be produced if either the COUNT
or FLOW option was specified at as a compiler option. (If
neither was specified as a compiler option, an error message is
issued and the request for COU~T is ignored.)

The count is transmitted to the PLIDUMP file when the program
has completed execution. To highlight statements that have not
been executed, a separate list of such statements is produced.

I specifies that a count of the number of times each statement

Chapter 4: Execution Time Options 61

FLOW

I NOFLOW
I
I
~
I
I
~
~
I
~
I

has been executed will not be produced. NOCOUNT is used to
frevent a frogram compiled with the COUNT option from froducing
count information. Even when NOCOUNT is specified, a
considerable time and space overhead is incurred by a program
comfiled with the COUNT option. To get the best performance a
debugged program must be recompiled without the

specifies that a trace of the most recently executed statements
will be retained and that this will be printed when an on-unit
with the SNAP option is entered or when a call to PLIDUMP with
the trace option is made. The option is only effective if
either FLOW or COUNT was specified as a compiler option. (If
neither was specified an error message is issued and the oftion
is ignored.)

The format of the FLOW option is FLOW ((n m)] where n specifies
the number of branch-out/cranch-in statement number pairs to be
retained, and m specifies the number of changes of procedure or
on-unit that are retained. nand m can have different values
from those specified in the compiler FLOW option. If nand m
are omitted both at compiler time and at execution time,
default values of 25 for nand 10 for m are assumed.

The trace is transmitted to SYSPRINT AND TAKES THE FORM:

3 TO 8 IN TESTER
12 TO 17
22 TO 3 IN DRIVER

201
202
203

Meaning that a branch was made from statement three to
statement 8 which is in the procedure named TESTER, than ran
sequentially to statement 12 when a branch to 17 was made then
ran sequentially to 22 where a branch to statement 3 which is
in DRIVER was made.

specifies that a trace of the most recently executed statements
will not be retained. It is used to override the FLOW compiler
option.

Even when NOFLOW is specified~ considerable time and space
overheads are incurred by programs compiled with the FLOW
option. When a program has teen debugged it should be
recompiled without the FLOW COMPIler option to achieve maximum
efficiency.

ISASIZE (yyyyyI yyyyyK)

62

Sfecifies the amount of main storage initially acquired for
automatic, controlled, and based variables, and compiled code
workspace.

Allocation of PL/I dynamic storage on the entry of clocks and
for the allocation of controlled and based variables is carried
out as far as possible within this area. When there is
insufficient room J storage is acquired from the system and a
time overhead is involved. However if a large value is
specified in ISASIZE, storage may be wasted, and there may be
insufficient storage for I/O buffers and transient library
routines.

If ISASIZE is not specified, a default value is applied. This

REPORT

value is half of the storage remaining in the region after
storage for the load module has been allocated rounded up to
the nearest 2K bytes.

The REPORT execution time option can be used to help work out
the optimum ISASIZE.

specifies that a table showing the use of storage by the
program will be transmitted to the PLIDUMP file at the end of
the execution of the program. Under CMS the PLIDUMP file is
assigned to the printer by default.

The REPORT option should ce used to help calculate the best
value to specify in ISASIZE. The value given in the REPORT
table "Amount of PL/I storage Used" would give the fastest
execution with the minimum total waste of storage if specified
as the ISASIZE. However, if a number of PL/I clocks or
controlled or based variables are little used during the
program, the programmer may prefer to have storage for some of
these allocated by the system. In this situation, specifying a
smaller ISASIZE value may enable the program to run in a
smaller region, although execution time may increase.

Note: The use of the REPORT parameter considerably slows
execution. It is intended as an aid for prograrr development,
not for regular use.

NOREPORT specifies that a report table will not be generated. It is the
default.

STAE

NOSTAE

SPIE

NOSPIE

specifies that when an ABEND occurs, an attempt will ce made to
call the PL/I error handler and raise the PL/I ERROR condition.
It is the default.

specifies that on program initialization, a STAE macro
instruction is not to be issued, and consequently the PL/I
error handler will not be called to attempt to raise the ERROR
condition when an ABEND occurs.

specifies that when a program interrupt occurs, an attempt will
be made to call the PL/I error handler to raise the ERROR
condition. It is the default.

specifies that on program initialization, a SPIE macro
instruction is not to be issued, and consequently the PL/I
error handler will not be called to raise the ERROR condition
when a program check interrupt occurs.

Chapter 4: Execution Time Options 63

(as line editing character 13

*PROCESS statement 19,44

- as line continuation character 39

/ in execution time options 61
/* as endfile marker 40

%INCLUDE data 52
without using preprocessor 52

%INCLUDE statements 20,24

: as prompt 38
: + as prompt~ 38

as line editing character

@ as line editing character

" as line editing character

as line editing character

A disk 14,23
AGGREGATE option 49

13

13

13

13

ANS printer control character 54
ASCII data sets 35
asterisk

*PROCESS statement 19
/* as endfile on-unit 40

at character (@) as line editing
character 13

attention key 13
ATTN key, (see attention key)
ATTRIBUTES option 49
automatic padding for GET EDIT 40
automatic prompting 38,39

overriding 39

backspace character 13
BACKWARDS attribute 35
BCD 1~9

BEGIN command 14
blanks

blanks (20NTINUED)
removal from main procedure

parameter 31

Index

blanks in main procedure parameter 35
bracket as line editing character 13

~ as line editing character 13
capital letters 15,19
card 25

source program on 25
case M and U 19
cent sign as line editing character 13
CHANGE subcommand of EDIr 17
character deletion 13
CHARDEL, character delete character 13
CHARSET 49
checkpoint/restart facility 35
CMS, system requirements 9
code, source 54

position in record 54
colon as prompt 38
colon plus as prompt 38
commands and subcommands

BEGIN 14
CASE M 19
CASE U 19
CHANGE 17
EDIT 15
ERASE 33
FILE 15,18
FILEDEF 23
filename as 27
FNAME 18
GENMOD 27
GLOBAL 27
HT 13
HX 13
immediate 13
IPL 12
LOAD 27
LOGIN 10
LOGOUT 33
MACLIB 20,24
PLIOPT 21
QUIT 18
RT 13
SAVE 18
START 27
TERMINAL 13
TXTLIB 26

commas
insertion in conversational I/O 40
insertion in main procedure
parameter 35

compilation 21
for execution under os 25

COMPILE option 50
compiler 43

Index 65

compiler (CONTINUED)
files generated by 22
invoking 21
LISTING file 22
output 22
PLIOPT corrmand 43
'1'EXT file 22

compiler files 24
compiler options

(see also options, compiler) 24
alphabetical list 49
length restriction 24
list of defaults 43
listed by function 47
specifying in PLIOPT commands 24

compiling non-CMS source programs 25
CONTROL option 50
conventions, PL/I

conversational I/O 37
DISPLAY and REPLY 40

conversational I/O 37,40
assigning SYSIN to terminal 31
automatic padding with blanks 40
ENDFILE 40
ending file 40
GET DATA 40
GET EDIT 40
GET SKIP 40
line continuation character 39
PRINT file formatting 37
simplified punctuation 40
SKIP for input 40
with DISPLAY and REPLY 40

COpy files 20
correcting typing errors 13
COUNT option

compile time 50
execution time 61

CP environment 11
returning to 14

CP/370 11

data
entering 12
transmittinG 12

DECK option 50
deleting

erasing 34
files (see ER~SE command)
incorrectly typed characters (see
logical character delete characte

incorrectly typed lines (see logical
line delete character)

disk
A disk 23
output disk 23
parent disk 23
source disk 23
source program not on 25
transferring source to 25

DISK option 23,57
DISPLAY statement 40
DMSIBM, interface module 31,32
DUMP option 51

66

EBCDIC 49
EDIT command 15
edit mode 18
editor, CMS 15
ENDFILE marker 40
ending input on file 40
ENDPAGE in conversational I/O 37
entering data 12
ERASE command 33
escape character 13
ESD option 51
EVENT option 35
EXEC, profile 14
execution

compiled program 27
file compiled under OS 32
file compiled with as DECK option 32
MODULE file 27
TEXT file 27
under as 25

fast %INCLUDE compiler option 52
FETCH statement 35
FILE command 15,18
filenaree 15

as command 27
naming PLIOPT files 15

fIles
CMS and PL/I defaults 31
COpy 20
creating 22
deleting 34
for secondary input text 20
LISTING 22
MODULE 27
PL/I and CMS defaults 31
PLI 18
PLIOPT 18
PRINT, formatting conventions 37
TEXT 22,27
used by compiler 24

FL~G option 51
FLOW option 51

compile time 51
execution time 62

FNAME command 18
forty eight character set 49

GENMOD comrrand 27
GET SKIP 40
GLOBAL command 27
GONUMBER option 52
GOSTMT option 52

halting execution, HX command 13
halting typing, HT command 13
HT (halt typing) command 13
HX (halt execution) command 13
hyphens at end of lines 39

identifier, virtual machine 10
immediate coremands 13
IMPRECISE option 52
INCLUDE compiler option 52
INCLUDE statements 20,24

included text 24
information sent to terminal 23
INPUT mode 18
INSOURCE option 53
interface module, DMSIBM 31,32
IPL command 12
ISASIZE option 62

keyboard, locking 12

line deletion 13
line editing characters 13
LINECOUNT option 53
LIST option 53
LISTING file 22
listing options, choosing 23
LMESSAGE option 53
LOAD command 27
locking of keyboard 12
logical character delete character 13
logical line 39
logical line delete character 13
logical line end character 13
LOGIN command 10
LOGOUT command 33
LOGOUT HOLD command 34
lower case 15

character string constants 19
input 19

MACLIB 24
MACLIB commands 20
macro library

creating 20
MACRO option 52~53

INCLUDE as alternative 52
MAP option 53
MARGINI option 54
MARGINS 15
MARGINS compiler option 54
MDECK option 55
MODULE file 27

creating 27
executing 27

NAME option 26,55
NEST option 55
NOAGGREGArE option 49
NOATTRIBUTES option 49
NOCOMPILE option 50
NOCOUNT option

compile time 50
execution time 61

NODECK option 50
NODUMP option 51
NCESD option 51
NOFLOW option 51

execution time 62
NOGONUMBER option 52
NOGOSTMT option 52
NOIMPRECISE option 52
NOINCLUDE compiler option 52
NOINSOURCE option 53
NCLIST option 53

NOMACRO option 53
NOMAP option 53
NOMARGINI option 54
NOMDECK option 55
non-CMS source programs 25
NONEST option 55
NONUMBER option 55
NOOBJECT option 56
NOOFFSET option 56
NOOPTIMIZE option 56
NOOPTIONS option 57
NOPRINT option 23,57
NOREPORT option 63
NOSOURCE option 59
NOSPIE option 63
NOSTAE option 63
NOSTMT option 59
NOSTORAGE option 59
NOSYNTAX option 59
NOTERMINAL option 60
null line 18
NUMBER option 55
number sign (#) as line editing
character 13

numbering options, discussion 44

OBJECT option 56
OFFSET option 56
OPTIMIZE option 56
optimizing Compiler (see compiler)
options 54

comparison between compiler and
PLIOpr 44

compiler 44,54
AGGREGATE 49
ATTRIBUTES 49
CHARSET 49
COMPILE 50
CONrROL option 50
COUNT 50
DECK 50
DUMP 51
ESD 51
FLAG 51
FLOw 51
GONUMBER 52
GOSrMT 52
IMPRECISE 52
INCLUDE 52 "l
INSOURCE ~
LINE COUNT 53
LIST 53
LMESSAGE 53
MACRO 53
MAP 53 ... '~
MARGINI 5(lJj
MARGINS 54
MDECK 55
NAME 26,55
NEST 55
NOAGGREGATE 49
NOATTRIBUTES 49
NOCOMPILE 50
NOCOUNT 50
NODECK 50
NODUMP 51
NOESD 51

Index 67

options (CONTINUED)
compil (CONTINUED)

NOFLOW 51
NOGONUMBER 52
NOGOSTMT 52
NOIMPRECISE 52
NOINSOURCE 53
NOLIST 53
NOM1\CRO 53
NOMAP 53
NOM1\RGINI 54
NOMDECK 55
NONEST 55
NONUMBER 55
NOOBJECT 56
NCOFFSET 56
NOOPTIMIZE 56
NOOPTIONS 57
NOSOURCE 59
NOSTMT 59
NOSTORAGE 59
NOSYNTAX 59
NOTERMINAL 60
NOXREF 60
NUMBER 55
numbering 44
OBJECT 56
OFFSET 56
OPTIMIZE 56
OPTIONS 57
SEQUENCE
SIZE 58
SMESSAGE 53
SOURCE 59
STMT 59
STORAGE 59
SYNTAX 59
TERMINAL 23,,60
XREF 60

execution time 62,63
COUNT 61
FLOw
ISASIZE 62
NOCOUNT 61
NOREPORT 63
NOSPIE 63
NOSTAE 63
REPORT 63
SPIE 63
STAE 63
using 31

list of defaults 43
listed by function 47
PLIOPT

DISK 23,57
NOPRINT 23,,57
OSDECK 25,32,57
PRINT 23,57

summary of functions 47
OPTIONS option 57
OSDECK option 25,32~57
output disk 23

page br~aks at terminal 37
PAGE option and format item 37
PAGELENGTH 37
PAGESIZE 37

68

parameters 31
blanks in 31
length restrictions 31
main procedure 31
passing a PL/I program 31
program management 31
restrictions 31

parent disk 23
parenthesis as line editing character 13
password

virtual machine 10
PL/I optimizing Compiler (see compiler)
PL/I program 15

columns for input 15
PL/I restrictions 35,37

ASCII data sets 35
BACKWARDS attribute 35
blanks in main procedure parameter 37
checkpoint restart facility 35
EVENT option 35
FETCH statement 35
RELEASE statement 35
SIZE option, space used exceeding that

spec if ied 58
sort facility 35
tasking 35
teleprocessing files 35
VBS-format records 35
VS-format records 35

PL/I source code 54
position in record 54

PLI files 18
PLICKPT 35
PLIDUMP, assigning to terminal 31
PLIOPT command 43

example and discussion 21
options and defaults 43
syntax 43

PLIOPT file 18
PLISORT 35
PLISTART as name of TEXT file 26
PLITABS 37
PLIXOPT 61

execution time 61
pound sign (#) as line editing
character 13

preprocessor statements 52
%INCLUDE without using preprocessor 52

primary prompt 38
PRINT file 37

conversational formatting
conventions 37

overriding formatting conventions 37
PRINT option 23.57
printer control character 54
PROCESS statement 19,44
profile EXEC 14
prompting, conversational I/O 38

QUIT command 18
quotes as line editing character 13

records
VBS-format 35
VS-format 35

RELEASE statement 35

REPLY option 40
REPORT option 63
restrictions

PL/I~ (see PL/I restrictions) 35
RT (resume typing) command 13

SAVE command 18
secondary input text 20,24

creating 20
secondary input to compiler 52
secondary prompt 38
SEQUENCE option 58
sixty character set 49
SIZE option 58
SKIP on input 40
SKIP option and format item 37
SMESSAGE option 53
sort facility 35
source code 54

position in record 54
source disk 23
SOURCE option 59
SPIE option 63
STAE option 63
star PROCESS statements 19
START command 27
STMT option 59
stopping 13

execution 13
typing <terminal printout) 13

STORAGE option 59
storage requirements for CMS 9
stream I/O

DATA directed conventions 40
EDIT directed 40
LIST directed conventions 40

subcommands (see commands and subcommands)
switched line connection, retaining 34

syntax conventions, summary 41
SYNTAX option 59
SYSIN, assigning to terminal 31
SYSPRINT, assigning to terminal 31
system requirements for CMS 9

tabs 15,37
tape 25,35

BACKWARDS attribute 35
source program on 25

tasking 35
teleprocessing files 35
TERMINAL command 13
TERMINAL option 23,60
terminal session

ending 33
starting 10

terminal, listings transmitted to 23
TEXT file 27

creating 22
executing 27

text libraries 26
transmitting data 12
TXTLIB command, troubles with 26
typing errors, correcting 13

upper case 15,19

VBS-forroat records 35
VS-format records 35

workfiles, compiler 24

48-character set 49

60-character set 49

Index 69

g~2!~g~iiQ~of_~~~Q!~_tef~i~al session
The terminal session has been planned to
show various features of CMS. rhe program
is a simple conversational program that
responds with one of two well known
guotation3 when the correct author is
specified. It has been written to show the
conversational IIO and parameter
conventions of PL/I under CMS.

The first column in the figure shows
whether the ter~inal print out is entered
by the user or is tranmsitted by the
system. The second column shows the
terminal printout. ~here an action from
the user would not result in words
appearing on the terminal printout, the
action to be taken is placed in
parentheses. For example "(you switch on
terminal)" in line 1. The third column
contains notes and comments. rhe fourth
column gives the page of the book where a
fuller explanation of the point being
illustrated can be found. Throughout the
example certain blank lines have been
omitted to allow the complete session to
appear on one page.

Action I Terminal Printout Notes and comments I Page for
by I I I more data
------- ---------------------------~-- --------
user
system
user

system
user
system

user
system
user
system

user
system
user

user
system
user
system
user
system

system
user
system
user
system
user

sytem

user
system

user
system

user

(you switch on terminal)
d'x38z irvy; vm370 online
(you press attention key t unlock terminal)
login robin
ENTER PASSwORD:
(you enter password)
L~GMSG 08:09:08 GMT MONDA 05/13/73
L~GON AT 08:25:34 GMT HONDA 05/13/73
ipl cms
C:01S 1. 0 PLC 5
edit skylark pliopt
NE~ FILE:
EDIT:
input
INPUT:
skylark:proc (charparm) op

dcl (charparm, quotation,
string=translate(charpar
on endfile (sysin) goto

start:

ons (main);
ring) char (100)
I ',',');

nisi

var;

if string='percy bysshe then quotation=
'hail to thee blythe pirit'i

esl@wlse if string='will"m blake' then quotation=
'a skylark wounded on tt wing/a cherubim doth cease

else quotation='no known uotation';
put skip edit(quotation, nter new name or endfile')

(a,skip{5»;
get edit{string) (a(SO»i oto start;

finis: display('thank you r your company');
end skylark;
(you press carriage return ey)
EDIT:
file
R; T=0.35/0.91 08.26.32
pliopt skylark (xref a
PL/I OprIMIZING COMPILER VJR1.2 TIME 08.34.51 DATE 13
OPTIONS SPECIFIED
XREF,A,TERM

N~ MESSAGES PRODUCED FOR TfS
CJMPILE TIME 0.02 MINS SP L
Ri T=2.74/4.41 08.38.37 I
global txtlib plilib

COMPILA.TION
FILE 0 RECORDS SIZE 4051

R; T=0.03/0.04 08.41.49
load skylark
RiT=1.11/1.85 08.50.06
start * I percy, bysshe,

EKECUI'ION BEGINS... I

HAIL TO THEE BLYTHE SPIRIT 1

ENTER NEW NAME OR ENDFILE

/*
THANK YOU FOR YOUR COMPANY
R;T=1.52/2.46 08.45.06
logout
CONNECT=00.33.59 VIRTCPU=~0:09.11
LOGOFF AT 08:59:33 GMT M~DAY MAY
(you switch off terminal>

TOTCPU=000:16.55
13 1973

Message when you switch on.

Enter 'login' followed by name of virtual machine

Printing of password normally suppressed

Log message from system
Invoke CMS
Message shows CMS version in use
Edit mode to enter program as a CMS PLIOPT file
Shows that you have no PLIOPT file called skylark
Shows you are in edit mode
Tell system further input will be part of file
Shows that you are in input sutmode
PL/I program entered in either capitals or lower
case letters. Use columns 1 through 71
CMS interface removes blanks from main procedure
parameter. program uses commas and translates.

~~ deletes two previous incorrect characters
to sing',

Skip(5) is interpreted as skip(3) at terminal

Sent to terminal (console of virtual machine)

Ends input submode
Message confirms you are back in edit mode
Stores input as PLIOPT file skylark
Ready message, CMS ready for further commands
Compile command, options preceded by (

MAY 1973

TERM specified by CMS Interface module

Make the PL/I library avialable

resolve addresses in PL/I program

Note parmeter must be divided into S character
tokens. Blanks are removed. Note also blanks
after * and /
Message from CMS
Output from program

Prompt shows input required from terminal
Endfile marker
Message from DISPLAY statement

command ends terminal session

Logoff message

Page 10

Page 12

Page 15

Page 15

Page 12

Page 37

Page 40

Page 16

Page 21

Page 27

Page 38

Page 40

Page 33

----------------------------------~--_&
Figure F.1 A. sample terminal sessjm

~I
o

~I
a:
»1
0"
::l

';:1
:i'
CD

OS
PL/I Optimizing Compiler:
CM:S User's Guide

Order No. SC33-0037-1

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

READER'S
COMMENT
FORM

What is your occupation? _______________________ - _ - - - - -

Number of latest Technical Newsletter (if any) concerning this publication: _____ - __ - --

Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

SC33-0037 -1

Your comments, please ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
[.)rm will be carefully reviewed by the persons responsible for writing and pUblishing
this material. All comments and suggestions become the property of IBM.

I~
~

I~
a.

I~
::l

I~

1

::l
CD

Fold Fold .. ···········1

Fold

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

I nternational Business Mach ines Corporation
Department 813(HP)
1133 Westchester Avenue
White Plains, New York 10604

Il'1lternational Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

First Class
Permit 40
Armonk
New York

-

Fold

o
(J)

iJ
r
~

o
"0
ro+

3'
N'
3'

c.c
("')
o
:3
"0

CD
~

G)
c
~
CD

(J)
("')
w w
6
o
W
-....J
~

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	_1
	replyA
	replyB

