Program Product

SC33-0025-2
File No. S360/5370-29

0S
PL/1 Optimizing Compiler:
Execution Logic

Program Numbers 5734-PL1
5734-Lvi4
5734-LM5

(These program products are available

as composite package 5734-PL3)

JLIBIME

Third Edition (April 1973)

This is a major revision of and obsoletes 5C33-0025-0 and
5C33-0025-1. Information has been included on the new
features that are available with release 2 of the PL/I
Optimizing Compiler as follows:

COUNT option Chapter 7
VSAM data sets Chapter 8
ASSEMBLER option Chapter 13

A number of minor changes and corrections have also been
made throughout the book. A new topic heading "How
Addressed™ has been added to the control block descriptions
in appendix A. Technical changes are marked with a vertical
line to the left of the change.

This edition applies to Version 1 Release 2 Modification 0
of the ¢5 Optimizing Compiler and to all subsequent releases
until otherwise indicated in new editions or Technical
Newsletters.

Changes will continually be made to the information herein;
before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360
and System/370 Bibliography Order No. GA22-6822, and
associated Technical Newsletters for the editions that are
applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for reader's comments is provided at the back of this
publication., If the form has been removed, comments may be
addressed to IBM United Kingdom Laboratories Ltd.,
Programming Publications, Hursley Park, Winchester,
Hampshire, England. Comments become the property of IBM.

IBM is grateful to the American National Standards Institute
(ANSI) for permission to reprint its definitions from the
American National Standard Vocabulary for Information
Processing (Copyright 1970 by American National Standards
Institute, Incorporated), which was prepared by Subcommittee
X3.5 on Terminology and Glossary of American National
Standards Committee X3.

© Copyright International Business Machines Corporation
1971,1972

[
. l-.‘

The main purpose of this publication is to
explain, in general terms, the way in which
programs compiled by the 0S PL/I Optimizing
Compiler (Program Number 5734-PL1l) are
executed. It describes the organization of
object programs produced by the compiler,
the contents of the load module, and the
main storage situation throughout
execution. The information provided is
intended primarily for those involved in
maintenance of the compiler and its related
library program products. The publication
will also provide valuable information for
applications programmers, since a knowledge
of the way in which source program
statements are executed will lead to the
writing of more efficient programs. The
book also contains a chapter on how to
obtain and read a PL/I dump.

Although different source programs
produce. different executable programs, the
structure of every executable program
produced by the compiler is basically the
same. This structure is explained in
chapter 1. cChapters 2,3,4, and 5 describe
the various elements that make up the load
module. Chapters 6 and 7 explain the
housekeeping and error-handling schemes.
Chapters 8, 9, 10, and 11 describe the
implementation of various language
features, the majority of which are handled
by a combination of compiled code, PL/I
library routines, and Operating System
routines. Chapter 12 is the guide to
obtaining and using dumps. Chapter 13
deals with interlanguage communication.
The final chapter, chapter 14, discusses
those aspects of execution that apply only
to a multitasking environment. In
addition, appendix A contains details of
all control blocks that can exist during
execution.

The reader of this publication is
assumed to hiave a sound knowledge of PL/I,
and a working knowledge of the IBM
System/360 Cperating System and its
assembler language. It is recommended,
therefore, that the reader should be
familiar with the content of the following
publications:

RECOMMENDED_ PUBLICATIONS

0S PL/I Checkout and Optimizing
Compilers: Language Reference Manual,
Order No. SC33-0009

System/360 Principles of Operation, Order
No. GA22-6821

Preface

Introduction to System Control Programs,
Order No. GY24-5017

REFERENCE_PUBLICATIONS

This book makes reference to the following
publications for related information that
is beyond its scope:

OS PL/1 Optimizing Compiler:

Programmer's Guide, Order No. SC33-0006

Program Logic, Order No. LY33-6007

System_ Information, Order No. SC33-0026

Supervisor and Data Management Macro
Instructions, Order No. GC28-6647

IBM System/360 Reference Data Card, Order
No. GX20-1703

0S PL/I Resident Library:
Order No. LY33-6008

Program Logic,

0S PL/I Transient Library:
Logic, Order No. L¥33-6009

Program

0S Programmer's Guide to Debugging, Form
C28-6670

0S Linkage Editor and Loader,
Order No. GC28-6538

0S Supervisor and Data Management Macro
Instructions, Order No. GC28-6647

AVAILABILITY OF PUBLICATIONS

The availability of a publication is
indicated by its use_key, the first letter
in the order number. The use keys are:

G - General: available to users of IBM
systems, products, and services
without charge, in quantities to meet
their normal requirements; can also be
purchased by anyone through IBM branch
offices.

L - Licensed materials, property of IBM:
available only to licensees of the
related program products under the
terms of the license agreement.

S - Sell: can be purchased by anyone
through IBM branch offices.

iii

Contents

CHAPTER 1:

INTRODUCTION . . « « .

Processing a PL/I Program« .

Compilation . . « ¢ &« ¢ ¢ o o
Link-editing « « ¢« « ¢ ¢ ¢ « o .
Execution . . ««

Factors Affecting Implementatlon .
Key Features of the Executable

Program o« « « o« « o o « o «

Communications Area
Dynamic Storage Allocation .
Use of Library Subroutines .
Initialization/Termination
Routines . .

contents of a Typlcal Load Module -
The Overall use of Storage
The Process of Execution

CHAPTER 2:

COMPILER OUTPUT . . . &

Introduction .« « o o « « o ¢ o o

Static Internal Control Section
Program Control Section

Handling and Addressing Varlables

The Organization of this

Static-Storage Map . « . .« .
Object-Program Listing . . .

Register Usage « « o o o « o
Dedicated Registers . . .
Work Registers . « « « ¢ o « &
Floating-Point Registers .
Library Register Usage . . .

TEMPOYaAri€S « « « o o = o « a o «

Program Control Data . . .« « .

Handling Flow of control . .

iv’

Automatic Variables
Compiler-generated Temporaries .
Temporaries for Adjustable
variables . « ¢ « o o ¢ o o
Controlled variables
Based Variables . « « & « « &
Static Variables
Addressing Beyond the ux L1m1t
The Pseudo-Register Vector (PRV)
Addressing Controlled Variakles
and Files . .« . . . e o o
The Location of the PRV .
Initialization of the PRV

Handling Data Aggregates . . .
Arrays of Structures and

Structures of Arrays . . .
Array and Structure Assignments

Activating and Terminating Blocks

Prologue and Epilogue Code . . .
Prologue . . « « « « <«
Epilogue «
CALL Statements . . .
Function References .
END Statement . . . &

RETURN Statement . .
GOTO Statements . .
GOTO within a Block

Chapter
Listing Conventions

WHE R R R

oo nww

GOTO out of Block
GOTO Label Variable . . .
Errors when Using Label
Variables . . « ¢« o« « o &
GOTO-only On-Units
Interpretive GOTO routines
argument and Parameter Lists .
Library Calls . « .« « « . .
Setting-Up Argument Lists
Addressing the Subroutine
DO~100PS =« o « o o« o o o o « =
Compiler-generated Sukroutines
Optimization and its Effects .
Exanples of Optimized Code .
Elimination of Common
EXpressions . . . « o .

Movement of Expressions out of

LOOPS ¢ ¢ o o o o o o o o
Elimination of Unreachable
Statements o . .

Simplification of Expressions
Modification of DO-loop Control

variables . . . o o
Branching around Redundant
Expressions« . o .
Rationalization of Program
Branches
Use of Common Constants and
Control Blocks .« « « « &

CHAPTER 3: THE PL/I LIBRARIES
Resident and Transient Libraries
Naming Conventions
The Multitasking Library . . .
Library Workspace . . « « « « &
Format of Library Workspace

Allocation of Library Workspace

Library Modules and Weak Externa
References
The Shared Library

e @ @& e e o @ s & o

Communication between Program

Region and Link-Pack-Area

Execution when Using the Shared

Library « « « ¢ ¢« « ¢ o
Program Initialization . .

Initializing the Shared lerary

Multitasking Considerations

CHAPTER U4:
ROUTINES ¢ o ¢ o o o « o o o =«
Notes on Terminology . . .
Descriptors and Locators . .
String Locator/Descriptor

Area Locators/Descriptor .
Aggregate Locator
Array Descriptor . « . . .
Structure Descriptor . . .

Aggregate Descriptor Descriptor

Arrays of Structures and
Structures of Arrays . .
Data Element Descriptors . .

.
:
.
:
.
:
:
:

1

COMMUNICATION BETWEEN

.

34
34

36
37

37
37

38

CHAPTER 5:

INITIALIZATION ¢« o o o o o o o o o
Link-editing . ¢ ¢« « ¢ o o o o « &
Program Initialization

CHAPTER 6:

Symbol Tables and Symbol Table

VECLOYS o o o o o o o o o o o «

OBJECT PROGRAM

Initialization and Termination
ROUtINES ¢ ¢ o o o o« o o o o «
Resident
Initialization/Termination
Routine IBMBPIR « « « « « o« &
The Process of Initialization
Handling Execution Time Options
Acquiring the I1sA « .
Initialization of the Program
Management Area « o« o o o o o

Initializing PL/I Error Handllng

Error Situations . « « « « o .
The Process of Termination . .
The Program Management Area . .
Task Communications Area (TCA)
TCA Implementation Appendage .
Save Area for IBMBPGR . . .« .
Dummy ONCA ¢ « o o o o « o o o
Translate-and-Test Table . . .
Dump File Block .« « « « « o &
Loaded Module or Ordered Delete
List ¢ ¢ ¢ ¢ ¢ o ¢ o o o o «
Dummy Tasks and Event Variables
Diagnostic File Block
Dummy DsSA . . . « o o
Library wOrkspace (st) .« o
ON Communications Area (ONCA)
Pseudo-Register Vector

Multitasking o . .

STORAGE MANAGEMENT . .

Types of Dynamic Storage Required
contents of LIFO (Last-In/First
Out) Storage . « « o ¢ o o @
Contents of Non-LIFO Storage .

Dynamic Storage Allocation . . .

Fields Used in Storage Handllng
Allocating and Freeing LIFO
Sstorage . <« « o o o
Allocating and Freelng Non 1IFO
StOrage « « « « o o o o o o .
Acquiring a New Segment of LIFO
Storage . . ¢ ¢ c ¢ e o o o o .
IBMBPGR - Storage Management
Routine . . « « ¢« ¢« ¢ . & . .
Allocating Non-LIFO Storage
(IBMBPGRA) e« o e o o o o o
Freeing Non-LIFO Storage
(IBMBPGRB) « o 8 o o o o o @
Segment Handling (IBMBPGRC and
IBMBPGRD) ¢ o o o o o o o o «

Storage REPOrtsS « « o« o« ¢ o o o o

Action during Initialization .
Action during Execution . . .
Action on Termination . .

Storage Reports for Multltasklng

e« ¢ o o o

PXograms « « « o« o « s o =
Storage Management in Programmer-
allocated Areas .« ¢ o« « o o o o
Multitasking Considerations . . .
Acquiring the ISA when
Multitasking . . . <.« « .

.

80
80
80
82
83
83
83
8su

84
85

85

CHAPTER 7: ERROR AND CONDITICN
HANDLING . « & o o o o « o o =
Terminoclogy . . « . « . .
Background to Error Handling .
System Facilities
PL/I Facilities
Implementation of Error Handling
Detecting the Occurrence of
Conditions « « « « ¢ ¢ « o o
System Detected Conditions .
Software Detected Conditions
Detecting I/0 Conditions .
Executing Signal Statements
Passing Information about
Interrupt « « « « ¢ ¢ < o . .
Error Code « o« o« ¢ o o o « «
Condition Built-in Functions
Chain of CNCAS . « « & « + &«
Establishment and Enablement
Information « &« « o &
Enablement
Qualified Conditions . . .
Establishment - Executing ON
REVERT Statements
Qualified Conditions . . .
Unqualified Conditions . .
Handling On-units
The Logic of the Error Handler
IBMBERR - Error-handling Modu
Program Check Interrupts . .
Software Interrupts
t

o o 8 o o
s e o o & &
e & & 3 o @

e o o
3
oa-oQo.o

Return to Point of Interrup
Software Interrupts . .
Program Check Interrupts

The Check Condition . . .
Raising the Check cOndltlon
Testing for Enablement . . .
Searching for Established On

Units o« ¢ ¢ 4 ¢« ¢ o o o o o
Standard System Action . . .
EXrror Messages « « o o o o « o o
Message Formats
Interrupts in Library Modules
Identifying the Erroneous
Statement- « . . . ¢ cre o o . .
Identifying Entry Point Name and
Statement Number
Filename and Name of CONDITICN
Condition « « e o
Message Text Modules .
Diagnostic File Block
Dump Routines
Dump File
Miscellaneous Error Modules
Abend Analyzers
Exceptional Error Message Modules
The FLOW and COUNT Options

Implementation of FLOW and COUNT .
Tables Used by FLOW and COUNT .
Executable Code for FLOW and

COUNT o o ¢ ¢ o o o o o o o o o«
Action During Compilation . . .

uoca.o'ﬂ-...a

® &« & & s ¢ s o

e s s e @
s s o s &

* & o s o

e

Action During Program

Initialization . . « « .
Action During Execution . .
Action on Output . « « «

102
102
103
103
io04
104
105
105
105
106

106
106
106
106
107

107
107

108
108
108
109
109
112
112
112
114
115
115

115
117

118
118
120

CHAPTER 8: RECORD-ORIENTED

INPUT/OUTPUT « « ¢ ¢ « o « o o o o« &
Introduction . . e o o s s e o
Summary of Record I/O Implementatlon

File Declarations
OPEN Statements
Transmission Statements .
CLOSE Statements . . . -
Implicit open
Implicit Close
Access Method
File Declaration Statements .
Execution
OPEN Statement . « « « < & .
Execution
Actions Carried out by e
Open Routines
VSAM Data Sets « « « . . .
The FCB and File Addre331ng .
Transmission Statements (Library-cCal
/

1

n

e Je s s o s o & o & o
=]

s o N e & o 5 o & o o s &
3

o Fle o ¢ & & ¢ o
s o & o 8 & & & s jpde o s (ke s e 6 s e s s s s o

I/O) - - - - - - - .
Compiler Output . .
Execution
Transmitter Action .

EVENT Option . . « . .
Execution
Use of the I0CB . .
Allocation of IOCBs .
IOCBs and Dummy Records .
Raising Conditions in Event I/0
Exclusive I/0 . .

CLOSE statements and Imp11c1t Close
Compiler Output . . « .« « .
Execution . « « ¢ ¢ o o o o @

Implicit Open for Library-cCall I/0
Compiler Qutput . . « « « . .
EXecution . ¢ o o o o « o o o

Error conditions in Transmission

Statenments « « « o o ¢ « « o o o o
General Error Routines

(Transient)
ENDFILE Routine . .
TRANSMIT Condition .

In-line I/0 Statements .
Control Blocks
Executable Instructions
Error Conditions
Implicit Open for In-Line Calls

¢« s »

e & 8 e
e & s s s o
e s s o s o o

all
CHAPTER 9: STREAM-ORIENTED
INPUT/OUTPUT . ¢ o ¢ o o o« o o o o &
Note on Terminology . . « « . .
Introduction . « « ¢ ¢ ¢ ¢ o o o o .
Operations in a Stream I/O
Statement . . e« e o e o e o o
Stream I/0 Control Block (SIOCB)
File Handling « « ¢ & « o o ¢ o o o «
Transmission « « « ¢« o « o « o &
Oopening the File « « « ¢« « « «
Implicit Open
Keeping Track of Buffer Position
Enqueuing and Dequeuing on
SYSPRINT =« o o« ¢ o o o o o o o
Handling the Conversions . . . « « &
Handling GET and PUT Statements . . .
List-directed GET and PUT Statements
PUT LIST Statement
GET LIST Statement « « . « « « «

vi

125
125
125
125
125
125
127
127
127
127
127
127
130
130

130
130

133

135

153
153
153

153
154
154
154
156
156
156

156
160
160
160
160

168

Data-directed GET and PUT Statements
Identifying the Name
Edit-directed GET and PUT Statements
Compiler-generated Subroutines .
Handling Control Format Items .
Matching and Non-Matching Data
and Format Lists
Formatting for Print Files
Handling Format Options
Input and Output of Complete Arrays
PL/I Conditions in Stream I/0 . .
TRANSMIT Condition . . .+ « . .

CONVERSION Condition

NAME Condition . « . « « « . .
ENDFILE Condition and Unexpecte

End of File
Built-in Functions in Stream I/0
The COPY Option e e e
Handling the Copy Flle « o .
The STRING Option

Completing Strlng-handllng
Operations . . . « « « & . .

The Time-Sharing Option (TSC) and

Conversational Files « « « « « o« « &
Conversational Transmitter Modules
Output Transmitter IBMBSOC . .
Input Transmitter IBMBSIC .
Formatting o e
Formatting Module IBMBSPC .
Summary of Subroutines Used . . .

* s 6 s ¢ e s s e 2 s s s

Initializing Modules
Director Modules
Library Director Routines
Modules Used with Compiler
generated Subroutines
Module for Complete Library
Control of Edit-directed I/0 of
a Single Item . « « « « o « o &
Compiler-generated Director
Routines . « ¢« ¢« ¢« « « o .
Transmitter Modules
Formatting Modules
Library Subroutines
Compiler-generated Subroutine
External Conversion Director
MOAUlES « & ¢ ¢ 4 ¢ o o ¢ & o o
Conversational Modules
Miscellaneous Modules

e o & s s s o
o o & & s & & o

CHAPTER 10: DATA CONVERSION
Note on Terminology . . .
The Library Conversion Package . . .
Conversion Module Naming
conventions « .« ¢ « o ¢ & o o .
specifying a Conversion Path . .
Housekeep1ng when more than one
Module is Used .« « o o o o o o @
Arguments Passed to the Conversion
Routines . .
Communication between Modules .
Free Decimal Format . . « « « =«
In-Line Conversions . . « o« o « « =«
Note about Picture Variables .
Example: Fixed-Binary to Fixed
Decimal (Compller conversion
NOe 6) & ¢ o o o o o« o o o =« o
Multiple Conversions . « « « « « =

- « o e o & e e

168
169
169
169
170

170
170
171
174
174
174
174
174

174
174
175
175
175

177

177
177
177
177
178
178
178
178
179
179

179

179

179,
179
180
180
180

180
180
180

181
181
181

182
182

182

182
184
184
185
185

186
187

Hybrid Conversion- .
Raising the CONVERSION Condltlon .« e

CHAPTER 11: MISCELLANEOUS LIBRARY
SUBROUTINES AND SYSTEM INTERFACES .
Computational and Data-handling
Subroutines
Arithmetic and Mathematical
Subroutines
Array, String, and Structure
Subroutines
Handling Interleaved Arrays
(IBMBAIH)
Structure Mapping (IBMBAMM)
Miscellaneous System Interfaces
Time . « . .
Date

Delay . .
Display .
Sort/Merge .
Housekeeping Problems
Restoration of the PL/I
Environment on Exit from SORT
Summary of Work Done by the SORT
Module
Storage for SORT . .
Checkpoint/Restart . .
Wait & ¢« ¢ ¢ & o o o .
Event Variables . .
WAIT Statement (Non
Multitasking)
Housekeeping Problems .
Control Blocks
Wait Module (IBMBJWT) .

¢ & o

e o e o

° e
o« o
o« o
« .
PR

s o o o
¢ o & o

-
-
-
.

CHAPTER 12: DEBUGGING USING DUMPS .
How to use this Chapter
Section 1: How to Obtain a PL/I Dump
Call PLIDUMP
Recommended Coding . . .
Avoiding Re-compilation
Contents of a PL/I Dump
HeadingsS « o« o « o «
Trace Information . .
File Information . . .
Hexadecimal Dump . . .
Block Option
Section 2: Recommended Debu

Qs ¢ o o s & o o o
e o o ¢ & s & o
* & o s o 4 8 e s

b

Procedures . « « o« « « .
Debugging Procedures .
PL/I Dump Called from 0O
OS ABEND Dump = « « .
Section 3: Locating Specific
Information
Contents « « ¢« ¢ « o o o o &
Key Areas of a PL/I Dump .
Key Areas of an ABEND Dump
Stand-alcne Dumps

nit

gi
9]

g
n-

DUMPS ¢ « ¢ o o o o o o o«
Finding variables

Control Blocks and Fields
Key Areas of a PL/I Dump .

Housekeeping Information in all
res

Pl: statement Number and Ad
where Error Occurred (Dump

Called from On-Unit only)

ar

SSs

P2: Type of Error (Applies to
Dump Called from On-Unit only)

187
188

189
189
189
189
190

191
1917
192
192
192
192
194

194

194
197
197
197
197

198
198
202
202

205
205
207
207
207
208
208
208
210
211
212
212

212
215
215
215

217

217.

217
217
217

217
217
218
218
218

218

Key Areas of an ABEND Dump .

Finding Variables

control Blocks and Fields . .

P3: Register Contents at Time

of Error or Dump Invocation . .
P4: The DSA Chain « . « « « +
P5: The TCA o .

0l1: Address of Interrupt
02: Type of Interrupt .
03: Register Contents at the
Point of Interrupt
O4: The DSA Chain . .
05: The TCA « o o o o
06 Finding. the Program Intexrrupt
Element (PIE) « o« o« o o o« o o &

e e o e e

Stand-alone DUMPS .+ « « o o o o o«

Sl: Finding Key Areas ir. Stand
alone DUMPS « « ¢« « & o o o « @

Housekeeping Information in all

DUNPS « « o o o o o o o o o o o o
H1l: Following the DSA Backchain
H2: Associating Instruction

with Correct Statement and
Program BloCk « « o « o ¢ o o« &
H3: Following Calling Trace . .
H4: Associating DSA with Block
H5: Finding Relevant ONCA . . .
H6: Following the Chain of
ONCAS o & o o o o« o o o o o o »
H7: Finding Information from
IBMBERR'S DSA « ¢ o« o o o« o o o«
H8: Finding and Interpreting
Register Save Areas . « « « «
H9: Register Usage

H10: Following Free-Area Chain
H1l: Finding the Task Variable
H12: Block Structure of Program

(static Backchain)
H13: Forward Chain in DSAs . .
H14: Action if Error is in a

Library Module . « « « « o o°%
H15: Discovering Contents of

Parameter Lists . . . « « ¢«
H16: Finding Main Procedure DSA
H17: Finding the Relationship

between Tasks « .« « ¢ « « « &
To Find the Parent Task . . .
To Find all Subtasks of a Task
To Find Sister Tasks « « « « .
H18: Finding the Tasking

Appendage« . .
H19: Finding the TCA from t
Tasking Appendage . « « . .

V1l: Automatic Variables .
V2: Static Variables . .
V3: Controlled Variables
V4: Based Variables . . .
V5: Area Variakles . . .
V6: Variables in Areas .

e s o 5 8 o & & o

Ci: Quick Guide to Identifying
Control Fields . « « « o+ &

n

Special Considerations for
Multitasking . « « ¢ o « & o &
CHAPTER 13: INTERLANGUAGE
COMMUNICATION .« o« o o o o o @
Summary of Interlanguage

Facilities .« ¢ ¢« ¢ o« o o« o« o «

218
219
219
219
219
219

219
221
221

221
221

221

221
221

221
223
223
223

223
223

223
224
224
224

224
224

224

225
225

225
225
225"
225

225

226
226
226
226
226
226
226
226
226

227
228

231
231

vii

Background to Interlanguage

Communication . « ¢ « « « & o«
Differences in Data Aggregates
Use of Locators .« . o« o« o o
Differences of Environment . .

The Principles of Interlanguage

Communication «
PL/I Calls COBOL or FORTRAN
FORTRAN or COBOL Calls PL/I1
Retaining the Environment .

Handling Changes of Environment .
Interlanguage Housekeeping
Routines and their Control
Blocks . .« . « .« . .
Handling FORTRAN and PL/I
Initialization/Termination
Routines . . e e o s o o
Handling the INTER Option .
STOP and STOP RUN Statements
Housekeeping Module Descriptions
COBOL when Called from PL/I
(IBMBIEC) « « & o« o e o o

Before Entry to COBOL Program,

On Return from COBOL Program
(IBMBIECC) .« ¢ « & o o« «

Action on Interrupt in COBOL
with INTER .« ¢ ¢ ¢ « « o =«

Zerodivide On-Units

Handling STOP RUN statements

FORTRAN when Called from PL/I

(IBMBIEF) « o« o« « o o o & .

Before Entry to the FORTRAN
Program . «

Action on Return from FORTRAN

e« & & e s

-

Program (IBMBIEFC and IBMBIEFD)
Action on Interrupt in FORTRAN .

Termination of caller . . .
STOP statements .« . « « « &

PL/I Called from COBOL oxr FORTRAN

(IBMBIEP) . « « « o o« « s o« =
Before Entry to PL/I Program
(IBMBIEPA) .« & o« ¢ o o o »

Action after the PL/I Program is

Completed « « « o o o o o &
Interrupt Handling

Termination of PL/I Environment

STOP and STOP RUN Statements
Handling Data Aggregate Arguments
AYTAYS « o o o o o =« o o o » o
Structures
Methods Used to Handle Data
Aggregate Arguments
NOMAP, NOMAPIN, and NOMAPOUT
OptiOonNs ¢« « o o ¢« « o o o o &«
Calling Sequence « . .
ASSEMBLER Option .« « « « « ¢ « o«
COBOL Option in the Environment
Attribute o ¢

CHAPTER 14: MULTITASKING . « «
Introduction . « o ¢ o « o« .
The Concept of the Control
Communication between Tasks

Task

Holding the Priority of the Task

Multitasking Housekeeping
The Multitasking Library
How the Control Task Operates . .

viii

231
233
233
233

233
234
234
234
238

238

238

242
242

242
242

242

246
246
246

246
246

247
247
248
248

2u8
248

249
249
249
249
250

250
250

250
251
251

251

255
255
255
256
256
256
260
265

Attaching a Task o o o
Failure of CALL...TASK
Statements e o o e e e o

Detatching a Task . « « « & « o &

-

.

Abnormal Termination of a Task

The Get-Control and Free-Control
Routines . « ¢« o « « o o o o« .

Altering COMPLETION and PRIORITY
Values « v o o o o o o o o s o &«

Executing the WAIT Statement . .
The Wait Module IBMTJWT . .

Enqueuing and Degueuing on SYSPRINT

APPENDIX A: CONTROL BLOCKS .
Area Locator/Descriptor . . .
Area Descriptor
Area Variable Control Block .
Aggregate Descriptor Descriptor
Structure Element
Base Element . . « « o« o
Aggregate Locator « « .« « .+ . .
Array Descriptor . . « « « . .
Arrays of Strings or Areas
Controlled Variakle Block . . .
Data Element Descriptor (DED)
Format of DEDs
General Format . . « . .
DED for STRING data . .
DED for FLOAT Data . . .
DED for FIXED Data . . .
DED for PICTURE STRING D
DED for PICTURE DECIMAL
Arithmetic Data . « . .
DED for PROGRAM CONTROL Data
FORMAT DEDS - FEDS ¢ o o o o «
DED for F and E FORMAT Items
(FED) & & o « & « o o o e
DED for PICTURE FORMAT
Arithmetic Items (FED) . .

s & e % & s & ® ® & 8 5 0 e e 0 @

ata

s & o s

e & & o & & 0 & 8 & a s & 8 e s a4 o

DED for PICTURE FORMAT character

Items (FED) -
DED for C FORMAT Items (FED)
DED for CONTROL FORMAT Items
(FED) ©v v « o« o o o o«
DED for STRING FORMAT Items
(FED)
Declare Control Block (DCLCB)
Diagnostic File Block (DFB)
Dynamic Storage Area (DSA)
Dump Block (DUB) . . . « .
Entry Data Control Block .
Environment Block (ENVB) .
Event Table (EVTAB)
Event Variable Control Block
Exclusive Block IOCB (XBI)
Exclusive Block File (XBF)
File Control Block (FCB)
Common Section . .
Record I/0 Section
Stream I/0 Section
Flow Statement Table .
Where Held
Interlanguage Root Control Block
(IBMBILC1) &« & ¢ o« o o o o o o o
Interlanguage VDA . « ¢ o o o « o
Interrupt Control Block (ICB) . .
Input/Output Control Block (IOCB)
Key Descriptor (KD)

e e o e & s o

6 e 2 e o 8 & & & s s & e s e o @

280

280

281
281

281

281
282
283
284
286
287
288
289
290
291

293
293
295
296
297

297

298

300
301
304

Label Data Control Block . .
Label Variable and Label
teMPOXAXY o o o o o o

Label Constant . . « . .
Library Workspace (LWS) . . .
On Communications Area (ONCA)
Dummy ONCA . . . « ..

on Control Block (ONCB) « e e
Static and Dynamic ONCBs

Open Control Block .+ « . .
Ordered Delete List (ODL) .
PLIMAIN . . . « e e o
Dummy PLIMAIN « o e .
Record Descriptor (RD) . .
Request Control Block (RCB)

.
.
-
-
-
.

e 5 & s s e ¢ 8 s & o

-~ 3

305

305
305
306
307
307
308
308
309
310
311
311
312
313

Statement Frequency Count Table .
Statement Number Table
Storage Report Table

Stream I/0 Control Block (SIOCB)

String Locator/Descriptor
Structure Descriptor
Symbol Table (SYMTAB)
Symbol Table Vector«
Task Communications Area (TCA) .
TCA Appendage (TIA) . .« . « « + &
TCA Tasking Appendage (TTA) . . .
Task Variable (TV) . « ¢« « .« « .
Wait Information Table (WIT) . .
Zygo-Lingual Control List (ZCTL)

INDEX ¢ ¢ ¢ ¢ o o o o o o o o o &

s 8 o & o o 8 s s & o s s

8 & e s 8 o a2 & & o & s o

314.
315
316
317
318
319
320
322
323
325
326
327
328
329

331

ix

Figures

Figure 1.1. The process of running a

PL/I program e e e e e
Figure 1.2. Use of PL/I dynamlc
storage o .

Figure 1.3. Contents of a typical
load module .« « « ¢ o« o o « o o o «
Figure 1.4. Use of storage
Figure 1.5. Flow of control during
execution .« ¢« . ¢ 4 4 ¢ @ o o e o
Figure 2.1. The output from the
COMPiler « ¢ o o ¢ ¢ o o o o « o &
Figure 2.2. Contents of listing and
associated compiler options
Figure 2.3. Example of static
storage listing . . .« . « o o
Figure 2.4. Part of an object
program listing (For source see
Figure 2.3) ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o « o «
Figure 2.5. Register usage in
compiled code . ¢ « ¢ ¢ 4 o o o o @
Figure 2.6. Library register usage .
Figure 2.7. Use of the pseudo
register vector (PRV)« .
Figure 2.8. Typical prologue code .
Figure 2.9. Contents of typical
compiled code DSA . .« « =+ « o o o« &
Figure 2.10. Epilogue code . « « . .
Figure 2.11. Examples of library
calling sequences . .« « o « o o o =
Figure 2.12. Mnemonic letters in
library module entry-point names . .
Figure 2.13. Offsets where addresses
of library modules are held in the
TCA . . e« o e o o o o o e & u o =
Figure 2. 1u.
control variable . . < ¢« ¢« < « « o .
Figure 2.15. Branching around
redundant expressions <« <« . « . . .
Figure 2.16. Use of common constants
Figure 3.1, Library module naming
conventions .« « .+ ¢ ¢ o ¢ o e s e
Figure 3.2. Library workspace . . .
Figure 3.3. Example of use of WXTRNs
Figure 3.4. The shared library
during execution - «
Figure 3.5. The format of shared
library modules . « « « « <« o« « o« &
Figure 3.6. Addressing a module in
the shared library « « « « « o o « »
Figure #4.1. Example of descriptor,
locator, DED, and storage location
Of an Array «+ « « o o ¢ o o o o o
Figure #4.2. Descriptors, locators,
and symbol tables: when generated,
where held « « « ¢« « « ¢ o o o o o &
Figure 4.3. sString
locator/descriptor « « « « « « « o &
Figure #.4. Area locators/descriptor
Figure 4.5. Aggregate locator . . .
Figure 4,6. Array descriptor
Figure 4.7. Aggregate descriptor
AesCriptoX . « ¢ o o« o o o o o o o

Modification of do-loop’

Xiv

N

o ~ [0 =

13

14

17
20

22
24

25
27

31

32

32
35

36
36

40
45
46
47

49

52

54

56
56

56

58

Figure 4.8. Example cf handling a
structure containing an adjustable
extent ¢« ¢« ¢ ¢ o o e e e o e o o o o

Figure #.9. Structure descriptor for
arrays of structures and structures
Oof Aarrays .« . ¢ o« o o ¢ o o o o o »

Figure 4.10. Format of DEDs

Figure 4.11. sSymbol tables and
symbol table vectors . « « « o o . .

Figure 5.1. Flow of control during
execution . . . ¢ ¢ ¢ @ 4 e 4 e e .

Figure 5.2. Program management area

Figure 6.1. Use of storage in the
ISA 4 « ¢ ¢ o o o o o o o o o o o

Figure 6.2. Principles involved in
allocating and freeing LIFO storage

Figure 6.3. Principles involved in
allocating and freeing non-LIFO
StOYage .« « ¢ « o o o o o o o o o o

Figure 6.4. Format of element on
free area chain « . « . . .

Figure 6.5. Principles involved in
allocating and freeing segments of
PL/I dynamic storage « « « « o« o« o« o

Figure 6.6. Format of second and
subsequent segments of the LIFO
Stack « ¢ ¢« ¢ e ¢ 4 e e e o o o o @

Figure 7.1. The principles of error
handling « « ¢ ¢ o « o o o o o o o &

Figure 7.2. Machine interrupts
associated with PL/I conditions . .

Figure 7.3. (Part 1 of 2). PL/I
conditions « « o ¢ ¢ o e o e o o o &

Figure 7.3. (Part 2 of 2). PL/I
conditions « « o o ¢ o o o o o o o .

Figure 7.4. Static and dynamic
descendency « o « o o o o o s o o @

Figure 7.5. The major fields used in
error handling « . « « ¢« « « « « « .

Figure 7.6. BAn example of error
handling . « ¢ o« ¢ « ¢« o o« o o o o &

Figure 7.7. Addressing on-units . .

Figure 7.8. Accessing a built-in
function value from the chain of
ONCAS o o ¢ o o o o o o o o o o o

Figure 7.9. Meaning of enablement
DIitS & o ¢ o o o o o o o o o o o o @

Figure 7.10. sSimplified flowchart of
IBMBERR &+ o ¢ ¢ o o o« s o « s s o =

Figure 7.11. Handling the CHECK
condition . . ¢ ¢ 4« e ¢ e o o . W

Figure 7.12. Interrelationship of
dump routines . . « ¢ ¢ ¢ o ¢ o o o

Figure 7.13 How kranch counts are
used to calculate the number of
times each statement is executed. .

Figure 7.14. The contents of the
flow statement table and the
statement frequency count table. . .

Figure 7.15. oOutline of error
handling « ¢« ¢ « o« « « « o o o « o o

67

74

- 178
80

81

82
86
88
89
90
91
92
94
95
98
100
101
110

111

113

116
122

Figure 8.1. The principles used in
record I/0 implementation
Figure 8.2, Library subroutines used
in record I/70 . ¢ ¢ ¢ ¢ o o o o o
Figure 8.3. Access methods and file
LYPES o o 4 o 4 4 4 s e 4 4 e o e
Figure 8.4, (Part 1 of 2). The
fields used in implementing record
J/Z70 o o o o o o o 2 ¢ o o o o o o @
Figure 8.4. (part 2 of 2). The
fields used in implementing record
I/70 o o o o o o a o o o o o o o o o
Figure 8.5. Information in the file
declaration is held in the ENVB and
the DCLCB until the file is opened .
Figure 8.6. Open statement
Figure 8.7. Addressing files via
DCLCB and PRV e o & e o o
Figure 8.8. (Part 1 of 2). Handling
a transmission statement
Figure 8.8. (Part 2 of 2). Handling
a transmission statement
Figure 8.9. Handling the EVENT
OPtiIoN « o o o o ¢ o o ¢ o o e s o .
Figure 8.10. The execution of an
explicit CLOSE statement
Figure 8.11. The addressing
mechanism used during implicit open
Figure 8.12. Record I/0 error
MOAULES . & o ¢ o ¢ o o« o o o o o @
Figure 8.13. The fields used in
record I/0 error handling
Figure 8.14., 1In-line I/O
transmission statement
Figure 8.15. Overview of record I/O
Figure 8.16. cCconditions under which
I/70 statements are handled in-line .
Figure 9.1. The principles used in
stream I/70 ¢« o« o « o ¢ o o o o o o =
Figure 9.2. Record boundaries do not
. affect stream I/0
Figure 9.3. Simgplified flow dlaqram
of a stream I/0 statement . . .
Figure 9.4, Stream I/O0 control block
(SIOCB) o« o o o e e« o o o o
Flgure 9.5 The use of FREM and FCBA
in recording buffer position
Figure 9.6. (Part 1 of 2). Flow of
control through a PUT LIST statement
Figure 9.6. (Part 2 of 2). Flow of
contrxol through a PUT LIST statement
Figure 9.7. Code generated for

typical list-directed I/O statement
Fiqure 9.8. (Part 1 of 2). Handling
a GET DATA statement . « « « « « o« &
Figure 9.8. (Part 2 of 2). Handling
a GET DATA statement o e
Figure 9.9. Typical data-dlrected
code « o

Figure 9.10. The use of the 1ibrary
in edit-directed I/0 . « ¢ « « « o« .

Figure 9.11. (pPart 1 of 2). Edit
directed statement with matching
data and format lists . . . « . . .

Figure 9.11. (Part 2 of 2). Edit
directed statement with matching
data and format lists . « « « « o &

124
126
127

128

129

131

132

134

136

137

139

141

142

144

145

148
149

151

152
154
155
156
157
158
159
161
162
163
164

165

166

167

Figure 9.12. Code generated for an
edit-directed statement with
matching data and format lists . . .

Figure 9.13. cCode sequences used for
matching and non-matching data and
format lists .« ¢« ¢ ¢ ¢ ¢ o @ ¢ o o W

Figure 9.14. The current buffer
pointer FCBA and FCPM, the copy
pointer, keep track of the data to
be copied . . ¢« ¢ 4 4 e ¢ e e o . .

Figure 10.1. Internal forms of data
EYPES « ¢ ¢ o o o o 4 4 e o o o o o

Figure 10.2. (Part 1 of 2). Data
conversions performed in-line . . .

Figure 10.2. (Part 2 of 2). Data
conversions performed in-line . . .

Figure 10.3. Fundamental in-line
CONVEISIONS =« o o o o o s o o o o

Figure 10.4. Multiple conversions .

Figure 11.1. Arithmetic operations
performed by library subroutines . .

Figure 11.2. Array, structure, and
string subroutines

Figure 11.3. Indexing interleaved
arrays

Figure 11.4. DSA chaining during the
execution of SORT . . « « « ¢ « « &

Figure 11.5. Summary of action
during use of a SORT exit

Figure 11.6. Example of WAIT
implementation problems

Figure 11.7. (Part 1 of 2). Summary
of the wait statement

Figure 11.7. (Part 2 of 2). Summary
of the wait statement . « « . .« . .

Figure 12.1. dow to use this chapter
when debugging . . . « o e

Figure 12.2. Code for debugglng .« .

Figure 12.3. Suggested method of
obtaining a dump when re-compilation
is particularly undesirable. (See
text before using this me

Figure 12.4. An example of PLIDUMP .

Figure 12.5. Abbreviations for
condition names used in PLIDUMP
trace information.

Figure 12.6. Error code field lookup
table . ¢ ¢ ¢ 4 e 4 e e e e e e e o

Figure 12.7. The contents of
.IBMBERR's DSA after a system
detected and a PL/I interrupt . . .

Figure 12.8. The chaining of DSAs .

Figure 12.9. The register save area
in the DSA . ¢ « & ¢ o o « & o o o« &

Figure 12.10. Register usage

Figure 13.1. The principles of
interlanguage communication

Figure 13.2. cCalling sequence when
PL/I calls COBOL or FORTRAN . « .« .

Figure 13.3. Code generated when
PL/I calls a COBOL routine«

Figure 13.4. The sequence of events
when FORTRAN or COBOL calls PL/I . .

Figure 13.5. cChaining of save areas
when PL/I is called from a COBOL or
FORTRAN principal procedure

Figure 13.6. Example of chaining
sequences (PL/I principal procedure)

172

173

176
181
183
184

185
187

190
191
193
195
196
198
200
201

204
206

208
209
210
211
213
214

220
224

230
232
235

236

237
239

xi

Figure 13.7. Examples of chaining
sequences (FORTRAN princival
Procedure) « ¢ « ¢ « o« 4 o s e e *

Figure 13.8. The concept of save
area rechaining (see figures 13.9
and 13,10 for details) . .« . « « « &

Figure 13.9. Rechaining of save
areas when FORTRAN is called from
PL/I and the FORTRAN environment
needs initializing . . . « ¢« ¢« .+ . .

Figure 13.10. Rechaining of save
areas when PL/I is called from
FORTRAN or COBOL and the environment
requires initialization

Figure 14.1. Multitasking is
implemented by use of a multitasking
1ibrary .« o o o o o o o a o o« o o @

Figure 14.2. The hierarchy of tasks.

xii

241

243

244

245

254
257

Figure 14.3.

Figure 14.4.
Figure 14.5.

Figure 14.6.

The functions of the
control task .
The pos

a;d

wai

Modules in the
multitasking library .

Backchains in

multitasking .

Figure 14.7.

The chaining of tasks

-

t ECBs

through their tasking ‘appendages .

Figure 14.8.
of IBMTPIR .
Figure 14.9.

A simplified flowchart

Chains and pointers

.

used in implementing the WAIT

statement .
Figure 14.10.

variables, and the need fpr the

EVTAB chain

Reusing event

.

258
259

260

261

263

267

270

EXECUTE

el
PREPARE
Source
program
COMPILE PL/I
Optimizing
Compiler
Object
module
LINK-EDIT
PL/1 library Other
modules object
modules
Load
module

Initialization Object Termination
routines program routine
Receive control Carries out Closes any files
from system, and actions still open, and
sets up PL/I specified in returns control
environment source program to system

Figure 1.1. The process of running a PL/I program

xiv

Processing a PL/I Program

Figure 1.1 shows the processes through
which a PL/I program passes from its
inception to its use. There are four
stages:

1. Writing the program and preparing it
for the computer.

2. Compilation: translating the program
into machine instructions (i.e.,
creating an object module).

3. Link-editing: producing a load module
from the object module. This includes
linking the compiled code with PL/I
library modules, and possibly with
other compiled programs. It also
includes resolving addresses within
the code.

4, Execution: running the load module.

The process is not necessarily continuous.

The program may, for example, be kept in a

compiled or link-edited form before it is

executed, and it will normally be executed

a number of times once compiled.

COMPILATICN

Compilation is the process of translating a
PL/I program into machine instructions.
This is done by associating PL/I variables
with addresses in storage and translating
executakle PL/I statements into a series of
machine instructions. For example, the
PL/I statements:

DCL I,J,K;
I=J+K;

would typically result in the generation of
machine instructions corresponding to the
assembler language instructions shown
below:

LH 7,88(0,13)
AH 7,90(0,13)
STH 7,96(0,13)

Load J into register 7
Add K to J
Place result in I

(The variables I, J, and K are held at
offsets 96,88, and 90, respectively, from
the address in register 13.)

The 05 PL/I Optimizing Compiler does not
translate all PL/I statements directly into

Chapter 1: Introduction

the necessary machine instructions.
Instead, certain statements are translated
into calls to standard subroutines held in
the 0S PL/I Resident Library. sSome of the
resident library routines may, in turn,
call further library routines from either
the resident or the transient PL/I library.
The following PL/I statements would, for
example, result in a call being made to a
resident library routine.

DCL X,Y;
X=SIN(Y) ;

The code that would typically result from
such statements is shown below:

Place address of Y
in register 14

Place address of X
in register 15

STM 14,15,80(0,3) Place addresses in
argument list

Point register 1 at
argument list

Load register 15
with the address of
the resident library
routine IBMBMGS.
(This is held in the
form of an address
constant generated
by the compiler and
resolved by the
linkage editor.)
Branch to the
library routine,
which will carry out
the required
function.

LA 14,92(0,13)

LA 15,96(0,13)

IA 1,80(0,3)

L 15,88(0,3)

BALR 14,15

LINK-EDITING

Link-editing links the compiler output with
external modules that have been requested
by the compiled program. These will be
PL/I resident library routines, and,
possibly, modules produced by further
compilations. As well.as linking the
external modules, the linkage editor also
resolves addresses within the object
module.

EXECUTION

The optimizing compiler produces code that

Chapter 1: Introduction 1

ISA

Figure 1.2.

Initial
storage
area
(1SA)

L

Program
management area

LI FO storage

@ Al storage freed
on a last in/first

out basis (LIFO storage)

is allocated at the low
address end of the
remaining unused
storage.

ISA
@ The initial
storage area
(ISA) is acquired
Program
management area
LIFO storage

ISA

. Major free
area

@ When LIFO
storage is freed,
the most recently
allocated element is
the first to be freed.
It is freed by being
reabsorbed into the
major free area.

Use of PL/I dynamic storage

Program

management area

The program management

‘area (a PL/I communications

area) is placed at the head of the ISA.

ISA

1 Program Program
management area management area

LIFO storage

% Major free
area

Non-LIFO storage

LIFO storage

“7 7 Major free
“0 area

Non-LIFO storage

Freed non-LIFO
' storage

Elements not
freed on a last

in first out basis (non
LIFO storage) are
allocated at the high
address end of the
free storage.

When non-LIFO
\ storage is freed,

it is, where possible
absorbed into the
major free area. Where
this is not possible, it
is placed on a chain of
free storage. The head
of this chain is held at
a fixed offset in the
program management
area. Areas on this
chain are reused where
possible.

requires a special arrangement of control
blocks and registers for correct execution.
This arrangement of control blocks and
registers is known as the PL/I_environment.
Execution consequently becomes a three-
stage process:

1. Setting-up the environment. This is
handled by the PL/I initialization
routines IBMBPIR and IBMBPII.

2. Executing the program.

3. Completing jobs after execution. This
consists of closing any files that are
left open and returning control either
to the supervisor or to a calling
module. It is handled by a return to
the initialization routine which calls
a termination routine.

Factors Affecting Implementation

Three major factors influence the design of
the executable programs produced by the
optimizing compiler. These factors are
inherent in the language, and are:

1. The_modular_ structure of PL/I_ programs

The PL/I language allows the
programmer to divide his program into
a series of blocks that can be written
and compiled independently of each
other.

2. The dynamic allocation and freeing of
storage

Automatic, controlled, and based
variables all have their storage
allocated and freed dynamically. This
implies a system of re-use of storage
to reduce space requirements.

3. The comprehensive facilities offered
by the PL/I language

The PL/I language offers more
facilities than any other high-level
language. These facilities include
allowing the PL/I program to control
the flow of execution after any PL/I
interrupt.

Key Features of the Executable Program

Taken together, the factors outlined above
are responsible for the main features of
the executable program produced by the
compiler. These features are:

1. A communications area addressed by a
dedicated register throughout the
execution of the program.

2. A scheme to handle dynamic storage
allocatiocn.

3. The use of standard subroutines from
the PL/I libraries, to handle such
standard tasks as the housekeeping
scheme and error handling.

4. The use of initialization routines to
set up the communications area and
initiate the housekeeping scheme. All
PL/I modules are compiled on the
assumption that the initialization
routines have been called before they
are entered.

5. The issuing, by the initialization
routines, of SPIE and STAE macro
instructions to trap interrupts and
ABENDs, and allow them to be handled
as defined by PL/I.

These features are discussed further below.

COMMUNICATIONS AREA

The facilities offered by the PL/I
language, particularly the error-handling
facilities, imply that certain items must
be accessible at all times during
execution. To simplify accessing such
items, a standard communications area is
set up for the duration of execution. This
area is known as the task communications
area (TCA), and is addressed by register 12
throughout execution.

DYNAMIC STORAGE ALLOCATION

The principles of the dynamic storage
scheme are illustrated in figure 1.2.

The allocation and freeing of automatic
storage on a block-by-block basis implies
an automatic facility for the re-use of
such storage. This problem and the problem
of inter-block communication are solved by
having, for each block, a save area that
contains register save information,
automatic variables, and housekeeping
information. This area is known as a
dynamic storage area (DSA). It consists of
the standard operating system save area
concatenated with certain housekeeping
information and with storage for automatic
variables. DSAs are held contiguously in a
last-in/first-out (LIFO) storage stack and
are freed and allocated by the alteration

Chapter 1: Introduction 3

Figure 1.3.

LOAD MODULE

PROGRAM CONTROL SECTION
Compiled code

LIBRARY MODULES
Link-edited library
modules, including:
IBMBPIR,
IBMBERR

ADDRESSES
Addresses of:
Library modules,
PL/I subroutines and
entry points,
Label constants,
External procedures, etc.

CONTROL BLOCKS
Various control blocks
needed during
execution

CONSTANTS
Storage for any constants
used in the program

STATIC VARIABLES
Storage for variables
declared as STATIC
INTERNAL

OTHER CONTROL SECTIONS
PLISTART, PLIMAIN.
Storage for variables
declared as STATIC EXTERNAL,
Control bilocks and
other data for
external files, etc.

Ccontents of a typical load module

Static
internal
control
section

of pointer values.

On entry to a block, the registers of
the preceding block are stored in the
previous DSA and a new DSA is acquired. A
chainback pointer to the previous DSA is
placed in the new DSA. This arrangement
allows access to information in previous
klocks. Register 13 is pointed at the head
of the DSA for the current block. The code
that carries out this and any other block
initialization is known as prologue code.
To obviate the need for special coding in
the main procedure, a dummy DSA is set up
by an initialization routine, and register
13 points at this dummy DSA on entry to the
main procedure. ‘

In addition to automatic variables,
certain other types of storage are
allocated and freed dynamically. Such itens
as are not freed on a last-in/ first-out
basis are kept in a second stack. If items
within this stack are freed, they are
placed on a free-area chain. The storage
scheme is handled partly by compiled code
and partly by a resident-library routine.
Compiled code acquires and frees space in
the LIFO storage stack.

The library routine IBMBPGR is called
when non~-LIFO dynamic storage has to be
allocated or freed, or when there is
insufficient space for an allocation of
storage in the LIFO stack.

USE OF LIBRARY SUBROUTINES

The use of library subroutines simplifies
compilation. On the other hand, using such
routines slows execution because they
cannot be tailored for the particular °
situation in hand, and because they incur
the overhead of saving and restoring
registers. Library subroutines are used
for handling standard jobs such as program
initialization and error handling, and for
those items that require interpretive code.
Interpretive code is required when a
significant part of the data will not be
available until execution.

Two PL/I libraries are used by the 0S
PL/I Optimizing Compiler: the 0S PL/I
Resident Library and the O0s PL/I Transient
Library. Transient library routines have
the advantage of saving space, because they
require storage only when they are actually
in use. Resident library routines, however,
have the advantage of speed, because they
do not have to be loaded during execution
of the PL/I program. Dividing subroutines
into transient and resident types enables
the compiler to balance the advantages of
both types and so to produce programs that

combine fast execution with reduced space
overheads.

INITIALIZATION/TERMINATION ROUTINES

The job of the initialization routines is
to prepare a standard environment for all
procedures compiled by the 0S PL/I
Optimizing Compiler. This consists of
setting-up the TCA and initializing the
storage scheme. A SPIE macro instruction is
issued so that all program checks will be
intercepted by the PL/I error-handling
facilities. A STAE macro instruction is
issued to trap ABENDS. On completion of the
main procedure control is returned to the
initialization routine by the epilogue code
of the main procedure. The program is
terminated under the control of the
initialization routine. Using standard
library routines for these tasks reduces
the amount of special-case coding that ‘is
needed for a main procedure. A consequence
is that subroutines can be compiled and
tested individually and then joined with
other procedures and run without
recompilation. If this is done, care must
be taken that the main procedure is the
first passed to the linkage editor.

Note: Use of the linkage editor ENTRY
statement will not have the desired results
as the program must be entered via the
initjialization routine.

Contents of a Typical Load Module

The contents of a typical load module are
shown in figure 1.3. The contents are:

1. Compiled code (the executable machine
instructions that have been
generated).

2. Link-edited routines. These will
include resident library routines and
probably O0S data management routines.
Certain resident library routines are
included in every executable program
phase. These are the initialization
routine, IBMBPIR, and the error
handler, IBMBERR. Other resident
routines are included as required.

As well as executable machine
instructions, the program requires certain
control information and addresses. Some of
these are listed in figure 1.3, but full
details are given in chapter 2. The figure
also shows PLISTART, which passes control
to the initialization routine, and PLIMAIN,
which holds the address of the start of

Chapter 1: Introduction 5

Other storage obtained by
issueing GETMAIN macros

Storage for:
Transient library routines
1/0 buffers

Plus:
Further allocations of
dynamic storage if
required

Figure 1.4. Use of storage

LOAD MODULE

Compiled code
Library modules
Addresses
Control blocks
Constants
Static variables

PROGRAM
MANAGEMENT AREA

TCA (task communications area)
Dummy DSA (dynamic storage area)
Other housekeeping control blocks

LAST-IN/FIRST-OUT
(LIFO) STORAGE

Storage for automatic variables and
compiler-generated temporaries, and
other items allocated and freed on

a block and procedure basis

NON-LIFO STORAGE

Storage for controlled
and based variables

DSAs and VDAs (variable data areas).

Load Module

Initial
Storage Area
(ISA)

PLISTART

system

Receives control from

Initialization routines

Set up TCA, initialize storage and
issue SPIE & STAE to initialize

PL/I error-handling scheme. Pass
S

Prologue code

Acquires DSA for main
procedure, initializes
control blocks, etc.

Figure 1.5.

Flow of control during execution

control to the address in —P

PLIMAIN.
Functional code Epilogue code Termination routines
Carries out function required Restores IBMBPIRs Closes any files still open and
in source program. This registers returns control to system
usually involves calls to
library subroutines. > >

Chapter 1: Introduction

7

compiled code.

The Overall Use of Storage

The overall use of storage is illustrated
in figure 1.4. As can be seen, an area
known as the initial storage area (ISA) is
acquired for program management and PL/I
dynamic storage. The program management
area is set up by the initialization
routines, and includes the TCA and the
dummy DSA discussed above. The remainder
of the ISA is used for PL/I dynamic storage
allocations. The LIFO stack starts beyond
the end of the program management area and
expands, as necessary, towards the end of
the ISA. Non-LIFO dynamic storage starts
at the end of the Isa and expands towards
the LIFO stack. Storage for I/0 buffers and
transient library routines is acquired by
issuing GETMAIN macro instructions.

The Process of Execution

The process of execution is illustrated in
figure 1.5. The processes involved for a
sample program are described below.

SAMPLLE: PROC OPTIONS(MAIN) ;
INPUT: GET LIST(Y,2);

(procesé data as required)

.

PUT LIST(X);
IF X<500 THEN GO TO INPUT;
END;

During execution:

1. The control program passes control to
the control section PLISTART, which
has been generated by the compiler.

2. PLISTART calls the resident library
initialization routine, IBMBPIR.

3. IBMBPIR and IBMBPII(called by IBMBPIR)
set up the PL/I environment. IBMBPIR
then passes control to the main

procedure compiled code, with register
12 pointing at the TCA and register 13
pointing at the dummy DSA. The
address to which IBMBPIR passes
control is held in the control section
PLIMAIN.

4. compiled code prologue stores the
contents of the registers used by
IBMBPIR in the dummy DSA and acquires
a DSA for the main procedure.

5. Compiled code calls the library
routines used for stream I/0. These
in turn call transient routines to
open the standard files and further
transient routines to interface with
data management routines.

6. Processing is then carried out by
compiled code. Further calls to the
library may be involved if, for
example, mathematical functions are
used.

7. The stream output will involve further
steps similar to those described in 5,
above.

8. When the END statement is reached, the
epilogue code is entered. This
restores the registers of IBMBPIR, the
initialization routine, and returns
control to IBMBPIR.

9. IBMBPIR raises the FINISH condition,
calling the resident error-handling
module IBMBERR, which searches for a
FINISH on-unit. Finding none, it calls
IBMBPIT. IBMBPIT carries out certain
housekeeping tasks, including calling
IBMBOCL to close the files that have
been opened. IBMBPIT returns control
to IBMBPIR, which returns control to
the supervisor.

This program illustrates the main points
mentioned earlier in the chapter. The
initialization_routines are used-in steps 3
and 9, to set up and discard the PL/I
environment. The storage_management scheme
is illustrated in the prologue and epilogue
code in steps 4 and 8. The communications
area_(TCA) is set up by the initialization
routine, and the use of standard library
subroutines is shown in steps 5 and 7. The
use of special error and PL/I_ condition
handling code is shown in step 9.

COMPILER

Housekeeping
control sections

Program control section

Contains:

Executable instructions
translated from source
program

Static internal control section

Contains:
Addresses
Constants
Control information
Static internal
variables

PLISTART

Contains:
Instructions passing control to
initialization routine

PLIMAIN
Contains:
Address of main procedure

PLIFI.OW

Contains:
External reference to library
module used in FLOW option

Control sections surrounded with dotted lines are generated only when required.

Figure 2.1.

10

Control sections for
compiler-generated

Control sections
data declared
EXTERNAL

A separate control section for each

external:
Variable
File
Procedure
User condition

Symbol table for external data

for

subroutines

A control section for each
compiler-generated subroutine
used in a program

e oo
I
|

The output from the compiler

Dummy Section

A dummy section
containing address

| information for

| files and controlled

variables.

Becomes the
pseudo-register
vector (PRV).

Introduction

This chapter describes that part of the
load module that is generated by the
compiler. The compiler output is a
relocatable object module consisting of a
series of records in card-image format.
These records contain either machine
instructions, constants, or external or.
internal addresses to be resolved by the
linkage editor. The records are known as:

TXT records -~ records containing
machine instructions or constants.

RLD records - records containing
internal addresses.

ESD records - records containing
external addresses.

Further information about the output passed
to the linkage editor is given in the
publication O0S_PL/I Optimizing Compiler:
Program_Logic.

There are two main control sections
output by the compiler. These are:

1. The program control section, holding
the executable instructions translated
from the PL/I program.

2. The static internal control section
holding constants, addresses, and
static variables.

. A number of other control sections are also
generated. These either handle certain
housekeeping functions, or are used for
external data which may have identical
control sections generated for it by other
compilations.

Workspace and storage for automatic
variables is acquired during execution,
normally by the prologue code that is
executed at the start of every block.

The output from the compiler is shown in
figure 2.1 and listed below:

1. control sections that are always

generated
Program contxrol Containing
section executable
instructions.

Chapter 2: Compiler Output

Static internal
control section

Containing
addresses, control
blocks, constants,
and STATIC INTERNAL
variatles.

PLISTART The entry point for
the executable
program phase.
Passes control to
initialization
routine.

2. control sections that are generated
only when required

PLIMAIN Containing the
address of the entry
point of the main
procedure.
(Generated only for
procedures with
OPTIONS (MAIN).)
PLIFLOW A control section
generated when the
compiler FLOW option
is specified. (See
chapter 7.)

PLICOUNT A control section
generated when the
COUNT compiler
option is specified.

Static external A static external

control sections control section is
generated for every
external variable,
file, and procedure.

Plus control
sections for

Each user-defined
condition, and each
compiler-generated
subroutine used.

3. Dummy sections

Pseudo-register
vector

A dummy section used
in addressing files
and controlled
variables.

The remainder of this chapter deals with
these items in further detail. Where
possible, it refers to the object program
listing, because this is the form in which
the output from the compiler is most
readily accessible.

The two control sections, PLISTART and

Chapter 2: Compiler Output 11

Contents
Source program

Aggregate table
and arrays

Storage requirements
procedures

ESD references

Statistics

Static storage

Table of offset and
statement number statement

Object program

Variables offset
MAP

Figure 2.2.

PLIMAIN, are used during program
initialization. PLISTART holds the address
of the library initialization routine
IBMBPIR, which will be entered at the start
of the program. PLIMAIN holds the address
of the start of the code for the main
procedure. This is the address to which
the library initialization routine branches
when initialization is complete; it is
marked "#REAL ENTRY" in the object~program
listing.

A PLIMAIN control section is generated
for every procedure for which OPTIONS
(MAIN) is specified in the procedure
statement.. When two such procedures are
being run together, control will pass to
the first of the procedures processed by
the linkage editor (unless the program's
JCL specifically indicates otherwise).

The format of PLIMAIN and PLISTART is
given in appendix A.

If the compiler FLOW option is being
used, a control section called PLIFLOW is
also generated. This contains code that
results in the link-editing of the trace
module IBMBEFL and also contains the values
of "n" and "m" specified in the option.

12

——————— - - - — " - - . -

Source program statements

- ———— - —— - —— T T D - —— — " ——

Names and storage requirements of structures
Names and storage requirements of all

Name, type, and identifier of all external
references generated by the compiler*

Number of source records, program text
statements, and okject code bytes

Contents of static internal and static
external control sections in hexadecimal
notation with comments

Offsets, within code, of the start of each

The contents of the program control section
in hexadecimal and translated into a
pseudo-assembler-language format

The offsets of automatic and static internal
variables from their defining base

| * External references within library modules are not included.

——— e - ————— - - — - -

| Compiler Option |
SOURCE

AGGREGATE

STORAGE

ESD

ESD

MAP

OFFSET

LIsT

contents of listing and associated compiler options

The format of PLIFLOW is given in chapter
7.

The Organization of this_ Chapter

The remainder of this chapter describes the
contents of the static internal control
section and the program control section.
First the conventions used in the object
program listing and the static storage map
are described. Descriptions of the two
control sections follow. The description
of the program control section covers the
conventions used in the object program code
such as register usage, method of handling
flow of control, and addressing
information. The chapter is completed by a
short discussion of the effects of
optimization.

Listing Conventions

Figure 2.2 shows all the program listing
information that can be produced by the

SOURCE

1 EXAMPLE: PROC OPTIONS (MAIN) REORDER;

2 1 DCL X(10),Y,Z2 INITIAL (0);

3 1 GET EDIT(X,¥Y) (F(3),X(11));

4 1 DO I=1 TO ¥;

5 11 Z=72*X(I);

6 11 END;

7 1 PUT EDIT(Z)(A);

8 1 END;

STATIC INTERNAL STORAGE MAP STATIC EXTERNAL CSECIS
000000 00000008 PROGRAM ADCON 000000 0000000000000000 CCICE
000004 O0O0O0O0O0O0SE PROGRAM ADCON 0000000000000000
000008 00000068 PROGRAM ADCON ‘ OFU4700140005E2E8
00000Cc 00000000 A..IELCGIA E2C9D520
000010 00000000 A..IELCGIB
000014 00000000 A..IELCGOA
000018 00000000 A..IEILCGCE 000000 FFFFFFFC41201000 CCLCE
00001Cc 00000000 A..IBMBCACA 02D70F0000000000
000020 00000000 A..IBMBCELB FF6000140008E2ES
000024 00000000 A..IBMBCHFD E2D7D9C9D5E3008R
000028 00000000 A..IBMBCTHD
00002c 00000000 A..IBMBCVDY
000030 00000000 A..IBMBOCIA
000034 00000000 A..IBMBOCLC
000038 00000000 A..IBMBSACA
00003Cc 00000000 A..IBMBSEIA
000040 00000000 A..IBNMBSEIT
000044 00000000 A..IBMBSEOA
000048 00000000 A..IBMBSFIA
oooouc 00000000 A..IBMBSIIA
000050 00000000 A..IBMBSICA
000054 00000000 A..IBMBSIOT
000058 00000000 A..IBMBSXCA
00005C 00000000 A..STATIC
000060 08040680 CED..X
000064 500000030080 FED
00006A 6000000B FEL
00006E 5800000C FED
000072 000a CONSTANT
000074 0001 CONSTANT
000076 0004 CONSTANT
000078 91E091E0 CONSTANT
000067Cc 00000000 CONSTANT
000080 46008000 CONSTANT
000084 41100000 CONSTANT
000088 00000000 A..DCLCB
00008C 00000000 A..DCILCB
000090 00000000 A..DCLCB
000094 80000000 A..TENP
000098 00000000 A. .DCLCB
00009C 80000000 A..TEMP
0000A0 0000010400000068 'COMPILER LABEL CL.9

Figure 2.3. Example of static storage listing

Chapter 2: Compiler Output 13

PL/I OPTIMIZING

000004 91 40
000008 47 10
00000C 58 FO
000010 50 70
000014 58:70
000018 48 EO
00001C 4B EO
000020 40 EO
000024 58 EO
000028 4A EO
00002C 50 EO
000030 48 EO
000034 41 EO
000038 40 EO
00003C 40 EO
000040 91 10
000044 07 86
000046 58 70 1
00004A 58 FO 7
00004E 05 EF
000050 07 Fé
000052 58 FO 7
000056 05 EF
000058 58 EO 1
00005C '50 EO D
000060 94 BF 1
000064 07 F6
000066 07 00
000068

00006C

=S e e T N e - N -

COMPILER

u10
052
014
01¢C
00c
u50
002
050
04cC
002
o4cC
020
001
020
052
010

u1C
68
06C
008

ouc
010

™
BO

L
ST
L
LH
SH
STH
L

AH
ST
LH
LA
STH
STH
™
BCR
L

L
BALR
BR

L
BALR
L
ST
NI
BR
NOPR
DC
DC

* ENN OF COMPILER GENERATED SUBROUTINE

* STATEMENT NUMB
000000

000007

* PROCEDURE

* REAL ENTRY
000008 90 EC D
00000C 47 FO F
000010 00000000
000014 00000130
000018 00000000
00001C 58 30 F
000020 58 10 D

PL/I OPTIMIZING

0000B2 05 AA

0000B4 58 EO D
0000B8 4A EO 3
0000BC 50 EO D
0000CO0 49 EO 3
0000C4 47 cO 2
0000c8 41 EO D
0000cCc 50 €0 1
0000D0 05 AA
0000D2 47 FO 2
0000D6

0000D6 41 20 3
0000DA 58 10 D
0000DE 58 70 3

0000E2 05 67
0000E4 58 FO 3
0000E8 05 EF
0000EA 58 70 3
0000EE 05 67
0000F0 05 AA
0000F2 41 EO
0000F6 58 10
0000FA 58 70
0000FE 05 67
000100 47 FO 2
000104

wWwow

Figure 2.4.

14

ER 1

00C
014

010
o4c

COMPILER

UE8
u74
vE8
u72
02E
0A8
008

09c
064
0EC
0oc
ous
u10
06
0EC
00c

06E

Part of an object program listing (For source see Figure 2.3)

CL.8

CL.9

DC
DC

STM

bC
DC
DC

BALR
L

AH
8T
CH
BNH
LA
ST
BALR
B
EQU
La

L

L
BALR
L
BALR
L
BALR
BALR
LA

L

L
BALR
B
EQU

16 (1) ,X*'40"
*+74
15,20(0,1)
7,28(0,1)
7,12(0,1)
14,80(0,15)
14,2(0,7)
14,80(0,15)
14,76(0,159)
14,2¢0,7)
14,76(0,15)
14,32(0,1)
14,100, 18)
14,3200,
14,82(0,15)
16 (1) ,X*10"
8,6
7,28(0,1)
15,104(0,7)
14,15

6
15,108(0,7)
14,15
14,8(0,1)
14,76(0,13)
16(1) ,X'BF*
6

0

AL4(0)

AL4 (0)

C'EXAMPLE'
AL1(7)

EXAMPLE

14,12,12(13)
*+16

A{(STMT. NO.
F'304°
A(STATIC CSECT)
3,16(0,15)
1,76(0,13)

TABLE)

10,10
14,232(0,13)
14,116(0,3)
14,232(0,13)
14,114(0,3)
CL.5
14,Y
14,8(0,1)
10,10
CL.9
*
14,100(0,3)
1,236(0,13)
7,A..IELCGIA
6,7
15,A..IBMBSFIA
14,15
7,A..IELCGIB
.
10,10
14,106 (0, 3)
1,236(0,13)
7,A..IELCGIA
6,7
CL.8
-

= PAGE

0,12(0,15)
OI

0,12(0,12)

*+10
15,116(0,12)
14,15
14,72€0,13)
15,0

14,0,72(1)
13,4¢0,1)
13,001,0)
5,88(0,13)
0(13),x'80"
1(13) ,x"24°
84(4,13),120(3)
2,0

4,124(0,3)
4,2
2,0

9,264(0,13)
9,148(0,3)
148(3),X*80"
281(13) X' 24°
14,160(0,3)
14,288(0,13)
1,144(0,3)
15,A..IBMBSIIA
14,15

10,CL.8
14,116(0,3)
14,232(0,13)
*

9,232(0,13)
9,2
14,VC..X(9)
15,CED, .VO. . X
1,264(0,13)
1,236(0,13)
14,15,8(1)

FAGE

14,248(0,13)

2,244(0,13)

000024 58 00 F 0Q0C L
000028 1E 01 ALR
00002a 55 00 C 00C CL
00002E 47 CLO F 030 BNH
000032 58 FO C 074 L
000036 05 EF BALR
000038 58 EO D 048 L
00003C 18 FO IR
00003E 90 EO 1 0us8 STM
000042 50 CO 1 00U ST
000046 41 D1 0 000 1A
00004A 50 50 C 058 ST
00004E 92 80 D 000 MVI
000052 92 24 C 001 MVI
000056 D2 03 D 054 3 078 Ao
00005C 05 20 BALR
* PROLOGUE BASE

* INITIALISATICN CODE FOR 2

00005E 78 40 3 07C LE
000062 70 40 D OAC STE
000066 05 20 EALR
* PROCELCURE EASE

* STATEMENT NUMBER 3

000068 41 90 L 108 ia
00006C 50 90 3 094 ST
000070 96 80 3 094 CI
000074 92 24 D 119 MVI
000078 41 EO 3 OAO 1A
00007C 50 EO D 120 ST
000080 41 10 3 090 LA
000084 58 FO 3 0ucC L
000088 05 EF BALR
00008A 41 AO 2 O6E 1a
00008E 48 EO 3 074 LH
000092 50 EO D OE8 ST
000096 CL.5 EQU
000096 58 90 D OES8 L
00009A 8E 90 0 002 SLIA
00009E 41 E9 D OBY LA
000022 41 FO 3 060 La
0000A6 41 10 D 108 LA
0000AA 50 10 D OEC ST
0000AE 90 EF 1 008 STM
00013E 50 EO D OF8 ST
* CALCULATION CF CCMMONED EXFRESSICN FCLLCWS
000142 78 20 C OF4 LE
000146 70 20 D OFC STE

* END OF CONMMON CCDE

* CCNTINUATICN CF STATEMENT NUMBER 4

00014A

* STATEMENT NUMEER
58 70 L OF8

00014A
00014E
000152
000156

78 40 C OAC

7C 47 D OBR4

70 40 T OAC

* STATEMENT NUMBER

5

6

CL.2

EQU

LE
ME
STE

2,252(0,13)

7,248(0,13)
4,2
4,VC..X(7)
4,2z

* METHOD CR CRDER CF CALCULATING EXPRESSICNS CHANGED

* CODE MCVED FRCM STATEMENT NUMBER 4
00015A 78 00 C OFC
00015E 7A 00 3 084
70 00 C OFfC

000162

LE
AE
STE

0,252(0,13)
0,132(0,3)
0,252(0,13)

compiler. It also shows the relevant
compiler options and summarizes the
information that will be produced if these
options are specified. Some or all of
these options may be deleted at system
generation time. To obtain deleted
options, the correct password (specified at
system generation time) must be specified
in the CONTROL option.

This chapter describes the contents of
the static-storage map and the object-
program listing. Information on the other
items generated is given in the publication
0S PL/I Optimizing Compiler: Programmexr's
Guide.

STATIC~STORAGE MAP

The static-storage map is a formatted
listing of the contents of the static
internal and static external control
sections. The static control sections
contain items grouped in the following
order:

1. Address constants for entry points to
procedures, and for branch
instructions.

2. Address constants for resident library
subroutines.

3. Address constants for addressing
static storage beyond UK.

4. The constants pool, which contains
source program constants, data element
descriptors, locator/descriptors,
symbol tables, declare control blocks
(DCLCBs), and other control blocks.

5. Static variables.

The constants pool and the static-variable
sections of static storage begin on
doubleword boundaries.

The static control section is listed,
each line comprising the following
elements:

1. sSix-digit hexadecimal offset.

2. Hexadecimal text, in 8-byte sections
where possible.

3. Comment, indicating the type of item
to which the text refers; a comment
appears against only the first line of
the text for an item.

A typical static listing is shown in
figure 2.3.

The following comments are used (xxx

indicates the presence of an identifier):
A.. - Address constant.

COMPILER LABEL CL.nn - Compiler-generated
label followed by CL plus number.

CONDITION CSECT - Control section for
programmer—-named condition

CONSTANT

CSECT FOR EXTERNAL VARIABLE - Control
section for external variable.

D.. - Descriptor.

DED.. - Data element descriptor.
ENVB - Environment control block.
DCLCB - Declare control block.

FED.. - Format element descriptor.

KD.. - Key descrirtor.

ONCB - ON control block.
PICTURED DED.. - Pictured DED.
RD.. - Record descriptor.
SYMTAB - Symbol table.

USER LABEL xxx - Source program label for
XXX.

xxx - Name of variable. If the variakle is
not initialized, no text appears
against the comment; there is also no
static offset if the variable is an
array. (The static offset can be
calculated from the array descriptor
if required.)

OBJECT-PROGRAM LISTING

By including the option LIST in the PROCESS
statement, the programmer can obtain a
listing of the compiled code, known as the
object-program listing. This listing
consists of the machine instructions plus a
translation of these instructions into a
form that resembles assembler language, and
a number of comments such as the statement
number. The format of this listing is shown
in figure 2.4. As can be seen, blocks of
code are headed by the number of the
statement in the PL/I program to which they
are equivalent. When optimization has
resulted in code being moved out of a
statement, this is indicated. Only
executable statements appear in the
listing. DECLARE statements are not

Chapter 2: Compiler Output 15

included, because they have no direct
machine-code equivalent. To simplify
understanding of the listing, the names of
PL/I variables are inserted, rather than
the addresses that appear in the machine
code. Special mnemonics are used when
referring to control blocks and other
itens.

Statements in the object program listing
are ordexed by block. Statements in the
outermost: block are given first, followed
by statements in the inner blocks. Thus
the order of statements will frequently
differ from that of the source program.

Every object=program listing begins with
the name of the procedure. The name is
defined as a constant in a DC instruction.
This is followed by another constant
containing the length of the procedure
name. Then comes the name of the
procedure, as a comment, followed by code
under the heading "REAL ENTRY." This is
the point. at which the code will, in fact,
be entered. The second section of code is
the prologue, which carries out various
housekeeping tasks and is described more
fully later in this chapter. The end of
the prologue is marked by the message
"PROCEDURE BASE." This is followed by a
translaticn of the first executable
statement. in the PL/I source program.

The comments used in the listing are as
follows:

¥ PROCEDURE xxx - identifies the start of
. the procedure labeled xxx.

* REAL ENTRY xxx - heads the
initialization code for an entry point
to a procedure labeled xxx.

* PROLOGUE BASE - identifies the start of
the prologue code common to all entry
points into that procedure.

* PROCEDURE BASE - identifies the address
loaded into the base register for the
procedure.

* STATEMENT LABEL xxx - identifies the
position of source program statement
label xxx

* PROGRAM ADDRESSARILITY. REGION BASE =~
identifies address to which the program
base is updated if the program size
exceeds 4096 bytes and consequently
cannot be addressed from one base.

* CONTINUATION OF PREVIOUS REGION -
identifies the point at which addressing
from the previous program base
recommences.

* END OF COMMON CODE - identifies the end

16

of code used in the execution of more
than one statement.

END PROCEDURE xxx - identifies the end
of the procedure labeled xxx.

BEGIN BLOCK xxx - indicates the start of
the begin block with label =xxx.

END BLOCK xxx - indicates the end of the
begin block with label xxx.

BEGIN BLOCK - GENERATED NAME BLOCK.nn -
indicates the start of an unnamed begin
block for which the compiler has
generated the name BLOCK.nn, where nn is
two hexadecimal digits.

END BLOCK.nn - indicates the end of the
begin block with compiler-generated name
BLOCK.nn.

STATEMENT NUMBER n - identifies the
start of code generated for statement
number n in the source listing.

INTERLANGUAGE PROCEDURE xxx - identifies
the start of encompassing procedure xxx
(see chapter 13).

END INTERLANGUAGE PROCEDURE xxx -
identifies the end of encompassing
procedure xxx. (See chapter 13)

COMPILER GENERATED SUBROUTINE XXX -~
indicates the start of compiler-
generated subroutine xxx.

END OF COMPILER GENERATED SUBROUTINE -
indicates the end of the compiler-
generated subroutine.

ON UNIT BLOCK - indicates the start of
an on-unit block.

ON UNIT BLOCK END -~ indicates the end of
the on-unit block.

END PROGRAM - indicates the end of the
external procedure.

INITIALIZATION CODE FOR OPTIMIZED LOCP
FOLLOWS - indicates that some of the
code that follows has been moved from
within a loop by the optimization
process.

CODE MOVED FROM STATEMENT NUMBER n -
indicates object code moved by the
optimization process to a different part
of the program and gives the number of
the statement from which it originated.

CALCULATION OF COMMONED EXPRESSION
FOLLOWS - indicates that an expression
used more than once in the program is
calculated at this point.

| | Dedicated | Work registers | Preferred registers | Notes

[| registers | (plus special use) | |

l ——— - ——————— —— ——— o —— -
| 0| | General | | Cannot be used
| | | | | as base

| = ——————— e e e e e e o e e
| 1 | General + address | |

| | of parameter list | |

| 2 | Address of | | | saved during
| | program base | | | in-line record
| | | P | I/0 and TRT
| | | | | instructions
l ...
| 3 | Address of | | |
| | static base | | |
I__..__’_ ________ - - o . — — — ——— ——————— ———— ——— - " T "~ o " o e e T " A T - " . - — - - -
| 4 | | | | Address of
| | | | | temporary base
| | | | | if DSA size
| | | | | greater than
| | | 1 | 3896 bytes
' ___
I 5| | General + static | Preferred register |
| | | chainback on entry | for DO loop |
l | | to procedure | control variable |
l ___
| 6 | | General | |
l ___
| 71 | General | |
I ...
| 8 | | General | |
I ___
9		General	
10		General	Preferred registers for
——=- e o —m — —————m— e	DO loop control when		
11		General	BXLE instruction is used
I ...			
12	Address of TCA		i
I ___			
{ 13	Address of		
	current DsA		
R e m e mre——mme e — e m e e— e ———			
14		General + branch-	
= —————— ———————	and-1link to library	-—-===-—===—c-cmmemmemm e	
15		and other routines	
S, - e ot e e 2 2 2 2 2 e e e e e e e e e 1
Figure 2.5. Register usage in compiled code
* METHOD OR ORDER OF CALCULATING ADD.. Aggregate descriptor

EXPRESSIONS CHANGED - indicates that the descriptor.

order of the code following has been

changed to optimize the object code.

BASE. . Base address of a
variable.

In certain cases, mnemonics are used to
identify the type of operand in an BLOCK.nn Label created for an
instruction, and, where applicable, this is otherwise unlabeled
followed by the name of a PL/I variable. block.
The following prefixes are used:

CL.nn Compiler-generated

A.. Address constant. label.

Chapter 2: Compiler Output 17

D.. Descriptor.

DED.. Data element
descriptor.

WSP.n Workspace, followed by
decimal number of the
block of allocated
workspace.

L.. Length of variable.

LOCATOR. « Locator.

RKD.. Record or key
descriptor.

VO.. Virtual origin (the

address where element
0 would be held for a
one-dimensional array,
element 0,0 for a
two-dimensional array,
etc.).

Static Internal Control Section

The static internal control section
contains the majority of items that are not
executable instructions. The contents of a
typical static control section are shown in
figure 2.3.

The first part of the static internal
control section contains addresses. These
are held in the order:

1. Aaddresses of library modules
2. Addresses of entry points

3. Addresses of label constants that may
be assigned to label variables

4. Addresses of external procedures
(other than library modules)

The address section is followed by a
section known as the constants pool. This
contains the following items (if required
by the program):

constant values used
by compiled code.

Constants

ONCBs Control blocks used
in error handling.

(See chapter 7.)

Descriptors, control information
locators § used by compiled
DEDs (data element code and library.
descriptors) (See chapter 4.)

Symbol table control information

18

used in
data-directed I/O.
(see chapter 4.)

address vector
Symbol tables

Information on
statement numbers.

Diagnostic
statement table

Items are arranged according to their
alignment requirements, those requiring
doubleword alignment first, followed by
fullword, halfword, byte, and bit.

The final section of the static internal
control section holds the static variatbles.
These are held in size order, smallest
first, as for automatic variables: first
the variables of 8 bytes or less, next the
variables of 2048 bytes or less, and
finally any variable greater than 2048
bytes. This system ensures that the
smallest possible number of items will
require indirect addressing, since it will
always be the largest variables that
overflow the 4K boundary. Within each
division, items are grouped according to
alignment stringencies, starting with those
requiring doubleword alignment. This
method ensures optimum use of storage.

Program Control Section

The program control section contains the
executable instructions that are a
translation of the PL/I source program.
The format of each program control section
depends on the contents of the source
program. The discussion that follows
covers items that will be common to all
source programs.

To keep discussions of subjects as
complete as possible the chapter also
includes descriptions of certain library
functions when they are closely allied with
the subject under discussion.

REGISTER USAGE

Details of register usage during the
execution of compiled code are given in
figure 2.5.

Four general registers are used as bases
for addressing various types of data; these
are known as dedicated registers. The
remainder of the registers are used as they
are required and are known as work
registers

Dedicated registers are:

R2 Program base.

R3 static base.
R12 TCA pointer.
R13 DSA pointer.

This arrangement of dedicated registers
allows compiled code the use of five
even/odd work register pairs. These are
(0,1, (6,7, (8,9), (10,11), and (14,15).

Certain registers have special tasks for
which they are always used, or for which
they are preferred and used when available.
These tasks are shown in figure 2.5.

Dedicated Registers

Register 2 - Program Base_ Register:
Register 2 is the program base register and
is used for branching within the code.

When the code exceeds UK, register 2 is
updated so that all branching is done on
this register. During in-line I/0 (when
data management calls are handled by
compiled code rather than by library
subroutines), and during the execution of
TRT instructions, the program base register
contents are saved and the register used
for other purposes.

Register 3 - Static Base Register:

Register 3 points to the start of the
static internal control section. The items
to be found in this control section in any
particular program are listed in the
static-storage map put out by the compiler.
(see "static Internal Control Section,"
later in this chapter.) When the static
control section is larger than 4K bytes, a
further base register is used.

Register 12 - TCA: Offsets from register
12 are used to address the various fields
in the TCA. The TCA is discussed further in
chapter 5. 1Its format is shown in appendix
A.

Register 13 - Current DSA: Register 13
points to the current DSA and is used to
address the automatic variakles declared in
the current procedure or block. References
to offsets from register 13 which do not
appear as names in the assembler language
listing are references to the housekeeping
fields held in every DSA. These are
discussed in chapter 6; the format of the
housekeeping information in a DSA is given
in appendix Aa.

Register U4: When the DSA is larger than
3896 bytes register 4 is used as a base for
compiler generated temporaries.

Work Registers

Special or preferred uses for work
registers are shown in figure 2.5. Special
uses are those for which the register is
freed and always used. Preferred uses are
those for which the register is used when
possible.

Floating-Point Registers

Floating-point registers are all used as
general work registers for floating-point
data.

Library Register Usage

Register usage in library modules is
different from that in compiled ccde.
shown in figure 2.6.

It is

In both library and compiled code usage,
register 12 points at the TCA, and register
13 at the current DSA. Registers 14 and 15
are used by both library subroutines and
compiled code to branch and link Letween
routines.

A further point about library register
usage is worth noting. Registers 14 through
4 are normally saved by the library. This
is because the majority of library
subroutines use only these registers.
Consequently, time can be saved by reducing
save-restore requirements. However, some
library routines also save one or more cf
registers 5 through 11.

Handling and Addressing Variables and
Temporaries

AUTOMATIC VARIABLES

Automatic variables have storage allocated
on a procedure or begin-block basis.
Variables whose length is known during
compilation have storage allocated within
the DSA of the block in which they are
declared. Variables whose length is not
known until execution have their storage
allocated in variable data areas (VDAs).
VDAs are held in the last-in/first-out
storage stack and are acquired in the
prologue code after the DSA has been
acquired. The same method is used as is
used for acquiring the DSA (see above under
"Prologue Code.")

Chapter 2: Compiler Output 19

Automatic variables, when used in the
klock in which they are declared, are
addressed from register 13, if they are
held in the DSA. If they are held in a
VDA, a separate base is set up for the VDA
and they are addressed from this.

Register | Usage

1 Work register
2 Work register
3 Program base register

(dedicated)

4 Work register
5 Work register
6 Work register
7 Work register
8 Work register
9 wWork register

Work register

TCA pointer (dedicated in
both library and compiled
code)

DSA pointer

Work register (always used
for branch-and-link to other
routines)

Work register (used with
register 14 for
branch-and-1ink)

13
14

|

|

|

|

| |
| |
| |
| |
| [
| |
| |
| |
| |
| |
10 | Work register |
| [
| |
| |
| |
| |
| |
| |
| [
15 | |
| |

| |

4

Figure 2.6. Library register usage

Automatic variables known in any
procedure or block are those that are
declared in that procedure or block, or in
any encompassing procedures or blocks.

The method used to address automatic
variables in outer blocks is as follows.
The address of the DSA of the block in
which the required variable was declared
is placed in the current DSA. This
address can then be accessed from register
13. This is done in the prologue.
Frequent.ly, the value is retained in the
register used in the initial load and not
reloaded when the variable is accessed.
Typical code would be

L 7,96(0,13) Pick up address of
correct DSA
L 8,108(7) Place value in register

8

COMPILER-GENERATED TEMPORARIES

Because PL/I statements can contain an
unlimited number of operands, it is
frequently necessary to set up fields

20

containing intermediate results. These
fields are known as temporary variables
(temporaries) and are allocated within the
DSA of the associated block, provided that
the size of storage required is known at
compile time. Temporaries are addressed
from register 13, unless the DSA is longer
than 4096 bytes. Because temporary
storage is continually being reused, the
same offset will not always refer to the
same temporary.

Temporaries for Adjustable Variables

Where a temporary is needed to hold a
value for an adjustable variable, its size
is not predictable until execution. 1In
such cases, a VDA is acquired for the
temporary value.

CONTROLLED VARIABLES

Controlled variables are addressed through
the pseudo-register vector, as described
below under the heading "Pseudo-Register
Vector (PRV)". When no allocations of the
controlled variable have been made, the
PRV offset points to the dummy FCB.
Otherwise, it points to the most recent
allocation of the controlled variable.

Each controlled variable is headed by a
four-word control block that holds the
address of the previous allocation (if
any), the length of the variable
(including the control block), the
pseudo-register vector offset, and the
task invocation count. The format of this
control block is shown in appendix A.

Storage for controlled variables is
allocated in non-LIFO storage. If there
is room in the Isa, it is allocated within
the ISA. Otherwise, a GETMAIN macro
instruction is issued to obtain storage.

Stacking and unstacking of controlled
variables is handled by a resident library
routine, IBEMBPAF. IBMBPAF calls on
IBMBPGR to obtain and release the storage.

BASED VARIABLES

Based variables are addressed by using the
contents of the pointer on which they are
based. The pointer is addressed in the
usual manner, depending on its storage
class.

When a kased variable is allocated, a
call to the storage management module
IBMBPGR is made. IBMBPGR acquires storage
in the non-LIFO dynamic storage area and
returns the address of the storage in
register 1. The address held in register
1 is then placed in the pointer on which
the allocated variakle is based.

When the variable is freed, a further
call to IBMBPGR is made to free the
storage.

Pointers: Pointers and offsets are held
as fullwords. The null pointer value is
X'FF000000°'.

STATIC VARIABLES

Static internal variables are held in the
static internal control section and are
addressed from register 3.

Static external variables are held in
separate control sections and are
addressed from an address constant in the
static internal control section.

ADDRESSING BEYOND THE 4K LIMIT

As described above, variables can, in the
simplest case, be addressed by using an
offset from one of the base registers.
However, as the space required for any
particular type of storage can exceed the
maximum offset allowed in addressing (4096
bytes), it is necessary to have a scheme
to allow addressing of variables beyond
this limit.

The method used is to divide storage
for automatic variables, temporaries, and
static variables into sections of 4096
bytes. The addresses of the second and
subsequent sections are then placed in the
first section. Addressing of an automatic
variable beyond the 4096-byte limit is
typically done by code resembling the
following:

L 6,92(0,13) Place address of 4K
boundary in register 6.

AH 7,96(0,6) Address variable by
using offset from 4K
boundary placed in
register set up in last
instruction.

A similar system is used for addressing
any static variables which are at an
offset greater than 4096 bytes. The

addresses are held in the following areas:

Automatic Immediately following
the housekeeping
information of the DSA.

Static At the head of the
first section of static
storage.

Temporaries At the head of
temporary storage,
following kases of
parameters, register
save area, and
addresses of any outer
DSAs.

Constants and variables are held in
order of size, with the smallest first.

This minimizes the number of items that
overflow the 4K boundary.

THE PSEUDO-REGISTER VECTOR (PRV)

Addressing Controlled Variakles and

In order to address controlled variables
and files, a control block known as the
pseudo-register vector (PRV) is used. This
control block is mapped by the linkage
editor as a dummy section with a fullword
field for each uniquely named controlled
variable or file. During execution, the
addresses of the storage allocated to the
variables or files are placed in the PRV.

The use of the linkage editor is
necessary because controlled variables and
files may be external and, consequently, it
may be necessary to access them in
separately compiled procedures. Other
external items are compiled as CSECTs, but
this is not possible for files or
controlled variables because their
associated storage is not allocated until
execution. Controlled variables have
storage allocated during the execution of
an ALLOCATE statement; files are addressed
from file control blocks (FCBs), which are
created during execution.

References to controlled variables and
files are compiled as Q-type address
constants. During link-editing, the DXD
facility of the linkage editor is used, and
the PRV is set up as an external dummy
section. Each uniquely named file or
controlled variable is allocated an offset
within this dummy section, and the Q-type
address constants are replaced by this
offset.

Chapter 2: Compiler Output 21

. —— ———————— ————————— -~ ——— - -

uring compilation

= o

Each controlled variable or file
reference is compiled as a Q-type
address constant that will be used as
an offset within the PRV.

[\¥]
.

The compiler generates a DXD
instruction for every item requiring
pseudo-register addressing.

uring link-editing

= O

The nunber of unique names requiring
pseudo-register addressing is

calculated and placed in a field that
can be accessed by a CXD instruction.

N
.

Each reference to a name generated as
a (Q-tyre address constant is replaced
by the appropriate offset from the
start of the PRV.

During program initialization
1

. The length required for the PRV is
obtained by use of a CXD instruction.
Storage for the PRV is then oktained
in the program management area. The
address of the PRV is placed in the
TCA.

18]
.

The address of the dummy FCB is
placed in every field of the PRV.

uring execution

When storage is allocated to the FCB
or controlled variable, the address
of the storage is placed in the
associated field in the PRV.
Conparison with the dummy FCB address
can then be made, to determine
whether storage has been allocated
for the item.

—————— " . - v ~ —————————

[e i . e e . e, . o . e . . S S, o — — — ——— ——— — i —— . . S, b . i, . S i, Wt . . s e St . S)
[l)
.

e e e s S — p—— — — ——— —— S— — ——— —— — — — — ————. S———— fO— — — — —— — i — — {———— — — c— — —)

Figure 2.7. Use of the pseudo-register

vector (PRV)

Controlled variables and files are
addressed via the PRV regardless of whether
they are external or internal. The
compiler prefixes internal items with the
name of their procedure so that their names
will be unique. The use of the PRV is
summarized in figure 2.7.

The Location of the PRV

The pseudo-register vector is held in the
program management area, and is addressed

22

from the TCA.

Whenever a new task is attached, the PRV
of the attaching task is copied into the
program management area of the attached
task. This means that, at the point when
the task is attached, ‘the files and
controlled variables addressed from the
subtask will be the same as those in the
parent task. However, because each task
has its own PRV, either task may change the
addresses without affecting the other.

Initialization of the PRV

To simplify implicit opening of a record
I70 file, the PRV is initialized with every
field set to point to a control block known
as the dummy FCB. Use of this control
block as if it were a genuine FCB results
in control being passed to the open
routines: the file is opened, and a real
FCB is created. The address of the real
FCB is then placed in the PRV,

Pseudo-register fields for controlled
variables are also initialized to point to
the dummy FCB, so that the controlled
variable allocation mechanism can determine
whether an allocation has been made by
comparing the PRV value with the address of
the dummy FCB. (The address of the dunmy
FCB is held throughout the program in the
TCA, so that the comparison can be made.)

.Program Control Data

Program control data comprises pointer,
offset, file, area, entry, event, task, and
label data.

Pointer and offset data items are each
held in a fullword. The data item in both
cases consists of an address that is held
right-adjusted in the field, padded on the
left with zeros. For both data types, the
null value is represented by hexadecimal

"*FF000000°.

A file variable is held as a fullword
containing the address of the declare
control block (DCLCB); the DCLCB
corresponds to a file constant.

The formats of area, entry, event, task
and label data are given in Appendix A.

HANDLING DATA AGGREGATES

PL/I data aggregates are structures and
arrays, and include both arrays of
structures and structures of arrays.

Array elements are addressed from the
virtual origin of an array. This is the
point at which the element whose subscripts
are all zeros is held, or would be held if
no such element is included in the array.
Each element can be accessed by using a
multiplier for each dimension. The
multiplier is the distance between elements
in a cross-section of an array. For
example, in an array B(9,9) the multiplierx
for the first dimension is the distance
between elements B(1,1) and B(2,1); the
multiplier for the second dimension is the
distance between elements B(1,1) and
B(1,2).

If the bounds of the array and the
length of the elements of the array are
known during compilation, the values of
multipliers can be calculated and placed as
constants in the static internal control
section. For accessing an element with a
constant subscript, the offset from the
virtual origin can be calculated during
compilation. If the subscript value is a
variable, the multiplier must be picked up
from static storage during execution and
the value calculated.

If the bounds or extents of an array are
not known during compilation, a control
block known as an array descriptor is set
up. This control block is used to hold
necessary information about Lounds,
multipliers, etc. The information is placed
in the array descriptor during execution.
Array descriptors are described in chapter
4.

Structures are treated in a similar
manner. Where all information about a
structure is known, it is mapped during
compilation and offsets to each item from
the start of the structure are known to
compiled code. If a structure cannot be
mapped during compilation, it is mapped
during execution, and the offsets within
the structure are placed in a control block
known as a structure descriptor. To access
an item in the structure, compiled code
finds the offsets and calculates the
address of each element from them.
Structure descriptors and the process of
mapping during execution are described in
chapter 4.

ARRAYS OF STRUCTURES AND STRUCTURES OF
ARRAYS

Arrays of structures and structures of
arrays are held as they are declared.
The array of structures
1s2),
2 B,
2 C;

would be held in the order

B and C are known as interleaved arrays,
because the elements within each array are
not contiguous.

The structure of arrays

1 s,
2 B(2),
2 c(2);

would be held in the order

- ——— o ————— ———————————— - — - ————

r h
| S.B(1) | S.B(2) | S.Cc(1l) | S.C(2) |

Elements are accessed as array elements in
both cases. In the array of structures
shown above, both B and C are treated as
separate arrays with their own virtual
origins and multipliers. The difference
would be in the value of the multipliers.
When possible, the values of multipliers
are calculated during compilation. When
adjustable bounds or extents are involved,
the necessary data for both arrays of
structures and structures of arrays is
placed in a structure descriptor (see
chapter 4).

ARRAY AND STRUCTURE ASSIGNMENTS

Assignments between structures and arrays
of the same format are done by MVC
instructions. Provided an array is noct
interleaved, an assignment will be made to
it as a whole, and the elements will not ke
moved one at a time. Similarly, structures
that are contiguous and have the same
format are moved as a whole.

Chapter 2: Compiler Output 23

- ——— — —— — ———— ———— — — ——— - -

Store registers of calling program.

Branch around constants.

Constant - address of statement number table.
Constant - length required for new DSA.

Constant - address of static internal CSECT filled in
by linkage editor.

Set up R3 as static base.

Set R1 to old NAB (start of new DSA).

Place length required for new DSA in RO.

Add o0ld NAB (in R1) and length required for DSA (in

STM 14,12,12(13)

BC *+16

DC A(STMT NO TABLE)
DC F'272")
DC A(STATIC CSECT)

L 3,16(0,15)
L 1,76(0,13)
L 0,12(€0,15)
ALR 0,1

RO) .
cL 0,12€0,12)
BC 13,48(0,15)

L 15,116(0,12)
TCA.
BALR 14,15
L 15,16 (0,13)
by library call)
0,76(0,1) Store new NAB in new DSA.
ST 13,4(0,1)
MVC 72(4,1),72(13)
LR 13,1
ST 5,88(0,13) Set up static backchain.
MVI 87(13),x'91°
MVI 86 (13),x*91"
MVI 85(13),X'co"
MVI 87(13),X°CoO"*
MVI 0(13),x'80"
MVI 1(13),x'00°"
LA 4,176 (0,13)

T

Other code as required

r
|
|
!
|
!
|
I
|
!
I
|
|
|
|
|
|
|
I
| sT
|
I
|
I
I
|
|
|
|
|
|
|
|
|
I
|
|
L

Figure 2.8. Typical prologue code

Handling Flow of Control

In PL/I, five types of statement can result
in non-consecutive flow of control. These
statements are:

CALL statements

END statements
RETURN statements
Function references
GOTO statements

The first four of these are concerned with
the block structure of the PL/I program and
involve passing control from one block to
another. GOTO statements can result in
branches to code that is either in the
current block, or in any other active
block.

Consecutive flow of control also ceases
when an error or program interrupt occurs.
The methods used to handle error and PL/I
condition situations are described in
chapter 7, "Error Handling."

24

Compare with EOS in TCA.
Branch around library call if new DSA fits segment.
Load address of stack overflow routine (IBMBPGRC) fror

Branch to overflow routine.
Restore R15 to previous value.

Place backchain in new DSA.
Move address of LWS from old DSA to new DSA.
Point register 13 at new DSA.

Set up enable cells - see chapter 7.
Set up housekeeping flags - see appendix A.
Set up base for temporaries.

Other tasks may be carried out at this point.
as, initialization of variables with the initial
attribute, acquiring a VDA for adjustable variatles,
and setting up certain error-handling fields.)

Set R2 as program base.

(May have been changed

(Such

bt s s e e, S S e, d——— — ——— — Sfoit S— — V—— A, E— ————. RV S—— . E———. R — ——— ———— — {— T—

ACTIVATING AND TERMINATING BLOCKS

CALL, END, and RETURN statements, and
function references all result in the
activation or termination of blocks. The
block structure of PL/I, as explained in
chapter 1, is implemented by means of a
hierarchy of DSAs.

Each block (begin block, procedure
block, or on-unit block) executes on its
own program base that is set up at the end
of the prologue code for each block. This
base is marked in the object code listing
with:

* PROCEDURE BASE

In the PL/I optimizing compiler, blocks
are always called by means of a BALR
instruction on registers 14 and 15. Within
the prologue code, the registers are stored
in the DSA of the calling block, and a new
DSA is set up to hold the automatic
variables of the new block plus a certain

Figure 2.9.

R13

Housekeeping information
See appendix A

Items < 9 bytes in length

Held in alignment order:
doubleword
fullword
halfword
byte
bit

Items 9 — 2048 bytes in length

Held in alignment order as above

Items > 2048 bytes

Held in alignment order as above

Parameter storage area
Addresses of any parameters
passed to the associated
procedure are stored here

Register bind storage area

Used by compiled code when
registers must be saved

Local temporary storage

Used for temporaries required
for duration of statement °

Global temporary storage

Used by temporaries required
for duration of block

Contents of typical compiled code DSA

Chapter 2:

Storage for automatic
variables declared in
the block, dynamic
ONCBsetc.

Temporary storage

Compiler Output

25

amount of environmental information such as
the enablement or disablement of certain
conditions.

When a block is terminated, the
registers of the calling block are
restored, and a branch is made on register
14. This immediately returns control to the
instruction after the BALR issued in the
preceding block. The DSA of the called
block is automatically discarded because
all fields in the DSa, including the
pointer to the next available byte of free
storage, were addressed from register 13.
Because register 13 has been altered, the
values that apply to the calling block
automatically become current when the
calling block's registers are restored.

PROLOGUE AND EPILOGUE CODE

Except for certain single statement on-
units, every PL/I begin block or procedure
block has a prologue and an epilogue. The
prologue prepares the environment for the
associated block and acquires storage for
automatic variables, compiler-generated
temporaries, and workspace. The epilogue
frees the storage acquired for the block,
restores the registers of the caller, and
returns control to the caller.

Prologue

The prologue appears on the object-program
listing between REAL ENTRY and PROCEDURE
BASE or BLOCK BASE. Every prologue has to
acquire a dynamic save area (DSA) for the
new block. (The DSA is a register save
area concatenated with housekeeping
information, plus storage for automatic
variables and temporaries.) Other jobs that
may be done in the prologue code are:

e TInitialization of automatic variables
that have the INITIAL attribute.

e Initialization of pointers and locators
that have the INITIAL attribute.

e Movement of parameter addresses passed
to the procedure to the correct
location.

e Acquisition of storage for adjustable
variables.

e TInitialization of certain items for
argument lists.

e Setting-up certain interrupt-handling
information such as ONCBs and enable

26

cells. (See chapter 7.)
An exanmple of prologue code is shown in
figure 2.8.

After saving the registers, the prologue
tests to see if there is enough room for
the DSA in the current segment of storage.
This is done by adding the length of the
new DSA, calculated at compile time, to the
address of the next available byte. If the
result is greater than the end-of-segment
pointer (EOS) placed in the TCA during
initialization, the library overflow
routine (IBMBPGR) is called to try to to
acquire a further segment from the free-
area chain. If space for the DSA is
available, the next-available-byte pointer
(NAB) is updated to point at the first 8-
byte boundary beyond the end of the new
DSA. The remaining instructions set up
housekeeping fields and point registers at
various standard fields, including register
13 to the start of the new DSA, and
register 4 to the start of storage for
temporaries. The final BALR instruction
establishes register 2 as the program base
register.

Two backchains are set up. The dynamic

————as

statically encompassing block. For the
main procedure, the dynamic backchain
points to the dummy DSA, and the static
backchain is set to zero. The address of
the statically encompassing block is passed
in register 5.

Static backchains are used in tracing
the scope of names and the enablement of
PL/I conditions.

For PL/I procedures with COBOL orx
FORTRAN in the OPTIONS option, the prologue
is considerably different. See chapter 13,
"Interlanguage Communication."

The format of the DSA is shown in figure
2.9; full details are shown in appendix A.

Epilogue

Epilogue code consists of the instructions
generated for END or RETURN statements.
These instructions restore the registers to
the values that were held when the current
block was called. The register values are
those stored in the previous DSA. Typical
epilogue code is shown in figure 2.10.

The completion of a main procedure
results in the raising of the FINISH
condition, and this may result in the

execution of an on-unit. Consequently, the
address of the current DSA and the address
of the current statement must be retained
(the DSA is needed to search for the on-
unit; the address of the current statement
is needed if a SNAP trace is requested in
the FINISH on-unit). Epilogue code for a
main procedure therefore takes a different
form to that generated for a subroutine.

LR 0,13 Save current DSA
address
L 13,4(0,13) Chainback

|

|

| L 14,12(0,13) Pick up value of R14
| LM 2,12,28(13) Restore registers 2
| through 12

| BALR 1,14 Branch to

| initialization

| routine retaining

| current address in
| R1

Epilogue code for subroutine or begin
block

Chainback

Restore registers of|
preceding block |
Return |

i

|

=

| L 13,4(0,13)

| IM 14,12,12(13)
|

[
L

Figure 2.10. Epilogue code

CALL Statements

CALL statements are executed by picking up
the address of the block to be called from
static storage. A BALR instruction is then
carried out on registers 14 and 15. If
arguments are being passed to the called
procedure, an argument list is set up in
temporary storage, the first bit of the
last argument is set to 'l', and register 1
is pointed at the argument list.

Typical code would be:

00031A 18 50 LR 5,13
Load static backchain address
00031C 58 FO 3 020 L 15,2...X
Pick up address of procedure X
000320 05 FF BALR 14,15

Branch to procedure

Function References

Function references are compiled in exactly
the same way as CALL statements. If the
function returns a value, an extra field is
placed as the last argument in the list.
The returned value is placed in this field

when the function is completed. Typical

code would be:

O00O1FE 41 90 6 OB4 a 9,B

000202 50 90 3 OBC ST 9,188(0,3)

000206 41 90 6 OBO A 9,A

000202 50 90 3 0CO sT 9,192(0,3)
Set up parameter list

00020E 18 56 LR 5,6
Load static backchain address

000210 41 10 3 OBC A 1,188(0,3)
Point register 1 at parameter
list

000214 58 FO 3 008 L 15,A...DOUBLE
Place address of function
(DOUBLE) in R15

000218 05 EF BALR 14,15

Branch to function

END_Statement

END statements result basically in
restoring the registers of the calling
block and branching to the value held in
register 14 of that block.

Code compiled for an END statement of an
internal block takes the following form:
000402 58 DO D 004 L 13,4¢(0,13)
Pick up DSA backchain

000406 98 EC D 00C LM 14,12,12(13)
Restore registers
00040A 07 FE BR 14

Branch to procedure

For main procedures, certain further
actions have to be taken. Because the end
of a main procedure raises the FINISH
condition, it is necessary to save the
current value of register 13 so that the
error handler may search the DSA chain for
a FINISH on-unit. As it is possible to
request a SNAP trace in a FINISH on-unit,
it is also necessary to save the address of
the END statement. For this reason, the
branch is made with a BALR instruction
rather than a branch instruction as used

Chapter 2: Compiler Output 27

for internal blocks. Typical code would

be:
00188Cc 18 0D LR 0,13
Save current DSA address in RQ
00188E 58 DO D 004 1 13,4(0,13)
Pick up DS2A backchain
001892 58 EO D 00C L 14,12(0,13)
Restore register 14
001896 98 2Cc D 01c LM 2,12,28(13)
Restore registers 2 through 12
001892 05 1E BALR 1,14

Branch to initialization
routine saving kranch address
in register 1

RETURN_Statement

RETURN statements are executed in a similar
way to END statements, but result in the
termination of a procedure rather than a
block. Consequently, before the
restoration of the registers, a chainback
must be made to the correct DSA. A
chainback is made through any begin klocks.
The depth of nesting can be determined
during compilation, so the backchain can be
loaded the required number of times before
the branch is made.

Typical code would be:

Q003F0 58 DO D 004 L 13,4(0,13)
Pick up DSA backchain

0003F4 98 EC D 00C LM 14,12,12(13)
Restore registers

0003F8 07 FE BR 14
Branch to procedure

Note: If the procedure in which the RETURN

statement occurs is a main procedure, the
code will take the form compiled for an END
statement for an external procedure (see
above.)

GOTO STATEMENTS

The implications of a GOTO statement depend
on whether the label branched to is within
the block or external to it. If the label
is outside the block, the branch implies
that one or more blocks must be terminated.
If the label in the GOTO statement is a
label variable, it is not always possikle
to determine during compilation whether the
label will be in the same block as the GOTO

28

statement. Consequently, interpretive code
is used for label variables.

For GOTO statements to a label constant
within the block, the compiler produces a
straightforward branch instruction. For
GOTO statements that may pass control to
another block, compiled code calls the
interpretive code in the TCA.

Interpretive code to handle a GOTO out
of block is held in the TCA. To implerent
a GOTO that will or may transfer control
out of the block, compiled code branches to
code in the TCA. The code in the TCA
checks to see whether it is one of a small
number of special cases, and, if it is,
calls a library routine -- IBMBPGO. 1In
other circumstances, the GOTO code in the
TCA handles the branch and any block
termination involved.

GOTO within a Block

The optimizing compiler produces code that
assumes that the registers retained across
the execution of a labeled statement will
be 2, 3, 12, and 13. These are the program
base, the static base, the temporary base,
the address of the TCA, and the address of
the current DSA. All other register values
may be different when control passes
through the labeled statement on different
occasions.

The enablement of conditions may differ
in the GOTO statement and in the labeled
statement. Within a block, the enablement
status may be varied only for the duration
of a single statement. The GOTO therefore
resets the block enablement status before
the branch is taken. If the labeled
statement has a different enaklement status
from the block, it will-be automatically
reset in the labeled statement.

As explained in chapter 7, "Error and
Condition Handling," the enablement of
conditions is recorded by enable cells.

Two sets are used: the block enable cells
retain the enablement situvation at the
start of the block, which can consequently
be restored at any time; the current enable
cells hold the enablement situation that is
current, which, as explained earlier, may
differ from that at the start of the block.

A GOTO within block normally takes the
form of a simple branch instruction plus
any alteration of the enablement bits that
may be necessary to reset the enablement
situation to that at the start of the
block. Typical code would be:
000F1A

47 FO 2 0Oc8 B INPUT

Branch to correct address in
compiled code (label name is
"INPUT"™)

The optimizing compiler attempts to
retain the same block base for all branches
within a block. However, this is not always
possible and, if the code for the block is
longer than 4096 bytes, it may be necessary
to set up a new base when a GOTO statement
is executed. As all labels are stored with
both their address and their base this
presents no problem. The address of the
label and the value of its base form the
value of the label constant. The value of
the base is placed in register 2, and a
branch is made to the label address.

When a GOTO to a label within the klock
is made, there is no need to reset
registers 3, 4, 12, or 13 as these are not
altered within a block. When
OPTIMIZE(TIME) is specified an attempt is
made to retain register values across
labels.

Labeled statements within a block have
an effect on optimization in that, apart
from the bases and block addresses
mentioned above, values cannot be retained
in registers beyond a labeled statement.

GOTO out of Block

GOTO statements that transfer control from
a block have to overcome the problems
described akove, plus problems of block
termination.

For a GOTO out of block or to a lakel
variable, compiled code makes a call to the
GOTO code in the TCA, which is held at
offset 128 (decimal). The GOTO code
receives, through registers 14 and 15,
either the contents of the label variable
or the equivalent information for a label
constant, namely the address at which the
label constant is held, and the address of
the DsSA of the block in which the label
appears.

The GOTO code restores registers 3 and 4
from the DSA passed to it, loads register 2
from the second word of the label constant,
and loads register 13 from register 15. It
then branches to the appropriate point in
code which is picked up from the address of
the label constant, passed in register 14.

The enablement situation at the start of
the block has to be be restored, and this
is done by setting the current enable cells
in the DSA to the value of the block enable
cells. If the current enable cells
indicate that CHECK is enabled, a search is

made for a qualified CHECK ONCB, so that
the enable cells may be set to the start-
of-block situation in this ONCB.

In a similar manner, it may be necessary
to restore the NAB value to that at the
start of the block. This will be necessary
if the statement that invoked the block
acquired a VDA. The start-of-block NAE
value is retained in the DSA and is known
as the end-of-prologue NAB. If a VDA has
been acquired, the fact is flagged in the
flag byte of the DsSA, and the GOTO places
the end-of-prologue NAB value in the
current NAB field.

such action is never required within a
block, as VDAs are only acquired for the
duration of one statement and are never
used for GOTO statements. Typical code
would be:

GOTO label-constant (out of block)

000226 18 E6 LR 15,6
Place address of DSA in R15

000228 41 E0 3 088 La 14,136(0,3)
Place address of label
constant in R14

00022C 47 FO C 080 B 128(0,12)

Branch to GOTO code in TCA

GOTO label variable statements are treated
in different ways depending on whether
optimization has been specified.

For NOOPTIMIZE, they are all treated as
GOTO out of block; for OPTIMIZE (TIME), a
check is made to determine whether they
could be out-of-block branches. The check
is made by testing a label 1list, which is a
list of the label constants to which the
label variable may be assigned. If the
programmer has supplied a label list, it is
used. Otherwise, a list is generated
containing all the label constants that are
assigned to label variables. If a branch
to any of the labels in the 1list could
result in a GOTO out-of-block, all GOTO
statements referring to the label variable
are treated as GOTO ocut-of-block
situations. Typical code would be:

GOTO label-variable

0000DO 98 EF D 0AS8 LM 14,15,168(13)
Load R14 and R1S5 with lakel
variable

0000DY4 47 FO O 080 B 128¢(0,12)

Branch to GOTO code in TCA

Chapter 2: Compiler Output 29

Exrrors when Using Label Variakbles

Although it is invalid PL/I, it is possible
for a GCTC statement using a label variable
to result ‘in transfer of control to an
inactive block. The optimizing compiler has
no method of checking such errors, whose
consequences are unpredictable. Such errors
can occur because a labkel variable is not
reset when the block containing the lakel
constant to which it refers is terminated.
When an attempt is made to GOTO a label
variable, the address of the DSA is passed
in register 14. The GOTO code assumes this
address to be the address of an active DSA,
and acts accordingly. Three possibilities
arise:

1. The original DSA will not have been
overwritten, and the program will
execute.

2. The original DSA will have been
overwritten with the DSA of another
block. The results are then
unpredictable, as the code branched to
will be accessing an incorrectly
mapped DSA.

3. The original DSA will have been
overwritten with other information.
Again, the results are unpredictaktle,
but may result in an interrupt in the
erxor handler because the backchaining
will not be correctly set up.

It should be noted that, because of the
method used to allocate DSAs, the chances
of one DSA starting at the same address as
a previous DSA are high.

GOTO-only On-Units

As explained in chapter 7, certain on-units
are not executed as separate program
klocks. Instead, the required action is
taken under the control of the error
handler. On-units containing only a GOTO
statement (GOTO-only on-units) are handled
in this way.

The error handler accesses on-units
through control blocks known as ON control
blocks (ONCBs). The ONCB for a GOTO-only
on-unit is specially flagged, and the last
word of the ONCB is initialized to hold an
offset. At this offset in the DSA of the
block containing the on-unit, the address
of the label information is held. For a
label variable, the offset contains the
address of the label variable; for a label
constant, the offset contains the address
of a label temporary that is initialized to
the value of the label constant. The

30

initialization is done during the execution
of the prologue of the block that contains
the on-unit.:

The error handler loads the information
in the label variable or the label
temporary into registeérs 14 and 15, and
calls the GOTO code in the TCA.

Interpretive GOTQO_ routines

If the test in the GOTO code in the TCA
reveals that an abnormal situvation exists,
the interpretive GOTO routine is called.
This routine is a subroutine of the program
initialization routine.

Two aknormal cases can arise:
GOTO out of SORT exit routine

GOTO from an event I/0O on-unit
(certain cases only)

When either of these situations could occur
a flag is set in the TCA. Sort exits are
also flagged in the DSA of the procedure
involved.

The SORT exit DSA requires special
action because the GOTO will involve the
termination of SORT if it transfers control
to another block.

The GOTO during an event I/O on unit can
cause the termination of a number of WAIT
statements. This involves removing
information about these statements from the
various chains that are set up during event
1/0.

These two situations are explained
further under the headings "SORT/MERGE" and
"WAIT" in chapter 11.

If CHECK enablement has to be changed
during an abnormal GOTO, the library
routine IBMBPGO is called by the
interpretive GOTO routine. To handle the
situation. IBMBPGO is described in the
licensed publication 05/360 PL/I Resident

Argument and Parameter Lists

In PL/I usage, a parameter list is a list
of the items a program expects to be
passed; an argument list is a list of the
items that are passed by the calling
routine.

Between PL/I routines, addresses are

always passed rather than the arguments
themselves. For strings, structures,
arrays, and areas, the addresses of
locators are passed rather than the
addresses of the arguments themselves. The
format of locators and the reasons for
their use are given in chapter 4.

| When arguments are passed to routines
|whose entxry points are declared with the
| ASSEMBLER, COBOL, or FORTRAN attributes,
| the address of the data itself must be
|passed. The method used is described in
| chapter 13 "Interlanguage Communication®.

Arguments are passed in an argument list
addressed by register 1. Normally the list
is set up in static storage. The addresses
are loaded into consecutive registers and
placed in the list by an STM instruction.
If the procedure is reentrant or recursive,
the list is moved into the temporary
storage area in the DSA before the call is
made.

The addresses passed in the argument
list are moved into the parameter storage
area, which is held at the head of
temporary storage and is addressed by
register 4. (See figure 2.8.) Parameters
are then accessed by picking up the
addresses from this area.

Dummy arguments, when they are required,
are set up by the calling program.
consequently, the called program can treat
all arguments in the same manner.

LIBRARY CALLS

Library calls are a feature of every object
program. All library calls that appear in
the object-program listing are to modules
in the resident library. Transient library
routines are called by bootstrap routines
which are held in the resident library.

The number of library calls used depends
on the source program and the level of
optimization specified. For OPTIMIZE
(TIME), the minimum number of library calls
will be made. If NOOPTIMIZE is specified,
library calls will be made where this will
speed compilation. The standard default is
NOOPTIMIZE.

Figure 2.11 shows examples of sequences
used for calling library modules. The
majority of library calls can easily be
recognized by the appearance in the listing
of the letters "IBMB" followed by four
letters sprecifying the module name and
entry point. To call a module, its address
is loaded into register 15, and a BALR
instruction is carried out on registers 14

and 15.
——————— hiakabababadndebad itttk bbbt |

Point R1 at argument |
list |
Store address of |
argument in register|
store address of
argument in register
Load intoc argument
list

L 15,A..IBMBSLOA Pick up address of
routine from static
internal control
section and place in

.
|
| LA 1,40(0,4)
|
|
|
|
|
|
|
|
|
|
[
I R15
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|

LA 14,vV0..U(11)

LA 15,DED..VO..
U(11)
STM 14,15,0(1)

BALR 14,15 Branch and link to
: routine

has been link-edited and whose address
is held in the static internal control
section. The arguments passed are -
addressed by register 1.

Load address of
routine held in TCA
Branch and 1link to
routine

L 15,116(0,12)

BALR 14,15

Example 2. Call to library routine

[
|
|
[
|
[
|
[
|
|
Example 1. Call to library routine that|
|
|
{
|
|
|
|
[
|
:
whose address is held in the TCA |

Figure 2.11. Examples of library
calling sequences

The fifth letter of the entry point name
is mnemonic, indicating the type of module
that is being called. Figure 2.12 gives
the meaning of the mnemonics. Full details
of the library modules are given in the
Transient Library:_ _Program Logic and 0OS
PL/I_Resident Library: _Program_Logic.

A further discussion of library module
naming conventions is given chapter 3.

Setting-Up Argument Lists

Before a call is made to a library module,
an argument list must normally be set ug.
This is done in one of several ways,
depending on the library module. The
majority of library calls require the
method shown in figure 2.11, example 1.
This consists of loading the list into
sequential registers starting at register
14, and then using a store-multiple
instruction to place the arguments into an
area of static storage, whose address is
then loaded into register 1. Argument

Chapter 2: Compiler Output 31

lists are set up as far as possible during

IBMBA--~ Array handling

| | [
| IBMBB-~-- | String handling |
| IBMBC--- | Conversion]
IBMBE---	Error handling
IBMBI---	Interlanguage communication
IBMBJ---	Dates/times/delay/wait
IBMBK---	Dump/sort/checkpoint/restart
IBMBM---	Mathematical
IBMBO---	Open/close
IBMBR---	Record 1/0
IBMBS---	Stream I/0
IBMBT---	Completion pseudovariable
[| routine |
e c e ——————————— —-———1

Figure 2.12. Mnemonic letters in
library module entry-point

- - - - - ——————— — — - - -

names
T T T T e e e s s s e 1
offset from	Name of	Use
start of TCA	module	
(Register 12)	entry	
== point		
I		

|

IBMBPGRD |Stack overflow
| routine to
|get vDA

54 | FLOW module

6C

|

|

|
IBMBEFL I
IBMBPGRA |Get non-LIFO |
|dynamic |

|storage |

IBMBPGRB |Free non-LIFO |
|dynamic |

| storage |
|

|

|

|

|

|

|

[

[

|

|

|

|

108 |
{
|
|
|

74 | IBMBPGRC |Stack overflow

|
{
|
|
|
|
|
[
[
|
|
|

112 70

116
|routine for
|prologue

IBMBERRB |Exrror handler
|software
|interrupt

IBMBJWTA |WAIT module

IBMBTOCA |Completion
| pseudovariable|
| routine |

IBMBTOCB |Event variable|
| assignment |
| routine |

120 78

264
268

108
ioc

272 110

Figure 2.13., Offsets where addresses of
library modules are held
in the TCA

compilation and, where necessary, completed
during execution.

32

Addressing_the Subroutine

As can be seen in example 1 of figure 2.11,
library addresses are generally held in
static storage and addressed as an offset
from register 3. However, the addresses cf
certain library routines are held in the
TCA or the TCA appendage and addressed from
register 12. They are addressed either
directly or indirectly as shown in example
2 of fiqure 2.11. The names of these
routines do not appear on the listing;
however, they can be identified by their
offset from the start of the TCA (see
figure 2.13).

DO-LOOPS

Where possible, do-loops are carried out by
means of a BXLE instruction, because this
is more efficient than using a simple BCT
instruction. BXLE do-loops can be used
where the control variable cannot be
altered except at the head of the loog, and
where it is not subsequently accessed after
the completion of the loop. BXLE do-loops
cannot be used for the outer of a number of
nested do-loops. For outer loops, other
branch instructions are used. Code for a
number of typical do-~lcops is shown below.
Note that the code will differ according to
the content of the loop.

source_ program

DO I =1 to 10;

DO J 1 to 10;

END;

Object program

1. code for outer do-loop

LH 5,596(0,3) Pick up 1 from
constants pool
STH 5,1 Place 1 in I
CL.1 EQU *

LH 5,1

AH 5,596(0,3) Increment and

STH 5,1 store in I

c 5,598(0,3) Compare I and
constant 10 in
static storage

BNH CL.1

2. Code for inner do-loop

LH 5,596(0,3) Place 1 in
first operand

LH 10,596(0,3) Place 1 in
second operand

LH 11,598(0,3) Place 10 in
comparand

CL.2 EQU *

BXLE 5,10,CL.2 Increment,
test, and
branch if
necessary.

Compiler-Generated Subroutines.

The compiler uses internal subroutines to
carry out certain functions. These have
the advantage over library modules, because
they can be tailored for the most common
case. When special cases arise, the
library routines are called. Compiler-
generated subroutines have the further
advantage that they are internal to
compiled code and consequently need not
follow the standard operating system
calling sequence.

compiler-generated subroutines are used
for the following purposes.

IELCGIA Stream I/0 input - provides
address of source of next
edit-directed data or format
item
Stream I/0 input -
housekeeping after
transmission of data item
Stream I/0 output - provides
address of target of next
edit-directed data or format
item
Stream I/O output - updates
FCB, counts data item, and
frees vDA if one was used
Stream I/0 - processes X
format items
Move long (registers 6,7,8,9)
Compare long (registers
1,6,7,8,9)

IELCGIB

IELCGOA

IELCGOB

IELCGOC

IELCGMV
IELCGCL

IELCGCR Compare long bits
IELCGON Dynamic ONCB chaining
IELCGRV Revert VDA chaining
IELCGBB Test for '1' bits
IELCGBO Test for '0' bits

Compiler-generated subroutines are held in
separate control sections and are printed

at the head of the object-program listing

when they are used in a program.

Optimization and its Effects

Optimization is the attempt to produce the
most efficient possible object program.
The 0S PL/I Optimizing Compiler adopts a
threefold approach:

1. It attempts to compile each statement
in the most efficient manner.

2. It modifies the resulting code for
each block, in an attempt to make it
more efficient (for example, by
maintaining values in registers and by
using common control blocks for
similar items).

3. It examines the source program to
discover whether statement flow can be
reorganized to produce a more
efficient program (for example, by
moving code out of loops).

The effect of specifying the compiler
option OPTIMIZE (TIME) is that the compiler
loads and calls the optimization ghases,
and executes optimization code in other
phases. The optimization phases are
described in the publication 0S_PL/I
Optimizing Compiler: Program_Logic.

When NOOPTIMIZE is specified, the
optimization phases are not called; no
attempt is made to study the flow of the
program, and the examination of compiled
code for rossible improvements is not
undertaken on a global basis. More library
calls will generally be made if NOOPTIMIZE
is specified.

EXAMPLES OF OPTIMIZED CODE

A number of the more noticeable effects of
optimization are shown below. These show
code sequences which may prove difficult to
understand without knowledge of the
objectives of optimization. Where possikle,
the examples of code given are expansions
of the examples shown in the language
reference manual for this compiler. The
examples do nct cover all optimization

Chapter 2: Compiler Output 33

carried out by the compiler.

Elimination of common expressions is
handled by avoiding multiple calculations
of the same expression, the value being
retained either in temporary storage or in
a register. In the examples shown below,
the common expression is "B+C". 1In the
first example, the value is held in a
register. In the second, it is held in
temporary storage, because the value to
which it is first assigned is altered. 1In
certain circumstances, the code could be
compiled to move the value from the
variable to which it was originally
assigned to the second variable.

Example_l: Value held_in_register

Source program

2 A=B+C;
3 IF X<Y THEN X=Y;
4 D=B+C;

Object program

* STATEMENT NUMBER 2

000062 78 00 D OA4 LE 0,B
000066 7A 00 D 0OAS8 AE o,C
00006Aa 70 00 D 0AO STE 0,A
* STATEMENT NUMBER 3

00006E 78 60 D OAC LE 6,X
000072 79 60 D OBO CE 6,Y
000076 47 BO 2 020 BNL CL.2
000072 78 60 D 0BO LE 6,Y
00007E 70 60 D OAC STE 6,X
000082 CL.2 EQU *

* STATEMENT NUMBER 4

* CALCULATION OF COMMONED EXPRESSION
FOLLOWS

000082 70 00 D OBY4 STE 0,D

Example 2: Value held in_temporary_ storage

Source program

2 A=B+C;
3 IF X<Y THEN A=6;
4 D=B+C;
Note: A may be altered before subsequent

use of expression.

34

Object program

* STATEMENT NUMBER 2

000062 78 00 D 0AH4 LE 0,B
000066 7A 00 D 0OA8 AE 0,cC
00006A 70 00 4 028 STE 0,40(0,4%)
00006E 70 00 D 0AO STE 0,A

* STATEMENT NUMBER 3

000072 78 60 D OAC LE 6,X
000076 79 60 D 0BO CE 6,Y
00007A 47 BO 2 024 BNL CL.2
00007E 178 00 3 010 LE 7,16€0,3)
000082 70 00 D 0AO STE 7,A
000086 CL.2 EQU =*

* STATEMENT NUMBER U4

* CALCULATION OF COMMONED EXPRESSION
FOLLOWS

000086 78 20 4 028 LE 2,40(0,%)
00008A 70 20 D OBUY STE 2,D

Movement of Expressions out of Loops

When expressions cannot be altered inside a
section of code that may be executed a
number of times, the expression is moved
out of the loop to a position where it will
be executed only once, regardless of the
number of times that the loop is executed.
The process is known as movement of
invariant expressions. The most obvious
example is in do-loops. However, the
compiler analyzes the source program for
other types of loop and also moves code
from these.

Example 1 shows code moved from a do-
loop. Example 2 shows code moved from a
loop that has been detected by the
compiler. It should be noted that code
moved out of loops frequently involves .
conversion and is not obvious in the source
program.

Example 1l: _Do-loop

Source program

2 DO I=1 TO N;
3 J=3;
4 END;

Object program

* STATEMENT NUMBER 2

000066 48 EO D 0A2 LH 14,N
00006A 18 BE LR 11,14
00006C 48 A0 3 014 LH 10,20(0,3)
000070 48 50 3 014 LH 5,20(0,3)
000074 19 5B CR 5,11
000076 47 20 2 024 BH CL.3

Source program

2 DCL C(10) FLOAT DECIMAL (6);
3 DCL B(10) FLOAT DECIMAL (6);
4 DO I=1 TO 10
5 C(I)=B(I);
6 END;
Object program

* STATEMENT NUMBER 4

000066 48 60 3 010 LH 6,16(0,3)

00006A 40 60 0 0AO STH 6,1

¥ INITIALIZATION CODE FOR OPTIMIZED LOOP

* CODE MOVED FROM STATEMENT NUMBER 5

00006E 48 EO 3 012 LH 14,18(0,3)
000072 48 90 3 014 LH 9,20(0,3)
000076 18 B9 LR 11,9
000078 48 A0 3 012 LH 10,18(0,3)
00007C 18 5E LR 5,14

* CONTINUATION OF STATEMENT NUMBER &4

00007E CL.2 EQU =

* STATEMENT NUMBER 5

00007E 78 45 D 0A4 LE 4,v0.,B(5)
000082 70 45 D oOcCC STE 4,V0..C(5)
* STATEMENT NUMBER 6

000086 87 5a 2 018 BXLE 5,10,CL.2

Figure 2.14.

* INITIALIZATION CODE FOR OPTIMIZED LOOP
FOLLOWS

* CODE MOVED FROM STATEMENT NUMBER 3
00007A 48 70 3 016 LH 7,22(0,3)
00007E 40 70 D OAL STH 7,3

* CONTINUATION OF STATEMENT NUMBER 2

000082 CL.2 EQU =

* STATEMENT NUMBER U

000082 87 5A 2 01C BXLE 5,10,CL.2
000086 40 50 D OAO STH 5,I
00008A CL.3 EQU #*

Example 2: Compiler-detected loop

Source program

L: IF X>Y THEN GOTO BED;

2
/*LOOP BEGINS*/
3 J=I-N;
4 X=X#J;
5 GO TO Li /*LOOP ENDS*/
6 BED: A=X;

- - - - ——— - —— - — ——— T~ T ——— " > . o o €

Pick up 1 from static
Place in I

FOLLOWS

"4" jinto R14 from static
"40" into R9 from static
"40" into R11 for BXLE
"4" into R10

"4" into R5

Load
Load
Load
Load
Load

Pick up VO..B+R5
Place in VC..C+R5

Increment R5 by 4, test for end of
loop, and branch or continue

Modification of do-loop control variable

Object program

* INITIALIZATION CODE
FOLLOWS
* CODE MOVED FROM STATEMENT NUMBER 3

FOR OPTIMZZED LCOP

000066 48 EO D OAE IH 14,1
00006A 4B EO D 0BO SH 14,N
00006E 50 EO 4 028 ST 14,40(0,4)
* STATEMENT NUMBER 2

* STATEMENT LABEL L

000072 78 00 D OAO LE 0,X
000076 79 00 D OAL CE 0,Y
00007A 47 20 2 042 BH BED

* STATEMENT NUMBER 3

* CALCULATION OF COMMONED EXPRESSION

FOLLOWS

00007E 58 60 4 028 L 6,40(0,1)
000082 40 60 D OAC STH 6,3

* STATEMENT NUMBER 4

*+ END OF COMMON CODE

000086 50 60 4 030 ST 6,48(0,4)
00008A 48 60 3 020 LH 6,32(0,3)

Chapter 2: Compiler Output 35

[utuhetnheiiatete bttt bttt ettt mEITETsEEm 1
| Source_program |
| I
| 2 IF (A=D)|(C=D) THEN |
| X=Y+7; |
|object program |
| |
| * STATEMENT NUMBER 2 |
| 000062 78 00 D 0AO LE 0,2 Pick up A |
| 000066 79 00 D OAH4 CE 0,D Compare A and D |
| 000062 47 80 2 018 BE CL.3 Branch if equal |
| 00006E 78 40 D 0AS8 LE 4,c Pick up C |
| 000072 79 40 D OA4 CE 4,D Compare C and D |
| 000076 47 70 2 024 BNE CL.2 Branch if not equal |
| 00007A CL.3 EQU * |
| 000072 78 60 D OBO LE 6,Y |
| 00007E 7A 60 D OB4 AE 6,2 X=Y+2Z |
| 000082 70 60 D 0AC STE 6,X |
| 000086 CL.2 EQU = i
L e et e e e e e e e e o e e o e 3

Figure 2.15. Branching around redundant expressions

- - — T~ ———— - ——— T —— " - —— " - G — > " . W - " -

r 1
|Source _program |
| I
| 2 X=123; /*COMMONED ITEM*/ |
| 3 Y=123%Z;]
| 4 V=V*%123; |
| 5 A=123; /*COMMONED ITEM*/ |
|Object_program |
| |
| * STATEMENT NUMBER 2 |
| 000066 78 00 3 020 LE 0,32(0,3) /*COMMONED ITEM*/ |
| 000062 70 00 D OAO STE 0,X |
| |
| * STATEMENT NUMBER 3 |
| 00006E 78 20 D 0A8 LE 2,2 |
| 000072 6C 20 3 018 MD 2,24(0,3) |
| 000072 70 20 D OA4 STE 2,Y¥Y |
| |
| * STATEMENT NUMBER U |
| 00007E 41 10 D OAC LA 1,V |
| 000082 41 50 3 024 LA 5,36(0,3) |
| 000086 41 60 D OAC LA 6,V |
| 00008a 58 FO 3 00C L 15,A..IBMBMXSA |
| 00008E 05 EF BALR 14,15 |
| |
| * STATEMENT NUMBER 5 |
| 0000BE& 78 20 3 020 LE 2,32(0,3) |
| 0000BC 70 20 D OBO STE 2,A /*COMMONED ITEM*/ |
leme e e ——— e et e e e o e o o e o e o e o e o e 1
Figure 2.16. Use of common constants

00008E 40 60 4 030 STH 6,u48(0,4) * STATEMENT LABEL BED

000092 97 80 4 032 X1 50(4),X'80" 0000a8 70 00 D OAS8 STE O0,A

000096 78 60 4 030 LE 6,48(0,4)

00009A 7B 60 3 020 SE 6,32(0,3)

00009E 3A 60 AER 6,0

000020 70 60 D 0RO STE 6,X Elimination of Unreachable_ Statements

* STATEMENT NUMBER 5

0000A4 47 FO 2 00C B L If the source program contains statements

that can never be executed because they are
* STATEMENT NUMBER 6 unconditionally branched around, these

36

statements will be ignored by the compiler.

In the example below, the statements
between 5 and 8 can never be reached. .
Consequently, no code is compiled for these
statements, and a compiler diagnostic
message is issued to indicate that this is
the case,

Example

Source program
5 GOTO LABEL;
6 IF A<B THEN
IF B<KC THEN
IF A<X THEN

B=B*C;
7 ELSE C=B*C;
8 LABEL: X=X+1;
Object program
* STATEMENT NUMBER 5
00008Aa: 47 FO 2 028 B LABEL
* STATEMENT NUMBER 8
* STATEMENT LABEL LABEL
00008E 78 60 D OAC LE 6,X
000092 7a 60 3 018 AE 6,24
0,3)
000096 70 60 D OAC STE 6,X

Compiler message reads:

"6,6,6,7 STATEMENT MAY NEVER BE
EXECUTED. STATEMENTS IGNORED."

Simplification of Expressions

Certain expressions are simplified for
speedier; execution. For example,
multiplication is simplified to addition,
as in the following example.

Example: Multiplication_into_addition

Source_statement

2 X=3%B

Object program
* STATEMENT NUMBER 2

000065E 78 20 D OAC LE 2,B
000062 3Aa 22 AER 2,2
000064 7A 20 D OAC AE 2,B
000068 70 20 D OAS8 STE 2,X

Modification of DO-loop _cControl

N#hen the do-loop control variable is used
for accessing array elements, it is
frequently modified to simplify addressing
of the array elements.

I1f, as in the example in figure 2.14,

_ the elements of the array are four bytes

long, it simplifies addressing to increment
the loop control variable by 4 rather than
by 1. When this is done, the increment
becomes the distance between the start of
successive array elements. Provided that
the original value of the loop control
variable is the same as that of the first
bound of the array, the loop control
variable in turn becomes the offset of the
element from the virtual origin of the
array.

If the loop control variable is altered,
this means that the increment and final
value must also be altered. Thus the loop
in the example instead of being incremented
from 1 to 10 by 1, is incremented from U4 to
40 by 4. Note that the value of the loop
control variable is set at the start of the
loop but is not incremented. If the value
of the loop variable is required after the
loop has been executed, this type of
optimization cannot take place.

In the example, the control variable is
held in register 5 using a BXLE
instruction. The array elements are
addressed by using register 5 as the offset
from the virtual origins of arrays C and B.
As register 5 starts the loop with the
value of 4 and is incremented by 4 for each
iteration of the loop, this gives the
correct address. Both arrays begin 4 bytes
from their virtual origins, and each array
element is 4 bytes long.

Branching around_Redundant Expressions

If a series of tests are to be made and
action taken if any of the tests proves
positive, the compiler takes the regquisite
action as soon as the first positive test
is found.

In the example in figure 2.15, a test is
first made to see if A=D. If so, the value
of Y+Z is assigned to X without a further
test being made to see if C=D. Note that
the last test is for inequality, so that if
the variables are egual, control will
continue with the code that assigns the
value to X.

Chapter 2: Compiler Output 37

— e e e e L e o o s e e e e e

When the length of a program is greater
than #4096 bytes and, consequently, it
cannot be addressed from one base register,
an attempt is made to update the base at
the most efficient point, so that there
will be as few changes of program base as
possible during execution. The aim is to
avoid any program branches which move from
the scope of one base register to the scope
of another.

The program base register is register 2,
and this is updated when necessary. As
register 2 is required for in-line record
I/0 and TRT instructions, the program base
is saved and restored after such use.

Use_of common_Constants_and _control
Blocks

constants and control information used more

38

than once are generated only once in static
storage. Thus for the statements X=768,
Y=768, the constant value 768 will be
picked up from the same address in both
cases. Similarly, compiler-generated
control information, such as DEDs and
descriptors (see chapter 4), are generated
only once if a number of variables require
identical control information.

The process of avoiding duplication is
known as commoning. It should be noted
that constants may not be commoned if they
are not used in the same way. In the
example in figure 2.16, constant '123' is
stored in a different form for assignment,
multiplication, and exponentiation.

CONTROL NAME

EXAMPLES
IBMTPIR
IBMBEOC
IBMBJWT
Identify module as part of a B=Base Module Mnemonic of module’s
PL/I library T=Multitasking Module function
LINK-EDIT NAME IBMBPIR
IBMBEOC
IBMBJWT
IBMBxyz
ENTRY POINT NAMES
Resident library modules Transient library modules
Link-edit name followed by Control name followed by IBMBPIRA
A, B, C, etc. A, B, C, etc. IBMBREFA
Conversion modules sometimes have only two mnemonic letters to identify the function: IBMBCH
and use two mnemonic letters to identify entry points: IBMBCHXD

Figure 3.1. Library module naming conventions

4o

This chapter explains the use of libraries
by the 0s PL/I Optimizing Compiler. The
topics covered are: when and why library
routines are called, why there is both a
transient library and a resident library,
naming conventions, and two implementation
topics that cover all library modules: the
use of library workspace and the use of
weak external references. Also covered are
the multitasking and shared libraries.

The O0S PL/I Optimizing Compiler is
designed to be used in conjunction with the
OS PL/I.Resident Library and the 0S PL/I
Transient Library. These libraries consist
of sets of standard subroutines that are
used for the majority of interfaces with
the system and for those jobs that can be
most efficiently done by the use of
interpretive subroutines. The main areas
where library modules are used are:
input/output, error handling, storage
management, conversions, mathematical
functions, and various string- and array-
handling operations.

Use 0f library routines simplifies
compilation by enabling the compiler to set
up an argument list and generate a call to
a subroutine, rather than compile the
complete code. However, library
subroutines are less efficient than
compiled code, since they must be
generalized routines, whereas compiled code
can be specially tailored to the particular
program: being executed. Furthermore, a
library call involves the overhead of
saving and restoring registers, and may
require! the setting-up of various
additional control blocks to describe the
data (s?e chapter 4). For these reasons,
programs that are optimized for time use as
few library calls as possible.

The majority of interfaces between
compiled code and the operating system are
implemented via - library routines. This is
done mainly for reasons of implementation
convenience, as such interfaces are in this
way localized and minimized.

Resident and Transient Libraries

The 0S8 PL/I subroutine library is divided
into two separate program products: the 0S
PL/I Resident Library (Program Number 5734-
LM4) and the 0S PL/I Transient Library
(Program Number 5734-LM5). Resident
library modules are link-edited with the

Chapter 3: The PL/I Libraries

executable program phase. Transient
library modules are loaded into dynamic
storage when they are required; when they
are no longer needed, the storage is freed
and may be overwritten. Resident library
routines have the advantage of speed;
transient library routines have the
advantage of saving space. By using both
types of library, it is possible to produce
more efficient programs.

Routines in the transient library are:
input/output transmitters, open and close
modules, error message modules, the storage
management routines and PLIDUMP routines.
All other library routines are held in the
resident library, including a number of
bootstrap routines that load and call
transient routines.

The 0S PL/I libraries reside on three
direct-access data sets. The resident
library is on SYS1.PLIBASE and
SYS1.PLITASK. The transient library
resides on SYS1.LINKLIB.

The internal logic of individual library
modules is described in the publications 0S8
PL/I Resident Library: Program Logic and
0S PL/I Transient Library: Program Logic.
However, in such cases as 1/70, error
handling, and conversion, where compiled
code and a hierarchy of library modules are
used in implementing certain features of
PL/I, the overall logic is described in
this publication. similarly, an overall
explanation of storage management and
interlanguage communication is given in
this publication.

Naming Conventions

Most PL/I library modules have names of
seven letters, the first three letters
being IBM. This identifies the module as
belonging to one of the PL/I libraries.
The remaining letters indicate which
particular library the module was written
for, and the use of the module.

Each resident library module has two
names, the control name (which uniquely
identifies the module) and the link-edit
name (which appears in the linkage editor
map and the object-program listing). The
majority of the modules in the 0S resident
library have:a control name with the fourth
letter B, for example IBMBOCL. This module
has a link-edit name of IBMBOCLA. Some

Chapter 3: The PL/I Libraries 41

modules, however, have a fourth letter T in
are used only in a multitasking
environment. The link-edit names of these
modules nevertheless have a fourth letter
B. An example of this is the multitasking
priority-alteration routine IBMTTPRA. The
link-edit name for this module is IBMBTPRA.
(see figure 3.1.)

The result of this arrangement is that a
number of library modules can share the
same link-edit name. Consequently, the
compiler can generate the same code
regardless of whether the program is going
to operate in a multitasking or non-
multitasking environment.

Entry point names are given additional
letters alphabetically. The primary entry
point (of resident library modules) is
normally the link-edit name. Other entry
points are named "B", "C", etc. For
example, the primary entry point of the
module with control name IBMBOCL is
IBMBOCLA and the secondary entry point is
IBMBOCLB.

The naming convention for conversion
modules is slightly different. Arithmetic
conversion modules have entry points
indicated by a two-letter mnemonic code.

The Multitasking Library

The resident library is held on two data
sets: SYS1.PLIBASE and SYS1.PLITASK.
SYS1.PLIBASE holds all modules that are
needed to execute non-multitasking
programs. SYS1.PLITASK holds the
multitasking versions of all modules that
differ for multitasking and non-
multitasking environments.

As explained above, both multitasking
and non-multitasking modules have the same
link~-edit names for their entry points.
Multitasking modules have a fourth letter
T; non-multitasking modules have a fourth
letter B, in their control names.

The use of the same link-edit name
permits the compiler to generate the same
code for library calls, regardless of
whether the program is multitasking or non-
multitasking. For multitasking programs,
the data set SYS1.PLITASK must precede

42

SYS1.PLIBASE in input to the linkage
editor. In this way, the multitasking
modules will be link-edited and the program
will run in a multitasking environment.
Further details of this arrangement are
given in chapter 14.

Library Workspace

DSAs (dynamic storage areas) for certain
library routines are not acquired in the
same way as they are for source program
subroutines. Instead of the storage being
acquired from the LIFO stack, space is
allocated, in the program management area,
for two pre-formatted DSAs. These DSAs are
known as levels of library workspace.

Their format can be seen in figure 3.2.
Library workspace (LWS), provides a fast
method for library routines to obtain DSAs.
All the library routines have to do is to
address the DSA and set the chainback
field. There is no need to test to see if
there is enough space for the DSA, as the
space is already allocated. The NAB pointer
does not have to be reset, because the next
available byte is not changed.

The PL/I libraries have been designed so
that no more than two library modules
require library workspace at any one time.
This does not mean, however that no more
than two library modules are ever active at
any one time. Where more than two modules
can be active, one or more of the modules
will use a DSA in the LIFO stack. For
conversion, a slightly different
arrangement is used, whereby a DSA is
acquired by the first module in the series
and used by subsequent modules. This
arrangement is described in chapter 10.

FORMAT OF LIBRARY WORKSPACE

Library workspace is designed so that
either level can be treated by the
housekeeping routines in the same way as a
DSA. chainback fields to the calling
block's save areas are held in the head of
library workspace and, where more than one
level of library workspace is used, a
chainback field is set up to the previous
level. Figure 3.2 illustrates the method
of chaining employed.

Flags Offset to ONCA

Chain back field (to last DSA)

Standard save area

1st level

Address of next library workspace

Current NAB

Workspace for library modules

Flags Offset to ONCA

Chain back field

Standard save area

| 2nd level
Address of this level of LWS
(used only when addressing the ONCA)

Current NAB

Workspace for library modules

Current ONCA

Figure 3.2. Library workspace

Chapter 3: The PL/I Libraries 43

ALLOCATION OF LIBRARY WORKSPACE

Library workspace is originally allocated
within the program management area by the
initialization routine IBMBPII. However,
whenever an interrupt occurs and an on-unit
is to be entered, a further two levels are
allocated. This allows library modules to
be called within an on-unit, without
overwriting library workspace which may
have been in use at the time of interrupt.
Library workspace is acquired by a
subroutine of IBMBPIR that is addressed
from the TCA.

Attached to each allocation of library
workspace, including the initial allocation
in the program management area, is an ON
communications area (ONCA). This is a
control block used in error handling to
hold condition built-in function values.
ONCAs are described fully in chapter 7.

Library Modules and Weak External
References

Because of the modular structure of the
library, a group of modules is frequently
used to carry out some particular task.
Cconversions, for example, are normally done
by using a series of modules, and so are
many of the mathematical built-in
functions. For this reason, many library
modules contain a number of external
references to modules which may not be
needed in a particular program. An example
of this is shown in figure 3.3. To prevent
unnecessary modules being link-edited,
"weak external references" (WXTRNs) are
used. WXTRNs are a special type of
external reference designed to cater for
this situation.

Those entry points that are called only
optionally are coded as WXTRNs. This
prevents the linkage editor from loading
these modules unless a separate external
reference is made to them by the compiler.
Thus the executable program phase does not
contain modules that it never uses.

Figure 3.3 shows part of a hierarchy of
modules with alternative paths through
them. wWhen such a hierarchy exists, the
actual path to be taken through the modules
will be known to the compiler, and external
references will be made to all the required
modules whose names are coded as WXTRNs.
The effect of this is that the linkage
editor loads only the required modules.

4u

The Shared Library

allows an installation to load PL/I
resident library modules into the link-
pack-area (LPA) so that they are available
to all PL/I programs. This reduces space
overheads.

The modules to be included in the shared
library can be chosen by the installation.
They must include the initialization
routine, the error handling routine, the
open file routine, and all modules
addressed from the TCA that are not
identical for multitasking and non-
multitasking programs. Further details are
given in the publication 0S PL/I Optimizing
Compiler: System Information.

The routines in the shared library are
held in two of three link-pack-area
modules: IBMBPSM, and either IBMBPSL or
its multitasking equivalent IBMTPSL. Each
of the link-pack modules contains a number
of library routines, and is headed by an
addressing control block known as a
transfer vector. IBMBPSM contains those
modules in the shared library that are
common to both multitasking and non-
multitasking PL/I environments. IBMBPSL
contains the non-multitasking versions of
those modules that are not identical in
multitasking and non-multitasking PL/I
environments. This module has a
multitasking counterpart, IBMTPSL, which
holds the multitasking versions of such
modules.

T'wo further modules are also involved in
handling the shared library. These are the
shared library addressing modules IBMBPSR
and its multitasking counterpart IBMTPSR (R
stands for region). One or other of these
modules is link-edited with compiled code
and held in the program region: IBMBPSR
for non-multitasking programs, or IBMTPSR
for multitasking programs. IBMBPSR and its
multitasking counterpart hold dummy entry
points which duplicate the names of all
entry points of modules within the shared
library. References to such entry points
in compiled code are resolved to the dummy
entry points in IBMBPSR or IBMTPSR.

The situation during execution is as
shown in figure 3.4. 1In the link-pack-area
are two link-pack modules: IBMBPSM and
IBMBPSL (or its multitasking counterpart);
these contain all the routines in the
shared library. In the program region is
the shared library addressing module
IBMBPSR (or its multitasking counterpart).
All references by compiled code to entry
points in the shared library have been
resolved by the linkage editor to IBMBPSR
(or IBMTPSR).

IBMBCCS

/——————- Special string conversion e —
module. Contains WXTRNs for:

IBMBCCAA, IBMBCACA, etc.

IBMBSF1

F-format input
conversion director. —<
Contains WXTRNs for:

IBMBCCSA, IBMBCTHD,
etc.

IBMBCTH

1 E- or F-format-to-arithmetic — — — —

conversion module. Contains
WXTRNs for:
IBMBCEZX, IBMBCHZD, etc.

Figure 3.3. Example of use of WXTRNs

Chapter 3: The PL/I Libraries 45

PROGRAM REGION

Compiled code TCA

‘V(IBMBCCAA)} > A(IBMBPSM)

LINK PACK AREA

IBMBPSM

|—— - e e e o — o -

Dummy
IBMBCCAA

Pick up address of
IBMBPSM from TCA.

Pick up address at

A(IBMBCCAA)

IBMBCCAA

offset and branch.

Figure 3.4,

46

The shared library during execution

The compiled code address
constant for IBMBCCAA is
resolved to the dummy
IBMBCCAA in the module
IBMBPSR. This dummy
module picks up the address
of IBMBPSM from the TCA,
adds a known offset, and
picks up the address held

at this offset. This is the
address of IBMBCCAA in
the shared library link pack
area. :

Program region Link pack area (shared library)
IBMBPSR and IBMTPSR IBMBPSL, IBMBPSM & IBMTPSM

VCONs and WXTRNSs for all
modules that may be called
from shared library but are
not included in it.

VCONs for all modules held
in the shared library.

Transfer
vectors Dummy entry points for all
Dummy entry points for all modules that may be called from
modules in the shared library, the shared library but are held in
followed by addressing code the program region. These entry
that passes control to the real points are followed by addressing
modules. code that passes control to the
real modules.
Individual modules in the
shared library.
Library 2 | TTTTTTTTTTTTTTTTTTT
routines

Figure 3.5. The format of shared library modules

Chapter 3: The PL/I Libraries 47

Communication between Program Region
and Link-Pack-Area

Communication between the link-pack-area
and the program region is handled by the
transfer vectors that are held at the head
of each module. Communication is necessary
in both directions. The compiled program
will need to call library subroutines that
are held within the link-pack modules in
the link-pack-area. Similarly, certain of
the modules in the link-pack-area may need
to call modules that are not included in
the shared library.

The link-pack-area modules IBMBPSL and
IBMBPSM, are headed by transfer vectors,
which are followed by the individual
library modules in the shared library. The
individual modules and the transfer vector
are link-edited to form one module when the
shared library is created. The program
region module IBMBPSR consists only of a
transfer wector. (The format of the shared
library modules is shown in figure 3.5.)
buring program initialization, the
addresses of the three modules being used
(and consequently the address of the
transfer vector) are placed in the TCA.

The transfer vectors contain three types of
data:

1. Dummy entry points for all modules
that are not held in that area (i.e.,
the program region transfer vector
contains dummies for all entry points
that are held in the shared library;
the link-pack transfer vector contains
entry points for all modules that
could be called from the shared
library but are not included in it).

2. cCode, following the dummy entry
points, that passes control from the
dummy entry point in one area to the
real entry point in another area. The
code takes the form:

L 15, offset(12)
L 15, xxx(15)
BR 15
where "offset" is the offset to the
address of the transfer vector in the
TCA, and "xxx" is the offset within
the transfer vector to the required
address.

3. An ordered list of addresses for all
routines that are held in the same
area as the vector.

The code (item (2) above) transfers control
in the manner shown in figure 3.5.

48

1. It picks up the address of the
relevant transfer vector from the TCA,
where it was placed during program
initialization.

2. It picks up the address of the module
it requires from a known offset from
the start of the transfer vector.

3. It branches to the address, thus
passing control to the required
library routine.

The code does not use any register
except register 15. The link register (14)
is not altered, and control returns
directly from the module to the caller.

Execution when Using the Shared Library

Use of the shared library is specified by
the linkage editor statement INCLUDE
PLISHRE. PLISHRE is an alias for the
program region modules IBMBPSR and IBMTPSR.
The appropriate module will therefore be
loaded by the linkage editor (IBMBPSR for
non-multitasking programs; IBMTPSR for
multitasking programs). All compiled code
external references to shared library
module entry points are then resolved to
the dummy entry points in IBMBPSR (or
IBMTPSR). Similarly WXTRNs in the program
region module are resolved if compiled code
issues an EXTRN for the entry point.

At the start of the program, control is
passed to one of the entry points of the
initialization routine. This entry point
will, in fact, be a dummy entry point in
the shared library program region module.
Each entry point is followed by code which
requests the system to load the shared
library link-pack modules. If the modules
are already loaded, the system simply
returns their addresses. If they are not
loaded, it loads them into the link-pack-
area, and then returns the addresses.

The addresses of the two link-pack-area
modules and of IBMBPSR are added to the
parameter list for IBMBPIR. IBMBPIR is then
called in the usual shared library manner,
that is, via the transfer vector in one of
the link-pack modules.

It is the standard action of the
initialization routines to load these
parameters into the appropriate fields in
the TCA. When the shared library is not in
use, meaningless information is loaded into

PROGRAM REGION

Compiled Code

Address constant

R12

LINK PACK AREA

Link pack module
IBMBPSM

Figure 3.6.

TCA
— TPSR
TPSL
TPSM
Program region module
IBMBPSR or IBMTPSR
L

Transfer vector
Dummy entry
points with
duplicate names
to all entry points
in the shared
library

Dummy Entry
Point

Transfer vector
Dummy entry
points with
duplicate names
to all entry points
called by shared
library modules
but not in shared
library.

Link pack module

_IBMBPSL or IBMTPSL

Shared library
routines.

Transfer vector
Dummy entry
points with
duplicate names
to all entry points
called by shared
library modules
but not in shared
library.

Addressing a module in the shared library

Chapter 3:

Housekeeping and
environment
dependant
modules in the
shared library.

The PL/I Libraries 49

these fields. However, as they are only
accessed by the shared library modules,
this does no harm.

Initializing the Shared Library

The shared library is initialized Ly the
use of special macro instructions, as
described in the System_Information manual.

All five modules must be created at the
same time. During the process, the table
of VCONs in the link-pack modules, transfer
vectors are generated, and the offsets to
these VCONs from the head of the transfer
vector are placed in the code following the
dummy entry points in the program region
modules. A similar process is carried out
for addresses in the program region. The
VCONs within the link-pack modules are
resolved by the linkage editor when the
link-pack modules are created. The VCONs
within the program region modules are
qualified by WXTRNs, and are only resolved
if compiled code generates an EXTRN for the
entry point. Such EXTRNs are generated
when required, as a normal part of the
compilation process, regardless of whether
the shared library is being used. The
VCONs in the program region modules are
resolved by the linkage editor when the

50

program is link-edited.

Multitasking Consideratigns

The shared library has been designed so
that multitasking does not affect it. If
PLI.TASK is specified before PLI.BASE, the
linkage editor statement INCLUDE PLISHRE
will result in the module IBMTPSR being
loaded and linked in the program region.
When control passes to the code following
the IBMBPIR entry point in IBMTPSR, a
request is made to the system to load the
multitasking shared library module IBMTPSM.
The program then runs in the usual manner,
with the multitasking modules.

An installation can specify a shared
library that includes only the multitasking
or the non-multitasking modules. However
both multitasking non-multitasking wversions
of the program region module will still be
created. The module for the unwanted
environment will be a dummy. This prevents
problems should an INCLUDE PLISHRE
statement be included in a program that is
intended to run in the environment with no
shared likrary. If this process was not
carried out, such a statement could result
in the incorrect environment being
initialized.

Storage

PL/| Statement Virtual origin

DCL TABLE (10)
FLOAT DECIMAL (6); TABLE (0)
>
TABLE (1)
|
| |
! |
TABLE (9) Array TABLE (10)
TABLE (10)

DED
Short floating-point decimal 6

Address of TABLE
Aggregate locator

Address of descriptor

*RVO=4

. Array descriptor
Multiplier=4

Upperbound-10 Lowerbound=1

*RVO (Relative virtual origin) is the offset of the actual
origin of the array from the virtual origin (the position that
element TABLE (0) would hold if it existed)

Figure 4.1. Example of descriptor, locator, DED, and storage location of an array

52

Chapter 4:

PL/I allows the programmer the choice of a
large number of data attributes. Normally
there is no need for explicit attribute
information to be retained until execution,
because the methods used to handle the data
can be resolved during compilation.
However, there are certain situations where
this cannot be done. For example,
adjustable bounds or extents may prevent
the data attributes being fully known at
compile time, or the data may be being
passed to another PL/I procedure or library
subroutine. When these situations arise, it
is necessary to retain some or all of the
data attributes in an explicit form
throughout execution.

The names of variables fall into a
similar category. Normally, they need not
be explicitly known during execution.
However, for data-directed input/output and
the CHECK condition, the names of the
variables need to be known so that they can
be associated with the correct values.

When such information must be retained
until execution, special control blocks are
set up for the purpose. These control
blocks are described in this chapter.

The control blocks are:

Descriptors: These hold the extent of the
data item (i.e., string lengths, array
bounds, and area sizes).

Locators: These hold the address of a data
item and, .if they are not concatenated with
the descriptor, hold its address.

Descriptor Descriptors: These hold the
logical structure levels, dimensions, and
lengths, of all elements within a
structure.

Data Element Descriptors (DEDs): These
hold the attributes of a variable required
for data manipulation, except for extents,
which are held in descriptors.

________ These hold the names of the
variables and associate them with the
appropriate storage locations during
execution.

mbol Table Vector This associates
symbol tables with the block in which they
are known. ’

Descriptor/Locator: This is a term used to
describe the control block consisting of a
descriptor concatenated with a locator.

Chapter 4:

Communication Between Routines

An example of the way in which data is
related to its locators, descriptors, and
DEDs is given in figure 4.1,

Notes on Terminology

The following terms are used in this
chapter.

Virtual origin (VO) The address where the
element of an array
whose subscripts are
all zero is held or, if
such an element does
not appear in the
array, where it would
be held.

The address of the
first item in the arxray
or structure.

Actual origin (a0)

Relative virtual
origin (RVO)

Actual origin minus
virtual origin.
Structure element A minor or major
structure that contains
a number of base
elements.

Base element A data element or array
within a structure.

DESCRIPTORS AND LOCATORS

Descriptors are generated when adjustable
extents are involved, or when an item is to
be passed as an argument and the associated
parameter is the type that can be declared
with an asterisk among its attributes. For
example, DCL X CHAR (N); or DCL X CHAR (*);
would both result in the generation of a
descriptor. In the first case, code for the
SUBSTR built-in function would have to be
interpretive if STRINGSIZE were enabled.
The appropriate library module would be
called, and it would make use of the
descriptor to discover the length of the
string. This length would have been placed
in the descriptor by the prologue code of
the block in which the string was declared.
In the second case, where the length of the
string is signified with an asterisk, the
program that is passed the string will
expect to receive the length of the string
in a descriptor.

Communication Between Routines 53

| generated

Data element descriptor (DED)

Array descriptor

Aggregate locator
generated.

Area locators/descriptor

String locator/descriptor
argument.

Structure descriptor

Aggregate descriptor
descriptor

Symbol table

CHECK 1list

Symbol table vector

Figure 4.2,

Data items that can be declared with an
adjustable value or an asterisk are:
string lengths, array bounds, and area
sizes. Descriptors are, therefore, needed
for strings, arrays, and areas. They are
also needed for structures, because
structures can contain strings, arrays or
areas.

In order to connect the data with its
descriptor, a further control block is
generated. This is the locator. The
locator addresses both the descriptor and
the varjable. For strings and areas, the
locator is concatenated with the descriptor
and contains only the address of the
variable. For structures and arrays, the
locator i3 a separate control block and
holds the address of both the variable and
the descriptor. Called routines are
normally passed the addresses of locators,
rather than the addresses of arguments when
arguments requiring descriptors are passed.

When the descriptor and locator are not

54

Name of control block | conditions under which it is

When conversion or stream I/O library|static internal
modules are called.

When an array has adjustable bounds
or may be passed to a library
subroutine or other PL/I routine.

When structure or array descriptor is|Static internal

When an area is declared with an
adjustable size or may be passed as
an argument.

When a string is declared with an
adjustable length or is passed as an

When a structure is declared with
adjustable elements or is passed as
an argument.

When a structure contains elements
declared with adjustable bounds.

When an item may appear in
data-directed I/0 or in a

When GET DATA or PUT DATA is used
without a data list, or when SIGNAL |
CHECK is used without a data list. |

| Location
| (control section) |

-~ - — - - i - . - - - - -

Static internal

Static internal
Static internal
Static internal

|
|
|
|
|
|
|
|
|
|
|
|
|
| static internal
|

|

| Static internal
| for internal
{items. Separate

|csECT for
| external items.

|static internal

I
I
|
I
|
|
|
I
|
!
|
!
|
|
I
!
|
|
|
|
|
I
I
|
I
I
|
|
|
I
|
|
I
|

Descriptors, locators, and symbol tables: when generated, where held

concatenated, it is possible to use the
same descriptor for a number of different
data items, provided that these items have
the same attributes. This process is known
as "commoning” and is used to conserve
space. Where possible, the compiler
commons structure and array descriptors and
aggregate descriptor descriptors.

Except for controlled variables,
descriptors and locators are always held in
the static internal control section,
regardless of the attributes of the data
that they describe.

For controlled variables, the descriptor
and, sometimes, the locator are held
immediately before the data. (For details
see 'Controlled Variable Control Block' in
appendix A).

The following types of descriptor and
locator are generated. Figure 4.2
summarizes the conditions under which they
are generated and gives their storage

locations. 1In the main, they are set up
during compilation and completed during
execution, if necessary.

String Locator/Descriptor

The string locator/descriptor holds the
byte address of the string, information on
whether or not it is a varying string, and
the maximum length of the string. For a
bit string, the bit offset from the byte
address is held. (See figure 4.3.)

Area Locator/Descriptor

The area locator/descriptor holds the
address of the start of the area and the
length of the area. (See figure 4.4.)

Aggregate Locator

The aggregate locator holds the address of
the start of the array or structure and the
address of the array descriptor or
structure descriptor. (See figure 4.5.)

Array Descriptor

The array descriptor holds:

1. The relative virtual origin (RVO) of
the array. This is the offset of the
start of the first element in an array
(actual origin) from the virtual
origin. The virtual origin (VO) is the
point at which element (0) would be
held in a one-dimensional array,
element (0,0) would be held in a two-
dimensional array, etc. In a one-
dimensional array, the address of any
particular element can be discovered
by multiplying together the subscript
and the multiplier (see below) and
adding the result to the virtual
origin of the array. An extension of
this method is used for multi-
dimensional arrays, the formula being:

Address of element (S3,S2¢es¢¢5n)
n

= VO+) (Mi*S;)

=1
where S is the subscript number, and

Chapter 4:

M the multiplier, of the ith
dimension, and VO is the virtual
origin.

For unaligned bit-string arrays, the
virtual origin points to the byte
address before the element (0). The
bit offset is held in the string
descriptor, which is concatenated with
the array descriptor.

2. The high and low bounds for the
subscripts in each dimension.

3. The multiplier for each dimension.
The multiplier is the distance between
the start of one element and the start
of the next element in the same
dimension. For example in the array
declared A(2,2), the multiplier for
the first dimension is the distance
between the start of element A(1,1)
and the start of element A(1,2).

Wwhen the array is an array of strings or
areas the string or area descriptor is
concatenated with the end of the array
descriptor to provide the necessary
additional information. Array descriptors
are commoned where possible. That is, one
descriptor is used for a number of similar
arrays.

Sstructure Descriptor

The structure descriptor consists of a
series of fullwords, giving the byte offset
of the start of each base element from the
start of the structure. If a base element
has a descriptor, the descriptor is
included in the structure descriptor,
following the appropriate fullword offset.
Where a bit offset is involved, this will
be held in the descriptor for the bit
string, or in the relative virtual origin
if the item is a bit string array.

A structure must be mapped during
execution if any of the elements in the
structure have adjustable bounds or
extents, or if the REFER option is used.
Where possible, structure descriptors are
commoned. That is, one descriptor is used
for a number of similar structures. If a
structure or an array of structures
contains elements with adjustable extents,
the structure descriptor is not set up
during compilation. Instead, it is set up
during execution from information held in
the structure descriptor descriptor. (See
below for information on arrays of
structures and structures of arrays.)

communication Between Routines 55

0 1 2 3 4

Byte address of string

Length Unused - Bit offset
pa ' AY
For varying strings, the maximum O=fixed length For bit strings only
length is held 1=varying length

Figure u4.3. sString locator/descriptor

0 1 2 3 4

Address of first byte of area

Allocated length of area (in bytes)

Figure U4.4. BArea locator/descriptor

0 1 2 3 4

Byte address of first byte of aggregate

Address of array or structure descriptor

Figure 4.5. Aggregate locator

0 1 2 3 4

RVO (Relative virtual origin)

M; (multiplier)

U, (upperbound) L, (lowerbound)

]]
! 1
Mn

u, L,
Notes: 1. For unaligned bit strings, RVO and multiplier are bit values.

2. For strings and areas, the area or string descriptor is concatenated

to the end of the array descriptor.

Figure 4.6. Array descriptor

56

Multiplier and bounds
for 1st dimension

Multiplier and bounds
for nth dimension

Aggregate Descriptor Descriptor

When a structure cannot be mapped during
compilation, more information than is held
in the structure descriptor is needed for
it to be mapped during execution. This
information is held in a control block
known as an aggregate descriptor
descriptor.

The information held in an aggregate
descriptor descriptor is the number of
dimensions and logical level of all the
structure elements, and the number of
dimensions, logical level, and alignment
requirements, of all base elements, plus
the length of those base elements that do
not have their length held in descriptors.
(strings and areas, and arrays of strings
and areas, have their lengths in
descriptors.) The length held for an array
is the length of an array element. The
total length of the array can be calculated
by using the information in the array
descriptor.

The aggregate descriptor descriptor is
set up in static internal storage and is
set up completely during compilation. The
format is shown in figure #4.7. An example
showing the method used to map a structure
that contains an element with an adjustable
extent is shown in figure 4.8.

Where possible, aggregate descriptor
descriptors are commoned.

Arrays of Structures and Structures of
Arrays

Where necessary, an aggregate locator, a
structure descriptor, and an aggregate
descriptor descriptor are generated for
both arrays of structures and structures of
arrays.

The structure descriptor for both an
array of structures and a structure of.
arrays has the same format. The difference
is in the values in the fields of the array
descriptors within the structure
descriptor. Take for example the array of
structures AR and the structure of arrays
sT, declared below.

Array of Structures Structure of Arrays

DCL 1 AR(10), DCL 1 sT,
2 B, 2 B(10),
2 C; 2 Cc(10);

The structure descriptor for both AR and
ST would contain an offset field for both B
and C and an array descriptor for both B

Chapter 4§:

and C. (See figure 4.9.) However, the
values in the descriptors would differ,
because the array of structures AR would
consist of elements held in the order
B,C,B,C, etc., and the elements in the
structure of arrays ST would be held in the
order:

B,B,B,B8,8,8,8,8,8,8B,C,C,C,C,¢,C,C,C,C,C.

DATA ELEMENT DESCRIPTORS

When data is passed to the PL/I library
routines, a complete description of the
data is frequently required, and something
more than a descriptor is therefore needed.
Conversion routines, for example, need to
know the complete attributes of the data.
To hold such information, data element
descriptors (DEDs) are generated. (Control
blocks known as DEDs are also used by the
compiler. These are compile-time DEDs and
have a different format from those that are
used during execution. Compile-time DEDs
never appear in the executable program.)
For stream 1I/0, DEDs are generated to
describe the format of the input or output.
These DEDs are known as format element
descriptors (FEDs).

DEDs are produced for all types of
variable or temporary that are passed to
the library for conversion or stream
input/output. The length and format of the
DED depends on the data type of the item.
DEDs are shown in detail in appendix A. An
indication of their format is given in
figure 4.10.

DEDs are always held in static internal
storage. They are used only to pass
information to library routines.

There are five types of DEDs:
arithmetic DEDs, arithmetic pictured DEDs,
string DEDs, pictured string DEDs, and
FEDs.

______ are 4 bytes long.
Arithmetic_pictured DEDs: (always decimal)
are 8 bytes plus picture specification,
which consists of at least one byte for
every character in the pictured string.
Maximum length for pictured arithmetic DEDs
is 264 bytes.

String DEDs: are 4 bytes long.

Pictured string DEDs: (always character
string) are six bytes plus the picture
specification, which consists of one byte
for every character in the picture string.
The maximum length for pictured character
DEDs is 261 bytes.

Communication Between Routines 57

0 1 2 3

Structure

Offset of entry for containing structure from

" .
. Offset (fullword) start of ADD (all ones for a major structure)

O=structure “ 0=not bit string

1=base element 1=bit string

N /

Level Dimension

— e vm e e - — — — — A\

/ 1=area
1=last element O=not area
0=not last element

Alignment Length (bytes)

/ Base element \
O=bit

All zero for areas and strings

7=byte

15=halfword
31=fullword
63=doubleword

There is a fullword entry in the ADD for each structure (.major and minor) and each base element.

Figure 4.7. Aggregate descriptor descriptor

58

DURING COMPILATION

{4 Space for structure descriptor allocated in static
storage.

2 Aggregate descriptor descriptor allocated, and
fields filled in from structure declaration.

3 Aggregate locator aliocated, and address of
structure descriptor.place in second word.
Code is generated within the prologue of the
block in which the structure is declared to call
structure mapping routine, IBMBAMM, to
acquire @ VDA, and to complete the aggregate
locator.

DURING EXECUTION

4 Prologue code olaces value of N{1 byte) in

the string descriptor for D in structure
descriptor.

5 IBMBAMM is calied to map the structure,

using the information in the ADD and the
SD (which contains the fength of element
D). D is aligned with E, then B is aligned
with DE. (The rules for structure mapping
are given in the language reference manual
for this compiler.) The results of the
mapping are placed in the structure
descriptor.

6 IBMBAMM returns the length of the

structure to compiled code, which acquires
a VDA for the structure and places the
address of the structure in the aggregate
locator.

THE RESULT

Every member of the structure can be addressed by
means of the address in the aggregate locator and
the offsets within the structure descriptor. When bit
offsets are involved, they are contained within the
appropriate descriptor in the structure descriptor.

DURING COMPILATION
sD 1

»
>

Space for offset of B

Space for offset of D

Space for descriptor of D

Space for offset of E

ADD 2

01 Alf ones Level 1 | 00 Zero

10 | X31"| X4 Levet 2 | 00 Zero

00 Zero Levet 2 [00 Zero

10 | X'7" | Zero | Level3 | 00 Zero

1" X731 X4 Level 3 | 00 Zero

AL 3

Space for address of structure

Figure 4.8.

Example of handling a structure containing

Address of structure descriptor

Daclaration
DCL 1 A,
2 B FLOAT,
2¢,
3 D CHAR(N),
3 E FLOAT;

DURING EXECUTION

SD 5

Zero

X7

4 | byte 0 unused

ADD

ADD is unchanged during execution.

For meaning of entries, see Figure 4--7.

AL 6

Address of structure

Address of structure descriptor

‘VDA for structure (]

Chapter 4:

an adjustable extent

Communication Between Routines

59

Array of structures Structure of Arrays

DCL 1 AR(10), DCL 18T,
2B, 2 B8(10),
2C; 2C(10);
Structure descriptor for AR Structure descriptor for ST
Offset=0 Offset=0
RVO=8 RVO =4
AR.B ST.B
Multiplier = 8 Multiplier = 4
Upperbound = 10 Lowerbound = 1 Upperbound = 10 Lowerbound = 1
Offset = 4 Offset =40
RVO =8 RVO =4
AR.C ST.C
Multiplier = 8 Multiplier = 4
Upperbound = 10 Lower bound = 1 Upperbound = 10 Lowerbound = 1

Note: Descriptors are identical apart from multiplier RVO offset values

Figure 4.9. sStructure descriptor for arrays of structures and structures of arrays

60

FEDs_(input/output_ DEDs):
classes

fall into five

1. BA,B, and control format FEDs have four
bytes.)

2., E and F format FEDs are six bytes
long.

3. Pictured arithmetic FEDs consist of
four bytes followed by the pictured
arithmetic DED.

4. Pictured character string FEDs consist
of four bytes followed by the pictured
character string DED.

5. C format FEDs are four bytes plus the
two constituent FEDs that make up the
complex item. They are used for
complex data.

The first two bytes of any DED are the
look-up byte and the flag byte. Taken
together, they define the data type and
permit a receiving routine to determine if
it needs to look further into the DED fox
more information. The general format of
DEDs is shown in figure 4.10. Full details
are given in appendix A.

SYMBOL TABLES AND SYMBOL TABLE VECTORS

Data-directed I/0 statements, and the CHECK
condition, require the names of variables.
to be available throughout execution.
Normally, such names are not used after
compilation. When required during
execution, these names are held in control
blocks known as symbol tables. Symbol
tables hold the name of the variable, its
address, and the address of its DED plus
certain other information (see appendix A).

GET DATA and PUT DATA statements without
a data list, and SIGNAL CHECK statements
when there is no check list, imply that the
names of all variables known at that point
in the program must be available. The
necessary information is held in a further
control block known as the symbol_takle
vector. The symbol table vector holds the

Chapter 4:

addresses of symbol tables arranged in
order of program blocks, commencing with
the main procedure block. The symbol table
vector consists of a series of fullword
fields. These fields contain either the
address of a symbol table, a fullword of
zeros, or a further address within the
symbol table vector. The end of entries
for variables declared in each block, is
followed by a fullword of zeros, which in
turn is followed by the address in the
symbol table vector where entries for the
encompassing block begin. If there is no
encompassing block, another word of zeros
marks the end of the vector.

Figure 4.11 shows the relationship
between variables, symbol tables, and the
symbol table vector.

Data-directed I/0 modules, and the CHECK
module, use symbol tables and symbol takle
vectors in the following ways.

GET _DATA_(A,B,C), PUT DATA (A,B,C), SIGNAL
___________ In all these cases, the
addresses of the symbol tables for A, B,
and C are passed to the appropriate library
module.

GET_DATA, PUT DATA, SIGNAL CHECK: When no
data or check list is included in the
statement, the library is passed the
address of the start of the associated
block entries for the symbol table vector.
By following the symbol table vector, it is
possible to access the names of all the
variables known in the block.

The contents of symbol tables vary
according to the storage class of the
variable. The method used for holding the
address, and other information, is given in
appendix A. For internal variables, symbol
tables are held in static internal storage.
For external variakles, symbol tables are
held as separate control sections in static
external storage. The name of each control
section is the name of the associated
variable followed by an X. Thus the
control section for the external variable B
would be BX. Such a control section would
also contain the DED of the variable (or
DEDs if the variakle was a structure).

COmmunication Between Routines 61

String DED

Look-up byte Flag byte Not used
Arithmetic DED
Look-up byte Flag byte Precision Scale
Pictured string DED
Look-up byte Flag byte Length of string
Length of string without/insertion characters Translation of picture
specification into internal format (one byte per character)
—
Pictured arithmetic DED
Look-up byte Flag byte Precision Scale
Length of picture Length of data Mantissa byte Exponent byte

Translation of picture specification into internal format (at least one byte per character)

Figure 4.10. Format of DEDs

62

Vector for

main procedure

Vector for
subroutine 1

Vector for
subroutine 2

Figure 4.11.

PROGRAM BLOCK STRUCTURE

Main procedure

DCLA, B, C;

Subroutine 1

DCLX, Y, A;

Subroutine 2

DCL X, Y;

Symbol table vector

A

Symbol tables for:

—» A in main procedure

—»{ B in main procedure

— Cin main procedure
P X in subroutine 1

—» Y in subroutine 1

v

- Pointer

A in subroutine 1

—1 X in subroutine 2

— Y in subroutine 2

- Pointer

The symbol table vector is built up on a block by block basis, the last entry for each block being a word of
zeros followed by a pointer to the first entry for the encompassing block. This mechanism allows for
multiple declarations of names.

Symbol tables and symbol table vectors

Chapter 4:

Communication Between Routines

63

PLISTART

Initialization routines

Receives control from
system

Set up TCA, initialize storage and
issue SPIE & STAE to initialize
PL/I error-handling scheme. Pass
control to the address in
PLIMAIN.

Prologue code

Acquires DSA for main
procedure, initializes
control blocks, etc.

Functional code

Carries out function required
in source program. This
usually involves calls to
library subroutines.

Epilogue code

—»

Restores IBMBPIR's
registers

Termination routines

Figure 5.1. Flow of control during execution

6u

Closes any files still open and
returns control to system

Chapter B: Object Program Initialization

Before the output from the compiler can be
executed, it must be link-edited, and the
PL/I environment must be set up. This
chapter briefly describes the effects of
link-editing, the manner in which the
program is entered, and the initialization
process that sets up the PL/I environment.
Initialization for multitasking programs is
explained in chapter 14. It also gives a
brief description of the program management
area; a control area set up during program
initialization.

Link-editing

The functions and use of the linkage editor
program are described in the publication 08
Linkage Editor and Loader. This chapter
describes the effects of link-editing on
the PL/I program. The linkage editor
combines the various control sections
generated by the compiler and resolves
addresses within these control sections.
The linkage editor also incorporates into
the executable program phase all library
modules that are called from compiled code,
and a number of other library modules that
are required either because they in turn
are called by the library modules called by
compiled code, or because they are needed
for program management. A major module
used in program management is the error-
handling module, IBMBERR. An external
reference to this module is contained in
the PL/I initialization routine, IBMBPIR.
An external reference to IBMBPIR is
included in the control section PLISTART
which is generated by every compilation and
nominated as its entry point. PLISTART
contains an external reference to the
control section PLIMAIN (which holds the
address of the start of the main
procedure).

One of the features of the linkage
editor is that it does not accept more than
one control section with the same name; the
second use of the name is ignored. As a
result of this, only one PLISTART and one
PLIMAIN is generated for each executable
program phase. This allows two or more
PL/I main procedures to be link-edited
together. The procedure that receives
control will be the first that is passed to
the linkage editor, because it will be the
PLISTART and PLIMAIN of this procedure that
are included in the executable program.
This feature is also used to handle data
declared EXTERNAL. Control sections for

Chapter 5:

each such data item are generated by all
programs in which the data is declared.
Only one of these is resolved.

Note: The entry statement cannot be used
to pass control to a specified PL/I program
as entry must be made through PLISTART.

The PLIMAIN control section is not
generated by the compiler if the PL/I
source program does not contain the MAIN
option. However, a control section named
PLIMAIN is included in the initialization
module IBMBPIR. This control section
contains the address of code that calls the
module IBMBPEP, which puts out a message
saying there is no main procedure, after
which the program is terminated.

Program Initialization

Code is compiled by the PL/I Optimizing
compiler on the assumption that various
control blocks will have been set up and
that certain registers will point to them
when the program is entered. This
arrangement of control blocks and registers
is known as the PL/I environment.

The most important factors affecting the
PL/I environment are the following:

1. Bn area for the allocation of PL/I
dynamic storage should be available.
This area is known as the initial
storage area (ISA).

2. A dynamic storage area (DSA) should
exist. This will give the address of
the start of the area available for
dynamic storage allocation and will
act as a save area for the calling
routine's registers.

3. A task communications area (TCA)
should exist. The TCA acts as a
central communications area for the
program, holding addresses of various
storage- and error-handling routines,
and control blocks. The TCA also
contains a number of flags and other
fields.

4. Program checks should be passed to the
PL/I error-handling module IBMBERR.

5. Pre-formatted DSAs should exist for

certain library routines. These pre-
formatted DSAs are known as library

Object Program Initialization 65

workspace (LWS).

6. A space should be available for any
condition built-in function values
(ONCHAR, ONSOURCE, etc.) should a
PL/I interrupt occur. This space is
known as an ON communications area
(ONCA). As the condition built-in
functions have default values, an area
to hold the default values is
required. This is known as the dummy
ONCA.

7. Register 12 should point at the TCA,
and register 13 should point to the
DSA.

The resident program initialization
routine IBMBPIR, and the transient routine
IBMBPII, which it calls, acquire the ISa,
and set up the various control blocks in an
area of the head of the ISA known as the
program_management area. The contents of
the program management area are described
later in this chapter.

| The default ISA size and other options

|are controlled either by the system default
|module IBMBOPT or by specifying an external
variable called PLIXOPT within the program.

The use of initialization routines
obviates the need for special code in main
procedures, and allows two procedures with
the MAIN option to be used in the same
program.

As shown in figure 5.1, the
initialization routine IBMBPIR is reentered
after the execution of compiled code. This
is done by the standard action of the
epilogue code. The registers of IBMBPIR
are stored in the dummy DSA by the prologue
code, and restored by the epilogue code.
When terminating the program, IBMBPIR calls
a transient library routine, IBMBPIT, to
handle the majority of the termination
functions.

INITIALIZATION AND TERMINATION ROUTINES
Three routines are used in initialization
and termination. They are:

1. IBMBPIR - resident library
initializations/termination routine.

2. IBMBPII - transient library
initialization routine.

3. IBMBPIT - transient library
termination routine.

The use of transient routines reduces
the space overhead required.

66

The resident routine, IBMBPIR, is a
short control routine. The major functicns
are carried out by the transient routines.
However, IBMBPIR contains a number of
housekeeping subroutines, including code to
handle GOTO out of block in certain
abnormal situations, and the STAE exit
subroutine. These are described in chapters
6 and 7 respectively.

Resident Initialization/Termination

R s T R S e L e N S S s

Routine IBMBPIR

IBMBPIR has three entry points. One of
these is for use by the supervisor; the
other two are for use by problem programs
written in languages 'other than PL/I. The
main difference between the entry points is
the parameters that are expected. The
entry points are:

1. IBMBPIRA - used when entry is made
from the system.

2. IBMBPIRB - for use by non-PL/I callers
who wish to accept PL/I default ISA
size.

3. IBMBPIRC - for use by non-PL/I callers
who wish to nominate the length and,
optionally, the address of dynamic
storage used by PL/I.

Entry points B and C will be used by
programmers specifying PLICALLA and
PLICALLB respectively. (PLICALLA and
PLICALLB are entry points in the control
section PLISTART.) Using PLICALLA results
in control being passed to IBMBPIRB. Using
PLICALLB results in control being passed to
IBMBPIRC.

IBMBPIRA and IBMBPIRC can be passed a
number of parameters related to prograr
management. These include ISASIZE and
REPORT. IBMBPIR assumes that all parameters
preceding a slash (/) are program
management parameters. All main procedure
parameters must, therefore, be preceded by
a slash, otherwise they are taken to be
parameters for IBMBPIR.

Entry point IBMBPIRC can be passed a
parameter list that contains (in the second
and third words) the length and,
optionally, the address at which the ISaA is
to begin. The ISA size and address are
passed to IBMBPII.

Entry point IBMBPIRB cannot accept any
parameters; the default ISA size is always
given. (See below, under the heading
"Acquiring the ISa.")

R12

PROGRAM MANAGEMENT AREA

TCA
Task communications area.
See text and appendix A

TCA Appendage
See text and appendix A

Dummy ONCA (ON cemmunicatiens area)
Holds default values for condition built-in functions

TRY Table
Translate-and-test table for IBMBERR, used in error
handling to test for relevant on-cells.

Diagnostic File Block
Contains information relating to the use of SYSPRINT
for the transmission of diagnostic messages

Dump Block (DUB)
Block used to access the dump file

Ordered delete list
Used to hold a list of transient modules to be deleted
during program termination

Dummy task variable
Used in tasking if no task variable is declared

Save area for IBMBPGR
Used by storage management routines when new
segment of storags is required.

R13 ——»

Dummy DSA (Dynamic storage area)
Contains DSA for initialization routine, backchain
to calling routine’s save area (if any), pointer to
start of major free area (NAB), etc.

LWS (Library werkspace)
Two preformatted DSAs for use by certain library routines

ONCA
Space in which condition built-in function values
are placed after an interrupt.
Backchain points to dummy ONCA

One unused word ‘

PRV entry for SYSPRINT
At fixed negative offset to allow fer fetched programs

Pseudo Register Vector
Control block used in addressing files and controtled
variables.

Figure 5.2. Program management area

Chapter 5: Object Program Initialization

67

The Process of Initialization

When IBMBPIR is called to initialize the
program, it acquires workspace, then loads
and calls IBMBPII. IBMBPII carries out the
actions described below.

|Handling Execution Time_Options
I

|IBMBPII first analyzes the execution time
|options. Execution time options, which
|were also known as program management

| parameters, can be specified in the

| following three ways:

1. As parameters of the EXEC
statement,
2. From an external variable called

PLIXOPT in the PL/I program.

3. From the default module IBMBXOPT
which is set up during compiler
generation.

|A1ll three sources may exist and the options
|are merged from them. IBMBPII first loads
| the default module IBMBXOPT. It then

| searches for a control section called

| PLIXOPT which will have been produced by

| the compiler if an external variable called
| PLIXOPT was declared in the program. Any
|options specified in PLIXOPT are then
|merged with those in IBMBXOPT with the
|values in PLIXOPT overriding those in

| IBMBXOPT. The process is then repeated
|with any execution time options specified
|in as parameters in the EXEC statement.
|When the execution time options have been

| sorted out, IBMBPII carries out the actions
| described below.

Acquiring the ISA

The method of acquiring storage for the ISA
depends on the entry point of IBMBPIR used.

If entry point C is used, and both the
ISA size and address have been passed, no
further action need be taken.

If the ISA size has been passed, to
either entry point C or entry point A, a
GETMAIN macro is issued for the amount of
storage requested.

If no ISA size has been specified, the
default action is taken. The default
action is to obtain all the available
storage. The high-address half of this
storage is then freed, and the lower half

68

retained as the ISA. If the resulting
figure is not large enough to hold the
program management area, an area large
enough for the program management area is
obtained.

If there is not enough space for the ISA
size requested, or if the defaults do not
provide enough space for the program
management area, the action described below
under the heading "Error Situations" is
taken.

Initialization of the Program
Manaqement*Area

The program management area is set up at
the low address end of the ISA. IBMBPII
initializes the various control blocks.
These are shown in figure 5.2. Their
functions are described below under the
heading "The Program Management Area."

The storage management routine is
loaded, and the addresses of its various
entry points are placed in the TCA. If a
storage report is requested, module IBMBPGD
is loaded; otherwise, module IBMBPGR is
loaded.

_—=Sa

The PL/I error handling scheme handles all
program checks, and attempts to handle
ABENDs. The address of the old PICA is
saved in the TCA so that the previous SPIE
may be restored during program termination,
and SPIE and STAE macro instructions are
issued to set up the PL/I error handling
scheme.

The SPIE macro specifies entry into
entry point A of the error handling module
IBMBERR. The STAE macro specifies entry
into the STAE exit subroutine in IBMBPIR.
(This subroutine loads the ABEND analyzing
module IBMBPES.) A full description of the
PL/I error handling facilities is given in
chapter 7.

When the program management area has
been initialized, and the SPIE and STAE
macro instructions have been issued,
IBMBPII returns control to IBMBPIR.

IBMBPIR checks that the return has been
normal and, if so, points register 1 at the
parameters for the main procedure, and
calls the procedure whose address is held
in the control section PLIMAIN.

NOSPIE _and NOSTAE options: If NOSPIE is

specified in the parameters passed to
IBMBPIR nc SPIE macro is issued by the
initialization routine. This allows an
installation to specify its own method of
handling program check interrupts.
Similarly if NOSTAE is specified a STAE
macro will not be issued.

Error_ Situations

If there is insufficient storage available
to meet the requested ISA size, IBMBPII
calls IBMBPEP, which puts out an
"INSUFFICIENT MAIN STORAGE" message.
IBMBPII then returns to IBMBPIR, requesting
it to free the storage acquired, and
terminate the program.

If no PL/I main procedure has been
provided, and there is no alternative
PLIMAIN control section provided by the
user, a control section PLIMAIN in IBMBPIR
will have been link-edited. When control is
passed to the address contained in this
control section, an error module is called.
A 'NO MAIN PROCEDURE' message is generated,
and the program is terminated.

The Process of Termination

When the main procedure is complete,
epilogue code for the main procedure
returns control to IBMBPIR, passing to it
the address of the main procedure DSA. If
the termination is normal, IBMBPIR restores
the value of register 13 to that passed to
it in register 0. IBMBPIR then sets flags
in the TCA indicating that the program is
terminating, and calls the error handler to
raise the FINISH condition. If there is no
GOTO from a FINISH on-unit, the error
handler will return to IBMBPIR using the
GOTO-out-of~-block mechanism. The flags set
in the TCA to indicate program termination
are tested and, as they are set, control is
returned from the GOTO code in the TCA to
the abnormal-GOTO subroutine in IBMBPIR.
This routine handles any outstanding
housekeeping problems. Exit DSAs are
correctly terminated and, because the
program termination flags are set, all
files are closed by calling IBMBOCL.
control is then returned to the termination
routine, IBMBPIR. (A full discussion of the
GOTO-out-of~block mechanism and its
implications is given in chapter 2.)

IBMBPIR then calls IBMBPIT to complete
the housekeeping. STAE and SPIE macro
instructions are issued to restore the
error handling situation, and control is
returned to the caller.

Chapter 5:

THE PROGRAM MANAGEMENT AREA

A diagram of the program management area is
shown in figure 5.2. It shows the
situation when the compiled program is
called. The various fields in the program
management area are shown in detail in
appendix A. A brief description of their
use is given below.

The TCA is the central communications block
used throughout the program. It is used to
address the error-handling and storage-
management routines, and to point to the
current segment of dynamic storage.

A field~by-field description follows.

Indicate that an abnormal
GOTO out of block may take
place (see below). Also
indicate that certain special
error conditions may arise.

Flags

BOS The pointer that points to
the beginning of the current
segment (see chapter 6).
EOS The pointer that points to
the end of the current
segment (see chapter 6).
Address of external save area:
The address of the save area
for the calling routine, if
IBMBPIR was not called from
the control program.

Address of translate-and-test table
for IBMBERR:

See below, under heading
"Translate-and-Test Table."

Address of TCA appendage

address of save area for IBMBPGRC and
IBMBPGRD (see kelow)

oOpen file chain:

Used when closing files at end
of job

Address of IBMBPGRD:

Stack overflow routine for
VDAs (see chapter 6)

Address of the diagnostic file block
(see below)

Object Program Initialization 69

PL/I and user return code:

A standard area to keep these
codes.

Address of flow staterent table:

This is used to address the
flow statement table which
holds statement numbers for
use during execution.

Address of tab table:

The address of a takle of
tabulator positions used in
list-directed ocutput.

Address of FLOW module:

The address of the module used
to implement the compiler FLOW
option.

shared library transfer vector addresses:

Used when accessing PL/I
library modules in the link-
pack-area.

Address of PRV initialization word:

Used to access word set in PRV
when files are closed.

Address of control task service routines:

Used to access service
routines in multitasking.

Address of stordge-handling routines:

Entry points to IBMBPGR that
get non-LIFO storage, free
non-LIFO storage, and acquire
a new segment for LIFO storage
(see chapter 6).

Address of IBMBERRB

Address branched to after a
software-detected interrupt
occurs (see chapter 7).

Environment descriptor:

Identifies release of
libraries being used.

Code for GOTO out of block:

Whenever a GOTO out of block
occurs, or could potentially
occur because of the value of
a label variable, compiled
code branches to this code in
the TCA.

70

The function of this code is
described in chapter 2, under
the heading "Handling Flow of
Control.™

Address of get-control routine:

Routine used in multitasking
(see chapter 14)

Address of free-control routine:

Routine used in multitasking
(see chapter 14)

Address of ENQ SYSPRINT routine:

Library routine used in stream
I/0 (see chapter 9)

Address of DEQ SYSPRINT routine:

Library routine used in stream
I/0 (see chapter 9)

Address of WAIT module:
Address - of IBMBJWT, the module
used to execute the WAIT
statement
Address of COMPLETION pseudovariable module
Address of event assign module
Address of priority routine
Address of ENQ and DEQ routines:
Used for enqueuing and

dequeuing files other than
SYSPRINT.

The TCA implementation appendage (TIA) is
addressed from the standard part of the
TCA. 1Its contents are as follows:

Address of the byte beyond the ISA(TISA):

This holds the address beyond
the end of the partition and
is necessary because EOS gets
altered when non-LIFO dynaric
storage is allocated.

Address of old PICA (TAPC):
Used to restore SPIE to that
which existed when the PL/I
Frogram was called.

Address of interrupt handler (TERA):

This is the address to which
the branch is made after a
program check interrupt (see
above) has occurred.

Interrupt mask and flags (TINM)

Wait information table (WIT) chain header
(TWTW) :

Start of the chain indicating
which events are being waited-
on in the task.

Anchor for chain of exclusive blocks (TEXF)

Used when handling exclusive
files

Address of last free area (TLFE):

Address of last free area of
non-LIFO storage on the free
area chain: used as a starting
point when searching the
chain.

Address dump block (TDUB):

Used when a PLIDUMP is being
executed.

Address of dummy DSA:

Used, when abnormally
terminating the program, to
restore IBMBPIR's registers.
This allows IBMBPIR to be
reached should the DSA chain
be overwritten.

Address of get-library-workspace routine:

This is part of the resident
library module IBMBPIR and is
used to get a new allocation
of library workspace and an
ONCA. This routine is called
after interrupts and during
program initialization (see
chapter 3).

Address of extended float simulator (TASM):

Used on machines that do not
have the extended floating-

point instructions to handle
extended floating-point data.

Name of extended float simulator (TSNM):

Used to hold the name of the
extended float simulator, so
that it can be invoked if
required.

Chapter 5:

Save Area for IBMBPGR

This area is used as a DSA for IBMBPGR, the
routine entered when there is not enough
room for a further DSA in the current
segment of the LIFO stack. Both DSAs in
library workspace may be in use when
IBMBPGR is required, and there may be nc
caller's save area because a DSA has not
yet been acquired. Consequently, IBMBPGR
has a save area reserved in the program
management area.

Dummy_ONCA

The dummy ONCA holds default values for the
condition built-in functions. These will
be supplied if they are requested either
when no interrupt has occurred, or when nc
interrupt with the requested condition
built-in function value has occurred.

There is a chain back through all ONCAs to
the dummy ONCA. (See chapter 7.)

Translate-and-Test_ Table

The translate-and-test table contains code
used in error handling to identify relevant
on-cells. (sSee chapter 7.)

This is space used during the execution of
PLIDUMP to hold the DCB and other
information for the dump file.

Loaded Module or Ordered Delete List

This is a list of modules that are deleted
by IBMBPIR during program termination.
Certain transient modules that are not
deleted by other methods place their name
in this list to ensure that they are
deleted when the program is terminated.

Dummy Tasks_and_Event Variables

These are included in the program
management areas to allow the use of the
STATUS and PRIORITY built-in functions in
non-multitasking programs, and to allow
multitasking programs to operate if no task

Object Program Initialization 71

or event variables are explicitly declared.

Diagnostic File Block

The diagnostic file block holds information
used by the error-message modules. This
includes the address of the SYSPRINT
transmitter.

The dummy DSA acts as a save area for the
registers of the initialization routine
IBMBPIR, and an end to the chain of Dsas
when a search through blocks is being made,
as, for example, when searching for a
relevant established on-unit (see chapter
7). The dummy D3A has a bit in its flag
byte to indicate that it is a dummy. The
dummy DSA contains a NAB (next available
byte) pointer enabling the main procedure
to obtain a DSA in the LIFO stack.

Library Workspace (LWS)

This consists of two pre-formatted DSAs

72

that are used by certain of the library
modules. (See chapter 3.)

ON Communications Area_ (ONCA)

The ONCA is an area where compiled code or
library routines can store or read any
condition built-function values that may be
required. (See chapter 7.)

Pseudo-Register Vector

This is used in addressing files and
controlled variables. (See chapter 2.)

Multitasking

The program initialization process for a
multitasking environment is described in
chapter 14.

Figure 6.1.

74

Program
Management
Area

Area
Used for
Dynamic
Storage

r——— Head of free-area chain
(TLFE in TCA)

‘I Main procedure DSA

./ Subroutine DSA

, Jrd atlocation for

controlled varieble C

2nd allocation for
\ controlied variable C

\ 1st atlocation for
controlled variable C

End of ISA

Use of storage in the ISA

L.IFO storage

Held in a eontiguous
stack, starting at the
address foMowing the
proéram rmanagement area.
Etements can be freed
ondy from the high-address
end of the stack.

Noa-L KO storoge

Feld in 2 stack starting
at the Mgh-addvess énd
of the partition. Any
clewnant in the stack ein
be freed; comsagquently,
all glemenas are et
necesaarily contguous.
When etements are freed,
they are placed on a
allecations, if pessibie.

The 0S PL/I optimizing compiler allows the
user to specify the working storage area he
wishes to use, by a parameter known as
ISASIZE. When this parameter is specified,
the initial storage area (ISA) is set up to
the size indicated. This is done by
issuing a GETMAIN macro instruction for the
required amount of storage.

If the ISASIZE parameter is not
specified, or if the ISA size specified is
greater than the size of the region,
default action is taken. The default
action is to issue a variable GETMAIN
instruction for the largest amount of
storage possible. Half of this storage is
allocated to the ISA and the remainder is
freed for possible future use by the
program or by the system.

The allocation of the ISA is handled in
the program initialization module IBMEBPII.
The procedure for tasking is slightly
different and is described in the section
on multitasking at the end of this chapter.
The initial storage area (ISA) is used for
various functions during execution. The
start of the ISA is used as the program
management area. The program management
area contains a number of housekeeping
fields and is set up by the initialization
routines. (See chapter 5.) The remainder
of the ISA is used for PL/I dynamic storage
allocation.

TYPES OF DYNAMIC STORAGE REQUIRED

The requirement for dynamic allocation and
freeing of storage is inherent in the
language. Automatic variables are
allocated and freed on a block-by-block
basis. Controlled and based variables can
be allocated and freed by appropriate PL/I
statements. Storage is also obtained
dynamically for workspace, and compiler-
generated temporary values.

Dynamic storage can be conveniently
divided into two classes.

1. That which is allocated and freed on a
last-in/first-out (LIFO) basis.

2. That which is not.
The first class is known as LIFO dynamic

storage and the second class as non-LIFO
dynamic storage.

Chapter 6: Storage Management

Certain other storage is also acquired
dynamically. This is storage for
transiently loaded library modules and
input/output buffers. This storage is
acquired and freed directly under system
control. Routines wishing to load a
transient module issue a LINK, LOAD, or
XCTL macro instruction. When the transient
module is to be freed the controlling
library module issues the necessary macro
instruction.

Contents of LIFO (Last-In/First-Out)

Two kinds of storage area are allocated in
LIFO storage. They are dynamic storage
areas(DSAs) and variable data areas(VDAs).
A DSA is allocated for every procedure or
block and contains:

¢ The System/360 standard save area.

e (Certain standard housekeeping fields.

e All automatic variables and compiler-
generated temporaries whose length is

known during compilation.

A diagram of the standard section of a DsA
is shown in appendix A.

VDAs are acquired for all other
allocations of LIFO dynamic storage.
include:

These

e Storage for automatic variables and
compiler—-generated temporaries whose
length is not known until execution. (X
CHAR(N), for example.)

e Workspace for certain library modules.

¢ Allocations of library workspace (LWS)
after the occurrence of an interrupt.

Non-LIFO storage is used for the following:
¢ Controlled variables.

¢ Those based variables that are allocated
by the ALLOCATE statement, (provided
that they are not allocated in an
automatic or static AREA).

Chapter 6: Storage Management 75

Dynamic Storage Allocation

The principle used in dynamic storage
allocation is to allocate LIFO storage from
the low-address end of ISA, starting at the
first 8-byte boundary beyond the program
management area, and to allocate non-LIFO
storage from the high-address end of the
ISA. Between the areas of LIFO and non-
LIFO storage is an unused section known in
this publication as the major free area.
(see figure 6.1.)

The last element in the LIFO stack is
always the first to be freed and
consequently can always be amalgamated with
the major free area. This is not always
the case with non-LIFO storage. When an
item not contiguous with the major free
area in the non-LIFO stack is freed, it is
placed on a free-area chain whose head is
anchored in the TCA. Attempts are always
made to use areas on this chain when
further allocations of non-LIFQ storage are
made.

Allocations of LIFO storage are made by
testing to see if there is enough space in
the major free area. 1If there is not
enough space, an attempt is made to use an
area on the free-area chain. When an area
on the free-area chain is used, it is known
as a new segment of the LIFO stack.

If there is no space either in the major
free area or on the free area chain, then a
GETMAIN macro instruction is issued to
obtain new storage. For LIFO storage this
will be set up as a new segment of the LIFO
stack and the necessary housekeeping fields
will be placed at its head.

Fields Used in_Storage Handling

To keep track of the storage allocated and
freed, a number of pointers are used.
These are:

e The beginning-of-segment pointer (BOS).
e The end-of-segment pointer (EOS).

e The next-available-byte pointer (NAB).
e The free-area chain pointer TFLE.

e A pointer to the byte beyond the end of
the ISA (TIsa).

The beginning-of-segment pointer (B0OsS) is
initially set during program initialization
to point to the start of the ISA. It is
not altered unless a new segment of storage
is acquired. BOS always points to the

76

start of the current storage segment. BOS
is held at offset 8 from the head of the
TCA, and is addressed from register 12.

The end-of-segment pointer (EOS) is
initially set during program initialization
to point to the end of the ISA. However,
it is updated, when non-LIFO storage is
allocated, to point to the end of the major
free area. EOS is held at offset X'C'(12)
in the TCA, and is addressed from register
12.

The_next-available-byte pointer_ (NAB) is
held in every DSA and points to the first
8-byte boundary contiguous with unused
storage. This address is the start of the
major free area. The current NAB is held
in the most recent DSA and addressed from
offset X'4C'(76) from register 13. As
register 13 is altered every time a DSA is
acquired, the value in a NAB pointer need
only be altered when a VDA is freed or
acquired. Previous NABs are automatically
restored when register 13 is pointed to a
previous DSA.

The pointer to the byte beyond the ISA

the ISA.

The first byte of BOS, EOS, and NAB
contain segment numbers ("FF" for the ISA).
The use of these numbers is explained under
"Acquiring a New Segment."

The free area_chain pointer TLFE. The
free-area chain includes those elements of
non-LIFO dynamic storage that have been
freed but that could not be amalgamated
with the major free area. The start of the
chain is held at offset 8 in the TCA
appendage in a field called TLFE. TLFE
points to the element with the highest
address.

ALLOCATING AND FREEING LIFO STORAGE

Allocating and freeing LIFO storage is
handled by compiled code or by the
particular library module that requires the
space. The allocation is done in the
manner used by the prologue code shown in
chapter 2. Freeing is done in the manner
used by the epilogue code, which is also
shown in chapter 2. Before allocating the
storage, a test is made to see if there is
enough space in the major free area for the
new allocation. For reasons explained later
under the heading "Acquiring a New
Segment, " this test is carried out by
logical arithmetic. If there is not enough
space, entry to one of the segment-handling
entry points of the transient library
module IBMBPGR is made. The entry point

To dummy DSA
A

| R13
|
|
| — — _ _ _] Backchain (stored at fixed offset from R13)
Main procedure DSA
NAB (stored at fixed offset from R13) ‘ - T
R13 P < -
(=old NAB)
Backchain (= old R13)
Subroutine DSA
NAB —]
EOS
Allocating a new DSA Freeing a DSA
1. Test if major free area large
enough for new DSA. If not 1. Load register 13 with current
call IBMBPGRC. backchain address. Since the
2. Store R13 at fixed offset from 2"\":IEy";"a%:f:s';:za;r"of;e'r:;zzr
old NAB to act as backchain.

13, the previous values are
3. Load R13 with address of old NAB. automatically restored.
4. Store new NAB at fixed offset

from register R13.

Figure 6.2. Principles involved in allocating and freeing LIFO storage

Chapter 6: Storage Management

77

8L

NAB

EOS

2nd allocation

1st allocation

Initial situation
Two contiguous

allocations of
non-LIFO storage

Figure 6.3.

NAB

EOS

3rd allocation

2nd allocation

1st allocation

New allocation

1. Free-area chain?
No. (TLFE in TCA=0)
2. Allocate by altering
EOS pointer.

NAB

EOS

3rd allocation

2nd allocation

Free Ist area

1. s area next to
major free area? No.

2. s area next to an
area already on
free-area chain? No.

3. Place area on free-
area chain.

Principles involved in allocating and freeing non-LIFO storage

NAB

EOS

TLFE

3rd allocation

2nd allocation

4th atlocation

Further aliocation

1. Free-area chain? Yes.

2. Find smallest area that
will hold new allocation.
Allocate at high-address
end, leaving remaining
area on free-area chain.

3. Alter length field at head
of remaining area.

used depends on whether a VDA or a DSA is
being acquired. The allocation of LIFO
storage involves accessing the current
value of NAB. This gives the address of
the start of storage to be used. A new NAB.
value is calculated, addressing the byte
beyond the end of the new allocation.
Register 13 is pointed at the old NAB value
and the new NAB value placed at offset
X'4c' from register 13. Freeing the
storage is done by restoring register 13 to
the previocus value. Figure 6.2 illustrates
the principles involved. Before allocating
the storage, a test is made to see if there
is enough space for the allocation. When
there is insufficient space for a LIFO
storage allocation, a new segment is
acquired. (See below.)

ALLOCATING AND FREEING NON-LIFO STORAGE

Any section of non-LIFO storage can be
freed at any time; therefore a simple
stacking mechanism cannot be used, because
it would waste storage by leaving freed
storage within the stack. A different
method is therefore used. When storage
that is contiguous with the major free area
is freed, it is amalgamated with the majorx
free area by altering the end-of-segment
(EOS) pointer, which indicates the end of
this area. When storage that is not
contiguous with the major free area is
freed, it is placed on the free-area chain,
which is anchored to a field in the TCA
appendage. Whenever an allocation is made,
an attempt is made to place the allocation
in an area that is already on the chain,
rather than use a further section of the
major free area. Allocations of non-LIFO
dynamic storage are always handled by the
library module IBMBPGR, whose address is
held in the TCA. Figure 6.3 illustrates
the principles involved. Whenever an
allocation within the major free area is
made, the end-of-segment (E0S) pointer, in
the TCA, is updated to point to the end of
the major free area.

If there is not sufficient space in
either the major free area or on the free
area chain, a GETMAIN macro instruction is
issued for the required amount of storage.
Non-LIFO storage acquired by a GETMAIN is
freed by a FREEMAIN macro instruction.

ACQUIRING A NEW SEGMENT OF LIFO STORAGE

Every time a new procedure or block is
entered, or a VDA is acquired, a test is
made to see whether there is enough space,
for the DSA or VDA, between the NAB pointer

and the EOS pointer. If there is not
enough space then an attempt is made to use
the largest space on the free-area chain as
a new segment for the DSA or VDA.

Pointers BOS and EOS in the TCA are set
to point to the beginning and end,
respectively, of the new segment. The DSA
or VDA is allocated storage in the low-
address end of the segment, and the NARB
pointer is set to point to the first free
byte after the DSA or VDA. The former
values of BOS and EOS are stored at the
start of the new segment.

A segment number is given to each
segment, starting at hexadecimal "FF" and
decreasing by 1 for each new segment. The
number for the ISA is "FF", the second
segment "FE", and so on. This number is
held as the first byte of the NAB, BOS, and
EOS pointers. The result of this device is
that, when logical arithmetic is used, all
addresses in later segments are apparently
less than those in the earlier segments,
regardless of their actual position. This
simplifies segment handling. For instance,
when a DSA in the second segment is freed,
NAB is simply restored to its previous
value which may well be in the first
segment. NAB will then hold value
"FFee———— ", and EOS the value "FE------ ".
When a further DSA is required, EOS will be
less than the sum of NAB and the DSA
length, as EOS is already less than NAB.
Consequently it will appear that there is
insufficient space for the DSA in the first
segment, regardless of whether or not this
is the case. The library module IBMBPGR is
thus called to restore BOS and EO0S, add the
emptied segment to the free-area chain,
and, if possible, place the new DSA after
NAB in the first segment. The process is
illustrated in figqure 6.5.

IBMBPGR - STORAGE MANAGEMENT ROUTINE

The allocation and freeing of LIFO storage
within a given segment is handled by
compiled code or by the library module
requiring the storage. All other dynamic
storage allocation is carried out by the
resident library routine IBMBPGR; this
module has four entry points:

IBMBPGRA Allocate non-LIFO storage.

IBMBPGRB Free non-LIFO storage.

IBMBPGRC Obtain and free additional
storage segments (for DSAs).

IBMBPGRD Obtaining and freeing additional

storage segments (for VDAs).

Chapter 6: Storage Management 79

These four entry points are described
below. In all cases storage is allocated
in multiples cf 8 bytes.

——— e e . S s s S . - s s S . o i i e e S

When entered by entry point IBMBPGRA, the
module first searches the free-area chain,
(if one exists) and allocates the storage
in the smallest rossible area on the chain.
If there is no chain, or no area on the
chain that is large enough, IBMBPGR
attempts to allocate the storage in the
area immediately preceding the EOS pointer.
If there is not enough space between the
EOS pointer and the current NAB pointer, a
GETMAIN macro is issued for the required
storage. If the GETMAIN cannot be
satisfied, the system ends the job with an
ABEND-ccde 80A. This ABEND is intercepted
by the ABEND analyzer IBMBPES. IBMBPES
puts out a message indicating which
statement was being executed and when the
demand for storage was made. It then
returns to the system to complete the
ABEND.

Provided that storage can be allocated,
control is passed back, with register 1
pointing to the address of the storage
allocated.

When freeing non-LIFO storage or segments
of LIFO storage IBMBPGR first tests to
discover whether the element being freed is
within the ISA. This is done by seeing if
the address is between the value held in
register 12, the address of the Tca, and
the value held in the TISA field of the ISA
which points to the end of the ISA. If the
element is outside the ISA it must have
been acquired with a GETMAIN macro
instruction. It is therefore freed with a
FREEMAIN macro instruction.

If the element to be freed is within the

Isa, the module scans the free-area chain
(if one exists) to see whether the storage

80

being freed can be amalgamated with areas
already on the chain. This is done if
possible. The module then checks to see
whether the storage being freed is adjacent
to the major free area. 1If so, EOS is
altered to point to the end of the area
being freed or to the end of the
amalgamated area, if this adjoins the major
free area. If the element cannot be
amalgamated with any other, the area is
added to the free-area chain, which is
arranged in descending order of addresses.
The format of a free area chain element is
shown in figure 6.4.

4| Pointer to area with lower address,
zero if last element

|
I
|
|
|
| Unused storage
|
I
|
L

Format of element on free
area chain

Figure 6.4,

Segment_Handling (IBMBPGRC_and
IBMBPGRD)

When compiled code discovers that the
address contained in the pointer NAB plus
the length of the new DSA or VDA to be
allocated is greater than the value of the
pointer EOS, IBMBPGR is called either at
entry point C or entry point D depending on
whether the storage is required for a DSA
or for a VDA. Entry point C is used if a
DSA is required, entry point D, if a VDA is
required. The difference is the method
used to store the caller's registers.
IBMBPGRC stores the caller's registers in a
special save area in the TCA, because no
DSA has yet been acquired; IBMBPGRD stores
the registers in the caller's DsA, in the
usual manner.

:g xa3xdeyd

Juswa beuey abexols

T8

_ NAB

BOS

A 4

NAB

EOS

non-LIFO storage

TLFE

BOS

Initial situation

1. Free-area chain exists.
BOS, NAB, and EOS have
X'FFin first byte, ie.,
segment number 1.

Figure 6.5.

Principles involved

non-LIFO storage :

old BOS and EOS

-

N

Acquiring new segment

. Compiles code or library

routine finds major free
area too small. Calls
IBMBPGR.

. IBMBPGR finds an area on

free-area chain large
enough for allocation.

. Stores old BOS and EOS.

Sets new BOS and EOS, and
returns to caller.

. Caller gets new DSA.

BOS, EOS, and NAB have
X'FE’ in first byte, i.e.,
segment number 2.

BOS .—--

EOS

non-LIFQO storage :

BOS

old BOS and EOS

Freeing DSA in segment

1. Register 13 is restored in
the normal way. BOS and
EOS are not restored. The
segment will not be freed
until there is a further
demand for storage, that
can be accommodated
in the previous segment.

2. NAB now has X'FF” in first
byte, BOS and EOS still
have X'FE".

BOS

R13

NAB
EOS

TLFE

in allocating and freeing segments of PL/I dynamic storage

v

New DSA

Freeing segment

1.

When storage is agaés: required,
NAB + storage required is
compared with EOS using
logical arithmetic.

. NAB + storage is found to be

greater {because of different
segment numbers), so IBMBPGR
is called.

. IBMBPGR finds segment

numbers are different. Tests to
see if new storage will fit in old
segment. If not, allocates in
current segment.

. Storage will fit, so restores old

BOS and EOS, places segment
on free-area chain, and returns
to caller.

. Caller allocates storage starting

at current NAB.

The entry points are called in two
circumstances:

1. There is insufficient room in the
current segment for allocation of the
DSA or VDA and, consequently, a new
segment is required.

2. A segment other than the first one has
been allocated, but is no longer in
use.

IBMBPGRC and IBMBPGRD check to see which
of the above two situations caused the
call. This is done by determining whether
the number in the first byte of NAB is
greater than the number in the first byte
of EOS.

In case 1 above, the segment numbers are
the same, and a new segment must be
allocated. A new segment is allocated by
searching the free-area chain for the
largest available area and using this as a
new segment. If there is no area large
enough to hold the new DSA, a GETMAIN macxo
instruction is issued and the new segment
set up in the area acquired.

When a new segment is allocated, the old
values of BOS and EOS are placed in control
words at the head of the new segment. New
values for BOS and EOS pointing to the
beginning and end of the new segment, with
first byte numbers decremented by one, are
placed in the TCA. The address of the new
NAB is passed in register zero; the address
for the start of the new DSA or VDA is
passed in register 1. The format of a
secondary segment is shown in figure 6.6.

Opm====—commer e 1<--current
| Previous BOS value | BOS

Current

Format of second and
subsequent segments of the
LIFO stack

Figure 6.6.

In case 2 above, the number in the first
byte of NAB is greater than the number in
the first byte of EOS. If the difference is
greater than one, more than one extra
segment has been allocated for DSAs or VDAs
which are no longer current. In this case,
segments are freed until only one empty
segment remains. This is done by setting
BOS and EOS to the values held in the

82

control words at the head of each segment
and freeing the storage in the way
described for IBMBPGRB above.

When only one empty segment remains, a
test is made to see whether the new DSA
will fit into the segment that contains the
present NAB pointer (the segment before the
empty segment). This test is made by
comparing the current NAB pointer with the
0ld EOS pointer held in the control words
of the empty segment. If there is
sufficient room, the empty segment is freed
as described under IBMBPGRB above. Return
is then made to the caller, with a new
value for EOS and BOS, and the DSA is
allocated immediately after the old NAB.

If there is not enough room in the
segment containing NAB, then a test is made
to see if the empty segment is large enough
to hold the new DSA. This is done by
comparing the difference between.the
current BOS and EOS with the length of the
element. If there is enough room, the DSA
is allocated in the empty segment. The
address of the start of the storage is
passed to compiled code in general register
1, and the address of the new NAB passed in
general register 0.

If there is not enocugh room in the empty
segment, then the segment is freed. There
are now no empty segments, and the
situation is treated as if there had been
no empty segments in the first place.

Note: It is possible that after freeing a
nunber of empty segments, an area on the
free-area chain can immediately follow EOS.
However, the possibility is remote, and no
check is made to see whether this is the
case.

Storage Reports

When the PL/I programmer requests a storage
report, he is given, after the completion
of his program, a report showing the
following:

1. 7The ISA size specified (if a size was
specified).

2. The ISA size used.

3. The amount of PL/I storage required by
the program. (This is a suggested
optimum ISA size.)

4., The maximum amount of storage obtained
outside the ISA at any one time.

5. The number of GETMAIN macro
instructions issued.

6. The number of FREEMAIN macro
instructions issued.

7. The number of requests to acquire non-
LIFO storage.

8. The number of requests to free non-
LIFO storage.

The report is generated by the storage
report routine, IBMBPGD. This module is
loaded during program initialization,
instead of the normal storage management
module IBMBPGR. IBMBPGD has the same entry
points and carries out the same functions
as IBMBPGR. However, it also maintains a
record of certain storage statistics. To
ensure that IBMBPGD handles all storage
allocation both inside and outside the Isa,
the EOS field in the TCA is set with a
dummy value so that the storage routine
will be called whenever LIFO storage is
required, as well as for non-LIFO storage
and stack overflow requests.

The storage report is issued during
program termination. The termination
routine, IBMBPIT, calls the report writing
module, IBMBPMR. The report is transmitted
to the dump file.

Action during Initjalization

During program initialization, if REPORT
has been included in the parameters passed
to IBMBPIR, the report storage management
routine IBMBPGD is loaded, and its entry
point addresses placed in the TCA. The
value in the end-of-segment pointer, EOS,
is then set to zero. Space for a report
table is acquired, and the true value of
the end of segment placed in a field in the
report table.

During execution, IBMBPGD is called every
time there is a request for PL/I dynamic
storage. It is called for non-LIFO storage
in the normal way, and, when LIFO storage
is required, it is called because the zero
value in EOS results in the value of
NAB+DSA or VDA being greater than EOS.
Consequently, the stack overflow routine
(IBMBPGD, entry point C or D) is called.
When a call is made to entry points C or D,
IBMBPGD makes a test against the true value
of the end of segment held in the report
table, and, if there is sufficient room,
the storage is acquired in the current
segment of the LIFO stack. If there is not
sufficient room, IBMBPGD takes the same

action as IBMBPGRA (described earlier in
this chapter).

All other storage acquisition by IBMBPGD
is handled in exactly the same way as for
the corresponding entry point of IBMBPGR.
However, IBMBPGD keeps a running total of
the following in the storage report table.

1. The highest value obtained by
subtracting the current length of the
major free area from the current
amount of PL/I storage acquired
outside the ISA.

2. The largest amount of PL/I storage
obtained outside the ISA at any one
time.

3. The number of GETMAIN macro
instructions issued.

4. The number of FREEMAIN macro
instructions issued.

5. The number of requests to acquire non-
LIFO storage.

6. The number of requests to free non-
LIFO storage.

The values are altered if necessary every
time IBMBPGD is entered. The value of (1)
and (2) above is calculated on every call,
and the highest number retained in the
report table. The format of the storage
report table is given in appendix A.

Action _on Termination

On termination, the termination routine,
IBMBPIT, calls the storage report writing
module, IBMBPMR, which transmits the
storage report onto the dump file.

The amount of PL/I storage required is
calculated by adding the figure described
in (1) above to the ISA size used. The
figure will be positive if any storage
outside the ISA was acquired; it will be
negative or zero if nc storage was acquired
outside the ISA.

Two things should be noted about the
results produced by a storage report.

1. If storage was acquired outside the
ISsA, the figure given for storage used
cannct be taken as final. A further
request for a report when the program
is run in the ISA size suggested may
result in a smaller figure being
generated. This smaller size should
be used. This discrepancy is caused
by the differences in acquiring

Chapter 6: Storage Management 83

storage inside and outside the ISA.
To obtain a correct figure using only
one run, the program should be run in
a large ISA that can be expected to
hold all PL/I storage.

2. The report can only refer to the
particular run of the program on which
the report was given. Runs with
different data or parameters may have
different storage requirements.

The modules IBMBPGD, IBMBPMR, and the
initialization and termination modules are
fully described in PL/I transient library
program logic manual.

Storage Reports for Multitasking
Programs

Storage reports for multitasking programs
are generated in the same way as those for
non-multitasking programs. A special
storage management module is loaded at
execution time, and this retains statistics
of the amount of storage used. To ensure
this module handles all requests for
storage, the value in EOS is set to zero,
and the true EOS value is retained in the
report table. The report is issued during
program termination by the module IBMBPMR.

For a multitasking storage report the
following information is given:

For the major task:

The same as for a non-multitasking
program (see above).

For subtasks, a combined report for all
subtasks showing:

The maximum ISA size used by any subtask
The minimum ISA size used by any subtask

The maximum PL/I storage required by any
subtask

The minimum PL/I storage required by any
subtask

The maximum amount of storage acquired
outside the ISA by any subtask

The minimum amount of storage acquired
outside the ISA by any subtask

The total number of GETMAIN and FREEMAIN
macro instructions issued by all
subtasks

The total number of requests to free and
acquire non-LIFO storage issued by all

84

tasks

To enable these fiqures to be produced,
a multitasking version of the storage
report module is used. This module,
IBMTPGD, has two more entry points than its
non-multitasking counterpart. These are:

IBMTPGDE - called when a task is
initialized.

IBMTPGDF - called when a task is
terminated.

IBMTPGDE is called when a task is
initialized. It acquires storage for the
report table for the task, and retains a
record of the number of active PL/I tasks,
increasing the maximum number if necessary.

IBMBPGDF is called when a task is
terminated. If the terminated task is a
subtask, IBMBPGDF completes the relevant
field in the subtask storage report table,
from information in the report table of the
terminating task.

During initialization, space is required
by the control task for a combined subtask
report table which will hold the
information from which the merged subtask
report will be generated. During the
initialization of each task, space for a
report table for that task is obtained.

The report table for the major task is
flagged.

Throughout the execution of each task, a
separate report table is maintained. At
the end of each subtask, the information in
the terminating task is merged into the
combined subtask table, held in the storage
associated with the control task.

When the jobstep is terminated, IBMBPMR
produces the information from the merged
subtask report table and the report table
of the major task. (IBMBPMR is used to
output the report for both tasking and non-
tasking programs.)

Storage Management in Programmer-allocated

Areas

By using area variables, the programmer can
obtain a continuous area of storage for
based variables. The allocation of storage
for area variables is handled in the same
way as that for other types of variable,
and depends on the variable's storage
class. The allocation and freeing of
storage within an area is handled by the
library module IBMBPAM.

IBMBPAM keeps a check on the amount of

storage allocated. If there is not enough
space for an allocation, or if the target
area is too small to hold the source area
assignment statement, the AREA condition is
raised.

The method employed is that storage is
allocated from the low-address end of the
area, and an offset is kept to the end of
the item with the highest address in the
area. This offset is known as OEE (offset
to end of extent). When storage is freed,
either the QOEE is altered or the storage is
placed on a free-storage chain, with the
largest segment at the start of the chain.

Before a space is freed, a check is made
to see whether it is contiguous with a
space or spaces that are already on the
free storage chain. If it is, the
contiguous spaces are amalgamated. A check
is then made to see whether the amalgamated
space is contiguous with the OEE. 1If the
space is contiguous with the OEE, the OEE
is pointed to the start of the space, and
the space removed from the free storage
chain. If the amalgamated space is not
contiguous with the OEE, the free area
chain is rearranged so that it is in the
correct order.

If the space to be freed is not
contiguous with another space on the free
storage chain, a check is made to see if it
is contiguous with the OEE. If it is, the
OEE is updated.

If the space to be freed is contiguous
neither with the OEE nor with another space
on the free storage chain, the space is
placed in its correct position in the
storage chain.

When a free chain exists, IBMBPAM always
attempts to allocate storage by using a
space on the chain. The low-address end of
the smallest possible space on the chain is
used, and the chain is then rearranged to
maintain the correct order of decreasing
size.

Multitasking Considerations

Storage handling within each task follows

the pattern described above, except that
certain storage requests are made for
storage that will be available to all

tasks. This storage has to be obtained in
subpool 0. To indicate such a requirement,

IBMTPGR is called with a negative value. A
GETMAIN for the specified amount is then
issued to subpool 0, the negative value
indicating what the storage must be in
subpool 0.

The method used to acquire the ISA is

slightly different for tasking. This is
described below.

Acquiring the ISA when Multitasking

The size of the ISA required for the major
task and every minor task can be requested
in the ISASIZE parameter of the EXEC card.
If the size in the parameter is smaller
than that needed for the program management
area, only the exact size required for the
program management area is acquired and all
further allocations of dynamic storage are
made by issuing GETMAIN macro instructions.
These allocations are made in exactly the
same way as they are when non-tasking
programs cannot acquire space within the
1SA, see above under "IBMBPGR - Program
Management Routine".

The default action, taken if no ISA size
is specified, is to acquire storage for all
ISAs in multiples of UK bytes. If the
program management area can be contained in
4K bytes (which will normally be the .case)
only 4K bytes are acquired and this is set
up as the ISA. If the program management
area contains more than HK bytes, (an
exceptionally large PRV might cause this) a
further 4K bytes are acquired. This
process continues until enough space is
acquired for the program management area.

4K bytes of storage will normally be
enough to hold the program management area
and the DSA for the main procedure.

Chapter 6: Storage Management 85

DETECTING CONDITIONS

SYSTEM COMPILED CODE OR LIBRARY ROUTINES

Use system facilities if I
possible. SPIE macro,
issued during initialization,
passes control to error
handling module when
interrupts occur

Execute checking code

for all enabled conditions
not detected by system.

I Call error handler

when condition detected.

INDICATING ACTION REQUIRED WHEN CONDITION OCCURS

COMPILED CODE

Set up flags indicating which
conditions are enabled.

Set up control blocks indicating
which ON statements have been
executed and, consequently,
which on-units are established
and the addresses of such
on-units.

CONTROLLING ACTION AFTER CONDITION HAS OCCURRED

ERROR HANDLING MODULE — IBMBERR

From information set up in control blocks and flags by compiled code, determine which of the
following actions to take when an interrupt has occurred

L 3 N

If condition disabled If on-unit established If no on-unit established
Ignore interrupt and Take action specified Take standard system
return. in on-unit. If no action as defined in

GOTO out of on-unit the language

take action specified

for normal return

Figure 7.1. The principles of error handling

86

Chapter 7: Error and Condition Handling

This chapter deals with the method used to
implement execution time error handling.
All errors detected at execution time are
associated with PL/I conditions and can be
handled either by on-units written by the
programmer or by standard system action, as
defined in the PL/I language.

The chapter starts with a brief
discussion of the terms and concepts used
in error handling. A discussion of the
error handling facilities offered by the

operating system and those specified in the

PL/I language follows. The implementation
problems these facilities raise and the
method used to solve them are then
described. A separate section is devoted
to the CHECK condition because this raises
special problems. The chapter is completed
by a brief discussion of the error message
modules, the modules used to implement the
PLIDUMP facility, and the handling of the
compiler FLOW option.

Error detection during compilation is
not covered in this chapter. Nor is any
advice given on how to use PL/I error
handling facilities. &advice on debugging
with dumps is given in chapter 12.

Note: If the NOSPIE or NOSTAE options are
specified in the parameters for the
procedure, much of what is said in this
chapter does not apply. The PL/I SPIE or
STAE macros will not be issued and system
detected interrupts and ABENDs will not be
handled in the PL/I defined manner.

Throughout this chapter a number of special
terms are used. Some of them are terms used
in the PL/I language, others are terms that
are used to describe certain implementation

features and concepts. The terms are listed

below.

Established: This term is used to describe
on-units and, sometimes, ON statements.
The on-unit or statement is said to be
"established”, if the action specified in
the on-unit or ON-statement will be taken
should the specified condition arise. Thus
an on-unit becomes established when the ON
statement is executed and ceases to be
established when an ON or REVERT statement
referring to the same condition is
executed, or when the associated block is
terminated.

Chapter 7:

abled: This term is used to describe
certain PL/I conditions (SIZE, CONVERSION,
etc.). A condition is enakled when the
occurrence of the condition will result in
the execution of an on-unit or standard
action. A condition is disabled when the
occurrence of the condition will,
apparently, be ignored.

Qualified and Unqualified conditions:
Qualified conditions are those conditions,
such as ENDPAGE, that need to be qualified
by a file or other name. Ungualified
conditions are those that do not need
gqualification. Figure 7.3 shows which
conditions are qualified and which are
unqualified.

Program Check and Software Interrupts:
Certain PL/I conditions are detected

“automatically by the computing system.

Others have to be detected by special
checking code either in library modules or
in the compiled program. Interrupts
detected by the system are referred to as
program_check. Interrupts detected by
special checking code are referred to as
software-detected or software interrupts.
A list of program check interrupts and
their associated PL/I conditions is given
in figure 7.2.

These terms program check and software
interrupts are used. for convenience in this
publication and are not accepted terms in
the PL/I language. Figure 7.3 shows which
interrupts are system detected and which
are software detected.

Static_and Dynamic Descendency: Static and
dynamic descendency are terms used to
define the scope of PL/I features. On-
units are dynamically descendent. That is,
they are inherited from the calling
procedure in all circumstances. Condition
enablement is statically descendent. That
is, it is inherited from the containing
block in the source program. Static
descendency can be determined during
compilation. Dynamic descendency cannot be
known until execution. See figure 7.4.

Normal Return: Normal return is return
from a called block by means of reaching
the END or RETURN statement rather than
because of a GOTO out of the block. In an
error-handling context, normal return is
taken to mean normal return from the on-
unit. The action taken after normal return
from an on-unit is specified in the PL/I
language. For most conditions, it is to
return to the point of interrupt.

Error and Condition Handling 87

________ Standard system
action is the name given to the default
PL/I-defined action taken when a condition
occurs and there is no established on-unit
for that condition.

St
|

1
Machine interrupt | PL/I condition |
T s memmomomomoooee ===
Operation	
Privileged operation	
Execute	
Protection	ERROR
Addressing	(after issuing
sSpecification	a message)
Data	
T	
Fixed-point overflow FIXEDOVERFLOW/SIZE	
Fixed-point divide ZERODIVIDE/SIZE	
Decimal overflow FIXEDOVERFLOW/SIZE	

| Exponent underflow UNDERFLOW

|

|
| Exponent overflow | OVERFLOW |
| |
Floating-point divide| ZERODIVIDE |
i

|

e ca——- - — - -~ — - -
Figure 7.2. Machine interrupts
associated with PL/I
conditions

ifﬁackgroum‘l to Error Handling

System_Facilities

The operating system offers certain
error-handling facilities. These can be
summarized as follows:

Various situations can cause an machine
interrupt which results in entry to the
supervisor. It is possible for the
programmer to define the action that will
be taken after any of these interrupts by
means of a routine specified in a SPIE
macro instruction. Alternatively, the
progranmer can accept the default action of
the system. It is also possible for the
progranmer to prevent the occurrence of
certain interrupts by masking out fields in
the PSW.

PL/I FACILITIES

The PL/I language offers similar but
greatly extended facilities. The number of
situations causing interrupts is
considerably larger and some, such as
ENDFILE, can be used to control normal
program flow rather than to handle errors.
The use of on-units allows the programmer
to obtain control after any interrupt.

88

Alternatively he can accept standard system
action. The programmer also has the choice
of whether certain of the conditions will
cause interrupts. This is done by enabling
or disabling the conditions. If the
condition is disabled neither an unit ncr
standard system action will be taken if the
condition occurs.

A number of PL/I conditions correspond
directly to the interrupts that are
detected by the operating system (see
figure 7.2). Other conditions however
belong only to PL/I.

The majority of PL/I conditions are
caused by errors in program logic or the
data supplied. Some, however, are not
connected with errors. These are conditions
such as ENDFILE, which occur at
unpredictable times and consequently cannct
easily be anticipated by code in the source
program. .

conditions that are most probably caused
by programming errors are known as error
conditions. Figure 7.3 shows which
conditions are error conditions. The
standard system action for these conditions
is to put out a message and raise the ERROR

condition.

The ERROR condition is also raised by
any programming erxror that is not directly
covered by a PL/I condition. A data
interrupt, for example, raises the ERROR
condition, and certain software detected
conditions, such as taking the square root
of a real negative number, also raise the
ERROR condition.

The ERROR condition consequently gives
the programmer blanket coverage of all
program errors. The ERROR condition differs
from other conditions in that a diagncstic
message is always generated regardless of
whether an ERROR on-unit exists. If an on-
unit exists, the message is generated
before on-unit action is taken.

A further facility offered by PL/I is
the availability of condition built-in
functions and pseudo-variables. These
allow the programmer to inspect various
fields associated with the interrupt and,
in certain cases, to alter the contents of
these fields.

The situation in PL/I is complicated by
the question of the scope of on-units and
condition enablement. Condition enablement
is statically descendent and can be decided
during compilation. On-units, however, are
dynamically descendent and the
establishment or otherwise of on-units can
only be decided during execution. (See
"Terminology" above.)

[T T T T T T T T T T T T T T T e e e e e e e eSS S s —Ss——-——————ee- mossssess —e———- 1
| Programj
| ~-mer

Fiqure 7.3. (Part 1

|Qual-|Description

| Name of
|
| |
|
| Computaticnal |
| |
| CONVERSION | no
I |
| |
| |
| FIXEDOVERFLOW | no
| |
| |
| |
| SIZE | no
| |
| I
| |
| OVERFLOW | no
| |
| |
| |
| UNDERFLOW | no
| |
| [
| |
| l
| ZERODIVIDE | no
i |
|
| Input/OQutput |
| |
| ENDFILE | yes
| |
| |
| ENDPAGE | yes
| |
A |
| |
| TRANSMIT | yes
| |
| [
| UNDEFINEDFILE | yes
| |
| |
| KEY | yes
| |
| |
| NAME | yes
| |
| |
| |
| RECORD | yes
| |
L

|

|Attempt to |Code in
|convert invalid |library
| character stringj

|overflow of a

| System
|fixed point |

|

|

| value

|

| Attempt to

|assign too largejchecking code, or
|a value | hardware

| |

|overflow of a System

| floating-point
| value

|
|
|
| Exponent becomes|System
|smaller than |
|
{
|
|
[

| permitted

| minimumn

|

|Attempt to System
|divide by zero

| [

| . | _
|End of file |code in
| reached |library

|End of a page on|Code in

|a print file |library
| reached |
| I
| Transmission |Code in

|exrror on a file |modules

|Exror in opening|Code in

|file |library
|

| Invalid key |Code in
| |library

|
|Unrecognizakle |Code in
|data-directed |library
|input |

| Incorrect size |Code in
| recoxd |library

of 2). PL/I conditions

Chapter 7:

|Recognized by
condition |ified| |

relevant
modules

relevant
modules

relevant
modules
library
relevant
modules

relevant
modules

relevant
modules

relevant
modules

|Default

yes

yes

yes

yes

no

no

no

no

no

no

| ERROR**
|Control{Condition|

yes

yes

yes

nce

nc

yes

yes

yes

no

Error and Condition Handling

89

Name of |Qual-|Description
Condition |ified|

——— " —— - ——— - —— — o —— " — T — —— ——— - - —— ————— - —— - ——

Program_ Checkout

SUBSCRIPTRANGE

STRINGSIZE

STRINGRANGE

CHECK
(variable or
label)

List Processing

|
|
AREA |
!
I

System_Action

ERRCR

FINISH

|
CONDITION |
(name) |

|

no

no

no

|Array subscript

|Recognized by |Default

|Compiler-generated|disabled

|outside declared|checking code |

| bounds

|Attempt to

|assign a string |library modules

|of too great
| length

|

|Attempt to

| access beyond

|1limits of string]|

yes/|Value assigned

no

no

no

no

| contxol passed
| through label

|Attempt to

|code in relevant
|

I

|

|Code in relevant#*
|1ibrary modules

[compiler-generated|disabled
|to identifier or{checking code, or

|library module

|allocate beyond |[modules

|end of area

|Any error
| condition

|including those |compiled code, or

|not covered by
| otherx
| conditions#*#*

| Program akout to|Relevant library

| be terminated

| Programmer
|defined
| condition

:
|Relevant library |enabled

|

|

|
|Relevant library |enabled
|modules, or |

|
| system |
| |
| |

| enabled
|modules |
| |
| |
|signal |enabled
| statement | (when
| | coded)

disabled

disabled

| Program|
| -mer | ERROR** |
|control|condition|

|
| | |
| | |
| yves | yes [
| | |
| I |
yes	nc
yes	no
ves	no

|
no	yes
I	

|
no	-
I	!
	i
no	-
l	

|

| ! |
| I I
| no [I
I | |
| | I

* When STRINGRANGE is enakled, library modules are always called to handle substxring
operations. These modules have the necessary code for checking for the STRINGRANGE

condition.

example. It is also raised as standard system action when handling all types of
error conditions.
error conditions.

Figure 7.3. (Part 2 of 2).

90

PL/I conditions

|

|

|

| ** The ERROR condition is raised when an error occurs that is not covered by PL/I

|

| Thus an ERROR on-unit enables the programmer to intercept all
|

|
|
|
!
exceptional conditions - taking the square root of a real negative number, for |
|
|
|
]

(SIZE):B:PROC;

ON ERROR SNAP;

CALL C;

C:PROC;

CALL D;

D:PROC; E:PROC;

CALLE;

Static descendency: the enablement prefix (SIZE): in
procedure B is inherited only by the contained procedure
C, regardless of which procedure calls which.

Dynamic descendency: the on-unit ON ERROR SNAP; is
inherited by any procedure called by B and any
subsequently called procedures. Thus, if B calls D, which
calls E, the on-unit is established in procedure E.

Figure 7.4. static and dynamic descendency

Chapter 7: Erxror and Condition Handling 91

UNQUALIFIED CONDITIONS

QUALIFIED CONDITIONS

A flag at the head of the DSA indicates that static ONCBs exist for that
block.

The block and current enable cells indicate which of those conditions that
are under programmer controt are enabled at any given point in the program.
Each such condition is represented by a single bit in each cell.

There is an on-cell for every ON-statement in the block. Each on-celf consists

of a one-byte code identifying the condition, e.g., X’OA* (SUBSCRIPTRANGE).

if the same condition appears more than once, previous on-cells are set to
zero.

Static ONCBs are held contiguously in static storage, in the same order as the
corresponding on-cells. They contain a code byte and flags that indicate such
things as : whether SYSTEM was specified, whether SNAP was specified,
whether the on-unit consists of a single GOTO statement, whether it is a nul!
on-unit, etc. If there is an on-unit, its address is given in the second byte. (For
GOTO-only on-units, the offset of the address of the label variable is given.)

Figure 7.5.

DSA

Flags

Address of LWS

A flag at the head of the DSA indicates that dynamic ONCBs exist.

Dynamic ONCBs are set up during execution of each block in which qualified
condition ON-statements occur. The last two words of a dynamic ONCB
contain the same type of information as static ONCBs (described above, under
‘Unqualified Conditions’), but use additional flags to indicate whether the
condition is enabled and whether it is established. The second word contains
qualifying information, such as the address of the FCB {for conditions such

as ENDFILE, RECORD, TRANSMIT, KEY, etc.), or address of a symbol
table (for ON CHECK on-units).

Dynamic ONCBs are chained together, the most recent being addressed from
a fixed offset in the DSA. The last dynamic ONCB in the chain contains zero
in its backchain field.

LWS

Flags

| ONCA offset

1st level

Flags

l ONCA offset

Enable Block Current
cells
Address of static ONCBs
Dynamic ONCB chain
Address of on-celis
On-cells st l 2nd I 3rd I s
End of chain (Zero)
Address of FCB
Dy
ONCB Code Flags
Address of on-unit
" Backchain

Address of symbol table

v .
ONCB Code Flags

Address of on-unit

Backchain

Address of FCB
Dynamic [—
ONCB Code Flags

Offset of label variable
(On-unit is GOTO only)

Address of label variabte

2nd level

Backchain to dummy ONCA

Condition built-in ONCA
function information
Static storage

st static
Address of on-unit OncB
Code Flags

2nd static
Address of on-unit ONcB
Code I Flags .

3rd static
Not set (system action) Once

i B

The major fields used in error handling

Implementation of Error Handling

To implement the PL/I erxror handling scheme
it is necessary to be able to detect all
the PL/I conditions, to acquire various
information about how the conditions
occurred for condition built-in function
values, to determine whether the condition
is enabled and whether an on-unit is
established, and then take the necessary
action.

The methods used by the PL/I optimizing

compiler are summarized below.

1.

Detection of the PL/I conditions

All PL/I conditions that correspond
directly to program check interrupts
are left to the detection of the
operating system.

A SPIE macro, issued during program
initialization, results in control
being passed to the error handling
module IBMBERR.

All other interrupts are detected by
special checking-code, either
generated by the compiler, or included
in library modules. The checking-code
calls the error handling module
IBMBERR when a condition is detected.

Acguiring information about the
interrupt

Information about the interrupt is
obtained by analyzing the PSW for
program check interrupts and by
checking-code for software detected
interrupts. Condition built-in
function values are accessed through a
control block known as the ON
communications area(ONCA).

For software detected conditions, the
ONCA is largely set up by the
checking-code. For system detected
conditions the ONCA is set up by the
error handler from information in the
PSW.

Compilation and handling of on-units

Certain simple on-units are
represented by a series of flags in an
ON control block (ONCB), but the
majority are compiled as independent
program blocks to which control is
passed from the error handling module.

Maintaining a_record of_ enablement_and

establishment

During execution, information

Chapter 7:

indicating which conditions are
enabled and which on-units are
established is placed in the following
control blocks:

Enable cells - indicating enablement
or disablement of the
conditions that can be
enabled and disabled by
the programmer.

ON cells - indicating which
unqualified conditions
have established
on-units.

ON control blocks -
(ONCBSs)

indicating address of
on-units or action to
be taken, and, for
gualified conditions,
whether the on-unit is
established, and, for
CHECK only whether the
condition is enabled.

5. Determining and directing action when
interrupt occurs

After every interrupt, control is
passed to the error-handling module
IBMBERR.

A test is first made to see whether
the condition is one that may be
enabled or disabled by the programmer.
If the condition is disabled, control
is returned to the point of interrupt.
If the condition is enabled, a search
is made in all active blocks for an
established on-unit. This is done by
examining ON cells or ONCBs set up by
compiled code. If an on-unit is
found, the specified action is taken.
If the dummy DSA is reached without
finding an on-unit, standard system
action is taken under the control of
the error-handling module.

The scheme is shown diagramatically in
figure 7.1, and each topic is discussed in
greater detail in the sections below. A
summary of the uses of the various control
blocks is given in figure 7.5.

Figure 7.6 gives a programming example
in which the error handling actions can be
followed through. Figure 7.15 summarizes
the complete error handling operation. It
is intended for reference throughout the
chapter and for use as a reminder by
readers who know the basic principles.

The handling of the CHECK condition,
which is a special case, is treated in a
separate section of this chapter under the
heading "The CHECK Condition."

Error and condition Handling 93

h6

(SUBSCRIPTRANGE) : SORT:
SOURCE PROCEDURE OPTIONS (MAIN);
PROGRAM ON SUBSCRIPTRANGE BEGIN;
PUT EDIT (‘SUBSCRIPTRANGE OCCURRED’) (A);
PUT SKIP DATA {IJ,K};
/#*SUBSCRIPT VALUES FOR TEST#/
END;

.

ON SUBSCRIPTRANGE SYSTEM;

END SORT;

1. Remove the on-unit from the position it holds in the
block and treat it as a separate begin block.

2. Generate code to set a flag in the block enable cell of the

DSA, to indicate that SUBSCRIPTRANGE is enabled
throughout the block.

3. Generate code to set up two on-cells in the DSA. Set ub
two corresponding ONCBs in the static internal control
section {one for each ON-statement in the block).

4. Place instructions equivalent to the ON: in
compiled code. The first statement causes a code byte
corresponding to SUBSCRIPTRANGE to be inserted in
the first on-cell; the second statement causes the same
code byte to be inserted in the second on-cell, and sets
the first on-cell to zero.

5. Generate code to insert flags in the ONCBs. Insert the
address of the on-unit in the first ONCB.
Generate code to carry out the on-unit.

7. Generate code to check for the occurrence of SUB-

SCRIPTRANGE in every statement that could potentially
cause the condition to be raised.

ACTION
DURING
EXECUTION

1. The checking code generated by tine compiler-recognizes the occurrence
of SUBSCRIPTRANGE and passes control to the error handler, after
placing any required condition built-in function values in the ONCA. (in
this case only the error code is generated.)

2. The error handler checks to see if SUBSCRIPTRANGE is one of those
conditions that can be enabled by the programmer. Since it is such a
condition, a check is made, in the block enable cells of the DSA, to see
if it is enabled. (If it were not enabled, control would return directty to
to the point of interrupt.)

3. Finding that the condition is enabled, the error handler then goes to
the on-cells in the DSA. These are tested, using a transiate-and-test table
in the TCA, to see if SUBSCRIPTRANGE is established. After this, the
action depends on whether the code for SUBSCRIPTRANGE is detected
in the first or second on-cetl, and consequently whether the first or
second ONCS is used.

4. if the first ONCB is used, on-unit action is indicated; if the second ONCB
is used, standard system action must be taken. (Standard system action
would also be taken if the code for SUBSCRIPTRANGE were not found
in the DSA on-cells of the block in which the interrupt occurred, or in
the DSA of any dynamically encompassing block.)

[]

On-unit action System action

A further allocation of library workspace 1. For SUBSCRIPTRANGE, standard system

and a new ONCA are acquired in case they

action is to produce a message and raise
should be needed during execution of the

ERROR. The message modules are called

Figure 7.6. An example of error handling

on-unit. to put out a message dependent on the
The on-unit {addressed from the ONCB) error code.
is executed. ERROR is raised, and a search is made

. Provided there is not a GOTO out of the

on-unit, return is made to the error
handier. The error handier then carries
out standard system action for return
from an on-unit.

) through ail active blocks for an ERROR

on-unit. Since there is none, standard
system action is again taken; this is to

raise FINISH. Since there is no FINISH on-
unit, the standard system action of return-
ing to IBMBPIR is taken, thus terminating
the program.

DSA of block

A(1st. static ONCB) — offset X'5C’

Object module

A(latest dynamic ONCB) offset X‘60°

A(oncells) — offset X'70’

Oncells I : |
end marker

v
Oncells contain code for condition if
on unit established otherwise 0

Dynamic ONCB
Contains code indicating condition
qualifier and whether on-unit is
established. Also address on-unit.

Further dynamic ONCB
Contents as above. Dynamic ONCBs
are chained together.

Key

- = «= = Broken lines show method of addressing on-units
for qualified conditions. The ONCBs are chained
together and the address of the end of the chain
held at a fixed offset in the DSA. The on-unit
(if any) is addressed from the ONCB.

Solid line shows method of addressing on-unit for

unqualified condition, ONCBs are held contiguously
in the same order as oncells, and the address of the
first ONCB is held at a fixed offset in the DSA. By
determining the position of the relevant oncell, the
position of the required ONCB can be jnferred and
hence its offset from the start of the static ONCBs.
The first oncell refers to the first ONCB etc. The
on-unit is addressed from the ONCB.

Figure 7.7.

Addressing on-units

Chapter 7:

Standard housekeeping
area of DSA

1st. Static ONCB
Contains address of
on unit + other
information

2nd. Static ONCB
Contents as above

3rd. Static ONCB
Contents as _above

On-unit

On-unit

On-unit.

On-unit

On-unit

Error and Condition Handling

95

Detecting the Occurence of Conditions
SYSTEM DETECTED CONDITIONS

As far as possible, the detection of PL/I
conditions is left in the hands of the
operating system. Those conditions that can
be detected by the operating system are
left in the hands of the operating system.
The only interrupt that is masked out in
the PSW is the significance interrupt.
Regardless of the enablement or disablement
of PL/I conditions no other interrupts are
inhibitel.

When a condition is detected by the
system, a SPIE macro, executed during
program initialization, causes control to
be passed to entry point A of the error-
handling module IBMBERR. The address of
this point is held in the TCA appendage.
When entered by this entry point the error
handler equates the interrupt with a PL/I
condition and passes control to the main
error handling logic of the module. The
relationship between PL/I conditions and
system interrupts is shown in figure 7.2.

SOFTWARE DETECTED CONDITIONS

During compilation, the compiler analyzes
the conditions enabled for each block and
statement and ensures that the necessary
checking code will be executed. The
checking c¢ode may be specially generated by
the compiler, or it may be included in
library modules that will be called when
the particular condition is enabled. The
method used for checking for each condition
is shown in figure 7.3.

As far as possible the checking code is
not included in the program if the
condition that it checks for is not
enabled. However, every library module
contains the checking code for detecting
any PL/I condition that can occur in the
module. In certain circumstances,
therefore, code to check for software
detected conditions will be executed and a
call made to the error handler even though
the condition is disabled.

When an interrupt has been detected
during execution, the checking code sets up
a parameter list for the error handling
module IBMBERR. This parameter list, known
as the intexrupt control block, contains a
code that defines the type of interrupt
that has occurred and, if the condition is
qualified, contains a means of identifying
the qualifier. The checking code also
calculates the value of relevant built-in

96

functions and places these values, or their
addresses in a control block known as the
ON communications area (ONCA).

When these actions have been carried out
a call is made to entry point B of the
error handling module IBMBERR. The address
of this entry point is held at offset X'78'
in the TCA.

Detecting I/0 conditions

The TRANSMIT and the ENDFILE condition are
normally detected by the data management
routines rather than by PL/I code. When
this occurs the error or end-of-file
routine in the PL/I transmitter modules
receives control and passes it to the error
handler via a special 1/0 error module.
This I/0 error module contains the
necessary code to set up the interrupt
control block, including the error code and
the qualifier. These conditions can,
therefore, be considered to be software
detected. Further detail is given in
chapter 8 - Record Oriented Input/Output.

EXECUTING SIGNAL STATEMENTS

SIGNAL statements take the same form as
software detected interrupts, they are
executed by a call to IBMBERR with the
appropriate interrupt control block. The
error code in the interrupt control block
will indicate, to the error handler, the
type of condition signalled, and the fact
that the condition was signalled. The call
to the error handler is made to entry point
B, regardless of whether the condition is
normally detected by system or software.

It is necessary for the error handler to
know that the condition was signalled,
because different action may be required if
the interrupt was signalled when computing
certain built-in function values.

PASSING INFORMATION ABOUT INTERRUPT

When the error handling is entered it must
be able to access information akout the
interrupt. This information must identify
the type of condition that has occurred and
further identify the interrupt so that the
most useful diagnostic message can be
generated. Any relevant built-in function
values must also be available, plus the
default values for any built-in functions
that are not relevant to the type of

interrupt.

When the interrupt is software detected,
some of the information is set up in the
checking code before control is passed to
the error handler. When the interrupt is
system detected, the PSW is used and the
error handler interprets the information in
the PSW, setting up information in a format
similar to that produced by the checking
code. This allows the main logic of the
error handler to treat program checks and
software detected condition in the same
manner.

The parameters passed to the error
handler by compiled code are known as the
interrupt block, and take the following
format:

Word 1 Error code

Word 2 Qualifier if any

Words 3,4 and 5
extra information used in
handling CHECK

The error code defines the type of error.
The qualifier gives a method of identifying
the qualifier for qualified conditions.

For I/0 conditions the address of the
DCLCB, is used as a qualifier. The address
of a symbol table, control section, or
pseudo register offset is used for other
qualified conditions.

The address of software detected
interrupt is taken from the register 14
value when the error handler is called with
a BALR 14, 15. This value is stored in the
DSA by the prologue of the error handler.
When the interrupt is system detected the
address is taken from the PSW.

Exrror Code

The error code is ejther a two or four byte
code that defines the reason for the
interrupt. For all conditions except the
error condition a four byte code is passed.
For the errors that will immediately raise
the ERROR condition only a two byte code is
passed.

The four byte code is made up as follows:
Byte 1 identifies PL/I condition
Byte 2 identifies causes of condition
Byte 3 & 4 identify those ON built-in

functions that are valid for the
condition.

Chapter 7:

The two byte error code is raised only
for the ERROR condition. The ERRCR
condition is raised for those interrupts
and errors that have no directly associated
PL/I condition. Certain of these, such as
taking the square root of a real negative
number, are software detected. Others are
associated with program check interrupts
such as a data interrupt.

When the error condition is to be raised
a two byte code only is generated. The
value in this code corresponds with a table
held in the error handler which identifies
the cause of the interrupt.

condition Built-in Functions

Certain condition built-in function values
are implicit in the information that is
passed to the errxor handler. ONCODE, for
example, bears a direct relationship to the
error code. Other values, such as ONCHAR
and ONSQURCE must be calculated when the
interrupt occurs. These values or the
addresses of the values are placed in the
ONCA. The ONCA is addressed from library
workspace. The address of library
workspace is held at a fixed offset in
every DSA. ONCODE, ONLOC, and ONFILE are
not generated by, the checking code as their
contents are implicit in the information
passed to the error handler.

The ONCODE is deduced from the error
code and, when required, a transient
library module IBMBEOC is called to
translate the error code into the ONCODE.
Both an error code and an ONCODE are used
as it is possible to define the error mcre
accurately than can be done with the
ONCODES, which must be kept compatible with
other PL/I compilers. Thus the error code
allows a more useful diagnostic message to
be generated than would be possible if only
the ONCODE was generated.

The ONLOC value is also calculated by a
separate module. ONFILE is accessed from
the DCLCB. Both ONLOC and ONFILE are
placed in the ONCA only if an on-unit is to
be entered. Similarly if an on-unit is to
be entered the error code is placed in the
ONCODE field of the DSA. If the ONCODE
value is required in the on-unit the module
IBMBEOC is called to calculate the ONCODE
from the error code.

Chain_of ONCAs

PL/I allows access to condition built-in
function values when no condition has

Error and Condition Handling 97

86

PROGRAM FLOW

CONVERSION
J\ occurs ONCHAR S _——— e - —] -
MAINLINE CODE & ONSOURCE Continuation of mainline code MAINLINE
. CODE
addressesplacedinf~, \—— — — — — — — - - - - = - = - —_ = = = = = = = —= = = —
1st ONCA
Error code placed CONVERSION NTERSTO NAME condition [
in ONCODE field on-unit entered. N 10N occurs. _— .
New ONCA ON-UNIT DATAFIELD _ - CﬂxtuTan_on o_forz.mi —
acquired address placed
in second ONCA. NAME on-unit NAME GOTO causes
Error code placed entered. New ON-UNIT return to
in ONCODE field. ONCA acquired. mainline code
CHAIN OF ONCAs
_ Dummy ONCA Dummy ONCA Dummy ONCA Dummy ONCA
Holds all defauit Holds all defauit Holds al! default Holds al! default
values or their values or their values or their values or their
addresses addresses addresses addresses
1t ONCA _ _ _ 1st. ONCA 1st. ONCA 1st. ONCA
- ! ONCODE, ONCODE, ONCODE,
Ready for use : ONCHAR, & ONCHAR, & ONCHAR, &
) J ONSOURCE fields ONSOURCE fields ONSOURCE fields
- - = filled in filled in. unaltered. Will be
overwritten if there
2ndONCA 2nd. ONCA is a further
ONCODE & interrupt
| Readyforuse DATAFIELD
Ll e - - 4 filled in.
3rd. ONCA
Srd. UNLA_

All condition built in functions
accessed from dummy ONCA

Figure 7.8.

ONCODE, ONCHAR, and ONSOURCE accessed from first
ONCA. All others from dummy ONCA

Accessing a built-in function value

K
: Ready for use. |
|

ONCODE and DATAFIELD accessed from second ONCA.
ONCHAR and ONSOURCE accessed from first ONCA.
All others from dummy ONCA.

from the chain of ONCAS

On return from an on-unit all unnecessary
ONCAEs are discarded as they are in the
LIFO stack. The current ONCA retains the
previous interrupt information until over-
written. Values are taken from the dummy.

occurred or when a condition has occurred
in which the built-in function is invalid.
The rule is, that the built-in function
value given will be the most recent value
in an active ONCA or the default value. To
allow for this, ONCAs are chained together
and the end of the chain is the dummy ONCA
that is set up in the program management
area during program initialization. The
dummy has the same format as other ONCAs
and contains the default values or pointers
to the default values for all built-in
functions.

For every interrupt that occurs, a new
ONCA is acquired. This means that, should a
condition occur within an on-unit, an ONCA
will be available in which to place any
relevant built-in function values or their
addresses. A new allocation of library
workspace (LWS) is also required for use
during the on-unit.

When a built-in function value is
required, the ONCA before the current ONCA
is inspected. The current ONCA is unused
as it is ready for a new set of values.
Each ONCA is headed by flags that indicate
which built-in functions are given in the
ONCA. When the required built-in function
value is flagged as invalid, a chain back
is made to the previous ONCA. As all
fields are valid in the dummy, the default
will be used if there have been no
interrupts for which the function is valid.

In the program below, an example of the
chain of ONCAs is shown. The ONCHAR
reference in the NAME on-unit would be
valid if the NAME condition was raised in
the CONVERSION on unit. The correct value
would be accessed after chaining back to
the ONCA associated with the CONVERSION
interrupt.

In other circumstances the default value
would be accessed from the dummy ONCA.

CHAIN: PROC OPTIONS(MAIN) ;
ON NAME BEGIN;

UNIT*/
PUT DATA(ONCHAR);

/*NAME ON

GOTO LABEL1;
END;

ON CONVERSION BEGIN;
/*CONVERSION ON UNIT*/

GET DATA (A,B,C);

END;
LABELl: X=Y+2;

END CHAIN;

Chapter 7:

A situation that could occur in this
program, and the associated chaining of
ONCAs are shown in figure 7.8.

When an on-unit is completed, the latest
generation of LWS and the ONCA are deleted
immediately control returns to a block
before the error handler. This is because
they are held as VDAs associated with the
error handler's DSA. When control leaves
the error handler, the current ONCA will
contain the interrupt information for the
original interrupt. This information
remains until the ONCA is freed or a
further interrupt occurs, in which case it
is overwritten. (See figure 7.8.)

Establishment and Enablement
Information

(Executing ON Statements)

Establishment and enablement information is
set up and updated by compiled code.
Enablement is indicated by a set of flags
known as the "current enable cells," which
are held in every compiled code DSA.
Establishment for unqualified conditions is
indicated by a further series of bytes in
the DSA known as the "ON-cells."
Establishment for gqualified conditions is
indicated in flags in dynamic ONCBs.
Dynamic ONCBs are held in the DSA of the
block in which the associated ON-statement
occurs.

To alter the enablement for the duration
of a statement or to execute an ON
statement, compiled code alters the
appropriate fields mentioned above.

ENABLEMENT

Enablement is indicated in the current
enable cells, a two byte field held at
offset X'56' in the DSA. Each condition
whose enablement is under programmer
control has a bit allocated to it. The
conditions associated with each bit are
shown in figure 7.9.

The CHECK condition has three bits
associated with it. This is kecause the
CHECK condition can be used both as a
qualified and as an unqualified condition.
Bit zero indicates that CHECK is enabled,
either qualified for one or more variables,
or unqualified for all variables. Bit 11
indicates that CHECK has been enabled or
disabled as an unqualified condition. Bit
10, only valid if bit 11 is set, indicates
whether the unqualified CHECK is enabled or

Error and Condition Handling 99

- B i 1
| Bit 0 CHECK#* |
Bit 1 ZERODIVIDE |
Bit 2 FIXEDOVERFLOW |
Bit 3 SIZE |
Bit 4 CONVERS ION |

| Bit 5 OVERFLOW |
| Bit 6 UNDERFLOW |
Bit 7 STRINGSIZE |
Bit 8 STRINGRANGE |

| Bit 9 SUBSCRIPTRANGE I
Bit 10 CHECK* [
Bit 11 CHECK* |

|

* See section "The CHECK condition" for |
details |
IR . e mm e e m——m————————— 1

Figure 7.9. Meaning of enablement bits

disabled. (see later section in this
chapter "Handling the CHECK condition for
further details.)

A further two byte field in the DSA held
at offset X'54' is known as the block
enable cells. This field is similar to the
current enable cells and holds a record of
the enablement at the start of the block.

Both current enable and block cells are
set up by the prologue code. If the
enablement is altered for the duration of a
statement:, the appropriate bit in the
current enable cells is altered at the
start of the statement. At the end of the
statement the bit is reset to its previous
value. If there is an interrupt during the
execution of the statement, on-unit action
may return control to another part of the
block where different conditions are
enabled. The block enable cells are
necessary to allow for this. Whenever a
GOTO out-of-block occurs in an on-unit the
GOTO code in the TCA resets the current
enable cells from the block enable cells.
This ensures enablement will be correct,
regardless of the situation when control
left the block.

The only qualified condition whose
enablement is under programmer control is
the CHECK condition. As CHECK is a special
case it is treated in detail elsewhere.

The principle involved however is that
enablement for any particular qualifier is
given in a dynamic ONCB and, to discover
whether CHECK is enabled for a particular
item, a search must be made in the Dsa
chain for a relevant dynamic ONCB.

100

ESTABLISHMENT - EXECUTING ON AND REVERT
STATEMENTS

For establishment the situation differs
between qualified and ungqualified
conditions. This is because at any one
point in the program there can only be one
established on-unit for an unqualified
condition but there can be an unlimited
number of established on-units for
qualified conditions. In a program with a
number of files, for example, the
programmer may wish to take different
action when the end of the data is reached
in each of the files. Consequently there
could be an established ENDFILE on-unit for
each file.

On-units are established by the
execution of an ON statement. Once it has
been discovered that an on-unit is
established it is then necessary to access
the on-unit. Access to the address is made
through a control block known as the ON-
control block ONCB. For unqualified
conditions, ONCBs are set up during
compilation in static internal storage and
are known as static ONCBs. For qualified
conditions, ONCBs are set up (by compiled
code) in the DSA and are known as dynamic
ONCBs. See figure 7.7.

pualified Conditions

The establishment of qualified conditions
is indicated directly in the ONCB. all
dynamic ONCBs for a block are chained
together and address of first ONCB on the
chain is held in a field at offset X'60' in
the DSA. (See figure 7.8.)

Dynamic ONCBs contain a code indicating
the condition type, flags to indicate
whether the condition is enabled and
whether the associated on-unit is
established, a method of identifying the
qualifier, and, either the address of the
compiled code on-unit, or flags indicating
the action specified in the source program
on-unit. There is an ONCB for every ON
statement in the block that refers to a
qualified condition.

ON_and REVERT Statements: When the ON
statement is executed the appropriate
dynamic ONCB is set up, chained, and the
establishment bit in the ONCB is set 'on'
by compiled code. For second and subsequent
ON statements or REVERT statements for the
same condition and qualifier, the
information in the ONCB (flags and address
of on-unit) is altered.

System detected
interrupts

ENTRY POINT A

Software interrupts

ENTRY POINT B

Hardware interrupts
during error handling

ENTRY POINT C

Restore hardware
interrupt address
and return

Is
condition
digsabled ?
NO

Alter address- Alter address- Call IBMBPEP
entered-after- entered-after- to put out
hardware- hardware- message
interrupts, to interrupts, to
entry point C entry point C Y
Y
Determine Terminate
-t condition type program with
from PSW ABEND macro

Can
condition be
disabled ?

Yy

Call message
module to
generate message

Is it
ERROR?

YES

Established
on unit for
ondition in
DsA?”
NO

Special*
on-unit

Acquire LWS and
ONCA. Restore
hardware interrupt
address to entry

NO

Y

Chainback to
previous DSA

Carry out
specified action

Reached major
task dummy
DSA?

YES

NO

Take standard
system action

point A
On-Unit
GOTO Execute on-unit
out of
on unit —4———4
can occur
here - Reset hardware

interrupt address
to entry point C

L_._Y__.__/

Take action for
normal return
from on-unit

- _J

- Y

-

Standard system action and action for normal return takes one of the forms
shown below depending on the condition that caused the interrupt and
whether the interrupt was signalled. Messages are generated for some conditions.

Y v

N

Raise further

condition Return to
Start on-unit IBMBPIR to
search in DSA terminate task

of interrupt

Reset error
handling address
and return to
point of interrupt

* Special on-units are not entered these are: null on-units, or on-units containing only a SNAP or SNAP SYSTEM instruction.

Figure 7.10.

Simplified flowchart of IBMBERR

Chapter 7:

Error and Condition Handling 101

Unqualified Conditions

For unqualified conditions establishment
information is held in a series of one byte
fields known as oncells. There is one cell
for each ON statement in the block and,
consequently, for each ONCB associated with
the block. ONCBs for unqualified
conditions are held contiguously in static
internal storage in program block order.
(see figure 7.8.)

In each DSA containing ON statements an
area is reserved for ON cells. Cells are
one byte fields that correspond one-for-one
with the static ONCBs for that block. The
first ONCB for the block is addressed from
offset X"5C' in the DSA. ON cells are
initialized to zero by the prologue code.
When the ON statement associated with the
on-unit is executed, a code is set in the
ONCELL indicating the condition type. The
error handling module searches for an
established on unit by testing the ON cells
in the DSA of each active block until,
either an active ON cell for the condition
is found, or the major task dummy DSA is
reached. When an active ON cell is found,
the number of ON cells in the block
preceding the active ON cell are
calculated. The associated static ONCB will
be in the same relative position. As all
ONCBs for unqualified conditions are the
same length the address of the reguested
ONCB can be determined and the action to be
taken decided from the ONCB.

ON_and REVERT_Statement: When an ON
statement is executed a code indicating the
condition type is set in the appropriate ON
cell. If there was a previous ON statement
for the condition the former ON cell is set
to zero. For REVERT statements any ON cell
referring to the condition is set to zero.

If there is more than one ON-statement
for the same condition in a block, the
flags in the previous ON cell will be set
off when second and subsequent ON cell
flags are set on. The REVERT statement is
executed by setting the flag in the latest
ON cell to zero. The situation then
reverts to that at the start of the block.

HANDLING ON-UNITS

On-units, except certain single-statement
on-units, are treated as separate program
blocks by the compiler. They are separated
from the ON statement and compiled with
prologue and epilogue code. The address of
the on-unit is placed in an address
constant. The ON statement remains in its
logical place in the program and sets

102

either the ON cell or a flag in the dynamic
ONCB, to indicate that the associated on-
unit is established.

In order to save the overhead of
executing prologue and epilogue code,
certain single-statement on-units are not
compiled. Instead the action required is
indicated by flags in the ONCB and is
carried out under the control of the error
handling module.

The types of on-unit involved are:
1. Null on-units.

2. On-units containing only SNAP, SNAP
SYSTEM, OR SYSTEM options.

3. On units containing only a GOTO
statement.

The presence of these on-units is indicated
by flags in the associated ONCB. For the
GOTO only on-unit, the ONCB also contains
the offset in the DSA of the label variable
or label temporary to which the GOTO is to
be made.

The Logic of the Error Handler

A simplified flowchart of the error
handling module IBMBERR is given in figure
7.10. This flowchart shows the action
during the handling of an interrupt and
includes execution of an on-unit. The
logic is described below. A complete
description is given in the licensed’
program product document 0OS PL/I Resident
Library Program Logic.

IBMBERR - ERROR-HANDLING MODULE

The error-handling module, IBMBERR, handles
three situations. These are:

1. Program check interrupts.

2. PL/I conditions detected by the object
program.

3. Errors detected by the object program
that are not directly related to ,PL/I
conditions and which raise the ERROR
condition.

All three situations are ultimately dealt
with as PL/I conditions. For example, the
FIXEDOVERFLOW condition would be raised
when fixed point overflow occurs and causes
a program check interrupt. Where there is
no directly-applicable, PL/I condition (for

instance after a data interrupt) a system
message is printed and the ERROR condition
is raised.

PROGRAM CHECK INTERRUPTS

Before a program check interrupt can be
handled as a PL/I condition, action must be
taken to prevent the system terminating the
job should a further program check
interrupts occur. This is done by altering
the o0ld program PSW and returning out of
the SPIE exit code so that it appears to
the system that the interrupt has already
been handled. The second word of the PSW
passed to ERR in the PIE (program interrupt
element) containing the interrupt address
is stored in the register 15 field in the
save area which was current when the
interrupt occurred. IBMBERR then changes
the address in the PSW in the PIE to an
address in IBMBERR. Control then passes
via the supervisor to the address in
IBMBERR that has been inserted in the PSW.
Handling of the interrupt consequently
appears to the supervisor to be finished.
The address, in the field in the TCA, to
which control will pass after a program
check interrupt is then changed to
IBMBERRC. Should an interrupt now occur
during the execution of IBMBERR, control
will pass to IBMBERRC, which terminates the
job.

The first task is to generate a suitable
error code that will equate the interrupt
with a PL/I condition. The floating point
registers are saved in IBMBERR's DSa, if
the interrupt is one corresponding to a
PL/I condition, and control can then be
passed to the main PL/I condition-handling
routine described in the next section.
There are, however, three special cases
that require further action. These are:

1. If the interrupt was floating point
underflow, then the doubleword in
which the floating point register
which underflowed was stored is set to
zero.

2. If fixed point overflow, exponent
overflow, decimal overflow, or fixed
point divide has occurred, then it may
correspond to the PL/I condition SIZE
and not to FIXEDOVERFLOW ox
ZERODIVIDE. If this is possible, a
flag will have been set in the program
check interrupt qualifier in the TCA.
A test of this flag is therefore made
and the necessary action taken, SIZE
being raised if it is enabled.

If the interrupt was an operation
interrupt it may have been caused by

Chapter 7:

an extended floating point instruction
being used on a machine that does not
have the extended float instruction
set. If this is the case, the
instruction may require simulaticn.
The error handler therefore passes
control to a module IBMBEEF that
interfaces with the extended float
simulator IEXPSIM. IBMBEEF passes
control to the ‘extended float
simulator which returns the correct
result if the statement was valid, or
a return code if the statement was
invalid. If the statement is valid
IBMBEEF returns control to the point
of interrupt. If the statement was
invalid IBMBEEF returns control to the
error handler.

For those installations that do not
require extended float simulation a dummy
version of IBMBEEF is available. This
module returns control directly to the
error handler and the error condition is
raised.

SOFTWARE INTERRUPTS

When the main condition-handling logic is
reached, an erxor code will have been
generated to indicate the type of error or
condition that has been raised. For
program check interrupts, the code is
produced by the error module itself. For
errors or conditions detected by the object
program, the okject program sets up this
code. When the object program has detected
the error, this will, in some cases,
correspond to a PL/I condition. However,
there are certain errors (such as
attempting to take the sguare root of a
real negative number) that do not have
directly-related PL/I conditions. For PL/I
conditions, a four-byte code is passed.

For other errors, the code consists of only
two bytes. For the two byte code, the
first byte indicates which class of exror
has occurred. For the four byte code, the
first byte is the identifier of the PL/I
condition being raised (the same identifier
is used in on-cells).

The error-handling module checks the
first byte of the code to see whether it is
handling ERROR or another PL/I condition.
If the code indicates ERROR, then the
message module IBMBESM is loaded into a VDA
and called. This module prints the relevant
diagnostic message; a suitable four-byte
code is then generated. The situation is
then treated as for any other PL/I
condition.

The second two bytes of the code passed
when a PL/I condition has been raised

Error and Condition Handling 103

indicate which condition built-in functions
are relevant to the condition. If the
condition is one that needs to be
gualified, the qualification is also
passed.

When a PL/I condition error code is
passed, action depends on whether the
condition is one of those that can be
disabled by the programmer. If it is such a
condition, a test is made in the current
enable cells of the DSA. If the condition
is_not disabled, then a search for a
relevant established on-unit must ke made.
If the condition is disabled, a return is
made to the point of interrupt. To find
established on-units, a test is first made
in the action byte to discover whether the
condition is qualified. If the condition
is not qualified, a search is made through
the on-cells of all active blocks to find a
match for the number in the first byte of
the code passed to IBMBERR. This is done
with a translate-and-test instruction using
the TRT table addressed from offset X'1C'
in the TCA. When found, the position of the
located on-cell gives the position of the
associated ONCB. A test can then be made
to determine the action to ke taken.

If the condition is qualified, a search
for an active matching ONCB is carried out
through the chain of dynamic ONCBs held in
the Dsas.

If the major task dummy DSA is reached
without a match being found, then standard
system action is taken. This action is
defined in IBMBERR. When a matching active
ONCB is found, tests are then made, as
follows, on the flags in the ONCB.

Test 1. SNAP specified? If so, the
message module IBMBESM is
dynamically loaded and a SNAP
message printed.

Test 2. Is SYSTEM specified? (This can
occur when "ON condition SYSTEM"
has been specified.) If SYSTEM is
specified, then the action in
IBMBERR is taken.

Test 3. Does the on-unit consist only of a
GOTO statement? If so, then the
GOTO is executed without entering
an on-unit. This saves the
housekeeping involved in entering
an on-unit.

Test 4. Is the on-unit a null on-unit? If
.so, then the action on a normal
return from the on-unit is taken.

If none of these is positive, then it is
necessary to enter the on-unit.

Before entering the on-unit, the

104

following action must be taken. A new
allocation of library workspace must be
initialized and its address put into the
standard offset in the DSA of IBMBERR.

This provides workspace for any further
library modules that may be called. Tests
must be made to see that the ONCA is
correctly set-up for any built-in functions
that may be used. The address in the PICA
field which was altered to the error
handler, must also be altered to its
original setting so that program check
intexrrupts will cause entry to be made to
the error handler by the entry point
IBMBERRA rather than IBMBERRC. This
ensures that the acticn specified by the
PL/I program is taken if a program check
interrupt occurs during the execution of an
on-unit.

Normal return from the on-unit to
IBMBERR is made by a branch on register 14.
Depending on the condition, a return to the
interrupted program is then made, or somre
special action may be taken. Four PL/I
conditions cause action other than return
to be taken.

1. ERROR
If the condition was the ERROR
condition, then the FINISH condition
is raised.

2. FINISH
If the FINISH condition is raised then
a return code is set in the correct
field of the TCA, and GOTO performed
to the termination routine IBMBPIR.
(If FINISH is signalled, then return
is made to the point of interrupt.)

3. CONVERSION
If CONVERSION was raised, then a test
is made in the ONCA, and if either
ONSOURCE or ONCHAR has been accessed,
control is passed to the address
contained in the retry slot in the
ONCA. The conversion is then
attempted again. If the field has not
been changed, then the ERROR condition
is raised.

4. ENDPAGE
If ENDPAGE was raised, then a return

code is set in register 15 to indicate
that an on-unit has been entered.

RETURN TO POINT OF INTERRUPT

Software Interrupts

If the condition was one that was detected
by compiled code, then a return to the
point of interrupt is made by a branch on

register 14,

Program Check Interrupts

For program check interrupts, the status
of the program at the original point of
interrupt has to be restored before return
to the point of interrupt can be made.

This means that the contents of the system
save area must be reset, so that they are
identical with those saved after the
original interrupt. (The PSW and the
register values were saved in the DSa at
initial entry to IBMBERR.)

The method used is as follows. The
address in the PICA is altered so that the
address that is to be branched to, after a
program check interrupt, is changed from
IBMBERRC to another point in IBMBERR. An
interrupt is then caused, and the
supervisor gains control. Consequently,
the address in IBMBERR is reached with the
address of the system save area in register
1. The contents of the save area and the
PSW are then changed to those that were
current after the original interrupt. The
point of entry for program check interrupts
is then reset to IBMBERRA. Return is made
to the address in the PSW, which is that of
the original interrupt.

THE CHECK CONDITION

The CHECK condition has to be handled in a

different manner to other conditions. This

is because it can be used as a qualified or
unqualified condition and its enablement is
under programmer control.

The CHECK condition is disabled by
default and is enabled by writing a CHECK
prefix. It can be disabled for the duration
of a statement or block by the NOCHECK
prefix. Prefixes can take the form (CHECK)
or (NOCHECK), or the form (CHECK(aA,B)) or
(NOCHECK(A,B)). When no name list is
appended, the CHECK applies to all the
relevant names in the program. An ON-
statement may also be written as either ON
CHECK or ON CHECK(A,B). ON-statements are
independent of prefixes and may be included
in a block to which no prefix applies. A
qualified on-unit can be used with an
unqualified prefix and vice-versa.

Throughout this discussion, CHECK and
NOCHECK without a name list are referred to
as unqualified. CHECK or NOCHECK with a
name list are referred to as gqualified.

Chapter 7:

Raising the Check Condition

CHECK is normally raised by compiled code.
This is done by inspecting the source
program and generating calls to the error
handler at appropriate points. As
enablement is statically descendent, it is
possible to tell during compilation at
which points CHECK is enabled and
consequently at which points the calls to
the error handler have to be made.

However, for GET DATA statements there is
no means of knowing which items will ke
passed in the data stream, and if the CHECK
condition is enabled for any variable that
could be read in, it is necessary to check
every variable in the input stream to see
whether CHECK is enabled for that variakle.
consequently, when a GET DATA instruction
is being executed, it is necessary for the
error handler to test to see if the CHECK
condition is enabled.

With the exception of the CHECK
condition, all conditions whose enablement
is under programmer control are
ungualified. cConsequently, their
enablement or disablement can be indicated
by one bit in the enable cells. This is
because there are only two possibilities.
Either the condition is enabled or it is
disabled. With qualified CHECK, however
there are many Eossibilities, because CHECK
may be enabled for some variables and
disabled for others. cConsequently, the
enable cells are used in a different manner
for the qualified CHECK condition, and the
enablement of qualified CHECK for any
particular name is given in an ONCB.

When the CHECK condition is raised, the
error handler has the following tasks.

1. Test to see if CHECK occurred during
the execution of a GET DATA statement.

If so tests for enablement must be
made. If not continue with step 3.

2. Test to see if CHECK is enabled. This
involves a search along the static
backchain to determine, for each
block, first, if gualified CHECK is
enabled or disakled for the particular
name for which CHECK was raised, and
then, if unqualified CHECK is enabled
or disabled.

3. Search for a gualified established
on-unit. This involves searching the
dynamic backchain for a relevant

dynamic ONCB.

4. If there is no gualified established
on-unit search for an ungualified
established on-unit. This involves a
further search of the dynamic
backchain looking for appropriate

Error and Condition Handling 105

on-cells.

5. If no established on-unit is found,
take standard system action.

This process is illustrated in figure 7.11.

There are three bits that refer to CHECK in
the enable cells; they have the following
significance:

Bit 0
'0'B CHECK is enabled for certain items
in this statement
*1'B CHECK is disabled for this

statement

Bit 10 (only valid if bit 11 is set)

'0'B The unqualified prefix that applies
is NOCHECK

'1*B The unqualified prefix that applies
if CHECK

Bit 11

*0'B No unqualified prefix applies to
this statement

‘1'B An unqualified prefix applies to

this statement

Throughout this discussion Bit 0 is
referred to as the "any-CHECK" enablement
bit, and bits 10 and 11 as the "unqualified
CHECK enablement bits."™ Enablement and
disablement of qualified CHECK is indicated
in the flag bits of the ONCB.

The test for enablement begins by a test
on the any-CHECK bit in the enable cell.
If this is set to zero, control is
immediately returned to the caller.
bit is set on, a search is made for a
relevant qualified ONCB in the DSA of the
block in which the interrupt occurred. 1If
no such ONCB is found, the unqualified
CHECK enablement bits are tested for
unqualified enablement or disablement. If
bit 11 is not set, neither an unqualified
CHECK nor an unqualified NOCHECK applies,
and a further search must be made in the
preceding DSA on the static backchain. If
the dummy DSA is reached without any of the
tests proving positive, CHECK is disabled.

If the

106

searching for Established On-Units

When it is known that CHECK is enabled, a
search must be made for established on-
units. This search is separate from the
search for enablement. A return is first
made to the DSA in which the interrupt
occurred.

Two searches are made, the first for a
qualified on-unit. The complete dynamic
backchain is searched for relevant ONCBs.
If one is not found, a search is made
through the backchain for enable cells that
indicate unqualified CHECK. If nothing is
found, standard system action is taken.

Standard System Action

Standard system action for CHECK is taken
under the control of a special module
IBMBERC. This module acquires the
necessary symbol table address or
addresses, places them in a VDA and passes
control to the stream 170 initializing
routine and, on return, to the data
directed director module IBMBSDO. On
completion of the operation IBMBERC returns
control to IBMBERR.

Error Messages

The library module IBMBESM is called by the
error handler to transmit the system
messages and find the on-code value by
calling the ONCODE routine IBMBEOC; control
is then passed to IBMBESN to finish the
system message, or to go to generate the
SNAP message if required. The text for the
messages is taken from a series of message
text modules. The particular message text
module required and the message within the
module are determined from the error code.

stem_Mes: For non-PL/I conditions,
system messages have the following
form:

IBMxxxx 'ONCODE'= xxXx message text
(qualifier] IN STATEMENT xx AT/NEAR
OFFSET xxx IN PROCEDURE WITH ENTRY
XXXX

The qualifier might, for example, consist
of the file name. For PL/I conditions, the
format of the message is much the same, but

the name of the condition is also given.
For example:

IBM4 021 'ONCODE'= 3100 *FIXEDOVERFLOW'
CONDITION RAISED IN DECIMAL DIVIDE IN
STATEMENT 31 AT .OFFSET 000A35 IN
PROCEDURES WITH ENTRY ZERNES

Snap_Messaqes: If an on-unit contains both
SNAP and SYSTEM, the resulting message is
essentially the system message followed by
the line

FRCM (STATEMENT/OFFSET) xxx IN A
(BEGIN BLOCK/PROCEDURE WITH ENTRY
XXX/B 'xxxx' ON-UNIT)

which is repeated as many times as
necessary to trace back to the main
procedure. If an on-unit contains only
SNAP, the message begins

'XxxXxxx' CONDITION RAISED [IN
STATEMENTxxx] (AT/NEAR) OFFSET xxx IN
PROCEDURE xxx

and continues as for a SNAP SYSTEM message.

The statement number is not always
present in messages as the generation of
execution-time statement numbers by the
compiler is a compiler option.

When statement numbers are generated,
they are held on a block basis. For each
block or procedure, a table in static
storage relates each statement number to
the offsets of the corresponding
instructions in compiled code. A field at
a fixed offset each entry point gives the
address of the relevant table.

The statement number is held in relation
to its offset from the main entry point.
Since the PL/I program need not have
entered via this entry point, the offset is
calculated independently from that given in
the message. If the FLOW option is used,
then additional information is printed out
after every snap message. (See "The FLOW
Option, " later in this chapter.)

Interrupts _in Library Modules

When an interrupt occurs in a library
module, the system message does not give
the offset from the start of the library
module, but gives the statement number of
the statement in which the library module
was called and the offset of this statement
from the entry point of the procedure block
in which it is contained.

Chapter 7:

Identifying the Erroneous Statement

The address required to identify the
erroneous statement is always the address
held in the register 14 field in the most
recent compiled code DSA.

If the interrupt was a software
interrupt in compiled code, the address
will be the return address that was used by
the BALR instruction when IBMBERR was
called.

If the interrupt was a program check
interrupt in compiled code, the address of
the interrupt will have been moved from the
old PSW and placed in the register 14 field
by IBMBERR to simplify return to the point
of interrupt.

If the interrupt was in a library
module, the address required is the point
in compiled code at which the library
routine was entered. This will have been
placed in the register 14 field when the
library module was called.

Identifying Entry Point_ Name and

The address of the entry point of the block
is found by chaining back along the DSAs to
the DSA before the last compiled code DSA.
The address of the entry point used before
the interrupt is held in the save area of
this DSA as the branch register contents.
The dummy DSA ensures that a chainback can
be made from the main procedure DSA.

The name of the entry point is found by
chaining back one DSA beyond the first
procedure-DSA reached. This DSA holds the
address of the procedure-~-DSA entry point in
the register 14 slot of its register save
area (offset X'10' from the head of the
DsSA). The length of the name is held in a
one-byte field immediately preceding the
entry point. The name immediately precedes
the length field.

Statement numbers are generated
separately for each external procedure, and
the statement number table holds offsets
from the first entry point in the external
procedure.

when the statement number table is link-
edited, the address of this entry point is
placed at the head of the table.
Consequently, the required offset can be
found by comparing the address of the
statement causing the error with the
address of the first entry point held in
the statement number table.

Exrror and Condition Handling 107

If the NUMBER option is in force, the
numbers are held in four byte form preceded
by a halfword statement number. Otherwise,
the statement numbers are held in two byte
form. Flags indicating which options are
in use are held in the DSA. They are shown
in appendix A.

As the offsets may be up to 6 bytes in
length, a device is used for statement
numbering whereby the table is divided into
sections that correspond to the offset
values that are held in the first two bytes
of the offsets. Thus offsets starting X'00'
are held in the first section of the table,
offsets starting X'01' in the second, and
so on. Each section of the table is headed
by a pointer to the start of the following
section, or set to zero if there is no
following section. The complete table is
also headed by the value of the maximum
offset, so that offsets beyond the program
can be readily detected.

The statement number is found by
searching the correct section of the table
for the first offset that is less than or
equal to the last four hexadecimal digits
of the calculated offset.

For snap messages, once the on-unit has
been found and the appropriate message
generated, the rest of the trace gives
information about procedures, begin blocks
and on-units. Thus all compiled code DSAs
can be treated in the same way.

Filename and Name of CONDITION
Condition

If the error was in I/0, then the address
of the DCLCB of the file is passed to
IBMBERR which stores it for IBMBESN to find
the file name. Similarly, the address of
the control section containing the
condition name is passed to IBMBERR if the
CONDITION condition is raised, and IBMBESN
puts out the required section of message.

MESSAGE TEXT MODULES

The message module IBMBESM calls on a
number of message text modules to produce
the relevant message. These modules
consist essentially of the fixed message
text portions of the message. The messages
are held in groups.

The groups are addressed from a table at
the head of the module, and the messages in
their turn are addressed by an offset from
the start of each particular table in the

108

message text modules. The message required
is determined from information in the error
code. IBMBESN puts all error messages onto
SYSPRINT provided that SYSPRINT has nct
been declared with unsuitable attributes.
If it has been declared with unsuitable
attributes, then the system messages go to
the console operator, and the snap messages
are ignored.

DIAGNOSTIC FILE BLOCK

Every attempt is made to put out error
messages on the standard print file
SYSPRINT. However, there are no reserved
words in PL/I and consequently the name
"SYSPRINT" may be used for a file with
attributes other than PRINT OUTPUT, or may
be used for a variable of any other data
type. If SYSPRINT is declared as an
unsuitable type of file it cannot be used
for error messages and all error messages
are written on the console.

A control block, the diagnostic file
block (DFB), is set up during program
initialization to indicate whether SYSPRINT
can be used for error messages. If
SYSPRINT has Leen declared as a file the
address of the DCLCB is placed in the DFB.
The DFB (diagnostic file block) is
addressed from the TCA. When an error
message module is to be put out IBMBESM or
IBMBPEQ inspects the DFB to see if SYSPRINT
can be used for the message. If the flags
in the DFB indicate that SYSPRINT cannot ke
used, the module IBMBEDO is called.

IBMBEDO tests to see if SYSPRINT is open
if it is not, calls IBMBOCL to open it with
the attributes STREAM PRINT. If SYSPRINT
has been declared as a file the address of
the DCLCB is picked up from the DFB.

Should the attributes STREAM and PRINT be
incompatible with the declared or default
attributes this is diagnosed by the OPEN
module and Appropriate flags are set in the
DFB to indicate that SYSPRINT cannot be
used for error messages. This action does
NOT raise the error condition.

If SYSPRINT has not been declared, a
DCLCB will be generated and SYSPRINT will
be opened, provided that the error occurs
before a task has been attached. If a task
has already been attached, or if the error
occurs in an attached task, then SYSPRINT
cannot be opened and all error messages are
passed to the console.

If SYSPRINT is already open with
unsuitable attributes this will have been
flagged in the DFB and the messages will
again be passed to the console.

If SYSPRINT has been declared as a data
type other than a file this is flagged in
the DFB and the error messages are set to
the console.

If SYSPRINT has not been declared at
all, a diagnostic SYSPRINT is opened and
used, provided that there is a DD card for
SYSPRINT.

Dump Routines

A series of library modules are provided to
implement the PLIDUMP facility. Module
IBMBKDM is the dump bootstrap module which
is part of the resident library. This loads
and calls the transient dump control module
IBMBKMR, which in turn links and calils
those modules required to carry out the
dump options specified in the call to
PLIDUMP. Several transient modules are
used to reduce the amount of storage used
at any one time. The organization of these
modules is shown in figure 7.12.

In order to ensure that as much
information as possible is provided when a
call to PLIDUMP is made, a special SPIE
macro instruction is issued at the start of
every transient routine to intercept
program check interrupts during the
routine. When a program check interrupt
occurs, an attempt is made to continue with
the dump. If the interrupt occurs in a
program called from the dump control
module, that particular routine is
abandoned and a return is made to the dump
control module. Any further routines needed
to complete the information specified in
the options are then called. If the
interrupt occurs in the trace or file
modules, the "H" option is assumed and a
hexadecimal dump produced. If the
interrupt occurs during the execution of
the hexadecimal dump module, a SNAP macro
instruction is issued by the dump control
module and a snap dump is completed under
the control of the supervisor. When the
snap dump is completed control returns to
the dump control module and the PLIDUMP is
completed as reguested in the dump options.

As further insurance against error, the
dump control module IBMBKMR is divided into
sections, and, if an interrupt occurs in
any of these sections, control is passed to
a predefined address at the end of the
section. Processing then continues from
that point.

The dump modules are fully described in
the publication O0S_PL/I Transient Library
Program_Logic.

Chapter 7:

Dump_File

In order to avoid mixing of PL/I dump and
other information, dump data is not
transmitted to any PL/1I file. A special
dump file known as PLIDUMP is used for the
output of the dump modules. This file has
its own transmitter and a special opening
module IBMBKDO. A control block, the dump
block, (DUB) is set up during program
initialization and is used to hold
information about the status of the dump
file and to simplify access to the file.
The DUB (dump block) is addressed from
offset X*'24' in the TCA appendage. To
generate a PL/I dump it is necessary to
have a DD card for PLIDUMP, or PL1DUMP.

Before any output has been produced by
the dump modules, the dump control module
IBMBKMR inspects the DUB to see if the dump
file is open. If the dump file is not
open, and is not flagged as unopenable, the
control module calls the dump file open
routine (IBMBKDO) to open the file.

IBMBKDO acquires space for the necessary
control blocks loads the dump transmitter
and attempts to open the dump file.

If the attempt to open the dump file
fails, IBMBKDO flags the DUB and returns.
The DUB flags are tested by IBMBKMR, and,
if the file has not opened, a message is
put out and the dump is terminated. The job
is either continued,
terminated or an exit is made from the
task, according to the options in the dump
parameter. IBMBKDO uses either the
declared PLITABS or loads the system
default PLITABS module, IBMBSTAB to
determine the pagesize for PLIDUMP output.
Provided a pagesize of two or more is
specified, the pagesize in PLITABS will be
used.

If the dump file can be successfully
opened, IBMBKDO tests the attributes of the
file. It it appears from the attributes
that the dump is being transmitted directly
to a printer or terminal,, the transmitter
IBMBKDT is loaded. If it appears that it is
being transmitted to a direct-~access device
or tape unit, the transmitter IBMBKDB is
loaded.

If IBMBKDT is loaded, two buffers are
acquired. The address of one of these
buffers is placed in the DUB. During the
execution of the dump, the dump data is
generated in the buffer which is addressed
by the DUB. When the first buffer is full,
a call is made to the transmitter module to
transmit the buffer to the dump file. A
test is then made to see whether the second
buffer has completed the previous I/0
operation. When the previous I/O operation

Error and Condition Handling 109

ENABLEMENT SEARCH J

Yes
Test ‘any-check’ Yes
enablement bit . Search dynamic L
in current Bit set on? | ONCBSs for relevant | »> Found? > D! ?
enable cell qualified CHECK
(bit 0}
No No
»>-
Test further
enablement bits
(10 & 11} for L
unqualified CHECK
Chain back to Ungqualified Unqualified
previous DSA on NOCHECK CHECK
static chain found? found?
Return to DSA
of block in
which CHECK
was raised
A\ 4
<.
Return to DSA Search dynamic
of block in Yes o Dummy DSA? No ONCBs for
which CHECK - v qualified
was raised ON-staterent
Take Chain back 10 ified
standard previous DSA Qualife
y system on dynamic found?
action chein
7 3
Search on-cells Enablement Take action
for unqualified WR”""S‘; - only specified
CHECK mmy specified in ONCB

Unqualified
CHECK
found?

Chain back

to previous
DSAon
dynamic chain

Take action
specified
in ONCB

Fiqure 7.11.

110

[ESTABLISHMENT SEARCH J

Handling the CHECK condition

CALL PLIDUMP

COMPILED

Figure 7.12.

Interrelationship of dump routines

Chapter 7:

CODE
IBMBKDM
B RESIDENT
ootstrap module MODULE
¢ Link
)
IBMBPES IBMBKMR IBMBKDO
LINK LINK ,
ABEND Analyzer o Dump Open Dump TRANSIENT
Control Module File Module MODULES
{ LOAD
bunk Junk Junc |
IBMBKPT) IBMBKFA IBMBKDT/8B
Dump Parameter File Attributes |—e Dump File
Translate Module Dump Module Transmitter
IBMBEOC IBMBKTC
ON-Code Trace check
Calculator module
) 1 !
‘ LINK
IBMBKTR XCTL
Dump trace > -
analyze
XCTL ‘
IBMBKTB
Control

Error and Condition Handling 111

(if any) is complete the address of the
second buffer is placed in the DUB and the
operation continues. If IBMBKDB is loaded,
only one buffer is used.

When the dump is finished, the dump file
remains open and the transmitter is
retained. This speeds execution of further
dumps. The storage is freed and the dump
file closed by IBMBPIT when the program is
terminated. The dump file is not placed on
the open file chain. IBMBPIT tests the DUB
to see if the file is open.

Miscellaneous Error Modules

A number of further library modules are
used in certain exceptional error
situations. These fall into two groups.

1. ABEND analyzers

IBMBPES Determine action to be taken.

IBMBPEV Put out message if necessary,
and dump if possible.

2. Exceptional error message_modules

IBMBPEP Exceptional error message
director

IBMBPEQ No main procedure or more

than 1024 files and controlled

variables.

IBMBPER No main storage available

IBMBPET Interrupt in error handling
routines or abnormal task
termination

All these modules are transient library
modules. They are fully described in the
relevant program logic manual.

Abend Analyzers

The ABEND analyzer IBMBPES is entered
during an ABEND because it was nominated in
the STAE macro instruction issued during
program initialization.

The ABEND is analyzed by checking the
major blocks to see if they have been
overwritten. If the backchain of DSAs has
become overwritten, the ABEND is allowed to
continue under supervisor control. If the
DSA backchain is correct but critical
control blocks appear to be overwritten,
IBMBPEV is called to put out a message and
if possible to provide a PLIDUMP. If no

112

overwriting is detected, the error handler
is called with a code indicating the error
condition.

The message put out by IBMBPEV where
possible contains the number of the PL/I
statement being executed when an ABEND
occurred.

EXCEPTIONAL ERROR MESSAGE MODULES

The exceptional error message modules
consists of a director and three message
modules. This arrangement has been adopted
so that the minimum space will be used. It
is necessary to conserve space as lack of
space is one of the reasons for calling the
modules.

The director module IBMBPEP determines
the nature of the exceptional error and
calls the necessary module to put out the
message.

The table below shows the circumstances
in which IBMBPEP is called and message
modules then called by IBMBPEP.

Calling

IBMBPEP

Circumstance module calls
Insufficient main IBMBPII IBMBPER
storage to set up
program management area
No main procedure Code in IBMBPEQ

dummy

PLIMAIN
Too many files or IBMBPII IBMBPEQ
controlled variables to
be held in PRV
Interrupt in error IBMBERR IBMBPET

handling routine entry point C

Abnormal termination IBMTPIR IBMBPET

of task

Module IBMBPEQ puts out the the message to
SYSPRINT except in those circumstances
where SYSPRINT cannot be used. (See above
under "Error Message Modules®). IBMBPET
and IBMBPER always put out their messages
on the console as they are called in
circumstances where SYSPRINT is likely to
fail or where operator, rather than
programmer action, is required.

PL/I PROCEDURE TO BE COUNTED

1 COUNTIT:PROC OPTIONS (MAIN):;
2 DO I=1 to 2;

3 PUT LIST (I);
4 END;

5 END COUNTIT;

In this procedure, the do-loop in statements 2 through 4 will be

executed twice, and the other statements once. Statement 2 will be executed
three times as a return is made at the end of the loop to test the value

of I. Note: This code may compile in different ways. See section on
DO-loops in chapter 2.

HISTORY OF THE STATEMENT FREQUENCY COUNT TABLE

After the branch-in to statement number 1, the table is set up with a value
of 1 for the first statement and 0 for all others, thus:

statement number 1 2 3 4 5
branch count 1 0 0 0 0

After the branch-out at statement 4, the count of the next statement
is decremented by one and the table becomes:

statement number 1 2 3 4 5
branch count 1 0 0 0 -1

After the branch-in at statement 2, the branch count for statement 2 is
incremented by one and the table becomes:

statement number 1 2 3 4 5
branch count 1 1 0 0 -1

At statement 4, a further branch out is made and a return made to
statement 2 to test the value of I. One is subtracted from the value
of statement five making the count -2 and one added to the count

of statement 2 making it 3. Because I is greater than 2 a

branch is made after the test to statement 5. This results in one
being subtracted from the count for statement 3 and one being added to
the count for statement 5. At the end of the program the table reads:

statement number 1 2 3 4 5
branch count 1 2 -1 0 -1

ANALYSIS OF THE STATEMENT FREQUENCY COUNT TABLE

A value known as the current count, which is initially set to zero,

is added to the branch count for each statement in turn. The sum is
the number of times the statement was executed; this value also becomes
the current count.

statement number current count branch count times executed
1 0 1 o+1= 1
2 1 1 2+1= 3
3 2 0 3-1= 2
4 2 0 2+0= 2
5 2 -1 2-1= 1

Figure 7.13 How branch counts are used to calculate the number of times each
statement is executed.

— S e . (e e s . e . S e S . e S S, e . o . T d——— T— {— .t It e, S . S . . e, Mt S S —— it s e s, S i, S, e s, S an. S S s, St St et s e G e e

Chapter 7: Error and Condition Handling 113

:The FL.LOW and COUNT Options

|The FLOW and COUNT options are used to
|provide information about which statements
|are executed in a particular run of a
|program. The FLOW option is used to
|[maintain a trace of the most recently

| executed statements. The COUNT option is
|used to maintain a count of the number of
|times each statement is executed.

|

| Both options are implemented by calling
|an interpretive library routine, IBMBEFL,
|at every point in a program where the flow
|of control may not be segquential. The
|1library routine, IBMBEFL, analyzes the
|[situation and updates tables to retain a
|xrecord of the branches made. IBMBEFL is
|also called during program initialization
| to set up housekeeping information. Two
|transient library modules are used to
|interpret the tables set up by IBMBEFL and
| to put out the information. The routines
|are IBMBESN for the FLOW option, and

| IBMBEFC for the COUNT option.

I

| The compiler generates the same

| executable code for both the COUNT and the
|FLOW option. Consequently, if either
|option is specified for compilation, either
|or both can be made available at execution
|time. If neither is required during
|execution but one or other was specified

| for compilation, the code to call IBMBEFL
|is still executed and IBMBEFL still forms
[part of the load module. When IBMBEFL is
[called in this situvation, it returns
|control to compiled code without recording
|any information.

|

| Points at which the flow of control may
|not be sequential are known as branch-in
|and branch-out points. For example,
|labeled statements and entry points are

| branch-in points, and GOTO statements are
| branch-out points. At branch-in and branch-
|]out points the compiler places code that
jwill call IBMBEFL. If the branches are

| taken, they are recorded. For COUNT they
|are recorded in a table known as the

| statement freguency count table. For.FLOW,
| they are recorded in a table known as the
|£low statement table.

|

|Use_of Branching Information for FLOW

|

|For the FLOW option, a list of the

| statement numbers at which branches were

| taken and a list of any changes of
|procedure is retained.

|

| FLOW output consists simply of the list
|that is recorded by IBMBEFL and typically
| takes the form shown below.

|
I 12 TO 18
I 27 TO 35 IN SORTER

114

| 76 TO 108 IN TESTER
| 134 TO 77 IN SORTER
I

|This indicates that the program branched
|from statement 12 to statement 18, then ran
|sequentially from 18 to 27. After
|statement 27 it branched to, or called,
|statement 35 in the procedure called

| SORTER. Control then ran sequentially to
|statement number 76, at which point it
|passed to statement number 108 in the
|procedure called TESTER. Control then ran
| sequentially from 108 to 134 and finally
|passed to statement 77 in SORTER.

|Use_of Branching Information for COUNT The
| COUNT option calculates the number of times
|each statement is executed by recording
|branch-in and branch-out points as they
|occur and analyzing them at the end of the
| program.

| The formula used for calculating. the
|number of times each statement is executed
| from the branch count is:

Cn=Cn-1+BIn-BOn-1

Where:

Cn =the number of times the statement
was executed. :

Cn-1 =the number of times the previous
statement was executed.

=the number of times the statement
was branched to.

BOn-1=the number of times the previous

statement was branched from.

BIn

— — i e e . e e G S . . S— —

To retain the information, a count field
|is set up for every statement in the
|program, and branches-in and branches-out
|are recorded when they occur. Every time a
|branch-in is made, the count for the
|statement to which the branch is made is
|incremented by one. Every time a branch-out
|is made, the count for the statement after
|the branch-out is decremented by one. When
|the program ends, statements that have
jvalues other than zero mark the beginning
|and end of ranges of statements that have
|been executed the same number of times.
|The number of times the ranges of
|statements have been executed is calculated
|by adding the value in the count field to
|the sum of any preceding values.

|

| This process can be followed in figure
|7.13.

|special cases There are a number of special
|cases that require additional action,
|either by the compiler, or by IBMBEFL, or
|by both. These special cases arise for
|three reasons:

1. Branches can be caused by
interrupts, but the points at
which they will occur cannot be

predicted during compilation.
Consequently the compiler cannot
place calls to IBMBEFL at these
points.

2. Branches to labeled statements,
can come from either the same
block or a different block.
Consequently the code generated by
the compiler cannot be used to
indicate whether a new block entry
is required.

3. The algorithm used for the COUNT
option is not effective for CALL
statements and function references
because the branch-in and branch-
out are made to and from the same
statement.

The first case is handled by IBMBEFL
checking for the occurrence of an interrupt
when it is called in situations where one
could have occurred. The second case is
handled by altering the GOTO code in the
TCA so that it calls IBMBEFL to set
appropriate flags when a GOTO out of block
|]occurs. A test for the flags is made when
the call to IBMBEFL for the branch-in at
the labeled statement is made. The thirad
case is predictable during compilation and
is handled by the compiler setting up
|different code for branches-in to CALL
| statements and function references, and by
IBMBEFL testing for such code. Details of
the methods used are given later.

| IMPLEMENTATION OF FLOW AND COUNT
[

Tables Used by FLOW_and_ COUNT

To enable it to retain FLOW and COUNT
information, IBMBEFL sets up tables in
dynamic storage. Figure 7.14 shows their
contents. Details of their formats are
shown in appendix A. -43

|

|FLOW Option: FLOW information is retained
in a table called the flow statement table.
The flow statement table has three
sections; a header section containing
housekeeping information, a statement
|number section holding the numbers of
statements that were branched to or from
plus flags to indicate the type of entry,
and a procedure names section containing
the names of procedures and on-units to
which branches are made. The length of the
flow statement table is determined by the
values given to "n" and "m" when the FLOW
option is specified.

When all the spaces in the table for

Chapter 7:

| statement numbers or procedure names have
|been filled, the earliest entries are
|overwritten. The fields in the header
|section are used to indicate which is the
|next space available in the table.

|

| The table is set up during program
|initialization and is addressed from the
|TCA.

|

|COUNT _Option: COUNT information is retained
|]in tables called statement frequency count
|tables. The tables have a field for every
|statement. They are set up when an
|external procedure is entered. A table is
|needed for every external procedure because
|two external procedures can contain the
|same statement numbers.

|

| Statement frequency count tables are
|chained together and addressed from the TCA
|appendage (the TIA). Two addresses are
|kept in the TIA, the address of the current
|statement frequency count table (that is
|the table that was last used) and the
|address of the statement frequency count
{table for the first procedure in the chain.
| statement frequency count tables are
|associated with their matching external
|procedures by having the address of the
|static control section for the procedure
|placed at a fixed offset in the table. (A
|static control section is unique to an
|external procedure and its address can be
|easily accessed as it is addressed
|throughout compiled code by register
|three). The last statement frequency count
|table in the chain has its chaining field
|set to zero.

| The length of statement frequency count
|tables depends on whether the GOSTMT or

| GONUMBER option is in effect. For GOSTMT
|one fullword is used for each statement in
|the procedure. For GONUMBER, two fullwords
lare used. This is because for GONUMBER it
|is necessary to retain the statement number
|as well as the count value. (For GOSTMT,
|the numbers will start at one and be
|incremented by one, and no record need
|therefore be kept.) If neither GOSTMT nor
| GONUMBER is in effect, no attempt is made
|to count the statements executed in the
|procedure and a statement frequency count
|table is not set up.

|Executable Code for FLOW and COUNT
|

|aAs described in the introduction, there are
| four stages in the implementation of the
|FLOW and COUNT options. These are:

1. Action during compilation. The
code to call the interpretive
library routiné IBMBEFL

Error and Condition Handling 115

HEADER
SECTION

STATEMENT
NUMBER J
SECTION

PROCEDURE
NAMES 4
SECTION

FLOW STATEMENT TABLE

One table for the.program

Figure 7.14.

116

Contains:

e Pointers to next entry in each
section of the table.
e Other housekeeping data.

Contains:

e Statement numbers of branches
plus flags indicating type of
entry.

Contains:

o Names of procedures and types
of on-units that have been
branched to.

HEADER
SECTION

BRANCH
COUNT
SECTION

<

STATEMENT FREQUENCY COUNT TABLES

One taple for each external procedure

Contains:

e Pointer to any further tables.

e Address of static control section of
associated external procedure.

e Other housekeeping data.

Contains:

® A field for each statement in the
program containing a count which
is incremented when the statement
is branched to and decremented when
the statement is branched from.

The contents of the flow statement table and the statement

frequency count table.

is placed at every predictable
branch-in and branch-out point.

2. Action during program
initialization. The necessary
housekeeping fields are set up.
This is done ky the program
initialization module IBMBPII and
the flow module IBMBEFL called at
entry point A.

3. Action during execution. The

branch-in and branch-out

information is collected by

IBMBEFL, called at entry point B.

IBMBEFL is also called at entry

point C to handle certain special

cases. The call is made when the

GOTO out-of-block code is

executed.

4, Action during output. The
necessary information is written
out. This is done by IBMBESN for
the FLOW option and IBMBEFCA for
the COUNT option.

These four stages are described in detail
|in the following sections.

Action During_ compilation

During compilation, the compiler examines

| the program and generates suitable code at
|each predictable branch-in and kranch-out

|point. Predictable branch-in points are:

° entry names

. labeled statements

. THEN and ELSE clauses of IF
statements.

. entries to on-units

. returns from CALL statements or
function references.

. the statement following the
END statement of an internal
procedure.

Predictable branch-out points are:

GOTO statements

function references

CALL statements

IF statements

RETURN statements

END statements

the statement before the
PROCEDURE statement

of an internal procedure.

The code for branch-out points is so placed
that the call to IBMBEFL will not be made
junless the branch is taken.

Statements preceding and following
internal procedures are treated as branch-

Chapter 7:

|out and branch-in points because the
|statement numbers of the statements
|executed are not sequential although the
|actual flow of control is sequential. If
|this were not done, the method used for
|counting statements would not work because
|the statements in the internal procedure
|would be given the count values of the
|preceding statements.

|

|The code placed at the branch-in and
|branch-out points takes the following form:

|
|L 15,

84(0,12) Pick up address of
| IBMBEFL from TCA.
|
| BALR 14, 15 Branch to IBMBEFL.
|
|DC X'8004" Constant containing

a two-bit flag
remainder for
statement nunmber.

|Register 14 is set to the constant
|containing the statement number and flags
|by the BALR instruction. IBMBEFL can
|therefore pick up the statement number by
|examining the constant.

|

| The constant is a halfword if the STMT
|option was used and a fullword if the

| NUMBER option was used. In both cases,
|first two bits are used as flags and the
|remainder is used for the statement number.

the

The flags indicate:

° branch-in

. branch-out

. branch-in to a new procedure
' or on-unit.

. return to point of interrupt

from end of on-unit.

— e B E— — —— —— ——

|For a branch-in to a CALL statement or a

| function reference, which takes place when
|the return is made, BAL 14, 0(15) is
|generated instead of BALR 14, 15. This
|situation requires to be recognized because
|the branch-in and branch-out both occur
{from the same statement. If it were not
|treated as a special case, the count of the
|next statement would be decremented by one
|when the branch-out was made and the count
|for the CALL statement would be incremented
|by one on return. Thus the CALL statement
|would apparently have been executed twice.
|The increment is therefore added to the
|statement after the CALL statement, thereby
|giving the correct values.

|

i In addition to the calls to IBMBEFL, the
|compiler also generates control sections
|that will result in IBMBEFL being link-
|edited and subsequently called during
|program initialization to set up the
|necessary housekeeping machinery to handle

Error and Condition Handling 117

COUNT or FLOW.

|

| For the FLOW option, the compiler
|]generates a control section called PLIFLOW
| that can be used during program
|initialization to call IBMBEFL. This
|control section takes the following form:

|

| USING *,15

| L 15,VCON

| BALR 1,15

| DC H'n'

| DC H'm*

| VCON DC V (IEMBEFLA)
|

|

For the COUNT oprtion, the compiler
|generates a control section called PLICOUNT
| that can be used to call IBMBEFL to
|initialize the COUNT option. It is the
| same as PLIFLOW except that the halfwords
|'n' and 'm' are replaced by a fullword
|X*'80000000°.

|

|The calls to IBMBEFL are generated if
|either FLOW or COUNT is defined at compile-
|time. The control sections are generated
|if the corresponding option is specified at
|compile time.

[Action During Program_ Initialization

|During program initialization, the program
|initialization module IBMBPII determines if
|either FLCW or COUNT or both are required.
|If the user specified either FLOW or COUNT
|during compilation, the requested option
|will be in effect during execution unless

| specifically overridden by the NOFLOW or

| NOCOUNT execution time option. If he
|specified either option for compilation he
|can also specify the other for execution.

|To determine which options are to ke used,
| IBMBPII inspects the execution time options
|and checks for the presence of PLIFLOW or

| PLICOUNT which will indicate that the

| corresponding option was requested at

| compile~-time.

|If one or both of the options are requested
| for execution but neither was requested for
|compilation, IBMBPII generates a message to
|say that the option will not be availakle.
|

|If an option is specified for compilation
|and not overridden for execution time, the
| corresponding control section will be
|available and IBMBPII passes control to

| IBMBEFL at entry point A through the code
|in the control section. If the control

| section corresponding to the required
|option does not exist, IBMBPII calls

| IBMBEFLA directly, passing it a value in

| register 0. This value is 4 if FLOW is
|[required and 8 if COUNT is required.

118

| If one or both of the options have been
|requested during compilation but neither
|are required during execution, IBMBPII sets
|FLOW values of (0,0) and calls IBMBEFLB to
|initialize the FLOW option. In this
|situation, IBMBEFL sets the address of the
| flow statement table and the addresses of
|the statement frequency count tables to
|zero.

|

| To initialize FLOW, IBMBEFLA sets up the
|flow statement table and initializes it
|with a dummy statement number entry and a
|dummy procedure name entry. The address of
|the flow statement table is placed in the
|TcA. If FLOW is not required, or if
|FLOW(0, 0) has been specified, the address
|is set to zero.

|

| To initialize COUNT, two addresses in
|the TIA are initialized. The first, which
|will contain the address of the first of
|the chain of statement frequency count
|tables, is set to zero. The second which
|will contain the address of the current
|statement frequency count takle is set to
|point to the first. If COUNT is not
|required, both fields are set to zero.

| _
| For both FLOW and COUNT, the address of
|entry point B of IBMBEFL is placed in the
|TCA; the GOTO code, which is in the TCA, is
|altered so that it calls IBMBEFL at entry
|point Cc. (This is necessary so that changes
|of block caused by GOTO statements can be
|intercepted and flagged.)

|puring execution, calls from compiled ccde
jat branch-in and branch-out points are made
|to entry point B of IBMBEFL whose address
|has been placed in the TCA. The action
|then taken depends on which options are in
|effect, the type of the previous entry, and
|the type of the present entry.

| Calls are also made to IBMBEFL at entry
|point C when the GOTO code in the TCA is
|executed.

| IBMBEFL_When Called_at_ Branch-In_and
|Branch-Out __Points

|

|Wwhen IBMBEFL is called at branch-in or
|branch-out points, the call goes to entry
|point B whose address has been placed in
|the TCA during program initialization.
|IBMBEFL first checkssto see which, if
|either, of the options is required by
|testing the fields used to address the flow
|statement table and the current statement

| frequency count table. If either of these
|is set to zero, the correpsonding option is
|[not in effect. If both are set to zero,
|control is returned to compiled code.

|If one or other of the options is in
|effect, there are four possible cases that
|require different action:

|

| 1. A branch-in following a

| branch-out or vice versa.

|

| 2. A branch-in following another

kranch-in

3. A branch-in to a new block.
4. Return from an on-unit to the

point of interrupt.

|These cases are dealt with individually in
the sections that follow.

Case 1. Branch-In Following a_Branch-oOut
or__Vice Versa This situation indicates
non-sequential flow of control, and must
therefore be recorded in the FLOW and COUNT
| tables. For FLOW, the new statement number
| together with flags indicating a branch-in,
|a branch-out, or a branch-in to a procedure
or on-unit, are entered in the position
indicated by the pointer at the head of the
flow statement table. The pointer is then
updated to point to the next available
space. If the next space would be outside
the table, the pointer is reset to the head
of the statemwent number section of the
table.

|
For COUNT, the count value in the field
for the appropriate statement number is
altered. For a branch-in, the count of the
| statement branched to is incremented by
{one. For a branch-out, the count of the
| statement after the statement branched from
|is decremented by ocne.

|

| If IBMBEFL is being called for a branch
|in, it is possible that it was caused Ly a
|GoTO-out-of-block and a new procedure or
|on-unit name may need to be recorded. 1In

| this situation, IBMBEFLC will have been
|called dquring the execution of the GOTO-
|out-of-block code and will have set a flag
|in the flow statement table. The flag is

| therefore tested and, if it is found on,
|the entry is treated as an entry to a new
|block. See case 3.

|

|A further possibility is that the branch-in
|will be a return to a CALL statement or a

| function reference. These are

| distinguishable because the call to IBMBEFL
|is made by a BAL instruction rather than a
|BALR instruction. If the COUNT option is in
|effect, this must be tested for, and the
|count value of the next statement rather

| than the current statement be incremented
|This is necessary because the branch-out
|and the branch-in for CALL statements and

| function references are both made at the

| same statement, (see description under

Chapter 7:

|*"Action during Compilation" earlier).

|case_2. A Branch-in Followed by Another
_____ No action need be taken as such
|a situation can only be caused by

|sequential flow. For example consider the

|statements:

|

| LABl: X=Y;
| LAB2: Z=X;
|

|Both LAB1 and LAB2 are potential branch-in
|points, but, if a call to IBMBEFL is made

| for 1LAB2 immediately after a call has been
|made for LAB1l, it is plain that the flow of
|control has been sequential. Consequently
|when a branch-in follows another branch-in,
| IBMBEFL returns control to compiled code
|without taking any action.

| This situation does not arise with
|branch-out points, because the code to call
|IBMBEFL is only executed if the branch is
|taken.

|case_3. _A_Branch-In to a_New Block: This
|case regquires that block information be
|entered for the FLOW option, and that, for
|the COUNT option, a check be made to see
|whether a new external procedure has been
|entered. If it has, a different staterent
jfrequency count table will have to be used
| because there is one for each external
|procedure.

|

| Special action will be required if the
|block entered is an on-unit. This is
|because the branch-out will have been made
|at the point of interrupt and this will not
|have been automatically recorxrded by « call
|to IBMBEFL. When a new block is entered a
|test is therefore made on the DSA flags of
|the block to establish whether it is an on-
|unit. The action taken if it is a on-unit
|is described later under the heading
|"Branch-In to an On-Unit."

|

| After any action required to handle
|entry into an on-unit, the following will
|take place.

For FLOW, the name of the block must be
|discovered and placed in the next available
|space in the names section of the flow
|statement table. Also, the statement
|number entry must be flagged to show that
|it marks a change of block. The procedure
|name is found following the DSA chain back
juntil a procedure DSA is found and
|accessing the name, which is held at a
|standard offset from the entry point of the
|procedure. When the procedure name has
|been found, the statement number and flags,
|and the procedure name, are placed in the
|appropriate sections of the flow statement
|table and the pointers altered to point to
|{the next available fields.

Exrror and Condition Handling 119

| For COUNT, a check must be made to discover
|whether a new statement frequency count

| table is required. This is done by

| comparing the address in the register 3

| save area of the DSA of of the procedure

| that called IEMBEFL with that at offset
|X*'4* in the current statement frequency
|count table. If they are the same no action
|is reguired, because the new block must
|have the same static control section as the
|previcus klock and consequently must be in
|the same external procedure. If the

| addresses are not the same, a search is
|made down the chain of statement frequency
|count tables for a matching table. If one
|is found, the address of the current table
|is set to point to the table that has Leen
| found, and the required entry made in that
| table. If no matching table is found, a new
|table must be set up.

I

|Creating_a_New Statement Frequency_ Count
|Table : Before creating a new statement

| frequency count table, IBMBEFL checks to
|see if a statement number table exists for
| the new procedure. If it does not,
|counting will not take place. In this

| situation, the current statement frequency
|count table is flagged to indicate that
|counting is to be suspended until another
| procedure is entered, and control is

| returned to compiled code.

|

| Provided a statement number table does
|exist, a new statement frequency count

| table will be required. IBMBEFL first
|obtains the required amount of non-LIFO

| storage for the table. One fullword is
|required for every statement in the
|external procedure if it was compiled with
| the GOSTMT option, and two fullwords are
{required for every statement if it was

| compiled with the GONUMBER option. The
|count fields are set to zero, and, for

| procedures compiled with the GONUMBER
|option the numbers are inserted in the
|tables. The new table is then linked with
|its matching external procedure ky placing
| the address of the static control section
| for the procedure in the new table.

|

|Branch-in to an On-unit: If the code that
|called IBMBEFL is found to be in an on-
|unit, special action is required. The

| statement number for the point of interrupt
|must be discovered and appropriate entries
|made in the flow and count tables, before
|the data for the entry to the on-unit can
|be recorded. This is because there will
|have been no call to IBMBEFL at the point
|of interrupt to register a kranch-out. The
| statement number of the interrupt is found
|by IBMBEFL in the same way as that used by
|the error message modules, described
|earlier in this chapter. When the number
|has been found, it is incorporated in the
| flow and count tables as if it were a
|normal branch-out. The branch-in entry is

120

|then handled as if it were a normal entry
|to a new block. It is possible for the FLOW
|option to be in effect without there being
|a statement number table available. 1In
|this situation, a statement number of zero
|is entered in the flow statement table for
|the branch-out at the point of interrupt.

I

| A problem also exists for COUNT if an
|interrupt results in the termination of a
|program. In this situation, the interrupt
|point must be marked as a branch/out,
|otherwise, statements after the interrupt
|would have an incorrect count value. This
|situation is checked for when the FINISH
|condition is raised. During the handling
|jof the FINISH condition, the GOTO code is
|executed and IBMBEFL is called at entry
|point C. A check is then made to see if
|FINISH was raised because of an interrupt.
|If it was, the point of interrupt is
|discovered and entered as a branch-out
|point in the appropriate statement

| frequency count table.

I

{Case_M4. Return from On-unit_to_Point of
|Interrupt_: When return is made from the
|end of an on-unit to the statement that
|caused the interrupt, there will be nc
Jautomatic call (resulting from code
|Jinserted during compilation) to IBMBEFL.

| The necessary information for the flow and
|statement frequency count tables is
|therefore entered when IBMBEFL is called at
|the end of the on-unit. The statement
|numbers passed for such calls are specially
| flagged so that IBMBEFL discovers the point
|of interrupt and takes the necessary action
|to update the flow statement table and
|statement frequency count tables.

| Action_on_OQutput

|Interpreting the Flow_Statement Table

|

| Information from the flow statement
jtable is interpreted by the message module
| IBMBESN or the PLIDUMP routines, and
|transmitted in the form of statement number
|pairs which are associated with the names
|jof procedures or with on-unit condition
|types.

|

| To extract the information, the message
|module must know from which points output
|in the statement number and procedure names
|section of the table output is to start.
|It must also be able to match the entries
|in the two sections of the table.

|

| The starting points in both sections of
jthe table are found by checking whether the
|dummy entry, inserted during program
|initialization, has been overwritten. If
jthe dummy entry has not been overwritten,

|the starting point is the first entry in
|that section of the table. If the dummy
|entry has been overwritten, the starting
|point will be the entry flagged as the next
|availakle entry. This is because the table
|is used cyclically, with the newest entry
foverwriting the oldest entry.

|

| Statement numbers are matched with

| procedure names by comparing the number of
|procedure names with the number of
|statement number entries that are flagged
|as being associated with procedure name
|entries. If the two numbers are the same,
|the first procedure name will be associated
{with the first statement number that

| requires a procedure name. If there are
|more procedure names than statement numbers
|that require procedure names, the trace of
| procedures must be longer than the trace of
| statement numbers. Accordingly, the

| procedure names are put out without
|statement numbers until the point is
|reached where the number of procedure names
|left is the same as the number of statement
| numbers that require them. From that point
|on statement numbers and procedure names
|are put out together. If there are more

| statement numbers that require procedure
|names than there are procedure names, the
|trace of statement numbers must be longer
|than the trace of procedure names. The
|earliest statement numbers are put out
|without names and, where a procedure name
|is required, "UNKNOWN" is used. When the
|number of names required matches the number
|availakle, the procedure names are put out
|with the statement numbers.

|Interpreting the statement frequency count
| tables

| Module IBMBEFCA is called at program

Chapter 7:

|termination to print count information.
[Output is tabular and printed three cclumns
|to a page. An entire page is built before
|transmission.

|

| Output for a procedure begins with the
|procedure name. This is followed by the
|column headings: ®“FROM TO COUNT". The
|current count is initialized to zero and
|the first non-zero entry in the table is
|found. The associated statement number is
|then placed in the 'FROM' part of a

| temporary line and the value for the non-
|zero entry is added to the current count.
|The entries for the following statements
|are scanned until one with a non-zero count
|value is found. The number of the
|preceding statement is then placed in the
|'TO* part of the line and the current count
|in the 'COUNT' part. This line is included
|in the page. The statement number found is
|then placed in the "FROM' part of the

| temporary line and its branch count (which
|may be negative) is added to the current
|count. The scan of entries continues until
|]another non-zero count is reached, and the
|process is repeated.

| If the count for a range is zero, the
|line is not moved into the page but the two
|statement numbers are saved for separate
|printing. Whenever a line is moved into
|the page, checks are made for the end of a
|column and the end of the page. When the
|page is full it is transmitted.

I

|The process is continued until the end of
|the table is reached.

|The next table is then processed, until all
|procedures have been handled.

|Finally, ranges of unexecuted statements
jare printed for each procedure.

Error and Condition Handling 121

COMPILATION

Ensure program
tests for all enabled

INITIALIZATION

non-system-detected
interrupts and calls

error handler when
they occur

Compile on-units as

separate program 3

blocks

Issue SPIE & STAE
macros to pass

S system detected
interrupts to

error handler

>

LOGUE CODE

Set up flags to
indicate to error

PROCEDURE CODE

Execute ON

handler which

Mainline code

conditions are
enabled

-

unit is established

statement by setting| Mainline code >
flag indicating on-

PROCEDURE CODE

—

Instruction capable
of causing condi-
tion not detectable
by system

OBJECT PROGRAM

occurred NO

Prepare data
including condition
type and built in
function values

Mainline code

hether conditioR> Mainline code)

System detected
interrupt

Set up PSW
branch to error
handler because
of SPI1E or STAE

Mainline code

r

Call error handling
module IBMBERR

{

Y

Determine PL/1
condition from
PSW

Y

ENTRY POINT B

IBMBERR
Error handling module

If no GOTO out
of on-unit take
action for normal

A

Return to point
of interrupt

return.
(See below)

Figure

122

.

Execute action
specified in on unit

Is it
the ERROR
cond

NO

IBMBERR
Error handling module

ENTRY POINT.A

Call message
module to put
out message

]

Is condition
disabled

On-unit
established

YES

Take standard
system action
(See below)

-

¥

—y
-

Possibly put out message, then take one of actions shown
below depending on condition that occurred

of interrupt

Return to point

Call IBMBPIR to
terminate program
or task

Raise further

condition

7.15.

Outline of error handling

Set up control blocks
from file declaration
and 1/0 statements

COMPILER

management routines
passing control blocks

Call PL/! library or data

ROUTINE

{Resident library)

OPEN/CLOSE BOOTSTRAP

OPEN ROUTINES

(Transient library)

CLOSE ROUTINE

(Transient library)

OPEN
ROUTINE

CLOSE
ROUTINE

Figure 8.1. The principles used in

124

COMPILED CODE

PL/I LIBRARIES

TRANSMITTER INTERFACE
ROUTINE

(Resident library)

PL/I TRANSMITTER

(Transient library)

TRANSMITTER ROUTINE

record I/0 implementation

Chapter 8: Record-oriented Input/Output

Introduction

This chapter considers the implementation
of the following statements:

File declarations

Open and close statements

READ, WRITE, DELETE, LOCATE, UNLOCK,
and REWRITE statements referred to
generically as transmission statements

Together, these statements make up record
I/0.

The 0S PL/I Optimizing Compiler uses the
data management routines of 0S/360 to
implement record I/O. These routines offer
facilities similar but not identical to
those of the PL/I language, The data
management routines reguire that:

1. A data control block (DCB) is set up
to describe and identify the data set.

2. OPEN and CLOSE macro instructions are
issued to open and close the data set.

3. GET, PUT, READ, or WRITE macro
instructions are normally issued to
store or obtain a new record.

The data management routines transmit the
data one block at a time between the data
management buffer and the external medium,
but each separate macro instruction issued
by the program results in only a single
record being passed. When a transmission
error occurs, or when the end-of-file is
reached, the data management routines
either set flags indicating the error or
branch to error-handling or end-of-file
routines that can be specified by the
programmer.

The basic method used by the optimizing
compiler to implement record I/0 is to
retain the source program information in a
number of control blocks, and to pass these
control blocks to PL/I library routines
which interpret the information and carry
out the necessary action by calling data
management routines in the appropriate
manner. The method is summarized below, and
shown diagramatically in figure 8.1.

Figure 8.15 shows the overall scheme in
greater detail.

Chapter 8:

Summary of Record I/O Implementation

File Declarations

For a file declaration, the compiler
generates two control blocks: the declare
control block (DCLCB) and the environment
control block (ENVB). Together, these two
control blocks contain a complete record of
the file declaration.

OPEN_Statements

OPEN statements are compiled as a call to a
resident-library bootstrap routine,
IBMBOCL, which has passed to it an open
control block (OCB) containing the
attributes and environment options that
have been used in the OPEN statement.

The bootstrap routine loads and calls a
number of transient routines that build a
definitive control block, known as the file
control block (FCB), from information in
the DCLCB, ENVB, and OCB. The file is
associated with the data set, and the
appropriate PL/I transmitter module is
loaded.

The FCB is used during the execution of
transmission statements to access all file
information. It is addressed via the DCLCB
and the pseudo-register vector.

Transmission_Statements

For the majority of file and statement
types, details of statement type, of
record, key, and event variables are set up
in control blocks during compilation;
during execution, these control blocks are
passed to a resident-library interface
routine, IBMBRIO. IBMBRIO then calls a PL/I
transient-library transmitter module, which
issues the appropriate data management
macro instruction, and checks for errors,
before returning control to compiled code.
This method is known as library-call I/O.

Record-oriented Input/Output 125

Transmitter Modules

Record_1/0_error modules

Indexed direct non-ex
Indexed sequential ou
Indexed sequential ou
Buffered consecutive
(non-spanned)
Buffered consecutive
(non-spanned)
Buffered consecutive
(non-spanned)
Buffered consecutive
(non-spanned)
Buffered consecutive
(spanned)
Buffered consecutive
(spanned)
Buffered consecutive
(spanned)
Buffered consecutive
Buffered consecutive
file
Teleprocessing file i
VSAM ESDS transmitter
VSAM KSDS sequential
VSAM KSDS sequential
/update
VSAM KSDS
Exclusive regional di
update update/input
Exclusive regional di
update update/input
Exclusive regional di
update update/input
Exclusive regional d4i
update updatesinput
Exclusive indexed dir
update/input
Exclusive indexed dir
updatesinput
Exclusive indexed dir
update/input
Exclusive indexed di
update update/input
Stream output file
Stream output file
Stream output file
Stream output print f
Stream input file
Stream output print f
Stream output print £
Stream input file
Stream output file

direct transmitter

clusive
tput
tput

input
output
update

OMR
associated

nput
output

input

rect

rect
rect
rect |
ect updateI
ect update
ect update{

rect

ile

ile
ile |

i 0 o - - - - - — - " - -~ - -

[TTTmEmsEsssssssssesess 1
| RESIDENT LIBRARY | f
| | | IBMBRKC
| IBMBOCL Open/Close bootstrap routine | | IBMBRLA
| IBMBRIO Record I/0 interface routine | | IBMBRLB
{ | | IBMBRQA
| TRANSIENT_ LIBRARY | |
| | | IBMBRQB
| Open_Modules | |
| | | IBMBRQC
| IBMBCPA Open error handler | |
| IBMBOPB Open routine Phase I | | IBMBRQD
| IBMBOPC Open routine Phase II | |
| IBMBOPD Open routine phase III | | IBMBRQE
| IBMBOPE Open routine phase II (VSAM) | |
| IBMBOPZ Direct output file formatter | | IBMBRQF
| | |
| Close Module | | IBMBRQG
| | |
| IBMBOCA Close module | | IBMBRQH
| | | IBMBRQI
| Transmitter Modules | |
| | | IBMBRTP
| IBMBRAA Regional sequential output | | IBMBRVA
| IBMBRAB Regional sequential output | | IBMBRVG
| IBMBRAC Regional sequential output | | IBMBRVH
| IBMBRAD Regional sequential output | |
| IBMBRAE Regional sequential output | | IBMBRVI
| IBMBRAF Regional sequential output | | IBMBRXA
| IBMBRAG Regional sequential output | |
| IBMBRAH Regional sequential output | | IBMBRXB
| IBMBRAI Regional sequential output | |
| IBMBRBA Regional sequential | | IBMBRXC
| input/update | |
| IBMBRBB Regional sequential | | IBMBRXD
| input/update | |
| IBMBRBC Regional sequential | | IBMBRYA
| input/update | |
| IBMBRBD Regional sequential | | IBMBRYB
| input/update | |
| IBMBRBE Regional sequential | | IBMBRYC
| input/update | |
| IBMBRBF Regional sequential | | IBMBRYDA
| input/update | |
| IBMBRBG Regional sequential | | IBMBSOF
| input/update | | IBMBSOU
| IBMBRCA Unbuffered consecutive | | IBMBSOV
| IBMBRCB Unbuffered consecutive | | IBMBSTF
| IBMBRCC Unbuffered consecutive | | IBMBSTI
| IBMBRCD Unbuffered consecutive OMR | | IBMBSTU
| IBMBRCE Unbuffered consecutive | | IBMBSTV
| associated file | | IBMCSTI
| IBMBRDA Regional direct non-exclusive | | IBMCSTP
| IBMBRDB Regional direct non-exclusive | |
i trans. | |
| IBMBRDC Regional direct non-exclusive | |
{ IBMBRDD Regional direct non-exclusive | | IBMBREA
| IBMBRJA Indexed sequential input/update| | IBMBREB
| IBMBRJB Indexed sequential input/update| | IBMBREC
| IBMBRKA Indexed direct non-exclusive | | IMBBREE
| IBMBRKB Indexed direct non-exclusive | | IBMBREF
lemcccc e ccccccd s rc e s c e —————— 4 L
Figure 8.2. Library subroutines used in record I/0

If the TOTAL option is used, the routines.
majority of transmission statements on I/0.

buffered consecutive files are compiled as
direct calls to the data management

126

I/0 error modu
I/0 error modu
I/0 error modu

Record:
Record
Record
Record

Record endfile module

This method is known

The ap

I/70 error module

le
le
le

as in-line

When using in-line I/0, subroutines
of the PL/I transmitters are available to
handle errxor situations.

propriate

TEmmmmmm——— 1
| FILE TYPE ACCESS METHOD |
| I
| Buffered consecutive QSAM/VSAM |
| Unbuffered consecutive BSAM/ VSAM |
| Regional sequential |
| (not spanned records) BSaM |
| Regional sequential |
| (spanned records only) BDAM |
| Regional direct BDAM |
| Indexed sequential QISAM/VSAM [
| Indexed direct BISAM/VSAM |
| TP buffered input/update TCAM |
| vsam VSAM |
| === m o = moommm oo oo |
| Consecutive or indexed files can be |
| used to access VSAM data sets; the PL/I |
| open routines will determine the data |
| type. For details see section on OPEN |
| statement. |
By PPt J

Access methods and file
types

Figure 8.3.

transmitter is loaded during the file
opening process.

CLOSE_Statements

CLOSE statements are implemented by a call
to the open/close bootstrap routine
IBMBOCL, which loads and calls the
transient close routine IBMBOCA. This
routine disassociates the file from the
data set, and handles the necessary
housekeeping.

Implicit opening is handled by manipulation
of addresses so that any attempt to access
the file when it is not open will result in
control being passed to the open routines
in the PL/I libraries.

Implicit_Close

Implicit closing is handled by the program
termination routine checking for open
files, and if it finds any, calling the
PL/I library routine to close them.

Chapter 8:

As can be seen from the summary above, a
large number of library subroutines and
control blocks are used in the
implementation of record I/O. These are
summarized in two figures: figure 8.2 for
library subroutines and figure 8.4 for
control blocks. More detailed descriptions
for each statement type are given below.

ACCESS METHOD

The access method used for different PL/I
file types is shown in figure 8.3.

File Declaration Statements

For each file declaration, a declare
control block (DCLCB) and, optionally, an
environment control block (ENVB) are set
up. Both are held in static internal
storage for internal files, or in a
separate control section for external
files.

The DCLCB is a control block that
contains the filename together with a
record of the attributes obtainable from
the file declaration, both those given
explicitly and those deducible by default.
This information is retained until the file
is opened, when, unless the TOTAL option
has been used in the file declaration, the
information is merged with any attributes
in the OPEN statement. ‘

The ENVB contains the addresses of all
environment options. The format of the
ENVB is given in appendix B.

From information in the DCLCB and the
ENVB, (and sometimes from the open control
block (0CB) produced from the OPEN
statement) a further control block, the
file control block (FCB) is generated.
During execution of an I/O statement, all
information about the file is derived from
the FCB.

Execution

No executable code is produced from the
file declaration. Figure 8.5 shows the code
resulting from a file declaration.

Record-oriented Input/Output 127

CONTROL BLOCKS GENERATED FROM

FILE DECLARATION

CONTROL BLOCK GENERATED FROM
OPEN STATEMENT

pDcLcB

Open control block (OCB)

Function Holds all file attributes
used in file declaration
Location Separate contro! section
for external files, static internal
for internal files.
When generated: During compilation
Contents

Record of file attributes

at declaration

File name

Address of ENVB

Offset of FCB pointer in PRV

Function: To contain file attributes
given in OPEN statement

Location: In static storage

When generated: During compilation
Contents: The attributes when
specified on the OPEN statement

Environment control block (ENVB)

Function: Holds information on
environment options
Location: In static storage
When generated: During compilation
Contents: Addresses of

blocksize

record length

of buffer tracks

KEYLOC value

key length

indexarea size

addbuf

Figure 8.4. (Part 1 of 2). The fields used in implementing record I/0

128

CONTROL BLOCKS GENERATED FROM
INPUT/OUTPUT STATEMENTS

CONTROL BLOCK GENERATED DURING
EXECUTION OF OPEN STATEMENT

Key descriptor (KD)

Function: To describe the key variable
Location: Depends on storage class of
key variable

When generated: Depends on storage
class of key variable

Contents: Length and address of key
variable

Record descriptor (RD)

Function: To describe the record variable
Location: Depends on storage class of
record variable

When generated: Depends on storage class
of record variable

Contents: Length and address of record
variable

Request control block (RCB)

Function: Holds a definition of the
statement for execution-time checking
Location: In statis storage
When generated: During compilation, for
library data management calis only
Contents: Flags defining statement
Code for TM instruction, or
a branch instruction (if
checking was done during
execution)

File control block (FCB)

Function: Acts as a central source of
information about the file
Location: In statis storage
When Generated: During open
Contents include:

Flags indicating

valid statements

Transmitter name

Transmitter address

Error module address

DCB/ACB address

Filename address

Buffer address

flags and workspace for

the Xmitters®
DCB

Data Management control block/

Access-Method Control Block

Figure 8.4,

(pPart 2 of 2).

Chapter 8:

The fields used in implementing record 1/0

Record-oriented Input/Output 129

OPEN Statement
Compiler Cutput

For an OPEN statement, the compiler
generates a call to the open/close
bootstrap routine, IBMBOCL, and an open
control block (0CB). The OCB holds any
attributes that are declared in the OPEN
statement.

More than one file may be passed to the
open routines. The last file has its last
parameter flagged with its first bit set to
'1'.

Execution

For an explicit open, a call is made to the
open/close bootstrap routine, IBMBOCL. For
each file to be opened, the following
information is passed to IBMBOCL:

The address of the DCLCB

The address of the 0CB,
no OCB exists)

The address of the TITLE,
none is specified)

(oxr zero, if

(or zero if

IBMBOCL has four entry points:

IEMBOCLA explicit open

IBMBOCLB implicit open for library
call 1/0

explicit close

implicit close

IBMBOCLC
IBEMBCCLD

When called by entry point A, IBMBOCL
invokes the transient library open routines
to open the file. If the environment option
TOTAL has not been used in the file
declaration, it will be necessary to
determine the attributes of the file by
merging the attributes in the file
declaration with those used in the OPEN
statement. Attributes in the file
declaration are held in the ENVB and DCLCB.
Attributes used in the OPEN statement are
held in the OCB. If the TOTAL option has
been used, attributes are taken from the
declaration, and any contradictory
attributes in the OPEN statement result in
the raising of the ERROR condition.

The open modules build an FCB and DCB
from the information in the control blocks,
initialize the pseudo-register vector to
point to the FCB, load the PL/I and data
management transmitters, and return to
compiled code. Five transient open modules
are used. Their functions are summarized
below and are described in detail in the
licensed publication 0S/360 PL/I Transient

130

Library: Program Logic.

Actions_Carried Out_ by Transient Open

The transient open routines perform the
following major functions when opening a
file:

1. Build the file control block (FCB) and

data control block (DCB), or, for VSAM

| the access method control block (ACB)

| for the file. The FCB is a PL/I

| control block used to access all file
information.. The DCB is a data

| management control block used to

| describe the data set. The ACB is

| the equivalent of the DCB for VSAM
files.

2. Issue the data management OPEN macro
instruction to associate the file with
the data set.

3. Obtain and initialize buffers and any
other blocks required for the file.

4, Determine which statement types are
valid for the file, and store this
information as a set of flags held in
the FCB.

5. Select the appropriate PL/I
transmitter, and load it for use
during transmission statements.

6. Check for errors, and raise the
UNDEFINEDFILE condition if any are
found.

7. Place the address of the FCB in the
correct pseudo-register vector offset.

The execution of an OPEN statement is
sumnarized in figqure 8.6.

|vsSaM_Data_Sets
I

|VSAM data sets both KSDS and ESDS arxe
|normally accessed by PL/I using VSAM macro
|instructions, however, in certain
|circumstances the data sets are accessed
|through the compatibility interface. If
|the file is declared with ENV (VSAM) the

| VSAM macro instructions will automatically
|be used. Even if it is not so declared, the
|PL/I open modules will normally detect that
|a vSsAM data set is being accessed. To do
|this they issue an RDJFCB macro
|instruction. However this action is not
{effective if the ALLOCATE command is being
|used under TSO to provide DD information,

DCL FI FILE UNBUFFERED RECORD INPUT ENVIRONMENT (RECSIZE (80));

Y

0000000002010200
0106190000000018
00000014000206F1
0000000000000000 ENVB
0000000200000040
0000004400000040
0000004000000040
000000400000004

Figure 8.5. Information in the file declaration is held in the ENVB and the DCLCB
until the file is opened

Chapter 8: Record-oriented Input/Output 131

@ DCLCB identifies file
\

@ Open control block

(OCB) holds options in OPEN
statement

@ Title held in static

OPEN FILE(F2) OUTPUT TITLE ('OUTFILE’);

Executable instructions call to Open close bootstrap module passing parameter list @ containing addresses etc

or (D) @)

©® OO0 ®

®

©)

DCLCB set up during file declaration see figure 8.5

Open control block in static. See Appendix A for Format :

000048 0020000000D00800 CONSTANT
00000000

Title (held in static internal) is addressed via locator (also in static internal)

Title

0000AO0 DG6E4E3C6CID3CH

Locator

000020 000000A000070000

Machine Instructions

000088 41 10 3 064 LA
00008C 58 FO 3 00C L

000090 05 EF

Parameter list

000064 00000044
000068 00000000
00006C 00000048
000070 00000020
000074 00000000
000078 80000000

1,100(0,3)

BALR 14,15

A..CONSTANT
A.DCLCB

A..CONSTANT
A..CONSTANT

A.NULL ARGUMENT
A.NULL ARGUMENT

15,A..IBMBOCLA

Point R1 at P-lists

Branch to open/close bootstrap

No. of files to be opened

A...OCB

A...LOCATOR for TITLE

Used for print files only

From To
compiled compiled EXECUTION
code code
IBMBOCL IBMBOPA IBMBOPB IBMBOPC IBMBOPD
Loads transient > > - >
open modules. Open Phase | | Open Phase I Open Phase |11 Open Phase 1V
Calls IBMBOPA
IBMBOPE IBMBOPZ
Open Phase |1 Formatting
VSAM files (direct output
only)
\— \
\/

132

RESIDENT LIBRARY
Figure 8.6,

Open statement

V
TRANSIENT LIBRARY

|because, in this case, the RDJFCB macro
|instruction cannot determine that a VSAM
|data set is being accessed. 1In this
situation the compatibility interface will
be used. It is possible for the user to
force the use of the compatibility
interface by specifying either "RECFM" or
"OPTCD=L" in the AMP parameter of the DD
statement.

The flow through the PL/I open modules
is as follows. IBMBOPA scans the list of
files to be opened and sets .a flag to
indicate that IBMBOPE is required for any
files declared with ENV (VSAM). 1If one or
more files are found without ENV (VSAM),
| IBMBOPB is called to open them. Then on
| return from IBMBOPB, IBMBOPE is called to
open any VSaM files. If IBMBOPB detects
that any consecutive or indexed files are
being used to access VSAM data sets, it
will set the flag indicating that IBMBOPE
is required and ignore that file. When all
the non-VsaM files have been opened,
IBMBOPD returns to IBMBOPA. IBMBOPA tests
to see whether there are any VsaM files to
be opened, and, if ther are, calls IBMBOPE.

IBMBOPE opens the files starting with
the first. Each file is completely opened
before starting to process the next. The
open process involves nine main steps, as
follows:

1. Merge attributes from OPEN
statement with file declaration
and check for validity.

Get non-LIFO storage space for the
FCB and ACB, and create the ACB
using the GENCE macro instruction.
The DDNAME is obtained from the
filename or the TITLE option.
password is obtained from the
PASSWORD environment option if
specified. The MACRF options used
| are:

The

SEQ/DIR
KEY/ADR
IN/OUT

SEQUENTIAL/DIRECT

KSDS/ESDS

INPUT/OUTPUT
(both specified
for UPDATE)

Issue an OPEN macro instruction
and test the return codes in the
ACB.

Check the actual values of the
RECSIZE, KEYLENGTH, and KEYLOC
options against any values
specified in the ENVIRONMENT
option. Check that NCP/STRNO is
not greter than one. If any

| errors or descrepancies are found,
the ACB must be closed.

Set up the mask of invalid

Chapter 8:

—————— ——— _—— — — — —— e . {— ot S—- — — — — — —. — — ——— f——— — {—— — {—— T— —— —

statements for use by IBMBRIO.

Get non-LIFQO storage space for the
IOCB and RPL, plus key space for a
KSDS, and a dummy buffer for a
buffered file. Create the RPL
using a GENCB macro instruction.
The OPTCD values are partially set
as shown below. The transmitter
merges the other options according
to statement type. The OPTCD
options set are:

KEY/ADR
SEQ/DIR
UPD/NUP

KSDS/ESDS
SEQUENTIAL/DIRECT
UPDATE/INPUT orx

ouTPUT
GEN/FKS GENKEY/not GENKEY
KEQ,MVE, and ASY are always
specified.

Load the approptriate library
transmitter as follows:

ESDS IBMBRVAA

KSDS SEQUENTIAL OUTPUT
IBMBRVGA

KSDS SEQUENTIAL INFUT/UPDATE
IBMBRVHA

KSDS DIRECT
IBMBRVIA

Insert "E" as the seventh
character of the error module
name, so that IBMBREEA will be
loaded if an error occurs.

Add the FCB address to the chain
of open files and set the address
of the FCB in the pseudo register.

The FCB and File Addressing

During execution of record I/O statements,
all information about the file is obtained
from the FCB. However, as the FCB is nct
created until execution, the FCB cannct be
addressed directly by compiled code.
Instead, compiled code obtains from the
DCLCB the offset within the PRV at which
the FCB address is held. This offset is
placed in the DCLCB by the linkage editor.
The mechanism is illustrated in figure 8.7.

The use of the pseudo-register vector
allows separately compiled programs to
refer to the same FCB for an external file,
even though the address of the FCB cannct
be known until execution. An explanation
of the use of the pseudo-register vector is
given in chapter 2, under the heading "Use
of the Pseudo-Register Vector."

Record-oriented Input/Output 133

Figure 8.7.

134

TCA

R12 »

DCLCB for file C

Address of PRV

PRV offset= 8 -

PL/! statement: DCL (A,B,C) FILE;

The address of the FCB for the file is obtained by adding
the offset in the DCLCB to the PRV address which is held

in the TCA

Addressing files via DCLCB and PRV

PRV

Address of FCB for file A

Address of FCB for file B

Address of FCB for file C

FCB for file C

Transmission Statements (Library-Call

1/0)

Compiler OQutput

For transmission statements the compiler
generates a call to the PL/I transmitter
interface module, IBMBRIO. IBMBRIO has the
following parameter list passed to it:

Address of DCLCB
Address of request control block (RCB)
Address of record descriptor (RD); or,
address ignore factor; or,
address at which to set pointer
Address of key descriptor (KD); or,
zexo if no key descriptor
Address of event variable (EV); or,
zero if no event variable
Abnormal locate return address (LOCATE
statements only)

The DCLCB is generated from the file
declaration, as described earlier in the
chapter. The remainder of the control
blocks in the parameter list are generated
for the transmission statement.

The request control block (RCB) defines
the statement type. It consists of two
words. The first is a fullword of flags
that define the statement type and option,
indicating whether the statement is READ
SET, READ INTO, WRITE FROM, etc. The second
word is a test-under-mask (TM) instruction
that is executed by IBMBRIO to check
whether the statement is valid. The flags
in the RCB are tested against flags in the
FCB or dummy FCB. If the statement is
invalid, a branch is made to an address
held in either the FCB or the dummy FCB.

If the file is not open, the dummy FCB will
be accessed, and the branch will be made to
the open/close bootstrap to open the file.
If the file is open, a real FCB will be
accessed, and the branch will be via a
bootstrap to the error handler. The RCB is
set up in static internal storage. The
format is shown in appendix B.

Chapter 8:

The record descriptor (RD) contains the
address, length and type of the record
variable. (The record variable is the
variable to or from which the record will
be transmitted.) A record descriptor is
generated only if a record variable is
used. The format is shown in appendix B.

The key descriptor_ (KD) contains the
address and length of the key variable.
(The key variakle is the variable to or
from which the key will be transmitted.) It
is generated only if a key variable is
used. The format is shown in appendix B.

If the record variable or the key
variable is STATIC INTERNAL, a complete RD
or KD is set up and placed in static
internal storage during compilation. In
most other circumstances, a skeleton RD or
KD will be set up, and will be completed by
the inclusion of the address during
execution. The completed descriptor may be
moved into temrorary storage. In certain
conditions, no skeleton is produced;
instead, the complete descriptor is built
in temporary storage by compiled code.

The event variable (EV) (if used)
contains information about the event that
has been associated with the event I/0
statement. (For format, see appendix B.)
The implementation of event I/0O is covered
briefly at the end of this chapter, and
further in chapter 11 for non-multitasking
programs and chapter 14 for multitasking
programs.

The abnormal locate_return block is used
only for LOCATE statements. It is the
address of a block containing the address
to which control will be passed if an error
is detected in a LOCATE statement and a
normal return is made after execution of
the on-unit. The abnormal-locate return
address is usually the start of the next
statement.

The code and control blocks generated
for a transmission statement using a
library call to the data management
routines are shown in figure 8.8.

Record-oriented Inputs/Output 135

olds address and length

COMPILATION q Record descriptor
h
DCLCB

of record variable Key descriptor
identifies file holds address and length of key variable
REQUEST CONTROL BLOCK
holds statement type

EXECUTABLE INSTRUCTIONS @ are a call to the PL/I library module IBMBRIO

completing and passing PARAMETER LIST @ which holds addresses of 1, 2, 3 and 4.

@ DCLCB, set up from file declaration holds address of FCB via pseudo register vector.
(See file declaration).

@ REQUEST CONTROL BLOCK holds record of statement type
000028 0880200091022001 CONSTANT

RECORD DESCRIPTOR holds address and length of record, set up as far as possible during
compilation, completed during execution. For statement above set up in temporary storage
during prolague code

compilation, but, for this statement, completely built by compiled code in temporary

@ KEY DESCRIPTOR holds address and length of key, set up as far as possible during
storage (see 5).

Executable instruction

* STATEMENT NUMBER 4

000092 41 90 D O0BS8 LA 9,184(0,13) Pick up address record descriptor
000096 50 90 3 084 ST 9,132(0,3) Place in parameter list

00009A 41 90 D O0BO LA 9,176(0,13) Pick up address-key descriptor
00009E 50 90 3 088 ST 9,136(0,3) Place in parameter list

0000A2 41 10 3 07C LA 1,124(0,3) Point R1 at parameter list
0000A6 58 FO 3 014 L 15,A. .IBMBRIOA

0000AA 05 EF BALR 14,15 Call IBMBRIO

Note: For this statement the record and key descriptors were sét up in temporary storage
during prologue code.

@ PARAMETER LIST passed to IBMBRIO

00007C 00000000 A..DCLCB Filled in by linkage editor

000080 00000028 A. .CONSTANT Request control block

000084 (00000000 A. .RD (Record descriptor)

000088 (00000000 A, .KD {Key descriptor (built during execution))
00008C 00000000 A. .NULL ARGUMENT

000090 80000000 A. .NULL ARGUMENT

Figure 8.8. (Part 1 of 2). Handling a transmission statement

136

EXECUTION OF TRANSMISSION STATEMENT

Call from compiled code Return to compiled code

A

IBMBRIO

(Resident library interface module)
Loads parameters into registers.
Calls PL/I transient library
transmitter whose address is placed
in the FCB during the execution

of the OPEN statement.

1

PL/I TRANSMITTER

(Transient library)

Calls data management.
Checks for errors and moves
record and key if necessary

1 4

DATA MANAGEMENT
Handle the transfer of data

Figure 8.8. (Part 2 of 2). Handling a transmission statement

Chapter 8: Record-oriented Input/Output 137

Execution

Compiled code calls the transmitter
interface module, IBMBRIO, passing to it
the parameter list shown above under
"Compiler OQutput".

The interface module, IBMBRIO, first
acquires a DsSA, which is used by IBMBRIO
and by the transmitter. It then
initializes the registers for the
transmitter, and executes the TM
instruction in the request control block
(RCB). This instruction tests a set of
flags that are addressed by a pseudo-
register offset contained in the DCLCB.
The contents of the pseudo-register offset
depends on whether the file is open. If
the file is not open, it is opened and
return made to this point to continue the
statement. (See "IMPLICIT OPEN" later in
this chapter.)

When the file is open, the TM
instruction tests the validity flags in the
FCB. This establishes the validity of the
statement. If the statement is not valid,
a branch is made to the address held in the
word in the FCB following the statement
validity flags. This address is an entry
point in IBMBRIO that calls the error
handling module, IBMBERR, with an error
code indicating an invalid statement.

If the statement is valid, a branch is
made to the transmitter whose address is
held in the FCB.

Transmitter Action

After the file is open and the statement
validated, control is passed to the
transmitter, which checks the record and
key variables for errors, and issues the
appropriate data management macro
instruction. After the data management
macro instruction has been executed,
control returns to the transmitter. The
transmitter moves the data between the data
management buffer and the record variable,
or sets the pointer to the record, and
checks to see whether any errors have

138

occurred.

Transmitter modules do not acquire
separate DSAs, but use the DSA acquired by
IBMBRIO.

If the statement is valid, control is
returned to compiled code. The situation
when an error has been detected is
described later in this chapter under the
heading "ERROR CONDITIONS IN TRANSMISSION
STATEMENTS."

In certain conditions, data management
will require a parameter list known as the
data event control block (DECB). The PL/I
library routines include this block in a
PL/I control block known as the
input/output control block (IOCB). A
number of IOCBs may be used. The number
depends on the file type, and on the NCP
subparameter in the DD statement or NCP
option in the ENVIRONMENT attribute.
Depending on the file type, ICCBs may be
generated during the execution of the oren
statement, or by the transmitters when they
are required.

The format of the IOCB is shown in
appendix A. The format of the DECB and a
further description of its use is given in
the publication 0S/360_ Supervisor and Data
Management Macro_Instructions. IOCBs are
further described jin the section "EVENT
OPTION", below.

EVENT Option

When the EVENT option is used, transmission
statements are always handled by library
call. The compiler generates a call to
IBMBRIO in the usual manner, except that
the address of an event variable is passed
in the parameter list.

The associated WAIT statement is
compiled as a call to one of the library
wait modules. The module called depends on
whether or not the program is multitasking.
The execution of an I/O statement with the
EVENT option and its associated WAIT
statement is shown in figure 8.9.

P: PROC;

READ....EVENT (E);

<

WAIT (E);
4._ _______ —

END P;

Figure 8.9.

IBMBRIO

PL/I TRANSMITTER

[

ISSUE DATA MANAGEMENT —

MACRO

— RETURN IF EVENT 1/0

ISSUE CHECK MACRO - ———-< — —
]

t
TEST FOR ERRORS
IF NONE RETURN TO WAIT
MODULE

WAIT MODULE

————————
RETURN IF NO MORE
EVENTS TO WAIT ON

Key

! § 0T

IF EVENT 1/0 CALL IBMBRIO ——--—-—}D -

- READ EVENT statement
— — — D — — — WAIT statement
Further PL/I statements

Handling the EVENT option

Chapter 8:

Record-oriented Input/Output 139

Execution

The principle used in event I/0 is that the
PL/I transmitter returns to compiled code
as soon as the data management macro
instruction has initiated the I/0.

When I/0 with the EVENT option is being
executed, the event variable associated
with the event is set active and flagged to
indicate that the event is an I/0 event.
Wwhen the WAIT statement is reached, the
library wait module is entered. When the
event is an I/0 event, the PL/I library
wait routine passes control to IBMBRIO.
From information in the event variable,
IBMBRIO locates the I/0 operation
associated with the event, and calls the
transmitter. The transmitter then issues a
CHECK macro instruction, and waits until
the operation is complete. When control
returns after the CHECK macro instruction,
the transmitter assigns the transmitted
data, and either returns to the wait
module, or, if any errors are detected,
enters one of the error routines. (For
further details, see "ERROR CONDITIONS IN
TRANSMISSION STATEMENTS" later in this
chapter.)

When the transmitter assigns the data,
it is necessary for the address and length
of the record variable, and certain other
information, to be available. This
information is retained in the input/output
control block (IOCB).

Use_of the IOCB

The IOCB is chained to the event variakle
so that the I/0 routines can access the
statement when control is returned to them
during execution of the WAIT statement.

To associate the PL/I statement with the
data management operation, the DECB for the
operation is included in the IOCB. (The
DECB is a record held by the data
management routines so that the operation
can be posted complete.)

For certain types of PL/I files, the
IOCB also contains the data management
buffer to or from which the transmission
will be made.

Allocation of IOCBs

For direct access files, IOCBs are
allocated as they are required by the
transmitter.

140

For sequential access files, the IOCBs
are generated by the open routines. The
number of IOCBs requested corresponds to
the number specified in the NCP
subparameter or option.

IOCBs_and_Dummy_ Records

In event I/O, the existence of a dummy
record may not be discovered until after a
read has commenced on the record following
the dummy. When this happens, the DECE and
IOCB pointers are reset appropriately.

Raising Conditions_in_ Event_I/0

Because the CHECK macro instruction is not
issued until the WAIT statement is
executed, PL/I conditions raised in event
I/0 are handled during execution of the
WAIT statement. The implications of this
are discussed in the section on the WAIT
statement in chapter 11 for non-
multitasking programs, and chapter 14 for
multitasking programs.

Exclusive I/0

In exclusive I/0, records are protected
from simultaneous updates from different
tasks by use of the ENQ and DEQ macro
instructions.

When a READ statement for an exclusive
file is being executed, an ENQ macro
instruction is issued. Unless NOLOCK is
specified, the DEQ macro instruction is nct
issued until a REWRITE, DELETE, or UNLOCK
statement is executed. For unblocked
records, the ENQ and DEQ instructions are
issued on one record only. For blocked
records, they are issued on the data set.

Eight PL/I transmitter modules are used
to handle exclusive files: they are shown
in figure 8.2. The ENQ and DEQ macro
instructions are issued by calling the
resident library routine IBMBPDQ, which is
addressed from the TCA.

The protection of the data set depends
on all files that access the data set
having the EXCLUSIVE attribute. If the
data set is accessed by a file that does
not have the EXCLUSIVE attribute, the data
set will not be protected.

|For vsaM files the EXCLUSIVE attribute is
ignored and the NOLOCK option and UNLOCK

@ DCLCB identifies file to be closed

CLOSE FILE(F2)

/_

Executable instructions consist of a call to the open/close bootstrap module passing parameter list @

®

DCLCB set up for file declaration see figure 8.5

® O

Executable instructions

* STATEMENT NUMBER 5

0000AC 41 10 3 094 LA 1,148(0,3) Place address DCLCB in p-list
0000B0O 58 FO 3 010 L 15,A. .IBMBOCLC Call open/close toolstra
000084 05 EF BALR 14,15 alt op P
@ Parameter list
000094 00000044 A. .CONSTANT Address of constant showing number of files to be closed
000098 00000000 A..DCLCB Address DCLCB

00009C 80000000 A. .NULL ARGUMENT Used for disposition options, flagged in first bit to indicate last argument
CLOSE FILE (F1);

COMPILATION
L 7,F0 Pass address of constant with number of files to be closed
ST 7,2528(0,3) Pass address of DCLCB of file
LA 1,2524(0,3) Point R1 at parameter list
L 15,A. .IBMBOCLC Branch to open/close bootstrap
BALR 14,15
EXECUTION
Call from compiled code Return to compiled code
\ 4
IBMBOCL

Entry point C

Resident library open/close bootstrap
routine. Calls the close routine

Yy 4

IBMBOCA

Transient library close routine. Calls
transmitter to complete 1/0 if necessary.
Calls data management to close the data
set. Removes FCB from Open File
Chain. Restores PRV offset to point to

dummy FCB.
N\ N\,
// w A
DATA MANAGEMENT PL/I TRANSMITTER
Disassociates file from data set. Transient library routine. Calls
data management to complete I/0

Figure 8.10. The execution of an explicit CLOSE statement

Chapter 8: Record-oriented Input/Output 141

PRV

FCB

Address of error
handling module

Address of data
management routine

DCLCB
Initialized to dummy FCB
‘,.# Changed to real FCB when
. o file is opened
Offset within PRV .
. — - T e e
/
i
¥ DUMMY FCB
Address of open/close
bootstrap routine
Address of open/close
bootstrap routine
KEY
e Address contained in PRV when file open
—— Address contained in PRV when file closed
sossscscdp Connection between DCLCB and PRV field.

The DCLCB contains the offset filled in by
the linkage editor. The PRV itself is
addressed from the TCA.

Figure 8.11.

142

The addressing mechanism used during implicit open

| statement will have no effect (except that
| for UNLOCK, the key specification is

| checked.) Data set protection is provided
by VSAM itself.

CLOSE Statements and Implicit Close
Compiler Cutput

For CLOSE statements, the compiler
generates a call to the appropriate entry
point of the open/close bootstrap module,
passing it the addresses of the DCLCB and
ENVB for the file.

No compiler action is taken for implicit
close.

Execution

Files and data sets can be closed either by
the PL/I CLOSE statement or by the
termination of the program. In both cases,
the close is carried out by library
routines. The bootstrap module IBMBOCL is
called either by compiled code, or, during
program termination, by the termination
routine, IBMBPIT or IBMTPJR for
multitasking. It loads and calls the
transient close routine, IBMBOCA.

The bootstrap routine IBMBOCL is passed
a parameter list containing the addresses
of the DCLCBs and ENVBs for the files that
require closing. IBMBOCA then closes these
files. This may involve completing I/0
operations, and hence calling the
transmitter. After handling any necessary
transnmission, IBMBOCA disassociates the
file from the data set.

The ENVB is required if the LEAVE or
REREAD option is in effect.

For implicit closing, the chain of open
files starting in the TCA is scanned to
determine which files must be closed. The
addresses of the FCBs of these files are
then passed to the close routine.

For an explicit close, it is necessary
to set the address in the pseudo-register
vector to point, once more, to the dummy
FCB. This allows implicit opening to be
handled should the file be opened again.
(See "IMPLICIT OPEN" later in this
chapter.)

When IBMBOCA has finished, it returns
control (via IBMBOCL) either to compiled
code (for an explicit close statement) or

Chapter 8:

to the termination routine (for the end of
the program). The code and control blocks
generated for a CLOSE statement are
summarized in figure 8.10.

Implicit Open for Library -Call I/0

There is no compiler ocutput for an implicit
open, because it is not always possible to
predict which transmission statements will
cause implicit opening of a file.

Implicit opening is handled by manipulation
of addresses (see figure 8.11).

When IBMBRIO is called for a
transmission statement, it executes a test-
under-mask (TM) instruction against a set
of flags held at an. offset from the address
held in the pseudo-register vector. The
address held in the pseudo-register vector
depends on whether the file is open. If
the file is open, the pseudo-register
offset contains the address of the FCB for
the file. 1If the file is not open, the
pseudo-register offset contains the address
of a dummy FCB in the program managerent
area.

The address is set during program
initialization to point to the durmy FCB,
and is reset to the dummy FCB whenever a
file is closed.

The first word in the dummy FCB is a set
of statement validity flags. These are all
set to zero. Consequently any TM
instruction executed by IBMBRIO will give a
negative result. The second word of the
dummy FCB is the address of an entry point
in the open/close bootstrap module. If the
TM instruction yields a negative result,
IBMBRIO branches to the address held
immediately after the statement validity
flags. Consequently when an attempt is
made to execute a transmission statement on
a file that is not open, control passes
automatically to the open routines.

The open routines open the file, and set
up an FCB and DCB for the file. The
address of the FCB is placed in the pseudo-
register offset, and execution of the
statement is reattempted by branching once
more to IBMBRIO.

Record-oriented Input/Output 143

Error Conditions in Transmission
statements

To provide PL/I exrror handling facilities
with the minimum possible overhead to
error-free programs, transient-library
modules are used. These are not loaded
unless an error occurs. Two modules are
available for every file type except VSAM:

1. The ENDFILE routine, IBMBREF, which -
can deal only with the ENDFILE
condition.

2. A general error module capakle of
handling all conditions that may
arise, including ENDFILE, but loaded
only if the TRANSMIT, RECORD, KEY, or
ERROR condition occurs. (5ee figure
8.12.)

[S TeTTTT T TTE TSI T T 1
| Recoxd I/O | File types
error module |

(

|
| [
| | [
IBMBREA	Consecutive buffered
IBMBREB	Indexed
I	
IBMBREC	Regional, consecutive
	unbuffered, and
	transient
IBMBREE	VSAM
[=mmmm e e	
,	
Endfile module	
IBMBREF	All SEQUENTIAL/INPUT/
	UPDATE file types
	(excluding VSAM)
b e e e e e e ———————————— 3

Figure 8.12. Record I/0 error modules

This method is used because the short
ENDFILE module gives faster execution to
those programs that use the ENDFILE
condition to handle program flow. The
transient error modules for all file types
are identified by the six letters IBMBRE
followed by a further single character (see
figure 8.13).

If a transmission error occurs, the
transmission error routine within the
transmitter will be entered, whether an in-
line or library-call statement is being
executed. The transmission error routine
has been nominated in the SYNAD exit

144

address placed in the DCB by the OPEN
routines. Similarly, if end-of-file
occurs, the end-of-file routine within the
transmitter will be executed. Record and
key errors are detected either by the
transmitter or by compiled code.

When any of the errors or PL/I
conditions mentioned above occurs during
the execution of a record I/0 statement,
control is passed to the address held in
the word "FERM" in the FCB. The address may
be any one of the following:

e The address of IBMBREF, the ENDFILE
module.

s The address of the general error module
for the file type.

e The address of a bootstrap routine,
IBMBRIOB. This routine constructs the
name of an error module by taking the
skeleton IBMBRE*A and replacing the "*"
by the letter in the single character
field "FEFT" in the FCB. IBMBRIO then
loads this error module, places the
address of the module in FERM, and
branches to the module.

So, by changing the contents of the field
FEFT, the transmitter can select a
particular error module. The contents of
FEFT is one of the following:

e A character indicating the name of the
general error module for the file tyre.
This character is placed in FEFT during
the execution of the OPEN statement.

* The character "F", indicating the name
of the ENDFILE module. The contents of
FEFT is changed to "F" by the end-of-
file routine in the transmitter, which
is entered when data management detects
end-of-file.

Thus the module loaded by the bootstrap
routine IBMBRIOB, and the address placed in
FERM, depend on whether end-of-file or
another error is the first to occur on the
file.

The result of this arrangement is that
the general error module can be called in
an end-of-file situation. Similarly, the
ENDFILE module can be called when another
type of error occurs, if ENDFILE was the
first condition to occur. To overcome this
problem, the general error module contains
code to handle ENDFILE, and the ENDFILE
module contains code to test for other
conditions, and load and call the general
error module if appropriate.

Contents FEFT

Initialized by open routine
with character "“A"", “B”’, ’'C"’
indicating general error suoport
module.

Altered by end of file routines
in transmitter to character “'F"’
indicating ENDFILE module

IBMBRIO
(entry point B)
Loads and calls module
indicated in “FEFT" and
places its address in FERM.

IBMBREF

Endfile module

If ENDFILE :

Calls error handler

If other error :

Loads and calls

error module indicated
in “FEMT". Placing
address in FERM

Contents FEMT

Always contains character
indicating general error
support module

Figure 8.13.

IBMBRE/A/B/C
General error support modules.

Handle all errors including
ENDFILE

FCB
FEFT
FEMT
FERM
N
\
\
\\
\\\
\
\
\
N\
N
Key
If no errors have occurred.
00000 If 1st. error was ENDFILE and

no other errors occurred.

If non-ENDFILE errors have
occurred.

The fields used in record I/0 error handling

Chapter 8:

Record-oriented Inputs/Output 145

The ENDFILE module constructs the name
of the general error module in a similar
manner to that used by IBMBRIOB, described
above. However, the sixth letter of the
name is taken from a field in the FCB
called "FEMT." FEMT always holds the
character that identifies the general error
module for the file. When the name has
been constructed, the general module is
loaded, its address is placed in FERM, and
a branch is made to the module by way of
the bootstrap routine in IBMBRIO.

General Error Routines (Transient)

The general error routines set up a
parameter list and the relevant built-in
function values in the ONCA (described in
chapter 7). They then call the resident
error handler IBMBERR to handle the
condition., If a normal return is made from
an on-unit, the general error module will
raise any further conditions that have
occurred by calling IBMBERR with the
appropriate error code. After all
conditions have been raised, a return is
made to compiled code, or, in event 1I/0, to
the wait module.

ENDFILE Routine

The ENDFILE routine checks to ensure that
the situation which has resulted in the
call is really end-of-file, and, if so,
passes control to the error handler.

TRANSMIT Condition

For certain file types, when a permanent
transmission error occurs action must be
taken to prevent subsequent issuing of data
management macro instructions. To achieve
this, addresses are manipulated so that,
instead of IBMBRIO calling the transmitter
by its primary entry point, it calls an
error routine within the transmitter, which
in turn calls the error handler to raise
the TRANSMIT condition.

In-line I/O Statements

Most transmission statements on buffered
consecutive files are implemented ky in-
line calls to the data management routines
(see figure 8.16 for details). Such
statements are referred to as "in-line I/O

146

statements." Only READ, WRITE, and LOCATE
statements are handled in this way. OPEN
and CLOSE statements are always executed by
library calls.

Control Blocks

For in-line I/0 statements, the only
control blocks that are set up are the FCE
and DCB. The request control block, record
descriptor, and key descriptor are not
required as they are merely parameters for
library subroutines.

Executable Instructions

For in-line I/0, a call is made direct to
the data management routine whose address
is held in the FCB. In addition to calling
the data management routine, compiled ccde
moves the data as necessary to or from the
record variable, or sets appropriate
pointers. Compiled code may also check for
the RECORD condition.

For U-format and V-format records,
compiled code does not call data management
direct. Instead a call is made to small
routines within thé PL/I transmitters.
These routines are addressed through the
field in the FCB that normally addresses
the data management routines. This field
is initialized by the open routines when U-
format or v-format records are used on the
file. The compiler can thus produce the
same code for all record types.

For certain types of blocked file,
deblocking is handled by compiled code.
Fields in the DCB hold the address’ of the
current record, the address of the end cf
the block, and the record length. Before a
call is made to data management, a check is
made to see whether the end of the block
has been reached. This is done by adding
the record length to the current record
address. If the resultant address is the
end of the block, a call is made to data
management for a new block; otherwise, the
new address can be taken as the start of
the required record.

Error Conditions

If an error occurs during transmission, or
if end-of-file is reached, the data
management routines will branch to the
ENDFILE or SYNAD routines that are held in
the PL/I transmitter. (The PL/I

transmitter is always loaded by the open
routines.) The ENDFILE and SYNAD routines
set an error flag in the FCB, and return to
compiled code, normally via the data
management routine. If the error flag is
on, or if the RECORD condition has
occurred, compiled code branches to
IBMBRIOD. This results in a call being
made to the transient error module.

Typical code produced for an in-1ine I/O
statement is shown in figure 8.14.

Implicit Open for In-Line Calls

Implicit opening for in-line calls is
handled in a similar way to that used for
library calls.

The field that, in a normal FCB, points
to the data management transmitter, in the
dummy FCB points to the open/close
bootstrap routine, IBMBOCL (see figure
8.11). This results in a branch being made
to the OPEN routines when an attempt is

Chapter 8:

made to access a file that is not open.
When the open routines have been executed,
the address in the pseudo-register vectox
is altered to point to the FCB that has
been created for the file.

If the file is successfully opened, a
test is made to see whether the entry to
IBMBOCL was for an in-line call and, if it
was, control is passed to the data
management address held in the DCB. This
causes the data management module to be
entered and a return made to compiled code.

A further problem arises over
deblocking, for certain blocked files,
before data management is called, a test is
made to see whether the end of the block
has been reached. For such files, values
are placed in the dummy FCB that ensure
that if the test for end-of-block is made
before the file has been opened, the test
will reveal an apparent end-of-block. A
branch will therefore be made to the
transmitter field in the durmy FCB, and
control will pass to the open/close
bootstrap routine.

Record-oriented Input/Output 147

SOURCE

EXAMPLE: PROC OPTIONS (MAIN);

Add PRV offset in DCLCB to address in R1

Pick up pointer to current record (start of deblocking)
Add logical record length to access required record

Branch around data management call if new buffer not required
Restore DCB address if new buffer required

Pass abnormal return address (CL.3) in R8 for error handling
Load address of data management routine

Branch and link to data management routine

Label branched to if no data management call

2 DCL LINE FILE RECORD INPUT
ENV(FB,RECSIZE(80),BLKSIZE(400),TOTAL),
CARD CHAR (80);

3 READ FILE (LINE) INTO (CARD);

u END;
* STATEMENT NUMBER 3
00005E 18 72 LR 7,2 Save program base
000060 58 90 3 01cC L 9,28(0,3) Load R? address of DCLCB
000064 18 B9 LR 11,9 Load R11 DCLCB
000066 58 10 C vou L 1,4(0,12) Load R1 PRV
00006A 5A 10 B w00 A 1,000,11)
00006E 58 20 1 000 L 2,00, 1) Point R2 at FCB
000072 58 10 2 014 L 1,20(0,2) Point R1 at DCB
000076 18 81 IR 8,1 Save address of DCB
000078 58 10 8 0QucC L 1,76(0,8)
00007C 4a 10 8 052 AH 1,82(0,8)
000080 59 10 8 048 C 1,72(0,8) ompare with end of botfer
000084 47 40 7 032 BL CL.2
000088 18 18 IR 1,8
00008A 41 80 3 020 LA 8,32(0,3)
00008E 58 FO0 2 01C L 15,28(0,2)
000092 05 EF BALR 14,15
000094 47 ¥0 7 O3E B CL.u Branch around next instruction
000098 CL.2 EQU *
000098 50 10 8 QucC ST 1,76(0,8) Point R1 at required record
00009C CL.u ECU *-
00009C L2 4F C 0A8 1 000 NMVC CARL(80),0(1) Move record into record variable
0000A2 CI.3 EQU #
0000A2 91 80 2 02¢C ™ 4u(2),x"80" Test for errors
0000R6 47 EO 7 052 BNO CL.5 branch if no errors
00002A 58 FO 3 014 L 15,R..IBRMBRICD if errors call error bootstrap routine
0000AE 05 EF BAILR 14,15
0000BO CL.5 EQU *
0000BO0 18 27 IR 2,7 restore program base

Figure 8.14.

148

In-line I/0 transmission statement

T

EXECUTION
SOURCE - '
PROGRAM COMPILA COMPILED CODE LIBRARY AND DATA MANAGEMENT MODULES COMPILED CODE
EXPLICIT OPEN IMPLICIT OPEN
Generate code
Open Call
to call open T N U - — -
statement bootstrap 1BMBOCL i | |
| I
v |
IBMBOCL I
A
Pass control |
block addresses |
Transmission e to IBMBOPA I
1/0 statement | I |
| |
Generate | |
in‘line I...........'..............‘.‘................'O...'....'I...."...0..............‘.........‘.................‘'..‘1.............."............‘...............r:
code A 4] :
r—————‘ ———————————— | IBMBOPA, etc. I e
In-li I | Associate file | E
11 n-line I { with data set | .
Load trans- -
: IBMBRIO |' ister ‘I‘ V
Valid In-line . T L In-line calls .
statement? or | Branch to A L_lbfrica_lls_ _J L »—— : :
library? | ERROR —} | :
| handler - — P —— g :
I (IBMBERRA) -|r 1 1 .
| or open | TRANSMITTER DATA MANAGEMENT AI :
> LIBRARY | bootstrap if | | S
I file not open l | H
| ' Call data c t | Y
Set up RCB arry ou
Set up RCB with gode to : | management : 1/0 oedesed Call data
for Execution- branch found | routine management
Time test Execution-Time I |
| test l |
| |
I TM l NO e00esoseerescses
Instruction A Error routines :
| l set flags YES .
Generate /———\ v indicating error :
call to H Call Execute L p | has occurred NO :
IBMBR'O IBMBRIO Instruction i Branch ’ ‘...l‘..".'....'.. ...'....IQ.’.........'.'..:
in RCB instruction :
L v
Move record Move record key
key etc. Check etc. Check for
Key for record & record & key
key condition errors
Path using library calls b4
coescsseene Path for in-line 1/O Any. YES Record 1/0 Any
000 Common path, in-line/library ct:ndlt.lons P Error module conditions
—_—— Path for implicit open o raise Call to raise
T IBMBERR
CONTINUE w NO
Figure 8.15. Overview of record I/0 —4— CONTINUE

Chapter 8: Record-oriented Input/Output 149

READ SET
READ INTO
WRITE FROM
WRITE FROM
WRITE FROM

Area¥*

LOCATE A

READ SET
READ INTO

WRITE FROM
WRITE FROM
WRITE FROM

Area*

LOCATE

(fixed string)

(varying string)

(fixed string)

(varying string)

Length known
(max. length
or area¥)

Length known

Length known
(max. length
or area¥)

Length known
(max. length
or area¥*)

Length known

Length known
(max. length
or area¥)

at
if

at

at
if

compile time

a varying string

compile time

compile time

varying

compile time

varying string

compile time

compile time

varying

string

string

RECSIZE known
SCALARVARYING
string

RECSIZE known
RECSIZE known
SCALARVARYING
RECSIZE known

RECSIZE known
SCALARVARYING

Not BACKWARDS
RECSIZE known
SCALARVARYING
RECSIZE known
RECSIZE known
SCALARVARYING
RECSIZE known

RECSIZE known
SCALARVARYING

All statements must be found to be valid during compilation.
or file variables are never handled by in-line code.

*
[
=]
Q
-
o
[o1)
-
=]

le]
1]
o
[a}
[=
Q
t
o
[a]
o
]
£
=3
[o]
7]
(1]
[
V)]
1]
(o4
1]
=
g
o
o]
t
[*N
n
o
=]
o
=]
4]
=]
o
9]
Q
2}
[N

e}
t
(1]
o]]
o
[a]
0
o]
.

Figure 8.16.

‘Chapter 8:

at

option if varying

at

at

compile time

compile time

compile time

option used

at

at

at

compile time

compile
varying

compile time

varying
compile time

compile time

option used

at

at

if varying string

File parameters

conditions under which I/0O statements are handled in-1line

compile time

compile time

BLKSIZE may be specified instead of RECSIZE for F, V, and U formats (but not
FB, VB).

string

Record-oriented Input/Output 151

PL/I Statement: GET LIST(1);

External medium File SYSIN

call LIOCS routines to move

medium and the data manage-
ment buffer.

the data between the external <———

Data Management buffer

8 9 10

8 9

10 1

\
\
\
\
\
\
\
|
\
\
\

Variable | (Fixed Binary 15,0)
(in main storage)

1+ Conversion routines or
I compiled code convert
' data and move to variable.

|
1
|

0000000000001000 |

Director routines control the
process, calling necessary
conversion and transmitter
modules when required.

Stream input/output is a two stage process. The data is moved between the external medium and the data management buffer, and
between the buffer and the variable. Any necessary conversions are made between the buffer and the variable. The operation is
controlled by director modules. The director modules call the appropriate routines to do the transmission and conversion. Transmission
is carried out in a similar way to that used for RECORD 1/0.

Note that & further input statement will require the value 9 which is already in the data management buffer. Consequently the trans-
mitter need not be called and a pointer must be kept to the position reached in the buffer.

Figure 9.1. The principles used in stream I/0

152

Chapter 9: Stream-oriented Input/Output

Note on Terminology

In this chapter, the terms source and
target are used when referring to transfer
of data. The sourxce is the point from
which the data is taken; the target is the
point to which it is moved, possibly in a

converted format.

Introduction

PL/I stream-oriented input/output allows
the programmer to move data between a PL/I
variable and an external medium without any
concern about internal and external data
types or any attention to record
boundaries. Both conversion and record
boundary problems are handled
automatically.

Although it appears to the programmer
that the data is moved directly between the
external medium and the PL/I variable, the
move is, in fact, a two stage process, as
shown in figure 9.1. In the first stage,
the data is moved to a data management
buffer. In the second stage, it is moved
from the buffer to the target. When the
data is moved to or from an external
medium, a complete record is always moved.
When the data is moved to or from a PL/I
variable, only as much data as is contained
in the variable is moved. The amount of
data moved in the one stage need bear no
relation to the amount moved in the other.
Thus synchronization of the two stages is
the principal job in implementing stream
1/0.

Transmission between the buffer and the
external medium is handled ky the routines
of 0S data management. These routines are
called by the PL/I transient library
transmitters in the same way as that used
in library-call record I/O0. The movement
ketween the buffer and the PL/I variables
is generally handled by the PL/I conversion
routines. The transmitters and the
_____ These routines determine which
modules are required, and when they are
needed.

Data items transmitted by stream I/O are
not affected by record boundaries (see
figure 9.2). There may be any number of
data items in a record, and an item may
span any number of records. Because the

Chapter 9:

data management routines make only one
record availakle to the program at any one
time, a method is needed to build up
complete items if they span the record
boundary. Similarly, because GET and PUT
statements may read or write less than a
complete record, a method is needed of
keeping track of the position reached in
the record, so that the next GET or PUT can
start from the correct position.

Operations_in_a_Stream_I/0 Statement

A stream I/0 operation can involve any or
all of the following operations:

1. Opening the file, and raising the
ERROR condition if the statement is
invalid.

2. Keeping track of the position in the
buffer.

3. Calling the transmitter for a new
recorxd.

4. Building in intermediate workspace an
item too large to be held in the
current record.

5. Determining which conversion is
required, and calling the routine to
carry out the conversion.

6. Enqueuing and dequeuing on SYSPRINT.

control of operations (2) through (5) is
handled by director_ routines. For list-
directed and data-directed I/0O, PL/I
library director routines are used. For
edit-directed I,/0, the job is shared
between library routines, compiler-
generated subroutines, and compiled code.

Before the director module or director
code receives control, an
initialization/termination module is
called. This module handles item 1 in the
list above: checking statement validity,
and opening the file if it is not already
open. The initialization/termination
routine is also called when every PUT
statement is completed, to dequeue on
SYSPRINT and, for conversational files, to
complete the output. The routine is also
called on the completion of GET statements
with the COPY option, to transmit the data
to the copy file.

Stream-oriented Input/Output 153

(’irPTﬁ ITER DMEw 2LETE ITER TH= sLpTe ITEM THREEE. sIETR ITEM FDOURs »IRT

ITEM FivEe sTETE ITERM Zikw

851025

'
|RERERERRRE

D500000000500050005065000600000000
45171810 2070277124 75 06 77 2829 30 532 71 34 35 36 37 3 39 40 41 47 1343 4546 4 18,49 50 51 52 53 54 55 56 57 58 53 60 6162 83 64 CF 6667636970 1 .2 713 14 T3 06 77 78 79 80
[ERRREE R AR RN
2222222222222222222222227222
3%33333333333333°3334333

4485444404444 054444048450444444044408444444844444044444444444440a444

Figure 9.2.

Because there are three modes of stream
170, the exact situation cannot be defined
in a generalized discussion or diagram.
However, the basic principles are shown in
figure 9.3. The sequence is:

1. A call to the initialization module,
to check statement validity, and to
open the file if necessary.

2. A return to compiled code, to set up
parameters for the director module.

3. A call to the director module to
handle any conversion, transmission,
and housekeeping problems that may be
involved.

4. For PUT statements, a terminating call

to the initialization/termination
routine to dequeue on SYSPRINT.

Stream I/0 Control Block (SIOCB)

To simplify communication between the large
number of routines that may be used in a
stream I/0 operation, a control block is
set up for the duration of the execution of
the stream I/0 statement. This control

154

Record boundaries do not affect stream I/0

block is known as the stream_ I/0_control
block_ (SIOCB). The contents of the SIOCB
are shown in figure 9.4. The SIOCB
contains the addresses of the source and
target (or their locators), and of the DEDs
of the source and the target. The SIOCB is
passed directly to the conversion routines.
The first four words contain the parameters
expected by the conversion routines.

File Handling

In stream I/0, file organization is always
sequential and the access method used is
the queued sequential access method (QSAM).

Transmitters are called by the director
modules or, in certain cases, by the
initialization module, or by the close
module to complete transmission when the
program is terminated.

As with record 1/0, transmitters call

Pass A (SIOCB)
to initializing module COMPILED CODE
Indicate stmt type in
{lelel:)
_ NO Call 1BMBOCL
File to open fite
open? {see Ch.8)
INITIALIZATION
YES . MODULE
y - Checks statement validity,

opens file if necessary
Check stmt &

return to
compiled code
if valid
A 4
Set A(DED) and
Alsource)
or A (target)
inSI0CB
+ COMPILED CODE
Call One of
director
modules
Y
New YES
record
needed?
NO
Y
v
Call
transmitter
Transmitter
Locate item in TRANSMISSION
buffer < Movement
Get between
new record buffer and
externai medium
Y
4 f
DIRECTOR
MODULE
Handles complete operation
V calling transmitter and con-
version modules as required
Conversion
Convert item
Y CONVERSION
Movement
between
+ buffer and
variable
Move to
target
Update FREM
& FCBA buffer
pointersin FCB
COMPILED CODE

CONTINUE

Figure 9.3. simplified flow diagram of a stream I/O statement

Chapter 9: Stream-oriented Input/Output 155

data management modules. The PL/I
transmitters contain the EODAD and SYNAD
routines, which are entered when end-of-
file or other errors are detected in the
routines. Nine different transmitter
modules are used in stream I/0; these
include two for conversational files. The
stream I/0 transmitters are listed in the
summary of subroutines at the end of this
chapter.

> ——— - ————— — - ————————

SSTR | Area present only for GET or PUT

| control block. (27 fullwords)

| Sttt e 1
SSRC	Address of source or source
	locator
ssDD	Address of source DED
l I	
STRG	Address of target or target
	locator
	I
sTDD	Address of target DED
	[
SFLG	Flag bytes
SFCB	Address of FCB for file
SRTN	Abnormal return address (next
	statement)
SAaVE	Save word used by compiler
SCNT	Ccount of items transmitted
	(Halfword)
soca	Address of ONCA

|

|

L

Stream I/0 control block
(SIOCB)

Figure 9.4.

Opening the File

The same basic method is used for opening
the file as is used for record I/O. During
compilation, a declare control block
(DCLCB) and an environment control block
(ENVB) are set up. An open control block
(OCB) is also set up if any environment
options are declared in the OPEN statement.
At open time, the information addressed
from the DCLCB, ENVB, and the OCB (if any)
is merged with any information in the DD
statement, and an FCB is set up. The PL/I
transmitter is loaded, and its address
placed in the FCB. A DCB, addressed from
the FCB, is set up. The DCB contains the
address of the data management transmitter.
Finally, the address of the FCB is placed

156

|
| STRING, to hold a dummy file |
|

in the pseudo-register vector.

Implicit Open

Implicit opening is handled by the
initialization routines, which check to see
whether the file is open and, if not, call
the open/close bootstrap routine IBMBOCL.

The FCB for stream I/0 is similar to
that used for record I/0. However, it
contains certain additional fields which
are needed only for stream I/0. The most
important of these fields are the buffer
control fields. The format of a stream 1/0
FCB is shown in appendix A.

Keeping Track of Buffer Position

Two fields in the FCB are used to keep
track of the position which has been
reached in the data management buffer, and
to indicate when a new record will be
required. These fields are the buffer
control fields:

1. FCBA - points at the position reached
in current record.

2. FREM - number of unused bytes
remaining in the record.

FCBA points at the position reached in the
record and enables the director routines to
identify where the next input item must be
read from, or where the next output item
must be written. FREM contains the numberx
of bytes left in a record. It enables the
director modules to determine when g new
record will be required, and whether an
item is too large to be held in the
remainder of the record and will
consequently require intermediate
workspace. Figure 9.5 illustrates the use
of FCBA and FREM.

Enqueuing and Dequeuing_on SYSPRINT

Because SYSPRINT is used as the standard
file for error messages, it is necessary
for output to SYSPRINT to be engqueued.

This prevents error messages from one task
in a PL/I program interrupting other output
to SYSPRINT from another task.

When SYSPRINT is used it is enqueued by
the initialization routine. When any PUT
statement is completed, regardless of the
output file, a call is made to the

PL/I STATEMENT:
GET FILE (SYSIN) LIST (A, B);

80 Byte record
In data management buffer

»FCER BOLLE CURREMT FREITIDMws oFREM HDLDE HUMBER DOF REMPINING BEYTES=».

6000000009 00 0000 008 G 00G00500000660CC00006RE 00 GUOUDOQUDUUUQDUUDOB-‘0‘09600

12345678 810112134 151817199202022232425262728253027323334353837 383340 41424244 454647 48425051 5252 54 5556 5758 9960 61 A7 BIC4 FSEECIC3 6570 1i 7273 M4 7576 77 1879 80

LI i i 3 It T 1T r it ittt 1 111111010010

FCBA FCBA

FCBA :
Holds addr:ess reached

———,r— — S — S —— ———— — —

.

At start of ifirst item after processing first item start of second item after processingi second item
FREM FREM FREM FREM
vALUE 80 vaLue %0 vaLue 4! VALUE 3

FREM holds number of remaining bytes

Figure 9.5 The use of FREM and FCBA in recording buffer position

Chapter 9: Stream-oriented Input/Output 157 |

PUT LIST (A)

FLOW DIAGRAM

COMPILED CODE & NOTES

Step 1 LA 9,40(0,4) Load address SIOCB
Place address Compiled code ST 9,184(0,3) Place in p - list
SIOCB in ol 184(3),X'80’ Mark end of p - list
parameter list MVl 57(4),X'40’ Set LIST OUTPUT flag
LA 1,180(0,3) Point R1 at p - list
L 15A . . IBMBSIOA Call stream output
+ BALR 14,15 initializer
Call
initializing
module
Step 2
Initializing routine The initialization routine is passed the address of the
IBMBSIO FCB and the address of the SIOCB.
Is
File NO Call IBMBOCL
open to open file &
N load transmitter
Y It opens the file if necessary and acquires the first
YES record for print files. If the statement is invalid it
calls the error handler. If the statement is valid it
places the addresses of the ONCA and the FCB in
' the SIOCB and returns to compiled code.

Is

statement

valid
?

YES

Set FCB &
ONCA address
in SIOCB

’

Figure 9.6. (Part

158

NO Call error
handler

1 of 2).

Flow of control through a PUT LIST statement

Step 3
Compiled code
. LA 1,40(0,4) Point R1 at SIOCB
Point R1 LA 14A Load A(A)
at LA 15,72(0,3) Load A(DED . . A)
sloce STM 14,15,0(1) Store in SIOCB
* L 15A. . IBMBSLDA} Call LIST output
BALR 14,15 director
Put address
of DED &
source variable
in SIOCB
Step 4
%m‘g{g‘w“'e The director module calls the transmitter and
conversion modules when required and handles
Reached YES Call transistor any housekeeping problems.
end of current for new record
record . . .
> Before calling the conversion module it completes
. the SIOCB with the address of the target locator
NO and the address of the target DED.
—d The target for the conversion is either the data
management buffer or a VDA acquired for
ill intermediate workspace.
<~ converted YES | Get VDA & set
item span record as target for
bougdary conversion
NO
<
Set target
address in
SIoCB
Call conversion
module
Fill record
from VDA -
call transmitter
Update FCBA | YES VDA
& FREM exhausted?
Continue as Compiled code If the statement is complete compiled code continues
from Step 3 with the next statement. |f the statement is not complete
until state- compiled code places new data in the SIOCB and once
ment complete more calls the director module.
When complete When statement complete make terminating
call termination call to dequeue on SYSPRINT

routine

Figure 9.6. (Part 2 of 2).

Flow of control through a PUT LIST statement

Chapter 9: Stream-oriented Input/Output 159

initialization/termination routine. This
routine then checks to see if SYSPRINT has
been enqueued and, if it has, dequeues it,
by calling the DEQ routine.

given in figure 9.3 and summarized above.

This chapter first covers the
implementation of list-directed GET and PUT
statements in some detail,

and then

highlights the differences for data-
directed and edit-directed I/0.

Handling the Conversions

conversions in stream I/0 are normally
handled by the library conversion package.
The conversion package, described in
chapter 10, consists of conversion routines

List-directed GET and PUT Statements

PUT_LIST_ Statement

and conversion director routines.
conversion director routines examine the
DEDs of the source and the target passed in
the argument list, and determine which
entry point of which conversion module is
required. Each possible conversion has a
unique entry point in one of the conversion 1.
routines. For stream I/0, the argument

list passed is contained in the first four

words of the SIOCB.

A number of conversion director modules
are used exclusively by edit-directed
stream J1/0. These are called external 2.
conversion directors, and are listed in the
summary of subroutines at the end of this
chapter. Each module corresponds to a
particular format of input or output. When
the type of input or output has been
determined by the director modules, the
appropriate conversion director routine can
be called to handle the conversion.

In edit-directed 1I/0, the conversion
required is normally predictable during
compilation, because it is implied in the
format list. Consequently, the conversion
modules can be called from compiled code
rather than from the stream I/0 director

routines. A third possibility is that
compiled code will handle the conversion 3.
in-line.

When a library conversion module is
required by compiled code, the conversion
director module may be called, or the
conversion module itself may be called
directly. When the conversion module is
called, compiled code must carry out the 4,
jobs normally handled by conversion
director modules, that is, setting up a
number of fields that are used in handling
the CONVERSION condition and other PL/I
exceptional conditions.

Handling GET and PUT Statements

There are considerable differences in
detail between the handling of GET and PUT
statements for the three different modes of
stream X/C. A generalized impression is

160

Implementation of a list-directed output
statement is shown in figure 9.6.
process consists of five steps:

The

Compiled code calls the initialization
routine, passing the address of the
DCLCB and of the SIOCB. Flags
indicating the statement type have
been set in the SIOCB by compiled
code.

The initialization routine, IBMBSIO,
calls the open routine if the file is
not open, and checks the validity of
the statement. If the statement is
invalid, a branch is made to the error
handler, passing an error code
indicating "invalid statement." This
results in a message being generated,
and the ERROR condition being raised.
If the statement is valid, control is
returned to compiled code.

IBMBSIO also handles any format
options, by calling the formatting
module IBMBSPL. Control then returns
to compiled code.

Compiled code places the address of
the source (or its locator, if the
item is a string) and the address of
the source DED in the SIOCB. (See
chapter 4 for information on
locators.) Compiled code then calls
the director module.

The director module completes the
SIOCB with the address of the target
locator and the address of the DED of
the target. The target locator gives
the length required for the item. As
the target is a character string, a
locator will always be used for it.
The address of the target is a
position in the buffer. For PRINT
files, the position is indicated in
the tab table, which will either have
been set up by the programmer by use
of PLITABS, or may be the default tab
table in the library module IBMBSTA.
For non-print files, each item is
followed by a single blank. PLITABS is

PL/I statements

DCL A,B;

* STATEMENT NUMBER 2

00005E
000062
000066
00006A
00006E
000072
000076
000078
00007cC
000080
000084
000088
00008C
000090
000092
000096
00009a
00009E
0000A2
0000A4
0000a8
0000AC

Figure

41 90 D 0cC8
50 90 3 044
96 80 3 Ouy
92 40 D OD9
41 10 3 u40
58 FO 3 024
05 EF

41 EO D 0a8
41 FO 3 030
41 10 D 0cs
50 10 L 0CO
90 EF 1 000
58 FO 3 02C
05 EF

41 E0 C OAC
58 10 D 0CO
50 EO 1 000
58 FO 3 02C
05 EF

58 10 D 0CO
58 FO 3 028
05 EF

Note:

2.7.

PUT LIST (A,B);

LA
ST
oI
MVI

BALR
1A
LA
1A
ST
STM

EALR
1A

ST

BALR

EALR

9,200(0,13)
9,68(0,3)
68(3),X'80"
217(13) ,X'40°"
1,64(0,3)
15,A..IBMBSIOA
14,15

14,R

15,CEL..A
1,200(0,13)
1,192(0,13)
14,15,0(1
15,A..IEMBSLCA
14,15

14,R
1,192(0,13)
14,000,1)
15,A..IBEMBSLOA
14,15
1,192(0,13)
15,A. .IBMBSICT
14,15

Pick up address of SIOCB
Store in parameter list

Mark end of parameter list
Set LIST OUTPUT flag in SIOCB

Point R1 at SIOCB
Branch to initializing module

Pick up address of A

Pick up address of DED..A
Place address of SIOCB in R1
Save address SIOCB in temp
Store addresses in SIOCB

Call list directed director routine

Pick up address of B
Point R1 at SIOCB
Place address B in SIOCB

Call list directed director routine
Point R1 at SIOCB
Make terminating call to dequeuve on SYSPRINT

The DEDs for A and B have been commoned. Consequently the
same address is kept in the SIOCB for both calls to the director

modules.

Chapter 9:

Code generated for typical list-directed I/O statement

Stream~oriented Input/Output

161

GET DATA (A,B);

FLOW DIAGRAM

COMPILED CODE & NOTES

Step 1
Compiled code LA 0,40(0,4) Pick up address of SIOCB
ST 0,136(0,3) Place in p - list
0l 136(3),X'80° flag last argument in p - list
Set up parameter Mvi 57(4),X'84' Set flag ‘DATA INPUT' in
list, call sSlocB
initializer LA 15,56(0,3) Set abnormal return
ST 15,64(0,4) address in SIOCB
LA 1,132(0,3) Point R1 at p - list
L 15,A. . IBMBSIIA Branch to stream
BALR 14,15 initializing module
Y
Step 2
Input initializing module
1BMBSII) ‘
The input initializing module is passed the
address of the SIOCB and the FCB for the file.
Set fields
in SIOCB

1t checks the validity of the statement, opens
the file and places the address of the FCB in the
SI10CB and returns to compiled code

Call IBMBOCL
to open file
4
Return to
compiled code <
Y Step 3
Compiled code

Set up p. list
for data
director
consisting of
A(SIOCB)
A(SYMTAB,I)
A(SYMTAB,J)

‘

LA 0,40(0,4)
ST 0,140(0,3)

LA 1,140(0,3)

L 15,A. . IBMBSDIA
BALR 14,15
CL.5 EQu*

Pick up address of SIOCB
Place address in p - list

p-list, containing addresses
of symbol tables and
variables already set up,in
static

Point R1 at p - list

Call data-directed director
module

Abnormal locate return
address

Fiqure 9.8.

162

(part 1 of 2).

Handling a GET DATA statement

T From Step 6
A

Step 4
Data - directed director
module IBMBSDI

The data directed director module is passed the

Decide on
conversion
required and call
correct module

Update FREM &

module IBMBSLI

New address of the SIOCB and either a list of symbol
record YES Call transmitter table addresses or an address in the symbol table
or spanning? setting up VDA vector.
if necessary
The module reads in the name, checks that the
] name read is in the symbol tables passed and if
< not raises the NAME condition.
Name
in data Call IBMBERR When the variable is identified the module places
stream match the address of the target and its DED in the SIOCB
SYMTAB? and calls the list-directed director module passing
it the SIOCB.
Place address
DED and variable
in SIOCB
Update FREM &
FCBA to beyond
equal symbol
Call list-directed
director module
Step 5
List directed director

for list directed 1/0

The list directed module completes the operation as

FCBA
Return to
1BMBSDI
Y Step 6 On return to the data directed module a search is
Return to IBMBSD! made for the next name and the action continued
Repeat from as from step. 4 until a semicolon is reached in the
A step 4 until input stream
final semicolon
found
Return to compiled code

Figure 9.8. (Part 2 of 2).

Handling a GET DATA statement

Chapter 9: Stream-oriented Input/Output

163

000040
oooouy
000048
00004cC
000050
000054
000058

00006C

000080

PL/I statements

pcL A,B,C; PUT DATA (A,B,C);

RELEVANT SECTION OF STATIC INTERNAL STORAGE MAP

00000000
80000000
00000000
00000058
0000006C
80000080
8500000100000030
000000A800000000
0001C100
8500000100000030
000000AC00000000
0001C200
8500000100000030
000000B000000000
0001C300

A..DCLCB H
A TEMP } Parameter list for IBMBSIOA

A..TEMP

A..SYMTAB Parameter list for IBMBSDOA
A..SYMTAB

A..SYMTAB
SYMBOL TABLE..A

SYMBOL TABLE..B

SYMBOL TABLE..C

RELEVANT SECTION OF OBJECT PROGRAM LISTING

* STATEMENT NUMBER 3

0000AE
0000B2
0000B6
0000EA
0000BE
0000C2
0000cC6
0000ca
0000cc
0000D0
oooorcu
0000D8
oooocc
0000E0
0000E2
0000E6
0000EA
0000EE

Figure 9.9.

164

41 90 D 0cC8
50 90 3 ouu
96 80 3 0Ouu
92 80 L 09
92 01 D ODA
41 10 3 040
58 FO 3 024
05 EF

41 <0 L OcC8
50 90 3 0us8
96 80 D ODB
41 10 3 ous
58 FO 3 020
05 EF

41 10 © OCs8
50 10 D 0CO
58 FO 3 028
05 EF

LA 9,200(0,13) Pick up address of SIOCB
ST 9,68(0,3) Store in parameter list
ol 68(3),x'80°* Mark end of parameter list

MVI 217(13),X'80' Set data output flags
NVI 218(13),Xx'01°* '

1A 1,64(0,3) Point R1 at parameter list
L 15,A..IBMBSICA (Caqll initializing routine
BALR 14,15

1A 9,200(0,13) Pick up address of SIOCB
ST 9,72(0,3) Place in parameter list

cI 219(13),X'80' Mark end of parameter list
1A 1,72(0,3) Point R1 at parameter list
L 15,A..IEMBSDCA (q| director routine

BALR 14,15

1A 1,200¢0,13)

ST 1,192(0,13) Make terminating call to
L 15,A..IBMBSIOT [dequeue on SYSPRINT
BALR 14,15

Typical data-directed code

Handle entirely by library
routine (IBMBSED), or use
compiler-generated sub-

routines?

COMPILER LIBRARY

Compiler-generated subroutines are used’ IBMBSED handles processing completely for:

except in the cases shown opposite. Even so, A-format item with implied length*

a library routine will be called if a new record B-format item with implied length

is required, and, generally, to handle a con- C-format item

version. *An exception is that A-format items with implied length are
handled in-line if: OPT(TIME) is in effect, and the compiler
can match the data list with the format list, and the data item
is a character string.

Figure 9.10. The use of the library in edit-directed I/0

Chapter 9: Stream-oriented Input/Output 165

PUT EDIT (B)(A):

FLOW DIAGRAM NOTES
LA 9,60(0, 4) Pick up address of SIOCB
Set up part of Step 1 ST 9,848(0, 3) Place in parameter list
SIOCB. Compiled code MvI 77(4), X'20 Set “edit output” flag
Il initializati LA 1,844(0, 3) Point R1 at param. list
,C:uﬁ'::;ﬂ;?'sﬁg L 15,A. . IBMBSI OA} Branch to initialization
BALR 14,15 ' routine
Step 2

Initialization routine

Test if file is open, and open if necessary, calling

transmitter to locate record.
Call IBMBOCL to Place address of ONCA and FCB in the SIOCB.
open file & call Check statement validity.
transmitter to
get 1st record
Check
statement
validity
Step 3 .
Place address of Compiled code LA 2,60(n 4) Point R1 at SIOCB
variable, its DED, LA 14,B Pick up address of B
& DED generated / ST 14,000, 1) Place in SIOCB
from format item < X L 14,76(0, 3) Pick up DED
in SIOCB \ L 1A...IELCGOA Branch to compiler -
BALR 67 generated subroutine

Y

Call IELCGOA

require new
record?

YES

Step 4
IELCGOA

Set ‘VDA'’ flagin
SIOCB. Get VDA
and set as

address of target.

Acquire VDA for item if necessary.
Either if there is no room in current record, or,
if the converted item will span the record boundary.

Figure 9.11.

166

(Part 1 of 2).

Edit-directed statement with matching data and
format lists

A

FLOW DIAGRAM NOTES
Step 5 L 15,A. . IBMBCHFH . .
Carry out Compiled code Call conversion routine
gonvgrsion either or conversion BALR 14,15
in - line or by routine
calling library module
L 1A..1ELCGOB Call compiler - generated
BALR 6,7 director module
Call
IELCGOB
Step 6
Item IELCGOB Update buffer control fields
handled by YES > Handle housekeeping
IBMBSEDB
?
NO
Was a YES | Call IBMBSEOA
Call transmitter
YDA used? and free VDA
NO +
Update FREM, Clear ‘VDA' flag
FCBA, and FCNT and IBMBSED —
’ flag
Return to
compiled code
Y Step 7 Continue as necessary
Continue from Compiled code When complete call termination

STEP 3 with next
item, if any

When complete
make terminating
call to IBMBSIOT

routine to dequeue on SYSPRINT

LA 14,A..IBMBSIOT
BALR 14, 15

Figure 9.11. (Part 2 of 2).

Chapter 9:

Edit-directed statement with matching data and
format lists

Stream-oriented Input/Output

167

addressed from the TCA.

When the starting position for the
item has been found, the director
module determines whether there is
enough space in the output buffer for
the converted item. There may not be,
for one of two reasons:

a. The end of the buffer has been
reached.

b. The converted item will be too
large to hold in the buffer.

If the end of the buffer has been
reached, the transmitter is called to
acquire a new record. If the
converted item will be too long to fit
in the buffer, intermediate workspace
will be needed.

If it is simply a case of acquiring a
new record, the director calls the
transmitter to acquire it. The
director then calls the appropriate
conversion routine, passing it the
SIOCE as a parameter list. The
conversion routine will then move the
data from the PL/I variable to the new
record in the data management buffer.

If, however, the converted item will
span the boundary between the current
and subsequent records, intermediate
workspace is acquired in the form of a
VDA (variable data area - see chapter
6). The converted item is then placed
in the VDA. As much of the data as
will fit is moved from the VDA into
the data management buffer, and a new
record is acquired by a call to the
output transmitter. The new record is
then filled from the VDA. This
process is continued until the
complete item has been moved into
buffers. The buffer pointers FREM and
FCBA are updated.

If there are further data items to be
handled, a return is made to step (2),
and the address of a new source field
and its DED are placed in the SIOCB.
This process is continued until all
items in the data list have been
processed.

5. The statement is completed by a call
to the initialization/termination
routine. This checks to see whether
SYSPRINT has been used and, if so,
dequeues on SYSPRINT. For
conversational files, it also calls
the transmitter to transmit any
information that is still held in the
buffer.

The object code produced for a PUT LIST

168

statement is shown in figure 9.7.

GET_LIST Statement

GET LIST statements follow the same
sequence, but the transmission is in the
opposite direction. The main differences
ares:

1. If record spanning is involved, the
item is assembled in intermediate
workspace before it is converted.

2. A locator is built for the source
string from the input, and the
addresses of the locator and of a
character DED for the source are
placed in the SIOCB by the director
module. The address of the target or
its locator and the address of the
target DED are placed in the SIOCB by
compiled code.

3. Unless the COPY option is being used,
nce final call is made to the
initialization/termination routine.

Data-directed GET and PUT Statements

Data-directed GET and PUT statements follow
a similar sequence to list-directed
statements, in that there is first a call
to the initialization module, followed by a
call to a director routine. However, the
data-directed director module is passed all
the variables involved in the statement
rather than one variable at a time, and
handles the complete statement without
returning to compiled code.

The data-directed director module
handles the reading or writing of the
names, the equals signs, and the
punctuation, and then calls the list-
directed director module to handle the
value for each variable.

When the data-directed module has
identified the location of the variable to
or from which the data is to be moved, it
calls the list~directed director module
which then handles the movement of the
value of the variable. When the value of
the variable has been transmitted, control
returns to the data-directed module, which
handles the next name, determines the
address of the variable associated with the
name, and calls the list-directed director
module to handle the transmission of the
value. This process continues until the
statement is complete. For output, the

director module completes the statement
with a final semicolon. Figure 9.8 shows
the complete process.

The list-directed director module is
called separately for each item. It is
passed the SIOCB with the addresses of the
source or target (or its locator) and the
address of its DED correctly set up by the
data-directed director module. The item is
then handled as if it were a list-directed
item.

Identifying the_ Name

If a data list is included in the
statement, for example:

PUT DATA (A,B,C);

the source or target variables are
identified from a list of symbol tables.
If a data list is not included in the
statement, for example:

PUT DATA;

the source or target variables are
identified from the symbol table vector.

A symbol table associates a name with
the. address of a variable. The symbol
table vector is a list of the symbol tables
known in the external procedure. The items
in a symbol table vector are arranged in
program block order. When a symbol table
vector is used, the address passed is the
start of entries for items known in the
current block. Symbol tables and the
symbol table vector are described further
in chapter 4. Their format is shown in
appendix A.

The object code produced for a PUT DATA
statement is shown in figure 9.9.

Edit directed GET and PUT Statements

Edit-directed I/0 differs from the other
modes of stream I/0 in that the conversions
required and the positions in the record
where an item is to be placed or will be
found are indicated in the format list of
the I/0 statement.

The format list contains two related
types of information:

1. The type and length of the item (e.g.,
F(3), A(25), etc.), known as data
format information.

Chapter 9:

2. Spacing information (e.qg.,

format information.

Both types of information are compiled as
compiled code to the routines that require
the information.

Because the information is available
during compilation, it is possible for the
conmpiler to determine the conversions that
will be required. It is consequently
possible for compiled code to call the
required conversion or conversion director
routine, or to generate in-line conversion
code without the assistance of a library
director module.

Compiler-generated_Sukroutines

To further optimize edit~directed I/O, a
number of compiler-generated subroutines
have been provided. They carry out the
following functions:

1. Keeping track of the buffer positicn,
freeing and acquiring intermediate
workspace where necessary, and calling
the library when a new record is
required.

2. Handling X format control items,
except where a new record is required.

These compiler-generated subroutines have
the advantage over library modules that
they are not external, and consequently do
not have to follow the external calling
conventions.

The compiler-generated subroutines are
supported by two types of library director
module:

1. Two short modules, IBMBSEO and
IBMBSEI, that interface with the
transmitter and are called by the
compiler-generated subroutines when a
new record is required.

2. A routine, IBMBSED, that handles the
complete processing of an item (as the
director does for list-directed I/0).
This routine is called when the item
cannot be handled by the compiler-
generated subroutines.

The decision on whether to use compiler-
generated subroutines or the overall
library director module is made at compile
time. Figure 9.10 shows the conditions
under which each method is used.

A typical edit-directed statement takes

Stream-oriented Input/Output 169

the form:

1. A call to the initialization module to
open the file (if necessary), and
check statement validity.

2. A call to a compiler-generated
subroutine to check whether a new
record is required, and, if so, to
call the module IBMBSEI or IBMBSEO to
acquire a new record by making a call
to the transmitter. The SIOCB is
completed with source or target DEDs
and the addresses of the source and
the target or their locators.

3. A call to a conversion module or
conversion director, or a compiled-
code conversion.

4. A further call to a compiler-generated
subroutine, to update the buffer
control fields, and free any
intermediate workspace if spanning was
involved.

5. A terminating call to the
initialization/termination routine.

This sequence is jillustrated in the
annotated flowchart in figure 9.11. Figure
9.12 shows the code generated for a GET
EDIT statement.

Handling Control Format_ Items

control format items are implemented by
calling a formatting module, and passing it
the SIOCB containing the address of an FED
for a control format item. There are four
formatting modules:

1. IBMBSPL: 1library routine for SKIP,
PAGE, and LINE formats and options.

2. IBMBSXC: 1library routine for X and
COLUMN formats.

3. IELCGOC: compiler-generated
subroutine for X output items that do
not span a record boundary.

4. IELCGIA: compiler-generated
subroutine for X input items that do
not span a record boundary. (This
module also has other functions; see
the section "Compiler-generated
Director Routines”™ near the end of
this chapter.)

170

Matching and Non-Matching Data and
Format Lists

In the majority of edit-directed
statements, the data and format lists can
be matched during compilation, since the
programmer requires specific conversions
for specific variables. However, it is
possible to write statements which, because
of iteration factors, cannot be matched at
compile time.

For example, in the statement
PUT EDIT (A,B,C) (N(F(3)),X(10));

it is impossible to know at which point the
ten-character space indicated by "X(10)"
will be required, without knowing the value
of N. If the statement had been

PUT EDIT (A,B,C) (F(3),X(10));

the code would be compiled in the order:
handle the conversion of a variable, handle
an X item, handle the conversion of a
variable, etc., until the data list was
exhausted. However, as it is not known at
which point the X items will be required in
the unmatched statement, it is impossible
to compile sequential code to handle the
statement. Consequently, the code for each
item is compiled separately, and branches
are made between the code for data items
and the code for format items as the value
of the repetition factor indicates. 1In the
example above, the branches would be made
when the F item had been executed N times,
and when the X item -had been executed once.

The code sequences used for matching and
non-matching data and format lists are
shown in figure 9.13.

Formatting for Print Files

Formatting information such as page size,
line size, page length and tak positions
for print files are accessed by list- and
data~directed director modules from a field
TTAB held at offset X*'50' in the TCA. The
field holds the address of the tab table to
be used. That is, either the PLITABS
control section, if provided by the user,
or the IBMBSTAB control section, if the
default is to be used.

The control section PLITABS can be
provided by the user either as a control
section which is link-edited with the
object module or as a PL/I structure
declared in his program as PLITABS. This
structure is then compiled as a suitable
control section by the optimizing compiler.

The programmer may also use the default
which is provided as a transient library
module loaded by the open routines. The
format of PLITABS and its default values
are given in the programmer's guide for
this compiler.

When the open routines are called, they
inspect the TCA to determine whether
PLITABS has been provided by the user. If
it has not, they load the transient library
routine IBMBSTAB, which holds the default
tab settings. When the routine is loaded,
the address of entry point IBMBSTAB is
placed in the TTAB field in the TCA. 1If
PLITABS has been provided by the user, its

Chapter 9:

address will have been placed in TTAB by
the linkage editor.

Handling Format Options

Format options (for example, GET SKIP(4),
PUT PAGE, GET SKIP LIST) are handled by a
call to the appropriate entry point of the
initialization routine.

The initializing module calls the

formatting module IBMBSPL to carry out the
formatting.

Stream-oriented Input/Output 171

PL/I statements

DCL A,B; GET EDIT (A,B) (F(3) ,X(8));
* STATEMENT NUMBER 3
000062 41 90 D 0CO 1A 9,192(0,13) Pick up address of SIOCB
000066 5090 3 054 ST 9,84(0,3) Store in parameter list
00006A 96 80 3 054 oI 84(3),X'80" Mark end of parameter list
00006E 92 24 D uD1 MVI 209(13),x* 24" Set EDIT INPUT flags in SIOCB
000072 41 EO 3 058 LA 14,88(0,3) Pick up return address (CL.2)
000076 50 E0 D 0DS8 ST 14,216(0,13) Store in SIOCB
000072 41 10 3 050 LA 1,80(0,3) Point R1 at parameter list
00007E 58 FO 3 030 L 15,A..IBMBSIIA o .
000082 05 EF BALR 14,15 Call stream 1/O initialization routine
000084 41 EO D 0AS8 LA 14,A Pick up address of A
000088 41 FO 3 038 LA 15,DED..A Pick up address of DED...A
00008C 41 10 D 0CO LA 1,192(0,13) Pick up address of SIOCB
000090 50 10 D OBS ST 1,184(0,13) Save address of SIOCB .
000094 90 EF 1 008 STM 14,15,8(1) quces addresses of A and DED..A in SIOCB
000098 41 EO 3 03C LA 14,60(0,3) Point R14 at FED
00009Cc 58 70 3 00C L 7,A..IELCGIA : :
0000R0 05 67 BALR 6.7 Call compil er generated subroutine
0000a2 58 FO 3 v2cC L 15,A. . IBMBSFIA Call conversion director routine
0000a6° 05 EF BALR 14,15
0000A8 58 70 3 v10 L 7,A..IELCGIB : tha
0000AC 05 67 BALR 6.7 Call compiler generated subroutine
0000AE 41 EO0 3 o0u2 LA 14,66¢0,3) Pick up FED of X format item
0000B2 58 10 D OBS8 L 1,184(0,13) Pick up address of SIOCB
0000B6 58 70 3 00C L 7,A..IELCGIA . . :
0000BA 05 67 BALR 6.7 Call compiler generated subroutine
0000BC 41 EO D OAC LA 14,B Pick up address of B
0000Cc0 50 EO 1 008 ST 14,8(0,1 Store in SIOCB
0000c4 41 EO 3 o03C LA 14,60(0,3) Point R14 at FED
0000Cc8 58 70 3 voC L 7,A..IELCGIA . .
0000cC 05 67 BALR 6.7 Call compiler generated subroutine
0000CE 58 FO 3 02C L 15,A..IBMBSFIA : :
000002 05 EF BALR 14,15 Call conversion director module
0000D4 58 70 3 010 L 7,A..IELCGIB Call compiler generated subroutine
0000D8 05 67 BALR 6,7
0000DA CL.2 EQU * Abnormal return address

Figure 9.12.

172

code generated for an edit-directed statement with matching data and

format lists

MATCHING LISTS
PUT EDIT (I, NAME, ACT. NO)

(F (3),X (3), A (15), X (3), P'2ZZ29');

HANDLE
CONVERSION
OF |

HANDLE
XITEM

HANDLE
CONVERSION
OF NAME

HANDLE
XITEM

HANDLE
CONVERSION
OF

ACT - NO

T

Chapter 9:

UNMATCHING LISTS
PUT EDIT (AB, C, D) ((N) F (3), SKIP, A (4));

HANDLE

| CONVERSION
F(3)

OPERATION
COMPLETE

?

CONVERSION
DONE N TIMES

HANDLE
CONVERSION
A(4)

OPERATION
COMPLETE

v

Figure 9.13. Code sequences used for matching and non-matching data and format lists

Stream-oriented Input/Output

173

Input and Output of Complete Arrays

When transmitting complete arrays, it is
uneconomical for a return to be made to
compiled code after each item has been
handled. Accordingly, the list- and data-
directed director modules have a facility
that enables them to handle complete
arrays. The modules access the array
multipliers, and handle the indexing from
information held in the array descriptors.
For edit-directed 1I/0, each element is
handled separately, the necessary indexing
being carried out by compiled code.

PL/I Conditions in Stream I/0

The following errors and PL/I conditions
are particularly relevant to the
implementation of stream I/0: TRANSMIT,
CONVERSION, NAME (data~-directed input
only), ENDFILE, and unexpected end of file.
Unexpected end of file occurs when the end
of file is reached in the middle of an
input item.

TRANSMIT cCondition

The rules for raising the TRANSMIT
condition in stream I/0 are that the
condition shall be raised after the
assignment or output of the potentially
incorrect data item. Thus TRANSMIT can be
raised on input for a data item even though
the transmitter has not been called during
the processing of the statement involved.

When the TRANSMIT condition is detected
by the data management routines, control is
passed to the error routine in the
transmitter, which sets a flag in the FCB
indicating a transmission error. For input,
the director module inspects this flag,
and, if it is set, sets a flag in the
SIOCB. TRANSMIT is raised for every item
that is taken from a record in the block
with which the transmission error was
associated. It is raised after each
potentially incorrect value has been
assigned. For output, TRANSMIT is raised
by the transmitter immediately it occurs.

A special entry point, IBMBSEIT, is used
by the conpiler-generated subroutines to
raise the TRANSMIT condition. When called
by this entry point, IBMBSEI calls the
error handler with the appropriate error
code for the TRANSMIT condition.

174

CONVERSION Condition

The CONVERSION condition is detected by the
conversion modules in the PL/I library.
(Conversions that could cause the
CONVERSION condition are not handled in-
line except where "NOCONVERSION" is
specified.) CONVERSION is raised by calling
a special library module, IBMBSCV. This
module analyzes the type of conversion
error, and calls the error handler with an
appropriate error code. For input, the
module also saves the field that caused the
conversion; it is necessary to do so,
because the field could be lost if an on-
unit was entered and a further GET
statement was executed on the same file
which resulted in a new record being
acquired.

NAME_Condition

The NAME condition can occur only in data-
directed input. It is raised by the data-
directed director module when it cannct
find a symbol table tc match the name read
in, or when the name is unobtainable (it
might, for example, ke out of subscript
range.) DATAFIELD is set up, and the file
positioned for the next read, before
calling the error handler, with the
appropriate error code.

ENDFILE Condition and Unexpected End of
File

End of file is detected by the transmitter
routines, which then enter the SYNAD
routine in the transmitter. This routine
sets a flag in the FCB. On return to the
director modules, the flag is tested and,
depending on the situation in which the
transmitter was called, ENDFILE or
unexpected end of file is raised by calling
the error handler.

For unexpected end of file, the ERROR
condition is always raised as soon as the
end of file is detected. ENDFILE, in the
case of list- and data-directed 1/0, is not
raised until a further attempt is made to
read the input file.

Built-in Functions in Stream I/0

The built-in functions that are relevant to
stream I/0 are COUNT, DATAFIELD, ONCHAR,
and ONSOURCE.

ONCHAR and ONSOURCE are dealt with in
chapter 10, under the heading "Raising the
CONVERSION Condition.*

The COUNT built-in function is handled
by the director routines. A count of
transmitted items for the statement is kept
in the sIocB, and then copied into the FCB
after every transmission to or from a PL/I
variable.

The DATAFIELD built-in function is
handled by the data-directed director
routine, which places the address of a
string locator/descriptor for the offending
field in the ONCA. The field is first
moved to a workspace area, as the buffer
may get lost if further stream I/0
operations take place in an on-unit.

The COPY Option

The COPY option allows input data to be
copied onto a specified output file. At
the start of a GET statement with the COPY
option, a flag is set in the FCB, and the
current buffer position is saved in the
field FCPM in the FCB.

A resident library routine, IBMBSCP, is
used to handle the data, and to transmit it
to the copy file by calling the
appropriate' transmitter. IBMBSCP is
called at the end of the GET statement, and
during the statement if a new buffer is
acquired. The data transmitted to the copy
file is that which is held between the
pointers FCPM and FCBA. FCBA points to the
next byte to be read; FCPM points to the
start of the data to be copied. FCPM is
updated to point to the start of the new
buffer when a transmitter call is made
during the execution of the statement. The
copy flag is turned off during the
terminating call to IBMBSII.

If an interrupt occurs during the
execution of a GET statement with the COPY
option, it is possible that the terminating
call to IBMBSII will be bypassed because of
a GOTO from an on-unit, or because the job
is terminated. For this reason, a test is
made on the copy flag at the start of every
GET statement, and when the file is closed.
If the copy flag is on, IBMBSCP is called
to handle the data. When the data has been
transmitted, the flag is turned off.

Handling the Copy_ File

During the initializing call, IBMBSII
determines whether the copy file is open

Chapter 9:

and, if it is not, calls IBMBOCL to open
the file. The address of the DCLCB for the
copy file is then stored in the FCB of the
input file. The data is transmitted to the
file by calling the transmitter for the
file type.

The STRING Option

The STRING option allows data to be
transmitted between a string and one or
more PL/I variables by means of a stream
I/0 statement.

The STRING option is implemented by
treating the string specified in the
statement as if it were the buffer, and the
other PL/I variables as if they were the
sources or targets. The differences in
housekeeping between string and file
operations are resolved by the use of a
string housekeeping routine, IBMBSIS.
IBMBSIS is called in the place of the
stream I/0 initialization/termination
routine. IBMBSIS sets up a dummy FCB that
is initialized so that the correct action
is taken should the director modules
attempt to read or write beyond the end of
the string. After the dummy FCB has been
initialized, the director modules are
called to convert and move the data as in
normal stream I/0.

To implement the string option, compiled
code passes the string housekeeping module
an extended SIOCB in which the dummy FCB is
created. The buffer control fields FCBA
and FREM in the dummy FCB are set up as if
the string were a record. The field that,
in a normal FCB, would hold the address of
the transmitter, holds addresses of other
sections of code.

For a PUT STRING statement, the
transmitter address field is initialized to
point to the error handler. Register 1 will
have been pointed to the head of the FCB by
the caller. The error code for exceeding
string size is, therefore, placed at the
head of the FCB, and the correct error
condition is automatically raised when the
branch to the error handler is made.

For a GET STRING statement, the address
in the transmitter field is the address of
code that sets the end-of-file flag and
returns to the caller. This code is held
within the dummy FCB«

As far as the caller is concerned,
attempting to read beyond the end of the
string is equivalent to finding an end-of-
file mark in a stream I/O statement. Where
the ENDFILE condition or unexpected end of
file would be raised for a stream file, a

Stream-oriented Input/Output 175

Figure 9.14.

176

GET LIST FILE (SYSIN} (STRING1)
COPY FILE(A):

GET LIST FILE (SYSIN) (STRING2)
COPY FILE (A);

GET LIST FILE (SYSIN) (STRING3)

COPY FILE (B);
s ~ N r ~ \ s " N
Fcem - - - - - - — — — — — = -_ - 7T - — - = pointer for start of COPY data
. i‘DATA FOR COPYING ONTO’ ‘FILE J I NAMED A’ ‘DATA FOR COPYING ONTO FILE B’]
FCBA _____| — e e e
Data is transmitted to the copy file at the end of each statement and at those

times when it can no longer be hetd between the pointers FCBA and FCPM.
In the example above this will be at the end of each GET statement and at
the end of the first record.

pointer for end of COPY data

The current buffer pointer FCBA and FCPM
of the data to be copied

+ the copy pointer, keep track

*GET STRING SIZE EXCEEDED' message 1is
generated, and the ERROR condition is
raised.

Completing String-handling Operations

Cne or more further calls may be made to
the string housekeeping routine IBMBSIS at
entry point T, to update the string
characteristics after a data item has been
transmitted.

PUT_statements with fixed-length strings:
IBMBSIS is called after the first item has
been assigned to the string, to pad the
remainder of the string with blanks.

PUT statements with varying strings:
IBMBSIS is called to update the length of
the string after each data item is
transmitted.

IBMBSIS is always called.

The need to make a further call to
IBMBSIS is flagged in the SIOCB when
IBMBSIS is called to initialize a
statement. The library director routines
and the compiler-generated subroutines test
this flag, and call IBMBSIS if necessary.

The Time-Sharing Option and
Conversational Files

When using the time-sharing option, the
PL/I1I programmer can attach the foreground
terminal as the input or output device used
by one or more stream files.

Three transient library routines are
used to implement this facility. Two are
transmitters that are used to interface
with TSO using the appropriate macro
instructions to effect the input and
output. The third module is a formatting
module that overcomes the special
formatting difficulties that arise when
working at a terminal.

When the file is opened, the OPEN
routine tests every stream 1I/0 file to see
whether it is to be associated with a
terminal. If the file is to be associated
with a terminal, the appropriate
conversational transmitter is loaded:

IBMBSIC for input
IBMBSOC for output

A flag is set in the FCB of the file to
indicate that the file is a conversational

Chapter 9:

file.

The two transmitter modules handle the
input, output, and prompting. Formatting
differences between conversational and
normal I/O are handled by a transient
library routine, IBMBSPC. This routine is
called by the formatting routine, IBMBSPL,
when a conversational file is being
handled.

If a conversational module is used, its

address is placed in the TCA loaded-module
list.

CONVERSATIONAL TRANSMITTER MODULES

Output Transmitter IBMBSOC

The output module IBMBSOC is similar to
other output transmitters except that it
interfaces with TSO, and uses the TPUT
macro instruction. The macro instruction
is used with the WAIT option to ensure
proper gqueueing of output to the terminal.

Input Transmitter IBMBSIC

The input transmitter carries out a similar
function to other PL/I input transmitters.
However, it also has to handle certain
prompting functions, and implements certain
facilities required only for conversational
output.

Input: Input is achieved by issuing a TGET
macro instruction to the TSO control
program.

Prompting: Prompting is carried out before
every input statement, unless the last
character transmitted to the foreground
terminal was a colon. At the start of a
statement, the prompting sequence is: skip
to a new line, print a colon, and skip to
the start of the next line. If the GET
statement is not completed by the data
transmitted from the terminal, a further
call to the transmitter will be made by the
director module handling the stream I/O. A
further prompt is then issued to the
programmer. Second and subsequent prompts
take the form of a plus character followed
by a colon.

Prompts are issued by placing the
required prompt-code in a suitable field,
and using a TPUT macro instruction with a
HOLD option. This ensures that any
terminal output from previously executed
PUT statements will appear at the terminal

Stream-oriented Input/Output 177

before the user is prompted to enter his
input.

The prompt is issued to the foreground
terminal irrespective of whether a PL/I
output file is associated with the
terminal.

FORMATTING

To simplify terminal usage various methods
of data input are allowed that do not
conform strictly to PL/I language
specifications. For example list-directed
input need not have a delimiting comma or
blank and the trailing blanks need not be
entered if a character item in edit-
directed I/0 does not fill the specified
field width.

Formatting Module IBMBSPC

To simplify the use of a terminal, default
formatting conventions are assumed. These
apply to PAGE, SKIP, and LINE instructions
and can be summarized as follows:

SKIP instructions of 3 lines or less
are followed.

PAGE and LINE, and SKIP instructions
of more than 3 lines are interpreted
as SKIP(3) instructions.

This default formatting can be overridden
by the use of a PLITABS structure that
specifies a value of 1 or greater for the
page length. (PLITABS is described above
under the heading "Formatting for Print
Files.")

IBMBSPC checks the page-length value in
the PLITABS control section. This control
section will be either the default taken
from the PL/I transient library module
IBMBSTAB, or, if the values have been
specified by tbe programmer, will be the
values in the structure declared with the
name PLITABS, or, possibly, a link-edited
control section called PLITABS. In the
library module IBMBSTAB, the page-length
value is zero.

If the page-length value in the PLITABS
control section is zero, the formatting
conventions described above are used.

These are referred to as squashed mode. If

the value is greater than zero, normal
formatting is undertaken.

The method of formatting used is for
IBMBSPC to insert the required number of

178

'new line' characters in the output buffer,
and to call the transmitter to transmit the
buffer contents. (In the special case of
SKIP(0), backspace characters are used.)
The normal PL/I rules for ENDPAGE apply

to formatted terminal output. ENDPAGE is
not raised for squashed mode output.

Summary of Subroutines Used

This section gives a summary of the
subroutines used in the implementation of
stream-oriented input/output. Detailed
descriptions of the library modules are
given in the relevant program logic
manuals.

Ten different types of subroutine are
used in stream I/0. They are:

1. Initializing modules

2. Director modules.

3. Transmitter modules

4. Formatting modules

5. Conversion modules

6. External conversion director modules
7. Cconversational modules

8. The conversion fix-up module (IBMBSCV)
9. The copy module (IBMBSCP)

10. The string housekeeping module
(IBMBSIS)

conversion modules are described in chapter
10 of this manual. The other types of
module are dealt with below.

INITIALIZING MODULES

Initializing modules initialize the stream
I/0 statement. There are two of these
modules:

IBMBSII - input initializer
IBMBSIO - output initializer

A further module is used for string
handling. See below under "Miscellaneous
Routines."

IBMBSII and IBMBSIO are described
earlier in this chapter.

DIRECTOR MODULES

IBMBSLI - list-directed input
Entry point A: element item
Entry point B: complete array

IBMBSLO - list-directed output
Entry point A: element item
Entry point B: complete array

IBMBSDI - data-directed input
Entry point A: with data list
Entry point B: all known variables

IBMBSDO ~ data-directed output
Entry point A: element variables and
. whole arrays

Entry point B: single array elements

Entry point C: all known variables and
SIGNAL CHECK output

Entry point D: CHECK output for a
single item

Entry point T: output a final
semicolon only.

Modules Used with Compiler-generated
Subroutines

IBMBSEI ~ edit-directed input
Entry point A: housekeeping for input
item spanning a record
boundary.
Entry point T: raise TRANSMIT for
spanning input item

IBMBSEO - edit-directed output housekeeping
for output item spanning a record
boundary.

Module for complete Library control of
Edit-directed I/0 of a Single Item

IBMBSED
Entry point A: edit-directed input
Entry point B: edit-directed output

compiler-generated Director Routines

For input:

IELCGIA - provides the address of the
source of an edit-directed data
or X-format item.

IELCGIB - completes the transmission of an

Chapter 9:

edit-directed data item, by
freeing a vDA if one was used,
updating the COUNT kuilt-in
function value, and calling
IBMBSEIT if TRANSMIT has been
raised.

For output:

IELCGOA - provides the address of the
target of an edit-directed data
item.

IELCGOB - completes the transmission of an
edit-directed data item, updating
the buffer items in the DCLCB,
counting the data item, and
freeing a VDA if one was used.

TRANSMITTER MODULES

The actual movement of the data between the
external medium and the buffer area is
carried out by a series of seven
transmitter modules, which interface with
the routines of 0S data management. These
modules essentially complete the setting up
of the DCB, and issue the data management
GET and PUT macro instructions, thus
reading or writing one record.

One module is used for input, six for
output. The output modules are divided into
two groups: one group for PL/I print
files, the other for all other output
files. Both output module groups contain
three modules: one for F-format records,
one for V-format recoxrds, and one for U-
format records. All modules interface with
the queued sequential access method.

The following transmitters are used:
IBMBSTI - input transmitter

IBMBSOF -~ output transmitter for F-format
records

IBMBSOV - output transmitter for V-format
records

IBMBSOU - output transmitter for U-format
recoxds

IBMBSTF - print transmitter for F-format
records

IBMBSTV - print transmitter for V-format
records

IBMBSTU - print transmitter for U-format
records

Stream-oriented Input/Output 179

FORMATTING MODULES

Formatting modules control the position of
the data on the external medium. There are
three formatting modules: two library
subroutines, and one compiler-generated
subroutine.

Library Subroutines

IBMBSPL - PAGE, LINE, and SKIP format items
and options
Entry point A: PAGE option or format

item

Entry point B: LINE option or format
item

Entry point C: SKIP option or format
item

IBMBSXC - X and COLUMN format items
Entry point A: X format input
Entry point B: X format output
Entry point C: COLUMN format input
Entry point D: COLUMN format output

Compilex-generated Subroutine

IELCGOC - X items, in edit-directed output,
that do not span a record boundary.

EXTERNAL CONVERSION DIRECTOR MODULES

The following external conversion director

180

routines are used exclusively in edit-
directed I/0:

IBMBSAI - input A, B, and P character
formats

IBMBSAO - output A, B, and P character
formats

IBMBSCI - input C format

IBMBSCO - output C format

IBMBSFI - input F and E formats
IBMBSFO - output F and E formats
IBMBSPI ~ input P format arithmetic
IBMBSPO - output P format arithmetic

CONVERSATIONAL MODULES

Transmitters:
IBMBSIC - input transmitter
IBMBSOC - output transmitter
Formatting module:
IBMBSPC - formatting module

MISCELLANEOUS MODULES

The other subroutines used in stream I/O
are:

IBMBSCV - the conversion fix-up module
IBMBSCP - the copy module

IBMBSIS - the string housekeeping module

Note on Terminology

In this chapter, the terms source and
target are used when referring to transfer
of data. The source is the point from
which the data is taken; the target is the
point to which it is moved, possibly in a
converted format.

The PL/I language specifies situations
in which conversion of data types will be
carried out. These include the execution
of stream I/0O and assignment statements,
and the evaluation of expressions that
include different types of data. The large
number of data types allowed in the PL/I
language means that some 170 types of
conversion are possible. How these
conversions are handled by the PL/I
Optimizing Compiler depends, to some
extent, on the optimization specified for
the program.

If optimization has been specified, all
conversions that can be handled by in-line
code are so handled. If optimization has
not been specified, the simpler and more
commonly used conversions will be handled
in-line, the remainder by the library
conversion package.

This chapter describes the library
conversion package and explains how in-line
conversions are handled. It concludes with
a description of how the CONVERSION
condition is raised.

Before conversions can be understood,
knowledge of the way in which data types
are held is necessary. This is summarized
in figure 10.1.

The Library Conversion Package

The library conversion package consists of
some 26 mocdules and is capakle of handling
all the conversions that are allowed in the
0S PL/I Optimizing Compiler implementation
of the PL/I language. All but seven of the
modules convert data from one data type to
another. As there are approximately 170
possible conversions and only 19 conversion
modules, many conversions are done by using
a series of modules. For instance, to
convert from fixed-decimal to bit-string
involves an intermediate conversion to
floating-point. The conversion package
also contains five

Chapter 10: Data Conversion

BIT(n) Aligned: one byte
for each group of
eight bits or part
thereof.
Unaligned:
bits as are
required, regardless
of byte boundaries.

as mwany

BIT(n) VARYING As BIT(n), with
two~-byte prefix
containing current

length of string.

CHARACTER (n) One byte per
character.

CHARACTER (n) As CHARACTER(n),

VARYING with two~-byte prefix

containing current
length of string.

Packed decimal:
1/2-byte per digit,
plus 1/2-byte for
sign.

FIXED DECIMAL({p,Qq)

FIXED BINARY(p,q) | p <= 15: halfword

p>15: fullword
FLOAT DECIMAL (p) p<=6: short
floating-point
p>6: 1long
floating-roint
p>16: extended
FLOAT BINARY (p) p<=21: short
floating-point
p>21: long
floating-point
p>53: extended
PICTURE One byte for each
picture character
(except K and V)

Internal forms of data
types

Figure 10.1.

control and utility modules, and two
modules used for stream I/0. The stream
I70 modules move character and bit strings
between the data management buffer and the
PL/I variable when no conversion is
necessary.

A full description of the routines in
181

Chapter 10: Data Conversion

the library conversion package is given in

Program_Logic.

The conversion paths followed for every
conversion are known to the compiler, and
ESD records are generated for all the
modules that will be used. In certain
cases, however, the data types involved are
not known at compile time. Examples of
this are data-directed and list-directed
input, and edit-directed input or output
when format and data lists cannot be
matched. 1In such cases, the compiler
generates ESD records for all conversion
modules that could possibly be needed.

Conversion Module Naming Conventions

All names begin with the letters 'IBMB’'.
The fifth letter is 'C' for conversions,
conversion utilities, and the
string/arithmetic directors. It is 'S' for
the edit-directed format directors. The
modules in the arithmetic conversion
package have six letter names, the sixth
letter being an arbitrary module
identifier. The string conversion modules
and conversion utilities have seven letter
names in which the sixth and seventh
letters are mnemonic; The mnemonic codes
follow:

fixed binary

float

integer or binary constant

if in C module

input if in S module

fixed decimal

free decimal or float decimal
fixed pictured decimal

float pictured decimal
decimal constant

float decimal constant on output
bit

bit constant

character

pictured character

arithmetic

output in S module

"check®" or utility

table

[l B

HaorPOoOUDKITNEYNDH

SPECIFYING A CONVERSION PATH

When a number of conversion modules need to
be used for a certain conversion, it is
necessary for there to be some control of
the path taken after the first module has

182

been entered. The method used is for each
module to have a number of entry points.
Each one is entered for a certain type of
conversion, and each one implies the
subsequent entry points to be invoked for
that particular conversion. For instance,
the module IBMBCE handles fixed-decimal to
fixed-binary conversions. If the module is
entered to carry out this conversion, entry
point IBMBCEDX is called. However, if it
is only an intermediate stage in a
conversion from fixed-decimal to bit-
string, the entxy point IBMBCEDB will be
called. When the conversion to floating-
point is completed, the conversion to bit
will be carried out by the module IBMBCR.

In addition to the use of various entry
points to specify the conversion path to be
taken, there are two control modules to
handle the conversion paths between
character-string and arithmetic data.

HOUSEKEEPING WHEN MORE THAN ONE MODULE
IS USED

When more than one arithmetic conversion
module is used in a conversion, a method cf
minimizing the housekeeping has been
evolved. This avoids saving registers and
acquiring workspace for each module
entered. The same library workspace is
used for all mocdules in a single conversion
operation. The first module in the chain
saves the registers and acquires workspace;
the last module frees the workspace and
restores the registers.

A simple method is used to allow each
module to test whether or not it can use
the previous module's workspace. A bit at a
fixed offset from register 13 is tested.

If the module is the first to be called,
this bit will be a bit in the calling
procedure's DSA, which is always set to
zero. If the module is not the first to be
called, the bit will ke in library
workspace and will have been set to one by
the previous module if the same workspace
can be used. If the module is the first,
library workspace will be acquired in the
usual manner. If the module is not the
first, a branch will ke made around this
code,

ARGUMENTS PASSED TO THE CONVERSION
ROUTINES

Each conversion routine expects a standard
set of arguments. These consist of the
address of the source and target, and the
addresses of the DEDs (data element

Fixed binary

Fixed decimal

Floating-
point

Bit string

|Fixed binary
|
|Fixed decimal

Floating-point
|
|

Bit string

Character string
or picture

Fixed binary

|Fixed decimal
|Floating-point

Bit string
Character string

Picture

Fixed binary
|
|

Fixed decimal

Floating-point

|Fixed decimal and
| floating~-point

|If either scale factor =
|other factor < 0, the optimization

|can ke *none‘.

|If source scale factor =

|optimization can be

|SIZE is enabled or not).

|string must be fixed-length, aligned,

|and with length <2048.

| source scale factor must be <
|string must be fixed-length with

length <256. Picture type 1, 2, or 3.
If source and target scales have the
same sign and are non-zero, the
optimization (SIZE disabled) must be

'time'.

| source precision must be <10.

Source scale factor must be zero.
String must be fixed-length, aligned,

|and with length <2048.

| source scale factor must be =

0.

| String must be fixed-length and

|length <256.

|
|Picture type 1,

double length.

and with length <32.

2, or 3.
|picture types 1 and 2 with no sign,
|optimization can be '

For

none'.

Target precision must be <9.

Source and target may be single or

|String must be fixed-length, aligned,
|and with length <£2048.

——— - — —_ = T " = —— i ———— — -

Souxce string must be fixed-length,
aligned, and with length <2048.

Source must be fixed-length, aligned,

| SIZE

| SIZE |

|disabled|enabled |

> e e e " - . - - - Y - - - - - - - - - - —— - - - - - — - - - - — - - -

0 and the time

0, the time
'none' (whether

0. time

time

tine

— — — —— — ——— ————— P S— o S St S S, S, S i, e, B W, S, Wi, W S S ot S S F— ——T— T— —— — — — — — — — — f——— — ——

- - ———

|not done
|in-1ine

not done
in-line
|not done|
|in-1line |
| |
|not donej
jin-1line |

Lercmecacoencawa e - = o s o e . o o o o . - — - i~ - —— N |

Figure 10.2.

(Part 1 of 2).

Data conversions performed in-line

Chapter 10:

Data Conversion

183

| Conversion | | Optimization |
| === | Comments and Conditions = = |--=-=---=-onoeee-
| Source | Target | | SIZE | SIZE |
| | | |disabled|enabled |
| === e e e oo |
	o _ [
	Character string	String must be fixed-length with	-	-	
i	length <256.				
Picture					
			o		
	Picture	Pictures must be identical.	-	.	
=== e e e oo oooooooooooooo					
	Fixed binary	source precision must be <10.	time	[not done	
			in-line		
[

| |Fixed decimal |If picture has a sign, the | - |not done
| | |optimization must be 'time'. | |in-1line

| Picture { | | | |
Itype 1 | | I |
| (See note | | | |
| below) | | |

| | | L

| | Floating-point | Source precision must be <10. | time |[not done
| | | | |in-line

| | | b |
| |Picture |Picture type 1, 2 or 3. | time |not done
| | | | |in-1line

I ___
| Locator | Locator | - | - | -

I - ———— - —— N - ——— ————— — S . —————— —
| Label | Label | - | - | - |

|The word "time" in the columns headed "Optimization" indicates that the conversion is |

|done in-1line only if optimization has been specified;
|that the conversion is done by library call.

Lo o o e e e e e e - ——

Figure 10.2. (Part 2 of 2).

descriptors) for the source and the target.
Arguments are passed in a list addressed by
register 1. (The source is the variable or
constant that requires conversion; the
target is the area where the converted
result is to be placed.)

The DEDs are used to describe the data
type of the element. Those passed to the
library conversion package are set up by
compiled code in the constants pool. They
are described in chapter 4 and fully mapped
in appendix A.

COMMUNICATION BETWEEN MODULES

When the conversion path goes through a
series of modules, the address of the final
target must be retained until the last
module is reached.

Temporary targets and DEDs are created

for the intermediate results, and these are
passed on as the source for the next

184

"not done in-line" indicates |

Data conversions performed in-line

module. When information is passed between
two conversion modules using the same
workspace, registers are normally used
rather than a parameter list.

In some arithmetic conversions to
string, precision data is passed through
certain modules that do not themselves need
such data.

FREE DECIMAL FORMAT

Because all floating-point data is in
binary form, there is no direct
representation of the PL/I floating-point
decimal format. In order to simplify
certain conversions, a simulated floating-
point decimal format is employed by the
optimizing compiler. This format is termed
free decimal (sometimes known as packed
intermediate decimal). The format of free
decimal is a 17-digit packed decimal
mantissa and a fullword binary exponent.
conversions to and from free decimal form

|Conversion | Conversion
| number |
= e e e
| | _
| 2 Fixed-binary to
| floating-point
| |
| 3 | Floating-point to
| fixed-binary
|
| 4 | Fixed-decimal to
| floating-point
|
| 5 Floating-point to
| fixed-decimal
| |
| 6 | Fixed-binary to
| | fixed-decimal
|
7 | Fixed-decimal to
| fixed-binary
|
8 | Character-string to
| fixed-decimal
[
9 | Character-string to
| | floating-point
| |
| 10 | Character~-string to
| | fixed-binary
| |
| 12 | Fixed-decimal to
I | character-string
| I
| 14 | Bit-string to
| | character-string
| I
| 15 | Fixed-binary to bit-string
| |
| 16 | Floating-point to bit-string|
| |
| 17 | Bit-string to fixed-binary
| {
| 18 | Fixed-decimal to picture
| type 1
|
19 | Fixed-decimal to picture
| type 2
|
20 | Fixed-decimal to picture
| type 3
|
21 | Picture type 1 to
| | fixed-decimal
| === Bt bttt I
|Note: Conversions numbers 1, 11, and 13

|not used.
[,

Fundamental in-line
conversions

Figure 10.3.

an integral part of the arithmetic
conversion package.

In-line Conversions

The optimizing compiler generates in-line
code for the more commonly used
conversions. Eighteen basic types of
conversion are handled in-line. Several of
these basic types are used in conjunction,
to enable a total of 28 conversions to be
handled in-line. The circumstances in
which in-line conversions are used are
shown in figure 10.2.

An example of the way in which a
compiler conversion is used to convert from
fixed-binary to fixed-decimal is given
below. A list of the eighteen fundamental
compiler conversions is given in figure
10.3.

Note about Picture Variables

Not all the picture characters available
may be used in a picture involved in an in-
line arithmetic conversion. The only ones
permitted are:

V and 9

Drifting or non-drifting characters $
S + -

Zero suppression characters Z *
Punctuation characters , . / B

For in-line conversions, pictures with

~ this subset of characters are divided into

three types:

Picture type 1: Pictures of all 9s with
(optionally) a V and a leading or
trailing sign. For example:

*99v999"',
99V,

1991,
'$999"

's99ve,

Picture type 2: Pictures with zero
suppression characters and
(optionally) punctuation
characters and a sign character.
Also, type 1 pictures with
punctuation characters. For
example:

Y222, "kk/%%9',
'+22.222",

'*2Z9v.99',
*$/77/799, '9.9°

Picture type 3: Pictures with drifting
strings and (optionally)
punctuation characters and a sign
character. For example:

15588, -9,
"+++9V.9', '5559~"

*s/ss/s9',

Chapter 10: Data Conversion 185

Sometimes a picture conversion is not
performed in-line even though the picture
is one of the above types, because it has
certain characteristics that necessitate a
subroutine call. These may be, for
instance:

e There is nc overlap between the digit
positions in the source and target. For
example:

DECIMAL (6,8) or DECIMAL (5, -3) to
PIC *'999V99*' will not be performed
in temp.

e Punctuation between a drifting 2 or a
drifting * and the first 9 is not
preceded by a V. For example:

'22.99"

e Drifting or zero suppression characters
to the right of the decimal point. For
example:

YZIV.ZLT, 'V

Example: Fixed-Binary to Fixed-Decimal_ (Compiler_ Conversion No._ 6)

The conversion is performed by converting from binary to decimal via a CVD instruction,
with a scale-matching operation (to line up the decimal and binary points) either before
or after the CVD (or occasionally both). This scale-matching-operation is done by shifts
where possible but, depending on scales and precision, a decimal multiplier is sometimes
used.

DCL SOURCE FIXED BINARY (31,9),
TARGET FIXED DECIMAL (15,-6);
TARGET=SOURCE;

L 14, SOURCE

LTR 14,14 Determination

BNM compiler label Branch if >0

A 14, Constant Add a constant to negative source
SRA 14,9 Divide by source scale (2%*%*9)

CVD 1u4,WKSP+8 Convert to decimal in workspace
Xc TARGET (3) , TARGET Set zeros in target

MVC TARGET+3(5) ,WKSP+8 Transfer value to target

MVN TARGET+7 (1) ,WKSP+15 Transfer the sign

186

(mmmmmmmm—mmme————————— —eee—ececc————————————
Compiler conversions used |

|_—--_-----------------—-------—-----—--_---—

| Conversion required |

| Fixed-decimal to bit-string | No. 7
i |
| | No. 15
l —————————————— s e e e -~ - - - - -
| Floating-point to bit-string | No. 3
|
| | No. 15
| == e
| Bit-string to fixed-decimal | No. 17
|
| No. 6
Bit-string to floating-point | No. 17
|
| No. 2
Character-string to bit-string | No. 10
|
| | No. 15
Fixed-binary to character-string | No. 6
| No. 12
Fixed-binary to decimal picture | No. 6
|
| | No. 18,
I_--_ e > - - - - ——— - - -
| Floating-point to decimal | No. 5
| picture |
| | No.
I ______________ - - - .
| Decimal picture to fixed-binary | No. 21
|
| No. 7
Decimal picture to floating- No. 21
point
No. 4
Decimal picture to decimal No. 21
picture
No.
| o A i = — — = - - Y —————

Figure 10.4. Multiple conversions

MULTIPLE CONVERSIONS

The conversions listed in figure 10.3 can
be regarded as fundamental types. A number
of other conversions can be performed by
using two fundamental conversions in
series. These are shown in figure 10.4.

HYBRID CONVERSION

Finally, there is one hybrid conversion
that is carried out partially in-line.

-------------------------------------- —————a

Fixed-decimal to fixed-binary |

Fixed-binary to bit-string |

Floating-point to fixed-binary |
Fixed-binary to bit-string |
Bit-string to fixed-binary |
Fixed-binary to fixed-decimal |
Bit-string to fixed-binary %
Fixed-binary to floating-point |
Character-string to fixed-binary I
Fixed-binary to bit-string |
Fixed-binary to fixed-decimal I
Fixed-decimal to character-string |
Fixed-binary to fixed-decimal |

19, or 20 Fixed-decimal to picture |

............... ‘_-------—------—----———--—-I

Floating-point to fixed-~decimal |

18, 19, or 20 rixed-decimal to picture |

__-_-----__-----_---__-__-------—----_-----I

Picture to fixed-decimal |
Fixed-decimal to fixed-binary |
Picture to fixed-decimal |
Fixed-decimal to floating-point |

Picture to fixed-decimal |

18, 19, or 20 Fixed-decimal to picture |

——— 4

This is floating-point to character-string,
which requires an interpretive routine to
analyze the floating-point data (as
distinct from the attributes, which all the
others use), in order to generate the
correct scale factor. This is done by the
library, because in-line code would use the
same algorithm. However, partial
optimization is carried out Lky setting up a
character string of the correct length
before calling the library, and then
handling the subsequent string assignment
in-line.

Chapter 10: Data Conversion 187

Raising the Conversion Condition

The PL/I language specifies that when an
invalid conversion is attempted on
character-string data, the CONVERSION
condition will be raised unless CONVERSION
has been disabled.

When the CONVERSION condition has been
raised, the language allows the program to
access the invalid field or character by
use of the ONSOURCE or ONCHAR built-in
function. The language also stipulates
that conversion should be attempted again
if an on-unit is entered in which the
ONSQURCE or ONCHAR pseudovariable is used
to change the invalid field or character.

Raising the CONVERSION condition
involves a number of housekeeping problems,
which are handled by a special conversion
module, IBMBSCV. IBMBSCV is never called
by compiled code, since conversions that
could raise the CONVERSION condition are
not attempted in-line unless the CONVERSION
condition is disabled. IBMBSCV produces the
correct error code for the error handler,
IBMBERR, and looks after the housekeeping
problemns.

IBMBSCV saves considerable overheads
being carried either by all types of errors
or by all correct conversions. The reason
for the overhead lies principally in the
facility offered by the language of using
the ONSOURCE and ONCHAR built-in functions
to access and optionally change the field
causing the error, and subsequently .
reattempting the conversion on the changed
field.

Before any conversion in which the
CONVERSION condition could be raised is
attempted, the ONSOURCE field in the ONCA
must be set up, and the address at which a
reattempted conversion should begin must

188

also be placed in the ONCA.

The code carrying out the conversion
must then test the validity of the field tc
be converted and, if it is invalid, set the
ONCHAR field in the ONCA to the first
invalid character. THe module IBMBSCV is
then called to diagnose the conversion and
produce the correct erroxr code for the
error handler. There are some twenty
possible error codes associated with the
CONVERSION condition.

If the condition was raised during the
execution of stream input, further action
is necessary. This is because an on-unit
may specify . further input, and the buffer
which contains the CNSOURCE field may be
lost. For example the on-unit might be:

ON CONVERSION BEGIN;
ON CONVERSION SYSTEM; /* PREVENTS
RECURSIVE ENTRY*/
GET LIST (KEYB);
IF KEYB< 200 THEN ONCHAR ='1';
ELSE ONCHAR ='9°';
END;

If KEYB was in the next record, the source
field that caused the conversion would be
lost. To prevent this, a VDA is acquired
in the LIFO stack, and the source field is
stored in this VDA. The ONSOURCE and
ONCHAR pointers are altered to point to the
field in the VDA, and all further
operations are carried out on this field.

The NAB pointexr associated with the
block in which the interrupt occurred must
then be altered so that it encompasses the
VDA. The fact that the NAB pointer has
been altered must be known in the block for
a GOTO out of block to be handled. The
reset-NAB bit is accordingly set to one in
the relevant DSA. When these operations are
complete, IBMBSCV calls the error-handling
module IBMBERR.

Chapter 11: Miscellaneous Library Subroutines and System Interfaces

In addition to employing the PL/I likraries
for the functions described in previous
chapters, the 0s PL/I Optimizing Compiler
calls on a large number of computational
and data-handling subroutines and on
subroutines that provide interfaces with
the operating system for such functions as
TIME and DATE. These miscellaneous library
calls are discussed in this chapter. The
library subroutines themselves are fully
described in the publications IBM
System/360_ Operating System: _PL/I Resident
Library Program_ Logic and IBM_System/360
Operating System: _PL/I Transient Library
Program_Logic.

This chapter is divided into two main
sections: the first deals with the
computational and data-handling
subroutines, and the second with
miscellaneous system interfaces.

Computational and Data-handling
Subroutines

The computational and data-handling
subroutines are used to handle all the
mathematical built-in functions, the
majority of arithmetic built-in functions,
and a number of array-handling, structure-
handling, and string-handling functions.
The extent to which library calls are used
depends on the level of optimization
specified by the programmer, the type of
data involved, and, for string functions,
on whether STRINGRANGE and STRINGSIZE are
enabled.

ARITHMETIC AND MATHEMATICAL SUBROUTINES

The compiler always uses library
subroutines for mathematical functions.
The use of compiled code in these
circumstances is impracticable. Where
possible, arithmetic functions are handled
by in-line code. The circumstances in
which library subroutines are used for
arithmetic functions are listed in figure

Chapter 11:

11.1.

Considerable use is made of chains of
library modules to carry out the various
functions. For example, the subroutines
that handle complex arithmetic normally
call on those that handle real values tc
process each part of a complex number;
similarly, the square-root subroutine is
used in the computation of several of the
trigonometrical functions.

Arguments are passed to the arithmetic
and mathematical subroutines either in
registers or in a parameter list addressed
from register 1. The use of registers
results in faster execution, but allows
less flexibility in use of the routines.
Ccompiled code always passes arguments in a
parameter list. All built-in functions,
except the STRING built-in function, have
their arguments passed in a list comprising
the addresses of the source and target (and
sometimes also the addresses of DEDs).
Computational routines are always carried
out in floating-point unless otherwise
indicated. This may involve conversicn
before calling the routine.

ARRAY, STRING, AND STRUCTURE
SUBROUTINES

A number of array, string, and structure
subroutines are included in the 0S PL/I
Resident Libary. These are used to carry
out certain of the array and string built-
in functions and a number of other
operations. Where possible, in-line code is
generated to carry out these functions.
However, the enablement of STRINGSIZE, the
use of unaligned bit strings, and the use
of adjustable and certain varying-length
strings will result in calls being made to
the library sub-routines.

The subroutines involved in these
functions are shown in figure 11.2. Two of
them, IBMBAIH and IBMBAMM, are concerned
with the handling of data aggregates rather
than with the execution of specific
operations. They are discussed below.

Miscellaneous Library Subroutines and System Interfaces 189

" > o " — ———————— — T 2" " T - - ————— - — -

Short floating-point
Long floating-point

Integer exponentiation

Extended
floating-point

General exponentiation

Extended
floating-point

Short floating-point
Long floating-point

Integer exponentiation

Extended
floating-point

General exponentiation

Extended
floating-point

——————— — T —— - -~ — - -~ - —— -

Short floating-point
Long floating-point

Short floating-point
Long floating-point

| Module | When used |

| name | |
___ l
| IBMBMXS | When exponent is a variable |

| IBMBMXL | When exponent is a variable |

| IBMBMXE | Always |

I | [

I | |

| IBMBMYS | Always |

| IBMBMYL | Always |

| IBMBMYE | Always |

| |]
.............. —————— e |
|

COMPLEX ARGUMENTS |
I

|
... ‘
| Module | When used |

| name | |
... I
| IBMBMXW | When exponent is a variable |

| IBMBMXY | When exponent is a variable |

| IBMBMXZ | Always |

I | I

| | |

| IBMBMYX | Always |

| IBMBMYY | Always (

| IBMBMYZ | Always |

| | |

Figure 11.1. Arithmetic operations performed by library subroutines

e e e . s e e o e s e e . e i S e e e S S e

IBMBAIH is used to assist the other library
array-handling subroutines to process
interleaved arrays. It is not called by
compiled code.

Interleaved arrays are arrays whose
elements are not held contiguously in’
storage. They occur in arrays of
structures. For example, the declaration:

DCL 1 STRUCTURE (2),
2a(2),
2 B ;

would result in successive storage
locations being allocated to elements of A
and B as follows:
A(1,1),a(1,2),B(1),A(2,1),A(2,2),B(2)
Both A and B are interleaved arrays. A is

a two-dimensional array, the first row of
which is separated from the second by an

190

element of B. As can be seen, the elements
of A are not contiguous, nor is there a
fixed interval between their addresses.

The interval between the addresses of
elements of an interleaved array referred
to by varying only. the final subscript is
always fixed, and these elements can be
stepped through by using the last
multiplier from the array descriptor.
However, such groups of contiguous elements
are not themselves necessarily contiguous.

When IBMBAIH is called, it is passed,
the number of dimensions in the array, the
address of the array descriptor, and the
address of a work area in which to
construct a takble. Basically, IBMBAIH
calculates the extent of each dimension and
enters this information in the table; it
then calculates the increments that must be
added in order to step between elements
that may be non-contiguous (see figure
11.3). The information in the completed
table is used by the calling module to

- ——— - — — - ———————— -

r 1 Structure Mapping (IBMBAMM)
| IBMBAAH | ALL and ANY built-in |
i | functions |
| IBMBAIH | Indexer for interleaved | Structures are normally mapped during
| | arrays | compilation. However, certain structures
| IBMBAMM | Structure mapping | that contain adjustable strings or arrays
| IBMBANM | STRING built-in function cannot be mapped until the actual lengths
| IBMBAPC | PROD built-in function or bounds are known. Compiled code calls
| | (fixed-point integer) on the module IBMBAMM to carry out this
| IBMBAPF | PROD built-in function | mapping. There are four entry points:
| | (short or long |
| | floating-point) IBMBAMMA Compute length of structure.
IBMBAPE | PROD built-in function
| (extended floating-point) IBMBAMMB Map structure in PL/I manner.
IBMBAPM | STRING pseudo-variable
IBMBASC | SUM built-in function | IBMBAMMC Map structure in COBOL manner
| (£ixed-point) | (for interlanguage comunication
IBMBASF | SUM built-in function (short | or for files declared with the
| or long floating-point) | COBOL option).
IBMBASE | SUM built-in function |
| | (extended floating-point) | IBMBAMMD Map structure declared with
| IBMBAYF | POLY built-in function | REFER option.
| (short or long |
| floating-point) |
IBMBAYE | POLY built-in function |
| (extended floating-point) { Miscellaneous System Interfaces
IBMBBBA | AND and OR logical |
| | operations (aligned bit |
| strings) | In addition to the system interface used
IBMBBBC Compare aligned bit strings | for input and output, the PL/I Optimizing
IBMBBBN Invert aligned bit string | Compiler makes use of a number of other
(NOT) | system facilities. These are for the
IBMBBCI | INDEX built-in function | DELAY, DISP1LAY, and WAIT statements, the
(character string) | TIME and DATE built-in functions, and the
IBMBBCK Concatenate character | sort/merge and checkpoint/restart built-in
| strings and REPEAT built-in | subroutines.
| function |
| IBMBBCT TRANSLATE built-in function Calls to these facilities are made
| (character string) through library subroutines held in the 0S
IBMBBCV VERIFY built-in function PL/I Resident Library. These subroutines
(character string) act as an interface, issuing any SVC calls
IBMBBGB BOOL built-in function that may be necessary, and handling
IBMBBGC Compare unaligned bit | housekeeping problems. The descriptions of
strings the subroutines in this chapter are kept to
IBMBBGF | Bit-string assignment a minimum except where the housekeeping
(aligned, source and target) problems are large and have a major effect
IBMBBGI INDEX built-in function (bit | on the contents of main storage. In these
- string) | cases, background information is given and
| IBMBBGK | Concatenate bit strings, | the various control blocks are explained,
| | REPEAT built-in function, | thus enabling the situation during
| | and assign | execution to be understood.
| IBMBBGS | Produces SLD (SUBSTR |
| | built-in function) | The 0S macro instructions referred to
| IBMBBGT | TRANSLATE built-in function | below are described in IBM_System/360
| | (bit string) | Operating System: _Supervisor_and Data
| IBMBBGV | VERIFY built-in function | Management Macro Instructions.
| | (bit string) |
g gy g 4
TIME
Figure 11.2. Array, structure, and The PL/I TIME built-in function is
string subroutines implemented by issuing a GETIME macro
instruction. This is done by the module
IBMBJTT.
address successive elements of the array
using simple code. Oon entry from compiled code, register 1

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 191

points to the address of the character-
string target. The TIME macro instruction
is issued using the TU parameter. The time
is returned in units of 26.04 microseconds
and the module converts this into PL/I
defined format *hhmmssttt® in character
format.

DATE

The PL/I DATE built-in function is
implemented by module IBMBJDT.

On entry from compiled code, register 1
points to the address of the date character
string. The TIME macro instruction is
issued. On return register 1 contains the
date in yydddc packed decimal format. The
year is placed in the target character
string in character form. The day of the
year is then compared against a table
indicating the number of days in each
month. If the year is a leap year the
number of days for February is set to 29 in
the table. The days and months are then
set in the character string and the result
returned to compiled code in the form
yymmdd.

DELAY

The PL/I DELAY statement is implemented by
calling the DELAY module IBMBJDY. Register
1 is pointed at the milliseconds delay
required. The milliseconds are converted
into units of 26 microseconds and the
result stored in a fullword addressed by
the TUINTVL parameter in the STIMER macro
instruction. The STIMER macro instruction
is then activated and the delay started.
After the delay control is returned to the
calling program.

DISPLAY

The PL/I DISPLAY statement is'implemented
by the module IBMBJDS. There are two entry
points:

1. IBMBJDSA - entry from compiled code.

2. IBMBJDSB - entry from IBMBJWT or
IBMTJWT when a WAIT for the EVENT is
reached.

If the parameter list passed to the module
has one element, then the entry is for
DISPLAY only, and a VDA is obtained. If
there are two parameters, then the entry is

192

for DISPLAY REPLY and a VDA is again
obtained. If there are three parameters,
then the entry is for DISPLAY REPLY EVENT.
If the event variable is active ERROR is
raised. If the event variable is inactive
it is set active, I/0 display and
incomplete, and non-LIFO storage is
obtained in which to build the parameter
list.

Next the reply buffer, if present, is
filled with blanks and, if the reply string
is variable length, its current length is
set to the maximum length. The parameter
list to the WTO macro is now built in the
storage obtained, the address of the ECB
put into the event variable if there is
one, and a WTIO macro issued. Finally, if
DISPLAY REPLY without EVENT was specified,
a WAIT macro is issued for the ECB. Returxn
is then made to compiled code.

SORT/MERGE

The PL/I programmer can make use of the 0S8
sort/merge facilities through a call to the
built-in subroutine PLISORT. The method of
using the facility is fully described in
the publication IBM_System/360 Operating
System: PL/I Optimizing Compiler
Programmers' Guide.

The OS sort/merge program includes a
number of user_exits that can be
conveniently thought of as allowing the
programmexr to writé sections of code that
become included in the sort/merge routines.
Two of these user exits can be used by the
PL/I programmer: user exit 15 allows
records to be set up by PL/I and passed to
the SORT routines; user exit 35 allows
records that have been sorted to be passed
to and processed by the PL/I program.

Exits are not allowed in the PL/I
language. To overcome this problem, code
is inserted between the sort/merge modules
and the PL/I routines. A bootstrap module,
IBMBKST, is used, and this module acts as
an interface between SORT and PL/I. The
bootstrap module saves the PL/I environment
and restores it on return from sort/merge
so that the PL/I exit-15 or exit-35 code
can operate in a PL/I environment.
Similarly, the bootstrap module restores
the environment for SORT on return from the
exit.

Saving and restoring the environment
consists of replacing the address of the
error handler in the TCA with the address
of an error routine in IBMBKST, and vice-
versa.

Declaration Storage

DECLARE 1 X(2), c

2 C, Z(1,1,1)

2 Y (2), Z(1,1,2)
3 Z(3), Z(1,1,3)
3 B; Inc, B

Z2(1,2,1)

Z(1,2, 2

Z(1,23)

B

Inc, C

Z{2,1,1)
Z(2,1,2)

Z{2,1,3)
Inc, B
Z(2,2,1)
2(2,22)
Z(2,23)
B

Z is a three-dimensional interleaved array, for which

M,, M,, and M, multipliers held in array descriptor (see chapter 4)

Inc, and Inc, = intervals between addresses of successive elements of Z when subscripts

for first and second dimensions, respectively, change

The increment when the subscript for the ith dimension changes is computed as follows:
M - Eiq "My +Inc,,

Where E; ., is the extent of the (i+1)th dimension.

Inc, =

-Increment table for array Z (as initialized by IBMBAIH)

2 subscript count

2nd dimension 2 extent of dimension
Inc, increment
2 subscript count

1st dimension 2 extent of dimension
Inc, increment

Note: . IBMBAIH returns the extent of the nth dimension in register 1. (In this example, the extent of
the 3rd dimension = 3.)

Figure 11.3. 1Indexing interleaved arrays

Chapter 11:

Miscellaneous Library Subroutines and System Interfaces

193

Housekeeping Problems

Various housekeeping problems occur in the
user exit procedures, since there is no DSA
chain through the SORT modules.
Particularly difficult is the handling of a
GOTO out of the exit procedure that passes
control to a procedure that was activated
before the procedure that originally called
the sort program. This action implicitly
terminates SORT. However, SORT will not be
terminated by standard PL/I action, since
it does not function in the PL/I
environment.

The problems are overcome by setting up
a chainback that omits the SORT DSAs and
includes a DSA that is specially flagged so
that it can be recognized by the GOTO code.
The chaining of save areas in shown in
figure 11.4.

When IBMBKST is called an area of
workspace is acquired by the Lkootstrap
routine IBMBKST. This consists of one
level of library workspace, which is
flagged and chained to look like two DSAs.

If the SORT program is terminated by a
GOTO out of the block that contains the
PL/I exit program, the SORT routine has to
be terminated before the GOTO can be
completed. This is done by the GOTO
routine lcoking for a specially flagged DSA
in the chain. This is the second save area
of IBMBKST. If one is found, a return code
of 8 is set up and return made to the SORT
routine. If there is a GOTO or an error,
then error code 16 is set instead of 8 if
the SORT program product being used is that
which supports this return code to exits.
This results in the termination of the SORT
routine, and the GOTO can then be continued
in the usual manner by following the DSA
backchain through the bootstrap routine
until the target DSA is reached.

For handling on-units in the exit

procedure, the DSA chain can be followed
without reference to SORT.

Restoration_of the PL/I_Environment_ on
Exit_from SORT

e e i e e e e

When an exit is made from SORT, it is

194

necessary to restore the PL/I environment.
The method used is to have code that
restores the registers at the point to
which SORT makes its exit. Use is made of
the SORT exit table shown in figure 11.4.
Whichever exit is taken, control passes to
this code. The code saves the registers
passed by SORT and restores the registers
of the bootstrap module IBMBKST, thus
restoring the PL/I environment. The save
area of the SORT bootstrap routine is
addressed by means of an offset from the
code that is being executed. This is
possible because the SORT exit table and
the register save area are both held in the
same workspace at a fixed offset from each
other. The code is not included in the
bootstrap module, in order to preserve
reentrancy.

If there is an error in SORT, control is
also passed to code which restores the
environment, and passes control to IBMBKST
and then to IBMBERR.

Summary_ of Work Done_by the SORT_ Module

Before calling the SORT program, IBMBKST
does the following:

1. Obtains a VDA for two DSAs.

2. Creates a parameter list suitable for
SORT.

3. Sets up addressability code for exit
routine, if any.

4. Changes the interrupt handler address
so that an interrupt results in entry
being made to a section of the sort
bootstrap. The sort bootstrap then
determines the error, puts out a
message to SYSPRINT indicating that a
program check has occurred during the
execution of SORT, and then terminates
the program.

When a SORT E35 or E15 exit is being
taken, the addressability code saves the
registers of SORT and reestablishes the
PL/I environment, and then branches to an
entry point of IBMBKST, which:

."
Backchain
DSA for PL/I program
requiring SORT facilities
<
Backchain
First save area:
for SORT interface Sort bootstrap DSA on
module calling SORT
*Exit table
!
Backchain
Second save area:
for exit routine
interface
Sort bootstrap DSA on
Work area for the calling exit routine
interface routines
Address of SORT
save area
Backchain
PL/I exit procedure DSA
*Exit table
NOP 0 not used
Entry point for E15 BC 156,12(15) branch to exit code for E15 exit
Entry point for E35 BC 15,12(15) branch to exit code for E35 exit
ST™M 14,12,12(13) save sort registers
L 2,28(15) locate bootstrap save area
LM 2,12,28(2) restore bootstrap registers
B exit bootstrap initialized address of routine
DC A (save area 1) address of first save area

Figure 11.4. DSA chaining during the execution of SORT

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 195

Main procedure

SORT

bootstrap
IBMBKST

SORT

Addressability code

. [

SORT bootstrap

.|

PL/I exit routine

Call SORT bootstrap
Return on completion of SORT

Set program-check exit for SORT to code in SORT bootstrap.
Arrange parameters for SORT.

Store registers in first bootstrap DSA.

Call SORT.,

Sort as instructed by parameters.

Save registers in SORT save area.
Restore registers for bootstrap.
Branch to bootstrap.

On entry from SORT On entry from exit routine
‘Reset program-check exit Reset program-check exit

for PL/I. for return to SORT.

Set up parameters for exit Arrange parameters for SORT.
routine from information Restore SORT registers.
passed by SORT. Return to SORT.

Catl exit routine.

Carry out processing — return to SORT bootstrap.

Figure 11.5.

196

summary of action during use of a SORT exit

1. Restores the PL/I interrupt handler
address, so that control will pass to
the PL/I error-handling routines if a
program interrupt occurs.

2. Sets up parameters for the PL/I exit
routine from information passed by
SORT .

3. cCalls the PL/I exit routine.

Setting the return code in the PL/I exit
program resets the parameters that IBMBKST
passes to the SORT routines.

Storage_for_ SORT

Storage for sort/merge workspace and the
modules used is obtained in the LIFO stack.
A VDA of the correct length is obtained by
the bootstrap module. The length required
must be specified in the arguments that are
given in the call to PLISORT. These
actions are summarized in figure 11.5.

CHECKPOINT/RESTART

The PL/I Optimizing Compiler allows the
programmer to make use of the system
checkpoint/restart facilities by calling
the built-in subroutine PLICKPT. This is
implemented by a call to the resident-
library subroutine IBMBKCP, which issues
the CHKPT macro instruction.

Before the CHKPT macro instruction is
issued, two control blocks must be set up.
one of these control blocks contains the
names of all tape files that are open; it
is used to reposition the tapes on restart.
The other control block contains
verification information for all disk files
that are open; it is used to verify that
the disk packs are on the same devices on
restart as they were when the check-point
was taken. The two control blocks are held
in workspace acquired by the module
IBMBKCP.

When a restart is made, control is
passed to the module IBMBKCP at a fixed
entry point. After carrying out necessary
checks, control is then returned to the
calling routine in the normal manner.
control is thus returned to the statement
after the call to PLICKPT, and processing
continues.

Chapter 11:

WAIT

The PL/I WAIT statement allows the
programmer to specify that processing shall
halt until a specified number of events are
complete. In the 0S PL/I Optimizing
Compiler, an event can be associated with
either a record I/0O operation or a DISPLAY
statement, or it can be an inactive event
that is not associated with any operation.

All information relating to an event is
kept in an event_variable. This is a
control block of five words in length; it
is treated for storage allocation like any
other PL/I variable. The event variakle
holds information on whether the event is
associated with an operation and whether it
is complete; it also records the status of
the event (i.e., whether the associated
operation was completed successfully or
otherw1se). When an _event is associated

otherwise, it is said to be 1nagt1vg.

When the wait statement is used, the
keyword WAIT is followed by a list of
events that are to be waited on. A number
can follow this 1list, indicating that only
that number of events need be completed
before processing can continue. Typical
WAIT statements are:

WAIT (EVENT1,EVENT2);

WAIT (EVENT1,EVENT2) (1);

For the first statement, both the events
would have to be completed before
processing could continue. For the second
statement, processing would continue as
soon as either of the events was complete.

Event Variables

When storage is allocated for an event
variable, the event variable is set
inactive and incomplete. When the EVENT
option is used to associate the event with
an operation, the event variable is set
active and incomplete. When a WAIT
statement is executed and the operation
associated with the event has been
completed, the event variable is set
inactive and complete. The status of the
event is also set at this time, indicating
whether or not the operation was
successfully completed.

The PL/1I language allows the programmer
to set complete or incomplete any event, by
use of the COMPLETION pseudo-variable.

This sets the appropriate bit in the event
variable. The completion status may be

Miscellaneous Library Subroutines and System Intexrfaces 197

ON TRANSMIT (A) CALL L;
ON TRANSMIT (C) CALL L;
ON TRANSMIT (X) CALL L;

ON RECORD (A) CALL M;
ON RECORD (C) CALL M;
ON RECORD (X) CALL M;

| |
| |
I |
{ [
| I
| |
| |
| |
| I
| I
| K=0; |
11 READ FILE (2) INTO (B) EVENT |
| (E1); |
12 READ FILE (C) INTO (D) EVENT |
| (E2); |
| » |
| J |
| o |
|3 WAIT (E1,E2); |
| d |
| . |
i . |
|4 IF K=1 THEN WAIT (E2); 1
| . |
| . |
| . |
|5 BOOTLE: WAIT (E3); I
| . |
| . I
| . |
| L: PROC; |
|6 COMPLETION (E3)='1'B; |
|7 GO TO BOOTLE; |
| END L; |
| M: PROC; I
|18 COMPLETION (E3)='1'B; |
|9 WAIT (E2); |
110 K=1; |
|11 READ FILE(X) INTO(Y) EVENT |
| (E2); |
| END M; |
l |
| END WAITER; |
[—————— - e e o 4

Figure 11.6. Example of WAIT

implementation problems

inspected by means of the COMPLETION built-
in function. The PL/I language also allows
the programmer to inspect and change the
status of an event, by means of the STATUS
built-in function and pseudo-variable.

WAIT Statement_ (Non-Multitasking)

The WAIT statement in a non-multitasking
environment is implemented by a call to the
resident library routine IBMBJWT. IBMBJWT
is passed a set of parameters consisting of
the addresses of the event variables and
the number of events that have to be

198

completed. If the number of events that
have to be completed is not specified, all
the events in the list must be completed.
(For the multitasking situation, see
chapter 14.)

The WAIT makes use of the 0S data-
management WAIT macro instruction.
However, because of the differences between
the facilities offered by the 0S and the
PL/I language, considerable housekeeping
problems are involved for waits on more
than one event. For waits on single events,
the problems are small and are described at
the end of this section.

When a WAIT or associated macro
instruction is issued to the 0S supervisor,
the event is considered to be complete when
input/output transmission is finished. In
PL/I, however, a WAIT statement is not
considered complete until any error-
handling activity caused by the operation
which was being waited on is finished. The
error handling may include entry into an
on-unit, and further WAIT statements may be
executed in the on-unit. This process can
continue to any number of levels of
interrupt.

PL/I also allows the programmer direct
control over the completion of an event by
use of the COMPLETICN pseudo-variable.
Consequently, the PL/I programmer need not
associate an event variable with an
input/output operation, but can use it
instead as a flag, setting the event
complete at any point in the program.

WAIT or associated macro instructions
issued to the supervisor are completed by
setting a completion bit in the ECB (event
control block) which is held in the IOB.

At the PL/I level, completion is indicated
by setting the completion bit in the event
variable. Thus a WAIT operation is carried
on at two levels, the PL/I level and the
system level.

Housekeeping Problems

The problems involved in implementing the
WAIT statement may be illustrated with
examples from the skeleton program in
figure 11.6. Four problems arise. They
are:
Problem _1: If an event being waited on in
a multiple WAIT statement is completed in
an on-unit entered while processing one of
the other events in the statement, this
must be made known to the first WAIT
statement. Setting the event variable
complete is not sufficient, because the
event variable may be used again during the

on-unit. Suppose that the RECORD condition
is raised during the execution of the WAIT
statement numbered 3 in figure 11.6, for
the operation associated with event E1.

The following then takes place:

1. Contrxcl passes to procedure M.

2. The statement WAIT(E2) is then
encountered, and the program waits
until event E2 is completed. When
this occurs, the event variable is set
complete and inactive.

3. Event E2 is then used in a further 1/0
operation (statement 11), causing the
event variable to be set active and
incomplete.

On return tc the main program, there would
be no way of determining from the event
variable for E2 that the original event E2
had been completed. The problem is solved
by the use of control blocks called event
tables (EVTABs). An EVTAB is set up by the
wait module each time a WAIT statement is
encountered; it contains entries for each
incomplete event specified in the
statement.” The entries are termed EVTIAB
elements. Each element is chained to its
corresponding event variable and contains a
bit that can be set to indicate that the
event has been completed. In the above
example, therefore, EVTAB elements for E1
and E2 are set up when the wait module is
called at statement 3. When the on-unit is
entered, the WAIT statement 9 causes a
further EVTAB to be set up with an entry
for E2. The event variable pointer is reset
to address the latest EVTAB elements, and a
field in this element is set to point to
the previous EVTAB element for E2. When
event .E2 is completed (without causing any
I/0 conditions to be raised), the event
variable and each EVTAB element for E2 is
set complete and inactive, and a bit in the
event variable is set to indicate that the
chain of EVTAB elements is no longer
associated with the event variable.
statement 11 is executed, the event
variable is set active and incomplete.
After the on-unit has been executed, the
wait module sets the EVTAB element and
event variable for El1 complete and
inactive. It then tests any remaining
EVTAB elements to determine whether they
were set complete during an on-unit; in
this case, it finds that the next EVTAB
element (for E2) has been set complete and
that there are no more events to process.
Execution therefore continues until
statement 4 is executed, at which time a
new EVTAB element is created for E2 and
chained to its event variable.

When

Chapter 11:

oblem 2: A method must be provided to
signal that an event waited on in an on-
unit is already being waited on in the
procedure that caused entry to the on-unit.
Suppose that the RECORD condition is
encountered in the operation associated
with E2 (statement number 2) during
processing of the WAIT at statement number
3. The following then takes place:

1. control passes to procedure M.

2. A further WAIT on E2 is encountered
(statement number 9). Since E2 cannct
now be completed, a mechanism must be
available to raise the ERROR
condition; otherwise, the program
would never get out of the wait state,

The problem is solved by setting a flag
in the event variable whenever an on-unit
is entered during WAIT statement
processing. If the wait module is
subsequently reentered from an on-unit, to
process a WAIT on the same event, it finds
that this bit is set and raises the ERROR
condition.

______ If there is a GOTO out of an
on-unit, this involves setting an event
variable complete, and terminating the WAIT
statement. Suppose the TRANSMIT condition
is raised during the WAIT statement
numbered 3, 4, or 9. The procedure L is
entered and the following takes place:

1. E3, which is a dummy event, is set
complete.

2. A GOTO is executed to the label
BOOTLE.

If no other action were taken, the event
that caused entry to the on-unit (either E1
or E2) would not be set complete; any
subsequent WAIT on that event would thus
cause the wait module to be invoked, with
unpredictable results. The problem is
solved by setting a flag bit in the current
DSA whenever the wait module is called.
(The method is similar to that used to
cater for a GOTO out of a SORT exit, and
uses the same flag bit.) If the GOTO
module finds that the bit is set, it
returns to the wait module; the wait module
sets the event variable complete and
inactive and then returns to the GOTO
module to continue the GOTO out of the on-
unit. Only the event that caused entry to
the on-unit is set complete. Any other
incomplete events specified in the WAIT
statement are left incomplete.

Miscellaneous Library Subroutines and System Interfaces 199

Y

C =

Call display module to
clear storage

Branch to point in transmitter
where WAIT is issued

IBMBRIO &
TRANSMITTER

CHECK
SUBROUTINE

DISPLAY
event?

IBMBRIO

Issue WAIT macro and
check for ON-conditions

Any events
completed in on-units
during cali to IBMBRIO?

Yes Decrement count of
events to be completed
by correct number.

Set EVTARB:S as inactive

I1ssue WAIT macro instruction

Any PL/
ON-conditions
to raise?

Call error handler which
may in turn call on-units

No

{ Return to caller)

Figure 11.7.

200

Z

(Part 1 of 2).

No

'y

Decrement count by one
for event completed in
IBMBRIO

All necessary
events
complete?

Return to
Yes PL/| program

All 1/O &
DISPLAY events
complete?

Yes handler

Return to caller

Summary of the wait statement

(Start)

y

Remove any completed
events from list

WAIT MODULE
1BMBJWT

All No Build EVTAB and ECB
remaining > »- list (from CCBs for
events |/O? DISPLAY event) in VDA

f 3 v

All No Issue WAIT on

events to ECB tist
be completed
?
Yes v

Build EVTABs in VDA

Call CHECK subroutine
with one item in list

CHECK subroutine

Handles one event and
returns if all events not
complete

R

Figure 11.7. (part 2 of 2).

Chapter 11:

Call CHECK subroutine
with first event returned
from WAIT

CHECK subroutine

Handles one event and
returns if all required
events not complete

All

ECB list scanned Yes

Build new ECB list
for incomplete events

for completed
WAITSs?

Summary of the wait statement

Miscellaneous Library Subroutines and System Interfaces 201

Problem 4: If control reaches label BOOTLE
without the TRANSMIT or RECORD condition
having been raised, the event E3 can never
be completed. Some method must be
available of making this fact known,
otherwise the program would go into an
indefinite wait on an event that could
never be completed. This problem is solved
by setting an event variable active only
when it is associated with an operation.
Thus, if a WAIT statement specifies an
event that is inactive and incomplete, the
wait module causes the program to be
terminated. (If a WAIT statement specifies
more than one event and one of the events
is inactive and incomplete, the program is
not terminated immediately because it is
possible, although unlikely, that the
incomplete event will be completed by the
COMPLETION pseudovariable in an on-unit
entered as a result of an I/0 condition
raised while processing one of the other
events specified in the WAIT statement.)

Control Blocks

Four control blocks are involved in the
implementation of the WAIT statement.
These are shown in detail in appendix A.

1. Event variable. Used to hold all
information about the event at a PL/I
level. Fields indicate whether it is
active or inactive; complete or
inconplete; whether it is already
being waited on at a previous
interrupt level; the type of operation
with which it is associated. Each
event variable- contains the address of
its associated ECB or CCB and, if it
associated with an I/0 event, the
address of the FCB for the file.

2. ECB (event contxrol block). Used to
hold information about the event at
the system level. For I/0 events, ECBs
are part of the IOB. For DISPLAY
events, the equivalent control block
is the display control block, which is
set up by the display module.

3. EVTAB_(event table). Created for each
entry to the WAIT module; comprises an
element for every incomplete event

202

that is to be waited on. The EVTAB is
held in a VDA acquired by the WAIT
module.

______ This is a list of ECB
addresses that is created in
circumstances that are explained
below. The ECB list is held in the
VDA described above, and acts as an
argument list for the WAIT macro
instruction.

Wait Module (IBMBJWT)

The actions of the wait module, IBMBJWT,
are shown in the flowchart in figure 11.7,
and are described in detail in the
publication 0S_PL/I_Resident lLibrary
Program Logic.

As the flowchart shows, the WAIT module
sometimes issues a WAIT macro instruction,
and sometimes relies on the CHECK macro
instructions in the PL/I transmitters. The
reasons for this are as follows.

The CHECK macro instruction in the
transmitter can only be used for I/0
events, and only one transmitter can be
called at a time. If only a certain number
of the events in an event list need to be
completed, it is uneconomic to pass these
events one at a time to the transmitter,
because the first event passed could ke the
last to finish. Consequently, whenever non-
I/0 events are inwolved and whenever less
than the total number of events in an event
list have to be completed, an ECB list is
generated for all incomplete events and a
WAIT macro instruction is issued.

The WAIT macro instruction returns
control as soon as any event in the list is
complete, thus allowing an event list to be
handled efficiently when only a number of
events have to be completed. For I/O
events, it is still necessary to issue the
CHECK macro instruction in the transmitter,
even though the events are known to be
complete. This is because the CHECK macro
instruction carries out various checking
functions as well as waiting until the
event is complete.

No

Have you got a dump
?

Yes

Do you understand

the housekeeping

scheme of the

compiler
?

Yes

Are you
looking for some Yes
particular item
or area
?

No

Do you have
a method of reading
PL/1 Optimizing
Compiler
dumps
?

Yes

No

Follow the most suitable check list in
section 2 of this chapter. Refer to
keyed items in section 3 for details,

Read section 1 of this chapter to discover correct
method. (Use of SYSABEND or SYSUDUMP will
not necessarily produce a dump)

Do not attempt to debug without this knowledge. Read
chapter 1 and introduction to chapters 6 and 7 of this
book.

Examine contents list at start of section 3 to find
quickest method of finding item.

Use contents list at start of section 3 to simplify finding
various items.

Figure 12.1. How to use this chapter when debugging

204

- Chapter 12: Debugging using Dumps

The 0S PL/I Optimizing Compiler allows the
prograrmer to obtain an execution time dump
only by calling PLIDUMP. Using SYSABEND or
SYSUDUMP in the JCL will not result in a
dump after a program interrupt or, except
in certain exceptional cases, after an
ABEND. This is because the program
interrupt exit and the task asynchronous
exit are reset by issuing SPIE and STAE
macro instructions in the program
initialization routine. These SPIE and
STAE routines result in all interrupts, and
the majority of ABENDs, being passed to the
PL/I error handler.

Certain types of program error can,
however, result in overwriting of the
control information used by the error
handling routines. When this occurs an
ABEND will be issued that results in system
action. This ABEND has a user code of 4000.
Provided that a SYSABEND or SYSUDUMP DD
card was included in the JCL an ABEND dump
will then be generated.

ABEND dumps are issued in three
circumstances.

1. Wwhen an interrupt occurs during the
execution of one of the error handling
routines.

2. When housekeeping control blocks have
been overwritten after an ABEND in the
program.

3. If the NOSPIE or NOSTAE option has
been used, and the action inherited by
the PL/I program is to give a dump.

The first two of these situations are most
probably caused by overwriting of control
information by the PL/I program. The first
can be identified because a message is sent
to the console that reads 'Interrupt in
error handling routines program
terminated', and the ABEND code will be
4000.

Chapter 7, 'Error Handling' describes
the methods used to handle interrupts and
ABENDs. It also describes the
implementation of PLIDUMP. This chapter is
concerned solely with debugging using the
facilities provided.

It is always possible for the programmer
to ask an operator to take a stand-alone
dump at any point in the program. The need
to do this should, however, occur only
infrequently.

How to use this Chapter-

This chapter contains information on how to
obtain and interpret dumps, and on how to
identify compiled code, data, and control
blocks within a dump. Some knowledge of
the compiler's housekeeping schenme,
described in other chapters of this book,
is assumed. Trying to use a dump without
this knowledge can result in a great deal
of wasted time. To acquire a quick overall
picture, chapter 1 and the introduction to
chapters 6 and 7 should be read. A summary
of how to use this chapter when debugging
is given in figure 12.1.

This chapter is divided into four
sections:

Section 1: How to obtain a PL/I dunmp

Section 2: Recommended debugging
procedures

Section 3: Locating specific
information

Section 4: Special considerations for
multitasking

Section 1 explains how to obtain a
hexadecimal dump of a PL/I program. It
also gives some suggestions on the use of
various compiler and PL/I options that may
prove useful when debugging.

Section 2 offers two recommended courses
for debugging a PL/I program ky use of a
dump. The first course deals with a PL/I
dump that has been called from an ERROR on-
unit and is being used to debug the probler
program. The second course deals with the
situation in which an 0S system dump has
been generated, prokakly because the
housekeeping control blocks have been
overwritten.

Section 3 describes how to find various
data areas and other information. It is
indexed and numbered for quick reference.

Section 4 describes the special
considerations that must be taken into
account when debugging a program that uses
multitasking.

Before taking a dump, Section 1 should
be read, because the methods used are not
those familiar to programmers using OS.
Sections 2 and 3 are for use when
debugging. Programmers who know what they

Chapter 12: Debugging Using Dumps 205

®

*PROCESS LIST MAP GOSTMT FLOW (n,m);

o «i} (51ZE, SUBSCRIPTRANGE, STRINGRANGE):

DUMPER: PROC;

ON ERROR CALL PLIDUMP (‘HB’, ‘ERROR ON-UNIT DUMP’);
e

END; @

These options give compiled code listing and
static storage map, essential for interpreting

any dump. :

Provides trace of last n branch-out/branch-in
points in up to m blocks if SNAP or PLIDUMP
with trace is used. MAP results in the generation
of a table showing offsets of static and automatic
variables from their defining bases.

Two arguments can be passed to PLIDUMP.
They are the dump options character string and
the dump identifier. The format ot the call
statement is:

Permits trace of statement numbers in original
source program, and simplifies program checking.

Prefix options. The use of these PL/I checkout
options is strongly urged. Since, however, they
cause an increase both in the size of object code
and in execution time, it may be necessary to
restrict their use to suspected blocks or statements.

CALL PLIDUMP (character-string-expression 1, character-string-expression 2);

Dump options character string
(Default is ‘'TFC’)

T Trace information required
NT No trace information required
F File information required
NF No file information required
S Stop after dump

Continue after dump
H Hexadecimal information required
NH No hexadecimal information required
B Control block information required
NB8 No control block information required
A Dump all tasks
O Dump current task only

E Exit from task after dump

Dump identifier character string

Printed at head of dump. May be up to 90
characters long.

Figure 12.2. code for debugging

206

are looking for should refer directly to
the contents table in section 3. This will
direct them to numbered sections which give
details of how to find particular items.
Programmers who have no preferred scheme of
their own can follow the recommended
procedures in section 2. Section 2
crossrefers to the items in section 3, so
that the details of the steps involved may
be quickly found.

Section 1: How to Obtain a PL/I Dump

In order to get a formatted PL/I dump, the
programmer must include a call to PLIDUMP
in his program.

CALL PLIDUMP

The statement CALL PLIDUMP may appear
wherever a CALL statement may legitimately
be used. It has the following form:

CALL PLIDUMP
(character-string-expression 1,
character-string-expression 2);

Character-string-expression 1 is a "dump
options" character string consisting of one
or more of the following dump option
characters: '

T Trace. A calling trace through all
active DSAs is generated. When an on-
unit DSA is encountered, the values of
the relevant condition built-in
functions are given. The reason for
the entry to the on-unit is also given
if the ERROR or FINISH conditions are
raised as standard system action for
another condition.

NI No trace.
given.

A calling trace is not

F File information. A complete set of
attributes for all open files is
given, plus the contents of all
accessible buffers.

NF No file information required.

S Stop. The program will be terminated
after the dump.

C continue. Execution of the program
will be continued after the dump.

H Hexadecimal. A SNAP hexadecimal dump
of the partition will be given. If
trace information is requested, the
TCA and DsA addresses will be given.

If file information is requested, the
addresses of the FCBs will be given
and the contents of all accessible
buffers will be printed in hexadecimal
notation as well as in character.

NH No hexadecimal dump required.

B Blocks. The contents of the TCA, TIA,
DSAs, FCBs, and file buffers are
printed in hexadecimal notation.

NB No block information required.
Tasking Options
A all

All results in a dump of all active
tasks including the control task - see
chapter 14.

O Only

Only results in a dump of the current
task and a dump of the control task.

E Exit

Exit results in the termination of the
task after the dump.

The default options are TFCANHNB. That
is, trace information, file information, no
block information, no hexadecimal dump, all
tasks, and continuation after the
information has been put out.

Options are read from left to right.
Invalid options are ignored, and if
contradictory options are coded, the
rightmost options are taken.

Character-string-expression 2 is a "user
identifier"™ character string of up to 90
characters chosen by the PL/I programmer.
It is printed at the head of the dump. If
the character string is omitted, nothing is
printed.

If PLIDUMP is called a number of times
in a program a different user identifier
should be used on each occassion. This
will simplify identification of the point
at which the dump was called.

RECOMMENDED CODING

For PLIDUMP to produce a dump, a DD card
for PLIDUMP must be included in the JCL.
PLIDUMP can be called from anywhere in a
program, but the normal method used when
debugging will be to call PLIDUMP from an
on-unit. As ‘continuation after the dump is
one of the options available, PLIDUMP can

Chapter 12: Debugging Using Dumps 207

be used as a snap dump to get a series of
dumps of main storage throughout the
running of the program.

By including the statement CALL PLIDUMP
(*HB',"dump identifier'); in an ERROR on-
unit, it is possible to obtain a
hexadecimal dump, with control blocks
identified and formatted, should an error
occur. If an ERROR on-unit is being
included in a program, care should be taken
that there are no further ON ERROR
statements which might override the on-unit
requesting a dump.

Suggested code for use when debugging
with a dump is given in figure 12.2.

AVOIDING RE-COMPILATION

If an ERROR on-unit containing a call to
PLIDUMP is to be included in an existing
program, it is necessary to re-compile the
program. This course is advisable as it
allows other diagnostic aids, such as
SUBSCRIPTRANGE, to be included. However,
if re-compilation is not desirable, a PL/I
dump can be obtained by using a small
bootstrap routine that contains an ERROR
on-unit calling PLIDUMP. This routine can
be compiled and then link-edited with the
object module of the program that needs to
be dumped. The on-unit will then be
inherited by the program that requires a
dump, and a dump will be generated when an
error occurs. A suitable bootstrap program
is shown in figure 12.3. When using this
method, the bootstrap must be link-edited
as the MAIN procedure; it should therefore
e passed to the linkage editor before the
program that requires dumping, since that
program will also have the MAIN option. If
the program that requires dumping expects
to be passed parameters, the bootstrap
procedure should use an identical parameter
list in its PROCEDURE statement, and should
include an identical argument list in the
CALL statement used to invoke the inner
procedure.

If the program that requires dumping
already has an ERROR on-unit, this will
override the ERROR on-unit in the bootstrap
program.

In certain circumstances, a dump can
still be obtained.

1. If the reason for the entry to the on-
unit is the occurence of a PL/I
condition an on-unit for this
condition in,the bootstrap program
will result in a dump being taken
before the ERROR on-unit is executed.

208

(For example, if the CONVERSION
condition was occurring in the program
to be dumped a CONVERSION on-unit
could be included in the bootstrap
program. Such an on-unit would be
entered before the ERROR condition was
raised.)

2. Provided that the ERROR on-unit does
not include a GOTO out of the on-unit,
a FINISH on-unit can be used. Since
the standard system action for the
ERROR condition is to raise the FINISH
condition, the dump will be generated
after the ERROR on-unit has been
executed.

There is no point in including
SUBSCRIPTRANGE or other prefixes in the
bootstrap routine, because these are not
inherited by called prograns.

The bootstrap method is not recommended
unless there are particularly strong
reasons for avoiding re-compilation.

BOOTSTRAP: PROC OPTIONS (MAIN);

DCL program* ENTRY EXTERNAL;

ON ERROR CALL PLIDUMP ('HB',
*BOOTSTRAP') ;

CALL program¥;

END;
*The name of the program to be dumped
should be inserted at the points marked
program* in this example.

Figure 12.3. Suggested method of
obtaining a dump when re-compilation
is particularly undesirable. (See
text before using this method.)

CONTENTS OF A PL/I DUMP

The appearance of a typical dump produced
by the PLIDUMP modules with the options
TFHBA is shown in figure 12.4. The
contents of particular sections are
described in detail below.

Headings

The dump is headed by the line

***PL/I DUMP**%*

® % % PL/I DUMP * * *
USER IDENTIFIER 3 XAMPLE OF PLIDUMP
* * * CALLING TRACE * * #

(TCA ADDRESS 03D800)

PLIDUMP WAS CALLED FROM STATEMENT NUMBER 3 AT OFFSET +00009E FROM A ERR TYPE ON-UNIT WITH ENTRY ADDRESS 03A51C

(AND DSA ADDRESS 03E050)

ERROR DIAGNOSTICS

PL/I CONDITION DETECTED: CONV

ONCODE = SEE LANGUAGE REFERENCE MANUAL
ONCHAR =1 CHARACTER CAUSING CONVERSION ERROR
ONSOURCE =IF THIS DOES NOT RAISE CONVERSION NOTHING WILL

STRING CAUSING CONVERSION ERROR

ADDRESS OF ERROR HANDLER®S SAVE AREA 03DES0
REGISTERS ON ENTRY TO ERROR HANDLER

REGS 0-7 FFO3DESO0
REGS 8-15 00000001

0003DE48
0003DD55

0003DDDO
00000000

6E03C4CH
0003B9CE

0003DBF8
0003D800

END OF ERROR DIAGNOSTICS

WHICH WAS CALLED FROM A LIBRARY MODULE WITH ENTRY ADDRESS 03C4CO (AND DSA ADDRESS

WHICH WAS CALLED FROM A LIBRARY MODULE WITH ENTRY ADDRESS 03B770 (AND DSA ADDRESS

WHICH WAS CALLED FROM A LIBRARY MODULE WITH ENTRY ADDRESS 03A5D0 (AND DSA ADDRESS
CALLED FROM STATEMENT NUMBER 5 AT OFFSET +0000AC FROM PROCEDURE EXAMPLE

(AND DSA ADDRESS 03DC68)

WHICH WAS

% * * END OF CALLING TRACE #* #* *

TRACE OF PL/I CONTROL BLOCKS
TASK COMMUNICATIONS AREA

ADDR.
03D800
03p820
03D840
03D860
03p880
03D8A0
03p8Co
03D8EO
03p900

OFFSET
00000
00020
00040
00060
00080
000A0
000CO
000E0
00100

00000000
00000000
0003D9E0
0003B48C
582E0004
07FF0000
D0209160
DO549180
0003DBAA

0003DCS8
0003DAYB
00000000
0003B638
S8EE0000
00000000
D001078E
DOS4071E
0003D8AA

FFO3D800
0003D920
0003CCAE
100A47P0
19DF478C
000007FE
91400001
181F58FC
00000000

FFO48A20
DuDICcuCl
00000000
0003CCAO0
00C29500
0003B4EA
478C00DC
O0OF407FF
00000000

00000000
0003DA50
00000000
0003CCA2
c001u478C
AULECS58FC
D203D04C
17225020
00000000

0003D810
00000000
00000000
0003CCB2
00BC180E
0078051F
D0509120
00000000
00000000

000547B0
0003DA18
80000000
00038D52
18E1181F
DB0O1A166
D001078E
0003D8AA
00000000

TCA IMPLEMENTATION APPENDAGE
ADDR.

030920
03D940

OFFSET
00000 00049000 00000000 OE03BD18
00020 0003D9F8 0003DA98 0003BSA2

7FFD1030
00000000

00000000
00000000

00000000
00000000

00000000
00000000

* * * PL/I DUMP ¢ + »

03D960 00040 0003BSF8 0003C30C
LIBRARY WORK SPACE

CONTENTS OF REGISTER SAVE AREA

REGS 0-7 0003D198 0003A39C
REGS 8-15 0003E100 0003E120

0003E050
0003DC68

4EO03B386
0003p920

0003DBF8
D2008003

ADDR.
03DEES
03DF08
03DF28
03DFus8
03DF68

OFFSET
060000
00020
00040
00060
00080

08000110
4E03B386
0003D920
FOFOF3F2
40404040

0003E050
00U3DBF8
D2008003
F1F245F0Q
40404040

9C188000
00000000
0003DF70
00000000

4E03B3B6
0003A39C
FFO3E128
0000005C

8E03D19C 0003D198 0003A39C
0003A400 0003E100 0003E120
70020080 0003DF60 00440000
4EO49AFC FOCLC35C 40404040

DYNAMIC SAVE AREA (ON-UNIT)
CONTENTS OF REGISTER SAVE AREA

REGS 0-7 FFO31128 0003A39C
REGS 8-15 0003E100 0003E120

5E03A572
0003DC68

0003A308
0003D920

0003DBF8
7098C030

ADDR.
03E050
03E070
03E090
03E0B0
03E0DO
03EOF0
03E110

OFFSET
00000
00020
00040
00060
00080
000A0
000C0

8C24E090
0003A308
00030920
D2031020
802U45EQ
9BC650F0
C1D4D7D3

FPO3DES0
0003DBF8
7098C030
9BBE41FO
96120203
9BDA5880
C540D6C6

050CB000O
00000000
FFO3DEES
000442F0
0003E090
709858F0
40D7D3C9

4EO03ASBA
0003DD10
FFO3E128
100858F0
D2039BD6
802054F0
CU4EUDUD?

00038380
00032400
FFO3E128
9BAEQTFF
70D858F0
E3C6C2C8
0003E10E

FFO3E128
0003E100
91E091E0
58809BE6
802043 F0
0003E100
00120000

0003A39C
0003£120
0003nC68
D2039BE6
BOOFS0F0
00040000

Figure 12.4. An example of PLIDUMP

Chapter 12:

0003DD28
FFO3DDF8

0003D9CO
9509C024
0003B48BA
100C1000
58FCOOAC
18DF9834
D201D056
0003D8AA
20004323

00000000
00000000

00000000
FFO3DEE8

0003050
0003DC68
00100002
40404040

00000000
0003E0QS0

5E03A572
0003pCcé68
SOF09BEA
709858F0
BOOCS4F0
0000CSE7

8003A37A
0003BD52

0003DDEO
4E03C6A8

03DDF8)
03DAES)
03DD8O)

WITH ENTRY ADDRESS 03A460

eescvsssenslevcenvenceaConcans R0
asssescessR:MRDALccccacseccens

seRicevonsccscsnancacennonssanes

eeccsccsereloceccrcccnsecnsnaanen

ceesas

seseesKasesnseneoaKaoo
eeensessssasssllecee)ececeaaQeeaQe

teQeeeDuerocccnncsncasoesnnnnanss

weessesssssseretncsstrssstcenas

eeRBoicencacancssasncncnsccacnncs

eeeBeeCecevneceseeRececeesRaccnn

0003A39C
4E03B3B6

00032400
8E03D19C

evecescssssctensesTeceTdeconanans
teveesoBecneacovorcnnccnrovaccen
eeReKeovsovaoassooensoes aanaonee

003212.0..00c0 %, .. 0ACH

eensense sesscsccanae

0003DD10
4EO3ASBA

‘0003A400
0003B380

O R

esceacsBecssccecacacns

eeRecscaveceYeseeevnannasesanalae

Keveooo0seo0eeolonveroosWK,W...0
eseeeSKeeaoeKeo0.Q.040:0...0...0
eFel0uceecee0eeeOTFBHe e eeceana EX
AMPLE OF PLIDUMPe.ccsccccvnansaY

Debugging Using Dumps .209

[~ = = mmmmr e c e rc———————— - ———

| Abbreviation| Condition Name

: AREA I AREA

} CHCK } CHECK

= COND I CONDITION (programmer
| | named condition)
{ CONV } CONVERSION

I ENDF { ENDFILE

} ENDP { ENDPAGE

{ ERR { ERROR

’ FIN = FINISH

: FOFL } FIXEDOVERFLOW
} KEY = KEY

: NAME : NAME

= OFL : OVERFLOW

} REC : RECORD

} SIZE { SIZE

: STRG i STRINGRANGE
l‘STRZ = STRINGSIZE

= SUBG I SUBSCRIPTRANGE
{ TMIT I TRANSMIT

: UFL : UNDERFLOW

} UNDF } UNDEFINEDFILE
{ ZDIV = ZERODIVIDE

Figure 12.5. Abbreviations for
condition names used in PLIDUMP
trace information.

--1

This is followed by the user identifier, if

any, given as the second character string

in the argument list of PLIDUMP.

Trace Information

A request for trace information results in

the following output:

1. A trace of every procedure, begin

block, and on-unit that is active at

the time of the call to PLIDUMP.

210

procedures, the procedure name and
statement number from which the
procedure was called are given. If
the 'H' option is requested, the
offset of the statement is given as
well as the entry point address and
DSA address. Also, if the entry point
used is not the main entry point and
the statement number option was
specified, the main entry name is
given.

For multitasking programs the name of
the task variable, its status, and the
absolute priority of the task are
printed. If no task variable is
supplied 'NONE' is printed as the name
of the task variable. A dummy task
variable will have been supplied see
chapter 14.

For on-units, the values of any
relevant condition built-in functions
are given. The type of on-unit is
given and, where the cause of entry
into the on-unit is not self-
explanatory, the cause of entry is
also given (e.g., if an ERROR on-unit
was entered because of a conversion
error, this fact is given in the trace
information). The on-unit type is
specified, using a three or four
letter abbreviation. A list of these
abbreviations is given in figure 12.5.

When a hexadecimal dump is requested,
the entry point address of each active
block is also given, together with the
address of its associated DSA.

When the compiler FLOW option is in
effect, the flow statement table is
given.

If a hexadecimal dump is requested,
the address of the TCA is printed at
the head of the trace.

If either a hexadecimal dump or
control block information has been
requested, and any ERROR on-units are
traced, then the following informaticn
is also included:

a. The address of IBMBERR's DSA.

b. The contents of the general and
floating point registers at the
time IBMBERR was called.

c. If there was an interrupt, the
address of the interrupt.

d. A trace of -library DSAs back to
the last compiled code DSA.

BYTE 1
X'02"
X*'03"
X'o4°
X'05"
X'06"*
X'07°*
X'08"
X'09"
X'0A*
X'0oB*
Xx'oc*
X*'0D*
X'0E"’
X'0F"
X'10°*
Xx'1i1
X'12*
X*'13*
X'14
X'15*
X'16"
X'17°

x'1s’*

PL/I_condition if any
ZERODIVIDE
FIXEDOVERFLOW
SIZE

CONVERS ION
OVERFLOW
UNDERFLOW
STRINGSIZE
STRINGRANGE
SUBSCRIPTRANGE
AREA

ERROR

FINISH

CHECK
CONDITION

KEY

RECORD
UNDEFINEDFILE
ENDFILE
TRANSMIT

NAME

ENDPAGE

BASE_NO.] BYTE 1
320 X'CcD*
310 X'CF"'
340
600 X'D3"*
300 X'D5"
330 X'D7"
150 X'D9"
350
520
360 X'DF'
009 X'E1"
004 X'E3"
510 X'ES5"
500 X'E7"*
050 X'E9"
020 X'EB*
080 X'ED'
070 X'EF"
040 X*'F1°
010 X'F3"
090 X'F5°
- X'F7°
- X'F9*
X'FB*
X'FD"
X'FF"'

9250
1000

9200
3500
4050
5050

5000
9050
1000
4000
XXXX
4050
0003
1000
1550
1500
2000
3768
3000
3800
3900
9000
8090

Note: Meanings are only given where there is a directly associated PL/I condition.

Figure 12.6.

File Information

Error code field lookup table

A request for file information results in
the following output:

1. The default and declared attributes of
all open files are given.

2. Buffer contents of all buffers are
given. If a hexadecimal dump has been
requested, the contents of the buffers
are given in both hexadecimal and
character notation. If no hexadecimal
dump is requested, the contents are
given in character notation only.

3. The contents of the FCBs, DCBs,

Chapter 12:

Debugging Using Dumps 211

DCLCBs, IOCBs, and exclusive file
blocks are given in formatted
hexadecimal notation, if either the
'H* or 'B' option is also included.

Hexadecimal Dump

The hexadecimal dump is produced by the
execution of a SNAP macro instruction.
Thus the normal SNAP dump is produced.
This is fully described in the Programmers
Guide to Debugging.

It should be noted that the PSW will
contain the address of an instruction in
IBMBKMR, one of the modules used to
implement PLIDUMP. This will bear no
relation to the error in the dumped
program. .

If the program is not multitasking the
SNAP macro specifies all register save
areas, subpools, task control blocks, and,
provided the O (Only) option is not
included in the PLIDUMP options, the trace
table.

For a dump of a multitasking program the
contents are:

In the control task

Register save areas
Subpools

Trace table
Control blocks

In the other tasks

Register contents
Register save areas
Subpools

Jobpack Area
Linkpack area

Block Option

When the block option is used, the contents
of the TCA, the TIA (TCA appendage), and
the DSAs in the LIFO stack (that is, all
active DSAs) are printed in hexadecimal and
character format. The absolute address is
printed in the left hand column; the
offsets within the block are then printed.
This is followed by the contents of the

212

block, first in hexadecimal and then in
character notation. For DSAs, the type of
DSA is shown; i.e., library DSA, procedure
DSA, on-unit DSA, or dummy DSA. The
contents of the FCBs, DCLCBs and IOCBs for
any open files are printed in a similar
format.

In a dump of a multitasking program the
contents of the tasking appendage is also
printed.

If the option A(all) is used in a
multitasking programming the TCA, TIA, DSAs
and tasking appendage of all directly
ascending tasks will be printed. FCBs,
I0CBs, DCLCBs will be printed after files
open in any task if the option A is used.

Section 2: Recommended Debugging
Procedures

The main difficulty in reading a dump of a
PL/I program is knowing where to start.

The signposts known to assembler language
programmers are of little help. There are,
however, five main sources of information
to be considered when using a dump to debug
a PL/I program. They are:

1. The statement number and the address
where the error occurred (if the dump
was taken after an error)

2. The type of error (if the dump was
taken after an exror)

3. The values in the general registers
when the dump was taken or when the
error occurred

4. The chain of DSAs
5. The TCA

The first two of these items hold
equivalent information to that held in the
PSW in an 0S system dump. The last three
items enable the housekeeping to be checked
and the location of the control blocks and
the program variables to be discovered.

The methods of locating other information,
given in section 3, refer to the key areas
shown above.

Note: Meanings are only given where there
is a directly associated PL/I condition.

Software detected interrupt

DSA of block in which
interrupt occurred

Program check interrupt

DSA of block in which
interrupt occurred

» >
0
0
4 Backchain
4 Backchain 8
c Interrupt address from word 2 of PSW
8
Registers 14 through-11 at time of interrupt 14 Registers 0 through 11 at time of interrupt
44 _
Other DSA information
44 Other DSA information
DSA for IBMBERR
DSA for IBMBERR
0 0
4 Address of interrupt DSA
4 Backchain, register save area, address .
of LWS, NAB, etc.
8 Register save area, address of LWS, NAB, etc.
50 Qualifier for 1/0, CHECK condition Error code created
by IBMBERR
54 1st 2 bytes of error
code passed to Interrupt code
IBMBERR
5C, Register 14 at time of interrupt
60 Register 15 at time of interrupt
5C
Not used
68 Floating point registers 0, 2, 4, 6
84
/I
Floating point registers are saved only if interrupt
relates directly to a PL/I condition, and return may
be made to the point of interrupt
Figure 12.7. The contents of IBMBERR's DSA after a system detected and a PL/I

interrupt

Chaptexr 12:

Debugging Using Dumps 213

Figure 12.8.

214

>
0 Flags Reserved
4 Backchain
8 Not used
C

Register save area (60 bytes)

48 Address of library workspace
4c Segment No. NAB
50 Segment No. End of prologue NAB
Space for automatic variables and temporaries.
Length depends on number and type of
variables declared in the associated block.
R13 —P ee—
0 Flags Reserved
4 Backchain

The chaining of Dsas

T~

To previous DSA

NAB points to the
next DSA only if it
is in LIFO storage
and has the same
segment number

When debugging, it is essential to have
a listing of the object program, a
variables offset map and a linkage editor
map. The object program listing allows the
programmer to study the instructions that
are being carried out and to find various
control blocks in static storage. The
linkage editor map allows the programmer to
identify particular parts of the executable
program phase and, to identify the routine
associated with each DSA.

Note: The PSW in the SNAP dump should not
be consulted. This will give the address
at which the SNAP macro instruction was
issued. This is an address in one of the
PLIDUMP modules and is not relevant to the
error in the problem program.

DEBUGGING PROCEDURES

The best approach to a dump depends on the
problem to be solved and must therefore be
left largely in the hands of the
programmer. However, two suggested courses
of action are given in this section.

These courses cover two situations:

1. When PLIDUMP has been called from an
ERROR or other on-unit

2. When only an OS ABEND dump has been
generated.

Other possible situations are when a
dump is taken at a specified point in the
program, or when a stand-alone dump is
taken. NoO attempt is made to suggest a
course of action in these circumstances.
However, in such cases, the main storage
situation can be investigated by following
the methods itemized in section 3 of this
chapter.

Throughout each of the two recommended
procedures given in the following
paragraphs, there are cross-references to
the methods given in section 3. The cross-
references consist of the keys by which the
methods are identified; for example, H6,
D5.

If a PL/I dump is called from an ERROR on-
unit it can be assumed that the
housekeeping system of the program is
working. If it were not working, the dump
would probably not have been generated.

A large amount of diagnostic information

will be available at the head of the dung.
An error message will have been generated,
and this will provide a useful starting
point. The first step should be to examine
the type of error and the point at which it
occurred. ONCODE and other condition
built-in function values should be
examined, as should the trace information.
A suggested procedure is the following:

1. Examine the error by means of the
ONCODE and any other relevant built-in
function values. These values are
given in the trace information. (The
meanings of oncodes are given in the
Language Reference manual for this
compiler.)

2. Find the location of error (Pl) and in
which block the error occurred (H12).
If error occurred in library module,
see H14. This information is normally
available from the head of the
PLIDUMP.

3. Examine the trace to see if it arpears
as expected.

4. Examine the information in the file
buffers, and check that file
attributes are as expected. This
information will be printed in the
dump heading.

5. Check the values of any variables
involved in the interrupt (V1-Vé6).

6. Check values of registers to see if
dedicated registers are pointing to
correct areas (H8 & H9). Distinguish
between compiled code and library
register usage.

7. If SUBSCRIPTRANGE or STRINGRANGE is
not enabled, check that the error was
not caused by one of these conditions.

8. Check housekeeping (H1-H16) starting
with area most directly concerned with
type of statement in which the error
occurred.

9. Check values of all variables in the
program (V1-vVé6).

10. Check logic of code being executed
from object listing.

OS_ABEND_Dump

Provided a SYSABEND or a SYSUDUMP card is
included in the JCL an 0S ABEND dump will
be generated when there is a failure of the
error-handling modules, or of the module
that prints the PL/I hexadecimal dump. It

Chapter 12: Debugging Using Dumps 215

should be noted that the failure of these
modules is more likely to be caused by the
overwriting of essential information than
by an_error in the modules themselves.

Because ABENDS caused by overrunning the
specified time (SYSTEM 322) do not enter
the STAE exit, these will cause dumps to be
generated in normal circumstances.

An ABEND dump will not normally be
produced for program checks, because a
program check exit is set by the PL/I
housekeeping routines, so that the system 3.
returns all program checks to the error
handler. 1In the error handler itself, the
program check exit is reset so that a
program check interrupt will result in a
dump.

Thus, an ABEND will be produced if the
program interrupt exit, which is normally
set by the program initialization routines
to prevent a dump, has been reset during
the program, or, possibly, has not been set
at all. The second alternative is extremely
unlikely. A third possibility is that the 4.
program check exit itself is not working,
and the SPIE macro in the initialization
routines did not successfully set the 5.
program check exit. The most probable of
these suggested causes is that the program
check exit has been reset by the program.
The program interrupt exit is always reset 6.
for the duration of error handling or
PLIDUMP, to prevent looping should an
interrupt occur. (see chapter 7, "Error
Handling. ") If an interrupt occurs during
error handling, an ABEND with a code of
4000 is produced. This will result in a
dump if SYSABEND or SYSUDUMP cards have
been provided. An interrupt in the error-
handling routines indicates either that the 7.
error-handling routines are at fault, or,
more probably, that some of the control
information of the error-handling routines
has been overwritten during the execution 8.
of the program. The most practical
solution may be to re-run the program with
SUBSCRIPTRANGE, STRINGSIZE, and STRINGRANGE
enabled.

These PL/I conditions check for possible
overwriting by subscripts or substrings
that are beyond the bounds of the variable
referred to.

However, having obtained an ABEND dump,
the following debugging procedure may be
adopted.

1. Determine whether the dump was caused 9.
by an interrupt in the error handling
routines or a housekeeping error
discovered during the analysis of an
ABEND. If the cause was an interrupt
in the error handler a message will
have been sent to the console before

216

the ABEND was issued, and the ABEND
will have a code of 4000, if the
interrupt occurred in one of the error
handling routines. Note that codes
322 and 122 may also give system
dumps. And that the use of NOSPIE or
NOSTAE can result in the generation of
a dump.

Locate instruction causing interrupt.
This is done by looking for the PSW
(ol1).

Inspect this instruction to see if it
appears to have keen overwritten,
bearing in mind the cause of the
interrupt, e.g.,

a. do the registers used in the
instruction contain incorrect
information, picked up because of
overwriting?

b. is it a branch to a protected
address?

Inspect the TCA(05) to ensure that all
error-handling addresses are correct.

Investigate the housekeeping fields,
starting with the DSA chain (H1-H3),
then the chain of ONCAs (HS5,H6).

Investigate the error that caused
entry into the error handler. This
can be done by examining the contents
of IBMBERR's DSA (H7) and the
associated ONCA (H6). See whether
incorrect information passed to the
error handler could be causing a
failure.

Check for uninitialized variables
(particularly pointers), and incorrect
passing of parameters.

If none of the above produces a
solution, an error in the error- ,
handling modules is a possibility. 1If
you decide to call IBM for assistance
at this point, refer to appendix C in
the Programmer's Guide for this
compiler. The cause of the original
entry to the error handler may have
been discovered, and can, perhaps, be
avoided by altering the source program
so that the error does not occur. It
must be emphasized that the cause of
entry into the PL/I error handler was
not the cause of the system dump.

If the interrupt is not in the error
handler, or one of the routines it
calls, the highest probability is
still that the program check exit was
altered in the error handler and that
an invalid branch has been made from
one of the addresses in the TCA

because of overwriting. A careful
check should therefore be made in the
TCA. (See appendix A for map of TCA.)
If this fails to produce results,
return to stage 2 of the above
procedure.

Section 3: Locating Specific Information

This section tells the reader how to
discover information from the dump. The
section has been produced in a modular form
for easy reference. The reader should look
through the contents list below to discover
the items in which he is interested.
Suggested methods of debugging a PL/I
program from a dump are given in section 2
of this chapter. Unless the programmer is
experienced in using dumps, or is looking
for some particular item, the procedures in
section 2 should be followed, rather than
attempting to find various items through
the information in this section.

CONTENTS

Key BAreas _of a PL/I Dump

Pl Statement number and address where
error occurred (dump called from
on-unit only)

P2 Type of error (dump called from
on-unit only)

P3 Register contents at time of error or
dump invocation

P4 The DSA chain

P5 The TCA

Key_ Areas of an_ ABEND_ Dump

ol Finding address of interrupt

02 Type of interrupt

03 Register contents at point of
interrupt

ou The DSA chain

05 The TCA

06 Finding the program interrupt element
(P1E)

Stand-alone_Dumps

s1

Finding key areas in stand-alone
dumps

Housekeeping_ Information in_all Dumps

H1

H2

H3
H4
H5
H6

H7

H8

H9
H10
H1l

H12

H13

H14

H15

H16

H17

H18

H19

Following the DSA backchain

Associating instruction with correct
module

Following calling trace
Associating DSA with block
Finding relevant ONCA
Following the chain of ONCAs

Finding information from IBMBERR's
DSA

Finding and interpreting register
save areas

Register usage
Following free-area chain
Finding the task variakle

Block structure of program
(static-backchain)

Forward chain in DSA's

-Action if error is in a library
module

Discovering contents of parameter
lists

Finding main procedure DSA

Finding the relationships between
tasks
Finding the tasking appendage

Finding the
appendage

TCA from the tasking

Finding Variables

vi
v2

v3

Chapter 12:

Automatic variables
Static variables
controlled variables

Debugging Using Dumps 217

vi Based variables
v5S Area variables

vé Variables in areas

control Blocks_and Fields

cl Quick guide to identifying control
fields

KEY AREAS OF A PL/I1 DUMP

Pl: Statement Number and Address where
Error Occurred (Dump Called from On-Unit

only)

Information required is the point at which
the condition that caused entry to the on-
unit occurred. This is identified in the
trace information. If no trace information
is generated, the method suggested for
ABEND dumps can be employed. If the
condition occurred in compiled code, the
machine instruction being executed can be
identified on the object program listing.
This is done by subtracting the address of
the program control section from the
address of the interrupt and looking at
this offset in the object program listing.
The instruction thus found will be the one
after the instruction that was last

executed.

Note: If PLIDUMP is called a number of
times in a program a different user
identifier should be used with each CALL
statement so that the point at which the
dump was taken is obvious.

P2: Type of Error (Applies_to_Dump
Called from On-Unit only)

The type of error is identified in the
trace information, in terms of the type of
on-unit entered and the reason for entry.
The ONCODE is also given, thus providing
further indication of the cause of the
condition. If the dump was called from an
ERROR on-unit, an error message should have
been generated before the dump. This again
will give the cause of the error.

If no trace information has been
generated, the type of error can be
discovered from the error code appearing in
the ONC2 associated with the interrupt.

The method for finding the ONCA is

218

described in HS.

P3:__Register Contents at Time of Error
or Dump_ Invocation

If trace information has not been
generated, the contents of the registers
can be found from the save area in the DSA.
The addresses of all DSAs appear in the
trace information. The register contents
required will depend on the situation. If
PLIDUMP was called from an on-unit, the
register contents at the time the condition
was raised will be most useful, unless the
condition was raised in a library module.
If the condition was raised in a library
module, the contents of the registers at
the point where the library call was made
will probably prove more useful.

For a dump called from an on-unit the
method of finding the register contents is
as follows:

1. Find the DSA of IBMBERR. The value of
register 13 will be found in the
chainback field at offset 4 of this
DSA. The first byte will contain the
segment no. (probably 'FF') and can be
ignored for addressing purposes.

2. If the interrupt was a program check
interrupt (see figure 12.7), the
contents of registers 14 and 15 will
also be stored in the DSA, register 14
at offset '5C'(92) and register 15 at
offset '60'(96) from the head of the
DSA. ’

3. Registers 0 through 11 will be stored
in the save area of the previous DSA,
starting at offset *14'(20).

4, If the interrupt was a software
interrupt, the registers will be
stored at offset 'C" (12) of the DSA
before IBMBERR's DSA in the order 14
through 11. See figure 12.7.

Discovering if interrupt_was_ program check
interrupt: If trace information is
available, a check can be made on whether
IBMBERRA or IBMBERRB was called. IBMBERRA
is entered after program check interupts,
IBMBERRB after software interrupts. If no
trace information is available, the
simplest method of discovering if the
interrupt was a program check interrupt is
to inspect bit 7 in byte X'56' (86) in
IBMBERR's DSA. This is set to zero for
program check interrupts, and to 1 for
other interrupts.

Finding register_values if interrupt
occurred in library routine: If on-unit

was entered from a library module, a search
back through the DSA chain to the first
compiled code DSA should be made. This can
be discovered from the trace information or
by following the backchain from IBMBERR's
DSA (offset 4 in each DSA) until a
procedure block, begin block, or on-unit
DSA is found. This may ke determined from
flag bits 4 and 5 of a DsSA, as follows:

Bit 4 Bit 5 DsA
0 0 Procedure block
1 0 Begin block
1 1 On-unit

The value of register 12 can only be
discovered in a DSA prior to a compiled
code DSA, as it is not stored by library
routines when they are entered. This means
that the dummy DSA always contains the
value of register 12. Register 12 should
point to the TCA, whose address is also
given at the head of trace information.

No_trace_information generated: If no
trace information has been generated, the
register values on taking the dump will be
printed at its head. The address of the
DsA for PLIDUMP will be in register 13.

The chainkack can then be followed to find
the DSA for IBMBERR. The DSA for IBMBERR
can be recognized if an on-unit is
involved, because it will be the DSA before
the on-unit DSA. IBMBERR's DSA will always
be headed by a flag byte of hexadecimal
*88' meaning that it is a library DSA in
LIFO storage. To identify IBMBERR's DSA
for certain, register 15 of the previous
block's DSA must be inspected to see if it
points to the module IBMBERR.

P4: The DSA_Chain

The addresses of the DSAs are given in a
PL/I dump if trace information and a
hexadecimal dump are requested. If trace
information is not requested, the address
of the DSA for the dump routine can be
obtained from register 13 at the head of
the dump. The chainback field is held in
the second word of the DSA. When the dummy
DSA is reached, this chainback field will
be set to zero. The DSA chain passes
through DSAs in LIFQO storage and DSAs in
LWS (library workspace).

See H1 and figure 12.9 for details of
how to follow the DSA chain.

The address of the TCA is given in a PL/I
dump. If *B' (block option) is specified
in the dump-options character string, the
complete TCA (including the appendage) is
printed separately from the body of the
dump.

The TCA is addressed by register 12.
The format of the TCA is given in appendix

A. The use of the various fields is
explained in chapter 4.

KEY AREAS OF AN ABEND DUMP

0l: Address of Interrupt

If the ABEND code is 4000 the address of
the interrupt can be found from the second
word of the PsSW, which gives the address of
the instruction following the point of
interrupt. The PSW is held in subpool 5.

A description of how to find the PSW is
given in the publication 0S: _Programmer's
____________ The associated
statement number in the source program can
normally be found by finding the last
compiled code DSA, and finding the point at
which the exit was made (register 14 in the
save area). The address of the program
control section can then be subtracted from
this address, and the offset compared to
the listing will give the appropriate
statement number,

Finding the statement number is not
likely to prove useful because of the
circumstances in which an 0S system dump is
generated. The address found will usually
be the address at which the error handler
was entered before the program check exit
was altered. The reason for entry into the
error handler is not the cause of the dump.
If the ABEND code is not 16000 see 06.

02: Type of Interxupt

The type of interrupt can be found from the
first word of the PSW (see Principles of

03:__Register Contents_at_the_ Point_of
Interrupt

Registers 14 through 2 appear in the PIE
(program interrupt element). Registers 3

Chapter 12: Debugging Using Dumps 219

DSA

0 Flags
4 Backchain
8 Not used
c R14 (*)
10 R15 (*)
14 RO
Always stored by
18 R library
1C R2
20 R3
24 R4
28 R6
2C R6
30 R7
34 R8 iSft?er:gi?ey; library
38 R9
3C R10
40 R11
44 R12 Stored by compiled code only

(*) Not stored if hardware interrupt occurs

Figure 12.9. The register save area in the Dsa

220

through 13 are those printed in the save
area trace. See 06 for finding the PIE.

C4: The PSA Chain

Register 13 should point at the most recent
DSA. The back chain can be followed from
offset '4' of each DSA. sSee figure 12.9.

Element (PIE)

The program interrupt element (PIE) will be
found at the head of subpool 5. The PIE
will be followed by registers 3 through 13
and then the STAE work area. The STAE work
area holds the last problem program PSW.
This is the value required for finding the
original cause of the ABEND if the ABEND
code is other than 4000.

STAND-ALONE DUMPS

sl: Finding Key Areas in Stand-alone
Dumps

The' programmer should attempt to find the
various PL/I key areas (TCA, DSA chain,
etc.) discussed above.

Further information on reading stand
alone dumps is given in the publication Qg:
Programmers Guide to Debugging.

HOUSEKEEPING INFORMATION IN ALL DUMPS
Hl: Following the DSA Backchain

Each DSA holds a backchain address in the
second word. This word holds the address
of the previous DSA. The end of the chain
is marked by the dummy DSA whose first word
contains the flag hexadecimal '82'. The
backchain in the dummy DSA points to the
external save area or is zero if the
program was called from the system.
P4 or D4 for finding the DSA chain).

(See

For programs using multitasking the DSA
backchain leads to the dummy DSA of the
major task. The DSA of the block in which
the task was attached is not included in
the chain. To find this DSA the 'static’
backchain held at offset X'58' (88) can be
task is internal to the attaching block.
If the procedure is not internal the NAB
value X'4C*' (76) in the DSA before it will
normally point to the required DSA.

(The method of chaining during a
multitasking program is explained in
chapter 14. For relationship of NAB and DSA
chaining see H13.)

H2:_ _Associating Instruction with
Correct_Statement and Program Block

Statement Number and Program Block: The
statement number and entry point associated
with the interrupt will normally be given
in a PLIDUMP. However, if they have to be
found by the programmer, he should follow
the method used by the error message
modules.

________ It must first be
established whether the GOSTMT option is in
effect. This will, be indicated in the
listing for the compilation. If the
listing is not available it will be flagged
in the compiled code DsA. (Flag bit 13 of
the DSA flags is set to '1'B.) If this bit
is not set the table of offsets and
statement numbers may be available, if this
is not availakle statement numbers and
offsets must be deduced from the cbject
program listing. The method of using the
table of offsets is described below under
the heading "Using the Table of Offsets".
I1f both statement numbers and the table of
offsets are available it will probably be
faster to use the table of offsets rather
than the statement number table.

The statement number is found by use of
the DSA chain as described below:

1. Find the chain of DSAs. The most
recent DSA should be addressed by
register 13.

2. If the DSA found is not a compiled
code DSA, (in a compiled code DSA flag
bits 4 and 5 are set to '00'B, '01'B
or '11'B) the interrupt was not in
compiled code. If the interrupt was
in compiled code, the interrupt
address can be directly associated
with a statement number.

If the interrupt was not in compiled
code, the address at which compiled

Chapter 12: Debugging Using Dumps 221

code was left must be discovered and
this address associated with a
statement number. To find the address
at which compiled code was left:

a. Chain back along the DSA chain
until a compiled code DSA is
reached (flag bits 4 and 5 set to
‘00*, '01', or '11'B).

b. The register 14 address saved in
the DSA (offset 12X'C') will be
the point to which the library
module or other module would have
returned if the call had been
successfully completed.

The address thus found is the address to
be associated with a statement number.

3. Chain back one DSA to the DSA before
the compiled code DSA that has been
discovered in 1 or 2 akove. The
register 15 value in this DSA (offset
16 Xx'10') is the entry point of the
block. If this appears to give an
invalid result, check to see whether
the DSA is one of those used in
interlanguage communication (flag bit
7 set to '1'B and bit 0 of flags 2
(offset X'76') set to '1'B). If this
is the case chain back one more DSA
and try again.

4. At offset 8 from the entry point of
the block, the address of the
statement number table will be held.

5. Calculate the offset between the value
in the first word of the statement
number table and the address for which
a statement number is required. If
the address for which a statement
number is required is less than the
address in the first word of the
statement number table, then either an
invalid branch has been made, or a
compiler generated subroutine is being
executed. If it is possible that a
compiler generated subroutine is being
executed return to the compiled code
DSA and attempt to find a statement
number associated with the values held
first in register 6, and, if this
gives an invalid or improbable result,
then in register 14. If the second
word in the statement number table is
less than the offset between the
address for which a statement number
is required and the first word of the
statement number table, it is not
within the program control section and
an erroneous branch has been made out
of the program.

6. If the offset is more than X'7FFF' the

statement number will be held in the
second or subsequent sections of the

222

table. Obtain the number given by
translating the offset into binary and
ignoring the last 15 bits and stegp
down this number of sections of the
table. (For example, if the offset
was X'8FFF', translate to binary =
1000 1111 1111 1111°'B, ignore last 15
binary digits =1, therefore step down
one section of the table. If the
offset was X'18FFF' the binary would
be *0001 1000 1111 1111 1111°'B.
Ignoring the 15 right hand bits leaves
'11*'B therefore step down three
sections of the table.)

The address of the second section of
the table is held at offset X'8' in
the table, the-address of the third
section is held at the head of the
second section, the address of the
fourth section at the head of the
second section and so forth.

7. When the correct section of the table
has been identified, search for the
first offset in the table that is
greater than or equal to the offset
that is being searched for. Following
this offset the statement number is
given in two-byte hexadecimal format.

Procedure_name: To find the entry point
name, a chainback is made beyond the first
procedure DSA found on the chain. Register
15 in the save area kefore this procedure
DSA will point to the entry point of the
procedure. (Procedure DSA have flag bits 4
and 5 set to '00'B. The register 15 value
is held at offset 16 X'10'.)

The entry is preceded by a one byte
field that holds the number of characters
in the name. This one byte field is in
turn preceded by the entry point name.

Using the takle of offsets: Statement
numbers can also be found by comparing them
with the offsets in the offset and
statement number table generated by the
compiler when the OFFSET option is
specified.

Offsets are held from each primary entry
point or a procedure or on-unit. To use the
table of offsets find the entry point used
by the program in the manner described
above. Find the primary entry point for
the procedure. (If the primary entry point
was not used look at the okject program
listing to see the relationship between the
entry point used and the primary entry
point.) Note, the offsets given are fror
the point marked *REAL ENTRY in the object
program listing. This point is one byte
after the end of the primary entry point
name.

If the interrupt occurred in an on-unit

it may be necessary to discover the type of
on-unit entered before it can be
identified. This is done by inspecting the
DSA before the DSA of the on-unit. This
DSA will be for IBMBERR. At offset 84
(X'54°') in this DSA the first byte of the
error code will be held. Compare this with
the values in figure 12.8. This will given
an associated PL/I condition. It will be
the on-unit for this condition that has
been entered. If there is more than one
on-unit for the condition, the on-unit
entered must be deduced by studying the
dump, and source and object listings. If
the register 15 value appears to be invalid
this may be caused by rechaining in
interlanguage processing (see chapter 13).
If this is possible, chain back one more
DSA and try again. (To check if this has
occurred see 3, above under "Statement
Numbers") .

H3: Following Calling Trace

The calling trace can be followed because
branches within the program are always made
on registers 14 and 15. Hence register 15
in each DSA points to the address that was
branched to from that. block. Register 14.
points to the address to which control
passed when the block was completed. By
finding the entry point name (see H2 above)
it is possible to follow the calling trace.

DSAs are associated with code by finding
the register values in the preceding DSA
register save area (H8) and using the fact
that all branches are made via registers 14
and 15. Register 14 in any DSA points to
the instruction after the point at which
control left that block. Register 15
points to the address at which the next
block was entered. The block in the source
program can be identified by statement
numbers or entry point, found as described
in H2, above.

H5: Finding Relevant ONCA

When an interrupt has occurred in the error
handler and a system dump has been
produced, it is possible to discover the
information that the error handler would
have used to generate appropriate error
messages. The ONCA holds values for the
condition built-in functions. The
appropriate ONCA can be found in the

following mranner.

1. Find the DSA befcre that of IBMBERR
(follow back the DSA chain until
register 15 in the save area points to
IBMBERR). See H1l, H3, H7. If this is
a library DsSA (flag bits 4 & 5 set to
*10') go to 3, below.

2. Find the LWS addressed from this DSA.
The address is held at offset X'u8°
(72).

3. Find the offset from the LWS to the
ONCA. This is held at offset 2 in the
LWS.

k., Add the offset to the address of the
library DSA in LWS.

H6: _Following the Chain of ONCAs

ONCAs are used to hold condition built-in
function values. They are chained
together, one being provided for every
level of interrupt. The chainback field is
in the first word of the ONCA. The durnmy
ONCA is marked by a chainback field of
zero.

H7: _Finding Information_ from IBMBERR's
DsA

The information held in IBMBERR's DSA is
used by the error message modules for
information about the error. If the
messages have not been generated the
information can be deduced from the DSA.
The contents of IBMBERR's DSA are shown in
figures 12.7. See HU4 for associating DSAs
with corxrect code.

H8: _Finding and Interpreting Register
Save_Areas

Register save areas are held at offset
X'C'(12) in all DSAs, including DSAs in
IWS. Offsets and registers are shown in
figqure 12.10. Each DSA holds the register
values as they were on exit from its block.

Note: Library routines store at least
registers 14 through 4, and up to registers
14 through 11; compiled code routines store
registers 14 through 12. Thus the address
of register 12 can always be found in the
dummy DSA although it may not be in other
DSAs. The contents of the register save
area in the DSA of the block that called

Chapter 12: Debugging Using Dumps 223

————— e o "~ " - T T~ —— > - —————

r 1
| Register | Compiled code | Library usage|

(#) The contents of the program base |
register are saved during in-line |
record I/0 and TRT instructions |

} | usage | }
RO	Work register	Work register
R1	Work register	Work register
R2	Program base	Work register
	(%, %)	
R3	static base	Program base
	(k%)	(**)
R4	Wwork register	Work register
R5	Work register	Work register
		(if used)
R6	Work register	Work register
		(if used)
R7	Work register	Work register
		(if used)
R8	Work register	Work register
]	(if used)	
R9	Work register	Work register
		(if used)
R10	Work register	Work register
	- (if used)	
R11	Work register	Work register
	(if used)	
R12	TCA pointer TCA pointer	
[(**) (%%)	
R13	Current DSA	Current DSA
	pointer (**)	pointer (#**)
R14	Branch Branch	
	register register	
R15	Link register Link register	

|

I

|

|

| (*#%*) Dedicated register, i.e., the i
| contents remain unchanged |
| throughout the execution of the |
| associated compiled code or library|
| routine

L

Figure 12.10. Register usage

IBMBERR are slightly different from normal
if the interrupt was a hardware interrupt.
See figure 12.7.

Register usage is fully discussed in
chapter 2, "Compiler Output." A summary of
register usage, showing which registers are
always used for a particular purpose, is
given in figure 12.10.

224

H10: Following Free-Area Chain

The free-area chain connects the areas of
non-LIFO dynamic storage that have been
used and freed, but have not been absorbed
into the major free area. See chapter 6,
"Storage Management." The chain starts at
offset 8 in the implementation-defined
appendage, which is addressed from offset
X'28'(40) in the TCA. The end of the chain
is marked with a zero entry.

H1ll: Finding the Task Variable

The task variable is held in the TCA at
offset X'24' (36).

H12: Block Structure of Program
(Static Backchain)

The block structure of the program can be
followed from the address held at offset
X'58'(88) in each compiled code DSA. This
address holds the address of the compiled
code DSA of the statically encompassing
block. The chain thus formed is known as
the static backchain.

H13: Forward cChain_ in_DSAs

The forward chain in DSAs is not supported
by the compiler. However, a forward chain
through the LIFO stack can normally be
followed by use of the NAB pointer. The
NAB pointer is held at offset X'4C' (76)
from the head of each DSA. The last
pointer in the chain points to the major
free area. If the NAB pointer contains
anything except 'FF' in its first byte, the
chain cannot be followed, because it is nct
contained in a single LIFO segment. The
address required is held in the last three
bytes of NAB; the first byte contains the
segment number (see Cl). The forward chain
includes only those DSAs in the LIFO stack
and does not include any DSAs in LWS.

H1l4:
Module

Action if Error is in a Library

The fact that the interrupt or the error
was discovered during the execution of a
library module suggests that a check must
be made on the data that is being passed to
the module.

To discover the contents of a parameter
list see H15.

H15:
Lists

Discovering Contents of Parameter

Parameters are passed in a list of words
pointed to by register 1, except during
stream I/0. To find the position of a
parameter passed to a program, f£ind the
value of register 1 in the save area of the
DsA (see H4) of the calling block.
Register 1 will then locate the parameter
list. If the 1list is in static storage,
this can be compared with the static
storage listing. The name of the called
routine can be discovered (H3). The
correct parameters for PL/I library
routines are given in the appropriate
library PLM.

The main procedure DSA can be found by
following the backchain of DSAs to the
dummy DSA. The address of the main
procedure DSA will be given by the last 3
bytes of NAB in the dummy DSA. NAB is held
at offset X'4c*'(76) in the dummy DSA. The
address of the dummy DSA is held at offset
X'24'(36) in the TCA appendage, which is
addressed from offset X'28°'(40) in the TCA.
The dummy DSA can be recognized by the
presence of X*'82' in the flag byte.

H17: _Finding_the Relationship_between

Tasks

The relationship between tasks can be
discovered from the chains in the tasking
appendage. The chain held at offset X"28'
(40) points to the tasking appendage of the
most recently attached subtask.

The chain at offset X'24' (36) points to
the task with the same attaching task that
was attached before the task being
inspected (elder sister). If there is no
such task the field is set to zero.

The chain at offset X'20' (32) points to
the subsequently attached task with the
same attaching task (younger sister). If
there is no younger sister this chain
points to an offset within the tasking
appendage of the parent task. An attempt
to continue along the chain results in a
zero field being met. (See figure 14.7.)

To Find the Parent Task

Search along the chain held at offset X'20'
(32) in each tasking appendage. When this
field is zero the tasking appendage of the
parent task has been reached. The start of
this tasking arpendage is at an offset of
X'-8'(-8) from the address held in the
pointer of the previous tasking appendage.
(Ssee figure 14.7.)

To_Find_all Subtasks_of a Task

The address of the most recently attached
subtask is held at offset X'28' (40) in the
tasking appendage. Other subtasks can be
found by following the chain held at offset
X'24* (36) in the tasking appendage until a
zero field is reached. This will be the end
of the chain and is the first of the active
subtasks to be attached by the task. (See
figure 14.7.)

Previously attached sister tasks (elder
sisters) can be found by following the

chain held at offset X'24' (36) in the

tasking aprpendage.

Subsequently attached sister tasks
(younger sisters) can be found by following
the chain held at offset X'20" (32) in the
tasking appendage. When a zero field in
this chain is reached, the parent task has
been found. The most recently attached
sister task is the last one whose chain
field does not hold a zero value. The word
after the zero value will point to the
tasking appendage of this task.

The method used for chaining tasks is

explained in chapter 14, and shown in
figure 14.7.

H18: _Finding the Tasking Appendage

The address of the tasking appendage is
held at offset X'2C" (44) in the TCA and at
offset X'50' (80) in the dummy DSA of the
attaching task.

Chapter 12: Debugging Using Dumps 225

H19: Finding the TCA from the Tasking
Appendage

The TCA is addressed from X'2C*
TCA tasking arpendage.

(44) in the

FINDING VARIARBLES

The value of the variables in the program
at the point of interrupt can be discovered
by using the compiled code listing as a
guide to their addresses, and then finding
these addresses in the dump. The method
used depends on the type of variable.

Vi: Automatic Variables

Automatic variables can be found by using
an offset from the DSA of the block in
which they were declared. This information
appears in the variables offset map
generated when the compiler MAP option is
used. If the compiler MAP option has not
been used the information can be deduced
from compiled code. (For finding DSaA
associated with block see H4).

V2: sStatic Variables

Static variables are normally addressed by
an offset from register 3. This offset is
given in the variables offset map generated
when the compiler MAP option is used. If
the compiler MAP option has not been used
the offset can be deduced by studying the
listing of compiled code. The value of
register 3 can be found in the save area of
the DSA. (For finding DSA associated with
block see HU4).

V3: controlled Variables

As described in chapter 2, controlled
variables are addressed by an anchor word
that is held in the pseudo-register vector.
This can be identified from compiled code.

The address in the pseudo-register
vector is the address of the data or, in
certain circumstances (see appendix A), of
a descriptor or a locators/descriptor. The
data is preceded by a control block - the
controlled variable control block. The
address of the previous allocation is held
at an offset of -8 from the address in the

226

PRV. If there is no previous allocation,
the address is set to zero.

Vu4: Based Variables

Based variables are located by finding the
value of the defining pointer. This value
is found by using one of the methods
described above to find static, automatic,
or controlled variables. If the pointer is
itself based, its defining pointer must be
found and the chain followed until the
correct value is found.

Typical code would be the following:

For X BASED (P), with P AUTOMATIC
58 60 D 088 L 6,P

58 EO 6 000 L 14,X

P is held at offset X'88' from register
13, and this address points at X.

Care must be taken when examining a based

variable to ensure that the pointers are
still valid.

V§: Area Variakles

Area variables are located in one of the
ways described above, according to their
storage class.

Typical code would be:

For area variable A declared AUTOMATIC

41 60 D 088 LA 6,A

The area would start at offset X'88°
from register 13.

V6: Variables in Areas

Variables in areas are found by locating
the area and then using the offset to find
the variable.

CONTROL BLOCKS AND FIELDS

For simplicity, the methods of finding
various control blocks are placed in an
alphabetic table. Details of the control
blocks can be discovered from the relevant

chapters (see index) or from appendix A.

As well as control blocks, various other

jtems are included in the list.
necessary, cross-reference is made to other

Where

sections in this chapter.

Fields

Automatic variables
Backchain
DSA backchain
ONCA backchain

BOS
Beginning of segrent

controlled variables

DCLCB
Declare control Block

DCB

ENVB
Environment Block

DED
Data element
descriptor

Diagnostic statement
table

DFB
Diagnostic file block

DSA
Dynamic storage area

EOS
End of segment

Event variable

FCB
File control block

Flow statement table

Cl: _Quick Guide to Identifying Control

20 2R e o i S o e e e S

see "Variables"

offset X'4°
offset X'0°*

in Dsa
in ONCA

offset X*'8*' from TCA

see "Variables"

Deduced from object
program listing

addressed from

offset X'14* (20) in
FCB
offset X'c¢' (12) in

DCLCB

deduced from object
program listing

addressed from
offset X*8"' from
entry point of main
procedure

addressed from
offset X'40'(64) in
TCA

addressed by
register 13 (see P3
and D3)
offset X'C' (12) in
TCA

deduced from object
program listing and
knowledge of
parameter lists of
I/0 and wait modules

identified in PL/I
dumps. Addressed
via' PRV and DCLCB

addressed from
offset X'4C' (76) in
TCA

Filename

Free-area chain

Locator/descriptor

LWS
Library workspace

NAB
Next available byte

ONCA

ON-communications area

ONCB

ON-control block
start of dynamic
ONCB chain

- first static
ONCB

On-cells

0oCB
Open control block

Parameter lists

Register values
RCB
Request control block

SIOCB

Stream I/0 control
block

Symbol table

Symbol table vector

Statement number
table

Static storage

Chapter 12:

Debugging Using Dumps

addressed from
offset X'10"' (16) in
FCB

offset X'8' in
implementation-
defined appendage,
which is addressed
from offset X'28"
(40) in TCA

deduced from okject
program listing

addressed from

offset X'48' (72) in
every DSA
offset X'4C' (76) in

DSA

the offset of the
associated ONCA is
held in a halfword
at offset X'2' in
each section of LWS

offset X'60"' (96) in
DSA
offset X'5C' (92) in

DsSA

addressed from
offset X'70' (112)
in DSA

deduced from object
program listing and
parameter list of
open module, IBMBOCL

object program
listing and static
storage map

See P3 and 03
object program
listing and static
storage map

object program
listing

Static listing
Static listing

See Diagnostic
statement table

addressed by
register 3 in

compiled code. See

227

Segment number

Tasking Appendage

Task variable

TCA
Task communications
area

Variables
automatic

based

controlled

static

area

Variables in areas

228

P3 and 03

first two bytes of
BOS, EOS, or NAB.
'FF*'=1,'FE"=2 etc.*

addressed from X'2C'
(44) in the TCA.

addressed from X°'24'
(36) in the TCA.

addressed by
register 12.
and D3

See P3

offset from

DSA of block in
which they are
declared. As shown
in variables offset
map. See V1.

address of the
pointer must be
deduced from the
object program
listing. This gives
the address of the
variable. sSee V2

PRV offset
referenced in
compiled code holds
latest allocation of
the variable. A
chain-back through
the previous
allocation can be
made using the
header chain. See
v3

offset from register
3 is shown in
variables offset
map. See V4.

as for other
variables depending
on storage class.
See V5

find address of
area. Find variable

from offset within
areas shown in
compiled code. See
A

*When the first two bytes of EOS and BOS
are greater than two bytes of NAB, it means
that an extra segment of storage has been
used, but not yet freed. See chapter 6,
"Storage Management."

Special Considerations for Multitasking

The major difference ketween a dump of a
multitasking program and the dump of any
other PL/I program is that certain relevant
items are held within the control task.

For this reason, the control task is always
dumped as well as the current task.

The contents of the dump of a tasking
program depend on the dump options
specified. If A (all) is used all the
tasks will be dumped. If O (only current
task) is specified the control task and the
current task will be dumped.

The dump is carried out within the
control task and this prevents access to
the tasking housekeeping during the
execution of the dump. Howevexr, this does
not prevent access by other tasks to PL/I
variables which may be dumped. Subtasks of
the current task can access and alter
values within the ISA of the current task.
consequently the values of the variables
printed cannot be guaranteed to be those
that were current at the invocation of the
dump.

As explained in chapter 14, the DSA
chaining differs slightly when a program is
multitasking. The backchain passes through
the dummy DSA of the task and ends at the
dummy DSA of the major task. The DSA of
the block in which the task was attached is
not included in the backchain.

Compiled code and the static control
sections generated by the compiler are
always held in storage associated with the
control task.

Calling routine

Call to routine in
other language

M
|

apparent path
|

Called routine

Routine of other language
carries out required
task and returns

1
v
|
|
|
I
I

apparent path

b —— o ——

Calling routine

Continuation of procedure in
original language

Figure

230

real
path

real
path

real
path

real
path

Intervening code

Save old environment,

set up new environment.

If necessary, provide dummy
data aggregate arguments

Intervening code

Restore former environment.
Where necessary, assign
values in dummy data
aggregate arguments to

real arguments

13.1. The principles of interlanquage communication

Chapter 13: Interlanguage Communication

The 0S PL/I Optimizing Compiler allows
subroutines compiled on IBM OS COBOL or
FORTRAN compilers to be used in PL/I
programs compiled on the optimizing
compiler. sSimilarly, it compiles PL/I
programs that can be run as subroutines of
either COBOL or FORTRAN programs.

| Facilities are also provided to overcome
| the addressing problems when passing
|arguments to assembler language routines.

| These are described under the heading

| "ASSEMBLER Option" later in this chapter.

A full description of how to use the
interlanguage communication facilities is
given in the language reference manual for
this compiler. A detailed description of
the PL/I library routines involved is given
in the resident library PLM. This chapter
explains the basic design principles used
and will assist in understanding the
situation in main storage during the
execution of a program involving
interlanguage calls.

The interlanguage facilities are

summarized below for background
information.

summary of Interlanguaqge Facilities

The interlanguage facilities allow any
number of calls to be made, and calls to
both COBOL and FORTRAN routines can be made
in the same program. PL/I can call COBOL
that calls PL/I that calls FORTRAN; FORTRAN
can call PL/I that calls COBOL, and soO on.
All calls must, however, be made either to
PL/I or from PL/I. Calls cannot be made
directly between COBOL and FORTRAN.

Options allow the programmer to specify
that PL/I interrupt-handling facilities
will be available through the COBOL or
FORTRAN routines for those program checks
that are not handled by COBOL or FORTRAN.
Options also allow the programmer to
specify whether he wishes data aggregates
to be automatically re-formatted when
passed as arguments. (The programmer may
wish to carry out the re-formatting
himself.)

The language involved is fully described
in the language reference manual. Briefly,
it is as follows. For a PL/I procedure to
call a COBOL or FORTRAN routine, the name
of the routine must be declared as an
external entry point with the option COBOL

Chapter 13:

or FORTRAN in the OPTIONS attribute. If
the programmer wishes to take advantage of
the PL/I error-handling or interrupt-
handling facilities in a COBOL or FORTRAN
routine,the INTER option must be included
in the declaration. When a PL/I procedure
is to be called by COBOL or FORTRAN, the
keyword COBOL or FORTRAN should be included
in the OPTIONS option of the PROCEDURE or
ENTRY statement. To override the creation
or remapping of dummy arguments for
aggregates the options NOMAP, NOMAPIN, and
NOMAPOUT can be used.

The compiler also allows the
specification of the COBOL option in the
ENVIRONMENT attribute of a PL/I file. This
is separate from the interlanguage
facilities described above, and is a method
of allowing data sets produced by programs
of one language to be used by programs of
the other language. The use of the COBOL
option in the ENVIRONMENT attrilkute is
described in the last section of this
chapter.

Background to Interlanguage
Communication

The major problems involved in allowing
procedures written in PL/I to be used with
programs written in CCBOL or FORTRAN are:

1. The existence of different data types
in the different languages.

2. The different methods of holding data
aggregates in the different languages.

PL/I's use of locators when passing
| areas, arrays, strings, and structures
| as arguments.

4. The different environment required for
each language. This consists of :

a. Different methods of handling
program checks and consequently a
requirement for the issuing of new
SPIE macro instructions when a new
language is entered.

b. The dependence of PL/I and FORTRAN
on initialization and termination
routines to set up and discard
their environments.

The first of these problems must be soclved
by the programmer himself, by ensuring that

Interlanguage Communication 231

PL/| COMPILED CODE

PL/I LIBRARY ROUTINE

Call inter-language
housekeeping routine

Set up required
environment

COBOL or FORTRAN
COMPILED CODE

Remap data aggregates
as dummy arguments

Execute
required
program

Call COBOL or FORTRAN routine

PL/I LIBRARY ROUTINE

Call inter-language
housekeeping routine .

Restore PL/I
environment

Place dummy argument
values in data aggregates
if necessary

Continue

Figure 13.2. Calling sequence when PL/I calls COBOL or FORTRAN

232

arguments passed between the routines are
of suitable data types. (Information in
the language reference manual for this
compiler enables the programmer to do
this.)

The other problems mentioned above are
handled automatically by the interlanguage
communication facilities of the compiler.
They are summarized below.

DIFFERENCES IN DATA AGGREGATES

Structures in PL/I and COBOL, and arrays in
PL/I and FORTRAN, are held in different
manners.

COBOL structures are mapped as they are
declared, with the structure starting on a
doubleword boundary and each item
separately aligned. PL/I structures are
mapped in a manner that minimizes padding.

In FORTRAN, multidimensional arrays are
held in column-major order. In PL/I, they
are held in row-major order. Thus the
second element in a FORTRAN two-dimensional
array has the subscript (2,1), whereas the
second element in a PL/I two-dimensional
array has the subscript (1,2).

Structures are not available in FORTRAN.
COBOL data with the OCCURS option, which
can be equivalent to PL/I arrays, is held
in row major order, as are PL/I arrays.

| USE OF LOCATORS

|When passing arguments, PL/I passes the
|address of locators for areas, arrays,
strings, and structures rather than the
address of the items themselves. This is
| because the routine that receives the
|arguments may require information about
bounds or sizes of the data passed, and
this is accessible through the locator.
Other languages, however, expect the
address of the data to be passed. The
correct type of paramter list must
therefore be set up when an interlanguage
call is made.

DIFFERENCES OF ENVIRONMENT

PL/I, COBOL and FORTRAN all have different
methods of handling program checks. PL/I
allows the programmer to handle all program
checks. FORTRAN allows the programmer to

Chapter 13:

handle certain program checks. COBOL
leaves program checks almost entirely in
the hands of the system.- Because of the
different requirements, a new SPIE macro
instruction must be issued whenever contrcl
passes between languages. The INTER option
demands that program checks are analyzed
when they occur and that they are passed to
the appropriate language. If they are to
be passed to PL/I, the PL/I environment
must be restored. For these reasons the
INTER option demands that further SPIE
macro instructions be issued.

IBM FORTRAN compilers and the PL/I
optimizing compiler rely upon
initialization routines to set up an
environment in which the compiled code
routines can orerate. In FORTRAN, the main
task of the initialization routine is to
issue a SPIE macro instruction to initiate
the FORTRAN error-handling scheme. 1In
PL/I, the initialization routines prepare
for the PL/I error-handling schemes and
also prepare the way for dynamic storage
allocation. During PL/I initialization
routines, register 12 is pointed at the
TCA, which is used for addressing a nunmbex
of housekeeping fields and library
routines. Register 13 is pointed at a DSA
which contains a standard save area, a NAB
pointer pointing to the next available byte
of last-in, first-out dynamic storage,
various other housekeeping fields, and
storage for variables declared automatic.
(see chapter 1 and chapter 5 for a
discussion of the PL/I environment.)

When PL/I is called from either COBOL or
FORTRAN the PL/I environment must be set up
before the program can be run. Similarly,
when PL/I calls another language, the
environment suitable for the program that
has been called must be set up, and the
PL/I environment saved so that it may be
restored on return to PL/I.

THE PRINCIPLES OF INTERLANGUAGE
COMMUNICATION

Figure 13.1 shows the method used to handle
interlanguage communication problems.
Interface code is inserted immediately
before and immediately after the execution
of a routine in a different language. This
code saves the existing environment and
sets up the required environment. Where
necessary it creates dummy aggregate
arguments of the correct format. The
interface code is divided between compiled
code and library routines. Compiled code
handles data aggregate arguments and calls
a library routine to handle the problems of
environment. Three PL/I resident library
routines are used; one for calls to each

Interlanguage Communication 233

language. These routines are known as the
interlanguage housekeeping routines.

The interface code is always placed in
PL/I, because it is the PL/I compiler that
manages the interlanguage facilities.
However the position of the code depends on
whether PL/I is the called or calling
program.

PL/I Calls COBOL or FORTRAN

When the calling program is PL/I the
interface code is placed immediately before
and immediately after the call to the COBOL
or FORTRAN routine. The sequence, is shown
in figuye 13.2 and is summarized below.

1. Compiled code remaps data aggregate
arguments if necessary.

2. compiled code calls the interlanguage
housekeeping routine, which handles
environment problems.

3. compiled code calls the COBOL or
FORTRAN routine.

4. On return from the COBOL or FORTRAN
routine, compiled code calls the
interlanguage housekeeping routine to
restore the PL/I environment.

5. cCompiled code re-maps dummy data
aggregate arguments if any, and
continues.

The code generated by the compiler is shown
in figure 13.3.

FORTRAN or_ COBOL_Calls PL/I

When the called program is PL/I, the
necessary interface code is placed at the
start and finish of the PL/I program. The
interface code is compiled as an
encompassing routine to the required PL/I
routine.

The method used, is to compile the PL/I
program in the normal way except that it is
compiled as internal to an interface
procedure that contains the interface code.

This interface, or encompassing
procedure is given the external name of the
PL/I procedure and is thus called by the
other-language routine. The interface
procedure, when it has called the
interlanguage housekeeping routine and

handled the data aggregate arguments, calls

234

the required PL/I routine. Control returns
to the original caller by way of the
interface routine which again handles the
interlanguage problems before returning.

The sequence of events when PL/I is the

is summarized below.

1. A COBOL or FORTRAN routine calls the
PL/I routine.

2. control passes to the interface
routine which has been compiled with
the ESD name of the PL/I routine or
entry point.

3. The interface routine calls the
interlanguage housekeeping routine to
handle environment problems.

4. The interface routine handles data
aggregate arguments as necessary.

5. The interface routine calls the
required routine.

6. Ccontrol returns from the required
routine to the interface routine. The
interface routine handles data
aggregate arguments as necessary.

7. The interface routine calls the
interlanguage housekeeping routine to
handle environment problems.

8. Control returns from the interface
routine to the original caller.

Retaining the_ Environment

PLA=A= L L PRS- A S S R AL

The overhead of setting up PL/I and FORTRAN
environments every time a routine is called
could become considerable if the routine
were called a large number of times. To
prevent this overhead, the environment is
retained until the routine that calls the
other language routine is itself
terminated. This is done by a rearrangement
of the save area chaining, so that the PL/I
and FORTRAN termination routines are not
entered until the calling program is itself
terminated.

The arrangement introduces certain
housekeeping problems which are resolved by
inserting further save areas into the
chain. These save areas have register 14
values that result in control being passed
to subroutines of the interlanguage
housekeeping routines. These subroutines,
known as tail code, handle problems such as
preserving values passed from the caller to
the caller's caller. '

P13P2:PROC;

SOURCE

2 1 DCL FRED OPTICNS(COBOL),
1 STRUCTURE,
2 C CHAR (1),
2 D FIXED BINARY (31,0);
3 1 CALL FRED(STRUCTURE);
4 1 END;
* STATEMENT NUMBER 3
000066 41 00 0 008 LA 0,8(0,0) -
00006A 58 10 D 0u4C L 1,76(0,13)
00006E 1E 01 AIR 0,1
000070 55 00 C 00C cL 0,12€0,12) S
000074 47 DO 2 018 BNH CL.4
000078 58 FO C 0u8 I 15,72(0,12)
00007C 05 EF BAIR 14,15
00007E CL.4 EQU * -
00007E 50 00 D (OucC ST 0,76(0,13)
000082 41 11 0 000 LA 1,0(1,0)]
000086 50 10 D 0AS8 ST 1,168(0, 13)
000082 TC2 03 C 088 D OR3 MVC WKSE.1+16(4),STRUC
TURE.C
000090 58 80 L 088 L 8,WKSE.1+16 ?
000094 D2 03 1 000 D 088 MVC 0(4,1),WKSE.1+16
000092 58 90 T ORU 1 9,STRUCIURE.D
00009E 50 90 1 004 ST 9,4(0, 1 _
0000A2 58 FO 3 00C L 15,2..IBMBIECA
000026 18 "1 IR 7,1 ::}
0000A8 05 EF BALR 14,15
0000AA 50 70 3 030 ST 7,48(0,3)
0000AE 96 80 3 030 cI 48(3),X'80"
0000E2 1B 55 SR 5,5
0000BL 41 10 3 030 1A 1,48(0,3)
0000R8 58 FO 3 034 I 15,52(0,3)
0000BC 18 67 IR 6,7
0000BE 05 EF BALR 14,15
0000CcO0 58 FO 3 010 1 15,A..IRNBIECC ::}
0000Ct 05 EF BALR 14,15
0000C6 L2 03 L 088 7 000 MVC WKSE. 1416 (4),0(7)
0000CcC 58 FO D 088 L 15, WKSF. 1+16
0000CO L2 03 ©C OB3 L 088 MVC STRUCTURE.C (U4) ,WKS
P.1+16
0000C6 58 60 7 004 1 6,4€0,7)
0000DA 50 60 D ORY4 ST 6, STRUCTURE.D

Figure 13.3.

Code generated when PL/I calls a COBOL routine

Chapter 13:

Get VDA for dummy
arguments

Place new value in NAB

Move structure into
dummy

Branch to interlanguage
housekeeping routine

Set up argument list

Branch to COBOL routine

Branch to interlanguage
housekeeping routine

Move values from dummy
to real arguments

Interlanguage Communication

235

COBOL or FORTRAN COMPILED CODE
PL/I COMPILED CODE “ENCOMPASSING PROCEDURE"

Call PL/l routine
PL/I LIBRARY ROUTINE

Call inter-language Set up PL/I
environment routine environment

Generate dummy data aggregate arguments
if necessary

PL/I COMPILED CODE REQUIRED

PROCEDURE

Call required PL/|

procedure Execute
required
program

Remap data aggregates if necessary
PL/I LIBRARY ROUTINE
Call inter-language Restore COBOL or
environment routine FORTRAN environment

Return to COBOL or FORTRAN

Continue

Figure 13.4. The sequence of events when FORTRAN or COBOL calls PL/I

236

SAVE AREA CHAINING

Standard save area of outer
procedure/calling routine (if any)

COBOL or FORTRAN calling routine save area @

Short save area

Interlanguage routine save area
—_— - (Save area 2 in ZCTL)

PL/I initialization routine save area

Figure 13.5.

PL/I encompassing procedure save area

PL/I required procedure save area

Rearrangement of save area chaining takes place after the
first call to PL/I, so that the PL/I environment is not discarded
until the cailing routine itself is finished.
Save areas that return control to the PL/| initialization routine

and interlanguage housekeeping routine are placed before the
calling routine. (The numbers 1-7 in the diagram show the

order of backchaining).

Chaining of save areas when PL/I is called from a COBOL or FORTRAN

principal procedure

Chapter 13:

Interlanguage Communication 237

Handling Changes of Environment

Interlanguage Housekeeping Routines_and
their Control Blocks

Changes of environment are handled by three
resident library interlanguage housekeeping
rodules, one for calls to each language.
common features are described below. A
more detailed description follows for each
routine. The routines are:

IBMBIEF for calls to FORTRAN
IBMBIEC for calls to COBOL
IBMBIEP for calls to PL/I

The job of these routines is the saving and
restoring of environments. This involves
issuing SPIE macro instructions suitable
for the called routine and saving the PICA
of the calling routine so that a suitable
SPIE macro instruction can be issued before
return. For PL/I it also involves storing
information about dynamic storage
allocation, and the TCA address.

The information required when setting up
and restoring environments is held in three
chained control blocks:

1. IBMBILC1l This is a control section
included in every interlanguage
housekeeping routine. It contains
flags to indicate whether the PL/I,
FORTRAN or COBOL environments already
exist and, if any do exist, contains a
peinter to ZCTL.

2. ZCTL This holds PICA addresses and the
TCA address. It is chained to a series
of interlanguage VDAs. It also holds
flags indicating which languages are
currently active.

ZCTL is generated on the first of a
series of interlanguage calls and is
retained until that series of calls is
completed. For calls to FORTRAN and
PL/I it is retained until the routine
that made the first interlanguage call
is itself terminated.

Also held in ZCTL are the additional
save areas used when the chaining is
altered. These are known as save area
1, save area 2, and the ghost save
area. The uses of these save areas
are given in the individual module
descriptions.

3. Interlangquage VDAs These hold flags
indicating which languages were active
before the latest call was made, the
address of the callers PICA, the
address of the most recent PL/I DSA.

238

An interlanguage VDA is acquired for
every interlanguage call and discarded when
the called routine is terminated.
Interlanguage VDAs are held in the PL/I
LIFO storage stack.

The methods of chaining ‘used for these
control blocks when PL/I is the called and
the calling language is shown in figures
13.6 and 13.7. IBMBILCl1l contains a pointer
to ZCTL and ZCTL contains a pointer to the
most recent interlanguage VDA.
Interlanguage VDAs hold pointers to
previous interlanquage VDAs, if any. If
there are none, the pointer field is set to
zero.

There is one interlanguage VDA for each
interlanguage call. A VDA is set up when
the call is made and discarded when the
associated routine is terminated. The VDAs
hold a record of the ZCTL flags that
existed before they were called. These
flags are placed in the VDA before the
flags are altered and restored in ZCTL when
the VDA is discarded. Thus ZCTL always
contains a record of the active lanquages.
This information is necessary when handling
STOP statements.

The flags in IBMBILC1 contain a record
of the environments that are active. These
flags are used to test whether it is
necessary to call the FORTRAN or PL/I
initialization routines, or whether the
environment can be restored from the
information saved in ZCTL and the

interlanguage VDAs.

Handling FORTRAN and PL/I
Initialization/Termination Routines

FORTRAN and PL/I environments are set ugp by
initialization routines and discarded by
termination routines. To save the
overheads of executing these routines on
edch call to the language the save area for
the termination routine is placed above
that of the calling program. On the first
call the PICA address and, for PL/I only,
the current DSA and TCA address are saved.
For subsequent calls this information is
restored by the interlanguage routines and
no call made to the initialization routine.
Figure 13.8 shows the principles involved.

The rearrangement of the save area chain
results in certain problems, for example
returning parameters from the caller to the
caller's caller. To overcome these
problems additional save areas are inserted
in the chain. These save areas result in
control passing to subroutines in the
interlanguage housekeeping routines known
as tail code. Details are given in figures
13.9 and 13.10 and in the individual module
descriptions below.

1

Initial situation
IBMBILC1 is set up as a control section by the PL/I interlanguage
routines. Its first word and flags are initially zero.

IBMBILC1

IBMBILC1

ZCTL

Zero

/' Address of ZCTL

Zero Zero

1 i

1 |
COBOL FORTRAN
flag flag

I

Call FORTRAN from PL/I (IBMBIEF)

The compiler generates a call to the interlanguage communications

routine. This routine:

1. Sets up ZCTL after testing for zero pointer in IBMBILC1.
Acquires an interlanguage VDA.

Sets ZCTL pointer to interlanguage VDA, and IBMBILC1
pointer to ZCTL.

Sets FORTRAN flag in IBMBILC1. Saves R12 in ZCTL,
R13 in interlanguage VDA.

Calls FORTRAN flibrary to initialize FORTRAN SPIE
Resets program check exit as required.

Returns to compiled code, which calls FORTRAN
procedure.

ous W N

IBMBILC1

VDA (First)

FORTRAN

| interrupt handling
inf .

R13

Call PL/1 from FORTRAN (IBMBIEP)

The PL/I program, because it is declared with the option

FORTRAN, will have been compiled inside an encompassing

procedure. The encompassing procedure is the one called by

FORTRAN. The encompassing procedure calls the inter-

language communications routine IBMBIEP, which:

1. Checks IBMBILC1 to see if either FORTRAN or COBOL
flagis set. As one flag is set, restores registers. -

2. Issues PL/I SPIE and STAE and stores interrupt handling
information of calling program in interlanguage VDA.

Control then returns to the encompassing program, which calls

the required PL/! program.

IBMBILC1

ZCTL

VDA {First}

FORTRAN

interrupt handling

R12

R13

FORTRAN

- interrupt handling

information

Call COBOL from PL/1 (IBMBIEC)

The PL/1 program will contain a call to the interlanguage routine

IBMBIEC, which:

1. Sets up another interlanguage VDA, points ZCTL to this
VDA, and places the old value of ZCTL's pointer in the
VDA.

2. Stores R13 in the new VDA.

3. Issues a SPIE so that error handling will be as requested
by PL/! program.

Control is then returned to compiled code, which then calls

the COBOL routine.

IBMBILC1

ZCTL

VDA (Second)

VDA (First)

FORTRAN
interrupt handling
information

R12

R13

R13

FORTRAN
interrupt handling informati

Final situation 8
1 section by the PL/I interlanguage

38 are initially zero. IBMBILC1 IBMBILC1 ZCTL ZCTL is retained until program is completed.
Zero // Address of ZCTL
Zero Zero X
1 1

COBOL FORTRAN

flag flag

IBMBILC1 ZCTL VDA (First)
ABIEF) //' FORTRAN returns to PL/I (IBMBIEF) 7
» the interlanguage communications

When control returns from a FORTRAN procedure, a call is made
| for zero pointer in IBMBILC1. X to the interlanguage communication routine IBMBIEF, which:
VDA. FORTRAN R13 1. Moves the pointer in the VDA to the first word of ZCTL.
-language VDA, and IBMBILC1 interrupt handling 2. lIssues a PL/l SPIE macro.
- information 3. Issues a PL/I STAE macro leaving the previously-stacked

MBILC1. Saves R12in ZCTL, FORTRAN STAE for possible future use.
3 initialize FORTRAN SPIE 4. Returns control to compiled code.
as required.
which calls FORTRAN

IBMBILC1 ZCTL VDA (First)
1BIEP) PL/1 returns to FORTRAN (IBMBIEP) 6
declared with the option o
piled inside an encompassing When the required PL/I procedure is finished, it returns control
rocedure is the one called by to the encompassing procedure. The encompassing procedure
procedure calls the inter- X calls the interlanguage routine IBMBIEP, which issues a SPIE
‘e IBMBIEP, which: ' FORTRAN R13 macro instruction to restore the error-handling situation to that
f either FORTRAN or COBOL interrupt handling of the calling routine. The information for the SPIE macro
1, restores registers. -) information instruction is retrieved from the interlanguage VDA. The
:ra”di:t?r:'f:r;;‘:;:':;tcaon:“ng FORTRAN current PL/I STAE is canceled, leaving the previously stacked
jram . i i ;
ympassing program, which calls 5n';errupt~handlmg FORTRAN STAE in control.

R12 information The interlanguage routine returns control to the PL/l encompas
sing procedure, which then returns control to the FORTRAN
program.

. IBMBILC1 ZCTL VDA (Second) VDA (First}
:C) COBOL returns to PL/I 5
call to the interlanguage routine p
The COBOL program returns to the PL/I program, which

ige VDA, points Z.CTL.to this X X immediately calls the interlanguage routine IBMBIEC. This
llue of ZCTL’s pointer in the Z : routine rearranges the chain by placing the word in the most

FORTRAN R13 R13 recent VDA in the first word of ZCTL. It then issues a SPIE
\ interrupt handling macro instruction to restore the PL/} error-handling situation.

h.andling will be as requested

information

ailed code, which then calls EORTRAN PL/1 compited code then continues.

interrupt handling information

Figure 13.6. Example of chaining sequences (PL/I principal procedure)

Chapter 13: Interlanguage Communication 239

initial situation

{BMBILC1 IBMBILC1

Situation on return

tnitial situation Situation on return

4

ZCTL PARTITION
Address of ZCTL Exists for use TCA etc.
if PLISA has
Zero lEero 1 1] been called Dummy DSA
T First VDA
FORTRAN flag
FORTRAN principal procedure calls PL/I
PARTITION
TCA etc.
e ——
IBMBILC1 2CTL VDA (First) Dummy DSA
First VDA
X I 1SA
Encompassing DSA
FORTRAN R13
interrupt Required DSA
handling
information FORTRAN
T interrupt
handling
R12 information
PL/I calls FORTRAN
PARTITION
TCA etc.
IBMBILGT ZCTL VDA (Second) VDA (First) Dummy DSA
First VDA
[<]
P Encompassing DSA 1A
FORTRAN R13
interrupt Required DSA
handling
information
FORTRAN Second VDA
interrupt
handling
information
FORTRAN calls PL/I
PARTITION
TCA etc. ‘]
IBMBILC1 zeTL VDA (Second) VDA (First) Dummy DSA
— ad 1
First VDA
[x|
Encompassing DSA 1
FORTRAN R13 R13
interrupt Required DSA 1 ISA
handling
information
FORTRAN FORTRAN Second VDA
interrupt interrupt]
handling handling)
information information Encompassing DSA 2
Required DSA 2

Figure 13.7.

Examples of chaining sequences

Chapter 13:

(FORTRAN princiral procedure)

Interlanguage Communication 241

Handling the INTER Option

When the INTER option is specified, the
programmer gets neither normal PL/I
interrupt handling nor the normal interrupt
handling for the other language. Instead,
he gets PL/I error handling of those
interrupts which are left to the system by
the non-PL/I languages. To allow for this,
the type of interrupt has to be analyzed
after it has occurred and passed to the
correct error handling routines.

Interrupts are analyzed by subroutines
of the interlanguage housekeering routines
known as traps. The interlanguage
housekeeping routines save the PICA
addresses for the calling language and the
called language and issue a SPIE that will
pass control to the trap code. When an
interrupt occurs control is passed to the
trap, which analyzes the interrupt. The
trap code issues the appropriate SPIE to
restore the required error handling
situation and then alters addresses so that
normal return from the interrupt will
result in control being passed once more to
the interlanguage housekeeping trap
routine. It then forces an interrupt and
the interrupt is handled ky the appropriate
language. When control returns to the trap
a further SPIE is issued so that control
returns to the trap should further
interrupts occur. The method used for each
module is described below.

STOP and STOP RUN Statements

PL/I and FORTRAN STOP statements and COBOL
STOP RUN statement cause certain problems
because various save areas may be bypassed.
The methods adopted to solve these problems
are discussed in the individual description
of the modules.

Housekeeping Module Descriptions

As the differences between individual
interlanguage housekeeping modules are
considerable, a detailed description of
each module fcllows. The description
covers the following situations:

1. WwWhen the associated language routine
is called

2. When the associated language routine
returns control

242

3. When an interrupt occurs with the
INTER option

4. When a STOP or STOP RUN statement is
executed

5. For PL/I and FORTRAN only, when the
environment is discarded and the
termination routine entered

COBOL WHEN CALLED FROM PL/I (IBMBIEC)

Before Entry to COBOL Program

IBMBIECA - Entry point for COBOL error
handling

IBMBIECB - Entry point for INTER error
handling

When IBMBIEC is called before the COBOL
program, the following must be done:

1. Test to see if this is the first
interlanguage call; if so, set COBOL
flag in IBMBILC1 and set up ZCTL.

2. Acquire interlanguage VDA and store
register 12 and register 13 in the
VDA. Write null PICA information in
ZCTL.

3. If INTER option not specified (i.e.,
entry point IBMBIECA), issue SPIE
macro instruction so that errors will
be handled by the supervisor. Return
to compiled code.

4, 1If INTER option is specified (entry
point IBMBIECB), issue new SPIE macro
instruction and return so that
interrupts will be passed to the trap
code.

On_Return_from_ COBOL_Program (IBMBIECC)

The following actions take place on return:

1. A SPIE macro instruction is executed,
which results in the the PL/I error
handling scheme being restored.

2. The first word of the interlanguage
vDA and the VDA flags are moved into
the first word 2ZCTL, and the VDA is
freed.

Figure 13.8.

Save area for
CALLER’'S CALLER

1

Save area for CALLER

l

Save area for
INITIALIZATION/
TERMINATION
ROUTINE PL/l or
FORTRAN

l

Save area for
PL/l or FORTRAN

Chapter 13:

Save areas are re-chained
so that the environment
is not discarded until
the caller is terminated.
Note: additional save
areas are introduced.
See figures 13.9 & 13.10
for details.

Interlanguage Communication

The concept of save area rechaining (see figures 13.9 and 13.10 for
details)

243

Caller’s caller

t

Save area 1
(Register 14 in this save area points to
the tail code in IBMBIEF. For normal
return the tail code calls IBCOM in
the FORTRAN library to discard the
FORTRAN environment.)

*

Caller’s

1

FORTRAN routine

Rechaining of save areas when FORTRAN is called from PL/I and the

Figure 13.9.
FORTRAN environment needs initializing

244

I Caller’s Caller
(replaced in this position

| by tail code in IBMBIEP

: R 14 value restored from

T T e o T T
|
|
|

ghost save area) !

Save area 2
(passes control to tail
code in IBMBIEP

L)

Dummy DSA
(Save area for PL/I
initialization/termination

routine)
Save area 1 Caller’s Caller adapted
Passes control to tail < (register 14 value is altered
code in IBMBIEP (entered to pass control to tail
after FORTRAN STOP) code in IBMBIEP)

Caller

¥

PL/I
Encompassing Procedure DSA

*

PL/I

Required Procedure DSA

Rechaining of save areas when PL/I is called from FORTRAN or COBOL

Figure 13.10. . (PL/I is 1
and the environment requires initialization

Chapter 13: Interlanguage Communication 245

Action on Interrupt in COBOL with INTER

If the INTER option is not specified, all
program checks will be handled by the
supervisor in the usual manner. If the
INTER option is specified and the program
has been compiled with a request for the
COBOL interrupt handler not to be called,
the following takes place.

1. During the first invocation of
IBMBIEC, a SPIE macro instruction is
issued, which results in interrupts
being passed to entry address in the
trap.

2. When an interrupt occurs, register 12
and register 13 are restored thus
restoring the PL/I environment.

3. A DSA is acquired for IBMBIEC in LWS.
The address of the interrupt, in the
second word of the PSW, is saved in
this DSA and replaced by the address
of another entry address in the trap.
For underflow interrupts, the four
bytes preceding the point of interrupt
are also copied and placed before the
trap in case the error handler needs
to examine them. The trap acts as the
return address for the PL/I error
handler.

4. Flags are set in the TCA and DSA to
indicate that it is possible for an
abnormal GOTO to occur in a PL/I on-
unit.

5. A SPIE macro instruction is issued to
transfer the program check exit to the
PL/I error-handling routines whose
address is held in the TCA appendage.

Return from_interrupt: If there is a GOTO
out of a PL/I on-unit, control passes to
the abnormal GOTO subroutine, this is
because flags indicating an abnormal GOTO
situation are set up by the trap code. The
abnormal GOTO subroutine analyzes these
flags and passes control to IBMBIEC which
handles any necessary housekeeping
problems.

If the return is normal, the PL/I error
handling routines return control to the
address in the second word of the PSW.
This word has been altered by code in the
trap, and further trap code in IBMBIEC is
entered.

It is necessary to return to the point
of interrupt in the COBOL program without
changing any of the register values and
this can only be done via the supervisor.
A new SPIE is set to point to further trap
code and an interrupt forced. The program
is now in an interrupted state, the

246

original INTER SPIE is reissued, and the
registers and PIE are restored. The
original interrupt address is set in the
PSW. Control is returned to the supervisor
which passes control to the address in the
PSW with the correct register values
restored.

Zerodivide On-Units

When used with certain COBOL compilers,
normal return from a zerodivide on-unit
will result in a data exception. This is
because a ZAP instruction is executed after
the divide on computational-3 data. The
ZAP instruction picks up an invalid field.

Handling STOP RUN statements

ANS COBOL STOP RUN statements are handled
by a COBOL routine which passes control to
a specified address. When IBMBIEC is
called before entry to a COBOL program this
address is set to the tail code in IBMBIEC.
This tail code dechains all save areas orxr
routines that were entered after the PL/I
caller and then executes a PL/I STOP
statement.

FORTRAN WHEN CALLED FROM PL/I (IBMBIEF)

When FORTRAN is called by PL/I, IBMBIEF is
entered immediately before and immediately
after the execution of the FORTRAN prograrm.
The processing done bkefore entry to the
FORTRAN program depends on whether the
INTER option is specified. Entry point
IBMBIEFA handles calls without the INTER
option. Entry point IBMBIEFB handles calls
with the INTER option.

Before Entry to the FORTRAN Program

Entry Point IBMBIEFA FORTRAN error handling
Entry Point IBMBIEFB INTER error handling

Before the call to FORTRAN, IBMBIEF does
the following:

1. Tests the flags in IBMBILC1 to
discover if this is the first
interlanguage call. If it is the
first call, it sets up ZCTL and sets
the FORTRAN flag in IBMBILC1l. If it
is not the first call, it tests to see

whether the FORTRAN flag is set in
IBMBILC1 and sets the FORTRAN flag if
it is not already set.

2. IBMBIEF stores register 13 in the
interlanguage VDA, thus saving the
PL/I environment.

3. If the FORTRAN environment has not
previously been set up, calls the
FORTRAN initialization routine. This
routine sets up the program check exit
so that program interrupts will be
handled by the FORTRAN error handling
method. The FORTRAN error data is
stored in ZCTL. Save area one (SAl) is
then inserted in the save area chain.
The resulting save area chaining is
shown in figure 13.9.

4. IBMBIEF acquires an interlanguage VDA.
Points the first word of ZCTL to this
VDA, taking the value previously in
the first word of ZCTL and placing it
in the first word of the VDA. (This
places the new VDA at the head of a
chain starting from ZCTL.)

5. If INTER option is not specified,
issues a FORTRAN SPIE macro
instruction from ZCTL, sets program
mask to *'2', and returns to compiled
code.

6. If INTER option is specified, a SPIE
macro instruction is issued that will
result in control being passed to the
trap should an interrupt occur. The
program mask is reset to 'E' in case
it was changed by the FORTRAN
initialization routine.

Action on Return from FORTRAN Program

e S e e i i i e

When return is made from the FORTRAN
subroutine, PL/I compiled code immediately
makes a call to the FORTRAN interlanguage
routine. If the FORTRAN routine may have
been used as a function, entry point
IBMBIEFD is used. Otherwise, entry point
IBMBIEFC is used. The module IBMBIEF does
the following:

1. A SPIE macro instruction is issued
that resets the program check exit to
the PL/I error-handling modules, and
the program mask is set to 'E'.

2. The first word of the interlanguage
VDA is placed in the first word of
ZCTL. The VDA flags inserted in ZCTL
and the VDA freed.

3. For entry point IBMBIEFD (the FORTRAN

Chapter 13:

function entry point) the parameter
list passed by PL/I is examined, and
the values are moved from registers in
which they were placed by the FORTRAN
routine, to the location expected by
PL/I.

Action on _Interrupt in FORTRAN

If the INTER option is not specified, the
action on any interrupt that occurs in the
FORTRAN program will ke that specified in
the FORTRAN error-handling scheme.
However, if the INTER option is specified,
all program checks that are not handled by
FORTRAN error-~handling are passed to the
PL/I error-handling modules.

The FORTRAN error-handling scheme is
used after the following interrupts have
occurred:

1. sSpecification (other than for invalid
instruction address)

2. Fixed-point divide

3. Decimal divide

4., Exponent overflow

5. Exponent underflow

6. Floating-point divide

All other program checks are handled by the
PL/I error handler.

If the INTER option is specified, when
an interrupt occurs the following takes
place:

1. When control is passed by the
supervisor to the trap, the type of
interrupt is discovered by examining
the PSW. If the interrupt is one of
the types that can be handled by
FORTRAN, the normal FORTRAN
environment is established and the
FORTRAN error handling module invoked.

2. If it is not the type of interrupt
that can be handled by FORTRAN,
register 12 is restored from ZCTL and
13 from the latest interlanguage VDA,
thus restoring the PL/I environment.

3. The address of the interrupt is taken
from the second word of the PSW and
stored in the DSA. The second word of
the PSW is then replaced by an entry
address in the trap in IBMBIEF.

4. Flags are set in the TCA and DSA to
indicate that it is possible for an

Interlanguage Communication 247

abnormal GOTO to occur in a PL/I on-
unit.

5. A SPIE macro instruction is then
issued to restore the PL/I error-
handling situation. A branch is then
made to the PL/I error handler.

Return from intexrupt: If there is a GOTO
out of a PL/I on-unit, control passes to
the abnormal GOTO subroutine, this is
because flags indicating an abnormal GOTO
situation are set up by the trap code. The
abnormal GOTO subroutine analyzes these
flags and passes control to IBMBIEF which
handles any necessary housekeeping
problems.

If the return is normal, the PL/I error
handling routines return control to the
address in the second word of the PSW.
This word has been altered by code in the
trap, and further trap code in IBMBIEF is
entered.

It is necessary to return to the point
of interrupt in the FORTRAN program without
changing any of the register values and
this can only be done via the supervisor.

A new SPIE is set to point to further trap
code and an interrupt forced. The program
is now in an interrupted state, the
original INTER SPIE is reissued, and the
registers and PIE are restored. The
original interrupt address is set in the
PSW. Control is returned to the supervisor
which passes control to the address in the
PSW with the correct register values
restored.

Termination of Caller

When the routine that called FORTRAN is
terminated, control is passed to the
address held in the register 14 save area
in save area one. This address is the
address of the tail code in IBMBIEF. If
the return is normal, the tail code calls
IBCOM in the FORTRAN library to discard the
FORTRAN environment. It then frees ZICTL
and returns control to the caller's caller.

STOP_Statements

If control returns to the tail code because
of a FORTRAN STOP statement the tail code
discards any save areas that may have been
bypassed by the FORTRAN STOP statement and
finally executes a. PL/I STOP statement
which terminates the program.

248

PL/I CALLED FROM COBOL OR FORTRAN
(IBMBIEP)

As with the other interlanguage
communication routines, IBMBIEP is called
immediately before and immediately after
the program that is to be executed.
However, the interlanguage housekeeping
routine cannot be called direct from the
COBOL or FORTRAN routine, because the
existence of such a routine is unknown to
COBOL or FORTRAN. To overcome this problem,
an encompassing routine is generated with
the same entry name as the PL/I routine.
This encompassing routine is called by
COBOL or FORTRAN and in turn calls the
interlanguage housekeeping routine and the
required PL/I routine.

Although the names of both PL/I
procedures are the same, the encompassing
routine gets control when called from COBOL
or FORTRAN. This happens because no ESD
records are generated for the interlanguage
entry points of the required PL/I program.
code for a PL/I encompassing routine is
shown in figure 13.5. Figure 13.4 shows
the calling sequence.

Before a call is made to the required PL/I
program, IBMBIEP does the following:

1. Tests to see if the PL/I environment
has already been initialized, by
examining whether the COBOL or FORTRAN
flag in IBMBILC1 is set.

2. If the COBOL of FORTRAN flag is set,
this means that a previous
interlanguage call has been made, and
as the call must have been made either
to or from PL/I, the PL/I environment
must have been set up. If it is
established that the PL/I environment
exists, register 12 is restored frcm
ZCTL. A SPIE macro instruction is
issued so that program checks are
handled by the PL/I error handler.
The address of the old PICA is stored
in the interlanguage VDA. Control
returns to the encompassing routine.

3. If neither the CCBOL nor the FORTRAN
flag is on, PL/I is being called for
the first time by a procedure in a
program whose principal procedure is
COBOL or FORTRAN. The following action
is taken:

a. IBMBIEP issues a GETMAIN macro
instruction and sets up ZCTL in
the storage acquired.

b. The PL/I initialization routine,
IBMBPIR is called. It sets up the
PL/I environment and returns
control to an address in IBMBIEP
that it was passed by IBMBIEP.
IBMBIEP then stores the registers
of IBMBPIR in the dummy DSA.

c. The chaining of save areas is then
altered, so that the dummy DSA
(the save area used by IBMBPIR) is
above the calling program's
standard save area. The result of
this is that, when the
encompassing routine is complete,
return is made to the COBOL or
FORTRAN calling routine rather
than to IBMBPIR. Thus the PL/I
termination routine is not entered
and the PL/I environment is '
retained until the COBOL or
FORTRAN calling program is
completed. Two further save areas
are also ingserted into the chain.
These result in control being
passed to tail code in IBMBIEP,
which handles housekeeping
problems. The save area of the
caller"s caller is also altered so
that the register 14 value also
points at tail code in IBMBIEP.
The true register 14 value ‘is
saved in ZCTL in storage known as
the ghost save_area. The
resulting save area chain is shown
in figure 13.10. Action taken
when the calling routine is
terminated is described below,
under the heading "Termination of
PL/I Environment".

4, A DsA for the encompassing routine is
acquired.

5. The address of the new DSA is placed
in the register 0 slot of the dummy
DSA.

6. Control is then returned to compiled
code in the encompassing routine.

Action_after the PL/I_Program_is
Completed

Entry point IBMBIEPC - normal

Entry point IBMBIEPD - return value
expected

IBMBIEP is called at the end of the PL/I
routine by the encompassing routine
generated by the compiler. If the calling
program is FORTRAN, a returned value may be
expected in register 0 or one or more of
the floating-point registers. When a

Chapter 13:

returned value may be required, the entry
point IBMBIEPD is used and the returned
value is loaded into the required position.
In other situations, the entry point
IBMBIEPC is used. The module resets the
program mask by issuing SPIE macro
instruction to restore the calling
routine's program check exit, the address
of which has been stored in the
interlanguage VDA.

When PL/I is called by COBOL or FORTRAN,

error handling is carried out in the normal

PL/I manner. The SPIE macro instruction is
issued by IBMBPII when the PL/I environment
is first set up. For calls after the
first, the SPIE macro instruction is issued
by IBMBIEP.

ILermination of PL/I_Environment

The PL/I environment is discarded when the
caller's caller is terminated. 1In a normal
situation control is returned by the caller
to the address held in the register 14 save
area of the caller's caller. This address
was altered during the initialization of
the PL/I environment to point to tail code
in IBMBIEP. This code receives control and
rearranges the save area chaining. It then
returns to IBMBPIR whose registers are in
the dummy DSA. The PL/I program is then
terminated and control returns to save area
2. This again points to tail code in
IBMBIEP. This tail code restores the
correct register 14 value of the callerxr's
caller from the ghost save area and returns
to the caller's caller.

STOP_and_STOP_RUN Statements

For a PL/I STOP statement the action is
carried out in a normal manner and flags in
save area one indicate that an abnormal
GOTO situation exists. The situation is
analyzed by the abnormal GOTO subroutine
and control is passed to tail code whose
address is held in save area one.

For a FORTRAN STOP statement when the
calling program is FORTRAN the situation
depends on how many levels of FORTRAN
precede PL/I. If the caller is the highest
level of FORTRAN prior to PL/I, control
will be passed to save_area_one and tail
code entered to carry out the necessary
housekeeping. If there is more than one

Interlanguage Communication 249

level of FORTRAN, control will pass to the
highest active level of FORTRAN and the job
will be terminated without carrying out
PL/I program termination.

A COBOL STOP RUN statement will be
analyzed by IBMBIEC which will execute a
PL/1 STOP statement.

Handling Data Aggregate Arguments

In order to communicate effectively Letween
COBOL and PL/I, and FORTRAN and PL/I, a
method of handling data aggregate arguments
is necessary, because the three languages
hold data aggregates in different ways.

ARRAYS

Arrays as such are not used in COBOL. The
use of OCCURS in structures does, however,
have a similar effect. However, PL/I
structures of arrays and COBOL structures
using OCCURS are both held in row-major
order. In FORTRAN, arrays are held in
column-major order. Thus, in a two-
dimensional array, the element known in the
FORTRAN array as (2,1) will become (1,2) in
the PL/I array.

STRUCTURES

Structures are not used in FORTRAN. In
COBOL the alignment requirements are met
differently from PL/I. Full details of the
differences in mapping are given in the
language reference manual for this
compiler.

COBOL structures are mapped as follows.
wWorking from the start, each item is
aligned to its required bounda-~y in the
order in which it is declared, the
structure starting on a doubleword
boundary.

PL/I structures are mapped by a method
that minimizes the unused bytes in the
structure. Basically, the method used is
first to align items in pairs, moving the
item with the lesser alignment requirement
as close as possible to the item with the
greater alignment requirement. The method
is described in full in the language
reference manual.

Take, for example, a structure

consisting of a single character and a
fullword fixed binary item. The fullword

250

binary item has a fullword alignment
requirement; the character has a byte
alignment requirement. In PL/I, the
structure would be declared:

DCL 1 A,
2 B CHAR (1),
2 C FIXED BINARY (31,0);

and would be held thus:

In COBOL, the structure would be declared:

01 Aa.
02 B, PICTURE X, DISPLAY.
02 C, PICTURE S59(9), COMPUTATIONAL.
and would be held thus:
| ettt 1
| B | 3 unused bytes | c |
L e e e e e e e e e e e 1

METHODS USED TO HANDLE DATA AGGREGATE
ARGUMENTS

The method used in handling data aggregates
is to create dummy arguments of the correct
format and let the called routine use the
dummy. The values in the dummy are then
assigned to the original argument when the
execution of the called program is
completed.

If the data aggregates are not
adjustable, the mapping will ke done during
compilation and both the PL/I and the CCBOL
or FORTRAN mapping are produced. If the
data aggregates are adjustable, the mapping
is done during execution. Before the
execution of the call to a program in
another language, the data is transferred
into the correctly mapped aggregate, which
will be held in PL/I temporary storage.

The values are reassigned to the original
data aggregate after execution of the
interlanguage prograrm.

The assignment of data between the dummy
and the argument is done by compiled code.

NOMAP, NOMAPIN, AND NOMAPOUT OPTIONS

The NOMAP, NOMAPIN, and NOMAPOUT options
can be used by the programmer to specify
that data aggregates will not be remapped
and placed in dummy arguments.

When NOMAP is specified, or when both
NOMAPIN and NOMAPOUT are specified, the

dummy is not generated at all, and the
structure or array is passed as it stands.

When only NOMAPIN is specified, a dummy
is created, but it is not initialized with
the values of the aggregate being passed.
However, on return from the COBOL or
FORTRAN routine, the data in the dummy is
placed in the data aggregate that is being
passed.

When only NOMAPOUT is specified, a dummy
is created, and the data from the data
aggregate is moved into the dummy. When
control is returned to the calling program,
however, the data from the dummy is not
moved into the data aggregate that was
passed.

CALLING SEQUENCE

When PL/I calls COBOL oxr FORTRAN passing
data aggregates as arguments, the sequence
of events is:

1. Handle data reassignment to dummy by
compiled code.

2. call interlanguage housekeeping
routine.

3. Call COBOL or FORTRAN routine.

4. call interlanguage housekeeping
routine.

5. Assign data in dummy to real argument,
by .means of compiled code.

When COBOL or FORTRAN calls PL/I, the
sequence of events is:

1. The COBOL or FORTRAN routine calls the
encompassing PL/I routine.

2. The encompassing PL/I routine:

a. Calls the interlanguage
housekeeping routine.

b. Sets up the necessary dummy data
aggregate argument by compiled
code.

c. Calls the required PL/I routine.

d. Reassigns the data from the dummy
by compiled code.

e. Calls the interlanguage
housekeeping routine.

f. Returns to the original calling
routine.

It is necessary to make calls in this
order, because the data mapping must be
done in a PL/I environment.

:}lEH313D413IJ312()pﬁiort

|The optimizing compiler provides a facility
|to simplify calling assembler language
|routines from PL/I. This consist of
|setting up an argument list that contains
|the addresses of all items passed rather
jthan the addresses of locators.

|

When an entry point is declared as
|OPTIONS (ASSEMBLER) , parameter lists passed
|to the entry point are set up to contain no
|locator addresses. The addresses of any
|areas, arrays, strings, or structures are
|passed directly in a parameter list. (For a
jcall to a PL/I routine, the parameter list
|would contain the address of locators for
|these data types. This is because the
|called routine might require information on
|the length or bounds of the data and this
|is accessible through the locator. See
|chapter 4 for details.)

| The ASSEMBLER option does not provide
|facilities for automatically overriding
|PL/I interrupt handling, nor does it allow
|PL/T routines to be called from assembler
|language. If the programmer requires these
|facilities, he must either provide the
|necessary code himself or use the COBOL
|option. The COBOL option without the INTER
|option provides complete facilities for
jcalling, or being called by, assembler
|routines. However, its use involves the
|overhead of calls to the PL/I library
|interlanguage communication routines.

| Full instructions on how to use PL/I
|with assembler language are given in the
|programmer's guide for this compiler.

COBOL Option in the Environment Attribute

A separate interlanguage cormunication
facility offered by the compiler is the use
of the COBOL option in file declarations.
This option allows data sets created by
COBOL programs to be read by PL/I programs
and allows data sets to be created by PL/I
programs in a format that is usable by
COBOL programs. Interchange of data sets
presents no problems, unless structures are
used in the data set. If structures are
used, their mapping may be different. (See
above, under the heading "Handling Data
Aggregate Arguments.") When structures are
involved and the mapping is not known to be

Chapter 13: Interlanguage Communication 251

the same, both COBOL and PL/I structures
are mapped, and compiled code transfers the
data between structures immediately after
reading the data for input, and immediately
before writing the data for output.

During compilation, the compiler
examines the record variable to see if any
structures are involved. If no structures
are involved, no further action need be
taken. If structures are involved, a test
is then made to see if the mapping of the
structure or structures will ke the same in
COBOL and PL/I. If the compiler can
determine that the maprping will be the
same, then no action is required. If the
compiler cannot determine that the mapping
will be the same or if the structure is
adjustable, both structures will be mapped.
Adjustable structures will be mapped during
execution by the resident library
structure-mapping routines. Other
structures will be mapped during
compilation.

252

When re-formatting of data is necessary,
the following actions take place when a
record I/0 statement involving a file with
the COBOL option is executed.

INPUT:

The data is read into a structure
which has been mapped using the CORBROL
mapping algorithm and assigned to a
PL/I mapped structure.

OUTPUT:

Before the output takes place, the
data in the PL/I structure is assigned
to a structure mapped for COBOL. The
output to the data set then takes
place from the second structure.

The data assignment is carried out by
compiled code in all circumstances.

COMPILED CODE

Relies on library modules for
executing code that is sensitive to
differences between multitasking
and non-multitasking.

BASE LIBRARY SYS1.PLIBASE MULTITASKING LIBRARY SYSL.PLITASK
Contains modules to handle all Contains modules that handle all
library functions in a non- multitasking-sensitive operations.

multitasking situation.
These modules have the same link-

edit names as parallel modules in
the base library.

Figure 14.1.

254

Multitasking is implemented by use of a multitasking library

Introduction

Multitasking allows the PL/I programmer to
make use of system multiprogramming
facilities within a single jobstep. The
PL/I main procedure and certain other PL/I
procedures are attached as tasks, and
compete for the facilities of the CPU.

All features of the PL/I language that
are implemented differently for
multitasking and non-multitasking programs
are handled by routines in the 0S PL/I
Resident and Transient Libraries. The non-
multitasking routines are held in the
partitioned data set SYS1.PLIBASE; the
multitasking routines are held in the
partitioned data set SYS1.PLITASK. When a
multitasking program is link-edited, the
automatic call library must be identified
by sequential SYSLIB DD statements
specifying first SYS1.PLITASK and then
SYS1.PLIBASE.

Subroutines that have the same function
in both the multitasking and the non-
multitasking libraries have the same link-
edit name (see chapter 3). consequently,
no special calls are required in compiled
code. If the program uses multitasking, the
multitasking version of the library module
will be link edited, provided that
SYS1.PLITASK is specified before
SYS1.PLIBASE. Where a module is required
only for multitasking programs, it is
addressed from the TCA. The results of
attempting to access such a module in a
non-multitasking program are unpredictable.
The concept of the multitasking library is
shown in figure 14.1.

The use of a special multitasking
library to handle all code that is affected
by multitasking minimizes the effect on
compiled code. Special action’is required
only for a CALL statement with any of the
multitasking options, and for the epilogque
of a block that contains a CALL statement
with multitasking options. Otherwise, the
code generated for a multitasking program
is exactly the same as the code generated
for a non-multitasking program. The TASK
option on a procedure statement, necessary
with some compilers, is ignored by the
optimizing compiler.

Chapter 14: Multitasking

The Concept of the Control Task

To implement PL/I multitasking, the
facilities offered by the operating syster
control program have to be used in a manner
that meets the specifications of the PL/I
language. Certain facilities offered by
PL/I, notably the ability of any task tc
change the priority of any other task, are
not directly available in the system.
Consequently, an interface is used between
the system facilities and PL/I tasks. This
interface takes the form of a control task.

The control task has all PL/I tasks
attached as direct subtasks and always has
a higher priority than any PL/I task.
Certain functions are always carried out
within the control task. These functions
are:

1. Attaching and detaching of tasks

2. Accessing or altering COMPLETION or
PRIORITY values

3. Modification of event variables
(except for STATUS pseudovariable)

4. Generating PL/I dumps

5. Access to IOCBs (see chapter 8) in
certain conditions.

The first two are carried by the control
task because of the demands of the system
control program. The third is carried out
by the control task because it is important
that no two tasks try to access the event
variable chain at the same time.

The apparent and actual hierarchy of
tasks is shown in figure 14.2. The
functions executed in the control task are
shown in figure 14.3.

Throughout most of the execution of a
PL/I multitasking program, the control task
is in a wait state and the various PL/I
tasks are competing for the facilities of
the CPU. The control task waits on an ECB
list that contains an ECB (event control
block) for each PL/I task and an ECB known
terminating a task. Whenever any of the
functions that must be carried out in the
contrxol task are required, the ECB
associated with the requesting task is
posted with a request code and the task
goes into a wait state, waiting on an ECB
that is posted complete when the requested

Chapter 14: Multitasking 255

function has been executed in the control
task.

Communication between_ Tasks

As explained above, there is no
communication between PL/I tasks except
through the control task. Communication
between the control task and the PL/I tasks
is made through control blocks known as
tasking_appendages. Every PL/I task has a
tasking appendage, which is addressed from
and is contiguous with the TCA of the task.

As shown in figure 14.4, every tasking
appendage is headed by an ECB, followed by
two fullwords for parameters, followed by
another ECB.

The first ECB in the tasking appendage
is known as the POST ECB, and is one of the
ECBs in the ECB list on which the control
task waits. The second ECB is known as the
WAIT ECB and is the ECB on which the task
waits while a function is carried out in
the control task.

When code within a subtask requires a
service to be done in the control task, it
posts the POST ECB with a completion code
to identify the service required, and waits
on its WAIT ECB. The WAIT ECB will be
posted complete when the requested action
has been completed in the control task.

The completion codes that are used to
post the POST ECB are:

COMPLETION PSEUDOVARIABLE

POSTCODE X'o"
EVENT ASSIGNMENT POSTCODE X'y
PRIORITY PSEUDOVARIABLE

POSTCODE Xx's’
I/0 EVENT COMPLETION POSTCODE x'c
WAIT TERMINATION POSTCODE Xx'10'
EXECUTE IN CTRL TASK X'14?
DEDICATE CONTROL TASK ROUTINE Xx'18°
LIBERATE CONTROL TASK ROUTINE Xx'i1c*
ATTACH A TASK X'20'
END OF TASK X'2q4"
TERMINATE SUBTASK X*28°
TERMINATE SUBTASK x'2c’

Any parameters required are passed to the

256

control task in the list that follows the
POST ECB.

The control program retains the priority of
a task in an associated TCB (task control
block). At the PL/I level, however, the
priority is held in a task variable. This
allows the priority of the task to be set
even when the task is inactive, and also
allows reference to the task by the
program. Each task has a task variable
which is connected to the TCB through the
tasking appendage. The address of the
associated tasking appendage is placed in
the task variakle when the task is
attached.

When a change in the priority of a task
is requested, the priority is always
changed in the task variable. If the task
variable is active, the priority is also
changed in the TCB.

Also associated with a task is an event
variable. The event variable is set
"complete” when the task is terminated.

All tasks have associated event and task
variables. If none are specified by the
programmer, dummy variables are provided
during task attachment. These dummies are
held in the task's own workspace, and are
discarded when the task is terminated.

Multitasking Housekeeping

Multitasking housekeeping is similar to
non-multitasking housekeeping. Every task
has its own TCA and other blocks in the
program management area, as described in
chapter 5.

The major differences are that the TCA
for each task has a control block known as
the tasking apgpendage, and that DSA
chaining between tasks cannot follow the
rules of calling procedures.

As shown in figure 14.6, the chaining of
DSAs is arranged so that the dummy DSA of
the attached task is in the chain but the
DSA of the attaching procedure is not.

This protects the attached tasks from any
changes in establishment of on-units that
may occur in the block that attached the
task. In order that error handling and
other functions using the backchain may

PL/I PROGRAM
X:PROC;

CALL Y TASK (T1) EVENT (E1);
Y:PROC;

CALL Z TASK (T2) EVENT (E2);
Z:PROC;

END Z;
ENDY;
END X;

PL/I HHERARCHY

28

MAJOR TASK

Y (task T1)
SUBTASK OF
MAJOR TASK

Z (task T2)
SUBTASK OF Y

Figure 14.2. The hierarchy of tasks

ACTUAL HIERARCHY

(as recognised by operating system)

CONTROL TASK
MAJOR TASK Y (task T1) Z (Task T2)
SUBTASK OF SUBTASK OF SUBTASK OF
CONTROL TASK CONTROL TASK CONTROL TASK

Chapter 14: Multitasking 257

CONTROL TASK

All code that could affect other
task’s housekeeping is handled in
the control task:

Attaching tasks

Detaching tasks

PRIORITY and

COMPLETION pseudovariables

All access to EVENT variables

PL/I MAJOR TASK

Any operation that could affect
another task’s housekeeping is
handled by a call to the central
task.

Figure 14.3.

SUBTASKS OF CONTROL TASK

PL/1 SUBTASKS

Any operation that could affect
another task’'s housekeeping is
handied by a call to the central
task.

The functions of the control task

CONTROL TASKS ECB LIST

ECB list element for Control task waits on this list until
major task required to perform a service
ECB list element for
subtask
PL/I MAJOR TASK PL/I SUBTASK
TASKING APPENDAGE TASKING APPENDAGE

Control tasks waits on

these ECBs which are posted POST ECB

POST ECB with a code indicating the

service the subtask requires

PARAMETERS . PARAMETERS
. Parameters further define .
Used by code executed in: . Used by code executed in
the service if necessary
control task control task

PL/I task waits on this ECB.
It is set complete in the
control task when the
required service is completed

WAIT ECB WAIT ECB

Figure 14.4. The post and wait ECBs

Chapter 14: Multitasking 259

- — - —— -~ - - - ——— -

- — - —— T ——— " - — - ——————

e e Y e o T - - — - -~ - -

|Multitasking Modules in the Transient
|1library

1
|

Control Link-edit Function |
Name#* Name * |
.............. ----—-——-----__-------——___|
|IBMTPIR IBMBPIRA Program |
| initialization and |
| task housekeeping |
| |
| IBMTPGR IBMBGGRA Storage management |
| [
|IBMTPGO IBMBPGOA Abnormal GOTO |
| |
| IBMTTOC IBMBTOCA COMPLETION |
| pseudovariakle |
I {
| IBMTTPR IBMBTPRA PRIORITY |
| pseudovariable |
| |
| IBMTJWT IBMBJWTA WAIT statement |
|

|

|

Program initial-

|
| IBMTPJR IBMTPJRA |
| ization and task |
| housekeeping |
| |
| IBMTPJI IBMTPJIA Program initial- |
ization |
—— - ——— — —— — = - i I
* control name is the name that |
uniquely defines the module. |
|
|
|
|
|
I
4

module is known to the linkage editor.
Multitasking and non-multitasking
modules that handle similar functions

|
|
|
}
| Link-edit name is the name by which a
|
|
I .
| have the same link-edit name.

L

Modules in the
multitasking library

Figure 14.5.

function correctly, certain items, such as
on-cells and dynamic ONCBs, are copied from
the attaching task's DSA to the dummy DSA
of the attached task at the time of
attachment.

If procedures executed as separate tasks
are internal to one another, a static
backchain is established through the DSAs.
This backchain passes from the attached
task's procedure DSA to the DSA of the
procedure in which the task was attached,
and is the same as for non-multitasking
programs. This chaining allows all
internal procedures to access variables
declared in outer blocks without requiring
special provision for multitasking.
(special action is, however, necessary when
handling the CHECK condition.)

To maintain the PL/I hierarchy, more

260

information than is available in the DSA
chain is required. 1In addition to the DSA
chain, tasks with the same attaching task
are chained together, and the most recently
attached subtask is chained to its parent
task. The chains between tasks with the
same attaching task are known as sister
task chains. The sister task chains and
the chain to the most recently attached
subtask are all held within the tasking
appendage. The chaining arrangement, shown
in figure 14.7, allows quick access toc all
related tasks.

The sister task chain goes in both
directions. Each task is chained to the
task attached immediately before it (elder
sister) and the task attached immediately
after it (younger sister). The most
recently attached task has no younger
sister. Its younger sister chain points
instead to the attaching task. However,
instead of pointing at the head of the
tasking appendage, it points at offset X'8'
within the tasking appendage. The effect
of this is that an attempt to continue to
follow the younger sister chain results,
beyond the attaching task, in access not to
the younger sister pointer but to a field
offset from it by X'8'. This field, which
is always set to zero in all tasks, is
known as the stopper field. Access to it
indicates that the attaching task has been
reached.

When a task is terminated, all its
subtasks must be terminated. To simplify
finding these tasks, a flag is set in the
DsA of the block in which a task is
attached. The flag remains set while any
active tasks are attached.

The Multitasking Library

Module IBMTPIR loads IBMTPJR to perform
most multitasking functions. IBMTPJR
carries out the majority of functions that
are executed in the control task. IBMTPJR
issues a LOAD macro instruction to pass
control to IBMTPJI to perform parameter
translation, and to initialize the control
task and the storage for the major task.
IBMTPJR then attaches the major task.
IBMTPJR also contains the instructions to
handle the major functions which have to be
carried out within the control task. Each
of these functions is handled by a
particular sukroutine within IBMTPJR. A
simplified flowchart of IBMTPJR is shown in
figure 14.8.

The program initialization module
IBMTPJR has a register save area, but is
unlike other PL/I library routines in not
having a DSA. IBMTPIR acquires workspace,

MAJOR TASK TCA

Program
Management Area SUBTASK1 TCA SUBTASK2 TCA
MAJOR TASK Program Program
DUMMY DSA Management Area Management Area
r i - -t
MAIN PROC DSA DUMMY DSA » DUMMY DSA
' E
IN - - - -
| ggﬁ BLOCK L Procedure DSA 1 Procedure DSA
L — L _ - R

PL/l procedures involved

Main procedure {major task)

Begin block

Procedure for subtask1

Procedure for subtask2 Note: To allow for inheritance of on-units, information
held in the DSA of the attaching task is copied into the
dummy DSA of the attached task.

Key

w— o= w= o 9 Static backchain

- Dynamic backchain

Figure 14.6. Backchains in multitasking

Chapter 14#: Multitasking 261

Tasking appendage
major task

younger sister (O)
elder sister (O)

stopper {O)

subtask chain

[]
o Tasking appendage
§. task 1

younger sister —4 -~

elder sister

stopper (O)
subtask chain (O)

e 00 0 p

e Subtask chain points to most
recently attached subtask.
—_———— Y ounger sister chain

(i.e. tasks with the same
attaching tasks that were
attached later)

Elder sister chain

(e.i. tasks with the same
attaching task that were
attached earlier)

Note: Because tasks are chained in both directions, all relationships be quickly found.

.'Tasking appendage
o task 2

younger sister —+

o o elder sister

stopper (O)
subtask chain (O)

IEN

— i —

Major task
Task 1

Task 2

Task 3
Task 3a

— -
Tasking appendage
task 3 \

l
L/

7\

younger sister —+

o elder sister

stopper (0)
subtask chain

Tasking appendage
task 3a

younger sister =
elder sister (O)

stopper (O)
subtask chain (O)

\

Following the ‘younger sister chain’ leads to the attaching task. When the attaching task is reached, the offset that should be the
offset to the younger sister is to the stopper. Thus it is known that the attaching task has been reached.

Figure 14.7.

262

The chaining of tasks through their tasking appendages

\

\

Subroutines executed
in control task

Main Program Flow (IBMTPIR)

Subroutines entered viaTCA or TCA appendage from PL/Itasks

Figure 14.8.

A simplified flowchart of IBMTPIR

Ve N /
a N\ N
ENTRY
ATTACH
> — Call task
Create a subtask Initialize major End task
\ task Return Enqueue Dequeue
4 Get control SYSPRINT SYSPRINT
COMPLETION
- ENTRY ENTRY ENTRY
> Set completion of ——
event variable nitializati Carry out
A nitialization checking Check whether Enq’d at
common to t up SYSPR|NT this DSA
all tasks e
PRIORITY Darameters enqueued level?
> Set priority of > Yes
task variable : i * f
A I Post post ECB En
. queue \
EVENT ASSIGN Post wait-ECB with correct SYSPRINT ' Dequeue
> Set completion > complete completion if necessary SYSPRINT
and priority of code
event varijable I ——»——+
Y A v ' Y
COMPLETE |
EVENT Wait on - — e — —
> Used by > ECB list 1 Wait on Return to caller Return
wait module + Wait ECB
A 4 | |
DECHAIN EVTAB : _
- — i - 777
> Used by wait —— 1 . T
module WAIT STATE v I WAIT STATE
| i | | !
A | |
1 |
Execute code I l | - i
. Execute in indicated until _._“ i | : | Free control — executed in control task
control task free cohnt(;ol call | ENTRY
) 1S reache Sontrol resumed | L — »l Returnto caller
ere
END OF BLOCK Restore DSA
of Get Control
r Detach tasks > routine
if necessary Search ECB Tist
A A |to determine which
END OF TASK service is required
_ No and set ECB
o Terminate task mcomple;a
I\ y
STOP 7 es Branch to
- END appropriate
s%t:tegrl:w?nig op subroutine

Chapter 14: Multitasking 263

contiguous with the standard register save
area, to hold: the addresses of the ECB
lists; the address of the area where the
next ECB-1list element will be placed; the
task-end ECB (used when detaching a task -
see below), the diagnostic file block, and
the dump block. These last two blocks are
held in the control task workspace because
they must serve for all PL/I tasks.

Supporting IBMTPJR are two routines that
are link-edited only when necessary:
IBMTTOC is link-edited only if the
COMPLETION pseudovariable is used;
is link-edited only if the PRIORITY
pseudovariable is used.

IBMTPRA

Also included in the multitasking
library are a number of routines that
handle action which requires different
machine instructions for a multitasking
program. Among these routines are storage
management and error handling routines.

All the routines in the multitasking
library are shown in figure 14.5 and
described in 0S _PL/I Resident Library:
Program_Logic.

How the Control Task Operates

The control task is created by the system
when the PL/I program is initialized. The
instructions first executed within the
control task are in the program
initialization routine IBMTPIR. This
routine is entered because its address is
specified in the control section PLISTART
(see chapter 5).

IBMTPJR obtains a standard save area, and
then loads and branches to IBMTPJR which
performs the remainder of the
initialization.

IBMTPIR sets up the environment for the
major task, which it then attaches with an
ATTACH macro instruction, after further
initialization, control is given to the
address held in PLIMAIN

IBMTPJR then builds an ECB list which
consists of the WAIT ECBs for the PL/I task
that has been attached plus the task-end
ECB. A wait is then issued on this ECB
list, and the control task will remain in
the wait state until the major task
requires a service that must be handled in
the control task.

When control returns to the control
task, execution recommences in IBMTPJR
immediately after the point at which the
WAIT macro instruction was issued. The
action at this point is to search the ECB

list, discover which ECB has been posted,
and then to carry out the action specified
in the code posted in this ECB. The action
is carried out by calling a subroutine of
IBMTPJR. This subroutine may perform the
function required, execute a sequence of
requested instructions, or call further
library routines to handle the requested
function.

Whenever a new subtask is attached, a
further POST ECB is added to the ECB list
of the control task.

Whenever PL/I tasks require a service
that is handled in the control task, a call
is made to a library entry point. The
majority of calls are to subroutines of
IBMTPJR, which are addressed via the TCA or
the TCA appendage. However, the PRIORITY
and COMPLETION pseudovariable routines are
separate library modules. This saves space
in programs where the pseudovariables are
not used.

Attaching a Task

A CALL statement with one of the
multitasking options is compiled as a call
to an entry point in IBMTPJR. This entry
point is addressed via a module list whose
address is held in the TCA. The entry point
is passed the address of the procedure that
is to be executed as the attached task, and
any parameters that are to be passed to
that procedure.

The routine in IBMTPJR posts the POST
ECB for the attaching task with a
completion code of 24, indicating that a
new task is to be attached. It then issues
a WAIT macro instruction on its own WAIT
ECB, and the attaching task goes into the
wait state.

Control passes to the control task. The
first action of the code within the contrcl
task is to scan the ECB list to see which
task is requesting a service, and which
service is being requested. According to
the completion code in the ECB, one of the
subroutines in IBMTPJR is entered. For
attaching a task, the attach-task
subroutine is entered. The minimum storage
the subroutine attempts to acquire is a new
program management area. Depending on the
options in the ISASIZE parameter, it may
also attempt to acquire storage for DSAs
and other dynamic requirements.

The new program management area is set
up within the storage acquired, and the new
TCA is placed at the head of the chain of
daughter tasks that is held in the
attaching task's TCA.

Chapter 14: Multitasking 265

The new TCA is then associated with a
task variable and an event variable. If
these were specified in the CALL statement,
they are used. Otherwise, dummy event and
task variables are set up by IBMTPJR.
These dummy variables are held in the
working storage of the new klock. The
event and task variablies are then chained
to and from the TCA. A bit is set in the
DsSA of the block that was being executed
when the task was attached.

The PRV of the attaching task is then
copied into the attached task. This
ensures that addressing information for
files and controlled variables cannot be
altered by the attaching task. Similarly,
on-unit establishment information is copied
from the attaching task's current DSA into
the dummy DSA of the attached task. This
ensures that the subtask acts according to
the situation prevailing at the time when
the call was made.

The attaching routine finally sets the
POST ECB of the new task incomplete, adds
this new POST ECB to the control task's ECB
list, completes the ECB on which the
requesting task is waiting, and issues a
WAIT macro instruction on the control
task's ECB list.

The newly attached task and the original
requesting task are now both ready to
receive control from the control program.
The control task is in a wait state, ready
to service any further requests from PL/I
tasks.

Failure of CALL...TASK Statements

A number of situations can cause a
CALL..TASK statement to fail. These
situations are:

1. Too many tasks are already active

2. There is insufficient storage for the
new task

3. The task variable is already active
4. The event variable is already active
In any of these situations, the calling
task is posted with a non-zero postcode.
When this postcode is detected, the task

generates the correct error code, and calls
the error handler.

'266°

Detaching a Task

Tasks are normally detached when they reach
any EXIT statement, or an END or RETURN
statement in the procedure that was
attached as a task. In such circumstances,
control returns in the normal manner to
IBMTPIR, whose registers have been stored
in the dummy DSA of the task. IBMTPIR is
then in a position to pass contxrol to the
control task, so that the requesting task
can be terminated. After housekeeping
operations, the control task sets the
priority of the task to be detached as high
as possible, completes the WAIT ECB of the
task, and then waits on the task-end ECB.
When the task to be terminated resumes
control, it posts the task-end ECB
complete, and terminates itself by
returning to the control program.

The process descriked above is used
because it is simpler than handling the
ABEND that would othexrwise result when one
task is detatched from another.

Abnormal Termination of a_Task

When a block is terminated, any tasks
attached during the execution of the block
are also terminated. For this reason,
epilogue code of blocks in which tasks may
be attached contains a call to a subroutine
of IBMTPIR. This subroutine passes control
to the control task, from which the purge
task subroutine is called. This routine
examines the DSA of the block being freed,
to see whether any active subtasks remain;
if any do remain, they are terminated.

Active subtasks are accessed via the
chain of daughter tasks from the TCA of the
task in which the block is being
terminated.

Abnormal termination of a task involves
ensuring that any WAIT statements being
executed by the task are properly
terminated, event variables are completed,
task variables are set inactive, and ECB
elements are removed. Event I/O operations
started in the tasks are completed.

The Get-Control and Free-Control Routines

In order to increase the scope of jobs that
can be handled within the control task, the
program initialization routine includes a
facility whereby a request can be made for
any defined sequence of instructions to be

Figure 14.9.

. EVTAB chain. Headed by the event
variable. Connects all WAIT state-
ments that use the same event
variable, and enables the information
that events are complete to be passed
to all tasks.

. WIT chain. Headed in the TCA.
Connects all WAIT statements being
executed in one task, and enables
the EVTABs of these waits to be
removed from the EVTAB chain
when a task is terminated during a
WAIT statement.

. Event variable pointer. Held in
EVTAB. Used to access event
variables and search EVTAB chain.

. ECBLIST element pointer. Held in
EVTAB. Used to find associated
ECB if event is an 1/0 event.

. TCA appendage pointer. Held in
EVTAB. Used during task
termination.

. EVTAB pointers. Held in WIT. Used
to indicate number of EVTABs when
dechaining during abnornal
termination caused by GOTO out of
block.

. ECB pointer. Held in event variable.
Used, for |/O events only, to
identify associated event.

. TCA appendage pointer. Held in
event variable. Used, for 1/0 events
only, during building of EVTABs
to test whether 1/0 is active in the
task.

. ECB pointers. Held in ECB list.

Used by supervisor to test whether
events are complete.

10CB

Pointer to event variable

6

Chains and Pointers used during execution of

WAIT statement
ISA for task 1 ISA for task 2
L Program management area e L Program management area C
T T T T
,".1: LIFO storage ’E :L_: LIFO storage ,’_L:,

DSA for WAIT module

wiT

\

EVTABs

ECB-list
Addresses of associated ECBs

Major free area

—

DSA for WAIT module

wiT

e

EVTABs

ECB-list
Addresses of associated ECBs

DSA for on-unit

2Ong

DSA for WAIT module
called in on-unit

wiT

EVTABs

Major free area

/__/

EVENT VARIABLE

PR

ECB

IORITY and COMPLETION flags

Pointer to ECB in 1OCB if 1/0 event fm(7)

Start of chain of EVTABs

Address of TCA appendage of task
requiring 1/0 (1/0 event only)

Chapter 14:

Chains and pointers used in implementing the WAIT statement

-G

Multitasking 267

executed within the control task. This
facility is used by a numker of library
routines when accessing event variables, or
carrying out other actions that have to be
executed within the control task. It is
not used by compiled code.

The instructions to be executed within
the control task are delimited by calls to
two library subroutines, whose addresses
are held in the TCA. These routines are
the get-control and free-control routines.
Both are subrcutines of IBMTPIR.

When the get-control routine is called
within a PL/I task, it saves the caller's
registers, posts its POST ECB, and issues a
wait on the requesting task's ECB.

When the control task gains control, it
restores the registers saved by the get-
control routine, and branches to the
address in register 14. The address will
be the instruction after the call to the
get-control routine, because the routine
was called in the standard manner, that is,
a BALR instruction on registers 14 and 15.

Execution of the instructions then
continues in the control task until a call
to the free-control routine is met. This
routine stores the current registers in the
DSA of the block that originally called the
get-control routine. The free-control
routine now posts the WAIT ECB of the
requesting task, and resets the control
task waiting on its ECB list.

During execution of the free-control
routine, the routine modifies the value in
the register 14 save area in the DSA of the
block that originally called the get-
control routine. When control returns to
the original requesting task, it returns to
the point in the get-control routine
immediately following the point where the
WAIT was issued. The get-control routine
restores the register values, and branches
to the new address in register 14.

The required instructions have now been
executed within the control task, and
execution can continue in the original
task. The processes involved in the get~
control and free-control routines can be
followed in the flowchart of IBMTPIR in
figure 14.8.

Altering COMPLETION and PRIORITY

Values"

To prevent two PL/I tasks attempting to
alter the completion and priority values of
tasks or events at the same time,
alteration of these values is always done
by code in the control task.

268

When such access is required, compiled
code in the requesting task kranches to a
library subroutine that posts the control
task with a completion code in the POST
ECB, and issues a wait in the requesting
task. When the control task receives
control, it inspects the completion ccde,
and calls a subroutine in IBMTPIR. For the
PRIORITY pseudovariable, the subroutine in
IBMTPIR calls a subroutine in IBMTTPR to
handle the actual alteration. This is to
save space in programs where the PRIORITY
pseudovariable is not used.

The subroutine accesses and alters the
values as requested. Where necessary, a
CHAP macro instruction is issued to alter
the priority of a task.

Executing the WAIT Statement

The WAIT statement can be used in both
multitasking and non-multitasking programs.
A description of WAIT in the non-
multitasking situation is given in chapter
11.

At the PL/I level, each WAIT statement
is associated with one or more events, and
each event is associated with an event
variable. When the specified number of
these event variables is set "complete,"
the wait is terminated.

PL/I event variables are not accessed by
system wait macro instructions; they
contain a pointer to the event's ECB. This
ECB will have been nominated in the WAIT
macro instruction issued to the system, and
will be set complete when the associated
event is complete. When the event is
complete, the PL/I program can inspect the
ECB, and complete the event variable.

The PL/I event variable cannot be used
to indicate to all WAIT statements
nominating the associated event that the
event is complete. This is because an
event variable may be associated with a
further event immediately after completion
of the event with which it was formerly
associated. If more than one task is
waiting, this may be before all the WAIT
statements nominating the event are
satisfied. See figure 14.10.

To overcome this problem, a control
block known as an EVTAB is used. An EVTAB
is generated for every WAIT statement. For
every event nominated in the statement, an
EVTAB element is produced, containing the
ECB for the event and a pointer to other
EVTAB elements associated with the event.
Thus, when an event is completed in one
task, the chain from the event variable is

scanned and any ECBs associated with the
event are set complete.

A further control block is used in the
implementation of the WAIT statement. This
is the wait information table (WIT). A WIT
contains a record of any WAIT statements
that are being executed in a particular
task. This information is used when a task
is being terminated, because any active
events must be removed from the chain that
associates event variables with EVTABs.
Were this not done, the chaining of EVTABs
would be destroyed because the EVTABs in
the terminated task would be lost.

The chaining of the control blocks
described above is shown in figure 14.9.

The_Wait_Module_ IBMTJWT

o e 0 e < . o s e o S s s i e S T i i e e

The WAIT statement is executed by means of
a call to the wait module, IBMTJWT. The
module is passed a list of event variakles
and, optionally, a value indicating how
many of the events must be completed before
the wait is satisfied. If no value is
specified, all events must be completed.

The wait module may be passed various
types of event variable:

1. Active event variables. These are
associated with:’

a. I/0 or display events that were
initiated in the current task.

b. I/0 or display events that were
initiated in another task.

c. Events associated with tasks.

2. Inactive event variables. These are
associated with events that must be
~completed by use of the COMPLETION
pseudovariable.

3. Incompletable event variables. These
are associated with events that have
caused entry to an on-unit because an
I/0 condition has been raised in the
current task, and which cannot be
completed because the on-unit also
specifies a wait on the event that is
already being waited on.

If any of the events are incompletable,
IBMTJIWT checks to see whether the WAIT
statement can be satisfied by completable
events. If the WAIT statement cannot be
satisfied, an attempt is made to complete
all I/0 and display events initiated in the
current task, as other tasks may be waiting
on these events. When these events are

completed, and the associated ECBs in other
tasks set complete, the error handler is
called to terminate the current task.

If the WAIT statement can be satisfied
by completable event(s), the incompletakle
event is ignored.

1f any of the events are I/0 or display
events initiated in the current task, an
ECB will already have been created for
these events when the statement with the
EVENT option was executed. This ECB must
be accessed and waited on. Access is made
through the event variable.

Note that for I/0 events, a CHECK macro
instruction is issued by the 1I/0
transmitter. If all events are I/0 events
initiated in the current task, and all of
them have to be completed, it is possible
to use the CHECK macro instruction to
satisfy the WAIT statement. The wait module
passes the events one at a time to IBMBRIO.
Return is made when the event is complete.
The wait module then searches the EVTAB
chain, setting any associated ECBs
complete. It then passes the next event to
IBMBRIO, continuing the process until all
events are complete. If all events need
not be completed, this method cannot be
used, because one of the events nominated
might prove incompletable and, consegently,
the task would be terminated.

If the events are not I/O or display
events initiated in the current task, the
wait module builds an EVTAB element for the
event, and associates it with the event
variable. If only one event is involved,
the wait module then issues a WAIT macro on
the ECB; if more than one event is
involved, the wait module places the
address of the ECB in an ECB list on which
a WAIT macro instruction will be issued.

If the wait module issues a WAIT macro
instruction on an ECB list, control will
return to the module when one or more of
the ECBs has been completed.

The wait module scans the EVTAB elements
and discovers which of the events has been
completed. If the event is an I/0 event in
the current task, it will be necessary to
complete the event variable and scan the
EVTAB chain, completing ECBs in any tasks
that are waiting on the event that has been
completed. The ECBs are completed by
calling a subroutine of IBMTPIR, which
executes the necessary instructions in the
control task. The subroutine completes the
ECBs by means of a POST macro instruction.

If the wait is to be made on events that
can only be completed in other tasks, the
wait module issues a WAIT macro instruction
specifying that all the events in the ECB

Chapter 14: Multitasking 269

list must be completed.

When all completed ECBs have been
handled, the ECB list and the EVTAB
elements are rebuilt for all events that
are not complete. A further WAIT macro
instruction is issued on the ECB list, and
the process is continued until the
necessary number of events have been
completed.

WAIT (El1); WAIT (E1);
If the number of events needed to
satisfy the WAIT statement are complete,
but further events remain incomplete, it is
necessary to dechain EVTABs from the chains
associated with the incomplete events.
This is done by a call to a subroutine in
IBMTPIR, which executes instructions in the
control task to remove unneeded EVTAB
elements from the EVTAB chain.

READ FILE (a)
INTO (B)
EVENT (E1);

If the WAIT statement specifies only
active events, no further action can be
taken until the events are complete.
Accordingly, the wait module issues a WAIT
macro instruction specifying that all
events have to be completed. Thus control
will not return to the task until the wait
is satisfied.

———————— — — ———- fo——t———
o ——— — —————— ———— — — — — —— — — — — — — —— ———— — — — ——— ——— —

<___—.______—_—-.—._———-——-————-———_—

|
|
|
v

Task 1 reuses the event variable Eil. If
task 1 acquires control before task 2 on
completion of the original event with Enqueuing and Dequeuing on SYSPRINT
| which E1 is associated, then the event

| variable on which task 2 is waiting will

be associated with an event other than In order to protect error messages from
that originally intended. A mechanism interruption by other output to SYSPRINT,
to supplement the event variable is or from error messages in different tasks,
| therefore needed: this mechanism is the error message modules and all calls tc
known as the EVTAB chain. In the above SYSPRINT are enqueued and dequeued by means
example, the EVTAB chain would allow of a call to a subroutine in IBMTPIR, which
task 2 to determine that the original issues the ENQ and DEQ macro instructions.
event was complete. | A call is made immediately before and
D ettt D Dt it bt 4 immediately after the output.
Figure 14.10. Reusing event variables, Similar action is taken on EXCLUSIVE
and the need for the files, for which the ENQ and DEQ macro
EVTAB chain instructions are issued by the library

module IBMBPQD.

270

Appendix A: Control Blocks

This appendix provides information on the Except where explicitly stated all
format of the control blocks that may be offsets from the start of a block are byte
used during the execution of a program offsets and are given in hexadecimal
compiled by the 0S PL/I Optimizing notation.

Compiler. Brief details of the function of
each control block, together with when it
is generated and where it can be located,
are also given.

Appendix A: Control Blocks 271

Area Locator/Descriptor

Function

Holds the address and length of the area

variable for passing to other routines or
for execution time reference if the area

has an adjustable length.

When Generated

As far as possible during compilation. If
necessary completed during execution.

Where Held

Sstatic internal control section.

How Addressed

272

From an offset from register 3 known to
compiled code

| L L T e e e - -l

variable control block.

Length is the total length including both
the control block and the area variable.

AREA DESCRIPTOR

The area descriptor is the second word of
the area locators/descriptor. It is used in
structure descriptors, when areas appear in
structures, and in the controlled variable
'*description' field when an area is
controlled.

Area Variable Control Block

Function

Used to control storage allocation within
the area variable.

When Generated

When the area variable is initialized.
This depends on the storage class of the
area.

where_ Held

At the head of the area variable.

[
0| FLAG |
l

UNUSED |

|
8| OFFSET OF LARGEST FREE ELEMENT (LFE) |

| ==mm——————— - ——————————
C| END OF CHAIN OF FREE ELEMENTS

Free elements: If there are free elements
in the area variable, they are headed by
two words. The first word gives the length
of the element, the second word gives the
offset to the next smaller free element.

If there is no smallexr free element, the
second word is set to zero.

X'0' Area variable does not contain
free elenents.
X'1' Area variable does contain free
elements.

Flag

Appendix A: Control Blocks 273

Aggregate Descriptor Descriptor
Function

Contains information needed to map a
structure or an array of structures during
execution. Used for structures that
contain adjustable extents or the REFER
option. See chapter 4.

When Generated

As far as possible during compilation.
Adjustable values are filled in during
execution.

Where Held

Static internal control section.

How_Addressed
From an offset from register 3 known to
compiled code

General Format

An aggregate descriptor descriptor consists
of a series of fullword fields one for each
structure element and one for each base
element in the structure.

Structure Element
0 1 2
1
0j0 |Fy|jOffset to entry for containing |
i | |block |
- - - - —————— - - '
2] Level |Fa|Fal DIM |
L e L e) ——————— — - —————— - — - ———— ———]

274

0 1 2

it e 1
0|1 |Fyl ALIGNMENT | LENGTH |

[======m==mmmmmmmmmooeomoeeooooooeooooo |
2] Level |F2|Fa] DIM |

Lo oo o o o o e e e e e e e 1
where,

‘0'B

]
N
i

- lllB
Fa = '0'B
= '1'p

IOIB

'1'B

OFFSET

LEVEL

DIM

ALIGNMENT

LENGTH

Not last element in structure

Last element in structure

Not an AREA

An AREA

Not a BIT string

BIT string

The offset within the
aggregate descriptor
descriptor to the entry for
the containing structure.
The offset is held in
multiples of four bytes.

Logical level of identifier
in structure

Real dimensionality of
identifier

Alignment stringency

Value(dec.) Meaning
0 bit
7 byte
15 half-word
31 word
63 double~-word

Length (in bytes) of data
LENGTH = 0 for strings and
AREAs, whose length
is held in
descriptors

Aggregate Locator
Function

Used to pass the address of an array or
structure and its associated descriptor to
a called routine. Also to associate the
aggregate with its descriptor during
execution.

When Generated

During compilation.

Where Held

Static internal control section.

How Addressed

From an offset from register 3 known to
compiled code

0 4
........................... ————————————
0} Address of data aggregate |
R e |
41 Address of descriptor |
T -J

Appendix A: Control Blocks 275

Array Descriptor

Function

Contains information about the extent of an
array. For arrays of area variables or
strings, an area or string descriptor is
attached to the array descriptor.

The array descriptor is used to pass
information about an array to called
routines, or to hold information about an
array with adjustable extents.

When_Generated

As far as possible during compilation. If
the array has adjustable extents, it is
completed during execution when the values
are known.

Arrays of structures make use of
structure descriptors to hold similar
information.

where Held
Static internal control section.

How_Addressed

From an offset from register 3 known to
compiler code

Arrays of Strings_or_Areas

For arrays of strings or areas, the
descriptors are completed by string or area
descriptors concatenated to the array
descriptor. String and area descriptors are
the second word of string and area
descriptors/locator pairs.

For bit string arrays, the bit offset
from the byte address is held in the string
descriptor.

General Format

The first word in the array descriptor is
the RVO (relative virtual origin). This is
followed by two words for each dimension of
the array, containing the multiplier and
high and low bound for each dimension.

276

0 4

[ittt 1
0 | RVO (AO-VO) |

e |
4 | Multiplier |

I ____________________ - - - —————— - -
8 | ngh bound | Low bound

10§ High bound 2 |

- ————— T~ - — - - - -

|
| etc. |

|

|[Note: Two full words containing
|multiplier and high and low bound are
|1ncluded for each array dlmenslon |

RVO = Relative virtual origin, the
distance ketween the virtual
origin (VO) and the actual origin
(AO). Vvirtual origin is the point
at which the element in the array
whose subscripts are all zeros is,
or would be, held. Actual origin
is the start of the first element
in the array.

RVO is held as a bit value for
arrays of unaligned bit strings,
but otherwise as a byte value.
Bit offsets are given in the
string descriptor. Actual origin
and virtual origin are also held
as byte values.

High bound:
The highest subscript in any
dimension.

Low bound:
The lowest subscript in any
dimension.

Multiplier:
The multiplier is the offset
between any two elements marked by
the change of subscript number in
any dimension.

For example for the array DATA(10,10),
the multiplier for the first dimension is
the offset between DATA(1,1) and DATA(2,1)
etc. The multiplier for the second
dimension is the offset between DATA(1,1)
and DATA(1,2). The offset is measured from
the start of the one element to the start
of the next.

Multipliers are byte values except for
bit string arrays, in which case they are
bit values.

Controlled Variable Block

WORD

WORD

w N -

WORD
WORD 4

WORD 5

Function

0 4

[tutete i ittt 1
0 | PRVOFF

l ________ o e e = —
4 | LENGTH
8 Chain back to previous allocation
C Task Invocation Count

| __
10| DESCRIPTION

Field used for descriptor or
locator/descriptor in certain
circumstances, (see below)

TASK INVOCATION COUNT:

To hold information about the controlled

variakle.

When Generated

Address held in pseudo register

A method of
identifying which task the
controlled variakle is
attached to. A controlled
variable cannot be freed
within a task unless the task
invocation count of the
variable is the same as that
in the TCA.

*DESCRIPTION

when the variable is allocated.

Where Held

At the head of the controlled variable.

How_Addressed

From an offset in the PRV.
is held out offset X'4*

address
TCA.)

PRVOFF:

LENGTH:

CHAIN BACK:

(The PRV
in the

Offset within pseudo-register

vector associated with the
controlled variable.

Length of the total allocation
including the 4 words of the
heading.

Address of word 5 of previous

allocation,

set to address of

dummy FCB if first allocation.

Appendix A:

If the item is one that
requires a descriptor/locator
or a locator, this is placed
at the head of the data. If
the item is a structure or
array and the extents are
unknown at compile time, the
descriptor will also be rlaced
before the data.

Thus for:
STRINGS and AREAS, the

controlled variable is headed
by a locator/descriptor

STRUCTURES and ARRAYS, the
controlled variakle is headed
by a locator

STRUCTURES and ARRAYS with
ADJUSTABLE EXTENTS, the
controlled variable is headed
by a locator followed by a
descriptor

ALL OTHER DATA, the

and the data itself starts at
offset X'10* (16)

control Blocks 277

Data Element Descriptor (DED)
Function

Used to pass description of data elements
to library conversion and stream I/0
routines.

When Generated

During compilation.

where Held

Static internal control section.

How_Addressed

From an offset from register 3 known to
compiled code.

Format of DEDs

All DEDs are headed by two bytes that
indicate the data type. These two bytes
are followed by as many bytes as are
required to complete the description of the
data.

For arithmetic items, DEDs are completed
by such items as scale and precision. For

pictured items, a representation of the
picture is included in intexrnal form.

General Format

1 2

|Flag_byte 2 |

| |
Defines data |[Completes | Further bytes
t |definition |as required

|if necessary|
levrrcccnncacce- - o o e e e o e e

Flag Byte 1 (also known as Code Byte and
Loo% up Byte)

278

Hex_Value Data_Type
00 FIXED BINARY
o4 FIXED DECIMAL
08 FLOAT
oc Free decimal (an
internal form)
10 FIXED PICTURE BINARY
14 FIXED PICTURE DECIMAL
18 FLOAT PICTURE BINARY
1cC FLOAT PICTURE DECIMAL
20 non-VARYING CHARACTER
24 non-VARYING BIT
28 VARYING CHARACTER
2C VARYING BIT
30 CHARACTER PICTURE
40 BINARY constant
4y DECIMAL constant
48 BIT constant
50 F/E Format
54 P Format (arithmetic)
58 A/B/P Format (character)
5C C Format
60 X Format
6u COL Format
68 SKIP Format
6C LINE Format
70 PAGE Format
80 LABEL
84 ENTRY
88 AREA
8C TASK
90 OFFSET
94 POINTER
98 FILE
ac EVENT
Flag Byte 2
Bits 081 = '00'B A-format item
'01'B B-format item
*10'B character picture format
item
Bit 2 = '0'B fixed constant
'1'B float constant
Bit 3 = '0'B not extended float
'1'B extended float
Bit 4 = '0'B F-format/fixed picture
'1'B E-format/float picture
Bit 5 = '0'B declared binary
'1'B declared decimal

If bits 4 and 5 =

character

Bit 6 = "0'B
‘1'B

'11'B then DED is for

short precision
long precision

Bit 7 = '0'B real or length specified (A
or B format) unaligned bit
string

complex (also set if E, F, or
P in C-format) or no length
specified (A or B format) or
aligned bit string

'1|B

All bits for which neither value is
defined are set to '"0'B

DED_for STRING data

r 1
|Flag byte i |Flag byte 2 |prec151on|
L

DED_for FIXED Data

0 1 2 3 4
[T T T e e e s |
|Flag byte 1 |Flag byte 2|precision |scale|
| | |7128 |
lemmm e -— —— - 4
DED_for PICTURE_STRING_ Data
0 1 2 3 4
I m—————————
0| Flag | Flag | Ly |
| Byte 1 | Byte 2 | |
| === - —— - -—=|
4 L, |Picture in internal |
| | form |
R, - e m 4

Flag byte 1 = Hex 30

The internal code for string pictures is
as follows:

Code Picture (hex)
A 00
9 o4
X ic

Ly = length of field with insertion
characters
La = length of field without insertion

characters

DED_for PICTURE DECIMAL_ Arithmetic Data

0 1 2 3 4
| Suiintatte ittt bbbttt 1
0| Flag | Flag |Precision| Scale |
|Byte 1 | Byte 2 | | Factor+128|
4 |Length of |Length of|Flag | Flag |
|picture |Data |Byte 3 | Byte & |

Flag byte 1 = Hex 14 or 1C

Flag Byte 3 (describes the mantissa
subfield)

Bit 0 = reserved; must be set to
'0'B
Bit 1 = '1'B drifting S in subfield
= '0'B no drifting S in subfield
Bit 2 = '1'B drifting + in subfield
= '0'B no drifting + in subfield
Bit 3 = '1'B drifting - in subfield
= '0'B no drifting - in subfield
Bit 4 = '1'B drifting $ in subfield
= '0'B no drifting $ in subfield
Bit 5 = '1'B total suppression in
. subfield
= '0'B no total suppression in
subfield
Bit 6 = *‘1'B * in subfield
= '0'B no * in subfield
Bit 7 = reserved; must be set to

'0'B

Flag Byte U4 (describes the exponent
subfield)

same format as Flag Byte 3.

Intexrnal codes for pictures

Code Picture Code Picture
00 9 48 - (t)
o4 Y uc - (d)
08 Z 50 - (s)
oc * 54 $ (v)
10 E 58 $ ()
14 K 5C $ (s)
18 T 60 /7 (t)

Appendix A: Control Blocks 279

(t)
(a)
(s)

Note:

I 64 /7 (Q)
R 68 / (8)
CR 6C . (t)
DB 70 . (d)
B 74 . (s)
s (t) 78 « (€)
s () 7cC , ()
s (s) 80 s (8)
+ 84 v
+ (Q)
+ (s)

terminal

drifting

static

After E or K, the next byte contains

the number of digits in the exponent.

Scale

Factor

Th

number of digit positions after the 'V

if th

e scale factor of a picture DED is the
¢4

ere is no 'V') added to the number in

the F specification, if any.

Rule for setting bit S5 in Flag Bytes 3
and 4

Bit 5 is set if no 9, ¥, T, I, or R is
present. This applies before any 2z, S,
etc. has been translated to a 9.
gg;es for translating pictures_into_encoded
pictures

1. cCharacters 9, ¥, E, K, T, I, R, CR,
DB, B, and V are translated directly.

2. Characters Z and * are translated
directly if they do not follow a V.

I1f either follows a V, it is
translated into the code for character
9.

3. An S, +, —,'or $ is translated to a
static s, +, -, or § if it is the only
one of its kind in the subfield.

4. If more than one S appears in a

subfield, the S's are translated into
drifting S's.

_Except when:

5.

280

a. It appears immediately before a Y,
9, V, T, I or R. 1In this case it
is translated into the code for a
terminal S.

b. It appears anywhere after a V. 1In
this case it is translated into

the code for a 9.

The same rule applies for the +, -,

$.
A “",

or

a",",ora"." is treated as

drifting, if:
a. It is in a subfield containing
- eithér one or more Z or asterisk,
or more than one +s, -s, or §.
and if:
b. It is not immediately preceding a
Y, 9, v, T, I, or R. 1In this case
it is translated into terminal
form.
DED_for PROGRAM_CONTRQOL_Data
0 1 2
[it |
| Flag | Flag |
jbyte 1 |byte 2|
Flag byte 1 = Hex 80, 84, 88, 8C, 90, 94,
98, or 9C
FORMAT DEDS - FEDS
For meaning of flag bytes see above under
Data Element Descriptors.

DED

for F_and_E_FORMAT_ Items_(FED)

| F1
Ibyt

Flag

W

D

X
]

1 2 3 4 5 6
.................... —————————
ag | Flag | W | D| X |
el |byte 2 | I |
.............................. J

byte 1 = Hex 50

total length of the format field
number of decimal places

precision + 128 for F-format number of
ignificant figures for E-format

| F1
|byt

Flag

)

1 2 3 4
ag | Flag | W |copy of DED as forl
e 1 |byte 2 | " Jarith. picture |
..................................... E]
byte 1 = Hex 54

W = total length of the format field

DED_for PICTURE_FORMAT character Items
{FED)

r
| Flag | Flag | W
|byte 1 |byte 2 |

L

|copy of DED as for |
|pictured character |

Flag byte 1 = Hex 58

W = total length of the format field

DED_for C FORMAT Items (FED)

r 1
| Flag | Flag { W | FED for | FED for |
|byte 1 |byte 2| |real part |imag. part |

- ——— —— - — - -~ —— -~

Flag byte 1 = Hex 5C

Note: The complex bit (bit 7) in flag byte
2 is set in both the real part and the
imaginary part FED. '

W = total length of the format field

DED_for CONTROL_FORMAT Items_(FED)

r 1
| Flag | Flag |parameter |
|byte 1 |byte 2 |

——— -

b —

Flag byte 1 = Hex 60, 64, 68, 6C or 70

Parameter = length of item (X format)
column number (COL format)
number of lines to skip (SKIP
format)
line number (LINE format)
is omitted for PAGE format

DED _for STRING_FORMAT Items_(FED)

[et 1
| Flag | Flag |length |
|byte 1 |byte 2 |

L

Flag byte 1 = Hex 58

The difference between A, B, and P
(character) formats is given by bits 0 and
1 of flag byte 2. The length field may be
omitted for A and B format items.

Appendix A: Control Blocks 281

Declare Control Block (DCLCB)

Function

Addresses file via PRV, holds declared file
attributes, filename, and address of ENVB.

When Generated

During compilation.

Where Held

In separate control section for external
files, or static internal control section
for internal files.

How Addressed

Address generated by linkage editor for
external files addressed by an offset from
register 3 for internal files.

282

0 8 16 24
1
| DFCB |
I _______________________________________ l
4| DCLA I
|========mooo oo oo o s |
8| DOPA |
|===========mmmmm—mooomom oo m o e oo m o I

] DENV |

- ——— e v — ———— ———— ——— — - - ———] ———

|DNAM (up to 31 chars) |
lemm e ————————————— - ———— 1

DFCB A(FCB) or Pseudo-Register offset (in

first 2 bytes)
DCLA Declare Attributes

Byte Number Hexadecimal Value Attributes

1 01 STREAM
02 RECORD
o4 DISPLAY
10 reserved
(STRING)
2 01 SEQUENTIAL
02 DIRECT
o4 TRANSIENT
10 INPUT
20 OuUTPUT
40 UPDATE
80 BACKWARDS
3 01 BUFFERED
02 UNBUFFERED
o4 KEYED
08 EXCLUSIVE
10 PRINT
[reserved
DOPA Attributes which would conflict on

OPEN. Format as for DCLA
DENV A(Environment Block) or zero
DNMO Offset in DCLCB of DNML
DNML Length of File name
DNAM File name (up to 31 characters)

Diagnostic File Block (DFB) fmm—m~mmmmmmmmm——mmmmmmmcmmemee . 0

AFLA |Flags | Reserved |
[m=mmmmmmmm oo | o
Function ABTS | A(transmitter) |
ettt | 8
ASPD | A(SYSPRINT DCLCB) |
Holds information used by the error message == —————————— - | C
routines. AOCL | A (EXPLICIT OPEN)
[==mm = e | 10
ASDC | A(Improvised Sysprint DCB) |
g 4 14

Wwhen Generated

During program initialization.

e ——

Program management area.

AWTO Bit 0 = 1 Messages going to operator's
console
ASNO Bit 1 = always 0 .
How_Addressed ASCO Bit 2 = 1 SYSPRINT cannot be opened or
' open with unsuitable
From X'40' in the TCA. attributes.
AFPF Bit 3 = 1 Force page

Appendix A: Control Blocks 283

Dynamic Storage Area (DSA)
Function
Holds housekeeping information, automatic

variables, and temporaries for each block.

When Generated

During execution. Allocated by prologue
code every time a new block is entered.

Where Held

In the LIFO storage stack. Certain library
routines have their DSAs in library
workspace (LWS). See below

How Addressed

From register 13.

Flags
Bit 0 = 0 DSA in LWS
1 DsA
Bit 1 = 0 No ON Cells
1 ON cells
Bit 2 = 0 No Dynamic ONCBs
1 Dynamic ONCBs
Bit 3 Always set to zero.

Bits 4 and 5
= 00 Procedure DSA
01 Begin DSA
10 Library DSA
11 On-unit DSA

Bit 6 = 0 Not a dummy DSA
1 Dummy DSA

Bit 7 unused.

Bit 8 = always zero

Bit 9 = 0 Do not restore NAB on GOTO
1 Restore NAB on GOTO

Bit 10 = 0 Do not restore Current-enable

on GOTO

1 Restore current-enable on GOTO

Bit 11 = Callee cannot use this DSA

Callee can use this DSA

Not an EXIT DSA
EXIT DSA

= o = o

Bit 13 = No statement # table

Statement # table available

o

284

0 2 4
o T T T T e T ‘.
T Chainmaen T |
N omasea T 1
N save mrea 1y T |

ol T T T e e R T -l
Wl Save arean o T |
ol P DR !
el e mreanr T |
20l T e e T |
M Smverenme T |
T Save sreams T |
Y oave areame T |
sl T e e ey T |
W T Smve arenme T |
sol T Tmmve mren e T |
sel T e mre e T |
wol T smve e T |
Wl T Save areamiz T !
wel T e T |
s\ smmmeneny T T |

64 | Reserved |
os] Reserved |
6c| Reserved |
o atonceLts) |
7u15&&5']"""37"}'EI;;;'E'I_EE'EI;;;""j

Flags_continued

Flags 2
Bit 14 = 1 sysprint ENQ'4 Bit 0 = 1 Last PL/I DSA
Bit 1 = 1 Ignore DSA for SNAP
Bit 2 = 1 ILC DSA after interrupt
Bit 15 = 1 Flags 2 valid Bit 3 = 1 Invocation Count in this DSA
Bit 4 Reserved
Offset Bit 5 = 1 There are TSO line numbers
If the DsSA is in LWS, offset is the Cr_(Control Task) Flags
offset of the ONCA. Otherwise, this field
is not used. Bit 0 = 1 Block has active subtasks
CEXQ Note: This flag byte is the only one in
the DSA used by the control task without
Save area for flag byte 1 of the TCA. synchronising with the subtask. The
Used if DSA is an exit DSA. subtask must never change it. This

prevents interference between CPU's on a
multiprocessing machine.

Appendix A: Control Blocks 285

Dump Block (DUB)

Function

To hold information about the dump file.

When

Generated

During program initialization.

Where Held

In the program management area.

How_ Addressed

From

ADCB | A(DCB)

ABUF { ------------ ;;;uffer) T

ADXT = -------- ;;Dump Transmitte;; --------- =

amw | Current line number

apes | pagesize =
T Reserved
LT " Reservea |

aown | A(PLIDUMP SYNAD Exit) I

Flags 1

ANDE Bit 0 = 1 Dump file cannot be opened

Flags 2

ANSS Bit 0 = 1 No subtasks' subpools

286

offset X'120' in the TIA.

Entry Data Control Block How_Addressed

Depends on the storage class of the data
Function

Holds the addresses of the data item and

its DSA. 0
(e ————— e e
0] Address
When_ Generated 4 | Address of statically containing
| DSA at time of assignment
le e et s — e e 1

When the variable is allocated.
= 0 Address of entry
= 1 Address of location

Where Held containing 8-char.
EBCDIC name of entry
point

Depends on the storage class of the data
item. Word 2: bit 0 always = 0

Appendix A: Control Blocks 287

Environment Block (ENVB) 7 Unused

Function NFLC 0 LEAVE
1 REREAD
Holds environment options for a file so 2 GENKEY
that the file may be correctly opened 3 COBOL
during execution. 4 NOWRITE
S INDEXAREA
When_Generated 6 TOTAL
7 INDEXAREA with no argument

During compilation

Where_ Held NFLD 0 BUFFERS
1 NCP
In a control section with the DCLCB for 2 Unused
external files. In static internal storage 3 KEYLENGTH
for internal files. 4 KEYLOC
5 VERIFY
How_Addressed 6 NOLABEL
7 ADDBUF
From offset X'C' in the DCLCB
0 8 16 24 (bits) NFLE 0 Unused
e e —m——m—m e ——— T e ———— 1 1 Unused
0| NFLA | NFLB | NFLC | NFLD | 2 Unused
------------------- ————— e —— e ————— | 3 Unused
4| NFLE | NFLF |NFLG |NFLH | 4 SCALARVARYING
--------------------------------------- | 5 ANSCII
8 | NFLI | NFLJ | | 6 BUFOFF
|=mmm e e | 7 BUFOFF (L)
c| NBLK |
[====mm == oo mmmmmmmmmommomoe- |
10| NREC | NFLF reserved
ST Bttt ittt ittt |
14| NBUF |
|-- - e | NFLG 0 F-format
18| NLOC | 1 v-format
| === e e e | 2 U-format
1c| NKYL | 3 Spanned
--------------------------------------- | 4 Blocked
20| NNDX/NOFF | 5 Unused
|=—mmee e s e e e e | 6 Unused
24| NADD/NNCP | 7 Unused
[=== mmmmmmmmmeemm oo |
28| NPAS | NFLH 0 VsaM
ettt b e il e D DL Dl D 4 1-7 Reserved
NFLA 0 consecutive NFLI, NFLJ resexved
1 indexed
2 regional (1) NBLK A(blocksize)
3 regional (2)
4 regional (3) NREC A(record length)
5 tp(m)
6 tp(r) NBUF A(number of buffers)
7 other organization see NFLH
NLOC A (KEYLOC value)
NFLB
Bits 0 & 1 NKYL A (KEYLENGTH)
10 Fixed
01 Variable NNDX A(INDEXAREA size)
11 Undefined NOFF A (BUFOFF value)
Bit 2 D or TRKOFL
NADD A(size of ADDBUF)
3 Blocked
4 spanned NNCP A(NCP value)
5 CTLASA
6 CTL360 NPAS A (password string locator)

288

Event Table (EVTAB)
Function

Used by WAIT module as workspace and to
provide status information on associated
event.

When Generated

During execution.

In LIFO storage.

How Addressed

From an offset from register 13.

0 4
i it 1

0 | (see below) | WECB
T — |

4 |Chain field through EVTABs | WECH
|====mm=mmmmm—ooomooeoooooooo |

8 |A(Event variable) | WAEV
__________________________ --I

C |A(ECBLIST element) | WAEL
Lo e e 4

WECB Bit 0 set when event is complete
Bits 1-7 Not used in this
implementation

Appendix A: Control Blocks

289

Event Variable Control Block 0 1 2 4

| TETmmmmm—— 1
0|Flagsl| Flags2 | STATUS |
|=====mmmmmmmmmmmomemoooooooeoo |
4] Anchor for ECB chain |
Function ‘ R e it |
8| A (ECB)/A(CCB) |
.............................. l
C|A(TCA appendage for 1I/0) |
|===mmmmmmmmmmmm oo ee |
To hold information about the operation 10| A (FCB) |
with which the EVENT has been associated. R e el b DL DLttt |
14 |Not used |
lecc e e e cc e ————— 4
Flags 1
When Generated
Bit 0 =0 Incomplete
1 Complete
Bit 1 =0 Inactive
Depends on the storage class of the event 1 Active
variable. :
Bit 2 =0 Not an 1I/0 EVENT
1 I/0 EVENT
Bit 3 =0 Not a DISPLAY EVENT
1 DISPLAY EVENT
Where Held Bit 4 =0 EV has not caused on-unit entry
1 EV has caused entry to an
on-unit
Depends on the storage class of event Bit 7 =always zero
variable.
Flags 2
Bit 0 =0 No chain of ECBs
How_Addressed 1 Chain of ECBs exists
As other variables depending on storage Bit 1 =0 Not a dummy EVENT
class. 1 Dummy EVENT

290

Exclusive Block IOCB (XBI)

Function

Locks individual records on exclusive
files.

When Generated

By transmitter when required

How_Addressed

AP XA g

From offset X'24' in IOCB and offset X'14°'

in the TIA.

of reservea 1
wixiza |xmwe | xme
o\x1oE | Ixton | Ixies Ixige
C}) - —XIQA --------- T
o] xiea o
wi T xilo T
wl xws
221 xios
N >
sof xixe
[—————————— —————— e 4

XIQE

XIQL

XIQS

X1QC

XIQA

XIRA

XIIO

XIVSs

XIDs

XIRN

XIKY

First two words unused

Start of ENQ LIST for system X'FF'

Length of RNAME

System flags must be X*'41°

Return code from system

Address of QNAME (XFIO)

Address of RNAME (XFVS)

QNAME ('SYSIBMIO')

RNAME of volume serial no. (part 1)

RNAME of DSNAME (part 2)

region no. in binary right adjusted

RNAME of key (part 3)

Length of XIKY is keylength of data set
restricted such that volume serial
no. | |dsname| |key < 255 ISAM

251 regional

Appendix A: Control Blocks 291

Exclusive Block File (XBF) XFTK A(TCA)

Function XFLA First flag byte
Identifies data set when locking for
exclusive I1/0. Bit 0 = 1 Locked

Bit 1 = 1 No DEQ required

When Generated
XFLB second flag byte (reserved)
By the open routine
XFIL Length of exclusive block attached
How_Addressed to IOCB

From offset X'74' in FCB. XFQE Start of ENQ LIST for system X'FF'

XFQL Length of RNAME

| ittty [ttt 1
0] XFTK i XFQS System flags must be X'41°'
R T e ——————— i .
4| XFLA | XFLE | XFIL | XFQC Return code from system
8| XFQE { XFOL | XFQs | XFQC | XFQA Address of QNAME (XFIO)
R iy e |
o] XFQA | XFRA Address of RNAME (XFVS)
| === oo -----|
10| XFRA | XFIO QONAME ('SYSIBMIO')
[===mmmmmmmmm oo -=--mmm-|
14 XFIO | XFVsS RNAME of volume serial no. (part 1)
=== e e |
ic| XFVS | XFDS RNAME of DSNAME (part 2)
| -==mmmmmmeas = mmmmmmmemomoooooooee- |
22 XFDS | XFKY RNAME of key (part 3)
|=====mm-e-= = =mmmmmmmemmmeem—eeeoo- I
4E| XFKY | Length of XFKY is keylength of data set
e e e ——————————————— ——————— 4 restricted such that volume serial
no. | |dsname | |key < 255 ISaM
First two words reserved 251 regional

292

File Control Block (FCB) FFST Flags indicating types of statement
(8 bytes)
Function
Bit_number Statement + options

Used to access all file information.

Contains addresses of the ENVB,DTF, 0 READ SET
filename, etc. 1 READ SET KEYTO
2 READ SET KEY
When Generated 3 READ INTO
4 READ INTO KEYTO
By the open routines during execution. 5 READ INTO KEY
6 READ INTO KEY NOLOCK
Where Held 7 READ IGNORE
8 READ INTO EVENT
In subpool 1. 9 READ INTO KEYTO EVENT
. 10 READ INTO KEY EVENT
How_Addressed 11 READ INTO KEY NOLOCK EVENT
12 READ IGNORE EVENT
From two byte PRV offset which is held at 13 WRITE FROM
offset X'0' in DCLCB. The PRV address is 14 WRITE FROM KEYFROM
held at offset X'4' in the TCA. 15 WRITE FROM EVENT
16 WRITE FROM KEYFROM EVENT
Common_Section 17 REWRITE
18 REWRITE FROM
0 1 2 3 4 19 REWRITE FROM KEY
fom————————-- e 1 20 REWRITE FROM EVENT
0| Flags showing valid statement types | 21 REWRITE FROM KEY EVENT
(FFST) | 22 LOCATE SET
R ittt ettt | 23 LOCATE SET KEYFROM
8| A(invalid statement module) (FAIS) | 24 DELETE
e i 25 DELETE KEY
(o] A(library transmitter) (FATM) | 26 DELETE EVENT
R et e P | 27 DELETE KEY EVENT
10] A(DCLCB) (FADL) | 28 UNLOCK KEY
| =m=——mmm e e e e e e e ~——-] 29-63 Reserved
14| A(DCB) /A (ACB)VSAM (FADB/FACB) |
| === e — - | FERR Error codes
18| A(open file chain) (FAFO) |
| === . e e | X'o02" INPUT TRANSMIT (DATA SET)
1c| A(data management for (FAIL) | X'03" OUTPUT TRANSMIT (DATA SET)
| in-line I/0) | X'ia’ OMR READ ERROR
| === T e e e | X'1c! INPUT TRANSMIT (INDEX SET)
20| FERR | FcoM [X'1D" OUTPUT TRANSMIT (INDEX SET)
| === -———— e e ——— e ———————— | X'1E" INPUT TRANSMIT (SEQUENCE SET)
24| FATA | FATB | FATC | FATD i X'1F" OUTPUT TRANSMIT (SEQUENCE SET)
| === e —————— | X'01" END OF FILE
28| FFLA | FFLB | FFLC | FFLD | X'ou* ZERO LENGTH RECORD VARIABL
e e ~———————— [X'05¢* SHORT RECORD VARIABLE
2C| FFLE | FFLF | FFLG | FFLH | X'06" LONG RECORD VARIABLE
| == - e —————— | X'07°" KEY CONVERSION IN CHAR STRING
30| Blocksize (FBKZ) | Keylength (FKYL) | X'08" KEY DUPLICATION
| == mm e e | X'09° KEY SEQUENCE
34 Record length (FRCL) | X'0A" KEY SPECIFICATION (NULL KEY)
| === et PR R P - X'0B"* KEY NOT FOUND
38| A(first free IOCB) (FAFR) | X'0cC" NC SPACE FOR KEYED RECORD
| or | X'0D' NO IOCB AVAILABLE
| A(Hidden buffer for | X*'0E" ACTIVE EVENT
| QISAM LOCATE) (FREC) | X'"OF" NO PRIOR READ BEFORE REWRITE
| === m e e e | X'10" NO COMPLETED READ BEFORE REWRITE
3C| FTYP | FLEN | Xx'i1t PERMANENT OUTPUT ERROR
| === ——mm e e —————————————————— | Xx'12° ZERO LENGTH RECORD READ
40| reserved | X'13" REC. REFERENCE OUTSIDE DATA SET
————————————————————————————————————— | X'14" UNIDENTIFIED IO ERROR
44| reserved | X*15" INCOMPLETE READ FOR UPDATE
| === e R bttt | X'16" TP TERM ADDR SPECIFICATION
48| reserved | X'17* DIFF FCB SAME RECORD REQUEST
e e e e e e — e ————————— 4 x'18" KEY CONVERSION (NEG BIN NC)
X'19° KEY SPECIFICATION (X'FF' ETC)

Appendix A: Control Blocks 293

X'1B" I/0 SEQUENCE ERROR 3 REGIONAL(2)
X*'20" SYNAD ERROR ENCOUNTERED 4 REGIONAL(3)
X'21 RECORD LENGTH < KEYLEN + RKP 5 TP (M)
X'22° RECORD ALREADY HELD 6 TP(R)
X'23" RECORD ON NON-MOUNTED VOLUME 7 Other organization
X'24° DATA SET CANNOT BE EXTENDED
X125 NO VIRTUAL STORAGE FOR VSAM Hex contents
X'26" NO KEYRANGE FOR INSERTION
X'27" NO POSITIONING FOR SEQL READ FFLC 0 QSAM
X'28" ATTEMPT TO REPOSITION FAILED 4 BSAM
8 BSaM(Load)
FCOM Reserved for future releases for ocC TCAM
compatibility flags. 10 QISAM
14 BISAM
FTYP 6th and 7th characters of library 18 BDAM
transmitter name 1c VSAM
FLEN Length of FCB Bit
FATA-FATD Flags showing attributes FFLD 0 Paper tape
allowable with file types, and 1 Printer
other file usage information. 2 Unit record device
3 The Foreground Terminal
Bit Attribute L ENDFILE module loaded
5 Possible hidden buffer
FATA 0 Open SYSPRINT for error 6 Error module loaded
message 7 Genkey
1 SYSPRINT
2 unused FFLE 0 I/0 error
3 String operation 1 permanent input error
4 unused 2 permanent output error
5 unused 3 end of file
6 RECORD 4 hidden buffer in use
7 STREAM 5 move required
FATB 0 BACKWARDS 6 non-SCALARVARYING
i UPDATE 7 reserved
2 OUTPUT
3 INPUT FFLF 0 previous READ
4 unused 1 previous READ SET
5 TRANSIENT 2 previous LOCATE
6 DIRECT 3 previous REWRITE
7 SEQUENTIAL) previous OPEN
FATC 0 unused 5 close in progress
1 unused 6 implicit close
2 unused 7 previous OPEN (resume load)
3 PRINT
4 EXCLUSIVE FFLG 0 ENDPAGE
5 KEYED 1 end of extents
6 UNBUFFERED 2 COPY option active
7 BUFFERED 3 reserved
) checkout transmitter
FATD all wunused 5 checkout compiler step end
flag
Bit 6 newly opened print file
7 file not to be closed
FFLA 0 F-format
1 v-format FFLH 0 In-line 1/0
2 U-format 1 In-line locate
3 Blocked 2 hyphen at end of line
4 Spanned 3 retry get after concat
5 unused 4 current line unfinished
6 unused 5 initial call from IBMBSPL/
7 Key in record blanks at end of record
variable KEYLOC 6 new buffer wanted
7 GET prompt issued - input
FFLB 0 CONSECUTIVE
1 INDEXED The common section is followed by either
2 REGIONAL(1) the RECORD or STREAM sections.

294

Record I/0 Section

Note: Offsets are from start of the FCB.
0 1 2 3 4
uc{atlast 1ocB useadd | FaLy
IA(DAMTQ%uffer for LOCATE) | FCDa
50[A(first I0CB to be checked) (BSAM) |FACK
su[static chain of TocBs | F1oC
(BDAM/ BISAM/BSAM/VSAM) |
58|a(100B for lase completed read) | |FALR
5c| FEMT | FEFT | FRET | FAFB |
60[A(error module) when loaded " Jeer
A(bootgfrap) which loads it %
(IBMBRIOB) |
64| FENC |FELV or | | FKLO or FLCT |
| FENF | |
68|reservea |ecer
6c|a(qunmy key aread | FAKY
70[size of I0CB (BDAM/BISAM) |e105
ICurren%Erelative block (BSAM) { FREL
74[A(exclusive block FILE) | FxBa
78|Table of offsets weed in | errs
| recoxrd checking |
7c|Base OPTCD for RPL (Vsam) |
|BE;—;;efix (a;sociated-EEI;;; | FAWB

l - = o - '
|Pata Management DCB |
Lem

FRET

FEMT

FEFT

FAFB

FFNC

FFLV

FCNF

FKLO

FLCT

Data management return code (regional
output)

6th char of error module name

7th char of endfile module name

Work byte for associated files

Function byte

Bit 0 READ file
1 PUNCH file
2 PRINT file
3 OMR (no other lists on)
4 R in FUNC option
5 P in FUNC option
6 W in FUNC option
7 Associated file
vsaM flags
Bit 0 KSDS
1 ESDS

2-7 reserved

conflict byte

READ invalid

PUNCH invalid

prioxr PRINT invalid

prior PRINT last line invalid
reserved

Bit 0 prior

1 prior
2
3
4-7
KEYLOC-1

Decrementing line count

Appendix A: Control Blocks 295

Stream I/0 Section

Offsets are from the start of the FCB.

0 2 4
uc| Atnext available byte in a buffer) |FCBA
FREM 50| Bytes remaining in | Value of count |FCNT
| buffer | built-in function]|
FPGZ 54| Page size " Line size | FLNZ
FLNN 58| current line no. | Record size | FMAX
sc| A(copy position in buffer) [FcPu
A(next T%%T position) for OUTPUT | FNTP
60| A(DCLCB for coPY file) | Fcpr
64| A(oopy module inputstab module |FCPA | FTAB
output.) [
68| Reserved |
ecl FscB T
lecm et e r e et e e — e — e e e ———— 3

296

Flow Statement Table

Function

Used to implement the compiler FLOW option.
Holds the last 'n' statement number pairs
and the last 'm' procedure names executed.
(*n' and 'm*' are programmer defined.)

When Generated

Storage is allocated during initialization

if the FLOW option has been specified. The
table is continually updated as the program
is executed.

where Held

In initial storage area.

How_Addressed

From offset X'4C* in the TCA.

AFLG-Flags
Reserved

AFL1-Flag

Bit O 1 No statement numbers requested in

flow trace (e.g. FLOW(0,20)).

1 = 1 Last entry was in.

2 = 1 Used by Checkout Compiler only.

3 = 1 Interrupt not recorded.

4 = 1 GOTO-out-of-block has occurred.
AFLF - Flags
ATBI Bit 0 Branch-in entry
ABCD Bit 1 BCD form for this entry
ATXT Bit 2 BCD in text reference form
ADUM Bit 3 Dummy entry after on-unit exit

ACHK
AGTO
ATKC

ARGT

AFLL

ANEN

AASB

ANEB

ARDEB

ASBS

AFLI

ASBD

Bit 4 unused
Bit 5 Unused
Bit 6 The next in entry is in new
task
0 1
frm———mmmmm e — e — e ————
0 Code to access IBMBEFL to

initialize flow table for
subtasks. Called when bit 6 in
AFLF is set. :

————————_—— ——————— " ——————— —

—————————— ———— ——— — — —— —— — —————— o ———

A(next free field in stmt.
sect.)

A(start of names section of
table)

o ——— o —— — —— —— ————————— - ——

A(next free field in names
section)

e . T ——— ————— —— —— — — o

A(end of table)

A(start of number section)

Flag |

Byte |

-------- 4

AFLF | AFLG | statement

Flag | Flag |

Byte | Byte |

Number | AFLF | AFLG
|Flag | Flag
| Byte | Byte

- - - - — - — - - = - — - -

- T — - -

Names of blocks truncated to
8 characters

Appendix A: Control Blocks

297

Interlanguage Root Control Block
(IBMBILC1)

Connects ZCTL and interlanguage VDA to
interlanguage routines, and records state
of activation of language interfaces.

When Generated

During compilation.

Where Held

In static internal storage, as a control
section.

How_ Addressed

Address generated by linkage editor.

298

0 1 2 3 4

................................ 1
0| Address of ZCTL |

________________________________ l
4 | COBOL |FORTRAN |Task | |

| flag | flag | locking| |

| | |flag | |

b e J
Flags

COBOL flag indicates COBOL is active in
program

FORTRAN flag indicates a procedure which
called FORTRAN is active

Task locking flag indicates that a task is
accessing IBMBILC1

Interlanguage VDA

Function

To hold information required for
interlanguage calls. Used for information
that alters from invocation to invocation.

When _Generated

One interlanguage VLA is generated for each
interlanguage call made from PL/I to
FORTRAN or COBOL. 2An interlanguage VDA is
also acquired if the PL/I environment has
not yet been set up when PL/I is called
from COBOL or FORTRAN.

Where Held

In the LIFO storage stack.

How Addressed

From offset X'0' in ZCTL.

r
|A(previous interlanguage |
| VDA or zero) |

|
4 |Flags | Not used |

R mmmmmmmmomoeo- |
8|A(Current DSA) |

Flags
Bit 0 = 1 If there is a previous call to
COBOL
1 =1 If there is a previous call to
FORTRAN
2 =1 1If main procedure is not PL/I

Appendix A: Control Blocks 299

Interrupt Control Block (ICB)

Function

Acts as a parameter list to IBMBERR.

When Generated
After an error has been detected.

Where Held

Passed as parameter list to IBMBERR
addressed by register 1.

0 1 2 3

of Error code | aLCD
u}-- -Eondition Quali;;;; -—]HLQU
§|DSA [HLFG flags HLLN

| Level |

ol T Alarray element) | e
0] Reserved HLSY
1&{ -;(generation of-;;;;;LI;;--J

300

Ccondition qualifier

Bit 4

L}

A(DCLCB) for 1I/0

condition

= A(CSECT) for
CONDITION condition

= A(SYMTAB) for CHECK
condition

= A(SYMTAB LIST)

Reserved

Element address not in list
1 Element address in list

CHECK is enabled
1 CHECK enablement unknown

Qualifier is not address of
SYMTAB 1list
1 Qualifier is address of
SYMTAB list

Not word 6 information

1 Use word 6 to address the
generation of variable being
checked

Input/Output Control Block (IOCB)

Function

Used as a data management parameter list
during certain record I/0 statements and to
hold information about statement type
during the time between a record I/0
statement and the associated WAIT
statement.

When Generated

Either by the PL/I transmitter module
(BISAM or BDAM) or by the OPEN module.

Common_Section

- — -~ —— - - o~ —— o —

10| IORD (1st word) |

In non-LIFO storage for VsaM, in subpool 0
for BsaM (obtained by GETPOOL), BISAM or
BDAM (obtained in non-tasking, in subpool 0
for tasking.

How_Addressed

By fields in the FCB. IOCBs are chained
together and the actual field used to
address them depends on the type of
statement being executed.

bemomm e e Joom e > end of common section
(second section starts here)

ICHN Static forward chain

INXT chain of free or unchecked 101lbs.

IRGN Region no. left adjusted (BDAM)

IFLA Flag byte - bits set to *1" indicate:

Bit 0 record locked

recoxrd to move

varying string with non-

scalarvarying

IOCB in use

general error flag

dummy records being output

dunmy buffer acquired

I0CB checked

IFLB Ccde byte containing offset within
look-up table used for record
checking

IERR Exrror codes (as in FERR of FCB) first

Nooomew N

byte is for TRANSMIT, second byte for
ENDFILE, RECORD, KEY & ERROR
conditions.

IRCB Request Control Block

IORD 1st word of record description -~
Record address

IORL 2nd word of recorxrd descriptor - flags
and record

IOKD 1st word of key description - key
address length by region number

IOKL 2nd word of KD - flags and key length

IREF Relative block in record numbers
(2 words) (BDAM)

IFNA Next address feedback (Regional 3,
spanned)

IFBK BDAM feedback (BDAM spanned)

IEVT A (EVENT variable)

Appendix A: Control Blocks 301

Second section for non VsSaM files IRLB Binary region no. (Regional(l)Update)
ITIA A (Imrlementation Appendage)
(o= —————— e ———m———— -— IECB Data management Event Control Block
24| IADE/IXLV/IRLB (BDAM exception codes in 1st 2 bytes)
ITYP Type of 1/0 operation (set by Data

—— - - -

|
28| ITIA

management)

------------ - emec—————— ILEN Record length
2C| I1ECB IDCB A (DCB)

--------------------------- IREC A (buffer) if one exists on A (record
30 ITYP | ILEN variable)

| == —— ———————— ——————— ISTS A (status indicators) (BSAM & BDAM)
34| IDCB ILOG A (logical record) (BISAM)

——mmeet e c e ——— - IADB A(dummy buffer) (BSAM)

38| IREC INLF A (next record feedback) --> IREF

--------------------------- (BSAM)
3c ISTS | ILOG IKEY A (KEY) (BDAM & BISAM)

IBLK A (relative block or record) i.e. A
(IREF) (BDAM)

IEXI BISAM exception codes

INDF A (next record feedback) --> IREF
(BDAM)

ISBF Start of appended buffer (BSAM)

IDBF Start of appended buffer (BDAM &
BISAM)

4C} IDBF

i e o e . S . — — A, —— ———— — {——— — — —— —

IADE A (ECB) for REGIONAL SEQUENTIAL ONLY
IXLV A (Exclusive block) for direct only

302

Second section for VSAM files

24| IDUB |
N .
I |
e |
I e — |
e T {
o R I !
wl YT {
I !
s8] ISE;_“- —”-a
I |
so| IRP;---_ _---:
I |
e
e
I -
I
68: o IARA) |
GCs-- IXEB L * T
N reraaa |
e e
s —
e
O
e
sol mme {
v
N T
oul e }
e d

*Regserved fields

IDUB A (dummy buffer)

IKSV A (key save user)

IEVC Data Management Event Control
Block

MODCB plist (5 words starting at offset
X'30")

IMHD A (header entry) --> IHTC
IMEL Element entry addresses (maximum
of)

SHOWCB plist (2 words starting at offset
X'u4t)

ISHD A (header entry) --> IHTC

ISEL A (element entry)

Header control entry (4 words starting at
offset X'4C"')

IHTC header type code for MODCB|SHOWCE
of RPL

IRPL A (Request Parameter List)

ISAR A (receiving area for SHOWCB)

ISLN L (receiving area for SHOWCB)

Element control entries start at offset
X*5C*' and continue to end of IOCB. Each
entry occupies 2 words, with keyword tyge
code set in 1st half-word as follows:

IXab = X'00ab" 2nd word of each entry is
used as either a setting field for MODCB
or a receiving field for SHOWCB. The IOCB
field names are lifted with their
corresponding RPL (Request Parameter List)
parameters.

IOPT OPTCD
IARA AREA
IARL AREALEN
IRCL RECLEN
ISIK FDBK
IARG ARG
IKYL KEYLEN

Appendix A:

Ccontrol Blocks 303

Key Descriptor (KD) word 2

Bit 0
Function
Contains address and length of key for
passing to library record I/O routines. Bit 1

Bits 2-15
When_Generated

Bits 16-31
As far as possible dquring compilation. If
necessary, completed during execution.

Word 3

Where Held

'1'B if KEYTO string is
VARYING. (If this bit is set,
the I/0 transmitters will set
the current length field).

'1'B if word 3 contains a
region number.

Unused (zero)

Length of key string
(excluding length bytes for
VARYING); current length for
KEY or KEYFROM, maximum length
for KEYTO.

Region number in fixed binary, right

justified.
Normally in static internal control
section. In static external control
section if key is EXTERNAL. Will be copied
into, or generated in, temporary storage if
procedure is reentrant or recursive.

How Addressed

From an offset from register 3 known to
compiler code for internal keys.

[TS e E e 1
0| A (Key String) |

leem - —emeem—m—eme e [
4| | length |

[Ll e m e —_—— 4 I
8| Region number |

t- - e m—————————————————————— 3
Word 1

KEYFROM: Address of source key (excluding
the length bytes if VARYING)

KEYTO: Address of where to put key
(excluding length bytes if
VARYING)

304

Label Data Control Block
Function

‘Holds the address of the data item and, if
a label variable, the address of the
associated DSA.

When Generated

Label constants: during compilation

Label variables: when the variakle is
allocated depending on storage class.
Label temporaries: When required for GOTO
to label constant.

where Held

Depends on the storage class of the data
item

How Addressed

As a variable.

r
0 | |Address of label constant |
| | assigned to label variable |

| |Address of DSA (at time of |
4 | | assignment) of owning block |
L

Word 1: bit 0 = 0 Address of label
constant
= 1 Text reference

Word 2: bit 0 always = 0

Label Constant

0
|

4 | value to be loaded into |
| Register 2 on GOTO |

Appendix A: cControl Blocks

305

Library Workspace (LWS)
Function

Space reserved for two pre-formatted DSAs
used by certain library modules.

When_Generated

The first LWS is generated during program
initialization. Subsequent LWSs are
allocated before entry to any on-unit.

This is because the on-unit may require the
use of library modules using LWS but must
not alter the environment of the interrupt.

Where Held

e s e e S v

First allocation in the program management
area. Subksequent allocations in the LIFO
storage stack. ONCAs are generated with
LWS.

How Addressed

From offset X'48' in each DSA.

306

" —— ——— — -~ - - - - - - - - - - -

4 |Housekeeping information as for
| DsAa

50 | 56 bytes workspace

—— ———————— ——— . ——— " -~ — - - - —

88 |Flags (as DSA) |offset to ONCA

8C |Housekeeping information as
| for standard DSA

- ———— - — — - -~ — - - - - -

I
D8 |56 bytes workspace

- — " — - - - - - - - -

On Communications Area (ONCA)
Function

An area in which built-in function values
or their addresses are placed, after the
occurrence of a PL/I interrupt.

When Generated

The first ONCA is generated during program
initialization. Subsequent ONCAs are
generated with each allocation of LWS.

Where Held

Contiguous
management

with LWS in the program
area and in the LIFO stack.

How_Addressed

By an offset from the current generation of
library workspace. The offset is held as a
halfword at offset X'2' in LWS.

Dummy_ONCA

The dummy ONCA has the same format as other
ONCAs and holds default values for those
condition built-in functions that have
default values.

Flagsl
Bit O = 0 ONFILE invalid
= 1 ONFILE valid
Bit 1 = (0 ONCHAR/ONSOURCE invalid
= 1 ONCHAR/ONSOURCE valid
Bit 2 = 0 ONIDENT invalid
= 1 ONIDENT valid
Bit 3 = 0 ONKEY invalid
= 1 ONKEY valid
Bit 4 = (0 DATAFIELD invalid
= 1 DATAFIELD valid
Bit 5 =.0 No associated EVENT variakle
= 1 Associated EVENT variable
Bit 6 = 0 ONATTN invalid
= 1 ONATTN valid
Bit 7 = 0 ONCOUNT invalid
= 1 ONCOUNT valid

Bits 8-15 unused

—— - - - -

T .
O0|Cchainback to previous ONCA LOCB
I
4] ONCODE | flagsl LCDE
l
8] string locator for LOFL
| ONFILE
I
10| string locator for LOCH
| ONCHAR
I
18§ string locator for LOSsC
| ONSQURCE
I ______________________________
20| string locator for LOKY
i ONKEY
|------- e rccccccn e e—————
28| string locator for LODF
i DATAFIELD
l ______________________________
30] reserved
l
38| A(record I/O EVENT variable) LEVT
I
3cC| reserved
40| ONCOUNT LCNT
| ------------------------------
4y | retry environment LREN
48| retry offset LRAD
I ______________________________
4c|x'40* | x'o0000° | flags2
S5S0|LCT1 |LRAC | Unused
S S e e]
Flags 2
Bit O = 0 ONSOURCE/ONCHAR not used in
on-unit
= 1 ONSOURCE/ONCHAR used in
on-unit
Bit 1 = (0 ONSOURCE not set in ONCA
= 1 ONSOURCE set in ONCA
Bits 2-7 unused
LcTl
Copy of TCA flag byte 1 (TFB1l)
LRAC

Retry address code

Retry offset

The offset from
module involved to
conversion will be
or ONCHAR has been

Appendix A:

the base of
the address
reattempted
used.

the library
at which a
if CNSOURCE

control Blocks 307

On Control Block (ONCB)

Function

Contains pointer to associated on unit, or
indicates action to be taken when interrupt
occurs.

How_Addressed

From offset X'60' in the TCA.

When Generated

Static ONCBs are generated during
compilation, one for each ON statement.
Dynamic ONCBs are generated by the prologue
code of the procedure or block in which the
ON statement occurs, or are allocated in a
VDA when the ON statement is executed.

Where Held

Static ONCBs are generated in the static
internal control section. Dynamic ONCBs
are stored in the DSA of the klock in which
the associated on-unit occurs.

Static and Dynamic ONCBs

Static ONCBs are generated for ungqualified
conditions. Dynamic ONCBs are generated for
qualified conditions (ENDPAGE, ENDFILE,
etc.)

Dynamic_ONTB

0 1 2 4
| St bttt 1
0| Address of previous dynamic ONCB |
| in block (or zero, if first) |

4 Qualifier |
[======m=mmm=—=m—mmooomomeoooo |
8| Code | Flags | Unused |
|--===mmmm- ===mmmmm—mmmmmooooo- |
(o] | Target |

308

Static_ ONCE

0 1 2)
.................................. 1
0| code | Flags | Unused |
[=== mmmm e mm e oo l
4| Target |
lemce e e mmc e ——— e — e 3
Qualifier

A(FCB) for I/0 conditions A(SYMTAB) for
CHECK A(CSECT) for CONDITION condition.

code

PL/I code for condition

Bit 0 = SYSTEM not specified
1 SYSTEM specified

Bit 1 = Not a null on-unit
1 Null on-unit

Bit 2 = Not a GOTO only on-unit
1 GOTO only on-unit

Bit 3 = Condition not established
1 Condition established

Unused

Bit 5 = Condition not enabled at block
entry
1 Enabled at block entry.

Bit 6 = Condition disabled
1 Condition enabled

Bit 7 SNAP not specified

1 SNAP specified
Target

Address of on-unit, or Offset in DSA of
word containing A(label variable)

Open Control Block (OCB)

Function

Used to indicate that a file attribute
(either input or output) was declared in
the associated OPEN statement.

When Generated

During compilation.

Where Held

Static internal control section.

How Addressed

From an offset from register 3 known to
compiled code.

0 4
of NPaA | NPAB | NPAC | NPAD |
N wEM |
of T unused i

L T R L T] J

NPA - Open_attributes

This word indicates the explicit and

implied attributes on the OPEN statement.

Byte No. Hex. Value Attributes

1 01 STREAM
02 RECORD
o4 DISPLAY
10 reserved
(STRING)
80 Debug open
of SYSPRINT
2 01 SEQUENTIAL
02 DIRECT
08 TRANSIENT
10 INPUT
20 OUTPUT
4o UPDATE
80 BACKWARDS
3 01 BUFFERED
02 UNBUFFERED
o4 KEYED
08 EXCLUSIVE
10 PRINT
20 AXES
4 RESERVED

NDEM_ - Open_conflict mask

This is a mask generated by the compiler

containing bits for all attributes which
conflict with those on the OPEN statement.

Appendix A: Control Blocks 309

Ordered Delete List (ODL) This block is initialized to binary
zeros; each routine places its address in
the appropriate field as soon as it is

Function loaded.

Hold list of transient modules to be
deleted during program termination.

When Generated

During program initialization.
Where Held

Program Management area.

How_Addressed

From offset X'38' in the TCA.

0| A (IBMBEDWA) |
........ - - - |
4| A (IBMBEDTA) |
I —
8| A(IBMBKOTA)

10| A(IBMBMYEA) |
W acewmwers
T ateMBspCA) T |
ic| o A (IBb—dl‘;];ESA) --------------------- =
20 I| l.\-(. memeccLa) =
o acewesTa®) I
28 a(sMpEIIA) T 1

310

PLIMAIN

Function

Holds address of entry point of main
procedure

When Generated

During compilation of procedures with the
MAIN option

Where Held

A separate control section in the load
module

How Addressed

Address resolved by linkage editor.

0 1 2 3

A control section in IBMBPIR and IBMTPIR
holding addresses of error message module.
This control section is link-edited if no
compiler generated PLIMAIN exists.

Appendix A: cControl Blocks 311

Record Descriptor (RD)

Function

To hold data about the record variable.

When _Generated

During Compilation.
Where Held

Static control section.

How_Addressed

From an offset from register 3 known to
compiled code.

0 1 4

| i ETmTEEEssTEEEEeEEs e b
0 | A(record variable) [

[=m=mmmmmmmmmmmomee- P !
4 | length |

R, ——————————-— J
Word 1

1. Address of the data to be written out.

2. Address of where data read in is to be

312

put.

3. LOCATE statement: Address of where to
store buffer address.

Bits 0 - 7 indicate the type of INTO or
FROM argument as follows:

X'00' for fixed length strings
X'01' for area variables
X'02' for varying length
character strings
X'03*' for varying length bit
strings
Bits 8-31 1length of data to be transmitted
(length of variable or buffer
for locate mode).

The value is in bytes for all
strings including bit strings.

For VARYING strings, the value
includes the two length bytes,
and is the current length for
output operations and the
maximum length for input
operations.

Request Control Block (RCB)

Eunction

Used by the record I/0 interface module
(IBMBRIO) to check the validity of an I/0
statement. The instruction in RTMI is
carried out by IBMBRIO.

wWhen Generated

During compilation.

Where Held

Static internal control section.

How_ Addressed

From an offset from register 3 known to
compiled code.

REQ1L (statement identification)

X'00* - READ
X*'04' - REWRITE
X'08' - WRITE
X'0C* - LOCATE
X'10' - DELETE
X*'14' - UNLOCK

REQ2 (options)

X'80' - INTO/FROM
X'40' - SET

X'20' - IGNORE
X*02' - NOLOCK
X'01*' - EVENT

REQ3 (options)

X'80' - KEY
X'40' - KEYTO
X'20' - KEYFROM

REQU4 unused

RTML

Either a TM or a BR instruction
depending on source program.

A TM instruction is used if the
statement cannot be checked for validity
during compilation, or if it has been
checked and found to be invalid.

TM instruction used by IBMBRIO for
testing the validity of a statement.

X*91MM2SSS’

where MM is byte containing current
statement bit and SSS is offset of
corresponding byte in FCB statement mask.

A BR instruction is used if the
statement has been checked during
compilation and found to be valid.

Unconditional branch instruction to PL/I

library or LIOCS transmitter.

Appendix A: Control Blocks 313

Statement Frequency Count Table

Function

To retain a record of the number of times a
statement has been branched to or from, for
use by the COUNT option.

When Generated

When the associated external procedure is
entered.

Where Held
Non-LIFO storage.

How_Addressed

The statement frequency count table for the
first external procedure in a program is
addressed from offset X'48' in the TCa
appendage (TIA). The tables are chained
together and the chain field of the last
table set to zero. The chain field is at
offset 0 in the table. The most recently
used table is addressed from X'4C' in the
TIA.

0 | Atnext table T 1 acts
4 A(sta;;c CSECT OF-;;BEEBG;;;-—--= ACST
8 | name of procedure | acee
c |

10] flags T acrn
18| A(first segment) T aces
16| Atnext segmenty acse
ic| number of emtries AcNG
20| length of segment T acte

count entry or number

count entry

e > T —— —— l
count entry or number etc |
. o 1

314

ACBS

ACFL

ACBI

ACGT

ACIA
ACNM

ACUI
ACZL

The address held in ACBS is the
address of ACGS. If tables are
segmented, second and subseguent
sections of the table will start at a
point equivalent to ACSG.

Flags

Bit 0 last update was for a branch
in

Bit 1 last update was for a GOTO
out of block

Bit 2 table inactive

Bit 3 table is for procedure with
GONUMBER option

Bit 4 table is uninitialized

Bit 5 takle contains unexecuted

ranges

Other bits unused.

Statement Number Table
Function

To relate statement numbers to offsets so
that statement numbers may be given in
execution-time messages.

When Generated

During compilation, if the GOSTMT option is
in effect.

where Held

Static internal control section.

How Addressed

From offset X'8' from entry point of main
procedure.

Sections of Table

Because offsets are held in two bytes and
the value may in fact take up to three
bytes (4096), it is necessary to hold the
table in sections.

0 2 4
1
0 | A primary entry point of block |
I-- - —— e e o e o o o e
4 |size of code generated for block |
in bytes
8
e
C
B - e e e e e o e o o o I
Offset
[=========mmmeom—oe—oooooo- ~===mn
A(end of second section of takle)
-===--- T
offset
=mmmmm e -omommommsmmmmosoooo-
Etc.
e 4

Line Number Format

When line numbers are generated they are
held in 6-byte fields. The first 27 bits
hold the line number, right adjusted in
binary. The last five bits hold the nurber
of the statement on the line, again right
adjusted in binary.

The presence of line numbers is
indicated by bit 5 of Flags 2 in the DSA
being set to 1. The validity of Flags 2 is
indicated by bit 15 in the flags in the
first two bytes of the DSA being set to 1.
The presence of line numbers is indicated
if both these flags are set to 1.

* = End of first section

Offset: Offset is the offset of the first
byte of the statement relative to
the address of the primary entry
point of the block. If the offset
is more than X'7FFF' the statement
number will be held in the seccnd
or subsequent sections of the
table. Obtain the number given by
translating the offset into binary
and ignoring the last 15 bits and
step down this number of sections
of the table. (For example, if
the offset was X'8FFF', translate
to binary = *'1000 1111 1111
1111*B, ignore last 15 binary
digits =1, therefore step down one
section of the table. If the
offset was X'18FFF' the binary
would be '0001 1000 1111 1111
1111'B. Ignoring the 15 right hand
bits leaves *'11'B therefore step
down three sections of the table.)

The address of the second section of the
table is held at offset X'8' in the table,
the address of the third section is held at
the head of the second section, the address
of the fourth section at the head of the
second section and so forth.

Appendix A: Control Blocks 315

Storage Report Table

Function

To hold the information from which a
storage report will be generated.

When Generated

During program or task initialization

Where_ Held

Program management area, or for major task
in storage associated with the control
task.

How Addressed

Eo A LR A S

From X'38' in the TIA.

Non-multitasking_and. PL/I task table

--...--....-.--.—-—-.-_-———-——---——————-—..

0|True EOS value |TRES
w|teea TeRsTIE T J—
Y o T epecitiea Toasize |mRss
| f1ags |
clioh adjestmene T J—
10)Eatrs storage reauieed T | raex
16} vomber of comwAmNe | tRau
18 vomber of pREERAINE —
Ac) anber of set mON-L1FO resnemte JzeeN
20| Tumber of Fres mom-LIFO renests - |TREW
24| curzent extr storage owned | rcs
28| curcent mmused oA —
2c|naadress of tacking appendage -

|(mu1t1task1ng only) |

316

1C [Major task - Number of
|
20|Subtasks -
24 | Ssubtasks -
[===
28|Subtasks -

2Cc|Subtasks -

34 |subtasks -

38|Subtasks -

TRFG_FLAGS

*10000000'B Major task table

*01000000'B Update complete (get
LIFOQ)
control task_table

[T e e —— e —————

I-__-_-_-_-----_______-_--—-__---___

|non-LIFO requests

| subtask

| subtask

| subtasks

- ——— — - "~ -~ -

| subtask

- ———— — = = - —— - -

30|Subtasks - Min storage required any

| subtask

Max extra storage any
| subtasks

Min extra storage any
| subtasks

- ——— o ———_—— " - Y - —— =~ — " - -

|all subtasks

e - - —— - " = —— Y —— - - ———

40| Subtasks - Total number of

| FREEMAINs all subtasks

44| subtasks - Total number of get

|non-LIFO requests all subtasks

|
48 |subtasks - Total number of free

|non-LIFC requests all subtasks

I---__----_---_---__---_-_-----_---—

4¢C |Maximum number of PL/I tasks

|attached

| CSMG

| CSMF

OIMajor task - Used ISASIZE

4|Major task - Specified IsASIZE
8lMajor task - oA adjustmemc
clMajor task - Extra storage requized
10{Major task - Number of GETMAINS
L |Major cask - Namber of FREZMAINS |
18 Major task - Number of get mom-LIF0

| requests

| csxx

| CSNX

!
3C|Subtasks - Total number of GETMAINS|CSSG

CSSF

CSSH

Stream I/0O Control Block (SIOCB)
Function

Holds addresses of source and target,
source and target DEDs etc and is used as
parameter list by stream I/O routines.

When_Generated

During execution for the duration of the
stream 1I/0 statement.

Where Held

In temporary storagde.

AT AR A4

Passed as parameter list by compiled code.

¢
SSRC 0 |Address of source or its locator

SSDD 4 | Address of source DED

STRG 8 |Address of target or its locator

STDD C | Address of target DED
lo|seie | sree | sosA | SDFL

SFCB 14| Address of FCB for file

SRTN 18| Address of next statement

—— = - o ——— - ——

SAVE 1c{save word used in compilex
generated subroutines

SCNT 20|{Value of COUNT |
built-in functn. |

Unused

I
SOCA 24|
28

SSTR 'Area used during GET or PUT string

|to hold dummy FCB.
e cme c o oo - —— - - - - - -——-——

Flag_Byte SFLG

Bit 0 = 1 Transmit on input

Bit 1 = 1 VDA used in edit-directed input

Bit 2 = 1 IBMBSED is used

Bit 3 = 1 call to IBMSIST required after
dealing with next item (Stream I/O
only)

sDsA

DSA level number (used only for data-
directed I/0)

Type code STYP

Bit 0 = 1 data-directed 1I/0

Bit 1 1 list-directed 1I/0

Bit 2 1 edit-directed 1/0
Bit 3 = 1 string I/0

Bit 4 = 1 CHECK entry to data-directed
I/70

Bit 5 = 1 input

Bit 0 = 1 Terminating call to data-
directed output

Appendix A: Control Blocks 317

String Locator/Descriptor
Function

Used to pass the address and the length of
strings to other routines. Also for
handling strings with adjustable lengths
(e.g., DCL STRING CHAR (N)).

When Generated

Storage reserved during
compilation. Fields completed during
execution if string has adjustable length.

Where Held

Static internal control section.

How Addressed

From an offset from register, 3 known to
compiled code.

0 1 2 3 4
[m——————— ——————————— e —————— .
0] Byte address of string |
| - — = o e e o o e l
4} Allocated length |F| unused F2|
b e = . —————— —————————— 1

318

F = '0' B Fixed string (First bit of
second byte)
'l' B Varying string

F2 Used for bit strings to hold offset
from byte address of first bit in
string (3 bits)

Allocated length

For varying strings this is the declared
length. Length is held in bits for bit
strings and in bytes for character strings.

String Descriptor

The string descriptor is the second word of
the string locators/descriptor. It appears
in structure descriptors and in the
description field of controlled variables.

Structure Descriptor

Function

Contains information about the offset of
each element within a structure, and the
nature of each element. Used when passing
a structure to another routine, or for
accessing structure elements during
execution, if the structure is declared
with adjustable extents or with the REFER
option.

When Generated

If the structure has no adjustable
elements, during compilation. If the
structure has adjustable elements, during
execution from information held in the
aggregate descriptor descriptor.

here Held

Static intexrnal control section.

How_Addressed

From an offset from register 3 known to
conpiled’ code.

General Format

For each base element in the structure, a
fullword field containing the offset of the
start of the element from the start of the
structure is given. If the base element is
a string, area, or array, this fullword is
followed by the offset field for the next
base element.

0| Ooffset of element from start
| of structure

4| Descriptor of element if

| element requires descriptor
8| Offset of element from start
of structure

C| Descriptor of element if
element requires descriptor

|
I
|
For every base element in |
| the structure, an entry is |
made consisting of an |
offset field and, if the |
element requires a descrip- |
| tor, a descriptor. |
i

The offset field is held in bytes, Any
adjustments needed for bit-aligned
addresses are held in the respective
descriptors.

Appendix A: Control Blocks 319

Symbol Table (SYMTAB)

Function

Holds the name of the variable during
execution and associates it with the
address of the variable. Used only when
data-directed I/0 or the CHECK condition is
specified.

When Generated

During compilation, if data-directed I/0 or
the CHECK condition is used in the program

Where Held

Static internal control section for
internal names. Separate control section
for external names. External control
sections consist of the name followed by an
*,

How Addressed

From an offset from register 3 for internal
data, by an address generated by the
linkage editor for external data.

[T ST e e e e e e r e e e e ———————

8 |F1ags | Dimension | Level |
| | ality | number |

8 | Address fleld A |

- — > o —

[======mmmmmmeee . |
| Name (fully qualified) |

[——

Flags

*000'B STATIC

*100'B AUTOMATIC

*010*B CONTROLLED

(not param.)

*001"B BASED

*011°'B DEFINED

?101'B a non-CONTROLLED
parameter

= *111'B a CONTROLLED
parameter

Bits 0,1 & 2

(]

320

'1'B EXTERNAL
'0'B INTERNAL

Bit 3

nu

Bit 4 = '"1'B item may appear in some
CHECK list
= '0'B item appears in
no CHECK list

(Bit 4 must be '1'B if item is EXTERNAL).
*1'B Address field A refers to data

‘0'B Address field A refers to
locator

Bit 5

(Bit 5 must be '0'B for a CONTROLLED
parameter)

Bit 6 = '"1'B a member of a structure
= '0'B not a member of a structure
Bit 7 = '1'B Normal SYMTAB
= '0'B Short SYMTAB (has fields A, B
and C omitted)
Bit 8 = '"1"B Address field A addresses code
= '0'B Address field A does not
address code
Bit 10 Always set to 0
Bits 11 - 15 reserved: must be set to
'0'B.
Dimensionality

The number of dimensions declared for an
array item. Dimensionality is zero for
other items.

Level number
(for AUTOMATIC, DEFINED, and BASED
items. Also for all parameters.) The
level of the block in which the wvariable
is declared. The level of a block is
one greater than the level of the
immediately containing block; the level
of the external block is 0.

Address Fields

Addresses are held in different formats for
different data types. As far as possible,
addresses are held in address field A.
However, more information than can be held
in a fullword field is sometimes required.
when this is the case, address fields B and
C are used.

Address_field A
If STATIC Address of data or address of

locator for items that have
locators.

If AUTOMATIC Offset within the associated
DsSA of the data or of the
locator for items that have
locators.

If CONTROLLED Offset of the data or its
locator from the address in
the anchor wozxd.

If BASED Offset of field within DSa
containing address of
declared pointer qualifier.

If PARAMETER or DEFINED Offset of one word
field in associated DsaA
containing address of
corresponding argument, or
DEFINED data, or its locator.
For CONTROLLED parameters, the
argument is its anchor word.

Address_field B Used for CONTROLLED and
BASED items only.

If CONTROLLED Address of anchor word,
either in static internal for
internal data or in a separate
CSECT for external data.

If BASED See below.

Other data Not used for other data types.
Set to a null value of all

2€Xos.

Address field C Used for BASED and

structure elements only.

If STRUCTURE (Not BASED structure) Offset
from start of structure
descriptor to field that holds
offset of element from start
of structure. See "Structure
Descriptor."

If BASED STRING, BASED STRUCTURE, BASED
ARRAY, or BASED AREA, For
all items except structures,
fields B and C hold the ocffset
(right justified) of the
descriptor from the start of
the DSA in which it is held.
For structured items, the
offset is to the offset word
in the structure descriptor.
This word holds the offset of
the item from the start of the
structure. See "Structure
Descriptor".

Other data Not used for other data types.
Set to a null value of all
2€xos.

Length Length is the number of characters
in the fully qualified name.

Appendix A: Control Blocks 321

Symbol Table Vector How_Addressed

From an offset from register 3 known to
compiled code.
Function

General Format
Holds addresses of symbol tables and
associates them with the block in which the
associated names were declared. The format of symbol table vector is a

series of fullwords. These contain either:

1. The address of a symbol table
When Generated

————— e . i e S s s e

or
During compilation. 2. The address of the entry in the symbol
table vector of the start of the
entries for the encompassing block.
Where Held or
3. A fullword of zeros indicating the end
Static internal control section. of the current block.
0 4
I e 1

(] A(symbol table) |
............. e e e i P |
4} A(symbol table) |
[======mmmmmmm oo ———--- |
8] fullword of zeros | <--marks end of
| | block.
| =========mmee ommmmmmm——m——oeoooooeoee- a
| A(of entries in symbol table vector |
| of encompassing block). All zeros |
| for main procedure block |

322

Task Communications Area (TCA)

Function

Acts as a central communications area for
the program. Contains addresses of
essential routines and control blocks, and
various flags. (See chapter 5).

When Generated

During program initialization by IBMBPIR.
Where Held

In the program management area at the head
of the initial segment area (ISA).

How Addressed

0 1 2 3 4
0 | TFBO | TFB1 | TFB2 | TFB3 |
e |

4 | A(PRV) | TPRV
e R |

8 |Segment #| BOS | TBOS
| |Beginning of Segment i
| | Pointer |

C |Segment #| EOS | TEOS
| |End of Segment Pointer |
e |
10 | Unused |

14 |A(current event variable) |

' -~ - - - - - -~ I

18 | A(External Save Area) | TESA
e | azRr Table) | |7TRT
20 | T Task Level |TTIC
24 | h(current Task Variable |TTsK
26 | a(zch appendager | 712
2 | T A(Tasking Appendage) |TTTA

30 |A(save Area for Overflow Routine) |TPSA

34 | Open File Chain Anchor |TFOP
38 | Atordered Delete List) | oL
S " onusea P
w | T A(Diagnostic File Block) |TDFB
ToRC|PL/T Return | User Return |TURC
44 [code I Code |

48 |A(overflow Routinme for Get VDAY |TOWY
4C |A(Flow stmt mumber table) |TSET

|
| TTAB

50 | A(Tab table)
sy T a(Flom moanler -
58 |A(Lea Hoawle - mesiomy T —_—
s |ncien meduie - 1em T | epst
60 |n(im Meadle - Teay | oo
60 |vmy Tmitislizacion wera -
68 | ommsea T :
6c |n(cer Dynamic Storage mestime) | |TeET
70 |n(rres Dymamic Storage Rostime) |TPRE
74 |A(overflon Rowtime for Get psm) |TOVE
e | T atEeror Damalers JrEsR
R Envizonment Deseriptien |TENV
o | T Roreal GoTo Gode |rere
|Used when GOTO out of block may |
|occur |
P4 |n(Interprecive coro romtiney | lzaM
O 2 (oot comirol rousined lmect
e | a(Free. control rewtine) |TRCL
100 |Dummg BNG Towtine fiea -
108 |Dumy DRg Tomtine fiela | 2R
208 | T LT zovtiner |rawm
10 |n(CoMPLETION peevdovariable |zace
|routine) |
o | T A(EVENT asolon rowcine) |TaEa
114 |nirriority restiney T | sz
118 |n(enorDEQ Teveinesy T -
11¢ |Resecved for wmerm T -

lec e ——— e — e ——— e —————— -

TENV Is a field used to define PL/I library
modification level.

TRLR is the resident library release
number.

TTLR is the transient library release
number.

TUSR Is a field reserved for the use of
programmers using the PL/I Optimizing
and Checkout compilers. Any user
routine may use this field as a base
for addressing.

Appendix A: Control Blocks 323

TFLG contains flag bytes TFBO, TFB1, TFB2,
and TFB3.

Flag Byte 0 - TFBO

TTIS Bit 0 = 0 Major Task 1 Subtask

TTTT Bit 1 = 0 Program will not multitask
1 Program may multitask

TTCK Bit 2 = Reserved

TTFT Bit 3 = 0 Not eldest task from
attaching DSA 1 Eldest task

TTFD Bit 4 = 0 No daughter tasks exist 1
Daughter tasks exist

Note: This flag byte is the only one in

the TCA used by the central task without
synchronising with the subtask. The
subtask must never change it. This
prevents interference between CPU's on a
multiprocessing machine.

Flag Byte 1 - TFB1

[}

TGFD Bit 0 0 No daughter tasks 1 At
least one daughter task may

exist

TGFE Bit 1 = 0 No active EVENT I/O ON
units 1 At least one active
EVENT I/0 ON unit

TGFV Bit 2 = unused

TGFS Bit 3 = 0 SORT routine inactive 1
SORT routine active

TGNQ Bit 4 = 0 SYSPRINT not ENQed 1
SYSPRINT ENQed by this task

324

Bit 5 = 1 Task ending

Flag Byte 2 - TFB2

THQS Bit 0 = 0 Do not raise SIZE for
fixed-point divide, fixed-
point overflow, exponent
overflow, or decimal overflow

1 Raise SIZE if one of these
exceptions occurs

THQI Bit 1 = 0 Do not ignore fixed-point
divide, fixed-point overflcw
or exponent overflow 1 Ignore
any of these exceptions

Bits 2-4 Reserved

Bit 5 = 1 File associated with SIZE

THQR Bit 6 = 0 Normal action on normal
return from on-unit 1 Return
to caller after normal return
from on-unit

THQC Bit 7 = 0 Not I/O Conversion 1 I/O

Conversion

Flag Byte 3 - TFB3

TMDF Bit 0 = Reserved

Bit 1 = 0 Prompt required
= 1 Prompt not required

Bit 2 = Reserved

Bit 3 = Reserved

Bit 4 = Reserved

Bit 5 = 0 Not implied SKIP next
= 1 Implied SKIP next

Bits 6-7 Reserved

TCA Appendage (TIA)
Function

To hold control and communication
information.

When Generated !

During program initialization.

Where Held

Program management area. Addressed from
offset X'28' in the TCA.

How Addressed

From X'28*' in the TCA.

0 1 2 3 4
o] A(Byte beyond Isa) | T15a
o awia mrem |zapc
8] A(Interrupt Handler) | TERA
C|Interrupt Mask | Flagsl | Flags2|TINM
10| Wiz chain amehor | vz
18] Anchor for chain of | TEXF

| exclusive blocks |
1e| " aast free arem |zuee
20f A(Dump Block) | TDUB
24] A(Dummy DSA) [TDDS
28] | Ataet s coder | e
2c| A(Extended float simulator) |TASM
30| | Two words for mame of | s

| extended float simulator [

38| A(storage for report info.) | TASR

=== ===mmmmmmmmmeeooooooo—oooe |
3C| Chain of fetched entry points |TFEP

e e e e e e e e e e I

40| A(stae Exit routine) | TAST

44| A (Housekeeping interrape rostine) |TERC
| (ERRC) |

48| A(first count table) -

4c| A(last count table used) |TCTL

Flagsl - TFL1

TFLA Bit 0 = 1 Task terminated normally
TFLS Bit 1 = 1 SYSPRINT open

TFLJ Bit 2 = 1 STAE exit in progress

TFLK Bit 3 = 1 Dump I/0 in progress
Flags2

TFLD Bit 0 = '1'B caller provided ISA
TFLR Bit 1 = '1'B storage report required
TFLT Bit 2 = '1'B STAE required

TFLP Bit 3 = '1'B SPIE required

TFLX Bit 4 = '1'B Syntax error in program

management options

Appendix A: cControl Blocks 325

TCA Tasking Appendage (TTA)

Function

To hold control and communication

information used in multitasking programs.

When Generated

During program initialization.

Where Held
Program Management area.

How_Addressed

From X'2C' in the TCA.

o{ |TPEC
s| pitst for control Task | |rcme
| (2 words) |
CE- o WAIT-;CB - -—‘TWEC
10l A(TC;; ----------------- }TTCB
14 A(ECELIST element) | TAEE
18] atcca) |zzca
ic o Reserved T ---=
20|—-Chain of sister ;;;;;;; ----- ‘TSIS
| appendages |
24| Anchor for subtask sister |TsuB

| chain

28| Anchor for I/O EVENT chain |TIOE

30| Af(task invocation point)
[N e ————————

326

| TDSA

| TALR

————d

Post Codes to Control Task

0 Completion pseudovariable
4 EVENT assignment

8 PRIORITY pseudovariable
12 1I/0 EVENT completion
16 WAIT termination

20 Detach this block

24 Dedicate control task
28 Liberate control task

Task Variable (TV)

Function
To hold information about task

When Generated

Depends on storage class
Where Held

Depends on storage class

How Addressed

From offset X'24' in the TCA.

0 1 2

o[Flagsi |Flagsz | Priority
u} ------------- A(SYMTAB))
8] A(TCA Tasking Appendages)
c| _ Acalling pROCEDR®)

Flagsl
Bit 0 = 0 1Inactive 1
Flags2

Bit 0 = 0 Not a dummy
1 Dunnmy

Bit 1 = 0 sSymbol table does not exist

Symbol table exis

Appendix A:

Active

ts

control Blocks

327

Wait Information Table (WIT)

Function

Used to hold information about a WAIT
statement

When Generated
When the WAIT statement is initiated
Where Held

In the LIFO stack

328

How_Addressed

From X'10' in the TIA.

———— - — " - -

Zygo-lingual Control List (ZCTL)
Function

To hold information required for
interlanguage calls. Holds information

that does not change for every invocation.

When Generated

Oon the first interlanguage call.

Where Held

In the LIFO stack if PL/I is main
procedure. If COBOL or FORTRAN are
principal procedures, at the head of the
unused portion of the region immediately
before the TCA.

How _Addressed

From offset X'0*' in IBMBILCI.

|
C|A(FORTRAN PICA) i
[=mmommmmmmmmmm oo mmmmmmmmmmooees |
10|COBOL INTER* PICA |
| (2 words) |

|======mmmm e oo ===
18 |FORTRAN INTER® PICA [

| (2 words) |

|
30|save Area 1 (22 words) |
|Used by IBMBIEPA and IBMBIEFA |

|Ghost Ssave Area (4 words) |
R =mmmmmmmmmememeo- |
|save Area 2 (18 words) |
|Used as DSA when principal |
|procedure not PL/I |
=== |
|save Area 3 (18 woxds) |
|Used internally by IBMBIEPA |
|1f principal procedure not PL/I |

1 The "INTER PICA"™ is a PICA used if the
INTER option is specified.

Note: Beyond offset X'30' only the save
areas needed are acquired.

When the first call is made from PL/I to
COBOL, only the first 30 bytes are
acquired. the first 30 bytes plus save
area are acquired.

When the first call is made from COBOL
or FORTRAN to PL/I, the complete area shown
is acquired.

Flags

Bit 0

1 If there is a previous call to
COBOL

1 = 1 If there is a previous call to
FORTRAN

6 = 1 STAEs will be issued 0 STAEsS not
issued
7 = 1 SPIEs will be issued 0 SPIEs
not issued

Bits 3, 4 and 5 unused

Appendix A: Control Blocks 329

abnormal 30TO 30
code in TCA 70
library subroutine IBMBPGO 30
abnormal termination (multitasking)
access method
record I/0 127
stream I/0 153
activating blocks 24
actual origin (a0) 53
address constants 17
addressing beyond 4K limit 21
aggregates 23
(see also structure; array)
address 53
arrays of structures 23
COBOL 250
descriptor descriptor 57,274
FORTRAN 250

interlanguage arguments 233,250
locator 54-56,275
alignment in structures 250
alignment requirements 18
ALL built-in function 191
allocation of storage 75-85
AND logical operation 191
ANY built-in function 191
A0 (actual origin) 53
areas
address 54-56
control block 273
descriptor 272
locator/descriptor 5u4-56,272

storage management 84
arguments lists 30
arrays

assignments 23

descriptor 276

descriptors 23

FORTRAN 250

implementation of 23

in strxeam I/0 174

interlanguage communication 233

interleaved 190

of structures 23,54-56
arrays of structures 23

arrays 23

assignments 23

implementation of 23
ASSEMBLER - PL/I communication 251
ASSEMBLER option 251
attaching a task 264
attributes, data 53
AUTOMATIC variables 19

in Qump 226

storage 76

266

backchains
dynamic 26
static 26

base element 54-56
base registers
DSA pointer 17
program base 17
static base 17
TCA pointer 17
BASED storage 20,75
BASED variables 20
in dump 226
storage 75
beginning of segment (BOS) pointer
BIT data
string assignment subroutine
(IBMBBGF) 191
unaligned strings
block enable cells
blocks
activation 24
termination 24
BOOL built-in function 191
BOS (beginning of segment) pointer
bounds, adjustable 53
branches, rationalization of 38
buffer pointers (stream I/0) 156
built-in functions
arithmetic 189
array handling 189
condition 97
DATE 192
library subroutines
mathematical 189
stream I/0 174
string handling 189
structure handling 189
TIME 191

189
100

189

C format item DED 281

CALL statements 26

CALL. ..TASK failure 266

calling trace
following through dump 219
obtaining 210

chain, free-area 71

CHECK condition 105

CHECK prefix 105

checkpoint/restart facility 197

CLOSE statement 143,127

closing files
explicit closing 143,127
implicit closing 143
library subroutines

COBOL

143

Index

69

69

COBOL-PL/I communication 242-246

option in ENVIRONMENT attribute
structure mapping 250

251

Index

331

COBOL (continued)
ZERODIVIDE on-unit 246
COLUMN format option 171
common expression, elimination 34
commoning 36,38
communication
between languages 231-253
between routines 53-66
compare-~aligned-bit-string subroutine
(IBMBBBC) 191
compare-unaligned-bit-strings subroutine
(IBMBBGC) 191
compilation 1)
compile-time DED 57
compiler generated subroutines 33
compiler options
AGGREGATE 12
EsSD 12
FLOW 12
LIsT 12
MAP 12
OFFSET 12
SOURCE 12
STORAGE 12
compiler output 11-38
compiler-generated subroutines 168,179
COMPLETION built-in function 198
COMPLETION pseudovariable 198
completion values, multitasking 268
concatenate-character-strings subroutine
(IBMBBCK) 191
CONDITION condition 107
conditions
default values 97
defaults 89-90
enablement 89-90,105
general 97
implementation in general 93-108,93
name abbreviations in dump 210
record I/0 145,144
values in dump 219
consecutive buffered files 127,146
constants 18
constants pool 18
control blocks
formats 271-329
locating in dump 227
control format items 168
DED 280,281
control sections 11-38
control task
general 255
controlled variable block 20
CONTROLLED variables 20
control block 277
header information 20
conversational files 177
conversion 181-189
CONVERSION condition 188
hybrid 187
in-line conversions 185
library subroutines 181-182
multiple 187
ONCA 175
ONCHAR function/pseudovariable 175
ONSOURCE function/pseudovariable 175
stream I/0 160
CONVERSION condition 174,188

332

COUNT function 174

COUNT option 120

CSECT (control section) 11-38
current enable cell 99

data
internal representation 181
interrupt 88
data element descriptor (DED)
formats 278-281
general description 57
data format item 168
data interrupt 88
data list matching 169
data set interchange between PL/I and
COBOL 251
data-directed I/0 168-169
DATAFIELD built-in function 174
DATE built-in function 192
DCLCB see declare control block
decimal overflow interrupt 103
declare control block (DCLCB)
format 282
general 125,127
DELAY statement 192
dequeuing on SYSPRINT 270
descriptors 53-62
aggregate descriptor
descriptor 54-56,274
area 54-56,272
array 54-56,276
string 54-56,318
structure 54-56,319
detatching a task 266
DFB (diagnostic file block) 107,283
diagnostic file block (DFB) 108,283
diagnostic statement table (DST) see
statement number table
director routines in stream I/0 160
list of 179
disablement of conditions 99
DISPLAY statement 192
DO loops 32
DST (diagnostic statement table) see
statement number table
DUB (dump block) 286
dummy arguments in interlanguage
communication 250
dummy DSA 72
dummy FCB 22
dummy ONCA
chaining 97
description 71
format 307
introduction 71
dummy sections 21
dump block (DUB) 286
dump control module (IBMBKMR) 109
dump debugging procedures 212,215
dumps
contents 210
debugging with 205-228
file 112
implementation 109-112
obtaining 207
options 207
subroutines that generate 109

dynamic backchain 26

dynamic descendency 87

dynamic ONCB 100

dynamic storage area (DSA) 75-85
associating DSA with block 219
contents for compiled code DSA 25
dummy 72
format and function 284
forward chain in dump 224
IBMBERR's DSA in dump 213
initialization 65
uses 75

E format item DED 280
ECB list 264
edit-directed I/0
arrays 174
compiler-generated subroutines 179
control format items 168
data format jitems 168
FED 168
format DED 168
format list 168
format option handling 173
GET statement 168
library director modules 178
matching data and format lists 173
non-matching data and format lists 173
PUT statement 168
element, base 53
element, structure 53
elimination of unreachable statements 36
enable cells 99
enablement of conditions 99
enablement status 28
end of extent, offset to (OEE) 85
end of file 145
end of segment (EOS) pointer 69
END statement 27
ENDFILE condition
detecting 96
record I/0 145
stream I/0 174
summary information 88
ENDPAGE condition 88
enqueuing on SYSPRINT (reason for) 270
ENTRY data control block 287
entry points
addresses in Jump 218
conversion subroutines 182
library subroutines 40-50
load module 11
main procedure 11
ENTRY statement in interlanguage calls 231
environment
definition 3
FORTRAN 233
initialization 65-69
interlanguage communication 238
SORT 192
ENVIRONMENT attribute COBOL option 251
environment block (ENVB)
format 288
record I/0 128
stream I/O 154
EOS (end of segment) pointer 69
epilogue code 24

169-174

epilogue code (continued)
example 26

error codes, list of 211

ERROR condition 88,211

on-unit and dumps 215

error handling during execution 87-121
error code 97,211
error handling subroutine
IBMBERR 102,107
error message modules 107
event I/0 140
finding the block entry-point
address 107
FORTRAN 247
record I/0 145
stream I/0 174
error identification
address in dump 218
using dump in general 205-228
ESD records
definition 11
for conversion modules 182
established on~-units 100
event control block (ECB)

256-257,202

event I/0 132-135 .
event table (EVTAB) 289
event variables 197,290

control block format and function 290
exclusive block IOCB (XBI) 291
exclusive file block (XBF) 292
exclusive I/70 140
execute interrupt 88
execution time options

handling 68

PLIXOPT 68
exit table, SORT 197
explicit open

stream I/0 153
exponent overflow interrupt 88
exponent underflow interrupt 88
extent, offset to end of (OEE) 85
external conversion director modules 180
EXTERNAL data 65
external reference, weak(WXTRN) 44

F format item DED 280
FCB see file control block
FCBA field in FCB 156
FCPM field in FCB 175
FED (format element descriptor)
format 280-281
FEFT field in FCB 145
FEMT field in FCB 145
FERM field in FCB 145
fields, locating in dump 227
file control block (FCB) 128
FCBA field 156
FCPM field 175
FEFT field 145
FEMT field 145
FERM field 145
fields for buffer operation 156
format and function 293-296
FREM field 156
general description 128
record I/0 295
stream I/0 section 296

Index 333

filenames 127 interrupts

files hexadecimal dump module (IBMBKDO) 109
addressing 21 hierarchy of tasks 255
closing 143,127 hybrid conversion 188

conversational 177-178
declaration 125,127

declaration with COBOL option 251 I/0
exclusive 143 record 125-151
filename 127 stream 146
implicit opening 144,127 stream conditions, detecting 96
information in dump 211 IBMBAAH 191
opening, explicit 128 IBMBAIH 189-190
record variable 130 IBMBAMM 191
FINISH condition 69,90 IBMBANM 191
fixed-point data IBMBAPC 191
binary 181 IBMBAPE 191
decimal 181 IBMBAPF 191
DED 279 IBMBAPM 191
FIXEDOVERFLOW condition 88 IBMBASC 191
floating=-point data IBMBASE 191
binary 181 IBMBASF 191
decimal 181,185 IBMBAYE 191
divide interrupt 88 IBMBAYF 191
underflow interrupt 103 IBMBBBA 191
floating-point registers IBMBBBC 191
saving 103 IBMBBBN 191
usage 19 : IBMBBCI 191
FLOW compiler option 118-121 IBMBBCK 191
library subroutine IBMBEFL 114 IBMBBCT 191
flow of control 24-30 IBMBBCV 191
flow statement table (FST) IBMBBGB 191
format 297 IBMBBGC 191
format element descriptor (FED) IBMBBGF 191
description 61 IBMBBGI 191
format and function 280 IBMBBGK 191
format items 173 IBMBBGS 191
format list matching 173 IBMBBGT 191
format option handling 171 IBMBBGV 191
formatting modules in stream I/0O 180 IBMBEFL 118-121
formatting, conversational files 177 IBMBERR
FORTRAN interrupt 247 DSA in dump 213
FORTRAN-PL/I communication 246-248 general 102-106
free control routine 266 IBMBESM 106-109
free decimal 184 IBMBESN 106-109
free~area chain 79 messages 106~-109
freeing storage 75-85 IBMBIEC 242-246
FREM field in FCB 156 IBMBIEF 246-248
function references 27 IBMBIEP 248-250
fundamental in-line conversions, list IBMBILC1l (interlanguage root control
of 185 block) 238,298

IBMBJWT 198
IBMBMXE 190

get control routine 266 IBMBMXL 190
GET DATA statement IBMBMXS 190
implementation in general 160,168-169 IBMBMXW 190
symbol tables and symbol table IBMBMXY 190
vectors 61 IBMBMXZ 190
GET LIST statement 168 IBMBMYE 190
GETIME macro instruction 192 IBMBMYL 190
GOTO only on-units 30 IBMBMYS 190
GOTO statement 27-29 IBMBMYX 190
label variable 29 IBMBMYY 190
out of block 28 IBMBMYZ 190
within block 28 IBMBOCA 126

IBMBOCL 126
IBMBOPA 126

hardware interrupts see program check IBMBOPB 126
IBMBOPC 126

334

IBMBPAF, controlled variable allocation 20 IBMBRXA exc regional direct upd/input

IBMBPAM 85 trans 126

IBMBPEP - exceptional error message IBMBRXB exc regional direct upd/input
director 112 trans 126

IBMBPEQ - NO MAIN PROCEDURE message 112 IBMBRXC exc regional direct upd/input
IBEMBPER - NO STORAGE message 112 trans 126

IBMBPES - ABEND analyzer 112 IBMBRXD exc regional direct upd/input
IBMBPET - abnormal interrupt message 112 trans 126

IBMBPEV - ABEND analyzer 112 IBMBRYA exc indexed direct upd/input
IBMBPGD 82 trans 126

IBMBPGO, interpretive GOTO 30 IBMBRYB exc indexed direct upd/input
IBMBPGR, storage management 79-82% trans 126

IBMBPII 68 IBMBRYB exc indexed upd/input trans 126
IBMBPIR 68 IBMBRYC exc indexed direct upd/input
IBMBPSL 44 trans 126

IBMBPSM 44 IBMBRYD exc indexed direct upd/input
IBMBPSR 44 trans 126

IBMBRAA regional seqg output trans 126 IBMBSAI 180

IBMBRAB regional seq output trans 126 IBMBSAO 180

IBMBRAC regional seq output trans 126 IBMBSCI 180

IBMBRAD regional seq output trans 126 IBMBSCO 180

IBMBRAE regional seq output trans 126 IBMBSCP, COPY module 175,180
IBMBRAF regional seg output trans 126 IBMBSCV 180

IBMBRAG regional seq output trans 126 IBMBSDI 179-180

IBMBRAH regional seq output trans 126 IBMBSDO 179-180

IBMBRAI regional seq output trans 126 IBMBSED 179-180

IBMBRBA regional seq in/upd trans 126 IBMBSEI 179-180

IBMBRBC regional seq in/upd trans 126 IBMBSEO 179-180

IBMBRBD regional seq in/upd trans 126 IBMBSFI 180

IBMBRBE regional seq in/upd trans 126 IBMBSFO 180

IBMBRBF regional seq in/upd trans 126 IBMBSIC 177

IBMBRBG regional seq ins/upd trans 126 IBMBSII 179

IBMBRCA unbuffered consec trans 126 IBMBSIO 179

IBMBRCB unbuffered consec trans 126 IBMBSIS 180

IBMBRCC unbuffered consec trans 126 IBMBSLI 179-180

IBMBRDA regional direct non-exc trans 126 IBMBSLO 179-180

IBMBRDB regional direct non-exc trans 126 IBMBSOC 177

IBMBRDC regional direct non-exc trans 126 IBMBSOF stream output file

IBMBRDD regional direct non-exc trans 126 trans 126,179-180

IBMBREA record I/0 error module 126 IBMBSOU stream output file

IBMBREB record I/0O error module 126 trans 126,179-180

IBMBREC record I/0 error module 126 IBMBSOV 179-180

IBMBREF ENDFILE module 126 IBMBSPC 177,180

IBMBRIO record I/0 interface 126 IBMBSPI 180

description of functions 126 IBMBSPL 179-180
parameter list 130 IBMBSPO 180

IBMBRJA indexed seg in/upd trans 126 IBMBSTAB 171

IBMBRJB indexed seq in/upd trans 126 IBMBSTF stream output print file
IBMBRKA indexed direct no-exc trans 126 trans 126,179-180

IBMBRKA indexed direct non-exc trans 126 IBMBSTI str:am input trans 126,179-180
IBMBRKB indexed direct non-exc trans 126 IBMBSTU stream output print file
IBMBRKC indexed direct non-exc trans 126 trans 126,180

IBMBRLA indexed direct non-exc trans 126 IBMBSTV stream output print file
IBMBRLB indexed direct non-exc trans 126 trans 126,179-180

IBMBRQA buffered consec non-spanned IBMBSXC 180

trans 126 IBMTJIWT wait module multitasking 269
IBMBRQB buffered consec non-spanned IBMTPIR 260

trans 126 IBMTPSL 44

IBMBRQD buffered consec non-spanned IBMTPSR U4

trans 126 IELCGBB, test for '1' bits 34
IBMBRQE buffered consec input spanned IELCGBO, test for '0' bits 33

trans 126 IELCGCB, compare long bit 33
IBMBRQF buffered consec output spanned IELCGCL, compare long 33

trans 126 IELCGIA, stream input 33

IBMBRQG buffered consec update spanned IELCGIB, stream input 33

trans 126 IELCGMV, move long 33

IBMBRTP teleprocessing input trans 126 IELCGOA, stream output 33

IELCGOB, stream output 33

Index 335

IELCGOC, stream I/O X format items 33,171 KEY condition 88

IELCGON, dynamic ONCB chaining 33 key descriptor (KD) 130,304
IELCGRV, revert VDA chaining 33 key variable 135

implicit close in record 1/0 143,127

implicit open

record I/0 127,144 label data format 305
stream I/0 156 label variables
in-line conversion 183-185 errors when using 30
example of 186 format 305
list of fundamental types 185 general description 29
in-line record I/0 146 last free area (TLFE) 71
INDEX built-in function 191 last-in/first-out (LIFO) storage 75-80
indexing interleaved arrays 190 library calls 32
initial storage area (Isa) 8,68,75,75-78 addressing 32
initialization exanmple of calling sequences 32
FORTRAN 238 general 30
PL/I 65-69 mnemonic letter usage 32
program 65-69 within TCA 32
stream I/0 subroutines 178 library subroutines 31-32
input/output control block (IOCB) 301 arithmetic 189
instruction, associating with module 218 array handling 189-191
INTER option 242 computational 189
interlanguage communication 231-253 conversion package 181
aggregate arguments 231-252,250 in record I/0 126
arrays 250,233 in stream I/0 179
ASSEMBLER option 251 mathematical 189
basic rules 231 naming conventions 32
COBOL option of ENV attribute 251 string handling 189
control blocks 238 workspace 42
FORTRAN calls PL/I 248 library workspace (LWS)
IBMBILC1 238 description 42
interrupt handling 247,249 format and function 306
interrupt in COBOL 246 LIFO (last-in/first-out) storage 75-79
interrupt in FORTRAN 247 LINE format option 171
interrupt in PL/I 249 link-editing 65
NOMAP option 250 list-directed I/0 160
NOMAPIN option 250 listing conventions 15
NOMAPOUT option 250 load module
PL/I calls COBOL 242 entry point 11
PL/I calls FORTRAN 2U46 LOCATE statement 125,130-132
principles 233 locators 53-60
storage 250 aggregate locator format and
structures 250 function 275
use of locators 233 area locators/descriptor format and
vDA 238 function 272
ZCTL 238 string locator/descriptor format and
interlanguage root control block function 318
IBMBILC1l) 298 logical operation subroutines 191

interlanguage VDA 299
internal form of data types 181

interpretive code, need for main procedure
interpretive GOTO routine IBMBPGO 30 no main procedure 65
interrupt control block (ICB) 300 termination 69
interrupt handling 87-121 major free area 76
COBOL 246 modification of do-loop control 38
event I/0 143 module, object 11
FORTRAN 247 movement of expressions out of loops 34
library subroutine IBMBERR 102-106 multiple conversion 188
return from 104 multitasking 255-270
interrupt identification using completion values 268
dump 205-228 following chaining in dump 225
in library module 224 housekeeping 256
interrupt address 215 Isa acguiring 85
invert-aligned-bit-string subroutine library 260
(IBMBBBN) 191 POSTCODES 256
I0CB (inputs/output control block) 301 priority 256
ISA (initial storage area) 68,75 reading dumps, general 228
multitasking 85 TCA tasking appendage (TTA) 256,326

336

multitasking (continued)
WAIT statement 268

NAB (next available byte) pointer 76
NAME condition 174,88

naming of library modules 32

next available byte (NAB) pointer 76
NOCHECK prefix 105,106

NOCONVERSION prefix 188

NOMAP option 250

NOMAPIN option 250

NOMAPOUT option 250

non-LIFO storage 76,79

NOSPIE option 68

NOSTAE option 68

null on-unit 102

NULL values 21

object module 11
object program listing, contents 15
object program listing, example 14
OCB see open control block
OCCURS (COBOL) 250
ODL (ordered delete list) 310
OEE (offset to end of extent) 85
offsets null value 21
ON CHECK 106
ON communications area (ONCA)
chain in dump 223
description 97
dummy 97
format and function 307
ON control block (ONCB)
description 100
format and function 308
ON statement 100-102
on-cells 102
on-code 97
on-units 30,102
GOTO only 30
oNCA 72,307
ONCHAR function/pseudovariable 174
ONSOURCE function/pseudovariable 174
open control block (OCB)
format 309
function 128
OPEN statement 128
opening files
explicit open for record I/O0 128,125
implicit open for record I/O0O 127,143
operating system interfaces
miscellaneous 191-203
see also I/0; error handling;
initialization
operation interrupt 88
optimization
branching around redundant
expressions 37
commoning constants and control
blocks 36
effect on conversions 181
elimination of common expression 34
elimination of unreachable
statements 36
examples of 33-38
general 33-38

optimization (continued)
modification of do-loop control 38
movement of expressions out of loops
rationalization of branches 36

OR logical operation 191

ordered delete list (ODL) 310

output, compiler 11-38

overflow routine, IBMBPGR 79,71

packed intermediate decimal format 181
PAGE format option 171
parameter lists 30
contents in dump 227
PICTURE data
DEDs 280
FEDs 280
PL/I - ASSEMBLER communication 251
PL/I-COBOL communication 231-253
PL/I-FORTRAN communication 231-253
PLIBASE 255
PLICALLA 68
PLICALLB 68
PLICKPT 197
PLICOUNT 120
PLIDUMP facility
how to use 207,215
implementation 109
PLIFLOW 11,120
PLIMAIN 65
format 311
PLISORT 192,197
PLISTART 65,11
PLITABS 171
PLITASK 255
PLIXOPT 68
pointers
BOS 76
COPY option 175
EOS 76
NAB 76
storage handling 76
pointers, null value 21
POLY built-in function 191
POST ECB 256
POSTCODEs list of 256
PRINT files 171
priority of task 256
privileged operation interrupt 88
program check interrupts 96
program control data 22
DED 278-281
program control section 11
contents 18
program management area
prologue 24
example 24
prompting 177-178
protection interrupt 88
pseudo register vector
general description 21
initialization 22
location of 22
purge task subroutine 266
PUT statement 160

69-71

qualified conditions 87

Index

34

337

READ statement 130-132,125
recompilation to obtain dump, avoiding
RECORD condition 88
record descriptor (RD)
record I/0 125-151
control blocks generated 128
error handling 144
in line 146
interface routine (IBMBRIO)
library routines 126
library<call 125
VSAM data sets 130
record variable 135
redundant expressions, branching around
REFER option 54-56,191
register usage 17
branch and link 18
compiled code 18
DO loop control 19
preferred registers 19
static backchain 19
registers 19
even/odd pairs 19
floating point 19
library usage 19
work 19
relative virtual origin (RVO)

135,312

130

53,54-56

REPEAT built-in function 191
REPLY option 192
report table 82
request control block (RCB)
description 130
format and function 313

RETURN statement 27

save areas
IBMBPGR 71
IBMBPIR 71
registers in dump 220
SAVE field in SIOCB 156
SCNT field in SIOCB 156
SFCB field in SIOCB 156
SFLG field in SIOCB 156
shared library 44-50
initialization 50
link pack area 48
multitasking 50
region 48
SIGNAL statement 96
significance interrupt 96
SIZE condition 88,103
SKIP format option 171
SLD (string locator/descriptor)
subroutine 191
SOCA field in SIOCB 156
software interrupts
definition 87
main discussion 103-105
SORT exit 197
sort/merge facility 192
source definition 146
specification interrupt 88

squashed mode 178

SRTN field in SIOCB 156
SsDD field in SIOCB 156
" 8SRC field in SIOCB 156
SSTR field in SIOCB 156

338

209

37

standard save area, operating system 75
statement frequency count table
discussion 120
format and function
statement number
in messages 107
of error, in dump 221
statement number table (SNT or DST)
location in dump 227
static backchain 26
in dump 224
static control sections 15
static descendency 87
static internal control section 15
static ONCBs 100
static storage map 15
example 13
static variables 21
locating in dump 226
STATUS function/pseudovariable
STDD field in SIOCB 156
storage
initial storage area (ISA) 68
main discussion 75-85
routine IBMBPGR 77-82
segments 76,79
storage report table
format 316
storage reports 82-85
implementation 82-85
information given 82
multitasking 84
stream I/0 146
built-in functions
conditions 174-176
COPY option 175
COUNT function 174
DATAFIELD function
director routines
end of file 174
external conversion director
modules 180
file opening 156
format items 169
format lists 171
formatting modules
implicit open 156
initializing modules 179
ONCHAR function/pseudovariable
ONSOURCE function/pseudovariable
transmitter modules 179-180
stream I/O control block (SIOCB)
STRG field in SIOCB 156
strings
adjustable 189
built in functions
DED 278
descriptor 318
FED 281
length 54-56
locator/descriptor 54-56,318
STRING function/pseudovariable
STRING option 175
STRINGRANGE condition 90
STRINGSIZE condition 90,189
structures
assignments 23
COBOL 250

314

315

197

174
174

179

180

174
174

156,317

189,191

191

structures (continued)
descriptor 54-56,319
element (definition) 53
implementation of 23
interlanguage communication
mapping 250,54-56
of arrays 54-56
structures of arrays 23
subroutines, compiler-generated 180
SUBSCRIPTRANGE condition 90
SUBSTR built-in function 191
SUM built-in function 191
symbol table (SYMTAB)
format 320
general 61
symbol table element list see symbol table
vector
symbol table vector 61
format 322
SYMTAB see symbol table
system action, standard
definition 87
system detected interrupts 96

250,233

tab table 171
target, definition 146
task communications area (TCA)
appendage (TIA) 71,325
description 69-71
format 323
tasking appendage (TTA)
task variable
format and function 327
tasking appendage (TTA) 256,326
TCA see task communications area
temporaries 20
temporary variables (temporaries) 20
storage 75
termination of program 69
TIA (TCA implementation appendage)
TIME built-in function 191
trace
FLOW option 114
following through dump 219
information in dump 210
transfer vector 44
transient library 40-50
TRANSLATE built-in function 191
transmission statement
in record 1,0 125,130
TRANSMIT condition 145
detecting 96
transmitter modules
record I/0 126
stream I/0 179-180
TSO (time sharing option)
TTA (TCA tasking appendage)
format 326
general 256-258
TXT records 11

256,326

71,325

177-178

unaligned bit strings 181
UNDEFINEDFILE condition 88
UNDERFLOW condition 88
unqualified conditions 87
use of locators 233

user exits 192

variable data area (VDA)
interlanguage communication

variables 20
AUTOMATIC 19
BASED 20
CONTROLLED 20
entry 287
EXTERNAL 65
label 305
locating in dump
pointer 21
STATIC 21
temporaries 20

varying-length strings

226-228

internal representation 181
VERIFY built-in function 191
VSAM data sets 130

opening 130
WAIT ECB 256
wait event table (WIT) 268,328

WAIT macro instruction 192
WAIT statement
multitasking 268
non-multitasking 198
weak external reference (WXTRN)
WIT (wait event table) 268,328
WRITE statement 130-132,125

WXTRN (weak external reference)

X format items 171,180
XBF (exclusive file block)
XBI (exclusive block IOCB)

292
291

ZCTL (zygo-lingual control list)
ZERODIVIDE condition 88
zygo-lingual control list (ZCTL)

238,299

by

4y

238,329

238,329

Index

339

8ui Buojy pjod4 40 31nD

OS PL/I Optimizing Compiler: READER'’S
Execution Logic COMMENT
SC33-0025-2 FORM
Your views about this publication may help improve its usefulness, this form

will be sent to the author’s department for appropriate action. Using this

form to request system assistance or additional publications will delay response,

however. For more direct handling of such requests, please contact your

IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity = Accuracy Completeness Organization Index Figures Examples Legibility

Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.) ‘

$C33-0025-2

Your comments, please . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

L S et N 4.1\ S
First Class
Permit 40
Armonk
New York
L]
]
Business Reply Mail ——
No postage stamp necessary if mailed in the U.S.A. —
[]
T
I
. .]
Postage will be paid by: [r—
International Business Machines Corporation N
Department 813(HP)
1133 Westchester Avenue
White Plains, New York 10604
Fold Fold

JISIME

B

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

aur buoyy pjog 40ny

C-GZ00-€EDS "V'S'N Ul palutld (6Z-0LES/09ES "ON 2|14) 21607 uonndex3 :us|idwo) BuiziwiidQ 1/1d SO

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239a
	239b
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	replyA
	replyB

