
Program Product

SC33-0025-2
File No. S360/S370-29

OS
PL/I Optimizing Compiler:
Execution Logic

Program Numbers 5734-PL 1
5734-LM4
5734-LM5

(These program products are available
as composite package 5734-PL3)

Thi~9_~9iti2~ (April 1973)

This is a major revision of and obsoletes SC33-0025-0 and
SC33-0025-1. Information has been included on the new
features that are available with release 2 of the PL/I
optimizing Compiler as follows:

COUNT option
VSAM data sets
ASSEMBLER option

Chapter 7
Chapter 8
Chapter 13

A number of minor changes and corrections have also been
made throughout the book. A new topic heading "How
Addressed" has been added to the control block descriptions
in appendix A. I~hni£al changes are marked with a vertical
line to the left of the change.

This edition applies to Version 1 Release 2 Modification 0
of the os Optimizing Compiler and to all subsequent releases
until otherwise indicated in new editions or Technical
Newsletters.

Changes will continually be made to the information herein;
before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360
and System/370 Bibliography Order No. GA22-·6822, and
associated Technical Newsletters for the editions that are
applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM United Kingdom Laboratories Ltd.,
programming publications, Hursley Park, Winchester,
Hampshire, England. Comments become the property of IBM.

IBM is grateful to the American National standards Institute
(ANSI) for permission to reprint its definitions from the
American National standard Vocabulary for Information
processing (copyright 1970 by American National Standards
Institute, Incorporated), which was prepared by Subcommittee
X3.5 on rerminology and Glossary of American National
standards Committee X3.

e Copyright International Business Machines Corporation
1971,1972

ii

The main purpose of this publication is to
explain, in general terms, the way in which
programs compiled by the OS PL/I Optimizing
Compiler (Program Number 5734-PL1) are
executed. It describes the organization of
object programs produced by the compiler,
the contents of the load module, and the
main storage situation throughout
execution. The information provided is
intended primarily for those involved in
maintenance of the compiler and its related
library program products. The publication
will also provide valuable information for
applications programmers, since a knowledge
of the way in ~hich source program
statements are executed will lead to the
writing of more efficient programs. The
book also contains a chapter on how to
obtain and read a PL/I dump.

Although different source programs
produce different executable programs, the
structure of every executable program
produced by the compiler is basically the
same. This structure is explained in
chapter 1. Chapters 2,3,4, and 5 describe
the various elements that make up the load
module. Chapters 6 and 7 explain the
housekeeping and error-handling schemes.
Chapters 8, 9, 10, and 11 describe the
implementation of various language
features, the majority of which are handled
by a combination of compiled code, PL/I
library routines, and Operating System
routines. Chapter 12 is the guide to
obtaining and using dumps. Chapter 13
deals with interlanguage communication.
The final chapter, chapter 14, discusses
those aspects of execution that apply only
to a multitasking environment. In
addition, appendix A contains details of
all control blocks that can exist during
execution.

The reader of this publication is
assumed to have a sound knowledge of PL/I,
and a working knowledge of the IBM
system/360 operating System and its
assembler language. It is recommended,
therefore, that the reader should be
familiar with the content of the following
publications:

OS ~L/! ChgQ~Q~~ and Q2~!mi~!ng
C0!!!Eile!:§: Lang~g~ Ref~~n£~ Manua!,
Order No. SC33-0009
§.yst§!J!J.&Q ~!:!n£!E!~§ Qi Operation, Order
No. GA22-6821

Preface

In~!:Qguct!Qn iQ §y~~ill Control Programs,
Order No. GY24-5017

This book reakes reference to the following
publications for related information that
is beyond its scope:

~!:Qg~~ill~~§_~uig~, Order No. SC33-0006

~rog!:~~Q9i£, Order No. LY33-6007

§ysteill-In!Q!:m~~!Qn, Order No. SC33-0026

§.~~fyisof ~nQ ~~t~ ~~nagement ~ro
In§tru£iion§, Order No. GC28-6647

Ig~ §y§~~m/I&Q Bef~!:~n£~ Dat~ £ard, Order
No. GX20-1703

Q§ PLL! Resident 1ibr~!:y: PrQg~ Logi£,
Order No. LY33-6008

Q§ Linkaq~ ~diiQf anQ 1oader,
Order No. GC28-6538

Q§ Sup~rvisof ~ng ~at~ Management Mac!:Q
Instruc~!Qn§, Order No. GC28-6647

The availability of a publication is
indicated by its ~_~~y, the first letter
in the order number. The use keys are:

G - General: available to users of IBM
systems, products, and services
without charge, in quantities to meet
their normal requirements; can also be
purchased by anyone through IBM branch
offices.

L - Licensed materials, property of IBM:
available only to licensees of the
related program products under the
terms of the license agreement.

S - sell: can be purchased by anyone
through IBM branch offices.

iii

ContE!nts

CHAPTER 1: INTRODUCTION 1
Processing a PL/I Program • • • • •• 1

Compilation 1
Link-editing • • • • • • • 1
Execution • • • • 1

Factors Affecting Implementation 3
Key Features of the Executable

program • • • • • • • • • • • • 3
Communications Area • • • • 3
Dynamic storage Allocation • • 3
Use of Library Subroutines • 5
Initialization/Termination
Routines • • • • • • • • 5

contents of a Typical Load Module •• 5
The Overall use of Storage • • • •• 8
The Process of Execution 8

CHAPTER 2: COMPILER OUTPUT. • • •• 11
Introduction • • • • • • • •• 11

The Organization of this Chapter 12
Listing Convent~ons • • • • 12

static-Storage Map • • • • • • •• 15
Object-Program Listing • • • • 15

static Internal control Section • 18
Program Control Section • • 18

Register Usage • • • • • • 18
Dedicated Registers • • • • 19
Work Registers • • • • • • • 19
Floating-Point Registers • • 19
Library Register Usage • • • 19

Handling and Addressing Variables and
Temporaries •••••••••••• 19

Automatic Variables • • • • • •• 19
Compiler-generated Temporaries •• 20

Temporaries for Adjustable
Variables • • • • • • • • • •• 20

Controlled variables • 20
Based Variables 20
Static Variables • • • 21
Addressing Beyond the 4K Limit •• 21
The .Pseudo-Register Vector (PRV). 21

Addressing controlled Variables
and Files • • • • • • • • • 21

The Location of the PRV 22
Initialization of the PRV 22

program Control Data • • • •• 22
Handling Data Aggregates • • • 23
Arrays of Structures and
structures of Arrays • • • • 23

Array and structure Assignments 23
Handling Flow of control • • •• 24

Activating and Terminating Blocks 24
prologue and Epilogue Code 26

prologue • • • • • • • 26
Epilogue • • • • • • • • • • •• 26
CALL Statements 27
Function References 27
END Statement •• •• 27
RETURN Statement • • • • • • 28

GOTO Statements • • • • • • 28
GOTO within a Block • • •• 28

iv

GOTO out of Block
GOTO Label Variable
Errors when Using Label
Variables • • • • • • • •

GOTO-only On-Units • • •
Interpretive GOTO routines •

Argument and Parameter Lists
Library Calls • • • • • • • •

Setting-Up Argument Lists
Addressing the Subroutine

DO-loops • • • • • • • • • • • •
Compiler-generated Subroutines
Optimization and its Effects

Examples of Optimized Code
Elimination of Common

Expressions • • • • • • • • • •
Movement of Expressions out of

Loops • • • • • • • • • •
Elimination of Unreachable

Statements • • • • • • • •
simplification of Expressions
Modification of DO-loop Control
Variables • • • • • • • • •

Branching around Redundant
Expressions • • • • • • • •

Rationalization of Program
Branches •• • • • • • • •

Use of Common Constants and
Control Blocks •• • • • •

CHAPTER 3: THE PL/I LIBRARIES
Resident and Transient Libraries
Naming Conventions
The Multitasking Library •
Library Workspace • • • • • • • •

Format of Library Workspace • • •
Allocation of Library Workspace

Library Modules and Weak External
References • • • • • • • • • • • • •

The Shared Library ••• • • . • • •
Communication between Program

Region and Link-Pack-Area • • •
Execution when Using the Shared
Library • • • • • • • • • • • •

Program Initialization • • • • •
Initializing the Shared Library
Multitasking Considerations

CHAPTER 4: COMMUNICATION BETWEEN
ROUTINES •

Notes on Terminology • • • •
Descriptors and Locators • •

String Locator/Descriptor
Area Locator/Descriptor • • • •
Aggregate Locator
Array Descriptor • •
Structure Descriptor
Aggregate Descriptor Descriptor
Arrays of Structures and
Structures of Arrays • • • • •

Data Element Descriptors • • • • •

29
29

30
30
30
30
31
31
32
32
33
33
33

34

34

36
37

37

37

38

38

41
41
41
42
42
42
44

44
44

48

48
48
50
50

53
53
53
55
55
55
55
55
57

57
57

Symbol Tables and Symbol Table
Vectors • • • • ~ • • • • • 61

CHAPTER 5: OBJECT PROGRAM
INITIALIZATION. • • • • • • • • •• 65

Link-editing • • • • • • • • • • 65
Program Initialization • • • • • • • 65

Initialization and Termination
Routines • • • • • • • • • • 66

Resident
Initialization/Termination
Routine IBMBPIR • • • • • • 66

The Process of Initialization 68
Handling Execution Time Options 68
Acquiring the ISA • • • • • •• 68
Initialization of the Program

Management Area • • • • • • •• 68
Initializing PL/I Error Handling 68
Error Situations • • • • • • •• 69
The Process of Termination • •• 69

The Program Management Area ••• 69
Task Communications Area (TCA). 69
TCA Implementation Appendage •• 70
Save Area for IBMBPGR 71
Dummy ONCA • • • • 71
Translate-and-Test Table • • 71
Dump File Block • • • • 71
Loaded Module or Ordered Delete
List • • • • • • • • • • • •• 71

Dummy Tasks and Event Variables 71
Diagnostic File Block 72
Dummy DSA • • • • • • • • • •• 72
Library Workspace (LWS) •••• 72
ON Communications Area (ONCA) 72
Pseudo-Register Vector • 72

Mul ti tasking • • • • 72

CHAPTER 6: STORAGE MANAGEMENT 75
Types of Dynamic Storage Required 75

Contents of LIFO (Last-In/First
Out) storage • • • • • • • •• 75

Contents of Non-LIFO Storage •• 75
Dynamic Storage Allocation • • • •• 76

Fields Used in Storage Handling 76
Allocating and Freeing LIFO

Storage • • • • • • • • • •• 76
Allocating and Freeing Non-lIFO

Storage • • • • • • • • • • • • • 79
Acquiring a New Segment of LIFO
Storage • • • • • • • • • • • 79

IBMBPGR - storage Management
Routine • • • • • • • • • • • 79
Allocating Non-LIFO Storage

(IBMBPGRA) •••••••••• 80
Freeing Non-LIFO storage

(IBMBPGRB) • • • • • • •• 80
Segment Handling (IBMBPGRC and

IBMBPGRD) • • • • • • • • • •• 80
Storage Reports • • • • • • • • • •• 82

Action during Initialization •• 83
Action during Execution • • •• 83
Action on Termination • • • •• 83
Storage Reports for Multitasking

Programs • • • • • • ~ • • 84
Storage Management in Programmer-
allocated Areas •• • • • • • • 84

Multitasking Considerations 85
Acquiring the ISA when
Multitasking • • • •. 85

CHAPTER 7: ERROR AND CONDITION
HANDLING • • • • • • • • • • • • • • 87

87
88
88
88
93

Terminology • • • • • •
Background to Error Handling • • • •

System Facilities
PL/I Facilities • • • • • • •

Implementation of Error Handling
Detecting the Occurrence of
Conditions • • • • • • • • • • • • • 96

96
96
96
96

system Detected Conditions • •
software Detected Conditions •••

Detecting I/O Conditions •
Executing Signal statements
Passing Information about
Interrupt • • • • • • • • • •
Error Code • • • • • • • • • • •

96
97
97
97

Condition Built-in Functions • •
Chain of CNCAs • . • • •

Establishment and Enablement
Information • • • • • • 99

Enablement • • • • • • • • 99
Qualified Conditions • • • • • • 100

Establishment - Executing ON and
REVERT Statements • • • • •
Qualified Conditions •••
Unqualified Conditions • • •

Handling On-units •• • • • • •
rhe Logic of the Error Handler •

IBMBERR - Error-handling Module
Program Check Interrupts • • • •
Software Interrupts • • • • •
Return to Point of Interrupt • •

Software Interrupts • • • •
Program Check Interrupts • •

The Check Condition • • • • • •
Raising tve Check Condition
Testing for Enablement • • •
Searching for Established On
Units • • • • • • • •

Standard System Action •
Error Messages •• • • • • •

Message Formats • • • •
Interrupts in Library Modules
Identifying the Erroneous

• 100
100
102

• 102
102

• 102
• 103

103
• 104

104
105

• 105
105
106

106
• 106
• 106
• 106
• 107

Statement·. • •• • .'. • • • • 107
Identifying Entry Point Name and
Statement Number • • • • • • • 107

Filename and Name of CONDITION
Condition • • • • • 108

Message Text Modules • • 108
Diagnostic File Block • 108

Dump Routines • • • • • • • • 109
DumpFile • • • • • • • 109

Miscellaneous Error Modules • • 112
Abend Analyzers • • • • • 112

Exceptional Error Message Modules 112
The FLOW and COUNT Options • • • • • 114

Implementation of FLOW and COUNT • 115
Tables Used by FLOW and COUNT • 115
Executable Code for FLOW and

COUNT • • • • • • • • • •
Action During Compilation
Action During Program
Initialization •• • •

Action During Execution
Action on Output

• 115
• 117

• 118
• 118
• 120

v

CHAPTER 8: RECORD-ORIENTED
INPUT/OU~PUT • • • • • • • 125

125
125
125

Introduction • • • • • • • • • • • •
Summary of Record I/O Implementation

File Declarations
OPEN statements ••••
Transmission Statements
CLOSE Statements
Implicit Open • • • •
Implicit Close • • • • • •

Access Method • • • • • •

125
125

• • 127
• • 127

127

File Declaration Statements • •
Execution

• • 127
127
127

OPEN Statement •••••••
Execution • • • • • •

• 130
• • • 130

Actions Carried Out by Transient
Open Routines • • • •

VSAM Data sets • • • • • • • • •
The FCB and File Addressing

Transmission statements (Library-Call

130
130
133

I/O) • • • • • • • • 135
Compiler output 135
Execution • • • 138
Transmitter Action • • 138

EVENT Option • • • • • 138
Execution • • • • • • • • 140
Use of the IOCB • • 140
Allocation of IOCBs •• 140
IOCBs and Dummy Records • • 140
Raising Conditions in Event I/O 140
Excl usi ve I/O • • • • • • 140

CLOSE Statements and Implicit Close • 143
Compiler output • • • • • • • • 143
Execution • • • • • • • • • • • 143

Implicit Open for Library-Call I/O • 143
Compiler output • • • • • • • • 143
Execution • • • • • •• 143

Error Conditions in Transmission
• • 144

• • • • 146

Statements • • • • • • • •
General Error Routines

(Transient) • • • •
ENDFILE Routine
TRANSMIT Condition •

• • • • • • 146
• • • • • • 146

In-line I/O Statements
Control Blocks • • •
Executable Instructions

• 146
• • • 146

146
Error Conditions • • • • • • •
Implicit Open for In-Line calls

• 146
147

CHAPTER 9: STREAM-ORIENTED
INPUT/OUTPUT • • • • • • • •

Note on Terminology
Introduction • • 4 • • •

Operations in a stream I/O

• 153
• • • 153

• 153

statement • • • • • • 153
stream I/O Control Block (SIOCB) 154

File Handling • • • 154
Transmission • • • 154
Opening the File • • • 156
Implicit Open • • • • • 156
Keeping Track of Buffer position 156
Enqueuing and Oequeuing on

SYSPRINT • • • • • • • • • • • 156
Handling the Conversions • 160
Handling GET and PUT Statements 160
List-directed GET and PUT statements 160

vi

PUT LIST statement • 160
GET LIST Statement • • • • • ~ • 168

Data-directed GET and PUT Statements 168
Identifying the Name • • • • • • 169

Edit-directed GET and PUT statements 169
Compiler-generated subroutines • 169
Handling Control Format Items • 17ri
Matching and Non-Matching Data

and Format Lists • 170
Formatting for Print Files ••••• 170
Handling Format Options ••••••• 171
Input and Output of Complete Arrays. 174
PL/I Conditions in Stream I/O •••• 174

TRANSMIT Condition. • • 174
CONVERSION Condition •• 174
NAME Condition. • • • • 174
ENDFILE Condition and Unexpected

End of File •••••.•..• 174
Built-in Functions in Stream I/O •• 174
The COPY Option • • • • .. • •• • 175

Handling the Copy File. •• 175
The STRING Option • • • • • • • • • • 175

Completing String-handling
Operations •. 177

The Time-Sharing Option (TSO) and
Conversational Files • • • • • • . • 177

Conversational Transmitter Modules 177
Output Transmitter IBMBSOC ••• 177
Input Transmitter IBMBSIC ••• 177

Formatting • • • • • • • •• • 178
Formatting Module IBMBSPC • 178

Summary of Subroutines Used ••••• 178
Initializing Modules • • • •• 178
Director Modules . • • • • • • • • 179

Library Director Routines ••• 179
Modules Used with Compiler

generated Subroutines ••••• 179
Module for Complete Library
Control of Edit-directed I/O of
a Single Item • • • • • • • • • 179

Compiler-generated Director
Routines ••••• • • • • • • 179,

Transmitter Modules ••••••• 179
Formatting Modules • • • • • • • • 180

Library Subroutines •••• 180
Compiler-generated Subroutine • 180

External Conversion Director
Modules • • • • • • • • • • • • • 180

Conversational Modules • • • • • • 180
Miscellaneous Modules • • • • • • 180

CHAPTER 10: DATA CONVERSION •••• 181
Note on Terminology •• 181

The Library Conversion Package • • • 181
Conve~sion Module Naming
Conventions • • • • • •• • 182

specifying a Conversion Path • 182
Housekeeping when more than one

Module is Used • • • • • • • • • 182
Arguments Passed to the Conversion

Routines • • • • • • • • • • • • 182
Communication between Modl.lles • • 184
Free Decimal Format • • • •• 18"

In-Line Conversions • • • • • • • • • 185
Note about picture Variables • • 185
Example: Fixed-Binary to Fixed

Decimal (Compiler Conversion
No.6) ••••••• • • 186

Multiple Conversions • • ~ •••• 187

Hybrid Conversion • • • • •• 187
Raising the CONVERSION Condition 188

CHAPTER 11: MISCELLANEOUS LIBRARY
SUBROUTINES AND SYSTEM INTERFACES

Computational and Data-handling
Subroutines • • • • • • • •

Arithmetic and Mathematical
Subroutines • • • • • • • •

Array, String, and structure
Subroutines • • • • • • • • •
Handling Interleaved Arrays

(IBMBAIH) • • • • • • • • • •
Structure Mapping (IBMBAMM)

Miscellaneous System Interfaces • •
Time • • • • • •
Date • • • • • •
Delay • • • •
Display • • • • •
Sort/Merge • • • • • • • • • •

Housekeeping Problems
Restoration of the PL/I

• 189

189

189

189

• 190
191

• 191
191
192
192
192
192
194

Environment on Exit from SORT • 194
Summary of Work Done by the SORT

Module • • • • • •••• 194
Storage for SORT • • • • •. 197

Checkpoint/Restart • 197
Wait • • • • • • • • • • • • • • • 197

Event Variables •••••••• 197
WAIr Statement (Non
Multitasking) ••••••••• 198

Housekeeping Problems 198
Control Blocks • • • • 202
Wait Module (IBMBJWT) 202

CHAPTER 12: DEBUGGING USING DUMPS • 205
How to use this Chapter • 205

Section 1: How to Obtain a PL/I Dump 207
Call PLIDUMP • • • • • • • • • • • 207
Recommended Coding • • • • 207
Avoiding Re-compilation •• • • • 208
Contents of a PL/I Dump 208

Headings • • • • • • • • •• 208
Trace Information ••••• 210
File Information. 211
Hexadecimal Dump. • •••• 212
Block Option. •• • •• 212

section 2: Recommended Debugging
procedures • • • • • • • • • • • •

Debugging Procedures • • • • •
PL/I Dump Called from On-Unit
OS ABEND Dump • • • • • •

Section 3: Locating Specific
Information • • • • • • • • •

Contents • • • • • • • • • • •

• 2.12
215

• 215
• 215

• 217
217
217
217
217

Key Areas of a PL/I Dump • • • •
Key Areas of an ABEND Dump • • •
Stand-alone Dumps • • • • • • •
Housekeeping Information in all

Dumps ••••••••••••• 217
Finding Variables ••••••• 217
Control Blocks and Fields ••• 218

Key Areas of a PL/I Dump ••••• 218
Pl: Statement Number and Address

where Error Occurred (Dump
Called from On-Unit only) ••• 218

P2: Type of Error (Applies to
Dump called from On-Unit only) 218

P3: Register contents at Time
of Error or Dump Invocation

P4: The DSA Chain •••••
P5: The TCA • • • • • • • • •

Key Areas of an ABEND Dump •
01: Address of Interrupt
02: Type of Interrupt ••••
03: Register Contents at the

218
219

• 219
• 219
• 219
• 219

Point of Interrupt •••••• 219
04: The DSA chain ••••••• 221
05 : The' T CA • • • • • • • • • • 22 1
06 Finding. the Program Interrupt

Element (PIE) • • • • • • 221
Stand-alone Dumps • • • • • 221

Sl: Finding Key Areas i~ Stand
alone Dumps • • • • • • • • • • 221

Housekeeping Information in all
Dumps • • • • • • • • • • • ••• 221

H1: Following the DSA Backchain ~21
H2: Associating Instruction
with Correct Statement and
Program Block • • • • • •• 221

H3: Following Calling Trace 223
H4: Associating DSA with Block 223
H5: Finding Relevant ONCA • • • 223
H6: Following the Chain of

ONCAs • • • • • • • • • • 223
H7: Finding Information from

IBMBERR's DSA ••••••••• 223
H8: Finding and Interpreting
Register Save Areas • • • • • • 223

H9: Register Usage • • • • • • 224
Hl0: Following Free-Area Chain 224
Hl1: Finding the Task Variable 224
H12: Block Structure of Program

(Static Backchain) •••••• 224
H13: Forward Chain in DSAs 224
H14: Action if Error is in a
Library Module • • • • • 224

H15: Discovering Contents of
Parameter Lists • • • • • • • • '225

H16: Finding Main Procedure DSA 225
H17: Finding the Relationship

between Tasks • • • • • • • • • 225
To Find the Parent Task • 225
To Find all Subtasks of a Task. 225'
To Find Sister Tasks • • •• 225
H1S: Finding the Tasking

Appendage • • • • • • • • • • • 225
H19: Finding the TCA from the

Tasking Appendage • • • 226
Finding Variables •• • • • • 226

V1: Automatic Variables • • • • 226
V2: static Variables •••• • 226
V3: Controlled Variables • 226
V4: Based Variables • • •• 226
V5: Area Variatles • 226
V6: Variables in Areas • 226

Control Blocks and Fields •••• 226
C1: Quick Guide to Identifying

Control Fields
special considerations for
Multitasking • • • • • • • • •

CHAPTER 13: INTERLANGUAGE
COMMUNICATION • • • • • • • •

Summary of Interlanguage
Facili ties • • • • • •

227

• 228

• 231

231

vii

Background to Interlanguage
Communication • • • • • •

Differences in Data Aggregates
Use of Locators • • • • • • •
Differences of Environment • •
The Principles of Interlanguage

Communication • • • • • • • •
PL/I Calls COBOL or FORTRAN
FORrRAN or COBOL Calls PL/I
Retaining the Environment

231
233
233
233

233
234

• • 234
234

Handling Changes of Environment • •
Interlanguage Housekeeping
Routines and their Control

• 238

Blocks • • • • • • • • • • • • 238
Handling FORTRAN and PL/I
Initialization/Termination
Routines • • • • • • • • •

Handling the INTER Option
STOP and STOP RUN Statements

Housekeeping .Module Descriptions
COBOL when Called from PL/I

238
242
242
242

(IBMBIEC) • • • • • • • • • • 242
Before Entry to COBOL Program. • 242
On Return from COBOL Program

(IBMBIECC) •••••••••. 242
Action on Interrupt in COBOL
with INTER •••• • • • •

Zerodivide On-Units • • ••
Handling STOP RUN statements

FORT:RAN when Called from PL/I

246
246
246

(IBMBIEF) • • • • • • • • • •
Before Entry to the FORTRAN

Program • • • • • • • • • •
Action on Return from FORTRAN

246

246

Program (IBMBIEFC and IBMBIEFD) 247
Action on Interrupt in FORTRAN • 247
Termination of Caller • • • • • 248
STOP statements • • • • • 248

PL/I Called from COBOL or FORTRAN
(IBMBIEP) • • ••••••••
Before Entry to PL/I Program

248

(IBMBIEPA) • • • •
Action after the PL/I Program is

248

249
249
249

Completed • • • • • • • • • • •
Interrupt Handling • • • • • • •
Termination of PL/I Environment
STOP and STOP RUN statements • • 249

Handling Data Aggregate Arguments • • 250
250
250

Arrays • • • • • • • •
structures • • • • • • • • • •
Methods Used to Handle Data

Aggregate Arguments • • • • • • • 250
NOMAP, NOMAPIN, and NOMAPOUT
Options • • • • • •••• 250

Calling Sequence • • • • • • • • • 251
ASSEMBLER Option • • • • • • • • 251
COBOL Option in the Environment
Attribute • • • • • • • • • 251

CHAPTER 14: MULTITASKING • • 255
Introduction • • •. • • • 255

The Concept of the Control Task 255
Communication between Tasks 256
Holding the priority of the Task 256

Multitasking Housekeeping • • • • • • 256
The Multitasking Library • • 260
How the Control Task Operates 265

viii

Attaching a Task ••• • • • • • • • 265
Failure of CALL ••• TASK
statements ••••• 266

Detatching a Task • • • • • 266
Abnormal Termination of a Task • 266

The Get-Control and Free-Control
Routines • • • • • •• • • • • • 266

Altering COMPLETION and PRIORITY
Values • • • • • • • • • • • • 268

Executing the WAIT Statement 268
The Wait Module IBMTJWT 269

Enqueuing and Dequeuing on SYSPRINT • 270

APPENDIX A: CONTROL BLOCKS • • • • • 271
Area Locator/Descriptor • • • • • 272

Area Descriptor • • • • 272
Area Variable Control Block • . 273
Aggregate Descriptor Descriptor • 274

Structure Element 274
Base Element • • • • • • • • • • 274

Aggregate Locator • • • • • . 275
Array Descriptor 276

Arrays of Strings or Areas • 276
Controlled Variable Block • • • • 277
Data Element Descriptor (OED) • 278

Format of DEDs • • • • 278
General Format • • • • 278
OED for STRING data • • 279
DED for FLOAT Data • • • • • 279
DED for FIXED Data • •• • • 279
DED for PICTURE STRING Data 279
OED for PICTURE DECIMAL
Arithmetic Data • • • • • •

OED for PROGRAM CONTROL Data
FORMAT DEDs - FEDs • • •

OED for F and E FORMAT Items
(FED) • • • • • • • • •

DED for PICTURE FORMAT
Arithmetic Items (FED)

DED for PICTURE FORMAT character
Items (FED) • • • • •

DED for C FORMAT Items (FED)
OED for CONTROL FORMAT Items

(FED) • • • • • • • •
OED for STRING FORMAT Items

(FED) • • • • • •
Declare Control Block (DCLCB)
Diagnostic File Block (DFB) •
Dynamic Storage Area (DSA)
Dump Block (DUB) •••••
Entry Data Control Block
Environment Block (ENVB)
Event Table (EVTAB) • • •
Event Variable Control Block • • • •
Exclusive Block IOCB (XBI)
Exclusive Block File (XBF)
File Control Block (FCB)

Common Section • • • •
Record I/O section • •
Stream I/O Section • •

Flow Statement Table
Where Held • • • • • •

Interlanguage Root Control Block
(IBMBILC1) • • •

Interlanguage VDA • • • • • • • •
Interrupt Control Block (rCB) • •
Input/Output Control Block (IOCB)
Key Descriptor (KD) • • • • • • •

279
280
280

280

2.80

281
281

281

281
282
283
284
286
287
288
289
290
291
292
293
293
295
296
297
297

298
299
300
301
304

Label Data Control Block · · · · · · 305 statement Frequency Count Table · · · 314.
Label Variable and Label statement Number Table · · · · · · · 315

temporary · · · · · · · · · 305, storage Report Table · · · · · · · · 316
Label Constant · · · · · · · · I 305 Stream I/O Control Block (SIOCB) · · 317

Library Workspace (LWS) · · · · 306 String Locator/Descriptor · · 318
On Communications Area (ONCA) · · 307 structure Descriptor · · · · · · · · 319

Dummy ONCA · · · · · · · · · 307 Symbol Table (SYMTAB) · · · · · · · · 320
On Control Block (ONCB) · · · · · 308 Symbol Table Vector · · · · · · · 322

Static and Dynami-c ONCBs · 308 Task Communications Area (TCA) · · · 323
Open Control Block · · · · · · · 309 TCA Appendage (TIA) · · · · · 325
Ordered Delete List (OaL) · 310 rCA Tasking Appendage (TTA) · · · · · 326
PLIMAIN · · · · · · · · · · · 311 Task Variable (TV) · · · · · · · · · 327

Dummy PLIMAIN .. · · · · · · · · 311 Wait Information Table (WIT) · 328
Record Descriptor (RD) · · · · 312 Zygo-Lingual Control List (ZCTL) 329
Request Control Block (RCB) · · 313 INDEX · · · · · · · · · 331

ix

Figures

Figure 1.1. The process of running a
PL/I program • • • • • • • xiv

Figure 1.2. Use of PL/I dynamic
storage •• • • • • • • • • • • 2

Figure 1.3. Contents of a typical
load module • • • • • • • • • • •• 4

Figure 1.4. Use of storage • • • •• 6
Figure 1.5. Flow of control during

execution • • • • • • • • • • • 7
Figure 2.1. The output from the

compiler • • • • • • • • • • • • •• 10
Figure 2.2. contents of listing and
associated compiler options 12

Figure 2.3. Example of static
storage listing ••••••• 13

Figure 2.4. Part of an object
program listing (For source see
Figure 2.3) •••••••••• 14

Figure 2.5. Register usage in
compiled code • • • • • 17

Figure 2.6. Library register usage 20
Figure 2.7. Use of the pseudo
register vector (PRV) ••••••• 22

Figure 2.8. Typical prologue code 24
Figure 2.9. contents of typical

compiled code DSA • • • • • • • 25
Figure 2.10. Epilogue code. • • 27
Figure 2.11. Examples of library
calling sequences • • • • • • • 31

Figure 2.12. Mnemonic letters in
library module entry-point names •• 32

Figure 2.13. Offsets where addresses
of library modules are held in the
TCA • • • • • • • • • • • • • • •• 32

Figure 2.14. Modification of do-loop
control variable • • • • • • • • 35

Figure 2.15. Branching around
redundant expressions 36

Figure 2.16. Use of common constants 36
Figure 3.1. Library module naming

conventions • • • • • • • • • • •• 40
Figure 3.2. Library workspace 43
Figure 3.3. Example of use of WXTRNs 45
Figure 3.4. The shared library

during execution • • • • • • • • 46
Figure 3.5. The format of shared
library modules • • • • • 47

Figure 3.6. Addressing a module in
the shared library • • • • • • • •• 49

Figure 4.1. Example 6f descriptor,
locator, DED, and storage location
of an array • • • • • • • • • • •• 52

Figure 4.2. Descriptors, locators,
and symbol tables: when generated,
where held • • • • • • • • • 54

Figure 4.3. String
locator/descriptor • • • • • • • 56

Figure 4.4. Area locator/descriptor 56
Figure 4.5. Aggregate locator 56
Figure 4.6. Array descriptor •••• 56
Figure 4.7. Aggregate descriptor
desqriptor • • • • • • • • • • • 58

x

Figure 4.8. Example of handling a
structure containing an adjustable
extent • • • • • • • • • • • • • •• 59

Figure 4.9. Structure descriptor for
arrays of structures and structures
of arrays • • • • • • • • • • • 60

Figure 4.10. Format of DEDs •••• 62
Figure 4.11. Symbol tables and

symbol taple vectors • • • • • • 63
Figure 5.1. Flow of control during
execution • • • • • • • • • • • •• 64

Figure 5.2. Program management area 67
Figure 6.1. Use of storage in the

ISA • • • • • • • • • • • •• 74
Figure 6.2. Principles involved in
allocating and freeing LIFO storage 77

Figure 6.3. Principles involved in
allocating and freeing non-LIFO
storage • • • •• ••• • • •• 78

Figure 6.4. Format of elem~nt on
free area chain • • • • • 80

Figure 6.5. Principles involved in
allocating and freeing segments of
PL/I dynamic storage • • • • • • 81

Figure 6.6. Format of second and
subsequent segments of the LIFO
stack • • • • • • • • 82

Figure 7.1. The principles of error
handling • • • • • • • • • 86

Figure 7.2. Machine interrupts
associated with PL/I conditions 88

Figure 7.3. (Part 1 of 2). PL/I
conditions • • • • • • • • 89

Figure 7.3. (Part 2 of 2). PL/I
conditions • • • • 90

Figure 7.4. Static and dynamic
descendency • • • • • 91

Figure 7.5. The major fields used in
error handling • • • • • • • • • •• 92

Figure 7.6. An example of error
handling • • • • • • • • • • • • 94

Figure 7.7. Addressing on-units 95
Figure 7.8. Accessing a built-in

function value from the chain of
ONCAs • • • • • • • • • • • 98

Figure 7.9. Meaning of enablement
bits • • • • • • • • • • • • • • • • 100

Figure 7.10. Simplified flowchart of
IBMBERR • • • • • • • • • • • • 101

Figure 7.11. Handling the CHECK
condition ••• • • • • • • •• 110

Figure 7.12. Interrelationship of
dump routines ••••• • • • • • • 111

Figure 7.13 How branch counts are
used to calculate the number of
times each statement is executed. • 113

Figure 7.14. The contents of the
flow statement table and the
statement frequency count table. • • 116

Figure 7.15. Outline of error
handling • • • • • • • • • • • • • • 122

Figure 8.1. The principles used in
record I/O implementation • • • • • 124

Figure 8.2. Library subroutines used
in record I/O • • • • 126

Figure 8.3. Access methods and file
types • • • • • • • • • • • • • 127

Figure 8.4. (Part 1 of 2). The
fields used in implerrenting record
I/O •• • • • • • • ~ • • • • • • • 128

Figure 8.4. (Part 2 of 2). The
fields used in implementing record
I/O • • • • • • • • • • • • • • • • 129

Figure 8.5. Information in the file
declaration is held in the ENVB and
the DCLCB until the file is opened • 131

Figure 8.6. Open statement ••••• 132
Figure 8.7. Addressing files via

DCLCB and PRV • • • • • • • • • • • 134
Figure 8.8. (Part 1 of 2). Handling

a transmission statement • • • • • • 136
Figure 8.8. (Part 2 of 2). Handling

a transmission statement • • 137
Figure 8.9. Handling the EVENT

option • • • • • • • • • • • • • • • 139
Figure 8.10. The execution of an
explicit CLOSE statement • • • • 141

Figure 8.11. The addressing
mechanism used during implicit open 142

Figure 8.12. Record I/O error
modules • • • • • • • • • • • • 144

Figure 8.13. The fields used in
record I/O error handling 145

Figure 8.14. In-line I/O
transmission statement • • • • • • • 148

Figure 8.15. Overview of r~cord I/O 149
Figure 8.16. Conditions under which

I/O statements are handled in-line. 151
Figure 9.1. The principles used in

stream I/O • • • • • • • • • • • • • 152
Figure 9.2. Record boundaries do not
affect stream I/O ••••••••• 154

"Figure 9.3. Simplified flow diagram
of a stream I/O statement 155

Figure 9.4. Stream I/O control block
(SIOeB) ••••••••••• 156

Figure 9.5 The use of FREM and FCBA
in recording buffer position. 157

Figure 9.6. (part 1 of 2). Flow of
control through a PUT LIST statement 158

Figure 9.6. (Part 2 of 2). Flow of
control through a PUT LIST statement 159

Figure 9.7. code generated for
typical list-directed I/O statement 161

Figure 9.8. (Part 1 of 2). Handling
a GET DATA statement • • • • • • • • 162

Figure 9.8. (Part 2 of 2). Handling
a GET DATA statement • • • • • • • • 163

Figure 9.9. Typical data-directed
code • • • • • • • • • • • • • • • • 164

Figure 9.10. The use of the library
in edit-directed I/O • • • • •• 165

Figure 9.11. (Part 1 of 2). Edit
directed statement with matching
data and format lists • • • • • • • 166

Figure 9.11. (Part 2 of 2). Edit
directed statement with matching
data and format lists • • • • • • • 167

Figure 9.12. Code generated for an
edit-directed statement with
matching data and format lists ••• 172

Figure 9.13. Code sequences used for
matching and non-matching data and
format lists ••••••• • 173

Figure 9.14. The current buffer
pointer FCBA and FCPM, the copy
pointer, keep track of the data to
be copied • • • • • • • • • • • 176

Figure 10.1. Internal forms of data
types • • • • • • • • • • • • 181

Figure 10.2. (Part 1 of 2). Data
conversions performed in-line • 183

Figure 10.2. (Part 2 of 2). Data
conversions performed in-line • 184

Figure 10~3. Fundamental in-line
conversions • • • • • • • • • • • • 185

Figure 10.4. Multiple conversions • 187
Figure 11.1. Arithmetic operations

performed by library subroutines • • 190
Figure 11.2. Array, structure, and
string subroutines • • •••• ~ •• 191

Figure 11.3. Indexing interleaved
arrays • • • • • • • • • • • • • • • 193

Figure 11.4. DSA chaining during the
execution of SORT • • • • ••••• 195

Figure 11.5. Summary of action
during use of a SORT exit ••••• 196

Figure 11.6. Example of WAIT
implementation problems 198

Figure 11.7. (part 1 of 2). summary
of the wait statement • • • • • 200

Figure 11.7. (part 2 of 2). Summary
of the wait statement • • • • • 201

Figure 12.1. claw to use this chapter
when debugging • • • • • • • • • • • 204

Figure 12.2. code for debugging- •• 206
Figure 12.3. suggested method of
obtaining a dump when re-compilation
is particularly undesirable. (See
text before using this me •• • • • 208

Figure 12.4. An example of PLIDUMP • 209
Figure 12.5. Abbreviations for
condition names used in PLIDUMP
trace information. • • • • • •• 210

Figure 12.6. ~rror code field lookup
table ••••••••••••••• 211

Figure 12.7. The contents of
IBMBERR's DSA after a system
detected and a PL/I interrupt 213

Figure 12.8. The chaining of DSAs • 214
Figure 12.9. The register save area
in the DSA • • • • • • • • • • • • • 220

Figure 12.10. Register usage •••• 224
Figure 13.1. The principles of
inter language communication • 230

Figure 13.2. Calling sequence when
PL/I calls COBOL or FORTRAN • 232

Figure 13.3. Code generated wQen
PL/I calls a COBOL routine • • • • • 235

Figure 13.4. The sequence of events
when FORTRAN or COBOL calls PL/I • • 236

Figure 13.5. Chaining of save areas
when PL/I is called from a COBOL or
FORTRAN principal procedure • • • • 237

Figure 13.6. Example of chaining
sequences (PL/I principal procedure) 239

xi

Figure 13.7. Examples of chaining
sequences (FORTRAN orincioal
procedure) • • • • • • • • • • • • • 241

Figure 13.8. The concept of save
area rechaining (see figures 13.9
and 13 .. 10 for details> • • • • • • • 243

Figure 13.9. Rechaining of save
areas when FORTRAN is called from
PL/I and the FORTRAN environment
needs ini tializ ing • • • • • • • • • 244

Figure 13.10. Rechaining of save
areas when PL/I is called from
FORTRAN or COBOL .and the environment
requires initialization • • • • • • 24~

Figure 14.~. Multitasking is
implemented by use of a multitasking
library • • • • • • • • • • 254

Figure 14.2. The hierarchy of tasks. 257

xii

Figure 14.3. The functions of the
control task ••••••• 258

Figure 14.4. The post and wait ECBs 259
Figure 14.5. Modules in the
multitasking library. • • • • 260

Figure 14.6. Backchains in
multitasking. • • • • • • • • 261

Figure 14.7. The chaining of tasks
through their tasking 'appendages • • 26~

Figure 14.8. A simplified flowchart
of IBMTPIR • • ~ • • • • • • •• 263

Figure 14.9. Chains and pointers
used in implementing the WAIT
statement •• • • • • • • • • • • • 267

Figure 14.10. Reusing event
variables, and the need fpr the
EVTAB chain • • • • • • • • • • • • 270

PREPARE

COMPILE

LIINK-EDIT

PL/I library
modules

E)CECUTE

Initialization
routines

Receive control
from system, and
sets up PL/I
environment

r-..

PL/I
Optimizing
Compiler

Object
module

Load
module

Object
program

Carries out
actions
specified in
source program

Figure 1.1. The process of running a PL/I program

xiv

r--t-

Source
program

Other
object
modules

Termination
routine

Closes any files
still open, and
returns control
to system

;Processing a PL/I Program

Figure 1.1 shows the processes through
which a PL/I program passes from its
inception to its use. There are four
stages:

1. writing the program and preparing it
for the computer.

2. Compilation: translating the program
into machine instructions (i.e.,
creating an object module).

3. Link-editing: producing a load module
from the object module. This includes
linking the compiled code with PL/I
library modules, and possibly with
other compiled programs. It also
includes resolving addresses within
the code.

4. Execution: running the load module.

The process is not necessarily continuous.
The program may, for example, be kept in a
compiled or link-edited form before it is
executed, and it will normally be executed
a number of times once compiled.

COMPILATICN

Compilation is the process of translating a
PL/I program into machine instructions.
This is done by associating PL/I variables
with addresses in storage and translating
executable PL/I statements into a series of
machine instructions. For example, the
PL/I statements:

DCL I,J,K;
I=J+K;

would typically result in the generation of
machine instructions corresponding to the
assembler language instructions shown
below:

LH
AH
8TH

7,88(0,13)
7,90(0,13)
7,96(0,13)

Load J into register 7
Add K to J .
Place result in I

(The variables I, J, and K are held at
offsets 96,88, and 90~ respectively, from
the address in register 13.)

The OS PL/I Optimizing compiler does not
translate all PL/I statements directly into

Chapter 1: Introduction

the necessary machine instructions.
Instead, certain statements are translated
into calls to standard subroutines held in
the OS PL/I Resident Library. Some of the
resident library routines may, in turn,
call further library routines from either
the resident or the transient PL/I library.
The following PL/I statements would, for
example, result in a call being made to a
resident library routine.

DCL X,Y;
X=SIN(Y);

The code' that would typically result from
such statements is shown below:

LA 14,92(0,13) Place address of Y
in register 14

LA 15,96(0,13) Place address of X
in register 15

STM 14,15,80 (0,3) Place addresses in
argument list

LA 1,80(0,3) Point register 1 at
argument list

L 15,88(0,3) Load register 15
with the address of
the resident library
routine IBMBMGS.
(This is held in the
form of an address
constant generated
by the compiler and
resolved by the
linkage editor.)

BALR 14,15 Branch to the
library routine,
which will carry out
the required
function.

LINK-EDITING

Link-editing links the compiler output with
external modules that have been requested
by the compiled program. These will be
PL/I resident library routines, and,
possibly, modules produced by further
compilations. As well. as linking the
external modules, the linkage editor also
resolves addresses within the object
module.

EXECUTION

The optimizing compiler produces code that

Chapter 1: Introduction 1

ISA

Initial
storage
area
(lSA)

management area

LI FO storage

f3\ All storage freed
~ on a last in/first

out basis (LIFO storage)
is alloc:ated at the low
addreSlS end of the
remaining unused
storage.

ISA

f1\ The initial
\:J storage area
(ISA) is acquired

ISA

f4\ When LIFO
'::J storage is freed,
the most r~cently
allocated element is
the first to be freed.
It is freed by being
reabsorbed into the
major free area.

Figure 1 .. 2. Use of PL/I dynamic storage

2

0' . The program management
". area (a PL/I communications
area) is placed atthe head of the ISA.

ISA

rogram
management area

LI FOstorage

Non-U FO storage

f5\ Elements not
\V freed on a last
in first out basis (non
LI FO storage) are
al'located at the high
address end of the
free storage.

Program
management area

LI F 0 storage

!\
.....

Major free
,', area

Non-LI FO storage

Freed non-LIFO
storage

f6\ When nOM-LIFO
\::::.J starage is freed,

it is, where possible
absorbed into the
major free area. Where
this is not possible, it
is placed on a chain of
free storage. The head
of this chain is held at
a fixed offset in the
program management
area. Areas on this
chain are reused where
possible.

requires a special arrangement of control
blocks and registers for correct execution.
This arrangement of control blocks and
registers is known as the PL/I environment.
Execution consequently becomes-a-£hree=--­
stage process:

1. setting-up the environment. This is
handled by the PL/I initialization
routines IBMBPIR and IBMBPII.

2. Executing the program.

3. Completing jobs after execution. This
consists of closing any files that are
left open and returning control either
to the supervisor or to a calling
module. It is handled by a return to
the initialization routine which calls
a termination routine.

Factors Affecting Implementation

Three major factors influence the design of
the executable programs produced by the
optimizing compiler. These factors are
inherent in the language, and are:

1. Thg_ID2du!~Lstryct~!:g-2LPL/ LE!:Qg!:~

The PL/I language allows the
programmer to divide his program into
a series of blocks that can be written
and compiled independently of each
other.

2. Thg dynamic allocation .ru:!9 freeing of
sto!:~g

Automatic, controlled, and based
variables all'have their storage
allocated and freed dynamically. This
implies a system of re-use of storage
to reduce space requirements.

The PL/I language offers more
facilities than any other high-level
language. These facilities include
allowing the PL/I program to control
the flow of execution after any PL/I
interrupt.

Key Features of the Executable Program

Taken together, the factors outlined above
are responsible for the main features of
the executable program produced by the
compiler. These features are:

1. A communications area addressed by a
dedicated register throughout the
execution of the program.

2. A scheme to handle dynamic storage
allocation.

3. The use of standard subroutines from
the PL/I libraries, to handle such
standard tasks as the housekeeping
scheme and error handling.

4. The use of initialization routines to
set up the communications area and
initiate the housekeeping scheme. All
PL/I modules are compiled on the
assumption that the initialization
routines have been called before they
are entered.

5. The issuing, by the initialization
routines, of SPIE and STAE macro
instructions to trap interrupts and
ABENDs, and allow them to be handled
as defined by PL/I.

These features are discussed further below.

COMMUNICATIONS AREA

The facilities offered by the PL/I
language, particularly the error-handling
facilities, imply that certain items must
be accessible at all times during
execution. To simplify accessing such
items, a standard communications area is
set up for the duration of execution. This
area is known as the task communications
area (TCA), and is addressed by register 12
throughout execution.

DYNAMIC STORAGE ALLOCATION

The principles of the dynamic storage
scheme are illustrated in figure 1.2.

The allocation and freeing of automatic
storage on a block-by-block basis implies
an automatic facility for the re-use of
such storage. This problem and the problem
of inter-block communication are solved by
having, for each block, a save area that
contains register save information,
automatic variables, and housekeeping
information. This area is known as a
dynamic storage area (OSA). It consists of
the standard operating system save area
concatenated with certain housekeeping
information and with storage for automatic
variables. DSAs are held contiguously in a
last-in/first-out (LIFO) storage stack and
are freed and allocated by the alteration

Chapter 1: Introduction 3

LOAD MODULE

PROGRAM CONTROL SECTION
Compi led code

LIBRARY MODULES
Link-edited library
modules, including:
IBMBPIR,
IBMBERR

ADDRESSES
Addresses of:
Library modules,
PL/I subroutines and
entry points,
Label constants,
External procedures, etc.

CONTROL BLOCKS
Various control blocks
needed during
execution

CONSTANTS
Storage for any constants
used in the program

STATIC VARIABLES
Storage for variables
declared as ST A TI C
INTERNAL

OTHER CONTROL SECTIONS
PLiSTART, PLiMAI N.
Storage for variables
declared as STATIC EXTERNAL.
Control blocks and
other data for
external files, etc.

Figure 1.3. contents of a typical load module

4

Static
internal
control
section

of pointer values.

On entry to a block, the registers of
the preceding block are stored in the
previous DSA and a new DSA is acquired. A
chainback pointer to the previous DSA is
placed in the new DSA. This arrangement
allows access to information in previous
blocks. Register 13 is pointed at the head
of the DSA for the current block. The code
that carries out this and any. other block
initialization is known as Ef2log~~_£od~.
To obviate the need for special coding in
the main procedure, a dummy DSA is set up
by an initialization routine, and register
13 points at this dummy DSA on entry to the
main procedure. .

In addition to automatic variables,
certain other types of storage are
allocated and freed dynamically. Such items
as are not freed on a last-in/ first-out
basis are kept in a second stack. If items
within this stack are freed, they are
placed on a free-area chain. The storage
scheme is handled partly by compiled code
and partly by a resident-library routine.
Compiled code acquires and frees space in
the LIFO storage stack.

The library routine IBMBPGR is called
when non-LIFO dynamic storage has to be
allocated or freed, or when there is
insufficient space for an allocation of
storage in the LIFO stack.

USE OF LIBRARY SUBROUTINES

The use of library subroutines simplifies
compilation. On the other hand, using such
routines slows execution because they
cannot be tailored for the particular
situation in hand, and because they incur
the overhead of saving and restoring
registers. Library subroutines are used
for handling standard jobs such as program
initialization and error handling, and for
those items that require interpretive code.
Interpretive code is required when a
significant part of the data will not be
available until execution.

Two PL/I libraries are used by the OS
PL/I Optimizing compiler: the OS PL/I
Resident Library and the OS PL/I Transient
Library. Transient library routines have
the advantage of saving space, because they
require storage only when they are actually
in use. Resident library routines, however,
have the advantage of speed, because they
do not have to be loaded during execution
of the PL/I program. Dividing subroutines
into transient and resident types enables
the compiler to balance the advantages of
both types and so to produce programs that

combine fast execution with reduced space
overheads.

INITIALIZATION/TERMINAl'IQN ROUTINES

The job of the initialization routines is
to prepare a standard environment for all
procedures compiled by the as PL/I
Optimizing Compiler. This consists of
setting-up the TCA and initializing the
storage scheme. A SPIE macro instruction is
issued so that all program checks will be
intercepted by the PL/I error-handling
facilities. A STAE macro instruction is
issued to trap ~BENDS. On completion of the
main procedure control is returned to the
initialization routine by the epilogue code
of the main procedure. The program is
terminated under the control of the
initialization routine. Using standard
library routines for these tasks reduces
the amount of special-case coding that -is
needed for a main procedure. A consequence
is that subroutines can be compiled and
tested individually and then joined with
other procedures and run without
recompilation. If this is done, care must
be taken that the main procedure is the
first passed to the linkage editor.

NO!~: Use of the linkage editor ENTRY
statement will not have the desired results
as the program must be entered via the
initialization routine.

Contents of a Typical Load Module

The contents of a typical load module are
shown in figure 1.3. The contents are:

1., Compiled code (the executable machine
instructions that have been
generated).

2. Link-edited routines. These will
include resident library routines and
probably as data management routines.
Certain resident library routines are
included in every executable program
phase. These are the initialization
routine, IBMBPIR, and the error
handler, IBMBERR. Other resident
routines are included as required.

As well as executable machine
instructions, the program requires certain
control information and addresses. Some of
these are listed in figure 1.3, but full
details are given in chapter 2. The figure
also shows PLISTART, which passes control
to the initialization routine, and PLIMAIN,
which holds the address of the start of

Chapter 1: Introduction 5

Other storage obtained by
issueing GETMAIN macros

Storage for:
Transient library routines
I/O buffers

Plus:
Further allocations of
dynamic storage if
required

Figure 1.4. Use of storage

6

LOAD MODULE

Compiled code
Library modules
Addresses
Control blocks
Constants
Static variables

PROGRAM
MANAGEMENT AREA

TCA (task communications area)
Dummy DSA (dynamic storage area)
Other housekeeping control blocks

LAST-IN/FIRST-OUT
(LIFO) STORAGE

DSAs and VDAs (variable data areas).
Storage for automatic variables and
compiler-generated temporaries, and
other items allocated and freed on
a block and procedure basis

Storage for controlled
and based variables

PLISTART Initialization routines Prologue code

Receives control from Set up TCA, initialize storage and Acquires DSA for main
system issue SPIE & STAE to initialize procedure, initializes

.... ' PL/I error-handling scheme. Pass ... control blocks, etc.
-.,. control to the address in ...

~ PLiMAIN.

~
~

Functional code Epilogue fode Termination routines

Carries out function required Restores IBMBPIR's Closes any fi les strll open and

"-
in source program. This registers returns control to system
usually involves calls to .. ~
library subroutines.

Figure 1.5. Flow of control during-execut.ion

Chapter 1: Introduction 7

compiled code.

The Overall Use of Storage

The overall use of storage is illustrated
in figure 1.4. As can be seen, an area
known as the in!1ial_stQ~~g~_2!:~ (ISA) is
acquired for program management and PL/I
dynamic storage.. The program management
area is set up by the initialization
routines, and includes the TCA and the
dummy DSA discussed above. The remainder
of the ISA is used for PL/I dynamic storage
allocations. The LIFO stack starts beyond
the end of the program management area and
expands" as necessary, towards the end of
the ISA. Non-LIFO dynamic storage starts
at the end of the ISA and expands towards
the LIFO stack. storage for I/O buffers and
transient library routines is acquired by
issuing Gl~TMAIN macro instrQctions.

The Process of Execution

The process of execution is illustrated in
figure 1.S. The processes involved for a
sample program are described below.

SAMPI~E: PROC OPTIONS (MAIN) ;
INPUT: GET LIST(Y,Z);

(process data as required)

PUT LIST(X);
IF X<500 THEN GO TO INPUT;
END;

During execution:

1. The control program passes control to
the control section PLISTART, which
has been generated by the compiler.

2. PLIS'l~ART calls the resident library
initialization routine, IBMBPIR.

3. IBMBPIR and IBMBPII(called by IBMBPIR)
set tip the PL/I environment. IBMBPIR
then passes control to the main

8

procedure compiled code, with register
12 pointing at the TCA and register 13
pointing at the dummy ~SA. The
address to which IBMBPIR passes
control is held in the control section
PLIMAIN.

4. Compiled code prologue stores the
contents of the registers used by
IBMBPIR in the dummy DSA and acquires
a DSA for the main procedure.

5. Compiled code calls the library
routines used for stream I/O. These
in turn call transient routines to
open the standard files and further
transient routines to interface with
data management routines.

6. processing is then carried out by
compiled code. Further calls to the
library may be involved if, for
example, mathematical functions are
used.

7. The stream output will involve further
steps similar to those described in 5,
above.

8. When the END statement is reached, the
epilogue code is entered. This
restores the registers of IBMBPIR, the
initialization routine, and returns
control to IBMBPIR.

9. IBMBPIR raises the FINISH condition,
calling the resident error-handling
module IBMBERR, which searches for a
FINISH on-unit. Finding none, it calls
IBMBPIT. IBMBPIT carries out certain
housekeeping tasks, including calling
IBMBOCL to close the files that have
been opened. IBMBPIT returns control
to IBMBPIR, which returns control to
the supervisor.

This program illustrates the main points
mentioned earlier in the chapter. The
in!t!~li~~ii2B_~Q~t!B~~ are used-in steps 3
and 9, to set up and discard the PL/I
~BYi~QB~!!i. The ~iQ£~El~-ID!m~~~t scheme
is illustrated in the prologue and epilogue
code in steps 4 and 8. The £2illillunicat!Q!!§
~~~_iTC~l is set up by the initialization 
routine, and the use of ~tand~Q libra~y 
subroutines is shown in steps 5 and 7. The 
use-o~sEe£ial_g~!Q~!!Q_PLLI-£Qnditio!! 
h~!!g!i~£Qde is shown in step 9. 





COMPILER 

HOUS(3keepi ng 
control sections 

PLiSTART 
Contains: 

Instructions passing control to 
initialization routine 

PLiMAIN I 
I Contains: I 
~ _ A~~e~o~a~~edur~ ___ -I 
I PLiFLOW I 

Contains: 
I External reference to library I 
I module used in FLOW option I 
L ____________ J 

Control sections for 
compi ler-generated 
subroutines 

,.--------
I A control section for each 
I compiler-generated subroutine 

Program control section 

Contains: 

Executable instructions 
translated from source 
program 

Static internal control section 

Contains: 
Addresses 
Constants 
Control information 
Static internal 
variables 

Control sections for 
data declared 
EXTERNAL ---, r-------

I 
I 
I 
I 
I 

A separate control section for each 
external: 

Variable 
File 
Procedure 
User condition 

I 
I 
I 
I 
I 

I Symbol table for external data I L ___________ ...J 

Dummy Section 

------, 
I 

I used in a program I 

A dummy section 
containing address 
information for 
files and controlled 
variables. 

L ____________ J 

Control sections surrounded with dotted lines are generated only when required. 

Becomes the 
pseudo-register 
vector (PRV). 

Figure 2.1. The output from the compiler 

10 



Introduction 

This chapter describes that part of the 
load module that is generated by the 
compiler. The compiler output is a 
relocatable object module consisting of a 
series of records in card-image format. 
These records contain either machine 
instructions, constants, or external or 
internal addresses to be resolved by the 
linkage editor. The records are known as: 

TXT records - records containing 
machine instructions or constants. 

RLD records - records containing 
internal addresses. 

ESD records - records containing 
external addresses. 

Further information about the output passed 
to the linkage editor is given in the 
publication Q§_R1L1-Q2timizi~~QmEiler~_ 
.R~g!:~~Qg!g • 

There are two main control sections 
output by the compiler. These are: 

1. The program control section, holding 
the executable instructions translated 
from the PL/I program. 

2. The static internal control section 
holding constants, addresses, and 
static variables. 

. A number of other control sections are also 
generated. These either handle certain 
hous~keeping functions, or are used for 
external data which may have identical 
control sections generated for it by other 
compilations. 

Workspace and storage for automatic 
variables is acquired during execution, 
normally by the prologue code that is 
executed at the start of every block. 

The output from the compiler is shown in 
figure 2.1 and listed below: 

1. Control sections ihai ~~~ alwaY2 
~nerateQ -----

Program control 
section 

Containing 
executable 
instructions. 

Chapter 2: Compiler Output 

Static internal 
control section 

PLISTART 

Containing 
addresses, control 
blocks, constants, 
and STATIC INTERNAL 
variables. 

The entry point for 
the executable 
program phase. 
Passes control to 
initialization 
routine. 

2. £~trQ! ~£iio!!2 ~hat ~~~ g~illgQ 
Q!!!Y ~hgn required 

PLIMAIN 

PLIFLOW 

PLICOUNT 

Static external 
control sections 

Plus control 
sections for 

Pseudo-register 
vector 

containing the 
address of the entry 
point of the main 
procedure. 
(Generated only for 
procedures with 
OPTIONS(MAIN).) 

A control section 
generated when the 
compiler FLOW option 
is specified. (See 
chapter 7.) 

A control section 
generated when the 
COUNT compiler 
option is specified. 

A static external 
control section is 
generated for every 
external variable, 
file, and procedure • 

Each user-defined 
condition, and each 
compiler-generated 
subroutine used. 

A dummy section used 
in addressing files 
and controlled 
variables. 

The remainder of this chapter deals with 
these items in further detail. Where 
possible, it refers to the object program 
listing, because this is the form in which 
the output from the compiler is most 
readily accessible. 

The two control sections, PLISTART and 

Chapter 2: Compiler Output 11 



r------··--------------------------------------------------------------------------------, 
Name I contents I Compiler Option 

SourcE~ program 

Aggregate table 

Storage requirements 

ESD references 

statistics 

static storage 

Table of offset and 
I statement number 
I 
I Object program 
I 
I 
1 
I Variables offset 

Source program statements 

Names and storage requirements of structures 
and arrays 

Names and storage requirements of all 
procedures 

Name, type, and identifier of all external 
references generated by the compiler* 

Number of source records, program text 
statements, and object code bytes 

Contents of static internal and static 
external control sections in hexadecimal 
notation with comments 

Offsets, within code, of the start of each 
statement 

The contents of the program control section 
in hexadecimal and translated into a 
pseudo-ass embler-language format 

The offsets of automatic and static internal 
1 MAP variables from their defining base 

SOURCE 

AGGREGATE 

STORAGE 

ESD 

ESD 

MAP 

OFFSET 

LIST 

MAP 

1---------------------------------------------------_·----------------------------------1* External references within library modules are not included. l-------.----------------------------------------------__________________________________ J 

Figure 2~2. Contents of listing and associated compiler options 

PLIMAIN, are used during program 
initialization. PLISTART holds the address 
of the library initialization routine 
IBMBPIR, which will be entered at the start 
of the program. PLIMAIN holds the address 
of the start of the code for the main 
procedure. This is the address to which 
the librclry initialization routine branches 
when initialization is complete; it is 
marked "*REAL ENTRY" in the object-program 
listing. 

A PLIMAIN control section is generated 
for every procedure for which OPTIONS 
(MAIN) is specified in the procedure 
statement. When two such procedures are 
being run together, control will pass to 
the first of the procedures processed by 
the linkage editor (unless the program's 
JCL specifically indicates otherwise). 

The format of PLIMAIN and PLISTART is 
given in appendix A. 

If the compiler FLOW option is being 
used, a control section called PLIFLOW is 
also generated. This contains code that 
results in the link-editing of the trace 
module IBMBEFL and also contains the values 
of "n" and "m" specified in the option. 

12 

The format of PLIFLOW is given in chapter 
7. 

Th~_Org~nization of this Chaptef 

The remainder of this chapter describes the 
contents of the static internal control 
section and the program control section. 
First the conventions used in the object 
program listing and the static storage map 
are described. Descriptions of the two 
control sections follow. The description 
of the program control section covers the 
conventions used in the object program code 
such as register usage, method of handling 
flow of control, and addressing 
information. The chapter is completed by a 
short discussion of the effects of 
optimization. 

Listing Conventions 

Figure 2.2 shows all the program listing 
information that can be produced by the 



000000 
000004 
000008 
OOOOOC 
000010 
000014 
000018 
00001C 
000020 
000024 
000028 
00002C 
000030 
000-034 
000038 
00003C 
000040 
000044 
000048 
00004C 
000050 
000054 
000058 
00005C 
000060 
000064 
00006A 
00006E 
000072 
000074 
000076 
000078 
00007C 
000080 
000084 
000088 
00008C 
000090 
000094 
000098 
00009C 
OOOOAO 

SOURCE 

1 EXAMPLE: PROC OPTIONS (MAIN) REORDER; 
2 1 DCL X(10),Y,Z INITIAL (0) ; 

3 GET EDIT(X, Y) (F(3) ,X( 11»; 

4 1 DO 1=1 TO Y; 
5 1 1 Z=Z*X(I); 
6 1 , END; 
7 1 PUT EDIT(Z)(A); 
8 1 END; 

STATIC INTERNAL STORAGE MAP 

00000008 
0000005E 
00000068 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
08040680 
500000030080 
6000000B 
5800000C 
OOOA 
0001 
0004 
91E091EO 
00000000 
46008000 
41100000 
00000000 
00000000 
00000000 
80000000 
00000000 
80000000 
0000010400000068 

PROGRAM ADCON 
PROGRAM ADCON 
PROGRAM ADCON 
A •• IELCGIA 
A •• IElCGIB 
A •• IELCGOA 
A •• IElCGOE 
A •• IBMBCACA 
A •• IBMBCEDB 
A •• IBMBCHFD 
A •• IB~BC'IHD 
A •• IBMBCVDY 
A •• IBMBOCLA 
A •• IBMBOCLC 
A •• IBMBSACA 
A •• IBMBSEIA 
A •• IB~BSEIT 
A •• IBMBSEOA 
A •• IBMBSFIA 
A •• IBMBSIIA 
A •• IBMBSICA 
A •• IBMBSIOT 
A •• IBMBSXCA 
A •• STATIC 
DED •• X 
FED 
FED 
FED 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
A •• DCLCB 
A •• DClCB 
A •• DCLCB 
A •• TEMP 
A •• DCLCB 
A •• TEMP 
COMPILER LABEL CL.9 

000000 

000000 

Figure 2.3. Example of static storage listing 

S'IA'IIC EX'IERNAI CSEC'IS 

0000000060000000 
0000000000000000 
OF4700140005E2E8 
E2C9D520 

FFFFFFFC41201000 
02D70FOOOOOOOOOO 
FF6000140008E2E8 
E2D7D9C9D5E3008E 

celCE 

CClCE 

Chapter 2: Compiler Output 13 



PL/I OPTIMIZING cOMPILER - PAGE 

000004 91 40 1 ul0 TM 16(1),X'40' 000024 58 00 F OOC 1 0,12 (0,15) 
000008 47 10 7 u52 BO *+74 000028 1E 01 AIR 0,1 
OOOOOC 58 FO 1 014 L 15,20(0,0 00002A 55 00 C OOC CI 0,12(0,12) 
000010 50 70 1 01C ST 7,28 (0,1) 00002E 47 CO F 030 ENH *+10 
000014 58'70 1 OOC L 7,12(0,1> 000032 58 FO C 074 I 15,116 (0,12) 
000018 48 EO F u50 LH 14,80(0,15) 000036 05 EF EAIR 14,15 
00001C 4B EO 7 002 SH 14,2(0,7) 000038 58 EO 0 048 I 14,72(0,13) 
000020 40 EO F 050 STH 14,80(0,15) 00003C 18 FO IR 15,0 
000024 58 EO F 04C L 14,76(0,15) 00003E 90 EO 1 048 STM 14,0,72(1) 
000028 4A EO 7 002 AH 14,2(0,7) 000042 50 CO 1 004 ST 13,4(0,1) 
00002C 50 EO F 04C ST 14,76(0,15) 000046 41 01 0 000 Ill. 13,0 (1,0) 
000030 48 EO 1 020 LH 14,32(0,1> 0000411. 50 50 C 058 ST 5,88(0,13) 
000034 41 EO E 001 LA 14, lCO, 14) 00004E 92 80 0 000 l-:VI 0(13),X'80' 
000038 40 EO 1 020 STH 14,32(0,1) 000052 92 24 C 001 l-:VI 1(13),X'24' 
00003C 40 EO F 052 STH 14,82(0,15) 000056 02 03 0 054 3 078 l-:VC 84(4,13),120(3) 
000040 91 10 1 010 T~ 16(1),X'10' 00005C 05 20 EAIR 2,0 
000044 07 86 BCR 8,6 
000046 58 70 1 ulC L 7,28(0,1) * PROLOGUE EASE 
00004A 58 FO 7 U68 L 15,104 (0, 7) 
00004E 05 EF BALR 14,15 * INITIALISATION CODE FOR Z 
000050 07 F6 BR 6 00005E 78 40 3 07C IE 4,124(0,3) 
000052 58 FO 7 06C L 15,108(0,7) 000062 70 40 0 QAC STE 4,Z 
000056 05 EF BAIR 14, 15 000066 05 20 EAIR 2,0 
000058 58 EO 008 L 14,8 (0,1) 
00005C '50 EO D 04C ST 14,76(0,13) * PROCECURE EASE 
000060 94 BF 1 010 NI 16 (1) , X' BF' 
000064 07 F6 BR 6 
000066 07 00 NOPR 0 * STATEMENT NU~EER 3 
000068 DC AL4(0) 000068 41 90 C 108 Ill. 9,264(0,13) 
00006C DC AL4(0) 00006C 50 90 3 094 ST 9,148(0,3) 

000070 96 80 3 094 CI 148 (3) ,X' 80' 
* ENn OF COMPILER GENERATED SUBROUTINE 000074 92 24 D 119 MVI 281(13),X'24' 

000078 41 EO 3 OAO Ill. 14,160(0,3) 
00007C 50 EO D 120 ST 14,288(0,13) 

* STATEMENT NUMBER 000080 41 10 3 090 Ill. 1,144(0,3) 
000000 DC C'EXAMPLE' 000084 58 FO 3 04C I 15, A •• IE~BSIIA 
000007 DC AL 1 (7) 000088 05 EF EAIR 14,15 

0000811. 41 AD 2 06E LA 10,CL.8 
* PROCEDURE EXAMPLE 00008E 48 EO 3 074 IH 14,116 (0, 3) 

000092 50 EO D OE8 ST 14,232 (0,13) 
* REAL ENTRY 000096 Cl. 5 EQU * 
000008 90 EC o OOC STM 14,12,12(13) 000096 58 90 0 OE8 L 9,232(0,13) 
OOOOOc 47 FO F 014 B *+16 00009A 8E 90 0 002 SLA 9,2 
000010 00000000 DC A(STMT. NO. TABLE) 00009E 41 £9 D OB4 IA 14,VC •• X(9) 
000014 00000130 DC F'304' 0000A2 41 FO 3 060 IA 15 ,eEe •• VO •• X 
000018 00000000 DC A(STATIC CSECT) 0000A6 41 10 D 108 IA 1,264(0,13) 
00001C 58 30 F 010 L 3,16(0,15) OOOOAA 50 10 0 OEC ST 1,236(0,13) 
000020 58 10 D 04C L 1,76(0,13) OOOOAE 90 EF 1 008 ST~ 14,15,8(1) 

PL/I OPTIMIZING cOMPILER FAGE 9 

0000B2 05 All. BAlR 10,10 00013E 50 EO D OF8 ST 14,J48 (0, 13) 
0000B4 58 EO D UE8 L 14,232(0,13) 
0000B8 411. EO 3 u74 AH 14,116(0,3) * CALCULATION CF CCr-:MONED EXFRESSION FCllCWS 
OOOOBC 50 EO D uE8 ST 14,232(0,13) 000142 78 20 C OF4 IE 2,244(0,13) 
OOOOCO 49 EO 3 u72 CH 14,114(0,3) 000146 70 20 D OFC STE 2,252(0,13) 
0000C4 47 CO 2 02E BNH CL.5 
0000C8 41 EO D 011.8 LA 14,Y * END OF CO~~ON CODE 
OOOOCC 50 EO 1 008 ST 14,8(0,1) 
000000 05 ,'All. BALR 10,10 * CCNTINUA'IICN CF STATEr-:ENT NUl-:EER 4 
0000D2 47 PO 2 09C B CL. 9 00014A CL2 EQU * 
000006 CL.B EQU * 
0000D6 41 EO 3 064 LA 14,100(0,3) 
0000011. 58 10 D OEC L 1,236(0,13) * STATEMENT NUr-:EER 5 
OOOOOE 58 70 3 OOC L 7,A •• IEICGIA 0001411. 58 70 e OF8 I 7,248(0,13) 
0000E2 05 67 BALR 6,7 00014E 78 40 C OAC IE 4,Z 
0000E4 58 FO 3 U48 L 15,A •• IBMBSFIA 000152 7C 47 0 OE4 l-:E 4, VC •• X (7) 

0000E8 05 EF BAlR 14,15 000156 70 40 C OAC STE 4,Z 
OOOOEA 58 70 3 ul0 L 7,A •• IELCGIB 
OOOOEE 05 67 BAlR 6,7 
OOOOFO 05 1\11. BALR 10,10 * STATEMENT NU~BER 6 
OOOOF2 41 IW 3 061 LA 14,106(0,3) 
000OF6 58 '10 0 OEC L 1,236(0,13) * ~ETHOO OR CROER OF CALCULATING EXPRESSIONS CHANGED 
OOOOFA 58 '10 3 OOC L 7,A •• IELCGIA 
OOOOFE 05 67 BALR 6,7 • CODE ~OVEO FRCM STATEMEN'I NUl-:BER 4 
000100 47 1"0 2 06E B CL.8 0OO15A 78 00 C OFC lE 0,252(0,13) 
000104 CLo9 EQU • 00015E 7A 00 3 084 AE 0,132(0,3) 

000162 70 00 C OFC STE 0,252 (0,13) 

Figure 2.4. Part of an object program listing (For source see Figure 2.3) 

14 



compiler. It also shows the relevant 
compiler options and summarizes the 
information that will be produced if these 
options are specified. Some or all of 
these options may be deleted at system 
generation time. To obtain deleted 
options, the correct password (specified at 
system generation time) must be specified 
in the CONTROL option. 

This chapter describes the contents of 
the static-storage map and the object­
program listing,. Information on the other 
items generated is given in the publication 
Q§ PL/! QPtimizing CO!!!E!!~: ~rogr~~2 
§uide. 

STATIC-STORAGE" MAP 

The static-storage map is a formatted 
listing of the contents of the static 
internal and static external control 
sections. The static control sections 
contain items grouped in the following 
order: 

1. Address constants for entry points to 
procedures, and for branch 
instructions. 

2. Address constants for resident library 
subroutines. 

3. Address constants for addressing 
static storage beyond 4K. 

4. The constants pool, which contains 
source program constants, data element 
descriptors, locator/descriptors, 
symbol tables, declare control blocks 
(DCLCBs), and other control blocks. 

5. static variables. 

The constants pool and the static-variable 
sections of static storage begin on 
doubleword boundaries. 

The static control section is listed, 
each line comprising the following 
elements: 

1. Six-digit hexadecimal offset. 

2. Hexadecimal text, in a-byte sections 
where possible. 

3. Comment, indicating the type of item 
to which the text refers; a comment 
appears against only the first line of 
the text for an item. 

A typical static listing is shown in 
figure 2.3. 

The following comments are used (xxx 

indicates the presence of an identifier): 

A •• - Address constant. 

COMPILER LABEL CL.nn - Compiler-generated 
label followed by CL plus number. 

CONDITION CSECT - Control section for 
programmer-named condition 

CONSTANT 

CSECT FOR EXTERNAL VARIABLE - Control 
section for external variable. 

D •• - Descriptor. 

OED •• - Data element descriptor. 

ENVB - Environment control block. 

DCLCB - Declare control block. 

FED •• - Format element descriptor. 

KD •• - Key descriptor. 

ONCB - ON control block. 

PICTURED OED •• - Pictured OED. 

RD •• - Record descriptor. 

SYMTAB - Symbol table. 

USER LABEL xxx - Source program label for 
xxx. 

xxx - Name of variable. If the variable is 
not initialized, no text appears 

against the comment; there is also no 
static offset if the variable is an 
array. (The static offset can be 
calculated from the array descriptor 
if required.) 

OBJECT-PROGRAM LISTING 

By including the option LIST in the PROCESS 
statement, the programmer can obtain a 
listing of the compiled code, known as the 
object-program listing. This listing 
consists of the machine instructions plus a 
translation of these instructions into a 
form that resembles assembler language, and 
a number of comments such as the statement 
number. The format of this listing is shown 
in figure 2.4. As can be seen, blocks of 
code are headed by the number of the 
statement in the PL/I program to which they 
are equivalent. When optimization has 
resulted in code being moved out of a 
statement, this is indicated. Only 
executable statements appear in the 
listing. DECLARE statements are not 

Chapter 2: Compiler Output 15 



included, because they have no direct 
machine-code equivalent. To simplify 
understanding of the listing, the names of 
PL/I variables are inserted, rather than 
the addresses that appear in the machine 
code. Special mnemonics are used when 
referring to control blocks and other 
items. 

statements in the object program listing 
are ordered by block. statements in the 
outermoS1: block are given first, followed 
by statements in the inner blocks. Thus 
the order of statements will frequently 
differ from that of the source program. 

Every object-program listing begins with 
the name of the procedure. The name is 
defined as a constant in a DC instruction. 
This is followed by another constant 
containing the length of the procedure 
name. Then comes the name of the 
procedurE~, as a comment, followed by code 
under the heading "REAL ENTRY." This is 
the point at which the code will, in fact, 
be entered. The second section of code is 
the prologue~ which carries out various 
housekeeping tasks and is described more 
fully later in this chapter. The end of 
the prologue is marked by the message 
"PROCEDURE BASE." This is followed by a 
translation of the first executable 
statement~ in the PL/I source program. 

The comments used in the listing are as 
follows: 

* PROCEDURE xxx - identifies the start of 
the procedure labeled xxx. 

* REAL ENTRY xxx - heads the 
initialization code for an entry point 
to a procedure labeled xxx. 

* PROLOGUE BASE - identifies the start of 
the prologue code common to all entry 
points into that procedure. 

* PROCEDURE BASE - identifies the address 
loaded into the base register for the 
procedure. 

* STATEMENT LABEL xxx - identifies the 
position of source program statement 
label xxx 

* PROGRAM ADDRESSABILITY. REGION BASE -
identifies address to which the program 
base is updated if the program size 
exceeds 4096 bytes and consequently 
cannot be addressed from one base. 

* CONTINUATION OF PREVIOUS REGION -
identifies the point at which addressing 
from the previous program base 
recommences. 

* END OF COMMON CODE - identifies the end 

16 

of code used in the execution of more 
than one statement. 

* END PROCEDURE xxx - identifies the end 
of the procedure labeled xxx. 

* BEGIN BLOCK xxx - indicates the start of 
the begin block with label xxx. 

* END BLOCK xxx - indicates the end of the 
begin block with 1abel xxx. 

* BEGIN BLOCK - GENERATED NAME BLOCK.nn -
indicates the start of an unnamed begin 
block for which the compiler has 
generated the name BLOCK.nn, where nn is 
two hexadecimal digits. 

* END BLOCK.nn - indicates the end of the 
begin block with compiler-generated name 
BLOCK.nn. 

* STATEMENT NUMBER n - identifies the 
start of code generated for statement 
number n in the source listing. 

* INTERLANGUAGE PROCEDURE xxx - identifies 
the start of encompassing procedure xxx 
(see chapter 13). 

* END INTERLANGUAGE PROCEDURE xxx -
identifies the end of encompassing 
procedure xxx. (See chapter 13) 

* COMPILER GENERATED SUBROUTINE xxx -
indicates the start of compiler­
generated subroutine xxx. 

* END OF COMPILER GENERATED SUBROUTINE -
indicates the end of the compiler­
generated subroutine. 

* ON UNIT BLOCK - indicates the start of 
an on-unit block. 

* ON UNIT BLOCK END - indicates the end of 
the on-unit block. 

* END PROGRAM - indicates the end of the 
external procedure. 

* INITIALIZATION CODE FOR OPTIMIZED LOOP 
FOLLOWS - indicates that some of the 
code that follows has been moved from 
within a loop by the optimization 
process. 

* CODE MOVED FROM STATEMENT NUMBER n -
indicates object code moved by the 
optimization process to a different part 
of the program and gives the number of 
the statement from which it originated~ 

* CALCULATION OF COMMONED EXPRESSION 
FOLLOWS - indicates that an expression 
used more than once in the program is 
calculated at this point. 



r---------------------------------------------------------------------------------------, 
1 REGISTER USAGE (compiled code) 
1---------------------------------------------------------------------~-----------------
1 1 Dedicated 1 Work registers 1 Preferred registers 1 Notes 
1 1 registers 1 (plus special use) 1 1 
1---------------------------------------------------------------------------------------
1 0 1 1 General 1 1 Cannot be used 
1 1 1 lias base 
1---------------------------------------------------------------------------------------
1 1 1 1 General + address 1 1 
1 1 1 of parameter list 1 1 
1---------------------------------------------------------------------------------------
1 2 1 Address of 1 1 1 Saved during 
1 1 program base 1 1 1 in-line record 
1 1 1 1 1 I/O and TRT 
1 1 1 1 1 instructions 
1---------------------------------------------------------------------------------------
1 3 1 Address of 1 1 1 
1 1 static base 1 1 1 

--------------~-------------~----------------------------------------------------------
4 

5 

I 
1 
I 
I 
I 

1 General + static 
1 chainback on entry 
1 to procedure 

1 Preferred register 
1 for DO loop 
1 control variable 

Address of 
temporary base 
if DSA size 
greater than 
3896 bytes 

6 1 1 General 1 
---------------------------------------------------------------------------------------

7 1 1 General 1 

8 1 1 General 

9 1 1 General 

10 1 1 General 1 Preferred registers for 
-------------------------------------------1 DO loop control when 

11 1 1 General 1 aXLE instruction is used-

12 1 Address of TCA 1 1 
----~-------------------------------------~--------------------------------------------

13 1 Address of 1 
1 current DSA 1 

14 1 1 General + branch- 1 1 

---------------------1 and-link to library 1-------------------------------------------
15 1 1 and other routines 1 1 L---------------------__________________________________________________________________ J 

Figure 2.5. Register usage in compiled code 

* METHOD OR ORDER OF CALCULATING 
EXPRESSIONS CHANGED - indicates that the 
order of the code following has been 
changed to optimize the object code. 

In certain cases~ mnemonics are used to 
identify the type of operand in an 
instruction, and~ where applicable, this is 
followed by the name of a PL/I variable. 
The following prefixes are used: 

A •• Address constant. 

ADD •• 

BASE •• 

BLOCK.nn 

CL.nn 

Aggregate descriptor 
descriptor. 

Base address of a 
variable. 

Label created for an 
otherwise unlabeled 
block. 

Compiler-generated 
label. 

Chapter 2: Compiler Output 17 



D •• 

DED •• 

WSP.n 

L •• 

LOCATOR •• 

RKD •• 

VO .•• 

Descriptor. 

Data element 
descriptor. 

workspace, followed by 
decimal number of the 
block of allocated 
workspace. 

Length of variable. 

Locator. 

Record or key 
descriptor. 

Virtual origin (the 
address where element 
o would be held for a 
one-dimensional array, 
element 0,0 for a 
two-dimensional array, 
etc.). 

Static Internal Control Section 

The static internal control section 
contains the majority of items that are not 
executable instructions. The contents of a 
typical static control section are shown in 
figure 2 .. 3. 

The first part of the static internal 
control section contains addresses. These 
are held in the order: 

1. Addresses of library modules 

2. Addresses of entry points 

3. Addresses of label constants that may 
be assigned to label variables 

4. Addresses of external procedures 
(other than library modules) 

The address section is followed by a 
section .cnown as the £Q!!§.:!:.2ntLEQQ!. This 
contains the following items (if required 
by the pl:'ogram): 

18 

Const:ants 

ONCB£~ 

Constant values used 
by compiled code. 

Control blocks used 
in error handling. 
(see chapter 7.) 

Descriptors, Control information 
locat:ors & used by compiled 
DEDs (data element code and library. 
descriptors) <see chapter 4.) 

Symbol table Control information 

address vector 
Symbol tables 

Diagnostic 
statement table 

used in 
data-directed I/O. 
(See chapter 4.) 

Information on 
statement numbers. 

Items are arranged according to their 
alignment requirements, those requiring 
doubleword alignment first, followed by 
fullword, halfword, byte, and bit. 

The final section of the static internal 
control section holds the static variables. 
These are held in size order, smallest 
first, as for automatic variables: first 
the variables of 8 bytes or less, next the 
variables of 2048 bytes or less, and 
finally any variable greater than 2048 
bytes. This system ensures that the 
smallest possible number of items will 
require indirect addressing, since it will 
always be the largest variables that 
overflow the 4K boundary. Within each 
division, items are grouped according to 
alignment stringencies, starting with those 
requiring doubleword alignment. This 
method ensures optimum use of storage. 

Program Control Section 

The program control section contains the 
executable instructions that are a 
translation of the PL/I source program. 
The format of each program control section 
depends on the contents of the source 
program. The discussion that follows 
covers items that will be common to all 
source programs. 

To keep discussions of subjects as 
complete as possible the chapter also 
includes descriptions of certain library 
functions when they are closely allied with 
the subject under discussion. 

REGISTER USAGE 

Details of register usage during the 
execution of compiled code are given in 
figure 2.5. 

Four general registers are used as bases 
for addressing various types of data; these 
are known as dedicated registers. The 
remainder of the registers are used as they 
are required and are known as work 
~g!ster2 

Dedicated registers are: 

R2 Program base. 



R3 static base. 

R12 TCA pointer. 

R13 DSA pointer. 

This arrangement of dedicated registers 
allows compiled code the use of five 
even/odd work register pairs. These are 
(0,1), (6,7)" (8,9), (10,11), and (14,15). 

Certain registers have special tasks for 
which they are always used, or for which 
they are preferred and used when available. 
These tasks are shown in figure 2.5. 

Register_~PrQg~_~~2g_Regi~~~: 
Register 2 is the program base register and 
is used for branching within the code. 
When the code exceeds 4K, register 2 is 
updated so that all branching is done on 
this register. During in-line I/O (when 
data management calls are handled by 
compiled code rather than by library 
subroutines), and during the execution of 
TRT instructions, the program base register 
contents are saved and the register used 
~or other purposes. 

Rggiste'_2-=-§ta~ic ~~§~Regist~: 
Register 3 points to the start of the 
static internal control section. The items 
to be found in this control section in any 
particular program are listed in the 
static-storage map put out by the compiler. 
(see "static Internal Control section," 
later in this chapter.) When the static 
control section is larger than 4K bytes, a 
further base register is used. 

!!ggist~_12-=_TC~: Offsets from register 
12 are used to address the various fields 
in the TCA. The TCA is discussed further in 
chapter 5. Its format is shown in appendix 
A. 

Sggi2.te~_13 -_~!:!~!:!ill:!;_Q§~: Register 13 
points to the current DSA and is used to 
address the automatic variables declared in 
the current procedure or block. References 
to offsets from register 13 which do not 
appear as names in the assembler language 
listing are references to the housekeeping 
fields held in every DSA. These are 
discussed in chapter 6: the format of the 
housekeeping information in a DSA is given 
in appendix A. 

!!ggistef_~: When the DSA is larger than 
3896 bytes register 4 is used as a base for 
compiler generated temporaries. 

special or preferred uses for work 
registers are shown in figure 2.5. Special 
uses are those for which the register is 
freed and always used. Preferred uses are 
those for which the register is used when 
possible. 

Floating-point registers are all used as 
general work registers for floating-point 
data. 

Register usage in library modules is 
different from that in compiled code. It is 
shown in figure 2.6. 

In both library and compiled code usage, 
register 12 points at the TCA, and register 
13 at the current DSA. Registers 14 and 15 
are used by both library subroutines and 
compiled code to branch and link between 
routines. 

A further point about library register 
usage is worth noting. Registers 14 through 
4 are normally saved by the library. This 
is because the majority of library 
subroutines use only these register~. 
consequently, time can be saved by reducing 
save-restore requirements. However, some 
library routines also save one or more of 
registers 5 through 11. 

Handling and Addressing Variables and 
Temporaries 

AUTOMATIC VARIABLES 

Automatic variables have storage allocated 
on a procedure or begin-block basis. 
Variables whose length is known during 
compilation have storage allocated within 
the DSA of the block in which they are 
declared. Variables whose length is not 
known until execution have their storage 
allocated in variable data areas (VDAs). 
VDAs are held in the last-in/first-out 
st0rage stack and are acquired in the 
prologue code after the DSA has been 
acquired. The same method is used as is 
used for acquiring the DSA (see above under 
"Prologue Code.") 

Chapter 2: Compiler Output 19 



Automatic variables, when used in the 
block in which they are declared, are 
addressed from register 13, if they are 
held in the DSA. If they are held in a 
VDA, a separate base is set up for the VDA 
and they are addressed from this. 

r-----------------------------------------, 
REGISTER USAGE (Library) 

Register Usage 

1 Work regi~ter 
2 Work register 
3 program base register 

(dedicated) 
4 Work register 
5 Work register 
6 Work register 
7 Work register 
8 Work register 
9 Work register 
10 Work register 
11 Work register 
12 TCA pointer (dedicated in 

both library and compiled 
code) 

13 DSA pointer 
14 Work register (always used 

for branch-and-link to other 
routines) 

15 Work register (used with 
register 14 for 

I branch-and-link) 
L-----------------------------------------J 
Figure 2.6. Library register usage 

Automatic variables known in any 
procedure or block are those that are 
declared in that procedure or block, or in 
any encompassing .procedures or blocks. 
The method used to address automatic 
variables in outer blocks is as follows. 
The address of the DSA of the block in 
which the required variable was declared 
is placed in the current DSA. This 
address can then be accessed from register 
13. This is done in the prologue. 
Frequently, the value is retained in the 
register used in the initial load and not 
reloaded when the variable is accessed. 
Typical code would be 

L 7,96(0,13) pick up address of 
correct DSA 

L 8,,108(7) Place value in register 
8 

COMPILER-GENERATED TEMPORARIES 

Because PL/I statements can contain an 
unlimitE~d number of operands, it is 
frequently necessary to set up fields 

20 

containing intermediate results. These 
fields are known as temE~!y_y~riable~ 
(temporaries) and are allocated within the 
DSA of the associated block, provided that 
the size of storage required is known at 
compile time. Temporaries are addressed 
from register 13, unless the DSA is longer 
than 4096 bytes. Because temporary 
storage is continually being reused, the 
same offset will not always refer to the 
same temporary. 

Where a temporary is needed to hold a 
value for an adjustable variable, its size 
is not predictable until execution. In 
such cases, a VDA is acquired for the 
temporary value. 

CONTROLLED VARIABLES 

Controlled variables are addressed through 
the pseudo-register vector, as described 
below under the heading "pseudo-Register 
Vector (PRV)". When no allocations of the 
controlled variable have been made, the 
PRV offset points to the dummy FCB. 
Otherwise, it points to the most recent 
allocation of the controlled variable. 

Each controlled variable is headed by a 
four-word control block that holds the 
address of the previous allocation (if 
any), the length of the variable 
(including the control block), the 
pseudo-register vector offset, and the 
task invocation count. The format of this 
control block is shown in appendix A. 

Storage for controlled variables is 
allocated in non-LIFO storage. If there 
is room in the ISA, it is allocated within 
the ISA. Otherwise, a GETMAIN macro 
instruction is issued to obtain storage. 

stacking and unstacking of controlled 
variables is handled by a resident library 
routine, IBMBPAF. IBMBPAF calls on 
IBMBPGR to obtain and release the storage. 

BASED VARIABLES 

Based variables are addressed by using the 
contents of the pointer on which they are 
based. The pointer is addressed in the 
usual manner, depending on its storage 
class. 



When a based variable is allocated, a 
call to the storage management module 
IBMBPGR is made. IBMBPGR acquires storage 
in the non-LIFO dynamic storage area and 
returns the address of the storage in 
register 1. The address held in register 
1 is then placed in the pointer on which 
the allocated variable is based. 

When the variable is freed, a further 
call to IBMBPGR is made to free the 
storage. 

Pointers: Pointers and offsets are held 
as-fullwords. The null pointer value is 
X'FFOOOOOO'. 

STATIC VARIABLES 

static internal variables are held in the 
static internal control section and are 
addressed from register 3. 

Static external variables are held in 
separate control sections and are 
addressed from an address constant in the 
static internal control section. 

ADDRESSING BEYOND THE 4K LIMIT 

As described above, variables can, in the 
simplest case, be addressed by using an 
offset from one of the base registers. 
However, as the space required for any 
particular type of storage can exceed the 
maximum offset allowed in addressing (4096 
bytes), it is necessary to have a scheme 
to allow addressing of variables beyond 
this limit. 

The method used is to divide storage 
for automatic variables" temporaries, and 
static variables into sections of 4096 
bytes. The addresses of the second and 
subsequent sections are then placed in the 
first section. Addressing of an automatic 
variable beyond the 4096-byte limit is 
typically done by code resembling the 
following: 

L 6~92(O,13} place address of 4K 
boundary in register 6. 

AH 7~96(0,6} Address variable by 
using offset from 4K 
boundary placed in 
register set up in last 
instruction. 

A similar system is used for addressing 
any static variables which are at an 
offset greater than 4096 bytes. The 

addresses are held in the following areas: 

Automatic 

Static 

Temporaries 

Immediately following 
the housekeeping 
information of the DSA. 

At the head of the 
first section of static 
storage. 

At the head of 
temporary storage, 
following bases of 
parameters, register 
save area, and 
addresses of any outer 
DSAs. 

Constants and variables are held in 
order of size, with the smallest first. 
This miniroizes the number of items that 
overflow the 4K boundary. 

rHE PSEUDO-REGISTER VECTOR (PRV) 

In order to address controlled variables 
and files, a control block known as the 
pseudo-register vector (PRV) is used. This 
control block is mapped by the linkage 
editor as a dummy section with a fullword 
field for each uniquely named controlled 
variable or file. During execution, the 
addresses of the storage allocated to the 
variables or files are placed in the PRV. 

The use of the linkage editor is 
necessary because controlled variables and 
files may be external and, consequently, it 
may be necessary to access them in 
separately compiled procedures. Other 
external items are compiled as CSECTs, but 
this is not possible for files or 
controlled variables because their 
associated storage is not allocated until 
execution. Controlled variables have 
storage allocated during the execution of 
an ALLOCATE statement; files are addressed 
from file control blocks (FCBs), which are 
created during execution. 

References to controlled variables and 
files are compiled as Q-type address 
constants. During link-editing, the DXD 
facility of the linkage editor is used, and 
the PRV is set up as an external dummy 
section. Each uniquely named file or 
controlled variable is allocated an offset 
within this dummy section, and the Q-type 
address constants are replaced by this 
offset. 

Chapter 2: Compiler Output 21 



r-----------------------------------------, 
During compilation 

1. Each controlled variable or file 
reference is compiled as a Q-type 
address constant that will be used as 
an offset within the PRV. 

2. The compiler generates a DXD 
instruction for every item requiring 
pseudo-register addressing. 

During link-editing 

fl. The nurrber of unique names requiring 
pseudo-register addressing is 
calculated and placed in a field that 
can be accessed by a CXD instruction. 

2. Each reference to a name generated as 
a Q-type address constant is replaced 
by the appropriate offset from the 
start of the PRV. 

During program initialization 

1. The length required for the PRV is 
ob1:ained by use of a CXD instruction. 
Storage for the PRV is then obtained 
in the program management area. The 
address of the PRV is placed in the 
TC1\. 

2. The address of the dummy FCB is 
placed in every field of the PRV. 

During execution 

1. When storage is allocated to the FCB 
or controlled variable, the address 
of the storage is placed in the 
associated field in the PRV. 
Comparison with the dummy FCB address 
can then be made, to determine 
whether storage has been allocated 
for the item. 

L-----------------------------------------J 
Figure 2.7. Use of the pseudo-register 

vector (PRV) 

Controlled variables and files are 
addressed via the PRV regardless of whether 
they are external or internal. The 
compiler prefixes internal items with the 
name of their procedure so that their names 
will be unique. The use of the PRV is 
summarized in figure 2.7. 

The pseudo-register vector is held in the 
program management area, and is addressed 

22 

from the TCA. 

Whenever a new task is attached, the PRV 
of the attaching task is copied into the 
program management area of the attached 
task. This means that, at the point when 
the task is attached, the files and 
controlled variables addressed from the 
subtask will be the same as those in the 
parent task. However, because each task 
has its own PRV, either task may change the 
addresses without affecting the other. 

To simplify implicit opening of a record 
I/O file, the PRV is initialized with every 
field set to point to a control block known 
as the dummy FCB. Use of this control 
block as if it were a genuine FCB results 
in control being passed to the open , 
routines: the file is opened, and a real 
FeB is created. The address of the real 
FeB is then placed in the PRV. 

pseudo-register fields for controlled 
variables are also initialized to point to 
the dummy FCB, so that the controlled 
variable allocation mechanism can deterrrine 
whether an allocation has been made by 
comparing the PRV value with the address of 
the dummy FeB. (The address of the durrrny 
FeB is held throughout the program in the 
TeA, so that the comparison can be made.> 

,Program Control Data 

Program control data comprises pointer, 
offset, file, area, entry, event, task, and 
label data. 

Pointer and offset data items are each 
held in a fullword. The data item in both 
cases consists of an address that is held 
right-adjusted in the field, padded on the 
left with zeros. For both data types~ the 
null value is represented by hexadecimal 

. • FFOOOOOO' • 

A file variable is held as a fullword 
containing the address of the declare 
control block (DCLCB); the DeLeB 
corresponds to a file constant. 

The formats of area, entry, event, task 
and label data are given in Appendix A. 



HANDLING DATA AGGREGATES 

PL/I data aggregates are structures and 
arrays, and include both arrays of 
structures and structures of arrays. 

Array elements are addressed from the 
yirtual.-Qrig!n of an array. This is the 
point at which the element whose subscripts 
are all zeros is held, or would be held if 
no such element is included in the array. 
Each element can be accessed by using a 
multiplier for each dimension. The 
multiplier is the distance between elements 
in a cross-section of an array. For 
example~ in an array B(9,9) the multiplier 
for the first dimension is the distance 
between elements B(l,l) and B(2,1); the 
multiplier for the second dimension is the 
distance between elements B(l,l) and 
B(1,2). 

If the bounds of the array and the 
length of the elements of the array are 
knowp during compilation, the values of 
multipliers can be calculated and placed as 
constants in the static internal control 
section. For accessing an element with a 
constant subscript" the offset from the 
virtual origin can be calculated during 
compilation. If the subscript value is a 
variable, the multiplier must be picked up 
from static storage during execution and 
the value calculated. 

If the bounds or extents of an array are 
not known during compilation, a control 
block known as an ~~Y~§2£f!E~Qf is set 
up. This control block is used to hold 
necessary information about bounds, 
multipliers~ etc. The information is placed 
in the array descriptor during execution. 
Array descriptors are described in chapter 
4. 

Structures are treated in a similar 
manner. Where all information about a 
structure is known, it is mapped during 
compilation and offsets to each item from 
the start of the structure are known to 
compiled code. If a structure cannot be 
mapped during compilation" it is mapped 
during execution, and the offsets within 
the structure are placed in a control block 
known as a stfg£~urLde§.£riE~Qf. To access 
an item in the structure, compiled code 
finds the offsets and calculates the 
address of each element from them. 
structure descriptors and the process of 
mapping during execution are described in 
chapter 4. 

ARRAYS OF STRUCTURES AND STRUCTURES OF 
ARRAYS 

Arrays of structures and structures of 
arrays are held as they are declared. 

The array of structures 

1 S (2) , 
2 B, 
2 c; 

would be held in the order 

r-----------------------------------, 
I S(l).B I S(l).C I S(2).B I S(2).C I 
L-----------------------------------J 
Band C are known as !!!~~rl~~y~g ar~~ys, 
because the elements within each array are 
not contiguous. 

The structure of arrays 

1 S, 
2 B(2), 
2 C(2); 

would be held in the order 

r-----------------------------------, 
I S.B(l) I S.B(2) I S.C(l) I S.C(2) I 
L-----------------------------------J 
Elements are accessed as array elements in 
both cases. In the array of structures 
shown above, both Band C are treated as 
separate arrays with their own virtual 
origins and multipliers. The difference 
would be in the value of the multipliers. 
When possible, the values of multipliers 
are calculated during compilation. When 
adjustable bounds or extents are involved~ 
the necessary data for both arrays of 
structures and structures of arrays is 
placed in a structure descriptor (see 
chapter 4). 

ARRAY AND STRUCTURE ASSIGNMENTS 

Assignments between structures and arrays 
of the same format are done by MVC 
instructions. Provided an array is not 
interleaved, an assignment will be made to 
it as a whole, and the elements will not be 
moved one at a time. similarly, structures 
that are contiguous and have the same 
format are moved as a whole. 

Chapter 2: Compiler output 23 



r---------------------------------------------------------------------------------------, 
STM 14 1 12,12(13) store registers of calling program. 
BC *+16 Branch around constants. 
DC A(STMT NO TABLE) Constant - address of statement number table. 
DC F'272' Constant - length required for new DSA. 
DC A(STATIC CSECT) Constant - address of static internal CSECT filled in 

L 
L 
L 
ALR 

CL 
BC 
L 

BALR 
L 

ST 
ST 
MVC 
LR 
ST 
MVI 
MVI 
MVI 
MVI 
MVI 
MVI 
LA 

3,,16 (0,,15) 
1,,76 (0,,13) 
0,12(0,15) 
0,1 

0,12(0,,12) 
13,,48 (0,15) 
15,116 (0.,12) 

14,15 
15,16(0,13) 

0,76(0,1) 
13,,4 (0,1) 
7 2 ( 4" 1) ., 72 (13) 
13,1 
5,88(0,13) 
87(13),X'91' 
86(13),X'91' 
85 (13) " X, CO' 
.87(13),X'CO' 
\0 (13) , X' 80' 
i1(13) ,X' 00' 
:4 , 176 ( 0 , 13 ) 
I 

by linkage editor. 
Set up R3 as static base. 
Set R1 to old NAB (start of new DSA). 
Place length required for new DSA in RO. 
Add old NAB (in R1) and length required for DSA (in 
RO). . 
Compare with EOS in TCA. 
Branch around library call if new DSA fits segment. 
Load address of stack overflow routine (IBMBPGRC) frow 
TCA. 
Branch to overflow routine. 
Restore R15 to previous value. (May have been changed 
by library call) 
Store new NAB in new DSA. 
Place backchain in new DSA. 
Move address of LWS from old DSA to new DSA. 
Point register 13 at new DSA. 
Set up static backchain. 

Set up enable cells - see chapter 7. 

Set up housekeeping flags - see appendix A. 

Set up base for temporaries. 

Other code as required Other tasks may be carried out at this point. (Such 
as, initialization of variables with the initial 
attribute, acquiring a VDA for adjustable variables, 
and setting up certain error-handling fields.) 

BALR 2,0 Set R2 as program base. L----------------------------------___________________ -_________________________________ J 

Figure 2.8. Typical prologue code 

HandHng Flow of Control 

In PL/I, five types of statement can result 
in non-consecutive flow of control. These 
statements are: 

CALL statements 
END statements 
RETURN statements 
Function references 
GOTO statements 

The first four of these are concerned with 
the block structure of the PL/I program and 
involve passing control from one block to 
another. GOTO statements can result in 
branches to code that is either in the 
current block, or in any other active 
block. 

Consecutive flow of control also ceases 
when an error or program interrupt occurs. 
The methods used to handle error and PL/I 
condition situations are described in 
chapter 7, "Error Handling." 

24 

ACTIVATING AND TERMINATING BLOCKS 

CALL, END, and RETURN statements, and 
function references all result in the 
activation or termination of blocks. The 
block structure of PL/I, as explained in 
chapter 1, is implemented by rr-eans of a 
hierarchy of DSAs. 

Each block (begin block, procedure 
block, or on-unit block) executes on its 
own program base that is set up at the end 
of the prologue code for each block. This 
base is marked in the object code listing 
with: 

* PROCEDURE BASE 

In the PL/I optimizing compiler, blocks 
are always called by means of a BALR 
instruction on registers 14 and 15. Within 
the prologue code, the registers are stored 
in the DSA of the calling block, and a new 
DSA is set up to hold the automatic 
variables of the new block plus a certain 



R13 ----. 

Housekeeping information 

See appendix A 

Items < 9 bytes in length 

Held in alignment order: 
doubleword 
fullword 
halfword 
byte 
bit 

Items 9 - 2048 bytes in length 

Held in alignment order as above 

Items> 2048 bytes 

Held in alignment order as above 

Parameter storage area 

Addresses of any parameters 

passed to the associated 

procedure are stored here 

Register bind storage area 

Used by compi led code when 
registers must be saved 

Local temporary storage 

Used for temporaries required 
for duration of statement· 

Global temporary storage 

Used by temporaries required 
for duration of block 

Figure 2.9. Contents of typical compiled code DSA 

Storage for automatic 
variables declared in 
the block, dynamic 
ONCBsetc. 

Temporary storage 

Chapter 2: Compiler Output 25 



amount of environmental information such as 
the enablement or disablement of certain 
conditions. 

When a block is terminated, the 
registers of the calling block are 
restored, and a branch is made on register 
14. This immediately returns control to the 
instruction after the BALR issued in the 
preceding block. The DSA of the called 
block is automatically discarded because 
all fields in the DSA~ including the 
pointer to the next available byte of free 
storage, were addressed from register 13. 
Because register 13 has been altered, the 
values that a~ply to the calling block 
automatically become current when the 
calling block's registers are restored. 

PROLOGUE AND EPILOGUE CODE 

Except for certain single statement on­
units, every PL/I begin block or procedure 
block has a prologue and an epilogue. The 
prologue prepares the environment for the 
associated block and acquires storage for 
automatic variables, compiler-generated 
temporaries, and workspace. The epilogue 
frees the storage acquired for the block, 
restores the registers of the caller, and 
returns control to the caller. 

The prologue appears on the object-program 
listing between REAL ENTRY and PROCEDURE 
BASE or BLOCK BASE. Every prologue has to 
acquire a dynamic save area (DSA) for the 
new block. (The DSA is a register save 
area concatenated with housekeeping 
information~ plus storage for automatic 
variables and temporaries.) Other jobs that 
may be done in the prologue code are: 

• Initialization of automatic variables 
that have the INITIAL attribute. 

• Initialization of pointers and locators 
that have the INITIAL attribute. 

• Movement of parameter addresses passed 
to the procedure to the correct 
locat.ion. 

• Acquisition of storage for adjustable 
variables. 

• Initialization of certain items for 
argument lists. 

• setting-up certain interrupt-handling 
information such as ONCBs and enable 

26 

cells. (See chapter 7.) 

An example of prologue code is shown in 
figure 2.8. 

After saving the registers, the prologue 
tests to see if there is enough room for 
the DSA in the current segment of storage. 
This is done by adding the length of the 
new DSA, calculated at compile time, to the 
address of the next available byte. If the 
result is greater than the end-of-segnent 
pointer (EOS) placed in the TCA during 
initialization, the library overflow 
routine (IBMBPGR) is called to try to to 
acquire a further segment from the free­
area chain. If space for the DSA is 
available, the next-available-byte pointer 
(NAB) is updated to point at the first 8-
byt~ boundary beyond the end of the new 
DSA. The remaining instructions set up 
housekeeping fields and point registers at 
various standard fields, including register 
13 to the start of the new DSA, and 
register 4 to the start of storage for 
temporaries. The final BALR instruction 
establishes register 2 as the program base 
register. 

Two backchains are set up. The dyn~mi£ 
E~£~£h~!n" which points to the DSA of the 
calling or preceding block, and the stati£ 
E2£~ch2!n, which points to the DSA of the 
statically encompassing block. For the 
main procedure, the dynamic backchain 
pOints to the dummy DSA, and the static 
backchain is set to zero. The address of 
the statically encompassing block is passed 
in register 5. 

static backcnains are used in tracing 
the scope of names and the enablement of 
PL/I conditions. 

For PL/I procedures with COBOL or 
FORTRAN in the OPTIONS option, the prologue 
is considerably different. See chapter 13, 
"Interlanguage Communication." 

The format of the DSA is shown in figure 
2.9; full details are shown in appendix A. 

Epilogue code consists of the instructions 
generated for END or RETURN statements. 
These instructions restore the registers to 
the values that were held when the current 
block was called. The register values are 
those stored in the previous OSA. Typical 
epilogue code is shown in figure 2.10. 

The completion of a main procedure 
results in the raising of the FINISH 
condition, and this may result in the 



execution of an on-unit. Consequently, the 
address of the current DSA and the address 
of the current statement must be retained 
(the DSA is needed to search for the on­
unit; the address of the current statement 
is needed if a SNAP trace is requested in 
the FINISH on-unit). Epilogue code for a 
main procedure therefore takes a different 
form to that generated for a subroutine. 

r-----------------------------------------, 
Epilogue code for main procedure 

LR 0,13 

L 13,4(0,13) 
L 14,12(0,13) 
LM 2,12,28(13) 

BALR 1,14 

Save current DSA 
address 
Chainback 
pick up value of R14 
Restore registers 2 
through 12 
Branch to 
initialization 
routine retaining 
current address in 
R1 

Epilogue code for subroutine or begin 
block 

L 
LM 

13,4(0,13) 
14,12,12(13) 

Chainback 
Restore registers of 
preceding block 

BR 14 Return 
L-----------------------------------------J 
Figure 2.10. Epilogue code 

CALL statements are executed by picking up 
the address of the block to be called from 
static storage. A BALR instruction is then 
carried out on registers 14 and 15. If 
arguments are being passed to the called 
procedure, an argument list is set up in 
temporary storage, the first bit of the 
last argument is set to '1', and register 1 
is pointed at the argument list. 

Typical code would be: 

00031A 18 50 LR 5,13 
Load static backchain address 

00031C 58 FO 3 020 L 15,A ••• X 
pick up address of procedure X 

000320 05 FF BALR 14,15 
Branch to procedure 

Function References 

Function references are compiled in exactly 
the same way as CALL statements. If the 
function returns a value, an extra field is 
placed as the last argument in the list. 
The returned value is placed in this field 
when the function is completed. Typical 
code would be: 

0001FE 41 90 6 OB4 LA 9,B 

000202 50 90 3 OBC ST 9,188(0,3) 

000206 

00020A 

00020E 

000210 

41 90 6 OBO LA 9,A 

50 90 3 OCO ST 9,192(0,3) 
Set up parameter list 

18 56 LR 5,6 
Load static backchain address 

41 10 3 OBC LA 1,188(0,3) 
Point register 1 at parameter 
list 

000214 58 FO 3 008 L 15,A ••• DOUBLE 
Place address of function 
(DOUBLE) in R15 

000218 05 EF BALR 14,15 
Branch to function 

END Statement 

END statements result basically in 
restoring the registers of the calling 
block and branching to the value held in 
register 14 of that block. 

Code compiled for an END statement of an 
internal block takes the following form: 

000402 58 DO D 004 L 13,4(0,13) 
Pick up DSA backchain 

000406 98 EC o OOC LM 14,12,12(13) 
Restore registers 

00040A 07 FE BR 14 
Branch to procedure 

For main procedures, certain further 
actions have to be taken. Because the end 
of a main procedure raises the FINISH 
condition, it is necessary to save the 
current value of register 13 so that the 
error handler may search the DSA chain for 
a FINISH on-unit. As it is possible to 
request a SNAP trace in a FINISH on-unit, 
it is also necessary to save the address of 
the END statement. For this reason, the 
branch is made with a BALR instruction 
rather than a branch instruction as used 

Chapter 2: Compiler Output 27 



for internal blocks. Typical code would 
be: 

00188C 18 OD LR 0,13 
Save current DSA address in RO 

00188E 58 DO D 004 L 13,4(0,13) 
Pick up DSA backchain 

001892 58 EO D OOC L 14,12(0,13) 
Restore register 14 

001896 98 2C D 01C LM 2,12,28(13) 
Restore registers 2 through 12 

00189A 05 lE BALR 1,14 
Branch to initialization 
routine saving branch address 
in register 1 

RETURN statements are executed in a similar 
way to END stateroents, but result in the 
termination of a procedure rather than a 
block. Consequently, before the 
restoration of the registers~ a chainback 
must be made to the correct DSA. A 
chainback is made through any begin blocks. 
The depth of nesting can be determined 
during compilation, so the back chain can be 
loaded the required number of times before 
the branch is made. 

Typical code would be: 

0003FO 58 DO o 004 L 13,4(0,13) 
Pick up DSA backchain 

0003F4 98 EC D OOC LM 14,12,12(13) 
Restore registers 

0003F8 07 FE BR 14 
Branch to procedure 

~Q~~: If the procedure in which the RETURN 
statement occurs is a main procedure, the 
code will take the form compiled for an END 
statement for an external procedure (see 
above. ) 

GOTO STATEMENTS 

The implications of a GOTO statement depend 
on whether the label branched to is within 
the block or external to it. If the label 
is outside the block, the branch implies 
that one or more blocks must be terminated. 
If the label in the GOTO statement is a 
label variable, it is not always possible 
to determine during compilation whether the 
label will be in the same block as the GOTO 

28 

statement. consequently, interpretive code 
is used for label variables. 

For GO TO statements to a label constant 
within the block, the compiler produces a 
straightforward branch instruction. For 
GOTO statements that may pass control to 
another block, compiled code calls the 
interpretive code in the TCA. 

Interpretive code to handle a GOTO out 
of block is held in the TCA. To implerrent 
a GOTO that will or may transfer control 
out of the block, compiled code branches to 
code in the TCA. The code in the TCA 
checks to see whether it is one of a small 
number of special cases, and, if it is, 
calls a library routine -- IBMBPGO. In 
other circumstances, the GOTO code in the 
TCA handles the branch and any block 
termination involved. 

The optimizing compiler produces code that 
assumes that the registers retained across 
the execution of a labeled statement will 
be 2, 3, 12, and 13. These are the program 
base, the static base, the temporary base, 
the address of the TCA, and the address of 
the current DSA. All other register values 
may be different when control passes 
through the labeled statement on different 
occasions. 

The enablement of conditions may differ 
in the GOTO statement and in the labeled 
statement. within a block, the enablement 
status may be varied only for the duration 
of a single statement. The GOTO therefore 
resets the block enablement status before 
the branch is taken. If the labeled 
statement has a different enablement status 
from the block, it will··be automatically 
reset in the labeled statement. 

As explained in chapter 7, "Error and 
Condition Handling~" the enablement of 
conditions is recorded by enable cells. 
Two sets are used: the block enable cells 
retain the enablement situatIon at the 
start of the block, which can consequently 
be restored at any time; the cu!~~ enable 
cells hold the enablement situation that is 
current, Which, as explained earlier, may 
differ from that at the start of the block. 

A GOTO within block normally takes the 
form of a simple branch instruction plus 
any alteration of the enablement bits that 
may be necessary to reset the enablement 
situation to that at the start of the 
block. Typical code would be: 

000F1A 47 FO 2 OC8 B INPUT 



Branch to correct address in 
compiled code (label name is 
"INPUT") 

The optimizing compiler attempts to 
retain the same block base for all branches 
within a block. However, this is not always 
possible and, if the code for the block is 
longer than 4096 bytes, it may be necessary 
to set up a new base when a GOTO statement 
is executed. As all labels are stored with 
both their address and their base this 
presents no problem. The address of the 
label and the value of its base form the 
value of the label constant. The value of 
the base is placed in register 2, and a 
branch is made to the label address. 

When a GOTO to a label within the block 
is made, there is no need to reset 
registers 3, 4, 12, or 13 as these are not 
altered within a block. When 
OPTIMIZE(~IME) is specified an attempt is 
made to retain register values across 
labels. 

Labeled statements within a block have 
an effect on optimization in that, apart 
from the bases and block addresses 
mentioned above, values cannot be retained 
in registers beyond a labeled statement. 

GOTO statements that transfer control from 
a block have to overcome the problems 
described above. plus problems of block 
termination. 

For a GOTO out of block or to a label 
variable, compiled code makes a call to the 
GOTO code in the TCA, which is held at 
offset 128 (decimal). The GOTO code 
receives, through registers 14 and 15, 
either the contents of the label variable 
or the equivalent information for a label 
constant, namely the address at which the 
label constant is held, and the address of 
the DSA of the block in which the label 
appears. 

The GOTO code restores registers 3 and 4 
from the DSA passed to it, loads register 2 
from the second word of the label constant, 
and loads register 13 from register 15. It 
then branches to the appropriate point in 
code which is picked up from the address of 
the label constant, passed in register 14. 

The enablement situation at the start of 
the block has to be be restored, and this 
is done by setting the current enable cells 
in the DSA to the value of the block enable 
cells. If the current enable cells 
indicate that CHECK is enabled, a search is 

made for a qualified CHECK ONCB, so that 
the enable cells may be set to the start­
of-block situation in this ONCB. 

In a similar manner, it may be necessary 
to restore the NAB value to that at the 
start of the block. This will be necessary 
if the statement that invoked the block 
acquired a VDA. The start-of-block NAE 
value is retained in the OSA and is known 
as the end-of-prologue NAB. If a VOA has 
been acquired, the fact is flagged in the 
flag byte of the DSA, and the GOTO places 
the end-of-prologue NAB value in the 
current NAB field. 

Such action is never required within a 
block, as VOAs are only acquired for the 
duration of one statement and are never 
used for GOTO statements. Typical code 
would be: 

GOTO label-constant (out of block) 

000226 18 E6 LR 15,6 
Place address of DSA in R15 

000228 41 EO 3 088 LA 14,136(0,3) 
Place address of label 
constant in R14 

00022C 47 FO C 080 B 128(0,12) 
Branch to GOTO code in TCA 

GOTO label variable statements are treated 
in different ways depending on whether 
optimization has been specified. 

For NOOPTIMIZE, they are all treated as 
GOTO out of block; for OPTIMIZE (TIME), a 
check is made to determine whether they 
could be out-of-block branches. The check 
is made by testing a label list, which is a 
list of the label constants to which the 
label variable may be assigned. If the 
programmer has supplied a label list, it is 
used. Otherwise, a list is generated 
containing all the label constants that are 
assigned to label variables. If a branch 
to any of the labels in the list could 
result in a GOTO out-of-block, all GOTO 
statements referring to the label variable 
are treated as GOTO out-of-block 
situations'. Typical code would be: 

GOTO label-variable 

000000 98 EF D OA8 LM 14,15,168(13) 
Load R14 and R15 with label 
variable 

000004 47 FO 0 080 B 128(0,12) 
Branch to GOTO code in TCA 

Chapter 2: Compiler output 29 



Although it is invalid PL/I, it is possible 
for a Gcre statement using a label variable 
to result ·in transfer of control to an 
inactive block. The optimizing compiler has 
no method of checking such errors, whose 
consequences are unpredictable. such errors 
can occur because a label variable is not 
reset when the block containing the latel 
constant to which it refers is terminated. 
When an attempt is made to GOTO a label 
variable, the address of the DSA is passed 
in register 14. The GOTO code assumes this 
address to be the address of an active DSA, 
and acts accordingly. Three possibilities 
arise: 

1. ThE~ original DSA will not have been 
overwritten, and the program will 
eXE~cute. 

2. The original DSA will have been 
overwritten with the DSA of another 
block. The results are then 
unpredictable, as the code branched to 
will be accessing an incorrectly 
mapped DSA. 

3. The original DSA will have been 
overwritten with other information. 
Again, the results are unpredictable, 
bu1: may result in an interrupt in the 
error handler because the backchaining 
will not be correctly set up. 

It should be noted that, because of the 
method used to allocate DSAs, the chances 
of one DSA starting at the same address as 
a previous DSA are high. 

As explained in chapter 7, certain on-units 
are not executed as separate program 
blocks. Instead, the required action is 
taken under the control of the error 
handler~ On-units containing only a GOTO 
statement (GOTO-only on-units) are handled 
in this 'Nay. 

The error handler accesses on-units 
through control blocks known as ON control 
blocks (·ONCBs). The ONCB for a GOTO-only 
on-unit is specially flagged, and the last 
word of the ONCB is initialized to hold an 
offset. At this offset in the DSA of the 
block containing the on-unit, the address 
of the label information is held. For a 
label variable, the offset contains the 
address of the label variable; for a label 
constan1:, the offset contains the address 
of a label temporary that is initialized to 
the value of the label constant. The 

30 

initialization is done during the execution 
of the prologue of the block that contains 
the on-unit.· 

The error handler loads the information 
in the label variable or the label 
temporary into registers 14 and 15, and 
calls the GOTO code in the TCA. 

If the test in the GOTO code in the TCA 
reveals that an abnormal situation exists, 
the interpretive GOTO routine is called. 
This routine is a subroutine of the program 
initialization routine. 

Two abnormal cases can arise: 

GOTO out of SORT exit routine 

GOTO from an event I/O on-unit 
(certain cases only) 

When either of these situations could occur 
a flag is set in the TCA. Sort exits are 
also flagged in the DSA of the procedure 
involved. 

The SORT exit DSA requires special 
action because the GOTO 'Nill involve the 
termination of SORT if it transfers control 
to another block. 

The GOTO during an event I/O on unit can 
cause the termination of a number of WAIT 
statements. This involves removing 
information about these statements from the 
various chains that are set up during event 
I/O. 

These two situations are expla~ned 
further under the headings "SORT/MERGE" and 
"WAIT" in chapter 11. 

If CHECK enablement has to be changed 
during an abnormal GOTO, the library 
routine IBMBPGO is called by the 
interpretive GOTO routine. To handle the 
situation. IBMBPGO is described in the 
licensed publication QS/360 EL/! Residen~ 
~!~f~Y ffQgf~rn Log!£. 

Argument and Parameter Lists 

In PL/I usage, a parameter list is a list 
of the items a program expects to be 
passed; an argument list is a list of the 
items that are passed by the calling 
routine. 

Between PL/I routines, addresses are 



always passed rather than the arguments 
themselves. For strings, structures~ 
arrays, and areas, the addresses of 
locators are passed rather than the 
addresses of the arguments themselves. The 
format of locators and the reasons for 
their use are given in chapter 4. 

I When arguments are passed to routines 
Iwhose entry points are declared with the 
I ASSEMBLER, COBOL, or FORTRAN attributes, 
Ithe address of the data itself must be 
Ipassed. The method used is described in 
Ichapter 13 "Interlanguage Communication". 

Arguments are passed in an argument list 
addressed by register 1. Normally the list 
is set up in static storage. The addresses 
are loaded into consecutive registers and 
placed in the list by an STM instruction. 
If the procedure is reentrant or recursive, 
the list is moved into the temporary 
storage area in the DSA before the call is 
made. 

The addresses passed in the argument 
list are moved into the parameter storage 
area, which is held at the head of 
temporary storage and is addressed by 
register 4. (See figure 2.8.) Parameters 
are then accessed by picking up the 
addresses from this area. 

Dummy arguments, when they are required, 
are set up by the calling program. 
consequently, the called program can treat 
all arguments in the same manner. 

LIBRARY CALLS 

Library calls are a feature of every object 
program. All library calls that appear in 
the object-program listing are to modules 
in the resident library. Transient library 
routines are called by bootstrap routines 
which are held in the resident library. 

The number of library calls used depends 
on the source program and the level of 
optimization specified. For OPTIMIZE 
(TIME), the minimum number of library calls 
will be made. If NOOPTIMIZE is specified, 
library calls will be made where this will 
speed compilation. The standard default is 
NOOPTIMIZE. 

Figure 2.11 shows examples of sequences 
used for calling library modules. The 
majority of library calls can easily be 
recognized by the appearance in the listing 
of the letters "IBMB" followed by four 
letters specifying the module name and 
entry point. TO call a module, its address 
is loaded into register 15, and a BALR 
instruction is carried out on registers 14 

and 15. 
r-------~---------------------------------, 

LA 

LA 

LA 

STM 

L 

BALR 

1,40(0,4) 

14,VO •• U(11) 

15,DED •• VO •• 
U(ll) 
14,15,0(1) 

15,A •• IBMBSLOA 

14,15 

Point Rl at argument 
list 
Store address of 
argument in register 
Store address of 
argument in register 
Load into argument 
list 
pick up address of 
routine from static 
internal control 
section and place in 
R15 
Branch and link to 
routine 

Example 1. Call to library routine that 
has been link-edited and whose address 
is held in the static internal control 
section. The arguments passed are 
addressed by register 1. 

L 15,116(0,12) 

BALR 14,15 

Load address of 
routine held in TCA 
Branch and link to 
routine 

Example 2. Call to library routine 
whose address is held in the TCA 

L-----------------------------------------J 
Figure 2.11. Examples of library 

calling sequences 

The fifth letter of the entry point name 
is mnemonic, indicating the type of module 
that is being called. Figure 2.12 gives 
the meaning of the mnemonics. Full details 
of the library modules are given in the 
program product publications OS_~L/~ 
±~~n~!gn~~ib~~~y~ __ ~~Qgram_~Qg!£ and Q§ 
~~L!_Re~!ggnt_~!Q~~~y~ __ ~~Qg~am_Loqi£· 

A further discussion of library module 
naming conventions is given chapter 3. 

Before a call is made to a library module, 
an argument list must normally be set up. 
This is done in one of several ways, 
depending on the library module. The 
majority of library calls require the 
method shown in figure 2.11, example 1. 
This consists of loading the list into 
sequential registers starting at register 
14, and then using a store-multiple 
instruction to place the arguments into an 
area of static storage, whose address is 
then loaded into register 1. Argument 

Chapter 2: Compiler Output 31 



lists are set up as far as possible during 

r----------
IBMBA-'-­
IBMBB-'-­
IBMBC--­
IBMBE-'-­
IBMBI-'-­
IBMBJ-'-­
IBMBK--­
IBMBM-'-­
IBMBO--­
IBMBR--­
IBMBS--­
IBMBT---

------------------------------, 
Array handling 
string handling 
Conversion 
Error handling 
Interlanguage communication 
Date/time/delay/wait 
Dump/sort/checkpoint/restart 
Mathematical 
Open/close 
Record I/O 
stream I/O 
Completion pseudovariable 
routine 

L-------------------------------------____ J 

Figure 2.12. Mnemonic letters in 
library module entry-point 
names 

r-----------------------------------------, 
Offset from I Name of I Use 
start of TCA I module I 
(Register 12) I entry I 

--------------- point I 
Decimal I Hex I 

72 

84 
108 

112 

116 

120 

264 
268 

272 

48 

54 
6C 

70 

74 

78 

108 
10C 

110 

IBMBPGRD stack overflow 
routine to 
get VDA 

IBMBEFL FLOW module 
IBMBPGRA Get non-LIFO 

dynamic 
storage 

IBMBPGRB Free non-LIFO 
dynamic 
storage 

IBMBPGRC Stack overflow 
routine for 
prologue 

IBMBERRB Error handler 
software 
interrupt 

IBMBJWTA WAIT module 
IBMBTOCA Completion 

pseudovariable 
routine 

IBMBTOCB Event variable 
assignment 
routine 

L-----------------------------------------J 
Figure 2.13. Offsets where addresses of 

library modules are held 
in the TCA 

compilation and~ where necessary, completed 
during execution. 

32 

As can be seen in example 1 of figure 2.11, 
library addresses are generally held in 
static storage and addressed as an offset 
from register 3. However, the addresses cf 
certain library routines are held in the 
TCA or the TCA appendage and addressed from 
register 12. They are addressed either 
directly or indirectly as shown in example 
2 of figure 2.11. The names of these 
routines do not appear on the listing; 
however, they can be identified by their 
offset from the start of the TCA (see 
figure 2.13). 

Where possible, do-loops are carried out by 
means of a BXLE instruction, because this 
is more efficient than using a simple BCT 
instruction. BXLE do-loops can be used 
where the control variable cannot be 
altered except at the head of the loop, and 
where it is not subsequently accessed after 
the completion of the loop. BXLE do-loops 
cannot be used for the outer of a number of 
nested do-loops. For outer loops, other 
branch instructions are used. Code for a 
number of typical do-loops is shown below. 
Note that the code will differ according to 
the content of the loop. 

DO I = 1 to 10; 

DO J = 1 to 10; 

END; 

LH 

8TH 
CL.l EQU 

END; 

5,596(0~3) pick up 1 from 
constants pool 

5,1 

* 
Place 1 in I 



2. 

LH 
AH 
STH 
C 

BNH 

LH 

LH 

LH 

CL.2 EQU 

BXLE 

5,1 
5,596(0,3) 
5,1 
5,598(0,3) 

CL.1 

Increment and 
store in I 
Compare I and 
constant 10 in 
static storage 

5,596(0,3) Place 1 in 
first operand 

10J 596(0,3) Place 1 in 
second operand 

I1 J 598(0,3) Place 10 in 
comparand 

* 

5,10,CL~2 Increment, 
test, and 
branch if 
necessary. 

Compiler-Generated Subroutines. 

The compiler uses internal subroutines to 
carry out certain functions. These have 
the advantage over library modules, because 
they can be tailored for the most common 
case. When special cases arise, the 
library routines are called. Compiler­
generated subroutines have the further 
advantage that they are internal to 
compiled code and consequently need not 
follow the standard operating system 
calling sequence. 

Compiler-generated subroutines are used 
for the following purposes. 

IELCGIA 

IELCGIB 

IELCGOA 

IELCGOB 

IELCGOC 

IELCGMV 
IELCGCL 

stream I/O input - provides 
address of source of next 
edit-directed data or format 
item 
Stream I/O input -
housekeeping after 
transmission of data item 
Stream I/O output - provides 
address of target of next 
edit-directed data or format 
item 
stream I/O output - updates 
FCB, counts data item, and 
frees VDA if one was used 
stream I/O - processes X 
format items 
Move long (registers 6,7,8~9) 
Compare long (registers 
1,6,7,8,9) 

IELCGCB 
IELCGON 
IELCGRV 
IELCGBB 
IELCGBO 

Compare long bits 
Dynamic ONCB chaining 
Revert VDA chaining 
Test for '1~ bits 
Test for '0' bits 

Compiler-generated subroutines are held in 
separate control sections and are printed 
at the head of the object-program listing 
when they are used in a program. 

Optimization and its Effects 

optimization is the attempt to produce the 
most efficient possible object prograrr.. 
The os PL/I Optimizing Compiler adopts a 
threefold approach: 

1. It attempts to compile each statement 
in the most efficient manner. 

2. It modifies the resulting code for 
each block, in an attempt to make it 
more efficient (for example, by 
maintaining values in registers and by 
using common control blocks for 
similar items). 

3. It examines the source program to 
discover whether statement flow can be 
reorganized to produce a more 
efficient program (for example, by 
moving code out of loops). 

The effect of specifying the compiler 
option OPTIMIZE (TIME) is that the compiler 
loads and calls the oFtimization phases, 
and executes optimization code in other 
phases. The optimization phases are 
described in the publication OS PL/I 
QEtimizing_QQmEi!~f~ Program Logic. 

When NOOPTIMIZE is specified, the 
optimization phases are not called; no 
attempt is made to study the flow of the 
program, and the examination of compiled 
code for possible improvements is not 
undertaken en a global basis. More library 
calls will generally be made if NOOPTIMIZE 
is specified. 

EXAMPLES OF OPTIMIZED CODE 

A number of the more noticeable effects of 
optimization are shown below. These show 
code sequences which may prove difficult to 
understand without knowledge of the 
objectives of optimization. Where possitle, 
the examples of code given are expansions 
of the examples shown in the language 
reference manual for this compiler. The 
examples do net cover all optimization 

Chapter 2: Compiler Output 33 



carried out by the compiler. 

Elimination of common expressions is 
handled by avoiding multiple calculations 
of the same expression, the value being 
retained either in temporary storage or in 
a register. In the examples shown below, 
the common expression is nB+C n • In the 
first example, the value is held in a 
register. In the second, it is held in 
temporary storage, because the value to 
which it is first assigned is altered. In 
certain circumstances, the code could be 
compiled to move the value from the 
variable to which it was originally 
assigned to the second variable. 

2 A=B+C; 

3 IF X<Y THEN X=Y; 
4 D=B+C; 

Q£j~£:!::_.E~Qg:!:!!!!! 

* STATEMENT NUMBER 2 
000062 78 00 D OA4 
000066 7A 00 D OA8 
00006A 70 00 D OAO 

* STATEMENT NUMBER 3 
00006E 78 60 D OAC 
000072 79 60 D OBO 
000076 47 BO 2 020 
00007A 78 60 D OBO 
00007E 70 60 0 OAC 
000082 CL.2 

* STATEMENT NUMBER 4 

LE 
AE 
STE 

LE 
CE 
BNL 
LE 
STE 
EQU 

O,B 
O,C 
O,A 

6,X 
6,Y 
CL.2 
6,Y 
6,X 

* 

* CAI~CULA'I'ION OF COMMONED EXPRESSION 
FOLLOWS 
000082 70 00 D OB4 STE 0,0 

2 
3 
4 

A=B+C; 
IF X<Y THEN A=6; 
O=B+C: 

Note: A may be altered before subsequent 
use of expression. 

34 

Obj~ctE!:Qgf~!!! 

* STATEMENT NUMEER 2 
000062 78 00 D OA4 
000066 7A 00 D OA8 
00006A 10 00 4 028 
00006E 10 00 D OAO 

* STATEMENT NUMBER 3 
000012 78 60 D OAC 
000076 19 60 D OBO 
00007A 41 BO 2 024 
00001E 18 00 3 010 
000082 70 00 D OAO 
000086 CL.2 

* STATEMENT NUMBER 4 

LE 
AE 
STE 
STE 

LE 
CE 
BNL 
LE 
STE 
EQU 

O,E 
O,C 
0,40(0,4) 
O,A 

6,X 
6,Y 
CL.2 
1,16(0,3) 
1,A 

* 

* CALCULATION OF COMMONED EXPRESSION 
FOLLOWS 
000086 18 20 4 028 
00008A 10 20 D 084 

LE 
STE 

2,40(0,4) 
2,0 

when expressions cannot be altered inside a 
section of code that may be executed a 
number of times, the expression is moved 
out of the loop to a position where it will 
be executed only once, regardless of the 
number of times that the loop is executed. 
The process is known as movement of 
invariant expressions. The most obvious 
example is in do-loops. However, the 
compiler analyzes the source program for 
other types of loop and also moves code 
from these. 

Example 1 shows code moved from a do­
loop. Example 2 shows code moved from a 
loop that has been detected by the 
compiler. It should be noted that code 
moved out of loops frequently involves· 
conversion and is not obvious in the source 
program. 

2 DO I=l TO N: 
3 J=3; 
4 END; 

* STATEMENT NUMBER 2 
000066 48 EO D OA2 LH 14,N 
00006A 18 BE LR 11,14 
00006C 48 AO 3 014 LH 10,20(0,3) 
000070 48 50 3 014 LH 5,20(0,3) 
000014 19 5B CR 5,11 
000016 47 20 2 024 BH CL.3 



r---------------------------------------------------------------------------------------, 

2 
3 
4 
5 
6 

DCL C(10) FLOAT 
DCL B(10) FLOAT 

DO I=l TO 10 
C(I)=B(I); 
END; 

Ob~£~_J2roSI!:~!!l 

DECIMAL (6); 
DECIMAL (6); 

* STATEMENT NUMBER 4 
000066 48 60 3 010 
00006A 40 60 0 OAO 

LH 6,16(0,3) 
STH 6,I 

pick up 1 from static 
Place in I 

* INITIALIZATION CODE FOR OPTIMIZED LOOP FOLLOWS 

* CODE MOVED FROM STATEMENT NUMBER 5 
00006E 48 EO 3 012 LH 14,18(0,3) 
000072 48 90 3 014 LH 9,20(0,3) 
000076 18 B9 LR 11,9 
000078 48 AO 3 012 LH 10,18(0,3) 
00007C 18 5E LR 5,14 

* CONTINUATION OF STATEMENT NUMBER 4 
00007E CL.2 EQU * 

* STATEMENT NUMBER 5 
00007E 78 45 D OA4 
000082 70 45 D OCC 

* STATEMENT NUMBER 6 

LE 4, VO • " B ( 5 ) 
STE 4 , VO •• C ( 5) 

Load "4" into R14 from 
Load "40" into R9 from 
Load "40" into Rll for 
Load "4" into Rl0 
Load "4" into R5 

pick up VO •• B+R5 
Place in VO •• C+R5 

static 
static 
BXLE 

000086 87 SA 2 018 BXLE 5,10,CL.2 Increment R5 by 4, test for end of 
loop, and branch or continue L-------------------------------______________________ -----_____________________________ J 

Figure 2.14. Modification of do-loop control variable 

* INITIALIZATION CODE FOR OPTIMIZED LOOP 
FOLLOWS 

* CODE MOVED FROM STATEMENT NUMBER 3 
00007A 48 70 3 016 LH 7,22(0,3) 
00007E 40 70 D OA4 STH 7,J 

* CONTINUATION OF STATEMENT NUMBER 2 
000082 CL.2 EQU * 

* STATEMENT NUMBER 4 
000082 87 SA 2 01C 
000086 40 50 D OAO 

BXLE 5,10,CL.2 
STH 5,I 

00008A CL.3 EQU * 

2 

3 
4 
5 
6 

L:\ IF X>Y THEN GOTO BED~ 
/*LOOP BEGINS*/ 

J;=I-N; 
X=X\tJ; 

GO TO L~ /*LOOP ENDS*/ 
BED: ~=x~ 

* INITIALIZATION CODE FOR OPTIMIZED LOOP 
FOLLOWS 
* CODE MOVED FROM STATEMENT 
000066 48 EO D OAE LH 
00006A 4B EO D OBO SH 
00006E 50 EO 4 028 ST 

* STATEMENT NUMBER 2 

* STATEMENT LABEL L 
000072 78 00 D OAO LE 
000076 79 00 D OA4 CE 
00007A 47 20 2 042 BH 

* STATEMENT NUMBER 3 

NUMBER 3 
14,I 
14,N 
14,40(0,4) 

O,X 
O,Y 
BED 

* CALCULATION OF COMMONED EXPRESSION 
FOLLOWS 
00007E 58 60 4 028 
000082 40 60 D OAC 

* STATEMENT NUMBER 4 

* END OF COMMON CODE 
000086 50 60 4 030 
00008A 48 60 3 020 

L 
STH 

ST 
LH 

6,40(0,4) 
6,J 

6,48(0,4) 
6,32(0,3) 

Chapter 2: Compiler Output 35 



r---------------------------------------------------------------------------------------, 
SOYL£!Lprogr.2ill 

2 IF (A=D) I (C=D) THEN 
X=Y+Z; 

* STATEMENT NUMBER 2 
000062 78 00 D OAO LE O,A 
000066 79 00 D OA4 CE O,D 
00006A 47 80 2 018 BE CL.3 
00006E 78 40 D OA8 LE 4,C 
000072 79 40 D OA4 CE ~,D 
000076 47 70 2 024 BNE CL.2 
00007A CL.3 EQU * 
00007A 78 60 D OBO LE 6,Y 
00007E 7A 60 D OB4 AE 6,Z 
000082 70 60 D OAC STE 6,X 
000086 CL.2 EQU * 

pick up A 
Compare A 
Branch if 
pick up C 
Compare C 
Branch if 

X=Y+Z 

and D 
equal 

and D 
not equal 

L----------------------------------------------_________________________________________ J 

Figure 2.15. Branching around redundant expressions 

r---------------------------------------------------------------------------------------, 
§Q!!rc!jL.E~Sf:am 

2 X=123; /*COMMONED ITEM*/ 
3 Y=123*Z; 
4 V=V**123; 
5 A=123; /*COMMONED ITEM*/ 

Ob ~ ec!:_.p!QSf:~ill 

* STATEMENT NUMBER 2 
000066 78 00 3 020 LE 0,32(0,3) /*COMMONED ITEM*/ 
00006A 70 00 D OAO STE O,X 

* STA'I'EMENT NUMBER 3 
00006E: 78 20 D OA8 LE 2,Z 
000072 6C 20 3 018 MD 2,24{O,3) 
00007}.1 70 20 D OA4 STE 2,Y 

* STATEMENT NUMBER 4 
00007E: 41 10 D OAC LA 1,V 
000082 41 50 3 024 LA 5,36(0,3) 
000086 41 60 D OAC LA 6,V 
00008A 58 FO 3 OOC L 15,A •• IBMBMXSA 
00008E: 05 EF BALR 14,15 

* STATEMENT NUMBER 5 
0000B8 78 20 3 020 LE 2,32(0,3) 
OOOOBC 70 20 D OBO STE 2,A /*COMMONED ITEM*/ L-------.-----------------------------------------------_________________________________ J 

Figure 2.16. Use of common constants 

000081~ 40 60 4 030 STH 6,48(0,4) 
00009~~ 97 80 4 032 XI 50(4),X'80' 
000096 78 60 4 030 LE 6,48(0,4) 
000091\ 7B 60 3 020 SE 6,32(0,3) 
000091~ 3A 60 AER 6,0 
OOOOAO 70 60 D OAO STE 6,X 

* STATEMENT NUMBER 5 
OOOOAIJ 47 FO 2 OOC B L 

* STATEMENT NUMBER 6 

36 

* STATEMENT LABEL BED 
0000A8 70 00 D OA8 STE O,A 

If the source program contains statements 
that can never be executed because they are 
unconditionally branched around, these 



statements will be ignored by the compiler. 

In th$ example below, the statements 
between $ and 8 can never be reached. 
conseque~tly, no code is compiled for these 
statemen~s, and a compiler diagnostic 
message !s issued to indicate that this is 
the case, 

~~~mple 

§Qy~l2t0gr~!!!

5 GOTO t.ABEL;
6 IF A<B THEN

IF B<C THEN
II!' A<X THEN

B=B*C;
7 ELS~ C=B*C;
8 LABEL: X=X+l;

QQj~Q!:_E~Qg!:~!!!

* STATEMENT NUMBER 5
00008A· 47 FO 2 028 B

* STATEMENT NUMBER 8

* STATEMENT LABEL LABEL
00008E 78 60 D OAC LE
000092 7A 60 3 018 AE

000096 70 60 D OAC STE

Compiler message reads:

LABEL

6,X
6,24
(0,3)
6,X

"6,6,6,7 STATEMENT MAY NEVER BE
EXECUtED. STATEMENTS IGNORED."

certain expressions are simplified for
speedier: execution. For example,
multiplication is simplified to addition,
as in the following example.

2 X=3*B

Object p~Qg~m

* STATEMENT NUMBER 2
000065~ 78 20 D OAC
000062 3A 22
000064, 7A 20 D OAC
000068 70 20 D OA8

LE
AER
AE
STE

2,B
2,2
2,B
2,X

Nhen the do-loop control variable is used
for accessing array elements, it is
frequently modified to simplify addressing
of the array elements.

If, as in the example in figure 2.14,
the elements of the array are four bytes
long, it simplifies addressing to increment
the loop control variable by 4 rather than
by 1. When this is done, the increment
becomes the distance between the start of
successive array elements. Provided that
the original value of the loop control
variable is the same as that of the first
bound of the array, the loop control
variable in turn becomes the offset of the
element from the virtual origin of the
array.

If the loop control variable is altered,
this means that the in'crement and final
value must also be altered. Thus the loop
in the example instead of being incremented
from 1 to 10 by 1, is incremented from 4 to
40 by 4. Note that the value of the loop
control variable is set at the start of the
loop but is not incremented. If the value
of the loop variable is required after the
loop has been executed, this type of
optimization cannot take place.

In the example, the control variable is
held in register 5 using a BXLE
instruction. The array elements are
addressed by using register 5 as the offset
from the virtual origins of arrays C and B.
As register 5 starts the loop with the
value of 4 and is incremented by 4 for each
iteration of the loop, this gives the
correct address. Both arrays begin 4 bytes
from their virtual origins, and each array
element is 4 bytes long.

If a series of tests are to be made and
action taken if any of the tests proves
positive, the compiler takes the requisite
action as soon as the first positive test
is found.

In the example in figure 2.15, a test is
first made to see if A=D. If so, the value
of Y+Z is assigned to X without a further
test being made to see if C=D. Note that
the last test is for inequality, so that if
the variables are equal, control will
continue with the code that assigns the
value to X.

Chapter 2: Compiler Output 37

Rationalization of PrQg~Branch~~

When the length of a program is greater
than 4096 bytes and, consequently, it
cannot be addressed from one base register,
an attempt is made to update the base at
the most efficient point, so that there
will be as few changes of program base as
possible during execubion. The aim is to
avoid any program branches which move from
the scope of one base register to the scope
of anothE~r.

The program base register is register 2,
and this is updated when necessary_ As
register 2 is required for in-line record
I/O and TRT instructions, the program base
is saved and restored after such use.

Constants and control information used more

38

than once are generated only once in static
storage. Thus for the statements X=768,
Y=768, the constant value 768 will be
picked up from the same address in both
cases. Similarly, compiler-generated
control information, such as DEDs and
descriptors (see chapter 4), are generated
only once if a number of variables require
identical control information.

The process of avoiding duplication is
known as £2mm2n!ng. It should be noted
that constants may not be commoned if they
are not used in the same way. In the
example in figure 2.16, constant '123' is
stored in a different form for assignment,
multiplication, and exponentiation.

l~e~lc1elnt library modules

name followed by
A, B, C, etc.

CONTROL NAME

B=Base Module
T=Multitasking Module

LINK-EDIT NAME

IBMBxyz

ENTRY POINT NAMES

I

Mnemonic of module's
function

Transient library modules

Control name followed by
A, B, C, etc.

:nn'IIPr(:lnn modules sometimes have only two mnemonic letters to identify the function:

two mnemonic letters to identify entry points:

Figure 3.1. Library module naming conventions

40

EXAMPLES

IBMTPIR
IBMBEOC
IBMBJWT

IBMBPIR
IBMBEOC
IBMBJWT

IBMBPIRA
IBMBREFA

IBMBCH

IBMBCHXD

This ch~pter explains the use of libraries
by the 6s PL/I Optimizing Compiler. The
topics ~overed are: when and why library
routine$ are called# why there is both a
transie~t library and a resident library,
naming conventions, and two implementation
topics that cover all library modules: the
use of library workspace and the use of
weak external references. Also covered are
the multitasking and shared libraries.

The QS PL/I Optimizing Compiler is
designed to be used in conjunction with the
OS PL/I:Resident Library and the OS PL/I
Transient Library. These libraries consist
of sets of standard subroutines that are
used fot the majority of interfaces with
the system and for those jobs that can be
most efficiently done by the use of
interpr~tive subroutines. The main areas
where library modules are used are:
input/output, error handling, storage
management, conversions, mathematical
functions, and various string- and array­
handling operations.

Use 9f library routines simplifies
compilation by enabling the compiler to set
up an argument list and generate a call to
a subroutine, rather than compile the
complete code. However, library
subroutines are less efficient than
compileq code, since they must be
generalized routines, whereas compiled code
can be ~pecially tailored to the particular
program: being executed. Furthermore, a
library'call involves the overhead of
saving ~nd restoring registers, and may
require; the setting-up of various
additional control blocks to describe the
data (s~e chapter 4). For these reasons,
programs that are optimized for time use as
few lib~ary calls as possible.

The ~ajority of interfaces between
compiled code and the operating system are
implemepted via library routines. This is
done ma~nly for reasons of implementation
conveni~nce# as such interfaces are in this
way localized and minimized.

Resident and Transient Libraries

The OS PL/I subroutine library is divided
into two separate program products: the OS
PL/I Resident Library (Program Number 5734-
LM4) and the as PL/I Transient Library
(Progra~ Number 5734-LM5). Resident
library modules are link-edited with the

Chapter 3: The PL/I Libraries

executable program phase. Transient
library modules are loaded into dynamic
storage when they are required; when they
are no longer needed, the storage is freed
and may be overwritten. Resident library
routines have the advantage of speed;
transient library routines have the
advantage of saving space. By using both
types of library, it is possible to produce
more efficient programs.

Routines in the transient library are:
input/output transmitters, open and close
modules, error message modules, the storage
management routines and PLIDUMP routines.
All other library routines are held in the
resident library, including a number of
bootstrap routines that load and call
transient routines.

The os PL/I libraries reside on three
direct-access data sets. The resident
library is on SYS1.PLIBASE and
SYS1.PLITASK. The transient library
resides on SYS1.LINKLIB.

The internal logic of individual library
modules is described in the publications OS
E~L!-B~2!Q~n~_~!br~~Yl __ f~gram ~Qgi£ and
as PL/I Transient Library: Pro~~_~Q~!£.
However, in such cases as I/O, error
handling, and conversion, where compiled
code and a hierarchy of library modules are
used in implementing certain features of
PL/I, the overall logic is described in
this publication. similarly, an overall
explanation of storage management and
interlanguage communication is given in
this publication.

Naming Conventions

Most PL/I library modules have names of
seven letters, the first three letters
being IBM. This identifies the module as
belonging to one of the PL/I libraries.
The remaining letters indicate which
particular library the module was written
for, and the use of the module.

Each resident library module has two
names, the control name (which uniquely
identifies the module) and the link-edit
name (which appears in the linkage editor
map and the object-program listing). The
majority of the modules in the OS resident
library have a control name with the fourth
letter B, for example IBMBOCL. This module
has a lInk-edit name of IBMBOCLA. Some

Chapter 3: The PL/I Libraries 41

modules, however~ have a fourth letter T in
their £QQtro!_~m~, indicating that they
are used only in a multitasking
environment. The link-edit names of these
modules nevertheless-have-a fourth letter
B. An example of this is the multitasking
priority·~alteration routine IBM±:TPRA. The
link-edit name for this module is IBMBTPRA.
(See figure 3.1.> -

The rE!sult of this arrangement is that a
number of library modules can share the
same liruc-edit name. consequently, the
compiler can generate the same code
regardless of whether the program is going
to operat:. e in a multitasking or non-
mul ti tas)cing environment.

Entry point names are given additional
letters alphabetically. The primary entry
point (of resident library modules> is
normally the link-edit name. other entry
points are named "B", "C", etc. For
example. the primary entry point of the
module with control name IBMBOCL is
IBMBOCLA and the secondary entry point is
IBMBOCLB ..

The naming convention for conversion
modules is slightly different. Arithmetic
conversic)n modules have entry points
indicated. by a two-letter mnemonic code.

The Multitasking Library

The resi~lent library is held on two data
sets: SYS1.PLIBASE and SYS1.PLITASK.
SYS1.PLIBASE holds all modules that are
needed to execute non-multitasking
programs.. SYS1. PLITASK holds the
mul ti taslcing versions of all modules that
diffe~ for multitasking and non­
multitasking environments.

As explained above, both multitasking
and non-multitasking modules have the same
link-edit:. names for their entry points.
Multitasking modules have a fourth letter
T; non-mllltitasking modules have a fourth
letter B~ in their control names.

The Ul;e of the same link-edit name
permits the compiler to generate the same
code for library calls, regardless of
whether the program is multitasking or non­
multitasking. For multitasking programs.
the data set SYS1.PLITASK must precede

42

SYS1.PLIBASE in input to the linkage
editor. In this way, the multitasking
modules will be link-edi~ed and the program
will run in a multitasking environment.
Further details of this arrangement are
given in chapter 14.

Library Workspace

DSAs (dynamic storage areas> for certain
library routines are no~ acquired in the
same way as they are for source program
subroutines. Instead of the storage being
acquired from the LIFO stack, space is
allocated, in the program management area,
for two pre-formatted DSAs. These DSAs are
known as levels of library workspace.
rheir format can be seen in figure 3.2.
Library workspace (LWS>, provides a fast
method for library routines to obtain DSAs.
All the library routines have to do is to
address the DSA and set the chainback
field. There is no need to test to see if
there is enough space for the DSA, as the
space is already allocated. The NAB pointer
does not have to be reset, because the next
available byte is not changed.

The PL/I libraries have been designed so
that no more than two library modules
require library workspace at anyone time.
This does not mean, however that no more
than two library modules are ever active at
anyone time. Where more than two modules
can be active, one or more of the modules
will use a DSA in the LIFO stack. For
conversion, a slightly different
arrangement is used, whereby a DSA is
acquired by the first module in the series
and used by subsequent modules. This
arrangement is described in chapter 10.

FORMAT OF LIBRARY WORKSPACE

Library workspace is designed so that
either level can be treated by the
housekeeping routines in the same way as a
DSA. Chainback fields to the calling
block's save areas are held in the head of
library workspace and, where more than one
level of library workspace is used, a
chainback field is set up to the previous
level. Figure 3.2 illustrates the method
of chaining employed.

... ...
I Flags Offset to ONCA

Chain back field (to last DSA)

Standard save area

1st level

Address of next library workspace

Current NAB

Workspace for library modules

....,.

I Flags Offset to ONCA

Chain back field

Standard save area

2nd level
Address of this level of LWS
(used only when addressing the ONCA)

Current NAB

Workspace for library modules

Current ONCA

~

Figure 3.2. Library workspace

Chapter 3: Th~ PL/I Libraries 43

ALLOCATION OF LIBRARY WORKSPACE

Library ~orkspace is originally allocated
within the program management area by the
initialization routine IBMBPII. However,
whenever an interrupt occurs and an on-unit
is to be entered, a further two levels are
allocated. This allows library modules to
be called within an on-unit, without
overwriting library workspace which may
have been in use at the time of interrupt.
Library ~orkspace is acquired by a
subroutine of IBMBPIR that is addressed
from the TCA.

Attached to each allocation of library
workspace, including the initial allocation
in the program management area, is an ON
communications area (ONCA). This is a
control block used in error handling to
hold condition built-in function values.
ONCAs are described fully in chapter 7.

Library Modules and Weak External
References

Because of the modular structure of the
library, a group of modules is frequently
used to carry out some particular task.
conversions, for example, are normally done
by using a series of modules, and so are
many of the mathematical built-in
functions. For this reason, many library
modules contain a number of external
references to modules which may not be
needed in a particular program. An example
of this is shown in figure 3.3. To prevent
unnecessary modules being link-edited,
"weak external references" (WXTRNs) are
used. WXTRNs are a special type of
external reference designed to cater for
this situation.

Those entry points that are called only
optionally are coded as WXTRNs. This
prevents the linkage editor from loading
these modules unless a separate external
reference is made to them by the compiler.
Thus the executable program phase does not
contain modules that it never uses.

Figure 3.3 shows part of a hierarchy.of
modules ~ith alternative paths through
them. When such a hierarchy exists~ the
actual path to be taken through the modules
will be known to the compiler, and external
references will be made to all the required
modules whose names are coded as WXTRNs.
The effect of this is that the linkage
editor loads only the required modules.

44

The Shared Library

The 2h~~~~!ibr~IY is a PL/I facility that
allows an installation to load PL/I
resident library modules into the link­
pack-area CLPA) so that they are available
to all PL/I programs. This reduces space
overheads.

The modules to be included in the shared
library can be chosen by the installation.
They must include the initialization
routine, the error handling routine, the
open file routine, and all modules
addressed from the TCA that are not
identical for multitasking and non­
multitasking programs. Further details are
given in the publication OS RL/! QEtim!~ing
QQmE~!~~: §ystem Info!m~~ion·

The routines in the shared library are
held in two of three link-pack-area
modules: IBMBPSM, and either IBMBPSL or
its multitasking equivalent IBMTPSL. Each
of the link-pack modules contains a number
of library routines, and is headed by an
addressing control block known as a
transfer vector. IBMBPSM contains those
modules-In-the-shared library that are
common to both multitasking and non­
multitasking PL/I environments. IBMBPSL
contains the non-multitasking versions of
those modules that are not identical in
multitasking and non-multitasking PL/I
environments. This module has a
multitasking counterpart, IBMTPSL, which
holds the multitasking versions of such
modules.

Two further modules are also involved in
handling the shared library. These are the
shared library addressing modules IBMBPSR
and its multitasking counterpart IBMTPSR (R
stands for region). One or other of these
modules is link-edited with compiled code
and held in the program region: IBMBPSR
for non-multitasking programs, or IBMTPSR
for multitasking programs. IBMBPSR and its
multitasking counterpart hold dummy entry
points which duplicate the names of all
entry points of modules within the shared
library. References to such entry points
in compiled code are resolved to the dummy
entry points in IBMBPSR or IBMTPSR.

The situation during execution is as
shown in figure 3.4. In the link-pack-area
are two link-pack modules: IBMBPSM an·d
IBMBPSL (or its multitasking counterpart);
these contain all the routines in the
shared library. In the program region is
the shared library addressing module
IBMBPSR (or its multitasking counterpart).
All references by compiled code to entry
points in the shared library have been
resolved by the linkage editor to IBMBPSR
(or IBMrpSR).

IBMBCCS

Special string conversion
V module. Contains WXTRNs for:

IBMBCCAA, IBMBCACA, etc.

IBMBSFI

F-format input
./

conversion director.

" Contains WXTR Ns for:
IBMBCCSA, IBMBCTHD,
etc.

IBMBCTH

i'.... E- or F-format-to-arithmetic
conversion module. Contains

I WXTRNs for:
I IBMBCEZX, IBMBCHZD, etc.
I

Figure 3.3. Example of use of WXTRNs

Chapter 3: The PL/I Libraries 45

r
r
I
I
I
I ,
I
I
I
I
t .-

Dummy
IBMBCCAA

-,

\

PROGRAM REGION

Compiled code TCA

V(lBMBCCAA) ~ A(lBMBPSM)

Pick up address of
I BMBPSM from TCA.

Pick up address at
offset and branch.

Figure 3.4. The shared library during execution

46

I
I
~

Irt--
I I
I
I

I
I

I

I

I

LINK PACK AREA

IBMBPSM

A(IBMBCCAA)

IBMBCCAA

The compiled code address
constant for I BMBCCAA is
resolved to the dummy
IBMBCCAA in the module
IBMBPSR. This dummy
module picks up the address
of IBMBPSM from the TCA,
adds a known offset, and
picks up the address held
at this offset. This is the
address of IBMBCCAA in
the shared library link pack
area.

-

r--

Program region
IBMBPSR and IBMTPSR

VCONs and WXTRNs for all
modules that may be called
from shared library but are
not included in it.

Dummy entry points for all
modules in the shared library,
followed by addressing code
that passes control to the real
modules.

Transfer
vectors

Library
routines

Figure 3.5. The format of shared library modules

Link pack area (shared library)
IBMBPSL, IBMBPSM & IBMTPSM

VCONs for all modules held
in the shared library.

Dummy entry points for all
modules that may be called from
the shared library but are held in
the program region. These entry
points are followed by addressing
code tl1at passes control to the
real modules.

Individual modules in the
shared library.

----~---------------

- - - - - - - - - - - - - - - - - - --

Chapter 3: The PL/I Libraries 47

communication between the link-pack-area
and the program region is handled by the
transfer vectors that are held at the head
of each module. communication is necessary
in both directions. The compiled program
will need to call library subroutines that
are held within the link-pack modules in
the link-pack-area. Similarly, certain of
the modules in the link-pack-area may need
to call modules that are not included in
the shared library.

The link-pack-area modules IBMBPSL and
IBMBPSM, are headed by transfer vectors,
which are followed by the individual
library modules in the shared library. The
individual modules and the transfer vector
are link- c3dited to form one module when the
shared library is created. The program
region module IBMBPSR consists only of a
transfer vector,. (The format of the shared
library modules is shown in figure 3.5.)
During program initialization, the
addresses of the three modules being used
(and consequently the address of the
transfer vector) are placed in the TCA.

The transfer vectors contain three types of
data:

1. Dummy entry points for all modules
that are not held in that area (i.e.,
the program region transfer vector
contains dummies for all entry points
that are held in the shared library;
the link-pack transfer vector contains
entry points for all modules that
could be called from the shared
library but are not included in it).

2. Codeu following the dummy entry
pOints, that passes control from
dummy entry point in one area to
real entry point in another area.
code takes the form:

L 15, offset(12)

L 15, xxx(15)

BR 1S

the
the

The

where ·offset· is the offset to the
address of the transfer vector in the
TCA, and "xxx· is the offset within
the transfer vector to the required
address.

3. An ordered list of addresses for all
routines that are held in the same
area as the vector.

The code (item (2) above) transfers control
in the manner shown in figure 3.5.

48

1. It picks up the address of the
relevant transfer vector from the TCA,
where it was placed during program
initialization.

2. It picks up the address of the module
it requires from a known offset from
the start of the transfer vector.

3. It branches to the address, thus
passing control to the required
library routine.

The code does not use any register
except register 15. The link register (14)
is not altered, and control returns
directly from the module to the caller.

Use of the shared library is specified by
the linkage editor statement INCLUDE
PLISHRE. PLISHRE is an alias for the
program region modules IBMBPSR and IBMTPSR.
The appropriate module will therefore be
loaded by the linkage editor (IBMBPSR for
non-multitasking programs; IBMTPSR for
multitasking programs). All compiled code
external references to shared library
module entry points are then resolved to
the dummy entry points in IBMBPSR (or
IBMTPSR). Similarly wxrRNs in the program
region module are resolved if compiled code
issues an EXTRN for the entry point.

At the start of the program, control is
passed to one of the entry points of the
initialization routine. This entry point
will, in fact, be a dummy entry point in
the shared library program region module.
Each entry point is followed by code which
requests the system to load the shared
library link-pack modules. If the modules
are already loaded, the system simply
returns their addresses. If they are not
loaded, it loads them into the link-pack­
area, and then returns the addresses.

The addresses of the two link-pack-area
modules and of IBMBPSR are added to the
parameter list for IBMBPIR. IBMBPIR is then
called in the usual shared library manner,
that is, via the transfer vector in one of
the link-pack modules.

It is the standard action of the
initialization routines to load these
parameters into the appropriate fields in
the TCA. When the shared library is not in
use, meaningless information is loaded into

PROGRAM REGION LINK PACK AREA

TCA
R12 ---

I

I
r-- TPSR

I
Link pack module Link pack module

TPSL - IBMBPSM IBMBPSL or IBMTPSL
Transfer vector - Transfer vector TPSM

I
Dummy entry Dummy entry
points with points with
duplicate names duplicate names

I
to all entry points to all entry points
called by shared called by shared
library modules library modules

I
but not in shared but not in shared

Program region module library. library.

Compiled Code IBMBPSR or IBMTPSR

~ I
Transfer vector

Housekeeping and

Dummy entry I Shared library
environment
dependant

points with routines. modules in the
duplicate names shared library.
to all entry points I in the shared
library

I
-------- ---------

Address constant ----------
Dummy Entry

I
--------- ---------

Point

I

I

Figure 3.6. Addressing a module in the shared library

Chapter 3: The PL/I Libraries 49

these fields. However, as they are only
accessed by the shared library modules,
this doe:s no harm.

Initial!~ing the Shared Librar~

The shared library is initialized cy the
use of special macrO instructions, as
described in the System InformatiQ~ manual.

All five modules must be created at the
same time. During the process, the table
of VCONs in the link-pack modules, transfer
vectors are generated, and the offsets to
these VCONs from the head of the transfer
vector are placed in the code following the
dummy entry points in the program region
modules. A similar process is carried out
for addresses in the program region. The
VCONs within the link-pack modules are
resolved by the linkage editor when the
link-pack modules are created. The VCONs
within the program region modules are
qualified by WXTRNS, and are only resolved
if compiled code generates an EXTRN for the
entry point. such EXTRNs are generated
when required, as a normal part of the
compilation process, regardless of whether
the shared library is being used. The
VCONs in the program region modules are
resolved by the linkage editor when the

50

program is link-edited.

The shared library has been designed so
that multitasking does not affect it. If
PLI.TASK is specified hefore PLI.BASE, the
linkage editor statement INCLUDE PLISHRE
will result in the module IBMTPSR being
loaded and linked in the program re9ion.
When control passes to tbe code following
the IBMBPIR entry pOint in IBMTPSR, a
request is made to the system 'to load the
multitasking shared lii:>rary module IBMTPSM.
The program then runs in the usual manner,
with the multitasking modules.

An installation caD specify a shared
library that includes only the multitasking
or the non-multitasking modules. However
both multitasking non-multitasking versions
of the program region module will still be
created. The module for the \.1nwanted
environment will be a dammy. This prevents
problems should an INCLUDE PLISHRE
statement be included in a program that is
intended to run in the environment with no
shared library. If this process was not
carried out, such a statement could result
in the incorrect environment being
initialized.

PL/ I Statement

DCL TABLE (10)

FLOAT DECIMAL (6);

Storage

TABLE (0)

TABLE (1)

TABLE (9)

TABLE (10)

Address of TABLE

Address of descriptor

*RVO=4

Mu Iti plier=4

Upperbound-10 Lowerbound=1

* R VO (Relative virtual origin) is the offset of the actual
origin of the array from the virtual origin (the position that
element TABLE (0) would hold if it existed)

Virtual origin

Array TABLE (10)

OED

Aggregate locator

Array descriptor

Figure 4.1. Example of descriptor, locator, OED, and storage location of an array

52

Chapter 4:

PL/I allows the programmer the choice of a
large number of data attributes. Normally
there is no need for explicit attribute
information to be retained until execution,
because the methods used to handle the data
can be resolved during compilation.
However, there are certain situations where
this cannot be done. For example,
adjustable bounds or extents may prevent
the data attributes being fully known at
compile time, or the data may be being
passed to another PL/I procedure or library
subroutine. When these situations arise, it
is necessary to retain some or all of the
data attributes in an explicit form
throughout execution.

The names of variables fall into a
similar category. Normally, they need not
be explicitly known during execution.
However, for data-directed input/output and
the CHECK condition, the names of the
variables need to be known so that they can
be associated with the correct values.

When such information must be retained
until execution, special control blocks are
set up for the purpose. These control
blocks are described in this chapter.

The control blocks are:

Q~2~!E~Q~: These hold the extent of the
data item (i.e., string lengths, array
bounds, and area sizes).

~Q£~Q±2: These hold the address of a data
item and, ·if they are not concatenated with
the descriptor, hold its address.

Q~§£~iptQf-Q~§£~!~Q±§: These hold the
logical structure levels, dimensions, and
lengths, of all elements within a
structure.

Q~~2-~!gmgn~Qg2£~iptQ±2_!QED2t: These
hold the attributes of a variable required
for data manipulation, except for extents,
which are held in descriptors.

2YmQol_~ebl~2: These hold the names of the
variables and associate them with the
appropriate storage locations during
execution.

2ymbol ~eblg_~~Q~: This associates
symbol tables with the block in which they
are known.

Q~criptQr/Loc!to~: This is a term used to
describe the control block consisting of a
descriptor concatenated with a locator.

Communication Between Routines

An example of the way in which data is
related to its locators, descriptors, and
DEDs is given in figure 4.1.

The following terms are used in this
chapter.

Virtual origin (VO) The address where the
element of an array
whose subscripts are
all zero is held or, if
such an element does
not appear in the
array, where it would
be held.

Actual origin (AO) The address of the
first item in the array
or structure.

Relative virtual
origin (RVO)

Structure element

Base element

Actual origin minus
virtual origin.

A minor or major
structure that contains
a number of base
elements.

A data element or array
within a structure.

DESCRIPTORS AND LOCATORS

Descriptors are generated when adjustable
extents are involved, or when an item is to
be passed as an argument and the associated
parameter is the type that can be declared
with an asterisk among its attributes. For
example, DCL X CHAR (N); or DCL X CHAR (*);
would both result in the generation of a
descriptor. In the first case, code for the
SOBSTR built-in function would have to be
interpretive if STRINGSIZE were enabled.
The appropriate library module would be
called, and it would make use of the
descriptor to discover the length of the
string. This length would have been placed
in the descriptor by the prologue code of
the block in which the string was declared.
In the second case, where the length of the
string is signified with an asterisk, the
program that is passed the string will
expect to receive the length of the string
in a descriptor.

Chapter 4: Communication Bet~een Routines 53

r------------------------------ --,
Name of control block Conditions under which it is I Location

generated I (control section)

Data element descriptor (OED) When conversion or stream I/O librarylstatic internal
modules are called. I

t
Array descriptor When an array has adjustable bounds IStatic internal

or may be passed to a library I
subroutine or other PL/I routine. I

I
Aggregate locator When structure or array descriptor is static internal

generated.

Area locator/descriptor When an area is declared with an
adjustable size or may be passed as
an argument.

Static internal

string locator/descriptor When a string is declared with an
adjustable length or is passed as an
argument.

Static internal

structure descriptor When a structure is declared with
adjustable elements or is passed as
an argument.

Static internal

Aggregate descriptor
descriptor

When a structure contains elements
declared with adjustable bounds.

static internal

Symbol table. When an item may appear in
data-directed I/O or in a
CHECK list

Static internal
for internal
items. Separate
CSECT for
external items.

symbol table vector When GET DATA or POT DATA is used Static internal
without a data list, or when SIGNAL
CHECK is used without a data list. L---__________________________________ J

Figure 4.2. Descriptors, locators, and symbol tables: when generated, where held

Data items that can be declared with an
adjustable value or an asterisk are:
string lengths, array bounds, and area
sizes. Descriptors are, therefore, needed
for strings, arrays, and areas. They are
also needed for structures, because
structures can contain strings~ arrays or
areas.

In order to connect the data with its
descriptor, a further control block is
generated. This is the locator. The
locator addresses both the descriptor and
the variable. For strings and areas, the
locator is concatenated with the descriptor
and contains only the address of the
variable. For structures and arrays, the
locator is a separate control block and
holds the address of both the variable and
the descriptor. Called routines are
normally passed the addresses of locators,
rather th.in the addresses of arguments when
arguments requiring descriptors are passed.

When the descriptor and locator are not

54

concatenated, it is possible to use the
same descriptor -for a number of different
data items, provided that these items have
the same attributes. This process is known
as "commoning" and is used to conserve
space. Where possible, the compiler
commons structure and array descriptors and
aggregate descriptor descriptors.

Except for controlled variables,
descriptors and locators are always held in
the static internal control section,
regardless of the attributes of the data
that they describe.

For controlled variables, the descriptor
and, sometimes, the locator are held
immediately before the data. (For det.ails
see 'Controlled Variable Control Block' in
appendix A).

The following types of descriptor and
locator are generated. Figure 4.2
summarizes the conditions under which they
are generated and gives their storage

locations. In the main, they are set up
during compilation and completed during
execution, if necessary.

The string locator/descriptor holds the
byte address of the string, information on
whether or not it is a varying string, and
the maximum length of the string. For a
bit string, the bit offset from the byte
address is held. (See figure 4.3.)

Area Locator/Descriptor

The area locator/descriptor holds the
address of the start of the area and the
length of the area. (See figure 4.4.>

~ggregat~ Locator

The aggregate locator holds the address of
the start of the array or structure and the
address of the array descriptor or
structure descriptor. (see figure 4.5.>

The array descriptor holds:

1. The relative virtual origin (RVO) of
the array. This is the offset of the
start of the first element in an array
(actual origin) from the virtual
origin. The virtual origin (VO) is the
point at which element (0) would be
held in a one-dimensional array,
element (0,0) would be held in a two­
dimensional array, etc. In a one­
dimensional array, the address of any
particular element can be discovered
by multiplying together the subscript
and the multiplier (see below) and
adding the result to the virtual
origin of the array. An extension of
this method is used for multi­
dimensional arrays, the formula being:

Address of element (S~,S2, ••• ,Sn)
n

= vo+')".(Mi *Si)
1=1

where S is the subscript number, and

M the multiplier, of the ith
dimension, and VO is the virtual
origin.

For unaligned bit-string arrays, the
virtual origin points to the byte
address before the element (0). The
bit offset is held in the string
descriptor, which is concatenated with
the array descriptor.

2. The high and low bounds for the
subscripts in each dimension.

3. The multiplier for each dimension.
rhe multiplier is the distance between
the start of one element and the start
of the next element in the same
dimension. For example in the array
declared A(2,2), the multiplier for
the first dimension is the distance
between the start of element A(1,1)
and the start of element A(1,2).

when the array is an array of strings or
areas the string or area descriptor is
concatenated with the end of the array
descriptor to provide the necessary
additional information. Array descriptors
are commoned where possible. That is, one
descriptor is used for a number of similar
arrays.

The structure descriptor consists of a
series of fullwords, giving the byte offset
of the start of each base element from the
start of the structure. If a base element
has a descriptor, the descriptor is
included in the structure descriptor,
following the appropriate fullword offset.
Where a bit offset is involved, this will
be held in the descriptor for the bit
string, or in the relative virtual origin
if the item is a bit string array.

A structure must be mapped during
execution if any of the elements in the
structure have adjustable bounds or
extents, or if the REFER option is used.
Where possible, structure descriptors are
commoned. That is, one descriptor is used
for a number of similar structures. If a
structure or an array of structures
contains elements with adjustable extents,
the structure descriptor is not set up
during compilation. Instead, it is set up
during execution from information held in
the structure descriptor descriptor. (See
below for information on arrays of
structures and structures of arrays.)

Chapter 4: Communication Between Routines 55

o
Byte address of strinJ

Length
/

/
For varying strings, the maximum
length is held

2

I I I Unused·

a=!fixed length
1=varying length

Figure 4.3. String locator/descriptor

o 2

Address of first byte of area

Allocated length of area (in bytes)

Figure 4.4. Area locator/descriptor

o 2

Byte address of first byte of aggregate

Address of array or structure descriptor

Figure 4.5. Aggregate locator

o 2

RVO (Relative virtual origin)

Ml (multiplier)

U 1 (upperbound) I L 1 (lowerbou nd)

3 4

I Bit offset

~---
For bit strings only

3 4

3 4

3 4

Notes: 'I. For unaligned bit strings, RVO and multiplier are bit values.

2. For strings and areas, the area or string descriptor is concatenated

to the end of the array descriptor.

Figure 4.6. Array descriptor

56

}

Multiplier and bounds
for 1 st dimension

Multiplier and bounds
for nth dimension

When a structure cannot be mapped during
compilation~ more information than is held
in the structure descriptor is needed for
it to be mapped during execution. This
information is held in a control block
known as an aggregate descriptor
descriptor.

The information held in an aggregate
descriptor descriptor is the number of
dimensions and logical level of all the
structure elements, and the number of
dimensions, logical level, and alignment
requirements, of all base elements, plus
the length of those base elements that do
not have their" length held in descriptors.
(strings and areas, and arrays of strings
and areas, have their lengths in
descriptors.) The length held for an array
is the length of an array element. The
total length of the array can be calculated
by using the information in the array
descriptor.

The aggregate descriptor descriptor is
set up in static internal storage and is
set up completely during compilation. The
format is shown in figure 4.7. An example
showing the method used to map a structure
that contains an element with an adjustable
extent is shown in figure 4.8.

Where possible, aggregate descriptor
descriptors are commoned.

Arrays of structures and structures of
Arrays

Where necessary, an aggregate locator, a
structure descriptor, and an aggregate
descriptor descriptor are generated for
both arrays of structures and structures of
arrays.

The structure descriptor for both an
array of structures and a structure of.
arrays has the same format. The difference
is in the values in the fields of the array
descriptors within the structure
descriptor. Take for example the array of
structures AR and the structure of arrays
ST, declared below.

DCL 1 AR(10),
2 a.,
2 C;

structure of ArraY2

DCL 1 ST,
2 B(10),
2 C(10);

The structure descriptor for both AR and
ST would contain an offset field for both B
and C and an array descriptor for both B

and C. (See figure 4.9.) However, the
values in the descriptors would differ,
because the array of structures AR would
consist of elements held in the order
B,C,B,C, etc., and the elements in the
structure of arrays ST would be held in the
order:

B,B,B,B,B,B,B,B,B,B,C,C,C,C,C,C,C,C,C,C.

DArA ELEMENT DESCRIPTORS

When data is passed to the PL/I library
routines, a complete description of the
data is frequently ~equired, and something
more than a descriptor is therefore needed.
Conversion routines, for example, need to
know the complete attributes of the data.
To hold such information, data element
descriptors (OEDs) are generated. (Control
blocks known as DEDs are also used by the
compiler. rhese are £ompile-time DEQ~ and
have a different format from those that are
used during execution. Compile-time DEDs
never appear in the executable program.)
For stream I/O, DEDs are generated to
describe the format of the input or output.
These DEDs are known as format element
descriptors (FEDs).

DEDs are produced for all types of
variable or temporary that are passed to
the library for conversion or stream
input/output. The length and format of the
DED depends on the data type of the item.
DEDs are shown in detail in appendix A. An
indication of their format is given in
figure 4.10.

DEDs are always held in static internal
storage. They are used only to pass
information to library routines.

There are five types of DEDs:
arithmetic DEDs, arithmetic pictured DEDs,
string DEDs, pictured string DEDs, and
FEDs.

Arithmetic DEDs: are 4 bytes long.

&~!~hm~ti£-Eictured DEDs: (always decimal)
are 8 bytes plus picture specification,
which consists of at least one byte for
every character in the pictured string.
Maximum length for pictured arithmetic DEDs
is 264 bytes.

~~~!ug_DEQ~: are 4 bytes long. 

Pi£tured s!!!na_DED2: (always character 
string) are six bytes plus the picture 
specification, which consists of one byte 
for every character in the picture string. 
rhe maximum length for pictured character 
DEDs is 261 bytes. 

Chapter 4: communication Between Routines 57 



Q 

Q=structure 

1 =base element 

2 3 

Structure 

I t °ftset of entry for containing structure from 

L_' _O_f_f_se_t_(_f_U_lIw_O_rd_) _____ ----'_ start of ADD (all ones for a major structurel 

Q=not bit string 

l:::bit string 

/ .---..-----.------------ , 

Level Dimension 

- , 

\ 
L---.L......,......--I-------------

l=last element 

Q=not last element 

~------------~--------------

Alignment Length (bytes) 

/ Base element \ 

l=area 
Q=not area 

Q=bit 
All zero for areas and strings 

7=byte 

15=halfword 
31 =fu Ilword 

63=doubleword 

There is a full word entry in the ADD for each structure lmajor and minor) and each base element. 

Figure 4.7. Aggregate descriptor descriptor 

58 

4 



Figure 4.8. 

... 

DURING COMPILATION 

1 Space for structure descriptor allocated in static 
storage. 

2 Aggregate descriptor descriptor allocated, and 
fields filled in from structure declaration. 

3 Aggregate locator allocated, and address of 
structure descriptor place in second word. 
Code is generated within the prologue of the 
block in which the structure is declared to call 
structure mapping routine, IBMBAMM, to 
acquire a VOA, and to complete the aggregate 
locator. 

THE RESULT 

DURING EXECUTION 

4 Prologue code olaces value of N(l byte) in 
the string descriptor for 0 in structure 
descriptor. 

S IBMBAMM is called to map the structure, 
using the information in the ADD and the 
SO (which contains the length of element 
D). D is aligned with E, then B is aligned 
with DE. (The rules for structure mapping 
are given in the language reference manual 
for this compiler.) The results of the 
mapping are placed in the structure 
descriptor. 

6 IBMBAMM returns the length of the 
structure to compiled code, which acquires 
a VDA for the structure and places the 
address of the structure in the aggregate 
locator. 

Every member of the structure can be addressed by. 
means of the address in the aggregate locator and 
the offsets within the structure descriptor. When bit 
offsets are involved, they are contained within the 
appropriate descriptor in the structure descriptor. 

DURING COMPILATION DURING EXECUTION 

so 1 SO S 

Space for offset of B Zero 

Space for offset of D X'7' 

Space for descriptor of D 4 1 byte I 0 I unused 

---

--
Space for offset of E X'S' 

ADD 2 ADD 

01 All ones Levell 00 Zero 

--~-- ----
10 X'31' X'4' Level 2 00 Zero 

ADD is unchanged during execution. 

00 Zero Level 2 00 Zero 

10 X'7' Zero Level 3 00 Zero For meaning of entries, see Figure 4- -7. 

11 X'31' X'4' Level 3 00 Zero 

Al 3 Al 6 
Space for address of structure r- Address of structure 

1-----------------------
'---- Address of structure descriptor Address of structure descriptor 

Declaration 
DCl1 A, 

2 B FLOAT, 
2 C, 

3 0 CHAR(N), 
3 E FLOAT; 

6 ~ VDA for structure 
~ ----~--B---------~ 

Example of handling a structure containing an adjustable extent 

Chapter 4: communication Between Routines 59 



AR.B 

AR.C 

Array of structures 

DCl1 AR(10), 
28, 
2 C; 

Structure descriptor for AR 

Offset = 0 

RVO= 8 

Multiplier = 8 

Upperbound = 10 I lowerbound = 1 

Offset = 4 

RVO =8 

Multiplier = 8 

Upperbound = 10 I lower bound = 1 
L.......--, 

ST.B 

ST.C 

Structure of Arrays 

DCl 1 ST, 
28(10), 
2 C(10); 

Structure descriptor for ST 

Offset = 0 

RVO =4 

Multiplier = 4 

Upperbound = 10 I lowerbound = 1 

Offset = 40 

RVO =4 

Multiplier = 4 

Upperbound = 10 I lowerbound = 1 

Note: Descriptors are identical apart from multiplier RVO offset values 

Figure 4.9. structure descriptor for arrays of structures and structures of arrays 

60 



£:ED§._l!!!l2ut/O~~~!:-12~~§.l.: fall into five 
classes 

1. A,B, and control format FEDs have four 
bytes. 

2. E and F format FEDs are six bytes 
long. 

3. Pictured arithmetic FEDs consist of 
four bytes followed by the pictured 
arithmetic DED. 

4. Pictured character string FEDs consist 
of four bytes followed by the pictured 
character string DED. 

5. C format FEDs are four bytes plus the 
two constituent FEDs that make up the 
complex item. They are used for 
complex data. 

The first two bytes of any DED are the 
look-up byte and the flag byte. Taken 
together, they define the data type and 
permit a receiving routine to determine if 
it needs to look further into the DED for 
more information. The general format of 
DEDs is shown in figure 4.10. Full details 
are given in appendix A. 

SYMBOL TABLES AND SYMBOL TABLE VECTORS 

Data-directed I/O statements, and the CHECK 
condition, require the names of variables. 
to be available throughout execution. 
Normally, such names are not used after 
compilation. when required during 
execution, these names are held in control 
blocks known as 2YmQQ1-tabl~2. Symbol 
tables hold the name of the variable, its 
address, and the address of its DED plus 
certain other information (see appendix A). 

GET DATA and PUT DATA statements without 
a data list, and SIGNAL CHECK statements 
when there is no check list, imply that the 
names of all variables known at that point 
in the program must be available. The 
necessary information is held in a further 
control block known as the symbol.J:.ab~ 
~tor. The symbol table vector holds the 

addresses of symbol tables arranged in 
order of program blocks, commencing with 
the main procedure block. The symbol table 
vector consists of a series of fullword 
fields. These fields contain either the 
address of a symbol table, a fullword of 
zeros, or a further address within the 
symbol table vector. Toe end of entries 
for variables declared in each block, is 
followed by a fullword of zeros, which in 
turn is followed by the address in the 
symbol table vector where entries for the 
encompassing block begin. If there is no 
encompassing block, another word of zeros 
marks the end of the vector. 

Figure 4.11 shows the relationship 
between variables, symbol tables, and the 
symbol table vector. 

Data-directed I/O modules, and the CHECK 
module, use symbol tables and symbol table 
vectors in the following ways. 

2~!_Q~!~1~L~LQ1L-EUT QAT~_l~L~L£lL-2!§~~~ 
£H~£~_l~L~L£l: In all these cases, the 
addresses of the symbol tables for A, B, 
and C are passed to the appropriate library 
module. 

2~I_Q~I~~QI_Q~I~_SI§~~~_£tl~£~: When no 
data or check list is included in the 
statement, the library is passed the 
address of the start of the associated 
block entries for the symbol table vector. 
By following the symbol table vector~ it is 
possible to access the names of all the 
variables known in the block. 

The contents of symbol tables vary 
according to the storage class of the 
variable. The method used for holding the 
address, and other information, is given in 
appendix A. For internal variables, symbol 
tables are held in static internal storage. 
For external variables, symbol tables are 
held as separate control sections in static 
external storage. The name of each control 
section is the name of the associated 
variable followed by an X. Thus the 
control section for the external variable B 
would be BX. Such a control section would 
also contain the DED of the variable (or 
DEDs if the variable was a structure). 

Chapter 4: Communication Between Routines 61 



String OED 

I LOOk-UPb-y-t-e----------.--F-�-a-g-b-y-te-------------~,---N-o~t~-u_-~_-_d~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Arithmetic DED 

I LoOk-UPb_y_te __________ ~ __ F_'_ag __ b_y_te _____________ ~ ___ p_r_ec_i_s_i_o_n ____________ ~ ___ s_~ __ 'e ______________ ~ 

Pictured string OED 

Look-up byte Flag byte Length of string 

Length of string without/in~rtion characters Translation of picture 

specification into internal format (one byte per character) 

~ -

Pictured arithmetic OED 

Look-up byte Flag byte Precision S~le 

Length of picture Length of data Mantissa byte Exponent byte 

Translation of picture specification into internal format (at least one byte per character) 

/ 

Figure 4.10. Format of DEDs 

62 



Vector for 
main procedure 

Vector for 
subroutine 1 

Vector for 
subroutine 2 

.. 
I" 

f-

PROGRAM BLOCK STRUCTURE 

Main procedure 

DCl A, B, C; 

~outinel 
~X'Y'A; 

!s=utine2 

~X,Y; 

Symbol table vector 

A 

B 

C 

00000 ......... 0 

00000 ......... 0 

X 

Y 

A 

00000 ......... 0 

I-Pointer 

X 

Y 

00000 ......... 0 

Symbol tables for: 

.. .... A in main procedure 

.. B in main procedure .. 

.. C in main procedure .... 

.. 
X in subroutine 1 .. 

... 
Y in subroutine 1 .... 

~ A in subroutine 1 .... 

~ X in subroutine 2 .... 

.. Y in subroutine 2 .... 

- I- Pointer 

The symbol table vector is built up on a block by block basis, the last entry for each block being a word of 
zeros followed by a pointer to the first entry for the encompassing block. This mechanism allows for 
multiple declarations of names. 

Figure 4.11. Symbol tables and symbol table vectors 

Chapter 4: Communication Between Routines 63 



PLISTART 

Receives control from 
system 

Functional code 

Carries out function required 
in source program. This 
usually involves calls to 
library subroutines. 

... .. 

I nitialization routines 

Set up TCA, initialize storage and 
issue SPIE & STAE to initialize 
PL/I error-handling scheme. 
control to the address in 
PLiMAIN. 

Epilogue code 

Restores IBMBPI R's 
registers 

Pass 

Figure 5.1. Flow of control during execution 

64 

.. .. 

Prologue code 

Acquires DSA for main 
procedure, initializes 
control blocks, etc. 

Termination routines 

Closes any files still open and 
returns control to system 

-\ 



Chapter 5: Object Program Initialization 

Before the output from the compiler can be 
executed, it must be link-edited, and the 
PL/I environment must be set up. This 
chapter briefly describes the effects of 
link-editing, the manner in which the 
program is entered, and the initialization 
process that sets up the PL/I environment. 
Initialization for multitasking programs is 
explained in chapter 14. It also gives a 
brief description of the program management 
area; a control area set up during program 
initialization .. 

Link-editing 

The functions and use of the linkage editor 
program are described in the publication Q2 
~in~~g~_~gitQ~_~n~_~Q~g~~. This chapter 
describes the effects of link-editing on 
the PL/I program. The linkage editor 
combines the various control sections 
generated by the compiler and resolves 
addresses within these control sections. 
The linkage editor also incorporates into 
the executable program phase all library 
modules that are called from compiled code, 
and a number of other library modules that 
are required either because they in turn 
are called by the library modules called by 
compiled code, or because they are needed 
for program management. A major module 
used in program management is the error­
handling module, IBMBERR. An external 
reference to this module is contained in 
the PL/I initialization routine, IBMBPIR. 
An external reference to IBMBPIR is 
included in the control section PLISTARr 
which is generated by every compilation and 
nominate3 as its entry point. PLISTART 
contains an external reference to the 
control section PLIMAIN (which holds the 
address of the start of the main 
procedure). 

One of the features of the linkage 
editor is that it does not accept more than 
one control section with the same name; the 
second use of the name is ignored. As a 
result of this, only one PLISTART and one 
PLIMAIN is generated for each executable 
program phase. This allows two or more 
PL/I main procedures to be link-edited 
together. The procedure that receives 
control will be the first that is passed to 
the linkage editor, because it will be the 
PLISTART and PLIMAIN of this procedure that 
are included in the executable program. 
This feature is also used to handle data 
declared EXTERNAL. Control sections for 

each such data item are generated by all 
programs in which the data is declared. 
Only one of these is resolved. 

~Qt~: The entry statement cannot be used 
to pass control to a specified PL/I program 
as entry must be made through PLISTART. 

The PLIMAIN control section is not 
generated by the compiler if the PL/I 
source program does not contain the MAIN 
optlon. However, a ~ontrol section named 
PLIMAIN is included in the initialization 
module IBMBPIR. This control section 
contains the address of code that calls the 
module IBMBPEP, which puts out a message 
saying there is no main procedure, after 
which the program is terminated. 

Program Initialization 

Code is compiled by the PL/I Optimizing 
Compiler on the assumption that various 
control blocks will have been set up and 
that certain registers will point to them 
when the program is entered. This 
arrangement of control blocks and registers 
is known as the PLII environment. 

The most important factors affecting the 
PL/I environment are the following: 

1. An area for the allocation of PL/I 
dynamic storage should be available. 
rhis area is known as the initial 
storage area (ISA). 

2. A dynamic storage area (DSA) should 
exist. This will give the address of 
the start of the area available for 
dynamic storage allocation and will 
act as a save area for the calling 
routine's registers. 

3. A task communications area (TCA) 
should exist. The TCA acts as a 
central communications area for the 
program, holding addresses of various 
storage- and error-handling routines, 
and control blocks. The TCA also 
contains a number of flags and other 
fields. 

4. Program checks should be passed to the 
PL/I error-handling module IBMBERR. 

5. Pre-formatted DSAs should exist for 
certain library routines. These pre­
formatted DSAs are known as library 

Chapter 5: object Program Initialization 65 



workspace (LWS). 

6. A space should be available for any 
condition built-in function values 
(ONCHAR, ONSOURCE, etc.) should a 
PL/I interrupt occur. This space is 
known as an ON communications area 
(ONCA). As the condition built-in 
functions have default values~ an area 
to hold the default values is 
required. This is known as the dummy 
ONCA. 

7. Register 12 should point at the TCA, 
and register 13 should point to the 
DSA. 

The resident program initialization 
routine IBMBPIR, and the transient routine 
IBMBPII, which it calls, acquire the ISA, 
and set up the various control blocks in an 
area of the head of the ISA known as the 
Ero9ram_m~~9~m~g~~a. The contents of 
the program management area are described 
later in this chapter. 

I The default ISA size and other options 
lare controlled either by the system default 
Imodule IBMBOPT or by specifying an external 
variable called PLIXOPT within the program. 

The use of initialization routines 
obviates the need for special code in main 
procedures, and allows two procedures with 
the MAIN option to be used in the same 
program. 

As shown in figure 5.1, the 
initialization routine IBMBPIR is reentered 
after the execution of compiled code. This 
is done by the standard action of the 
epilogue code. The registers of IBMBPIR 
are stored in the dummy DSA by the prologue 
code, and restored by the epilogue code. 
When terminating the program., IBMBPIR calls 
a transient library routine,IBMBPIT, to 
handle the majority of the termination 
functions. 

INITIALIZATION AND TERMINATION ROUTINES 

Three routines are used in initialization 
and termination. They are: 

1. IBMBPIR - resident library 
initialization/termination routine. 

2. IBMBPII - transient library 
initialization routine. 

3. IBMBPIT - transient library 
termination routine. 

The use of transient routines reduces 
the space overhead required. 

66 

The resident routine, IBMBPIR, is a 
short control routine. The major functions 
are carried out by the transient routines. 
However, IBMBPIR contains a number of 
housekeeping subroutines~ including code to 
handle GOTO out of block in certain 
abnormal situations, and the STAE exit 
subroutine. These are described in chapters 
6 and 7 respectively. 

Resident Initialization/Termination 
RoutIne-iB~§PIR--------------------

IBMBPIR has three entry points. One of 
these is for use by the supervisor; the 
other two are for use by problem programs 
written in languages 'other than PL/I. The 
main difference between the entry points is 
the parameters that are expected. The 
entry points are: 

1. IBMBPIRA - used when entry is made 
from t'he system. 

2. IBMBPIRB - for use by non-PL/I callers 
who wish to accept PL/I default ISA 
size. 

3. IBMBPIRC - for use by non-PL/I callers 
who wish to nominate the length and, 
optionally, the address of dynamic 
storage used by PL/I. 

Entry points Band C will be used by 
programmers specifying PLICALLA and 
PLICALLB respectively. (PLICALLA and 
PLICALLB are entry points in the control 
section PLISTART.) Using PLICALLA results 
in control being passed to IBMBPIRB. Using 
PLICALLB results in control being passed to 
IBMBPIRC. 

IBMBPIRA and IBMBPIRC can be passed a 
number of parameters related to prograrr 
management. These include ISASIZE and 
REPORT. IBMBPIR assumes that all parameters 
preceding a slash (/) are program 
management parameters. All main proce~ure 
parameters mustJ therefore, be preceded by 
a slash, otherwise they are taken to be 
parameters for IBMBPIR. 

Entry point IBMBPIRC can be passed a 
parameter list that contains (in the second 
and third words) the length and, 
optionally, the address at which the ISA is 
to begin. The ISA size and address are 
passed to IBMBPII. 

Entry point IBMBPIRB cannot accept any 
parameters; the default ISA size is always 
given. (See below, under the heading 
"Acquiring the ISA.") 



R12 

R13 

NAB 

TCA 
Task communi·cat~ons area. 
See text and appendix A 

TCA Appendage 
See text and appendix A 

Dummy ONCA (ON cemmunicatioos area) 
Holds defau·lt values for condition built-in functions 

TRT Tabl. 
Translate-and-test tab1e for 18MBERR, used in error 
haooling to test for relevant on-cetls. 

Oiagtlostic Fite Block 
Contains information relating to the use of SYSPRINT 
for the transm ission of diagnostic messages 

Dump Block (DUB) 
Block used to access the dump file 

Ordered delete list 
Used to hold a list of transient modules to be deleted 
duri~ program termination 

Dumm¥ tBlk variab4e 
Used in tasking rf IlO task varOOk! it declared 

Save area for IBMBPGR 
Used by storage maflagement routines when new 
segment of storage is required. 

Dummy DSA (Dynamic storage area) 
Contains DSA for initialization routine, backchain 
to caUing routine's save area Of any), pointer to 
start of major free area (NAB), etc. 

LWS (Library workspace) 
Two prefGrmatted DSAs fo.r use by certain library routines 

ONCA 

ttRV entry for SySft'UNT 
At fi)(ttd neglitive offset to allow fO'r fetched programs 

Pseudo Register Vector 
Control block used in addressing fil·8s and controlled 
variables. 

Chapter 5: Object program Initialization 67 



I 

When IBMBPIR is called to initialize the 
program~ it acquires workspace r then loads 
and calls IBMEPII. IBMBPII carries out the 
actions described below. 

IBMBPII first analyzes the execution time 
options. Execution time options r which 
were also known as program management 
parameterS r can be specified in the 
following three ways: 

1. 

2. 

As parameters of the EXEC 
statement, 

From an external variable called 
PLIXOPT in the PL/I program. 

3. From the default module IBMBXOPT 
which is set up during compiler 
generation. 

All three sources may exist and the options 
are merged from them. IBMBPII first loads 
the default module IBMBXOPT. It then 
searches for a control section called 
PLIXOPT which will have been produced by 
the compiler if an external variable called 
PLIXOPT was declared in the program. Any 
options specified in PLIXOPT are then 
merged with those in IBMBXOPT with the 
values in PLIXOPT overriding those in 
IBMBXOPT. The process is then repeated 
with any execution time options specified 
in as parameters in the EXEC statement. 
When the execution time options have been 
sorted out, IBMBPII carries out the actions 
described below. 

The method of acquiring storage for the ISA 
depends on the entry point of IBMBPIR used. 

If entry point C is used~ and both the 
ISA size and address have been passed, no 
further action need be taken. 

If the ISA size has been passed, to 
either entry point C or entry point A, a 
GETMAIN macro is issued for the amount of 
storage requested. 

If no ISA size has been specified, the 
default action is taken. The default 
action is to obtain all the available 
storage. The high-address half of this 
storage is then freed, and the lower half 

68 

retained as the ISA. If the resulting 
figure is not large enough to hold the 
program management area, an area large 
enough for the program management area is 
obtained. 

If there is not enough space for the ISA 
size requested, or if the defaults do not 
provide enough space for the program 
management area, the action described below 
under the heading "Error Situations" is 
taken. 

Ini~ia!i~tiQn_Q!_lQ~~Q~~~ 
!1~HH!gem~Arg~ 

The program management area is set up at 
the low address end of the ISA. IBMBPII 
initializes the various control blocks. 
These are shown in figure 5.2. Their 
functions are described below under the 
heading "The Program Management Area." 

The storage management routine is 
loaded, and the addresses of its various 
entry points are placed in the TCA. If a 
storage report is requested, module IBMBPGD 
is loaded; otherwise, module IBMBPGR is 
loaded. 

The PL/I error handling scheme handles all 
program checks, and attempts to handle 
ABENDs. The address of the old PICA is 
saved in the TCA so that the previous SPIE 
may be ~estored during program termination, 
and SPIE and STAE macro instructions are 
issued to set up the PL/I error handling 
scheme. 

The SPIE macro specifies entry into 
entry point A of the error handling module 
IBMBERR. The STAE macro specifies entry 
into the STAE exit subroutine in IBMBPIR. 
(This subroutine loads the ABEND analyzing 
module IBMBPES.) A full description of the 
PL/I error handling facilities is given in 
chapter 7. 

When the program management area has 
been initialized, and the SPIE and STAE 
macro instructions have been issued, 
IBMBPII returns control to IBMBPIR. 

IBMBPIR checks that the return has been 
normal and, if so, points register 1 at the 
parameters for the main procedure, and 
calls the procedure whose address is held 
in the control section PLIMAIN •. 

~Q§PIE and ~OSTA§-2ptioB~: If NOSPIE is 



specified in the parameters passed to 
IBMBPIR no SPIE macro is issued by the 
initialization routine. This allows an 
installation to specify its own method of 
handling program check interrupts. 
Similarly if NOSTAE is specified a STAE 
macro will not be issued. 

If there is insufficient storage available 
to meet the requested ISA size, IBMBPII 
calls IBMBPEP, which puts out an 
"INSUFFICIENT MAIN STORAGE" message. 
IBMBPII then returns to IBMBPIR, requesting 
it to free the storage acquired, and 
terminate the program. 

If no PL/I main procedure has been 
provided, and there is no alternative 
PLIMAIN control section provided by the 
user, a control section PLIMAIN in IBMEPIR 
will have been link-edited. When control is 
passed to the address contained in this 
control section" an error module is called. 
A 'NO MAIN PROCEDURE' message is generated, 
and the program is terminated. 

The Process of Termination 
---'-----~---------

When the main procedure is complete, 
epilogue code for the main procedure 
returns control to IBMBPIR, passing to it 
the address of the main procedure DSA. If 
the termination is normal, IBMBPIR restores 
the value of register 13 to that passed to 
it in register o. IBMBPIR then sets flags 
in the TCA indicating that the program is 
terminating~ and calls the error handler to 
raise the FINISH condition. If there is no 
GOTO from a FINISH on-unit, the error 
handler will return to IBMBPIR using the 
GOTO-out-of-block mechanism. The flags set 
in the TCA to indicate program termination 
are tested and, as they are set, control is 
returned from the GOTO code in the TCA to 
the abnormal-GOTO subroutine in IBMBPIR. 
This routine handles any outstanding 
housekeeping problems. Exit DSAs are 
correctly terminated and, because the 
program termination flags are set, all 
files are closed by calling IBMBOCL. 
Control is then returned to the termination 
routine, IBMBPIR. (A full discussion of the 
GOTO-out-of-block mechanism and its 
implications is given in chapter 2.> 

IBMBPIR then calls IBMBPIT to complete 
the housekeeping. STAE and SPIE macro 
instructions are issued to restore the 
error handling situation, and control is 
returned to the caller. 

THE PROGRAM MANAGEMENT AREA 

A diagram of the program management area is 
shown in figure 5.2. It shows the 
situation when the compiled program is 
called. The various fields in the program 
management area are shown in detail in 
appendix A. A brief description of their 
use is given below. 

The TCA is the central communications block 
used throughout the program. It is used to 
address the error-handling and storage­
management routines, and to point to the 
current segment of dynamic storage. 

A field-by-field description follows. 

Flags 

BOS 

EOS 

Indicate that an abnormal 
GOTO out of block may take 
place (see below>. Also 
indicate that certain special 
error conditions may arise. 

The pointer that points to 
the beginning of the current 
segment (see chapter 6). 

The pointer that points to 
the end of the current 
segment (see chapter 6). 

Address of external save area: 

The address of the save area 
for the calling routine, if 
IBMBPIR was not called from 
the control program. 

Address of translate-and-test table 
for IBMBERR: 

See below, under heading 
"Translate-and-Test Table." 

Address of TCA appendage 

Address of save area for IBMBPGRC and 
IBMBPGRD (see below) 

Open file chain: 

Used when closing files at end 
of job 

Address of IBMBPGRD: 

Stack overflow routine for 
VDAs (see chapter 6) 

Address of the diagnostic file block 
(see below) 

Chapter 5: Object Program Initialization 69 



PL/I and user return code: 

A standard area to keep these 
codes. 

Address of flow staterrent table: 

This is used to address the 
flow statement table which 
holds statement numbers for 
use during execution. 

Address of tab table: 

The address of a tatle of 
tabulator positions used in 
list-directed output. 

Address of FLOW module: 

The address of the module used 
to implement the compiler FLOW 
option. 

Shared library transfer vector addresses: 

Used when accessing PL/I 
library modules in the link­
pack-area. 

Address of PRV initialization word: 

Used to access word set in PRV 
when files are closed. 

Address of control task service routines: 

Used to access service 
routines in multitasking. 

Address of storage-handling routines: 

Entry points to IBMBPGR that 
get non-LIFO storage, free 
non-LIFO storage, and acquire 
a new segment for LIFO storage 
(see chapter 6). 

Address of IBMBERRB 

Address branched to after a 
software-detected interrupt 
occurs (see chapter 7). 

Environment descriptor: 

Identifies release of 
libraries being used. 

Code for GOTO out of block: 

70 

Whenever a GOTO out of block 
occurs, or could potentially 
occur because of the value of 
a label variable, compiled 
code branches to this code in 
the TCA. 

The function of this code is 
described in chapter 2, under 
the heading nHandling Flow of 
Control.n 

Address of get-control routine: 

Routine used in multitasking 
(see chapter 14) 

Address of free-control routine: 

Routine used in multitasking 
(see chapter 14) 

Address of ENQ SYSPRINT routine: 

Address of 

Address of 

Library routine used in stream 
I/O (see chapter 9) 

DEQ SYSPRINT routine: 

Library routine used in stream 
I/O (see chapter 9) 

WAIT module: 

Address· of IBMBJWT, the module 
used to execute the WAIT 
statement 

Address of COMPLETION pseudovariable module 

Address of event assign module 

Address of priority routine 

Address of ENQ and DEQ routines: 

Used for enqueuing and 
dequeuing files other than 
SYSPRINT. 

The TeA implementation appendage (TIA) is 
addressed from the standard part of the 
TeA. Its contents are as follows: 

Address of the byte beyond the ISA(TISA): 

This holds the address beyond 
the end of the partition and 
is necessary because EOS gets 
altered when non-LIFO dynarric 
storage is allocated. 

Address of old PleA (TAPe): 

Used to restore SPIE to that 
which existed when the PL/I 
program was called. 

Address of interrupt handler (TERA): 



This is the address to which 
the branch is made after a 
program check interrupt (see 
above) has occurred. 

Interrupt mask and flags (TINM) 

Wait information table (WIT) chain header 
(TWTW): 

start of the chain indicating 
which events are being waited­
on in the task. 

Anchor for chain of exclusive blocks (TEXF) 

Used when handling exclusive 
files 

Address 6f last free area (TLFE): 

Address of last free area of 
non-LIFO storage on the free 
area chain: used as a starting 
point when searching the 
chain. 

Address dump block (TDUB): 

Used when a PLIDUMP is being 
executed. 

Address of dummy DSA: 

Used, when abnormally 
terminating the program, to 
restore IBMBPIR's registers. 
This allows IBMBPIR to be 
reached should the DSA chain 
be overwritten. 

Address of get-library-workspace routine: 

This is part of the resident 
library module IBMBPIR and is 
used to get a new allocation 
of library workspace and an 
ONCA. This routine is called 
after interrupts and during 
program initialization (see 
chapter 3). 

Address of extended float simulator (TASM): 

Used on machines that do not 
have the extended floating­
point instructions to handle 
extended floating-point data. 

Name of extended float simulator (TSNM): 

Used to hold the name of the 
extended float simulator, so 
that it can be invoked if 
required. 

This area is used as a DSA for IBMBPGR, the 
routine entered when there is not enough 
room for a further DSA in the current 
segment of the LIFO stack. Both DSAs in 
library workspace may be in use when 
IBMBPGR is required, and there may be nc 
caller's save area because a DSA has not 
yet been acquired. Consequently, IBMBPGR 
has a save area reserved in the program 
management area. 

The dummy ONCA holds default values for the 
condition built-in functions. These will 
be supplied if they are requested either 
when no interrupt has occurred, or when nc 
interrupt with the requested condition 
built-in function value has occurred. 
There is a chain back through all ONCAs to 
the dummy ONCA. (See chapter 7.) 

The translate-and-test table contains code 
used in error handling to identify relevant 
on-cells. (see chapter 7.) 

This is space used during the execution of 
PLIDUMP to hold the DCB and other 
information for the dump file. 

This is a list of modules that are deleted 
by IBMBPIR during program termination. 
certain transient modules that are not 
deleted by other methods place their name 
in this list to ensure that they are 
deleted when the program is terrrinated. 

These are included in the program 
management areas to allow the use of the 
STATUS and PRIORITY built-in functions in 
non-multitasking programs, and to allow 
multitasking programs to operate if no task 

Chapter 5: Object Program Initialization 71 



or event variables are explicitly declared. 

The diagnostic file block holds information 
used by the error-message modules. This 
includes the address of the SYSPRINT 
transmitter. 

The dummy DSA acts as a save area for the 
registers of the initialization routine 
IBMBPIR, and an end to the chain of DSAs 
when a search through blocks is being made, 
as, for example. when searching for a 
relevant established on-unit (see chapter 
7). The dummy D3A has a bit in its flag 
byte to indicate that it is a dummy. The 
dummy DS~ contains a NAB (next available 
byte) pointer enabling the main procedure 
to obtain a DS~ in the LIFO stack. 

This consists of two pre-formatted DSAs 

72 

that are used by certain of the library 
modules. (See chapter 3.) 

rhe ONCA is an area where compiled code or 
library routines can store or read any 
condition built-function values that may be 
required. (See chapter 7.> 

rhis is used in addressing files and 
controlled variables. (See chapter 2.> 

Multitasking 

The program initialization process for a 
multitasking environment is described in 
chapter 14. 





JL-_~_~_~_._m __ t __ --f 

I SA···::;; .. 

Area 
Used for 
Dynamic 
Storage 

I 
I 
I 
I 
I 

\ 
\ 
\ 

Head of free-area chain 
(TLFE in TeA) 

Mai.n prOGedure DSA 

I~------------~ 
Subroutine OSA 

2nd allocation for 
controlled variable C 

1 st allocation for 
controll"ed variable C 

I ..... f ISA 

Figure 6.1. Use of storage in the ISA 

74 

Jl,~ .• r-: 
::. : 

:'. 

ltFO stor.. 

Heh" in a een~ 
staek, s_tint at the 
address fe~· the 
prOIf'Ml manageMeflt area. 
E-tements can _ fAred 

oRty frem !file mth-address 
eAd &f ... stadt. 

.... -Lttao .... 

Hetd'tA·a .... ...... 
at ... ....,.. .... ... 

0f .. ~.A.fty 
~ .... ItIiIdI .. 

nel811 5""_"~, 
............ are fJerett, 
they .. ...-. en a 
ftw. .......... .-t 
*su".'w ... , 
aU_atiom, if pessitft. 



The OS PL/I optimizing complIer allows the 
user to specify the working storage area he 
wishes to use, by a parameter known as 
ISASIZE. When this parameter is specified, 
the initial storage area (ISA) is set up to 
the size indicated. This is done by 
issuing a GETMAIN macro instruction for the 
required amount of storage. 

If the ISASIZE parameter is not 
specifie1, or if the ISA size specified is 
greater than the size of the region, 
default action is taken. The default 
action is to issue a variable GETMAIN 
instruction for the largest amount of 
storage possible. Half of this storage is 
allocate1 to the ISA and the remainder is 
freed for possible future use by the 
program or by the system. 

The allocation of the ISA is handled in 
the program initialization module IBMBPII. 
The procedure for tasking is slightly 
different and is described in the section 
on multitasking at the end of this chapter. 
The initial storage area (ISA) is used for 
various functions during execution. The 
start of the ISA is used as the program 
management area. The-program management 
area contains a number of housekeeping 
fields and is set up by the initialization 
routines. (see chapter 5.) The remainder 
of the ISA is used for PL/I dynamic storage 
allocation. 

TYPES OF DYNAMIC STORAGE REQUIRED 

The requirement for dynamic allocation and 
freeing of storage is inherent in the 
language. Automatic variables are 
allocate1 and freed on a block-by-block 
basis. Controlled and based variables can 
be allocated and freed by appropriate PL/I 
statements. storage is also obtained 
dynamically for workspace, and compiler­
generated temporary values. 

Dynamic storage can be conveniently 
divided into two classes. 

1. That which is allocated and freed on a 
last-in/first-out (LIFO) basis. 

2. That which is not. 

The first class is known as LIFO dynamic 
storage and the second class as non-LIFO 
dynamic storage. 

Chapter 6: Storage Management 

Certain other storage is also acquired 
dynamically. This is storage for 
transiently loaded library modules and 
input/output buffers. This storage is 
acquired and freed directly under system 
control. Routines wishing to load a 
transient module issue a LINK, LOAD, or 
XCTL macro instruction. When the transient 
module is to be freed the controlling 
library module issues the necessary macro 
instruction. 

Two kinds of storage area are allocated in 
LIFO storage. They are dynamic storage 
areas(OSAs) and variable data areas(VDAs). 
A DSA is allocated for every procedure or 
block and contains: 

• The System/360 standard save area. 

• Certain standard housekeeping fields. 

• All automatic variables and compiler­
generated temporaries whose length is 
known during compilation. 

A diagram of the standard section of a DSA 
is shown in appendix A. 

VDAs are acquired for all other 
allocations of LIFO dynamic storage. These 
include: 

• Storage for automatic variables and 
compiler-generated temporaries whose 
length is n2i known until execution. (X 
CHAR(N), for example.) 

• Workspace for certain library modules. 

• Allocations of library workspace (LWS) 
after the occurrence of an interrupt. 

Non-LIFO storage is used for the following: 

• Controlled variables. 

• Those based variables that are allocated 
by the ALLOCATE statement, (provided 
that they are not allocated in an 
automatic or static AREA). 

Chapter 6: storage Management 75 



Dynamic Storage Allocation 

The principle used in dynamic storage 
allocation is to allocate LIFO storage from 
the low-address end of ISA, starting at the 
first 8-byte boundary beyond the program 
management area, and to allocate non-LIFO 
storage from the high-address end of the 
ISA. Between the areas of LIFO and non­
LIFO storage is an unused section known in 
this publication as the m~j2I_!~~~~. 
(See figure 6.1~) 

The last element in the LIFO stack is 
always the first to be freed and 
consequently can always be amalgamated with 
the major free area. This is not always 
the case with non-LIFO storage. When an 
item not contiguous with the major free 
area in the non-LIFO stack is freed, it is 
placed o:n a free-area chain whose head is 
anchored in the TCA. Attempts are always 
made to use areas on this chain when 
further allocations of non-LIFO storage are 
made. 

Allocations of LIFO storage are made by 
testing to see if there is enough space in 
the major free area. If there is not 
enough space, an attempt is made to use an 
area on the free-area chain. When an area 
on the free-area chain is used, it is known 
as a new ~gm~~~ of the LIFO stack. 

If there is no space either in the major 
free area or on the free area chain# then a 
GETMAIN macro instruction is issued to 
obtain new storage. For LIFO storage this 
will be set up as a new segment of the LIFO 
stack and the necessary housekeeping fields 
will be placed at its head. 

To keep track of the storage allocated and 
freed, a number of pointers are used. 
These are: 

• The beginning-of-segment pointer (BOS). 

• The end-of-segment pointer (EOS). 

• The next-available-byte pointer (NAB). 

• The free-area chain pointer TFLE. 

• A pointer to the byte beyond the end of 
the :rSA (TISA). 

!he~1!!ning-of=~~gment Rointer l!2Q§}_ is 
initially set during program initialization 
to poin"t to the start of the ISA. It is 
not altered unless a new segment of storage 
is acquired. BOS always points to the 

16 

start of the current storage segment. BOS 
is held at offset 8 from the head of the 
TCA, and is addressed fr9m register 12. 

Thg_g!!g=of=§~9IDg!!~_EOi!!!~l~OSl is 
initially set during program initialization 
to point to the end of the ISA. However, 
it is updated, when non-LIFO storage is 
allocated, to point to the end of the major 
free area. EOS is held at offset X'C'(12) 
in the TCA, and is addressed from register 
12. 

!h~_~~t-aY£!i!~Qle-Qyte~nter (NA!!L is 
held in every DSA and points to the first 
8-byte boundary contiguous with unused 
storage. This address is the start of the 
major free area. The current NAB is held 
in the most recent DSA and addressed from 
offset X'4C'(16) from register 13. As 
register 13 is altered every time a DSA is 
acquired, the value in a NAB pointer need 
only be altered when a VDA is freed or 
acquired. Previous NABs are automatically 
restored when register 13 is pointed to a 
previous DSA. 

!h~_EOi!!!~f_~Q_~h~Qy~g_beYQ!!g_~h~IS~ 
l!I§A) is used to keep track of the end of 
the ISA. 

The first byte of BOS, EOS, and NAB 
contain segment numbers ("FF" for the ISA). 
The use of these numbers is explained under 
"Acquiring a New segment." 

rh~_frg~_~!g~_£hain.J22~!!ter TLFE. The 
free-area chain includes those eleroents of 
non-LIFO dynamic storage that have been 
freed but that could not be amalgamated 
with the major free area. The start of the 
chain is held at offset 8 in the TCA 
appendage in a field called TLFE. TLFE 
points to the element with the highest 
address. 

ALLOCATING AND FREEING LIFO STORAGE 

Allocating and freeing LIFO storage is 
handled by compiled code or by the 
particular library module that requires the 
space. The allocation is done in the 
manner used by the prologue code shown in 
chapter 2. Freeing is done in the manner 
used by the epilogue code, which is also 
shown in chapter 2. Before allocating the 
storage, a test is made to see if there is 
enough space in the major free area for the 
new allocation. For reasons explained later 
under the heading "Acquiring a New 
segment," this test is carried out by 
logical arithmetic. If there is not enough 
space, entry to one of the segment-handling 
entry points of the transient library 
module IBMBPGR is made. The entry point 



To dummy DSA 
~ 
I R13 
I 
I 
I _ _ _ _ Backchain (stored at fixed offset from R 13) 

Main procedure DSA 

NAB (stored at fixed offset from R 13) 
I 
I 

R13----~----------------------------------------~~~ 
(=old NAB) 

Backchain (= old R 13) 

Subroutine DSA 

NAB 

EOS--.... 

Allocating a new DSA 

1. Test if major free area large 
enough for new DSA. If not 
call IBMBPGRC. 

2. Store R 13 at fixed offset from 
old NAB to act as backchain. 

3. Load R 13 with address of old NAB. 

4. Store new NAB at fixed offset 
from register R 13. 

Freeing a DSA 

1. Load register 13 with current 
backchain address. Since the 
NAB and backchain fields are 
always addressed from register 
13, the previous values are 
automatically restored. 

Figure 6.2. principles involved in allocating and freeing LIFO storage 

Chapter 6: storage Management 77 



NAB 

EOS 

2nd allocation 

1st allocation 

Initial situation 

Two contiguous 
allocations of 
non-ll F 0 storage 

NAB 

EOS 

3rd allocation 

2nd allocation 

1 st allocation 

New allocation 

1. Free-area chain? 
No. (TlFE in TCA=O) 

2. Allocate by altering 
EOS pointer. 

NAB 

EOS 

3rd allocation 

2nd allocation 

TlFE 

Free 1st area 

1. Is area next to 
major free area? No. 

2. Is area next to an 
area already on 
free-area chain? No. 

3. PI ace area on free-
area chain. 

Figure 6.3. Principles involved in allocating and freeing non-LIFO storage 

NAB 

EOS 

TlFE 

3rd allocation 

2nd allocation 

4th 3tlocation 

Further allocation 

1. Free-area chain? Yes. 

2. Find smallest area that 
will hold new allOCation. 
Allocate at high-address 
end, leaving remaining 
area on free-area chain. 

3. Alter length field at head 
of remaining area. 



used depends on whether a VDA or a DSA is 
being acquired. The allocation of LIFO 
storage involves accessing the current 
value of NAB. This gives the address of 
the start of storage to be used. A new NAB· 
value is calculated, addressing the byte 
beyond the end of the new allocation. 
Register 13 is pointed at the old NAB value 
and the new NAB value placed at offset 
X'4C' from register 13. Freeing the 
storage is done by restoring register 13 to 
the previous value. Figure 6.2 illustrates 
the principles involved. Before allocating 
the storage, a test is made to see if there 
is enough space for the allocation. When 
there is insufficient space for a LIFO 
storage allocation, a new segment is 
acquired. (see below.) 

ALLOCATING AND FREEING NON-LIFO STORAGE 

Any section of non-LIFO storage can be 
freed at any time; therefore a simple 
stacking mechanism cannot be used, because 
it would waste storage by leaving freed 
storage within the stack. A different 
method is therefore used. When storage 
that is contiguous with the major free area 
is freed, it is amalgamated with the major 
free area by altering the end-of-segment 
(EOS) pointer, which indicates the end of 
this area. When storage that is not 
contiguous with the major free area is 
freed, it is placed on the free-area chain, 
which is anchored to a field in the TCA 
appendage. Whenever an allocation is made, 
an attempt is made to place the allocation 
in an area that is already on the chain, 
rather than use a further section of the 
major free area. Allocations of non-LIFO 
dynamic storage are always handled by the 
library module IBMBPGR, whose address is 
held in the TCA. Figure 6.3 illustrates 
the principles involved. Whenever an 
allocation within the major free area is 
made, the end-of-segment (EOS) pointer, in 
the TCA, is updated to point to the end of 
the major free area. 

If there is not sufficient space in 
either the major free area or on the free 
area chain, a GETMAIN macro instruction is 
issued for the required amount of storage. 
Non-LIFO storage acquired by a GETMAIN is 
freed by a FREEMAIN macro instruction. 

ACQUIRING A NEW SEGMENT OF LIFO STORAGE 

Every time a new procedure or block is 
entered., or a VDA is acquired, a test is 
made to see whether there is enough space, 
for the DSA or VDA, between the NAB pointer 

and the EOS pointer. If there is not 
enough space then an attempt is made-to use 
the largest space on the free-area chain as 
a new segment for the DSA or VDA. 

Pointers BOS and EOS in the TCA are set 
to point to the beginning and end, 
respectively, of the new segment. The DSA 
or VDA is allocated storage in the low­
address end of the segment, and the NAB 
pointer is set to point to the first free 
byte after the DSA or VDA. The former 
values of BOS and EOS are stored at the 
start of the new segment. 

A segment number is given to each 
segment, starting at hexadecimal "FF" and 
decreasing by 1 for each new segment. The 
number for the ISA is "FF", the second 
segment "FE", and so on. This number is 
held as the first byte of the NAB, BOS, and 
EOS pointers. The result of this device is 
that, when logical arithmetic is used, all 
addresses in later segments are apparently 
less than those in the earlier segments, 
regardless of their actual position. This 
simplifies segment handling. For instance, 
when a DSA in the second segment is freed, 
NAB is simply restored to its previous 
value which may well be in the first 
segment. NAB will then hold value 
"FF------", and EOS the value "FE------". 
When a further DSA is required, EOS will be 
less than the sum of NAB and the DSA 
l~ngth, as EOS is already less than NAB. 
Consequently it will appear that there is 
insufficient space for the DSA in the first 
segment, regardless of whether or not this 
is the case. The library module IBMBPGR is 
thus called to restore BOS and EOS, add the 
emptied segment to the free-area chain, 
and, if possible, place the new DSA after 
NAB in the first segment. The process is 
illustrated in figure 6.5. 

IBMBPGR - STORAGE MANAGEMENT ROUTINE 

The allocation and freeing of LIFO storage 
within a given segment is handled by 
compiled code or by the library module 
requiring the storage. All other dynamic 
storage allocation is carried out by the 
resident library routine IBMBPGR; this 
module has four entry points: 

IBMBPGRA 

IBMBPGRB 

IBMBPGRC 

IBMBPGRD 

Allocate non-LIFO storage. 

Free non-LIFO storage. 

Obtain and free additional 
storage segments (for DSAs). 

Obtaining and freeing additional 
storage segments (for VDAs). 

Chapter 6: Storage Management 79 



These four entry points are described 
below. In all cases storage is allocated 
in multiples of 8 bytes. 

When entered by entry point IBMBPGRA, the 
module first searches the free-area chain, 
(if one exists) and allocates the storage 
in the smallest possible area on the chain. 
If there is no chain, or no area on the 
chain that is large enough, IBMBPGR 
attempts to allocate the storage in the 
area immediately preceding the EOS pointer. 
If there is not enough space between the 
EOS pointer and the current NAB pointer, a 
GETMAIN macro is issued for the required 
storage. If the GETMAIN cannot be 
satisfied, the system ends the job with an 
ABEND-code 80A. This ABEND is intercepted 
by the ABEND analyzer IBMBPES. IBMBPES 
puts out a message indicating which 
statement was being executed and when the 
demand for storage was made. It then 
returns to the system to complete the 
ABEND. 

Provided that storage can be allocated, 
control is passed back, with register 1 
pointing to the address of the storage 
allocated. 

Freeing Non-LIFO Stor~~_l!~MBPGR~l 

When freeing non-LIFO storage or segments 
of LIFO storage IBMBPGR first tests to 
discover whether the element being freed is 
within the ISA. This is done by seeing if 
the address is between the value held in 
register 12, the address of the TCA, and 
the value held in the TISA field of the ISA 
which points to the end of the ISA. If the 
element is outside the ISA it must have 
been acquired with a GETMAIN macro 
instruction. It is therefore freed with a 
FREEMAIN macro instruction. 

If the eleroent to be freed is within the 
ISA~ the module scans the free-area chain 
(if one exists) to see whether the storage 

80 

being freed can be amalgamated with areas 
already on the chain. This is done if 
possible. The module then checks to see 
whether the storage being freed is adjacent 
to the major free area. If so, EOS is 
altered to point to the end of the area 
being freed or to the end of the 
amalgamated area, if this adjoins the major 
free area. If the element cannot be 
amalgamated with any other, the area is 
added to the free-area chain, which is 
arranged in descending order of addresses. 
The format of a free area chain eleroent is 
shown in figure 6.4. 

Or----------------------------------------, 
Length of element in bytes 

4 Pointer to area with lower address, 
zero if last element 

Unused storage 

L----------------------------------------J 
Figure 6.4. Format of element on free 

area chain 

When compiled code discovers that the 
address contained in the pointer NAB plus 
the length of the new DSA or VDA to be 
allocated is greater than the value of the 
pointer EOS, IBMBPGR is called either at 
entry point C or entry point D depending on 
whether the storage is required for a DSA 
or for a VDA. Entry point C is used if a 
DSA is required, entry point D, if a VDA is 
required. The difference is the method 
used to store the caller's registers~ 
IBMBPGRC stores the caller's registers in a 
special save area in the TCA, because no 
DSA has yet been acquired; IBMBPGRD stores 
the registers in the caller's DSA, in the 
usual manner. 



BaS 

NAB 

EOS 

TLFE 

Initial situation 

1. Free·area chain exists. 
BOS, NAB, and EOS have 
X'FF' in first byte, i.e., 
segment number 1. 

BOS ---'~-------------------, 

EOS 

BaS 

R13 

NAB 

EOS 

TLFE 

Acquiring new segment 

1. Compiles code or library 
routine finds major free 
area too small. Calls 
IBMBPGR. 

2. IBMBPGR finds an area on 
free·area chain large 
enough for allocation. 

3. Stores old BOS and EOS. 
Sets new BaS and EOS, and 
returns to caller. 

4. Caller gets new DSA. 
BOS, EOS, and NAB have 
X'FE' in first byte, i.e., 
segment number 2. 

new 
se!JTIent 

BaS .---~>~----------------~ 

NAB 

EOS 

BaS 

EOS 

TLFE 

Freeing DSA in segment 

1. Register 13 is restored in 
the normal way. BOS and 
EOS are not restored. The 
segment will not be freed 
unti I there is a further 
demand for storage, that 
can be accommodated 
in the previous segment. 

2. NAB now has X'FF' in first 
byte, BOS and EOS still 
have X'FE'. 

BaS 

R13 

NAB 

EOS 

TLFE 

Figure 6.5. Principles involved in allocatin~ and freeing segments of PL/I dynamic storage 

Freeing segment 

1. When storage is ag'lIik. required, 
NAB + storage required is 
compared with EOS using 
logical arithmetic. 

2. NAB + storage is found to be 
greater (because of different 
segment numbers). so IBMBPGR 
is called. 

3. IBM BPG R finds segment 
numbers are different. Tests to 
see if new storage will fit in old 
segment. If not, allocates in 
current. segment. 

4. Storage will fit, so restores old 
BOS and EOS, places segment 
on free·area chain, and returns 
to caller. 

5. Caller allocates storage starting 
at current NAB. 



The entry points are called in two 
circumstances: 

1. There is insufficient room in the 
current segment for allocation of the 
DSA or VDA and, consequently, a new 
segment is required. 

2. A segment other than the first one has 
been allocated, but is no longer in 
use. 

IBMBPGRC and IBMBPGRD check to see which 
of the above two situations caused the 
call. This is done by determining whether 
the number in the first byte of NAB is 
greater than the number in the first byte 
of EOS. 

In case 1 above, the segment numbers are 
the same, and a new segment must be 
allocated. A new segment is allocated by 
searchin~ the free-area chain for the 
largest available area and using this as a 
new segment. If there is no area large 
enough to hold the new DSA, a GETMAIN macro 
instruction is issued and the new segment 
set up in the area acquired. 

When a new segment is allocated, the old 
values of BOS and BaS are placed in control 
words at the head of the new segment. New 
values for BaS and EOS pointing to the 
beginning and end of the new segment, with 
first byte numbers decremented by one, are 
placed in the TeA. The address of the new 
NAB is passed in register zero; the address 
for the start of the new DSA or VDA is 
passed in register 1. The. format of a 
secondary segment is shown in figure 6.6. 

°r------------------------------,<--current 
/ Previous BaS value / BOS 

4/------------------------------/ 
/ Previous EOS value / 

8/------------------------------/ 
/ / 1 DSA or VDA / 
1 I 
/ 1 

1------------------------------1 
1 Major Free Area 1 Current 
L------------------------------J<--EOS 

Figure 6.6. Format of second and 
subsequent segments of the 
LIFO stack 

In case 2 above, the number in the first 
byte of NAB is greater than the number in 
the first byte of EOS. If the difference is 
greater than one, more than one extra 
segment has been allocated for DSAs or VDAs 
which are no longer current. In this case, 
segments are freed until only one empty 
segment remains. This is done by setting 
BaS and EOS to the values held in the 

82 

control words at the head of each segment 
and freeing the storage in the way 
described for IBMBPGRB above. 

When only one empty segment remains, a 
test is made to see whether the new DSA 
will fit into the segment that contains the 
present NAB painter (the segment before the 
empty segment). This test is made by 
comparing the current NAB pointer with the 
old EOS pOinter held in the control words 
of the empty segment. If there is 
sufficient room, the empty segment is freed 
as described under IBMBPGRB above. Return 
is then made to the caller, with a new 
value for EOS and BOS, and the DSA is 
allocated immediately after the old NAB. 

If there is not enough room in the 
segment containing NAB, then a test is made 
to see if the empty segment is large enough 
to hold the new DSA. This is done by 
comparing the difference between the 
current BaS and EOS with the length of the 
element. If there is enough room, the DSA 
is allocated in the empty segment. The 
address of the start of the storage is 
passed to compiled code in general register 
1, and the address of the new NAB passed in 
general register o. 

If there is not enough room in the empty 
segment, then the segment is freed. There 
are now no empty segments, and the 
situation is treated as if there had been 
no empty segments in the first place. 

~Qt~: It is possible that after freeing a 
number of empty segments, an area on the 
free-area chain can immediately follow EOS. 
However, the possibility is remote, and no 
check is wade to see whether this is the 
case. 

Storage Reports 

When the PL/I programmer requests a storage 
report, he is given, after the completion 
of his program, a report showing the 
following: 

1. The ISA size specified (if a size was 
specified). 

2. rhe ISA size used. 

3. The amount of PL/I storage required by 
the program. (This is a suggested 
optimum ISA size.) 

4. The maximum amount of storage obtained 
outside the ISA at any one time~ 

5. The number of GETMAIN macro 
instructions issued. 



6. The number of FREEMAIN macro 
instructions issued. 

7. The number of requests to acquire non­
LIFO storage. 

8. The number of requests to free non­
LIFO storage. 

The report is generated by the storage 
report routine, IBMBPGD. This module is 
loaded during program initialization, 
instead of the normal storage management 
module IBMBPGR. IBMBPGD has the same entry 
points and carries out the same functions 
as IBMBPGR. However, it also maintains a 
record of certain storage statistics. To 
ensure that IEMBPGD handles al! storage 
allocation both inside and outside the ISA, 
the EOS field in the TCA is set with a 
dummy value so that the storage routine 
will be called whenever LIFO storage is 
required~ as well as for non-LIFO storage 
and stack overflow requests. 

The storage report is issued during 
program termination. The termination 
routine~ IBMBPIT, calls the report writing 
module, IBMBPMR. The report is transmitted 
to the dump file. 

During program initialization, if REPORT 
has been included in the parameters passed 
to IBMBPIR, the report storage management 
routine IBMBPGD is loaded, and its entry 
point addresses placed in the TCA. The 
value in the end-of-segment pointer, EOS, 
is then set to zero. Space for a report 
table is acquired, and the true value of 
the end of segment placed in a field in the 
report table. 

During execution, IBMBPGD is called every 
time there is a request for PL/I dynamic 
storage. It is called for non-LIFO storage 
in the normal way, and, when LIFO storage 
is required~ it is called because the zero 
value in EOS results in the value of 
NAB+DSA or VDA being greater than EOS. 
Consequently~ the stack overflow routine 
(IBMBPGD, entry point C or D) is called. 
When a call is made to entry points C or D, 
IBMBPGD makes a test against the true value 
of the end of segment held in the report 
table, and, if there is sufficient room, 
the storage is acquired in the current 
segment of the LIFO stack. If there is not 
sufficient room, IBMBPGD takes the same 

action as IBMBPGRA (described earlier in 
this chapter). 

All other storage acquisition by IBMBPGD 
is handled in exactly the same way as for 
the corresponding entry point of IBMBPGR. 
However, IBMBPGD keeps a running total of 
the following in the storage report table. 

1. The highest value obtained by 
subtracting the current: length of the 
major free area from the current 
amount of PL/I storage acquired 
outside the ISA. 

2. The largest amount of PL/I storage 
obtained outside the ISA at anyone 
time. 

3. The number of GETMAIN macro 
instructions issued. 

4. The number of FREEMAIN macro 
instructions issued. 

5. The number of requests to acquire non­
LIFO storage. 

6. The number of requests to free non­
LIFO storage. 

The values are altered if necessary every 
time IBMBPGD is entered. The value of (1) 
and (2) above is calculated on every call, 
and the highest number retained in the 
report table. The format of the storage 
report table is given in appendix A. 

On termination, the termination routine, 
IBMBPIT. calls the storage report writing 
module, IBMBPMR, which transmits the 
storage report onto the dump file. 

The amount of PL/I storagre required is 
calculated by adding the figure described 
in (1) above to the ISA Size used. The 
figure will be positive if any storage 
outside the ISA was acquired; it will be 
negative or zero if no storage was acquired 
outside the ISA. 

Two things should be noted about the 
results produced by a storagre report. 

1. If storage was acquired outside the 
ISA, the figure given for storage used 
cannot be taken as f inall. A further 
request for a report when the program 
is run in the ISA size suggested may 
result in a smaller figure being 
generated. This smaller size should 
be used. This discrepancy is caused 
by the differences in acquiring 

Chapter 6: Storage Management 83 



stol:age inside and outside the ISA. 
To obtain a correct figure using only 
one run, the program should be run in 
a large ISA that can be expected to 
hold all PL/I storage. 

2. The report can only refer to the 
particular run of the program on which 
the report was given. Runs with 
different data or parameters may have 
different storage requirements. 

The modules IBMBPGD, IBMBPMR, and the 
initialization and termination modules are 
fully described in PL/I transient library 
program logic manual. 

Storage ~~Q~fQf-~ultitasking 
frograms 

storage reports for multitasking programs 
are generated in the same way as those for 
non-multitasking programs. A special 
storage management module is loaded at 
execution time, and this retains statistics 
of the amount of storage used. To ensure 
this module handles all requests for 
storage, the value in EOS is set to zero, 
and the true EOS value is retained in the 
report table. The report is issued during 
program termination by the module IBMBPMR. 

For a multitasking storage report the 
following information is given: 

84 

For the major task: 

The same as for a non-multitasking 
program (see above>. 

For subtasks, a combined report for all 
suotasks showing: 

The maximum ISA size used by any subtask 

The minimum ISA size used by any subtask 

The maximum PL/I storage required by any 
subtask 

The minimum PL/I storage required by any 
subtask 

The maximum amount of storage acquired 
outside the ISA by any subtask 

The minimum amount of storage acquired 
outside the ISA by any subtask 

The total number of GETMAIN and FREEMAIN 
macro instructions issued by all 
subtasks 

The total number of requests to free and 
acquire non-LIFO storage issued by all 

tasks 

To enable these figure~ to be produced, 
a multitasking version of the storage 
report module is used. This module, 
IBMTPGD, has two more entry points than its 
non-multitasking counterpart. These are: 

IBMTPGDE - called when a task is 
initialized. 

IBMTPGDF - called when a task is 
terminated. 

IBMTPGDE is called when a task is 
initialized. It acquires storage for the 
report table for the task, and retains a 
record of the number of active PL/I tasks, 
increasing the maximum number if necessary. 

IBMBPGDF is called when a task is 
terminated. If the terminated task is a 
subtask, IBMBPGDF completes the relevant 
field in the subtask storage report table, 
from information in the report table of the 
terminating task. 

During initialization, space is required 
by the control task for a combined subtask 
report table which will hold the 
information from which the merged subtask 
report will be generated. During the 
initialization of each task, space for a 
report table for that task is obtained. 
rhe report table for the major task is 
flagged. 

Throughout the execution of each task, a 
separate report table is maintained. At 
the end of each subtask, the information in 
the terminating task is merged into the 
combined subtask table, held in the storage 
associated with the control task. 

When the jobstep is terminated, IBMBPMR 
produces the information from the merged 
subtask report table and the report table 
of the major task. (IBMBPMR is used to 
output the report for both tasking and non­
tasking programs.) 

Storage Management in Programmer-allocated 
Areas 

By using area variables, the progra~ner can 
obtain a continuous area of storage for 
based variables. The allocation of storage 
for area variables is handled in the same 
way as that for other types of variable, 
and depends on the variable'S storage 
class. The allocation and freeing of 
storage within an area is handled by the 
library module IBMBPAM. 

IBMBPAM keeps a check on the amount of 



storage allocated. If there is not enough 
space for an allocation, or if the target 
area is too small to hold the source area 
assignment statement, the AREA condition is 
raised. 

The method employed is that storage is 
allocated from the low-address end of the 
area, anj an offset is kept to the end of 
the item with the highest address in the 
area. This offset is known as OEE (offset 
to end of extent). When storage is freed, 
either the OEE is altered or the storage is 
placed on a free-storage chain, with the 
largest segment at the start of the chain. 

Before a space is freed, a check is made 
to see whether it is contiguous with a 
space or spaces that are already on the 
free storage chain. If it is, the 
contiguous spaces are amalgamated. A check 
is then made to see whether the amalgamated 
space is contiguous with the OEE. If the 
space is contiguous with the OEE, the OEE 
is pointed to the start of the space, and 
the space removed from the free storage 
chain. If the amalgamated space is not 
contiguous with the OEE, the free area 
chain is rearranged so that it is in the 
correct order. 

If the space to be freed is not 
contiguous with another space on the free 
storage chain, a check is made to see if it 
is contiguous with the OEE. If it is, the 
OEE is updated. 

If the space to be freed is contiguous 
neither with the OEE nor with another space 
on the free storage chain, the space is 
placed in its correct position in the 
storage chain. 

When a free chain exists, IBMBPAM always 
attempts to allocate storage by using a 
space on the chain. The low-address end of 
the smallest possible space on the chain is 
used, and the chain is then rearranged to 
maintain the correct order of decreasing 
size. 

Multitasking Considerations 

storage handling within each task follows 

the pattern described above, except that 
certain storage requests arE~ made for 
storage that will be available to all 
tasks. This storage has to be obtained in 
2.!:!QPool.Q. To indicate such a requirement, 
IBMTPGR is called with a negative value. A 
GETMAIN for the specified amount is then 
issued to subpool 0, the ne~Jative value 
indicating what the storage must be in 
subpool o. 

rhe method used to acquire the ISA is 
slightly different for tasking. This is 
described below. 

rhe size of the ISA required for the major 
task and every minor task can be requested 
in the ISASIZE parameter of the EXEC card. 
If the size in the parameter is smaller 
than that needed for the program management 
area, only the exact size required for the 
program management area is acquired and all 
further allocations of dynamic storage are 
made by issuing GETMAIN maCl:-O instructions. 
These allocations are made in exactly the 
same way as they are when non-tasking 
programs cannot acquire space within the 
ISA, see above under "IBMBPGR - Program 
Management Routine". 

The default action4 taken if no ISA size 
is specified, is to acquire storage for all 
ISAs in multiples of 4K bytes. If the 
program management area can be contained in 
4K bytes (which will normally be the case) 
only 4K bytes are acquired and this is set 
up as the ISA. If the program management 
area contains more than 4K bytes, (an 
exceptionally large PRV might cause this) a 
further 4K bytes are acquired. This 
process continues until enough space is 
acquired for the program management area. 

4K bytes of storage will normally be 
enough to hold the program management area 
and the DSA for the main procedure. 

Chapter 6: Storage Management 85 



DETECTING CONDITIONS 

D SYSTEM COMPILED CODE OR LIBRARY ROUTINES 

Use system facilities if 
possible. SPI E macro, 
issued during initialization, 
paSSHS control to error 
handling module when 
interrupts occur 

Execute checking code 
for all enabled conditions 
not detected by system. 
Call error handler 
when condition detected. 

INDICATING ACTION REQUIRED WHEN CONDITION OCCURS 

COMPI LED CODE ~, 
Set up flags indicating which 
conditions are enabled. 
Set up control blocks indicating 
which ON statements have been 
executed and, consequently, 
which on-units are established 
and the addresses of such 
on-units. 

CONTROLLING ACTION AFTER CONDITION HAS OCCURRED 

ERROR HANDLING MODULE - IBMBERRl 

CFrom information set up in control blocks and flags by compiled code, determine which of the 
following actions to take when an interrupt has occurred 

It' ~ ~ 
If condition disabled If on-unit established If no on-unit established 

Ignore interrupt and Take action specified Take standard system 
return. in on-unit. If no action as defined in 

GOTO out of on-unit the language 
take action specified 
for normal return 

Figure 7.1. The principles of error handling 

86 



Chapter 7: Error and Conditi()n Handling 

This chapter deals with the method used to 
implement ~~g£~t!Q~_t!mg error handling. 
All errors detected at execution time are 
associated with PL/I conditions and can be 
handled either by on-units written by the 
programmer or by standard system action, as 
defined in the PL/I language. 

The chapter starts with a brief 
discussion of the terms and concepts used 
in error handling. A discussion of the 
error handling facilities offered by the 
operating system and those specified in the 
PL/I language follows. rhe implementation 
problems these facilities raise and the 
method used to solve them are then 
described. A separate section is devoted 
to the CHECK condition because this raises 
special problems. The chapter is completed 
by a brief discussion of the error message 
modules, the modules used to implement the 
PLIDUMP facility, and the handling of the 
compiler FLOW option. 

Error detection during compilation is 
not covered in this chapter. Nor is any 
advice given on how to use PL/I error 
handling facilities. Advice on debugging 
with dumps is given in chapter 12. 

~Q~~: If the NOSPIE or NOSTAE options are 
specified in the parameters for the 
procedure, much of what is said in this 
chapter does not apply. 'I'he PL/I SPIE or 
STAE macros will not be issued and system 
detected interrupts and ABENDs will not be 
handled in the PL/I defined manner. 

Throughout this chapter a number of special 
terms are used. Some of them are terms used 
in the PL/I language, others are terms that 
are used to describe certain implementation 
features and concepts. The terms are listed 
below. 

~stablished: This term is used to describe 
on-units and, sometimes, ON statements. 
The on-unit or statement is said to be 
"established", if the action specified in 
the on-unit or ON-statement will be taken 
should the specified condition arise. Thus 
an on-unit becomes established when the ON 
statement is executed and ceases to be 
established when an ON or REVERT statement 
referring to the same condition is 
executed, or when the associated block is 
terminated. 

Enabled: This term is used to describe 
certain PL/I conditions (SIZE, CONVERSION, 
etc.). A condition is enabled when the 
occurrence of the condition will result in 
the execution of an on-unit or standard 
action. A condition is disabled when the 
occurrence of the condition will, 
apparently, be ignored. 

QY~!!~igg_~nd Un~~lifigd Condit!Q~~: 
Qualified conditions are those conditions, 
such as ENDPAGE, that need to be qualified 
by a file or other name. Unqualified 
conditions are those that do not need 
qualification. Figure 7.3 shows which 
conditions are qualified and which are 
unqualified. 

~!Qg~m_£h~£!_~nQ_§Q!t~~!~_!n~!!~t~: 
Certain PL/I conditions are detected 
automatically by the computing system. 
Others have to be detectep by special 
checking code either in library modules or 
in the compiled program. Interrupts 
detected by the system are referred to as 
E!Qg~_£b~£~. Interrupts detected by 
special checking code are referred to as 
2.Q!!::~fg::.9~£:!:gg or softwafg_i!!t~!gE~§'· 
A list of program check interrupts and 
their associated PL/I conditions is given 
in figure 7.2. 

These terms program check and software 
interrupts are used_for convenience in this 
publication and are not accepted terms in 
the PL/I language. Figure 7.3 shows which 
interrupts are system detected and which 
are software detected. 

St~!::ic ~ng_QY!12mic_Qg2£g~g§~£y: Static and 
dynamic descendency are terms used to 
define the scope of PL/I features. On­
units are g~~mically de~nggn~. That is, 
they are inherited from the calling 
procedure in all circumstances. Condition 
enablement is 2~~!::i£~!!y_de~£gnggnt. That 
is, it is inherited from the containing 
block in the source program. Static 
descendency can be determined during 
compilation. Dynamic descendency cannot be 
known until execution. See figure 7.4. 

Normal Return: Normal return is return from-a-Cilled block by means of reaching 
the END or RETURN statement rather than 
because of a GOTO out of the block. In an 
error-handling context, normal return is 
taken to mean normal return from the on­
unit. The action taken after normal return 
from an on-unit is specified in the PL/I 
language. For most conditions, it is to 
return to the point of interrupt. 

Chapter 7: Error and Condition Handling 87 



§~~ndarg_Syst§ffi-~£tiQn~ Standard system 
action is the name given to the default 
PL/I-defined action taken when a condition 
occurs and there is no established on-unit 
for that condition. 

r-----------------------------------------, 
Machine interrupt I PL/I condition 

Operation 
privileged operation 
Execute 
Protection 
Addressing 
Specification 
Data 

ERROR 
(after issuing 
a message) 

Fixed-point overflow I FIXEDOVERFLOW/SIZE 
Fixed-point divide I ZERODIVIDE/SIZE 
Decimal overflow I FIXEDOVERFLOW/SIZE 
Exponent overflow I OVERFLOW 
Exponent underflow I UNDERFLOW 
Floating-point dividel ZERODIVIDE 
L-----------------------------------------J 
Figure 7.2. ~achine interrupts 

associated with PL/I 
conditions 

.. .... 
. Background to Error Handling 

The operating system offers certain 
error-handling facilities. These can be 
summarized as follows: 

Various situations can cause an machine 
interrupt which results in entry to the 
supervisor. It is possible for the 
programmer to define the action that will 
be taken after any of these interrupts by 
means of a routine specified in a SPIE 
macro instruction. Alternatively, the 
programmer can accept the default action of 
the system. It is also possible for the 
programm.er to prevent the occurrence of 
certain interrupts by masking out fields in 
the PSW. 

PL/I FACILITIES 

The PL/I language offers similar but 
greatly extended facilities. The number of 
situations causing interrupts is 
considerably larger and some, such as 
ENDFILE, can be used to control normal 
program flow rather than to handle errors. 
The use of on-units allows the programmer 
to obtain control after any interrupt. 

88 

Alternatively he can accept standard system 
action. The programmer also has the choice 
of whether certain of the conditions will 
cause interrupts. This is done by enabling 
or disabling the conditions. If the 
condition is disabled neither an unit nor 
standard system action will be taken if the 
condition occurs. 

A number of PL/I conditions correspond 
directly to the interrupts that are 
detected by the operating system (see 
figure 7.2>. ether conditions however 
belong only to PL/I. 

The majority of PL/I conditions are 
caused by errors in program logic or the 
data supplied. Some, however, are not 
connected with errors. These are conditions 
such as ENDFILE, which occur at 
unpredictable times and consequently cannot 
easily be anticipated by code in the source 
program. 

Conditions that are most probably caused 
by programming errors are known as err2! 
£Qngi~i2n§. Figure 7.3 shows which 
conditions are error conditions. The 
standard system action for these conditions 
is to put out a message and raise the ERROR 
condition • 

The ERROR condition is also raised by 
any programming error that is not directly 
covered by a PL/I condition. A data 
interrupt, for example, raises the ERROR 
condition, and certain software detected 
conditions, such as taking the square root 
of a real negative number, also raise the 
ERROR condition. 

The ERROR condition consequently gives 
the programmer blanket coverage of all 
program errors. The ERROR condition differs 
from other conditions in that a diagnostic 
message is always generated regardless of 
whether an ERROR on-unit exists. If an on­
unit exists, the message is generated 
before on-unit action is taken. 

A further facility offered by PL/I is 
the availability of condition built-in 
functions and pseudo-variables. These 
allow the programmer to inspect various 
fields associated with the interrupt and, 
in certain cases, to alter the contents of 
these fields. 

The situation in PL/I is complicated by 
the question of the scope of on-units and 
condition enablement. Condition enablement 
is statically descendent and can be decided 
during compilation. On-units, however, are 
dynamically descendent and the 
establishment or otherwise of on-units can 
only be decided during execution. (See 
"Terminology" above.> 



r------------------------------------------------------------------------'---------------, 
Name of IQual-IDescription IRecognized by I Default I Program I 
condition lifiedl I I l-merIERROR** 

I I I I IControl Condition 

CONVERSION no 

FIXEDOVERFLOW no 

SIZE no 

OVERFLOW no 

UNDERFLOW no 

l ZERODIVIDE no 

I 
I 

Attempt to ICode in relevant enabled 
convert invalid Ilibrary modules 
character stringl 

I 
Overflow of a I System enabled 
fixed point I 
value I 

I 
Attempt to Compiler-generated disabled 
assign too large checking code, or 
a value hardware 

Overflow of a system 
floating-point 
value 

Exponent becomes System 
smaller than 
permitted 
minimum 

Attempt to System 
divide by zero 

enabled 

enabled 

I enabled 
I 

yes yes 

yes yes 

yes yes 

yes yes 

yes no 

y'es yes 

--------------~-----------------------~-----------~---------------------.--------~------
I 
I 

I I 
I I 
ICode in relevant Jenabled 
Ilibrary modules 

ENDFILE yes lEnd of file 
I reached 

ENDPAGE 

TRANSMIT 

UNDEFINEDFILE 

KEY 

NAME 

yes 

yes 

I I 
lEnd of a page onlCode in relevant 
la print file 
I reached 
I 
Transmission 
error on a file 

Ilibrary modules 
I 
I 
ICode in library 
I modules 
I 

yes Error in openinglcode in relevant 
file Ilibrary modules 

I 
yes Invalid key ICode in relevant 

Ilibrary modules 
I 

yes unrecognizable Icode in relevant 
data-directed Ilibrary modules 
input I 

I 

enabled 

enabled 

enabled 

enabled 

enabled 

RECORD yes Incorrect size ICode in relevant I enabled 
I record Ilibrary modules I L--------------______________________________________________________ _ 

Figure 7.3. (Part 1 of 2). PL/I conditions 

no yes 

no nc 

no yes 

no yes 

no yes 

IIO no 

no yes 

----~------------J 

Chapter 7: Error and Condition Handling 89 



r---------------------------------------------------------------------------------------, 
1 Name of IQual-IDescription IRecognized by IDefault 1 program I 
I condition lifiedl I I I-mer IERROR** 
I I I I I I control I condition 
1------_·_--------- ----- ---------------- ------------------ --------- ------- ---------

E~~§:!!L£he£ko.!!!:: 

SUBSCRIPTRANGE 

STRINGSIZE 

STRING RANGE 

CHECK 
(variable or 
label) 

AREA 

§ys~em_Ac!::!2!! 

ERROR 

FINISH 

no 

no 

no 

Array subscript compiler-generated disabled 
outside declared checking code 
bounds 

Attempt to 
assign a string 
of too great 
length 

Attempt to 
access beyond 
limits of string 

Code in relevant 
library modules 

Code in relevant* 
library modules 

disabled 

disabled 

yes/ Value assigned Compiler-generated I disabled 
no to identifier or checking code, or I 

no 

no 

no 

control passed library module I 
Ithrough label I 

I 
I 
IAttempt to 
lallocate beyond 
end of area 

Any error 
condition 
including those 
not covered by 
other 
conditions** 

I 
I 
IRelevant library 
I modules 
I 

I 
I 
I Relevant 
Imodules, 
I compiled 
I system 
I 
I 
I 

library 
or 
code, or 

Program about 
Ibe terminated 

to I Relevant library 
I modules 

1 
I 
enabled 

enabled 

enabled 

E;Q9;~!!!~~~~Q I I I I 
I I I I 

CONDITION I no I Programmer I Signal I enabled 
(name) I I defined I statement I (when 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

I I condition I I coded) I 

yes 

nc 

no 

no 

yes 

----------------------------------------------------------------------------------.-----J 

~I 

I 

* When STRINGRANGE is enabled, library modules are always called to handle substring I 
operations. These modules have the necessary code for checking for the STRINGRANGE I 
condition. I 

** The ERROR condition is raised when an error occurs that is not covered by PL/I 
exceptional conditions - taking the square root of a real negative number, for 
example. It is also raised as standard system action when handling all types of 
error conditions. Thus an ERROR on-unit enables the programmer to intercept all 

I 
I 
I 
I 
I 

I erro.r conditions. I L----------___________________________________________ ----------------------------------J 
Figure 7.3. (Part 2 of 2). PL/I conditions 

90 



(SIZE):B:PROC; 

ON ERROR SNAP; 

• 
• 
• 

CALL C; 

CALL D; 

D:PROC; E:PROC; 

• 
• 
• 

CALL E; 

Static descendency: the enablement prefix (SIZE): in 
procedure B is inherited only by the contained procedure 
C, regardless of which procedure calls which. 

Dynamic descendency: the on-unit ON ERROR SNAP; is 
inherited by any procedure called by B and any 
subsequently called procedures. Thus, if B calls D, which 
calls E, the on-unit is established in procedure E. 

Figure 7.4. static and dynamic descendency 

Chapter 7: Error and Condition Handling 91 



UNQUALIFIED CONDITIONS 

1. A flag at the head of the DSA indicates that static ONCBs exist for that 
block. 

2. the block and current enable cells indicate which of those conditions that 
are under programmer control are enabled at any given point in the program. 
Each such condition is represented by a single bit in each cell. 

3. There is an on-cell for every ON-statement in the block. Each on-cell consists 
of a onll-byte code identifying the condition, e.g., X'OA' (SUBSCRIPTRANGE). 
If the Silme condition appears more than once, previous on-cells are set to 
zero. 

4. Static ONCBs are held contiguously in static storage, in the same order as the 
corresponding on-cells. They contain a code byte and flags that indicate such 
things as: whether SYSTEM was specified, whether SNAP was specified, 
whether the on-unit consists of a single GOTO statement, whether it is a null 
on-unit, etc. If there is an on-unit, its address is given in the second byte. (For 
GOTO-only on-units, the offset of the address of the label variable is given.) L.-__ _ 

Enable 
cells 

On-cells 

DSA 

Dynamic 1----,----------1 
ONCS 

Dynamic 1-----,----------1 
ONCB 

Dynamic J----.--­
ONCB 

J 

QUALIFIED CONDITIONS 

1. A flag at the head of the DSA indicates that dynamic ONCBs exist. 

2. Dynamic ONCBs are set up during execution of each block in which qualified 
condition ON-statements occur. The last two words of a dynamic ONCB 
contain the same type of information as static ONCBs (described above, under 
'Unqualified Conditions')' but use additional flags to indicate whether the 
condition is enabled and whether it is established. The second word contains 
qualifying information, such as the address of the FCB (for conditions such 
as ENDFI LE, RECORD, TRANSMIT, KEY, etc.), or address of a symbol 
table (for ON CHECK on-units). 

3. Dynamic ON CBs are chained together, the most recent being addressed from 
a fixed offset in the DSA. The last dynamic ONCB in the chain contains zero 
in its backchain field. 

LWS 

1st level 

2nd level 

B~~ ONCA 

Condition built-in ONCA 
function information 

Static storage 

1st static 
ONCB 

2nd static 
ONCS 

/----'------------1 Jrd static 
ONCB 

Figure 7.5. The major fields used in error handling 

92 



Implementation of Error Handling 

To implement the PL/I error handling scheme 
it is necessary to be able to detect all 
the PL/I conditions, to acquire various 
information about how the conditions 
occurred for condition built-in function 
values, to determine whether the condition 
is enabled and whether an on-unit is 
established, and then take the necessary 
action. 

The methods used by the PL/I optimizing 
compiler are summarized below. 

1. Detection_Qf-th~ PL/I_£2ngitiQns 

All PL/I conditions that correspond 
directly to program check interrupts 
are left to the detection of the 
operating system. 

A SPIE macro, issued during program 
initialization, results in control 
being passed to the error handling 
module IBMBERR. 

All other interrupts are detected by 
special checking-code, either 
generated by the compiler, or included 
in library modules. The checking-code 
calls the error handling module 
IBMBERR when a condition is detected. 

Information about the interrupt is 
obtained by analyzing the PSW for 
program check interrupts and by 
checking-code for software detected 
interrupts. condition built-in 
function values are accessed through a 
control block known as the ON 
communications area(ONCA). 

For software detected conditions, the 
ONCA is largely set up by the 
checking-code. For system detected 
conditions the ONCA is set up by the 
error handler from information in the 
psw. 

Certain simple on-units are 
represented by a series of flags in an 
ON control block (ONCB), but the 
majority are compiled as independent 
program blocks to which control is 
passed from the error handling module. 

4. Maintainin~_~£Qrd of-~~B!~~~_2nQ 
~t!blish~t 

During execution, information 

indicating which conditions are 
enabled and which on-units are 
established is placed in the following 
control blocks: 

Enable cells -

ON cells -

ON control blocks -
(ONCBs) 

indicating enablement 
or disablement of the 
conditions that can be 
enabled and disabled by 
the programmer. 

indicating which 
unqualified conditions 
have established 
on-units. 

indicating address of 
on-units or action to 
be taken, and, for 
qualified conditions, 
whether the on-unit is 
established, and, for 
CHECK only whether the 
condition is enabled. 

5. De~mi!:!ing 2!!Q difecting 2ctiQn when 
i!:!t~ffYQ~ Q££~f2 

After every interrupt, control is 
passed to the error-handling module 
IBMBERR. 

A test is first made to see whether 
the condition is one that may be 
enabled or disabled by the programmer. 
If the condition is disabled, control 
is returned to the point of interrupt. 
If the condition is enabled, a search 
is made in all active blocks for an 
established on-unit. This is done by 
examining ON cells or ONCBs set up by 
compil.ed code. If an on-unit is 
found, the specified action is taken. 
If the dummy DSA is reached without 
finding an on-unit, standard system 
action is taken under the control of 
the error-handling module. 

The scheme is shown diagramatically in 
figure 7.1, and each topic is discussed in 
greater detail in the sections below. A 
summary of the uses of the various control 
blocks is given in figure 7.5. 

Figure 7.6 gives a programming example 
in which the error handling actions can be 
followed through. Figure 7.15 summarizes 
the complete error handling operation. It 
is intended for reference throughout the 
chapter and for use as a reminder by 
readers who know the basic principles. 

The handling of the CHECK condition, 
which is a special case, is treated in a 
separate section of this chapter under the 
heading "The CHECK Condition." 

Chapter 7: Error and Condition Handling 93 



SOURCE 
PROGRAM 

Figure 1.6. 

(SUBSCRIPTRANGE) : SORT: 
PROCEDURE OPTIONS (MAIN); 
ON SUBSCRIPTRANGE BEGIN; 
PUT EDIT ('SUBSCRIPTRANGE OCCURRED') (AI; 
PUT SKIP DATA (I,J,KI; 
I*SUBSCRIPT VALUES FOR TEST"'! 
END; 

ON SUBSCRIPTRANGE SYSTEM; 

END SORT; 

1. Remove the on-unit from the position it holds in the 
block and treat it as a separate begin block. 

2. Generate code to set a flag in the block enable cell of the 
DSA. to indicate that SUBSCRIPTRANGE is enabled 
throughout the block. 

3. Generate code to set up two on-cells in the DSA. Set up 
two corresponding ONCBs in the static internal control 
section (one for each ON-statement in the block). 

4. Place instructions equivalent to the ON-statements in 
compiled code. The first statement causes a code byte 
corresponding to SUBSCRIPTRANGE to be inserted in 
the first on-cell; the second statement causes the same 
code byte to be inserted in the second on-cell, and sets 
the first on-cell to zero. 

5. Generate code to insert flags in the ONCBs. Insert the 
address of the on-unit in the first ONCB. 

6_ Generate code to carry out the on-unit. 

7. Generate code to check for the occurrence of SUB­
SCRIPTRANGE in every statement that could potentially 
cause the condition to be raised. 

An example of error handling 

~CT~ON DURING 
EXECUTION 

1. The checking code generated by tile compiler' recognizes the occurrence 
of SUBSCRIPTRANGE and passes control to the error handler, after 
placing any required condition built-in function values in the ONCA. (In 
this case only the error code is generated.) 

2. The error handler checks to see if SUBSCRIPTRANGE is one of those 
conditions that can be enabled by the programmer. Since it is such a 
condition a check is made, in the block enable cells of the DSA. to see 
if it is en;bled. (If it were not enabled, control would return directly to 
to the point of interrupt.) 

3. Finding that the condition is enabled, the error handler then goes to 
the on-cells in the DSA. These are tested, using a translate-and-test table 
in the TCA to see if SUBSCR IPTRANGE is established. After this, the 
action de~nds on whether the code for SUBSCRIPTRANGE is detected 
in the first or second on-cell, and consequently whether the first or 
second ONCS is used. 

4. If the first ONCB is used, on-unit action is indicated; if the second ONCB 
is used, standard system action must be taken. (Standard system action 
would also be taken if the code for SUBSCRIPTRANGE were not found 
in the DSA on· cells of the block in which the interrupt occurred, or in 
the DSA of any dynamically encompassing block.) 

r 
On-unit action 

1. A further allocation of library workspace 
and a new ONCA ar~ acquired in case they 
should be needed during execution of the 
on-unit. 

2. The on-unit (addressed from the ONCB) 
is executed. 

3. Provided there is not a GOTO out of the 
on-unit, return is made to the error 
handler. The error handler then carries 
out standard system action for return 
from an on·unit. 

I 
1 

System action 

1. For SUBSCRIPTRANGE, standard system 
action is to produce a message and raise 
ERROR. The message modules are called 
to put out a message dependent on the 
error code. 

2. ERROR is raised, and a search is made 
through all active blocks for an ERROR 
on-unit. Since there is none, standard 
system action is again taken; this is to 
raise FINISH. Since there is no FINISH on­
unit, the standard system action of return­
ing to I BMBPI R is takpl1. thus terminating 
the program. 



DSA of block 

A(1st. static ONCB) - offset X'5C' 

A(latest dynamic ONCB) offset X'50' -, Standard housekeeping 

I area of DSA 

I 

[ A(oncells) - offset X70' I 

I 

lXI I Oncells 

.J ~ end marker I v 
Oncells contain code for condition if I 
on unit established otherwise 0 

- J 
Dynamic ONCB -- - - ---, 

Contains code indicating condition -, 
qualifier and whether on-unit is I 
established. Also address on-unit. 

_.J 
Further d~namic ONCB 

Contents as above. Dynamic ONCBs --
are chained together. 

K ey 
- - - - Broken lines show method of addressing on-units 

for s:lualified conditions. The ONCBs are chained 
together and the address of the end of the chain 
held at a· fixed offset in the DSA. The on-unit 
(if any) is addressed from the ONCB. 

-

---- Solid line shows method of addressing on-unit for 
u.n.qualifjed condit jon. ONCBs are held contiguously 
in the same order as oncells, and the address of the 
first ONCB is held ata fixed offset in the DSA. By 
determining the position of the relevant oncell, the 
position of the required ONCB can be inferred and 
hence its offset from the start of the static ONCBs. 
The first oneell refers to the first ONCB etc. The 
on-unit is addressed from the ONCB. 

Figure 7.7. Addressing on-units 

I 
I 
I 

- I 
I I 
I I 
I I 

I 
l.._ 

-~ 
I 
L -- ----... 

Object module 

1st. Static ONCB ~ 
Contains address of 
on unit + other 
information 

2nd. Static ONCB 
Contents as above 

3rd. Static ONCB 
Contents as above 

... :. 

•••••••• 

On-unit 
...-

.>. ... :. :: ... 

On-unit 

.... : .. 

On-unit. 
.' i ..'\ 

...... ). 
.. :.... 

On-unit 
.../> 

·X: ... 

On-unit 

~ 

Chapter 7: Error and Condition Handling 95 



Detecting the Occurence of Conditions 

SYSTEM DETECTED CONDITIONS 

As far as possible, the detection of PL/I 
conditions is left in the hands of the 
operating system. Those conditions that can 
be detected by the operating system are 
left in the hands of the operating system. 
The only interrupt that is masked out in 
the PSW is the significance interrupt. 
Regardless of the enablement or disablement 
of PL/I conditions no other interrupts are 
inhibite:L. 

When a condition is detected by the 
system, a SPIE macro, eKecuted during 
program initialization, causes control to 
be passed to entry point A of the error­
handling module IBMBERR. The address of 
this point is held in the TCA appendage~ 
When entered by this entry point the error 
handler equates the interrupt with a PL/I 
condition and passes control to the main 
error handling logic of the module. The 
relationship between PL/I conditions and 
system interrupts is shown in figure 7.2. 

SOFTWARE DETECTED CONDIrIONS 

During compilation, the compiler analyzes 
the conditions enabled for each block and 
statement and ensures that the necessary 
checking code will be executed. The 
checking code may be specially generated by 
the compiler, or it may be included in 
library modules that will be called when 
the particular condition is enabled. The 
method used for checking for each condition 
is shown in figure 7.3. 

As far as possible the checking code is 
not included in the program if the 
condition that it checks for is not 
enabled. However, every library module 
contains the checking code for detecting 
any PL/I condition that can occur in the 
module. In certain circumstances, 
therefore, code to check for software 
detected conditions will be executed and a 
call made to the error handler even though 
the condition is disabled. 

When an interrupt has been detected 
during execution, the checking code sets up 
a parameter list for the error handling 
module IBMBERR. This parameter list, known 
as the !B~~~uPt_£~!2! block, contains a 
code that defines the type of interrupt 
that has occurred and" if the condition is 
qualified, contains a means of identifying 
the qualifier. The checking code also 
calculates the value of relevant built-in 

96 

functions and places these values, or their 
addresses in a control block known as the 
ON communications area (ONCA). 

When these actions have been carried out 
a call is made to entry point B of the 
error handling module IBMBERR. The address 
of this entry point is held at offset X'7a' 
in the rCA. 

rhe TRANSMIT and the ENDFILE condition are 
normally detected by the data management 
routines rather than by PL/I code. When 
this occurs the error or end-of-file 
routine in the PL/I transmitter modules 
receives control and passes it to the error 
handler via a special I/O error module. 
This I/O error module contains the 
necessary code to set u~ the interrupt 
control block, including the error code and 
the qualifier. These conditions can, 
therefore, be considered to be software 
detected. Further detail is given in 
chapter a - Record Oriented Input/Output. 

EXECUTING SIGNAL STATEMENTS 

SIGNAL statements take the same form as 
software detected interrupts, they are 
executed by a call to IBMBERR with the 
appropriate interrupt control block. The 
error code in the interrupt control block 
will indicate, to the error handler, the 
type of condition signalled, and the fact 
that the condition was signalled. The call 
to the error handler is made to entry point 
B, regardless of whether the condition is 
normally detected by system or software. 

It is necessary for the error handler to 
know that the condition was signalled, 
because different action may be required if 
the interrupt was signalled when computing 
certain built-in function values. 

PASSING INFORMATION ABOUT INTERRUPT 

When the error handling is entered it must 
be able to access information about the 
interrupt. This information must identify 
the type of condition that has occurred and 
further identify the interrupt so that the 
most useful diagnostic message can be 
generated. Any relevant built-in function 
values must also be available, plus the' 
default values for any built-in functions 
that are not relevant to the type of 



interrupt. 

When the interrupt is software detected, 
some of the information is set up in the 
checking code before control is passed to 
the error handler. When the interrupt is 
system detected, the PSW is used and the 
error handler interprets the information in 
the PSW, setting up information in a format 
similar to that produced by the checking 
code. This allows the main logic of the 
error handler to treat program checks and 
software detected condition in the same 
manner. 

The parameters passed to the error 
handler by compiled code are known as the 
interrupt block, and take the following 
format: 

Word 1 Error code 

Word 2 Qualifier if any 

Words 3,4 and 5 
extra information used in 
handling CHECK 

The error code defines the type of error. 
The qualifier gives a method of identifying 
the qualifier for qualified conditions. 
For I/O conditions the address of the 
DCLCB, is used as a qualifier. The address 
of a symbol table, control section, or 
pseudo register offset is used for other 
qualified conditions. 

The address of software detected 
interrupt is taken from the register 14, 
value when the error handler is called with 
a BALR 14, 15. This value is stored in the 
DSA by the prologue of the error handler. 
When the interrupt is system detected the 
address is taken from the PSW. 

The errOr code is either a two or four byte 
code that defines the reason for the 
interrupt. For all conditions except the 
error condition a four byte code is passed. 
For the errors that will immediately raise 
the ERROR condition only a two byte code is 
passed. 

The four byte code is made up as follows: 

Byte 1 identifies PL/I condition 

Byte 2 identifies causes of condition 

Byte 3 & 4 identify those ON built-in 
functions that are valid for the 
condition. 

The two byte error code is raised only 
for the ERROR condition. The ERROR 
condition is raised for those interrupts 
and errors that have no directly associated 
PL/I condition. Certain of these, such as 
taking the square root of a real negative 
number, are software'detected. Others are 
associated with program check interrupts 
such as a data interrupt. 

When the error condition is to be raised 
a two byte code only is generated. The 
value in this code corresponds with a table 
held in the error handler which identifies 
the cause of the interrupt. 

Certain condition built-in function values 
are implicit in the information that is 
passed to the error handler. ONCODE, for 
example, bears a direct relationsh~p to the 
error code. Other values, such as ONCHAR 
and ONSOURCE must be calculated when the 
interrupt occurs. These values or the 
addresses of the values are placed in the 
ONCA. The ONCA is addressed from library 
workspace. The address of library 
workspace is held at a fixed offset in 
every DSA. ONCODE, ONLOC, and ONFILE are 
not generated by. the checking code as their 
contents are implicit in the information 
passed to the error handler. 

The ONCODE is deduced from the error 
code and, when required, a transient 
library module IBMBEOC is called to 
translate the error code into the ONCODE. 
Both an error code and an ONCODE are used 
as it is possible to define the error mere 
accurately than can be done with the 
ONCODES, which must be kept comp,atible with 
other PL/I compilers. Thus the error code 
allows a more useful diagnostic message to 
be generated than would be possible if only 
the ONCODE was generated. 

The ONLOC value is also calculated by a 
separate module. ONFILE is accessed from 
the DCLCB. Both ONLOC and ONFILE are 
placed in the ONCA only if an on-unit is to 
be entered. Similarly if an on-unit is to 
be entered the error code is placed in the 
ONCODE field of the DSA. If the ON CODE 
value is required in the on-unit the module 
IBMBEOC is called to calculate the ONCODE 
from the error code. 

PL/I allows access to condition built-in 
function values when no condition has 

Chapter 7: Error and Condition Handling 97 



PROGRAM FLOW 

MAINLINE CODE 

CHAIN OF ONCAs 

DummyONCA 

Holds all default 
values or their 
addresses 

1st.ONCA r - - - - --1 

I I 
I Ready for use I 
!.... ______ J 

All condition built in functions 
accessed from dummy ONCA 

CONVERSION 
occurs ONCHAR 
& ONSOURCE 
addresses placed in 
lstONCA 
Error code placed 
in ONCODE field 

Continuation of mainline code 

CONVERSION 
on-unit entered. CONVERSION 
New ONCA ON-UNIT 
acquired 

DummyONCA 

Holds all default 
values or their 
addresses 

1st.ONCA 
ONCbDE, 
ONCHAR,& 
ONSOURCE fields 
filled in 

2nd ONCA 
- - - - - -I 

Ready for use I 
L ______ J 

ONCODE, ONCHAR, and ONSOURCE accessed from first 
ONCA. All others from dummy ONCA 

NAME condition 
occurs. 
DATAFIELD 
address placed 
in second ONCA. 
Error code placed 
in ONCODE field. 

Continuation of on-unit 

NAME on-unit 
entered. New 
ONCA acquired. 

DummyONCA 

Holds all default 
values or their 
addresses 

ONCODE, 
ONCHAR,& 
ONSOURCE fields 
filled in. 

ONCODE & 
DATAFIELD 
filled in. 

Jrd.ONCA 
~-----I 

: Ready for use. I 
L _____ J 

ONCODE and DATAFIELD accessed from second ONCA. 
ONCHAR and ONSOURCE accessed from first ONCA. 
All others from dummy ONCA. 

Figure 1.8. Accessing a bUilt-in function value from the chain of ONCAs 

GOTO causes 
return to 
mainline code 

Dummy ONCA 

Holds all default 
values or their 
addresses 

1st.ONCA 

ONCODE, 
ONCHAR,& 
ONSOURCE fields 
unaltered. Will be 
overwritten if there 
is a further 
interrupt 

On return from an on-unit all unnecessary 
ONCAs are discarded as they are in the 
LI FO stack. The current ONCA retains the 
previous interrupt information until over­
written. Values are taken from the dummy. 



occurred or when a condition has occurred 
in which the built-in function is invalid. 
The rule is, that the built-in function 
value given will be the most recent value 
in an active ONCA or the default value. To 
allow for this, ONCAs are chained together 
and the end of the chain is the dummy ONCA 
that is set up in the program management 
area during program initialization. The 
dummy has the same format as other ON CAs 
and contains the default values or pointers 
to the default values for all built-in 
functions. 

For every interrupt that occurs, a new 
ONCA is acquired. This means that, should a 
condition occur within an on-unit, an ONCA 
will be available in which to place any 
relevant built-in function values or their 
addresses. A new allocation of library 
workspace(LWS) is also required for use 
during the on-unit. 

When a built-in function value is 
required, the ONCA before the current ONCA 
is inspected. The current ONCA is unused 
as it is ready for a new set of values. 
Each ONCA is headed by flags that indicate 
which built-in functions are given in the 
ONCA. When the required built-in function 
value is flagged as invalid, a chain back 
is made to the previous ONCA. As all 
fields are valid in the dummy, the default 
will be used if there have been no 
interrupts for which the function is valid. 

In the program below, an example of the 
chain of ONCAs is shown. The ONCHAR 
reference in the NAME on-unit would be 
valid if the N~ME condition was raised in 
the CONVERSION on unit. The correct value 
would be accessed after chaining back to 
the ONCA associated with the CONVERSION 
interrupt. 

In other circumstances the default value 
would be accessed from the dummy ONCA. 

CHAIN: PROC OPTIONS(MAIN): 

ON N~ME BEGIN; /*NAME ON 
UNIT*/ 
PUT DATA(ONCHAR); 

GOTO LABELl; 
END; 

ON CONVERSION BEGIN; 
/*CONVERSION ON UNIT*/ 

GET DATA (A,B,C); 

END; 

LABELl: X=Y+2; 

END CH~IN; 

A situation that could occur in this 
program, and the associated chaining of 
ONCAs are shown in figure 7.8. 

When an on-unit is completed, the latest 
generation of LWS and the ONCA are deleted 
immediately control returns to a block 
before the error handler. This is because 
they are held as VDAs associated with the 
error handler's DSA. When control leaves 
the error handler, the current ONCA will 
contain the interrupt information for the 
original interrupt. This information 
remains until the ONCA is freed or a 
further interrupt occurs, in which case it 
is overwritten. (See figure 7.8.) 

Establishment and Enablement 
Information 

(Executing ON Statements) 

Establishment and enablement information is 
set up and updated by compiled code. 
Enablement is indicated by a set of flags 
known as the "current enable cells," which 
are held in every compiled code DSA. 
Establishment for ~nqu~!ifi~Q conditions is 
indicated by a further series of bytes in 
the DSA known as the "ON-cells." 
Establishment for gual!fieQ conditions is 
indicated in flags in dynamic ONCBs. 
Dynamic ONCBs are held in the DSA of the 
block in which the associated ON-statement 
occurs. 

To alter the enablement for the dUration 
of a statement or to execute an ON 
statement, compiled code alters the 
appropriate fields mentioned above. 

ENABLEMENT 

Enablement is indicated in the current 
enable ce112' a two byte field held-at 
offset X'56' in the DSA. Each condition 
whose enablement is under programmer 
control has a bit allocated to it. The 
conditions associated with each bit are 
shown in figure 7.9. 

The CHECK condition has three bits 
associated with it. This is because the 
CHECK condition can be used both as a 
qualified and as an unqualified condition. 
Bit zero indicates that CHECK is enabled, 
either qualified for one or more variables, 
or unqualified for all variables. Bit 11 
indicates that CHECK has been enabled or 
disabled as an unqualified condition. Bit 
10, only valid if bit 11 is set, indicates 
whether the unqualified CHECK is enabled or 

Chapter 7: Error and Condition Handling 99 



r-----------------------------------------, 
Bit 0 CHECK* 
Bit 1 ZERODIVIDE 
Bit 2 FIXEDOVERFLOW 
Bit 3 SIZE 
Bit 4 CONVERSION 
Bit 5 OVERFLOW 
Bit 6 ONDERFLOW 
Bit 7 STRINGSIZE 
Bit 8 STRINGRANGE 
Bit 9 SOBSCRIPTRANGE 
Bit 10 CHECK* 
Bit 11 CHECK* 

* See section "The CHECK Condition" for 
details 

L-----------------------------------------J 
Figure 7 .. 9. Meaning of enablement bits 

disabledu (See later section in this 
chapter "Handling the CHECK condition for 
further details.> 

A further two byte field in the DSA held 
at offset: X· 54' is known as the block 
enable cE~lls. This field is simrlar-to the 
current-enable cells and holds a record of 
the enablement at the start of the block. 

Both current enable and block cells are 
set up by the prologue code. If the 
enablement is altered for the duration of a 
statement, the appropriate bit in the 
current enable cells is altered at the 
start of the statement. At the end of the 
statement the bit is reset to its previous 
value. If there is an interrupt during the 
execution of the statement, on-unit action 
may return control to another part of the 
block where different conditions are 
enabled. The block enable cells are 
necessary to allow for this. Whenever a 
GOTO dut-· of-block occurs in an on-unit the 
GOTO codE~ in the TCA resets the current 
enable cells from the block enable cells. 
This ensures enablement will be correct, 
regardless of the situation when control 
left the block. 

2~!lifieg Conditions 

The only qualified condition whose 
enablement is under programmer control is 
the CHECK condition. As CHECK is a special 
case it is treated in detail elsewhere. 
The principle involved however is that 
enablement for any particular qualifier is 
given in a dynamic ONCB and, to discover 
whether CHECK is enabled for a particular 
item, a search must be made in the DSA 
chain for a relevant dynamic ONCB. 

100 

ESTABLISHMENr - EXECUTING ON AND REVERT 
STATEMENTS 

For establishment the situation differs 
between qualified and unqualified 
conditions. This is because at anyone 
point in the program there can only be one 
established on-unit for an unqualified 
condition but there can be an unlimited 
number of established on-units for 
qualified conditions. In a program with a 
number of files, for example, the 
programmer may wish to take different 
action when the end of the data is reached 
in each of the files. Consequently there 
could be an established ENDFILE on-unit for 
each file. 

On-units are established by the 
execution of an ON statement. Once it has 
been discovered that an on-unit is 
established it is then necessary to access 
the on-unit. Access to the address is made 
through a control block known as the ON­
control block ONCB. For unqualified 
conditions, ONCBs are set up during 
compilation in static internal storage and 
are known as §~~tic_ON£~2~ For qualified 
conditions, ONCBs are set up (by compiled 
code) in the DSA and are known as dynam!£ 
QN£~2~ See figure 7.7. 

The establishment of qualified conditions 
is indicated directly in the ONCB. All 
dynamic ONCBs for a block are chained 
together and address of first ONCB on the 
chain is held in a field at offset X'60' in 
the DSA. (See figure 7.8.) 

Dynamic ONCBs contain a code indicating 
the condition type, flags to indicate 
whether the condition is enabled and 
whether the associated on-unit is 
established, a method of identifying the 
qualifier, and, either the address of the 
compiled code on-unit, or flags indicating 
the action specified in the source program 
on-unit. There is an ONCB for every ON 
statement in the block that refers to a 
qualified condition. 

ON and REVERT statements: When the ON 
statement is executea-the appropriate 
dynamic ONCB is set up, chained, and the 
establishment bit in the ONCB is set ~on' 
by compiled code. For second and subsequent 
ON statements or REVERT statements for the 
same condition and qualifier, the 
information in the ONCB (flags and address 
of on-unit) is altered. 



Restore hardware 
interrupt address 
and return 

Ca II message 
module to 
generate message 

Software interrupts 

Alter address­
entered-after­
hardware­
interrupts, to 
entry point C 

System detected 
interrupts 

Alter address­
entered-after­
hardware­
interrupts, to 
entry point C 

Determine 
condition type 
from PSW 

Hardware interrupts 
during error handling 

ENTRY POINT C , 
Call IBMBPEP 
to put out 
message 

r 

Terminate 
program with 
ABEND macro 

Acquire LWS and 
Established 

/on unit for 
~nditionin 

DSA ?/ 

YES NO ONCA. Restore 
~---""--"';"-'--1 hardware interrupt 

NO 

Chainback to 
previous DSA 

Take standard 
system action 

Carry out 
specified action 

GOTO 
out of 
on unit 
can occur 
here· 

Take action for 
normal return 
from on-unit 

Standard system action and action for normal return takes one of the forms 
shown below depending on the condition that caused the interrupt and 
whether the interrupt was signalled. Messages are generated for some conditions. 

Raise further 
condition 
Start on-unit 
search in DSA 
of interrupt 

Return to 
IBMBPIR to 
terminate task 

Reset error 
handling address 
and return to 
point of interrupt 

address to entry 
point A 

On-Unit 

Execute on-unit 

Reset hardware 
interrupt address 
to entry point C 

* Special on-units are not entered these are: null on-units, or on-units contain"ing only a SNAP or SNAP SYSTEM inst~uction. 

Figure 1.10. Simplified flowchart of IBMBERR 

Chapter 1: Error and Condi~ion Handling 101 



For unqualified conditions establishment 
information is held in a series of one byte 
fields known as oncells. There is one cell 
for each ON statement in the block and, 
consequently, for each ONCB associated with 
the block. ONCBs for unqualified 
conditions are held contiguously in static 
internal storage in program block order. 
(see figure 7.8~) 

In each DSA containing ON statements an 
area is reserved for ON cells. Cells are 
one byte fields that correspond one-for-one 
with the static ONCBs for that block. The 
first ONCB for the block is addressed from 
offset X'SC' in the DSA. ON cells are 
initialized to zero by the prologue code. 
When the ON statement associated with the 
on-unit is executed, a code is set in the 
ONCELL indicating the condition type. The 
error handling module searches for an 
established on unit by testing the ON cells 
in the DSA of each active block until, 
either an active ON cell for the condition 
is found, or the major task dummy DSA is 
reached. When an active ON cell is found, 
the number of ON cells in the block 
preceding the active ON cell are 
calculated. The associated static ONCB will 
be in the same relative position. As all 
ONCBs for unqualified conditions are the 
same length the address of the requested 
ONCB can be determined and the action to be 
taken decided from the ONCB. 

ON and REVERT statement: When an ON 
statement is-executed-a code indicating the 
condition type is set in the appropriate ON 
cell. If there was a previous ON statement 
for the condition the former ON cell is set 
to zero. For REVERT statements any ON cell 
referring to the condition is set to zero. 

If there is more than one ON-statement 
for the same condition in a block, the 
flags in the previous ON cell will be set 
off when second and SUbsequent ON cell 
flags are set on. The REVERT statement is 
executed by setting the flag in the latest 
ON cell to zero. The situation then 
reverts to that at the start of the block. 

HANDLING ON-UNITS 

On-units, except certain single-statement 
on-units, are treated as separate program 
blocks by the compiler. They are separated 
from the ON statement and compiled with 
prologue and epilogue code. The address of 
the on-unit is placed in an address 
constant. The ON statement remains in its 
logical place in the program and sets 

102 

either the ON cell or a flag in the dynamic 
ONCB, to indicate that the associated on­
unit is established. 

In order to save the overhead of 
executing prologue and epilogue code, 
certain single-statement on-units are not 
compiled. Instead the action required is 
indicated by flags in the o"NCB and is 
carried out under the control of the error 
handling module. 

The types of on-unit involved are: 

1. Null on-units. 

2. On-units containing only SNAP, SNAP 
SYSTEM, OR SYSTEM options. 

3. On units containing only a GOTO 
statement. 

The presence of these on-units is indicated 
by flags in the associated ONCB. For the 
GOTO only on-unit, the ONCB also contains 
the offset in the DSA of the label variable 
or label temporary to which the GOTO is to 
be made. 

The Logic of the Error Handler 

A simplified flowchart of the error 
handling module IBMBERR is given in figure 
7.10. This flowchart shows the action 
during the handling of an interrupt and 
includes execution of an on-unit. The 
logic is described below. A complete 
description is given in the licensed' 
program product document OS PL/I Resident 
Library Program Logic. 

IBMBERR - ERROR-HANDLING MODULE 

The error-handling module, IBMBERR, handles 
three situations. These are: 

1. Program check interrupts. 

2. PL/I conditions detected by the object 
program. 

3. Errors detected by the object program 
that are not directly related to.PL/I 
conditions and which raise the ERROR 
condition. 

All three situations are ultimately dealt 
with as PL/I conditions. For example, the 
FIXEDOVERFLOW condition would be raised 
when fixed point overflow occurs and causes 
a program check interrupt. Where there is 
no directly-applicable, PL/I condition (for 



instance after a data interrupt) a system 
message is printed and the ERROR condition 
is raised. 

PROGRAM CHECK INTERRUPTS 

Before a program check interrupt can be 
handled as a PL/I condition, action must be 
taken to prevent the system terminating the 
job should a further program check 
interrupts occur. This is done by altering 
the old program PSW and returning out of 
the SPIE exit code so that it appears to 
the system that the interrupt has already 
been handled. The second word of the PSW 
passed to ERR in the PIE (program interrupt 
element) containing the interrupt address 
is stored in the register 15 field in the 
save area which was current when the 
interrupt occurred. IBMBERR then changes 
the address in the PSW in the PIE to an 
address in IBMBERR. Control then passes 
via the supervisor to the address in 
IBMBERR that has been inserted in the PSW. 
Handling of the interrupt consequently 
appears to the supervisor to be finished. 
The address, in the field in the TCA~ to 
which control will pass after a program 
check interrupt is then changed to 
IBMBERRC. Should an interrupt now occur 
during the execution of IBMBERR, control 
will pass to IBMBERRC, which terminates the 
job. 

The first task is to generate a suitable 
error code that will equate the interrupt 
with a PL/I condition. The floating point 
registers are saved in IBMBERR's DSA, if 
the interrupt is one corresponding to a 
PL/I condition, and control can then be 
passed to the main PL/I condition-handling 
routine described in the next section. 
There are, however, three special cases 
that require further action. These are: 

1. If the interrupt was floating point 
underflow, then the doubleword in 
which the floating point register 
which underflowed was stored is set to 
zero. 

2. If fixed pOint overflow, exponent 
overflow, decimal overflow, or fixed 
point divide has occurred, then it may 
correspond to the PL/I condition SIZE 
and not to FIXEDOVERFLOW or 
ZERODIVIDE. If this is possible, a 
flag will have been set in the program 
check interrupt qualifier in the TCA. 
A test of this flag is therefore made 
and the necessary action taken, SIZE 
being raised if it is enabled. 

If the interrupt was an operation 
int~!!ypt it may have been caused by 

an extended floating point instruction 
being used on a machine that does not 
have the extended float instruction 
set. If this is the case, the 
instruction may require simulaticn. 
The error handler therefore passes 
control to a module IBMBEEF that 
interfaces with the extended float 
simulator IEXPSIM. IBMBEEF passes 
control to the "extended float 
simulator which returns the correct 
result if the statement was valid, or 
a return code if the statement was 
invalid. If the statement is valid 
IBMBEEF returns control to the point 
of interrupt. If the statement was 
invalid IBMBEEF returns control to the 
error handler. 

For those installations that do not 
require extended float simulation a dummy 
version of IBMBEEF is available. This 
module returns control directly to the 
error handler and the error condition is 
raised. 

SOFTWARE INTERRUPTS 

When the main condition-handling logic is 
reached, an error code will have been 
generated to indicate the type of error or 
condition that has been raised. For 
program check interrupts, the code is 
produced by the error module itself. For 
errors or conditions detected by the object 
program, the otject program sets up this 
code. When the object program has detected 
the error, this will, in some cases, 
correspond to a PL/I condition. However, 
there are certain errors (such as 
attempting to take the square root of a 
real negative number) that do not have 
directly-related PL/I conditions. For PL/I 
conditions, a four-byte·code is passed. 
For other errors, the code consists of only 
two bytes. For the two byte code, the 
first byte indicates which class of error 
has occurred. For the four byte code, the 
first byte is the identifier of the PL/I 
condition being raised (the same identifier 
is used in on-cells). 

The error-handling module checks the 
first byte of the code to see whether it is 
handling ERROR or another PL/I condition. 
If the code indicates ERROR, then the 
message module IBMBESM is loaded into a VDA 
and called. This module prints the relevant 
diagnostic message; a suitable four-byte 
code is then generated. The situation is 
then treated as for any other PL/I 
condition. 

The second two bytes of the code passed 
when a PL/I condition has been raised 

Chapter 7: Error and Condition Handling 103 



indicate which condition built-in functions 
are relevant to the condition. If the 
condition is one that needs to be 
qualified, the qualification is also 
passed. 

When a PL/I condition error code is 
passed, action depends on whether the 
condition is one of those that can be 
disabled by the programmer. If it is such a 
condition, a test is made in the current 
enable cells of the DSA. If the condition 
is not disabled, then a search for a 
releVant established on-unit must be made. 
If the condition !~ disabled, a return is 
made to the point of interrupt. To find 
established on-units, a test is first made 
in the action byte to discover whether the 
condition is qualified. If the condition 
is not qualified, a search is made through 
the on-cells of all active blocks to find a 
match for the number in the first byte of 
the code passed to IBMBERR. This is done 
with a ~r2n2!at~=~nd=te~~ instruction using 
the TRT table addressed from offset X'lC' 
in the TCA. When found, the position of the 
located on-cell gives the position of the 
associated ONCB. A test can then be made 
to determine the action to be taken. 

If the condition is qualified, a search 
for an active matching ONCB is carried out 
through the chain of dynamic ONCBs held in 
the OSAs. 

If the major task dummy OSA is reached 
without a match being found, then standard 
system action is taken. This action is 
defined in IBMBERR. When a matching active 
ONCB is found, tests are then made, as 
follows, on the flags in the ONCB. 

Test 1. SNAP specified? If so, the 
message module IBMBESM is 
dynamically loaded and a SNAP 
message printed. 

Test 2. Is SYSTEM specified? (This can 
occur when "ON condition SYSTEM" 
has been specified.) If SYSTEM is 
specified~ then the action in 
IBMBERR is taken. 

Test 3. Does the on-unit consist only of a 
GO TO statement? If so, then the 
GOTO is executed without entering 
an on-unit. This saves the 
housekeeping involved in entering 
an on-unit. 

Test 4. Is the on-unit a null on-unit? If 
,so, then the action on a normal 
return from the on-unit is taken. 

If none of these is positive, then it is 
necessary to enter the on-unit. 

Before entering the on-unit, the 

104 

following action must be taken. A new 
allocation of library workspace must be 
initialized and its address put into the 
standard offset in the DSA of IBMBERR. 
This provides workspace for any further 
library modules that may be called. Tests 
must be made to see that the ONCA is 
correctly set-up for any built-in functions 
that may be used. The address in the PICA 
field which was altered to the error 
handler, must also be altered to its 
original setting so that program check 
interrupts will cause entry to be made to 
the error handler by the entry point 
IBMBERRA rather than IBMBERRC. This 
ensures that the action specified by the 
PL/I program is taken if a program check 
interrupt occurs during the execution of an 
on-unit. 

Normal return from the on-unit to 
IBMBERR is made by a branch on register 14. 
Depending on the condition, a return to the 
interrupted program is ,then made, or soree 
special action may be taken. Four PL/I 
conditions cause action other than return 
to be taken. 

1. ERROR 
If the condition was the ERROR 
condition, then the FINISH condition 
is raised. 

2. FINISH 
If the FINISH condition is raised then 
a return code is set in the correct 
field of the TCA, and GO TO performed 
to the termination routine IBMBPIR. 
(If FINISH is signalled, then return 
is made to the point of interrupt.) 

3. CONVERSION 
If CONVERSION was raised, then a test 
is made in the ONCA, and if either 
ONSOURCE or ONCHAR has been accessed, 
control is passed to the address 
contained in the retry slot in the 
ONCA. The conversion is then 
attempted again. If the field has not 
been changed, then the ERROR condition 
is raised. 

4. ENDPAGE 
If ENOPAGE was raised, then a return 
code is set in register 15 to indicate 
that an on-unit has been entered. 

RETURN TO POINT OF INTERRUPT 

If the condition was one that was detected 
by compiled code, then a return to the 
point of interrupt is made by a branch on 



register 14. 

For program check interrupts, the status 
of the program at the original point of 
interrupt has to be restored before return 
to the point of interrupt can be made. 
This means that the contents of the system 
save area must be reset, so that they are 
identical with those saved after the 
original interrupt. (The PSW and the 
register values were saved in the DSA at 
initial entry to IBMBERR.) 

The method used is as follows. The 
address in the PICA is altered so that the 
address that is to be branched to, after a 
program check interrupt, is changed from 
IBMBERRC to another point in IBMBERR. An 
interrupt is then caused, and the 
supervisor gains control. consequently, 
the address in IBMBERR is reached with the 
address of the system save area in register 
1. The contents of the save area and the 
PSW are then changed to those that were 
current after the original interrupt. The 
point of entry for program check interrupts 
is then reset to IBMBERRA. Return is made 
to the address in the PSW, which is that of 
the original interrupt. 

THE CHECK CONDITION 

The CHECK condition has to be handled in a 
different manner to other conditions. This 
is because it can be used as a qualified or 
unqualified condition and its enablement is 
under programmer control •. 

The CHECK condition is disabled by 
default and is enabled by writing a CHECK 
prefix. It can be disabled for the duration 
of a statement or block by the NOCHECK 
prefix. Prefixes can take the form (CHECK) 
or (NOCHECK), or the form (CHECK(A,B» or 
(NOCHECK(A,B». When no name list is 
appended, the CHECK applies to all the 
relevant names in the program. An ON­
statement may also be written as either ON 
CHECK or ON CHECK(A~B). ON-statements are 
independent of prefixes and may be included 
in a block to which no prefix applies. A 
qualified on-unit can be used with an 
unqualified prefix and vice-versa. 

Throughout this discussion, CHECK and 
NOCHECK without a name list are referred to 
as ungualif!~g. CHECK or NOCHECK with a 
name list are referred to as gualifieg. 

CHECK is normally raised by compiled code. 
This is done by inspecting the source 
program and generating calls to the error 
handler at appropriate points. As 
enablement is statically descendent, it is 
possible to tell during compilation at 
which points CHECK is enabled and 
consequently at which points the calls to 
the error handler have to be made. 
However, for GET DATA statements there is 
no means of knowing which items will be 
passed in the data stream, and if the CHECK 
condition is enabled for any variable that 
could be read in, it is necessary to check 
every variable in the input stream to see 
whether CHECK is enabled for that variable. 
Consequently, when a GET DATA instruction 
is being executed, it is necessary for the 
error handler to test to see if the CHECK 
condition is enabled. 

With the exception of the CHECK 
condition, all conditions whose eriablement 
is under programmer control are 
Yng~al!!!~g. consequently, their 
enablement or disablement can be indicated 
by one bit in the enable cells. This is 
because there are only two possibilities. 
Either the condition is enabled or it is 
disabled. With qualified CHECK, however 
there are many possibilities, because CHECK 
may be enabled for some variables and 
disabled for others. consequently, the 
enable cells are used in a different rranner 
for the qualified CHECK condition, and the 
enablement of qualified CHECK for any 
particular name is given in an ONCE. 

When the CHECK condition is raised, the 
error handler has the following tasks. 

2. Test to see if CHECK is enabled. This 
involves-a-search-ilong the static 
backchain to determine, for each 
block, first, if g~lifi~g CHECK is 
enabled or disabled for the particular 
name for which CHECK was raised, and 
then, if ~ng~~!i!i~g CHECK is enabled 
or disabled. 

3. §~2!:£h fo!: 2 g~!i!ieQ ~st~blisheg 
on-unit. This involves searching the 
dyna~~£ backchain for a relevant 
dynamic ONCB. 

4. !! th~!:~ i§ BQ gy2lifi~Q ~stablisheg 
Q!1=~i~ ~~~h !Q!: !m ungu~lif ied 
established on-unit. This involves a 
further-searCh-01-the Qy~mic 
backchain looking for appropriate 

Chapter 7: Error and Condition Handling 105 



on-cells. 

5. If!lQ ~ta~!ish~g Q!!::1!nii is !Q~nd, 
i~~ §.tand~g §.ystID!J ~iion. 

This process is illustrated in figure 7.11. 

There are three bits that refer to CHECK in 
the enable cells; they have the following 
significance: 

Bit 0 

loeB CHECK is enabled for certain items 
in this statement 

'l'B CHECK is disabled for this 
statement 

Bit 10 (only valid if bit 11 is set) 

loeB The unqualified prefix that applies 
is NOCHECK 

'l'B 

Bit 11 

The unqualified prefix that applies 
if CHECK 

loeB No unqualified prefix applies to 
this statement 

'l'B An unqualified prefix applies to 
this statement 

Throughout this discussion Bit 0 is 
referred to as the "any-CHECK" enablement 
bit, and bits 10 and 11 as the "unqualified 
CHECK enablement bits." Enablement and 
disablement of qualified CHECK is indicated 
in the flag bits of the ONCS. 

The test for enablement begins by a test 
on the any-CHECK bit in the enable cell. 
If this is set to zero, control is 
immediately returned to the caller. If the 
bit is set on~ a search is made for a 
relevant qualified ONCB in the DSA of the 
block in which the interrupt occurred. If 
no such ONCB is found, the unqualified 
CHECK enablement bits' are tested for 
unqualified enablement or disablement. If 
bit 11 is not set, neither an unqualified 
CHECK nor an unqualified NOCHECK applies, 
and a further search must be made in the 
preceding DSA on the static backchain. If 
the dummy DSA is reached wIthout any of the 
tests proving positive, CHECK is disabled. 

106 

When it is known that CHECK is enabled, a 
search must be made for established on­
units. This search is separate from the 
search for enablement. A return is first 
made to the DSA in which the interrupt 
occurred. 

Two searches are made, the first for a 
qualified on-unit. The complete dynamic 
backchain is searched for relevant ONCBs. 
If one is not found, a search is made 
through the backchain for enable cells that 
indicate unqualified CHECK. If nothing is 
found, standard system action is taken. 

Standard system action for CHECK is taken 
under the control of a special module 
IBMBERC. This module acquires the 
necessary symbol table address or 
addresses, places them in a VDA and passes 
control to the stream 1/0 initializing 
routine and, on return, to the data 
directed director module IBMBSDO. On 
completion of the operation IBMBERC returns 
control to IBMBERR. 

Error Messages 

The library module IBMBESM is called by the 
error handler to transmit the system 
messages and find the on-code value by 
calling the ONCODE routine IBMBEOC; control 
is then passed to IBMBESN to finish the 
system message, or to go to generate the 
SNAP message if required. The text for the 
messages is taken from a series of message 
text modules. The particular message text 
module required and the message within the 
module are determined from the error code. 

§Y§.i~~~~sage§.: For non-PL/I conditions, 
system messages have the following 
form: 

IBMxxxx 'ONCODE'= xxxx message text 
(qualifier] IN STArEMENT xx AT/NEAR 
OFFSET xxx IN PROCEDURE WITH ENTRY 
xxxx 

The qualifier might~ for example, consist 
of the file name. For PL/I conditions, the 
format of the message is much the same, but 



the name of the condition is also given. 
For example: 

IBM4021 'ONCODE'= 3100 'FIXEPOVERFLOW' 
CONDITION RAISED IN DECIMAL DIVIDE IN 
STATEMENT 31 AT·OFFSET 000A35 IN 
PROCEDURES WITH ENTRY ZERNES 

§~E-M~~2~~: If an on-unit contains both 
SNAP and SYSTEM~ the resulting message is 
essentially the system message followed by 
the line 

FROM (STATEMENT/OFFSET) xxx IN A 
(BEGIN BLOCK/PROCEDURE WITH ENTRY 
xxx/A 'xxxx' ON-UNIT) 

which is repeated as rr.any times as 
necessary to trace back to the main 
procedure. If an on-unit contains only 
SNAP, the message begins 

'xxxxxxx' CONDITION RAISED [IN 
STATEMENTxxx] (AT/NEAR) OFFSET xxx IN 
PROCEDURE xxx 

and continues as for a SNAP SYSTEM message. 

The statement number is not always 
present in messages as the generation of 
execution-time statement numbers by the 
compiler is a compiler option. 

When statement numbers are generated, 
they are held on a block basis. For each 
block or procedure, a table in static 
storage relates each statement number to 
the offsets of the corresponding 
instructions in compiled code. A field at 
a fixed offset each entry point gives the 
address of the relevant table. 

The statement number is held in relation 
to its offset from the main entry point. 
since the PL/I program need not have 
entered via this entry point~ the offset is 
calculated independently from that given in 
the message. If the FLOW option is used, 
then additional information is printed out 
after every snap message. (See "The FLOW 
Option," later in this chapter.) 

When an interrupt occurs in a library 
module, the system message does not give 
the offset from the start of the library 
module, but gives the statement number of 
the statement in which the library module 
was called and the offset of this statement 
from the entry point of the procedure block 
in which it is contained. 

The address required to identify the 
erroneous statement is always the address 
held in the register 14 field in the most 
recent compiled code DSA. 

If the interrupt was a software 
interrupt in compiled code, the address 
will be the return address that was used by 
the BALR instruction when IBMBERR was 
called. 

If the interrupt was a program check 
interrupt in compiled code, the address of 
the interrupt will have been moved from the 
old PSW and placed in the register 14 field 
by IBMBERR to simplify return to the point 
of interrupt. 

If the interrupt was in a library 
module, the address required is the point 
in compiled code at which the library 
routine was entered. This will have been 
placed in the register 14 field when the 
library module was called. 

The address of the entry point of the block 
is found by chaining back along the DSAs to 
the DSA before the last compiled code DSA. 
The address of the entry point used before 
the interrupt is held in the save area of 
this DSA as the branch register contents. 
The dummy DSA ensures that a chainback can 
be made from the main procedure DSA. 

The name of the entry point is found by 
chaining back one DSA beyond the first 
procedure-DSA reached. This DSA holds the 
address of the procedure-DSA entry point in 
the register 14 slot of its register save 
area (offset X'10' from the head of the 
DSA). The length of the name is held in a 
one-byte field immediately preceding the 
entry point. The name immediately precedes 
the length field. 

Statement numbers are generated 
separately for each external procedure, and 
the statement number table holds offsets 
from the first entry point in the external 
procedure. 

When the statement number table is link­
edited, the address of this entry pOint is 
placed at the head of the table. 
Consequently, the required offset can be 
found by comparing the address of the 
statement causing the error with the 
address of the first entry point held in 
the statement number table. 

Chapter 7: Error and Condition Handling 107 



If the NUMBER option is in force, the 
numbers are held in four byte form preceded 
by a halfword statement number. Otherwise, 
the statement numbers are held in two byte 
form. Flags indicating which options are 
in use are held in the DSA. They are shown 
in appendix A. 

As the offsets may be up to 6 bytes in 
length, a device is used for statement 
numbering whereby the table is divided into 
sections that correspond to the offset 
values that are held in the first two bytes 
of the offsets. Thus offsets starting X'OO' 
are held in the first section of the table, 
offsets starting X'Ol' in the second, and 
so on. Each section of the table is headed 
by a pointer to the start of the following 
section~ or set to zero if there is no 
following section. The complete table is 
also headed by the value of the maximum 
offset, so that offsets beyond the program 
can be readily detected. 

The statement number is found by 
searching the correct section of the table 
for the first offset that is less than or 
equal to the last four hexadecimal digits 
of the calculated offset. 

For snap messages~ once the on-unit has 
been found and the appropriate message 
generated, the rest of the trace gives 
information about procedures, begin blocks 
and on-units. Thus all compiled code DSAs 
can be treated in the same way. 

Filename and Name of CONDITION 
coiiditio~ --------------

If the.error was in I/O, then the address 
of the DeLCB of the file is passed to 
IBMBERR which stores it for IBMBESN to find 
the file name. Similarly, the address of 
the control section containing the 
condition name is passed to IBMBERR if the 
CONDITION condition is raised, and IBMBESN 
puts out the required section of message. 

MESSAGE TEXT MODULES 

The message module IBMBESM calls on a 
number of message text modules to produce 
the relevant message. These modules 
consist essenti~lly of the fixed message 
text portions of the message. The messages 
are held in groups. 

The groups are addressed from a table at 
the head of the module, and the messages in 
their turn are addressed by an offset from 
the start of each particular table in the 

108 

message text modules. The message required 
is determined from information in the error 
code. IBMBESN puts all error messages onto 
SYSPRINT provided that SYSPRINT has net 
been declared with unsuitable attributes. 
If it has been declared with unsuitable 
attributes, then the system messages go to 
the console operator, and the snap messages 
are ignored. 

DIAGNOSTIC FILE BLOCK 

Every attempt is made to put out error 
messages on the standard print file 
SYSPRINT. However, there are no reserved 
words in PL/I and consequently the name 
nSYSPRINT n may be used for a file with 
attributes other than PRINT OUTPUT, or rray 
be used for a variable of any other data 
type. If SYSPRINT is declared as an 
unsuitable type of file it cannot be used 
for error messages and all error messages 
are written on the console. 

A control block, the diagnostic file 
block (DFB), is set up during program 
initialization to indicate whether SYSPRINT 
can be used for error messages. If 
SYSPRINT has been declared as a file the 
address of the DCLCB is placed in the DFB. 
The DFB (diagnostic file block) is 
addressed from the TCA. When an error 
message module is to be put out IBMBESM or 
IBMBPEQ inspects the DFB to see if SYSPRINT 
can be used for the message. If the flags 
in the DFB indicate that SYSPRINT cannot be 
used~ the module IBMBEDO is called. 

IBMBEDO tests to see if SYSPRINT i.s open 
if it is not, calls IBMBOCL to open it with 
the attributes STREAM PRINT. If SYSPRINT 
has been declared as a file the address of 
the DCLCB is picked up from the DFB. 
Should the attributes STREAM and PRINT be 
incompatible with the declared or default 
attributes this is diagnosed by the OPEN 
module and Appropriate flags are set in the 
DFB to indicate that SYSPRINT cannot be 
used for error messages. This action does 
NOT raise the error condition. 

If SYSPRINT has not been declared, a 
DCLCB will be generated andSYSPRINT will 
be opened, provided that the error occurs 
before a task has been attached. If a task 
has already been attached, or if the error 
occurs in an attached task, then SYSPRINT 
cannot be opened and all error messages are 
passed to the console. 

If SYSPRINT is already open with 
unsuitable attributes this will have been 
flagged in the DFB and the messages will 
again be passed to the console. 



If SYSPRINT has been declared as a data 
type other than a file this is flagged in 
the DFB and the error messages are set to 
the console. 

If SYSPRINT has not been declared at 
all, a diagnostic SYSPRINT is opened and 
used, provided that there is a DO card for 
SYSPRINT. 

Dump Routines 

A series of library modules are provided to 
implement the PLIDUMP facility. Module 
IBMBKDM is the dump bootstrap module which 
is part of the resident library. This loads 
and calls the transient dump control module 
IBMBKMR, which in turn links and calls 
those modules required to carry out the 
dump options specified in the call to 
PLIDUMP. Several transient modules are 
used to reduce the amount of storage used 
at anyone time. The organization of these 
modules is shown in figure 7.12. 

In order to ensure that as much 
information as possible is provided when a 
call to PLIOUMP is made, a special SPIE 
macro instruction is issued at the start of 
every transient routine to intercept 
program check interrupts during the 
routine. When a program check interrupt 
occurs, an attempt is made to continue with 
the dump. If the interrupt occurs in a 
program called from the dump control 
module, that particular routine is 
abandoned and a return is made to the dump 
control module. Any further routines needed 
to complete the information specified in 
the options are then called. If the 
interrupt occurs in the trace or file 
modules, the "H" option is assumed and a 
hexadecimal dump produced. If the 
interrupt occurs during the execution of 
the hexadecimal dump module, a SNAP macro 
instruction is issued by the dump control 
module and a snap dump is completed under 
the control of the supervisor. When the 
snap dump is completed control returns to 
the dump control module and the PLIOUMP is 
completed as requested in the dump options. 

As further insurance against error, the 
dump control module IBMBKMR is divided into 
sections, and, if an interrupt occurs in 
any of these sections, control is passed to 
a predefined address at the end of the 
section. processing then continues from 
that point. 

The dump modules are fully described in 
the publication QS PL/I Tran§!ent_~ibra~ 
~!:Q!a!:~!!L~Qg ic • 

In order to avoid mixing of PL/I dump and 
other information, dump data is not 
transmitted to any PL/I file. A special 
dump file known as PLIDUMP is used for the 
output of the dump modules. This file has 
its own transmitter and a special opening 
module IBMBKOO. A control block, the dump 
block;, (DUB) is set up during program 
initialization and is used to hold 
information about the status of the dump 
file and to simplify access to the file. 
The DUB (dump block) is addressed from 
offset X'24' in the TCA appendage. To 
generate a PL/I dump it is necessary to 
have a DO card for PLIDUMP. or PL1DUMP. 

Before any output has been produced by 
the "dump modules, the dump control module 
IBMBKMR inspects the DUB to see if the dump 
file is open. If the dump file is not 
open, and is not flagged as unopenable, the 
control module calls the dump file open 
routine (IBMBKOO> to open the file. 
IBMBKOO acquires space for the necessary 
control blocks loads the dump transmitter 
and attempts to open the dump file. 

If the attempt to open the dump file 
fails, IBMBKDO flags the DUB and returns. 
The DUB flags are tested by IBMBKMR, and, 
if the file has not opened, a message is 
put out and the dump is terminated. The job 
is either continued, 
terminated or an exit is made from the 
task, according to the options in the dump 
parameter. IBMBKOO uses either the 
declared PLITABS or loads the system 
default PLITABS"module, IBMBSTAB to 
determine the pagesize for PLIDUMP output. 
Provideq a pagesize of two or more is 
specified, the pagesize in PLITABS will be 
used. 

If the dump file can be successfully 
opened, IBMBKOO tests the attributes of the 
file. It it appears from th~ attributes 
that the dump is being transmitted directly 
to a printer or terminal l , the transmitter 
IBMBKDT is loaded. If it appears that it is 
being transmitted to a direct-access device 
or tape unit, the transmitter IBMBKOB is 
loaded. 

If IBMBKOT is loaded, two buffers are 
acquired. The address of one of these 
buffers is placed in the DUB. During the 
execution of the dump, the dump data is 
generated in the buffer which is addressed 
by the DUB. When the first buffer is full, 
a call is made to the transmitter module to 
transmit the buffer to the dump file. A 
test is then made to see whether the second 
buffer has completed the previous I/O 
operation. When the previous I/O operation 

Chapter 7: Error and Condition Handling 109 



__ S_ta_r_t ~ 

Test 'any-ch~ck' 
enablement bit 
in current 
enable cell 
(bit 0) 

Return to DSA 
of block in 
which CHECK 
was raised 

Search on-cells 
for unqualified 
CHECK 

Take action ] 
specified 
In ONCe 

Figure 7.11. 

110 

No 

No 

Chain back to 
previous DSA on 
static chain 

Take 
standard 
system 
action 

Chain back 

Yes 

Yes 

to previous 
DSAon 
dynamic chain 

Yes 

No 

ENABLEMENT SEARCH 

Search dynamic 
ONCBs for relevant ~..-,110---< 
qualified CHECK 

Chain back to 
previous DSA 
on dynamic 
chain 

Enablement 
only 
specified 

No 

Test further 
enablement bits 
(10& 11) for 
unqualified CHECK 

Yes 

Return to DSA 
of block in 
which CHECK 
was raised 

Search dynamic 
">-...:.No~"""_-I ONCBs for 

qualified 
ON-statement 

No 

No 

ESTABLISHMENT SEARCH 

Handling the CHECK condition 

Yes 

No 

Yes Take action >-__ ---1 specified 

in ONCB 



CALL PLIDUMP 

IBMBKDM 

Bootstrap modu Ie 

Link 

IBMBPES IBMBKMR 
LINK 

Dump 
Control Module 

ABEND Analyzer 

LINK LINK LINK 

r----

LINK 

~ 

IBMBKPT 

Dump Parameter 
Translate Module 

IBMBEOC 

ON-Code 
r----

Calculator 

IBMBKTR XCTL 

Dump trace 
analyze 

XCTL 

IBMBKTB 

Control 

IBMBKTC 

IBMBKFA 

File Attributes 
Dump Module 

Trace check 
module 

Figure 7.12. Interrelationship of dump routines 

LINK 

-

COMPILED 
CODE 

RESIDENT 

MODULE 

IBMBKDO 

Open Dump 
File Module 

LOAD 

IBMBKDT/B 

Dump File 
Transmitter 

----~----------~ 

TRANSIENT 
MODULES 

Chapter 7: Error and Condition Handling 111 



(if any) is complete the address of the 
second buffer is placed in the DUB and the 
operation continues. If IBMBKDB is loaded, 
only one buffer is used. 

When the dump is finished, the dump file 
remains open and the transmitter is 
retained. This speeds execution of further 
dumps. rhe storage is freed and the dump 
file closed by IBMBPIT when the program is 
terminated. The dump file is not placed on 
the open file chain. IBMBPIT tests the DUB 
to see if the file is open. 

Miscellaneous Error Modules 

A number of further library modules are 
used in certain exceptional error 
situations. These fall into two groups. 

1. AB~~D analyz~~ 

IBMBPES Determine action to be taken. 

IBMBPEV Put out message if necessary, 
and dump if possible. 

IBMBPEP Exceptional error message 
director 

IBMBPEQ No main procedure or more 
than 1024 files and controlled 
variables. 

IBMBPER No main storage available 

IBMBPET Interrupt in error handling 
routines or abnormal task 
termination 

All these modules are transient library 
modules. They are fully described in the 
relevant program logic manual. 

Abend Analyzers 

The ABEND analyzer IBMBPES is entered 
during an ABEND because it was nominated in 
the STAE macro instruction issued during 
program initialization. 

The ABEND is analyzed by checking the 
major blocks to see if they have been 
overwritten. If the backchain of DSAs has 
become overwritten, the ABEND is allowed to 
continue under supervisor control. If the 
DSA backchain is correct but critical 
control blocks appear to be overwritten" 
IBMBPEV is called to put out a message and 
if possible to provide a PLIDUMP. If no 

112 

overwriting is detected, the error handler 
is called with a code indicating the error 
condition. 

The message put out by IBMBPEV where 
possible contains the number of the PL/I 
statement being executed when an ABEND 
occurred. 

EXCEPTIONAL ERROR MESSAGE MODULES 

The exceptional error message modules 
consists of a director and three message 
modules. This arrangement has been adopted 
so that the minimum space will be used. It 
is necessary to conserve space as lack of 
space is one of the reasons for calling the 
modules. 

The director module IBMBPEP determines 
the nature of the exceptional error and 
calls the necessary module to put out the 
message. 

The table below shows the circumstances 
in which IBMBPEP is called and message 
modules then called by IBMBPEP. 

Calling 
Cif£um2tan£~ IDQQY!~ 

Insufficient main IBMBPII 
storage to set up 
program management area 

No main procedure Code in 
dummy 
PLIMAIN 

Too many files or IBMBPII 
controlled variables to 
be held in PRV 

IBMBPEP 
£~!!2 

IBMBPER 

IBMBPEQ 

IBMBPEQ 

Interrupt in error 
handling routine 

IBMBERR IBMBPET 

Abnormal termination 
of task 

entry point C 

IBMTPIR IBMBPET 

Module IBMBPEQ puts out the the message to 
SYSPRINT except in those circumstances 
where SYSPRINT cannot be used. (See above 
under "Error Message Modules"). IBMBPET 
and IBMBPER always put out their messages 
on the console as they are called in 
circumstances where SYSPRINT is likely to 
fail or where operator, rather than 
programmer action, is required. 



r-------------------------------------------------------------------------------
PL/I PROCEDURE TO BE COUNTED 

1 COUNTIT:PROC OPTIONS (MAIN); 
2 DO 1=1 to 2; 
3 PUT LIST (I); 
4 END; 
5 END COUNTITi 

In this procedure, the do-loop in statements 2 through 4 will be 
executed twice, and the other statements once. Statement 2 will be executed 
three times as a return is made at the end of the loop to test the value 
of I. Note: This code may compile in different ways. See section on 
DO-loops in chapter 2. 

HISTORY OF THE STATEMENT FREQUENCY COUNT TABLE 

After the branch-in to statement number 1, the table is set up with a value 
of 1 for the first statement and 0 for all others, thus: 

statement number 
branch count 

2 
o 

3 
o 

4 
o 

5 
o 

After the branch-out at statement 4, the count of the next statement 
is decremented by one and the table becomes: 

statement number 
branch count 

2 
o 

3 
o 

4 
o 

5 
-1 

After the branch-in at statement 2, the branch count for statement 2 is 
incremented by one and the table becomes: 

statement number 
branch count 

2 
1 

3 
o 

4 
o 

5 
-1 

At statement 4, a further branch out is made and a return made to 
statement 2 to test the value of I. One is subtracted from the value 
of statement five making the count -2 and one added to the count 
of statement 2 making it 3. Because I is greater than 2 a 
branch is made after the test to statement 5. This results in one 
being subtracted from the count for statement 3 and one being added to 
the count for statement 5. At the end of the program the tab~e reads: 

statement number 
branch count 

2 
2 

3 
-1 

4 
o 

5 
-1 

ANALYSIS OF THE STATE~£NT FREQUENCY COUNT TABLE 

A value known as the current count, which is initially set to zero, 
is added to the branch count for each statement in turn. The sum is 
the number of times the statement was executed; this value also becomes 
the current count. 

statement number 
1 
2 
3 
4 
5 

current count 
o 
1 
2 
2 
2 

branch count 
1 
1 
o 
o 
-1 

times executed 
0+1= 1 
2+1= 3 
3-1= 2 
2+0= 2 
2-1= 1 

Figure 7.13 How branch counts are used to calculate the number of times each 
statement is executed. 

Chapter 7: Error and Condition Handling 113 



I The FLOW and COUNT Options 
I 

The FLOW and COUNT options are used to 
provide information about which statements 
are executed in a particular run of a 
program. The FLOW option is used to 
maintain a trace of the most recently 
executed statements. The COUNT option is 
used to maintain a count of the number of 
times each statement is executed. 

Both options are implemented by calling 
an interpretive library routine, IBMBEFL, 
at every point in a program where the flow 
of control may not be sequential. The 
library routine, IBMBEFL, analyzes the 
situation and updates tables to retain a 
record of the'branches made. IBMBEFL is 
also called during program initialization 
to set up housekeeping information. Two 
transient library modules are used to 
interpret the tables set up by IBMBEFL and 
to put out the information. The routines 
are IBMBESN for the FLOW option, and 
IBMBEFC for the COUNT option. 

The compiler generates the same 
executable code for both the COUNT and the 
FLOW option. Consequently, if either 
option is specified for compilation, either 
or both can be made available at execution 
time. If neither is required during 
execution but one or other was specified 
for compilation, the code to call IBMBEFL 
is still executed and IBMBEFL still forms 
part of the load module. When IBMBEFL is 
called in this situation, it returns 
control to compiled code without recording 
any information. 

Points at which the flow of control may 
not be sequential are known as branch-in 
and branch-out points. For example, 
labeled statements and entry points are 
branch-in points, and GOTO statements are 
branch-out points. At branch-in and branch­
out points the compiler places code that 
will call IBMBEFL. If the branches are 
taken, they are recorded. For COUNT they 
are recorded in a table known as the 
statement t~guen£Y £~n! tabl~. For.FLOW, 
they are recorded in a table known as the 
flow st~tement table. 

Use of Branching Information for FLOW 

For the FLOW option, a list of the 
statement numbers at which branches were 
taken and a list of any changes of 
procedure is retained. 

FLOW output consists simply of the list 
that is recorded by IBMBEFL and typically 
takes the form shown below. 

12 TO 18 
27 TO 35 IN SORTER 

114 

I 
I 
I 

76 TO 108 IN TESTER 
134 TO 77 IN SORTER 

IThis indicates that the program branched 
from statement 12 to statement 18, then ran 
sequentially from 18 to 27. After 
statement 27 it branched to, or called, 
statement 35 in the procedure called 
SORTER. Control then ran sequentially to 
statement number 76, at which point it 
passed to statement number 108 in the 
procedure called TESTER. Control then ran 
sequentially from 108 to 134 and finally 
passed to statement 77 in SORTER. 

US~_Q~_~~~n£hin~fo~m~~n fo~ C02~! The 
COUNT option calculates the number of times 
each statement is executed by recording 
branch-in and branch-out points as they 
occur and analyzing them at the end of the 
program. 

The formula used for calculating. the 
number of times each statement is executed 
from the branch count is: 

Cn=Cn-l+BIn-BOn-l 

Where: 
Cn =the number of times the statement 

was executed. 
Cn-l =the number of times the previous 

statement was executed. 
BIn =the number of times the statement 

was branched to. 
BOn-l=the number of times the previous 

statement was branched from. 

TO retain the information, a count field 
is set up for every statement in the 
program, and branches-in and branches-out 
are recorded when they occur. Every time a 
branch-in is made, the count for the 
statement to which the branch is made is 
incremented by one. Every time a branch-out 
is made, the count for the statement after 
the branch-out is decremented by one. When 
the program ends, statements that have 
values other than zero mark the beginning 
and end of ranges of statements that have 
been executed the same number of times. 
The number of times the ranges of 
statements have been executed is calculated 
by adding the value in the count field to 
the sum of any preceding values. 

This process can be followed in figure 
7.13. 

§E~£ial_£2§~2 There are a number of special 
cases that require additional action, 
either by the compiler, or by IBMBEFL, or 
by both. These special cases arise for 
three reasons: 

1. Branches can be caused by 
interrupts, but the points at 
which they will occur cannot be 



predicted during compilation. 
Consequently the compiler cannot 
place calls to IBMBEFL at these 
points,. 

2. Branches to labeled statements, 
can come from either the same 
block or a different block. 
Consequently the code generated by 
the compiler cannot be used to 
indicate whether a new block entry 
is required. 

3. The algorithm used for the COUNT 
option is not effective for CALL 
statements and function references 
because the branch-in and branch­
out are made to and from the same 
statement. 

The first case is handled by IBMBEFL 
checking for the occurrence of an interrupt 
when it is called in situations where one 
could have occurred. The second case is 
handled by altering the GOTO code in the 
TCA so that it calls IBMBEFL to set 
appropriate flags when a GOTO out of block 
occurs. A test for the flags is made when 
the call to IBMBEFL for the branch-in at 
the labeled statement is made. The third 
case is predictable during compilation and 
is handled by the compiler setting up 
different code for branches-in to CALL 
statements and function references, and by 
IBMBEFL testing for such code. Details of 
the methods used are given later. 

I I MPLEMENr AT ION OF FLOW AND COUNT 
I 

ITO enable it to retain FLOW and COUNT 
linformation, IBMBEFL sets up tables in 
I dynamic storage,. Figure 7.14 shows their 
I contents. Details of their formats are 
Ishown in appendix A. -43 
I 
IFLOW Option: FLOW information is retained 
lin a table called the f!Q~ st~~~n~ ta£!~. 
IThe flow statement table has three 
I sections; a header section containing 
Ihousekeeping information, a statement 
Inumber section holding the numbers of 
Istatements that were branched to or from 
Iplus flags to indicate the type of entry, 
land a procedure names section containing 
Ithe names of procedures and on-units to 
Iwhich branches are made. The length of the 
Iflow statement table is determined by the 
Ivalues given to "n" and "m" when the FLOW 
loption is specified. 
I 
I When all the spaces in the table for 

Istatement numbers or procedure names have 
been filled, the earliest entries are 
overwritten. The fields in the header 
section are used to indicate which is the 
next space available in the table. 

The table is set up during program 
initialization and is addressed from the 
TCA. 

£QQNT Op~!Qn: COUNT information is retained 
in tables called statement f~~guency ~! 
~~~les. The tables have a field for every 

lstatement. They are set up when an
lexternal procedure is entered. A table is
Ineeded for every external procedure because
Itwo external procedures can contain the
Isame statement numbers.
I
I statement frequency count tables are
Ichained together and addressed from the TCA
lappendage (the TIA). Two addresses are
Ikept in the TIA, the address of the current
Istatement frequency count table (that is
Ithe table that was last used) and the
laddress of the statement frequency count
Itable for the first procedure in the chain.
Istatement frequency count tables are
lassociated with their matching external
Iprocedures by having the address of the
Istatic control section for the procedure
Iplaced at a fixed offset in the table. (A
Istatic control section is unique to an
lexternal procedure and its address can be
leasily accessed as it is addressed
Ithroughout compiled code by register
Ithree). The last statement frequency count
Itable in the chain has its chaining field
Iset to zero.
I
I The length of statement frequency count
Itables depends on whether the GOSTMT or
IGONUMBER option is in effect. For GOSTMT
lone fullword is used for each statement in
Ithe procedure. For GONUMBER, two fullwords
lare used. This, is because for GONUMBER it
lis necessary to retain the statement number
las well as the count value. (For GOSTMT,
Ithe numbers will start at one and be
lincremented by one, and no record need
Itherefore be kept.) If neither GOSTMT nor
IGONUMBER is in effect, no attempt is made
Ito count the statements executed in the
Iprocedure and a statement frequency count
Itable is not set up.
I

lAS described in the introduction, there are
Ifour stages in the implementation of the
IFLOW and COUNT options. These are:
I
I
I
I

1. Action during compilation. The
code to call the interpretive
library routine IBMBEFL

Chapter 7: Error and Condition Handling 115

HEADER
SECTION

STATEMENT
NUMBER
SECTION

PROCEDURE
NAMES
SECTION

I
IFigure 7.14.
I
I

116

FLOW STATEMENT TABLE

One table for the program

Contains:

• Pointers to next entry in each
section of the table.

• Other housekeeping data.

Contains:

• Statement numbers of branches
plus flags indicating type of
entry.

Contains:

• Names of procedures and types
of on-units that have been
branched to.

HEADER
SECTION ~

BRANCH
COUNT ~

SECTION

STATEMENT FREQUENCY COUNT TABLES

One table for each external procedure

Contains:

• Pointer to any further tables.
• Address of static control section of

associated external procedure.
• Other housekeeping data.

;------------
Contains:

• A field for each statement in the
program containing a count which
is incremented when the statement
is branched to and decremented when
the statement is branched from.

The contents of the flow statement table and the statement
frequency count table.

2.

is placed at every predictable
branch-in and branch-out point.

Action during program
initialization. The necessary
housekeeping fields are set up.
This is done by the program
initialization module IBMBPII and
the flow module IBMBEFL called at
entry point A.

3. Action during execution. The
branch-in and branch-out
information is collected by
IBMBEFL, called at entry point B.
IBMBEFL is also called at entry
point C to handle certain special
cases. The call is mad€ when the
GOTO out-of-block code is
executed.

4. Action during output. The
necessary information is written
out. This is done by IBMBESN for
the FLOW option and IBMBEFCA for
the COUNT option.

These four stages are described in detail
in the following sections.

During compilation, the compiler examines
the program and generates suitable code at
each predictable branch-in and branch-out
point. Predictable branch-in points are:

• entry names
• labeled statements
• THEN and ELSE clauses of IF

statements.
• entries to on-units
• returns from CALL statements or

function references.
• the statement following the

END statement of an internal
procedure.

Predictable branch-out points are:

• GOTO statements
• function references
• CALL statements
• IF statements
• RETURN statements
• END statements
• the statement before the

PROCEDURE statement
of an internal procedure.

The code for branch-out points is so placed
that the call to IBMBEFL will not be made
unless the branch is taken.

statements preceding and following
internal procedures are treated as branch-

out and branch-in points because the
statement numbers of the statements
executed are not sequential although the
actual flow of control is sequential. If
this were not done, the method used for
counting statements ~ould not ~ork because
the statements in the internal procedure
would be given the count values of the
preceding statements.

The code placed at the branch-in and
branch-out points takes the follo~ing form:

L 15, 84(0,12) Pick up address of
IBMBEFL from TCA.

BALR 14, 15 Branch to IBMBEFL.

DC X'8004' Constant containing
a two-bit flag
remainder for
statement number.

Register 14 is set to the constant
containing the statement number and flags
by the BALR instruction. IBMBEFL can
therefore pick up the statement number by
examining the constant.

The flags indicate:

•
•
•
•

branch-in
branch-out
branch-in to a ne~ procedure

or on-unit.
return to point of interrupt
from end of on-unit.

Chapter 1: Error and Co~dition Handling 111

COUNT or FLOW.

For the FLOW option, the compiler
generates a control section called PLIFLOW
that can be used during program
initialization to call IBMBEFL. This
control section takes the following form:

VCON

USING
L
BALR
DC
DC
DC

*,15
15,VCON
1,15
H'n'
H'm'
V (IBMBEFLA)

For the COUNT option, the compiler
genera'tes a control section called PLICOUNT
that can be used to call IBMBEFL to
initialize the COUNT option. It is the
same as PLIFLOw except that the halfwords
'n' and 'rr' are replaced by a fullword
x'80000000'.

The calls to IBMBEFL are generated if
either FLOW or COUNT is defined at compile­
time. The control sections are generated
if the corresponding option is specified at
compile time.

During program initialization, the program
initialization module IBMBPII determines if
either FLOW or COUNT or both are required.
If the user specified either FLOW or COUNT
during compilation, the requested option
will be in effect during execution unless
specifically overridden by the NOFLOW or
NOCOUN'r execution time option. If he
specified either option for compilation he
can also specify the other for execution.

To determine which options are to be used,
IBMBPII inspects the execution time options
and checks for the presence of PLIFLOW or
PLICOUNT which will indicate that the
corresponding option was requested at
compile-time.

If one or both of the options are requested
for execution but neither was requested for
compilation, IBMBPII generates a message to
say that the option will not be available.

If an option is specified for compilation
and not overridden for execution time, the
corresponding control section will be
available and IBMBPII passes control to
IBMBEFL at entry point A through the code
in the control section. If the control
section corresponding to the required
option does not exist, IBMBPII calls
IBMBEFLA directly, passing it a value in
register o. This value is 4 if FLOW is
required and 8 if COUNT is required.

118

I If one or both of the options have been
Irequested during compilation but neither
lare required during execution, tBMBPII sets
IFLOW value~ of (O~O) and calls IBMBEFLB to
linitialize the FLOW option. In this
I situation, IBMBEFL sets the address of the
Iflow statement table and the addresses of
Ithe statement frequency ,count tables to
Izero.
I
I To initialize FLOW, IBMBEFLA sets up the
Iflow statement table and initializes it
Iwith a dummy statement number entry and a
Idummy procedure name entry. The address of
Ithe flow statement table is placed in the
ITCA. If FLOW is not required, or if
IFLOW(O,O) has been specified, the address
lis set to zero.
I
I To initialize COUNT, two addresses in
Ithe TIA are initialized. The first, which
Iwill contain the address of the first of
the chain of statement frequency count
tables, is set to zero. The second which
will contain the address of the current
statement frequency count table is set to
point to the first. If COUNT is not
required, both fields are set to zero.

For both FLOW and COUNT, the address of
entry point B of IBMBEFL is placed in the
TCA; the GOTO code, which is in the TCA, is
altered so that it calls IBMBEFL at entry
point C. (This is necessary so that changes
of block caused by GOTO statements can be
intercepted and flagged.)

IActiQB_DU~!ng_~~~~ion
I
During execution, calls from compiled code
at branch-in and branch-out points are made
to entry point B of IBMBEFL whose address
has been placed in the TCA. The action
then taken depends on which options are in
effect, the type of the previous entry, and
the type of the present entry.

Calls are also made to IBMBEFL at entry
point Cwhen the GOTO code in the TeA is
executed.

IBMBEFL When Called at Branch-In and
Br!uch=out:_Points -----------------

IWhen IBMBEFL is called at branch-in or
Ibranch-out points, the call goes to entry
Ipoint B whose address has been placed in
Ithe TCA during program initialization.
IIBMBEFL first checks-to see which, if
leither, of the options is required by
Itesting the fields used to address the flow
Istatement table and the current statenent
Ifrequency count table. If either of these
lis set to zero, the correpsonding option is
Inot in effect. If both are set to zero,
Icontrol is returned to compiled code.

IIf one or other of the options is in
leffect, there are four possible cases
Irequire different action:

that

I
I·

1.

2.

A branch-in following a
branch-out or vice versa.

A branch-in following another
branch-in

3. A branch-in to a new block.

4. Return from an on-unit to the
point of interrupt.

These cases are dealt with individually in
the sections that follow.

£2§e 1~_Br2n2h-In FQ!!qwing-2-~f2nch-O~~
or Vice Versa This situation indicates
non=5equentiaI flow of control, and must
therefore be recorded in the FLOW and COUNT
tables. For FLOW, the new statement number
together with flags indicating a branch-in,
a branch-out, ora branch-in to a procedure
or on-unit, are entered in the position
indicated by the pointer at the head of the
flow statement table. The pointer is then
updated to point to the next available
space. If the next space would be outside
the table, the pointer is reset to the head
of the statement number section of the
table.

For COUNT, the count value in the field
for the appropriate statement number is
altered. For a branch-in, the count of the
statement branched to is incremented by
one. For a branch-out, the count of the
statement after the statement branched from
is decremented by one.

If IBMEEFL is being called for a branch
in, it is possible that it was caused by a
GOTO-out-of-block and a new procedure or
on-unit name may need to be recorded. In
this situation, IBMEEFLC will have been
called during the execution of the GOTO­
out-of-block code and will have set a flag
in the flow statement table. The flag is
therefore tested and, if it is found on,
the entry is treated as an entry to a new
block. See case 3.

A further possibility is that the branch-in
will be a return to a CALL statement or a
function reference. These are
distinguishable because the call to IBMBEFL
is made by a EAL instruction rather than a
BALR instruction. If the COUNT option is in
effect, this must be tested for, and the
count value of the next statement rather
than the current statement be incremented
This is necessary because the branch-out
and the branch-in for CALL statements and
function references are both made at the
same statement, (see description under

"Action during Compilation" earlier).

£~2g_~~ __ ~_~f2n2n=!n_!Q!10~ed~y_Anoth~!_
Branch-in: No action need be taken as such
a-sltuation can only be caused by
sequential flow. For example consider the
statements:

LAB1:
LAB2:

X=Y;
Z=X;

IBoth LAB1 and LAB2 are potential branch-in
Ipoints, but, if a call to IBMBEFL is made
Ifor LAB2 immediately after a call has been
Imade for LAB1, it is plain that the flow of
Icontrol has been sequential. consequently
Iwhen a branch-in follows another branch-in,
IIBMBEFL retUrns control to compiled code
Iwithout taking any action.
I
I This situation does not arise with
Ibranch-out points, because the code to call
IIBMBEFL is only executed if the branch is
Itaken.
I
ICa2~-1~_~_~f2n2h=!n_1Q~~g~_~!oc~~ This
Icase requires that block information be
lentered for the FLOW option, and that, for
Ithe COUNT option, a check be made to see
Iwhether a new external procedure has been
I entered. If it has, a different staterr-ent
Ifrequency count table will have to be used
Ibecause there is one for each external
Iprocedure.

Special action will be required if the
block entered is an on-unit. This is
because the branch-out will have been made
at the point of interrupt and this will not
have been automatically recorded by ~ call
to IBMBEFL. When a new block is entered a
test is therefore made on the DSA flags of
the block to establish whether it is an on­
unit. The action taken if it is a on-unit
is described later under the heading
"Branch-In to an On-Unit."

After any action required to handle
entry into an on-unit, the following will
take place.

For FLOW, the name of the block must be
discovered and placed in the next available
space in the names section of the flow
statement table. Also, the statement
number entry must be flagged to show that
it marks a change of block. The procedure
name is found following the DSA chain back
until a procedure DSA is found and
accessing the name, which is held at a
standard offset from the entry point of the
procedure. When the procedure name has

Ibeen found, the statement number and flags,
land the procedure name, are placed in the
lappropriate sections of the flow statement
Itable and the pointers altered to point to
Ithe next available fields.

Chapter 7: Error and Condition Handling 119

For COUNT, a check rrust be made to discover
whether a new stateroent frequency count
table is required. This is done by
comparing the address in the register 3
save area of the DSA of of the procedure
that called IEMBEFL with that at offset
x'4' in the current statement frequency
count table. If they are the same no action
is required, because the new block must
have the same static control section as the
previous block and consequently must be in
the same external procedure. If the
addresses are not the same, a search is
made down the chain of statement frequency
count tables for a matching table. If one
is found, the address of the current table
is set to point to the table that has been
found, and the required entry made in that
table. If no matching table is found, a new
table must be set up.

Q~§ating~Ng~-2~~~gmen~Fr~gggnc~_Q2~n~
TaQle: Before creating a new statement
frequency count table, IBMBEFL checks to
see if a statement number table exists for
the new procedure. If it does not,
counting will not take place. In this
situation, the current statement frequency
count table is flagged to indicate that
counting is to be suspended until another
procedure is entered, and control is
returned to compiled code.

Provided a statement number table does
exist, a new statement frequency count
table will be required. IBMBEFL first
obtains the required amount of non-LIFO
storage for the table. One fullword is
required for every statement in the
external procedure if it was compiled with
the GOSTMT option, and two fullwords are
required for every statement if it was
compiled with the GONUMBER option. The
count fields are set to zero, and, for
procedures compiled with the GONUMBER
option the numbers are inserted in the
tables. The new table is then linked with
its matching external procedure by placing
the address of the static control section
for the procedure in the new table.

Branch-in to an On-unit: If the code that
called-IBMBEFL-is found to be in an on­
unit, special action is required. The
statement number for the point of interrupt
must be discovered and appropriate entries
made in the flow and count tables, before
the da·ta for the entry to the on-unit can
be recorded. This is because there will
have been no call to IBMBEFL at the point
of interrupt to register a branch-out. The
statement number of the interrupt is found
by IBM.BEFL in the same way as that us ed by
the error message modules, described
earlier in this chapter. When the number
has been found, it is incorporated in the
flow and count tables as if it were a
normal branch-out. The branch-in entry is

120

Ithen handled as if it were a normal entry
to a new block. It is possible for the FLOW
option to be in effect without there being
a statement number table available. In
this situation, a statement nurr,ber of zero
is entered in the flow statement table for
the branch-out at the point of interrupt.

A problem also exists for COUNT if an
interrupt results in the termination of a
program. In this situation, the interrupt
point must be marked as a branch/out,
otherwise, statements after the interrupt
would have an incorrect count value. This
situation is checked for when the FINISH
condition is raised. During the handling
of the FINISH condition, the GOTO code is
executed and IBMBEFL is called at entry
point C. A check is then made to see if
FINISH was raised because of an interrupt.
If it was, the point of interrupt is
discovered and entered as a branch-out
point in the appropriate statement
frequency count table •.

Case 4. Return from On-unit to Point of
!ui~rrYE~=:--When-return is-made-fiom-the

lend of an on-unit to the statement that
Icaused the interrupt, there will be nc
lautomatic call (resulting from code
linserted during compilation) to IBMBEFL.
IThe necessary information for the flow and
Istatement frequency count tables is
Itherefore entered when IBMBEFL is called at
Ithe end of the on-unit. The statement
Inumbers passed for such calls are specially
Iflagged so that IBMBEFL discovers the point
lof interrupt and takes the necessary action
Ito update the flow statement ta~le and
Istatement frequency count tables.
I

l!n~g!E~g~!ug_~hg~!Q~§~atemgn~_Ta~le
I
I Information from the flow statement
Itable is interpreted by the message module
IIBMBESN or the PLIDUMP routines, and
Itransmitted in the form of statement number
Ipairs which are associated with the names
lof procedures or with on-unit condition
Itypes.
I
I To extract the information, the message
Imodule must. know from which points output
lin the statement number and procedure names
Isection of the table output is to start.
lIt must also be able to match the entries
lin the two sections of the table.
I
I The starting points in both sections of
Ithe table are found by checking whether the
Idummy entry, inserted during program
linitialization, has been overwritten. If
Ithe dummy entry has not been overwritten,

the starting point is the first entry in
that section of the table. If the dummy
entry has been overwritten, the starting
point will be the entry flagged as the next
available entry. This is because the table
is used cyclically, with the newest entry
overwriting the oldest entry.

Statement numbers are matched with
procedure names by comparing the number of
procedure names with the number of
statement number entries that are flagged
as being associated with procedure name
entries. If the two numbers are the same,
the first procedure name will be associated
with the first statement number that
requires a procedure name. If there are
more procedure names than statement numbers
that require procedure names, the trace of
procedures must be longer than the trace of
statement numbers. Accordingly, the
procedure names are put out without
statement numbers until the point is
reached where the number of procedure names
left is the same as the number of statement
numbers that require them. From that point
on statement numbers and procedure names
are put out together. If there are more
statement numbers that require procedure
names than there are procedure names, the
trace of statement numbers must be longer
than the trace of procedure names. The
earliest statement numbers are put out
without names and, where a procedure name
is required. "UNKNOWN" is used. When the
number of names required matches the number
available, the procedure names are put out
with the statement numbers.

I!nterpr~ting the sta!;emgn!; freg~!l£:i £2!!!!t
1:!;~Qles
I
IModule IBMBEFCA is called at program

termination to print count information.
Output is tabular and printed three columns
to a page. An entire page is built before
transmission.

Output for a procedure begins with the
procedure name. This is followed by the
column headings: "FROM TO COUNT". The
current count is initialized to zero and
the first non-zero entry in the table is
found. The associated statement number is
then placed in the 'FROM' part of a
temporary line and the value for the non­
zero entry is added to the current count.
The entries for the following statements
are scanned until one with a non-zero count
value is found. The number of the
preceding statement is then placed in the
'TO' part of the line and the current count
in the 'COUNT' part. This line is included
in the page. The statement number found is
then placed in the 'FROM' part of the
temporary line and its branch count (which
may be negative) is added to the current
count. The scan of entries continues. until
another non-zero count is reached, and the
process is repeated.

If the count for a range is zero, the
line is not moved into the page but the two
statement numbers are saved for separate
printing. Whenever a line is moved into
the page, checks are made for the end of a
column and the end 9f the page. When the
page is full it is transmitted.

The process is continued until the end of
Ithe table is reached.
I
IThe next table is then processed, until all
Iprocedures have been handled.
I
IFinally, ranges of unexecuted statements
lare printed for each procedure.

Chapter 7: Error and Condition Handling 121

COMPI LATION

Ensure program
tests for all enabled

==) non-system-detected
Compile on-units as
separate program

interrupts and calls
error handler when
they occur

PROLOGUE CODE

~ indicate to error

[

Set up flags to

---.I handler which
conditions are
enabled

PROCEDURE CODE

I nstruction capable
of causing condi­
tion not detectable
by system

OBJECT PROG RAM

IBMBERR
Error handling module

[

If no GOTO out
of on-unit take
action for normal
return.
(See below)

blocks

Mainline code

Prepare data
including condition
type and built in
function values

Call error handling
module IBMBERR

Return to point
of interrupt

Execute action
~4It---I specified in on unit

INITIALIZATION

Issue SPI E & STAE

Q C
macros to pass A

system detected
interrupts to I"

error handler

PROCEDURE CODE

Execute, ON
statement by setting Mainline code

v flag indicating on- v

unit is established

Mainline code

YES

YES

Determine PL/I
condition from
PSW

Take standard
system action
(See below)

Possibly put out message, then take one of actions shown
below depending on condition that occurred

Return to point
of interrupt

Call IBMBPI R to
terminate program
or task

Figure 7.15. Outline of error handling

122

Raise further
condition

IBMBERR
Error handling module

ENTRY POINT'.A

Call message J
module to put
out message

Set up control blocks
from file declaration
and I/O statements

Call PUI library or data
management routines
passing control blocks

\
OPEN & CLOSE STATEMENTS TRANSMISSION

In-li~e I/O

COMPILER

COMPI LED CODE

Library call I/O

---------- .: ':~I~-------

OPEN/CLOSE BOOTSTRAP
ROUTINE

(Resident library)

OPEN ROUTINES CLOSE ROUTINE

(Transient library) (Transient library)

'$f~l';':"::5

-- -- %fJ ----- -_. .._-- - - --- --

I:~
~

CLOSE
ROUTINE

PL/I LIBRARIES

TRANSMITTER INTERFACE
ROUTINE

(Resident library)

PL/I TRANSMITTER

(Transient library)

DATA MANAGEMENT
ROUTINES

TRANSMITTER ROUTINE 1
'-------

Figure 8.1. The principles used in record I/O implementation

124

Chapter 8: Record-oriented Input/Output

Introduction

This chapter considers the implementation
of the following statements:

File declarations
Open and close statements
READ, WRITE, DELETE, LOCATE, UNLOCK,
and REWRITE statements referred to
generically as ~~!l2mi§2!Q!1 st~~~2

Together, these statements make up record
I/O.

The OS PL/I Optimizing Compiler uses the
data management routines of 05/360 to
implement record I/O. These routines offer
facilities similar but not identical to
those of the PL/I language. The data
management routines require that:

1. A data control block (DCB) is set up
to 1escribe and identify the data set.

2. OPEN and CLOSE macro instructions are
issued to open and close the data set.

3. GET, PUT, READ, or WRITE macro
instructions are normally issued to
store or obtain a new record.

The data management routines transmit the
data one block at a time between the data
management buffer and the external medium,
but each separate macro instruction issued
by the program results in only a single
record being passed. When a transmission
error occurs, or when the end-of-file is
reached, the data management routines
either set flags indicating the error or
branch to error-handling or end-of-file
routines that can be specified by the
programmer.

The basic method used by the optimizing
compiler to implement record I/O is to
retain the source program information in a
number of control blocks, and to pass these
control blocks to PL/I library routines
which interpret the information and carry
out the necessary action by calling data
management routines in the appropriate
manner. The method is summarized below, and
shown diagramatically in figure 8.1.
Figure 8.15 shows the overall scheme in
greater 1etail.

Summary of Record I/O Implementation

For a file declaration, the compiler
generates two control blocks: the declare
control block (DCLCB) and the environment
control block (ENVB). Together, these two
control blocks contain a complete record of
the file declaration.

OPEN statements are compiled as a call to a
resident-library bootstrap routine,
IBMBOCL, which has passed to it an open
control block (OCB) containing the
attributes and environment options that
have been used in the OPEN statement.

The bootstrap routine loads and calls a
number of transient routines that build a
definitive control block, known as the file
control block (FCB), from information in--­
the-DCLca;-ENva;-and OCB. The file is
associated with the data set, and the
appropriate PL/I transmitter module is
loaded.

The FCB is used during the execution of
transmission statements to access all file
information. It is addressed via the DCLCB
and the pseudo-register vector.

For the majority of file and statement
types, details of statement type, of
record, key, and event variables are set up
in control blocks during compilation;
during execution, these control blocks are
passed to a resident-library interface
routine, IBMBRIO. IBMBRIO then calls a PL/I
transient-library transmitter module, which
issues the appropriate data management
macro instruction, and checks for errors,
before returning control to compiled code.
This method is known as lib~u=£all I~Q.

Chapter 8: Record-oriented Input/Output 125

r---,
BES!DENI-1!IBRAEX

IBMBOCL Open/Close bootstrap routine
IBMBRIO Record I/O interface routine

IBMBOPA
IBMBOPB
IBMBOPC
IBMBOPD
IBMBOPE
IBMBOPZ

Open error handler
Open routine Phase I
Open routine Phase II
Open routine phase III
Open routine phase II (VSAM)
Direct output file formatter

CI22e MQdu!~

IBMBOCA Close module

IBMBRAA
IBMBRAB
IBMBRAC
IBM BRAD
IBMBRAE
IBMBRAF
IBMBRAG
IBMBRAH
IBMBRAI
IBMBRBA

Regional sequential
Regional sequential
Regional sequential
Regional sequential
Regional sequential
Regional sequential
Regional sequential
Regional sequential
Regional sequential
Regional sequential
input/update

IBMBRBB Regional sequential
input/update

IBMBRBC Regional sequential
input/update

IBMBRBD Regional sequential
input/update

IBMBRBE Regional sequential
input/update

IBMBRBF Regional sequential
input/update

IBMBRBG Regional sequential
input/update

output
output
output
output
output
output
output
output
output

IBMBRCA
IBMBRCB
IBMBRCC
IBMBRCD
IBMBRCE

Unbuffered consecutive
Unbuffered consecutive
Unbuffered consecutive
Unbuffered consecutive OMR
Unbuffered consecutive
associated file

IBMBRDA Regional direct non-exclusive
IBMBRDB Regional direct non-exclusive

trans.
IBMBRDC Regional direct non-exclusive
IBMBRDD Regional direct non-exclusive
IBMBRJA Indexed sequential input/update
IBMBRJB Indexed sequential input/update
IBMBRKA Indexed direct non-exclusive
IBMBRKB Indexed direct non-exclusive

L---J

r---,
I I~!!~i.tter MQdule.§
I IBMBRKC Indexed direct Bon-exclusive
I IBMBRLA Indexed sequential output
I IBMBRLB Indexed sequential output
I IBMBRQA Buffered consecutive
I (non-spanned)
I IBMBRQB Buffered consecutive
I (non-spanned)
I IBMBRQC Buffered consecutive
I (non-spanned)

IBMBRQD Buffered consecutive
(non-spanned)

IBMBRQE Buffered consecutive input
(spanned)

IBMBRQF Buffered consecutive output
(spanned)

IBMBRQG Buffered consecutive update
(spanned)

IBMBRQH Buffered consecutive OMR
IBMBRQI Buffered consecutive associated

IBMBRTP
IBMBRVA
IBMBRVG
IBMBRVH

file
Teleprocessing file input
VSAM ESDS transmitter
VSAM KSDS sequential output
VSAM KSDS sequential input

/update
IBMBRVI VSAM KSDS direct transmitter
IBMBRXA Exclusive regional direct

update update/input
IBMBRXB Exclusive regional direct

update update/input
IBMBRXC Exclusive regional direct

update update/input
IBMBRXD Exclusive regional direct

update update/input
IBMBRYA Exclusive indexed direct update

update/input
IBMBRYB Exclusive indexed direct update

update/input
IBMBRYC Exclusive indexed direct update

update/input
IBMBRYDA Exclusive indexed direct

IBMBSOF
IBMBSOU
IBMBSOV
IBMBSTF
IBMBSTI
IBMBSTU
IBMBSTV
IBMCSTI
IBMCSTP

update update/input
Stream output file
Stream output file
Stream output file
Stream output print file
Stream input file
Stream output print file
stream output print file
Stream input file
Stream output file

B~£Q~g_I/0_~2f_mQdul~2

IBMBREA Record· I/O error module
IBMBREB Record I/O error module
IBMBREC Record I/O error module
IMBBREE Record I/O error module
IBMBREF Record endfile module

L---J
Figure 8.2. Library subroutines used in record I/O

If the TOTAL option is used, the
majority of transmission statements on
buffered consecutive files are compiled as
direct calls to the data management

126

routines. This method is known as in-line
I/Q. When using in-line I/O, subroutines­
of the PL/I transmitters are available to
handle error situations. The appropriate

I
I
I
I

r---,
FILE TYPE ACCESS METHOD

Buffered consecutive
Unbuffered consecutive
Regional sequential

(not spanned records)
Regional sequential

(spanned records only)
Regional direct
Indexed sequential
Indexed direct
TP buffered input/update
VSAM

QSAM/VSAM
BSAM/VSAM

BSAM

BDAM
BDAM

QISAM/VSAM
BISAM/VSAM

TCAM
VSAM

Consecutive or indexed files can be
used to access VSAM data sets: the PL/I
open routines will determine the data
type. For details see section on OPEN

I statement. I
l---J
Figure 8.3. Access methods and file

types

transmitter is loaded during the file
opening process.

CLOSE statements are implemented by a call
to the open/close bootstrap routine
IBMBOCL, which loads and calls the
transient close routine IBMBOCA. This
routine disassociates the file from the
data set, and handles the necessary
housekeeping.

Implicit opening is handled by manipulation
of addresses so that any attempt to access
the file when it is not open will result in
control being passed to the open routines
in the PL/I libraries.

!!!!Elicit Close

Implicit closing is handled by the program
termination routine checking for open
files, and if it finds any, calling the
PL/I library routine to close them.

As can be seen from the summary above, a
large number of library subroutines and
control blocks are used in the
implem~ntation of record I/O. These are
summarized in two figures: figure 8.2 for
library subroutines and figure 8.4 for
control blocks. More detailed descriptions
for each statement type are given below.

ACCESS METHOD

The access method used for different PL/I
file types is shown in figure 8.3.

File Declaration Statements

For each file declaration, a declare
control block (DCLCB) and, optionally, an
environment control block (ENVB) are set
up. Both are held in static internal
storage for internal files, or in a
separate control section for external
files.

The DCLCB is a control block that
containS-the filename together with a
record of the attributes obtainable from
the file declaration, both those given
explicitly and those deducible by default.
This information is retained until the file
is opened, when, unless the TOTAL option
has been used in the file declaration, the
information is merged with any attributes
in the OPEN statement.

The ~~y~ contains the addresses of all
environment options. The format of the
ENVB is given in appendix B.

From information in the DCLCB and the
ENVB, (and sometimes from the open control
block (OCB) produced from the OPEN
statement) a further control block, the
file control block (FCB) is generated.
During execution-of-an-I/O statement, all
information about the file is derived from
the FCB.

No executable code is produced from the
file declaration. Figure 8.5 shows the code
resulting from a file declaration.

Chapter 8: Record-oriented Input/Output 127

--~---

CONTROL BLOCKS GENERATED FROM
FilE DECLARATION

DClCB

Function Holds all file attributes
used in file declaration
Location Separate control section
for external files, static internal
for internal files.
When generated: During compilation
Contents

Record of file attributes
at declaration
File name
Address of ENVB
Offset of FCB pointer in PRV

Environment control block (ENVB)

Function: Holds information on
environment options
Location: I n static storage
When generated: During compilation
Contents: Addresses of

blocksize
record length
of buffer tracks
KEYLOC value
key length
indexarea size
addbuf

CONTROL BLOCK GENERATED FROM
OPEN ST A TEM ENT

Open control block (OCB)

Function: To contain file attributes
given in OPEN statement
Locati on: I n static storage
When generated: During compilation
Contents: The attributes when
specified on the OPEN statement

--~--.----------------------------------.--------
Figure 8.4. (Part 1 of 2). The fields used in implementing record I/O

128

CONTROL BLOCKS GENERATED FROM
INPUT/OUTPUT STATEMENTS

Key descriptor (KD)

Function: To describe the key variable
Location: Depends on storage class of
key variable
When generated: Depends on storage
class of key variable
Contents: Length and address of key
variable

Record descriptor (R D)

Function: To describe the record variable
Location: Depends on storage class of
record variable
When generated: Depends on storage class
of record variable
Contents: Length and address of record
variable

Request control block (RCB)

Function: Holds a definition of the
statement for execution-time checking
Location: In stat is storage
When generated: During compilation, for
library data management calls only
Contents: F lags defining statement

Code for TM instruction, or
a branch instruction (if
checking was done during
execution)

CONTROL BLOCK GENERATED DURING
EXECUTION OF OPEN STATEMENT

File control block (FCB)

Function: Acts as a central source of
information about the file
Location: In statis storage
When Generated: During open
Contents include:

Flags indicating
valid statements
Transmitter name
Transmitter address
Error module address

I
DCB/ ACB address
Filename address
Buffer address
flags and workspace for
the Xmitters'

DCB
Data Management control block/
Access-Method Control Block

Figure 8.4. (Part 2 of 2). The fields used in implementing record I/O

Chapter 8: Record-oriented Input/Output 129

OPEN Statement

For an OPEN statement, the compiler
generates a call to the open/close
bootstrap routine" IBMBOCL, and an open
control block (OCB). The OCB holds any
attributes that are declared in the OPEN
statement.

More than one file may be passed to the
open routines. The last file has its last
parameter flagged with its first bit set to
'1' .

For an explicit open, a call is made to the
open/close bootstrap routine, IBMBOCL. For
each file to be opened, the following
information is passed to IBMBOCL:

The address of the DCLCB
The address of the aCB, (or zero, if

no OCB exists)
The address of the TITLE, (or zero if

none is specified)

IBMBOCL has four entry points:

IBMBOCLA explicit open
IBMBOCLB implicit open for library

call I/O
IBMBOCLC explicit close
IBMBCCLD implicit close

When called by entry point A, IaMBOCL
invokes -the transient library open routines
to open the file. If the environment option
TOTAL has not been used in the file
declaration, it will be necessary to
determine the attributes of the file by
merging the attributes in the file
declaration with those used in the OPEN
statement. Attributes in the file
declaration are held in the ENVB and DCLCB.
Attributes used in the OPEN statement are
held in the OCB. If the TOTAL option has
been used, attributes are taken from the
declaration. and any contradictory
attributes in the OPEN statement result in
the raising of the ERROR condition.

The open modules build an FCB and DCB
from the information in the control blocks,
initialize the pseudo-register vector to
point to the FCB, load the PL/I and data
management transmitters, and return to
compiled code. Five transient open modules
are used. Their functions are summarized
below and are described in detail in the
licensed publication OS/360 f~Ll I~ansi~~

130

The transient open routines perform the
following major functions when opening a
file:

1. Build the file control block (FCB) and
data control block (DCB), or, for VSAM
the access method control block (ACB)
for the file. The FCB is a PL/I
control block used to access all file
information. lhe DCB is a data
management control block used to
describe the data set. The ACB is
the equivalent of the DCB for VSAM
files.

2. Issue the data management OPEN macro
instruction to associate the file with
the data set.

3. Obtain and initialize buffers and any
other blocks required for the file.

4. Determine which statement types are
valid for the file, and store this
information as a set of flags held in
the FCB.

5. select the appropriate PL/I
transmitter, and load it for use
during transmission statements~

6. Check for errors, and raise the
UNDEFINEDFILE condition if any are
found.

7. Place the address of the FCB in the
correct pseudo-register vector o~fset.

The execution of an OPEN statement is
summarized in figure 8.6.

VSAM data sets both KSDS and ESDS are
normally accessed by PL/I using VSAM Racro
instructions, however, in certain
circumstances the data sets are accessed
through the compatibility interface~ If
the file is declared with ENV (VSAM) the
VSAM macro instructions will automatically
be used. Even if it is not so declared, the
PL/I open modules will normally detect that
a VSAM data set is being accessed. To do
this they issue an RDJFCB macro
instruction. However this action is not
effective if the ALLOCATE command is being
used under TSO to provide DD information,

DCl FI FilE UNBUFFERED RECORD INPUT ENVIRONMENT (RECSIZE (80));

+ DCLCB

0000000002010200
0106190000000018
00000014000206F1
0000000000000000 ENVB
0000000200000040
0000004400000040
00000040'00000040
0000004000000040

Figure 8.5. Information in the file declaration is held in the ENVB and the DCLCB
until the file is opened

Chapter 8: Record-oriented Input/Output 131

CD DCLCB identifies file

® ® Title held in static

/
Open control block
(OCB) holds options in OPEN

OPEN FILE (F2) OUTPUT TITLE ('OUTFILE');

-------=--Executable instructions call to Open close bootstrap module passing parameter list ® containing addresses etc

for @ ®and@

G) DCLCB set up during file declaration see figure 8.5

® Open control block in static. See Appendix A for Format:

000048 0020000000D00800 CONSTANT
00000000

® Tit~e (held in static internal) is addressed via locator (also in static internal)

Title

OOOOAO D6E4E3C6C9D3C5

Locator

000020 000000A000070000

@) Machine Instructions

000088 41 10 3 064 LA 1,100(0,3) Point R 1 at P-lists

00008C 58 FO 3 OOC L 15,A .. IBMBOCLA} Branch to open/close bootstrap
000090 05 EF BALR 14,15

® Parameter list

000064 00000044
000068 00000000
00006C 00000048
000070 00000020
000074 00000000
000078 80000000

From To
compiled compiled
code code , t

IBMBOCL

Loads transient
open modules.
Calls I BMBOPA

A .. CONSTANT
A .. DCLCB
A .. CONSTANT
A .. CONSTANT
A .. NULL ARGUMENT
A .. NULL ARGUMENT

No. of files to be opened

A ... OCB
A ... LOCATOR for TITLE

} Used for print files only

EXECUTION

~
IBMBOPA IBMBOPB

............ -----Open Phase I Open Phase II

t ~ 1 1
IBMBOPE IBMBOPZ

Open Phase II Formatting

VSAM files (direct output
only)

IBMBOPC

Open Phase III

J
IBMBOPD

------ Open Phase I V

~~ \~----------------~v~------------------------------~/
RESIDENT LIBRARY TRANSIENT LIBRARY

Figure 8.6. Open statement

132

because, in this case, the RDJFCB macro
instruction cannot determine that a VSAM
data set is being accessed. In this
situation the compatibility interface will
be used. It is possible for the user to
force the use of the compatibility
interface by specifying either nRECFM n or
"OPTCD=L" in the AMP parameter of the DD
statement.

The flow through the PL/I open modules
is as follows. IBMBOPA scans the list of
files to be opened and sets.a flag to
indicate that IBMBOPE is required for any
files declared with ENV (VSAM). If one or
more files are found without ENV (VSAM),
IBMBOPB is called to open them. Then on
return from IEMBOPB, IBMBOPE is called to
open any VSAM files. If IBMBOPB detects
that any consecutive or indexed files are
being used to access VSAM data sets, it
will set the flag indicating that IBMBOPE
is required and ignore that file. When all
the non-V SAM files have been opened,
IBMBOPD returns to IBMBOPA. IBMBOPA tests
to see whether there are any VSAM files to
be opened, and, if ther are, calls IBMBOPE.

IBMBOPE opens the files starting with
the first. Each file is completely opened
before starting to process the next. The
open process involves nine main steps, as
follows:

1.

2.

3.

4.

5.

Merge attributes from OPEN
statement with file declaration
and check for validity.

Get non-LIFO storage space for the
FCB and ACB, and create the ACB
using the GENCB macro instruction.
The DDNAME is obtained from the
filename or the TITLE option. The
password is obtained from the
PASSWORD environment option if
specified. The MACRF options used
are:

SEQ/DIR
KEY/ADR
IN/OUT

SEQUENTIAL/DIRECT
KSDS/ESDS
INPUT/OUTPUT
(both specified
for UPDATE)

Issue an OPEN macro instruction
and test the return codes in the
ACB.

Check the actual values of the
RECSIZE" KEYLENGTH, and KEYLOC
options against any values
specified in the ENVIRONMENT
option. Check that NCP/STRNO is
not greter than one. If any
errors or descrepancies are found,
the ACB must be closed.

set up the mask of invalid

6.

7.

8.

9.

statements for use by IBMBRIO.

Get non-LIFO stQrage space for the
IOCB and RPL, plus key space for a
KSDS, and a dummy buffer for a
buffered file. Create the RPL
using a GENCB macro instruction.
The OPTCD values are partially set
as shown below. The transmitter
merges the other options according
to statement type. The OPTCD
options set are:

KEY/ADR
SEQ/DIR
UPD/NUP

GEN/FKS

KSDS/ESDS
SEQUENTIAL/DIRECT
UPDATE/INPUT or

OUTPUT
GENKEY/not GENKEY

KEQ,MVE, and ASY are always
specified.

Load the approptriate library
transmitter as follows:

ESDS IBMBRVAA
KSDS SEQUENTIAL OUTPUT

IBMBRVGA
KSDS SEQUENTIAL INFUT/UPDATE

IBMBRVHA
KSDS DIRECT

IBMBRVIA

Insert nE n as the seventh
character of the error module
name, so that IBMBREEA will be
loaded if an error occurs.

Add the FCB address to the chain
of open files and set the address
of the FCB in the pseudo register.

During execution of record I/O statements,
all information about the file is obtained
from the FCB. However, as the FCB is net
created until execution, the FCB cannet be
addressed directly by compiled code.
Instead, compiled code obtains from the
DCLCB the offset within the PRV at which
the FCB address is held. This offset is
placed in the DCLCB by the linkage editor.
The mechanism is illustrated in figure 8.7.

The use of the pseudo-register vector
allows separately compiled programs to
refer to the same FCB for an external file,
even though the address of the FCB cannet
be known until execution. An explanation
of the use of the pseudo-register vector is
given in chapter 2, under the heading "Use
of the pseudo-Register Vector."

Chapter 8: Record-oriented Input/Output 133

R12 - TCA

Address of PRV

DClCB for file C

--... PRV offset = 8

PL/I statement: DCl (A,B,C) FilE;

The address of the FCB for the file is obtained by adding
the offset in the DClCB to the PRV address which is held
in the TCA

Figure 8.7. Addressing files via DeLeB and PRV

134

~
I

~ PRV

U
Address of FCB for file A

Address of FCB for file B

Address of FCB for file C

) FCB for file C

Transmission Statements (Library-Call
I/O)

For transmission statements the compiler
generates a call to the PL/I transmitter
interface module, IBMBRIO. IBMBRIO has the
following parameter list passed to it:

Address of DCLCB
Address of request control block (RCB)
Address of record descriptor (RD); 2f,

address ignore factor; Qf,
address at which to set pointer
Address of key descriptor (KD); or,

zero if no key descriptor
Address of event variable (EV); Qf"

zero if no event variable
Abnormal locate return address (LOCATE

statements only)

The DCLCB is generated from the file
declaration~ as described earlier in the
chapter. The remainder of the control
blocks in the parameter list are generated
for the transmission statement.

The ~~~~~2ntrQ~bloc~-1BCBl defines
the staterr.ent type. It consists of two
words. The first is a fullword of flags
that define the statement type and option,
indicating whether the statement is READ
SET" READ INTO, WRITE FROM" etc. The second
word is a test-under-mask (TM) instruction
that is executed by IBMBRIO to check
whether the statement is valid. The flags
in the RCB are tested against flags in the
FCB or dummy FCB. If the statement is
invalid" a branch is made to an address
held in either the FCB or the dummy FCB.
If the file is not open, the dummy FCB will
be accessed l and the branch will be made to
the open/close bootstrap to open the file.
If the file is open, a real FCB will be
accessed, and the branch will be via a
bootstrap to the error handler. The RCB is
set up in static internal storage. The
format is shown in appendix B.

The f§£Qf~9~§£fiptQr (RQl contains the
address, length and type of the record
variable. (The record variable is the
variable to or from which the record will
be transmitted.) A record descriptor is
generated only if a record variable is
used. The format is shown in appendix B.

The ~~_9~§£fiRtQf-1!Ql contains the
address and length of the key variable.
(The key variable is the variable to or
from which the key will be transmitted.) It
is generated only if a key variable is
used. The format is shown in appendix B.

If the record variable or the key
variable is STATIC INTERNAL, a complete RD
or KD is set up and placed in static
internal storage during compilation. In
most other circumstances~ a skeleton RD or
KD will be set up" and will be completed by
the inclusion of the address during
execution. The completed descriptor may be
moved into temporary storage. In certain
conditions, no skeleton is produced;
instead, the complete descriptor is built
in temporary storage by compiled code.

The event variable (EV) (if used)
contains information-ibout the event that
has been associated with the event I/O
statement. (For format, see appendix B.)
The implementation of event I/O is covered
briefly at the end of this chapter, and
further in chapter 11 for non-multitasking
programs and chapter 14 for multitasking
programs.

The abnormal locate return block is used
only for-rOCATE-statementS7-It-Is the
address of a block containing ~he address
to which control will be passed if an error
is detected in a LOCATE statement and a
normal return is made after execution of
the on-unit. The abnormal-locate return
address is usually the start of the next
statement.

The code and control blocks generated
for a transmission statement using a
library call to the data management
routines are shown in figure 8.8.

Chapter 8: Record-oriented Input/Output 135

COMPILATION ~ Record descriptor
holds address and length

f'1) DCLCB of record variable !ey descriptor
~identifies file 4 holds address and length of key variable

®

®

REQUEST CONTROL BLOCK

WRITE h:~::~~ ~ KEYFROMJKI;

"~".""~"-"~~:;® are a call to the PLII library module IBMBRIO

completing and passing PARAMETER LIST ® which holds addresses of 1, 2,3 and 4.

DCLCB, set up from file declaration holds address of FCB via pseudo register vector.
(See file declaration).

REQUEST CONTROL BLOCK holds record of statement type
000028 0880200091022001 CONSTANT

RECORD DESCRIPTOR holds address and length of record, set up as far as possible during
compilation, completed during execution. For statement above set up in temporary storage
during prologue code

KEY DESCRIPTOR holds address and length of key, set up as far as possible during
compilation, but, for this statement, completely built by compiled code in temporary
storage (see 5).

Executable instruction

* STATEMENT NUMBER 4
000092 41 90 D OB8 LA 9,184(0,13) Pick up address record descriptor
000096 50 90 3 084 ST 9,132(0,3) Place in parameter list
00009A 41 90 D OBO LA 9,176(0,13) Pick up address-key descriptor
00009E 50 90 3 088 ST 9,136(0,3) Place in parameter list
0000A2 41 10 3 07C LA 1,124(0,3) Point R 1 at parameter list
0000A6 58 FO 3 014 L 15,A .. IBMBRIOA
OOOOAA 05 EF BALR 14,15 Call1BMBRIO

Note: For this statement the record and key descriptors were stH up in temporary storage
during prologue code.

® PARAMETER LIST passed to IBMBRIO

00007C 00000000
000080 00000028
000084 00000000
000088 00000000
00008C 00000000
000090 80000000

A .. DCLCB
A .. CONSTANT
A .. RD
A. .KD
A .. NULL ARGUMENT
A .. NULL ARGUMENT

Filled in by linkage editor
Request control block
(Record descriptor)
(Key descriptor (built during execution))

Figure 8.8. (Part 1 of 2). Handling a transmission statement

136

EXECUTION OF TRANSMISSION STATEMENT

Call from compiled code

IBMBRIO

(Resident library interface module)
Loads parameters into registers.
Calls pur transient library
transmitter whose address is placed
in the FCB during the execution
of the OPE N statement.

PUI TRANSMITTER

(Transient library)
Calls data management.
Checks for errors and moves
record and key if necessary

DATA MANAGEMENT

Handle the transfer of data

Return to compiled code

Figure 8.8. (part 2 of 2). Handling a transmission statement

Chapter 8: Record-oriented Input/Output 137

Compiled code calls the transmitter
interface module, IBMBRIO, passing to it
the parameter list shown above under
"Compiler output".

The interface module, IBMBRIO, first
acquires a DSA, which is used by IBMBRIO
and by the transmitter. It then
initializes the registers for the
transmitter, and executes the TM
instruction in the request control block
(~CB). This instruction tests a set of
flags that are addressed by a pseudo­
register offset contained in the DCLCB.
The contents of the pseudo-register offset
depends on whether the file is open. If
the file is not open, it is opened and
return made to this point to continue the
statement. (See "IMPLICIT OPEN" later in
this chapter.)

When the file is open, the TM
instruction tests the validity flags in the
FCB. This establishes the validity of the
statement. If the statement is not valid,
a branch is made to the address held in the
word in the FCB following the statement
validity flags. This address is an entry
point in IBMBRIO that calls the error
handling module, IBMBERR, with an error
code indicating an invalid statement.

If the statement is valid, a branch is
made to the transmitter whose address is
held in the FCB.

After the file is open and the statement
validated, control is passed to the
transmitter. which checks the record and
key variables for errors, and issues the
appropriate data management macro
instruction. After the data management
macro instruction has been executed,
control returns to the transmitter. The
transmitter moves the data between the data
management buffer and the record variable,
or sets the pointer to the record, and
checks to see whether any errors have

138

occurred.

Transmitter modules do not acquire
separate DSAs, but use the DSA acquired by
IBMBRIO.

If the statement is 'valid, control is
returned to compiled code. The situation
when an error has been detected is
described later in this chapter under the
heading "ERROR CONDITIONS IN TRANSMISSION
STATEMENTS."

In certain conditions, data managerrent
will require a parameter list known as the
data event control block (DECB). The PL/I
library routines include this block in a
PL/I control block known as the
input/output control block (IOCB). A
number of IOCBs may be used. The number
depends on the file type, and on the NCP
subparameter in the DO statement or NCP
option in the ENVIRONMENT attribute.
Depending on the file type, IaCBs may be
generated during the execution of th~ open
statement, or by the transmitters when they
are required.

The format of the IOCB is shown in
appendix A. The format of the DECB and a
further description of its use is given in
the publication 05/360 Supervisor and Data
M~n~g~m~nt_~~Q In2tr~ction2. IOCEs are
further described tn the section "EVENT
OPTION", below.

EVENT Option

When the EVENT option is used, transmission
statements are always handled by library
call. The compiler generates a call to
IBMBRIO in the usual manner, except that
the address of an event variable is passed
1n the parameter l~st.

The associated WAIT statement is
compiled as a call to one of the library
wait modules. The module called depends on
whether or not the program is multitasking.
The execution of an I/O statement with the
EVENT option and its associated WAIT
statement is shown in figure 8.9.

P:P ROC;

H

READ EVENT (E);
:... .,

~

• r- --<]
¢

IBMBRIO

i
V"

'r I
I

PL/I TRANSMITTER I
L-f>-+

ISSUE DATA MANAGEMENT-
MACRO
RETURN IF EVENT I/O
ISSUE CHECK MACRO· ---<] - - f-

I
1
I
I
I

TEST FOR ERRORS
IF NONE RETUR'N TO WAIT
MODULE I

I
I
1

--'--,

--1
I
I

V
I
I
I

1
1

I
I
I

6.

I
I

6.
I
I
I
I
1
I
I
I

l:1
I

I
I I

"y I
L _________ -, I

WAIT (E); ----t>--------, :. 4- - - - - - - - -I ~---..II..------------,
1 I

'----

. I
I

I I
WAIT MODULE : 1

I
IF EVENT I/O C~:L.-!~M!~I.:> -=--=-= ~-=-}[> ---
RETURN IF NO MORE
EVENTS TO WAIT ON

I
I

I L ________ -'

END P; Key

.. READ EVENT statement

- - - I> - - - WAIT statement
. Further PL/I statements

Figure 8.9. Handling the EVENT option

Chapter 8: Record-oriented Input/Output 139

The principle used in event I/O is that the
PL/I transmitter returns to compiled code
as soon as the data management macro
instruction has initiated the I/O.

When I/O with the EVENT option is being
executed, the event variable associated
with the event is set active and flagged to
indicate that the event is an I/O event.
When the WAIT statement is reached, the
library wait module is entered. when the
event is an I/O event~ the PL/I library
wait routine passes control to IBMBRIO.
From information in the event variable,
IBMBRIO locates the I/O operation
associated with the event, and calls the
transmitter. The transmitter then issues a
CHECK macro instruction, and waits until
the operation is complete. When control
returns after the CHECK macro instruction,
the transmitter assigns the transmitted
data, and either returns to the wait
module, or, if any errors are detected,
enters one of the error routines. (For
further details, see "ERROR CONDITIONS IN
TRANSMISSION STATEMENTS" later in this
chapter.)

When the transmitter assigns the data,
it is necessary for the address and length
of the record variable, and certain other
information~ to be available. This
information is retained in the input/output
control block (IOCB).

The IOCB is chained to the event variable
so that the I/O routines can access the
statement when control is returned to them
during execution of the WAIT statement.

To associate the PL/I statement with the
data management operation~ the DECB for the
operation is included in the IOCB. (The
DECB is a record held by the data
management routines so that the operation
can be posted complete.)

For certain types of PL/I files, the
IOCB also contains the data management
buffer to or from which the transmission
will be made.

For direct access files, IOCBs are
allocat,ed as they are required by the
transmitter.

140

For sequential access files, the IOCEs
are generated by the open routines. The
number of IOCBs requested corresponds to
the number specified in the NCP
subparameter or option.

In event I/O, the 'existence of a dummy
record may not be discovered until after a
read has commenced on the record following
the dummy. When this happens, the DECE and
IOCB pointers are reset appropriately.

Because the CHECK macro instruction is not
issued until the WAIT statement is
executed, PL/I conditions raised in event
I/O are handled during execution of the
WAIT statement. The implications of this
are discussed in the section on the WAIT
statement in chapter 11 for non­
multitasking programs, and chapter 14 for
multitasking programs.

In exclusive I/O, records are protected
from simultaneous updates from different
tasks by use of the ENQ and DEQ macro
instructions.

When a READ statement for an exclusive
file is being executed, an ENQ rracro
instruction is issued. Unless NOLOCK is
specified, the DEQ macro instruction is net
issued until a REWRITE, DELETE, or UNLOCK
statement is executed. For unblocked
records, the ENQ and DEQ instructions are
issued on one record only. For blocked
records, they are issued on the data set.

Eight PL/I transmitter modules are used
to handle exclusive files: they are shown
in figure 8.2. The ENQ and DEQ macro
instructions are issued by calling the
resident library routine IBMBPDQ, which is
addressed from the TCA.

The protection of the data set depends
on all files that access the data set
having the EXCLUSIVE attribute. If the
data set is accessed by a file that does
not have the EXCLUSIVE attribute, the data
set will not be protected.

IFor VSAM files the EXCLUSIVE attribute is
ignored and the NOLOCK option and UNLOCK

G) OCLCB identifies file to be closed

1
CLOSE FILE (F2)

~
® Executable instructions consist of a call to the open/close bootstrap module passing parameter list ®

CD
®

OCLCB set up for file declaration see figure 8.5

Executable instructions

* STATEMENT NUMBER 5
OOOOAC 41 10 3 094
OOOOBO 58 FO 3 010
0000B4 05 EF

LA 1,148(0,3) Place address OCLCB in p-list

Parameter list

000094 00000044
000098 00000000
00009C 80000000

CLOSE FILE (F1);

L 15,A. .1 BMBOCLC } Call open/close toolstrap
BALR 14,15

A. .CONSTANT
A .. OCLCB
A. .NULL ARGUMENT

Address of constant showing number of files to be closed
Address OCLCB
Used for disposition options, flagged in first bit to indicate last argument

COMPILATION
L 7,FO
ST 7,2528(0,3)
LA 1,2524(0,3)
L 15,A. .IBMBOCLC
BALR 14,15

EXECUTION

Pass address of constant with number of files to be closed
Pass address of OCLCB of file
Point R1 at parameter list
Branch to open/close bootstrap

Call from compiled code Return to compiled code

IBMBOCL
Entry point C

Resident library open/close bootstrap
routine. Calls the close routine

IBMBOCA

Transient library close routine. Calls
transmitter to complete I/O if necessary.
Calls data management to close the data
set. Removes FCB from Open File
Chain. Restores PRV offset to p'oint to
dummy FCB.

DATA MANAGEMENT

Disassociates file from data set.

PUI TRANSMITTER

Transient library routine. Calls
data management to complete I/O

Figure 8.10. The execution of an explicit CLOSE statement

Chapter 8: Record-oriented Input/Output 141

OCLCB

..

PRV

a •• a--____ f_f_se_t_w_i_th_i_n_P_R_V ___ -i •••• •

Initialized to dummy FCB
Changed to real FCB when
file is opened

" I ,
+OUMMY FCB

Address of open/close
bootstrap routine

Address of open/close
bootstrap routine

KEY

----. Address contained in PRV when file open

.- - ~ Address contained in PRV when file closed

••••••••• Connection between OCLCB and PRV field.
The OCLCB contains the offset filled in by
the linkage editor. The PRV itself is
addressed from the TCA.

FCB

Figure 8.11. The addressing mechanism used during implicit open

142

Address of error
handling module

Address of data
management routine

Istatement will have no effect (except that
Ifor UNLOCK, the key specification is
I checked.) Data set protection is provided
by VSAM itself.

CLOSE Statements and Implicit Close

For CLOSE statements l the compiler
generates a call to the appropriate entry
point of the open/close bootstrap module,
passing it the addresses of the DCLCB and
ENVB for the file.

No compiler action is taken for implicit
close.

Files and data sets can be closed either by
the PL/I CLOSE statement or by the
termination of the program. In both cases,
the close is carried out by library
routines. The bootstrap module IBMBOCL is
called either by compiled code, or, during
program termination" by the termination
routine~ IBMBPIT or IBMTPJR for
multitasking. It loads and calls the
transient close routine~ IBMBOCA.

The bootstrap routine IBMBOCL is passed
a parameter list containing the addresses
of the DCLCBs and ENVBs for the files that
require closing. IBMEOCA then closes these
files. This may involve completing I/O
operations, and hence calling the
transmitter. After handling any necessary
transmission, IBMBOCA disassociates the
file from the data set.

The ENVB is required if the LEAVE or
REREAD option is in effect.

For implicit closing, the chain of open
files starting in the TCA is scanned to
determine which files must be closed. The
addresses of the FCBs of these files are
then passed to the close routine.

For an explicit close, it is necessary
to set the address in the pseudo-register
vector to pOint" once more, to the dummy
FCB. This allows implicit opening to be
handled should the file be opened again.
(See nIMPLICIT OPENn later in this
chapter.)

When IBMBOCA has finished, it returns
control (via IBMBOCL) either to compiled
code (for an explicit close statement) or

to the termination routine (for the end of
the program). The code and control blocks
generated for a CLOSE statement are
summarized in figure 8.10.

Implicit Open for Library -Call I/O

There is TI2 compiler output for an implicit
open, because it is not always possible to
predict which transmission statements will
cause implicit opening of a file.

Implicit opening is handled by manipulation
of addresses (see figure 8.11).

when IBMBRIO is called for a
transmission statement, it executes a test­
under-mask (TM) instruction against a set
of flags held at an. offset from the address
held in the pseudo-register vector. The
address held in the pseudo-register vector
depends on whether the file is open. If
the file is open, the pseudo-register
offset contains the address of the FCB for
the file. If the file is not open, the
pseudo-register offset contains the address
of a dummy FCB in the program management
area.

The address is set during program
initialization to point to the dummy FCB,
and is reset to the dummy FCB whenever a
file is closed.

The first word in the dummy FCB is a set
of statement validity flags. These are all
set to zero. Consequently any TM
instruction executed by IBMBRIO will give a
negative result. The second word of the
dummy FCB is the address of an entry point
in the open/close bootstrap module. If the
TM instruction yields a negative result,
IBMBRIO branches to the address held
immediately after the statement validity
flags. Consequently when an attempt is
made to execute a transmission statement on
a file that is not open, control passes
automatically to the open routines.

The open routines open the file, and set
up an FCB and DCB for the file. The
address of the FCB is placed in the pseudo­
register offset. and execution of the
statement is reattempted by branching once
more to IBMBRIO.

Chapter 8: Record-oriented Input/Output 143

Error Conditions in Transmission.
statements .

To provide PL/I error handling facilities·
with the minimum possible overhead to
error-free programs, transient-library
modules are used. These are not loaded
unless an error occurs. Two modules are
available for every file type except VSAM:

1. The ENDFILE routine, IBMBREF, which
can deal only with the ENDFILE
condition.

2. A general error module capable of
handling all conditions that may
arise, including ENDFILE, but loaded
only if the TRANSMIT~ RECORD, KEY, or
ERROR condition occurs. (See figure
8.12.)

r-------------·---------------------------,
Record 1/0 I File types
error module I

I

IBMBREA I Consecutive buffered
I

IBMBREB I Indexed
I

IBMBREC I Regional, consecutive
I unbuffered, and
I transient

IBMBREE I VSAM

I
~ndfi;le_1!!od~!~ I

I
IBMBREF I All SEQUENTIAL/INPUTI

I UPDATE file types
I (excluding VSAM)

L---J
Figure 8.12. Record 1/0 error modules

This me1thod is used because the short
ENDFILE module gives faster execution to
those programs that use the ENDFILE
condition to handle program flow. The
transient error modules for all file types
are identified by the six letters IBMBRE
followed by a further single character (see
figure 8.13).

If a transmission error occurs, the
transmission error routine within the
transmitter will be entered, whether an in­
line or library-call statement is being
executed. The transmission error routine
has been nominated in the SYNAD exit

144

address placed in the DCB by the OPEN
routines. Similarly, if end-of-file
occurs, the end-of-file routine within the
transmitter will be executed. Record and
key errors are detected either by the
transmitter or by compiled code.

When any of the errors or PL/I
conditions mentioned above occurs during
the execution of a record I/O statement,
control is passed to the address held in
the word "FERM" in the FCB. The address may
be anyone of the following:

• The address of IBMBREF~ the ENDFILE
module.

• The address of the general error module
for the file type.

• The address of a bootstrap routine,
IBMBRIOB. This routine constructs the
name of an error module by taking the
skeleton IBMBRE*A and replacing the "*"
by the letter in the single character
field "FEFT" in the FCB. IBMBRIO then
loads this error module, places the
address of the module in FERM, and
branches to the module.

So, by changing the contents of the field
FEFT, the transmitter can select a
particular error module. The contents of
FEFT is one of the following:

• A character indicating the name of the
general error module for the file tyte.
This character is placed in FEFT during
the execution of the OPEN statement.

• The character "F", indicating the name
of the ENDFILE module. The contents of
FEFT is changed to "F" by the end-of­
file routine in the transmitter, which
is entered when data management detects
end-of-file.

'l'hus the module loaded by the bootstrap
routine IBMBRIOB, and the address placed in
FERM, depend on whether end-of-file or
another error is the first to occur on the
file.

The result of this arrangement is that
the general error module can be called in
an end-of-file situation. Similarly, the
ENDFILE module can be called when another
type of error occurs, if ENDFILE was the
first condition to occur. To overcom~ this
problem, the general error module contains
code to handle ENDFILE, and the ENDFILE
module contains code to test for other
conditions, and load and call the general
error module if appropriate.

Contents FE FT
Initialized by open routine
with character "A", "B", "e"
indicating general error suoport
module.
Altered by end of file routines
in transmitter to character "F"
indicating ENDFILE module

Contents FEMT
Always contains character
indicating general error
support module

FCB

FEFT

FEMT

FERM

Key

••••••

, ,

,

If no errors have occurred.

, ,

IBMBRIO
(entry point B)
Loads and calls module
indicated in "F EFT" and
places its address in FER M.

,
,

IBMBREF
Endfile module
If ENDFILE :
Calls error handler
If other error:
Loads and calls
error module indicated
in "FEMT". Placing
address in FERM

IBMBRE/A/B/C
General error support modules.

Handle all errors including
ENDFILE

If 1st. error was ENDFILE and
no other errors occurred.

If non-ENDFILE errors have
occurred.

Figure 8.13. The fields used in record I/O error handling

Chapter 8: Record-oriented Input/Output 145

The ENDFILE module constructs the name
of the general error module in a similar
manner to that used by IBMBRIOB, described
above. However, the sixth letter of the
name is taken from a field in the FCB
called "FEMT." FEMT always holds the
character that identifies the general error
module for the file. When the name has
been constructed, the general module is
loaded, its address is placed in FERM, and
a branch is made to the module by way of
the bootstrap routine in IBMBRIO.

The general error routines set up a
parameter list and the relevant built-in
function values in the ONCA (described in
chapter 7). They then call the resident
error handler IBMBERR to handle the
condition. If a normal return is made from
an on-unit, the general error module will
raise any further conditions that have
occurred by calling IBMBERR with the
appropriate error code. After all
conditions have been raised, a return is
made to compiled code, or, in event I/O, to
the wait module.

The ENDFILE routine checks to ensure that
the situation which has resulted in the
call is really end-of-file, and, if so,
passes control to the error handler.

For certain file types, when a permanent
transmission error occurs action must be
taken to prevent subsequent issuing of data
management macro instructions. To achieve
this, addresses are manipulated so that,
instead of IBMBRIO calling the transmitter
by its primary entry pOint, it calls an
error routine within the transmitter, which
in turn calls the error handler to raise
the TRANSMIT condition.

In-line I/O Statements

Most transmission statements on buffered
consecutive files are implemented t:y in­
line calls to the data management routines
(see figure 8.16 for details). Such
statements are referred to as "in-line I/O

146

statements." Only READ, WRITE, and LOCATE
statements are handled in this way. OPEN
and CLOSE statements are always executed by
library calls.

For in-line I/O statements, the only
control blocks that are set up are the FCB
and DCB. The request control block, record
descriptor, and key descriptor are not
required as they are rr.erely parameters for
library subroutines.

For in-line I/O, a call is made direct to
the data management routine whose address
is held in the FCB. In addition to calling
the data management routine, compiled ccde
moves the data as necessary to or from the
record variable, or sets appropriate
pointers. Compiled code may also check for
the RECORD condition.

For U-format and V-format records,
compiled code does not call data management
direct. Instead a call is made to small
routines within the PL/I transmitters.
These routines are addressed through the
field in the FCB that normally addresses
the data management routines. This field
is initialized by the open routines when U­
format or V-format records are used on the
file. The compiler can thus produce the
same code for all record types.

For certain types of blocked file,
deblocking is handled by compiled code.
Fields in the DCB hold the address' of the
current record, the address of the end of
the block, and the record length. Before a
call is made to data management, a check is
made to see whether the end of the block
has been reached. This is done by adding
the record length to the current record
address. If the resultant address is the
end of the block, a call is made to data
management for a new block; otherwise, the
new address can be taken as the start of
the required record.

If an error occurs during transmission, or
if end-of-file is reached, the data
management routines will branch to the
ENDFILE or SYNAD routines that are held in
the PL/I transmitter. (The PL/I

transmitter is alWaY2 loaded by the open
routines.) The ENDFILE and SYNAD routines
set an error flag in the FCB, and return to
compiled code, normally via the data
management routine. If the error flag is
on, or if the RECORD condition has
occurred, compiled code branches to
IBMBRIOD. This results in a call being
made to the transient error module.

Typical code produced for an in-line I/O
statement is shown in figure 8.14.

Implicit opening for in-line calls is
handled in a similar way to that used for
library calls.

The field that., in a normal FCB, points
to the data management transmitter, in the
dummy FCB pOints to the open/close
bootstrap routine, IBMBOCL (see figure
8.11). This results in a branch being made
to the OPEN routines when an attempt is

made to access a file that is not open.
When the open routines have been executed,
the address in the pseudo-register vector
is altered to point to the FCB that has
been created for the file.

If the file is successfully opened, a
test is made to see whether the entry to
IBMBOCL was for an in-line call and, if it
was, control is passed to the data
management address held in the DCB. This
causes the data management module to be
entered and a return made to compiled code.

A further problem arises over
deblocking~ for certain blocked files,
before data management is called, a test is
made to see whether the end of the block
has been reached. For such files, values
are placed in the dummy FCB that ensure
that if the test for end-of-block is rrade
before the file has been opened, the test
will reveal an apparent end-of-block. A
branch will therefore be made to the
transmitter field in the dummy FCB, and
control will pass to the open/close
bootstrap routine.

Chapter 8: Record-oriented Input/Output 147

SOURCE

1
2

EXAMPLE:PROC OPTIONS (MAIN);

3
4

1
1

* STATEMENT NUMBER
00005E 18 72
000060 58 90 3 01C
000064 18 89
000066 58 10 C u04
00006A SA 10 B uOO
00006E 58 20 1 000
000072 58 10 2 014
000076 18 81
000078 58 10 8 04C
00007C 4A 10 8 052
000080 59 10 8 048
000084 47 40 7 03A
000088 18 18
00008A 41 80 3 020
00008E 58 FO 2 01C
000092 05 EF
000094 47 FO 7 03E
000098
000098 50 10 8 04C
00009C
00009C C2 4F C OA8
0000A2
0000A2 91 80 2 02C
0000A6 47 EO 7 052
OOOOAA 58 FO 3 014
OOOOAE 05 EF
OOOOBO
000080 18 27

3

1 000

DCL LINE FILE RECORD INPUT
ENV(FB,RECSIZE(80),BLKSIZE(400),TOTAL),
CARD CHAR (80);

READ FILE (LINE) INTO (CARD);
END;

LR 7,2 Save program base
L 9,28(0,3) Load R9 address of DCLCB
LR 11,9 Load Rll DCLCB
L 1,4(0,12) Load Rl PRY
A 1,0(0,11) Add PRY offset in DCLCB to address in Rl
L 2,0(0,1) Point R2 at FCB
L 1,20(0,2) Point R 1 at DCB
lR 8, 1 Save address of DCB
1 1,76(0,8) Pick up pointer to current record (start of deblocking)
AH 1,82(0,8)

Add logical record length to access required record C 1,72(0,8) Compare with end of buffer
El Cl.2 Branch around data management call if new buffer not required
lR 1,8 Restore DCB address if new buffer required
lA 8,32(0,3) Pass abnormal return address (CL .3) in R8 for error handl ing
1 15,28(0,2) Load address of data management routine
EAIR 14, 15 Branch and link to data management routine
B Cl. 4 Branch around next instruction

Cl. 2 EQU * Label branched to if no data management call
S'I 1,76(0,8) Point Rl at required record

Cl. 4 EQU *.
~VC CARC(80) ,0(1) Move record into record variable

Cl. 3 EQU * 'IM 44 (2) ,X' 80' T est for errors
ENO C1.5 branch if no errors
1 15, A •• IEMBRICD if errors call error bootstrap routine
BAIR 14, 15

C1.5 EQU * lR 2,7 res tore program base

Figure 8.14. In-line I/O transmission statement

148

(
l

SOURCE
PROGRAM

....... - -
Open
statement

Transmission
I/O statement

'-

Key

t-----

••••

Figure 8.15.

,..r'\AAn.1 A Tin
'-'VIYlrl LJo\ I IV."

Generate code
to call open
bootstrap

N Validity

..

check
possible?

YES

Valid
statement?

Set up RCB
for Execution­
Time test

Path using library calls

Path for in-line I/O

YES
.....

Common path, in-line/library

Path for implicit open

Overview of record I/O

r COMPi LED CODE

Call
IBMBOCL

EXECUTION

LIBRARY AND DATA MANAGEMENT MODULES

EXPLICIT OPEN IMPLICIT OPEN

I-----~ --- - ------,
1 I

~,~,----~.~~ I
IBMBOCL

Pass control
block addresses
to IBMBOPA

I

1
.&
I
I

I
1

1 I

COMPI LED CODE

Generate
in-line
code

~, I I
~ •••••••••• ~ ... ~ •••••••••••••• ~ •••••••••••••••••••••••••••• r• · · · · · · · · · · · + In-line

I

In-line
or

library?

''IF LIBRARY

Set up RCB
with code to
branch found
Execution-Time
test

Generate
call to
IBMBRIO

Call
IBMBRIO

r----.------------, IBMBOPA, etc. I
I
I
1

....
I

IBMBRIO

Branch to
ERROR

I
I
I

Associate fi Ie
with data set
Load trans-

I mitter
I L-b II '--,-I--~-...... In-line calls
~~~r~~ ~_J L _____ * __ --, 

.. 
I 

~a;~I:~RRA) t--- .--r---T ------------.------~---
or open 
bootstrap if 
file not open 

I 
I 
I 
I --, 
I 

NO 

Valid YES 

statement? 

TM 
I nstruct ion 

~~ 

Execute 
Instruction 
in RCB 

Branch 
i nstru ct i on 

I TRANSMITTER DATA MANAGEMENT • 1 1 

I 
1 

I 
I 
1 

I 
I 
I • I 
I ... 

Call data 
management 
routine 

..... Carry out 
I/O 

I 
1 

••••• J 

! 
Call data 

management 

.-------~~~, ... ~ ... ~,... __ ... ~~~:rs? NO ••••••••••••••••• 
Error routines 
set flags YES : 
indicating error : 
has occurred NO : 

~-----r----~ · 
L.-__ .,.-__ .-J. . .. · · · · · ... · · · · · · · · ; ,. · · · · · · · · · .... · · · · . · · · · · · · · ~ • Move record 

key etc. Check 
for record & 
key condition 

Any. 
conditions 

to raise 
? 

YES .. 
... 

Record I/O 
Error module 

Call 
IBMBERR 

Move record key 
etc. Check for 
record & key 
errors 

- YES to raise 
? 

CONTINUE ~ __________ ~~~ ______________ ~.NO 
, 

....... _~o~;ons 
~ ________ .-J NO 

I CONTINUE I 

Chapter 8: Record-oriented Input/output 149 



File type: Consecutive buffered (TOTAL option used) 

Record type: F,FB 

Statement 

READ SET 

READ INTO 

WRITE FROM 
(fixed string) 

WRITE FROM 
(varying string) 

WRITE FROM 
Area* 

LOCATE A 

Record type: U,V,VB 

READ SET 

READ INTO 

WRITE FROM 
(fixed string) 

WRITE FROM 
(varying string) 

WRITE FROM 
Area* 

LOCATE 

Record variable requirements 

None 

Length known at compile time 
(max. length if a varying string 
or area*) 

Length,known at compile time 

Length known at compile time 
(max. length if varying string 
or area*) 

None 

Length known at compile time 
(max. length if varying string 
or area*) 

Length known at coropile time 

Length known at compile time 
(max. length if varying string 
or area*) 

ENVIRONMENT option requirements 

None 

RECSIZE known at compile time 
SCALARVARYING option if varying 
string 

RECSIZE known at compile time 

RECSIZE known at compile time 
SCALARVARYING option used 

RECSIZE known at compile time 

RECSIZE known at compile time 
SCALARVARYING if varying string 

Not BACKWARDS 

RECSIZE known at compile time 
SCALARVARYING if varying string 

RECSIZE known at compile time 

RECSIZE known at compile time 
SCALARVARYING option used 

RECSIZE known at compile time 

RECSIZE known at compile time 
SCALARVARYING if varying string 

Notes: All statements must be found to be valid during compilation. File parameters 
or file variables are never handled by in-line code. 

BLKSIZE may be specified instead of RECSIZE for F, V, and U formats (but not 
FB, VB). 

I---------------~-----------------------------------------------------------------------1 
1 * Including structures whose last element is an unsubscripted area. 1 L ______________________________________________________________________________________ _ 

Figure 8.16. Conditions under which I/O statements are handled in-line 

:Chapter 8: Record-oriented Input/OUtput 151 



PUt Statement: GET LlST(I); 

r-----------------, 
I PUt transmitter modules I 
I call LlOCS routines to move I 
I the data between the external 14 - - - - - - - - - - - - - - __ , 

medium and the data manage- I 

External medium File SYSIN 

[ 9 10 

\ 
\ 
\ 
\ 
\ 
\ 

~ 
\ 
\ 
\ 
\ 
\ 

ment buffer. I 
I I 
I I 
L------ r ---------

I Data Management buffer 
I 
~ 

Stage 1 
8 9 10 

Stage 2 

I 
I 
I 
I 
I 

• 

\ 
\ 

------, r----------------r---------
\ 
\ 
-.l 

I I Director routines control the 
I I process, calling necessary 
I I conversion and transmitter 
I I modules when required. 

I Conversion routines or 
I compiled code convert 

data and move to variable. 

0000000000001000 ... I 141- ..... -' 
..... ~-.. I I I 

L ______________ ...J 1--- ____ . ___ :-- ____ _ 

Variable I (Fixed Binary 15,0) 
(in main storage) 

Stream inputloutput is a two stage process. The data is moved between the external medium and the data management buffer, and 
between the buffer and the variable. Any necessary conversions are made between the buffer and the variable. The operation is 
controlled by director modules. The director modules call the appropriate routines to do the transmission and conversion. Transmission 
is carried out in a similar way to that used for RECORD liD. 

Note that a further input statement will require the value 9 which is already in the data management buffer. Consequently the trans­
mitter need not be called and a pointer must be kept to the position reached in the buffer. 

Figure 9.1. The principles used in stream I/O 

152 



Chapter 9: Stream-oriented Input/Output 

In this chapter~ the terms source and 
i~~g~~ are used when referring-to transfer 
of data. The 2Q~~£~ is the point from 
which the data is taken; the ~~f9~~ is the 
point to which it is moved, possibly in a 
converted format. 

Introd uction 

PL/I stream-oriented input/output allows 
the programmer to move data between a PL/I 
variable and an external medium without any 
concern about internal and external data 
types or any attention to record 
boundaries. Both conversion and record 
boundary problems are handled 
automatically. 

Although it appears to the programmer 
that the data is moved directly between the 
external medium and the PL/I variable, the 
move is, in fact, a two stage process, as 
shown in figure 9.1. In the first stage, 
the data is moved to a data management 
buffer. In the second stage, it is moved 
from the buffer to the target. When the 
data is moved to or from an external 
medium, a complete record is always moved. 
when the data is moved to or from a PL/I 
variable, only as much data as is contained 
in the variable is moved. The amount of 
data moved in the one stage need bear no 
relation to the amount moved in the other. 
Thus synchronization of the two stages is 
the principal job in implementing stream 
I/O. 

Transmission between the buffer and the 
external medium is handled by the routines 
of OS data management. These routines are 
called by the PL/I transient library 
transmitters in the same way as that used 
in library-call record I/O. The movement 
between the buffer and the PL/I variables 
is generally handled by the PL/I conversion 
routines. The transmitters and the 
conversion routines are called by girectQ~ 
routines. These routines determine which 
modules-are required, and when they are 
needed. 

Data items transmitted by stream I/O are 
not affected by record boundaries (see 
figure 9~2). There may be any number of 
data items in a record, and an item may 
span any number of records. Because the 

data management routines make only one 
record available to the .program at anyone 
time, a method is needed to build up 
complete items if they span the record 
boundary. Similarly, because GET and PUT 
statements may read or write less than a 
complete record, a method is needed of 
keeping track of the position reached in 
the record, so that the next GET or PUT can 
start from the correct position. 

A stream I/O operation can involve any or 
all of the following operations: 

1. Opening the file, and raising the 
ERROR condition if the statement is 
invalid. 

2. Keeping track of the position in the 
buffer. 

3. Calling the transmitter for a new 
record. 

4. Building in intermediate workspace an 
item too large to be held in the 
current record. 

5. Determining which conversion is 
required, and calling the routine to 
carry out the conversion. 

6. Enqueuing and dequeuing on SYSPRINT. 

Control of operations (2) through (5) is 
handled by gir~£tor_~Y1ine§. For list­
directed and data-directed I/O, PL/I 
library director routines are used. For 
edit-directed I/O, the job is shared 
between library routines, compiler­
generated subroutines~ and compiled code. 

Before the director module or director 
code receives control, an 
initialization/termination module is 
called. This module handles item 1 in the 
list above: checking statement validity, 
and opening the file if it is not already 
open. The initialization/termination 
routine is also called when every PUT 
statement is completed, to dequeue on 
SYSPRINT and, for conversational files, to 
complete the output. The routine is also 
called on the completion of GET statements 
with the COpy option, to transmit the data 
to the copy file. 

Chapter 9: Stream-oriented Input/Output 153 



0'00000 OOOOQOon 000 000 0 00000000000000000000000000000000000000000000000000000 
1 2 3 4 ~ 6 1 8 ~ 10 11 :/ :i .: or !.; 11 ~.!f ~9 ~.) 11 n n (.\ 7l ~I) 7; 2829 30 ::;\ 32 ~1 :i4 35 16 37 38 39 40 41 ,e .Jl 403, .,'; M; 4; t~,.,q ~iJ 51 52 53 54 '.i5 56 57 58 ~~ 60 61 6~ 63 6~ t~ 66 fL' G8 £1 10 'I :7 71 ;-1 1"; /6 11 18 19 80 

111111111111111 1 11111111111111111111111111 i 11111111111111111111111111111111111 

272222222222222222222222 2222222222222222222,22222222222222222222222222222222 2 2 2 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 13 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

4 ~ 4 ~:4 4 4 4 444444 444444 4 44444444444444444444444 4 ~ 444444444444441\ 4 4 4 

Figure 9.2. Record boundaries do not affect stream I/O 

Because there are three modes of stream 
I/O, the exact situation cannot be defined 
in a generalized discussion or diagram. 
However, the basic principles are shown in 
figure 9.3. The sequence is: 

1. A call to the initialization module, 
to check statement validity, and to 
open the file if necessary. 

2. A return to compiled code, to set up 
paraffieters for the director module. 

3. A call to the director module to 
handle any conversion~ transmission, 
and housekeeping problems that may be 
involved. 

4. For PUT statements, a terminating call 
to the initialization/termination 
routine to dequeue on SYSPRINT. 

To simplify communication between the large 
number of routines that may be used in a 
stream I/O operation, a control block is 
set up for the duration of the execution of 
the stream I/O statement. This control 

154 

block is known as the stream I/O cont:rol 
block (SIOeB). The contents-of-the-SIOCB 
are-shown-In-figure 9.4. The SIoeB 
contains the addresses of the source and 
target (or their locators), and of the DEDs 
of the source and the target. The SloeB is 
passed directly to the conversion routines. 
The first four words contain the parameters 
expected by the conversion routines. 

File Handling 

In stream I/O~ file organization is always 
sequential and the access method used is 
the queued sequential access method (QSAM). 

Transmitters are called by the director 
modules or, in certain cases, by the 
initialization module, or by the close 
module to complete transmission when the 
program is terminated. 

As with record I/O, transmitters call 



4~ 

Figure 9.3. 

NO 

Pass A (SIOCB) 
to initializing module 
Indicate stmt type in 
SIOCB 

4: open? 

YES 

r--~ 
Check stmt & 
return to 
compiled code 
if valid 

~ 
~ 

Set A(DED) and 
A(source) 
or A (target) 
in SIOCB 

t 
I Call One of 
I director 
i modules 

i 

N~ 
record 
needed? 

NO 

~, 

} COMPOLED CODE 

NO I Co" "MBDCL I 
to open file 

I (see Ch. B) 

.. ~ 
~ 

" 

.. COMPILED CODE 

~ 

Y~S 

, 

I I 
Call 
transmitter , 
Transmitter 

, 

,1/ 

~ INITI 
MOD 

ALiZATION 

ULE 

Check 
opens 

s statement validity. 
file if necessary 

Locate item in 

f--+-H 1 

TRANSMISSION 
buffer Movement 

Get between 

Conversion 

Convert item 
as indicated 
by DEDs 

t 
Move to 
target 

;-
Update FREM 
& FCBA buffer 
pointers in FCB 

~ 
items 

processed 
? 

YES 

CONTINUE 

new record 

'" 
CONVERSION 
Movement 

~ between 
buffer and 
variable 

... 

COMPI LED CODE 

buffer and 
external medium 

DIRECTOR 

MODULE 

Handles complete operation 
calling transmitter and con­
version modules as required 

Simplified flow diagram of a stream I/O statement 

Chapter 9: Stream-oriented Input/Output 155 



data management modules. The PL/I 
transmi"tters contain the EODAD and SYNAD 
routines, which are entered when end-of­
file or other errors are detected in the 
routines. Nine different transmitter 
modules are used in stream I/O: these 
include two for conversational files. The 
stream I/O transmitters are listed in the 
summary of subroutines at the end of this 
chapter. 

r------' 
I 
I SSRC 
I 
I 
I SSDD 
l 

STRG 

STDD 

SFLG 

SFCB 

SRTN 

SAVE 

SCNT 

SOCA 

----------------------------------, 
Address of source or source 
locator 

Address of source DED 

Address of target or target 
locator 

Address of target DED 

Flag bytes 

Address of FCB for file 

Abnormal return address (next 
statement) 

Save word used by compiler 

count of items transmitted 
(Halfword) 

Address of ONCA 

SSTR I Area present only for GET or PUT 
I STRING, to hold a dummy file 
I control block. (27 fullwords) 

L-----------------------------------------J 
Figure 9.4. Stream I/O control block 

(SIOCB) 

The same basic method is used for opening 
the file as is used for record I/O. During 
compilation, a declare control block 
(DCLCE) and an environment control block 
(ENVB) are set up. An open control block 
(OCB) is also set up if any environment 
options are declared in the OPEN statement. 
At open time, the information addressed 
from the DCLCB, ENVB, and the OCB (if any) 
is merged with any information in the DD 
statement, and an FCB is set up. The PL/I 
transmitter is loaded, and its address 
placed in the FCB. A DCB, addressed from 
the FCB~ is set up. The DCB contains the 
address of the data management transmitter. 
Finally, the address of the FCB is placed 

156 

in the pseudo-register vector. 

Implicit opening is handled by the 
initialization routines, which check to see 
whether the file is open and, if not, call 
the open/close bootstrap routine IBMBOCL. 

The FCB for stream I/O is similar to 
that used for record I/O. However, it 
contains certain additional fields which 
are needed only for stream I/O. The most 
important of these fields are the buffer 
control fields. The format of a strearr I/O 
FCB is shown in' appendix A. 

~wo fields in the FCB are used to keep 
track of the position which has been 
reached in the data management buffer, and 
to indicate when a new record will be 
required. These fields are the buffer 
control fields: 

1. FCBA - points at the position reached 
in current recqrd. 

2. FREM - number of unused bytes 
remaining in the record. 

FCBA points at the position reached in the 
record and enables the director routines to 
identify where the next input item must be 
read from, or where the next output item 
must be written. FREM contains the number 
of bytes left in a record. It enables the 
director modules to determine when ~ new 
record will be required, and whether an 
item is too large to be held in the 
remainder of the record and will 
consequently requir~ intermediate 
workspace. Figure 9.5 illustrates the use 
of FCBA and FREM. 

Because SYSPRINT is used as the standard 
file for error messages~ it is necessary 
for output to SYSPRINT to be enqueued. 
This prevents error messages from one task 
in a PL/I program interrupting other output 
to SYSPRINT from another task. 

When SYSPRINT is used it is enqueued by 
the initialization routine. When any PUT 
statement is completed, regardless of the 
output file, a call is made to the 



PL/I STATEMENT: 

GET FILE (SYSIN) LIST (A, B); 

80 Byte record 
In data management buffer 

~rCBH HOLDS CURRENT PDSITIDN.~; ~FREM HOLDS NUMBER or REMHINING BYlES·', 

0000000000 00 0000 000 0 OO&OOOOOOQOOOOGGooooono 00 ooooooaOOODOnOOQOQO' 0; 00000 
I 2 3 4 5 6 1 8 9 10 'I 12 13 14 15 16 11 18 10 1021 2113 ~4 25 CS ;118 '" 3~ 3' 32 33 3135 JR 37 38 3HO 4142 43 44 45 4. 4148 4~ ~o 51 ,2,3 54 ~5 56 57 58 596061626314 f' F.~ ,1 ~a 6, 10 7; 12 13 74751671 181980 

+--
FCBA 
Holds address reached 

At start offirst item 

FREM 
VALUE 80 

1 

FCBA FCBA 

+----+:---: ~ - - - +---+---:--+-

after processing first item start of second item 

FREM 
VALUE 50 

FREM 
VALUE 41 

after processing second item 

FREM 
VALUE 3 

FREM holds number of remaining bytes 

Figure 9.5 The use of FREM and FCBA in recording buffer position 

Chapter 9: stream-oriented Input/Output 157\ 



PUT LIST (A) 

FLOW DIAGRAM 

~
Iace address 

SIOCB in 
parameter list 

~all 
initializing 
module 

YES 

~
etFCB& 

ONCA address 
in SIOCB 

Step 1 
Compiled code 

Step 2 
Initializing routine 
IBMBSIO 

CaIlIBMBOCL 
to open fi Ie- & 
load transmitter 

Call error 
handler 

COMPI LED CODE & NOTES 

LA 
ST 
01 
MVI 
LA 

9,40(0,4) 
9,184(0,3) 
184(3),X'80' 
57(4),X'40' 
1, 180 (0,3) 

Load address SIOCB 
Place in p . list 
Mark end of p • list 
Set LIST OUTPUT flag 
Point R1 at p . list 

L 
BALR 

15,A .. IBMBSIOA} 
14,15 

Call stream output 
initializer 

The initialization routine is passed the address of the 
FCB and the address of the SIOCB. 

It opens the file if necessary and acquires the first 
record for print files. If the statement is invalid it 
calls the error handler. If the statement is valid it 
places the addresses of the ONCA and the FCB in 
the SIOCB and returns to compiled code. 

Figure 9.6. (Part 1 of 2). Flow of control through a PUT LIST statement 

158 



Point R 1 
at 
SIOCB 

Put address 
of DED & 
source variable 
in SIOCB 

Set target 
address in 
SIOCB 
Call conversion 
module 

Update FCBA 
& FREM 

Continue as 
from Step 3 
until state­
ment complete 
When complete 
call termination 
routine 

Step 3 
Compiled code 

Step 4 
Director module 
IBMBSLO 

Call transistor 
for new record 

Get VDA & set 
as target for 
conversion 

Fill record 
from VDA -
call transmitter 

Compiled code 

LA 
LA 
LA 
STM 
L 
BALR 

1,40(0,4) 
14,A 
15,72(0,3) 
14,15,0(1) 
15,A .. IBMBSLDA} 
14,15 

Point R 1 at SIOCB 
Load A(:A) 
Load A(DED .. A) 
Store in SIOCB 
Call LIST output 
director 

The director module calls the transmitter and 
conversion modules when required and handles 
any housekeeping problems. 

Before calling the conversion module it completes 
the SIOCB with the address of the target locator 
and the address of the target DED. 
The target for the conversion is either the data 
management buffer or a VDA acquired for 
intermediate workspace. 

If the statement is complete compiled code continues 
with the next statement. If the statement is not complete 
compiled code places new data in the SIOCB and once 
more calls the director module. 
When statement complete make terminating 
call to dequeue on SYSPR I NT 

Figure 9.6. (Part 2 of 2). Flow of control through a PUT LIST statement 

Chapter 9: Stream-oriented Input/Output 159 



initialization/termination routine. This 
routine then checks to see if SYSPRINT has 
been enqueued and~ if it has, dequeues it, 
by calling the DEQ routine. 

Handlillg the Con versions 

conversions in stream I/O are normally 
handled by the library conversion package. 
The conversion package, described in 
chapter 10, consists of conversion routines 
and conversion director routines. 
Conversion director routines examine the 
DEDS of the source and the target passed in 
the argument list~ and determine which 
entry point of which conversion module is 
required. Each possible conversion has a 
unique entry point in one of the conversion 
routines. For stream I/O, the argument 
list passed is contained in the first four 
words of the SIOCB. 

A number of conversion director modules 
are used exclusively by edit-directed 
stream I/O. These are called external 
conversion directors, and are listed-In the 
summary-o~suEroutines at the end of this 
chapter. Each module corresponds to a 
particular format of input or output. When 
the type of input or output has been 
determined by the director modules, the 
appropriate conversion director routine can 
be called to handle the conversion. 

In edit-directed I/O, the conversion 
required is normally predictable during 
compilation" because it is implied in the 
format list. consequently, the conversion 
modules can be called from compiled code 
rather than from the stream 1/0 director 
routines. A third possibility is that 
compiled code will handle the conversion 
in-line. 

When a library conversion module is 
required by compiled code, the conversion 
director module may be called, or the 
conversion module itself may be called 
directly. When the conversion module is 
called, compiled code must carry out the 
jobs normally handled by conversion 
director modules, that is, setting up a 
number of fields that are used in handling 
the CONVERSION condition and other PL/I 
exceptional conditions. 

Handling GET and PUT Statements 

There are considerable differences in 
detail between the handling of GET and PUT 
statements for the three different modes of 
stream I/C. A generalized impression is 

160 

given in figure 9.3 and summarized above. 

This chapter first covers the 
implementation of list-directed GET and PUT 
statements in some detail, and then 
highlights the differences for data­
directed and edit-directed 1/0. 

List-directed GET and PUT Statements 

Implementation of a list-directed output 
statement is shown in figure 9.6. The 
process consists of five steps: 

1. Compiled code calls the initialization 
routine, passing the address of the 
DCLCB and of the SIOCB. Flags 
indicating the statement type have 
been set in the SIoeB by compiled 
code. 

2. The initialization routine, IBMBSI01 

calls the open routine if the file is 
not open, and checks the validity of 
the statement. If the statement is 
invalid, a branch is made to the error 
handler, passing an error code 
indicating "invalid statement." This 
results in a message being generated, 
and the ERROR condition being raised. 
If the statement is valid, control is 
returned to compiled code. 

IBMBSIO also handles any format 
options, 'by calling the formatting 
module IBMBSPL. Control then returns 
to compiled code. 

3. Compiled code places the address of 
the source (or its locator, if the 
item is a string) and the address of 
the source DED in the SIOCB. (See 
chapter 4 for information on 
locators.) Compiled code then calls 
the director module. 

4. The director module completes the 
SIoeB with the address of the target 
locator and the address of the DED of 
the target. The target locator gives 
the length required for the item. As 
the target is a character string, a 
locator will always be used for it. 
The address of the target is a 
position in the buffer. For PRINT 
files, the position is indicated in 
the tab table l which will either have 
been set up by the programmer by use 
of PLITABS, or may be the default tab 
table in the library module IBMBSTA. 
For non-print files~ each item is 
followed by a single blank. PLITABS is 



PL/I statements 

DCL A,B; PUT LIST (A,B); 

* STATEMENT NUMBER 2 
00005E 41 90 D OC8 
000062 50 90 3 044 
000066 96 80 3 044 
00006A 92 40 D OD9 
00006E 41 10 3 u40 
000072 58 FO 3 U24 
000076 05 EF 
000078 41 EO D OA8 
00007e 41 FO 3 030 
000080 41 10 D Oe8 
000084 50 10 C oeO 
000088 90 EF 1 000 
00008e 58 FO 3 02e 
000090 05 EF 
000092 41 EO C OAe 
000096 58 10 D oeo 
00009A 50 EO 1 000 
0OO09E 58 FO 3 02e 
0000A2 OS EF 
0000A4 58 10 D OCO 
OOOOA8 58 FO 3 028 
OOOOAC 05 EF 

Note: 

LA 9,200(0,13) Pick up address of SIOCB 
ST 9,68(0,3) Store in parameter list 
01 68(3),X'80' Mark end of fprameter list 
MVI 217 (13) ,X'40' Set LIST OU PUT flag in SIOCB 
LA 1,64(0,3) Point Rl at SIOCB 
L 15,A •• IBMBSIOA 

Branch to initializing module BALR 14,15 
IA 14,A Pick up address of A 
IA 15,r:EC •• A Pick up address of OED .. A 
IA 1,200(0,13) Place address of SIOCB in R 1 
S'I 1,192(0,13) Save address SIOCB in temp 
STM 14,15,0(1) Store addresses in SIOCB 
1 15,A •• IE~BSICA Call list directed director routine EAIR 14, 15 
IA 14,E Pick up address of B 
1 1,192(0,13) Point Rl at SIOCB 
S'I 14,0(0,1) Place address B in SIOCB 
1 15,A •• IEMBSIOA Call list directed director routine EAIR 14,15 
1 1,192(0,13) Point Rl at SIOCB 
1 15,A •• IE~BSICT Make terminating call to dequeue on SYSPRINT 
EALR 14,15 

The DEDs for A and B have been commoned. Consequently the 
same address is kept in the SIOCB for both calls to the director 
modules. 

Figure 9.7. Code generated for typical list-directed I/O statement 

Chapter 9: Stream-oriented Input/Output 161 



GET DATA (A,B); 

FLOW DIAGRAM COMPI LED CODE & NOTES 

+ 
Step 1 
Compiled code LA 0,40(0,4) Pick up address of SIOCB 

ST 0,136(0,3) Place in p - list 
01 136(3),X'80' flag last argument in p - list 

Set up parameter MVI 57(4),X'84' Set flag 'DATA INPUT' in 
list, call SIOCB 
initializer LA 15,56(0,3) Set abnormal return 

ST 15,64(0,4) address in SIOCB 
LA 1,132(0,3) Point R1 at p - list 
L 15,A .. IBMBSIIA Branch to stream 
BALA 14,15 initializing module 

~, 

Step 2 
Input initializing module 
IBMBSII 

The input initializing module is passed the 
address of the SIOCB and the FCB for the file. 

Set fields 
in SIOCB 

It checks the validity of the statement, opens 
the file and places the address of the FCB in the 
SIOCB and returns to compiled code 

File 
NO Call1BMBOCL 

open? 
to open file 

YES 
~, 

Return to 
compiled code 

.... ..... 

~, 

Step 3 
Compiled code 

LA 0,40(0,4) Pick up address of SIOCB 
Set up p. list ST 0,140(0,3) Place address in p .. list 
for data 
director p-list, containing addresses 
consisting of of symbol tables and 
A(SIOCB) variables already set up,in 
A(SYMTAB,I) static 
A(SYMTAB,J) LA 1,140(0,3) Point R 1 at p - list 

L 15,A .. IBMBSDIA Call data-directed director 
BALA 14,15 module 
C1.5 EQU* Abnormal locate return 

address 

~ 
Figure 9.8. (Part 1 of 2). Handling a GET DATA statement 

162 



From Step 6 

[0 
New 

record 
or spanning? 

NO 

Name 

Step 4 
Data - directed director 
module IBMBSDI 

YES 
Call transmitter 
setting up VDA 
if necessary 

I 

in data NO GalllBMBERR 
stream match 
SYMTAB? 

;YES 

Place address 
DED and variable 
in SIOGB 

+ 
Update FREM & 
FGBA to beyond 
equal symbol 

t 
Call list-directed 
director module 

Decide on 
conversion 
required and call 
correct modu Ie 

Update FREM & 
FGBA 
Return to 
IBMBSOI 

, , 

Repeat from 
step 4 until 
final semicolon 
found 

Return to CO~Pited code 

Step 5 
List directed director 
module IBMBSLI 

Step 6 
Return to IBMBSDI 

The data directed director module is passed the 
address of the SIOGB and either a list of symbol 
table addresses or an address in the symbol tablE 
vector. 

The module reads in the name, checks that the 
name read is in the symbol tables passed and if 
not raises the NAME condition. 

When the variable is identified the module places 
the address of the target and its DED in the SIOGB 
and calls the list-directed director module passing 
it .the SIOGB. 

The list directed module completes the operation as 
for list directed liD 

On return to the data directed module a search is 
made for the next name and the action continued 
as from step. 4 until a semicolon is reached in the 
input stream 

Figure 9.8. (Part 2 of 2). Handling a GET DATA statement 

Chapter 9: stream-oriented Input/Output 163 



~L/I statements 

DCL A,B,C; PUT DATA (A,B,C); 

RELEVANT SECTION OF STATIC INTERNAL STORAGE MAP 

000040 00000000 A •• DCLCB ~ Parameter list for IBMBSIOA 
000044 80000000 A •• TEMP 
000048 00000000 A •• TEMP ] 00004C 000 .. 00058 A •• SYMTAB Parameter I ist for IBMBSDOA 
000050 0000006C A •• SYMTAB 
000054 80000080 A •• SYMTAB 
000058 8500000100000030 SYMBOL TABLE •• A 

OOOOOOA800000000 
0001Cl00 

00006C 8500000100000030 SYMBOL TABLE •• B 
OOOOOOACOOOOOOOO 
0001C200 

OOOOSO 8500000100000030 SYMBOL TABLE •• C 
OOOOOOBOOOOOOOOO 
0001C300 

RELEVANT SECTION OF OBJECT PROGRAM LISTING 

• STATEMEN~ NUMBER 3 
OOOOAE 41 90 D OC8 LA 9,200(0,13) Pick up address of SIOCB 
0000B2 '50 90 3 044 ST 9,6S(0,3) Store in parameter list 
0000B6 96 SO 3 044 01 68(3),X'SO' Mark end of parameter list 
OOOOEA 92 SO D OD9 MVI 217(13),X'SO' Set ,data output flags 
OOOOBE 92 01 D OOA ~VI 218(13),X'01' 
0000C2 41 10 3 040 LA 1,64(0,3) Point Rl at parameter list 
0000C6 58 FO 3 024 L 15,A •• IB~BSICA Call initializing routine 
OOOOCA 05 EF EALR 14,15 
OOOOCC 41 ~O D OC8 LA 9,200(0,13) Pick up address of SIOCB 
000000 50 90 3 048 ST 9,72(0,3) Place in parameter list 
0000D4 96 SO 0 ODB 01 219(13),X'80' Mark end of parameter list 
000008 41 10 3 048 LA 1,72(0,3) Point Rl at parameter list 
OOOODC 58 FO 3 020 L 15,A •• IEf(BSDCA Call director routine 
OOOOEO 05 EF EALR 14,15 
0000E2 41 10 D OC8 LA 1,200(0,13) ~ 
0000E6 50 10 D OCO S~ 1, 192 (0, 13) Make terminating call to 
OOOOEA 58 FO 3 028 L 15,A •• IEMBSIO~ dequeue on SYSPRINT 
OOOOEE 05 EF EALR 14, 15 

Figure 9.9. Typical data-directed code 

164 



COMPILER 

Compiler-generated subroutines are used· 
except in the cases shown opposite. Even so, 
a library routine will be called if a new record 
is required, and, generally, to handle a con­
version. 

Handle entirely by library 
routine (lBMBSED), or use 
compiler-generated sub­
routines? 

LIBRARY 

IBMBSED handles processing completely for: 
A-format item with implied length* 
B-format item with implied length 
C-format item 

* An exception is that A-format items with implied length are 
handled in-line if: OPT(TIME) is in effect, and the compiler 
can match the data list with the format list, and the data item 
is a character string. 

Figure 9.10. The use of the library in edit-directed I/O 

Chapter 9: Stream-oriented Input/Output 165 



PUT EDIT (BHA); 

FLOW DIAGRAM NOTES 

LA 9,60(0,4) Pick up address of SIOCB 

Set up part of Step 1 ST 9,848(0,3) Place in parameter list 

SIOCB. Compiled code MVI 77(4), X'20' Set "edit output" flag 

Call initialization LA 1,844(0,3) Point R 1 at paramo list 

routine IBMBSIO L 15,A .. IBMBSIOA} Branch to initialization 
BALR 14,15 . routine 

V 

Step 2 
Initialization routine 

" Test if file is o~n, and open if necessary, calling 

Call I BMBOCL to 
transmitter to locate record. 

YES Place address of ONCA and FCB in the SIOCB. 
File ... open file & call Check statement validity . 

closed .. transmitter to 
get 1 st record 

NO 

" .. 
" 

Check 
statement 
validity 

" 
Place address of 

Step 3 
LA 2,6a(~ 4) Point R1 at SIOCB Compiled code 

variable, its OED, LA 14, B Pick up address of B 
& OED generated ST 14,0(0, 1) Place in SIOCB 
from format item .... X L 14,76(0,3) Pick up OED ... 
in SIOCB L 7,A .. .IELCGOA Branch to compiler . 

T - BALR 6,7 generated subroutine 

~IIELCGOA 

" Step 4 
IELCGOA 

Will YES Set 'VDA' flag in 
Item span or ... SIOCB. Get VDA 

Acquire VDA for item if necessary. 

r1equire new .. Either if there is no room in current record, or, 
record? and set as if the converted item will span the record boundary. 

address of target . 

.... .... 

U 
Figure 9.11. (Part 1 of 2). Edit-directed statement with matching data and 

format lists 

166 



i 
A 

FLOW DIAGRAM "'/ 
~, 

Carry out 
Step 5 
Compiled code 

conversion either or convenion 
in - line or by routine 
calling library module 

T 
Call 
IELCGOB 

Item 
handled by 
IBMBSEDB 

? 

NO 

Was 8 

VDA used? 

NO 

Update FREM, 
FCBA, and FCNT 

t 
Return to 
compi led code 

Continue from 
STEP 3 with next 
item, if any 
When complete 
make terminating 
call to I BMBSIOT 

StepS 
IELCGOB 

YES 

YES. 

... 

CaIlIBMBSEOA 
Call transmitter 
and free VDA 

Clear 'VDA' flag 
and IBMBSED 
flag 

Step 7 
Compiled code 

NOTES 

L lS,A .. IBMBCHFH} 
BALR 14,15 

} L 7,A .. IELCGOB 

BALR 6,7 

Update buffer control fields 
Handle housekeeping 

Continue as necessary 

Call conversion routine 

Call compiler - generated 
director module 

When complete call termination 
routine to dequeue on SYSP R I NT 

LA 14, A • .lBMBSIOT 
BALR 14, 15 

Figure 9.11. (Part 2 of 2). Edit-directed statement with matching data and 
format lists 

Chapter 9: Stream-oriented Input/OUtput 161 



addressed from the TCA. 

When the starting position for the 
item has been found, the director 
module determines whether there is 
enough space in the output buffer for 
the converted item. There may not be, 
for one of two reasons: 

a. The end of the buffer has been 
reached. 

b. The converted item will be too 
large to hold in the buffer. 

If the end of the buffer has been 
reached, the transmitter is called to 
acquire a new record. If the 
converted item will be too long to fit 
in the buffer, intermediate workspace 
will be needed. 

If it is simply a case of acquiring a 
new record, the director calls the 
transmitter to acquire it. The 
director then calls the appropriate 
conversion routine~ passing it the 
SIOCE as a parameter list. The 
conversion routine will then move the 
data from the PL/I variable to the new 
record in the data management buffer. 

If, however, the converted item will 
span the boundary between the current 
and subsequent records, intermediate 
workspace is acquired in the form of a 
VDA (variable data area - see chapter 
6). The converted item is then placed 
in the VDA. As much of the data as 
will fit is moved from the VDA into 
the data management buffer, and a new 
record is acquired by a call to the 
output transmitter. The new record is 
then filled from the VDA. This 
process is continued until the 
complete item has been moved into 
buff ers. The buffer point'ers FREM and 
FCBA are updated. 

If there are further data items to be 
handled, a return is made to step (2)~ 
and the address of a new source field 
and its DED are placed in the SIOCB. 
This process is continued until all 
items in the data list have been 
processed. 

5. The statement is completed by a call 
to the initialization/termination 
routine. This checks to see whether 
SYSPRINT has been used and, if so, 
dequeues on SYSPRINT. For 
conversational files" it also calls 
the transmitter to transmit any 
information that is still held in the 
buffer. 

The object code produced for a PUT LIST 

168 

statement is shown in figure 9.7. 

GET LIST statements follow the same 
sequence, but the transmission is in the 
opposite direction. The main differences 
are: 

1. If record spanning is involved, the 
item is assembled in intermediate 
workspace before it is converted~ 

2. A locator is built for the source 
string from the input, and the 
addresses of the locator and of a 
character DED for the source are 
placed in the SIOCB by the director 
module. The address of the target or 
its locator and the address of the 
target DED are placed in the SIOCB by 
compiled code. 

3. Unless the COpy option is being used, 
no final call is made to the 
initialization/termination routine. 

Data-directed GET and PUT Statements 

Data-directed GET and PUT statements follow 
a similar sequence to list-directed 
statements, in that there is first a call 
to the initializa~ion module, followed by a 
call to a director routine. However, the 
data-directed director module is passed all 
the variables involved in the statement 
rather than one variable at a time, and 
handles the complete statement without 
returning to compiled code. 

The data-directed director module 
handles the reading or writing of the 
names, the equals signs, and the 
punctuation, and then calls the list­
directed director module to handle the 
value for each variable. 

When the data-directed module has 
identified the location of the variable to 
or from which the data is· to be moved" it 
calls the list-directed director module 
which then handles the movement of the 
value of the variable. When the value of 
the variable has been transmitted~ control 
returns to the data-directed module, which 
handles the next name, determines the 
address of the variable associated with the 
name~ and calls the list-directed director 
module to handle the transmission of the 
value. This process continues until the 
statement is complete. For output, the 



director module completes the statement 
with a final semicolon. Figure 9.8 shows 
the complete process. 

The list-directed director module is 
called separately for each item. It is 
passed the SIOCB with the addresses of the 
source or target (or its locator) and the 
address of its DED correctly set up by the 
data-directed director module. The item is 
then handled as if it were a list-directed 
item. 

If a data list is included in the 
statement, for example: 

PUT DATA (A,B,C); 

the source or target variables are 
identified from a list of symbol tables. 
If a data list is not included in the 
statement, for example: 

PUT DATA; 

the source or target variables are 
identified from the symbol table vector. 

A symbol table associates a name with 
the. address of a variable. The symbol 
table vector is a list of the symbol tables 
known in the external procedure. The items 
in a symbol table vector are arranged in 
program block order. When a symbol table 
vector is used, the address passed is the 
start of entries for items known in the 
current block. Symbol tables and the 
symbol' table vector are described further 
in chapter 4. Their format is shown in 
appendix A. 

The object code produced for a PUT DATA 
statement is shown in figure 9.9. 

Edit directed GET and PUT Statements 

Edit-directed I/O differs from the other 
modes of stream I/O in that the conversions 
required and the positions in the record 
where an item is to be placed or will be 
found are indicated in the format list of 
the I/O statement. 

The format list contains two related 
types of information: 

1. The type and length of the item (e.g., 
F(3), A(2S), etc.>, known as gat~ 
fo!!!!~ informatign_ 

2. Spacing information (e.g., 
X(3),COL(70),etc.), known as 2~!Q! 
fo!~!:. infg~tiQ!!. 

Both types of information are compiled as 
format DEDs (or FEDs) and are passed by 
compiled-code to~he routines that require 
the information. 

Because the information is available 
during compilation, it is possible for the 
compiler to determine the conversions that 
will be required. It is consequently 
possible for compiled code to call the 
required conversion or conversion director 
routine, or to generate in-line conversion 
code without the assistance of a library 
director module. 

To further optimize edit-directed I/O, a 
number of compiler-generated subroutines 
have been provided. They carry out the 
following functions: 

1. Keeping track of the buffer position, 
freeing and acquiring intermediate 
workspace where necessary, and calling 
the library when a new record is 
required. 

2. Handling X format control items, 
except where a new record is required. 

These compiler-generated subroutines have 
the advantage over library modules that 
they are not external, and consequently do 
not have to follow the external calling 
conventions. 

The compiler-generated subroutines are 
supported by two types of library director 
module: 

1. Two short modules, IBMBSEO and 
IBMBSEI, that interface with the 
transmitter and are called by the 
compiler-generated subroutines when a 
new record is required. 

2. A routine, IBMBSED, that handles the 
complete processing of an item (as the 
director does for list-directed I/O). 
This routine is called when the item 
cannot be handled by the compiler­
generated subroutines. 

The decision on whether to use compiler­
generated subroutines or the overall 
library director module is made at compile 
time. Figure 9.10 shows the conditions 
under which each method is used. 

A typical edit-directed statement takes 

Chapter·9: stream-oriented Input/Output 169 



the form: 

1. A call to the initialization module to 
open the file (if necessary), and 
check statement validity. 

2. A call to a compiler-generated 
subroutine to check whether a new 
record is required, and~ if so, to 
call the module IBMBSEI or IBMBSEO to 
acquire a new record by making a call 
to the transmitter. The SIOCB is 
completed with source or target DEDs 
and the addresses of the source and 
the target or their locators. 

3. A call to a conversion module or 
conversion director, or a compiled­
code conversion. 

4. A further call to a compiler-generated 
subroutine, to update the buffer 
control fields, and free any 
intermediate workspace if spanning was 
involved. 

5. A terminating call to the 
initialization/termination routine. 

This sequence is illustrated in the 
annotated flowchart in figure 9.11. Figure 
9.12 shows the code generated for a GET 
EDIT statement. 

Control format items are implemented by 
calling a formatting module, and passing it 
the SIOCB containing the address of an FED 
for a control format item. There are four 
formatting modules: 

1. IBMBSPL: library routine for SKIP, 
PAGE, and LINE formats and options. 

2. IBMBSXC: library routine for X and 
COLUMN formats. 

3. IELCGOC: compiler-generated 
subroutine for X output items that do 
not span a record boundary. 

4. IELCGIA: compiler-generated 
subroutine for X input items that do 
not span a record boundary. (This 
module also has other functions; see 
the section "Compiler-generated 
Director Routines" near the end of 
this chapter.) 

170 

In the majority of edit-directed 
statements, the data and format lists can 
be matched during compilation, since the 
programmer requires specific conversions 
for specific variables. However, it is 
possible to write statements which, because 
of iteration factors, ·cannot be matched at 
compile time. 

For example, in the statement 

PUT EDIT (A,B,C) (N(F(3» "X(10»; 

it is impossible to know at which point the 
ten-character space indicated by "X(10)" 
will be required~ without knowing the value 
of N. If the statement had been 

PUT EDIT (A,B,C)(F(3)~X(10»; 

the code would be compiled in the order: 
handle the conversion of a variable, handle 
an X item, handle the conversion of a 
variable, etc., until the data list was 
exhausted. However, as it is not known at 
which point the X items will be required in 
the unmatched statement, it is impossible 
to compile sequential code to handle the 
statement. Consequently, the code for each 
item is compiled separately, and branches 
are made between the code for data items 
and the code for format items as the value 
of the repetition factor indicates. In the 
example above~ the branches would be made 
when the F item had been executed N times, 
and when the X item ~ad been executed once. 

The code sequences used for matching and 
non-matching data and format lists are 
shown in figure 9.13. 

Formatting for Print Files 

Formatting information such as page size, 
line size, page length and tab positions 
for print files are accessed by list- and 
data-directed director modules from a field 
TTAB held at offset X~50' in the TCA. The 
field holds the address of the tab table to 
be used. That is, either the PLITABS 
control section, if provided by the user, 
or the IBMBSTAB control section, if the 
default is to be used. 

The control section PLITABS can be 
provided by the user either as a control 
section which is link-edited with the 
object module or as a PL/I structure 
declared in his program as PLITABS. This 
structure is then compiled as a suitable 
control section by the optimizing compiler. 



The programmer may also use the default 
which is provided as a transient library 
module loaded by the open routines. The 
format of PLITABS and its default values 
are given in the programmer's guide for 
this compiler. 

When the open routines are called, they 
inspect the TCA to determine whether 
PLITABS has been provided by the user. If 
it has not, they load the transient library 
routine IBMBSTAB, which holds the default 
tab settings. When the routine is loaded, 
the address of entry point IBMBSTAB is 
placed in the TTAB field in the TCA. If 
PLITABS has been provided by the user, its 

address will have been placed in TTAB by 
the linkage editor. 

Handling Format Options 

Format options (for example, GET SKIP(4), 
PUT PAGE, GET SKIP LIST) are handled by a 
call to the appropriate entry point of the 
initialization routine. 

The initializing module calls the 
formatting module IBMBSPL to carry out the 
formatting. 

Chapter 9: Stream-oriented Input/Output 171 



,!?L/I statements 

DCL A,B; GET EDIT (A,B) (F (3) ,X (8»; 

• STATEMENT NUMBER 3 
000062 41 90 D OCO LA 9,192(0,13) Pick up address of SIOCB 
000066 5090 3 054 ST 9,84(0,3) Store in parameter list 
00006A 96 80 3 054 01 84(3),X'80' Mark end of parameter list 
00006E 92 24 D OD1 MVI 209(13),X'24' Set EDIT INPUT flags in SIOCB 
000072 41 EO 3 058 LA 14,88(0,3) Pick up return address (CL .2) 
000076 50 EO D OD8 ST 14,216(0,13) Store in SIOCB 
00007A 41 10 3 050 LA 1,80(0,3) Point R 1 at parameter list 
00007E 58 FO 3 030 L 15,A •• IBMBSIIA 

Call stream I/.O initialization routine 000082 05 EF BALR 14,15 
000084 41 EO D OA8 LA 14,A Pick up address of A 
000088 41 FO 3 038 LA 15,DED •• A Pick up address of DED ••• A 
00008C 41 10 D OCO LA 1,192(0,13) Pick up address of SIOCB 
000090 50 10 D OB8 ST 1,184(0,13) Save address of SIOCB 
000094 90 EF 1 008 STM 1 4 " 1 5, 8 (1 ) Places addresses of A and DED •• A in SIOCB 
000098 41 EO 3 03C LA 14,60(0,3) Point R14 at FED 
00009C 58 70 3 OOC L 7,A •• IELCGIA 

, 

OOOOAO 05 67 BALR 6,7 
Call compiler generated subroutine 

0000A2 58 FO 3 02C L 15,A •• IBMBSFIA Call conversion director routine 
0000A6' 05 EF BALR 14,15 
0000A8 58 70 3 010 L 7,A •• IELCGIB Call compiler generated subroutine' 
OOOOAC 05 67 BALR 6,7 
OOOOAE 41 EO 3 042 LA 14,66 (0, ,3 ) Pick up FED of X format item 
0000B2 58 10 D OB8 L 1,184(0,13) Pick up address of SIOCB 
0000B6 58 70 3 OOC L 7,A •• IELCGIA Call 'compiler generated subroutine 
OOOOBA 05 67 BALR 6,7 
OOOOBC 41 EO D OAC LA 14,B Pick up address of B 
OOOOCO 50 EO 1 008 ST 14,8(0,1) Store in SIOCB 
0000C4 41 EO 3 03C LA 14,60(0,3) Point R14 at FED 
0000C8 58 70 3 oOC L 7,A •• IELCGIA Call compiler generated subroutine 
OOOOCC 05 67 BALR 6,7 
OOOOCE 58 FO 3 02C L 15,A •• IBMBSFIA Call conversion director module 
0000D2 05 EF BALR 14,15 
0000D4 ,58' 70 3 010 L 7,A •• IELCGIB Call compiler generated subroutine 
0000D8 05 67 BALR 6,7 

Abnormal return address OOOODA CL.2 EQU • 

Figure 9.12. Code generated for an edit-directed statement with matching data and 
format lists 

172 



MATCHING'LISTS 

PUT EDIT (I, NAME, ACT. NO) 
(F (3),X (3), A (15), X (3), P'ZZZ9'); 

HANDLE 
CONVERSION 
OFI 

U 

HANDLE 
XITEM 

~, 

HANDLE 
CONVERSION 
OF NAME 

~, 

HANDLE 
XITEM 

u 

HANDLE 
CONVERSION 
OF 
ACT - NO 

~, 

UNMATCHING LISTS 

PUT EDIT (AB, C, D) ((N) F (3), SKIP, A (4)); 

HANDLE 
CONVERSION 
F(3) 

HANDLE 
CONVERSION 
A(4) 

YES 

Figure g,. 13. code sequences used for matching and non-matching data and format lists 

Chapter 9: Stream-oriented Input/Output 173 



Input and Output of Complete Arrays 

When transmitting complete arrays, it is 
uneconomical for a return to be made to 
compiled code after each item has been 
handled. Accordingly, the list- and data­
directed director modules have a facility 
that enables them to handle complete 
arrays. The modules access the array 
multipliers, and handle the indexing from 
information held in the array descriptors. 
For edit-directed I/O, each element is 
handled separately, the necessary indexing 
being carried out by compiled code. 

PL/I Conditions in Stream I/O 

The following errors and PL/I conditions 
are particularly relevant to the 
implementation of stream I/O: TRANSMIT, 
CONVERSION, NAME (data-directed input 
only), ENDFILE, and unexpected end of file. 
Unexpected end of file occurs when the end 
of file is reached in the middle of an 
input item. 

The rules for raising the TRANSMIT 
condition in stream I/O are that the 
condition shall be raised after the 
assignment or output of the potentially 
incorrect data item. Thus TRANSMIT can be 
raised on input for a data item even though 
the transmitter has not been called during 
the processing of the statement involved. 

When the TRANSMIT condition is detected 
by the data management routines, control is 
passed to the error routine in the 
transmitter~ which sets a flag in the FCB 
indicating a transmission error. For ~nput, 
the director module inspects this flag, 
and~ if it is set~ sets a flag in the 
SIOCB. TRANSMIT is raised for every item 
that is taken from a record in the block 
with which the transmission error was 
associated. It is raised after each 
potentially incorrect value has been 
assigned. For output, TRANSMIT is raised 
by the transmitter immediately it occurs. 

A special entry point, IBMBSEIT, is used 
by the corr,piler-generated subroutines to 
raise the TRANSMIT condition. When called 
by this entry point, IBMBSEI calls the 
error handler with the appropriate error 
code for the TRANSMIT condition. 

174 

The CONVERSION condition is detected by the 
conversion modules in the PL/I library. 
(Conversions that could cause the 
CONVERSION condition are not handled in­
line except where "NOCONVERSION" is 
specified.) CONVERSION is raised by calling 
a special library module" IBMBSCV. This 
module analyzes the type of conversion 
error~ and calls the error handler with an 
appropriate error code. For input, the 
module also saves the field that caused the 
conversion; it is necessary to do so, 
because the field could be lost if an on­
unit was entered and a further GET 
statement was executed on the same file 
which resulted in a new record being 
acquired. 

The NAME condition can occur only in data­
directed input. It is raised by the data­
directed director module when it cannct 
find a symbol table to match the name read 
in, or when the name is unobtainable (it 
might, for example, be out of subscript 
range.) DATAFIELD is set up, and the file 
positioned for the next read, before 
calling the error handler, with the 
appropriate error code. 

End of file is detected by the transmitter 
routines, which then enter the SYNAD 
routine in the transmitter. This routine 
sets a flag in the FCB. On return to the 
director modules~ the flag is tested and, 
depending on the situation in which the 
transmitter was calledJ ENDFILE or 
unexpected end of file is raised by calling 
the error handler. 

For unexpected end of file, the ERROR 
condition is always raised as soon as the 
end of file is detected. ENDFILE, in the 
case of list- and data-directed I/O, is not 
raised until a further attempt is made to 
read the input file. 

Built-in Functions in Stream I/O 

The built-in functions that are relevant to 
stream I/O are COUNT, DATAFIELD, ONCHAR, 
and ONSOURCE. 



ON CHAR and ONSOURCE are dealt with in 
chapter 10, under the heading "Raising the 
CONVERSION Condition." 

The COUNT built-in function is handled 
by the director routines. A count of 
transmitted items for the statement is kept 
in the SIOCB, and then copied into the FCB 
after every transmission to or from a PL/I 
variable. 

The DATAFIELD built-in function is 
handled by the data-directed director 
routine, which places the address of a 
string locator/descriptor for the offending 
field in the ONCA. The field is first 
moved to a workspace area, as the buffer 
may get lost if further stream I/O 
operations take place in an on-unit. 

The COpy Option 

The COpy option allows input data to be 
copied onto a specified output file. At 
the start of a GET statement with the COpy 
option, a flag is set in the FCB, and the 
current buffer position is saved in the 
field FCPM in the FCB. 

A resident library routine, IBMBSCP, is 
used to handle the data, and to transmit it 
to the copy file by calling the 
appropriate' transmitter. IBMBSCP is 
called at the end of the GET statement, and 
during the statement if a new buffer is 
acquired. The data transmitted to the copy 
file is that which is held between the 
pointers FCPM and FCBA. FCBA points to the 
next byte to be read; FCPM points to the 
start of the qata to be copied. FCPM is 
updat~d to point to the start of the new 
buffer when a transmitter call is made 
during the execution of the statement. The 
copy flag is turned off during the 
terminating call to IBMBSII. 

If an interrupt occurs during the 
execution of a GET statement with the COpy 
option, it is possible that the terminating 
call to IBMBSII will be bypassed because of 
a GOTO from an on-unit, or because the job 
is terminated. For this reason" a test is 
made on the copy flag at the start of every 
GET statement, and when the file is closed. 
If the copy flag is on, IBMBSCP is called 
to handle the data. When the data has been 
transmitted" the flag is turned off. 

Handling the CORY File 

During the initializing call, IBMBSII 
determines whether the copy file is open 

and, if it is not, calls IBMBOCL to open 
the file. The address of the DCLCB for the 
copy file is then stored in the FCB of the 
input file. The data is transmitted to the 
file by calling the transmitter for the 
file type. 

The STRING Option 

The STRING option allows data to be 
transmitted between a string and one or 
more PL/I variables by means of a stream 
I/O statement. 

The STRING option is implemented by 
treating the string specified in the 
statement as if it were the buffer, and the 
other PL/I variables as if they were the 
sources or targets. The differences in 
housekeeping between string and file 
operations are resolved by the use of a 
string housekeeping routine, IBMBSIS. 
IBMBSIS is called in the.place of the 
stream I/O initialization/termination 
routine. IBMBSIS sets up a dummy FCB that 
is initialized so that the correct action 
is taken should the director modules 
attempt to read or write beyond the end of 
the string. After the dummy FCB has been 
initialized, the director modules are 
called to convert and move the data as in 
normal stream I/O. 

To implement the string option, compiled 
code passes the string housekeeping module 
an extended SIOCB in which the dummy FCB is 
created. The buffer control fields FCBA 
and FREM in the dummy FCB are set up as if 
the string were a record. The field that, 
in a normal FCB, would hold the address of 
the transmitter, holds addresses of other 
sections of code. 

For a PUT STRING statement, the 
transmitter address field is initialized to 
point to the error handler. Register 1 will 
have been pointed to the head of the FCB by 
the caller. The error code for exceeding 
string size is, therefore, placed at the 
head of the FCB, and the correct error 
condition is automatically raised when the 
branch to the error handler is made. 

For a GET STRING statement, the address 
in the transmitter field is the address of 
code that sets the end-of-file flag and 
returns to the caller .• This code is held 
within the dummy FCB. 

As far as the caller is concerned, 
attempting to read beyond the end of the 
string is equivalent to finding an end-of­
file mark in a stream I/O statement. Where 
the ENDFILE condition or unexpected end of 
file would be raised for a stream file, a 

Chapter 9: stream-oriented Input/Output 175 



GET LIST FILE (SYSIN) (STRINGl) 
COpy FILE(A): 

GET LIST FILE (SYSIN) (STRING2) 
COpy FILE (A); 

(.------------"'----~ 

l------T----
( 

GET LIST FILE (SYSIN) (STRING3) 
C()PY FILE (a); 

1 poi'''''o''''rt of COpy do<, 

r--------------------------------------, 
I NAMED A' 

Data is transmitted to the copy file at the end of each statement and at those 
times when it can no longer be held between the pointers FCaA and FCPM. 
In the example above this will be at the end of each GET statement and at 
the end of the first record. 

'DATA FOR COPYING ONTO FILE a' 

Figure 9.14. The current buffer pointer FCBA and FCPM, the copy pointer" keep track 
of the data to be copied 

176 



'GET STRING SIZE EXCEEDED' message is 
generated, and the ERROR condition is 
raised. 

One or more further calls may be made to 
the string housekeeping routine IBMBSIS at 
entry pOint T" to update the string 
characteristics after a data item has been 
transmitted. 

~Q!~~~~~~nt2_~!th f!~~Q=leng~h_string2: 
IBMBSIS is called after the first item has 
been assigned to the string, to pad the 
remainder of the string with blanks. 

PU! sta~~ments wi~h-y~~§~~ing§: 
IBMBSIS is called to update the length of 
the string after each data item is 
transmitted. 

The need to make a fUrther call to 
IBMBSIS is flagged in the SIOCB when 
IBMBSIS is called to initialize a 
statement. The library director routines 
and the compiler-generated subroutines test 
this flag, and call IBMBSIS if necessary. 

The Time-Sharing Option and 
Con versational Files 

When using the time-sharing option, the 
PL/I programmer can attach the foreground 
terminal as the input or output device used 
by one or more stream files. 

Three transient library routines are 
used to implement this facility. Two are 
transmitters that are used to interface 
with TSO using the appropriate macro 
instructions to effect the input and 
output. The third module is a formatting 
module that overcomes the special 
formatting difficulties that arise when 
working at a terminal. 

When the file is opened, the OPEN 
routine tests every stream I/O file to see 
whether it is to be associated with a 
terminal. If the file is to be associated 
wi th a terminal" the appropriate 
conversational transmitter is loaded: 

IBMBSIC for input 
IBMBSOC for output 

A flag is set in the FCB of the file to 
indicate that the file is a conversational 

file. 

The two transmitter modules handle the 
input, output" and prompting. Formatting 
differences between conversational and 
normal I/O are handled by a transient 
library routine, IBMBSPC. This routine is 
called by the formatting routine, IBMBSPL, 
when a conversational file is being 
handled. 

If a conversational module is used, its 
address is placed in the TCA loaded-module 
list. 

CONVERSATIONAL TRANSMITTER MODULES 

The output module IBMBSOC is similar to 
other output transmitters except that it 
interfaces with TSO, and uses the TPUT 
macro instruction. The macro instruction 
is used with the WAIT option to ensure 
proper queueing of output to the terminal. 

The input transmitter carries out a similar 
function to other PL/I input transmitters. 
However, it also has to handle certain 
prompting functions~ and implements certain 
facilities required only for conversational 
output. 

!nE~~: Input is achieved by issuing a TGET 
macro instruction to the TSO control 
program. 

PrgIDpting: Prompting is carried out before 
every input statement~ unless the last 
character transmitted to the foreground 
terminal was a colon. At the start of a 
statement, the prompting sequence is: skip 
to a new line, print a colon, and skip to 
the start of the next line. If the GET 
statement is not completed by the data 
transmitted from the terminal, a further 
call to the transmitter wil1 be made by the 
director module handling the stream I/O. A 
further prompt is then issued to the 
programmer. Second and subsequent prompts 
take the form of a plus character followed 
by a colon. 

Prompts are issued by placing the 
required prompt-code in a suitable field, 
and using a TPUT macro instruction with a 
HOLD option. This ensures that any 
terminal output from previously executed 
PUT statements will appear at the terminal 

Chapter 9: Stream-oriented Input/Output 177 



before the user is prompted to enter his 
input. 

The prompt is issued to the foreground 
terminal irrespective of whether a PL/I 
output file is associated with the 
terminal. 

FORMATTING 

To simplify terminal usage various methods 
of data input are allowed that do not 
conform strictly to PL/I language 
specifications. For example list-directed 
input need not have a delimiting comma or 
blank and the trailing blanks need not be 
entered if a character item in edit­
directed I/O does not fill the specified 
field width. 

To simplify the use of a terminal, default 
formatting conventions are assumed. These 
apply to PAGE, SKIP, and LINE instructions 
and can be summarized as follows: 

SKIP instructions of 3 lines or less 
are followed. 

PAGE and LINE, and SKIP instructions 
of more than 3 lines are interpreted 
as SKIP(3) instructions. 

This default formatting can be overridden 
by the use of a PLITABS structure that 
specifies a value of 1 or greater for the 
page length. (PLITABS is described above 
under the heading "Formatting for Print 
Files.") 

IBMBSPC checks the page-length value in 
the PLITABS control section. This control 
section will be either the default taken 
from the PL/I transient library module 
IBMBSTAB, or, if the values have been 
specified by tbe programmer, will be the 
values in the structure declared with the 
name PLITABS, or, possibly, a lipk-edited 
control section called PLITABS. In the 
library module IBMBSTAB~ the page-length 
value is zero. 

If the page-length value in the PLITABS 
control section is zero, the formatting 
conventions described above are used. 
These are referred to as sgu~shed-ID0de. If 
the value is greater than zero, normal 
formatting is undertaken. 

The method of formatting used is for 
IBMBSPC to insert the required number of 

178 

'new line' characters in the output buffer, 
and to call the transmitter to transmit the 
buffer contents. (In the special case of 
SKIP(O), backspace characters are used.) 

The normal PL/I rules for END PAGE apply 
to formatted terminal output. ENDPAGE is 
not raised for squashed mode output. 

Summary of Subroutines Used 

This section gives a summary of the 
subroutines used in the implementation of 
stream-oriented input/output. Detailed 
descriptions of the library modules are 
given in the relevant program logic 
manuals. 

Ten different types of subroutine are 
used in stream I/O. They are: 

1. Initializing modules 

2. Director modules· 

3. Transmitter modules 

4. Formatting modules 

5. Conversion modules 

6. External conversion director modules 

7. Conversational modules 

8. The conversion fix-up module (IBMBSCV) 

9. The copy module (IBMBSCP) 

10. The string housekeeping module 
(IBMBSIS) 

Conversion modules are 'described in chapter 
10 of this manual. The other types of 
module are dealt with below. 

INITIALIZING MODULES 

Initializing modules initialize the strearr 
I/O statement. There are two of these 
modules: 

IBMBSII - input initializer 
IBMBSIO - output initializer 

A further module is used for string 
handling. See below under "Miscellaneous 
Routines." 

IBMBSII and IBMBSIO are described 
earlier in this chapter. 



DIRECTOR MODULES 

IBMBSLI - list-directed input 
Entry point A: element item 
Entry. point B: complete array 

IBMBSLO - list-directed output 
Entry pOint A: element item 
Entry pOint B: complete array 

IBMBSDI - data-directed input 
Entry pOint A: with data list 
Entry point B: all known variables 

IBMBSDO - data-directed output 
Entry point A: element variables and 

whole arrays 
Entry point B: single array elements 
Entry pOint C: all known variables and 

SIGNAL CHECK output 
Entry point D: CHECK output for a 

single item 
Entry point T: output a final 

semicolon only. 

Modules Used with ComEile;-gene~teg 
Subroutines 

IBMBSEI - edit-directed input 
Entry pOint A: housekeeping for input 

item spanning a record 
boundary. 

Entry point T: raise TRANSMIT for 
spanning input item 

IBMBSEO - edit-directed output housekeeping 
for output item spanning a record 
boundary. 

Module for Complete Libra~~QD~ol-2~ 
Edit-directed_I/O of a Single Item 

IBMBSED 
Entry point A: edit-directed input 
Entry point B: edit-directed output 

coml2iler-generated Director Routines 

For input: 

IELCGIA - provides the address of the 
source of an edit-directed data 
or X-format item. 

IELCGIB - completes the transmission of an 

edit-directed data item, by 
freeing a VDA if one was used, 
updating the COUNT built-in 
function value, and calling 
IBMBSEIT if TRANSMIT has been 
raised. 

For output: 

IELCGOA - provides the address of the 
target of an edit-directed data 
item. 

IELCGOB - completes the transmission of an 
edit-directed data item, updating 
the buffer items in the DCLCB, 
counting the data item, and 
freeing a VDA if one was used. 

TRANSMITTER MODULES 

The actual movement of the data between the 
external medium and the buffer area is 
carried out by a series of seven 
transmitter modules, which interface with 
the routines of OS data management. These 
modules essentially complete the setting up 
of the DCB, and issue the data management 
GET and PUT macro instructions, thus 
reading or writing one record. 

One module is used for input, six for 
output. The output modules are divided into 
two groups: one group for PL/I print 
files, the other for all other output 
files. Both output module groups contain 
three modules: one for F-format records, 
one for V-format records, and one for U­
format records. All modules interface with 
the queued sequential access method. 

The following transmitters are used: 

IBMBSTI - input transmitter 

IBMBSOF - output transmitter for F-format 
records 

IBMBSOV - output transmitter for V-format 
records 

IBMBSOU - output transmitter for U-format 
records 

IBMBSTF - print transmitter for F-format 
records 

IBMBSTV - print transmitter for V-format 
records 

IBMBSTU - print transmitter for U-format 
records 

Chapter 9: Stream-oriented Input/Output 179 



FORMATTING MODULES 

Formatting modules control the position of 
the data on the external medium. There are 
three formatting modules: two library 
subroutines, and one compiler-generated 
subroutine. 

IBMBSPL 

Entry 

Entry 

Entry 

IBMBSXC 
Entry 
Entry 
Entry 
Entry 

- PAGE, LINE, and SKIP format items 
and options 

point A: 

point B: 

point C: 

- X and 
point A: 
point B: 
point C: 
point 0: 

PAGE option or format 
item 
LINE option or format 
item 
SKIP option or format 
item 

COLUMN format items 
X format input 
X format output 
COLUMN format input 
COLUMN format output 

IELCGOC - X items, in edit-directed output. 
that do not span a record boundary. 

EXTERNAL CONVERSION DIRECTOR MODULES 

The following external conversion director 

180 

routines are used exclusively in edit­
directed I/O: 

IBMBSAI - input A, B, and P character 
formats 

IBMBSAO - output A, B. and P character 
formats' 

IBMBSCI - input C format 
IBMBSCO - output C format 
IBMBSFI - input F and E formats 
IBMBSFO - output F and E formats 
IBMBSPI - input P format arithmetic 
IBMBSPO - output P format arithmetic 

CONVERSATIONAL MODULES 

Transmitters: 
IBMBSIC - input transmitter 
IBMBSOC - output transmitter 

Formatting module: 
IBMBSPC - formatting module 

MISCELLANEOUS MODULES 

The other subroutines used in stream I/O 
are: 

IBMBSCV - the conversion fix-up module 

IBMBSCP - the copy module 

IBMBSIS - the string housekeeping module 



In this chapter~ the terms source and 
~~~~ are used when referring to transfer 
of data. The 2QB~ is the point from
which the data is taken; the targ~t is the
point to which it is moved, possibly in a
converted format.

The PL/I language specifies situations
in which conversion of data types will be
carried out. These include the execution
of stream I/O and assignment statements,
and the evaluation of expressions that
include different types of data. The large
number of data types allowed in the PL/I
language means that some 170 types of
conversion are possible. How these
conversions are handled by the PL/I
Optimizing Compiler depends, to some
extent, on the optimization specified for
the program.

If optimization has been specified, all
conversions that can be handled by in-line
code are so handled. If optimization has
not been specified~ the simpler and more
commonly used conversions will be handled
in-line~ the remainder by the library
conversion package.

This chapter describes the library
conversion package and explains how in-line
conversions are handled. It concludes with
a description of how the CONVERSION
condition is raised.

Before conversions can be understood.
knowledge of the way in which data types
are held is necessary. This is summarized
in figure 10.1.

The Library Conversion Package

The library conversion package consists of
some 26 modules and is capable of handling
all the conversions that are allowed in the
OS PL/I Optimizing Compiler implementation
of the PL/I language. All but seven of the
modules convert data from one data type to
another. As there are approximately 170
possible conversions and only 19 conversion
modules, many conversions are done by using
a series of modules. For instance, to
convert from fixed-decimal to bit-string
involves an intermediate conversion to
floating-point. The conversion package
also contains five

Chapter 10: Data Conversion

r---,
Data attributes I stored internally as

BIT (n)

BIT(n) VARYING

CHARACTER(n)

CHARACTER(n)
VARYING

FIXED DECIMAL(p,q)

FIXED BINARY(p,q)

FLOAT DECIMAL(p)

FLOAT BINARY(p)

Aligned: one byte
for each group of
eight bits or part
thereof.
Unaligned: as rrany
bits as are
required, regardless
of byte boundaries.

As BIT(n), with
two-byte prefix
containing current
length of string.

One byte per
character.

As CHARACTER(n),
with two-byte prefix
containing current
length of string.

Packed decimal:
1/2-byte per digit,
plus 1/2-byte for
sign.

P <= 15: halfword
p>15: fullword

p<=6: short
floating-point
p>6: long .
floating-point
p>16: extended

p<=21: short
floating-point
p>21: long
floating-point
p>53: extended

PICTURE One byte for each
picture character
(except K and V) L------------------- _____________________ J

Figure 10.1. Internal forms of data
types

control and utility modules, and two
modules used for stream I/O. The stream
I/O modules move character and bit strings
between the data management buffer and the
PL/I variable when no conversion is
necessary.

A full description of the routines in

Chapter 10: Data Conversion 181

the library conversion package is given in
the publication Q§-E~/I_B~2i9~n~_~ibr~~y~
E~Qg~2!!L~Qg!£ •

The conversion paths followed for every
conversion are known to the compiler, and
ESD records are generated for all the
modules that will be used. In certain
cases, however, the data types involved are
not known at compile time. Examples of
this are data-directed and list-directed
input, and edit-directed input or output
when format and data lists cannot be
matched. In such cases~ the compiler
generates ESD records for all conversion
modules that could possibly be needed.

All names begin with the letters 'IBMB'.
The fifth letter is 'c' for conversions~
conversion utilities, and the
string/arithmetic directors. It is's' for
the edit-directed format directors. The
modules in the arifhmetic conversion
package have six letter names, the sixth
letter being an arbitrary module
identifier. The string conversion modules
and conversion utilities have seven lett~r
names in which the sixth and seventh
letters are mnemonic; The mnemonic codes
follow:

x fixed binary
F float
I integer or binary constant

if in C module
I input if in S module
D fixed decimal
Z free decimal or float decimal
P fixed pictured decimal
E float pictured decimal
H decimal constant
Y float decimal constant on output
B bi·t
J bit constant
C character
Q pictured character
A arithmetic
o output in S module
G ftcheck ft or utility
T table

SPECIFYING A CONVERSION PATH

When a number of conversion modules need to
be used for a certain conversion, it is
necessary for there to be some control of
the path taken after the first module has

been entered. The method used is for each
module to have a number of entry points.
Each one is entered for a certain type of
conversion, and each one implies the
subsequent entry points to be invoked for
that particular conversion. For instance,
the module IBMBCE handles fixed-decimal to
fixed-binary conversions. If the module is
entered to carry out this conversion, entry
point IBMBCEDX is called. However, if it
is only an intermediate stage in a
conversion from fixed-decimal to bit­
string, the entry point IBMBCEDB will be
called. When the conversion to floating­
point is completed, the conversion to bit
will be carried out by the module IBMBCR.

In addition to the use of various entry
pOints to specify the conversion path to be
taken, there are two control modules to
handle the conversion paths between
character-string and arithmetic data.

HOUSEKEEPING WHEN MORE THAN ONE MODULE
IS USED

When more than one arithmetic conversion
module is used in a conversion, a ~ethod cf
minimizing the housekeeping has been
evolved. This avoids saving registers and
acquiring workspace for each module
entered. The same library workspace is
used for all modules in a single conversion
operation. The first module in the chain
saves the registers and acquires workspace;
the last module frees the workspace and
restores the registers.

A simple method is used to allow each
module to test whether or not it can use
the previous module's workspace. A bit at a
fixed offset from register 13 is tested.
If the module is the first to be called,
this bit will be a bit in the calling
procedure's DSA, which is always set to
zero. If the module is not the first to be
called, the bit will te in library
workspace and will have been set to one by
the previous module if the same workspace
can be used. If the module is the first,
library workspace will be acquired in the
usual manner. If the module is not the
first, a branch will be made around this
code.

ARGUMENTS PASSED TO THE CONVERSION
ROUTINES

Each conversion routine expects a standard
set of arguments. These consist of the
address of the source and target, and the
addresses of the DEDs (data element

r---,
Conversion 1 I Optimization

Comments and Conditions t-----------------
Source Target 1 SIZE 1 SIZE

Idisabledlenabled

IFixed binary
I
Fixed decimal

Fixed binary Floating-point

Bit string

Character string
or picture

Fixed binary

Fixed decimal

Fixed decimal Floating-point

Bit string

If either scale factor = 0 and the
other factor S 0, the optimization
can be 'none'.

If source scale factor = 0, the
optimization can be 'none' (whether
SIZE is enabled or not).

String must be fixed-length, aligned,
and with length S2048.

Source scale factor must be S o.
String must be fixed-length with
length S256. Picture type 1, 2, or 3.

If source and target scales have the
same sign and are non-zero, the
optimization (SIZE disabled) must be
'time' •

Source precision must be ~10.

Source scale factor must be zero.
String must be fixed-length, aligned,
and with length S2048.

ICharacter string Source scale factor must be ~ o.
1 String must be fixed-length and
1 length S256.
1

1
I

time time

time

time

time

time

time

not done
in-line

not done
in line

time

time

not done
in-line

time

1 Picture picture type 1,. 2, or 3. For 1- time not done
in-line 1 picture types 1 and 2 with no sign, 1

1 optimization can be 'none'. 1
-------------1----------------- -------------------------------------1-------- --------

Floating­
point

IFixed binary 1 time
I 1
1 I
Fixed decimal Target precision must be S9. 1 time

Floating-point

Bit string

Source and target may be single or
double length.

1
1
1
1
1

String must be fixed-length, aligned, I time
and with length S2048. 1

not done
in-line

not done
in-line

not done
in-line

------------- ----------------- -------------------------------------1-------- --------I Fixed binary Source string must be fixed-length, I
I aligned, and with length S2048. I
I 1

not done
in-line

IBit string Fixed decimal and Source must be fixed-length, aligned, I time not done
I floating-point and with length <32. 1 in-line L---·---___________________________________ J

Figure 10.2. (Part 1 of 2). Data conversions performed in-line

Chapter 10: Data Conversion 183

r---,
Conversion 1 I Optimization

-------------------------------1 Comments and Conditions 1-----------------
Source 1 Target 1 I SIZE 1 SIZE

1 1 Idisabledlenabled

1 1
ICharacter string IString must be fixed-length with
1 Ilength ~256.

Picture 1 1
1 1
1 Picture pictures must be identical.

Fixed binary Source precision must be <10. time not done
in-line

Fixed decimal If picture has a sign, the
optimization must be 'time'.

not done
in-line

Picture
type 1
(See note
below)

Floating-point Source precision must be <10. time not done
in-line

Picture Picture type 1, 2 or 3. time not done
lin-line

Locator 1 Locator 1
---------------------------------_._---
Label ILabel I

The word "time" in the columns headed "Optimization" indicates that the conversion is
done in-line only if optimization has been specified; "not done in-line" indicates
that the conversion is done by library call. L---__________________________________ J

Figure 10.2. (Part 2 of 2). Data conversions performed in-line

descriptors) for the source and the target.
Arguments are passed in a list addressed by
register 1. (The source is the variable or
constant that requires conversion; the
target is the area where the converted
result is to be placed.)

The DEDs are used to describe the data
type of the element. Those passed to the
library conversion package are set up by
compiled code in the constants pool. They
are described in chapter 4 and fully mapped
in appendix A.

COMMUNICATION BETWEEN MODULES

When the conversion path goes through a
series of modules, the address of the final
target must be retained until the last
module is reached.

Temporary targets and DEDs are created
for the intermediate results, and these are
passed on as the source for the next

184

module. When information is passed between
two conv.ersion modules using the same
workspace, registers are normally used
rather than a parameter list.

In some arithmetic conversions to
string, precision data is passed through
certain modules that do not themselves need
such data.

FREE DECIMAL FORMAT

Because all floating~point data is in
binary form, there is no direct
representation of the PL/I floating-point
decimal format. In order to simplify
certain conversions~ a simulated floating­
point decimal format is employed by the
optimizing compiler. This format is termed
fr~~ decimal (sometimes known as eacked
intermediate decimal). The format of free
decimal is-a I7=digIt packed decimal
mantissa and a fullword binary exponent.
Conversions to and from free decimal form

r---,
IConversion I Conversion
I number I

2 Fixed-binary to
floating-point

3 Floating-point to
fixed-binary

4

5

6

7

8

9

10

12

14

15

16

17

18

19

Fixed-decimal to
floating-point

Floating-point to
fixed-decimal

Fixed-binary to
fixed-decimal

Fixed-decimal to
fixed-binary

Character-string to
fixed-decimal

Character-string to
floating-point

Character-string to
fixed-binary

Fixed-decimal to
character-string

Bit-string to
character-string

Fixed-binary to bit-string

Floating-point to bit-string

Bit-string to fixed-binary

Fixed-decimal to picture
type 1

Fixed-decimal to picture
type 2

20 Fixed-decimal to picture
type 3

21 picture type 1 to
fixed-decimal

Note: Conversions numbers 1, 11, and 13
notused.
L---J
Figure 10.3. Fundamental in-line

conversions

an integral part of the arithmetic
conversion package.

In-line Con versions

The optimizing compiler generates in-line
code for the more commonly used
conversions. Eighteen basic types of
conversion are handled in-line. Several of
these basic types are used. in conjunction,
to enable a total of 28 conversions to be
handled in-line. The circumstances in
which in-line conversions are used are
shown in figure 10.2.

An example of the way in which a
compiler conversion is used to convert from
fixed-binary to fixed-decimal is given
below. A list of the eighteen fundamental
compiler conversions is given in figure
10.3.

Not all the picture characters available
may be used in a picture involved in an in­
line arithmetic conversion. The only ones
permitted are:

V and 9

Drifting or non-drifting characters $
S + -

Zero suppression characters Z *

Punctuation characters ,. / B

For in-line conversions, pictures with
this subset of characters are divided into
three types:

Picture type 1: Pictures of all 9s with
(optionally) a V and a leading or
trailing sign. For example:

'99V999', '99', 'S99V9',
'99V+', '$999'

Picture type 2: Pictures with zero
suppression characters and
(optionally) punctuation
characters and a sign character.
Also, type 1 pictures with
punctuation characters. For
example:

'ZZZ', '**/**9', 'ZZ9V.99',
'+ZZ.ZZZ·, '$///99', '9.9'

Picture type 3: Pictures with drifting
strings and (optionally)
punctuation characters and a sign
character. For example:

'$$$$', '-,--9', 'S/SS/S9',
'+++9V.9','$$$9-'

Chapter 10: Data Conversion 185

sometimes a picture conversion is not
performed in-line even though the picture
is one of the above types, because it has
certain characteristics that necessitate a
subroutine call. These may be, for
instance:

• There is no overlap between the digit
positions in the source and target. For
example:

DECIMAL (6,8) or DECIMAL (5, -3) to
PIC '999V99~ will not be performed
in temp.

• Punctuation between a drifting Z or a
drif·ting * and the first 9 is not
preceded by a V. For example:

'ZZ.99'

• Drifting or zero suppression characters
to the right of the decimal point. For
example:

·ZZV.ZZ~, '++V++'

The conversion is performed by converting from binary to decimal via a CVD instruction,
with a scale-matching operation (to line up the decimal and binary points) either before
or after the CVD (or occasionally both). This scale-matching-operation is done by shifts
where possible but, depending on scales and precision, a decimal multiplier is sometimes
used. .

DCL SOURCE FIXED BINARY (31,9),
TARGET FIXED DECIMAL (15,-6):

TARGET=SOURCE:

L 14, SOURCE

LTR 14,14

BNM Compiler label

A 14, Constant

SRA 14,9

CVD 14,WKSP+8

XC T.ARGET (3), TARGET

MVC TARGET+3(5)~WKSP+8

MVN TARGET+7(1),WKSP+15

186

Determination

Branch if >0

Add a constant to negative source

Divide by source scale (2**9)

Convert to decimal in workspace

Set zeros in target

Transfer value to target

Transfer the sign

r---, conversion required I compiler conversions used

Fixed-decimal to bit-string I No. 7 Fixed-decimal to fixed-binary
I
I No. 15 Fixed-binary to bit-string

--------------~-------------------------~--
Floating-point to bit-string I No. 3 Floating-point to fixed-binary

Bit-string to fixed-decimal

Bit-string to floating-point

Character-string to bit-string

Fixed-binary to character-string

Fixed-binary to decimal picture

Floating-point to decimal
picture

I
I No. 15 Fixed-binary to bit-string

No. 17 Bit-string to fixed-binary

No. 6 Fixed-binary to fixed-decimal

No. 17 Bit-string to fixed-binary

No. 2 Fixed-binary to floating-point

No. 10 Character-string to fixed-binary

No. 15 Fixed-binary to bit-string

No. 6 Fixed-binary to fixed-decimal

No. 12 Fixed-decimal to character-string

No. 6 Fixed-binary to fixed-decimal

No. 18, 19, or 20 Fixed-decimal to picture

i No. 5 Floating-point to fixed-decimal
I
I No. 18, 19, or 20 Fixed-decimal to picture

-----------------------------~--
Decimal picture to fixed-binary I No. 21 picture to fixed-decimal

I
I No. 7 Fixed-decimal to fixed-binary

Decimal picture to floating­
point

I No. 21 picture to fixed-decimal
I
I No. 4 Fixed-decimal to floating-point

Decimal picture to decimal
picture

I No. 21 Picture to fixed-decimal
I
I No. 18, 19, or 20 Fixed-decimal to picture L---__________________________________ J

Figure 10.4. Multiple conversions

MULTIPLE CONVERSIONS

The conversions listed in figure 10.3 can
be regarded as fundamental types. A number
of other conversions can be performed by
using two fundamental ~onversions in
series. These are shown in figure 10.4.

HYBRID CONVERSION

Finally" there is one hybrid conversion
that is carried out partially in-line.

This is floating-point to character-string,
which requires an interpretive routine to
analyze the floating-point data (as
distinct from the attributes, which all the
others use), in order to generate the
correct sca,le factor. This is done by the
library, because in-line code would use the
same algorithm. However, partial
optimization is carried out by setting up a
character string of the correct length
before calling the library" and then
handling the subsequent string assignrrent
in-line.

Chapter 10: Data Conversion 187

Raising the Conversion Condition

The PL/I language specifies that when an
invalid conversion is attempted on
character-,string data, the CONVERSION
condition will be raised unless CONVERSION
has been disabled.

When the CONVERSION condition has been
raised, the language allows the program to
access the invalid field or character by
use of the ONSOURCE or ONCHAR built-in
function. The language also stipulates
that conversion should be attempted again
if an on-unit is entered in which the
ONSOURCE or ONCHAR pseudovariable is used
to change the invalid field or character.

Raising the CONVERSION condition
involves a number of housekeeping problems,
which are handled by a special conversion
module~ IBMBSCV. IBMBSCV is never called
by compiled code, since conversions that
could raise the CONVERSION condition are
not attempted in-line unless the CONVERSION
condition is disabled. IEMBSCV produces the
correct error code for the error handler,
IBMBERR, and looks after the housekeeping
problems.

IBMBSCV saves considerable overheads
being carried either by all types of errors
or by all correct conversions. The reason
for the overhead lies principally in the
facility offered by the language of using
the ONSOURCE and ONCHAR built-in functions
to access and optionally change the field
causing the error~ and subsequently
reattempting the conversion on the changed
field.

Before any conversion in which the
CONVERSION condition could be raised is
attempted, the ONSOURCE field in the ONCA
must be set up, and the address at which a
reattempted conversion should begin must

188

also be placed in the ONCA.

The code carrying out the conversion
must then test the validity of the field tc
be converted and, if it is invalid, set the
ONCHAR field in the ONCA to the first
invalid character. The module IBMBSCV is
then called to diagnose the conversion and
produce the correct error code for the
error handler. There are some twenty
possible error codes associated with the
CONVERSION condition.

If the condition was raised during the
execution of stream input, further action
is necessary. This is because an on-unit
may specify.further input, and the buffer
which contains the CNSOURCE field may be
lost. For ex"ample the on-unit might be:

ON CONVERSION BEGIN;
ON CONVERSION SYSTEM; /* PREVENTS

RECURSIVE ENTRY*/
GET LIST (KEYB);
IF KEYB< 200 THEN ONCHAR ='~';
ELSE ONCHAR ='9';
END;

If KEYB was in the next record, the source
field that caused the conversion would be
lost. To prevent this, a VDA is acquired
in the LIFO stack, and the source field is
stored in this VDA. The ONSOURCE and
ONCHAR pointers are altered to point to the
field in the VDA, ~nd all further
operations are carried out on this field.

The NAB pOinter associated with the
block in which the interrupt occurred must
then be altered so that it encompasses the
VDA. The fact that the NAB pointer has
been altered must be known in the block for
a GOTO out of block to be handled. The
reset-NAB bit is accordingly set to one in
the relevant DSA. When these oper~tions are
complete, IBMBSCV calls the error-handling
module IBMBERR.

Chapter 11: Miscellaneous Library Subroutines and System Interfaces

In addition to employing the PL/I libraries
for the functions described in previous
chapters, the OS PL/I Optimizing Compiler
calls on a large number of computational
and data-handling subroutines and on
subroutines that provide interfaces with
the operating system for such functions as
TIME and DATE. These miscellaneous library
calls are discussed in this chapter. The
library subroutines themselves are fully
described in the publications IBM
§Y2temLJ~~QEg~~~!ll9_§y2~gm~ __ R~L! ResiQ~
f!~~arY_Er09r~ID-fQgic and !BM §Y2temL36Q
QEgra~!n9-2Y§~gm~--R~L! Transient ~ibra~
E~9ram_~09i£.!.

This chapter is divided into two main
sections: the first deals with the
computational and data-handling
subroutines, and the second with
miscellaneous system interfaces.

Computational and Data-handling
Subroutines

The computational and data-handling
subroutines are used to handle all the
mathematical built-in functions, the
majority of arithmetic built-in functions,
and a number of array-handling, structure­
handling, and string-handling functions.
The extent to which library calls are used
depends on the level of optimization
specified by the programmer, the type of
data involved, and, for string functions,
on whether STRINGRANGE and STRINGSIZE are
enabled.

ARITHMETIC AND MATHEMATICAL SUBROUTINES

The compiler always uses library
subroutines for mathematical functions.
The use of compiled code in these
circumstances is impracticable. Where
possible, arithmetic functions are handled
by in-line code,. The circumstances in
which library subroutines are used for
arithmetic functions are listed in figure

11.1.

considerable use is made of chains of
library modules to carry out the various
functions. For example, the subroutines
that handle complex arithmetic normally
calIon those that handle real values to
process each part of a complex number;
similarly, the square-root subroutine is
used in the computation of several of the
trigonometrical functions.

Arguments are passed to the arithmetic
and mathematical subroutines either in
registers or in a parameter list addressed
from register 1. The use of registers
results in faster execution l but allows
less flexibility in use of the routines.
Compiled code always passes arguments in a
parameter list. All built-in functions,
except the STRING built-in function, have
their arguments passed in a list comprising
the addresses of the source and target (and
sometimes also the addresses of DEDs).
Computational routines are always carried
out in floating-point unless otherwise
indicated. This may involve conversion
before calling the routine.

ARRAY, STRING, AND STRUCTURE
SUBROUTINES

A number of array, string, and structure
subroutines are included in the OS PL/I
Resident Libary. These are used to carry
out certain of the array and string built­
in functions and a number of other
operations. Where possible, in-line code is
generated to carry out these functions.
However, the enablement of STRINGSIZE, the
use of unaligned bit strings, and the use
of adjustable and certain varying-length
strings will result in calls being made to
the library sub-routines~

The subroutines involved in these
functions are shown in figure 11.2. Two of
them, IBMBAIH and IBMBAMM, are concerned
with the handling of data aggregates rather
than with the execution of specific
operations. They are discussed below.

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 189

r---,

Function I Data type
I

REAL~B§YM~~!§

I Module I When used
I name I

---~---------------
~nteger exponentiation

General exponentiation

Function

Integer exponentiation

General exponentiation

Short floating-point I
Long floating-point I
Extended I

floating-point I
I

Short floating-point I
Long floating-point I
Extended I

floating-point I

Data type

Short floating-point
Long floating-point
Extended

floating-point

IBMBMXS I When exponent is a variable
IBMBMXL I When exponent is a variable
IBMBMXE I Always

I
I

IBMBMYS I Always
IBMBMYL I Always
IBMBMYE I Always

I

Module I When used
name I

IBMBMXW I When exponent is a variable
IBMBMXY I When exponent is a variable
IBMBMXZ I Always

I
I

Short floating-point IBMBMYX I Always
Long floating-point IBMBMYY I Always
Extended IBMBMYZ I Always

floating-point I L---__________________________________ J

Figure 11.1. Arithmetic operations performed by library subroutines

IBMBAIH is used to assist the other library
array-handling subroutines to process
interleaved arrays. It is not called by
compiled code.

Interleaved arrays are arrays whose
elements are not held contiguously in"
storage. They occur in arrays of
structures. For example, the declaration:

DCL 1 STRUCTURE (2),
2 A(2),
2 B ;

would result in successive storage
locations being allocated to elements of A
and B as follows:

Both A and B are interleaved arrays. A is
a two-dimensional array~ the first row of
which is separated from the second by an

190

element of B. As can be seen" the elements
of A are not contiguous, nor is there a
fixed interval between their addresses.

The interval between the addresses of
elements of an interleaved array referred
to by varying only, the final subscript is
always fixed, and these elements can be
stepped through by using the last
multiplier from the array descriptor.
However, such groups of contiguous elements
are not themselves necessarily contiguous.

When IBMBAIH is called, it is passed,
the number of dimensions in the array, the
address of the array descriptor, and the
address of a work area in which to
construct a table. Basically, IBMBAIH
calculates the extent of each dimension and
enters this information in the table; it
then calculates the increments that must be
added in order to step between elements
that may be non-contiguous (see figure
11.3). The information in the completed
table is used by the calling module to

r---, I IBMBAAH ALL and ANY built-in
I functions
I IBMBAIH Indexer for interleaved
I
I IBMBAMM
I IBMBANM
I IBMBAPC
I
I IBMBAPF
I
I
I IBMBAPE

IBMBAPM
IBMBASC

IBMBASF

IBMBASE

IBMBAYF

IBMBAYE

IBMBBBA

IBMBBBC
IBMBBBN

IBMBBCI

IBMBBCK

IBMBBCT

IBMBBCV

IBMBBGB
IBMBBGC

IBMBBGF

IBMBBGI

IBMBBGK

IBMBBGS

IBMBBGT

IBMBBGV

L----------

arrays
structure mapping
STRING built-in function
PROD built-in function
(fixed-point integer)
PROD built-in function
(short or long
floating-point)
PROD built-in function
(extended floating-point)

STRING pseudo-variable
SUM built-in function
(fixed-point)

SUM built-in function (short
or long floating-point)
SUM built-in function
(extended floating-point)
POLY built-in function
(short or long
floating-point)
POLY built-in function
(extended floating-point)

AND and OR logical
operations (aligned bit
strings)
Compare aligned bit strings
Invert aligned bit string
(NOT)
INDEX built-in function
(character string)
Concatenate character
strings and REPEAT built-in
function
TRANSLATE built-in function
(character string)

VERIFY built-in function
(character string)
BaaL built-in function
compare unaligned bit
strings
Bit-string assignment
(aligned, source and target)
INDEX built-in function (bit
string)
Concatenate bit strings,
REPEAT built-in function,
and assign
Produces SLD (SUBSTR
built-in function)
TRANSLATE built-in function
(bi t string)
VERIFY built-in function
(bit string)

------------------------------J

Figure 11.2. Array, structure, and
string subroutines

address successive elements of the array
using simple code.

structures are normally mapped during
compilation. However, certain structures
that contain adjustable strings or arrays
cannot be mapped until the actual lengths
or bounds are known. compiled code calls
on the module IBMBAMM to carry out this
mapping. There are four entry points:

IBMBAMMA Compute length of structure.

IBMBAMMB Map structure in PL/I manner.

IBMBAMMC Map structure in COBOL manner
(for interlanguage cornunication
or for files declared with the
COBOL option).

IBMBAMMD Map structure declared with
REFER option .•

Miscellaneous System Interfaces

In addition to the system interface used
for input and output, the PL/I Optimizing
Compiler makes use of a number of other
system facilities. These are for the
DELAY, DISPLAY, and WAIT statements, the
TIME and DATE built-in functions, and the
sort/merge and checkpoint/restart built-in
subroutines.

Calls to these facilities are made
through library subroutines held in the as
PL/I Resident Library. These subroutines
act as an interface, issuing any SVC calls
that may be necessary, and handling
housekeeping problems. The descriptions of
the subroutines in this chapter are kept to
a minimum except where the housekeeping
problems are large and have a major effect
on the contents of main storage. In these
cases, background information is given and
the various control blocks are explained,
thus enabling the situation during
execution to be understood.

The as macro instructions referred to
below are described in IBM §y§!gm/360
QEgI~tirrg_§y2~gm~ __ §YEervisor an~Qat~
Man~g~ment Mac~Q_In§~IQ£tion2.

TIME

The PL/I TIME built-in function is
implemented by issuing a GETIME macro
instruction. This is done by the module
IBMBJTT.

On entry from compiled code, register 1

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 191

points to the address of the character­
string target. The TIME macro instruction
is issued using the TU parameter. The time
is returned in units of 26.04 microseconds
and the module converts this into PL/I
defined format 'hhmmssttt~ in character
format.

DATE

The PL/I DATE built-in function is
implemented by module IBMBJDT.

On entry from compiled code, register 1
pOints to the address of the date character
string. The TIME macro instruction is
issued. On return register 1 contains the
date in yydddc packed decimal format. The
year is placed in the target character
string in character form. The day of the
year is then compared against a table
indicating the number of days in each
month. If the year is a leap year the
number of days for February is set to 29 in
the table. The days and months are then
set in the character string and the result
returned to compiled code in the form
yymmdd.

DELAY

The PL/I DELAY statement is implemented by
calling the DELAY module IBMBJDY. Register
1 is pointed at the milliseconds delay
required. The milliseconds are converted
into units of 26 microseconds and the
result stored in a fullword addressed by
the TUINTVL parameter in the STIMER macro
instruction. The STIMER macro instruction
is then activated and the delay started.
After the delay control is returned to the
calling program .•

DISPLAY

The PL/I DISPLAY statement is implemented
by the module IBMBJDS. There are two entry
points:

1. IBMBJDSA - entry from complIed code.

2. IBMBJDSB - entry from IBMBJWT or
IBMTJWT when a WAIT for the EVENT is
reached.

If the parameter list passed to the module
has one element~ then the entry is for
DISPLAY only, and a .VDA is obtained. If
there are two parameters, then the entry is

192

for DISPLAY REPLY and a VDA is again
obtained. If there are three parameters,
then the entry is for DISPLAY REPLY EVENT.
If the event variable is active ERROR is
raised. If the event variable is inactive
it is set active, I/O display and
incomplete, and non-LIFO storage is
obtained in which to build the parameter
list.

Next the reply buffer, if present, is
filled with blanks and, if the reply string
is variable length, its current length is
set to the maximum length. The parameter
list to the WTO macro is now built in the
storage obtained, the address of the ECB
put into the event variable if there is
one, and a WTO macro issued. Finally, if
DISPLAY REPLY without EVENT was specified,
a WAIT macro is issued for the ECB. Return
is then made to compiled code.

SORT/MERGE

The PL/I programmer can make use of the OS
sort/merge facilities through a call to the
built-in subroutine PLISORT. The method of
using the facility is fully described in
the publication IBM System/360 Operating
§y2~~~ __ E1/I~ptimizinq ComEil~~
E~Qg~~mm~§~§Y!Q~

The OS sort/merge program includes a
number of y~~_~~it§ that can be
conveniently thought of as allowing the
programmer to write sections of code that
become included in the sort/merge routines.
Two of these user exits can be used by the
PL/I programmer: user exit 15 allows
records to be set up by PL/I and passed to
the SORT routines; user exit 35 allows
records that have been sorted to be passed
to and' processed by the PL/I program.

Exits are not allowed in the PL/I
language. To overcome this problem, code
is inserted between the sort/merge modules
and the PL/I routines. A bootstrap module,
IBMBKST, is used, and this module acts as
an interface between SORT and PL/I. The
bootstrap module saves the PL/I environment
and restores it on return from sort/merge
so that the PL/I exit-iS or exit-35 code
can operate in a PL/I environment.
Similarly, the bootstrap module restores
the environment for SORT on return from the
exit.

saving and restoring the environment
consists of replacing the address of the
error handler in the TeA with the address
of an error routine in IBMBKST, and vice­
versa.

Declaration Storage

DECLARE 1 X(2),
2 C,
2 Y (2),

3 Z (3),
3 B;

C
Z (1, 1, 1)

Z (1, 1,2)

Z (1, 1,3)
B

Z (1, 2, 1)

M3 I ~~

M2

~
Ml

Inc1

Z (1, 2, 2)

~
Z (1, 2, 3)

B

C

Z (2,1,1)
Z (2, 1, 2)

Z (2, 1,3)

B

Z (2,2,1)

Z (2,2,2)
Z (2, 2, 3)

B

Z is a three-dimensional interleaved array, for which

multipliers held in array descriptor (see chapter 4)

Inc, and Inc2 intervals between addresses of successive elements of Z when subscripts
for first and second dimensions, respectively, change

The increment when the subscript for the ith dimension changes is computed as follows:

Incj = Mj - Ej+l * Mi+ 1 + Inc i+ 1

Where Ej +, is the extent of the 0+1)th dimension .

. Increment table for array Z (as initialized by ISMSAI H)

2

2nd dimension 2

Inc2

2

1st dimension 2

Inc,

subscript count

extent of dimension

increment

subscript count

extent of dimension

increment

Note: IBMBAIH returns the extent of the nth dimension in register 1. (In this example, the extent of
the 3rd dimension = 3.)

Figure 11.3. Indexing interleaved arrays

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 193

Various housekeeping problems occur in the
user exit procedures, since there is no DSA
chain through the SORT modules.
particularly difficult is the handling of a
GOTO out of the exit procedure that passes
control to a procedure that was activated
before the procedure that originally called
the sort program. This action implicitly
terminates SORT. However, SORT will not be
terminated by standard PL/I action, since
it does not function in the PL/I
environment.

The problems are overcome by setting up
a chainback that omits the SORT DSAs and
includes a DSA that is specially flagged so
that it can be recognized by the GOTO code.
The chaining of save areas in shown in
figure 11.4.

When IBMBKST is called an area of
workspace is acquired by the tootstrap
routine IBMBKST. This consists of one
level of library workspace, which is
flagged and chained to look like two DSAs.

If the SORT program is terminated by a
GOTO out of the block that contains the
PL/I exit program, the SORT routine has to
be terminated before the GOTO can be
completed. This is done by the GOTO
routine leoking for a specially flagged DSA
in the chain. This is the second save area
of IBMBKST. If one is found, a return code
of 8 is set up and return made to the SORT
routine. If there is a GOTO or an error,
then error code 16 is set instead of 8 if
the SORT program product being used is that
which supports this return code to exits.
This results in the termination of the SORT
routine, and the GOTO can then be continued
in the usual manner by following the DSA
backchain through the bootstrap routine
until the target DSA is reached.

For handling on-units in the exit
procedure, the DSA chain can be followed
without reference to SORT.

Restoration of the PL/I Environment 2n
EXi t f.roID_20RT

When an exit is made from SORT, it is

194

necessary to restore the PL/I environment.
The method used is to have code that
restores the registers at the point to
which SORT makes its exit. Use is made of
the SORT exit table shown in figure 11.4.
Whichever exit is taken, control passes to
this code. The code saves the registers
passed by SORT and restores the registers
of the bootstrap module IBMBKST, thus
restoring the PL/I environment. The save
area of the SORT bootstrap routine is
addressed by means of an offset from the
code that is being executed. This is
possible because the SORT exit table and
the register save area are both held in the
same workspace at a fixed offset from each
other. The code is not included in the
bootstrap module~ in order to preserve
reentrancy.

If there is an error in SORT, control. is
also passed to code which restores the
environment, and passes control to IBMBKST
and then to IBMBERR.

Before calling the SORT program, IBMBKST
does the following:

1. Obtains a VDA for two DSAs.

2. Creates a parameter list suitable for
SORT.

3. Sets up addressability code for exit
routine, if any.

4. Changes the interrupt handler address
so that an interrupt results in entry
being made to a section of the sort
bootstrap. The sort bootstrap then
determines the error, puts out a
message to SYSPRINT indicating that a
program check has occurred during the
execution of SORT, and then terminates
the program.

When a SORT E35 or E15 exit is being
taken, the addressability code saves the
registers of SORT and reestablishes the
PL/I environment" and then branches to an
entry point of IBMBKST, which:

..

.. ..

Backchain

Backchain

First save area:
for SORT interface
module

* Exit table

Backchain

Second save area:
for exit routine
interface

Work area for the
interface routines

Address of SORT
save area

Backchain

* Exit table

Entry point for E 15
Entry point for E35

~ .,

NOP
BC
BC
STM
L
LM
B
DC

DSA for Pl/I program
requiring SORT facilities

Sort bootstrap DSA on
calling SORT

1
Sort bootstrap DSA on
calling exit routine

PL/I exit procedure DSA

o
15,12(15)
15,12(15)
14,12,12(13)
2,28(15)
2,12,28(2)
exit bootstrap
A (save ar:ea 1)

not used
branch to exit code for E15 exit
branch to exit code for E35 exit
save sort registers
locate bootstrap save area
restore bootstrap registers
initialized address of routine
address of first save area

Figure 11.4. DSA chaining during the execution of SORT

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 195

r---r---~

Main procedure

SORT
bootstrap
IBMBKST

SORT

Addressability code

SO RT bootstrap

[PLII exit routine

Call SO RT bootstrap
Return on completion of SORT

Set program-check exit for SORT to code in SORT bootstrap.
Arrange parameters for SO RT.
Store registers in first bootstrap DSA.
Call SORT.

Sort as instructed by parameters.

Save registers in SORT save area.
Restore registers for bootstrap_
Branch to bootstrap.

On entry from SO RT

Reset program-check exit
for PLiI.
Set up parameters for ex it
routine from information
passed by SORT.
Call exit routine.

On entry from exit routine

Reset program-check exit
for return to SORT.
Arrange parameters for SORT.
Restore SORT registers.
Return to SORT.

~------------------------~~--------------------------------

Carry out processing - return to SORT bootstrap.

Figure 11.5. Summary of action during use of a SORT exit

196

1. Restores the PL/I interrupt handler
address, so that control will pass to
the PL/I error-handling routines if a
program interrupt occurs.

2. Sets up parameters for the PL/I exit
routine from information passed by
SORT.

3. Calls the PL/I exit routine.

Setting the return code in the PL/I exit
program resets the parameters that IBMBKST
passes to the SORT routines.

storage for sort/merge workspace and the
modules used is obtained in the LIFO stack.
A VDA of the correct length is obtained by
the bootstrap module. The length required
must be specified in the arguments that are
given in the call to PLISORT. These
actions are summarized in figure 11.5.

CHECKPOINT/RESTART

The PL/I Optimizing Compiler allows the
programmer to make use of the system
checkpoint/restart facilities by calling
the built-in subroutine PLICKPT. This is
implemented by a call to the resident­
library subroutine IBMBKCP, which issues
the CHKPT macro instruction.

Before the CHKPT macro instruction is
issued, two control blocks must be set up.
One of these control blocks contains the
names of all tape files that are open; it
is used to reposition the tapes on restart.
The other control block contains
verification information for all disk files
that are open; it is used to verify that
the disk packs are on the same devices on
restart as they were when the check-point
was taken. The two control blocks are held
in workspace acquired by the module
IBMBKCP.

When a restart is made" control is
passed to the module IBMBKCP at a fixed
entry point. After carrying out necessary
checks, control is then returned to the
calling routine in the normal manner.
Control is thus returned to the statement
after the call to PLICKPT, and processing
continues.

WAIT

The PL/I WAIT statement allows the
programmer to specify that processing shall
halt until a specified number of events are
complete. In the OS PL/I Optimizing
Compiler, an event can be associated with
either a record I/O operation or a DISPLAY
statement, or it can be an inactive event
that is not associated with any operation.

All information relating to an event is
kept in an ~ven~~~!~Ql~~ This is a
control block of five words in length; it
is treated for storage allocation like any
other PL/I variable. The event variable
holds information on whether the event is
associated with an operation and whether it
is complete; it also records the status of
the event (i.e., whether the associated
operation was completed successfully or
otherwise). When an event is associated
with an operation, it is said to be ~~!y~;
otherwise, it is said to be ina£tiv~.

When the wait statement is used, the
keyword WAIT is followed by a list of
events that are to be waited on. A number
can follow this list, indicating that only
that number of events need be completed
before processing can continue. Typical
WAIT statements are:

WAIT (EVENT1,EVENT2);

WAIT (EVENT1,EVENT2) (1);

For the first statement, both the events
would have to be completed before
processing could continue. For the second
statement, processing would continue as
soon as either of the events was complete.

Event Variables

When storage is allocated for an event
variable, the event variable is set
inactive and incomplete. When the EVENT
option is used to associate the event with
an operation, the event variable is set
active and incomplete. When a WAIT
statement is executed and the operation
associated with the event has been
completed, the event variable is set
inactive and complete. The status of the
event is also set at this time, indicating
whether or not the operation was
successfully completed.

The PL/I language allows the programmer
to set complete or incomplete any event, by
use of the COMPLETION pseudo-variable.
This sets the appropriate bit in the event
variable. The completion status may be

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 197

r---,
I
I WAITER: FROC OPTIONS (MAIN);
I
I
I
I
I

1

2

ON TRANSMIT (A) CALL L;
ON TRANSMIT (C) CALL L;
ON TRANSMIT (X) CALL L;

ON RECORD
ON RECORD
ON RECORD
K=O;
READ FILE

(El);
READ

(E2);
•
•
•

FILE

(A) CALL M;
(C) CALL M;
(X) CALL M;

CA) INTO (B)

(C) INTO (D)

3 WAIT (El,E2);
•
•
•

4 IF K=l THEN WAIT (E2)i
•
•
•

5 BOOTLE: WAIT CE3)i

L:
6
7

M:
8
9
10

•
•
•

FROC;
COMPLETION (E3)='1'B;
GO TO BOOTLE;
END Li
PROCi
COMPLETION CE3)='1'Bi
WAIT CE2);
K=l;

EVENT

EVENT

11 READ FILECX) INTO(Y) EVENT
(E2)i

END M;

END WAITER; L------------------_______________________ J

Figure 11.6. Example of WAIT
implementation problems

inspected by means of the COMPLETION built­
in function. The PL/I language also allows
the programmer to inspect and change the
status of an event" by means of the STATUS
built-in function and pseudo-variable.

~AIT s~~tement (Non-Multitaskingl

The WAIT statement in a non-multitasking
environment is implemented by a call to the
resident library routine IBMBJWT. IBMBJWT
is passed a set of parameters consisting of
the addresses of the event variables and
the number of events that have to be

19B

completed. If the number of events that
have to be completed is not specified, all
the events in the list must be completed.
(For the multitasking situation, see
chapter 14.)

The WAIT makes use of the OS data­
management WAIT macro instruction.
However, because of the differences between
the facilities offered by the OS and the
PL/I language, considerable housekeeping
problems are involved for waits on more
than one event. For waits on single events,
the problems are small and are described at
the end of this section.

When a WAIT or associated macro
instruction is issued to the OS supervisor,
the event is considered to be complete when
input/output transmission is finished. In
PL/I, however, a WAIT statement is not
considered complete until any error­
handling activity caused by the operation
which was being waited on is finished. The
error handling may include entry into an
on-unit, and further WAIT statements Ray be
executed in the on-unit. This process can
continue to any number of levels of
interrupt.

PL/I also allows the programmer direct
control over the completion of an event by
use of the COMPLETICN pseudo-variable.
consequently, the PL/I programmer need not
associate an event variable with an
input/output operation, but can use it
instead as a flag, setting the event
complete at any point in the program.

WAIT or associated macro instructions
issued to the supervisor are completed by
setting a completion bit in the ECB (event
control block) which is held in the lOB.
At the PL/I level, completion is indicated
by setting the completion bit in the event
variable. Thus a WAIT operation is'carried
on at two levels~ the PL/I level and the
system level.

The problems involved in implementing the
WAIT statement may be illustrated with
examples from the skeleton program in
figure 11.6. Four problems arise. They
are:

Problem 1: If an event being waited on in
a-multIple WAIT statement is completed in
an on-unit entered while processing one of
the other events in the statement, this
must be made known to the first WAIT
statement. Setting the event variable
complete is not sufficient, because the
event variable may be used again during the

on-unit~ Suppose that the RECORD condition
is raised during the execution of the WAIT
statement numbered 3 in figure 11.6# for
the operation associated with event E1.
The following then takes place:

1. Control passes to procedure M.

2. The statement WAIT(E2) is then
encountered, and the program waits
until event E2 is completed. When
this occurs, the event variable is set
complete and inactive.

3. Event E2 is then used in a further I/O
operation (statement 11)~ causing the
event variable to be set active and
incomplete.

On return to the main program, there would
be no way of determining from the event
variable for E2 that the original event E2
had been completed. The, problem is solved
by the use of control blocks called event
~ables (EVTABs). An EVTAB is set up by-the
wait module each time a WAIT statement is
encountered; it contains entries for each
incomplete event specified in the
statement.' The entries are termed EVTAB
elements. Each element is chained to its
corresponding event variable and contains a
bit that can be set to indicate that the
event has been completed. In the above
example, therefore, EVTAB elements for E1
and E2 are set up when the wait module is
called at statement 3. When the on-unit is
entered, the WAIT statement 9 causes a
further EVTAB to be set up with an entry
for E2. The event variable pointer is reset
to address the latest EVTAB elements, and a
field in this element is set to point to
the previous EVTAB element for E2. When
event.E2 is completed (without causing any
I/O conditions to be raised), the event
variable and each EVTAB element for E2 is
set complete and inactive, and a bit in the
event variable is set to indicate that the
chain of EVTAB elements is no longer
associated with the event variable. When
statement 11 is executed, the event
variable is set active and incomplete.
After the on-unit has been executed, the
wait module sets the EVTAB element and
event variable for E1 complete and
inactive. It then tests any remaining
EVTAB elements to determine whether they
were set complete during an on-unit; in
this case, it finds that the next EVTAB
element (for E2) has been set complete and
that there are 'no more events to process.
Execution therefore continues until
statement 4 is executed, at which time a
new EVTAB element is created for E2 and
chained to its event variable.

prQQlem_~: A method must be provided to
signal that an event waited on in an on­
unit is already being waited on in the
procedure that caused entry to the on-unit.
suppose that the RECORD condition is
encountered in the operation associated
with E2 (statement number 2) during
processing of the WAIT at statement number
3. The following then takes place:

1. Control passes to procedure M.

2. A further WAIT on E2 is encountered
(statement number 9). Since E2 cannct
now be completed, a mechanism must be
available to raise the ERROR
condition; otherwise, the program
would never get out of the wait state,

The problem is solved by setting a flag
in the event variable whenever an on-unit
is entered during WAIT statement
processing. If the wait module is
subsequently reentered from an on-unit, to
process a WAIT on the same event, it finds
that this bit is set and raises the ERROR
condition.

Problem 3: If there is a GOTO out of an
on=unit;-this involves setting an event
variable complete" and terminating the WAIT
statement. Suppose the TRANSMIT condition
is raised during the WAIT statement
numbered 3, 4# or 9. The procedure L is
entered and the following takes place:

1. E3, which is a dummy event, is set
complete.

2. A GOTO is executed to the label
BOOTLE.

If no other action were taken, the event
that caused entry to the on-unit (either E1
or E2) would not be set complete; any
subsequent WAIT on that event would thus
cause the wait module to be invoked, with
unpredictable results. The problem is
solved by setting a flag bit in the current
DSA whenever the wait module is called.
(The method is similar to that used to
cater for a GOTO out of a SORT exit, and
uses the same flag bit.) If the GOTO
module finds that the bit is set, it
returns to the wait module; the wait module
sets the event variable complete and
inactive and then returns to the GOTO
module to continue the GOTO out of the on­
unit. Only the event that caused entry to
the on-unit is set complete. Any other
incomplete events specified in the WAIT
statement are left incomplete.

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 199

Branch to point in transmitter
where WAIT is issued

Issue WAIT macro instruction

No

Return to caller

Yes

IBMBRIO&
TRANSMITTER

Call error handler which
may in turn cell on-units

Call display module to
clear storage Yes

IBMBRIO

Issue WAIT macro and
check for ON-conditions

Decrement count by one
for event completed in
IBMBRIO

Figure 11.7. (Part 1 of 2). Summary of the wait statement

200

Yes

CHECK
SUBROUTINE

Decrement count of
events to be completed
by correct number.
Set EVT ABs as inactive

Return to
PL/I program

Call error
handler

Remove any completed
events from list

Build EVT ABs in VDA

Call CHECK subroutine
with one item in list

CHECK subroutine

Handles one event and
returns if all events not
complete

No

No

Figure 11.7. (part 2 of 2).

Chapter 11:

No

WAIT MODULE
IBMBJWT

Build EVTAB and ECB
list (from CC Bs for
DISPLAY event) in VDA

Issue WAIT on
ECB list

Call CHECK subroutine
with first event returned
from WAIT

CHECK subroutine

Handles one event and
returns if all required
events not complete

Yes

Build new ECB list
for incomplete events

Summary of the wait statement

Miscellaneous Library Subroutines and System Interfaces 201

Problem 4: If control reaches label BOOTLE
wIthout-the TRANSMIT or RECORD condition
having been raised, the event E3 can never
be completed. Some method must be
available of making this fact known,
otherwise the program would go into an
indefinite wait on an event that could
never be completed. This problem is solved
by setting an event variable active only
when it is associated with an operation.
Thus, if a WAIT statement specifies an
event that is inactive and incomplete, the
wait module causes the program to be
terminated. (If a WAIT statement specifies
more than one event and one of the events
is inactive and incomplete, the program is
not terminated immediately because it is
possible, although unlikely, that the
incomplete event will be completed by the
COMPLETION pseudovariable in an on-unit
entered as a result of an I/O condition
raised while processing one of the other
events specified in the WAIT statement.)

Four control blocks are involved in the
implementation of the WAIT statement.
These are shown in detail in appendix A.

1. Event variable. Used to hold all
informatIon-about the event at a PL/I
level. Fields indicate whether it is
active or inactive; complete or
incoreplete; whether it is already
being waited on at a previous
interrupt level; the type of operation
with which it is associated. Each
event variable' contains the address of
its associated ECB or CCB and, if it
associated with an I/O event, the
address of the FCB for the file.

2. ECB (event control block). Used to
hoid-rnformation-about-the event at
the system level. For I/O events, ECBs
are part of the lOB. For DISPLAY
events " the equi valent control block
is the display control block, which is
set up by the display module.

3. EVTAB (event table). Created for each
entry to-the WAI~module; comprises an
element for every incomplete event

202

that is to be waited on. The EVTAB is
held in a VDA acquired by the WAIT
module.

4. Ecg_!~§~. This is a list of ECB
addresses that is created in
circumstances that are explained
below. The ECB list is held in the
VDA described above, and acts as an
argument list for the WAIT macro
instruction.

The actions of the wait module, IBMBJWT,
are shown in the flowchart in figure 11.7,
and are described in detail in the
publication OS_E~L!-Bg§iden~_LiQ!ary
!:!:Q9:!:2:!!L Logi£ •

As the flowchart shows, the WAIT module
sometimes issues a WAIT macro instruction,
and sometimes relies on the CHECK macro
instructions in the PL/I transmitters. The
reasons for this are as follows.

The CHECK macro instruction in the
transmitter can only be used for I/O
events, and only one transmitter can be
called at a time. If only a certain number
of the events in an event list need to be
completed, it is uneconomic to pass these
even~s one at a time to the transmitter,
because the first event passed could be the
last to finish. consequently, whenever non­
I/O events are involved and whenever less
than the total number of events in an event
list have to be completed, an ECB list is
generated for all incomplete events and a
WAIT macro instruction is issued.

The WAIT macro instruction returns
control as soon as any event in the list is
complete, thus allowing an event list to be
handled efficiently when only a number of
events have to be completed. For I/O
events, it is still necessary to issue the
CHECK macro instruction in the transmitter,
even though the events are known to be
complete. This is because the CHECK nacro
instruction carries out various checking
functions as well as waiting until the
event is complete.

Start

Follow the most suitable check list in
section 2 of this chapter. Refer to
keyed items in section 3 for details.

Read section 1 of this chapter to discover correct
method. (Use of SYSABEND or SYSUDUMP will
not necessarily produce a dump)

Do not attempt to debug without this knowledge. Read
chapter 1 and introduction to chapters 6 and 7 of this
book.

Examine contents list at start of section 3 to find
quickest method of finding item.

Use contents list at start of section 3 to simplify finding
various items.

Figure 12.1. How ~o use this chapter when debugging

204

Chapter 12: Debugging using Dumps

The OS PL/I Optimizing Compiler allows the
prograremer to obtain an execution time dump
only by calling PLIDUMP. Using SYSABEND or
SYSUDUMP in the JCL will not result in a
dump after a program interrupt or, except
in certain exceptional cases, after an
ABEND. This is because the program
interrupt exit and the task asynchronous
exit are reset by issuing SPIE and STAE
macro instructions in the program
initialization routine. These SPIE and
STAE routines result in all interrupts, and
the majority of ABENDs, being passed to the
PL/I error handler.

Certain types of program error can,
however, result in overwriting of the
control information used by the error
handling routines. When this occurs an
ABEND will be issued that results in system
action. This ABEND has a user code of 4000.
provided that a SYSABEND or SYSUDUMP DO
card was included in the JCL an ABEND dump
will then be generated.

ABEND dumps are issued in three
circumstances.

1. When an interrupt occurs during the
execution of one of the error handling
routines.

2. When housekeeping control blocks have
been overwritten after an ABEND in the
program.

3. If the NOSPIE or NOSTAE option has
been used, and the action inherited by
the PL/I program is to give a dump.

The first two of these situations are most
probably caused by overwriting of control
information by the PL/I program. The first
can be identified because a message is sent
to the console that reads 'Interrupt in
error handling routines program
terminated'~ and the ABEND code will be
4000.

Chapter 7, 'Error Handling' describes
the methods used to handle interrupts and
ABENDs. It also describes the
implementation of PLIDUMP. This chapter is
concerned solely with debugging using the
facilities provided.

It is always possible for the programmer
to ask an operator to take a stand-alone
dump at any point in the program. The need
to do this should., however, occur only
infrequently.

This chapter contains information on how to
obtain and interpret dumps, and on how to
identify compiled code, data, and control
blocks within a dump. Some knowledge of
the compiler's housekeeping scheme,
described in other chapters of this book,
is assumed. Trying to use a dump without
this knowledge can result in a great deal
of wasted time. To acquire a quick overall
picture, chapter 1 and the introduction to
chapters 6 and 7 should be read. A sunmary
of how to use this chapter when debugging
is given in figure 12.1.

This chapter is divided into four
sections:

Section 1: How to obtain a PL/I dump

Section 2: Recommended debugging
procedures

Section 3: Locating specific
information

Section 4: Special considerations for
multitasking

Section 1 explains how to obtain a
hexadecimal dump of a PL/I program. It
also gives some suggestions on the use, of
various compiler and PL/I options that may
prove useful when debugging.

Section 2 offers t~o recommended courses
for debugging a PL/I program by use of a
dump. The first course deals with 'a PL/I
dump that has been called from an ERROR on­
uhit and is being used to debug the problen
program. The second course deals with the
situation in which an OS system dump has
been generated, probably because the
housekeeping control blocks have been
overwritten.

Section 3 describes how to find various
data areas and other information. It is
indexed and numbered for quick reference.

Section 4 describes the special
considerations that must be taken into
account when debugging a program that uses
multitasking.

Before taking a dump, section 1 should
be read, because the methods used are not
those familiar to programmers using os.
sections 2 and 3 are for use when
debugging. Programmers who know what they

Chapter 12: Debugging Using Dumps 205

(SIZE, SUBSCRIPTRANGE, STRINGRANGE):

DUMPER: PROC;
ON ERROR CALL PUDUMP ('HB', 'ERROR ON-UNIT DUMP');

.. :#;;;:

END;

(;\ These options give compiled code listing and \!.J static storage map, essential for interpreting
any dump.

f3\ Provides trace of last n branch-out/branch-in
\V points in up to m blocks if SNAP or PLiDUMP

with trace is used. MAP results in the generation
of a table showing offsets of static and automatic
variables from their defining bases.

Two arguments can be passed to PLiDUMP.
They are the dump options character string and
the dump identifier. The format ot the call
statement is:

--L

® Permits trace of statement numbers in original
source program, and simplifies program checking.

Prefix options. The use of these PLII checkout
options is strongly urged. Since, however, they
cause an increase both in the size of object code
and in execution time, it may be necessary to
restrict their use to suspected blocks or statements.

CA LL P LI DUMP (c7cter-string-expression 1, character-string-eXpreSSio~

Dump options character string Dump identifier character string

T

NT

F

NF

S

C

H

NH

B

NB

A

0

E

(Defa,lt is 'TF C') I
Trace information required

No trace information required

File information required

No file information required

Stop after dump

Continue after dump

Hexadecimal information required

No hexadecimal information required

Control block information required

No control block information required

Dump all tasks

Dump current task only

Exit from task after dump

Printed at head of dump. May be up to 90
characters long.

Figure 12.2. Code for debugging

206

are looking for should refer directly to
the contents table in section 3. This will
direct them to numbered sections which give
details of how to find particular items.
programmers who have no preferred scheme of
their own can follow the recommended
procedures in section 2. Section 2
crossrefers to the items in section 3, so
that the details of the steps involved may
be quickly found.

Section 1: How to Obtain a PL/I Dump

In order to get a formatted PL/I dump, the
programmer must include a call to PLIDUMP
in his program.

CALL PLIDUMP

The statement CALL PLIDUMP may appear
wherever a CALL statement may legitimately
be used. It has the following form:

CALL PLIDUMP
(character-string-expression 1,
character-string-expression 2);

Character-string-expression 1 is a "dump
options" character string consisting of one
or more of the following dump option
characters: '

T Trace. A calling trace through all
active DSAs is generated. When an on­
unit DSA is encountered, the values of
the relevant condition built-in
functions are given. The reason for
the entry to the on-unit is also given
if the ERROR or FINISH conditions are
raised as standard system action for
another condition.

NT No trace. A calling trace is not
given..

F File information. A complete set of
attributes for all open files is
given, plus the contents of all
accessible buffers.

NF No file information required.

S

C

H

stop. The program will be terminated
after the dump.

continue. Execution of the program
will be continued after the dump.

Hexadecimal. A SNAP hexadecimal dump
of the partition will be given. If
trace information is requested~ the
TCA and DSA addresses will be given.

If file information is requested, the
addresses of the FCBs will be given
and the contents of all accessible
buffers will be printed in hexadecimal
notation as well as in character.

NH No hexadecimal dump required.

B Blocks. The contents of the TCA, TIA,
DSAs, FCBs, and file buffers are
printed in hexadecimal notation.

NB No block information required.

A

o

E

~!!

All results in a dump of all active
tasks including the control task - see
chapter 14.

Only results in a dump of the current
task and a dump of the control task.

Exit results in the termination of the
task after the dump.

The default options are TFCANHNB. That
is, trace information, file information, no
block information, no hexadecimQI dump, all
tasks" and continuation after the
information has been put out.

Options are read from left to right.
Invalid options are ignored, and if
contradictory options are coded, the
rightmost options are taken.

Character-string-expression 2 is a "user
identifier" character string of up to 90
characters chosen by the PL/I programmer.
It is printed at the head of the dump. If
the character string is omitted, nothing is
printed.

If PLIDUMP is called a number of times
in a program a different user identifier
should be used on each occassion. This
will simplify identification of the point
at whirih the dump was called.

RECOMMENDED CODING

For PLIDUMP to produce a dump, a DD card
for PLIDUMP must be included in the JCL.
PLIDUMP can be called from anywhere in a
program" but the normal method used when
debugging will be to call PLIDUMP from an
on-unit. As 'continuation after the dump is
one of the options available, PLIDUMP can

Chapter 12: Debugging Using Dumps 207

be used as a snap dump to get a series of
dumps of main storage throughout the
running of the program.

By including the statement CALL PLIDUMP
('HB',~dump identifier'); in an ERROR on­
unit, it is possible to obtain a
hexadecimal dump# with control blocks
identified and formatted, should an error
occur. If an ERROR on-unit is being
included in a program, care should be taken
that there are no further ON ERROR
statements which might override the on-unit
requesting a dump.

suggested code for use when debugging
with a dump is given in figure 12.2.

AVOIDING RE-COMPILATION

If an ERROR on-unit containing a call to
PLIDUMP is to be included in an existing
program~ it is necessary to re-compile the
program. This course is advisable as it
allows other diagnostic aids, such as
SUBSCRIPTRANGE# to be included. However,
if re-compilation is not desirable, a PL/I
dump can be obtained by using a small
bootstrap routine that contains an ERROR
on-unit calling PLIDUMP. This routine can
be compiled and then link-edited with the
object module of the program that needs to
be dumped. The on-unit will then be
inherited by the program that requires a
dump, and a dump will be generated when an
error occurs. A suitable bootstrap program
is shown in figure 12.3. When using this
method, the bootstrap must be link-edited
as the MAIN procedure; it should therefore
be passed to the linkage editor before the
program that requires dumping, since that
program will also have the MAIN option. If
the program that requires dumping expects
to be passed parameters, the bootstrap
procedure should use an identical parameter
list in its PROCEDURE statement, and should
include an identical argument list in the
CALL statement used to invoke the inner
procedure.

If the program that requires dumping
already has an ERROR on-unit, this will
override the ERROR on-unit in the bootstrap
program,.

In certain circumstances, a dump can
still be obtained.

1. If the reason for the entry to the on­
unit is the occurence of a PL/I
condition an on-unit for this
condition in/the bootstrap program
will result in a dump being taken
before the ERROR on-unit is executed.

208

(For example, if the CONVERSION
condition was occurring in the program
to be dumped a CONVERSION on-unit
could be included in.~he bootstrap
program. Such an on-unit would be
entered before the ERROR condition was
raised.)

2. Provided that the ERROR on-unit does
not include a GOTO out of the on-unit,
a FINISH on-unit can be used. Since
the standard system action for the
ERROR condition is to raise the FINISH
condition, the dump will be generated
after the ERROR on-unit has been
executed.

There is no point in including
SUBSCRIPTRANGE or other prefixes in the
bootstrap routine, because these are not
inherited by called programs.

The bootstrap method is not recommended
unless there are particularly strong
reasons for avoiding re-compilation.

r---,
BOOTSTRAP: PROC OPTIONS (MAIN);

DCL program. ENTRY EXTERNAL;

ON ERROR CALL PLIDUMP ('HB',
'BOOTSTRAP');

CALL program.;

END;
.The name of the program to be dumped
should be inserted at the points marked
program. in this example. L-------------------_--___________________ J

Figure 12.3. suggested method of
obtaining a dump when re-compilation
is particularly undesirable. (See
text before using this method.)

CONTENTS OF A PL/I DUMP

The appearance of a typical dump produced
by the PLIDUMP modules with the options
TFHBA is shown in figure 12.4. The
contents of particular sections are
described in detail below.

The dump is headed by the line

• •• PL/I DUMP •••

• • * PL/I DUMP * * *
USER IDENTIFIER J:;XAMPLE or PLIDUMP

• • • CALLI NG TRACE • • •

(TeA ADDRESS 030800)

PLIDUMP WAS CALLED FROM STATEMENT NUMBER 3 AT OFFSET +00009E FROM A ERR TYPE ON-UNIT WITH ENTRY ADDRESS 03A51C
(AND DSA ADDRESS 03E050)

ERROR DIAGNOSTICS

PL/I CONDITION DETECTED: CONV
ONCOOE 612 SEE LANGUAGE REFERENCE MANUAL
ONCHAR =1 CHARACTER CAUSING CONVERSION ERROR
ONSOURCE =IF THIS DOES NOT RAISE CONVERSION NOTHING WILL

ADDRESS OF ERROR HANDLER'S SAVE AREA 030E50
REGISTERS ON ENTRY TO ERROR HANDLER

STRING CAUSING CONVERSION ERROR

REGS 0-7 FF03DE50
REGS 8-15 00000001

0003DE48
00030055

00030000
00000000

6E03C4C6
0003B9CE

0003DBF8
0003D800

0003D028
FF03DDF8

000300EO
4E03C6A8

8003A37A
0003BD52

END OF ERROR DIAGNOSTICS

WHICH WAS CALLED FROM A LIBRARY MODOLE WITH ENTRY ADDRESS 03C4CO (AND OSA ADDRESS 03DDF8)

WHICH WAS CALLED FROM A LIBRARY MODULE WITH ENTRY ADDRESS 03B770 (AND DSA ADDRESS 03DAE8

WHICH WAS CALLED FROM A LIBRARY MODULE WITH ENTRY ADDRESS 03A5DO (AND DSA ADDRESS 030D80

WHICH WAS CALLED FROM STATEMENT NUMBER 5 AT OFFSET +OOOOAC FROM PROCEDURE EXAMPLE WITH ENTRY AODRE8S OJA460
(AND OSA ADDRESS 030C68)

• • • END OF CALLING TRACE • • *

TRACE OF PL/I CONTROL BLOCKS

TASK COMMUNICATIONS AREA

ADOR. OFFSET
030800 00000
030820 00020
OJ0840 00040
030860 00060
OJ0880 00080
0308AO OOOAO
OJ08CO OOOCO
0308EO OOOEO
030900 00100

00000000 00030C58
00000000 00030A48
000109EO 00000000
0003848C 0001D618
582E0004 58EEOOOO
07FFOOOO 00000000
00209160 0001078E
D0549180 0054071E
000J08AA 000108AA

FF030800 FF048A20
00030920 0409C4C1
OOOlCCAE 00000000
100A47PO OOOlCCAO
190F478C 00C29500
000007FE 0001B4EA
91400001 478COOOC
181F58FC 00F407FF
00000000 00000000

TCA IMPLEMENTATION APPENOAGE

ADOR. OFFSET

00000000
00030A50
00000000
000JCCA2
C001478C
A4EC58FC
D20JD04C
17225D20
00000000

00030810 000547BO 0003D9CO
00000000 00030A18 9509C024
00000000 80000000 0003B48A
0001CC82 00018D52 100C1000
00BC180E 18El181F 58FCOOAC
0078051F DB01A166 18DF9834
D0509120 0001078E 02010056
00000000 0003D8AA 000308AA
00000000 00000000 20004123

030920 00000 00049000 00000000 OE03BD18 7FF01030 00000000 00000000 00000000 00000000
0~0940 00020 000109F8 00030A98 000JB5A2 00000000 00000000 00000000 00000000 00000000

030960 00040 0001B5F8 0003C30C

LIBRARY WORK SPACE

CONTENTS OF REGISTER SAVE AREA
REGS 0-7 000JD198 0003A39C
REGS 8-15 0003E100 0003E120

ADDR. OFFSET
030EE8 00000 08000110 0003E050 9C188000
03DF08 00020 4E03B386 00u30BF8 00000000
03DF28 00040 0003D920 02008003 0003DF70
030F48 00060 FOFOF3F2 F1F245FO 00000000
030F68 00080 40ij04040 40404040

DYNAMIC SAVE AREA (ON-UNIT)

CONTENTS OF REGISTER SAVE AREA
REGS 0-7 FF03K128 0003A39C
REGS 8-15 0003El00 0003E120

ADOR. OFFSET
03E050 00000 8C24E090 FF030E50 050CBOOO
03E070 00020 0003A308 00030BF8 00000000
03E090 00040 00030920 7098C030 FF030EE8
03&OBO 00060 02011020 9BIIEijlFO 000442FO
03EOOO 00080 802445EO 9h2D203 0003E090
03EOFO OOOAO 9BC650FO 9BOA5880 709858FO
03E110 OOOCO C1D4D70J C540D6C6 4007D3C9

Figure 12.4. An example of

• • • PLII DUMP • • •

0003E050
0003DC68

4E03B3B6
0003A39C
FF03E128
0000005C

5E03A572
00030C68

4E03ASBA
00030010
FF03E128
100858FO
D2039B06
8020S4FO
C4E404D7

PLIDUMP

4.E01B386
00030920

00030BF8
02008003

8E03019C 00030198 0003A39C
000JA400 0003El00 0003E120
70020080 000JOF60 00440000
4E049AFC FOC1C35C 40ij04040

0003A308
00030920

0003DBF8
7098C030

0003B380 FF03E128 0003A39C
0003A400 0003E100 0003E120
FF03E128 91E091EO 0003DC68
9BAE07FF 58809BE6 D2039BE6
70D858FO 802041FO BOOF50FO
E3C6C2C8 0003E100 00040000
0003E10E 00120000

00000000
FF030EE8

0003E050
0003DC68
00100002
40404040

00000000
0003E050

5E03A572
0001DC68
50F09BEA
709858FO
BOOC54FO
0000C5E7

•••••••••• Q ••••••••••• Q ••••••• R.
•••••••••• R.MRDA ••••••••••••• R ••
•• R •••••••••••••••••••••••••••••
• •••••••••• 0 ••••••••••••••••••••
• •••••••••••• B ••••••••••••••••••

••• - ••••••••••• K ••••••••••• K •••
••••••••••••• 4 ••••) ••••••• Q ••• Q.
•• Q ••• Q •••••••••••••••••••••••••

•• R8 ••••••••••••••••••••••••••••

••• 8 •• C ••••••••••• R ••••••• R •••••

0003A39C
ijE03B3B6

0003A400
8E03D19C

•••••••••••• + ••••• J ••• J •••••••••
+ •••••• 8 ••••••••••••••••••••••••
•• R. K •••••••••••••••••• - ••••••••
003212.0 ••••••• • •••• 0AC·

O"003D01.0
4E03A5BA

0003A400
00038380

·•............... ; ...
• •••••• 8 ••••••••••••••••••••••••
•• R •••••••• y ••••••••••••••••• 0 ••
K •••••• O ••• O ••• O ••••••• WK •• W ••• O
••••• SK ••••• K •• O.Q.O ••• O ••• O ••• O
.F.O ••••••• O ••• OTFBH •••••••••• EX
AMPLE OF PLIDUMP ••••••••••••••• Y

Chapter 12: Debugging Using Dumps .209

r---,
Abbreviation I Condition Name

AREA AREA

CHCK CHECK

COND CONDITION (programmer
named condition>

CONV CONVERSION

ENDF ENDFILE

ENDP ENDPAGE

ERR ERROR

FIN FINISH

FOFL FIXEDOVERFLOW

KEY KEY

NAME NAME

OFL OVERFLOW

REC RECORD

SIZE SIZE

ST~G STRINGRANGE

STRZ STRINGSIZE

SUBG SUBSCRIPTRANGE

TMIT TRANSMIT

UFL UNDERFLOW

UNDF UNDEFINEDFILE

ZDIV ZERODIVIDE
L---J
Figure 12.5. Abbreviations for

condition names used in PLIDUMP
trace information.

This is followed by the user identifier. if
any, gi v,en as the second character string
in the argument list of PLIDUMP.

A request for trace information results in
the following output:

1. A trace of every procedure, begin
block, and on-unit that is active at
the time of the call to PLIDUMP. For

210

procedures, the procedure name and
statement number from which the
procedure was called are given. If
the 'H' option is requested, the
offset of the statement is given as
well as the entry point address and
DSA address. Also, if the entry point
used is not the maio entry point and
the statement number option was
specified, the main entry name is
given.

For multitasking programs the name of
the task variable, its status, and the
absolute priority of the task are
printed. If no task variable is
supplied 'NONE' is printed as the name
of the task variable. A dummy task
variable will have been supplied see
chapter 14.

2. For on-units, the values of any
relevant condition built-in functions
are given. The type of on-unit is
given and, where the cause of entry
into the on-unit is not self­
explanatory, the cause of entry is
also given (e.g., if an ERROR on-unit
was entered because of a conversion
error, this fact is given in the trace
information). The on-unit type is
specified, using a three or four
letter abbreviation. A list of these
abbreviations is given in figure 12.5.

3. When a hexadecimal dump is requested,
the entry point address of each active
block is also given~ togethe~ with the
address of its associated DSA.

4. When the compiler FLOW option is in
effect, the flow statement table is
given.

5. If a hexadecimal dump is requested,
the address of the TCA is printed at
the head of the trace.

6. If either a hexadecimal dump or
control block information has been
requested, and any ERROR on-units are
traced, then the following information
is also included:

a. The address of IBMBERR's DSA.

b. The contents of the general and
floating point registers at the
time IBMBERR was called.

c. If there was an interrupt, the
address of the interrupt.

d. A trace of library DSAs back to
the last compiled code DSA.

~YT~! PL/I cond! tiQ!Lif_~y ~~§!,:;-~Q.!. ~ __ ~YT!':;_! PLlI-.QQnd!tiQ!!-.!Lany

X'02' ZERODIVIDE 320

X'03' FIXEDOVERFLOW 310

X'04' SIZE 340

X'OS' CONVERSION 600

X'06' OVERFLOW 300

X'07' UNDERFLOW 330

X'OS' STRINGSIZE lS0

X'09' STRINGRANGE 3S0

X'OA' SUBSCRIPTRANGE 520

X'OB' AREA 360

X'OC' ERROR 009

X'OD' FINISH 004

X'OE' CHECK 510

X'OF' CONDITION 500

X'10' KEY OSO

X'11' RECORD 020

X'12' UNDEFINEDFILE OSO

X'13' ENDFILE 070

X'14' TRANSMIT 040

X'lS' NAME 010

X'16' ENDPAGE 090

X'17' -
X'lS' -

~Q:!::~: Meanings are only given where there is

Figure 12.6. Error code field lookup table

File InformatiQU

A request for file information results in
the following output:

1. The default and declared attributes of
all open files are given.

X'CD' 9250

X'CF' 1000

X'D3' 9200

X'D5' 3S00

X'D7' 4050

X'09' S050

X'OF' SOOO

X'E1' 9050

X'E3' 1000

X'ES' 4000

X'E7' xxxx

X'E9' 4050

X'EB' 0003

X'ED' 1000

X'EF' 1550

X'F1' 1500

X'F3' 2000

X'FS' 376S

X'F7' 3000

X'F9' 3800

X'FB' 3900

X'FD' 9000

X'FF' 8090

a directly associated PL/I condition.

2. Buffer contents of all buffers are
given. If a hexadecimal dump has been
requested, the contents of the buffers
are given in both hexadecimal and
character notation. If no hexadecimal
dump is requested, the contents are
given in character notation only.

3. The contents of the FCBs, DCBs,

Chapter 12: Debugging Using Dumps 211

DCLCBs, IOCBs, and exclusive file
blocks are given in formatted
hexadecimal notation, if either the
'H' or 'B' option is also included.

The hexadecimal dump is produced by the
execution of a SNAP macro instruction.
Thus the normal SNAP dump is produced.
This is fully described in the PrQ9~~~f~
§uide to_Debugg!!}g.

It should be noted that the PSW will
contain the address of an instruction in
IBMBKMR~ one of the modules used to
implement PLIDUMP. This will bear no
relation to the error in the dumped
program.

If the program is not multitasking the
SNAP macro specifies all register save
areas, subpools, task control blocks, and,
provided the 0 (Only) option is not
included in the PLIDUMP options~ the trace
table.

For a, dump of a multitasking program the
contents are:

In the control task

Register save areas
subpools

Trace table
Control blocks

In the other tasks

Register contents
Register save areas

Sub pools
Jobpack Area
Li.nkpack area

When the block option is used, the contents
of the TeA, the TIA (TCA appendage), and
the DSAs in the LIFO stack (that is, all
active DSAs) are printed in hexadecimal and
character format. The absolute address is
printed in the left hand column; the
offsets within the block are then printed.
This is followed by the contents of the

212

block, first in hexadecimal and then in
character notation. For DSAs, the type of
DSA is shown; i.e., library DSA, procedure
DSA, on-unit DSA, or dummy DSA. The
contents of the FCBs, DCLCBs and IOCBs for
any open files are printed in a similar
format.

In a dump of a multitasking program the
contents of the tasking appendage is also
printed.

If the option A(all) is used in a
multitasking programming the TCA, TIA, DSAs
and tasking appendage of all directly
ascending tasks will be printed. FCBs,
IOCBs, DCLCBs will be printed after files
open in any task if the option A is used.

Section 2: Recommended Debugging
p'rocedures

The main difficulty in reading a dump of a
PL/I program is knowing where to start.
The signposts known to assembler language
programmers are of little help. There are,
however, five main sources of information
to be considered when using a dump to debug
a PL/I program. They are:

1. The statement number and the address
where the error occurred (if the dump
was taken after an error)

2. The type of error (if the dump was
taken after an error)

3. The values in the general registers
when the dump was taken or when the
error occurred

4. The chain of DSAs

5. The TCA

The first two of these items hold
equivalent information to that held in the
PSW in an as system dump. The last three
items enable the housekeeping to be checked
and the location of the control blocks and
the program variables to be discovered.
The methods of locating other information,
given in section 3, refer to the key areas
shown abo-ve.

~Q~~: Meanings are only given where there
is a directly associated PL/I condition.

o

... ...

Software detected interrupt

DSA of block in which
interrupt occurred

4 Backchain

8

44

o

4

50

54

5C

84

Registers 14 through .11 at time of interrupt

Other DSA information

DSA for IBMBERR

Backchain, register save area, address
of lWS, NAB, etc.

Qualifier for 1/0, CHECK condition

1 st 2 bytes of error
code passed to
IBMBERR

Not used

... ...
0

4

8

C

14

44

0

4

8

54

58

5C.

60

68

Program check interrupt

DSA of block in which
interrupt occurred

Backchain

Interrupt address from word 2 of PSW

Registers 0 through 11 at time of interrupt

Other DSA information

DSA for IBMBERR

Address of interrupt DSA

Register save area, address of lWS, NAB, etc.

Error code created
by IBMBERR

I nterrupt code

Register 14 at time of interrupt

Register 15 at time of interrupt

Floating point registers 0, 2, 4, 6

I

I
Floating point registers are saved only if inte"upt
relates directly to a PL/I condition, and return may
be made to the point of interrupt

Figure 12.7. The contents of IBMBERR'S DSA after a system detected and a PL/I
interrupt

Chapter 12: Debugging Using Dumps 213

•
0 Flags Reserved

4 Backchain

8 Not used

C

Register save area (60 bytes)

48 Address of I ibrary workspace

4C Segment No. NAB

50 Segment No. End of prologue NAB

Space for automatic variables and temporaries.
Length depends on number and type of
variables declared in the associated block.

R13 ---.
0 Flags Reserved

4 Backchain

~ ~

Figure 12.8. The chaining of DSAs

214

......

To previous DSA
~~

NA 8 points to the
next DSA only if it
is in LIFO storage
and has the same
segment nllmber

Current
DSA

When debugging, it is essential to have
a listing of the object program, a
variables offset map and a linkage editor
map. The object program listing allows the
programmer to study the instructions that
are being carried out and to find various
control blocks in static storage. The
linkage editor map allows the programmer to
identify particular parts of the executable
program phase and, to identify the routine
associated with each DSA.

~Q~~: The PSW in the SNAP dump should not
be consulted. This will give the address
at which the SNAP macro instruction was
issued. This is an address in one of the
PLIDUMP modules and is not relevant to the
error in the problem program.

DEBUGGING PROCEDURES

The best approach to a dump depends on the
problem to be solved and must therefore be
left largely in the hands of the
programmer. However, two suggested courses
of action are given in this section.

These courses cover two situations:

1. When PLIDUMP has been called from an
ERROR or other on-unit

2. When only an OS ABEND dump has been
generated.

other possible situations are when a
dump is taken at a specified point in the
program~ or when a stand-alone dump is
taken. No attempt is made to suggest a
course of action in these circumstances.
However, in such cases, the main storage
situation can be investigated by following
the methods itemized in section 3 of this
chapter.

Throughout each of the two recommended
procedures given in the following
paragraphs~ there are cross-references to
the methods given in section 3. The 'cross­
references consist of the keys by which the
methods are identified; for example, H6,
D5.

If a PL/I dump is called from an ERROR on­
unit it can be assumed that the
housekeeping system of the program is
working. If it were not working, the dump
would probably not have been generated.

A large amount of diagnostic information

will be available at the head of the durrp.
An error message will have been generated,
and this will provide a useful starting
point. The first step should be to examine
the type of error and the point at which it
occurred. ONCODE and other condition
built-in function values should be
examined, as should the trace information.
A suggested procedure is the following:

1. Examine the error by means of the
ONCODE and any other relevant built-in
function values. These values are
given in the trace information. (The
meanings of oncodes are given in the
Language Reference manual for this
compiler.)

2. Find the location of error (Pi) and in
which block the error occurred (H12).
If error occurred in library module,
see H14. This information is nornally
available from the head of the
PLIDUMP.

3. Examine the trace to see if it appears
as expected.

4. Examine the information in the file
buffers, and check that file
attributes are as expected. This
information will be printed in the
dump heading.

5. Check the values of any variables
involved in the interrupt (Vl-V6).

6. Check values of registers to see if
dedicated registers are pointing to
correct areas (H8 & H9). Distinguish
between compiled code and library
register usage.

7. If SUBSCRIPTRANGE or STRINGRANGE is
not enabled# check that the error was
not caused by one of these conditions.

8. Check housekeeping (Hl-H16) starting
with area most directly concerned with
type of statement in which the error
occurred.

9. Check values of all variables in the
program (Vl-V6).

10. Check logic of code being executed
from object listing.

Provided a SYSABEND or a SYSUDUMP card is
included in the JCL an OS ABEND dump will
be generated when there is a failure of the
error-handling modules, or of the module
that prints the PL/I hexadecimal dump. It

Chapter 12: Debugging Using Dumps 215

should be noted that the failure of these
modules is more likely to be caused by the
overwriting of essential information than
by an. error in the modules themselves.

Because ABENDS caused by overrunning the
specified time (SYSTEM 322) do not enter
the STAE exit, these will cause dumps to be
generated in normal circumstances.

An ABEND dump will not normally be
produced for program checks, because a
program check exit is set by the PL/I
housekeeping routines, so that the system
returns all program checks to the error
handler. In the error handler itself, the
program check exit is reset so that a
program check interrupt will result in a
dump.

Thus" an ABEND will be produced if the
program interrupt exit, which is normally
set by the program initialization routines
to prevent a dump, has been reset during
the program" or" possibly, has not been set
at all. The second alternative is extremely
unlikely. A third possibility is that the
program check exit itself is not working"
and the SPIE macro in the initialization
routines did not successfully set the
program check exit. The most probable of
these suggested causes is that the program
check exit has been reset by the program.
The program interrupt exit is always reset
for the duration of error handling or
PLIDUMP, to prevent looping should an
interrupt occur. (see chapter 1, wError
Handling.W) If an interrupt occurs during
error handling, an ABEND with a code of
4000 is produced. This will result in a
dump if SYSABEND or SYSUDUMP cards have
been provided. An interrupt in the error­
handling routines indicates either that the
error~handling routines are at fault, or,
more probably, that some of the control
information of the error-handling routines
has been overwritten during the execution
of the program. The most practical
solution may be to re-run the program with
SUBSCRIPrRANGE, STRINGSIZE, and STRINGRANGE
enabled.

These PL/I conditions check for possible
overwriting by subscripts or substrings
that are beyond the bounds of the variable
referred to.

Howev,er, having obtained an ABEND dump,
the following debugging procedure may be
adopted.

1. Debermine whether the dump was caused
by an interrupt in the error handling
rou,tines or a housekeeping error
discovered during the analysis of an
ABEND. If the cause was an interrupt
in ·the error handler a message will
hav,e been sent to the console before

216

the ABEND was issued, and the ABEND
will have a code of 4000, if the
interrupt occurred ·in one of the error
handling routines. Note that codes
322 and 122 may also give system
dumps. And that the use of NOSPIE or
NOSTAE can result in the generation of
a dump.

2. Locate instruction causing interrupt.
This is done by looking for the PSW
(01).

3. Inspect this instruction to see if it
appears to have been overwritten,
bearing in mind the cause of the
interrupt, e.g.,

a. do the registers used in the
instruction contain incorrect
information, picked up because of
overwriting?

b. is it a branch to a protected
address?

4. Inspect the TCA(05) to ensure that all
error-handling addresses are correct.

5. Investigate the housekeeping fields,
starting with the DSA chain (Hl-H3)"
then the chain of ONCAs (H5,H6).

6. Investigate the error that caused
entry into the error handler. This
can be done by examining the contents
of IBMBERR's DSA (H1) and the
associated ONCA (H6). See whether
incorrect information passed to the
error handler could be causing a
failure.

1. Check for uninitialized variables
(particularly pointers), and incorrect
passing of parameters.

8. If none of the above produces a
solution, an error in the error­
handling modules is a possibility. 'If
you decide to call IBM for assistance
at this point~ refer to appendix C in
the programmer's Guide for this
compiler. The cause of the original
entry to the error handler may have
been discovered, and can" perhaps, be
avoided by altering the source program
so that the error does not occur. It
must be emphasized that the cause of
entry into the PL/I error handler was
no~ the cause of the system dump.

9. If the interrupt is not in the error
handler, or one of the routines it
calls, the highest probability is
still that the program check exit was
altered in the error handler and that
an invalid branch has been made from
one of the addresses in the TCA

because of overwriting. A careful
check should therefore be made in the
TCA. (See appendix A for map of TCA.)
If this fails to produce results,
return to stage 2 of the above
procedure.

Section 3: Locating Specific Information

This section tells the reader how to
discover information from the dump. The
section has been produced in a modular form
for easy reference. The reader should look
through the contents list below to discover
the items in which he is interested.
suggested methods of debugging a PL/I
program from a dump are given in section 2
of this chapter.. Unless the programmer is
experienced in using dumps" or is looking
for some particular item, the procedures in
section 2 should be followed, rather than
attempting to find various items through
the information in this section.

CONTENTS

Pl Statement number and address where
error occurred (dump called from
on-unit only)

p2 Type of error (dump called from
on-unit only)

P3 Register contents at time of error or
dump invocation

P4 The DSA chain

p5 The TCA

01
02
03

04
05
06

Finding address of interrupt
Type of interrupt
Register contents at point of
interrupt
The DSA chain
The TCA
Finding the program interrupt element
(PIE)

Sl Finding key areas in stand-alone
dumps

Hl Following the DSA backchain

H2

H3

H4

H5

H6

H7

H8

Associating instruction with correct
module

Following calling trace

Associating DSA with block

Finding relevant ONCA

Following the chain of ONCAs

Finding information from IBMBERR's
DSA

Finding and interpreting register
save areas

H9 Register usage

Hl0 Following free-area chain

Hll Finding the task variable

H12 Block structure of program
<static-backchain)

H13 Forward· chain in DSA's

H14 -Action if error is in a library
module

HiS Discovering contents of parameter
lists

H16 Finding main procedure DSA

H17 Finding the relationships between
tasks

H18 Finding the tasking appendage

H19 Finding the TCA from the tasking
appendage

FiBding Variables

Vi Automatic variables

V2 Static variables

V3 controlled variables

Chapter 12: Debugging Using Dumps 217

V4 Based variables

VS Area variables

V6 Variables in areas

cl Quick gUide to identifying control
fields

KEY AREAS OF A PL/I DUMP

pi: Statement Number and Address where
~rror Q££urred (:Qi!mp-ca!!~g_!roiii-On=ijni!:
QnlYl

Information required is the point at which
the condition that caused entry to the on­
unit occurred. This is identified in the
trace information. If no trace information
is generated, the method suggested for
ABEND dumps can be employed. If the
condition occurred in compiled code, the
machine instruction being executed can be
identified on the object program listing.
This is done by subtracting the address of
the program control section from the
address of the interrupt and looking at
this offset in the object program listing.
The instruction thus found will be the one
after the instruction that was last
executed.

Note: If PLIDUMP is called a number of
~Iiiies in a program a different user
identifier should be used with each CALL
statement so that the point at which the
dump was taken is obvious.

The type of error is identified in the
trace information~ in terms of the type of
on-unit entered and the reason for entry.
The ONCODE is also given~ thus providing
further indication of the cause of the
condition. If the dump was called from an
ERROR on-unit, an error message should have
been generated before the dump. This again
will give the cause of the error.

If no trace information has been
generated, the type of error can be
discovered from the error code appearing in
the ONCA associated with the interrupt.
The method for finding the ONCA is

218

described in HS.

If trace information has not been
generated~ the contents of the registers
can be found from the save area in the DSA.
The addresses of all DSAs appear in the
trace information. The register contents
required will depend on the situation. If
PLIDUMP was called from an on-unit, the
register contents at the time the condition
was raised will be most useful, unless the
condition was raised in a library module.
If the condition was raised in a library
module, the contents of the registers at
the point where the library call was made
will probably prove more useful.

For a dump called from an on-unit the
method of finding the register contents is
as follows:

1. Find the DSA of IBMBERR. The value of
register 13 will be found in the
chainback field at offset 4 of this
DSA. The first byte will contain the
segment no. (probably 'FF') and can be
ignored for addressing purposes.

2. If the interrupt was a program check
interrupt (see figure 12.7), the
contents of registers 14 and 15 will
also be stored in the DSA, register 14
at offset 'SC'(92) and register 15 at
offset '60'(96) from the head of the
DSA.

3. Registers 0 through 11 will be stored
in the save area of the previous DSA,
starting at offset ~14·(20).

4. If the interrupt was a software
interrupt, the registers will be
stored at offset 'C~ (12) of the DSA
before IBMBERR's DSA in the order 14
through 11. See figure 12.7.

Qi~£Qyering-1!_!nteff~E!:~~EfQgram che2~
in!:~ffuPt: If trace information is
available, a check can be made on whether
IBMBERRA or IBMBERRB was called. IBMBERRA
is entered after program check interupts,
IBMBERRB after software interrupts. If no
trace information is available, the
simplest method of discovering if the
interrupt was a program check interrupt is
to inspect bit 7 in byte X'S6' (86) in
IBMBERR's DSA. This is set to zero for
program check interrupts" and to 1 for
other interrupts.

Fin9ing registef values if interrupt
occurred in library routine: If on-unit

was entered from a library module, a search
back through the DSA chain to the first
compiled code DSA should be made. This can
be discovered from the trace information or
by following the backchain from IBMBERR's
DSA (offset 4 in each DSA) until a
procedure block~ begin block, or on-unit
DSA is found. This may be determined from
flag bits 4 and 5 of a DSA, as follows:

o 0 Procedure block
1 0 Begin block
liOn-unit

The value of register 12 can only be
discovered in a DSA prior to a compiled
code DSA, as it is not stored by library
routines when they are entered. This means
that the dummy DSA always contains the
value of register 12. Register 12 should
point to the TCA, whose address is also
given at the head of trace information.

~2-trac~_info!:~:!::io!!_~~f.f!:!::~Q: If no
trace information has been generated, the
register values on taking the dump will be
printed at its head. The address of the
DSA for PLIDUMP will be in register 13.
The chainback can then be followed to find
the DSA for IBMBERR. The DSA for IBMBERR
can be recognized if an on-unit is
involved, because it will be the DSA before
the on-unit DSA. IBMBERR's DSA will always
be headed by a flag byte of hexadecimal
'SS' meaning that it is a library DSA in
LIFO storage. To identify IBMBERR's DSA
for certain~ register 15 of the previous
block's DSA must be inspected to see if it
points to the module IBMBERR.

The addresses of the DSAs are given in a
PL/I dump if trace information and a
hexadecimal dump are requested. If trace
information is not requested, the addre~s
of the DSA for the dump routine can be
obtained from register 13 at the head of
the dump_ The chainback field is held in
the second word of the DSA. When the dummy
DSA is reached, this chainback field will
be set to zero. The DSA chain passes
through DSAs in LIFO storage and DSAs in
LWS (library workspace).

See Hi and figure 12.9 for details of
how to follow the DSA chain.

The address of the TCA is given in aPL/I
dump. If 'B' (block option) is specified
in the dump-options character string, the
complete TCA (including the appendage) is
printed separately from the body of the
dump.

The TCA is addressed by register 12.
The format of the TCA is given in appendix
A. The use of the various fields is
explained in chapter 4.

KEY AREAS OF AN ABEND DUMP

If the ABEND code is 4000 the address of
the interrupt can be found from the second
word of the PSW, which gives the address of
the instruction following the point of
interrupt. The PSW is held in subpool 5.
A description of how to find the PSW is
given in the publication OS~_-E!:o9r~~§
2y!Q~_tQ~~~ygg!!!g. The associated
statement number in the source program can
normally be found by finding the last
compiled code DSA~ and finding the point at
which the exit was made (register 14 in the
save area). The address of the program
control section can then be subtracted from
this address, and the offset compared to
the listing will give the appropriate
statement number.

Finding the statement number is not
likely to prove useful because of the
circumstances in which an OS system dump is
generated. The address found will usually
be the address at which the error handler
was entered before the program check exit
was altered. The reason for entry into the
error handler is nQt the cause of the dump.
If the ABEND code is not 16000 see 06.

The type of interrupt can be found from the
first word of the PSW (see Principles of
QE~!:at!Q!! for details).

03~_-B~gis:!::~!-£Q~nts_at tn~_~Qint of
Interrupt

Registers 14 through 2 appear in the PIE
(program interrupt element). Registers 3

Chapter 12: Debugging Using Dumps 219

DSA

0 Flags

4 Backchain

S Not used

C R14 (*)

10 R15 (*)

14 RO

18 R1
Always stored by
library

1C R2

20 RJ

24 R4

28 R5

2C R6

30 R7

34 RS Stored by library
if required

38 R9

JC R10

40 Rl1

44 R12 Stored by compiled code only

(*) Not stored if hardware interrupt occurs

Figure 12.9. The register save area in the DBA

220

through 13 are those printed in the save
area trace. See 06 for finding the PIE.

Register 13 should point at the most recent
DSA. The back chain can be followed from
offset '4' of each DSA. see figure 12.9.

Register 12 should point at the TCA.

The program interrupt element (PIE) will be
found at the head of subpool 5. The PIE
will be followed by registers 3 through 13
and then the STAE work area. The STAE work
area holds the last problem program PSW.
This is the value required for finding the
original cause of the ABEND if the ABEND
code is other than 4000.

STAND-ALONE DUMPS

The· programmer should attempt to find the
various PL/I key areas (TCA, DSA chain,
etc.) discussed above.

Further information on r'eading stand
alone dumps is given in the publication Q~~
~~Qg~~~~~rs~yid~ to_DeQ~gg!ng.

HOUSEKEEPING INFORMATION IN ALL DUMPS

Each DSA holds a backchain address in the
second word. This word holds the address
of the previous DSA. The end of the chain
is marked by the dummy DSA whose first word
contains the flag hexadecimal '82'. The
backchain in the dummy DSA points to the
external save area or is zero if the
program was called from the system. (See
p4 or D4 for finding the DSA chain).

For programs using multitasking the DSA
backchain leads to the dummy DSA of the
ma jor task. ·The DSA of the block in which
the task was attached is not included in
the chain. To find this DSA the 'static'
backchain held at offset X'58' (88) can be
used E!Qvig~g the procedure attached as a
task is internal to the attaching block.
If the procedure is not internal the NAB
value X'4C' (76) in the DSA before it will
~Q~mal!y point to the required DSA.

(The method of chaining during a
multitasking program is explained in
chapter 14. For relationship of NAB and DSA
chaining see H13.)

Statement Number and Progr2~ BlQck: The
statement number and entry point as~ociated
with the interrupt will normally be given
in a PLIDUMP. However, if they have to be
found by the programmer, he should follow
the method used by the error message
modules.

Statement number: It must first be
establIshed whether the GOSTMT option is in
effect. This will. be indicated in the
listing for the compilation. If the
listing is not available it will be flagged
in the compiled code DSA. (Flag bit 13 of
the DSA flags is set to 'l'B.) If this bit
is not set the table of offsets and
statement numbers may be available, if this
is not available statement numbers and
offsets must be deduced from the object
program listing. The method of using the
table of offsets is described below under
the heading nusing the Table of Qffsets n •
If both statement numbers and the table of
offsets are available it will probably be
faster to use the table of offsets rather
than the statement number table.

The statement number is found by use of
the DSA chain as described below:

1. Find the chain of DSAs. The most
recent DSA should be addressed by
register 13.

2. If the DSA found is not a compiled
code DSA, (in a compiled code DSA flag
bits 4 and 5 are set to 'OO'B, 'Ol'B
or 'll'B) the interrupt was not in
compiled code. If the interrupt was
in compiled code, the interrupt
address can be directly associated
with a statement number.

If the interrupt was not in compiled
code, the address at which compiled

Chapter 12: Debugging Using Dumps 221

code was left must be discovered and
this address associated with a
statement number. To find the address
at which compiled code was left:

a. Chain back along the DSA chain
until a compiled code DSA is
reached (flag bits 4 and 5 set to
'00', '01', or 'll'B).

b. The register 14 address saved in
the DSA (offset 12X'C') will be
the point to which the library
module or other module would have
returned if the call had been
successfully completed.

The address thus found is the address to
be associated with a statement number.

3. Chain back one DSA to the DSA before
the compiled code DSA that has been
discovered in 1 or 2 above. The
register 15 value in this DSA (offset
16 X'10') is the entry point of the
block. If this appears to give an
invalid result, check to see whether
the DSA is one of those used in
interlanguage communication {flag bit
7 set to 'l'B and bit 0 of flags 2
(offset X'76') set to 'l'B). If this
is the case chain back one more DSA
and try again.

4. At offset S from the entry point of
the block, the address of the
statement number table will be held.

5. Calculate the offset between the value
in the first word of the statement
number table and the address for which
a statement number is required. If
the address for which a statement
number is required is less than the
address in the first word of the
statement number table, then either an
invalid branch has been made, or a
compiler generated subroutine is being
executed. If it is possible that a
compiler generated subroutine is being
executed return to the compiled code
DSA and attempt to find a statement
number associated with the values held
first in register 6, and, if this
gives an invalid or improbable result,
then in register 14. If the second
word in the statement number table is
less than the offset between the
address for which a statement number
is required and the first word of the
statement number table, it is not
within the program control section and
an erroneous branch has been made out
of the program.

6. If the offset is more than X'7FFF' the
statement number will be held in the
second or subsequent sections of the

222

table. Obtain the number given by
translating the offset into binary and
ignoring the last 15 bits and step
down this number of sections of the
table. (For example, if the offset
was X'SFFF', translate to binary =
'1000 1111 1111 1111'B, ignore last 15
binary digits =1, therefore step down
one section of the table. If the
offset was X'lSFFF' the binary would
be '0001 1000 1111 1111 1111'B.
Ignoring the 15 right hand bits leaves
'll'B therefore step down three
sections of the table.)

The address of the second secti.on of
the table is held at offset X'S' in
the table, the· address of the third
section is held at the head of the
second section, the address of the
fourth section at the head of the
second section and so forth.

7. When the correct section of the table
has been identified, search for the
first offset in the table that is
greater than or equal to the offset
that is being searched for. Following
this offset the statement number is
given in two-byte hexadecimal format.

R~2£~Qy~~_~~~g: To find the entry point
name, a chainback is made beyond the first
~2£gQ~~g DSA found on the chain. Register
15 in the save area before this procedure
DSA will point to the entry point of the
procedure. (Procedure DSA have flag bits 4
and 5 set to 'OO'B. The register 15 value
is held at offset 16 X'10'.)

The entry is preceded by a one byte
field that holds the number of characters
in the name. This one byte field is in
turn preceded by the entry point name.

Q~i~g_~h~~~E!~_2!_off~~~~: Statement
numbers can also be found by comparing them
with the offsets in the offset and
statement number table generated by the
compiler when the OFFSET option is
specified.

Offsets are held from each primary entry
point or a procedure or on-unit. To use the
table of offsets find the entry point used
by the program in the manner described
above. Find the primary entry point for
the procedure. (If the primary entry point
was not used look at the object program
listing to see the relationship between the
entry point used and the primary entry
point.) Note, the offsets given are frorr
the point marked *REAL ENTRY in the object
program listing. This point is one byte
after the end of the primary entry point
name.

If the interrupt occurred in an on-unit

it may be necessary to discover the type of
on-unit entered before it can be
identified. This is done by inspecting the
DSA before the DSA of the on-unit. This
DSA will be for IBMBERR. At offset 84
(X'54') in this DSA the first byte of the
error code will be held. Compare this with
the values in figure 12.8. This will given
an associated PL/I condition. It will be
the on-unit for this condition that has
been entered. If there is more than one
on-unit for the condition, the on-unit
entered must be deduced by studying the
dump, and source and object listings. If
the register 15 value appears to be invalid
this may be caused by rechaining in
interlanguage processing (see chapter 13).
If this is possible~ chain back one more
DSA and try again. (TO check if this has
occurred see 3, above under "Statement
Numbers").

The calling trace can be followed because
branches within the program are always made
on registers 14 and 15. Hence register 15
in each DSA points to the address that was
branched to from that. block. Register 14,
points to the address to which control
passed when the block was completed. By
finding the entry point name (see H2 above)
it is possible to follow the calling trace.

DSAs are associated with code by finding
the register values in the preceding DSA
register save area (H8) and using the fact
that all branches are made via registers 14
and 15. Register 14 in any DSA points to
the instruction after the point at which
control left that block. Register 15
points to the address at which the next
block was entered. The block in the source
program can be identified by statement
numbers or entry point, found as described
in H2, above.

When an interrupt has occurred in the error
handler and a system dump has been
produced, it is possible to discover the
information that the error handler would
have used to generate appropriate error
messages. The ONCA holds values for the
condition built-in functions. The
appropriate ONCA can be found in the

following rranner.

1. Find the DSA before that of IBMBERR
(follow back the DSA chain until
register 15 in the save area points to
IBMBERR). See Hl, H3, H7. If this is
a library DSA (flag bits 4 & 5 set to
'10') go to 3, below.

2. Find the LWS addressed from this DSA.
The address is held at offset X'48'
(72) •

3. Find the offset from the LWS to the
ONCA. This is held at offset 2 in the
LWS.

4. Add the offset to the address of the
library DSA in LWS.

ONCAs are used to hold condition built-in
function values. They are chained
together, one being provided for every
level of interrupt. The chainback field is
in the first word of the ONCA. The durrrry
ONCA is marked by a chainback field of
zero.

The information held in IBMBERR's DSA is
used by the error message modules for
information about the error. If the
messages have not been generated the
information can be deduced from the DSA.
The contents of IBMBERR's DSA are shown in
figures 12.7. See H4 for associating DSAs
with correct code.

Register save areas are held at offset
X'C'(12) in all DSAs, including DSAs in
LWS. Offsets and registers are shown in
figure 12.10. Each DSA holds the register
values as they were on exit from its block.

~Q~~: Library routines store at least
registers 14 through 4, and up to registers
14 through 11; compiled code routines store
registers 14 through 12. Thus the address
of register 12 can always' be found in the
dummy DSA although it may not be in other
DSAs. The contents of the register save
area in the DSA of the block that called

Chapter 12: Debugging Using Dumps 223

r---, I Register I Compiled code I Library usage
I I usage I

RO
Rl
R2

R3

R4
R5

R6

R7

R8

R9

Rl0

Rlt

R12

R13

R14

R15

Work register
Work register
program base

(*,**)
static base

(**)
Work register
Work register

Work register

Work register

Work register

Work register

Work register

Work register

TCA pointer
(**)

Current DSA
pointer (**)

Branch
register

Link register

Work register
Work register
Work register

Program base
(**) .

Work register
Work register

(if used)
Work register

(if used)
Work register

(if used)
Work register

(if used)
Work register

(if used)
Work register

(if used)
Work register

(if used)
TCA pointer

(**)
Current DSA
pointer (**)

Branch
register

Link register

(*) The contents of the program base
register are saved during in-line
record I/O and TRT instructions

(**) Dedicated register, i.e., the
contents remain unchanged
throughout the execution of the
associated compiled code or library
routine

L---J
Figure 12.10. Register usage

IBMBERR are slightly different from normal
if the interrupt was a hardware interrupt.
See figure 12.7.

Register usage is fully discussed in
chapter 2, "Compiler output." A summary of
register usage, showing which registers are
always used fqr a particular purpose, is
given in figure 12.10.

224

The free-area chain connects the areas of
non-LIFO dynamic storage that have been
used and freed, but have not been absorbed
into the major free area. See chapter 6,
"Storage Management." The chain starts at
offset 8 in the implementation-defined
appendage, which is addressed from offset
X'28'(40) in the TCA. The end of the chain
is marked with a zero entry.

The task variable is held in the TCA at
offset X' 24' (36).

The block structure of the program can be
followed from the address held at offset
X'58'(88) in each compiled code DSA. This
address holds the address of the compiled
code DSA of the statically encompassing
block. The chain thus formed is known as
the static backchain.

The forward chain in DSAs is not supported
by the compiler. However, a forward chain
through the LIFO stack can normally be
followed by use of the NAB pointer. The
NAB pointer is held at offset X'4C'(76)
from the head of each DSA. The last
pointer in the chain points to the major
free area. If the NAB pointer contains
anything except 'FF' in its first byte, the
chain cannot be followed~ because it is net
contained in a single LIFO segment. The
address required is held in the last three
bytes of NAB; the first byte contains the
segment number (see C1). The forward chain
includes only those DSAs in the LIFO stack
and does not include any DSAs in LWS.

H14: Action if Error is in a Libra!y'
MQdule ------~----

The fact that the interrupt or the error
was discovered during the execution of a
library module suggests that a check must
be made on the data that is being passed to
the module.

To discover the contents of a parameter
list see H1S.

Parameters are passed in a list of words
pointed to by register 1, except during
stream I/O. To find the position of a
parameter passed to a program, find the
value of register 1 in the save area of the
DSA (see H4) of the calling block.
Register 1 will then locate the parameter
list. If the list is in static storage,
this can be compared with the static
storage listing. The name of the called
routine can be discovered (H3). The
correct parameters for PL/I library
routines are given in the appropriate
library PLM.

The main procedure DSA can be found by
following the backchain of DSAs to the
dummy DSA. The address of the main
procedure DSA will be given by the last 3
bytes of NAB in the dummy DSA. NAB is held
at offset X~4C'(76) in the dummy DSA. The
address of the dummy DSA is held at offset
X'24'(36) in the TCA appendage, which is
addressed from offset x'2S'(40) in the TeA.
The dummy DSA can be recognized by the
presence of X~S2' in the flag byte.

The relationship between tasks can be
discovered from the chains in the tasking
appendage. The chain held at offset x 12S'
(40) points to the tasking appendage of the
most recently attached subtask.

The chain at offset X'24' (36) points to
the task with the same attaching task that
was attached before the task being
inspected (elder sister). If there is no
such task the field is set to zero.

The chain at offset X'20' (32) points to
the subsequently attached task with the
same attaching task (younger sister). If
there is no younger sister this chain
points to an offset within the tasking
appendage of the parent task. An attempt
to continue along the chain results in a
zero field being met. (See figure 14.7.)

Search along the chain held at offset X'20'
(32) in each tasking appendage. When this
field is zero the tasking appendage of the
parent task has been reached. The start of
this tasking appendage is at an offset of
XI-SI(-S) from the address held in the
pointer of the previous tasking appendage.
(See figure 14.7.)

The address of the most recently attached
subtask is held at offset X'2S1 (40) in the
tasking appendage. Other subtasks can be
found by following the chain held at offset
X124' (36) in the tasking appendage until a
zero field is reached. This will be the end
of the chain and is the first of the active
subtasks to be attached by the task. (See
figure 14.7.)

previously attached sister tasks (elder
sisters) can be found by following the
chain held at offset X'24' (36) in the
tasking appendage.

subsequently attached sister tasks
(younger sisters) can be found by following
the chain held at offset X'20~ (32) in the
tasking appendage. When a zero field in
this chain is reached, the parent task has
been found. The most recently attached
sister task is the last one whose chain
field does not hold a zero value. The word
after the zero value will point to the
tasking appendage of this task.

The method used for chaining tasks is
explained in chapter 14, and shown in
figure 14.7.

The address of the tasking' appendage is
held at offset X'2C' (44) in the TeA and at
offset X'SO' (SO) in the dummyDSA of the
attaching task.

Chapter 12: Debuggin~ Using Dumps 225

The TCA is addressed from X'2C' (44) in the
TCA tasking appendage.

FINDING VARIABLES

The value of the variables in the program
at the point of interrupt can be discovered
by using the compiled code listing as a
guide to their addresses. and then finding
these addresses in the dump. The method
used depends on the type of variable.

V1: Automatic Variables
---------------------~-

Automatic variables can be found by ~sing
an offset from the DSA of the block 1n
which they were declared. This information
appears in the variables offset map
generated when the compiler MAP option is
used. If the compiier MAP option has not
been used the information can be deduced
from compiled code. (For finding DSA
associated with block see H4).

static variables are normally addressed by
an offset from register 3. This offset is
given in the variables offset map generated
when the compiler MAP option is used. If
the compiler MAP option has not been used
the offset can be deduced by studying the
listing of compiled code. The value of
register 3 can be found in the save area of
the DSA. (For finding DSA associated with
block see H4).

As described in chapter 2. controlled
variables are addressed by an anchor word
that is held in the pseudo-register vector.
This can be identified from compiled code.

The address in the pseudo-register
vector is the address of the data or~ in
certain circumstances (see appendix A). of
a descriptor or a locator/descriptor. The
data is preceded by a control block - the
controlled variable control block. The
address of the previous allocation is held
at an offset of -8 from the address in the

226

PRV. If there is no previous allocation~
the address is set to zero.

V4: Based Variables
-----~--------------

Based variables are located by finding the
value of the defining pointer. This value
is found by using one of the methods
described above to find static. automatic.
or controlled variables. If the pointer is
itself based~ its defining pointer must be
found and the chain followed until the
correct value is found.

rypical code would be the following:

For X BASED (P). with P AUTOMATIC

58 60 D 088

58 EO 6 000

L 6.P

L 14,X

P is held at offset X" 88' from register
13, and this address points at X.

Care must be taken when exam1n1ng a based
variable to ensure that the pointers are
still valid.

V5: Area Variables
-~--------------~-

Area variables are located in one of the
ways described above, according to their
storage class.

Typical code would be:

For area variable A declared AUTOMATIC

41 60 D 088 LA 6,A

The area would start at offset X'88'
from register 13.

Variables in areas are found by locating
the area and then using the offset to find
the variable.

CONTROL BLOCKS AND FIELDS

For simplicity, the methods of finding
various control blocks are placed in an
alphabetic table. Details of the control
blocks can be discovered from the relevant

chapters (see index) or from appendix A.

As well as control blocks, various other
items are included in the list. Where
necessary, cross-reference is made to other·
sections in this chapter.

Automatic variables

Backchain

BOS

DSA backchain
ONCA backchain

Beginning of segrrent

Controlled variables

DCLCB
Declare control Block

DCB

ENVB
Environment Block

OED
Data element
descriptor

Diagnostic statement
table

DFB
Diagnostic file block

DSA
Dynamic storage area

EOS
End of segment

Event variable

FCB
File control block

Flow statement table

see "Variables"

offset X'4' in DSA
offset X'O' in ONCA

offset XIS' from TCA

see "Variables·

Deduced from object
program listing

addressed from
offset X'14' (20) in
FCB

offset X'c' (12) in
DCLCB

deduced from object
program listing

addressed from
offset X'S' from
entry point of main
procedure

addressed from
offset X'40'(64) in
TCA

addressed by
register 13 (see P3
and D3)

offset X'C' (12) in
TCA

deduced from object
program listing and
knowledge of
parameter lists of
I/O and wait modules

identified in PL/I
dumps. Addressed
via' PRV and DCLCB

addressed from
offset X'4C' (76) in
TCA

Filename

Free-area chain

Locator/descriptor

LWS
Library workspace

NAB
Next available byte

ONCA
ON-communications area

ONCB
ON-control block
start of dynamic
ONCB chain

first static
ONCB

On-cells

OCB
Open control block

Parameter lists

Register values

RCB
Request control block

SIOCB
Stream I/O control
block

symbol table

Symbol table vector

Statement number
table

Static storage

addressed from
offset X'10' (16) in
FCB

offset X'S' in
implementation­
defined appendage,
which is addressed
from offset x'2S'
(40) in TCA

deduced from object
program listing

addressed from
offset X'4S' (72) in
every DSA

offset X'4C' (76) in
DSA

the offset of the
associated ONCA is
held in a halfword
at offset X'2' in
each section of LWS

offset X'60' (96) in
DSA

offset X'SC' (92) in
DSA

addressed from
offset X' 70' (112)
in DSA

deduced from object
program listing and
parameter list of
open module, IBMBOCL

object program
listing and static
storage map

See P3 and 03

object program
listing and static
storage map

object program
listing

Static listing

Static listing

See Diagnostic
statement table

addressed by
register 3 in
compiled code. See

Chapter 12: Debugging Using Dumps 227

segment number

Tasking Appendage

Task variable

TCA
Task communications
area

Variables
automatic

based

controlled

static

area

Variables in areas

228

P3 and 03

first two bytes of
BOS, EOS, or NAB.
'FF'=1,'FE'=2 etc ••

addressed from X'2C'
(44) in the TCA.

addressed from X'24'
(36) in the TCA.

from offset within
areas shown in
compiled code. See
V6

.When the first two bytes of EOS and BOS
are greater than two bytes of NAB, it means
that an extra segment of storage has been
used, but not yet freed. See chapter 6,
"Storage Management."

addressed by
register 12. See P3
and D3 . Special C?onsiderations for Multitasking

offset from
DSA of block in
which they are
declared. As shown
in variables offset
map. See Vl.

address of the
pointer must be
deduced from the
object program
listing. This gives
the address of the
variable. See V2

PRV offset
referenced in
compiled code holds
latest allocation of
the variable. A
chain-back through
the previous
allocation can be
made using the
header chain. See
V3

offset from register
3 is shown in
variables offset
map. See V4.

as for other
variables depending
on storage class.
See V5

find address of
area. Find variable

The major difference between a dump of a
multitasking program and the dump of any
other PL/I program is that certain relevant
items are held within the control task.
For this reason, the control task is always
dumped as well as the current task_

The contents of the dump of a tasking
program depend on the dump options
specified. If A (all) is used all the
tasks will be dumped. If 0 (only current
task) is specified the control task and the
current task will be dumped.

The dump is carried out within the
control task and this prevents access to
the tasking housekeeping during the
execution of the dump. However, this does
not prevent access by other tasks to PL/I
variables which may be dumped. Subtasks of
the current task can access and alter
values within the ISA of the current task.
Consequently the values of the variables
printed cannot be guaranteed to be those
that were current at the invocation of the
dump.

As explained in chapter 14, the DSA
chaining differs slightly when a program is
multitasking. The backchain passes through
the dummy DSA of the task and ends at the
dummy DSA of the major task. The DSA of
the block in which the task was attached is
BQ~ included in the backchain.

Compiled code and the static control
sections generated by the compiler are
always held in storage associated with the
control task.

Calling routine

other language
Call to routine in ~

~-----
I real
I p~h
I •

apparent path

Called routine

I
I
I
I
I
I
I

Routine of other language
carries out required
task and returns

• I
I
I
I
I

apparent path

I
I
I
I
I
I
I

Calling routine

Continuation of procedure in
original language

v

real
path

real
path

real
path

Intervening code

Save old environment,
set up new environment.
If necessary, provide dummy
data aggregate argu ments

Intervening code

Restore former environment.
Where necessary, assign
~alues in dummy data
aggregate arguments to
rea I argu ments

Figure 13.1. The principles of interlanguage communication

230

Chapter 13: Interlanguage Communication

The as PL/I Optimizing Compiler allows
subroutines compiled on IBM as COBOL or
FORTRAN compilers to be used in PL/I
programs compiled on the optimizing
compiler. Similarly, it compiles PL/I
programs that can be run as subroutines of
either COBOL or FORTRAN programs.

I Facilities are also provided to overcome
Ithe addressing problems when passing
larguments to assembler language routines.
IThese are described under the heading
I "ASSEMBLER Option" later in this chapter.

A full description of how to use the
interlanguage communication facilities is
given in the language reference manual for
this compiler. A detailed description of
the PL/I library routines involved is given
in the resident library PLM. This chapter
explains the basic design principles used
and will assist in understanding the
situation in main storage during the
execution of a program involving
interlanguage calls.

The interlanguage facilities are
summarized below for background
information.

The interlanguage facilities allow any
number of calls to be made, and calls to
both COBOL and FORTRAN routines can be made
in the same program. PL/I can call COBOL
that calls PL/I that calls FORTRAN; FORTRAN
can call PL/I that calls COBOL, and so on.
All calls must, however, be made either ~Q
PL/I or from PL/I. Calls cannot be made
directly-between COBOL and FORTRAN.
Options allow the programmer to specify
that PL/I interrupt-handling facilities
will be available through the COBOL or
FORTRAN routines for those program checks
that are not handled by COBOL or FORTRAN.
options also allow the programmer to
specify whether he wishes data aggregates
to be automatically re-formatted when
passed as arguments. (The programmer may
wish to carry out the re-formatting
himself.)

The language involved is fully described
in the language reference manual. Briefly,
it is as follows. For a PL/I procedure to
call a COBOL or FORTRAN routine, the name
of the routine must be declared as an
external entry point with the option COBOL

or FORTRAN in the OPTIONS attribute. If
the programmer wishes to take advantage of
the PL/I error-handling or interrupt­
handling facilities in a COBOL or FORTRAN
routine, the INTER option must be included
in the declaration. When a PL/I procedure
is to be called by COBOL or FORTRAN, the
keyword COBOL or FORTRAN should be included
in the OPTIONS option of the PROCEDURE or
ENTRY statement. To override the creation
or remapping of dummy arguments for
aggregates the options NOMAP, NOMAPIN, and
NOMAPOUT can be used.

The compiler also allows the
specification of the COBOL option in the
ENVIRONMENT attribute of a PL/I file. This
is separate from the interlanguage
facilities described above~ and is a method
of allowing data sets produced by programs
of one language to be used by programs of
the other language. The use of the COBOL
option in the ENVIRONMENT attritute is
described in the last section of this
chapter.

Background to Interlanguage
Communication

The major problems involved in allowing
procedures written in PL/I to be used with
programs written in CCBOL or FORTRAN are:

1. The existence of different data types
in the different languages.

2. The different methods of holding data
aggregates in the different languages.

3. PL/I's use of locators when passing
areas, arrays, strings, and structures
as arguments.

4. The different environment required for
each language. This consists of :

a. Different methods of handling
program checks and consequently a
requirement for the issuing of new
SPIE macro instructions when a new
language is entered.

b. The dependence of PL/I and FORTRAN
on initialization and termination
routines to set up and discard
their environments.

The first of these problems must be solved
by the programmer himself, by ensuring that

Chapter 13: Interlanguage Communication 231

PL/I CaMPI LED CODE

Call inter-language
housekeeping routine

Set up required
environment

Remap data aggregates
as dummy arguments

Call COBOL or FORTRAN routine

Call inter-language
housekeeping routine ~

Restore PL/I
environment

Place dummy argument
values in data aggregates
if necessary

Continue

Execute
required
program

Figure 13.2. Calling sequence when PL/I calls COBOL or FORTRAN

232

arguments passed between the routines are
of suitable data types. (Information in
the language reference manual for this
compiler enables the programmer to do
this.)

The other problems mentioned above are
handled automatically by the interlanguage
communication' facilities of the compiler.
They are summarized below.

DIFFERENCES IN DATA AGGREGATES

Structures in PL/I and COBOL. and arrays in
FL/I and FORTRAN. are held in different
manners.

COBOL structures are mapped as they are
declared. with the structure starting on a
doubleword boundary and each item
separately aligned. FL/I structures are
mapped in a manner that minimizes padding.

In FORTRAN. multidimensional arrays are
held in column-major order. In PL/I. they
are held in row-major order. Thus the
second element in a FORTRAN two-dimensional
array has the subscript (2.1). whereas the
second element in a PL/I two-dimensional
array has the subscript (1.2).

s'truct ures are not available in FORTRAN.
COBOL data with the OCCURS option, which
can be equivalent to PL/I arrays, is held
in row major order, as are PL/I arrays.

IUSE OF LOCATORS

When passing arguments, PL/I passes the
address of locators for areas, arrays,
strings, and structures rather than the
address of the items themselves. This is
because the routine that receives the
arguments may require information about
bounds or sizes of the data passed, and
this is accessible through the locator.
Other languages,. however, expect the
address of the data to be passed. The
correct type of paramter list must
therefore be set up when an interlanguage
call is made.

DIFFERENCES OF ENVIRONMENT

PL/I. COBOL and FORTRAN all have different
methods of handling program checks. PL/I
allows the programmer to handle all program
checks. FORTRAN allows the programmer to

handle certain program checks. COBOL
leaves program checks almost entirely in
the hands of the system., Because of the
different requirements, a new SPIE macro
instruction must be issued whenever control
passes between languages. The INTER option
demands that program checks are analyzed
when they occur and that they are passed to
the appropriate language. If they are to
be passed to FL/I, the PL/I environment
must be restored. For these reasons the
INTER option demands that further SPIE
macro instructions be issued.

IBM FORTRAN compilers and the PL/I
optimizing compiler rely upon
initialization routines to set up an
environment in which the compiled code
routines can operate. In FORTRAN, the main
task of the initialization routine is to
issue a SPIE macro instruction to initiate
the FORTRAN error-handling scheme. In
PL/I, the initialization routines prepare
for the PL/I error-handling schemes and
also prepare the way for dynamic storage
allocation. During PL/I initialization
routines. register 12 is pointed at the
TCA, which is used for addressing a nurrber
of housekeeping fields and library
routines. Register 13 is pointed at a DSA
which contains a standard save area, a NAB
pointer pointing to the next available byte
of last-in, first-out dynamic storage,
various other housekeeping fields, and
storage for variables declared automatic.
(See chapter 1 and chapter 5 for a
discussion of the PL/I environment.)

When PL/I is called from either COBOL or
FORTRAN the PL/I environment must be set up
before the program can be run. Similarly,
when PL/I calls another language, the
environment suitable for the program that
has been called must be set up, and the
PL/I environment saved so that it may be
restored on return to PL/I.

THE PRINCIPLES OF INTERLANGUAGE
COMMUNICATION

Figure 13.1 shows the method used to handle
interlanguage communication problems.
Interface code is inserted immediately
before and immediately after the execution
of a routine in a different language. This
code saves the existing environment and
sets up the required environment. Where
necessary it creates dummy aggregate
arguments of the correct format. The
interface code is divided between compiled
code and library routines. Compiled code
handles data aggregate arguments and calls
a library routine to handle the problems of
environment. Three PL/I resident library
routines are used; one for calls to each

Chapter 13: Interlanguage Communication 233

language. These routines are known as the
interlanguage housekeeping routines.

The interface code is always placed in
PL/I, because it is the PL/I compiler that
manages the interlanguage facilities.
However the position of the code depends on
whethe.r PL/I is the called or calling
program.

When the ~!!!ng program is PL/I the
interface code is placed immediately before
and immediately after the call to the COBOL
or FORTRAN routine. The sequence, is shown
in figv~e 13.2 and is summarized below.

1. Compiled code remaps data aggregate
arguments if necessary.

2. compiled code calls the interlanguage
housekeeping routine, which handles
environment problems.

3. Compiled code calls the COBOL or
FORTRAN routine.

4. On return from the COBOL or FORTRAN
routine, compiled code calls the
interlanguage housekeeping routine to
restore the PL/I environment.

5. Compiled code re-maps dummy data
aggregate arguments if any, and
continues.

The code generated by the compiler is shown
in figure 13.3.

When the ~lled program is PL/I, the
necessary interface code is placed at the
start and finish of the PL/I program. The
interface code is compiled as an
encompassing routine to the required PL/I
routine.

The method used, is to compile the PL/I
program in the normal way except that it is
compiled as internal to an interface
procedure that contains the interface code.

This interface" or encompassing
procedure is given the external name of the
PL/I procedure and is thus called by the
other-language routine. The interface
procedure, when it has called the
interlanguage housekeeping routine and
handled the data aggregate arguments, calls

234

the required PL/I routine. Control returns
to the original caller by way of the
interface routine which again handles the
interlanguage problems before returning_

The sequence of events when PL/I is the
£~!!~g program is shown in figure 13.3 and
is summarized below.

1. A COBOL or FORTRAN routine calls the
PL/I routine.

2. Control passes to the interface
routine which has been compiled with
the ESD name of the PL/I routine or
entry pOint.

3. The interface routine calls the
interlanguage housekeeping routine to
handle environment problems.

4. The interface routine handles data
aggregate arguments as necessary.

5. The interface routine calls the
required routine.

6. Control returns from the required
routine to the interface routine. The
interface routine handles data
aggregate arguments as necessary.

7. The interface routine calls the
interlanguage housekeeping routine to
handle environment problems.

8. Control returns from the interface
routine to the original caller.

The overhead of setting up PL/I and FORTRAN
environments every time a routine is called
could become considerable if the routine
were called a large number of times. To
prevent this overhead" the environment is
retained until the routine that calls the
other language routine is itself
terminated. This is done by a rearrangement
of the save area chaining, so that the PL/I
and FORTRAN termination routines are not
entered until the calling program is itself
terminated.

The arrangement introduces certain
housekeeping problems which are resolved by
inserting further save areas into the
chain. These save areas have register 14
values that result in control being passed
to subroutines of the inter language
housekeeping routines. These subroutines~
known as tal! code, handle problems such as
preserving values passed from the caller to
the caller's caller.

SOURCE

1 P13P2:PROC;
2 1 DCL FRED OPTIONS(COBOI),

1 STRUCTURE,
2 C CHAR (1) ,
2 D FIXED BINARY (31,0);

3 1 CAll FRED(STRUCTURE);
4 1 END;

* STATEMENT NUMBER 3
000066 41 00 0 008 LA 0,8(0,0)
00006A 58 10 D 04C L 1,76(0,13)
00006E 1E 01 AIR 0, 1

Get VDA for dummy 000070 55 00 C OOC CI 0,12(0,12)
000074 47 DO 2 018 ENH CI.4 arguments
000078 58 FO C 048 I 15,72(0,12)
.00007C 05 EF EAIR 14, 15
00007E CI.4 EQU * 00007E 50 00 D 04C S'I 0,76(0,13) Place new value in NAB
000082 41 11 0 000 IA 1,0<1,0)
000086 50 10 D OA8 S'I 1,168(0,13)
00008A 1:2 03 C 088 D OE3 ~VC ~KSF.1+16(4),S'IRUC

'IURE.C Move structure into
000090 58 80 C 088 1 8,wKSF.1+16 dummy
000094 D2 03 1 000 D 088 ~VC 0(4,1),wKSF.1+16
00009A 58 90 1: OE4 1 9,S'IRUC'IURE.D
00009E 50 90 1 004 S'I 9,4(0,1)
0000A2 58 FO 3 OOC 1 15,A •• IE~BIECA] Branch to interlanguage
0000A6 18 ,1 I.R 7, 1 housekeeping routine 0000A8 05 EF EAIR 14, 15
OOOOAA 50 70 3 030 S'I 7,48(0,3)

J OOOOAE 96 80 3 030 01 48(3),X'80'
Set up argument list 0000B2 1B 55 SR 5,5

0000B4 41 10 3 030 IA 1,48(0,3)
0000E8 58 FO 3 034 I 15,52(0,3) J OOOOBC 18 67 IR 6,7 Branch to COBOL routine
OOOOEE 05 EF EAIR 14,15
OOOOCO 58 FO 3 010 L 15,A •• IE~EIECC :J> Branch to interlanguage
0000C4 05 EF EAIR 14, 15 housekeeping routine
0000C6 1:2 03 1: 088 7 000 ~VC \iRS!'. 1 + 16 (4) • 0 (7):J
OOOOCC 58 FO D 088 I 15,WKSF.1+16
OOOODO 1:2 03 D OB3 1: 088 ~VC S'IRUCTURE.C(4),WKS Move values from dummy

P.1+16 to real arguments
0000D6 58 60 7 004 1 6,4(0,7)
OOOODA 50 60 D OB4 S'I 6,S'IRUC'IURE.D

Figure 13.3. Code generated when PL/I calls a COBOL routine

Chapter 13: Interlanguage Communication 235

COBOL or FORTRAN COMPI LED CODE

Call PL/I routine

Continue

Call inter-language
environment routine

PL/I LIBRARY ROUTINE

Set up PL/I
environment

Generate dummy data aggregate arguments
if necessary

Call required PL/I
procedure

Call inter-language
environm~nt routine

PL/I COMPI LED CODE REQUI RED
PROCEDURE

Execute
required
program

Remap data aggregates if necessary

PL/I LIBRARY ROUTINE

Restore COBOL or
FORTRAN environment

Return to COBOL or FORTRAN

Figure 13.4. The sequence of events when FORTRAN or COBOL calls PL/I

236

.. ...

... ...

SAVE AREA CHAINING

Standard save area of outer
procedure/calling routine (if any)

COBOL or FORTRAN calling routine save area

Short save area

Interlanguage routine save area
(Save area 2 in ZCTL)

PL/I initialization routine save area

--

PL/I encompassing procedure save area

PL/I required procedure save area

...

.....

.....

Rearrangement of save area chaining takes place after the
first call to PL/I, so that the PL/I environment is not discarded
until the calling routine itself is finished.

Save areas that return control to the PL/I initialization routine
and interlanguage housekeeping routine are placed before the
calling routine. (The numbers 1-7 in the diagram show the
order of backchaining).

o

Figure 13.5. chaining of save areas when PL/I is called from a COBOL or FORTRAN
principal procedure

Chapter 13: Interlanguage Communication 237

Handling Changes of Environment

Changes of environment are handled by three
resident library interlanguage housekeeping
wodules, one for calls ~Q each language.
Common features are described below. A
more detailed description follows for each
routine. The routines are:

IBMBIEF for calls ~Q FORTRAN
IBMBIEC for calls ~Q COBOL
IBMBIEP for calls ~Q PL/I

The job of these routines is the saving and
restoring of environments. This involves
issuing SPIE macro instructions suitable
for the called routine and saving the PICA
of the calling routine so that a suitable
SPIE macro instruction can be issued before
return. For PL/I it also involves storing
information about dynamic storage
allocation, and the TCA address.

The information required when setting up
and restoring environments is held in three
chained control blocks:

1. IBMBILCl This is a control section
included in every interlanguage
housekeeping routine. It contains
flags to indicate whether the PL/I,
FORTRAN or COBOL environments already
exist and, if any do exist, contains a
pointer to ZCTL.

2. ZCTL This holds PICA addresses and the
TCA-address. It is chained to a series
of interlanguage VDAs. It also holds
flags indicating which languages are
currently active.

ZCTL is generated on the first of a
series of interlanguage calls and is
retained until that series of calls is
completed. For calls to FORTRAN and
PL/I it is retained until the routine
that made the first interlanguage call
is itself terminated.

Also held in ZCTL are the additional
save areas used when the chaining is
altered. These are known as save area
1, save area 2, and the ghost save
area. The uses of these save areas
are given in the individual module
descriptions.

3. In~erl~g~~g~Q~§ These hold flags
indicating which languages were active
before the latest call was made, the
address of the callers PICA, the
address of the most recent PL/I DSA.

238

An interlanguage VDA is acquired for
every inter language call and discarded when
the called routine is terminated.
Interlanguage VDAs are held in the PL/I
LIFO storage stack.

The methods of chaining 'used for these
control blocks when PL/I is the called and
the calling language is shown in figures
13.6 and 13.1. IBMBILCl contains a pointer
to ZCTL and ZCTL contains a pointer to the
most recent interlanguage VDA.
Interlanguage VDAs hold pointers to
previous interlanguage VDAs, if any. If
there are none, the pointer field is set to
zero.

There is one interlanguage VDA for each
interlanguage call. A VDA is set up when
the call is made and discarded when the
associated routine is terminated. The VDAs
hold a record of the ZCTL flags that
existed before they were called. These
flags are placed in the VDA before the
flags are altered and restored in ZCT~ when
the VDA is discarded. Thus ZCTL always
contains a record of the active languag~§.
This information is necessary when handling
STOP statements.

The flags in IBMBILCl contain a record
of the environments that are active. These
flags are-used-to-test whether it is
necessary to call the FORTRAN or PL/I
initialization routines, or whether the
environment can be restored from the
information saved in ZCTL and the
interlanguage VDAs.

FORTRAN and PL/I environments are set up by
initialization routines and discarded by
termination routines. To save the '
overheads of executing these routines on
each call to the language the save area for
the termination routine is placed above
that of the calling program. On the first
call the PICA address and, for PL/I only,
the current DSA and TeA address are saved.
For subsequent calls this information is
restored by the inter language routines and
no call made to the initialization routine.
Figure 13.8 shows the principles involved.

The rearrangement of the save area chain
results in certain problems, for example
returning parameters from the caller to the
caller's caller. To overcome these
problems additional save areas are inserted
in the chain. These save areas result in
control passing to subroutines in the
interlanguage housekeeping routines known
as ~ai! code. Details are given in figures
13.9 and 13.10 and in the individual module
descriptions below.

1

2

3

4

Initial situation
IBMBI LC1 is set up as a control section by the PUI interlanguage
routines. I ts first word and flags are initially zero.

Call FORTRAN from PL/I (IBMBIEF)
The compiler generates a call to the interlanguage communications
routine. This routine:
1. Sets up ZCTL after testing for zero pointer in I BMBI LC1.

Acquires an interlanguage VDA.
2. Sets ZCTL pointer to interlanguage VDA, and IBMBI LC1

pointer to ZCTL.
3. Sets FORTRAN flag in IBMBILC1. Saves R12 in ZCTL,

R13 in interlanguage VDA.
4. Calls FORTRAN library to initialize FORTRAN SPIE
5. Resets program check exit as required.
6. Returns to compiled code, which calls FORTRAN

procedure.

Call PUI from FORTRAN (lBMBIEP)
The PUI program, because it is declared with the option
FORTRAN, will have been compiled inside an encompassing
procedure. The encompassing procedure is the one called by
FORTRAN. The encompassing procedure calls the inter­
language communications routine I BMBIEP, which:
1. Checks IBMBI LC1 to see if either FORTRAN or COBOL

flag is set. As one flag is set, restores registers_
2. Issues PUI SPI E and ST AE and stores interrupt handling

information of calling program in interlanguage VDA.
Control then returns to the encompassing program, which calls
the required PUI program.

Call COBOL from PL,/I (lBMBIEC)
The PUI program will contain a call to the interlanguage routine
IBMBIEC, which:
1. Sets up another interlanguage VDA, points ZCTL to this

VDA, and places the old value of ZCTL's pointer in the
VDA.

2. Stores R13 in the new VDA.
3. Issues a SPI E so that error handling will be as requested

by PUI program.
Control IS then returned to compiled code, which then calls
the COBOL routine.

IBMBILC1

Zero

\
COBOL
flag

\
FORTRAN
flag

IBMBILC1

IBMBILC1

IBMBILC1

x

IBMBILC1 ZCTL

~ ____ r-_X __ -r __________ ~~ __ A_d_d_re_s_s_o_f_Z_C_T_L __ ~

ZCTL

ZCTL

ZCTL

VDA (First)

VDA (First)

R13

FORTRAN
interrupt handling
information

VDA (Second)

R13

VDA (First)

R13

FORTRAN
interrupt handling informati

,I section by the PL/I interlanguage
lS are initially zero.

i1BIEF)
I the interlanguage communications

I for zero pointer in I BMBI LC1.
VDA.
'Ianguage VDA, and IBMBILC1

MBILC1. Saves R12 in ZCTL,

) initialize FORTRAN SPIE
as required.
which calls FORTRAN

mIEP)

declared with the option
piled inside an encompassing
lrocedu re is the one called by
procedure calls the inter-

le IBMBIEP, which:
f either FORTRAN or COBOL
it, restores registers.
: and stores interrupt handling
Iram in interlanguage VDA.
)mpassing program, which calls

:C)
call to the interlanguage routine

Ige VDA, points ZCTL to this
Ilue of ZCTL's pointer in the

~.
handling will be as requested

Jiled code, which then calls

IBMBILC1

Zero

\
COBOL
flag

\
FORTRAN
flag

IBMBILC1

IBMBILCl

IBMBILC1

x

IBMBILC1 ZCTL

~ ____ ~_X __ ~ ___________ ~~ __ A_d_d_r_es_s_o_f_Z_C_T __ L __ ~

ZCTL

ZCTL

ZCTL

VDA (First)

VDA (First)

R13

FORTRAN
interrupt handling
information

VDA (Second)

R13

VDA (First)

R13

FORTRAN
interrupt handling information

Final situation

ZCTL is reta[ned until program is completed. ,

FORTRAN returns to PUI (IBMBIEFl

When control returns from a FORTRAN procedure, a call is made
to the interlanguage communication routine IBMBIEF. which:
1. Moves the pointer in the VDA to the first word of ZCTL.
2. Issues a PL/I SPIE macro.
3. Issues a PL/I STAE macro leaving the previously·stacked

FORTRAN STAE for possible future use.
4. Returns control to compiled code.

PL/I returns to FORTRAN (lBMBI EP)

When the required PL/I procedure is finished, it returns control
to the encompassing procedure. The encompassing procedure
calls the interlanguage routine I BMB I EP, which issues a SPI E
macro instruction to restore the error-handling situation to that
of the calling routine. The information for the·SPIE macro
instruction is retrieved from the interlanguage VDA. The
current PL/I ST AE is canceled, leaving the previously stacked
FORTRAN STAE in control.
The interlanguage routine returns control to the PLiI encompas
sing procedure, which then returns control to the FORTRAN
program.

COBOL returns to PL/I

The COBOL program returns to the PL/I program, which
immediately calls the interlanguage routine IBMBI EC. This
routine rearranges the chain by placing the word in the most
recent VDA in the first word of ZCTL. It then issues a SPIE
macro instruction to restore the PL/I error-handling situation.

PL/I compiled code then continues.

8

7

6

5

Figure 13.6. Example of chaining sequences (PL/I principal procedure)

Chapter 13: Interlanguage communication 239

Initial situation Situation on return Initial situation Situation on return

IBMBILC1 IBMBILC1 ZCTL PARTITION

ti~oLJ ITi-=rc~::J EXists ~~J TCA etc
If PLiSA has
been called Dummy DSA

ZCTL

FORTRAN flag
ISA

1

FORTRAN principal procedure calis PL/I

PARTITION

TCA etc.

IBMBILC1 zcn VDA (First) Dummy DSA

E~
-----"---

FirstVDA

liJ_~ ISA
Encompassing DSA

FORTRAN
interrupt Required DSA
handling
information FORTRAN

interrupt
handling

R12 information

2

PUI calis FORTRAN

PARTITION

TCA etc. l
-.-~--- -i

IBMBILC1 ZCTL VDA (Second) VDA (First) Dummy DSA -~
First VDA

-1
Encompassing DSA Ir.A

R13

Required DSA

FORTRAN
interrupt
handling
information

zcn ___ J

3

FORTRAN calls PUI

PARTITION

TCA etc.

IBMBILC1 zcn VDA (Second) VDA (First) Dummy DSA

FirstVDA

Encompassing DSA 1
R13 R13

Required DSA 1 ISA

FORTRAN FORTRAN Second VDA
interrupt interrupt
handling handling

Encompassing DSA 2 information information

Required DSA 2

4
'---_._---------------------------+------------------ -- ----- --

Figure 13.7. Examples of chaining sequences (FORTRAN principal procedure)

Chapter 13: Interlanguage Communication 241

When the INTER option is specified, the
programmer gets neither normal PL/I
interrupt handling nor the normal interrupt
handling for the other language. Instead,
he gets PL/I error handling of those
interrupts which are left to the system by
the non-PL/I languages. To allow for this,
the type of interrupt has to be analyzed
after it has occurred and passed to the
correct error handling routines.

Interrupts are analyzed by subroutines
of the interlanguage housekeeping routines
known as tr~E~. The interlanguage
housekeeping routines save the PICA
addresses for the calling language and the
called language and issue a SPIE that will
pass control to the trap code. When an
interrupt occurs control is passed to the
trap, which analyzes the interrupt. The
trap code issues the appropriate SPIE to
restore the required error handling
situation and then alters addresses so that
normal return from the interrupt will
result in control being passed once more to
the interlanguage housekeeping trap
routine. It then forces an interrupt and
the interrupt is handled by the appropriate
language. When control returns to the trap
a further SPIE is issued so that control
returns to the trap should further
interrupts occur. The method used for each
module is described below.

PL/I and FORTRAN STOP statements and COBOL
STOP RUN statement cause certain problems
because various save areas may be bypassed.
The methods adopted to solve these problems
are discussed in the individual description
of the modules.

Housekeeping Module Descriptions

As the differences between individual
interlanguage housekeeping modules are
considerable, a detailed description of
each module follows. The description
covers the following situations:

1. When the associated language routine
is called

2. When the associated language routine
returns control

242

3. When an interrupt occurs with the
INTER option

4. When a STOP or STOP RUN statement is
executed

5. For PL/I and FORTRAN only, when the
environment is discarded and the
termination routine entered

COBOL WHEN CALLED FROM PL/I (IBMBIEC)

~g!Q~g_~ntry-to_CO~Q~_~~ogr~~

IBMBIECA - Entry point for COBOL error
handling

IBMBIECB - Entry point for INTER error
handling

When IBMBIEC is called before the COBOL
program, the following must be done:

1. Test to see if this is the first
interlanguage calli if so, set COBOL
flag in IBMBILC1 and set up ZCTL.

2. Acquire interlanguage VDA and store
register 12 and register 13 in the
VDA. Write null PICA information in
ZCTL.

3. If INTER option not specified (i.e.,
entry point IBMBIECA), issue SPIE
macro instruction so that errors will
be handled by the supervisor. Return
to compiled code.

4. If INTER option is specified (entry
point IBMBIECB), issue new SPIE macro
instruction and return so that
interrupts will be passed to the trap
code.

The following actions take place on return:

1. A SPIE macro instruction is executed,
which results in the the PL/I error
handling scheme being restored.

2. The first word of the interlanguage
VDA and the VDA flags are moved into
the first word ZCTL. and the VDA is
freed.

Save area for
CALLER'S CALLER

, ,

Save area for CA L LE R

"
Save area for
INITIALIZATION/
TERMINATION
ROUTINE PUI or
FORTRAN

,r

Save area for
PUI or FORTRAN

. /:
,

< .. i,
.... ".' ... : ...

, .. ,

---------,
Save areas are re-chained I
so that the environment
is not discarded until
the caller is terminated.
Note: additional save
areas are introduced.
See figures 13.9 & 13.10
for details .

Figure 13.8. The concept of save area rechaining (see figures 13.9 and 13.10 for
details)

Chapter 13: Interlanguage Communication 243

[Caller's caller

t
Save area 1

(Register 14 in th is save area poi nts to
the tail code in IBMBIEF. For normal
return the tail code calls I BCOM in
the FORTRAN library to discard the
FORTRAN environment.)

[
t

Caller's ,
~TRAN routine]

Figure 13.9. Rechaining of save areas when FORTRAN is called from PL/I and the
FORTRAN environment needs initializing

244

r
I
I
I
I
1-

- - - - - - --
Caller's Caller

(replaced in this position
by tail code in I BMB I EP
R 14 value restored from

_ghost save~e~ -

Save area 2
(passes control to tail
code in IBMBIEP

l
I
I
I
I

-oJ

~------~t----------

I

Dummy DSA
(Save area for PL/I
initializationltermination
routine)

t

Save area 1
Passes control to tail -code in IBMBIEP (entered
after FORTRAN STOP)

PL/I
Encompassing Procedure DSA

t
PL/I

Required Procedure DSA

Caller's Caller adapted
(register 14 value is altered
to pass control to tail
code in IBMBIEP)

Figure 13.10. Rechaining of save areas when PL/I is called from FORTRAN or COBOL
and the environment requires initialization

chapter 13: Interlanguage communication 2QS

If the INTER option is not specified, all
program checks will be handled by the
supervisor in the usual manner. If the
INTER option is specified and the program
has been compiled with a request for the
COBOL interrupt handler not to be called,
the following takes place.

1. During the first invocation of
IBMBIEC, a SPIE macro instruction is
issued, which results in interrupts
being passed to entry address in the
trap.

2. when an interrupt occurs, register 12
and register 13 are restored thus
restoring the PL/I environment.

3. A DSA is acquired for IBMBIEC in LWS.
The address of the interrupt, in the
second word of the PSW, is saved in
this DSA and replaced by the address
of another entry address in the trap.
For underflow interrupts, the four
bytes preceding the point of interrupt
are also copied and placed before the
trap in case the error handler needs
to examine them. The trap acts as the
return address for the PL/I error
handler.

4. Flags are set in the TCA and DSA to
indicate that it is possible for an
abnormal GOTO to occur in a PL/I on­
unit.

5. A SPIE macro instruction is issued to
transfer the program check exit to the
PL/I error-handling routines whose
address is held in the TCA appendage.

E~!urB_!fom-1B!~!f~E!: If there is a GOTO
out of a PL/I on-unit, control passes to
the abnormal GOTO SUbroutine, this is
because flags indicating an abnormal GOTO
situation are set up by the trap code. The
abnormal GOTO subroutine analyzes these
flags and passes control to IBMBIEC which
handles any necessary housekeeping
problems.

If the return is normal~ the PL/I error
handling routines return control to the
address in the second word of the PSW.
This word has been altered by code in the
trap, and further trap code in IBMBIEC is
entered.

It is necessary to return to the point
of interrupt in the COBOL program without
changing any of the register values and
this can only be done via the supervisor.
A new SPIE is set to point to further trap
code and an interrupt forced. The program
is now in an interrupted state, the

246

original INTER SPIE is reissued, and the
registers and PIE are restored. The
original interrupt address is set in the
PSW. Control is returned to the supervisor
which passes control to the address in the
PSW with the correct register values
restored.

When used with certain COBOL compilers,
normal return from a zerodivide on-unit
will result in a data exception. This is
because a ZAP instruction is executed after
the divide on computational-3 data. The
ZAP instruction picks up an invalid field.

ANS COBOL STOP RUN statements are handled
by a COBOL routine which passes control to
a specified address. When IBMBIEC is
called before entry to a COBOL program this
address is set to the tail code in IBMBIEC.
This tail code dechains all save areas or
routines that were entered after the PL/I
caller and then executes a PL/I STOP
statement.

FORTRAN WHEN CALLED FROM PL/I (IBMBIEF)

When FORTRAN is called by PL/I, IBMBIEF is
entered immediately before and immediately
after the execution of the FORTRAN prograrr.
The processing done before entry to the
FORTRAN program depends on whether the
INTER option is specified. Entry point
IBMBIEFA handles calls without the INTER
option. Entry point IBMBIEFB handles calls
with the INTER option.

Entry Point IBMBIEFA FORTRAN error handling

Entry Point IBMBIEFB INTER error handling

Before the call to FORTRAN. IBMBIEF does
the following:

1. Tests the flags in IBMBILCl to
discover if this is the first
interlanguage call. If it is the
first call. it sets up ZCTL and sets
the FORTRAN flag in IBMBILC1. If it
is not the first call. it tests to see

whether the FORTRAN flag is set in
IBMBILC1 and sets the FORTRAN flag if
it is not already set.

2. IBMBIEF stores register 13 in the
interlanguage VDA, thus saving the
PL/I environment.

3. If the FORTRAN environment has not
previously been set up, calls the
FORTRAN initialization routine. This
routine sets up the program check exit
so that program interrupts will be
handled by the FORTRAN error handling
method. The FORTRAN error data is
stored in ZCTL. Save area one (SAl) is
then inserted in the save area chain.
The resulting save area chaining is
shown in figure 13.9.

4. IBMBIEF acquires an interlanguage VDA.
Points ,the first word of ZCTL to this
VDA, taking the value previously in
the first word of ZCTL and placing it
in the first word of the VDA. (This
places the new VDA at the head of a
chain starting from ZCTL.)

5. If INTER option is not specified,
issues a FORTRAN SPIE macro
instruction from ZCTL, sets program
mask to '2~, and returns to compiled
code.

6. If INTER option is specified, a SPIE
macro instruction is issued that will
result in control being passed to the
trap should an interrupt occur. The
program mask is reset to 'E' in case
it was changed by the FORTRAN
initialization routine.

Action on Return from FORTRAN Pro~am
I!~MBIEFCana-IBMBIEFDr------ --

When return is made from the FORTRAN
subroutine, PL/I compiled code immediately
makes a call to the FORTRAN interlanguage
routine. If the FORTRAN routine may have
been used as a function, entry point
IBMBIEFD is used. Otherwise, entry point
IBMBIEFC is used. The module IBMBIEF does
the following:

1. A SPIE macro instruction is issued
that resets the program check exit to
the PL/I error-handling modules, and
the program mask is set to 'E'.

2. The first word of the interlanguage
VDA is placed in the first word of
ZCTL. The VDA flags inserted in ZCTL
and the VDA freed.

3. For entry point IBMBI~FD (the FORTRAN

function entry point) the parameter
list passed by PL/I is examined, and
the values are moved from registers in
which they were placed by the FORTRAN
routine, to the location expected by
PL/I.

If the INTER option is not specified, the
action on any interrupt that occurs in the
FORTRAN program will te that specified in
the FORTRAN error-handling scheme.
However, if the INTER option is specified,
all program checks that are not handled by
FORTRAN error-handling are passed to the
PL/I error-handling modules.

The FORTRAN error-handling scheme is
used after the following interrupts have
occurred:

1. Specification (other than for invalid
instruction address)

2. 'Fixed-point divide

3. Decimal divide

4. Exponent overflow

5. Exponent underflow

6. Floating-point divide

All other program checks are handled by the
PL/I error handler.

If the INTER option is specified, when
an interrupt occurs the following takes
place:

1. When control is passed by the
supervisor to the trap, the type of
interrupt is discovered by examining
the PSW. If the interrupt is one of
the types that can be handled by
FORTRAN, the normal FORTRAN
environment is established and the
FORTRAN error handling module invoked.

2. If it is not the type of interrupt
that can be handled by FORTRAN,
register 12 is restored from ZCTL and
13 from.the latest interlanguage VDA,
thus restoring the PL/I environreent.

3. The address of the interrupt is taken
from the second word of the PSW and
stored in the DSA. The second word of
the PSW is then replaced by an entry
address in the trap in IBMBIEF.

4. Flags are set in the TCA and DSA to
indicate that it is possible for an

Chapter 13: Interlanguage Communication 247

abnormal GOTO to occur in a PL/I on­
unit.

5. A SPIE macro instruction is then
issued to restore the PL/I error­
handling situation. A branch is then
made to the PL/I error handler.

B~_~~2ID-in~~!rup!: If there is a GOTO
out of a PL/I on-unit, control passes to
the abnormal GOTO subroutine, this is
because flags indicating an abnormal Goro
situation are set up by the trap code. The
abnormal GOTO subroutine analyzes these
flags and passes control to IBMBIEF which
handles any necessary housekeeping
problems.

If the return is normal, the PL/I error
handling routines return control to the
address in the second word of the PSW.
This word has been altered by code in the
trap, and further trap code in IBMBIEF is
entered.

It is necessary to return to the point
of interrupt in the FORTRAN program without
changing any of the register values and
this can only be done via the supervisor.
A new SPIE is set to point to further trap
code and an interrupt forced. The program
is now in an interrupted state, the
original INTER SPIE is reissued, and the
registers and PIE are restored. The
original interrupt address is set in the
PSW. control is returned to the supervisor
which passes control to the address in the
PSW with the correct register values
restored.

When the routine that called FORTRAN is
terminated, control is passed to the
address held in the register 14 save area
in save area one. This address is the
address of the tail code in IBMBIEF. If
the return is normal, the tail code calls
IBCOM in the FORTRAN library to discard the
FORTRAN environment. It then frees ZCTL
and re·turns control to the caller's caller.

If control returns to the tail code because
of a FORTRAN STOP statement the tail code
discards any save areas that may have been
bypassed by the FORTRAN STOP statement and
finally executes a, PL/I STOP statement
which terminates the program.

248

PL/I CALLED FROM COBOL OR FORTRAN
(IBMBIEP)

As with the other inter language
communication routines, IBMBIEP is called
immediately before and immediately after
the program that is to be executed.
However, the interlanguage housekeeping
routine cannot be called direct from the
COBOL or FORTRAN routine, because the
existence of such a routine is unknown to
COBOL or FORTRAN. TO overcome this problem,
an encompassing routine is generated with
the same entry name as the PL/I routine.
This encompassing routine is called by
COBOL or FORTRAN and in turn calls the
interlanguage housekeeping routine and the
required PL/I routine.

Although the names of both PL/I
procedures are the same, the encompassing
routine gets control when called from COBOL
or FORTRAN. This happens because no ESD
records are generated for the inter language
entry points of the required PLiI program.
code for a PL/I encompassing routine is
shown in figure 13.5. Figure 13.4 shows
the calling sequence.

Before a call is made to the required PL/I
program, IBMBIEP does the following:

1. Tests to see if the PL/I environment
has already been initialized, by
examining whether the COBOL or FORTRAN
flag in IBMBILC1 is set.

2. If the COBOL of FORTRAN flag is set,
this means that a previo~s
interlanguage call has been made, and
as the call must have been made either
to or from PL/I, the PL/I environment
must have been set up. If it is
established that the PL/I environment
exists, register 12 is restored from
ZCTL. A SPIE macro instruction is
issued so that program checks are
handled by the PL/I error handler.
The address of the old PICA is stored
in the interlanguage VDA. Control
returns to the encompassing routine.

3. If neither the COBOL nor the FORTRAN
flag is on, PL/I is being called for
the first time by a procedure in a
program whose principal procedure is
COBOL or FORTRAN. The following action
is taken:

a. IBMBIEP issues a GETMAIN macro
instruction and sets up ZCTL in
the storage acquired.

b. The PL/I initialization routine,
IBMBPIR is called. It sets up the
PL/I environment and returns
control to an address in IBMBIEP
that it was passed by IBMBIEP.
IBMBIEP then stores the registers
of IBMBPIR in the dummy DSA.

c. The chaining of save areas is then
altered, so that the dummy DSA
(the save area used by IBMBPIR) is
above the calling program's
standard save area. The result of
this is that, when the
encompassing routine is complete,
return is made to the COBOL or
FORTRAN calling routine rather
than to IBMBPIR. Thus the PL/I
termination routine is not entered
and the PL/I environment is
retained until the COBOL or
FORTRAN calling program is
completed. Two further save areas
are also inserted into the chain.
These result in control being
passed to tail code in IBMBIEP,
Which handles housekeeping
problems. The save area of the
caller~s caller is also altered so
that the register 14 value also
points at tail code in IBMBIEP.
The true register 14 value 'is
saved in ZCTL in storage known as
the gho~t sa~~~~. The
resulting save area chain is shown
in figure 13.10. Action taken
when the calling routine is
termina ted is described below"
under the heading "Termination of
PL/I Environment".

4. A DSA for the encompassing routine is
acquired.

5. The address of the new DSA is placed
in the register 0 slot of the dummy
DSA.

6. Control is then returned to compiled
code in the encompassing routine.

Entry point IBMBIEPC - normal

Entry point IBMBIEPD - return value
expected

IBMBIEP is called at the end of the PL/I
routine by the encompassing routine
generated by the compiler. If the calling
program is FORTRAN, a returned value may be
expected in register 0 or one or more of
the floating-point registers. When a

returned value may be required, the entry
point IBMBIEPD is used and the returned
value is loaded into the required position.
In other situations, the entry point
IBMBIEPC is used. The module resets the
progl.·am mask by issuing SPIE macro'
instruction to restore the calling
routine's program check exit, the address
of which has been stored in the
interlanguage VDA.

When PL/I is called by COBOL or FORTRAN,
error handling is carried out in the normal
PL/I manner. The SPIE macro instruction is
issued by IBMBPII when the PL/I environment
is first set up. For calls after the
first, the SPIE macro instruction is issued
by IBMBIEP.

The PL/I environment is discarded when the
caller'S caller is terminated. In a normal
situation control is returned by the caller
to the address held in the register 14 save
area of the caller's caller. This address
was altered during the initialization of
the PL/I environment to pOint to tail code
in IBMBIEP. This code receives control and
rearranges the save area chaining. It then
returns to IBMBPIR whose registers are in
the dummy DSA. The PL/I program is then
terminated and control returns to save area
2. This again points to tail code in
IBMBIEP. This tail code restores the
correct register 14 value of the caller's
caller from the ghost save area and returns
to the caller's caller.

For a PL/I STOP statement the action is
carried out in a normal manner and flags in
save area one indicate that an abnormal
GOTO situation exists. The situation is
analyzed by the abnormal GOTO subroutine
and control is passed to tail code whose
address is held in save area one.

For a FORTRAN STOP statement when the
calling program is FORTRAN the situation
depends on how many levels of FORTRAN
precede PL/I. If the caller is the highest
level of FORTRAN prior to PL/I, control
will be passed to save area one and tail
code entered tb carry out the'necessary
housekeeping. If there is more than one

Chapter 13: Interlanguage Communication 249

level of FORTRAN, control will pass to the
highest active level of FORTRAN and the job
will be terminated without carrying out
PL/I program termination.

A COBOL STOP RUN statement will be
analyzed by IBMBIEC which will execute a
PL/I STOP statement.

Handling Data Aggregate Arguments

In order to communicate effectively between
COBOL and PL/I, and FORTRAN and PL/I, a
method of handling data aggregate arguments
is necessary, because the three languages
hold data aggregates in different ways .•

ARRAYS

Arrays as such are not used in COBOL. The
use of OCCURS in structures does, however,
have a similar effect. However, PL/I
structures of arrays and COBOL structures
using OCCURS are both held in row-major
order. In FORTRAN, arrays are held in
column-major order. Thus, in a two­
dimensional array" the element known in the
FORTRAN array as (2,1) will become (1,2) in
the PL/I array.

STRUCTURES

Structures are not used in FORTRAN. In
COBOL the alignment requirements are met
differently from PL/I. Full details of the
differences in mapping are given in the
language reference manual for this
compiler.

COBOL structures are mapped as follows.
working from the start, each item is
aligned to its required bounda~y in the
order in which it is declared, tbe
structure starting on a doubleword
boundary.

PL/I structures are mapped by a method
that minimizes the unused bytes in the
structure. Basically, the method used is
first to align items in pairs, moving the
item with the lesser alignment requirement
as close as possible to the item with the
greater alignment requirement. The method
is described in full in the language
reference manual.

Take, for example, a structure
consisting of a single character and a
fullword fixed binary item. The fullword

250

binary item has a fullword alignment
requirement; the character has a byte
alignment requirement. In PL/I, the
structure would be declared:

DCL 1
2
2

A,
B CHAR (1),
C FIXED BINARY (31,0);

and would be held thus:
r----------------------,
I B I C I
L----------------------J

In COBOL, the structure would be declared:

01 A.
02 B.,
02 C,

PICTURE X, DISPLAY.
PICTURE S9(9), COMPUTATIONAL.

and would be held thus:
r---,
I B I 3 unused bytes I C I
L---J

METHODS USED TO HANDLE DATA AGGREGATE
ARGUMENTS

The method used in handling data aggregates
is to create dummy arguments of the correct
format and let the called routine use the
dummy. The values in the dummy are then
assigned to the original argument when the
execution of the called program is
completed.

If the data aggregates are not
adjustable, the mapping will be done during
compilation and both the PL/I and the COBOL
or FORTRAN mapping are produced. If the
data aggregates are adjustable, the mapping
is done during execution,. Before the
execution of the call to a program in
another language, the data is transferred
into the correctly mapped aggregate w which
will be held in PL/I temporary storage.
The values are reassigned to the original
data aggregate after execution of the
interlanguage program.

The assignment of data between the dumrey
and the argument is done by compiled code.

NOMAP, NOMAPIN, AND NOMAPOUT OPTIONS

The NOMAP, NOMAPIN, and NOMAPOUT op1:ions
can be used by the programmer to specify
that data aggregates will not be remapped
and placed in dummy arguments.

When NOMAP is specified, or when both
NOMAPIN and NOMAPOUT are specified, the

dummy is not generated at all, and the
structure or array is passed as it stands.

When only NOMAPIN is specified, a dummy
is created, but it is not initialized with
the values of the aggregate being passed.
However, on return from the COBOL or
FORTRAN routine. the data in the dummy is
placed in the data aggregate that is being
passed.

When only NOMA POUT is specified, a dummy
is created, and the data from the data
aggregate is moved into the dummy. When
control is returned to the calling program,
however" the data from the dummy is not
moved into the data aggregate that wa's
passed.

CALLING SEQUENCE

When PL/I calls COBOL or FORTRAN passing
data aggregates as arguments, the sequence
of events is:

1. Handle data reassignment to dummy by
compiled code.

2. Call interlanguage housekeeping
routine.

3. Call COBOL or FORTRAN routine.

4. Call interlanguage housekeeping
routine.

5. Assign data in dummy to real argument,
by.means of compiled code.

When COBOL or FORTRAN calls PL/I, the
sequence of events is:

1. The COBOL or FORTRAN routine calls the
encompassing PL/I routine.

2. The encompassing PL/I routine:

a. Calls the interlanguage
housekeeping routine.

b. sets up the necessary dummy data
aggregate argument by compiled
code.

c. Calls the required PL/I routine.

d. Reassigns the data from the dummy
by compiled code.

e. Calls the interlanguage
housekeeping routine.

f. Returns to the original calling
routine.

It is necessary to make calls in this
order, because the data mapping must be
done in a PL/I environment.

I;ASSEMBLER Option
I

IThe optimizing compiler provides a facility
Ito simplify calling assembler language
Iroutines from PL/I. This consist of
Isetting up an argument list that contains
Ithe addresses of all items passed rather
Ithan the addresses of locators.
I
I When an entry point is declared as
IOPTIONS (ASSEMBLER), parameter lists passed
Ito the entry point are set up to contain no
Ilocator addresses. The addresses of any
lareas, arrays, strings, or structures are
Ipassed directly in a parameter list. (For a
Icall to a PL/I routine, the parameter list
Iwould contain the address of locators for
Ithese data types. This is because the
Icalled routine might require information on
Ithe length or bounds of the data and this
lis accessible through the locator. See
Ichapter 4 for details.)
I
I The ASSEMBLER option does not provide
Ifacilities for automatically overriding
IPL/I interrupt handling, nor does it allow
IPL/I routines to be called from assembler
I language. If the programmer requires these
I facilities, he must either provide the
Inecessary code himself or use the COBOL
I option. The COBOL option without the INTER
loption provides complete facilities for
Icalling, or being called by, assembler
I routines. However, its use involves the
loverhead of calls to the PL/I library
linterlanguage communication routines.
I
I Full instructions on how to use PL/I
Iwith assembler language are given in the
Iprogrammer's guide for this compiler.

COBOL Option in the Environment Attribute

A separate interlanguage corrmunication
facility offered by the compiler is the use
of the COBOL option in file declarations.
This option allows data sets created by
COBOL programs to be read by PL/I programs
and allows data sets to be created by PL/I
programs in a format that is usable by
COBOL programs. Interchange of data sets
presents no problems, unless structures are
used in the data set. If structures are
used, their mapping may be different. (See
above, under the heading "Handling Data
Aggregate Arguments.") When structures are
involved and the mapping is not known to be

Chapter 13: Interlanguage Communication 251

the same, both COBOL and PL/I structures
are mapped, and compiled code transfers the
data between structures immediately after
reading the data for input, and immediately
before writing the data for output.

During compilation~ the compiler
examines the record variable to see if any
structures are involved. If no structures
are involved, no further action need be
taken. If structures are involved, a test
is then made to see if the mapping of the
structure or structures will be the same in
COBOL and PL/I. If the compiler can
determine that the ~a~ping will be the
same, then no action is required. If the
compiler cannot determine that the mapping
will be the same or if the structure is
adjustable, both structures will be mapped.
Adjustable structures will be mapped during
execution by the resident library
structure-mapping routines. Other
structures will be mapped during
compilation.

252

When re-formatting of data is necessary,
the following actions take place when a
record I/O statement involving a file with
the COBOL option is executed.

INPUT:

The data is read into a structure
which has been mapped using the COBOL
mappin~ algorithm and assigned to a
PL/I mapped structure.

OUTPUT:

Before the output takes place, the
data in the PL/I structure is assigned
to a structure mapped for COBOL .• The
output to the data set then takes
place from the second structure .•

The data assignment is carried out by
compiled code in all circumstances.

CaMPI LED CODE

Relies on library modules for
executing code that is sensitive to
differences between multitasking
and non-multitasking.

BASE LIBRARY SYS1.PLlBASE

Contains modules to handle all
library functions in a non­
multitasking situation.

MULTITASKING LIBRARY SYSL.PLlTASK

Contains modules that handle all
mUltitasking-sensitive operations.

These modules have the same link­
edit names as parallel modules in
the base library.

Figure 14.1. Multitasking is implemented by use of a multitasking library

254

Introduction

Multitasking allows the PL/I programmer to
make use of system multiprogramming
facilities within a single jobstep. The
PL/I main procedure and certain other PL/I
procedures are attached as tasks, and
compete for the facilities of the cpu.

All features of the PL/I language that
are implemented differently for
multitasking and non-multitasking programs
are handled by routines in the os PL/I
Resident and Transient Libraries. The non­
multitasking routines are held in the
partitioned data set SYS1.PLIBASE; the
multitasking routines are held in the
partitioned data set SYS1.PLITASK. When a
multitasking program is link-edited, the
automatic call library must be identified
by sequential SYSLIB 00 statements
specifying first SYS1.PLITASK and then
SYS1.PLIBASE.

subroutines that have the same function
in both the multitasking and the non­
multitasking libraries have the same link­
edit name (see chapter 3). consequently,
no special calls are required in compiled
code. If the program uses multitasking, the
multitasking version of the library module
will be link edited, provided that
SYS1.PLITASK is specified befor~
SYS1.PLIBASE. Where a module is required
only for multitasking programs, it is
addressed from the TCA. The results of
attempting to access such a module in a
non-multitasking program are unpredictable.
The concept of the multitasking library is
shown in figure 14.1.

The use of a special multitasking
library to handle all code that is affected
by multitasking minimizes the effect on
compiled code. Special action-is required
only for a CALL statement with any of the
multitasking options, and for the epilogue
of a block that contains a CALL statement
with multitasking options. Otherwise" the
code generated for a multitasking program
is exactly the same as the code generated
for a non-multitasking program. The TASK
option on a procedure statement; necessary
with some compilers, is ignored by the
optimizing compiler.

Chapter 14: Multitasking

To implement PL/I multitasking, the
facilities offered by the operating systerr
control program have to be used in a manner
that meets the specifications of the PL/I
language. Certain facilities offered by
PL/I, notably the ability of any task tc
change the priority of any other task, are
not directly available in the system.
Consequently, an interface is used between
the system facilities and PL/I tasks. This
interface takes the form of a £Qntrol t~~~.

The control task has all PL/I tasks
attached as direct subtasks and always has
a higher priority than any PL/I task.
Certain functions are always carried out
within the control task. These functions
are:

1. Attaching and detaching of tasks

2. Accessing or altering COMPLETION or
PRIORITY values

3. Modification of event variables
(except for STATUS pseudovariable)

4. Generating PL/I dumps

5. Access to IOCBs (see chapter 8) in
certain conditions.

The first two are carried by the control
task because of the demands of the system
control program. The third is carried out
by the control task because it is important
that no two tasks try to access the event
variable chain at the same time.

The apparent and actual hierarchy of
tasks is shown in figure 14.2. The
functions executed in the control task are
shown in figure 14.3.

Throughout most of the execution of a
PL/I multitasking program, the control task
is in a wait state and the various PL/I
tasks are competing for the facilities of
the cpu. The control task waits on an ECB
list that contains an ECB (event control
block) for each PL/I task and an ECB known
as the task-end ECB that is used when
terminating-a-taSk: Whenever any of the
functions that must be carried out in the
control task are required, the ECB
associated with the requesting task is
posted with a request code and the task
goes into a wait state, waiting on an ECB
that is posted complete when the requested

Chapter 14: Multitasking 255

function has been executed in the control
task.

As explained above, there is no
communication between PL/I tasks except
through the control task. Communication
between the control task and the PL/I tasks
is made through control blocks known as
~~2king ~EEgndag~2. Every PL/I task has a
tasking appendage~ which is addressed from
and is contiguous with the TCA of the task.

As shown in figure 14.4, every tasking
appendage is headed by an ECB, followed by
two fullwords for parameters, followed by
another ECB.

The first ECB in the tasking appendage
is known as the POST ECB, and is one of the
ECBs in the ECB list on-which the control
task waits. The second ECB is known as the
WAIT ECB and is the ECB on which the task
wai~ile a function is carried out in
the control task.

When code within a subtask requires a
service to be done in the control task, it
posts the POST ECB with a completion code
to identify the service required, and waits
on its WAIT ECB,. The WAIT ECB will be
posted complete when the requested action
has been completed in the control task.

The completion codes that are used to
post the POST ECB are:

COMPLETION PSEUDOVARIABLE
POSTCODE X'O'

EVENT ASSIGNMENT POSTCODE

PRIORITY PSEUDOVARIABLE
POSTCODE

I/O EVENT COMPLETION POSTCODE

WAIT TERMINATION POSTCODE

EXECUTE IN CTRL TASK

DEDICATE CONTROL TASK ROUTINE

LIBERATE CONTROL TASK ROUTINE

ATT~CH A T~SK

END OF TASK

TERMINATE SUBTASK

TERMINATE SUBTASK

X'4'

XIS'

X'C'

X'10'

X'14'

X'lS'

X'lC'

X'20'

X'24'

X'2S'

X' 2C'

Any parameters required are passed to the

256

control task in the list that follows the
POST ECB.

The control program retains the priority of
a task in an associated TCB (task control
block). At the PL/I level, however, the
priority is held in a ~~sk ~ri~ble. This
allows the priority of the task to be set
even when the task is inactive, and also
allows reference to the task by the
program. Each task has a task variable
which is connected to the TCB through the
tasking appendage. The address of the
associated tasking appendage is placed in
the task variable when the task is
attached.

When a change in the priority of a task
is requested, the priority is always
changed in the task variable. If the task
variable is active, the priority is also
changed in the TCB.

Also associated with a task is an event
variable. The event variable is set
"complete" when the task is terminated.

All tasks have associated event and task
variables. If none are specified by the
programmer, dummy variables are provided
during task attachment. These dummies are
held in the task's own workspace, and are
discarded when the task is terminated.

Multitasking Housekeeping

Multitasking housekeeping is similar to
non-multitasking housekeeping. Every task
has its own TCA and other blocks in the
program management area, as described in
chapter 5.

The major differences are that the TCA
for each task has a control block known as
the tasking appendage, and that DSA
chaining between tasks cannot follow the
rules of calling procedures.

As shown in figure 14.6, the chaining of
DSAs is arranged so that the dummy DSA of
the attached task is in the chain but the
DSA of the attaching procedure is not.
This protects the attached tasks from any
changes in establishment of on-units that
may occur in the block that attached the
task. In order that error handling and
other functions using the backchain may

PL/I PROGRAM

X:PROC;

CALL Y TASK (Tl) EVENT (El);

Y:PROC;

CALL Z TASK (T2) EVENT (E2);
Z:PROC;

END Z;
ENDY;

END X;

PL/I HIERARCHY

MAJOR TASK

Y (task Tl)
SUBTASK OF
MAJOR TASK

Z (task T2)
SUBTASK OF Y

Figure 14.2. The hierarchy of tasks

ACTUAL HIERARCHY
(as recognised by operating system)

MAJOR TASK
SUBTASK OF
CONTROL TASK

CONTROL TASK

Y (task Tl)
SUBTASK OF
CONTROL TASK

Z (Task T2)
SUBTASK OF
CONTROL TASK

Chapter 14: Multitasking 257

PL/I MAJOR TASK

Any operation that could affect
another task's housekeeping is
handled by a call to the central
task.

CONTROL TASK

All code that could affect other
task's housekeeping is handled in
the control task:

Attaching tasks
Detaching tasks
PRIORITY and
COMPLETION pseudovariables
All access to EVENT variables

SUBTASKS OF CONTROL TASK

Figure 14.3. The functions of the control task

258

PL/1 SUBTASKS

Any operation that could affect
another task's housekeeping is
handled by a call to the central
task.

PL/I MAJOR TASK
TASKING APPENDAGE

POST ECB

PARAMETERS
Used by code executed in'
control task

WAIT ECB

CONTROL TASKS ECB LIST

ECB I ist element for
major task

ECBlist element for
subtask

~
Control tasks waits on
these ECBs which are ~osted
with a code indicating the
service the subtask requires

.;1 Parameters further define "J the service if necessary

~
PL/I task waits on this ECB.
It is set complete in the
control task when the
required service is completed

Figure 14.4. The post and wait ECBs

~
~

Control task waits on this list until
required to perform a service

PL/I SUBTASK
TASKING APPENDAGE

POST ECB

PARAMETERS
Used by code executed in
control task

-+--------------------------~

~ WAIT ECB

Chapter 14: Multitasking 259

r---,
Modules in the tasking library

Control Link-edit Function
Name* Name*

IBMTPIR IBMBPIRA

IBMTPGR IBMBGGRA

IBMTPGO IBMBPGOA

program
initialization and
task housekeeping

storage management

Abnormal GOTO

lIBMTTOC IBMBTOCA
I

COMPLETION
pseudovariable

I
lIBMTTPR IBMBTPRA PRIORITY

pseudovariable I
I
IIBMTJWT IBMBJWTA WAIT statement
1---
Multitasking Modules in the Transient
library

IBMTPJR IBMTPJRA

IBMTPJI IBMTPJIA

Program initial­
ization and task
housekeeping

program initial­
ization

* Control name is the name that
uniquely defines the module.

Link-edit name is the name by which a
module is known to the linkage editor.
Multitasking and non-multitasking
modules that handle similar functions
have the same link-edit name. L------------------------_--______________ J

Figure ~4.5. Modules in the
multitasking library

function correctly" certain items, such as
on-cells and dynamic ONCBs, are copied from
the attaching task's DSA to the dummy DSA
of the attached task at the time of
attachment.

If procedures executed as separate tasks
are internal to one another, a static
backchain is established through the DSAs.
This backchain passes from the attached
task's procedure DSA to the DSA of the
procedure in which the task was attached,
and is the same as for non-multitasking
programs. This chaining allows all
internal procedures to access variables
declared in outer blocks without requiring
special provision for multitasking.
(special action is" however I, necessary when
handling the CHECK condition.)

To maintain the PL/I hierarchy, more

260

information than is available in the DSA
chain is required. In addition to the DSA
chain, tasks with the same attaching task
are chained together, and the most recently
attached subtask is chained to its parent
task. The chains between tasks with the
same attaching task are known as si2te~
task chains. The sister task chains and
the-chain-to the most recently attached
subtask are all held within the tasking
appendage. The chaining arrangement, shown
in figure 14.7, allows quick access to all
related tasks.

The sister task chain goes in both
directions. Each task is chained to the
task attached immediately before it (elder
sister) and the task attached immediately
after it (younger sister). The most
recently attached task has no younger
sister. Its younger sister chain points
instead to the attaching task. However,
instead of pointing at the head of the
tasking appendage, it points at offset X'S'
within the tasking appendage. The effect
of this is that an attempt to continue to
follow the younger sister chain results,
beyond the attaching task, in access n2E to
the younger sister pointer but to a field
offset from it by X'S'. This field, which
is always set to zero in all tasks, is
known as the stQ~r f!~!g. Access to it
indicates that the attaching task has been
reached.

When a task is terminated, all its
subtasks must be terminated. To simplify
finding these tasks, a flag is set in the
DSA of the block in which a task is
attached. The flag remains set while any
active tasks are attached.

The Multitasking Library

Module IBMTPIR loads IBMTPJR to perform
most multitasking functions. IBMTPJR
carries out the majority of functions that
are executed in the control task. IBMTPJR
issues a LOAD macro instruction to pass
control to IBMTPJI to perform parameter
translation, and to initialize the control
task and the storage for the major task.
IBMTPJR then attaches the major task.
IBMTPJR also contains the instructions to
handle the major functions which have to be
carried out within the control task. Each
of these functions is handled by a
particular subroutine within IBMTPJR. A
simplified flowchart of IBMTPJR is shown in
figure 14. S.,

The program initialization module
IBMTPJR has a register save area, but is
unlike other PL/I library routines in not
having a DSA. IBMTPIR acquires workspace,

r
I
I
L

r -

E
-

MAJOR TASK TCA

Program
Management Area

MAJOR TASK
DUMMY DSA

MAIN PROC DSA [
BEGIN BLOCK ~- ,
DSA L - -

PL/I procedures involved

,...------- Main procedure (major task)

,...----- Begin block

r---- Procedure for subtask1

[prOCedure for subtask2

SUBTASK1TCA SUBTASK2TCA

Program Program
Management Area Management Area

DUMMY DSA [
DUMMY DSA

~ - -,
Procedure DSA Procedure DSA

L - -

Note: To allow for inheritance of on-units, information
held in the DSA of the attaching task is copied into the
dummy DSA of the attached task.

Key

- - -. Static backchain

------.... ~. Dynamic backchain

Figure 14.6. Backchains in multitasking

Chapter 14: Multitasking 261

Tasking appendage
major task

younger sister (0)

elder sister (0)

stopper (0)

subtask chain

•••••••••
•

--

•
• Tasking appendage • • •

----.

......

. task 1

younger sister

elder sister

stopper (0)

subtask chain (0)

• • •

Subtask chain points to most
recently attached subtask.
Younger sister' chain
(i.e. tasks with the same
attaching tasks that were
attached later)

Elder sister chain
(e.i. tasks with the same
attaching task that were
attached earlier)

• •
:Tasking appendage ••
.. task 2 •

.....

•
younger sister -

.,./ • • • ., • elder sister

stopper (0)

subtask chain (0)

Note: Because tasks are chained in both directions, all relationships be quickly found.

• • • ./ . ;/
/ ..

/ •
•
• •

[
Major task

Task 1

[
Task 2

Task 3

~ Task3a

-- --
Tasking appendage

task 3 \

younger sister

• elder sister

stopper (0)

subtask chain

Tasking appendage
task 3a

1

I

/
/

/
1----------1/

younger sister

elder sister (0)

stopper (0)

subtask chain (0)

Following the 'younger sister chain' leads to the attaching task. When the attaching task is reached, the offset that should be the
offset to the younger sister is to the stopper. Thus it is known that the attaching task has been reached.

Figure 14.7. The chaining of tasks through their tasking appendages

262

/

\

I
I
I

Subroutines executed
in control task Main Program Flow (IBMTPIR) Subroutines entered via TCA or TCA appendage from Pl/.r tasks
~ ____ ~A~ ______ ~

/ "
ATTACH

~
Create a subtask

~

COMPLETION

f---- Set completion of
event variable

All

PRIORITY

f---- Set priority of
task variable

j

EVENT ASSIGN

f---*- Set completion
and priority of
event variable

COMPLETE
EVENT

~ Used by
wait module

DECHAIN EVTAB

--.- Used by wait
module

~
Execute in

~
control task

A

END OF BLOCK

~ Detach tasks
if necessary

•
END OF TASK

~
Terminate task

STOP

~ Execute STOP H statements.

r-----________ ~A~ ____________ ~ ~--~/~~--~
/ " / "

ENTRY ,
·

Initialize major
task

J.

· ,.

Initialization
common to
all tasks

· · J. ..
f

j

Post wait-ECB
complete ..

t
,~

Wait on
ECB list

~
1
I
I
I
I

WAIT STATE
i
I
I

Execute code
I
I

indicated until ~ I
free control call
is reached Control resumed

here

,
Search ECB list

•
to determine which
service is required

Major No and set ECB

task incomplete

t
Yes Branch to

END appropriate
subroutine

t

ENTRY

I- - - -1

+
I

r -1--, 1

I
I ,

"'"
- ---'

L_~

Call task
End task
Return
Get control

,
Carry out
checking
set up
parameters

1
Post post ECB
with correct
completion
code

I

Wait on
Wait ECB

i
__ -J

WAIT STATE

Return to caller

ENTRY

Enqueue
SYSPRINT

,
Check whether
SYSPRINT
enqueued

t
Enqueue
SYSPRINT
if necessary

,
Return to caller

Figure 14.8. A simplified flowchart of IBMTPIR

ENTRY

Dequeue
SYSPRINT

Dequeue
SYSPRINT

Return

Free control - executed in control task

ENTRY

Restore DSA
of Get Control
routine

Chapter 14: Multitasking 263

contiguous with the standard register save
area, to hold: the addresses of the ECB
lists; the address of the area where the
next ECB-list element will be placed; the
task-end ECB (used when detaching a task -
see below), the diagnostic file block, and
the dump block. These last two blocks are
held in the control task workspace because
they must serve for all PL/I tasks.

supporting IBMTPJR are two routines that
are link-edited only when necessary:
IBMTTOC is link-edited only if the
COMPLETION pseudovariable is used; IBMTPRA
is link-edited only if the PRIORITY
pseudovariable is used.

Also included in the multitasking
library are a number of routines that
handle action which requires different
machine instructions for a multitasking
program. Among these routines are storage
management and error handling routines.

All the routines in the multitasking
library are shown in figure 14.5 and
described in OS f&/I_~~~ Libr~~y~
~~Qgram_!!Qgic.

How the Control Task Operates

The control task is created by the system
when the PL/I program is initialized. The
instructions first executed within the
control task are in the program
initialization routine IBMTPIR. This
routine is entered because its address is
specified in the control section PLISTART
(see chapter 5).

IBMTPJR obtains a standard save area, and
then loads and branches to IBMTPJR which
performs the remainder of the
ini tializ ation,.

IBMTPIR sets up the environment for the
major task, which it then attaches with an
ATTACH macro instruction, after further
initialization., control is given to the
address held in PLIMAIN

IBMTPJR then builds an ECB list which
consists of the WAIT ECBs for the PL/I task
that has been attached plus the task-end
ECB. A wait is then issued on this ECB
list, and the control task will remain in
the wait state until the major task
requires a service that must be handled in
the control task.

When control returns to the control
task, execution recommences in IBMTPJR
immediately after the point at which the
WAIT macro instruction was issued. The
action at this point is to search the ECB

list, discover which ECB has been posted,
and then to carry out the action specified
in the code posted in this ECB. The action
is carried out by calling a subroutine of
IBMTPJR. This subroutine may perform the
function required, execute a sequence of
requested instructions, or call further
library routines to handle the requested
function.

Whenever a new subtask is attached, a
further POST ECB is added to the ECB list
of the control task.

Whenever PL/I tasks require a service
that is handled in the control task, a call
is made to a library entry point. The
majority of calls are to subroutines of
IBMTPJR, which are addressed via the TCA or
the TCA appendage. However, the PRIORITY
and COMPLETION pseudovariable routines are
separate library modules. This saves space
in programs where the pseudovariables are
not used.

Attaching a Task

A CALL statement with one of the
multitasking options is compiled as a call
to an entry point in IBMTPJR. This entry
point is addressed via a module list whose
address is held in the TCA. The entry point
is passed the address of the procedure that
is to be executed as the attached task, and
any parameters that are to be passed to
that procedure.

The routine in IBMTPJR posts the POST
ECB for the attaching task with a
completion code of 24, indicating that a
new task is to be attached. It then issues
a WAIT macro instruction on its own WAIT
ECB, and the attaching task goes into the
wait state.

Control passes to the control task. The
first action of the code within the contrel
task is to scan the ECB list to see which
task is requesting a service, and which
service is being requested. According to
the completion code in the ECB, one of the
subroutines in IBMTPJR is entered. For
attaching a task, the attach-task
subroutine is entered. The minimum storage
the subroutine attempts to acquire is a new
program management area. Depending on the
options in the ISASIZE parameter, it may
also attempt to acquire storage for DSAs
and other dynamic requirements.

The new program management area is set
up within the storage acquired, and the new
TeA is placed at the head of the chain of
daughter tasks that is held in the
attaching task's TCA.

Chapter 14: Multitasking 265

The new TCA is then associated with a
task variable and an event variable. If
these were specified in the CALL statement,
they are used. otherwise, dummy event and
task variables are set up by IBMTPJR.
These dummy variables are held in the
working storage of the new block. The
event and task variables are then chained
to and f:rom the TCA. A bit is set in the
DSA of the block that was being executed
when the task was attached.

The PRV of the attaching task is then
copied into tbe attached task. This
ensures that addressing information for
files and controlled variables cannot be
altered by the attaching task. similarly,
on-unit establishment information is copied
from the attaching task's current DSA into
the dummy DSA of the attached task. This
ensures that the subtask acts according to
the situation prevailing at the time when
the call was made.

The attaching routine finally sets the
POST ECB of the new task incomplete, adds
this new POST ECB to the control task's ECB
list, completes the ECB on which the
requesting task is waiting, and issues a
WAIT macro instruction on the control
task's EeB list.

The newly attached task and the original
requesting task are now both ready to
receive control from the control program.
The control task is in a wait state, ready
to service any further requests from PL/I
tasks.

A number of situations can cause a
CALL •• TASK statement to fail. These
situations are:

1. TOO many tasks are already active

2. There is insufficient storage for the
new task

3. The task variable is already active

4. The event variable is already active

In any of these situations~ the calling
task is posted with a non-zero postcode.
When this postcode is detected, the task
generates the correct error code, and calls
the error handler.

'266'

Detaching a Task

Tasks are normally detached when they reach
any EXIT statement, or an END or RETURN
statement in the procedure that was
attached as a task. In such circumstances,
control returns in the normal manner to
IBMTPIR, whose registers have been stored
in the dummy DSA of the task. IBMTPIR is
then in a position to pass control to the
control task, so that the requesting task
can be terminated. After housekeeping
operations, the control task sets the
priority of the task to be detached as high
as possible, completes the WAIT ECB of the
task, and then waits on the task-end ECB.
When the task to be terminated resumes
control, it posts the task-end ECB
complete, and terminates itself by
returning to the control program.

The process described above is used
because it is simpler than handling the
ABEND that would otherwise result when one
task is detatched from another.

When a block is terminated, any tasks
attached during the execution of the block
are also terminated. For this reason,
epilogue code of blocks in which tasks rray
be attached contains a call to a subroutine
of IBMTPIR. This subroutine passes control
to the control task, from which the purg~
task subroutine is called. This routine
examines the DSA of the block being freed,
to see whether any active subtasks reRain;
if any do remain, they are terminated.

Active subtasks are accessed via the
chain of daughter tasks from the TCA of the
task in which the block is being
terminated.

Abnormal termination of a task involves
ensuring that any WAIT statements being
executed by the task are properly
terminated, event variables are completed,
task variables are set inactive, and ECB
elements are removed. Event I/O operations
started in the tasks are completed.

The Get-Control and Free-Control Routines

In order to increase the scope of jobs that
can be handled within the control task, the
program initialization routine includes a
facility whereby a request can be made for
any defined sequence of instructions to be

Chains and Pointers used during execution of
WAIT statement

1. EVT AB chain. Headed by the event
variable. Connects all WAIT state­
ments tha,t use the same event
variable, and enables the information
that events are complete to be passed
to all. tasks.

2. WITc
Conn ects all WAIT statements being
execu ted in one task, and enables 6
the E VT ABs of these waits to be

ISA for task 1 I SA for task 2 I Program management area I
,..~ LI FO storage ,.....,

I Program management area r
'" ~ UFO storage '"I'-"

DSA for WAIT module DSA for WAIT module 5

WIT

J
WIT

hain. Headed in the TeA. f
remo ved from the EVT AB chain •
when a task is terminated during a ~'
WAIT statement.

I-+-

EVTABs ~ 14-~~~ ______ E_V_T_A~BS ____ ~~I~
3. Event variable pointer. Held in

EVTAB. Used to access event
variables and search EVT AB chain.

4. ECBLlST element pointer. Held in
EVTAB. Used to find associated
ECB if event is an I/O event.

5. TCA appendage pointer. Held in
EVTAB. Used during task
termination.

6. EVTAB pointers. Held in WIT. Used
to indicate number of EVT ABs when
dechaining during abnornal
termination caused by GOTO out of
block

7. ECB pointer. Held in event variable.
Used, for I/O events only, to
identify associated event.

8 . .TCA appendage pointer. Held in
event variable. Used, for I/O events
only, during building of EVTABs
to test whether I/O is active in the
task.

9. ECB pointers. Held in ECB list.
Used by supervisor to test whether
events are complete.

10CB

Pointer to event variable

ECB

ECB-list

Addresses of associated ECBs

Major free area

J

8

ECB-list

Addresses of associated ECBs

DSA for on-unit

9
DSA for WAIT module
called in on-unit

WIT

EVTABs f--

ECB-list

Major free area

i--"""

EVENT VARIABLE

PRIORITY and COMPLETION flags

Figure 14.9. Chains and pointers used in implementing the WAIT statement

1-

1

3

•

Chapter 14: Multitasking 261

executed within the control task. This
facility is used by a number of library
routines when accessing event variables, or
carrying out other actions that have to be
executed within the control task. It is
not used by compiled code.

The instructions to be executed within
the control task are delimited by calls to
two library subroutines, whose addresses
are held in the TCA. These routines are
the get~£Q~~£$! and !re~Q~~~Q! routines.
Both are subroutines of IBMTPIR.

When the get-control routine is called
within a PL/I task, it saves the caller's
registers, posts "its POST ECB, and issues a
wait on the ~equesting task's ECB.

When the control task gains control, it
restores the registers saved by the get­
control routine. and branches to the
address in register 14. The address will
be the instruction after the call to the
get-control routine, because the routine
was called in the standard manner, that is,
a BALR instruction on registers 14 and 15.

Execution of the instructions then
continues in the control task until a call
to the free-control routine is met. This
routine stores the current registers in the
DSA of the block that originally called the
get-control routine. The free-control
routine now posts the WAIT ECB of "the
requesting task, and resets the control
task waiting on its ECB list.

During execution of the free-control
routine~ the routine modifies the value in
the register 14 save area in the DSA of the
block that originally called the get­
control routine. When control returns to
the original requesting task, it returns to
the point in the get-control routine
immediately following the point where the
WAIT was issued. The get-control routine
restores the register values, and branches
to the new address in register 14.

The required instructions have now been
executed within the control task, and
execution can continue in the original
task. The processes involved in the get­
control and free-control routines can be
followed in the flowchart of IBMTPIR in
figure 14.8.

Altering COMPLETION and PRIORITY
Values" - -

TO prevent two PL/I tasks attempting to
alter the completion and priority values of
tasks or events at the same time,
alteration of these values is always done
by code in the control task.

268

When such access is required, compiled
code in the requesting task branches to a
library subroutine that posts the control
task with a completion code in the POST
ECB, and issues a wait in the requesting
task. When the control task receives
control, it inspects the completion code,
and calls a subroutine in IBMTPIR. For the
PRIORITY pseudovariable, the subroutine in
IBMTPIR calls a subroutine in IBMTTPR to
handle the actual alteration. This is to
save space in programs where the PRIORITY
pseudovariable is not used.

The subroutine accesses and alters the
values as requested. Where necessary, a
CHAP macro instruction is issued to alter
the priority of a 'task.

Executing the WAIT Statement

The WAIT statement can be used in both
multitasking and non-multitasking programs.
A description of WAIT in the non­
multitasking situation is given in chapter
11.

At the PL/I level, each WAIT staterrent
is associated with one or more events, and
each event is associated with an event
variable. When the specified number of
these event variables is set "complete,"
the wait is terminated.

PL/I event variables are not accessed by
system wait macro instructions; they
contain a pointer to the event's ECB. This
ECB will have been nominated in the WAIT
macro instruction issued to the system, and
will be set complete when the associated
event is complete. When the event is
complete, the PL/I program can inspect the
ECB, and complete the event variable.

The PL/I event variable cannot be used
to indicate to all WAIT statements
nominating the associated event that the
event is complete. This is because an
event variable may be associated with a
further event immediately after completion
of the event with which it was formerly
associated. If more than one task is
waiting, this may be before all the WAIT
statements nominating the event are
satisfied. See figure 14.10.

To overcome this problem, a control
block known as an EVTAB is used. An EVTAB
is generated for every WAIT statement. For
every event nominated in the statement, an
EVTAB element is produced, containing the
ECB for the event and a pointer to other
EVTAB elements associated with the event.
Thus, when an event is completed in one
task, the chain from the event variable is

scanned and any ECBs associated with the
event are set complete.

A further control block is used in the
implementation of the WAIT statement. This
is the wait information table (WIT). A WIT
contains a record of any WAIT statements
that are being executed in a particular
task. This information is used when a task
is being terminated, because any active
events must be removed from the chain that
associates event variables with EVTABs.
Were this not done, the chaining of EVTABs
would be destroyed because'the EVTABs in
the terminated task would be lost.

The chaining of the control blocks
described above is shown in figure 14.9.

The WAIT statement is executed by means of
a call to the wait module, IBMTJWT. The
module is passed a list of event variables
and" optionally" a value indicating how
many of the events must 'be completed before
the wait is satisfied. If no value is
specified, all events must be completed.

The wait module may be passed various
types of event variable:

1. Active event variables. These are
associated with:'

a. I/O or display events that were
initiated in the current task.

b. I/O or display events that were
initiated in another task.

c. Events associated with tasks.

2. Inactive event variables. These are
associated with events that must be
completed by use of the COMPLETION

'pseudovariable.

3. Incompletable event variables. These
are associated with events that have
caused entry to an on-unit because an
I/O condition has been raised in the
current task" and which cannot be
completed because the on-unit also
specifies a wait on the event that is
already being waited on.

If any of the events are incompletable,
IBMTJWT checks to see whether the WAIT
statement can be satisfied by completable
events. If the WAIT statement cannot be
satisfied, an attempt is made to complete
all I/O and display events initiated in the
current task, as other tasks may be waiting
on these events. When these events are

completed, and the associated ECBs in other
tasks set complete, the error handler is
called to terminate the current task.

If the WAIT statement can be satisfied
by completable event(s), the incompletable
event is ignored.

If any of the events are I/O or display
events initiated in the current task, an
ECB will already have been created for
these events when the statement with the
EVENT option was executed. This ECB must
be accessed and waited on. Access is made
through the event variable.

Note that for I/O events, a CHECK macro
instruction is issued by the I/O
transmitter. If all events are I/O events
initiated in the current task, and all of
them have to be completed, it is possible
to use the CHECK macro instruction to
satisfy the WAIT statement. The wait module
passes the events one at a time to IBMBRIO.
Return is made when the event is complete.
The wait module then searches the EVTAB
chain, setting any associated ECBs
complete. It then passes the next event to
IBMBRIO, continuing the process until all
events are complete. If all events need
not be completed, this method cannot be
used, because one of the events nominated
might prove incompletable and, conseqently,
the task would be terminated.

If the events are not I/O or display
events initiated in the current task, the
wait module builds an EVTAB element for the
event, and associates it with the event
variable. If only one event is involved,
the wait module then issues a WAIT macro on
the ECB; if more than one event is
involved, the wait module places the
address of the ECB in an ECB list on which
a WAIT macro instruction will be issued.

If the wait module issues a WAIT macro
instruction on an ECB list, control will
return to the module when one or more of
the ECBs has been completed.

The wait module scans the EVTAB elements
and discovers which of the events has been
completed. If the event is an I/O event in
the current task, it will be necessary to
complete the event variable and scan the
EVTAB chain, completing ECBs in any tasks
that are waiting on the event that has been
completed. The ECBs are completed by
calling a subroutine of IBMTPIR, which
executes the necessary instructions in the
control task. The subroutine completes the
ECBs by means of a POST macro instruction.

If the wait is to be made on events that
can only be completed in other tasks, the
wait module issues a WAIT macro instruction
specifying that all the events in the ECB

Chapter 14: Multitasking 269

r---,
TASK 1

I
I
I
I
I
I
I

WAIT CE1);

I
I
I
I
I

READ FILE (A)
INTO CB)
EVENT (E1);

v

TASK 2
I
I
I
I
I
I
I

WAIT CE1);

v

Task 1 reuses the event variable E1. If
task 1 acquires control before task 2 on
completion of the original event with
which E1 is associated~ then the event
variable on which task 2 is waiting will
be associated with an event other than
that originally intended. A mechanism
to supplement the event variable is
therefore needed: this mechanism is
known as the EVTAB chain. In the above
example, the EVTAB chain would allow
task 2 to determine that the original
event was complete. L------_---_______________________________ J

Figure 14.10. Reusing event variables.,
and the need for the
EVTAB chain

270

list must be completed.

When all completed ECBs have been
handled, the ECB list and the EVTAB
elements are rebuilt for all events that
are not complete. A further WAIT macro
instruction is issued on the ECB list, and
the process is continued until the
necessary number of events have been
completed.

If the number of events needed to
satisfy the WAIT statement are complete,
but further events remain incomplete, it is
necessary to dechain EVTABs from the chains
associated with the incomplete events.
This is done by a call to a subroutine in
IBMTPIR, which executes instructions in the
control task to remove unneeded EVTAB
elements from the EVTAB chain.

If the WAIT statement specifies only
active events, no further action can be
taken until the events are complete.
Accordingly, the wait module issues a WAIT
macro instruction specifying that all
events have to be completed. Thus control
will not return to the task until the wait
is satisfied.

Enqueuing and Dequeuing on SYSPRINT

In order to protect error messages from
interruption by other output to SYSPRINT,
or from error messages in different tasks,
the error message modules and all calls to
SYSPRINT are enqueued and dequeued by means
of a call to a subroutine in IBMTPIR, which
issues the ENQ and DEQ macro instructions.
A call is made immediately before and
immediately after the output.

Similar action is taken on EXCLUSIVE
files, for which the ENQ and DEQ macro
instructions are issued by the library
module IBMBPQD.

This appendix provides information on the
format of the control blocks that may be
used during the execution of a program
compiled by the OS PL/I Optimizing
Compiler. Brief details of the function of
each control block, together with when it
is generated and where it can be located,
are also given.

Appendix A: Control Blocks

Except where explicitly stated all
offsets from the start of a block are byte
offsets and are given in hexadecimal
notation.

Appendix A: Control Blocks 271

Area Locator/Descriptor

Holds the address and length of the area
variable for passing to other routines or
for ex,ecution time reference if the area
has an adjustable length.

From an offset from register 3 known to
compiled code

r--, 01 A(AREA VARIABLE) 1
1--1

41 LENGTH I
L----------~-----------------------------J

A(Area variable) is the address of the arec
variable-Control block.

~h~~n~rateQ Length is the total length including both
the control block and the area variable.

As far as possible during compilation. If
necessary completed during execution.

static internal control section.

!!ow Addressed

272

AREA DESCRIPTOR

The area descriptor is the second word of
the area locator/descriptor. It is used in
structure descriptors, when areas appear in
structures, and in the controlled variable
'description' field when an area is
controlled.

Area Variable Control Block

Used to control storage allocation within
the area variable.

When the area variable is initialized.
'J'his depends on the storage class of the
area.

At the head of the area variable.

r---------------------------------------, o FLAG I UNUSED

4 OFFSET OF END OF EXTENT <OEE)

8 OFFSET OF LARGEST FREE ELEMENT (LFE)

C END OF CHAIN OF FREE ELEMENTS

10
Area variable

L---------------------------------------J

Free elements: If there are free elements
in-the-area-variable, they are headed by
two words. The first word gives the length
of the element, the second word gives the
offset to the next smaller free element.
If there is no smaller free element, the
second word is set to zero.

X'O' Area variable does not contain
free elements.

X'l' Area variable does contain free
elements.

Appendix A: Control Blocks 273

Aggregate Descriptor Descriptor

Contains information needed to map a
structure or an array of structures during
execution. Used for structures that
contain adjustable extents or the REFER
option. See chapter 4.

As far as possible during compilation.
Adjustable values are filled in during
execution.

Where Held

static internal control section.

From an offset from register 3 known to
compiled code

An aggregate descriptor descriptor consists
of a series of fullword fields one for each
structure element and one for each base
element in the structure.

o 1 2

r--,
010 IF~IOffset to entry for containing I

I I I block I
1-----------------------------·----------1

21 Level IFal F31 DIM I L----------------_---------------________ J

274

o 1 2

r--,
011 IF11 ALIGNMENT I LENGTH I
1--1

21 Level IFalF31 DIM 1
L--J

where,

F1 = 'O'B

= 'liB

Fa = 'O'B

= 'l'B

F3 = 'O'B

= 'l'B

OFFSET

LEVEL

Not last element in structure

Last element in structure

Not an AREA

An AREA

Not a BIT string

BIT string

= The offset within the
aggregate descriptor
descriptor to the entry for
the containing structure.
The offset is held in
multiples of four bytes.

= Logical level of identifier
in structure

DIM = Real dimensionality of
identifier

ALIGNMENT = Alignment stringency

~~lu~(dec.!.l ~~ing

LENGTH

o
7

15
31
63

bit
byte
half-word
word
double-word

= Length (in bytes) of data

LENGTH = 0 for strings and
AREAs, whose length
is held in
descriptors

Aggregate Locator

Used to pass the address of an array or
structure and its associated descriptor to
a called routine. Also to associate the
aggregate with its descriptor during
execution.

During compilation.

static internal control section.

!!Q~Adg~§~g

From an offset from register 3 known to
compiled code

o 4

r--, 01 Address of data aggregate 1
1--1

41 Address of descriptor 1
L--J

Appendix A: control Blocks 275

Arra y Descriptor

Contains information about the extent of an
array. For arrays of area variables or
strings" an area or string descriptor is
attached to the array descriptor.

The array descriptor is used to pass
information about an array to called
routines, or to hold information about an
array with adjustable extents.

As far as possible during compilation. If
the array has adjustable extents, it is
completed during execution when the values
are known.

Arrays of structures make use of
structure descriptors to hold similar
information.

Static internal control section.

From an offset from register 3 known to
compiler code

~rrays of sFrings or Areas

For arrays of strings or areas, the
descriptors are completed by string or area
descriptors concatenated to the array
descriptor. string and area descriptors are
the second word of string and area
descriptor/locator pairs.

For bit string arrays~ the bit offset
from the byte address is held in the string
descriptor .•

The first word in the array descriptor is
the RVO (relative virtual origin). This is
followed by two words for each dimension of
the array, containing the multiplier and
high and low bound for each dimension.

276

o 4

r---------------------------------------, o 1 RVO (AO-VO)
1---------------------------------------

4 1 Multiplier

8

c

10

High bound Low bound

Multiplier 2

High bound 2 Low bound 2

etc.

~otel Two full words containing
multiplier and high and low bound are
included for each array dimension

L·--------------------------------------J

RVO = Relative virtual origin, the
distance between the virtual
origin (VO) and the actual origin
(AO). Virtual origin is the point
at which the element in the array
whose subscripts are all zeros is,
or would be, held. Actual origin
is the start of the first element
in the array.

RVO is held as a bit value for
arrays of unaligned bit strings,
but otherwise as a byte value.
Bit offsets are given in the
string descriptor. Actual origin
and virtual origin are also held
as byte values.

High bound:
The highest subscript in any
dimension.

Low bound:
The lowest subscript in any
dimension.

Multiplier:
The multiplier is the offset
between any two elements marked by
the change of subscript number in
any dimension.

For example for the array DATA(10,10) ,
the multiplier for the first dimension is
the offset between DATA(l,l) and DATA(2,1)
etc. The multiplier for the second
dimension is the offset between DATA(l,l)
and DATA(l,2). The offset is measured from
the start of the one element to the start
of the next.

Multipliers are byte values except for
bit string arrays" in which case they are
bit values.

Controlled Variable Block

o 4

r--,
WORD 1 o PRVOFF

WORD 2 4 LENGTH

WORD 3 8 Chain back to previous allocation

WORD 4 C Task Invocation Count Address held in pseudo register

-- <---------
WORD 5 10 DESCRIPTION

Field used for descriptor or
locator/descriptor in certain
circumstances, (see below)

DATA

L--J

To hold information about the controlled
variable.

When the variable is allocated.

At the head of the controlled variable.

H~ Addr~~~g

From an offset in the PRV. (The PRV
address is held out offset X'4' in the
TCA.)

PRVOFF: Offset within pseudo-register
vector associated with the
controlled variable.

LENGTH: Length of the total allocation
including the 4 words of the
heading.

CHAIN BACK: Address of word 5 of previous
allocation, set to address of
dummy FCB if first allocation.

TASK INVOCATION COUNT: A method of
identifying which task the
controlled variable is
attached to. A controlled
variable cannot be freed
within a task unless the task
invocation count of the
variable is the same as that
in the TCA.

*DESCRIPTION

If the item is one that
requires a descriptor/locator
or a locator~ this is placed
at the head of the data. If
the item is a structure or
array and the extents are
~kn~~ at compile time, the
descriptor will also be placed
before the data.

Thus for:

STRINGS and AREAS, the
controlled variable is headed
by a !Q£2~Qr/g~giEtO!

STRUCTURES and ARRAYS, the
controlled variable is headed
by a !~Q;:

STRUCTURES and ARRAYS with
ADJUSTABLE EXTENTS, the
controlled variable is headed
by a loca~ followed by a
de§criEtor

ALL OTHER DATA, the
descriEtion field is not used
and the data itself starts at
offset X'10~ (16)

Appendix A: Control Blocks 277

Data Element Descriptor (DED)

Used to pass description of data elements
to library conversion and stream I/O
routines.

During compilation.

Static internal control section.

How Agdressed

From an offset from register 3 known to
compiled code.

All DEDs are headed by two bytes that
indicate the data type. These two bytes
are followed by as many bytes as are
required to complete the description of the
data.

For arithmetic items, DEDs are completed
by such items as scale and precision. For
pictured items;, a representation of the
picture is included in internal form.

General Forma"t

o 1 2

r--
I Flag byte 1 I·Fl~tl~~ I
I . I I
IDefines data ICompletes IFurther bytes
I type I definition las required
I lif necessary I
L--------------------------------------___ _
Fla, Byte 1 (also known as Code Byte and
Loo up Byte)

278

00
04
08
OC

10
14
18
lC
20
24
28
2C
30
40
44
48
50
54
58
5C
60
64
68
6C
70
80
84
88
8C
90
94
98
9C

FIXED BINARY
FIXED DECIMAL
FLOAT
Free decimal (an
internal form)
FIXED PICTURE BINARY
FIXED PICTURE DECIMAL
FLOAT PICTURE BINARY
FLOAT PICTURE DECIMAL
non-VARYING CHARACTER
non-VARYING BIT
VARYING CHARACTER
VARYING BIT
CHARACTER PICTURE
BINARY constant
DECIMAL constant
BIT constant
F/E Format
P Format (arithmetic)
A/B/P Format (character)
C Format
X Format
COL Format
SKIP Format
LINE Format
PAGE Format
LABEL
ENTRY
AREA
TASK
OFFSET
POINTER
FILE
EVENT

Bits 0&1 == 'OO'B A-format item
'Ol'B B-format item
'10'B character picture format

item

Bit 2 = 'O'B fixed constant
'l'B float constant

Bit 3 = 'O'B not extended float
'l'B extended float

Bit 4 = 'O'B F-format/fixed picture
'l'B E-format/float picture

Bit 5 = 'O'B declared binary
'l'B declared decimal

If bits 4 and 5 = '11'B then DED is for
character

Bit 6 = 'O'B short precision
'l'B long precision

Bit 7 = 'O'B real Q~ length specified (A
or B format) unaligned bit
string

'l'B complex (also set if E, F, or
P in C-format) or no length
specified (A or-B format) Q~
aligned bit string

All bits for which neither value is
defined are set to 'O'B

DED for STRING data

o 1 2

r------------------------,
IFlag byte 1 IFlag byte 21
L------------------~-----J

o 1 2 3

r-----------------------------------,
IFlag byte 1 I~lag byte 2 1 precision 1
L-----------------------------------J

o 1 2 3 4

r---,
IFlag byte 1 IFlag byte 21precision Iscalel
1 1 1 1/1 28 1 L--------_---_____________________________ J

o 1 2 3 4

r--1
01 Flag 1 Flag 1 L~ 1

1 Byte 1 1 Byte 2 1 1
1-------------·--------------------------1

41 L~ Ipicture in internal 1
I 1 form 1
L--J

Flag byte 1 = Hex 30

The internal code for string pictures is
as follows:

A
9
x

Pictu!:~(hex)

00
04
lC

L~ = length of field with insertion
characters

L2 = length of field without insertion
characters

DED for PICTURE DECIMAL Arithmetic Data

o 1 2 3 4

r--,
01 Flag 1 Flag I Precision 1 Scale 1

IByte 1 1 Byte 2 I I Factor+128I
1--1

41Length oflLength of IF lag 1 Flag 1
1 Picture 1 Data IByte 3 1 Byte 4 1
1--1
1 Picture in internal code I
L---~------------------------------------J

Flag byte 1 = Hex 14 or 1C

FI~g_Byt~_~ (describes the mantissa
subfield)

Bit 0 = reserved; must be set to
'0 'B

Bit 1 = 'liB drifting S in subfield
= 'O'B no drifting S in subfield

Bit 2 = 'l'B drifting + in subfield
= '0 'B no drifting + in subfield

Bit 3 = 'liB drifting - in subfield
= 'O'B no drifting - in subfield

Bit 4 = 'l'B drifting $ in subfield
= '0 'B no drifting $ in subfield

Bit 5 = 'l'B total suppression in
subfield

= 'O'B no total suppression in
subfield

Bit 6 = 'l'B * in subfield
= 'O'B no * in subfield

Bit 7 = reserved; must be set t~
'O'B

[!~g~~! (describes the exponent
subfield)

Same format as Flag Byte 3.

£Qg~ Pict~ cog~ Picture

00 9 48 - (t)
04 y 4C - (d)
08 z 50 - (s)
OC * 54 $ (t)
10 E 58 $ (d)
14 K 5C $ (s)
18 T 60 / (t)

Appendix A: Control Blocks 279

lC I 64 / (d)
20 R 68 / (s)
24 CR 6C · (t)
28 DB 70 · (d)
2C B 74 · (s)
30 S (t) 78 I' (t)
34 s (d) 7C , (d)
38 S (s) 80

"
(s)

3C + 84 V
40 + (d)
44 + (s)

(t) = terminal
(d) = drifting
(s) = static

Note: After E or K, the next byte contains
the-number of digits in the exponent.

The scale factor of a picture DED is the
number of digit positions after the 'V' (0
if there is no 'V') added to the number in
the F specification, if any.

Bit 5 is set if no 9, Y, T, I, or R is
present. This applies before any Z, s,
etc. has been translated to a 9.

gules fQ~~!!~ting-Eictur~in!:.~!!Q~
E!£tures

1. Characters 9, Y, E, K, T, I, R~ CR,
DB~ B, and V are translated directly.

2. Characters Z and * are translated
directly if they do not follow a V.
If either follows a V~ it is
translated into the code for character
9.

3. An S, +, -~ or $ is translated to a
static S, +, -~ or $ if it is the only
one of its kind in the subfield.

4. If more than one S appears in a
subfield, the S's are translated into
drifting s·s.

.Except when:

5.

280

a. It appears immediately befo.re a Y,
9, V4 T, I or R. In this case it
is translated into the code for a
terminal S.

b. It appears anywhere after a V. In
this case it is translated into
the code for a 9.

The same rule applies for the +, -, or
$.

A "/", a " " , , or a " " . is treated as

drifting" if:

a. It is in a subfield containing
either one or more Z or asterisk,
or more than one +s, -s, or $.

and if:

b. It is not immediately preceding a
Y, 9~ V, T, I, or R. In this case
it is translated into terminal
form.

o 1 2

r--------------,
1 Flag 1 Flag 1
Ibyte 1 Ibyte 21
L--------------J
Flag byte 1 = Hex 80, 84, 88, 8C, 90, 94,
98, or 9C

FORMAT DEDS - FEDS

For meaning of flag bytes see above under
Data Element Descriptors.

o 1 234 5 6

r---------------------------------,
I Flag I Flag I WID I X I
Ibyte 1 Ibyte 2 I I I I
L---------------------------------J
Flag byte 1 = Hex 50

W = total length of the format field

D = number of decimal places

X = precision + 128 for F-format number of
significant figures for E-format

DED for PICTURE FORMAT Arithmetic Items
(F~Q2. ------------------------,--

o 1 234
r--, I Flag I Flag I W Icopy of DED as fori
Ibyte 1 Ibyte 2 I larith. picture I
L--J
Flag byte 1 = Hex 54

W = total length of the format field

DED for PICTURE FORMAT character Items iFED)-----------------------

o 1 234

r---,
I Flag I Flag I W Icopy of DED as for I
Ibyte 1 Ibyte 2 I Ipictured character I
l---J
Flag byte 1 = Hex 58

w = total length of the format field

o 1 2 4

r---,
I Flag I Flag 1 W I FED for I FED for I
Ibyte 1 Ibyte 21 Ireal part limag. part I
l---J
Flag byte 1 = Hex 5C

Note: The complex bit (bit 7) in flag byte
~-li set in both the real part and the
imaginary part FED. .

W = total length of the format field

o 1 2 4

r--------------------------,
I Flag I Flag Iparameter I
Ibyte 1 Ibyte 2 I I
l--------------------------J
Flag byte 1 = Hex 60, 64~ 68, 6C or 70

Parameter = length of item (X format)
column number (COL format)
number of lines to skip (SKIP
format)

o 1

line number {LINE format)
is omitted for PAGE format

2 4
r--------------------------,
I Flag I Flag Ileng.th I
Ibyte 1 Ibyte 2 I I
l--------------------------J
Flag byte 1 = Hex 58

The difference between A, B, and P
(character) formats is given by bits 0 and
1 of flag byte 2. The length field may be
omitted for A and B format items.

Appendix A: Control Blocks 281

Declare Control Block (DCLCB)

Addresses file via PRV, holds declared file
attributes, filename, and address of ENVB.

During compilation.

Where Held

In separate control section for external
files, or static internal control section
for internal files.

!!~ Addr~.§§ed

Address generated by linkage editor for
external files addressed by an offset from
register 3 for internal files.

282

o 8 16 24
r---------------------------------------,
\ DFCB 1
\---------------------------------------1

4\ DCLA 1
1---------------------------------------\

8\ DOPA 1
\---------------------------------------1
1 DENV 1
1---------------------------------------\

10\ reserved 1 DNMO \
1---------------------------------------1

141 DNML IDNAM(Up to 31 chars) \
L------------------------------------_--J

DFCB A(FCB) or Pseudo-Register offset (in
first 2 bytes)

DCLA Declare Attributes

1 01 STREAM
02 RECORD
04 DISPLAY
10 reserved

(STRING)

2 01 SEQUENTIAL
02 DIRECT
04 TRANSIENT
10 INPUT
20 OUTPUT
40 UPDATE
80 BACKWARDS

3 01 BUFFERED
02 UNBUFFERED
04 KEYED
08 EXCLUSIVE
10 PRINT

4· reserved

DOPA Attributes which would conflict on
OPEN. Format as for DCLA

DENV A(Environment Block) or zero

DNMO Offset in DCLCB of DNML

DNML Length of File name

DNAM File name (up to 31 characters)

Diagnostic File Block (DFB)

Holds information used by the error message
routines.

During program initialization.

Program management area.

From X'40' in the TCA.

r----~-------------------------, 0
AFLA IFlags 1 Reserved 1

1------------------------------1 4
ABTS 1 A (transmitter) 1

1------------------------------1 8
ASPD 1 A(SYSPRINT DCLCB) 1

I----------------~-------------I C
AOCL 1 A(EXPLICIT OPEN) 1

1------------------------------1 10
ASDC 1 A(Improvised Sysprint DCB) 1

L------------------------------J 14

AWTO Bit 0 = 1 Messages going to operator's
console

ASNO Bit 1 always 0
ASCO Bit 2 = 1 SYSPRINT cannot be opened or

open with unsuitable
attributes.

AFPF Bit 3 = 1 Force page

Appendix A: control Blocks 283

Dynamic Storage Area (DSA)

Holds housekeeping information, automatic
variables, and temporaries for each block.

During execution. Allocated by prologue
code every time a new block is entered.

In the LIFO storage stack. Certain library
routines have their DSAs in library
workspace (LWS). See below

From register 13.

!:!~g!i

Bit 0 = 0 DSA in LWS
1 DSA

Bit 1 = 0 No ON Cells
1 ON cells

Bit 2 = 0 No Dynamic ONCBs
1 Dynamic ONCBs

Bit 3 Always set to zero.

Bits 4 and 5
=

Bit 6

Bit 7

Bit 8 =

Bit 9 =

Bit 10 =

Bit 11 =

Bit 12 =

Bit 13 =

.284

00 Procedure DSA
01 Begin DSA
10 Library DSA
11 On-unit DSA

0 Not a dummy DSA
1 Dummy DSA

unused.

always zero

0
1

Do not restore NAB on GOTO
Restore NAB on GOTO

o Do not restore Current-enable
on GOTO
1 Restore current-enable on GOTO

0 Cal lee cannot use this DSA
1 Callee can use this DSA

0 Not an EXIT DSA
1 EXIT DSA

0 No statement # table
1 statement # table available

o 2 4
r---------------------------------------,

o Flags I Offset

4 Chain Back

8 Unused

C Save area R 14

10 Save area R 15

14 Save area R 0

18 Save area Rl

lC Save area R2

20 Save area R3

24. Save area R4

28 Save area R5

2C Save area R6

30 Save area R7

34 Save area R8

38 Save area R9

3C Save area RiO

40 Save area Rl1

44 Save area R12

48 A (LWS)

4C segment#1 NAB

50 Segment#1 End of Prologue NAB

54 Block-Enable Cell Icurrent-Enable Cell

58 Static backchain

5C ACFirst Static ONCB)

60 ACmost recent Dynamic ONCB in Block)

64 Reserved

68 Reserved

6C Reserved

70 ACONCELLS>

74 CEXQ I // I Flags 2 I CT flags
L---------------------------------------J

Bit 14 = 1 Sysprint ENQ'd

Bit 15 = 1 Flags 2 "valid

If the DSA is in LWS, offset is the
offset of the ONCA. Otherwise, this field
is not used.

Save area for flag byte 1 of the TeA.
Used if DSA is an exit DSA.

E!~

Bit 0 = 1 Last PL/I DSA
Bit 1 = 1 Ignore DSA for SNAP
Bit 2 = 1 ILC DSA after interrupt
Bit 3 = 1 Invocation count in this DSA
Bit 4 Reserved
Bit 5 = 1 There are TSO line numbers

£I_,!,Control Tas~U!ags

Bit 0 = 1 Block has active subtasks

~Q~~: This flag byte is the only one in
the DSA used by the control task without
synchronising with the subtask. The
subtask must never change it. This
prevents interference between CPU's on a
multiprocessing machine.

Appendix A: Control Blocks 285

Dump Block (DUB)

To hold information about the dump file.

During program initialization.

In the program management area.

From offset X'120' in the TIA.

o 8 16 24
r------------------------------------,

Flags 11 Flags 21 Reserved

ADCB A(DCB)

ABUF A(Buffer)

ADXT A(Dump Transmitter)

ALNN Current line number

APGS Pagesize

Reserved

--.------~-------------~------------t Reserved

1------------------------------------
ASYN 1 A(PLIDUMP SYNAD Exit) L------------------------____________ J

Flags 1

ANDE Bit 0 = 1 Dump file cannot be opened

£:!~~~

ANSS Bit 0 = 1 No subtasks' subpools

286

Entry Data Control Block

Holds the addresses of the data item and
its DSA.

When the variable is allocated.

Depends on the storage class of the data
item.

Depends on the storage class of the data

o 4

r--------------------------~------------,
o 1 Address 1

1---------------------------------------1
4 1 Address of statically containing 1

1 DSA at time of assignment 1
L---------------------------------------J
Word 1: bit 0 = 0 Address of entry

= 1 Address of location
containing 8-char.
EBCDIC name of entry
point

Word 2: bit 0 always = 0

Appendix A: Control Blocks 287

Environment Block (ENVB)

Holds environment options for a file so
that the file may be correctly opened
during execution.

During compilation

!there Helg

In a control section with the DCLCB for
external files. In static internal storage
for internal files.

!i2!l Add~~~g

From offset X'C' in the DCLCB

o 8 16 24 (bits)
r--------------------~------------------, o NFLA I NFLB I NFLC I NFLD

4 NFLE INFLF INFLG INFLH

8 NFLI INFLJ

C NBLK

10 NREC

14 NBUF

18 NLOC

1C NKYL

20 NNDX/NOFF

24 NADD/NNCP

28 NPAS
L---------------------------------------J

NFLA 0 consecutive
1 indexed
2 regional (1)
3 regional (2)
4 regional C3)
5 tpCm)
6 tpCr)
1 other organization see NFLH

NFLB
Bits o & 1

10 Fixed
01 Variable
11 Undefined

Bit 2 D or TRKOFL

3 Blocked
4 Spanned
5 CTLASA
6 CTL360

288

NFLC

NFLD

NFLE

NFLF

NFLG

NFLH

NFLI,

NBLK

NREC

NBUF

NLOC

NKYL

NNDX
NOFF

NADD

NNCP

NPAS

0

1 Unused

o LEAVE
1 REREAD
2 GENKEY
3 COBOL
4 NOWRITE
5 INDEXAREA
6 TOTAL
1 INDEXAREA with no argument

o BUFFERS
1 NCP
2 Unused
3 KEYLENGTH
4 KEYLOC
5 VERIFY
6 NOLABEL
1 ADDBUF

o Unused
1 Unused
2 Unused
3 Unused
4 SCALARVARYING
5 ANSCII
6 BUFOFF
1 BUFOFF(L)

reserved

0 F-format
1 V-format
2 U-format
3 Spanned
4 Blocked
5 Unused
6 Unused
1 Unused

VSAM
1-1 Reserved

NFLJ reserved

A (blocksize)

A(record length)

A(number of buffers)

A (KEYLOC value)

A (KEYLENGTH)

A(INDEXAREA size)
A(BUFOFF value)

A(size of ADDBUF)

A(NCP value)

A(password string locator)

Event Table (EVTAB)

Used by wAIT module as workspace and to
provide status information on associated
event.

During execution.

In LIFO storage.

From an offset from register 13.
o 4
r----------------------------,

o 1 (see below> 1 WECB
1----------------------------1

4 IChain field through EVTABs 1 WECH
1----------------------------1

8 IA(Event variable> 1 WAEV
1----------------------------1

C IA(ECBLIST element> 1 WAEL
L----------------------------J

WECB Bit 0 set when event is complete
Bits 1-7 Not used in this

implementation

Appendix A: Control Blocks 289

Event Variable Control Block

To hold information about the operation
with which the EVENT has been associated.

Depends on the storage class of the event
variable.

Depends on the storage class of event
variable.

!!Q~~gdr~§.2ed

As other variables depending on storage
class.

290

o 1 2 4

r------------------~-----------,
OIFlagsll Flags2 1 STATUS 1
1------------------------------1

41 Anchor for ECB chain 1
1------------------------------1

8 1 A CECB)/A CCCB) I

1------------------------------1
CIACTCA appendage for I/O) 1
1------------------------------1

101 A(FCB) 1
1------------------------------1

1 4 1Not used 1
L------------------------------~

Flags 1

Bit 0 =0 Incomplete
1 Complete

Bit 1 =0 Inactive
1 Active

Bit 2 =0 Not an I/O EVENT
1 I/O EVENT

Bit 3 =0 Not a DISPLAY EVENT
1 DISPLAY EVENT

Bit 4 =0 EV has not caused on-unit entry
1 EV has caused entry to an
on-unit

Bit 7 =always zero

~!§!g:2-£

Bit 0 =0 No chain of ECBs
1 Chain of ECBs exists

Bit 1 =0 Not a dummy EVENT
1 Dummy EVENT

Exclusive Block IOCB (XBI)

Locks individual records on exclusive
files.

!!hen G~~teQ

By transmitter when required

How Addressed

From offset X'24' in IOCB and offset X'14'
in"the TIA.

r---------------------------------------, o reserved

4 XILA IXILE XILC

8 XIQE IXIQL IXIQS IXIQC

C XIQA

10 XIRA

14 XIIO

1C XIVS

22 XIDS

4E XIRN

50 XIKY
L------------------------~--------------)

First two words unused

XIQE Start of ENQ LIST for system X'FF'

XIQL Length of RNAME

XIQS System flags must be X' 41'

XIQC Return code from system

XIQA Address of QNAME (XFIO)

XIRA Address bf RNAME (XFVS)

XIIO QNAME ('SYSIBMIO')

XIVS RNAME of volume serial no. (pa~t 1)

XIDS RNAME of DSNAME (part 2)

XIRN region no. in binary right adjusted

XIKY RNAME of key .(part 3)

Length of XIKY is keylength of data set
restricted such that volume serial
no.lldsnamel Ikey < 255 ISAM

251 regional

Appendix A: Control Blocks 291

Exclusi ve Block File (XBF)

Identifies data set when locking for
exclusive I/O.

~hen Ge!!~~~g

By the open routine

!low Adq!:~.!!§ed

From offset X'74' in FCB.

r---------------------------------------, o XFTK

4 XFLA IXFLE XFIL

8 XFQE IXFQL IXFQS IXFQC

C XFQA

10 XFRA

14 XFIO

1C XFVS

22 XFDS

4E XFKY
L-----------------.----------------------J

First two words reserved

292

XFTK A(TCA)

XFLA First flag byte

Bit 0 = 1 Locked
Bit 1 = 1 No DEQ required

XFLB second flag byte (reserved)

XFIL Length of exclusive block attached
to IOCB

XFQE start of ENQ LIST for system X'FF'

XFQL Length of RNAME

XFQS System flags must be X'41'

XFQC Return code from system

XFQA Address of QNAME (XFIO)

XFRA Address of RNAME (XFVS)

XFIO QNAME (• SYSIBMIO')

XFVS RNAME of volume serial no. (part 1)

XFDS RNAME of DSNAME (part 2)

XFKY RNAME of key (part 3)

Length of XFKY is key length of data set
restricted such that volume serial
no. II~snamellkey < 255 ISAM

251 regional

File Control Block (FCB)

Used to access all file information.
Contains addresses of the ENVB,DTF,
filename, etc.

By the open routines during execution.

~h~~_!!~!g

In subpool 1.

From two byte PRV offset which is held at
offset X'O' in DCLCB. The PRV address is
held at offset X'4' in the TCA.

o 1 2 3 4

r-------------------------------------, o Flags showing valid statement types
(FFST)

8 A(invalid statement module) (FAIS)

C

10

14

18

lC

20

24

28

2C

30

34

38

3C

40

44

48

A(library transmitter) (FATM)

A(DCLCB)

A(DCB)/A(ACB)VSAM

A(open file chain)

A(data management for
in-line I/O)

FERR FCOM

(FADL)

(FADB/FACB)

(FAFO)

(FAIL)

FATA FATB FATC I FA TO
------------------~------------------

FFLA FFLB FFLC I FFLD

FFLE FFLF FFLG FFLH

Blocksize (FBKZ) I Keylength (FKYL)

Record length

A(first free IOCB)
or

A(Hidden buffer for
QISAM LOCATE)

FTYP I FLEN

reserved

reserved

reserved

(FRCL)

(FAFR)

(FREC)

L-------------------------------------J

FFST Flags indicating types of statement
(8 bytes)

o
1
2
3
4
S
6
7
8
9

10
11
12
13
14
lS
16
17
18
19
20
21
22
23
24
2S
26
27

READ SET
READ SET KEYTO
READ SET KEY
READ INTO
READ INTO KEYTO
READ INTO KEY
READ INTO KEY NOLOCK
READ IGNORE
READ INTO EVENT
READ INTO KEYTO EVENT
READ INTO KEY EVENT
READ INTO KEY NOLOCK EVENT
READ IGNORE EVENT
WRITE FROM
WRITE FROM KEYFROM
WRITE FROM EVENT
WRITE FROM KEYFROM EVENT
REWRITE
REWRITE FROM
REWRITE FROM KEY
REWRITE FROM EVENT
REWRITE FROM KEY EVENT
LOCATE SET
LOCATE SET KEYFROM
DELETE
DELETE KEY

28
29-63

DELETE EVENT
DELETE KEY EVENT
UNLOCK KEY
Reserved

FERR

X'02'
X'03'
X'lA'
X'lC'
X'lD'
X'lE'
x'lF'
X'Ol'
X'04'
x'OS'
X'06'
X'07'
X'08'
X'09'
X'OA'
X'OB'
X, OcC'
X, 00'
X" OE'
X' OF"
X'10'
X'll'
X'12'
X'13'
X'14'
X'lS'
X'16'
X'17'
X'18'
X'19'

Error codes

INPUT TRANSMIT (DATA SET)
OUTPUT TRANSMIT (DATA SET)
OMR READ ERROR
INPUT TRANSMIT (INDEX SET)
OUTPUT TRANSMIT (INDEX SET)
INPUT TRANSMIT (SEQUENCE SET)
OUTPUT TRANSMIT (SEQUENCE SET)
END OF FILE
ZERO LENGTH RECORD VARIABL
SHORT RECORD VARIABLE
LONG RECORD VARIABLE
KEY CONVERSION IN CHAR STRING
KEY DUPLICATION
KEY SEQUENCE
KEY SPECIFICATION (NULL KEY)
KEY NOT FOUND
NO SPACE FOR KEYED RECORD
NO IOCB AVAILABLE
ACTIVE EVENT
NO PRIOR READ BEFORE REWRITE
NO COMPLETED READ BEFORE REWRITE
PERMANENT OUTPUT ERROR
ZERO LENGTH RECORD READ
REC. REFERENCE OUTSIDE DATA SET
UNIDENTIFIED 10 ERROR
INCOMPLETE READ FOR UPDATE
TP TERM ADDR SPECIFICATION
DIFF FCB SAME RECORD REQUEST
KEY CONVERSION (NEG BIN NO)
KEY SPECIFICATION (X'FF' ETC)

Appendix A: Control Blocks 293

X'lB'
X'20'
X'21'
X'22'
X'23'
X'24'
X, 25'
X'26'
X'27'
X'28'

FCOM

FTYP

FLEN

I/O SEQUENCE ERROR
SYNAD ERROR ENCOUNTERED
RECORD LENGTH < KEYLEN + RKP
RECORD ALREADY HELD
RECORD ON NON-MOUNTED VOLUME
DATA SET CANNOT BE EXTENDED
NO VIRTUAL STORAGE FOR VSAM
NO KEYRANGE FOR INSERTION
NO POSITIONING FOR SEQL READ
ATTEMPT TO REPOSITION FAILED

Reserved for future releases for
compatibility flags.

6th and 7th characters of library
transmitter name

Length of FCB

FATA-FATD Flags showing attributes
allowable with file types~ and
other file usage information.

FATA

FATB

FATC

FATD

FFLA

FFLB

294

!2it ru::trib~t~

o Open SYSPRINT for error
message

1 SYSPRINT
2 unused
3 string operation
4 unused
5 unused
6 RECORD
7 STREAM
o BACKWARDS
1 UPDATE
2 OUTPUT
3 INPUT
4 unused
5 TRANSIENT
6 DIRECT
7 SEQUENTIAL
o unused
1 unused
2 unused
3 PRINT
4 EXCLUSIVE
5 KEYED
6 UNBUFFERED
7 BUFFERED

all unused

o
1
2
3
4
5
6
7

o
1
2

F-format
V-format
U-format
Blocked
Spanned
unused
unused
Key in record
variable KEYLOC

CONSECUTIVE
INDEXED
REGIONAL (1)

FFLC

FFLD

FFLE

FFLF

FFLG

FFLH

3 REGIONAL (2)
4 REGIONAL (3)
5 TP(M)
6 TP (R)
7 Other organization

o QSAM
4 BSAM
8 BSAM(Load)
OC TCAM
10 QISAM
14 BISAM
18 BDAM
lC VSAM

o
1
2
3
4
5
6
7

o
1
2
3
4
5
6
7

o
1
2
3
4
5
6
7

o
1
2
3
4
5

6
7

o
1
2
3
4
5

6
7

Paper tape
Printer
Unit record device
The Foreground Terminal
ENDFILE module loaded
possible hidden buffer
Error module loaded
Genkey

I/O error
permanent input error
permanent output error
end of file
hidden buffer in use
move required
non-SCALARVARYING
reserved

previous READ
previous READ SET
previous LOCATE
previous REWRITE
previous OPEN
close in progress
implicit close
previous OPEN(resume load)

END PAGE
end of extents
COPY option active
reserved
checkout transmitter
checkout compiler step end
flag
newly opened print file
file not to be closed

In-line I/O
In-line locate
hyphen at end of line
retry get after concat
current line unfinished
initial call from IBMBSPL/
blanks at end of record
new buffer wanted
GET prompt issued - input

The common section is followed by either
the RECORD or STREAM sections.

~Q~§: Offsets are from start of the FCB.

o 1 2 3 4

r-----------------------------------,
4C A(last IOCB used) IFALU

2!: 1
A(DAMT buffer for LOCATE) 1 FCDA
-----------------------------------1

50 A(first IOCB to be checked) (BSAM) IFACK
-----------------------------------1

54 static chain of IOCBs FlOC
(BDAM/BISAM/BSAM/VSAM)

58 A(IOCB for last completed read)

5C FEMT 1 FEFT FRET

60 A(error module) when loaded
or

A (bootstrap) which loads it
(IBMBRIOB)

FAFB

64 FFNC I FELV or 1 FKLO or FLCT
IFFNF 1

FALR

FERM

68 reserved FCCT

6C A(dummy key area) FAKY

70 Size of IOCB (BDAM/BISAM)
or

Currenr-relative block (BSAM)

FIOS

FREL

74 A(exclusive block FILE) FXBA

78 Table of offsets used in FRTB
record checking

7C Base OPTCD for RPL (VSAM)

DCB prefix (associated files) FAWB

Data Management DCB
L-----------------------------------J

FRET Data management return code (regional
output)

FEMT 6th char of error module name

FEFT 7th char of endfile module name

FAFB Work byte for associated files

FFNC Function byte

Bit 0 READ file
1 PUNCH file
2 PRINT file
3 OMR (no other lists on)
4 R in FUNC option
5 P in FUNC option
6 W in FUNC option
7 Associated file

FFLV VSAM flags

Bit 0 KSDS
1 ESDS

2-7 reserved

FCNF conflict byte

Bit 0 prior READ invalid
1 prior PUNCH invalid
2 pr~o~ PRINT invalid
3 pr10r PRINT last line invalid

4-7 reserved

FKLO KEYLOC-l

FLCT Decrementing line count

Appendix A: control Blocks 295

offsets are from the start of the FCB.

o 2 4

r--,
4CI A(next available byte in a buffer) 1 FCBA

--1
FREM 50 Bytes remaining in 1 Value of count 1 FCNT

buffer 1 built-in function 1
--1

FPGZ 54 Page size 1 Line size FLNZ

FLNN 58 Current line no. 1 Record size FMAX

296

5C A(copy position in buffer)
or

A(next TPUT position) for OUTPUT

FCPM

FNTP

60 A(DCLCB for COpy file) FCPF

1--641 A(copy module input/tab module FCPAIFTAB
1 output.)
1--

681 Reserved
1--

6CI FSCB
L--J

Flow Statement Table

f!!!!ct!2!!

Used to implement the compiler FLOW option.
Holds the last 'n' statement number pairs
and the last 'm' procedure names executed.
('n' and 'm' are programmer defined.)

Storage is allocated during initialization
if the FLOW option has been specified. The
table is continually updated as the program
is execut ed.

In initial storage area.

!!ow Addr~~Q

From offset X'4C' in the TCA.

Reserved

Bit 0 = 1 No statement numbers requested in
flo~ trace (e.g. FLOWCO,20».

1 = 1 Last entry was in.
2 = 1 Used by Checkout Compiler only.
3 = 1 Interrupt not recorded.
4 = 1 GOTO-out-of-block has occurred.

AFLF - Fl~2

ATBI
ABCD
ATXT
ADUM

Bit 0
Bit 1
Bit 2
Bit 3

Branch-in entry
BCD form for this entry
BCD in text reference form
Dummy entry after on-unit exit

ACHK Bit 4 unused
AGTO Bit 5 Unused
ATKC Bit 6 The next in entry is in new

task
0 1 4
r----------------------------------,

ARGT 0 Code to access IBMBEFL to
initialize flow table for
subtasks. Called when bit 6 in
AFLF is set.

AFLL 10 Total length of the table

ANEN 14 ACnext free field in stmt. no
sect.)

AASB 18 ACstart of names section of
table)

----------------------------------1
ANEB 1C ACnext free field in names 1

section) 1

----------------------------------1
AAEB 20 ACend of table) 1

----------------------------------1
ASBS 24 ACstart of number section) 1

----------------------------------J
AFLI 28 Flag

ASBD

Byte 1
L--------J

r----------------------------------,
1 AFLF IAFLG I Statement
I Flag 1 Flag I
1 Byte I Byte I

Number

Statement Number

IAFLF
IFlag
I Byte

IAFLG
I Flag
1 Byte

Names of blocks truncated to
8 characters

L----------------------------------J

Appendix A: Control Blocks 297

Interlanguage Root Control Block
(IBMBILCI)

Connects ZCTL and interlanguage VDA to
interlanguage routines, and records state
of activation of language interfaces.

During compilation.

In static internal storage, as a control
section.

Address generated by linkage editor.

298

o 1 2 3 4

r--------------------------------,
o 1 Address of ZCTL 1

1--------------------------------1
4 1 COBOL IFORTRAN ITask 1 1

Iflag 1 flag 1 locking 1 I
1 I I flag I I
L--------------------------------J

COBOL flag indicates COBOL is active in
program

FORTRAN flag indicates a procedure which
called FORTRAN is active

Task locking flag indicates that a task is
accessing IBMBILCl

Interlanguage VDA

TO hold information required for
interlanguage calls. Used for information
that alters from invocation to invocation.

One inter language VDA is generated for each
interlanguage call made from PL/I to
FORTRAN or COBOL. An interlanguage VDA is
also acquired if the PL/I environment has
not yet been set up when PL/I is called
from COBOL or FORTRAN.

In the LIFO storage stack.

From offset X'O' in ZCTL.

r---------------------------------,
IACprevious interlanguage 1
1 VDA or zero) 1
1---------------------------------1

41Flags I Not used 1
1---------------------------------1

81ACCurrent DSA) 1
1---------------------------------1

CIACCaller's PICA) I
L---------------------------------J

£:!~g§.

Bit 0

1

2

=

=

=

1 If there is a previous call to
COBOL

1 If there is a previous call to
FORTRAN

1 If main procedure is not PL/I

Appendix A: Control Blocks 299

Interrupt Control Block (ICB)

Acts as a parameter list to IBMBERR.

~h~n Geng~teQ

After an error has been detected.

~he~elQ

As a VDA in the LIFO stack.

!!Q~ Add~g§§ed

Passed as param~ter list to IBMBERR
addressed by register 1.

o 1 2 3 4

r----------------------------------, o Error code HLCD

4 Condition Qualifier HLQU

8 DSA IHLFG flags HLLN
Level I

C A(array element) HLEA

10 Reserved HLSY

14 A(generation of variable) L--------------____________________ J

300

Condition qualifier = A(OCLCB) for I/O
condition

Bit 0 = 0 Reserved

= A(CSECT) for
CONDITION condition

= A(SYMTAB) for CHECK
condition

= A(SYMTAB LIST)

Bit 1 = 0 Element address not in list
1 Element address in list

Bit 2 = 0 CHECK is enabled
1 CHECK enablement unknown

Bit 3 = 0 Qualifier is not address of
SYMTAB list
1 Qualifier is address of
SYMTAB list

Bit 4 = 0 Not word 6 information
1 Use word 6 to address the
generation of variable being
checked

Input/Output Control Block (IOCB)

Used as a data management parameter list
during certain record IIO statements and to
hold information about statement type
during the time between a record I/O
statement and the associated WAIT
statement.

!1h~n Gen~gteg

Either by the PL/I transmitter module
(BISAM or BDAM) or by the OPEN module.

r---------------------------, o ICHN

4 INXT/IRGN

8 IFLA IFLB IERR

C IRCB

10 lORD (1st word)

14 IORL

18 IOKD/IREF (1st word)/IFNA

lC IOKL/IREF (2nd word)/IFBK

20 IEVT

In non-LIFO ptorage for VSAM, in subpool 0
for BSAM (obtained by GETPOOL), BISAM or
BDAM (obtained in non-tasking, in subpool 0
for tasking.

By fields in the FCB. IOCBs are chained
together and the actual field used to
address them depends on the type of
statement being executed.

L---------------------------J-----> end of common section
(second section starts here)

ICHN Static forward chain
INXT Chain of free or unchecked 101bs.
IRGN Region no. left adjusted (BDAM)
IFLA Flag byte - bits set to ~1~ indicate:

Bit 0 = record locked
1 = record to move
2 = varying string with non-

scalarvarying
3 = IOCB in use
4 = general error flag
5 = dummy records being output
6 = dummy buffer acquired
7 = IOCB checked

IFLB Code byte containing offset within
"look-up' table used for record
checking

IERR Error codes (as in FERR of FCB) first

byte is for TRANSMIT, second byte for
ENDFILE, RECORD, KEY & ERROR
conditions.

IRCB Request Control Block
lORD 1st word of record description -

Record address
IORL 2nd word of record descriptor - flags

and record
IOKD 1st word of key description - key

address length by region number
IOKL 2nd word of KD - flags and key length
IREF Relative block in record numbers

(2 words) (BDAM)
IFNA Next address feedback (Regional 3,

spanned)
IFBK BDAM feedback (BDAM spanned)
IEVT A (EVENT variable)

Appendix A: Control Blocks 301

Second section for QQQ VSAM files

r---------------------------,
241 IADE/IXLV/IRLB

28 ITIA

2C IECB

30 ITYP ILEN

34 IDCE

38 IREC

3C ISTS ILOG

40 IADB/INLF/IKEY

44 IBLK/IEXI

48 INDF/ISBF

4C IDBF

L---------------------------J lADE A (ECB) for REGIONAL SEQUENTIAL ONLY
IXLV A (Exclusive block) for direct only

302

IRLB Binary region no. (Regional (l)Update)
ITIA A (Implementation Appendage)
IECB Data management Event Control Block

(BDAM exception codes in 1st 2 bytes)
ITYP Type of I/O operation (set by Data

management)
ILEN Record length
IDCB A(DCB)
IREC A (buffer) if one exists on A (record

variable)
ISTS A (status indicators) (BSAM & BDAM)
ILOG A (logical record) (BISAM)
IADB A(dummy buffer) (BSAM)
INLF A (next record feedback) --> IREF

(BSAM)
IKEY A (KEY) (BDAM & BISAM)
IBLK A (relative block or record) i.e. A

(IREF) (BDAM)
IEXI BISAM exception codes
INDF A (next record feedback) --> IREF

(BDAM)
ISBF Start of appended buffer (BSAM)
IDBF start of appended buffer (BDAM &

BISAM)

Second section for VS~M files

r--------------------------,
24 IDUB I

--------------------------1
28 IKSV 1

--------------------------1
2C IEVC I

--------------------------1
30 IMHD 1

34 IMEL

38 1
------------1-------------

3C 1
------------1-------------

40 V

44 ISHD

48 ISEL

4C IHTC

50 IRPL

54 ISAR

58 ISLN 1 *
------------1-------------

5C IX34 1 *

60

64

68

6C

70

74

78

7C

80

84

88

8C

90

IX2C

IX2D

IX35

IX38

IX2E

IX30

IOPT

lARA

IARL

lRCL

ISIK

IARG

IKYL

94 *

*

*

*

*

*

*

L--------------------------J
*Reserved fields

'.

VS~M section (starting at offset X'24')

lDUB
IKSV
IEVC

A (dummy buffer)
A (key save user)
Data Management Event Control
Block

MODCB plist (5 words starting at offset
X' 30')
IMHD
IMEL

A (header entry) --> lHTC
Element entry addresses (maximum
of 4)

SHOWCB plist (2 words starting at offset
X, 44')
ISHD
ISEL

Header
offset
IHTC

lRPL
lSAR
lSLN

A (header entry) --> IHTC
A (element entry)

control entry (4 words starting at
X' 4C')

header type code for MODCBISHOWCB
of RPL
A (Request Parameter List)
A (receiving area for SHOWCB)
L (receiving area for SHOWCB)

Element control entries start at offset
X'5C' and continue to end of IOCB. Each
entry occupies 2 words, with keyword type
code set in 1st half-word as follows:
IXab = X'OOah' 2nd word of each entry is
used as either a setting field for MODCB
or a receiving field for SHOWCB. The IOCB
field names are lifted with their
corresponding RPL (Request Parameter List)
parameters.

lOPT
lARA
IARL
lRCL
ISlK
lARG
IKYL

OPTCD
AREA
AREALEN
RECLEN
FDBK
ARG
KEYLEN

Appendix A: control Blocks 303

Key Descriptor (KD)

Contains address and length of key for
passing to library record 1/0 routines.

As far as possible during compilation. 'If
necessary, completed during execution.

Normally in static internal control
section. In static external control
section if key is EXTERNAL. will be copied
into, or generated in, temporary storage if
procedure is reentrant or recursive.

From an offset from register 3 known to
compiler code for internal keys.

r--,
01 A (Key string) 1
1 rr--------------------------------------I

4 1 1 1 1 length 1 1 LL--------_--___________________________ I

81 Region number 1 L-----------------_______________________ J

~Q!:d 1

KEYFROM: Address of source key (excluding
the length bytes if VARYING)

KEYTO: Address of where to put key

304

(excluding length bytes if
VARYING)

Word~

Bit 0

Bit 1

'l'B if KEYTO string is
VARYING. (If this bit is set,
the 1/0 transmitters will set
the current length field).

'l'B if word 3 contains a
region number.

Bits 2-15 Unused (zero)

Bits 16-31 Length of key string
(excluding length bytes for
VARYING); current length for
KEY or KEYFROM, maximum length
for KEYTO.

Region number in fixed binary, right
justified.

Label Data Control Block

Holds the address of the data item and~ if
a label variable, the address of the
associated DSA.

When Generated -------,.---

Label constants: during compilation
Label variables: when the variable is
allocated depending on storage class.
Label temporaries: When required for GOTO
to label constant.

Depends on the storage class of the data
item

As a variable.

Label Variable and ~atel temporafY

o 4

r---------------------------------, o 1 IAddress of label constant 1
1 1 assigned to label variable 1
1---------------------------------1
1 IAddress of DSA (at time of 1

4 1 1 assignment) of owning block 1
L---------------------------------J

Word 1: bit 0 = 0 Address of label
constant

= 1 Text reference

Word 2: bit 0 always = 0

o 4

r---------------------------------, o 1 Address of label 1
1---------------------------------1

4 1 Value to be loaded into 1
1 Register 2 on GOTO 1 L------------------_______________ J

Appendix A: Control Blocks 305

Library Workspace (LWS) o 2 4

r--------------------------------, o Flags (As DSA) I offset to ONCA
fBnction --------------------------------

Space reserved for two pre-formatted DSAs
used by certain library modules.

The first LWS is generated during program
initialization. Subsequent LWSs are
allocated before entry to anyon-unit.
This is because the on-unit may require the
use of library modules using LWS but must
not alter the environment of the interrupt.

First allocation in the program management
area. subsequent allocations in the LIFO
storage stack. ONCAs are generated with
LWS.

From offset X'48' in each DSA.

306

4 Housekeeping information as for
DSA

50 56 bytes workspace

88 Flags (as DSA) I offset to ONCA

8C Housekeeping information as
for standard DSA

D8 56 bytes workspace

110 Current ONCA
L--------------------------------J

On Communications Area (ONCA)

An area in which built-in function values
or their addresses are placed, after the
occurrence of a PL/I interrupt.

!!hen G~!!~g~g

The first ONCA is generated during program
initialization. Subsequent ONCAs are
generated with each allocation of LWS.

!!~re He!.g

Contiguous with LWS in the program
management area and in the LIFO stack.

By an offset from the current generation of
library workspace. The offset is held as a
halfword at offset X'2' in LWS.

The dummy ONCA has the same format as other
ONCAs and holds default values for those
condition built-in functions that have
default values.

Flagsl

Bit 0 = 0 ONFILE invalid
= 1 ONFILE valid

Bit 1 = 0 ONCHAR/ONSOURCE invalid
= 1 ONCHAR/ONSOURCE valid

Bit 2 = 0 ONIDENT invalid
= 1 ONIDENT valid

Bit 3 = 0 ONKEY invalid
= 1 ONKEY valid

Bit 4 = 0 DATAFIELD invalid
= 1 DATAFIELD valid

Bit 5 =·0 No associated EVENT variable
= 1 Associated EVENT variable

Bit 6 = 0 ONATTN invalid
= 1 ONATTN valid

Bit 7 = 0 ONCOUNT invalid
= 1 ONCOUNT valid

Bits 8-15 unused

r------------------------------,
OIChainback to previous ONCA LOCB
1------------------------------

41 ONCODE 1 flagsl LCDE
1------------------------------

81 string locator for LOFL
1 ONFILE
1------------------------------

101 string locator for LOCH
I ONCHAR

18 string locator for LOSC
ONSOURCE

20 string locator for LOKY

28

ONKEY

string locator for
DATAFIELD

30 reserved

38 A(record I/O EVENT variable)

3C reserved

LODF

LEVT

40 ONCOUNT LCNT

44 retry environment LREN

48 retry offset LRAD

4C x'40' I X'OOOO' flags2

50 LCTl ILRAC I Unused
L------------------------------J

Bit 0

Bit 1

= 0 ONSOURCE/ONCHAR not used in
on-unit
= 1 ONSOURCE/ONCHAR used in
on-unit

= 0 ONSOURCE not set in ONCA
= 1 ONSOURCE set in ONCA

Bits 2-7 unused

~£r!

Copy of TCA flag byte 1 (TFB1)

LR8£

Retry address code

Ret!:L.Q;fs~t

The offset from the base of the library
module involved to the address at which a
conversion will be reattempted if CNSOURCE
or ONCHAR has been used.

Appendix A: Control Blocks 307

On Control Block (ONCB)

Contains pointer to associated on unit, or
indicates action to be taken when interrupt
occurs.

How Addressed

From offset X'60' in the TCA.

Static ONCBs are generated during
compilation, one for each ON statement.
Dynamic ONCBs are generated by the prologue
code of the procedure or block in which the
ON statement occurs, or are allocated in a
VDA when the ON statement is executed.

Static ONCBs are generated in the static
internal control section. Dynamic ONCBs
are stored in the DSA of the block in which
the associated on-unit occurs.

Static ONCBs are generated for unqualified
conditions. Dynamic ONCBs are generated for
qualified conditions (ENDPAGE, ENDFILE,
etc.)

o 1 2 4

r----------------------------------, 01 Address of previous dynamic ONCB 1
1 in block (or zero, if first) 1
1----------------------------------1 41 Qualifier 1
1----------------------------------1 81 Code 1 Flags 1 Unused 1
1----------------------------------1

CI Target 1
L----------------------------------J

308

static ONCB

o 1 2

r----------------------------------, 01 Code 1 Flags 1 Unused I
1----------------------------------1

41 Target I
L----------------------------------J

ACFCB) for I/O conditions ACSYMTAB) for
CHECK A (CSECT) for CONDITION condition.

PL/I code for condition

Bit 0 = SYSTEM not specified
1 SYSTEM specified

Bit 1 = Not a null on-unit
1 Null on-unit

Bit 2 = Not a GOTO only on-unit
1 GOTO only on-unit

Bit 3 = Condition not established
1 Condition established

Bit 4 Unused

Bit 5 = Condition not enabled at block
entry
1 Enabled at block entry.

Bit 6 = Condition disabled
1 Condition enabled

Bit 7 = SNAP not specified
1 SNAP specified

I2~~!:

Address of on-unit, or Offset in DSA of
word containing A(label variable)

Open Control Block (OCB)

Used to indicate that a file attribute
(either input or output) was declared in
the associated OPEN statement.

During compilation.

Static internal control section,.

!!Q~Ll~dd!:~22~Q

From an offset from register 3 known to
compiled code.

o 4

r----------------------------------, 01 NPAA 1 NPAB 1 NPAC 1 NPAD 1
1----------------------------------1 41 NDEM 1
1----------------------------------1

81 Unused 1
L----------------------------------J

This word indicates the explicit and
implied attributes on the OPEN statement.

!!yte !:!!h. H~_Y~!~~ ~ttribut~§

1 01 STREAM
02 RECORD
04 DISPLAY
10 reserved

(STRING)
80 Debug open

of SYSPRINT

2 01 SEQUENTIAL
02 DIRECT
08 TRANSIENT
10 INPUT
20 OUTPUT
40 UPDATE
80 BACKWARDS

3 01 BUFFERED
02 UNBUFFERED
04 KEYED
08 EXCLUSIVE
10 PRINT
20 AXES

4 RESERVED

ND~M-=_QE~n_2Qn!!!£t ma2~

This is a mask generated by the compiler
containing bits for all attributes which
conflict with those on the OPEN statement.

Appendix A: Control Blocks 309

Ordered Delete List (ODL)

Hold list of transient modules to be
deleted during program termination.

During program initialization.

Program Management area.

How Address~

From offset X'3a' in the TCA.

r---------------------------------------, o A (IBMBEDWA)

4 A (IBMBEDTA)

a A (IBMBKOTA)

C ACExtended float simulator)

10 A (IBMBMYEA)

14 A (IBMBMCTA)

18 A (IBMBSPCA)

1CI A (IBMBPESA)
1---------------------------------------

201 A (IBMBCCLA)

1---------------------------------------241 A (IBMBSTAB)
1---------------------------------------

281 A (IBMBEIIA) L--------------_________________ ~-------J

310

This block is initialized to binary
zeros; each routine places its address in
the appropriate field as soon as it is
loaded.

PLIMAIN

E~!1£li2!1

Holds address of entry point of main
procedure

~he~!1erateg

During compilation of procedures with the
MAIN option

A separate control section in the load
module

!!Q~_Add~g

Address resolved by linkage editor.

o 1 2 3 4

r---, 1 VCON(Primary entry point to program) I
1---1
1 zero 1
L---J

A control section in IBMBPIR and IBMTPIR
holding addresses of error message module.
This control section is link-edited if no
compiler generated PLIMAIN exists.

Appendix A: control Blocks 311

Record Descriptor (RD)

To hold data about the record variable.

During Compilation.

static control section.

From an offset from register 3 known to
compiled code.

o 1 4

r---------------------------------, o 1 A(record variable) 1
1---------------------------------1

4 1 length 1
L---------------------------------J

1. Address of the data to be written out.

2. Address of where data read in is to be

312

put.

3. LOCATE statement: Address of where to
store buffer address.

Bits 0 - 7 indicate the type of INTO or
FROM argument as follows:

X'OO' for fixed length strings
X'Ol' for area variables
X'02~ for varying length

character strings
X~03' for varying length bit

strings

Bits 8-31 length of data to be transmitted
(length of variable or buf:fer
for locate mode).

The value is in bytes for all
strings including bit strings.

For VARYING strings, the value
includes the two length bytes,
and is the current length :Eor
output operations and the
maximum length for input
operations.

Request Control Block (RCB)

Used by the record I/O interface module
(IBMBRIO) to check the validity of an I/O
statement. The instruction in RTMI is
carried out by IBMBRIO.

During compilation.

static internal control section.

From an offset from register 3 known to
compiled code.

o 1 2 3

r---------------------------------, o 1 REQl 1 REQ2 1 REQ3 1 REQ4 1
1---------------------------------1

4 1 ~~ I
L---------------------------------J

B~Q! (statement identification)

X'OO' - READ
X'04' - REWRITE
X'OS' - WRITE
X'OC' - LOCATE
X'lO' - DELETE
X'14' - UNLOCK

REQ~ (options)

X'SO' - INTO/FROM
X'40' - SET
X'20' - IGNORE
X'02' - NOLOCK
X'Ol' - EVENT

ggQ~ (options)

X'SO' - KEY
X'40' - KEYTO
X'20' - KEYFROM

REQ~ unused

Either a TM or a BR instruction
depending on source program.

A TM instruction is used if the
statement cannot be checked for validity
during compilation, or if it has been
checked and found to be invalid.

TM instruction used by IBMBRIO for
testing the validity of a statement.

X'91MM2SSS'

where MM is byte containing current
statement bit and SSS is offset of
corresponding byte in FCB statement mask.

A BR instruction is used if the
statement has been checked during
compilation and found to be valid.

Unconditional branch instruction to PL/I
library or LIOCS transmitter.

Appendix A: Control Blocks 313

Statement Frequency Count Table

To retain a record of the number of times a
statement has been branched to or from, for
use by the COUNT option.

When Gen~Q

When the associated external procedure is
entered.

Where Held

Non-LIFO storage.

How Addrg~Q

The statell1ent frequency count table for the
first.external procedure in a program is
addressed from offset X'48' in the TCA
appendage CTIA). The tables are chained
together and the chain field of the last
table set to zero. The chain field is at
offset 0 in the table. The most recently
used table is addressed from X'4C' in the
TIA.

r---------------------------------, o ACnext table ACTB

4

8
C

A(static CSECT OF PROCEDURE)

name of procedure

10 flags

14 ACfirst segment)

18 A(next segment)

lC number of entries
-----~---------------------------20 length of. segment

count entry or number

count entry

count entry or number etc
L---------------------------------J

314

ACST

ACEP

ACFL

ACBS

ACSG

ACNG

ACLG

ACBS The address held in ACBS is the
address of ACGS. If tables are
segmented, second and subsequent
sections of the table will start. at a
point equivalent to ACSG.

ACFL Flags

ACBI Bit 0

ACGT Bit 1

ACIA Bit 2
ACNM Bit 3

ACUI Bit 4
ACZL Bit 5

last update was for a branch
in
last update was for a GOTO
out of block
table inactive
table is for procedure with
GONUMBER option
table is uninitialized
table contains unexecuted
ranges

Other bits unused.

Statement Number Table

To relate statement numbers to offsets so
that statement numbers may be given in
execution-time messages.

When Generated

During compilation, if the GOSTMT option is
in effect.

static internal control section.

From offset x'S' from entry point of main
procedure.

Because offsets are held in two bytes and
the value may in fact take up to three
bytes (4096), it is necessary to hold the
table in sections.

Halfword binary right-aligned.

o 2 4

r---------------------------------, o A primary entry point of block I

4 Size of code generated for block
in bytes

S A{start of second section)

C Offset I Statement No.

Offset. I Statement No.

A{end of second section of tatle)

Offset I Statement No.

Etc,.
L---------------------------------J

•

When line numbers are generated they are
held in 6-byte fields. The first 27 bits
hold the line number, right adjusted in
binary. The last five bits hold the nurr.ber
of the statement on the line, again right
adjusted in binary.

The presence of line numbers is
indicated by bit 5 of Flags 2 in the DSA
being set to 1. The validity of Flags 2 is
indicated by bit 15 in the flags in the
first two bytes of the DSA being set to 1.
The presence of line numbers is indicated
if Qoth these flags are set to 1.

• = End of first section

Offset: Offset is the offset of the first
byte of the statement relative to
the address of the primary entry
point of the block. If the offset
is more than X'7FFF' the statement
number will be held in the seccnd
or subsequent sections of the
table. Obtain the number given by
translating the offset into binary
and ignoring the last 15 bits and
step down this number of sections
of the table. (For example, if
the offset was X'SFFF', translate
to binary = ·1000 1111 1111
1111'B, ignore last 15 binary
digits =1, therefore step down one
section of the table. If the
offset was X'lSFFF' the binary
would be '0001 1000 1111 1111
1111'B. Ignoring the 15 right hand
bits leaves '11'B therefore step
down three sections of the table.)

The address of the second section of the
table is held at offset X'S' in the table,
the address of the third section is held at
the head of the second section, the address
of the fourth section at the head of the
second section and so forth.

Appendix A: Control Blocks 315

Storage Report Table

To hold the information from which a
storage report will be generated.

During program 6r task initialization

Where Held

Program management area, or for major task
in storage associated with the control
task.

!!Q!!..MQ!:g§2ed

From X'38' in the TIA.

r-----------------------------------, o True EOS value TRES

4 Used ISASIZE TRUS

8 TRFG
flags

C ISA adjustment

Specified ISASIZE TRSS

TRUN

10 Extra storage required TREX

14 Number of GETMAINs TRGM

18 Number of FREEMAINs TRFM

1C Number of get non-LIFO requests TRGN

20 Number of free non-LIFO requests TRFN

24 Current extra storage owned TRCS

28 Current unused ISA TRUI

2C Address of tasking appendage TRTT
(multitasking only) L------------_----__________________ J

316

'10000000'B Major task table

'01000000'B Update complete (get
LIFO>

£QgE!:Q!_E~2~_E~~!~

r-----------------------------------,
o Major task - Used ISASIZE CSMU

4 Major task - Specified ISASIZE CSMI

8 Major task - ISA adjustment CSMN

C Major task - Extra storage required CSMX

10 Major task - Number of GETMAINs CSMG

14 Major task - Number of FREEMAINs CSMF

18 Major task - Number of get non-LIFO CSMH
requests

1C Major task - Number of free
non-LIFO requests

CSMJ

20 Subtasks - Max ISASIZE used by any CSXU
subtask

24 Subtasks - Min ISASIZE used by any CSNU
subtask

28 Subtasks - Specified ISASIZE all
subtasks

CSSI

2C Subtasks - Max storage required any CSXN
subtask

30 Subtasks - Min storage required any CSNN
subtask

34 Subtasks - Max extra storage any CSXX
subtasks

38 Subtasks - Min extra storage any
subtasks

CSNX

3C Subtasks - Total number of GETMAINS CSSG
all subtasks

40 Subtasks - Total number of
FREEMAINs all subtasks

44 Subtasks - Total number of get
non-LIFO requests all subtasks

48 Subtasks - Total number of free
non-LIFO requests all subtasks

CSSF

CSSH

CSSJ

4C Maximum number of PL/I tasks CSNA
attached L---------------------__ -___________ J

Stream I/O Control Block (SIOCB)

Function

Holds addresses of source and target,
source and target DEDs etc and is used as
parameter list by stream I/O routines.

During execution for the duration of the
stream I/O statement.

In temporary storage.

!!~ Adgf~§2ed

Passed as parameter list by compiled code.

o 2 4

r----------------------------------,
SSRC 0 IAddress of source or its locator 1

1----------------------------------1
SSDD 4 1 Address of source DED 1

1----------------------------------1
STRG 8 IAddress of target or its locator 1

1----------------------------------1
STDD C 1 Address of target DED 1

1---------------------------·------1
10lSFLG I STYP 1 SDSA 1 SDFL I

1----------------------------------1
SFCB 141 Address of FCB for file 1

SRTN 18 Address of next statement

SAVE lC Save word used in compiler
generated subroutines

SCNT 20 Value of COUNT 1 Unused
built-in functn.1

SOCA 24
28

SSTR

Address of ONCA

IArea used during GET or PUT string
Ito hold dummy FCB.
L----------------------------------J

Flag Byte SFLG

Bit 0 = 1 Transmit on input

Bit 1 = 1 VDA used in edit-directed input

Bit 2 = 1 IBMBSED is used

Bit 3 = 1 call to IBMSIST required after
dealing with next item (Stream I/O
only>

DSA level number (used only for data­
directed I/O)

Bit 0 = 1 data-directed I/O

Bit 1 = 1 list-directed I/O

Bit 2 = 1 edit-directed I/O

Bit 3 1 string I/O

Bit 4 = 1 CHECK entry to data-directed
I/O

Bit 5 = 1 input

Data-direc~~g_f!2g_§DF~

Bit 0 = 1 Terminating call to data­
directed output

Appendix A: Control Blocks 317

String Locator/Descriptor

Used to pass the address and the length of
strings to other routines. Also for
handling strings with adjustable lengths
(e.g., DCL STRING CHAR (N».

Storage reserved during
compilation. Fields completed during
execution if string has adjustable length.

static internal control section.

How Addressed
~----

From an offset from register, 3 known to
compiled code.

o 1 2 3 4

r-------------------------------------,
01 Byte address of string I
1-------------------------------------1

41 Allocated length IFI unused F21
L-------------~-----------------------J

318

F = '0' B Fixed string (First bit of
second byte)

'1' B Varying string

F2 Used for bit strings to hold offset
from byte address of first bit in
string (3 bits)

For varying strings this is the declared
length. Length is held in bits for bit
strings and in bytes for character strings.

string Descriptor

The string descriptor is the second word of
the string locator/descriptor. It appears
in structure descriptors and in the
description field of controlled variables.

Structure Descriptor

contains information about the offset of
each element within a structure, and the
nature of each element. Used when passing
a structure to another routine, or for
accessing structure elements during
execution, if the structure is declared
with adjustable extents or with the REFER
option.

If the structure has no adjustable
elements, during compilation. If the
structure has adjustable elements, during
execution from information held in the
aggregate descriptor descriptor.

Static internal control section.

!!~ Addf~§§.ed

From an offset from register 3 known to
compiled' code.

For each base element in the structure, a
fullword field containing the offset of the
start of the element from the start of the
structure is given. If the base element is
a string, area, or array, this fullword is
followed by the offset field for the next
base element.

o 4

r-------------------------------, 01 Offset of element from start
1 of structure
1-------------------------------41 Descriptor of element if
1 element requires descriptor
1-------------------------------81 Offset of element from start
1 of structure

C Descriptor of element if
element requires descriptor

etc

For every base element in
the structure, an entry is
made consisting of an
offset field and, if the
element requires a descrip­
tor, a descriptor.

L-------------------------------J
Off.2~~

The offset field is held in bytes~ Any
adjustments needed for bit-aligned
addresses ar~ held in the respective
descriptors.

Appendix A: Control Blocks 319

Symbol Table (SYMTAB)

Holds the name of the variable during
execution and associates it with the
address of the variable. Used only when
data-directed I/O or the CHECK condition is
specified.

During compilation, if data-directed I/O or
the CHECK condition is used in the program

static internal control section for
internal names. separate control section
for external names. External control
sections consist of the name followed by an
*.

From an offset from register 3 for internal
data, by an address generated by the
linkage editor for external data.

o 2 3 4

r---------------------------------------,
8 Flags I Dimension I Level

I ality I number

4 A(DED)

8 Address field A

C Address field B I Address field C

10 Length of name I
------------____ J

Name (fully qualified)
L---------------------------------------J

E!29.§

Bits 0,1 & 2 = 'OOO'B STATIC

320

= '100'B AUTOMATIC
= '010~B CONTROLLED
(not param.)
= • 001"B BASED
= ~Oll'B DEFINED
= "101'B a non-CONTROLLED
parameter
= ~111'B a CONTROLLED
parameter

Bit 3 = 'l'B EXTERNAL
= loeB INTERNAL

Bit 4 = 'l'B item may appear in some
CHECK list
= 'O'B item appears in
no CHECK list

(Bit 4 must be 'l'B if item is EXTERNAL).

Bit 5 = 'l'B Address field A refers to data
= loeB Address field A refers to

locator

(Bit 5 must be loeB for a CONTROLLED
parameter)

Bit 6 = 'l'B a member of a structure
= 'O'B not a member of a structure

Bit 7 = 'l'B Normal SYMTAB
= loeB Short SYMTAB (has fields A, B

and C omitted)

Bit 8 = '1" B Address field A addresses code
= 'O'B Address field A does not

address code

Bit 10 Always set to 0

Bits 11 - 15 reserved: must be set to
'O'B.

The number of dimensions declared for an
array item. Dimensionality is ze:ro for
other items.

(for AUTOMATIC, DEFINED, and BASED
items. Also for all parameters.) The
level of the block in which the variable
is declared. The level of a block is
one greater than the level of the
immediately containing block; the level
of the external block is o.

Addresses are held in different formats for
different data types. As far as possible,
addresses are held in address field A.
However, more information than can be held
in a fullword field is sometimes required.
when this is the case, address fields Band
C are used.

Adg~~ fi~ld~

If STATIC Address of data or address of
locator for items that have
locators.

If AUTOMATIC Offset within the associated
DSA of the data or of the
locator for items that have
locators.

If CONTROLLED Offset of the data or its
locator from the address in
the anchor word.

If BASED Offset of field within DSA
containing address of
declared pointer qualifier.

If PARAMETER or DEFINED Offset of one word
field in associated DSA
containing address of
corresponding argument, or
DEFINED data, or its locator.
For CONTROLLED parameters, the
argument is its anchor word.

Address field B Used for CONTROLLED and
-------------SASED items only.

If CONTROLLED Address of anchor word,
either in static internal for
internal data or in a separate
CSECT for external data.

If BASED See below.

Other data Not used for other data types.
Set to a null value of all

zeros.

Address field C Used for BASED and
-------------Structure elements only.

If STRUCTURE (Not BASED structure) Offset
from start of structure
descriptor to field that holds
offset of element from start
of structure. see "Structure
Descriptor."

If BASED STRING, BASED STRUCTURE, BASED
ARRAY, or BASED AREA, For
all items except structures.
fields Band C hold the offset
(right justified) of the
descriptor from the start of
the DSA in which it is held.
For structured items, the
offset is to the offset word
in the structure descriptor.
This word holds the offset of
the item from the start of the
structure. See "Structure
Descriptor".

Other data Not used for other data types.
set to a null value of all
zeros.

~~ng!n Length is the number of characters
in the fully qualified name.

Appendix A: Control Blocks 321

Symbol Table Vector

Holds addresses of symbol tables and
associates them with the block in which the
associated names were declared.

During compilation.

Where Held

static internal control section.
o 4

r--, o A(symbol table)

4 A(symbol table)

8 full word of zeros

C A(of entries in symbol table vector
of encompassing block). All zeros
for main procedure block

etc. L-----________ ---------------------------J

322

From an offset from register 3 known to
compiled code.

The format of symbol table vector is a
series of fullwords. These contain either:

1. The address of a symbol table

or

2. The address of the entry in the symbol
table vector of the start of the
entries for the encompassing block.

or

3. A fullword of zeros indicating the end
of the current block.

<--marks end of
block.

Task Communications Area (TCA)

Acts as a central communications area for
the program. Contains addresses of
essential routines and control blocks, and
various flags. (See chapter 5).

When Generated

During program initialization by IBMBPIR.

Where Held

In the program management area at the head
of the initial segment area (ISA).

HSllt Add~~2§~9

From Register 12

o 1 2 3 4
r-----.----------------------------,

o 1 TFBO 1 TFB1 1 TFB2 1 TFB3
1---------------------------------

4 1 A(PRV) TPRV

8

C

10

14

18

1C

20

24

28

2C

Segment #1 BOS
IBeginning of Segment
1 Pointer

TBOS

Segment #1 EOS TEOS
lEnd of Segment Pointer

Unused

A(current event variable)

A(External Save Area) ITESA
---------------------------------1

A(TRT Table) ITTRT
---------------------------------t

Task Level ITTIC
---------------------------------1

A(Current Task Variable) ITTSK
-------------------------~-------I

A(TCA appendage) ITTIA
---------------------------------1

A(Tasking Appendage) TTTA

30 A(Save Area for Overflow Routine) TPSA

34 Open File Chain Anchor TFOP

38 A(Ordered Delete List) TODL

3C Unused TBUG

40 A(Diagnostic File Block) TDFB

TORC PL/I Return
44 Code

User Return
Code

------~---------------~-------~--
48 A(Overflow Routine for Get VDA)

------------~---------------~-~--
4C A(Flow stmt number table)

TURC

TOVV

TSFT

50

54

58

5C

60

64

68

6C

70

74

78

7C

80

F4

F8

FC

1---------------------------------1
1 A(Tab table) ITTAB
---------------------------------1

A(Flow module) I TEFL
---------------------------------1
A(LPA Module - Region) TPSR

A(LPA Module - LPA) TPSL

A(LPA Module - LPA) TPSM

PRV Initialization Word TPRI

Unused

A(Get Dynamic storage Routine) TGET

A(Free Dynamic storage Routine) TFRE

A(Overflow Routine for Get DSA) TOVF

A(Error Handler) TERR

Environment Description TENV

Normal GOTO Code TGTC
Used when GOTO out of block rray
occur

A(Interpretive GCTO routine) TGTM

A(Get control routine) TGCL

A(Free.control routine) TRCL

100 Dummy ENQ routine field TEQR

TDQR 104 Dummy DEQ routine field

108 A{WAIT routine) TAWT

10C IA(COMPLETION pseudovariable TACP
1 routine)
1---------------------------------

110 I A(EVENT assign routine> TAEA
1---------------------------------

114 IA(priority routine) TAPR
1---------------------------------

118 IA(ENQ/DEQ routines) TEDR
1---------------------------------

11C IReserved for users TUSR
L-----------~---------------------J

TENV Is a field used to define PL/I library
modification level.

TRLR is the resident library release
number.

TTLR is the transient library release
number.

TUSR Is a field reserved for the use of
programmers using the PL/I Optimizing
and Checkout compilers. Any user
routine may use this field as a base
for addressing.

Appendix A: Control Blocks 323

TFLG contains flag bytes TFBO, TFB1, TFB2,
and TFB3.

TTIS Bit 0 = 0

TTTT Bit 1 = 0
1

TTCK Bit 2 =

Major Task 1 Subtask

Program will not multitask
Program may multitask

Reserved

TTFT Bit 3 = 0 Not eldest task from
attaching DSA 1 Eldest task

TTFD Bit 4 = 0 No daughter tasks exist 1
Daughter tasks exist

~ot~: This flag byte is the only one in
the TCA used by the central task without
synchronising with the subtask. The
subtask must never change it. This
prevents interference between CPU's on a
multiprocessing machine.

Ela~y~g_! - TFBl

TGFD Bit 0 = 0 No daughter tasks 1 At
least one daughter task may
exist

TGFE Bit 1 = 0 No active EVENT I/O ON
units 1 At least one active
EVENT I/O ON unit

TGFV Bit 2 = unused

TGFS Bit 3 = 0 SORT routine inactive 1
SORT routine active

TGNQ Bit 4 = 0 SYSPRINT not ENQed 1
SYSPRINT ENQed by this task

324

Bit 5 = 1 Task ending

THQS Bit 0 = 0 Do not raise SIZE for
fixed-point divide, fixed­
point overflow, exponent
overflow, or decimal overflow

1 Raise SIZE if one of these
exceptions occurs

THQI Bit 1 = 0 Do not ignore fixed-point
divide, fixed-point overflew
or exponent overflow 1 Ignore
any of these exceptions

Bits 2-4 Reserved

Bit 5 1 File associated with SIZE

THQR Bit 6 = 0 Normal action on normal
return from on-unit 1 Return
to caller after normal return
from on-unit

THQC Bit 7 = 0 Not I/O Conversion 1 I/O
Conversion

TMDF Bit 0 = Reserved

Bit 1 = 0 Prompt required
= 1 prompt not required

Bit 2 Reserved
Bit 3 = Reserved
Bit 4 = Reserved
Bit 5 = 0 Not implied SKIP nex·t

= 1 Implied SKIP next
Bits 6-7 Reserved

TeA Appendage (TIA)

To hold control and communication
information.

During program initialization.

Program management area. Addressed from
offset X'28' in the TCA.

!!Q!l Add~~~Q

From X'28' in the TCA.

o 1 2 3 4

r---------------------------------,
o A(Byte beyond ISA) ITISA

---------------------~-----------I
4 A(Old PICA) ITAPC

---------------------------------1
8 A(Interrupt Handler) TERA

C Interrupt Mask I Flagsl I Flags2 TINM

10

14

WIT Chain Anchor

Anchor for chain of
exclusive blocks

TWTW

TEXF

lC A(Last free area) TLFE
1---------------------------------

201 A(Dump Block) TDUB
1---------------------------------

241 A(Dummy DSA) ITDDS
1---------------------------------1

281 A(Get LWS code) ITLWR
1---------------------------------1

2CI A(Extended float simulator) ITASM
---------------------------------1

30 TwQ_~QfQ§ for name of I TSNM
extended float simulator I

---------------------------------1
38 A(Storage for report info.) ITASR

---------------------------------1
3C Chain of fetched entry points TFEP

40 A(Stae Exit routine) TAST

44 A(Housekeeping interrupt routine) TERC
(ERRC)

48 A(first count table) TCTF

4C A(last count table used) TCTL
1---------------------------------

501 A(TCA), used by error handler TATC
L---------------------------------J

~!~g2L=_!~!!!

TFLA Bit 0 1 Task terminated normally
TFLS Bit 1 1 SYSPRINT open
TFLJ Bit 2 1 STAE exit in progress
TFLK Bit 3 1 Dump I/O in progress

FI~gs2

TFLD Bit 0 ' l' B caller provided ISA
TFLR Bit 1 = 'l'B storage report required
TFLT Bit 2 ' l' B STAE required
TFLP Bit 3 'l'B SPIE required
TFLX Bit 4 'l'B Syntax error in program

management options

Appendix A: control Blocks 325

TeA Tasking Appendage (TT A)

To hold control and communication
information used in multitasking programs.

When Generated

During program initialization.

Program Management area.

!!Q!!_Adg!:~§2ed

From X'2C' in the TCA.

r------------------------------,
01 POST ECB TPEC
1------------------------------

41 PLIST for Control Task TCTP
1 (2 words)
1------------------------------

C WAIT ECB TWEC

10

14

18

lC

20

24

28

A (TCB)

A(ECBLIST element)

A(TCA)

Reserved

Chain of sister tasking
appendages

Anchor for subtask sister
chain

Anchor for I/O EVENT chain

TTCB

TAEE

TTCA

TSIS

TSUB

TIOE

2CI A(Attaching DSA) TDSA
1------------------------------

301 A(task invocation point) TALR L------------__________________ J

326

po§~ cog~§_~Q_£QBtrol Tas!

o Completion pseudovariable
4 EVENT assignment
8 PRIORITY pseudovariable

12 I/O EVENT completion
16 WAIT termination
20 Detach this block
24 Dedicate control task
28 Liberate control task

Task Variable (TV)

To hold information about task

~h!!!L~~~te2

Depends on storage class

Depends on storage class

How Addressed

From offset X~24' in the TCA.

o 1 2 3 4

r--,
OIFlagsl I Flags2 1 Priority I
1--1

41 A (SYMTAB) I
1--1

81 A(TCA Tasking Appendages) I
I---------------------~------------------I

CI A(calling PROCEDURE) I L-------------___________________________ J

Bit 0 = 0 Inactive 1 Active

~!~g2~

Bit 0 = 0 Not a dummy
1 Dummy

Bit 1 = 0 Symbol table does not exist
Symbol table exists

Appendix A: control Blocks 327

1

Wait Information Table (WIT)

Used to hold information about a WAIT
statement

When the WAIT statement is initiated

~he~!9

In the LIFO stack

328

From X'lO' in the TIA.

r---------------------------, 01 Chain Back IWCHB
1---------------------------1 41 A (EVTAB) IWAET
1---------------------------1

8lA(Byte beyond EVTAB) IWABT
1---------------------------1

CI Reserved 1
L---------------------------J

Zygo-lingual Control List (ZCTL)

To hold information required for
interlanguage calls. Holds information
that does not change for every invocation.

On the first interlanguage call.

In the LIFO stack if PL/I is main
procedure. If COBOL or FORTRAN are
principal procedures, at the head of the
unused portion of the region immediately
before the TCA.

From offset X'O~ in IBMBILCI.

r---------------------------------------, o A(latest interlanguage VDA)

4 Flag I
Byte I

or zero

A (PIlI FICA)

8 A(COBOL PICA)

C A(FORTRAN PICA)

10 COBOL INTER1 PICA
(2 words)

18 FORTRAN INTER1 PICA
(2 words)

24 A(TCA)

28 A(TCA appendage)

30 Save Area 1 (22 words)
Used by IBMBIEPA and IBMBIEFA

A(PL/I STAE Exit routine)

Ghost Save Area (4 words)

Save Area 2 (18 words)
Used as DSA when principal
procedure not PL/I

Save Area 3 (18 words)
Used internally by IBMBIEPA
if principal procedure not PL/I
L---------------------------------------J

1 The "INTER RICA- is a PICA used if the
INTER option is specified.

NO~~: Beyond offset X'30' only the save
areas needed are acquired.

When the first call is made from PL/I to
COBOL, only the first 30 bytes are
acquired. the first 30 bytes plus save
area are acquired.

When the first call is made from COBOL
or FORTRAN to PL/I, the complete area shown
is acquired.

Bit 0 = 1 If there is a previous call to
COBOL

1 = 1 If there is a previous call to
FORTRAN

6 = 1 STAEs will be issued 0 STAEs not
issued

7 = 1 SPIEs will be issued 0 SPIEs
not issued

Bits 3, 4 and 5 unused

Appendix A: Control Blocks 329

abnormal 30TO 30
code in TCA 70
library subroutine IBMBPGO 30

abnormal termination (multitasking) 266
access method

record I/O 127
stream I/O 153

activating blocks 24
actual origin (~O) 53
address constants 17
addressing beyond 4K limit 21
aggregates 23

(see also structure; array)
address 53
arrays of structUres 23
COBOL 250
descriptor descriptor 57,274
FORTRAN 250
interlanguage arguments 233,250
locator 54-56,275

alignment in structures 250
alignment requirements 18
ALL built-in function 191
allocation of storage 75-85
AND logical operation 191
ANY built-in function 191
AO (actual origin) 53
areas

address 54-56
control block 273
descriptor 272
locator/descriptor 54-56,272
storage management 84

arguments lists 30
arrays

assignments 23
descriptor 216
descriptors 23
FORTRAN 250
implementation of 23
in stream I/O 174
interlanguage communication 233
interleaved 190
of structures 23,54-56

arrays of structures 23
arrays 23
assignments 23
implementation of 23

ASSEMBLER - PL/I communication 251
ASSEMBLER option 251
attaching a task 264
attributes, data 53
AUTOMATIC variables 19

in dump 226
storage 16

backchains
dynamic 26
static 26

base element 54-56
base registers

DSA pointer 17
progran base 17
static base 17
TC~ pointer 17

BASED storage 20,75
BASED variables 20

in dump 226
storage 75

Index

beginning of segment (BOS) pointer 69
BIT data

string assignment subroutine
(IBMBBGF) 191

unaligned strings 189
block enable cells 100
blocks

activation 24
termination 24

BOOL built-in function 191
BOS (beginning of segment) pointer 69
bounds, adjustable 53
branches, rationalization of 38
buffer pointers (stream I/O) 156
built-in functions

arithmetic 189
array handling 189
condition 97
DATE 192
library subroutines 189
mathematical 189
stream I/O 174
string handling 189
structure handling 189
TIME 191

C format item DED 281
CALL statements 26
CALL .••• TASK failure 266
calling trace

following through dump 219
obtaining 210

chain, free-area 71
CHECK condition 105
CHECK prefix 105
checkpoint/restart facility 197
CLOSE statement 143,121
closing files

explicit closing 143~121
implicit closing 143
library subroutines 143

COBOL
COBOL-PL/I communication 242-246
option in ENVIRONMENT attribute 251
structure mapping 250

Index 331

COBOL (continued)
ZERODIVIDE on-unit 246

COLUMN format option 171
common ex~ression, elimination 34
commoning 36,38
communication

between languages 231-253
between routines 53-66

compare-aligned-bit-string subroutine
(IBMBBBC) 191

compare-unaligned-bit-strings subroutine
(IBMBBGC) 191

compilation 1
compile-time OED 57
compiler generated subroutines 33
compiler options

AGGREGATE 12
ESD 12
FLOW 12
LIST 12
MAP 12
OFFSET 12
SOURCE 12
STORAGE 12

compiler output 11-38
compiler-generated subroutines 168,179
COMPLETION built-in function 198
COMPLETION pseudovariable .198
completion values, multitasking 268
concatenate-character-strings subroutine

(IBMBBCK) 191
CONDITION condition 107
conditions

default values 97
defaults 89-90
enablement 89-90,105
general 97
implementation in general 93-108,93
name abbreviations in dump 210
record IIO 145,144
values in dump 219

consecutive buffered files 127,146
constants 18
constants pool 18
control blocks

formats 271-329
locating in dump 227

control format items 168
OED 280,281

control sections 11-38
control task

general 255
controlred variable block 20
CONTROLLED variables 20

control block 277
header information 20

conversational files 177
conversion 181-189

CONVERSION condition 188
hybrid 187
in-line conversions 185
library subroutines 181-182
multiple 187
ONCA 175
ONCHAR functionlpseudovariable 175
ONSOUR:E functionlpseudovariable 175
stream IIO 160

CONVERSION condition 174,188

332

COUNT function 174
COUNr option 120
CSECT (control section) 11-38
current enable cell 99

data
internal representation 181
interrupt 88

data element descriptor (OED)
formats 278-281
general description 57

data format item 168
data interrupt 88
data list matching 169
data set interchange between PLII and

COBOL 251
data-directed IIO 168-169
DATAFIELD built-in function 174
DATE built-in function 192
DCLCB see declare control block
decimal overflow interrupt 103
declare control block (DCLCB)

format 282
general 125,127

DELAY statement 192
dequeuing on SYSPRINT 270
descriptors 53-62

aggregate desc~iptor
descriptor 54-56,274

area 54-56,272
array 54-56,276
string 54-56,318
-structure 54- 56,319

detatching a task 266
DFB (diagnostic file block) 107~283
diagnostic file block (DFB) 108,283
diagnostic statement table (DST) see
statement number table

director routines in stream IIO 160
list of 179

disablement of conditions 99
DISPLAY statement 192
DO loops 32
DST (diagnostic statement table) see
statement number table

DUB (dump block) 286
dummy arguments in interlanguage

communication 250
dummy DSA 72
dummy FCB 22
dummy ONC!\

chaining 97
descri~tion 71
format 307
introduction 71

dummy sections 21
dump block (DUB) 286
dump control module (IBMBKMR) 109
dump debugging procedures 212~215
dumps

contents 210
debugging with 205-228
file 112
implementation 109-112
obtaining 207
options 207
subroutines that generate 109

dynamic backchain 26
dynamic descendency 87
dynamic ONCB 100
dynamic storage area (DSA) 75-85

associating DSA with block 219
contents for compiled code DSA 25
dummy 72
format and function 284
forwar~ chain in dump 224
IBMBERR's DSA in dump 213
initialization 65
uses 75

E format item DED 280
ECB list 264
edit-directed 1/0 169-174

arrays 174
compiler-generated subroutines 179
control format items 168
data format items 168
FED 168
format DED 168
format list 168
format option handling 173
GET statement 168
library director modules 178
matching data and format lists 173
non-matching data and format lists 173
PUT statement 168

element, base 53
element, structure 53
elimination of unreachable statements 36
enable cells 99
enablement of conditions 99
enablement status 28
end of extent, offset to (OEE) 85
end of file 145
end of segment (EOS) pointer 69
END statement 27
ENDFILE condition

detecting 96
record 1/0 145
stream I/O 174
summary information 88

ENDPAGE condition 88
enqueuing on SYSPRINT (reason for) 270
ENTRY data control block 287
entry points

addresses in ~ump 218
conversion subroutines 182
library subroutines 40-50
load module 11
main procedure 11

ENTRY statement in interlanguage calls 231
environment

definition 3
FORTRAN 233
initialization 65-69
interlanguage communication 238
SORT 192

ENVIRONMENT attribute COBOL option 251
environment block (ENVB)

format 288
record I/O 128
stream I/O 154

EOS (end of segment) pointer 69
epilogue code 24

epilogue code (continued)
example 26

error codes, list of 211
ERROR condition 88,211

on-unit and dumps 215
error handling during execution 87-121

error code 97,211
error handling subroutine

IBMBERR 102,107
error message modules 107
event 1/0 140
finding the block entry-point
address 107

FORTRAN 247
record 1/0 145
stream 1/0 174

error identification
address in dump 218
using ~ump in general 205-228

ESD records
definition 11
for conversion modules 182

established on-units 100
event control block (ECB) 256-257,202
event 1/0 132-135
event table (EVTAB) 289
event variables 197,290

control block format and function 290
exclusive block IOCB (XBI) 291
exclusive file block (XBF) 292
exclusive 1/0 140
execute interrupt 88
execution time options

handling 68
PLIXOPT 68

exit table, SORT 197
explicit open

stream 1/0 153
exponent overflow interrupt 88
exponent underflow interrupt 88
extent, offset to end of (OEE) 85
external conversion director modules 180
EXTERNAL data 65
external reference, weakCWXTRN) 44

F format item DED 280
FCB see file control block
FCBA field in FCB 156
FCPM field in FCB 175
FED (format element descriptor)

format 280-281
FEFT field in FCB 145
FEMT field in FCB 145
FERM field in FCB 145
fields, locating in dump 227
file control block (FCB) 128

FCBA field 156
FCPM field 175
FEFT field 145
FEMT field 145
FERM field 145
fields for buffer operation 156
format and function 293-296
FREM field 156
general description 128
record 1/0 295
stream I/O section 296

Index 333

filenames 127
files

addressing 21
closing 143,127
conversational 177-178
declaration 125,127
declaration with COBOL option 251
exclusive 143
filename 127
implicit opening 144,127
information in dump 211
opening, explicit 128
record v.ariable 130

FINISH condition 69,90
fixed-point data

binary 181
decimal 181
DED 279

FIXEDOVERFLOW condition 88
floating-point data

binary 181
decimal 181,185
divide interrupt 88
underflow interrupt 103

floating-point registers
saving 103
usage 19

FLOW compiler option 118-121
library subroutine IBMBEFL 114

flow of control 24-30
flow statement table (FST)

format 297
format element descriptor (FED)

description 61
format and function 280

format items 173
format list matching 173
format option handling 171
formatting modules in stream I/O 180
formatting, conversational files 177
FORTRAN interrupt 247
FORTRAN-PL/I communication 246-248
free control routine 266
free decimal 184
free-area chain 79
freeing storage 75-85
FREM field in FCB 156
function references 27
fundamental in-line conversions, list
of 185

get control routine 266
GET DATA sta~ement

implementation in general 160,168-169
symbol tables and symbol table
vectors 61

GET LIST statement 168
GETIME macro instruction 192
GOTO only on-units 30
GOTO statement 27-29

label variable 29
out of block 28
within block 28

hardware interrupts see program check

334

interrupts
hexadecimal dump module (IBMBKDO) 109
hierarchy of tasks 255
hybrid conversion 188

I/O
record 125-151
stream 146
stream conditions, detecting 96

IBMBAAH 191
IBMBAIH 189-190
IBMBAMM 191
IBMBANM 191
IBMBAPC 191
IBMBAPE 191
IBMBAPF 191
IBMBAPM 191
IBMBASC 191
IBMBASE 191
IBMBASF 191
IBMBAYE 191
IBMBAYF 191
IBMBBBA 191
IBMBBBC 191
IBMBBBN 191
IBMBBCI 191
IBMBBCK 191
IBMBBCT 191
IBMBBCV 191
IBMBBGB 191
IBMBBGC 191
IBMBBGF 191
IBMBBGI 191
IBMBBGK 191
IBMBBGS 191
IBMBBGT 191
IBMBBGV 191
IBMBEFL 118-121
IBMBERR

DSA in dump 213
general 102-106

IBMBESM 106-109
IBMBESN 106-109

messages 106-109
IBMBIEC 242-246
IBMBIEF 246-248
IBMBIEP 248-250
IBMBILCl (interlanguage root control
block) 238,298

IBMBJWT 198
IBMBMXE 190
IBMBMXL 190
IBMBMX5 190
IBMBMXW 190
IBMBMXY 190
IBMBMXZ 190
IBMBMYE 190
IBMBMYL 190
IBMBMYS 190
IBMBMYX 190
IBMBMYY 190
IBMBMYZ 190
IBMBOCA 126
IBMBOCL 126
IBMBOPA 126
IBMBOPB 126
IBMBOPC 126

IBMBPAF, controlle~ variable allocation 20
IBMBPAM 85
IBMBPEP - exceptional error message
director 112

IBMBPEQ - NO MAIN PROCEDURE message 112
IBMBPER - NO STORAGE message 112
IBMBPES - ABEND analyzer 112
IBMBPET - abnormal interrupt message 112
IBMBPEV - ABEND analyzer 112
IBMBPGD 82
IBMBPGO, interpretive GOTO 30
IBMBPGR, storage management 79-82Z
IBMBPII 68
IBMBPIR 68
IBMBPSL 44
IBMBPSM 44
IBMBPSR 44
IBMBRAA regional seq output trans 126
IBMBRAB regional seq output trans 126
IBMBRAC regional seq output trans 126
IBMBRAD regional seq ou~put trans 126
IBMBRAE regional seq output trans 126
IBMBRAF regional seq output trans 126
IBMBRAG regional seq output trans 126
IBMBRAH regional seq output trans 126
IBMBRAI regional seq output trans 126
IBMBRBA regional seq in/upd trans 126
IBMBRBC regional seq in/upd trans 126
IBMBRBD regional seq in/upd trans 126
IBMBRBE regional seq in/upd trans 126
IBMBRBF regional seq in/upd trans 126
IBMBRBG regional seq in/upd trans 126
IBMBRCA unbuffered consec trans 126
IBMBRCB unbuffered consec trans 126
IBMBRCC unbuffered consec trans 126
IBMBRDA regional direct non-"exc trans
IBMBRDB regional direct non-exc trans
IBMBRDC regional direct non-exc trans
IBMBRDD regional direct non-exc trans
IBMBREA record I/O error module 126
IBMBREB record I/O error module 126
IBMBREC record I/O error module 126
IBMBREF ENDFILE module 126
IBMBRIO record I/O interface 126

description of functions 126
parameter list 130

126
126
126
126

IBMBRJA indexed seq in/upd trans 126
IBMBRJB indexed seq in/upd trans 126
IBMBRKA indexed direct no-exc trans 126
IBMBRKA indexed direct non-exc trans 126
IBMBRKB indexed direct non-exc trans 126
IBMBRKC indexed direct non-exc trans 126
IBMBRLA indexed direct non-exc trans 126
IBMBRLB indexed direct non-exc trans 126
IBMBRQA buffered consec non-spanned
trans 126

IBMBRQB buffered consec non-spanned
trans 126

IBMBRQD buffered consec non-spanned
trans 126

IBMBRQE buffered consec input spanned
trans 126

IBMBRQF buffered consec output spanned
trans 126

IBMBRQG buffered consec update spanned
trans 126

IBMBRTP teleprocessing input trans 126

exc regional direct upd/input
126
exc regional direct upd/input
126
exc regional direct upd/input
126
exc regional direct upd/input
126
exc indexed direct upd/input
126
exc indexed direct upd/input
126

IBMBRXA
trans

IBMBRXB
trans

IBMBRXC
trans

IBMBRXD
trans

IBMBRYA
trans

IBMBRYB
trans

IBMBRYB
IBMBRYC
trans

IBMBRYD

exc indexed upd/input trans
exc indexed direct upd/input
126

trans
IBMBSAI
IBMBSAO
IBMBSCI
IBMBSCO
IBMBSCP,
IBMBSCV
IBMBSDI
IBMBSDO
IBMBSED
IBMBSEl
IBMBSEO
lBMBSFl
IBMBSFO
lBMBSIC
IBMBSIl
IBMBSIO
lBMBSIS
lBMBSLl
lBMBSLO
lBMBSOC

exc indexed direct upd/input
126

180
180
180
180
COpy module 175,180
180
179-180
179-180
179-180
179-180
179-180
180
180
177
179
179
180
179-180
179-180
177

lBMBSOF stream output
trans 126~179-180

lBMBSOU stream output
trans 126J 179-180

lBMBSOV 179-180
lBMBSPC 177,180
IBMBSPl 180
lBMBSPL 179-180
lBMBSPO 180
lBMBSTAB 171

file

file

IBMBSTF stream output print file
trans 126,179-180

126

lBMBSTl str~am input trans 126,179-180
lBMBSTU stream output print file
trans 126,180

IBMBSTV stream output print file
trans 126,179-180

IBMBSXC 180
lBMTJWT wait module multitasking
lBMTPIR 260
lBMTPSL 44
lBMTPSR 44
IELCGBB, test for '1'
IELCGBO, test for '0'
lELCGCB, compare long
lELCGCL, compare long
IELCGlA, stream input
IELCGlB" stream input
lELCGMV, move long 33
lELCGOA, stream output
lELCGOB, stream output

bits
bits
bit

33
33
33

33
33

34
33

33

269

Index 335

IELCGOC, stream I/O X format items 33,171
IELCGON, dynamic ONCB chaining 33
IELCGRV, revert VDA chaining 33
implicit close in record I/O 143,127
implicit open

record I/O 127,144
stream I/O 156

in-line conversion 183-185
example of 186
list of fundamental types 185

in-line record 110 146
INDEX built-in function 191
indexing interleaved arrays 190
initial storage area (ISA) 8,68,75,75-78
initialization

FORTRAN 238
PL/I 65-69
program 65-69
stream 1/0 subroutines 178

input/output control block (IOCB) 301
instruction, associating with module 218
INTER option 242
interlanguage communication 231-253

aggregate arguments 231-252,250
arrays 250,233
ASSEMBLER option 251
basic rules 231
COBOL option of ENV attribute 251
control blocks 238
FORTRAN calls PL/I 248
IBMBILCl 238
interrupt handling 247,249
interrupt in COBOL 246
interrupt in FORTRAN 247
interrupt in PL/I 249
NOMAP option 250
NOMAPIN option 250
NOMAPOUT option 250
PL/I calls COBOL 242
PL/I calls FORTRAN 246
principles 233
storage 250
structures 250
use of locators 233
VDA 238
ZCTL 238

interlanguage root control block
IBMBILC1) 298

interlanguage VDA 299
internal form of data types 181
interpretive code, need for
interpretive GOTO routine IBMBPGO 30
interrupt control block (ICB) 300
interrupt handling 87-121

COBOL 246
event I/O 143
FORTRAN 247
library subroutine IBMBERR 102-106
return from 104

interrupt identification using
dump 205-228

in library module 224
interrupt address 215

invert-aligned-bit-string subroutine
(IBMBBBN) 191

IOCB (input/output control block) 301
ISA (initial storage area) 68,75

multitasking 85

336

KEY condition 88
key descriptor (KD) 130,304
key variable 135

label data format 305
label variables

errors when using 30
format 305
general description 29

last free area (rLFE) 71
last-in/first-out (LIFO) storage 15-80
library calls 32

addressing 32
example of calling sequences 32
general 30
mnemonic letter usage 32
within TCA 32

library subroutines 31-32
arithmetic 189
array handling 189-191
computational 189
conversion package 181
in record I/O 126
in stream I/O 179
mathematical 189
naming conventions 32
string handling 189
workspace 42

library workspace (LWS)
description 42
format and function 306

LIFO (last-inlfirst-out) storage 75-79
LINE format option 171
link-editing 65
list-directed I/O 160
listing conventions 15
load module

entry point 11
LOCATE statement 125,130-132
locators 53-60

aggregate locator format and
function 275

area locator/descriptor format and
function 272

string locator/descriptor format and
functi on 318

logical operation subroutines 191

main procedure
no main procedure 65
termination 69

major free area 16
modification of do-loop control 38
module, object 11
movement of expressions out of loops 34
multiple conversion 188
multitasking 255-270

completion values 268
following chaining in dump 225
housekeeping 256
ISA acquiring 85
library 260
POSTCODES 256
priority 256
reading dumps, general 228
TCA tasking appendage (TTA) 256,326

multitasking (continued)
WAIT statement 268

NAB (next available byte)
NAME condition 174,88
naming of library modules
next available byte (NAB)
NOCHECK prefix 105,106
NOCONVERSION prefix 188
NOMAP option 250
NOMAPIN option 250
NOMA POUT option 250
non-LIFO storage 76,79
NOSPIE option 68
NOSTAE option 68
null on-unit 102
NULL values 21

object module 11

pointer

32
pointer

76

76

object program listing, contents 15
object program listing~ example 14
OCB see open control block
OCCURS (COBOL) 250
OOL (ordered delete list) 310
OEE (offset to end of extent) 85
offsets null value 21
ON CHECK 106
ON communications area (ONCA)

chain in dump 223
description 97
dummy 97
format and function 307

ON control block (ONCB)
description 100
format and function 308

ON statement 100-102
on-cells 102
on-code 97
on-units 30,,102

GOTO only 30
ONCA 72,307
ONCHAR function/pseudovariable 174
ONSOURCE function/pseudovariable 174
open control block (OCB)

format 309
function 128

OPEN statement 128
opening files

explicit open for record I/O 128~125
implicit open for record I/O 127,143

operating system interfaces
miscellaneous 191-203
see also I/O; error handling;
initialization

operation interrupt 88
optimization

branching around redundant
expressions 37

commoning constants and control
blocks 36

effect on conversions 181
elimination of common expression 34
elimination of unreachable
statements 36

examples of 33-38
general 33-38

optimization (continued)
modification of do-loop control 38
movement of expressions out of loops 34
rationalization of branches 36

OR logical operation 191
ordered delete list (DOL) 310
output, compiler 11-38
overflow routine, IBMBPGR 79,71

packed intermediate decimal format 181
PAGE format option 171
parameter lists 30

contents in dump 227
PICTURE data

DEDs 280
FEDs 280

PL/I - ASSEMBLER communication 251
PL/I-COBOL communication 231-253
PL/I-FORTRAN communication 231-253
PLIBASE 255
PLICALLA 68
PLICALLB 68
PLICKPT 197
PLICOUNT 120
PLIDUMP facility

how to use 207,215
implementation 109

PLIFLOW 11,120
PLIMAIN 65

format 311
PLISORT 192,197
PLISTART 65,11
PLITABS 171
PLITASK 255
PLIXOPT 68
pointers

BOS 76
COpy option 175
EOS 76
NAB 76
storage handling 76

pointers, null value 21
POLY built-in function 191
POST ECB 256
POSTCODEs list of 256
PRINT files 171
priority of task 256
privileged operation interrupt 88
program check interrupts 96
program control data 22

DED 278-281
program control section 11

contents 18
program management area 69-71
prologue 24

example 24
prompting 177-178
protection interrupt 88
pseudo register vector

general description 21
initialization 22
location of 22

purge task subroutine 266
PUT statement 160

qualified conditions 87

Index 337

READ statement 130-132,125
recompilation to obtain dump, avoiding 209
RECORD condition 88
record descriptor (RO) 135,312
record I/O 125-151

control blocks generated 128
error handling 144
in line 146
interface routine (IBMBRIO) 130
library routines 126
library~call 125
VS~M data sets 130

record variable 135
redundant expressions, branching around 37
REFER option 54-56,191
register usage 17

branch and link 18
compiled code 18
DO loop control 19
preferred registers 19
static backchain 19

registers 19
even/odd pairs 19
floating point 19
library usage 19
work 19

relative virtual origin (RVO) 53,54-56
REPE~T built-in function 191
REPLY option 192
report table 82
request control block (RCB)

descrit;>tion 130
format and function 313

RETURN statement 27

save areas
IBMBPGR 71
IBMBPIR 71
registers in dump 220

SAVE field in SIOCB 156
SCNT field in SIOCB 156
SFCB field in SIOCB 156
SFLG field in SIOCB 156
shared library 44-50

initialization 50
link pack area 48
multitasking 50
region 48

SIGNAL statement 96
significance interrupt 96
SIZE condition 88,103
SKIP format option 171
SLD (string locator/descriptor)

subroutine 191
SOCA field in SIOCB 156
software interrupts

definition 87
main discussion 103-105

SORT exit 197
sort/merge facility 192
source definition 146
specification interrupt 88
squashed mode 178
SRTN field in SIOCB 156
SSDD field in SIOCB 156
SSRC field in SIOCB 156
SSTR field in SIOCB 156

338

standard save area, operating system 75
statement frequency count table

discussion 120
format and £unction 314

statement number
in messages 107
of error, in dump 221

statement number table (SNT or DST) 315
location in dump 227

static backchain 26
in dump 224

static control sections 15
static descendency 87
static internal control section 15
static ONCBs 100
static storage map 15

example 13
static variables 21

locating in dump 226
ST~TUS function/pseudovariable 197
STDD field in SIOCB 156
storage

initial storage area (ISA) 68
main discussion 75-85
routine IBMBPGR 77-82
segments 76,79

storage report table
format 316

storage reports 82-85
implementation 82-85
information given 82
multitasking 84

stream I/O 146
built-in functions 174
conditions 174-176
COpy option 175
COUNT function 174
O~TAFIELO function 174
director routines 179
end of file 174
external conversion director

modules 180
file opening 156
format items 169
format lists 171
formatting modules 180
implicit open 156
initializing modules 179
ONCHAR function/pseudovariable 174
ONSOURCE function/pseudovariable 174
transmitter modules 179-180

stream I/O control block (SIOCB) 156,317
STRG field in SIOCB 156
strings

adjustable 189
built in functions 189,191
DED 278
descriptor 318
FED 281
length 54-56
locator/descriptor 54-56,318
STRING function/pseudovariable 191
STRING option 175
STRINGRANGE condition 90
STRINGSIZE condition 90,189

structures
assignments 23
COBOL 250

structures (continued)
descriptor 54-56,319
element (definition) 53
implementation of 23
interlanguage communication 250,233
mapping 250,54-56
of arrays 54- 56

structures of arrays 23
subroutines, compiler-generated 180
SUBSCRIPTRANGE con~ition 90
SUBsrR built-in function 191
SUM built-in function 191
symbol table (SYMTAB)

format 320
general 61

symbol table element list see symbol table
vector

symbol table vector 61
format 322

SYMTAB see symbol table
system action, standard

definition 81
system detected interrupts 96

tab table 111
target, definition 146
task communications area (TCA)

appendage (TI~) 11,325
description 69-11
format 323
tasking appendage (TTA) 256,326

task variable
format and function 321

tasking appendage (TTA) 256,326
TCA see task communications area
temporaries 20
temporary variables (temporaries) 20

storage 15
termination of program 69
TIA (TCA implementation appendage) 11,325
TIME built-in function 191
trace

FLOW option 114
following through dump 219
information in dump 210

transfer vector 44
transient library 40-50
TRANSLATE built-in function 191
transmission statement

in record I/O 125,130
TRANSMIT condition 145

detecting 96
transmitter modules

record I/O 126
stream I/O 119-180

TSO (time sharing option) 177-118
TTA (TCA tasking appendage)

format 326
general 256-258

TXT records 11

unaligned bit strings 181
UNDEFINEDFILE condition 88
UNDERFLOW condition 88
unqualified conditions 87
use of locators 233

user exits 192

variable data area (VDA)
interlanguage communication 238,299

variables 20
AUTOMArIC 19
BASED 20
CONTROLLED 20
entry 281
ExrERNAL 65
label 305
locating in jump 226-228
pointer 21
STATIC 21
tempora ri es 20

varying-length strings
internal representation 181

VERIFY built-in function 191
VSAM data sets 130

opening 130

WAIT ECB 256
wait event table (WIT) 268,328
WAIT macro instruction 192
WAIT statement

multitasking 268
non-multitasking 198

weak external reference (WXTRN) 44
WIT (wait event table) 268,328
WRITE statement 130-132,125
WXTRN (weak external reference) 44

X format items 111,180
XBF (exclusive file block) 292
XBI (exclusive block lOeB) 291

ZCTL (zygo-lingual control list) 238~329
ZERODIVIDE condit jon 88
zygo-lingual control list (ZCTL) 238,329

Index 339

OS PLjI Optimizing Compiler:
Execu tion Logic

SC33-002S-2

Your views about this publication may help improve its usefulness,' this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? _____________________________ _

READER'S
COMMENT
FORM

Number of latest Technical Newsletter (if any) concerning this publication: __________ _

Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

SC33-0025-2

Your comments, please ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Fold Fold , , , .. , ~ , , , . , ... , ... , . , .. , ... , , .. , . , 'I

Fold

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 813(HP)
1133 Westchester Avenue
White Plains, New York 10604

International Bu.lne .. Machine. Corporation
Data Proce •• lng Olvl.lon
1133 We.tche.ter Avenue, White Plain., New York 10804
(U.S.A. only)

IBM World Trade Corporation
821 United Nation. Plaza, New York, New York 10017
(lnternatlonat)

First Class
Permit 40
Armonk
New York

Fold

o
CJ)

-0
r -o
"0
r-+

3'
!::!.
:::s
to
(")
o
3
~.
CD
:::
m
x
CD
n c:
r-+ o·
:::s
r
o
to o·
:!!
CD
z
!=>
CJ)
w
0')
o -CJ)
W
-...J
o
~ co

-0
~.
:::s
r-+
CD a.
:::s
C
en
~
CJ)
(")
w
w
6 o
~
(J'1

~

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239a
	239b
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	replyA
	replyB

